University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/71240

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

COMPLEMENTATION IN FINITE GROUPS

by

David Murdoch MacLean.

A thesis submitted for the degree of Doctor of Philosophy of the University of Warwick. June, 1972.

ABSTRACT

This thesis is a study of the restrictions which are imposed on the structure of a finite group by some conditions on its lattice of subgroups. The conditions considered fall into two categories: either (l) the demand is made that certain of the subgroups of the group should have complements, or (2) it is specified that all subgroups should have supplements of a particular kind.

There are three chapters. Chapter 1 develops some techniques and results about complements and pronormality which are used later, mainly in Chapter 2. A problem from category (1) above is the subject of Chapter 2, which is an investigation of finite groups with the property that all the pronormal subgroups have complements. Necessary and sufficient conditions are given for a soluble group of derived length at most 3 to have that property. Chapter 3 is concerned with category (2); the basic theme is that of a finite group G in which each subgroup H has a supplement S such that $H \cap S$ belongs to some prescribed class X.

ACKNOWLEDGEMENTS

Many difficulties which I encountered, particularly in the investigations of Chapter 2, would have remained unresolved but for the counsel of $\mathrm{Dr} . \mathrm{T} .0$. Hawkes, and it is a pleasure to record my debt to him. I would also like to thank Dr. S.E. Stonehewer for his supervision, and his interest in my work, in the academic year 1970-71 : a suggestion of his was the starting point for much of the material in Chapter 3. Finally I must express my gratitude to the Carnegie Trust for the Universities of Scotland, for the award of a scholarship which sustained me during my three years at the University of Warwick.

CONTENTS

Chapter 1
1.1 Introduction p.
1.2 Notation, assumed results1.3 Complements
\qquad
1.4 Groups with complemented normal subgroups 1
1.5 Pronormal subgroups 2
Chapter 2
2.1 Metabelian groups with complemented pronormal subgroups... 2
2.2 Further properties of groups in $\mathscr{G}_{\mathrm{n}} \cap \mathcal{H}^{2}$ 3
2.3 The invariant $\mathrm{d}_{\mathrm{F}}(\mathrm{A})$. 3
2.4 Metabelian groups with faithful irreducible representations 4
2.5 A representation theorem. 4
2.6 Primitive soluble groups in $\mathscr{C}_{\mathrm{p}} \cap \mathrm{O}^{3}$ 5
2.7 Groups in $\left(r^{3}\right.$ with complemented pronormal subgroups. 7
Chapter 3
3.1 Groups with Frattini-intersection supplements 9
3.2 Groups with 3 -intersection supplements 9
3.3 Nilpotent, abelian, and cyclic intersection supplements. 10
3.4 Groups with complemented π-subgroups. 12
References. 13

CHAPTER 1

1.1 Introduction

In (HI) and (H2), Hall showed that a necessary and sufficient condition for a finite group to be soluble is that every Sylow subgroup of the group should have a complement. Much of the subsequent development in the theory of finite soluble groups stems from this and related results in (H1) and (H2), and from the ideas in (H3) and (H4) which consequently arise.

A different emphasis can be put on the theorem quoted above, by expressing it as follows: the class of finite groups in which every Sylow subgroup has a complement coincides with the class of finite soluble groups. This leads naturally to an interest in classes of groups in which certain kinds of subgroups have complements; such questions may loosely be described as "complementation problems". The most obvious complementation problem to consider is that of groups in which all subgroups have complements; this class was studied by Hall in (H5), and was shown to have a simple structure: it coincides with the class of supersoluble groups in which all the Sylow subgroups are elementary abelian.

The idea of examining complementation problems has been taken up by many authors, although nothing rivalling
the importance of Hall's original result on soluble groups has emerged. Many papers on such topics, in both finite and infinite groups, have appeared in Russian journals, and perhaps the most deserving of mention is the work of Cermikov (Cl) and Cernikova (C2)s in which the results of (H5) are extended to infinite groups. Further reference to Russian papers in this area can be found in (S3), which is itself on groups in which all the non-normal subgroups have complements. A more recent contribution is (Z1), on groups in which all the nom-cyclic subgroups have complements.

A natural complementation problem to consider is that of groups in which all the normal subgroups have complements. Such groups have been examined in (C3), (C4) and (DI); they are mentioned further in 1.4, and appear frequently in the investigations of Chapter 2.

In the present work, attention is confined entirely to finite groups, and there are two main themes, neither of which is considered in the papers mentioned above. Chapter 2 is an investigation of a complementation problem, namely the question of finite groups with the property that all the pronormal subgroups have complements. Necessary and sufficient conditions are obtained for a soluble group of derived length at most 3 to have this property. The second theme (the subject of Chapter 3) is an attempt to find some interesting problems similar to the question of groups in
which all the subgroups have complements. The idea which is most extensively explored is that of finite groups in which every subgroup has an \not-intersection supplement, where \mathcal{X} is some prescribed class of groups. (An \mathcal{X} intersection supplement to a subgroup H of a group G is a supplement S such that $H \cap S$ belongs to \mathcal{X}). It is shown that, if every subgroup of a finite group G has a cyclic intersection supplement, then G is soluble and has rank at most 2. Also, if G is a finite soluble group in which every subgroup has an abelian intersection supplement, then G has derived length at most 4. If π is a set of prime numbers, then the study of finite groups in which all the subgroups have π-intersection supplements (i.e. the intersection is a π-group) leads to a complementation problem, namely the question of finite groups in which all the π-subgroups have complements. It is shown that a finite π-soluble group G has all its π-subgroups complemented if and only if, for each prime number p in the set π, G is p-supersoluble and has elementary abelian Sylow psubgroups.

The subject matter of Chapter 1 lies in well-explored territory, so all the results have probably been noted before, possibly in a different guise: most are well known, or are simple deductions from well known theorems. Ihe results of Chapters 2 and 3 are, to the best of my knowledge, original, except where an explicit reference is given.

The notation used is fairly standard in contemporary group theory, and corresponds to that given in 1.1 of (G2), so it will not be necessary to give an exhaustive list. Some further notations, which do not appear in (G2), but which are used here, are listed below:
$H \leqslant G: H$ is a suldgroup of G;
$H<G: H$ is a proper subgroup of G;
$g^{h}: h^{-1} g h$ (where g and h are elements of some group G).

The language of classes and closure operations, first introduced by P.Hall (H6, p.533) is used throughout, since it provides a convenient and economical way of expressing many results. The usual conventions are adopted that, if \mathcal{F} is a class of groups then \mathcal{X} contains all groups of order 1 , and if $G \in \mathcal{X}$ then X contains all groups isomorphic to G. If X and \mathcal{Y} are classes of groups then $X Y$ is the class defined by: $G \in X Y$ if and only if G has a normal subgroup N such that $N \in \mathcal{X}$ and $G / N \in Y$. The only closure operations which are used are $S, S_{n}, Q, R_{0}, D_{0}, E$ and E_{Φ}, the definitions of which are now given:
$G \in S X \Leftrightarrow G$ is isomorphic to a subgroup of an \neq-group;
> $G \in S_{n} \mathcal{X} \Leftrightarrow G$ is isomorphic to a subnormal subgroup of an 天 -group;
> $G \in Q^{X} \Leftrightarrow G$ is isomorphic to a quotient group of an X-group;
$G \in R_{0} X \Leftrightarrow G$ has normal subgroups N_{1}, \ldots, N_{r} (where r is finite) such that $N_{1} \cap \ldots \cap N_{r}=1$ and $G / N_{i} \in \mathcal{X} \quad(i=1, \ldots, r$,$) ;$
$G \in D_{0} x \Leftrightarrow G$ is isomorphic to a direct product of X-groups;
$G \in E X \Leftrightarrow G$ has a finite series $l=G_{1} \leqslant G_{2} \leqslant \ldots \leqslant G_{n}=G$ such that for each $i=1, \ldots, n-1, G_{i}$ is normal in G_{i+1} and $G_{i+1} / G_{i} \in X$;
$G \in E_{\Phi} X \Leftrightarrow G$ has a normal subgroup $N \leqslant \Phi(G)$ (where $\Phi(G)$ denotes the Frattini subgroup of G) such that $G / N \in \mathcal{X}$.

If A and B are closure operations, then $\{A, B\} X$ is the smallest class containing \mathcal{X} which is both A-closed and B-closed. Often $\{A, B\}$ will coincide with one of the naturally-defined products $A B, B A ;$ egg. $\left\{Q, R_{0}\right\}=Q R_{0}$, $\left\{S, D_{0}\right\}=S D_{0},\{S, Q\}=Q S$.

If C is a unary closure operation, ie. if $C X=\bigcup_{G \in X^{C}} C(G) \quad$ for every class of groups X, then there is a unique largest $C-c l o s e d$ class contained in X. This class is denoted by \mathcal{X}^{C}, is given by

$$
\mathfrak{X}^{\mathrm{C}}=\{a: \mathrm{c}(G) \subseteq \mathfrak{X}\},
$$

and is called the c-interior of \mathcal{X}. The only closure operation for which this concept is used here is S.

Two important classes of groups are $~(\vartheta$ and π : Ω denotes the class of finite abelian groups, and or the class of finite nilpotent groups. Thus $E\left(\mathcal{C}_{\text {is }}\right.$ the class of finite soluble groups. If n is a positive integer, then O^{n} denotes the class of finite soluble groups of derived length at most n.

Whenever the word "group" appears,it can be taken to mean "finite group". Many basic results of finite group theory (e.g. the contents of the first three chapters of (G2)) may be used without explicit reference. The phrase "elementary abelian group" will refer to an abelian group, the Sylow subgroups of which are of prime exponent: it will not be restricted to apply only to groups of prime-power order.

Most of the arguments are concerned with finite soluble groups. The fact that a p-chief factor of a finite soluble group G can be regarded as an irreducible $Z_{p}[G]$-module permits the introduction of representation theory techniques; one result which is particularly valuable in this context is Clifford's Theorem ($\mathrm{H} 8, \underline{\bar{V}}, 17.3$) which gives detailed information about the restriction of an irreducible representation to a normal subgroup. An important special case in which these techniques are useful is that of a
soluble group G with a unique minimal normal subgroup V which has a complement in G . Such a group G is called a primitive soluble group (because, if H is a maximal subgroup of G which complements V in G, then the permutation representation of G on the cosets of H is a faithful representation of G as a primitive permutation group). The significant properties of primitive soluble groups are given in (H8, II, 3.2 and 3.3).

The following standard notation is used in constructing particular examples of groups:
$C_{n} \quad: \quad$ the cyclic group of order n;
$S_{n} \quad: \quad$ the symmetric group of degree n;
$A_{n} \quad: \quad$ the alternating group of degree n;
$G L(n, F)$: the general linear group of degree n over F; SL($n, F)$: the special linear group of degree n over F.

Statements of standard definitions and results are sprinkled throughout the text, on the principle that it is better to give these when they are needed rather than list them all in one long and tedious introductory section.

1.3 Complements

Definitions Let H be a subgroup of a group G. A supplement to H in G is a subgroup K of G such that $H K=G$. A complement to H in G is a subgroup K of G such that $H K=G$ and $H \cap K=1$:

Clearly, a complement in G to a subgroup H of G is a set of coset representatives of H in G which happens to form a group. As only finite groups are under consideration, either of the following alternative criteria can be used to show that K is a complement to H in G : (a) $H K=G$ and $|H||K|=|G|$; (b) $H \cap K=1$ and $|H||K|=|G|$.
1.3.1 If K is a complement to H in G, then for any $a, b \in G, K^{a}$ is a complement to H^{b} in G.

A similar statement holds with "supplement" substituted everywhere for "complement". 1.3.1, which is well-known and easily proved, shows that, in a sense, it would be more natural to consider complementary conjugacy classes of subgroups, rather than subgroups which complement each other.

One of the most useful tools for dealing with questions involving complements or supplements is the so-called "Dedekind modular law" for subgroups, which can be stated
as follows:
If H, K and L are subgroups of a group G and $K \leqslant H$, then $H \cap K L=K(H \cap L)$.
(It is not necessary to assume that $K L$. or $K(H \cap L)$ is a subgroup, although this is almost always the case when the result is applied). This Dedekind law will be used frequently in the sequel, probably without further explicit reference. It makes its first appearance in the proofs of some of the following results.
1.3.2 Let G be a group and let H be a subgroup of G which has a complement C in G.
(a) If $H \leqslant K \leqslant G$ then $C \cap K$ is a complement to H in K.
(b) If N is a normal subgroup of G and $N \leqslant H$, then $C N / N$ is a complement to H / N in G / N.

Proof (a) $H(C \cap K)=H C \cap K=G \cap K=K$,
and $H \cap(C \cap K)=(H \cap C) \cap K=1$.
(b) $\mathrm{H}(\mathrm{CN})=(\mathrm{HC}) N=G$,
and $\mathrm{H} \cap \mathrm{CN}=(\mathrm{H} \cap \mathrm{C}) \mathrm{N}=\mathrm{N}$.
1.3.3 (a) If H is a subgroup of G and there exists a normal subgroup N of G such that, $H N / N$ has a complement in G / N and $H \cap N$ has a complement in G, then H has a complement in G.
(b) Suppose $G=K N$, where N is normal in $G, K \leqslant G$,
and $K \cap N=1$, and let H be a subgroup of G. If C_{1} is a complement to $\mathbb{H N} \cap \mathrm{K}$ in $\mathrm{K}, \mathrm{C}_{2}$ is a complement to $H \cap N$ in N, and C_{1} and C_{2} permute (i.e. $C_{1} C_{2}$ is a group), then $C_{1} C_{2}$ is a complement to H in G.
(c) Suppose $G=G_{n} G_{n-1} \cdots G_{2} G_{1}$, where for each $1=1, \ldots, n-1, G_{i} G_{i-1} \ldots G_{1}$ is normal in G and $G_{i+1} \cap G_{i} G_{i-1} \ldots G_{1}=1$. Let H be a subgroup of G. If C_{1} is a complement to $H \cap G_{1}$ in G_{1} and for each $i \geqslant 1$, C_{i+1} is a complement to $H G_{i} G_{i-1} \ldots G_{1} \cap G_{i+1}$ in G_{i+1} and $C_{i+1} A^{\text {permutes with }} C_{i-1} C_{i-1} \ldots C_{1}$, then $C_{n} C_{n-1} \ldots C_{1}$ is a complement to H in G.

Proof (a) Let K / N be a complement to $H N / N$ in G / N. By 1.3.2(a), $H \cap N$ has a complement, C say, in K. Then

$$
H C=H(H \cap N) C=H K=G \text {, }
$$

and $\mathrm{H} \cap \mathrm{C}=\mathrm{H} \cap \mathrm{HN} \cap \mathrm{K} \cap \mathrm{C}=\mathrm{H} \cap \mathrm{N} \cap \mathrm{C}=1$.
Therefore C is a complement to H in G.
(b) $\quad \mathrm{H} \mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{H}(\mathrm{H} \cap \mathrm{N}) \mathrm{C}_{2} \mathrm{C}_{1}=\mathrm{HNC}_{1}=\mathrm{HN}(\mathrm{HN} \cap \mathrm{K}) \mathrm{C}_{1}=\mathrm{HNK}=\mathrm{G}$.

Also $H \cap C_{1} C_{2}=H \cap H N \cap C_{1} C_{2}$

$$
\begin{aligned}
& =H \cap\left(H N \cap C_{1}\right) C_{2} \quad\left(\text { as } \quad C_{2} \leqslant N \leqslant H N\right) \\
& =H \cap\left(H N \cap K \cap C_{1}\right) C_{2}=H \cap C_{2}=1 .
\end{aligned}
$$

(c) It is enough to prove by induction on i that for each $i, C_{i} C_{i-1} \ldots C_{1}$ is a complement to $H \cap G_{i} G_{i-1} \ldots G_{1}$ in $G_{i} G_{i-1} \ldots G_{1}$. This is certainly true when $i=1$. Suppose it is true for a particular i ; then an application
of (b), with $G_{i+1} G_{i} \ldots G_{1}, G_{i+1}, G_{i} G_{i-1} \ldots G_{1}$, $H \cap G_{i+1} G_{i} \ldots G_{1}, C_{i+1}$ and $C_{i} C_{i-1} \ldots C_{1}$ in place of G, K, N, H, C_{1} and C_{2} respectively, shows immediately that it is also true for $i+1$. Hence the result holds.

In some ways, complements are not "well-behaved", as is illustrated by the following examples; this often hampers the investigation of complementation problems.
1.3.4 Example Let $G=S_{4}$
(a) The complements of a given subgroup of G are not necessarily all isomorphic:

Let $H=\langle(123),(12)\rangle, V=\langle(12)(34),(13)(24)\rangle$, $K=\langle(1234)\rangle$; then V and K are both complements to H in G, but are not isomorphic.
(b) If a subgroup H of G has a complement in G, and $K \leqslant G$, then it is not necessarily true that $H \cap K$ has a complement in K :

Let $H=\langle(1234)\rangle, K=A_{4}$; then $\langle(123),(12)\rangle$ is a complement to H in G, but $H \cap K(=\langle(13)(24)\rangle)$ is a proper, non-trivial subgroup of the minimal normal subgroup of K, and therefore cannot have a complement in K.
(c) A supplement to a complemented subgroup of G need not contain a complement:

Let $H=\langle(1234)\rangle, K=A_{4}$ as in (b); then H is a supplement to K in G, and K has a complement in G. If H contained a complement to K in G, then that complement would be of order 2 ; but $\langle(13)(24)\rangle$ is the only subgroup
of H of order 2, and (13)(24) $\in K$.
1.3.5 Example If H has a complement in a group G and N is normal in G, it does not necessarily follow that HN/N has a complement in G/N. (Cf. 1.3.2(b)):

Let $V_{i}=\left\langle v_{i}, w_{i}\right\rangle \cong C_{2} \times C_{2} \quad(i=1,2)_{2}$ and let G be the split extension of $V_{1} \times V_{2}$ by $\langle x\rangle \cong c_{3}$, where

$$
v_{i}^{x}=w_{i}, w_{i}^{x}=v_{i} w_{i} \quad(i=1,2)
$$

Thus $\langle x\rangle V_{i} \cong A_{4} \quad(i=1,2)$. Let $H=\left\langle v_{1}, w_{2}\right\rangle$; then $\left\langle x, v_{1}, w_{1} w_{2}\right\rangle$ is a complement to H in G, but $H V_{2} / V_{2}\left(=\left\langle\nabla_{1}\right\rangle V_{2} / V_{2}\right)$ has no complement in $G / V_{2}\left(\cong A_{4}\right)$, because it is a proper non-trivial subgroup of the unique minimal normal subgroup of G / V_{2}.
1.3.6 Example A subgroup H of G such that $H \leqslant K \leqslant G$, which has a complement in G, can have a complement in K which does not extend to a complement in G :

Let $G=\langle a, b\rangle \times\langle c\rangle$, where $\langle a, b\rangle \cong s_{3}$, with $a^{3}=b^{2}=1$ and $a^{b}=a^{-1}$, and $\langle c\rangle \cong C_{3}$. Let $H=\langle a\rangle$, $K=\langle a, c\rangle, C=\langle a c\rangle$. Then H has a complement in G, and C is a complement to H in K, but C is not contained in any complement to H in G, because no 2-element of G normalizes C.
(This example is used in (D2) for a different purpose, namely to show that a normal subgroup H of a group G which has a unique conjugacy class of complements in G can have more than one conjugacy class of complements in a (normal) subgroup K of G which contains H).

1.4 Groups with complemented normal subgroups

Definitions Let H / K be a normal factor of a group G (i.e. H and K are normal subgroups of G and $K \leqslant H$). (I) H / K is a complemented factor of G if H / K has a complement in G / K.
(2) H / K is a Prattini factor of G if $H / K \leqslant \Phi(G / K)$.
(3) A subgroup L of G is said to cover H / K if $(L \cap H) K=H$; L is said to avoid H / K if ($L \cap H$) $K=K$. (4) A subgroup L of G is said to have the coveravoidance property if, for each chief factor H / K of G, L either covers H / K or avoids H / K.
1.4.1 Theorem Suppose G has a chief series

$$
1=G_{0}<G_{1}<\ldots<G_{n}=G,
$$

and $H \leqslant G$ covers or avoids each of the chief factors in this series. If the factors covered by H are all complemented, then H has a complement in G.

Proof: By induction on n. If $n=1$, then $H=1$ or $H=G$, so H has a complement in G. Suppose that the result holds for groups with fewer than n chief factors in a chief series, and let $\bar{G}=G / G_{1}$. The "bar convention" will be used, i.e. the image of a subgroup K of G under the natural epimorphism $G \rightarrow \bar{G}$ will be denoted by \bar{K}. Then $\bar{I}=\bar{G}_{1}<\bar{G}_{2}<\ldots<\bar{G}_{m}=\bar{G} \quad$ is a chief series of
\bar{G} and \bar{H} covers or avoids each factor in this series. For $i \geqslant 2, \bar{H}$ covers $\bar{G}_{i} / \bar{G}_{i-1}$ if and only if H covers G_{i} / G_{i-1}, and $\bar{G}_{i} / \bar{G}_{i-1}$ is a complemented chief factor of \bar{G} if and only if G_{i} / G_{i-1} is a complemented chief factor of G. Hence by the induction hypothesis, \bar{H} has a complement in \bar{G}, i.e. $\mathrm{HG}_{1} / \mathrm{G}_{1}$ has a complement in G / G_{1}.

Now consider $H \cap G_{1}$: if $H \cap G_{1}=1$ then $H \cap G_{1}$ certainly has a complement in G; if $H \cap G_{1}>1$ then, by hypothesis, H must cover $G_{1} / 1$ and so $H \cap G_{1}=G_{1}$. The hypotheses then imply that G_{1} has a complement in G. Thus, in every case, $H \cap G_{1}$ has a complement in G. Therefore, by $1.3 .3(2), H$ has a complement in G.

Notation Let φ_{n} denote the class of finite groups in which every normal subgroup has a complement.
1.4.2 $\operatorname{C}_{\mathrm{n}}$ is Q-ciosed.

Proof Let $G \in \mathscr{C}_{n}$ and let N be a normal subgroup of G. Let H / N be a normal subgroup of G / N; then H is normal in G, and so H has a complement in G. Then by 1.3.2(b), K / N has a complement in G / N. Therefore $G / N \in \mathscr{C}_{\mathrm{n}}$.
1.4.3 Theorem The following are equivalent:
(1) $G \in \mathscr{C}_{\mathrm{n}}$;
(2) all the chief factors of G are complemented;
(3) G has a chief series in which all the chief factors are complemented;
(4) every subgroup of G which has the cover-avoidance property has a complement in G .

Proof (1) \Rightarrow. (2) : immediate from 1.4.2.
(2) $\Rightarrow(3)$: trivial.
$(3) \Rightarrow(4)$: follows at once from 1.4.1.
(4) \Rightarrow (1) : normal subgroups have the cover-avoidance $\underset{\text { prgerty }}{\text { p }}$, so this is obvious.

In, a soluble group, every chief factor is either a Frattini factor or is complemented, hence:
1.4.4 Corollary If G is soluble then $G \in \mathscr{G}_{n}$ if and only if G has no Frattini chief factors in a given chief series.

Since the praefrattini subgroups of a soluble group cover Frattini chief factors and avoid complemented ones, 1.4 .4 is equivalent to Theorem 6.6 in (GI), in which Gaschütz observes that a soluble group has trivial praefrattini subgroups if and only if every normal subgroup has a complement.

Notation Let \mathscr{C} denote the class of groups in which every subgroup has a complement.

The following corollary to 1.4 .4 is used in 3.1 :
1.4.5 $G \in \mathscr{C}$ if and only if G is supersoluble and $G \in \mathscr{C}_{n}$. Proof Suppose $G \in \mathscr{C}$; then obviously $G \in \mathscr{C}_{n}$. Also it is shown in (H5) that \mathscr{G}-groups are supersoluble.

Now suppose G is a supersoluble group which belongs to \mathscr{C}_{n}, and proceed by induction on $|G|$. Let N be a minimal normal subgroup of G; then $G / N \in \mathscr{C}_{n}$ by 1.4.2, and G / N is supersoluble, so by induction, $G / N \in \mathscr{C}$. Thus, given any subgroup H of $G, H N / \mathbb{N}$ has a complement in. G / N. Since G is supersoluble, $H \cap N$ is either I or N, and so, because $G \in \mathscr{C}_{n}, H \cap N$ has a complement in G. Therefore, by $1.3 .3(a), H$ has a complement in G. Hence $G \in \mathscr{C}$.

For the sake of the investigations in Chapter 2, it is useful to explore further the closure properties of \mathscr{G}_{n}. 1.4.6 \mathscr{C}_{n} is R_{0}-closed.

Proof Suppose G is a group which has normal subgroups N_{1} and N_{2} such that $N_{1} \cap N_{2}=1$ and both G / N_{1} and G / N_{2} belong to \mathscr{C}_{n}. To show that \mathscr{C}_{n} is R_{0}-closed, it will be enough to show that $G \in \mathscr{C}_{n}$.

Let H be a normal subgroup of G; then $H N_{1} / N_{1}$ is normal in G / N_{1}, so $H N_{1} / N_{1}$ has a complement in G / N_{1}.

Also $\left(H \cap N_{1}\right) N_{2}$ is normal in G, so $\left(H \cap N_{1}\right) N_{2} / N_{2}$ has a complement in G / N_{2}. Since $\left(H \cap N_{1}\right) \cap N_{2}=1$, it follows by $1.3 .3(a)$ that $H \cap N_{1}$ has a complement in G. Another application of 1.3.3(a) then shows that H has a complement in G. Therefore $G \in \mathscr{C}_{n}$. Q.e.d.

In (Dl), it is shown that, if a group G has the minimum condition on subgroups and all its characteristic subgroups have complements, then all its normal subgroups have complements (of course, the first condition always holds for finite groups). It is easily deduced from this that \mathscr{C}_{n} is S_{n}-closed. A short alternative proof that $\mathscr{C}_{\mathrm{n}} \cap \mathrm{ECl}$ is S_{n}-closed (which is all that is needed for the purposes of the present work) is now given.
1.4.7 A soluble normal subgroup of a \mathscr{C}_{n}-group is itself in \mathscr{C}_{n}. In particular, $\mathscr{C}_{n} \cap E \mathcal{C}$ is S_{n}-closed.
Proof Let $G \in \mathscr{C}_{n}$, and let H be a soluble normal subgroup of G. Let N be a minimal normal subgroup of G contained in H. Using induction on $|G|$, it can be assumed that $H / N \in \mathscr{C}_{n}$. Thus for each normal subgroup K of H, KN / N has a complement in H / N. Consider $\mathrm{K} \cap \mathrm{N}: N$ is elementary abelian, so $K \cap N$ is an abelian normal subm group of H. Hence, by III, 4.4 of (H8), $K \cap N$ will have a complement in H provided $K \cap N \cap \Phi(H)=1$. But $\Phi(H) \leqslant \Phi(G)$, by (H8, III, $3.3(b))$, and $\Phi(G)=1$, because $G \in \mathscr{C}_{n}$; thus $K \cap N$ does have a complement in H.

Therefore, by $1.3 .3(a)$, K has a complement in H. Hence $H \in \mathscr{C}_{n}$. Q.e.d.

With the help of the following result, which is an immediate consequence of an important theorem of Gaschütz on complements of abelian normal subgroups, a description of the s-interior of \mathscr{C}_{n} is obtained in 1.4.9. 1.4.8 Let p be a prime number and suppose that the group G has elementary abelian sylow p-subgroups. Then every normal p-subgroup of G has a complement in G. Proof Let N be a normal p-subgroup of G, and let G_{p} be a Sylow p-subgroup of $G . G_{p}$ is elementary abelian, so N is abelian and has a complement in G_{p}; further, $\left(|N|,\left|G: G_{p}\right|\right)=1$. Therefore, by (H8, I, 17.4), N has a complement in G.
1.4.9 Theorem The following conditions are equivalent: (1) $G \in \mathscr{C}_{n}^{S}$;
(2) the Sylow subgroups of G are all elementary abelian;
(3) every subgroup of G has trivial Frattini subgroup. Proof That (1) implies (2) is clear, for if $G \in \mathcal{G}_{n} S$, p is a prime number and G_{p} is a Sylow p-subgroup of $G^{\text {. }}$, then $G_{p} \in \mathscr{C}_{n}$, so $\Phi\left(G_{p}\right)=1$ and hence G_{p} is elementary abelian.
(2) \Rightarrow (3): Let \mathscr{L} denote the class of groups with elementary abelian Sylow subgroups. \mathscr{L} is clearly S-closed,
so it will be enough to show that a group in \mathscr{L} must have trivial Frattini subgroup. Let $G \in \mathscr{L}$, and for a contradiction suppose that $\Phi(G)>1$. Let N be a minimal normal subgroup of G such that $N \leqslant \Phi(G) \cdot \Phi(G)$ is nilpotent, so N is a p-group for some prime number p; but then, by l.4.8, N has a complement in G, which contradicts $N \leqslant \Phi(G)$.
(3) \Rightarrow (1) : Suppose that (3) holds, and let H be a subgroup of G. Let N be a normal subgroup of H, and let. S be a minimal supplement to N in H. It is well known that in this situation, $N \cap S \leqslant \Phi(S)$ (otherwise, if M is a maximal subgroup of S such that $N \cap S \$ M$, then M is a supplement to N in H, contradicting the choice of S). But by hypothesis, $\Phi(S)=1$, so $N \cap S=1$ and S is a complement to N in H. Therefore $G \in \mathscr{C}_{n} S$. Q.e.d.
1.4.10 gives an elementary proof, which does not rely on Gaschütz's sophisticated theorem, of the implication (2) \Rightarrow (1) in 1.4 .9 , in the case of a soluble group. 1.4.10 $\mathscr{L} \cap E Q \subseteq \mathscr{C}_{1}{ }^{S}$, where \mathscr{L} is the class of groups with elementary abelian Sylow subgroups.
Proof Let $G \in \mathscr{L} \cap E(\mathcal{Q}$. Since $\mathscr{L} \cap E(Z$ is s-closed, it will be enough to show $G \in \mathscr{C}_{\mathrm{n}}$. Let \mathbb{N} be a minimal normal subgroup of G, and let p be the prime of which $|n|$ is a power.
$G / \mathrm{N} \in \mathscr{L} \cap E(\mathcal{Q}$, so, using induction on $|G|$, it can be. assumed that $G / \mathbb{N} \in \mathscr{C}_{\mathrm{n}}$. Hence, by 1.4 .3 , it will be enough to show that N has a complement in G. If $N=C_{G}(N)$, then G is primitive soluble, and so N has a complement in G. Thus it can be assumed that $N<C_{G}(N)$. Let M / N be a chief factor of G, with $M \leqslant C_{G}(N)$, and let q be the prime number of which $|M / N|$ is a power. If $q \neq p$ it follows that, if M_{q} is a Sylow q-subgroup of M, then $M=M_{q} N, M_{q} \cap N=1$ and $\left[M_{q}, N\right]=1$. Thus M_{q} is characteristic in M and therefore normal in G. By induction, $G / M_{q} \in \mathscr{S}_{\mathrm{n}}$, so (since $G / \mathbb{N} \in \mathscr{G}_{\mathrm{n}}$ also) $G \in R_{0} \mathscr{C}_{n}=\mathscr{C}_{n}$.

If $q=p$, then M is a p-group and so (by hypothesis)
is elementary abelian; thus M can be regarded as a $Z_{p}\left[G / C_{G}(M)\right]$-module. $C_{G}(M)$ contains the Sylow p-subgroups of G, so $G / C_{G}(M)$ is a p'-group; hence, using Maschke's Theorem, $M=N \times L$, where L is normal in G. By induction, $G / L \in \mathscr{C}_{n}$, so, as before, $G \in R_{0} \mathscr{C}_{n}=\mathscr{C}_{n}$.

1.5 Pronormal subgroups

Well-known results about pronormal subgroups, which are used in the study (in Chapter 2) of groups in which all the pronormal subgroups have complements, are collected together in this section.

Definitions A subgroup L of a group G is said to be pronormal in G if for every $g \in G, L$ and L^{G} are conjugate in their join $\left\langle L, L^{B}\right\rangle$. L is said to be abnormal in G if $g \in\left\langle L, L^{g}\right\rangle$ for all $g \in G$.

Perhaps the most obvious examples of pronormal subgroups of a group G are the Sylow subgroups of G, and also, if G is soluble, the Hall subgroups of G. Normal subgroups of G are clearly pronormal, and any maximal subgroup obviously must be either normal or abnormal in G, and hence is pronormal in G.
1.5.1 Let $H \leqslant G$. Then H is abnormal in G if and only if H is both pronormal and self-normalizing in G. Proof Suppose H is abnormal in G; then H is cert-" ainly pronormal in G. Suppose $g \in N_{G}(H)$; then $\left\langle H ; H^{g}\right\rangle=H$, so $g \in H$. Hence $N_{G}(H)=H$.

Now suppose H is both pronormal and self-normalizing in G.. Let g be any element of G. Then there is an
element x of $\left\langle H, H^{B}\right\rangle$ such that $H^{X}=H^{B}$, and hence $g x^{-1} \in N_{G}(H)=H$. Therefore $g \in H x \leqslant\left\langle H, H^{g}\right\rangle$. Thus H is abnormal in G.

Several basic properties of pronormal subgroups are in
given/(RI): those which will be needed in Chapter 2 are recorded below, in 1.5.2-1.5.5.
1.5.2 (RI, 1.3) If N is a normal subgroup of G and $N \leqslant L \leqslant G$, then L is pronormal in G if and only if L / N is pronormal in G / N.
1.5.3 (RI, 1.4) If L is pronormal in G and N is normal in G, then $L N$ is pronormal in G and

$$
N_{G}(L N)=N_{G}(L) N
$$

1.5.4, (RI, 1.5) If $H \leqslant G$, then H is both pronormal and subnormal in G if and only if H is normal in G. 1.5.5 (RI, 1.6) If L is pronormal in G then $N_{G}(L)$ is abnormal in G.
1.5.6 Suppose $G=H N$, where N is normal in G and $H \cap N=1$. If L is a pronormal subgroup of G then LN $\cap H$ is pronormal in H.

Proof LN is pronormal in G by 1.5 .3 , so, by replacing L by LN, it can be assumed that $L \geqslant N$. Let $h \in H$. Then

$$
\left\langle L, L^{h}\right\rangle=\left\langle(L \cap H) N,(L \cap H)^{h} N\right\rangle=\left\langle L \cap H,(L \cap H)^{h}\right\rangle N \ldots(I)
$$

As L is pronormal in G, there exists $x \in\left\langle L, L^{h}\right\rangle$ such
that $L^{h}=L^{x} . B y(1)$, there exists $y \in\left\langle L \cap H,(L \cap H)^{h}\right\rangle$ such that $x \in y N \leqslant y L$. Thus $L^{x}=L^{y}$, and so
$(L \cap H)^{y}=L^{y} \cap H=L^{x} \cap H=L^{h} \cap H=(L \cap H)^{h}$.
Therefore L $\cap \mathrm{H}$ is pronormal in H.

A fundamental fact about system normalizers (which are defined in (H4)) is used in a later proof (2.6.16), and is recorded here for convenience.
1.5.7 Every abnormal subgroup of a soluble group G contains a system normalizer of G.

Proof The system normalizers of G are the minimal subabnormal subgroups of G (H8, VI, 11.21).

A rich source of pronormal subgroups of soluble groups arises from the theory of "formations", a brief summary of the elements of which is now given. A lucid exposition of the basic theory can be found in (H8, VI, Section 7).

A formation is a $Q R_{0}$-closed class of groups; a saturated formation is a $\left\{Q, R_{0}, F_{\Phi}\right\}$-closed class of groups. A formation function f is a function which assigns to each prime number p either a formation $f(p)$ or the empty set \varnothing. Given a formation function f, a saturated formation \mathcal{y} can be defined by specifying that G belongs to \mathcal{J} if and only if, for each prime number p and each p chief factor H / K of $G, G / C_{G}(H / K) \in f(p)$. (If $f(p)=\varnothing$ this is interpreted to mean that p does
not divide $|G|) . \mathcal{C}^{H}$. is said to be locally defined by f. A result of fundamental importance is that every saturated formation of soluble groups has a local definition (H8, VI, 7.25).

If \mathcal{F} is a formation and G is a group, then the篤-residual of G, denoted by $G^{\text {of }}$, is the intersection of all the normal subgroups N of G such that $G / N \in$. An 噱-projector of G is a subgroup F of G such that $F \in \mathcal{G}$ and, whenever $F \leqslant H \leqslant G$, then $F H^{\circ}=H$. The
 saturated formation then every soluble group has a unique conjugacy class of ${ }^{d y}$-projectors. In the case of the saturated formation \forall, the $\mathcal{V}_{\text {projectors of a soluble }}$ group G coincide with the nilpotent self-normalizing subgroups of G discovered by R.W.Carter (and consequently known as "Carter subgroups").

The promised rich source of pronormal subgroups can now be revealed:
1.5.8 Let $\dot{\mathcal{F}}$ be a saturated formation, and N a soluble normal subgroup of a group G. Then the \mathcal{J}-projectors of N are pronormal in G. Proof Let F be an ofprojector of N, and let $g \in G$. It is easily checked that F^{g} is an fojector of N, and hence that F and F^{g} are both ${ }^{\text {d }}$-projectors of $\left\langle F, F^{g}\right\rangle$. Thus F and F^{g} are conjugate in $\left\langle F, F^{g}\right\rangle$.
1.5.9 If G is a soluble group and \mathcal{f} is a saturated formation containing π, then the \mathcal{J}-projectors of G are abnormal in G.
Proof Let F be an $\begin{gathered}\text { of projector of } G \text {. By 1.5.8, } F \text { is }\end{gathered}$ pronormal in G, so by l.5.1, it will be enough to show that F is self-normalizing in G. Let $H=N_{G}(F)$, suppose $H>F$ and let K be a maximal normal subgroup of H containing F. Then H / K is of prime order, and so $H / K \in \chi \subseteq \mathcal{O}_{\mathcal{J}}$. But then, by definition of an ${ }^{\circ}$-projector, $F K=H$, a contradiction. Therefore $F=N_{G}(F)$.

In determining whether a given subgroup of a group is pronormal, the following criterion (1.5.10) is often helpful; 1.5.11, which is deduced from it, is put to use in 2.6 and 2.7 .
1.5.10 (Gaschütz (?)) Let H be a subgroup of G and suppose N is normal in G. Then H is pronormal in G if and only if
(1) HN is pronormal in G;
(2) H is pronormal in $N_{G}(H N)$.

Proof. That H being pronormal implies (1) and (2) is obvious. Conversely, suppose that (1) and (2) hold, and let $g \in G$. Let $J=\left\langle H, H^{B}\right\rangle$; then by (I), there exists $x \in\left\langle\mathrm{HN},(\mathrm{HN})^{\mathrm{g}}\right\rangle=\mathrm{JN}$ such that $(\mathrm{HN})^{\mathrm{E}}=(\mathrm{HN})^{\mathrm{x}}$. Writing $x=n y$ with $n \in N, y \in J$, then $(H N)^{g}=(H N)^{y}$, and so
$\mathrm{gy}^{-1} \in \mathrm{~N}_{\mathrm{G}}(\mathrm{HN})$. Thus, by (2), there exists $\mathrm{z} \in\left\langle\mathrm{H}, \mathrm{H}^{\mathrm{gy}}{ }^{-1}\right\rangle \leqslant \mathrm{J}$ such that $H^{g y^{-1}}=H^{z}$; then $z y \in J$ and $H^{g}=H^{z y}$. Therefore H is pronormal in G.
1.5.11 Let $G=H V$, where V is normal in G, and. $H \cap V=1$. Let L be a pronormal subgroup of H, and suppose that $W \leqslant V$ is such that
(I) V and $N_{H}(L)$ both normalize W, and
(2) $[\mathrm{V}, \mathrm{L}] \leqslant \mathrm{w}$.

Then $L W$ is pronornal in G.
Proof (i) LV is pronormal in G
To prove this, suppose $g \in G$; then $g=v h$ for some $v \in V$ and $h \in H$, so $(L V)^{g}=(L V)^{h}$. As L is pronormal in H, there exists $x \in\left\langle L, L^{h}\right\rangle \leqslant\left\langle L V,(L V)^{h}\right\rangle$ such that $L^{h}=L^{\mathrm{x}}$, and hence $(\mathrm{LV})^{\mathrm{h}}=(\mathrm{LV})^{\mathrm{x}}$.
(ii) $L W$ is pronormal in $N_{G}(L V)$.

In fact $L W$ is normal in $N_{G}(L V)$; for, let $g \in N_{G}(L V)$. Then $g=h v$, with $h \in H, V \in V$, from which it follows that $h \in \mathbb{N}_{H}(L V \cap H)=N_{H}(L)$. Thus

$$
\begin{array}{rlr}
(L W)^{E} & =L^{h v_{W} \mathrm{hv}} & \\
& =L^{\mathrm{v}} \mathrm{~W} & (\text { by (1) }) \\
& \leqslant L[\mathrm{~V}, \mathrm{~L}] \mathrm{W} & \\
& =L W \quad & (\text { by (2)) }
\end{array}
$$

Applying 1.5.10, (i) and (ii) imply that $L W$ is pronormal in G.
1.5.12 Let L be a pronormal subgroup of G and let N be an abelian normal subgroup of G. Then $N_{G}(L N)$ normalizes L $\cap \mathrm{N}$.

Proof Let $g \in N_{G}(L N)=N_{G}(L) N$ (using 1.5.3); then $g=x n$ with $x \in N_{G}(L)$ and $n \in N$, and therefore $(L \cap N)^{f}=L^{\mathrm{xn}} \cap N=L^{\mathrm{n}} \cap N$ $=(L \cap N)^{n} \doteq \operatorname{LnN} \quad($ as N is abelian).

CHAPTER 2

2.1 Metabelian groups with complemented pronormal subgroups

Let \mathscr{C}_{p} denote the class of finite groups in which every pronormal subgroup has a complement. Some important observations about \mathscr{C}_{p} can be made immediately:
$\underline{2.1 .1} \cdot \mathscr{C}_{p} \subseteq \mathscr{C}_{\mathrm{n}} \cap \mathrm{EC}$.
Proof The Sylow subgroups of a group G are all pro-. normal; but if the Sylow subgroups of G all have complements in G, then G is soluble. Hence \mathscr{G}_{p}-groups are soluble. Also the normal subgroups of a group are all pronormal, so $\mathscr{C}_{\mathrm{p}} \subseteq \mathscr{C}_{\mathrm{n}}$.
2.1.2 \mathscr{G}_{p} is Q-closed.

Proof Let $G \in \mathscr{C}_{p}$ and let N be a normal subgroup of G. If H / N is a pronormal subgroup of G / N, then by 1.5.2, H is pronormal in G, so H has a complement in G and hence, by $1.3 .2(b), H / N$ has a complement in G / N. Therefore $G / N \in \mathscr{C}_{p}$.

Unlike $\mathscr{C}_{n}, \mathscr{C}_{p}$ is neither S_{n}-closed nor R_{0}-closed (in fact \mathscr{C}_{p} is not even D_{0}-closed); this is shown in Examples 2.7.5 and 2.7.6 . The remainder of 2.1 is devoted to showing that when attention is confined to metabelian groups, \mathscr{C}_{p} coincides with \mathscr{G}_{n}.
$2.1 .3 \quad \mathscr{C}_{n} \cap O^{2}$ is S-closed.
Proof Suppose that the result is false, and let G be a group of minimal order such that, $G \in \mathscr{C}_{n} \cap \mathscr{C}^{2}$ and G possesses a subgroup H not in \mathscr{C}_{n}. Then H is not contained in any proper normal subgroup of G, because $\mathscr{E}_{\mathrm{n}} \cap \mathrm{E}^{(t)}$ is S_{n}-closed (1.4.7). Since HG ' is normal in G, it follows that $H G!=G$. Now G is metabelian, so $G I$ is abelian; hence $H \cap G^{\prime}$ is normal in both H and G^{\prime}, and therefore in G.

If $H \cap G^{\prime}=1$, then
$H \cong H /\left(H \cap G^{\prime}\right) \cong H G^{\prime} / G^{\prime}=G / G^{\prime} \in Q \mathscr{C}_{n}=\mathscr{E}_{n}$, i.e. $H \in \mathscr{C}_{n}$, a contradiction. Hence $H \cap G^{\prime}>1$, and therefore $\mathbb{H} \cap G^{\prime}$ contains a minimal normal subgroup, N say, of G. Now any normal subgroup of H contained in $H \cap G I$ is normal in G (because $H^{\prime}=G$ and $G^{\prime} \in(X)$; consequently, N is also a minimal normal subgroup of H. $|G / \mathbb{N}|<|G|$, so, because of the way in which G was chosen, $H / \mathbb{N} \in \mathscr{C}_{n}$. But N has a complement in G, because $G \in \mathscr{E}_{\mathrm{n}}$, so N has a complement in H (by 1.3.2(a)). Therefore, by $1.4 .3, \mathrm{H} \in \mathscr{G}_{\mathrm{n}}$, a contradiction. Therefore a group such as G cannot exist, and thus the theorem is proved.
2.1 .3 and 1.4 .9 together yield the following immediate corollary:
is, 3 ?
2.1.4 Corollary (Cf. (c3), Theorem 5.4)

$$
\mathscr{E}_{n} \cap O^{2}=\mathscr{L} \cap O^{2},
$$

where \mathscr{L} is the class of groups in which all the Sylow subgroups are elementary abelian.
2.1.5 Suppose L is pronormal in G, and $L \leqslant N$, where N is a metabelian normal subgroup of G. Let M be a normal subgroup of G contained in N such that both M and N / M are abelian. Then $L M$ and $L \cap M$ are both normal in G.

Proof $L M / M \leqslant N / M$, and N / M is an abelian normal subgroup of G / M, so $L M / M$ is subnormal in G / M. But $L M / M$ is pronormal in G / M, by 1.5 .3 and 1.5 .2 , so by 1.5 .4 , LM/M is normal in G / M; thus $L M$ is normal in G. By 1.5.12, $N_{G}(L M)$ normalizes $L \cap M$; hence $L \cap M$ is normal in G.
2.1.6 Theorem If $G \in \mathscr{C}_{n}$, then every pronormal subgroup of G which is containedin metabelian normal subgroup of G has a complement in G.

Proof Let L be a pronormal subgroup of G, where $G \in \wp_{n}$, and suppose $L \leqslant N$, where N is a metabelian normal subgroup of G; let $M=N$. Then by 2.1.5, $L \cap M$ and LM are both normal in G. Since G and G / M both belong to \mathscr{G}_{n}, it follows that $L M / M$ has a complement in G / M and $L \cap M$ has a complement in G. Therefore, by 1.3.3(a), L has a complement in G.

Together, 2.1 .4 and 2.1.6 yield the following characterisation of metabelian \mathscr{Q}_{p}-groups:
2.1.7 corollary $\mathscr{C}_{p} \cap O^{2}=\mathscr{C}_{n} \cap \mathscr{Q}^{2}=\mathscr{L} \cap O \mathscr{V}^{2}$, i.e., if G is metabelian then $G \in \mathscr{C}_{p}$ if and only if the Sylow subgroups of G are elementary abelian.
2.2 Further properties of groups in $\theta_{n} \cap \theta^{2}$.

Several lemmas, which will be used later in investigating $\mathscr{G}_{\mathrm{p}} \cap \mathrm{Ol}^{3}$, are collected together here. The main lemmas, 2.2 .4 and 2.2.5, are rather "technical", and the reader might prefer to omit this section, returning to it only when it becomes necessary.
2.2.1 Let $H \in \mathscr{C}_{n} \cap O t^{2}$, let $F=F(H)$, and let $F_{0} \leqslant F$ be a normal subgroup of H. Then for any subgroup S of H,
(a) $\left[F_{0}, S\right]$ and $C_{F_{0}}(S)$ are both normal subgroups of H;
(b) $F_{0}=\left[F_{0}, S\right] \times C_{F_{0}}(S)$.
(Hence $\left[F_{0}, S, S\right]=\left[F_{0}, S\right]$ and $\left.G_{\left[F_{0}\right.}, S\right](S)=1$).

Proof Let B be a complement to F in H, and let $B_{0}=S F \cap B$. Then, as F is abelian,

$$
\left[F_{0}, S\right]=\left[F_{0}, S F\right]=\left[F_{0}, S F \cap B\right]=\left[F_{0}, B_{0}\right] \text {. }
$$

Suppose now that $a_{0} \in C_{F_{0}}(S)$, and let $b \in B_{0}$.
Then $b=s a$ for some $s \in S$, $a \in F$, and so

$$
\left[b, a_{0}\right]=\left[s a, a_{0}\right]=\left[s, a_{0}\right]^{a}\left[a, a_{0}\right]=1 .
$$

Therefore $\quad C_{F_{0}}(S) \subseteq C_{F_{0}}\left(B_{0}\right)$.
Conversely, suppose $a_{0} \in C_{F_{0}}\left(B_{0}\right)$, and let $s \in S$. Then $s \in S F=B_{0} F$, so $s=b_{0} a$ for some $b_{0} \in B_{0}$ and $a \in F$. Hence

$$
\left[s, a_{0}\right]=\left[b_{0} a, a_{0}\right]=\left[b_{0}, a_{0}\right]^{a}\left[a, a_{0}\right]=1 .
$$

Therefore $\quad C_{F_{0}}\left(B_{0}\right) \subseteq C_{F_{0}}(S)$.

Thus $\left[F_{0}, S\right]=\left[F_{0}, B_{0}\right]$ and $C_{F_{0}}(S)=C_{F_{0}}\left(B_{0}\right)$, so it can be assumed that $S=B_{0}$.
(a) Given any $h \in H, h=b a$ for some $b \in B$ and $a \in F$, and so

$$
\begin{aligned}
{\left[F_{0}, B_{0}\right]^{h} } & =\left[F_{0}^{b}, B_{0}^{b}\right]^{a} \\
& =\left[F_{0}, B_{0}\right]^{a} \quad\left(B_{0} \text { is normal in } B \text { as } B \text { is abelian }\right) \\
& =\left[F_{0}, B_{0}\right] \quad \text { (as } F \text { is abelian). }
\end{aligned}
$$

Hence $\left[F_{0}, B_{0}\right]$ is normal in H.
Let $a_{0} \in C_{F_{0}}\left(B_{0}\right)$ and let $b \in B ;$ then for any $b_{0} \in B_{0}$,

$$
\begin{aligned}
{\left[a_{0}^{b}, b_{0}\right] } & =\left[a_{0}, b_{0}\right]^{b} \quad(a s \text { is abelian }) \\
& =1 .
\end{aligned}
$$

Hence $a_{0}^{b} \in C_{F_{0}}\left(B_{0}\right)$. Therefore B normalizes $C_{F_{0}}\left(B_{0}\right)$, and so (since F is abelian) $C_{F_{0}}\left(B_{0}\right)$ is normal in H.
(b) Let $H_{0}=B_{0} F_{0}$. Then $H_{0} \in \mathscr{C}_{n} \cap \mathscr{C}^{2}$, because $\mathscr{G}_{\mathrm{n}} \cap \mathscr{C l}^{2}$ is S-closed (by 2.1.3), so in particular, $\Phi\left(\mathrm{H}_{0}\right)=1$. Now $F_{0} \leqslant F\left(H_{0}\right)$ and $\left[F_{0}, B_{0}\right]$ is normal in H_{0}, so there is a normal subgroup N of H_{0} such that $F_{0}=\left[F_{0}, B_{0}\right] \times N$. Then $\left[N, B_{0}\right] \leqslant N \cap\left[F_{0}, B_{0}\right]=1$, so $N \leqslant C_{F_{0}}\left(B_{0}\right)$. On the other hand,

$$
\begin{aligned}
& {\left[F_{0}, B_{0}\right] \cap C_{F_{0}}\left(B_{0}\right) \leqslant H_{0}^{\prime} \cap Z\left(H_{0}\right) \leqslant \Phi\left(H_{0}\right)=1,} \\
& \text { so } \quad N=C_{F_{0}}\left(B_{0}\right) .
\end{aligned}
$$

2.2.2 Let G be a group and N a normal subgroup of G, and suppose B is a complement to N in G. If $N_{0} \leqslant N$ is normal in G and $B_{0} \leqslant B$ is normal in B then $B_{0} N_{0}$ is normal in G if and only if $\left[N, B_{0}\right] \leqslant N_{0}$. Proof If $B_{0} N_{o}$ is normal in G then

$$
\left[\mathrm{N}, \mathrm{~B}_{\mathrm{o}}\right] \leqslant \mathrm{N} \cap \mathrm{~B}_{\mathrm{o}} \mathrm{~N}_{\mathrm{o}}=\mathrm{N}_{\mathrm{o}}
$$

Now suppose $\left[\mathrm{N}, \mathrm{B}_{0}\right] \leqslant \mathrm{N}_{0}$, and let $\mathrm{g} \in \mathrm{G}$. Then $\mathrm{g}=\mathrm{bn}$ for some $\mathrm{b} \in \mathrm{B}, \mathrm{n} \in \mathrm{N}$, and so

$$
\left(B_{0} N_{0}\right)^{G}=B_{0} n_{N_{0}} \leqslant B_{0}\left[N, B_{0}\right] N_{0}=B_{0} N_{0} .
$$

2.2.3 Suppose that $F(G)$ is abelian, and N is an abelian normal subgroup of G. If N has a complement B in G and $C_{B}(N)=1$, then $N=F(G)$.
Proof $B \cap F(G)$ centralizes N, so $B \cap F(G)=1$.
2.2.4 Let $H \in \mathscr{G}_{n} \cap O^{2}$, let $A=H^{\prime}$ and $Z=Z(H)$. Suppose that $S>1$ is a subgroup of H such that $S \cap A Z=1$, and let Z_{o} be a subgroup of Z. Let $A_{0}=[A, S]$ (thus $A_{0}>1$), and let $H_{0}=S A_{0} \times Z_{0}$. If N is a normal subgroup of H_{o}, but N contains no nontrivial normal subgroup of H contained in A, then (a) $N \leqslant F\left(H_{0}\right)=A_{0} \times Z_{0}$;
(b) $F\left(H_{0} / N\right)=F\left(H_{0}\right) / N$.

Proof (a) $\quad H_{0}^{\prime}=\left[A_{0}, S\right]=A_{0}$ and $C_{A_{0}}(S)=1$. $C_{S}\left(A_{0} Z_{0}\right)=C_{S}\left(A_{0}\right)=S_{0}$. (say).

Then $\left[A, S_{0}\right] \leqslant[A, S]=A_{0} \leqslant C_{A}\left(S_{0}\right)$.
But by 2.2.1(b), $\left[A, S_{0}\right] \cap C_{A}\left(S_{o}\right)=1$, so $\left[A, S_{0}\right]=1$, i.e. $S_{0} \leqslant C_{H}(A)=A Z$. Therefore $S_{0} \leqslant S \cap A Z=1$, so $C_{S}\left(A_{0} Z_{0}\right)=1$, and hence, by 2.2.3, $\quad A_{0} Z_{0}=F\left(H_{0}\right)$.

Since N is normal in $H_{0},\left[A_{0}, N\right] \leqslant N$. But $\left[A_{0}, N\right]$ is normal in H, by 2.2.1(a), and by hypothesis, N contains no non-trivial normal subgroups of H which are contained in A. Therefore $\left[A_{0}, N\right]=1$, and so

$$
\mathbb{N} \leqslant C_{H_{0}}\left(A_{0}\right)=A_{0} Z_{0}=F\left(H_{0}\right) .
$$

(b) Let $A_{0}=M_{1} \times \ldots \times M_{t}$, where the M_{i} are minimal normal subgroups of H. By hypothesis, $N \cap M_{i}<M_{i}$, so for each i there is a minimal normal subgroup N_{i} of H_{0} such that

$$
N_{i} \leqslant M_{i} \text { and } N_{i} \cap N=1
$$

Therefore H_{0} has a factor group H_{0} / N_{0} such that $N \leqslant N_{0}$ and, assuming without loss of genevality that each H_{0}-isomovphism class of groups in $\left.\frac{\{ }{2} N_{1}, \ldots, N_{t}\right\}$ has enactly one representative amongst N_{1}, \ldots, N_{r}, $\mathrm{A}_{\mathrm{o}} \mathrm{Z}_{0} / \mathrm{N}_{0} \underset{\mathrm{H}_{0}}{\cong} \mathrm{~N}_{1} \times \ldots \times \mathrm{N}_{\mathbf{+}}{ }^{+}$

Now for a fixed i in $\{1, \ldots, t\}$, let M_{i} be a p_{i}-group, let $\bar{H}=H / C_{H}\left(M_{i}\right)$, and consider M_{i} as an irreducible $Z_{p_{i}}[\bar{H}]$-module. Since $H^{\prime}=A \leqslant C_{H}\left(M_{i}\right)$, \bar{H} is abelian and hence, as a $Z_{p_{i}}[\bar{S}]$-module (using the-"bar convention"), M_{i} is homogeneous (i.e the irreducible $Z_{p_{i}}[\bar{s}]$ submodules of M_{i} are all isomorphic).

Therefore $C_{S}\left(N_{i}\right)=c_{S}\left(M_{i}\right)$, and so

$$
\begin{aligned}
C_{S}\left(N_{1} \times \ldots \times N_{1}\right) & =\bigcap_{i=1}^{t} c_{S}\left(N_{i}\right)=\bigcap_{i=1}^{t} c_{S}\left(M_{i}\right) \\
& =C_{S}\left(M_{1} \times \ldots \times M_{t}\right)=C_{S}\left(A_{0}\right)=1
\end{aligned}
$$

Applying 2.2 .3 to H_{0} / N_{0}, it follows that $F\left(H_{0} / N_{0}\right)=A_{0} Z_{0} / N_{0}$, and therefore, as $N \leqslant N_{0}$, $F\left(H_{0} / N\right)=A_{0} Z_{0} / N=F\left(H_{0}\right) / N$.
2.2.5 Let $H \in \mathscr{C}_{n} \cap \mathcal{O R}^{2}$, let $A=H$, and $Z=Z(H)$ as in 2.2.4, and let B be a complement to $F(H)=A \times Z$ in H; thus $H=B A \times 2$. Let B_{0} be a subgroup of B and let C be a complement to B_{o} in H. Then:
(a) $[A, C \cap B Z] \leqslant C^{\prime}$.
(b) If $z \in Z$ then there exists $c \in C$ and $b \in B_{0}$ such that $|b|$ divides $|z|$ and $c=b z$. It then follows that $\langle c\rangle=\left\langle b z_{1}\right\rangle \times\left\langle z_{2}\right\rangle$, where $\langle z\rangle=\left\langle z_{1}\right\rangle \times\left\langle z_{2}\right\rangle$ and $\left(|b|,\left|z_{2}\right|\right)=1,\left(|b|,\left|z_{1}\right|\right)=\left|z_{1}\right|$.

Proof (a) Take any $a \in A$ and any $c \in C \cap B Z$. Since $H=B_{0} C$, there exist $b_{0} \in B_{0}$ and $c_{0} \in C$ such that $a=b_{o}^{-1} c_{0}$. Then

$$
\begin{aligned}
{\left[c_{0}, c\right] } & =\left[b_{0} a, c\right]=\left[b_{0}, c\right]^{a}[a, c] \\
& =[a, c] \quad\left(c \in B Z \text { so }\left[b_{0}, c\right]=1\right)
\end{aligned}
$$

Hence $\quad[a, c]=\left[c_{0}, c\right] \in C^{\prime}$, and therefore $[A, C \cap B Z] \leqslant C^{\prime}$.
(b) Let $z \in Z$. Then $z=b_{o}^{-1} c o$ for some $b_{0} \in B_{0}$, $c_{0} \in C$; i.e. $c_{0}=b_{0} z$. Let π denote the set of prime divisors of $|z|$, and write $b_{0}=b_{\pi}^{b} \pi^{1}$, where π is a
π-element and b_{π} is a $\pi^{\prime-e l e m e n t . ~ T h e n ~}$

$$
\left\langle b_{o} z\right\rangle=\left\langle b_{\pi^{\prime}} b_{\pi^{2}} z\right\rangle=\left\langle b_{\pi^{\prime}}\right\rangle \times\left\langle b_{\pi^{2}}\right\rangle
$$

Let $m=\left|b_{\pi^{\prime}}\right|$; then $\left(b_{o} z\right)^{m}=b_{\pi^{m}}^{m}$, ie. $c_{0}^{m}=b_{\pi^{m}}^{m} z^{m}$. Now $(m,|z|)=1$, so there is an integer n such that $m n \equiv 1(\bmod |z|)$. Thus

$$
c_{o}^{m n}=b_{\pi}^{m n} z
$$

Therefore, taking $c=c_{0}{ }^{m n}$ and $b=b_{\pi}^{m n}$, the result is established. .

2.3 The invariant $d_{F}(A)$

Throughout 2.3, let A denote an abelian group and let $F=G F\left(p^{f}\right)$, where p is a prime number and f is a natural number.

Definition. The number $d_{F}(A)$ is defined by:

$$
d_{F}(A)=\max \left\{\operatorname{dim}_{F} V: V \text { an irreducible } F[A]-\text { module }\right\} .
$$

The nature of the invariant $d_{F}(A)$ can be elucidated by making use of the fundamental result ($\mathrm{H} 8, \mathrm{II}, 3.10$) that if A has a faithful irreducible representation over F, then A is cyclic, and the degree of the representation is determined as the smallest natural number n such that

$$
p^{f n} \equiv 1 \quad(\bmod |A|)
$$

(The essence of this theorem is that the only kind of situation in which an abelian group can have a faithful irreducible representation over $G F\left(p^{f}\right)$ is one in which a subgroup of the multiplicative group of $G F\left(p^{f n}\right)$ acts (by multiplication) on the additive group of $G F\left(p^{f n}\right)$, the latter being regarded as a vector space over $G F\left(p^{f}\right)$).
2.3.1 Suppose $q_{1}, q_{2}, \ldots, q_{s}$ are all the prime divisors of $\left|A_{p}\right|$ (where $A_{p \prime}$ is the p-complement of A), and $q_{i}{ }_{i}$ is the exponent of $A_{q_{i}}$ (the Sylow q_{i}-subgroup of A), for each $i \in\{1, \ldots, s\}$. Let d be the smallest natural number such that $p^{f d} \equiv 1 \quad\left(\bmod \quad q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{s}^{e} s\right)$

Then

$$
d=d_{F}(A)
$$

Proof A has a cyclic factor group of order $q_{1}{ }^{\theta_{1}} \ldots q_{s}{ }_{s}$, and hence has an irreducible representation over F of degree d (corresponding to a faithful irreducible representation of the factor group). Hence $\quad d_{F}(A) \geqslant d$.

Let V be an irreducible $F[A]$-module, and let $C=C_{A}(V)$. Then V is a faithful irreducible $F[A / C]-$ module, so A / C is cyclic and $\operatorname{dim}_{F} V$ is the smallest natural number n such that $\quad p^{f n} \equiv 1(\bmod |A / C|):$ But $|A / C|$ must be a divisor of $q_{1}{ }_{1} q_{2}{ }^{e_{2}} \ldots q_{s}{ }^{e} \quad$ (as A / C is a cyclic $\left.p^{\prime}-g r o u p\right)$, so $p^{f d} \equiv 1(\bmod |A / C|)$. Therefore $n \mid d$. Hence $\quad d_{F}(A)=d$.

Corollary The F-dimension of any irreducible $F[A]-$ module is a divisor of $d_{F}(A)$.
2.3.2 Let $d=d_{F}(A)$, and let $E=G F\left(p^{f d}\right)$. Then E is a splitting field for A.

Proof Let V be an irreducible $E[A]$-module, and let $\operatorname{dim}_{E} V=n$. Let $C=C_{A}(V)$. Then $p^{f d n} \equiv 1(\bmod |A / C|)$, and this congruence holds (given f and d) for no natural number smaller than n. But 2.3 .1 shows that $p^{f d} \equiv 1\left(\bmod \left|A / A_{0}\right|\right)$ for any cyclic factor group A / A_{0} of A. Hence $n=1$, i.e. the E-dimension of any irreducible $E[A]$-module is 1 . Q.e.d.

Here and later $\operatorname{lcm}(m, n)$ denotes the lowest common multiple of m and n.
2.3.3 (a) If $A_{0} \leqslant A$ then $d_{F}\left(A_{0}\right) \mid d_{F}(A)$.
(b) If A_{1}, A_{2} are subgroups of A and $A=A_{1} A_{2}$, then

$$
d_{F}(A)=\operatorname{lcm}\left(d_{F}\left(A_{1}\right), d_{F}\left(A_{2}\right)\right)
$$

Hence, if $d_{F}\left(A_{2}\right)=1$ then $d_{F}(A)=d_{F}\left(A_{1}\right)$.
Proof (a) This is immediate from 2.3.1 : let $d=d_{F}(A)$ and $d_{0}=d_{F}\left(A_{0}\right)$. Then d is the smallest natural number such that $\quad p^{f d} \doteq 1\left(\bmod q_{1}{ }^{e} \ldots q_{s}{ }^{e_{s}}\right.$) (with notation as in 2.3.1), and d_{0} is the smallest natural number such that $p^{f d_{0}} \equiv 1 \quad\left(\bmod q_{1} f_{1} \ldots q_{s}{ }_{s}\right), \quad$ where ${ }_{q_{i}}^{f_{i}}$ is the exponent of the Sylow q_{i}-subgroup of A_{0}. Since $f_{i} \leqslant e_{i}$ for each i, it follows that $\quad p^{f d} \equiv 1\left(\bmod q_{1} 1 \ldots q_{s}{ }^{f}\right)$, and hence $d_{o} \mid d$.
(b) Let $d_{i}=d_{F}\left(A_{i}\right),(i=1,2)$, and let $\alpha^{\prime}=\operatorname{lcm}\left(d_{1}, d_{2}\right)$. By (a), both d_{1} and d_{2} divide d, so $d \cdot \mid d$.

Now for each $i \in\{1, \ldots, s\}$, either $p^{f d_{1}} \equiv I\left(\bmod q_{i}{ }_{i}\right)$
or $p^{f d_{2}^{\prime}} \equiv I\left(\bmod \left(q_{i}\right)\right.$, as $e_{i}=\max \left\{e_{i 1}, e_{i 2}\right\}$, where $q_{i}{ }_{i j}$ denotes the exponent of the Sylow q_{i}-subgroup of A_{j}. Therefore $p^{f d^{\prime}} \equiv 1\left(\bmod q_{i}{ }_{i}\right)$ for each i, and thus $p^{f d^{\prime}} \equiv 1\left(\bmod q_{1}{ }^{e_{1}} \ldots q_{s}^{e_{s}}\right)$, which implies that $d \mid d^{\prime}$. Therefore $d=d^{\prime}$.
2.3.4 Theorem Let G be a group, let N be an abelian normal subgroup of G, and let $F=G F\left(p^{f}\right)$. If V is a
 the irreducible $F[N]$-submodules of V is precisely $d_{F}(N)$. proof Let W be an irreducible $F[N]$-submodule of V, and let $C=C_{N}(W)$. Then by Clifford's Theorem,

$$
V=\sum_{g \in G} W g,
$$

and $\quad C_{N}(W g)=C^{G}$ for each $g \in G$. Thus. $C_{N}(V)=\bigcap_{G \in G} C^{g}$. Since V is faithful, it follows that C contains no nontrivial normal subgroup of G.
$\operatorname{dim}_{\mathrm{F}} \mathrm{W}$ is determined as the smallest natural number d such that $p^{f d} \equiv 1(\bmod |N / C|)$, so, by 2.3.1, to establish the result it will be enough to show that $|N / C|={ }_{q_{1}}^{q_{I}} \ldots q_{s}{ }_{s}$, where q_{1}, \ldots, q_{s} are the distinct prime numbers, $/$ dividing $|N|$, and $q_{i}{ }_{i}$ is the exponent of the Sylow q_{i}-subgroup of N.

Let N_{i} denote the Sylow q_{i}-subgroup of N and let $U_{j}\left(N_{i}\right)=\left\{x^{\left(q_{i}^{j}\right)}: x \in N_{i}\right\}$.
Then for each $j=1, \ldots, e_{i}-1, \bigcup_{j}\left(N_{i}\right)$ is a characteristic subgroup of N_{i}, and therefore a normal subgroup of G. In particular, it follows that either $/ e_{i}=1$ In the or $\mathcal{U}_{e_{i}-1}\left(N_{i}\right) \forall C$. K first case, N_{i} then
is of exponent q_{i}; $\left\langle\right.$ certainly $N_{i} \$ C$, so there is an element x of N_{i} of order q_{i} such that $x \notin C$; thus $\langle x\rangle \cap c=1$. In the second case, there is an element x
of N_{i} such that $\left(q_{i}^{e_{i}-1}\right)_{\& C}$; then x has order $q_{i}^{e_{i}}$ and $\langle x\rangle \cap c=1$. Thus in both cases, N / C has an element of order $q_{i}{ }_{i}$. The result now follows.

2. 4 Metabelian groups with faithful irreducible

representations.

The results obtained in this section are needed in 2.6 to construct some useful pronormal subgroups of the group considered there. Two more theorems from (H8), namely $\overline{\mathrm{V}}, 13.2$ and $\overline{\mathrm{V}}, 13.3$, are used in the proofs.

Throughout 2.4, H denotes a metabelian group, N is a normal subgroup of H such that both N and H / N are abelian, $F=G F\left(p^{f}\right)$, and V is a faithful irreducible $\mathrm{F}[\mathrm{H}]$-module.
2.4.1 Suppose F is a splitting field for N. Then: (a) the homogeneous components of V_{N} all have stabilizer $\mathrm{C}_{\mathrm{H}}(\mathrm{N})$;
(b) if $N=C_{H}(N)$ then $\operatorname{dim}_{F} V=|H: N|$. Proof (a) Let $V_{N}=V_{1} \oplus \ldots \oplus V_{t}$ be the decomposition of V_{N} into homogeneous components, and let S be the stabilizer of V_{1}. Then $N \leqslant S$, and hence S is normal in H (as H / N is abelian). Since the stabilizers of V_{2}, \ldots, V_{t} are all conjugates of S, it follows that all the homogeneous components have stabilizer S.

$$
\operatorname{Let}^{2} \quad C_{i}=C_{S}\left(V_{i}\right) \quad(i=1, \ldots, t) \text {. Since } F \text { is a }
$$

splitting field for N, and N is abelian, N acts on each V_{i} as a group of scalar matrices, so

$$
N C_{i} / C_{i} \leqslant Z\left(S / C_{i}\right) \quad \text { for each } i
$$

i.e. $[N, S] \leqslant C_{i}$. But V is a faithful $F[H]$-module,
so $\quad C_{1} \cap c_{2} \cap \ldots \cap C_{t}=1$, and therefore $[N, S]=1$, i.e. $S \leqslant C_{H}(N)$. Since it is always true that $S \geqslant C_{H}(N)$, it follows that $S=C_{H}(N)$.
(b) If $N=C_{H}(N)$ then by (a) and Cliffords Theorem, each V_{i} is an irreducible $F[N]$-module, and therefore V_{i} has dimension 1 (since N is abelian and F is a splitting field for N). Hence $\operatorname{dim}_{F} V=|H: S| \operatorname{dim}_{F} V_{I}=|H: N|$.
2.4.2 Suppose that' F is a splitting field for N, $\mathrm{N}=\mathrm{C}_{\mathrm{H}}^{(\mathrm{N})}$ and N has a complement B in H . Let $\mathrm{N}_{\mathrm{O}} \leqslant N$ be a normal subgroup of H and let $B_{o} \leqslant B$. Then the dimension of an irreducible $F\left[B_{0} N_{0}\right]$-submodule U of V is at least $\left|B_{0}: C_{B_{0}}\left(N_{0}\right)\right|$; if $C_{B_{0}}\left(N_{0}\right)=1$ then

$$
\operatorname{dim}_{F} U=\left|B_{o}\right|
$$

Proof Let W be an irreducible $F\left[N_{0}\right]$-submodule of V. Then

$$
\begin{equation*}
b \in B, W \underset{F\left[N_{0}\right]}{\cong} W b \quad \Leftrightarrow \quad b \in C_{B}\left(N_{0}\right) \tag{*}
\end{equation*}
$$

The implication from right to left is obvious. For the converse, suppose that $b \in B$, and that there is an $F\left[N_{0}\right]$ isomorphism $\phi: W \rightarrow W b . F$ is a splitting field for N, and therefore for N_{0}, so W is one-dimensional : let $W=\langle\omega\rangle$, and let $\xi \in F$ be such that $w \phi=\xi(w b)$. Then for any $n_{0} \in N_{0}$,
ϕ is an $F\left[N_{0}\right]$-isomorphism
$\Rightarrow \quad(w \phi) n_{0}=\left(w n_{o}\right) \phi$
$\Rightarrow \quad(\xi(w b)) n_{0}=\xi\left(\left(w n_{0}\right) b\right)$
$\Rightarrow \xi\left(w_{b n_{0}}\right)=\xi\left(w n_{0} b\right)$
$\Rightarrow \quad \mathrm{bn}_{0} \mathrm{~b}^{-1} \mathrm{n}_{0}^{-1} \in \mathrm{C}_{\mathrm{N}_{0}}$ (W).
Therefore $\left[b, N_{0}\right] \leqslant c_{N_{0}}(W)$. Since $\left[b, N_{0}\right]$ is a normal subgroup of H, it follows, by Clifford's Theorem, that $\left[b, N_{0}\right] \leqslant C_{N_{0}}(V)$. But v is a faithful module, so $\left[b, N_{0}\right]=1$, i.e. $b \in C_{B}\left(N_{o}\right)$. This establishes (*) .

Now consider U, an irreducible $F\left[B_{0} N_{0}\right]$-submodule of V, and let W be an irreducible $F\left[N_{0}\right]$-submodule of U. Let $r=\left|B_{0}: C_{B_{0}}\left(N_{0}\right)\right|$, and let $\left\{1, b_{2}, \ldots, b_{r}\right\}$ be a set of coset representatives of $C_{B_{0}}\left(N_{0}\right)$ in B_{0}. Then. by (*), W, W_{2}, \ldots, W_{r} are pairwise inequivalent irreducible $F\left[N_{0}\right]$-submodules of U, so

$$
U \geqslant W \oplus W_{2} \oplus \ldots \oplus \mathrm{wb}_{\mathrm{r}} .
$$

Hence $\quad \operatorname{dim}_{F} \mathrm{U} \geqslant \mathrm{r}=\left|\mathrm{B}_{\mathrm{o}}: \mathrm{C}_{\mathrm{B}_{\mathrm{o}}}\left(\mathrm{N}_{\mathrm{o}}\right)\right|$.

$$
\text { If } C_{B_{0}}\left(N_{0}\right)=1 \text {, then } B_{0}=\left\{1, b_{2}, \ldots, b_{r}\right\} \text {, so }
$$

$W \oplus \mathrm{~Wb}_{2} \oplus \ldots \oplus \mathrm{~Wb}_{\mathrm{r}}$ is an $\mathrm{F}\left[\mathrm{B}_{0} \mathrm{~N}_{0}\right]$-submodule of U , and therefore must be the whole of U. Hence $\operatorname{dim}_{F} \mathrm{~J}=\left|B_{Q}\right|$.
2.4.3 If $N=C_{H}(N)$ then dim $_{F} V$ is divisible by $\operatorname{lcm}\left(|H: N|, d_{F}(N)\right)$.
Proof It follows from 2.3.4 that the dimension of the irreducible $F[N]$-submodules of V is $d_{F}(N)$, so
$d_{F}(N) \mid \operatorname{dim}_{F} V$. It remains to show that $|H: N|$ divides $\operatorname{dim}_{F} V$.

Let $d=d_{F}(N)$ and let $E=G F\left(p^{f d}\right)$; then E is a Galois extension of F and also a splitting field for N (by 2.3.2). Let $V^{*}=E \otimes_{F} V$; then by (H8, $\overline{\mathrm{V}}, 13.3$), V^{*} decomposes into a direct sum of irreducible "algebraically conjugate" $E[H]$-modules, $V_{i}^{*}, V_{2}^{*}, \ldots, V_{n}^{*}$ say. Each V_{i}^{*} is also a faithful $E[H]$-module, since V^{*} is faithful, so by 2.4.1(b), $\quad \operatorname{dim}_{E} V_{i}^{*}=|H: N|$. Therefore $\operatorname{dim}_{E} V^{*}$ is divisible by $|H: N|$, and so, since $\operatorname{dim}_{E} V^{*}=\operatorname{dim}_{F} V$, the proof is complete.
2.4.4 Suppose that $N=C_{H}(N)$ and N has a complement B in H. Then:
(a) $C_{V}(B)>0$ and $[V, B]<V$:
(b) if $N_{0} \leqslant N$ is normal in H and $B_{0}=C_{B}\left(N_{0}\right)$, then V has an $F\left[B_{0} N_{0}\right]$-submodule W of codimension $d_{F}\left(N_{o}\right)$, such that B_{0} centralizes V / W.

Proof (a) As in the proof of 2.4.3. let $d=d_{F}(N)$, let $E=G F\left(p^{f d}\right)$, and consider $V^{* *}=E Q_{F} V$. Then, as before, $V^{*}=V_{1}^{*} \oplus \ldots \oplus V_{n}^{*}$, where each V_{i}^{*} is a faithful irreducible $E[H]$-module; consider $V_{1}^{* *}$. The situation is as in 2.4.2 (with $E, V_{\mathcal{L}}^{*}, N, B$ playing the roles of F, V, N_{0}, B_{0} respectively), and since $C_{B}(N)=1$, it can be seen that, as in the last part of the proof of 2.4 .2 , if
W_{1}^{*} is an irreducible $E[N]$-submodule of V_{1}^{*} and $B=\left\{1, b_{2}, \ldots, b_{r}\right\}$, then $W_{1}^{*}, W_{1}^{*} b_{2}, \ldots, W_{1}^{*} b_{r}$ are pairwise inequivalent $E[N]$-modules and

$$
v_{1}^{*}=w_{1}^{*} \oplus w_{1}^{*} b_{2} \oplus \ldots \oplus w_{1}^{*} b_{r} .
$$

It now follows that if $w_{1} \in W_{1}^{*} \backslash 0$, then $w_{1}+w_{1} b_{2}+\ldots+w_{1} b_{r} \neq 0$, and so $C_{v_{1}}^{*}(B)>0$.
Also $W^{*}=\left\{\sum_{i=1}^{r} \xi_{i}\left(w_{1} b_{i}\right): \xi_{i} \in E, \sum_{i=1}^{r} \xi_{i}=0\right\}$ is a proper $E[B]$-submodule of V_{1}^{*}, and B centralizes V_{1}^{*} / W_{*}^{*}. Therefore $C_{V}{ }^{*}(B)>0$ and $\left[V^{*}, B\right]<V^{*}$.

Let G be the Galois group of E over F; then $V *$ is a G-module, with the action described in (H8, $\bar{V}, 13.2$). Straightforward calculations show that $C_{V}{ }^{*}(B)$ and $\left[V^{*}, B\right]$ are G-submodules of V^{*}; therefore, by (H8, $\bar{V}, 13.2$), there are $F[B]$-submodules U_{1} and U_{2} of V such that $C_{V}{ }^{*}(B)=E \otimes_{F} U_{1},\left[V^{*}, B\right]=E \otimes_{F} U_{2}$. Now $u \in U_{1} \Leftrightarrow 1 \otimes u \in C_{V}{ }^{*}(B)$
$\Leftrightarrow \quad \forall b \in B, \quad I \otimes u b=1 \otimes u$
$\Leftrightarrow \quad \forall b \in B, \quad u b=u$

$$
\Leftrightarrow \quad u \in C_{V}(B)
$$

Therefore $C_{V}(B)=U_{1}>0$.

$$
\text { Also, given } v \in V \text { and } b \in B, I \otimes[v, b] \in\left[V^{*}, B\right] \text {, }
$$

and therefore $[v, b] \in U_{2}$. Hence $[V, B] \leqslant U_{2}<V$.
(b) Let $d_{0}=d_{F}\left(N_{O}\right), E_{o}=G F\left(p^{f d_{o}}\right)$, and $V^{*}=E_{0} \boldsymbol{\otimes}_{F} V$. In (a) it was shown that $[V, B]<V$; hence
$\left[\mathrm{V}^{*}, \mathrm{~B}\right]<\mathrm{V}^{*}$, and therefore $\left[\mathrm{V}^{*}, \mathrm{~B}_{\mathrm{o}}\right]<\mathrm{V}^{*}$. Because N_{o} centralizes $B_{0},\left[\mathrm{~V}^{*}, \mathrm{~B}_{0}\right]$ is an $E_{0}\left[\mathrm{~N}_{0}\right]$-submodule of V^{*}, and therefore $\overline{\mathrm{V}}=\mathrm{V}^{*} /\left[\mathrm{V}^{*}, \mathrm{~B}_{0}\right]$ is an $\mathrm{E}_{0}\left[\mathrm{~B}_{0} \mathrm{~N}_{0}\right]$-module. E_{0} is a splitting field for N_{0} (by 2.3.2), so $\overline{\mathrm{V}}$ is a direct sum of one-dimensional $E_{0}\left[N_{0}\right]$-submodules. In particular, $\overline{\mathrm{V}}$ has an $\mathrm{E}_{0}\left[\mathrm{~N}_{0}\right]$-submodule \bar{W}_{0} of codimension $1, \bar{W}_{0}=W_{0}^{*} /\left[V^{*}, B_{0}\right]$, say. Since B_{0} acts trivially on \bar{V}, W_{0}^{*} is in fact an $E_{0}\left[B_{0} N_{0}\right]$-submodule of V^{*} of codimension I, such that B_{o} acts trivially on $\mathrm{v}^{*} / \mathrm{w}_{0}^{*}$.

Let G_{0} be the Galois group of E_{0} over F, and, with the action of G_{0} on V^{*} as described in (H8, $\underline{\bar{V}}$, 13.2), let $W^{*}=\bigcap_{g \in G_{0}} W_{0}^{*} G \cdot\left[V^{*}, B_{0}\right]$ is a G_{0}-submodule of V^{*}, so $w^{*} \geqslant\left[\mathrm{~V}^{*}, B_{0}\right]$, and hence B_{0} centralizes $\mathrm{V}^{*} / \mathrm{W}^{*}$. Also W^{*} is both an $\mathrm{E}_{\mathrm{o}}\left[\mathrm{B}_{\mathrm{o}} \mathrm{N}_{0}\right]$-submodule, and a G_{o}-submodule, of V^{*}, and therefore (by H8, $\overline{\mathrm{V}}, 13.2$). V has an $F\left[B_{0} N_{0}\right]$-submodule W such that $W^{*}=E_{0} \otimes_{F} W$.

Now G_{0} has order d_{0} : so

$$
\operatorname{codim}_{E_{0}} w^{*} \leqslant\left|G_{0}\right| \operatorname{codim} E_{E_{0}} w_{0}^{*}=d_{0} .
$$

Hence codim $F \leqslant d_{0}$. On the other hand, w is a.proper $F\left[N_{0}\right]$-submodule of V, so $\operatorname{codim}_{F} W \geqslant d_{F}\left(N_{o}\right)=d_{0}$. Therefore $\operatorname{codim}_{F} W=d_{0}$.

Since $W^{*} \geqslant\left[V^{*}, B_{0}\right]$, and $W^{*}=E_{0} \otimes_{F} W$, it follows, as in the proof of (a), that $W \geqslant\left[V, B_{0}\right]$, and therefore B_{0} centralizes V / w.

2.5 A representation theorem

As a last preliminary to the study of $\mathscr{C}_{\mathrm{p}} \cap \mathcal{O}^{3}$, another result from representation theory is developed. The result (2.5.2) is based on a theorem in (H8), from the statement and proof of which the following information is collected:
2.5.1 (H8, II, 3.11) Let G be a group, let $F=\operatorname{GF}\left(p^{f}\right)$, and suppose that V is a faithful $F[G]-m o d u l e$. Let N be an abelian normal subgroup of G, and suppose that, as an $F[N]$-module, V is homogeneous. Let k be the dimension of the irreducible $F[N]$-submodules of V. Then N is cyclic, say $\mathbb{N}=\langle x\rangle$, and k is determined as the smallest natural number such that $p^{f k} \equiv 1(\bmod |N|)$. (Thus $k=\alpha_{F}(N)$).

Let v^{*} be the direct sum of $\operatorname{dim}_{F} V / k$ copies of $\mathrm{E}=\mathrm{GF}\left(\mathrm{p}^{\mathrm{fk}}\right)$. Then there is a monomorphism $\mathrm{x}^{\mathrm{i}} \mapsto \xi^{i}$ of N into the multiplicative group of E such that $F[\xi]=E$, and a linear isomorphism of F-spaces $\delta: V \rightarrow V^{*}$ such that

$$
(v x)^{\delta}=v^{\delta} \xi \quad \text { for all } v \in V
$$

A semi-linear action of G on V^{*} (regarded as an E-space) is defined by $\quad v^{\delta} g=(v g)^{\delta}$. The subgroup of G of elements whose action is linear is precisely $C_{G}(N)$.

Thus if $N \leqslant Z(G)$, the action of G on V^{*} is linear, and V^{*} becomes a faithful $E[G]$-module.
2.5.2 Let G, N, F, E, V and V^{*} be as in 2.5.1, and suppose that $N \leqslant Z(G)$. Further, suppose that N has a complement K in G (thus $G=K \times N$). Let K_{0} be a subgroup of K, let W be an F-subspace of V, and let $W^{*}=W^{\boldsymbol{\delta}}$. Then:
(a) W is an $F\left[K_{0} N\right]$-submodule of V if and only if W^{*} is an $E\left[K_{0}\right]$-submodule of V^{*};
(b) if W is an $F\left[K_{0} N^{+}\right]$-submodule of V then

$$
c_{K_{0}}(W)=C_{K_{0}}\left(W^{*}\right)
$$

((a) shows that there is a one-one correspondence between the $F\left[K_{0} N\right]$-submodules of V and the $E\left[K_{0}\right]$-submodules of V^{*}, in which irreducible submodules correspond to irreducible submodules).

Proof (a) Suppose that W is an $F\left[K_{0} N\right]$-submodule of V. W^{*} is an F-subspace of $\cdot V^{*}$, and $W^{*} \xi \subseteq W^{*}$, because $\mathrm{v}^{*} \in W^{*} \xi \Rightarrow \mathrm{v}^{*}=W^{\delta} \xi$ for some $w \in W$

$$
\Rightarrow v^{*}=(w x)^{\delta} \quad \text { for some } w \in W
$$

$$
\Rightarrow v^{*} \in \mathbb{W}^{*} .
$$

Therefore, as $E=F[\xi], W^{*}$ is an E-subspace of V^{*}. Also, $\quad k_{0} \in K_{0} \Rightarrow W^{*} k_{0}=\left(W k_{0}\right)^{\delta} \subseteq W^{\delta}=W^{*}$. Therefore W^{*} is an $E\left[K_{0}\right]$-submodule of V^{*}.

Conversely, suppose that W^{*} is an $E\left[K_{0}\right]$-submodule of V^{*}; then W is clearly an $F\left[K_{o}\right]$-submodule of V. Also, if $w \in W$ then $(w x)^{\delta}=w^{\delta} \xi \in W^{\delta}=W^{*}$, and therefore $w x \in W$. Hence W is an $F\left[K_{0} N\right]$-module.
(b) $k_{0} \in C_{K_{0}}(W) \Leftrightarrow w k_{0}=w$ for all $w \in W$ $\Leftrightarrow \quad\left(w_{0}\right)^{\delta}=w^{\delta}$ for all $w \in W$
$\Leftrightarrow \quad w^{\delta} k_{0}=w^{\delta}$ for all $w \in W$
$\Leftrightarrow \quad k_{0} \in C_{K_{0}}\left(W^{\delta}\right)$.

The ultimate aim of this section is to give necessary and sufficient conditions for a primitive soluble group of derived length 3 to lie in \mathscr{G}_{p}; this aim is achieved in Theorem 2.6.19.

Throughout 2.6, G denotes a primitive soluble group of derived length 3 ; V is the unique minimal normal subgroup of G, and p is the prime number of which the order of V is a power. H is a complement to V in G; thus $H \in O^{2}$, and V can be regarded as a faithful irreducible $Z_{p}[H]$-module. The invariant $d_{Z_{p}}(X)$ (where X is an abelian group) introduced in 2.3 will be referred to frequently, and will always be abbreviated to $d(X)$.
2.6.1 $G \in \mathscr{C}_{n}$ if and only if $H \in \mathscr{C}_{n}$.

Proof This is an immediate consequence of Theorem 1.4.3.

Thus, by 2.1. $4, G \in \mathscr{C}_{n}$ if and only if H has elementary abelian Sylow subgroups. It will be assumed from now on that $H \in \mathscr{V}_{n}$. Let $A=H^{\prime}, Z=Z(H)$, and let B be a complement to $A Z(=F(H))$ in H. Thus

$$
H=B A \times Z .
$$

2.6.2 (a) A, Z, and B are all elementary abelian; Z is cyclic.
(b) $C_{A}(B)=1$ and $C_{B}(A)=1$.
(c) If $B_{0} \leqslant B$ then $N_{H}\left(B_{O}\right)=B C_{A}\left(B_{O}\right) Z$.
(d) $A Z$ is a p'-group.

Proof (a), (b) and (c) follow from the fact that $H \in \mathscr{C}_{n} \cap \Pi^{2}$ and the definitions of A, Z and B. (d) V is a faithful irreducible $Z_{p}[H]$-module, so $O_{p}(H)=1$, and therefore $A Z$ (a direct product of minimal normal subgroups of H) must be a p^{\prime}-group.
2.6.3 If N is a non-trivial normal subgroup of H then $C_{V}(N)=1$.

Proof It follows immediately from Clifford's Theorem that if N centralizes some non-trivial element of V then N must centralize the whole of V; this cannot happen, because V is faithful.

Consider the action of Z on V : since $C_{H}(Z)=H$, it follows from Clifford!s Theorem that V_{Z} is homogeneous; thus the situation is precisely that discussed in 2.5, with H, Z, Z_{p} in place of G, N, F respectively. Hence, by 2.5 .1 , writing $F=G F\left(p^{d(Z)}\right)$, to V there corresponds a faithful irreducible $F[H]$-module V^{*} of F-dimension $\operatorname{dim}_{Z_{p}} V / \alpha(Z)$. By 2.5.2(a) (with BA in place of K), V^{*} is in fact an irreducible $F[B A]$-module, and there is a bijection $W \mapsto W^{*}$ between the Z_{p}-subspaces of V and the F-subspaces of V^{*} such that, for any $K_{o} \leqslant B A$, if W is a $Z_{p}\left[K_{0} Z\right]$-submodule of V of Z_{p}-dimension n, then \dot{W}^{*} is an $F\left[K_{0}\right]$-submodule of V^{*}
of F-dimension $n / d(Z)$. Also, W is irreducible if and only if W^{*} is irreducible, and $C_{K_{0}}(W)=C_{K_{0}}\left(W^{*}\right)$.
2.6.4 $\operatorname{dim}_{Z_{p}} V$ is divisible by $d(Z) \operatorname{lcm}\left(|B|, d_{F}(A)\right)$, where $F=G F\left(p^{d(Z)}\right)$.

Proof 2.4 .3 can be applied to the metabelian group H and faithful irreducible $F[H]$-module V^{*}, with $A Z$ playing the part of the self-centralizing normal subgroup N of H : this shows that $\operatorname{dim}_{F} V^{*}$ is divisible by $\operatorname{lcm}\left(|\mathrm{H}: \mathrm{AZ}|, \mathrm{d}_{\mathrm{F}}(\mathrm{AZ})\right.$) . Now $\mathrm{a}_{\mathrm{F}}(\mathrm{Z})=1$, so by 2.3.3(b), $d_{F}(A Z)=d_{F}(A)$; also $|H: A Z|=|B|$. Therefore $\operatorname{dim}_{F} V^{*}$ is divisible by $\operatorname{lcm}\left(|B|, \alpha_{F}(A)\right)$. The result now follows, as $\operatorname{dim}_{F} V^{*}=\operatorname{dim}_{Z} V / d(Z)$.
2.6.5 V has a $Z_{p}[B Z]$-submodule W of codimension $d(Z)$ such that B centralizes V / W.

Proof This is a straightforward application of 2.4.4(b), with $A Z, Z$ and Z_{p} for N, N_{0} and F respectively.
2.6.6 For any $B_{o} \leqslant B, B_{o}$ is pronormal in H. Proof By 1.5 .8 , it will be enough to show that B_{0} is. a carter subgroup of $B_{o}\left[A, B_{o}\right]$, since the latter subgroup is normal in H, by 2.2.1(a) and 2.2.2. Write $A_{0}=\left[A, B_{0}\right]$; then by $2.2 .1(b), C_{A_{0}}\left(B_{0}\right)=1$, so B_{0} is self-normalizing in $B_{0} A_{0}$. Since B_{0} is abelian, it follows that B_{0} is a Carter subgroup of $B_{0} A_{0}$.
2.6.7 Let W be the $Z_{p}[B Z]$-submodule of V described in 2.6.5, and suppose that $B_{0} \leqslant B$ is such that $C_{A}\left(B_{0}\right)=1$. Then $B_{o} W$ is pronormal in G.
Proof B_{0} is pronormal in H, by 2.6.6, and $N_{H}\left(B_{0}\right)=B C_{A}\left(B_{0}\right) Z=B Z$: thus $N_{H}\left(B_{0}\right)$ normalizes W. The result follows, by applying 1.5 .11 (with B_{o} playing the part of L).
2.6.8 Suppose $B_{0} \leqslant B, W<V$ is normalized by B_{0}, and S is a supplement to $B_{0} W$ in G. Then $S \cap V>1$.

Proof The result holds for S if and only if it holds for some conjugate of S; this justifies the following manoeuvres.

The p-complement, H^{p} say, of H is a p-complement of G, so it can be arranged, by replacing S by a conjugate if necessary, that H^{p} contains a p-complement, S^{p} say, of S. Let S_{p} be a Sylow p-subgroup of S, and let B_{p} be the Sylow p-subgroup of B. Since $A Z$ is a p'-group, every Sylow p-subgroup of G has the form $B_{p}{ }^{h} V$ for some $h \in H$; hence, by replacing S by S^{h}, it can be arranged that $S_{p} \leqslant B_{p} V$. (Note that the new choice of S retains the property that $S^{p} \leqslant H^{p}$).

Let x be an element of $S_{p} \backslash B_{p}$: such an element must exist, because otherwise $S=S_{p} S^{p} \leqslant H$, whence S could not be a supplement to BW in G. Then $x=v b$ for
some $v \in V$ and $b \in B_{p}$, with $v \neq 1$. Thus
$b=v^{-1} x \in S V$. Now $S V$ is a supplement to B_{0} (and therefore to B) in G, so $S V \cap H$ is a supplement to B in H. Hence if a is an arbitrary element of A, there exist, $b_{1} \in B$ and $x_{1} \in S V \cap H$ such that $a=b_{1} x_{1}$. Consequently

$$
[a, b]=\left[b_{1} x_{1}, b\right]=\left[b_{1}, b\right]^{x_{1}}\left[x_{1}, b\right]=\left[x_{1}, b\right] \in S V
$$

Therefore $\quad[A, b] \leqslant S V \cap A$

$$
\begin{aligned}
& =S^{p} S_{p} V \cap H^{p} \cap A \\
& =S^{p}\left(S{ }_{p} V \cap H^{p}\right) \cap A \\
& =S^{p} \cap A \\
& \leqslant S
\end{aligned}
$$

If $b=1$ then $1 \neq x=v \in S \cap V$; thus it can be assumed that $b \neq 1$. Then $[A, b]$ is a nontrivial normal subgroup of H, so $C_{V}([A, b])=1$. Hence there exists $a_{1} \in[A, b]$ such that $\left[a_{1}, \nabla\right] \neq 1$. But $\left[a_{1}, v b\right]=\left[a_{1}, b\right]\left[a_{1}, v\right]^{b}$, and both $\left[a_{1}, v b\right]$ and $\left[a_{1}, b\right]$ belong to S; therefore $\left[a_{1}, v\right]^{b}$ is a nontrivial element of $S \cap V$. I.e. $S \cap V>1$. Q.e.d.

It is now possible to give a necessary condition for G to lie in \mathscr{C}_{p}.
2.6.2 Theorem If $G \in G_{p}$ then $d(A) \mid d(Z)$.

Proof Suppose $G \in \mathscr{C}_{p}$, and consider the pronormal subgroup $B W$ of G, where W is the $Z_{p}[B Z]$-submodule of V, of codimension $d(Z)$, described in 2.6.5. It is first shown that:

BW has a complement C in G such that $C \cap H$ complements B in H and $C \cap V$ complements W in V.

If C is a complement to $B W$ in G, then
$|C|=\frac{|G|}{|B W|}=\frac{|H||V|}{|B||W|}=|H: B||V: W|=|A Z| p^{d(Z)}$.
Since $A Z$ is a pl-group, it follows that a p-complement of C has order $|A Z|$. The p-complement of H is a p-complement of G, so it can be arranged, by replacing C by a conjugate if necessary, that H contains a p-complement , C^{p} say, of C. Then by order considerations, C^{p} is a complement to B in H.................(2) Let $Z=\left\langle z_{b}\right\rangle$; then $z_{0}=c_{0} b_{0}$ for some $c_{0} \in C^{p}$, $b_{0} \in B$. Hence
$(a \cap v)^{z_{0}}=(c \cap v)^{c_{0} b_{0}}=(c \cap v)^{b_{0}} \leqslant(c \cap v) w$ (the final inclusion holds because B centralizes V / W). Therefore $(C \cap V) W$ is a $Z_{p}[Z]$-submodule of V; but $c \cap v>1$, by 2.6 .8 , and codim $W=d(z)$, so it follows that $(C \cap V) W=V$. Therefore $C \cap V$ is a complement to W in V

Hence, by (2) and (3), the complement C is of the form specified in (1).

The next objective is to show that

$$
\begin{equation*}
z \leqslant c^{p} \tag{4}
\end{equation*}
$$

Again let $Z=\left\langle z_{0}\right\rangle$; by 2.2.5(b), there exist $c_{0} \in C^{p}$, $b_{0} \in B$ such that $\left|b_{0}\right|$ divides $\left|z_{0}\right|, c_{0}=b_{0} z_{0}$, and $\left\langle c_{0}\right\rangle=\left\langle b_{0} z_{1}\right\rangle \times\left\langle z_{2}\right\rangle$, where $\left\langle z_{0}\right\rangle=\left\langle z_{1}\right\rangle \times\left\langle z_{2}\right\rangle$ and $\left(\left|b_{0}\right|,\left|z_{2}\right|\right)=1,\left(\left|b_{0}\right|,\left|z_{1}\right|\right)=\left|z_{1}\right|$. Then both of $b_{0} z_{1}$. and z_{2} lie in c^{p}; also $\left|b_{0}\right|=\left|b_{o} z_{1}\right|=\left|z_{1}\right|$.

Suppose $z \not \mathbb{C}^{p}$; then $b_{o} \neq 1$. Let

$$
H_{1}=\left\langle b_{0} z_{1}\right\rangle\left[A, b_{0} z_{1}\right] \times\left\langle z_{2}\right\rangle
$$

By 2.2.5(a), $\left[A, b_{o} z_{1}\right] \leqslant\left[A, B Z \cap C^{p}\right] \leqslant C^{p}$, and so $H_{1} \leqslant C^{p}$. Let V_{I} be an irreducible $Z_{p}\left[H_{1}\right]$-submodule of V, and let $N_{1}=C_{H_{1}}\left(V_{1}\right)$. It is easily checked that H_{I} is a normal subgroup of H, from which it follows, by an argomont like that at the beginning of the proof of 2.3 .4 , that N_{1} contains no nontrivial normal subgroups of H. Thus the situation is precisely like that in 2.2.4, with $\left\langle\mathrm{D}_{0} z_{1}\right\rangle,\left\langle z_{2}\right\rangle, H_{1}, H_{1}$ in place of, S, Z_{0}, H_{0}, N respectively. Hence
and

$$
\begin{aligned}
& N_{1} \leqslant F\left(H_{1}\right)=\left[A, b_{0} z_{1}\right] \times\left\langle z_{2}\right\rangle, \\
& F\left(H_{1} / N_{1}\right)=F\left(H_{1}\right) / N_{1} .
\end{aligned}
$$

Let $\bar{H}_{1}=H_{1} / N_{1}$; then V_{1} is a faithful irreducible. $Z_{p}\left[\bar{H}_{1}\right]$-module, and the split extension $\bar{H}_{1} V_{1}$ is a primitive soluble group in $\mathscr{C}_{\mathrm{n}} \cap \mathscr{O}^{3}$. Therefore, by $2.6 .4, \operatorname{dim}_{Z_{p}} V_{1}$ is divisible by

$$
d\left(\left\langle\bar{z}_{2}\right\rangle\right) \operatorname{lcm}\left(\left|\overline{b_{0} z_{1}}\right|, d_{F}\left(\bar{A}_{1}\right)\right),
$$

where the "bar convention" (alluded to already in the proofs of 1.4 .1 and 2.2 .4) is used, $A_{1}=\left[A, b_{o} z_{1}\right]$, and
$F=G F\left(p^{d\left(\left\langle\overline{z_{2}}\right\rangle\right)}\right)$. As $N_{1} \leqslant F\left(\dot{H}_{1}\right)$ and $\left|z_{1}\right|=\left|b_{0}\right|$, it is clear that $N_{1} \cap\left\langle b_{o} z_{1}\right\rangle=1$, and hence that $\left|\overline{b_{0} z_{1}}\right|=\left|b_{0} z_{1}\right|=\left|z_{1}\right|$. Also $N_{1} \cap\left\langle z_{2}\right\rangle$ is normal in H, so $N_{1} \cap\left\langle z_{2}\right\rangle=1$, hence $\left|\overline{z_{2}}\right|=\left|z_{2}\right|$, and therefore $d\left(\left\langle\overline{z_{2}}\right\rangle\right)=d\left(\left\langle z_{2}\right\rangle\right)$. Hence the remark about $\operatorname{dim}_{Z_{p}} V_{1}$ yields the information that

$$
\left|z_{l}\right| d\left(\left\langle z_{2}\right\rangle\right) \mid \operatorname{dim}_{z_{p}} v_{1} .
$$

It is clear that $d\left(\left\langle z_{1}\right\rangle\right) \leqslant\left|z_{1}\right|-1 \quad\left|z_{1}\right|$ and p are coprime, so the congruence $p^{k} \equiv 1\left(\bmod \left|z_{1}\right|\right)$ holds when $k=\phi\left(\left|z_{1}\right|\right)$, where ϕ is Euler's function; but $\phi\left(\left|z_{1}\right|\right)$ divides $\left(\left|z_{I}\right|-1\right)$), and thus

$$
\begin{aligned}
\operatorname{dim}_{z_{p}} V_{1} & \geqslant\left|z_{1}\right| d\left(\left\langle z_{2}\right\rangle\right) \\
& >d\left(\left\langle z_{1}\right\rangle\right) d\left(\left\langle z_{2}\right\rangle\right) \\
& \geqslant d\left(\left\langle z_{0}\right\rangle\right) \quad(\text { by } 2.3 .3(b)) \\
& =d(z) .
\end{aligned}
$$

Hence the dimension of the irreducible $Z_{p}\left[H_{l}\right]$-submodutes of V exceeds $d(Z)$. Since $H_{I} \leqslant C^{p}$, it follows that the dimension of any nontrivial $Z_{p}\left[c^{p}\right]$-submodule of V exceeds $d(Z)$; but this gives a contradiction, because (3) implies that $C \cap V$ has Z_{p}-dimension $d(Z)$. Therefore $Z \leqslant C^{p}$, ie. (4) is established.

The last major step is to prove that

$$
\begin{equation*}
A \leqslant C^{p} \tag{5}
\end{equation*}
$$

Suppose $A \$ C^{p}$; then there exists a minimal normal
subgroup N of H, contained in A, such that $N \$ C^{p}$. Suppose $n \in N \backslash C^{p}$; then there exist $b_{1} \in B, c_{1} \in C^{p}$ such that $n=b_{1}^{-1} c_{1}$, and $b_{1} \neq 1$. In fact

$$
\begin{equation*}
\left[n, b_{1}\right]=1 \tag{6}
\end{equation*}
$$

To prove this, suppose for a contradiction that $\left[n, b_{1}\right] \neq 1$. Let $\left\langle b^{*}\right\rangle=C^{C}\left\langle b_{1}\right\rangle(n)$; then (since B is elementary abelian) there is an element $b^{\prime} \neq 1$ in B such that $b_{1}=b^{*} b^{\prime}$ and $\langle b\rangle=\left\langle b^{*}\right\rangle \times\left\langle b^{\prime}\right\rangle$. Now $\left\langle b^{\prime}\right\rangle$ acts fixed-point-free on N, for, given $x \neq 1$ in $\left\langle b^{\prime}\right\rangle$, x acts non-trivially on N, so $C_{N}(x)<N$; but $C_{N}(x)$ is normal in H by 2.2.1(a); therefore $C_{N}(x)=1$. Hence, by (H8, $\overline{\underline{V}}, 8.5$), $\left\langle b^{\prime}\right\rangle N$ is a Frobenius group, with Frobenius kernel N . It follows, because $b^{\prime} n \notin N$, that $b^{\prime} n$ belongs to a conjugate in, $\left\langle b^{\prime}\right\rangle N$ of $\left\langle b^{\prime}\right\rangle$. One consequence of this is that $\left|b^{\prime} n\right|$ divides $\left|b^{\prime}\right|$. Now $\left(\left|b^{*}\right|,\left|b^{\prime}\right|\right)=1$, since $\langle b\rangle=\left\langle b^{*}\right\rangle \times\left\langle b^{\prime}\right\rangle$, and so $\left(\left|b^{*}\right|,\left|b^{\prime} n\right|\right)=1$ also. Therefore

$$
\left\langle\left(b^{\prime} n\right)^{\left|b^{*}\right|}\right\rangle=\left\langle b^{\prime} n\right\rangle .
$$

Recall that $c_{1}=b_{1} n=b^{*} b^{\prime} n \cdot\left[b^{*}, b^{\prime} n\right]=1$, so $c_{1}^{\left|b^{*}\right|}=\left(b^{\prime} n\right)^{\left|b^{*}\right|}$, hence $\left\langle b^{\prime} n\right\rangle=\left\langle\left(b^{\prime} n\right)^{\left|b^{*}\right|}\right\rangle \leqslant c^{p}$. But $b^{\prime} n$ belongs to a conjugate in $\left\langle b^{\prime}\right\rangle N$ of $\left\langle b^{\prime}\right\rangle \leqslant B$, and $C^{p} \cap B^{h}=1$ for any $h \in H$. This implies $b^{\prime} n=1$, hence $b^{\prime}=1$ and $n=1$, a contradiction. Thus (6) holds.

Suppose that q is the prime of which $|N|$ is a power.
Then $n^{q}=1$, so $b_{1}^{q}=b_{1} q_{n}^{q}=\left(b_{1} n\right)^{q}=c_{1}^{q} \in C^{p}$. It follows that b_{1} and c_{1} both have order q.

It is now possible to show that

$$
\begin{equation*}
\left[A, C_{1}\right] \leqslant C^{p} \tag{7}
\end{equation*}
$$

Let M be a minimal normal subgroup of H contained in $\left[A, c_{1}\right]$; then $M=\left[M, c_{1}\right] \times C_{M}\left(c_{1}\right)=\left[M, c_{1}\right]$. Let $m \in M$; then $m=b_{2}^{-1} c_{2}$ for some $b_{2} \in B, c_{2} \in C^{p}$. By the usual commutator manipulations,

$$
\begin{aligned}
{\left[c_{2}, c_{1}\right] } & =\left[b_{2} m, b_{1} n\right]=\left[b_{2}, b_{1} n\right]^{m}\left[m, b_{1} n\right] \\
& =\left[b_{2}, n\right]^{m}\left[b_{2}, b_{1}\right]^{n m}\left[m, c_{1}\right],
\end{aligned}
$$

i.e. $\left[c_{2}, c_{1}\right]=\left[b_{2}, n\right]\left[m, c_{1}\right]$. Hence

$$
\left[m, c_{1}\right]^{q}=\left[c_{2}, c_{1}\right]^{q} \in c^{p} .
$$

But M is a q^{\prime}-group, because otherwise the q-element c_{1} would centralize some nontrivial element of M, so it follows that $M=\left[M, c_{1}\right] \leqslant C^{p}$. It is immediate from this that (7) holds, as $\left[A, c_{1}\right]$ is a direct product of minimal normal subgroups of H.

Let

$$
H_{2}=\left\langle c_{1}\right\rangle\left[A, c_{1}\right] \times Z
$$

H_{2} is easily seen to be normal in H, and $H_{2} \leqslant C^{p}$ by (4) and (7). An argument similar to that applied to H_{1} earlier is now employed. Let V_{2} be an irreducible $Z_{p}\left[H_{2}\right]-$ submodule of V, and let $N_{2}=C_{H_{2}}\left(V_{2}\right)$. Then, as in the. previous argument, N_{2} contains no nontrivial normal subgroups of H, and so $N_{2} \leqslant F\left(H_{2}\right)=\left[A, c_{1}\right] \times Z$, and $F\left(H_{2} / N_{2}\right)=\left[A, c_{1}\right] Z / N_{2}$. Now 2.6 .4 , applied to the split extension $\bar{H}_{2} V_{2}$, where $\bar{H}_{2}=H_{2} / N_{2}$, shows that
$\operatorname{dim}_{Z_{p}} V_{2}$ is divisible by $d(\bar{Z}) \operatorname{lcm}\left(\left|\bar{c}_{1}\right|, d_{F}\left(\bar{A}_{2}\right)\right)$, where the bar convention is used, $A_{2}=\left[A, c_{1}\right]$, and $F=G F\left(p^{d(\bar{Z})}\right)$. As in the case of H_{1}, it is easily shown that $d(\bar{Z})=d(z)$ and $\left|\bar{c}_{1}\right|=\left|c_{1}\right|=q$. Therefore $\operatorname{dim}_{Z_{p}} V_{2} \geqslant d(Z)\left|c_{1}\right|>d(Z)$,
i.e. the dimension of the irreducible $z_{p}\left[H_{2}\right]$-submodules of V_{2} exceeds $d(Z)$; but $H_{2} \leqslant c^{p}$ and $C \cap v$ has $Z_{p}-$ dimension $d(Z)$. Thus the assumption that $A \leqslant C^{p}$ has at last given rise to a contradiction, and consequently (5) is establishè̀d.

Hence, by (4) and (5), $A Z \leqslant C^{p}$, and so $C \cap V$ is a $z_{p}[A Z]$-submodule of V, from which it follows that $\alpha(A Z)=d(Z)$. Therefore $d(A) \mid d(Z)$, and the theorem is proved.

Theorem 2.6.9 gives a condition on the Fitting subgroup of H which must necessarily hold if $G \in \mathscr{G}_{p}$. The next . important result (2.6.13) is another necessary condition that $G \in \bigodot_{p}$, involving the action of the complement B of $F(H)$ on $F(H)$. The condition is that the action of B on $F(H)$ should be absolutely faithful in the sense defined in (R2), i.e. that for every subgroup B_{1} of B,

$$
C_{B}\left(C_{F(H)}\left(B_{1}\right)\right)=B_{1} .
$$

It is clear that B acts absolutely faithfully on $F(H) \quad(=A \times Z)$ if and only if .B acts/faithfully on A.
2.6.10 Suppose $d(A) \mid d(Z)$, let B_{1} be a subgroup of B, and let $B_{0}=C_{B}\left(C_{A}\left(B_{1}\right)\right)$. Then V has a proper $Z_{p}\left[B C_{A}\left(B_{1}\right) Z\right]$-submodule U of codimension at most $\left|B: B_{o}\right| d(Z)$ such that B_{o} centralizes V / U.

Proof By 2.4.4(b), with AZ, $C_{A}\left(B_{1}\right) Z, Z_{p}$ in place of N, N_{0}, F respectively, V has a $Z_{p}\left[B_{0} C_{A}\left(B_{1}\right) Z\right]$-submodule W, of codimension $d\left(C_{A}\left(B_{I}\right) Z\right)$, such that B_{0} centralizes V / W. Since $d(A) \mid d(Z)$, codim $W=d(Z)$.

Let B_{2} be a complement to B_{0} in B, and let $U=\bigcap_{b \in B_{2}} W^{b}$. Then U is $a^{\cdot} z_{p}\left[B C_{A}\left(B_{1}\right) Z\right]$-submodule of V, and $\operatorname{codim} U \leqslant\left|B_{2}\right| \operatorname{codim} W=\left|B: B_{0}\right| d(Z) \cdot A l s o \quad\left[V, B_{0}\right] \leqslant W$, and $\left[V, B_{0}\right]$ is a B-submodule of. V, so $\left[V, B_{0}\right] \leqslant U$. Hence U has all the desired properties.
2.6.11 Suppose $d(A) \mid d(Z)$, let B_{1} be a subgroup of B, and let. U be as in 2.6.10. Then $B_{1} U$ is pronormal in G.
Proof B_{1} is pronormal in H by $2.6 .6,\left[V, B_{1}\right] \leqslant U$, and $N_{H}\left(B_{1}\right) \quad\left(=B C_{A}\left(B_{1}\right) Z\right)$ normalizes U, so the result is immediate from 1.5.11.
2.6.12 (a) If $d(A) \mid \alpha(Z)$ then $\operatorname{dim}_{Z_{p}} V=|B| \alpha(Z)$.
(b) Suppose $d(A) \mid d(Z)$, let $A_{0} \leqslant A$ be a normal subgroup of H, and let $B_{o} \leqslant B$. If V_{o} is an irreducible $Z_{p}\left[B_{0} A_{0} Z\right]$-submodule of V then $\operatorname{dim}_{Z_{p}} V_{0} \geqslant\left|B_{0}: C_{B_{0}}\left(A_{0}\right)\right| d(Z)$. If $C_{B_{0}}\left(A_{0}\right)=1$ then $\operatorname{dim}_{Z_{p}} v_{0}=\left|B_{0}\right| \alpha(Z)$.

Proof (a) Consider the faithful irreducible $F[B A Z]$-module v^{*}, where $\mathrm{F}=G F\left(\mathrm{p}^{\mathrm{d}(\mathrm{Z})}\right.$), introduced in the remarks preceding 2.6.4. Since $d(A) \mid d(Z), F$ is a splitting field for $A Z$, and therefore, by 2.4.1(b), with $A Z, V^{*}$ in place of N, V respectively, $\operatorname{dim}_{F} V^{*}=|H: A Z \bar{Z}|=|B|$. Therefore $\operatorname{dim}_{Z_{p}} V=d(Z) \cdot \operatorname{dim}_{F} V^{*}=|B| d(Z)$.
(b) Consider V_{0}^{*}, the irreducible $F\left[B_{0} A_{0}\right]$-submodule of v^{*} corresponding to V_{0}. By 2.4.2, with $\mathrm{V}^{*}, \mathrm{AZ}, A_{0}, \mathrm{~V}_{0}^{*}$ in place of V, N, N_{0}, U respectively, $\operatorname{dim}_{F} v_{0}^{*} \geqslant\left|B_{0}: C_{B}\left(A_{0}\right)\right|$, and $\operatorname{dim}_{F} v_{0}^{*}=\left|B_{0}\right|$ if $C_{B_{0}}\left(A_{0}\right)=1$. The desired results now follow from the fact that $\operatorname{dim}_{Z_{p}} V_{o}=d(Z) \cdot d i m_{F} v_{o}^{*}$.
2.6.13 Theorem If $G \in \mathscr{C}_{p}$ then B acts absolutely faithfully on A.

Proof Let $G \in \zeta_{p}$, and let B_{1} be a subgroup of B. To prove the theorem, it must be shown that

$$
C_{B}\left(C_{A}\left(B_{1}\right)\right)=B_{1} .
$$

Let $B_{0}=C_{B}\left(C_{A}\left(B_{I}\right)\right)$. By 2.6.9, $\alpha(A) \mid \alpha(Z)$, so 2.6.10, 2.6.11 and 2.6 .12 can be applied. In particular, G has a pronormal subgroup $B_{1} U$, where U is the $Z_{p}\left[B_{A}\left(B_{1}\right) Z\right]$-submodule of V described in 2.6.10, such that $\quad d(Z) \leqslant \operatorname{codim} U \leqslant\left|B: B_{o}\right| d(Z)$. Let C be a compilemint to $B_{1} U$ in G. Then by 2.6.8,

$$
\begin{equation*}
c \cap v>1 \tag{1}
\end{equation*}
$$

$\mathrm{CV} \cap \mathrm{H}$ is a supplement in H to B_{1}; also $\mathrm{CV} \cap \mathrm{B}_{1}$ has a complement in H (every subgroup of B has a complement in H), and therefore has a complement, C_{1} say, in CV $\cap H$. It then follows that:
C_{1} is a complement to B_{1} in H, and C_{1} normalizes $C \cap V$

An argument similar to one in the proof of 2.6 .9 is now employed to show that

$$
\begin{equation*}
z \leqslant c_{1} \tag{3}
\end{equation*}
$$

Assume $z \leqslant C_{1}$, and let $z=\left\langle z_{0}\right\rangle$. By 2.2.5(b), with B_{1}, C_{1} in place of B_{0}, C respectively, there exist $c_{1} \in C_{1}, b_{1} \in B_{1}$ such that $\left|b_{1}\right|$ divides $\left|z_{0}\right|$ and $c_{1}=b_{1} z_{0}$, and consequently, if $z_{0}=z_{1} z_{2}$ with $\left(\left|b_{1}\right| ;\left|z_{2}\right|\right)=1,\left(\left|b_{1}\right|,\left|z_{1}\right|\right)=\left|z_{1}\right|$, then $\left\langle c_{1}\right\rangle=\left\langle b_{1} z_{1}\right\rangle \times\left\langle z_{2}\right\rangle$.

Let $B_{2}=C_{1} \cap B$ (hence $B=B_{1} \times B_{2}$); then $B_{2}\left\langle b_{1} z_{1}\right\rangle$
is a group, and by 2.2.5(a), $\left[A, B_{2}\left\langle b_{1} z_{1}\right\rangle\right] \leqslant C_{1}$. It follows, defining

$$
H_{1}=\left\langle b_{1} z_{1}\right\rangle\left[A, B_{2}\left\langle b_{1} z_{1}\right\rangle\right] \times\left\langle z_{2}\right\rangle,
$$

that

$$
\begin{equation*}
H_{1} \leqslant c_{1} \tag{4}
\end{equation*}
$$

It is clear also that H_{l} is a normal subgroup of H. Let V_{I} be an irreducible $Z_{p}\left[H_{1}\right]$-submodule of V, and let $N_{1}=C_{H_{1}}\left(V_{1}\right)$.. Then 2.2 .4 can be applied, as in the proof of 2.6.9, to show that

$$
N_{1} \leqslant F\left(H_{1}\right)=\left[A, B_{2}\left\langle b_{1} z_{1}\right\rangle\right] \times\left\langle z_{2}\right\rangle
$$

and $\quad F\left(H_{1} / N_{1}\right)=F\left(H_{1}\right) / N_{1}$.
Let $\bar{H}_{1}=H_{1} / N_{1}$; then 2.6 .4 , applied to the primitive soluble $\mathscr{G}_{\mathrm{n}} \mathrm{n}^{\prime} \mathscr{O}^{3}$-group $\overline{\mathrm{H}}_{1} \mathrm{~V}_{1}^{-}$(split extension) shows that $d\left(\left\langle\overline{z_{2}}\right\rangle\right) \operatorname{lcm}\left(\left|\overline{B_{2}\left\langle b_{1} z_{1}\right\rangle}\right|, d_{F}\left(\overline{A_{1}}\right)\right)$ divides $\operatorname{dim}_{Z_{p}} V_{1}$, where $F=G F\left(p^{\alpha\left(\left\langle\overline{z_{2}}\right\rangle\right)}\right), A_{1}=\left[A, B_{2}\left\langle b_{1} z_{1}\right\rangle\right]$, and the bar convention is used. The same kind of argument as in the corresponding part of the proof of 2.6 .9 now shows that

$$
\begin{aligned}
\operatorname{dim}_{Z_{p}} V_{1} & \geqslant\left|B_{2}\left\langle b_{1} z_{1}\right\rangle\right| d\left(\left\langle z_{2}\right\rangle\right) \\
& =\left|B_{2}\right|\left|z_{1}\right| d\left(\left\langle z_{2}\right\rangle\right) \\
& >\left|B_{2}\right| d(z)
\end{aligned}
$$

Since $C \cap V$ is a $Z_{p}\left[C_{1}\right]$-module (by (2)), and therefore a $Z_{p}\left[H_{1}\right]$-module (by (4)), and $C \cap V$ is non-trivial (by (1)), this shows that $\operatorname{dim}_{Z_{p}}(C \cap V)>\left|B_{2}\right| d(Z)$. But
$\left|B_{2}\right|=\left|C_{1} \cap B\right|=\left|B: B_{1}\right|$ and
$\operatorname{dim}_{Z_{p}}(C \cap V) \leqslant \operatorname{codim} U \leqslant\left|B: B_{0}\right| d(Z) \leqslant\left|B: B_{1}\right| d(Z) \quad \ldots .(5)$
This gives a contradiction; hence (3) holds.

Let $H_{2}=B_{2}\left[A, B_{2}\right] \times 2$. By 2.6 .12 , as $C_{B_{2}}\left(\left[A, B_{2}\right]\right)=1$, the Z_{p}-dimension of any irreducible $Z_{p}\left[H_{2}\right]$-submodule of V is $\left|B_{2}\right| d(Z)$, i.e. $\left|B: B_{1}\right| d(Z)$. Now by 2.2.5(a), $\left[A, B_{2}\right] \leqslant C_{1}$, and hence, using (3) as well, $H_{2} \leqslant C_{1}$. Therefore $C \cap V$ is a (non-trivial) $Z_{p}\left[H_{2}\right]$-submodule of V , and so

$$
\begin{equation*}
\operatorname{dim}_{Z_{p}}(C \cap V) \geqslant\left|B: B_{1}\right| d(Z) \tag{6}
\end{equation*}
$$

(5) and (6) together imply that $\left|\mathrm{B}: \mathrm{B}_{1}\right|=\left|\mathrm{B}: \mathrm{B}_{\mathrm{O}}\right|$, and thus (since $B_{1} \leqslant B_{0}$) the desired result, i.e. that $B_{1}=B_{0}$, follows.

Although it is not necessary in proving the theorem, it is useful for future purposes to notice that the above argument implies that $C \cap V$ is a complement to U in V, and hence that $C_{1}(C \cap V)$ is a complement to $B_{1} U$ in V. Thus from the proof of 2.6 .13 can be extracted the following result:
2.6.14 If $G \in \mathscr{\varphi}_{p}, B_{1}$ and U are as in the proof of 2.6.13, and C is a complement to $B_{1} U$ in G such that $C=(C \cap H)(C \cap V)$, then $Z \leqslant C \cap H$.
2.6.9 and 2.6.13 give necessary conditions for G to lie in \mathscr{C}_{p}; the remainder of 2.6 is devoted to showing that these conditions together are sufficient for G to be a \mathscr{C}_{p}-group.
2.6.15 Suppose $d(A) \mid d(Z)$ and B acts absolutely faithfully on A. Let B_{1} be a subgroup of B and let B_{2} be a complement to B_{1} in B; thus $B=B_{1} \times B_{2}$. Then any irreducible $\mathrm{Z}_{\mathrm{p}}\left[\mathrm{B}_{2} \mathrm{AZ}\right]$-submodule of V is also irreducible as a $Z_{p}\left[B_{2} C_{A}\left(B_{1}\right) Z\right]$-module.

Proof Let V_{I} be an irreducible $Z_{p}\left[B_{2} A Z\right]$-submodule of V. Then by 2.6.12(b),

$$
\begin{equation*}
\operatorname{dim}_{z_{p}} v_{1}=\left|B_{2}\right| \alpha(z) \tag{1}
\end{equation*}
$$

By hypothesis, $C_{B}\left(C_{A}\left(B_{1}\right)\right)=B_{1}$, so
$C_{B_{2}}\left(C_{A}\left(B_{1}\right)\right)=B_{2} \cap C_{B}\left(C_{A}\left(B_{1}\right)\right)=B_{2} \cap B_{1}=1$. Thus by 2.6.12(b) again, if V_{2} is an irreducible $Z_{p}\left[B_{2} C_{A}\left(B_{1}\right) Z\right]$ submodule of V, then

$$
\begin{equation*}
\operatorname{dim}_{z_{p}} v_{2}=\left|B_{2}\right| \alpha(z) \tag{2}
\end{equation*}
$$

The result now follows from (1) and (2).

The wording of the next lemma is dictated by the needs of Section 2.7. The notation $F_{2}(G)$ denotes the second term in the upper Fitting series of G; i.e. $F_{2}(G)$ is given by:

$$
F_{2}(G) / F(G)=F(G / F(G)) .
$$

2.6.16 Suppose that whenever B is decomposed as $B=B_{1} \times B_{2}$, each irreducible $Z_{p}\left[B_{2} A Z\right]$-submodule of V is an irreducible $Z_{p}\left[B_{2} C_{A}\left(B_{1}\right) Z\right]$-module. Let $F=F_{2}(G)=$ AZV . If L is a pronormal subgroup of $G, W \leqslant V$ is normalized by $N_{G}(L V)$, and C / F is a complement to $L F / F$ in G / F, then W has a complement in V which is normalized by C.

Proof $L V \cap H$ is a pronormal subgroup of H, by 1.5. 1 , 6 , So $N_{H}(L V \cap H)$ is abnormal in H, by 1.5.5. Therefore, by $1.5 .7, N_{H}(L V \cap H)$ contains a system normalizer of H. Now $H \in \mathscr{V C}^{2}$, so by (H8, VI, 12.4), the system normalizers of H coincide with the Carter subgroups of H, and hence N_{H} (LV $\left.\cap H\right)$ contains a Carter subgroup of H. But $B Z$ is clearly a Carter subgroup of H, so $N_{H}(L V \cap H) \geqslant B^{h}$ for some $h \in H$. It is easily seen that the result holds for L provided it holds for some conjugate of L; thus it is legitimate to replace L by $L^{h^{-1}}$ and hence arrange that $N_{H}(L V \cap H) \geqslant B Z$.

Let $B_{1}=L F \cap B, B_{2}=C \cap B$; thus $B=B_{1} \times B_{2}$. $L V \cap H \leqslant L F \cap H=B_{1} A Z$, so $C_{A}\left(B_{1}\right) \leqslant C_{H}(L V \cap H)$, and therefore $N_{H}(L V \cap H) \geqslant B C_{A}\left(B_{1}\right) Z$. Hence the hypothesis. that W is normalized by $N_{G}(L V)$ implies that:
W is a $Z_{p}\left[B C_{A}\left(B_{1}\right) Z\right]$-submodule of V
$\mathrm{B}_{2} \mathrm{AZ}$ is a normal subgroup of H, so, writing V additively and using Clifford's Theorem, there is a
decomposition

$$
V=V_{I} \oplus \ldots \oplus V_{r_{\text {clearly, }}} \text { (for some } r \geq \frac{1}{l} \text {) } w \text { beassumed } \text { that } W<V \text {. Hence }
$$

of V into irreducible $Z_{p}\left[B_{2} A Z\right]$-modules. \langle the indexing of the V_{i} can be chosen so that, for some $s \geqslant 1$,
$W \cap\left(V_{1} \oplus \ldots \oplus V_{s}\right)=0$, but

$$
W \cap\left(V_{I} \oplus \ldots \oplus V_{s} \oplus V_{i}\right)>0 \quad \text { for any } i>s \quad \ldots(2)
$$

Let $\quad U=V_{1} \oplus \ldots \oplus V_{S}$; then

$$
\begin{equation*}
U \text { is a } Z_{p}\left[B_{2} A Z\right] \text {-module } \tag{3}
\end{equation*}
$$

If $\quad \mathrm{U} \oplus \mathrm{W}<\mathrm{V}$, then without loss of generality it can be assumed that $V_{S+1} \mathbb{H} \oplus W$. By (1) and (3), U $\oplus W$ is a $Z_{p}\left[B_{2} C_{A}\left(B_{1}\right) z\right]$-module, and, by the main hypothesis, V_{s+l} is an irreducible $Z_{p}\left[B_{2} C_{A}\left(B_{1}\right) Z\right]$-module; therefore
$(U \oplus W) \cap V_{S+1}=0$, and so $W \cap\left(U \oplus V_{S+1}\right)=0$. But this contradicts (2) . Hence $U \oplus W=V$. U is a $Z_{p}\left[B_{2} A Z\right]-s u b-$ module of V, and hence U is normalized by $B_{2} A Z V$, i.e. by C; this completes the proof.
2.6.17 Corollary If for every decomposition of B as $B=B_{1} \times B_{2}$, each irreducible $Z_{p}\left[B_{2} A Z\right]$-submodule of V is an irreducible $Z_{p}\left[B_{2} C_{A}\left(B_{1}\right) Z\right]$-module, then $G \in \mathscr{C}_{p}$.

Proof Let L be a pronormal subgroup of G, let C / F be a complement to $L F / F$ in G / F, and let $B_{2}=C \cap B$. By 1.5.12, $L \cap V$ is normalized by $N_{G}(L V)$, so by 2.6.16, $L \cap V$ has a complement; U say, in V which is normalized
by $\mathrm{B}_{2} \mathrm{AZ}(\leqslant \mathrm{c})$
LV $\cap \mathrm{H}$ is pronormal in H by 1.5.6, and $\mathrm{H} \in \mathrm{OC}^{2}$, so it follows from 2.1.5 that $L V \cap A Z$ is normal in H. Consequently there is a normal subgroup N of H such that $A Z=(L V \cap A Z) \times N . A l s o \quad B_{2}$ is a complement to LVAZ $\cap B(=L F \cap B)$ in B, and therefore, by 1.3.3(b) $B_{2} N^{N}$ is a complement to $L V \cap H$ in H. Hence, again by 1.3.3(b), $\mathrm{B}_{2} \mathrm{NU}$ is a complement to L in G. Therefore $\mathrm{G} \in \bigodot_{\mathrm{p}}$.
2.6.18 Theorem The following are equivalent:
(1) $G \in \mathscr{G}_{p}$;
(2) $d(A) \mid d(Z)$, and B acts absolutely faithfully on A;
(3) whenever B is expressed as $B=B_{1} \times B_{2}$, each irreducible $Z_{p}\left[B_{2} A Z\right]$-submodule of V is irreducible as a $Z_{p}\left[B_{2} C_{A}\left(B_{1}\right) z\right]$-module.

Proof
$(1) \Rightarrow(2):$ Theorems 2.6 .9 and $2.6 .13 ;$
$(2) \Rightarrow(3): 2.6 .15 ;$
$(3) \Rightarrow(1):$ Corollary 2.6 .17.

To sum up the main investigation of this section, a "self-contained" version of 2.6.18 is given in 2.6.19.
2.6.19 Theorem Let G be a primitive soluble group of derived length at most 3 , let V be the unique minimal normal subgroup of. G, where V is a p-group, say, and let H be a complement to V in G. Then $G \in \mathscr{C}_{p}$ if and only if the following three conditions hold:
(a) H has elementary abelian Sylow subgroups;
(b) $d_{Z_{p}}(F(H))=d_{Z_{p}}(Z(H))$;
(c) if B is a complement to $F(H)$ in H then B acts absolutely faithfully on $F(H)$.

The last result of 2.6 shows that the condition, in 2.6.18, that B should act absolutely faithfully on A, can be expressed in different ways.
2.6.20 Let B be an elementary abelian group which acts fred-point-free (faithfully on a group A (i.e. $C_{A}(B)=1$); then the following are equivalent:
(1) B acts absolutely faithfully on A;
(2) the mapping $X \mapsto C_{A}(X)$, from the set of subgroups of B into the set of subgroups of A, is injective;
(3) $C_{A}\left(B_{0}\right)>1$ for every maximal subgroup B_{o} of B.

Proof $(1) \Leftrightarrow(2):$ See $(R 2,1.1)$. This is true even when B is a non-abelian group. $(1) \Rightarrow(3):$ If for some maximal subgroup B_{0} of B, $C_{A}\left(B_{0}\right)=1$, then $C_{B}\left(C_{A}\left(B_{0}\right)\right)=B>B_{0}$.
$(3) \Rightarrow(2):$ Suppose (2) does not hold. Then B has subgroups B_{1} and B_{2}, with $\mathrm{B}_{1} \neq \mathrm{B}_{2}$, such that $C_{A}\left(B_{1}\right)=C_{A}\left(B_{2}\right)$. Hence

$$
C_{A}\left(B_{1} B_{2}\right)=C_{A}\left(B_{1}\right) \cap C_{A}\left(B_{2}\right)=C_{A}\left(B_{1}\right),
$$

so B_{2} can be replaced by $B_{1} B_{2}$, and thus it can be assumed that $B_{1}<B_{2}$. Since B is elementary abelian, B has a subgroup B_{3} such that $B=B_{2} \times B_{3}$. Hence

$$
\begin{aligned}
I=C_{A}(B) & =C_{A}\left(B_{2} B_{1} B_{3}\right) \\
& =C_{A}\left(B_{2}\right) \cap C_{A}\left(B_{1} B_{3}\right) \\
& =C_{A}\left(B_{1}\right) \cap C_{A}\left(B_{1} B_{3}\right) \\
& =C_{A}\left(B_{1} B_{3}\right) .
\end{aligned}
$$

Thus if B_{0} is a maximal subgroup of B containing $B_{1} B_{3}$, then $C_{A}\left(B_{0}\right)=1$, and so (3) does not hold.

2.7 Groups in θ^{3} with complemented pronormal subgroups

In this section necessary and sufficient conditions are found for a soluble group of derived length at most 3 to belong to

Let $G \in O^{3}$. If G is to lie in \mathscr{C}_{p}, then clearly the following two conditions must be met:
(a) $\Phi(G)=1$;
(b) the primitive soluble quotient groups of G all belong to \mathscr{C}_{p}. If (a) and (b) hold then $G \in \mathscr{C}_{n}$ (because, a soluble group with trivial Frattini subgroup is in the residual closure of its set of primitive soluble quotient groups, $\mathscr{C}_{\mathrm{p}} \subseteq \mathscr{C}_{\mathrm{n}}$, and \mathscr{C}_{n} is R_{0}-closed).

It will be assumed throughout 2.7 that (a) and (b) hold, and hence that $G \in \mathscr{C}_{n} \cap O^{3}$. It follows that there are minimal normal subgroups $V_{1}, V_{2}, \ldots, V_{t}$ of G, for some $t \geqslant 1$, such that

$$
F(G)=v_{1} \times v_{2} \times \ldots \times v_{t}
$$

Let H be a complement to $F(G)$ in G, and for each $i \in\{1, \ldots, t\}$ let

$$
N_{i}=c_{H}\left(v_{i}\right) v_{1} \ldots \hat{v}_{i} \ldots v_{t}
$$

where the "hat" has the usual meaning, i.e. that V_{i} is to be omitted from the product. Then N_{i} is a normal subgroup of G and $V_{i} N_{i}=C_{G}\left(V_{i}\right) ; G / N_{i}$ is a primitive soluble
group with unique minimal normal subgroup $V_{i} N_{i} / N_{i}$, and $H N_{i} / N_{i}$ is a complement to $V_{i} N_{i} / N_{i}$ in G / N_{i}.

For each $i \in\{1, \ldots, t\}$, define the subgroup $F^{(i)}(G)$ of G by

$$
F^{(i)}(G) / C_{G}\left(V_{i}\right)=F\left(G / C_{G}\left(V_{i}\right)\right)
$$

2.7.1 Let $s \in\{1, \ldots, t\}$, let N be a normal subgroup of G contained in $N_{1} \cap \ldots \cap N_{s}$, and let $\bar{G}=G / N$. Then, using the bar convention, for each $i \in\{1, \ldots, s\}$: (a) $C_{\bar{G}}\left(\bar{V}_{i}\right)=\overline{C_{G}\left(V_{i}\right)}=\overline{V_{i} N_{i}}$;
(b) $F^{(i)}(\bar{G})=\overline{F^{(i)}(G)}$.
(c) If $N=N_{1} \cap \ldots \cap N_{s}$, then $F(\bar{G})=\overline{V_{1} \ldots V_{s}}$, and $F^{(1)}(\bar{G}) \cap \ldots \cap F^{(s)}(\bar{G})=F_{2}(\bar{G})$
(where $F_{2}(G)$ is the second term of the upper Fitting series of G, i.e. $F_{2}(G) / F(G)=F(G / F(G))$).

Proof $(a) \quad \bar{g} \in C_{\bar{G}}\left(\bar{V}_{i}\right) \Leftrightarrow\left[V_{i}, g\right] \leqslant N$
$\Leftrightarrow\left[v_{i}, g\right] \leqslant v_{i} \cap N_{i}=1$
$\Leftrightarrow g \in C_{G}\left(V_{i}\right)$.
(b) Abbreviate $F^{(i)}(G)$ to F_{i}. In a \mathscr{G}_{n}-group, there are no Frattini factors, so the Fitting subgroup is determined as the unique abelian self-centralizing normal subgroup. Now $\overline{F_{i}} / C_{G}\left(\overline{V_{i}}\right) \quad\left(=\overline{F_{i}} / \overline{C_{G}\left(V_{i}\right)}\right)$ is abelian, from
the definition of F_{i}, so to establish (b) it will be enough to show that $\overline{F_{i}} / C_{G}\left(\overline{V_{i}}\right)$ is self-centralizing in $\bar{G} / C_{G}\left(\overline{V_{i}}\right):$

$$
\begin{aligned}
& \bar{g} \in C_{G}\left(\overline{F_{i}} / C_{G}\left(\overline{V_{i}}\right)\right) \\
\Leftrightarrow & {\left[\overline{F_{i}}, \bar{g}\right] \leqslant C_{G}\left(\overline{V_{i}}\right)=\overline{C_{G}\left(V_{i}\right)} } \\
\Leftrightarrow & {\left[F_{i}, G\right] \leqslant C_{G}\left(V_{i}\right) N_{i}=C_{G}\left(V_{i}\right) } \\
\Leftrightarrow & g \in C_{G}\left(F_{i} / C_{G}\left(V_{i}\right)\right) \\
\Leftrightarrow & G \in F_{i} .
\end{aligned}
$$

(c) Now suppose $N=N_{1} \cap \ldots \cap N_{s}$. Then $\bar{V}_{1}, \bar{V}_{2}, \ldots, \overline{\mathrm{~V}}_{s}$ are minimal normal subgroups of \bar{G} and $\overline{V_{s+1}}=\ldots=\bar{V}_{t}=\bar{I}$, so $\overline{F(G)}=\overline{V_{1} \ldots V_{s}} \leqslant F(\bar{G})$. Also
$F(\bar{G}) \leqslant \bigcap_{i=1}^{s} C_{\bar{G}}\left(\overline{V_{i}}\right)=\bigcap_{i=1}^{s} \overline{C_{G}\left(V_{i}\right)}=\bigcap_{i=1}^{s} \overline{N_{i} V_{i}} \quad($ by $(a))$

$$
=\widehat{\bigcap_{i=1}^{S} N_{i} V_{i}} \quad\left(\text { as } N_{i} \geqslant N \quad \text { for each } i \in\{1, \ldots, s\}\right)
$$

Now. $\quad \bigcap_{i=1}^{s} N_{i} V_{i}=\bigcap_{i=1}^{s} C_{H}\left(V_{i}\right) F(G)=\left(\bigcap_{i=1}^{s} C_{H}\left(V_{i}\right)\right) F(G) \leqslant N F(G)$, so $F(\bar{G}) \leqslant \overline{N F(G)}=\overline{F(G)}$.

$$
\text { Hence } \quad F(\bar{G})=\overline{V_{1}} \ldots \cdot \bar{V}_{S}=\overline{F(G)} .
$$

Let, F be the subgroup of G containing N such that $\bar{F}=F_{2}(\bar{G})$. It is clear that, $\bar{F} / N_{i} \leqslant F_{2}\left(\bar{G} / \bar{N}_{i}\right)$ for each $i=1, \ldots, s$, i.e. $\bar{F} \leqslant \overline{F_{i}}$ for each $i=1, \ldots, s$. Thus $\bar{F} \leqslant \overline{F_{1}} \cap \ldots \cap \overline{F_{s}}$.

Conversely,

$$
\begin{aligned}
& \bar{G} \in \overline{F_{1}} \cap \ldots \cap \overline{F_{s}} \\
\Rightarrow & \bar{G} \in C_{\bar{G}}\left(\overline{F_{i}} / C_{\bar{G}}\left(\overline{V_{i}}\right)\right) \\
\Rightarrow & {\left[\overline{F_{i}}, \bar{G}\right] \leqslant C_{\bar{G}}\left(\overline{V_{i}}\right) \quad(i=1, \ldots, s) } \\
\Rightarrow \quad & {[\bar{F}, \bar{E}] \leqslant \bigcap_{i=1}^{s}\left[\overline{F_{i}}, \bar{E}\right] \leqslant \bigcap_{i=1}^{s} C_{\bar{G}}\left(\overline{V_{i}}\right)=F(\bar{G}) } \\
\Rightarrow & \bar{G} \in C_{\bar{G}}(\bar{F} / F(\bar{G}))=\bar{F} .
\end{aligned}
$$

Therefore $\quad \bar{F}=\overline{F_{I}} \cap \ldots \cap \overline{F_{s}}$.
2.7.2 Theorem If $G \in \mathscr{G}_{p}$ then

$$
\left(\left|F^{(i)}(G)\right|,\left|F^{(j)}(G)\right|\right)=\left|F^{(i)}(G) \cap F^{(j)}(G)\right|
$$

for all i, $j \in\{1, \ldots, t\}$.

Proof Suppose G is a counterexample, i.e., $G \in G_{p}$ but the condition on the $F^{(i)}(G)$ does not hold. Then without loss of generality it can be assumed that

$$
\begin{equation*}
\left(\left|F^{(1)}(G)\right|,\left|F^{(2)}(G)\right|\right)>\left|F^{(1)}(G) \cap F^{(2)}(G)\right| \tag{I}
\end{equation*}
$$

Consider $\bar{G}=G / N_{1} \cap N_{2} \cdot \bar{G} \in \operatorname{G} \mathscr{B}_{p}=\zeta_{p}$; also
$N_{1} \cap N_{2} \leqslant F^{(1)}(G) \cap F^{(2)}(G)$, so

$$
\begin{equation*}
\left(\left|\overline{F^{(1)}(G)}\right|,\left|\overline{F^{(2)}(G)}\right|\right)>\left|\overline{F^{(1)}(G)} \cap \overline{F^{(2)}(G)}\right| \tag{2}
\end{equation*}
$$

But by 2.7.1(b), $\overline{F^{(i)}(G)}=F^{(i)}(\bar{G})$ for $i=1,2$, so
(2) shows that \bar{G} is also a counterexample to the theorem. Hence, replacing G by \bar{G}, it can be assumed that $t=2$,
so that G has just two minimal normal subgroups, V_{1} and V_{2} (note that V_{1} and V_{2} cannot be G-isomorphic, because otherwise $C_{G}\left(V_{1}\right)=C_{G}\left(V_{2}\right)=F(G)$, and hence $F^{(1)}(G)=F^{(2)}(G)=F_{2}(G)$, which contradicts (1).).

From now on write F_{i} for $F^{(i)}(G)$, let $V=V_{1} V_{2}$ $=F(G)$, and let $F=F_{2}(G)=F_{1} \cap F_{2}$ (using 2.7.1(c)). Recall that H is a complement to V in G; let B be a complement to $F \cap H \quad(=F(H))$ in H. Thus, as $H \in \mathscr{C}_{n} \cap \mathscr{C}^{2}$, B is elementary abelian; also B is a complement to F in G. Further $F_{i} \cap B$ is a complement to F in $F_{i}(i=1,2)$, and thus

$$
\begin{aligned}
\left(\left|F_{1} \cap B\right|,\left|F_{2} \cap B\right|\right) & =\left(\left|F_{1}: F\right|,\left|F_{2}: F\right|\right) \\
& =\left(\frac{\left|F_{1}\right|}{\left|F_{1} \cap F_{2}\right|}, \frac{\left|F_{2}\right|}{\left|F_{1} \cap F_{2}\right|}\right)
\end{aligned}
$$

$$
>\quad 1 \quad(\text { by }(1))
$$

Let q be a prime number which divides both $\left|F_{1} \cap B\right|$ and $\left|F_{2} \cap B\right|$, and for each i let b_{i} be an element of order q in $F_{i} \cap B$. Let $b=b_{1} b_{2}$; then $b \notin F_{1}$ and $b \notin F_{2}$.

Since B is elementary avelian, a complement B_{1} to $F_{1} \cap B$ in B, such that $\langle b\rangle \leqslant B_{1}$, can be constructed. Now let $\bar{G}=G / N_{1}$ (where. N_{1} is the normal subgroup of G defined in the remarks preceding 2.7.1). Then $\bar{G} \in Q \mathscr{G}_{p}=\mathscr{G}_{p}$, and \bar{G} is a primitive soluble group in G^{3}, with unique minimal normal subgroup $\overline{V_{1}}$. 〈b〉 is a subgroup of a complement $\overline{B_{1}}$ to $F(\bar{H})$ in \bar{H}, so, applying 2.6 .10 to \bar{G}
(with 〈b> playing the role of "B1" in that result), there is a subgroup U_{1} of G; with $N_{1}<U_{1}<V_{1} N_{1}$, such that $\overline{\mathrm{U}_{1}}$ is normalized by $\mathrm{N}_{\overline{\mathrm{H}}}(\overline{\langle\mathrm{b}\rangle}), \overline{\mathrm{V}_{1}} / \overline{\mathrm{U}_{1}}$ is centralized by $\overline{\langle\mathrm{b}\rangle}$, and (since $\mathrm{C}_{\overline{\mathrm{B}_{1}}}\left(\mathrm{C}_{\mathrm{F}(\overline{\mathrm{H}})}(\overline{\langle\mathrm{b}\rangle})\right)=\overline{\langle\mathrm{b}\rangle} \quad$ by 2.6.19), the codimension of $\overline{\bar{U}_{1}}$ in $\overline{V_{1}}$ is $\left|\overline{B_{1}}: \overline{\langle\mathrm{b}\rangle}\right| \mathrm{d}_{\mathrm{Z}_{\mathrm{p}}}(\mathrm{Z}(\overline{\mathrm{H}}))$, where p_{1} is the prime number of which $\left|v_{1}\right|$ is a power. Let $W_{1}=U_{1} \cap V_{1}$; then $1<W_{1}<V_{1}$, \dot{W}_{1} is normalized by $N_{H}(\langle b\rangle)$, and $\langle b\rangle$ centralizes V_{1} / W_{1}. To establish the last assertion, note that, since $\overline{\langle b\rangle}$ centralizes $\overline{V_{1}} / \overline{U_{1}},\left[\mathrm{v}_{1}, \mathrm{~b}\right] \leqslant \mathrm{U}_{1} \cap \mathrm{~V}_{1}=\mathrm{w}_{1}$.

The same argument applied to G / N_{2} demonstrates the existence of a subgroup W_{2} of V_{2} such that $1<W_{2}<V_{2}$, $N_{H}(\langle b\rangle)$ normalizes W_{2}, and $\langle b\rangle$ centralizes V_{2} / W_{2}. Hence $N_{H}(\langle b\rangle)$ normalizes $W_{1} W_{2}$ and $\langle b\rangle$ centralizes $V / W_{1} W_{2}$. Also $\langle b\rangle$ is pronormal in H, as $\langle b\rangle$ is a Carter subgroup of the normal subgroup $\langle b\rangle[F(H), b]$ of H (cf. 2.6.6). Hence by 1.5.11, $\langle b\rangle W_{1} W_{2}$ is pronormal in G.

Now $G \in \mathscr{G}_{p}$, and hence there exists a complement, C say, to $\langle b\rangle W_{1} W_{2}$ in $G . C V$ is then a supplement to $\langle b\rangle$ in G, and therefore (as b is of prime order q) either $C V=G$ or $|G: C V|=q$. If $C V=G$ then $C \cap V$ is a normal subgroup of G, and so $C \cap V$ is one of l, V_{l}, V_{2}, V (recall that $V_{1} \neq V_{2}$); hence $c \cap V=1$, because any other possibility would contradict $C \cap W_{1} W_{2}=1$. Then C is a complement to V in G, and therefore
$|c|=|G| /|v| \cdot$ But
$|c|=|G| /\left|\langle b\rangle w_{1} w_{2}\right|=|G| / q\left|w_{1}\right|\left|w_{2}\right|$; therefore $|v|=q\left|w_{1}\right|\left|w_{2}\right|$, and hence $q=\left|v_{1} / w_{1}\right|\left|v_{2} / w_{2}\right|$, which is impossible, as q is a prime number and $\left|V_{i} / W_{i}\right|>1$ for each i . Hence $C V \neq G$, and so $|G: C V|=q$, whence $C V$ is a complement to 〈b〉 in G; thus $C V \cap H$ is a complement to $\langle\mathrm{b}\rangle$ in H . Also
$|c \cap v|=\frac{|c||v|}{|C V|}=\frac{|G|}{q\left|W_{1}\right|\left|W_{2}\right|}|v| \frac{q}{|G|}=\left|v: w_{1} w_{2}\right|$, so $c \cap v$ is a complement to $W_{1} W_{2}$ in V. It follows that $(C V \cap H)(C \cap V)$ is a complement to $\langle b\rangle W_{1} W_{2}$ in G, and hence, replacing C by $(C V \cap H)(C \cap V)$, it can be assumed that:

$$
\begin{align*}
& \begin{array}{l}
\langle b\rangle W_{1} W_{2} \text { has a complement } C \text { in } G \text { such that } \\
c=(C \cap H)(C \cap V): \\
\\
\\
\\
\text { It is useful to show further that }
\end{array}
\end{align*}
$$

$c \cap v=\left(C \cap v_{1}\right)\left(C \cap v_{2}\right)$, and as a first step it is necessary to show

$$
\begin{equation*}
H^{\prime} \cap \mathrm{C}_{\mathrm{H}}\left(\mathrm{~V}_{1}\right)>1 \tag{4}
\end{equation*}
$$

Suppose that (4) does not hold. Then, since $C_{H}\left(V_{1}\right)$ is normal in H, it follows that

$$
\left[H, C_{H}\left(v_{1}\right)\right] \leqslant H^{\prime} \cap C_{H}\left(v_{1}\right)=1,
$$

and therefore $C_{H}\left(V_{1}\right) \leqslant Z(H)$. Let $\bar{H}=H / C_{H}\left(V_{1}\right)$. Then $\bar{h} \in Z(\bar{H}) \Leftrightarrow[\mathrm{H}, \mathrm{h}] \leqslant \mathrm{C}_{\mathrm{H}}\left(\mathrm{V}_{\mathrm{I}}\right) \cap \mathrm{H}^{\prime}=1$
$\Leftrightarrow h \in Z(H)$,
so $Z(\bar{H})=\overline{Z(H)}$.

Therefore $F(\bar{H})=\bar{H}^{\prime} \times Z(\bar{H})=\overline{H^{\prime}} \times \overline{Z(H)}=\overline{F(H)}$.
But $F\left(H / C_{H}\left(V_{1}\right)\right)=F_{1} \cap H / C_{H}\left(V_{1}\right)$, so it can be deduced that $F_{1}=F \leqslant F_{2}$. This contradicts (1). Therefore (4) holds.

Let N be a non-trivial normal subgroup of H contained in $H^{\prime} \cap C_{H}\left(V_{1}\right)$; thus

$$
\begin{equation*}
\left[T_{1}, N\right]=I \text { for each subgroup } T_{1} \text { of } V_{1} \tag{5}
\end{equation*}
$$

Now V_{2} is an irreducible $Z_{p_{2}}[H]$-module (where p_{2} is the prime number of which $\left|V_{2}\right|$ is a power), so Clifford's Theorem can be applicd to $\left.V_{2}\right|_{N}$, to show that, if $C_{V_{2}}(\mathbb{N})>I$ then $C_{V_{2}}(N)=V_{2}$, i.e. $N \leqslant C_{H}\left(V_{2}\right)$. But $N \leqslant C_{H}\left(V_{2}\right)$, for otherwise $N \leqslant C_{H}\left(V_{1}\right) \cap C_{H}\left(V_{2}\right)=C_{H}(V)=1$. Therefore

$$
\begin{equation*}
\left[\mathbb{T}_{2}, N\right]>1 \text { for each non-trivial subgroup } T_{2} \text { of } V_{2} \tag{6}
\end{equation*}
$$

Thus, by (5) and (6), a non-trivial subgroup of V_{1} cannot be H^{\prime}-isomorphic to a subgroup of V_{2}, and hence, if $T \leqslant V$ is normalized by H^{\prime} then $T=\left(T \cap V_{1}\right)\left(T \cap V_{2}\right)$

Suppose that M is a minimal normal subgroup of H such that $M \notin \mathrm{C} \cap \mathrm{H}$. Then $(\mathrm{C} \cap \mathrm{H}) \mathrm{M}=\mathrm{H}$ (as $\mathrm{C} \cap \mathrm{H}$ has prime index q in H), so M is a q-group. Now $H \in B_{n} \cap O^{2}$, so by 2.1.4, H has elementary abelian Sylow q-subgroups; hence

$$
\begin{equation*}
[\mathrm{M}, \mathrm{~b}]=\mathrm{I} \tag{8}
\end{equation*}
$$

By 2.2.1(a), $[M, C \cap B]$ is normal in H, so $[M, C \cap B]=1$ or M. An argument like the one used to establish 2.2.5(a) shows that $[M, C \cap B] \leqslant C \cap H$, and, since $M \forall C \cap H$, it follows that

$$
\begin{equation*}
[M, C \cap B]=l \tag{9}
\end{equation*}
$$

But $B=\langle b\rangle \times(C \cap B)$, so (8) and (9) imply that B is centralized by M : Therefore $M \leqslant Z(H)$.

Hence all the minimal normal subgroups of H which are contained in H^{\prime} are also contained in $C \cap H$, and therefore

$$
\begin{equation*}
\mathrm{H}^{\prime} \leqslant \mathrm{C} \cap \mathrm{H} \tag{10}
\end{equation*}
$$

From (7) and (10) it follows that
$C \cap V=\left(C \cap V_{1}\right)\left(C \cap V_{2}\right)$, and thus

$$
c=(C \cap H)\left(C \cap v_{1}\right)\left(C \cap v_{2}\right)
$$

Given $i \in\{1,2\}$, suppose that $N_{i} \not \subset C V$; then $C V N_{i}=G$, and so $C \cap V_{i}$, being normalized by C and centralized by V and N_{i}, must be a normal subgroup of G. Then $C \cap V_{i}=I$ or V_{i}, which gives a contradiction, because a particular consequence of (11) is that
$1<\mathrm{C} \cap \mathrm{v}_{\mathrm{i}}<\mathrm{v}_{\mathrm{i}}$ for $\mathrm{i}=1,2$. Hence

$$
\begin{equation*}
N_{i} \leqslant c V \quad(i=1,2) \tag{12}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
C_{H}\left(V_{i}\right) \leqslant C V \cap H=C \cap H \quad(i=1,2) \tag{13}
\end{equation*}
$$

Let $\bar{G}=G / N_{1}$. Then:
$\overline{\mathrm{C}}=(\overline{\mathrm{C}} \cap \bar{H})(\overline{\mathrm{C}} \cap \overline{\mathrm{V}})$, and $\overline{\mathrm{C}}$ is a complement to
$\overline{\langle b\rangle} W_{1}$ in \bar{G}
For,

$$
\begin{aligned}
\mathrm{CN}_{1} & =(\mathrm{C} \cap \mathrm{H})\left(\mathrm{C} \cap \mathrm{~V}_{1}\right)\left(\mathrm{C} \cap \mathrm{~V}_{2}\right) \mathrm{C}_{\mathrm{H}}\left(\mathrm{~V}_{1}\right) \mathrm{V}_{2} \\
& =(\mathrm{C} \cap H)\left(C \cap V_{1}\right) \mathrm{V}_{2} \quad \text { (using (13)), (11)) }
\end{aligned}
$$

and thus
$\mathrm{CN}_{1} \cap \mathrm{HN}_{1}=\left(\mathrm{CN}_{1} \cap \mathrm{H}\right) \mathrm{N}_{1}=(\mathrm{C} \cap \mathrm{H}) \mathrm{N}_{1}$, and
$\mathrm{CN}_{1} \cap \mathrm{~V}_{1} \mathrm{~N}_{1}=\left(\mathrm{CN}_{1} \cap \mathrm{~V}_{1}\right) \mathrm{N}_{1}=\left(\mathrm{C} \cap \mathrm{V}_{1}\right) \mathrm{N}_{1}$
This proves $\overline{\mathrm{C}}=(\overline{\mathrm{C}} \cap \overline{\mathrm{H}})(\overline{\mathrm{C}} \cap \overline{\mathrm{V}})$. Also,

$$
\mathrm{CN}_{1} \cap\langle b\rangle W_{1} N_{1}
$$

$=\mathrm{CN}_{1} \cap \mathrm{CV} \cap\langle\mathrm{b}\rangle W_{1} \mathrm{~N}_{1} \quad\left(\mathrm{CN}_{1} \leqslant \mathrm{CV}\right.$, by (12))
$=\mathrm{CN}_{1} \cap(\mathrm{CV} \cap\langle\mathrm{b}\rangle) W_{1} \mathrm{~N}_{1} \quad$ (using (12) again)
$=C N_{1} \cap \mathrm{~W}_{1} \mathrm{~N}_{1}$
$=\mathrm{CN}_{1} \cap \mathrm{~V}_{1} \mathrm{~N}_{1} \cap W_{1} \mathrm{~N}_{1}$
$=\left(C \cap V_{1}\right) N_{1} \cap W_{1} N_{1} \quad$ (by (15))
$=\left(C \cap V_{1} \cap W_{1} N_{1}\right) N_{1}$
$=\left(C \cap\left(V_{1} \cap N_{1}\right) W_{1}\right) N_{1} \quad$ (as $\left.W_{1} \leqslant V_{1}\right)$
$=\left(C \cap W_{1}\right) N_{1}$
$=N_{1}$.
Hence $\bar{C} \cap \overline{\langle b\rangle} W_{1}=\bar{I}$. Further, as $W_{2} \leqslant N_{1}$, it is clear that $\bar{C} \overline{\langle b\rangle} W_{1}=\bar{G}$, so \bar{C} is a complement to $\overline{\langle b\rangle W_{1}}$ in \bar{G}, and therefore (14) is established.

Now 2.6.14 can be applied to the primitive soluble group \bar{G}, with $\overline{\langle b\rangle}, \overline{W_{1}}, \bar{C}, \bar{H}, \overline{V_{1}}$ in place of B_{1}, U, C, H, V respectively (recall that $\overline{W_{1}}$ corresponds to the subgroup \mathbb{U} constructed in 2.6 .10) : this shows that $Z(\overline{\mathrm{H}}) \leqslant \overline{\mathrm{C}} \cap \overline{\mathrm{H}}:$ Therefore (invoking (10)), $\mathrm{F}(\overline{\mathrm{H}})=\overline{\mathrm{H}^{\prime}} \times \mathrm{Z}(\overline{\mathrm{H}}) \leqslant \overline{\mathrm{C}} \cap \overline{\mathrm{H}}$.

Since $\overline{F_{1} \cap \bar{H}}=F_{2}(\bar{G}) \cap \bar{H}=F(\bar{H})$, it follows that $\mathrm{F}_{1} \cap \mathrm{H} \leqslant \mathrm{CN}_{1} \cap \mathrm{H}$
$\leqslant \mathrm{CV} \cap \mathrm{H} \quad$ (by (le))
$=C \cap H$.

Similarly, by considering G / N_{2}, it can be shown
that $\quad F_{2} \cap H \leqslant C \cap H$. Therefore

$$
b=b_{1} b_{2} \in\left(F_{1} \cap B\right)\left(F_{2} \cap B\right) \leqslant c .
$$

This is a contradiction, as C is a complement to $\langle b\rangle W_{2} W_{2}$ in G. Therefore no such group as G can exist, and so the theorem is proved.

2.7.3 Theorem If

$\left(\left|F^{(i)}(G)\right|,\left|F^{(j)}(G)\right|\right)=\left|F^{(i)}(G) \cap F^{(j)}(G)\right|$ for all $i, j \in\{1, \ldots, t\}$, then $G \in \mathscr{C}_{p}$.

Proof As before, $F^{(i)}(G)$ will be abbreviated to F_{i}. Suppose that the condition on the F_{i} holds, and let L be an arbitrary pronormal subgroup of G; to prove the
theorem, it will be enough to produce a complement to L in G.

Let $F=F_{2}(G)$; then $F=F_{1} \cap \ldots \cap F_{t}$, by 2.7.1(c), and G / F is elementary abelian. Let q_{1}, \ldots, q_{r} be the distinct prime divisors of $|G / F|$. Then
$G / F=S_{1} / F \times \ldots \times S_{r} / F$, where S_{j} / F is the Sylow $q_{j}-$ subgroup of $G / F(j=1, \ldots, r)$. Let

$$
F_{i j}=F_{i} \cap S_{j} \quad(i=1, \ldots, t ; j=1, \ldots, r) ;
$$

thus $F_{i j} / F$ is the sylow q_{j}-subgroup of F_{i} / F. For every $j \in\{1, \ldots, r\}$ and all $i, k \in\{1, \ldots, t\}$, either $F_{i j} \leqslant F_{k j}$ or $F_{k j} \leqslant F_{i j} \quad$ (for otherwise, $\left(\left|F_{i j} / F\right|,\left|F_{k j} / F\right|\right)>\left|\left(F_{i j} \cap F_{k j}\right) / F\right|$, which leads to a contradiction of the hypothesis of the theorem). Therefore, for each $j \in\{1, \ldots, r\}$ there is an ordering

$$
F_{i_{1}, j} \leqslant F_{i_{2}, j} \leqslant \cdots \leqslant F_{i_{t}, j}
$$

of $\quad F_{1 j}, \ldots, F_{t j}$. This fact is now used to construct a sequence of subgroups of S_{j} :
 $\left(L F \cap F_{i_{1}}, j\right) / F$ in $F_{i_{1}}, j / F$. Then, because S_{j} / F is
in $F_{i, j} / F$ to $\left(L F \cap F_{i, j}\right) / F$ elementary abelian, a complement $C_{i z_{2}} J F /$ can be constructed
 process, subgroups $C_{i_{i} j} \leqslant C_{i_{2}, j} \leqslant \ldots \leqslant c_{i, j}$ of S_{j} can be constructed such that, for each $k \in\{1, \ldots, t\},{\underset{j}{i} j}^{C_{j}} / F$ is a complement to $\left(L F \cap F_{i_{k}, j}\right) / F$ in $F_{i_{k}, j} / F$, and

The process can be carried one step farther, to produce a subgroup C_{j} of S_{j} such that C_{j} / F is a complement to $\left(L F \cap S_{j}\right) / F$ in S_{j} / F, and $C_{j} \cap F_{i_{t}, j}={\underset{i}{i}, j}_{C_{j}}$. Hence

$$
c_{j} \cap F_{i j}=C_{i j} \quad \text { for each } \quad i \in\{1, \ldots, t\}
$$

Having constructed C_{j} for each $j \in\{1, \ldots, r\}$, let $C=C_{1} C_{2} \ldots C_{r}$, so that $C / F=C_{1} / F \times \ldots \times C_{r} / F$.
Since $L F / F=L F \cap S_{1} / F \times \ldots \times L F \cap S_{r} / F$, it follows that
C / F is a complement to $L F / F$ in G / F
Further, it will be shown that, for each i $\in\{1, \ldots, t\}$,
$C F_{i} / F_{i}$ is a complement to $L F_{i} / F_{i}$ in $G / F_{i} \ldots(2)$
Consider an arbitrary $i \in\{1, \ldots, t\}$. For each $j \in\{1, \ldots, r\}, S_{j} F_{i} / F_{i}$ is the Sylow q_{j}-subgroup of G / F_{i}, $\left(L F \cap S_{j}\right) F_{i} / F_{i}$ is the Sylow q_{j}-subgroup of $L F_{i} / F_{i}$, and $C_{j} F_{i} / F_{i}$ is the sylow q_{j}-subgroup of $C F_{i} / F_{i}$; hence, to prove (2), it is enough to show that:
$C_{j} F_{i} / F_{i}$ is a complement to $\left(L F \cap S_{j}\right) F_{i} / F_{i}$ in $S_{j} F_{i} / F_{i}$

It is clear that the two subgroups supplement each other
in $S_{j} F_{i} / F_{i} \cdot A l s o$,

$$
\begin{aligned}
& C_{j} F_{i} \cap\left(L F \cap S_{j}\right) F_{i} \\
= & \left(C_{j} \cap\left(L F \cap S_{j}\right) F_{i}\right) F_{i} \\
= & \left(C_{j} \cap S_{j} \cap\left(L F \cap S_{j}\right) F_{i}\right) F_{i} \\
= & \left(C_{j} \cap\left(S_{j} \cap F_{i}\right)\left(L F \cap S_{j}\right)\right) F_{i} \\
= & \left(C_{j} \cap F_{i j}\left(L F \cap S_{j}\right)\right) F_{i}
\end{aligned}
$$

$=\left(C_{j} \cap C_{i j}\left(L F \cap F_{i j}\right)\left(L F \cap S_{j}\right)\right) F_{i} \quad\left(\right.$ as $C_{i j} / F$ is a complement to ($L \mathcal{F} \cap F_{i j}$)/F in $F_{i j} / F$)
$=\left(C_{j} \cap C_{i j}\left(L F \cap S_{j}\right)\right) F_{i}$
$=\left(\left(C_{j} \cap L F \cap S_{j}\right) C_{i j}\right) F_{i} \quad\left(\right.$ as $\left.C_{i j} \leqslant C_{j}\right)$
$=F C_{i j} F_{i} \quad$ (as C_{j} / F is a complement to $\left(L F \cap S_{j}\right) / F$ in $\left.S_{j} / F\right)$
$=F_{i}$.

Therefore (3) holds, and consequently (2) is proved.

Continuing with an arbitrary $i \in\{1, \ldots, t\}$, let $\bar{G}=G / N_{i} . \bar{G}$ is a primitive soluble quotient group of G, so by one of the two overall assumptions of this section, $\bar{G} \in \mathscr{G}_{p}$. Now 2.6 .16 is applied to $\bar{G} \cdot 2.6 .18$ shows that the first hypothesis of 2.6.16 is equivalent to the condition that the primitive soluble group which is the subject of the lemma is a \mathscr{C}_{p}-group, so it holds for \bar{G}. $F_{2}(\bar{G})=\bar{F}_{i}, \bar{L}$ is pronormal in \bar{G} (by 1.5.3 and 1.5.2), and $\overline{\mathrm{CF}_{i}} / \overrightarrow{\mathrm{F}_{i}}$ is a complement to $\overline{\mathrm{LF}} / \sqrt{F_{i}}$ in $\overline{\mathrm{G}} / \sqrt{\mathrm{F}_{i}}$ (by (2) and the fact that $N_{i} \leqslant F_{i}$). By I.5.12, $N_{G}(L V)$ normalizes $L \cap V$; therefore $N_{G}(L V)$ normalizes $(L \cap V) V_{I} \ldots V_{i-I} \cap V_{i}$. By 1.5.3, $N_{\bar{G}}\left(\overline{L V_{i}}\right)=N_{G}(\overline{L V})=\overline{N_{G}(L V)}$, so $N_{G}\left(\overline{L V_{i}}\right)$ normalizes $\overline{(L \cap V) V_{1} \ldots V_{i-1} \cap V_{i}}$. Therefore, by 2.6.16, $\overline{(\mathrm{L} \cap \mathrm{V}) V_{1} \ldots \bar{V}_{i-1} \cap \bar{V}_{i}}$ has a complement, $\overline{W_{i}}$ say (where $W_{i} \geqslant N_{i}$), in $\overline{V_{i}}$, such that $\overline{W_{i}}$ is normalized by $\overline{\mathrm{CF}_{i}}$. Therefore $C F_{i}$ normalizes $W_{i} \cap V_{i}$, which is a complement to $(L \cap V) V_{1} \ldots V_{i-1} \cap V_{i}$ in V_{i}. Let $U_{i}=W_{i} \cap V_{i}$.

Then, by $2.3 .3(\mathrm{c})$, applied to $V=V_{1} V_{2} \ldots V_{t}$,
$U_{1} \ldots U_{t}$ is a complement to $L \cap V$ in V, and $U_{1} \ldots U_{t}$ is normalized by C

Let B be a complement to $F \cap H(=F(H))$ in H; then $C=(C \cap B) F=(C \cap B) F(H) V$, and
$C \cap B$ is a complement to. $L F \cap B$ in B
$L V \cap H$ is pronormal in H, by 1.5.6, and H is metabelian, so by 2.1.5, $\mathrm{LV} \cap \mathrm{F}(\mathrm{H})$ is normal in H . Therefore there is a normal subgroup, N say, of H such that

$$
\begin{equation*}
F(H)=\stackrel{F}{(L V} \underset{A}{(H)}) \times N . \tag{6}
\end{equation*}
$$

Now (LV $\cap H) F(H) \cap B=L F \cap B$, so by (5), (6) and 1.3.3(b),
$(C \cap B) N$ is a complement to $L V \cap H$ in H $(C \cap B)$ if $\leqslant C$, so $(C \cap B) N$ normalizes $U_{1} \ldots U_{t}$; therefore, by (4), (7) and $1.3 .3(b)$ again, $(C \cap B) N U_{1} \ldots U_{t} \quad$ is a complement to L in G. Therefore $G \in \mathscr{C}_{p}$. Q.e.d.

The results of the section are summarised in 2.7.4, which, together with 2.6.19, yields a complete description of $G_{p} \cap Q^{3}$.
2.7.4 Theorem Let G be a soluble group of derived length at most 3. Then $G \in \zeta_{p}$ if and only if all the following conditions are satisfied :
(a) $\Phi(G)=1$;
(b) the primitive soluble quotient groups of G all belong to \mathscr{U}_{p};
(c) if $F(G)=V_{1} \times \ldots \times V_{t}$, where the V_{i} are minimal normal subgroups of G, and $F_{1}, F_{2}, \ldots, F_{t} \leqslant G$ are defined by

$$
F_{i} / C_{G}\left(V_{i}\right)=F\left(G / C_{G}\left(V_{i}\right)\right) \quad(i=1, \ldots, t),
$$

then $\quad\left(\left|F_{i}\right|,\left|F_{j}\right|\right)=\left|F_{i} \cap F_{j}\right|$ for each $i, j \in\{1, \ldots, t\}$.

The question of further investigation of $\mathscr{\varphi}_{\mathrm{p}}$ seems to be difficult : it appears to be reasonable to conjecture that $\mathscr{Q}_{\mathrm{p}} \subseteq \mathscr{q}^{3}$, in which case 2.7.4 would give a complete description of \mathscr{C}_{p}. However it is apparent that an investigation of that conjecture, using techniques analogous to those developed in this chapter, would be a formidable task.

Chapter 2 ends with two examples which substantiate the statement, made in section 2.1, that \mathscr{C}_{p} is neither S_{n}-closed nor D_{o}-closed.
2.7.5 Example Let $\omega \in G F\left(5^{2}\right)$ be such that $\omega^{3}=1$, and define $H \leqslant \operatorname{GL}\left(2,5^{2}\right)$ by

$$
H=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right),\left(\begin{array}{ll}
\omega & 0 \\
0 & \omega
\end{array}\right)\right\rangle
$$

Then $H \cong S_{3} \times C_{3}$. Let V be a $G F\left(5^{2}\right)$-space of dimension 2 , and let G be the semiairect product $H V$ (with a natural action of H on V). Then G is a primitive soluble group, and 2.6 .18 can be applied to show that $G \in \mathscr{G}_{p}$.

Let $H_{1}=\left\langle\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)\right\rangle \cong S_{3}$; then $H_{1} V$
is a normal subgroup of G, and it is easily seen that a primitive soluble quotient group of $H_{l} V$ violates condition (b) of 2.6.19. Thus $H_{I} V \not \varphi_{p}$, and hence \mathscr{C}_{p} is not S_{n}-closed.
2.7.6 Example Define $H \leqslant G L(2,7)$ by

$$
H=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)\right\rangle \cong S_{3},
$$

let V be a $G F(7)$-space of dimension 2 , and let G be the semidirect product HV (with a natural action); then G iss a primitive soluble group. It is easy to check that G satisfies the conditions of 2.6 .19 , so $G \in \mathscr{G}_{p}$. However $\mathrm{G} \times \mathrm{G}$ violates condition (c) of 2.7 .4 , so $\mathrm{G} \times \mathrm{G} \notin \mathscr{C}_{\mathrm{p}}$. Hence \mathscr{G}_{p} is not D_{o}-closed. (The principle behind this example can of course be applied to any group G of derived length 3 , to show that $G \times G \notin \mathscr{G}_{p}$).

CHAPTER 3

3.1 Groups with Frattini intersection supplements

Recall that \mathscr{C} denotes the class of groups in which every subgroup has a complement (studied in H5). Chapter 3 is concerned with classes of groups of which \mathscr{G} may be regarded as the archetype. The class considered in this section turns out to be no more than the "saturation" of \mathscr{G}, i.e. the smallest saturated formation containing \mathscr{G}. For convenience, Hall's description of ℓ will first be set down. Let \mathbb{R} denote the class of groups of square-free order, i.e. $G \in \mathbb{R}$ if and only if, for every prime number $p, p^{2} \nmid|G|$.
3.1.1 Theorem (H5) The following are equivalent:
(1) $G \in \mathscr{C}$;
(2) $G \in S D_{0} R$;
(3). G is supersoluble and the Sylow subgroups of G are all elementary abelian.

Definition A supplement S in a group G to a subgroup H of G is called a Frattini intersection supplement if $H \cap S \leqslant \Phi(G)$.

Throughout 3.1, वै will denote the class of groups in which every subgroup has a Frattini intersection supplement.
3.1.2 $\mathcal{\text { F }}$ is Q-closed.

Proof Let $G \in \mathcal{J}$ and let N be a normal subgroup of G. Let. H / N be a subgroup of G / N. Then H has a Frattini intersection supplement S in G. SN/N is a supplement to H / N in G / N, and $H / N \cap S N / N=(H \cap S) N / N \leqslant \Phi(G) N / N \leqslant \Phi(G / N)$.
Therefore $G / N \in \mathcal{F}$.
3.1.3 If $G \in \mathcal{H}$ and $\Phi(G)=1$ then $G \in \mathscr{C}$.

Proof This is immediate from the definition of \bar{J}.
3.1.4 $G \in \mathcal{A}^{\circ}$ if and only if $G / \Phi(G) \in \mathscr{C}$. Proof Let $G \in \mathcal{J}$. Then $G / \Phi(G) \in \mathcal{H}$ by 3.1.2, and $G / \Phi(G)$ has trivial Frattini subgroup, so by 3.1.3, $G / \Phi(G) \in \mathscr{G}$.

Conversely, suppose $G / \Phi(G) \in \mathscr{C}$. Let $H \leqslant G$; then $H \Phi(G) / \Phi(G)$ has a complement, $S / \Phi(G)$ say, in $G / \Phi(G)$. Thus $H S=G$ and $H \cap S \leqslant H \Phi(G) \cap S=\Phi(G)$. Therefore $G \in$ 隶.

Thus $\mathcal{H}=E_{\Phi} \mathscr{C}$. The next theorem shows that of is a saturated formation, and gives a local definition for \mathcal{J}.

Note that the fact that \mathscr{Q} is a formation does not immediately imply that $\mathbb{E}_{\boldsymbol{\Phi}} \mathscr{C}$ is a formation : 3.1.6
exhibits an example of a formation \mathcal{X} such that $\mathrm{E}_{\boldsymbol{\Phi}} \mathcal{X}$ is not R_{0}-closed.
3.1.5 Theorem is a saturated formation and is locally defined by the formation function f, where for each prime number $p, G \in f(p)$ if and only if G is an elementary abelian group of exponent dividing p-1.

Proof Let be the saturated formation locally defined by the formation function f. It is well known that the class of supersoluble groups (which will be denoted hereafter by \quad) is a saturated formation, locally defined by the formation function f_{0}, where for each prime number $p, G \in f_{0}(p)$ if and only if G is abelian and has exponent dividing $p-1$. It is clear that

$$
\left.f(p)=f_{0}(p) \cap \mathscr{C} \text { (for all } p\right) \quad \ldots \ldots \ldots \ldots(1)
$$

so in particular, 先* $\subseteq J$. Since C-groups are supersoluble, it is also true that $\mathcal{W}=\mathrm{E}_{\boldsymbol{i}} \mathscr{C} \subseteq J$.
(i) $\mathcal{F} \leq \mathcal{F}$: let $G \in \mathcal{J}$, let p be a prime number, and let E / K be a p-chief factor of $G . G \in \mathcal{J}$, so $G / C_{G}(H / K) \in f_{o}(p) . F(G)$ is the intersection of the centralizers of the chief factors of G (H8, III, 4.3), so
in particular, $\Phi(G) \leqslant F(G) \leqslant C_{G}(H / K)$. Therefore (using (1)) $G / C_{G}(H / K) \in f_{0}(p) \cap \mathscr{C}=f(p)$. Hence $G \in$ dif *.
(ii) $\mathcal{J}^{*} \subseteq \mathcal{F}:$ let $G \in$; it will be enough to show $G / \Phi(G) \in \mathscr{G}$, so it is permissible to assume that $\Phi(G)=1$, and show that $G \in \mathscr{G} . G \in J$, so by 1.4 .5 , it is enough to show $G \in \mathscr{C}_{n}$.

$$
F(G)=\cap C_{G}(H / K) \text {, the intersection being taken over }
$$ all the chief factors of G, and $G / C_{G}(H / K) \in f(p) \subseteq \mathscr{C}$ for each prime number p and each p-chief factor H / K of G. Therefore

$$
\begin{equation*}
G / F(G) \in R_{0} \mathscr{C}=\mathscr{C} \tag{2}
\end{equation*}
$$

By assumption, $\Phi(G)=1$, so by (H8, III, 4.4),
every normal subgroup of G contained in $F(G)$ has a complement in G (3)

Let H be a normal subgroup of G; then $H F(G) / F(G)$ has a complement in $G / \Phi(G)$, by (2), and $H \cap F(G)$ has a complement in G, by (3). Therefore, by $1.3 .3(a), H$ has a complement in G. Hence $G \in \mathscr{G}_{n}$, and the proof is complete.

A similar study can be made of groups in which each normal subgroup has a Frattini intersection supplement. The class of all such groups coincides with $\mathrm{E}_{\boldsymbol{\Phi}} \mathscr{C}_{\mathrm{n}}$, and is a saturated formation (though not consisting of soluble groups). In fact it can easily be proved that :

$$
E_{\Phi} \mathscr{C}_{\mathrm{n}}=\left\{G: G / F(G) \in \mathscr{C}_{\mathrm{n}}\right\}=\gamma \mathscr{C}_{\mathrm{n}} .
$$

It follows immediately that $E_{\Phi} \mathscr{\varphi}_{n}$ is a saturated formation, as it is well known that, if \mathscr{X} is a formation then \mathscr{X} is a saturated formation.
3.1.6 Example In (SI), Schunck gives an example which shows that a "saturated homomorph" (or "Schunck class") is not necessarily a formation. The example can also be used to show that, if \mathfrak{X} is a formation, it does not necessarily follow that $\mathrm{E}_{\mathrm{\Phi}} \notin$ is a saturated formation.

Let \mathcal{X} be the class of groups defined by : $G \in \mathcal{X}$ if and only if G is 2-perfect and has abelian Sylow 2-subgroups. (To say that a group is " π-perfect", for some set π of prime numbers, means that it has no nontrivial π-quotient groups). It follows from (H9), Lemma 1.6, that \mathcal{X} is a formation. $A_{4} \in \mathscr{X}$, and so $\operatorname{SL}(2,3) \in \mathbb{E}_{\Phi} \mathcal{X}$ (the Frattini quotient group of $\operatorname{SL}(2,3)$ is isomorphic to $\left.A_{4}\right)$. Let $G=S L(2,3) \times\langle b\rangle$, where $\langle b\rangle \cong c_{2}$, and
let $\langle a\rangle=\Phi(\operatorname{SL}(2,3))\left(\cong c_{2}\right)$. Then $N_{1}=\langle a b\rangle$ and $N_{2}=\langle b\rangle$ are normal subgroups of $G, N_{1} \cap N_{2}=1$, and $G / N_{i} \cong \operatorname{SL}(2,3)$ for each i; hence $G \in R_{0}\left(E_{\Phi} \mathcal{X}\right)$. If $G \in E_{\Phi} \nsupseteq$ then, since $\Phi(G)=\langle a\rangle \cong C_{2}$, and so $G / \Phi(G) \cong A_{4} \times C_{2}$, it must follow that either $G \in \mathscr{X}$ or $A_{4} \times C_{2} \in \mathscr{X}$. But neither of these groups is 2-perfect, therefore $G \notin E_{\Phi} \mathcal{X}$. Hence $R_{0}\left(E_{\Phi} \mathcal{X}\right) \neq \mathrm{E}_{\Phi} \mathfrak{X}$, and so $\mathrm{E}_{\Phi} \mathfrak{X}$ is not a formation.

3.2 Groups with \mathfrak{X}-intersection supplements.

In the last section an attempt was made to find a generalisation of the concept of a Q-group, but this did not lead very far from \mathscr{C}. A more general approach is tried in this section, although the basic idea, of putting restrictions on the intersection of a subgroup and a supplement, is retained.

Definition Let X be a class of groups. If S is a supplement in a group G to a subgroup H of G, such that $H \cap S \in \mathcal{X}$, then S is called an \mathcal{X}-intersection supplement to H in G.

Notation Let $\&(X)$ denote the class of groups in which every subgroup has an \mathfrak{X}-intersection supplement. I.e. $G \in \mathscr{H}(X)$ if and only if for all $H \leqslant G$ there exists $S \leqslant G$ such that $H S=G$ and $H \cap S \in \mathcal{X}$.

As an example, let \mathcal{X} be the class of groups of order 1 ; then $\mathscr{X}(\mathscr{X})=\mathscr{E}$. It is clear that, for any class \mathcal{K}, $\mathscr{C} \subseteq s(X)$, and in fact $\mathscr{X}^{S} \mathscr{C} \subseteq s(X)$.

Definition A subgroup H of a group G is said to be unsupplemented in G if H has no proper supplement in G, i.e. the only subgroup of G which is a supplement to H is G itself.
3.2.1 Any subgroup H of a group G has a supplement S in G such that $H \cap S$ is unsupplemented in G.

Proof Let S be a minimal supplement to H in G (i.e. no proper subgroup of S is a supplement to H in. G). Suppose $H \cap S$ has a proper supplement, T say, in G. Then
$H(T \cap S)=H(H \cap S)(T \cap S)=H((H \cap S) T \cap S)$
$=H(G \cap S)=H S=G$,
so by choice of $S, T \cap S=S$, i.e. $S \leqslant T$. But then $H \cap S \leqslant T$, so $T=(H \cap S) T=G$, a contradiction. Therefore $H \cap S$ is an unsupplemented subgroup of G.
3.2.2 Theorem For any group G and any class \mathscr{X}, $G \in \mathscr{H}(X)$ if and only if the unsupplemented subgroups of G are all X-groups.

Proof (1) Let $G \in \mathscr{S}(X)$ and suppose that H is an unsupplemented subgroup of G. Since G is the only supplement to H in G, it must follow that $H=H \cap G \in \mathscr{X}$. (2) Suppose that the unsupplemented subgroups of G. are all \mathcal{X}-groups, and let H be any subgroup of G. By 3.2.1, H has a supplement S in G such that $H \cap S$ is unsupplemented in G. Hence $H \cap S \in \mathscr{X}$, and therefore $G \in \mathscr{X}(\mathcal{X})$.

Theorem 3.2.2 effectively reduces the study of $\mathcal{S}(\mathcal{X)}$ to the question of which subgroups of a given group are unsupplemented. However this question is one to which a complete answer is difficult to find; the following series of results gives some partial information on the subject. One interesting consequence of 3.2 .2 is that (taking \mathscr{X} to be the class of groups of order 1), if every non-trivial subgroup of G has a proper supplement in G then $G \in \mathscr{G}$.
3.2.3 (a) If H is unsupplemented in G then the same is true of any subgroup of H .
(b) If $H \leqslant G$ and K is unsupplemented in H, then K is unsupplemented in G.
(c) If H is unsupplemented in G and N is normal in G then $H N / N$ is unsupplemented in G / N.

Proof (a) A supplement in G to a subgroup of H is also a supplement in G to H.
(b) Suppose S is a supplement to K in G. Then $K(S \cap H)=H$, so $S \cap H=H$ and hence $K \leqslant H \leqslant S$. Therefore $S=G$.
(c) Suppose S / N is a supplement to $H N / N$ in G / N. Then $H S=$ HNS $=G$, and so $S=G$. Thus $H N / N$ is unsupplemented in G / N.

From 3.2.3(a) it follows that, if all the unsupplemented subgroups of G are \mathcal{X}-groups, then they are in fact all \mathcal{X}^{S}-groups. Hence:
3.2.4 For any class of groups $\mathcal{X}, \mathscr{S}(\mathcal{X})=\mathscr{X}\left(\mathcal{X}^{S}\right)$.
3.2.5 (a) (H8, III, 3.2(b)) If N is normal in G then N is unsupplemented in G if and only if $N \leqslant \Phi(G)$.
(b) If M is an abelian minimal normal subgroup of G then every proper subgroup of M is unsupplemented in G.

Proof (a) If there exists a maximal subgroup H of G such that $N \notin H$, then $H I N=G$, and so N has a proper supplement in G.
(b) Suppose $H<M$. A supplement S to H in G is also a supplement to M in G. Thus $M \cap S$ is normal in G, so $M \cap S=1$ or M. But $M \cap S>1$, because $M \cap S$ is a supplement to H in M and $H<M$; therefore $M \cap S=M$. Thus $H \leqslant S$, and hence $S=G$.
3.2.6 If H is unsupplemented in G then $H \leqslant G^{\mathscr{C}}$. Proof Let $N=G^{\varrho}$, and let $H \leqslant G$. Then $H N / N$ has a complement, C / N say, in G / N. If $H K$ then $H N>N$, so $C<G$, and therefore H has a proper supplement (namely C) in G.
3.2.7 Let G be a group and let π_{1}, \ldots, π_{F} be the distinct conjugacy classes of maximal subgroups of G. For each i, choose $M_{i} \in \Pi_{i}$; then every subgroup of G contained in $M_{I} \cap \ldots \cap M_{r}$ is unsupplemented in G.

Proof Suppose $H \leqslant M_{1} \cap \ldots \cap M_{r}$, and H has a proper supplement S in. G. Let M be a maximal subgroup of G which contains S; thus $H M=G$. Without loss of generality it can be assumed that $M=M_{I}{ }^{g}$ for some $g \in G$; but then $H M_{I}=G$, a contradiction. Hence H is unsupplemented in: G.

In (Gl), Gaschütz defined the praefrattini subgroups of a soluble group, and showed that a subgroup W of a soluble group G is a praefrattini subgroup of G if and only if, (l) W covers each Frattini chief factor of G, and (2) W is contained in some conjugate in G of each maximal subgroup of G. From (2) it follows, by 3.2.7, that the praefrattini subgroups of G are unsupplemented in: G.

Praefrattini subgroups, as well as covering Frattini. chief factors, avoid complemented chief factors. It is not true that every subgroup of a soluble group G which avoids all the complemented chief factors of G, is contained in a praefrattini subgroup of G, but it will be shown that any such subgroup is unsupplemented in G : this is the result of 3.2 .9 .
3.2.8 (H7, Theorems 13,14) If G is soluble and has a faithful irreducible representation of degree n over GF(p), then

$$
|G|_{p} \leqslant p^{n-1}
$$

($|G|_{p}$ denotes the order of the Sylow p-subgroups of G).
3.2.9 Theorem If G is soluble and $H \leqslant G$ avoids all the complemented chief factors of G, then H is unsupplemented in G.

Proof Suppose that the result is false, and let G be'a minimal counterexample. Then G has a subgroup H which avoids all the complemented chief factors of G, and yet has a proper supplement in G. Let M be a maximal subgroup of G which supplements H, and suppose that M contains a minimal normal subgroup N of G. Then M / N is a proper supplement to $H N / N$ in G / N, and $H N / N$ avoids all the complemented chief factors of G / N; but this contradicts the choice of G. Therefore M has trivial core, and so G is a primitive soluble group.

Let V. be the unique minimal normal subgroup of G, and suppose $|v|=p^{n}, p$ being a prime number. The maximal subgroup M will be a complement to V in G, and hence $\quad|G: M|=|V|=p^{n}$. Now $H M=G$, so $|H: H \cap M|=|H M| /|M|=|G: M|=p^{n}$, and therefore $|H|_{p} \geqslant p^{n}$. Since H avoids all the complemented chief factors of $G, H \cap V=1$, and therefore

$$
\begin{array}{r}
\mathrm{p}^{\mathrm{n}} \leqslant|H|_{p}=|H V / V|_{p} \leqslant|G / X|_{p}=|M|_{p}, \text { i.e. } \\
|M|_{p} \geqslant p^{n} \quad \tag{1}
\end{array} \quad \ldots \ldots \ldots .
$$

But V can be regarded as a faithful irreducible $Z_{p}[M]$ module, of dimension n, and hence, by 3.2.8,

$$
\begin{equation*}
|M|_{p} \leqslant p^{n-1} \tag{2}
\end{equation*}
$$

Inequalities (1) and (2) are incompatible, so no such group as G can exist.
3.2.10 If $\Phi(G)=1$ then each normal subgroup of G contained in $F(G)$ has a complement in G. If in addition G is supersoluble, then every subgroup of $F(G)$ has a complement in G.

Proof The first result has been observed previously (in the proof of 3.1 .5), and is a direct consequence of (H8, III, 4.4). Now suppose that G is supersoluble, and let $H \leqslant F(G)$. Let K be a complement to $F(G)$ in G, and write $F(G)=V_{I} \times \ldots \times V_{t}$, where the V_{i} are minimal normal subgroups of G : each V_{i} is of prime order. It can be assumed that the indexing is chosen so that, for some $s \in\{1, \ldots, t\}$, $H \cap\left(V_{1} \times \ldots \times V_{S}\right)=1$, but $\mathrm{H} \cap\left(\mathrm{V}_{1} \times \ldots \times \mathrm{V}_{\mathrm{s}} \times \mathrm{V}_{\mathrm{i}}\right)>1$ for any $\mathrm{i}>\mathrm{s}$. Write $V=V_{I} \times \ldots \times V_{S}$, and suppose that $H V<F(G)$. Then $V_{i} \notin H V$ for some $i \in\{1, \ldots, t\}$. Since V_{i} has prime order, it follows that $V_{i} \cap H V=1$, and hence $H \cap\left(V \times V_{i}\right)=1$, a contradiction. Hence $H V=F(G)$, and
therefore KV is a complement to H in G.

The next theorem gives complete information about the unsupplemented subgroups of G when G is either a nilpotent or a supersoluble group.
3.2.11 Theorem (a). If G is nilpotent then H is unsupplemented in G if and only if $H \leqslant \Phi(G)$.
(b) If G is supersoluble then H is unsupplemented in G if and only if $H \leqslant W$ for some praefrattini subgroup W of G.

Proof (a) In a nilpotent group $G, G / \Phi(G)$ is elementary abelian, so $G^{\mathscr{C}} \leqslant \Phi(G)$ (in fact $G^{\mathscr{G}}=\Phi(G)$). The result follows, by 3.2.6.
(b) That subgroups of praefrattini subgroups are unsupplemented is immediate from 3.2.3(a) and the remarks following 3.2.7.

For the converse, suppose that H is unsupplemented in G, and proceed by induction on $|G|$. If $T=\Phi(G)>1$, then by induction there is a praefrattini subgroup W / T of G / T such that $H T / T \leqslant W / T$ ($H T / T$ is unsupplemented in G / T, by $3.2 .3(c)$); then W is a praefrattini subgroup of G and $H \leqslant W$. Thus it can be assumed that $\Phi(G)=1$; hence, by 3.2.10, every subgroup of $F(G)$ has a complement in G. Therefore $H \cap F(G)=1$, since
otherwise a complement to $H \cap F(G)$ in G would be a proper supplement to H in G, contradicting the hypothesis that H. is unsupplemented in G.

Let p be the largest prime divisor of $|G|$. Since G is supersoluble, G has a normal Sylow p-subgroup, which is consequently contained in $F(G)$. Thus $\mathrm{p} \backslash|G / F(G)|$, and in particular, $p \nmid|H|$.

Let V be a minimal normal subgroup of G, of order p. By induction, $H V / V \leqslant W V / V$ for some praefrattini subgroup W of G, and hence $H \leqslant W V$. Every complement to V in G contains a p-complement of G, and hence contains a conjugate of H; therefore $H \leqslant K$ for some complement K to V in G. K is a maximal subgroup of G, so W, being a praefrattini subgroup of G, is contained in some conjugate of K. Thus, since $G=K V$, there exists an element x in V with $W^{x} \leqslant K$. Then $W V=W^{X} V$, and so
$H . \leqslant W \cup \cap K=W^{X_{V}} \cap K=W^{X}(V \cap K)=W^{X}$, i.e. H is contained in W^{X}, a praefrattini subgroup of G .
Q.e.d.

The result of $3.2 .11(b)$ is false for any soluble group G which is not supersoluble. For, if G is such a group, then by (H8, VI, 9.9) there is a non-cyclic chief factor of G between $\Phi(G)$ and $F(G)$, and therefore, since
$F(G) / \Phi(G)$ can be expressed as a direct product of minimal normal subgroups of $G / \Phi(G), G$ has a non-cyclic chief factor of the form. $H / \Phi(G)$. Choosing U such that $\Phi(G)<U<H$, it follows from 3.2.5(b) that $U / \Phi(G)$ is unsupplemented in $G / \Phi(G)$, and hence (by 3.3.1(a) in the next section) U is unsupplemented in G. U does not avoid the complemented chief factor $H / \Phi(G)$ of G, so U cannot be contained in a praefrattini subgroup of G.

The last of this series of results on unsupplemented subgroups is concerned with the unsupplemented subgroups of a direct product.
3.2.12 Let G_{1} and G_{2} be groups. Then U is an unsupplemented subgroup of $G_{1} \times G_{2}$ if and only if there exist unsupplemented subgroups U_{i} of $G_{i}(i=1,2)$ such that $U \leqslant U_{1} \times U_{2}$.

Proof Let $G=G_{1} \times G_{2}$. Suppose U is unsupplemented in G, and.let π_{i} be the projection $G \rightarrow G_{i} \quad(i=1,2)$. Then by 3.2.3(c), $U \pi_{i}$ is unsupplemented in G_{i} for each.i. Also $U \leqslant U \pi_{1} \times U \pi_{2}$.

For the converse, by 3.2.3(a) it will be enough to prove that, if U_{i} is unsupplemented in $G_{i} \quad(i=1,2)$ then $U_{1} \times U_{2}$ is unsupplemented in G. Let $U=U_{1} \times U_{2}$,
and suppose that S is a supplement to U in G. Let $S_{1}=S \cap G_{1} U_{2}$. Then $S_{1} U_{2}$ is a group, and is thus a supplement to U_{1} in $G_{1} U_{2}$. Therefore $S_{1} J_{2} \cap G_{1}$ is a supplement to U_{1} in G_{1}, and hence $S_{1} U_{2} \cap G_{1}=G_{1}$, i.e. $S_{1} U_{2} \geqslant G_{1}$. A fortiori, $G_{1} \subseteq S U_{2}$. Therefore $\mathrm{G}=\mathrm{SU}=\mathrm{SU}_{2} \mathrm{U}_{1} \leqslant \mathrm{SU}_{2} \mathrm{G}_{1}=\mathrm{SU}_{2}$,
and so S is a supplement to U_{2} in G. But U_{2} is unsupplemented in G, by $3.2 .3(b)$; hence $S=G$. Therefore U is unsupplemented in G. Q.e.d.
3.2.12 suggests the conjecture that, if N_{1} and N_{2} are normal subgroups of $G, N_{1} \cap N_{2}=1$, and $H \leqslant G$ is such that $H N_{i} / N_{i}$ is unsupplemented in G / N_{i} ($(=1,2)$, then H is unsupplemented in G. However Example 1.3 .5 can be used to refute this conjecture: with the notation of that example, V_{i} is normal in $G(i=1,2), V_{1} \cap V_{2}=1$, and $H V_{i} / V_{i}$ is unsupplemented in $G / V_{i} \quad(i=1,2)$, but H has a complement in G.

Some of the information which has been obtained about unsupplemented subgroups is now put to use in making further observations about $\mathcal{\&}(\mathcal{X)}$.
3.2.13 For any class of groups $\mathcal{X}, \mathscr{S}(\mathcal{X})$ is S-closed. (Since it has already been seen that $\mathscr{S}(\mathcal{X})=\mathscr{S}\left(\mathcal{X}^{S}\right)$, this result is not surprising).

Proof Let $G \in \mathscr{S}(\mathcal{X})$ and let $H \leqslant G$. If U is an unsupplemented subgroup of H, then by 3.2.3(b), U is unsupplemented in G, and therefore, by 3.2.2, $U \in \mathcal{X}$. Hence, applying 3.2.2 again, it follows that $H \in \mathscr{S}(\mathcal{X})$.
3.2.14 Theorem Let \mathscr{X} be any class of groups.
(a) If G is nilpotent then $G \in \mathscr{S}(\mathcal{X})$ if and only if $\Phi(G) \in \mathcal{X}^{S}$.
(b) If G is supersoluble then $G \in \mathscr{S}(X)$ if and only if the praefrattini subgroups of G belong to \mathcal{X}^{S}.

Proof (a) is immediate from 3.2.2 and 3.2.11(a); (b) is immediate from 3.2.2 and 3.2.11(b).
3.2.13 shows that $\mathscr{S}(X)$ is always s-closed; in 3.2 .15 the closure properties of $\mathscr{S}(X)$ are examined further. 3.2.15 (a) If X is Q-closed then so is $\mathscr{S}(\mathcal{X})$.
(b) If \mathscr{X} is R_{0}-closed then so is $\mathscr{S}(\mathscr{X})$.

Proof Let $\mathcal{X}=Q \mathcal{X}$, let $G \in \mathscr{S}(\mathcal{X})$, and let N be a normal subgroup of G. Let $H / N \leqslant G / N$. Then H has a
supplement S in G such that $H \cap S \in \mathcal{X}$. It follows that $S N / N$ is a supplement to H / N in G / N and $H / N \cap S N / N=(H \cap S) N / N \in Q X=X$. Therefore $G / N \in \mathscr{A}(\mathcal{X})$.
(b) Suppose $X=R_{0} \notin$, and suppose that G is a group with normal subgroups N_{1} and N_{2} such that $N_{1} \cap N_{2}=1$ and $G / N_{1}, G / N_{2}$ both belong to $\mathcal{S}(\mathbb{K})$. Suppose that U is an unsupplemented subgroup of G; then by 3.2.3(c), $U N_{i} / N_{i}$ is unsupplemented in G / N_{i} for each i. Hence, by 3.2.2, $U N_{i} / N_{i} \in \mathscr{X}$. But then $U /\left(U \cap N_{1}\right)$ and $\mathrm{U} /\left(\mathrm{U} \cap \mathrm{N}_{2}\right)$ both belong to X, and therefore $U \in R_{0} X=X$. Therefore, by 3.2.2 again, $G \in \mathscr{S}(\mathscr{X})$, and so $\mathscr{H}(\mathscr{X})$ is R_{0}-closed.

3.3 Nilpotent, abelian, and cyclic intersection supplements

The properties of $\&(\not)$ are now considered for particular choices of \mathscr{X}. In analogy with the archetype $\mathscr{E}=\mathscr{(1)}$, the kind of properties sought are, e.g., solubility, bounds on the derived length of soluble $\mathscr{H}(\mathcal{X})$ groups, and bounds on the rank of chief factors.

First consider $\&(\%)$, where \mathcal{H} is the class of nilpotent groups. The results of 3.2 show immediately that

$$
\pi \subseteq \&(\gamma t)=\left\{Q, s, R_{0}\right\} \&(\gamma) .
$$

It seems very reasonable to conjecture that $\mathscr{(\gamma \gamma)}$-groups are necessarily soluble, although this question has not been settled. Only soluble groups in $\&(\Pi)$ will be considered here, so for convenience the following notation is introduced: for any class of groups \mathfrak{X}; let

$$
\mathscr{S}^{*}(x)=\mathscr{X}^{(x)} \cap E O \text {. }
$$

3.3.1 (a) Let N be a normal subgroup of a group G, and let S be a minimal supplement to N in G (hence $N \cap S$ is unsupplemented in G). Suppose that $U \geqslant N$ and U / N is unsupplemented in G / N. Then $U \cap S$ is an unsupplemented subgroup of G.
(b) Suppose that G has an abelian minimal normal subgroup V which has a unique conjugacy class of complements in G. Let H be a complement to V in G, and suppose that U is an unsupplemented subgroup of H. If U normalizes aproper subgroup W of V, then $U W$ is unsupplemented in G.

Proof (a) Suppose that T is a supplement to $U \cap S$ in G. Then $T \cap S$ is a supplement to $U \cap S$ in S, and so $(T \cap S) N / N$ is a supplement to (UnS)N/N (=U/N) in G / N. Therefore $(T \cap S) N=G$, because U / N is unsupplmented in G / N. Hence

$$
(N \cap S)(T \cap S)=N(T \cap S) \cap S=S,
$$

so

$$
(N \cap S) T=(N \cap S)(T \cap S) T=S T \geqslant(U \cap S) T=G .
$$

Thus $T=G$, because $N \cap S$ is unsupplemented in G. Therefore $U \cap S$ is unsupplemented in G.
(b) Suppose that S is a supplement to UW in G. Then $S V / V$ is a supplement to $U V / V$ in G / V. By 3.2.3(b), U is unsupplemented in G, so by 3.2.3(c), $W V / V$ is unsupplemented in G / V. Therefore $S V=G$. Hence, because V is abelian and normal in $G, S \cap V$ is normal in G, and. so, since V is a minimal normal subgroup of G, either (1) $S \cap V=1$ or (2) $S \cap V=V$.

If (I) holds then S is a complement to V in G, so by hypothesis $S=H^{B}$ for some $g \in G$. Therefore,
since a conjugate of a supplement is itself a supplement, H is a supplement to UW in G. But this is impossible, because

$$
|H U W|=|H W|=|H||W|<|G| \text {. }
$$

Therefore (2) holds, hence $V \leqslant S$, and therefore $S=G$. Thus UW is unsupplemented in G
Q.e.d.

If in 3.3.1(b) the condition that the complements of V are all conjugate is omitted, then the result fails. Example 1.3.5 can be used to illustrate this: in the notation of that example, the minimal normal subgroup V_{1} has a complement $H_{1}=\langle x\rangle V_{2}$, and H_{I} has an unsupplemented subgroup $U=\left\langle w_{2}\right\rangle \cdot\left\langle w_{2}\right\rangle$ normalizes the proper subgroup $W=\left\langle v_{1}\right\rangle$ of V_{1}, but $U W=\left\langle W_{2}\right\rangle\left\langle v_{1}\right\rangle$ is not an unsupplemented subgroup of G, because $\left\langle x, \nabla_{1} v_{2}, w_{1} w_{2}\right\rangle$ is a complement to UW in G.
3.3.2 Let p be a prime number and n a positive integer. Let $\pi=\pi(p, n)$ be the set of prime numbers q such that $q \mid\left(p^{n}-1\right)$, but $q \nmid\left(p^{r}-1\right)$ for $r<n$. Then for all $q \in \pi$, the Sylow q-subgroups of $G L(n, p)$ are cyclic.

Proof Let $q \in \pi$ and let q^{a} be the order of the Sylow q-subgroups of $G L(n, p)$. It is well known that

$$
|G L(n, p)|=p^{\frac{1}{2} n(n-1)}\left(p^{n}-1\right)\left(p^{n-1}-1\right) \ldots(p-1),
$$

and therefore $q^{a} \mid\left(p^{n}-1\right)$ (since q does not divide any other factor in the above expression for $|G L(n, p)|)$. GL(n, p) has a cyclic subgroup of order $\left(p^{n}-1\right)$, corresponding to the multiplicative group of $G F\left(p^{n}\right)$, and therefore $G L(n, p)$ has a cyclic subgroup of order q^{a}.
3.3.3 Theorem Let G be a primitive soluble group in $\mathscr{S}(\mathcal{O})$, with unique minimal normal subgroup V (of order p^{n}, say). Let H be a complement to V in G. Then H is supersoluble and metabelian, and thus $G \in \Pi^{3}$.

Proof Regard V as a faithful irreducible $Z_{p}[H]$-module. Suppose that U is a non-trivial unsupplemented p'-subgroup of $H . H \in Q \&(\gamma C)=\mathscr{H}(\gamma \tau)$, so U is nilpotent. Let x be a nontrivial element of $U ; x$ is a p'-element, so by Maschke's Theorem,

$$
v=v_{1} \oplus \ldots \oplus v_{r},
$$

where the V_{i} are irreducible $Z_{p}[\langle x\rangle]$-modules. x cannot act trivially on all the V_{i}, since V is a faithful $\langle x\rangle$-module, so assume without loss of generality that x acts non-trivially on V_{1}. Then $\langle x\rangle V_{I}$ is a non-nilpotent subgroup of G. If $V_{1}<V$, then $\langle x\rangle V_{1}$ is unsupplemented in G, by $3.3 .1(b)$; but $G \in \mathscr{(\gamma)}$, so this cannot be so, and therefore $V_{1}=V$, i.e. $\langle x\rangle$ acts irreducibly on V.

Thus V is a faithful irreducible $Z_{p}[\langle x\rangle]$-module, of degree n, so, by (H8, II, 3.10), x is a π-element, where $\pi=\pi(p, n)$ is as defined in 3.3.2. Hence U is a nilpotent π-group, and is therefore cyclic, by 3.3.2. Thus :

All the non-trivial unsupplemented p'-subgroups of H are cyclic π-groups, and act irreducibly on V

Let N be a minimal normal subgroup of H. Because H has a faithful irreducible representation over Z_{p}, $O_{p}(H)$ must be trivial (H8, $\overline{\underline{\mathbf{V}}}, 5.17$), and so N is a p'-group. Suppose that N is not cyclic, and choose U such that $1<U<N$. Then, by $3.2 .5(b)$, U is unsupplemented in H, so, by (1), U acts irreducibly on V, and hence, a fortiori, N acts (faithfully and) irreducibly on V. But N is non-cyclic, so this contradicts (H8, II, 3.10). Therefore :

The minimal normal subgroups of H are all cyclic

Another consequence of the fact that $O_{p}(H)=1$ is that $\Phi(H)$ is a p'-group, and hence, by (l),
$\boldsymbol{\Phi}(\mathrm{H})$ is a cyclic π-group
To show that H is supersoluble, it will be enough, by (H8, VI, 9.9), to show that the chief factors of H between $\Phi(H)$ and $F(H)$ are cyclic. Since $F(H) / \Phi(H)$ is a direct product of minimal normal subgroups of $H / \Phi(H)$, it will therefore be enough to show that the minimal normal
subgroups of $H / \Phi(H)$ are cyclic. Let $M / \Phi(H)$ be a minimal normal subgroup of $H / \Phi(H)$. If. $M / \Phi(H)$ is a $\pi^{\prime}-g r o u p$, then (because $\Phi(H)$ is a π-group, by (3)) $M=\Phi(H) \times N$, where N is a minimal normal subgroup of H; N is cyclic, by (2), and so $M / \Phi(H)$ is cyclic. If, on the other hand, $M / \Phi(H)$ is a π-group, then $M / \Phi(H)$ is a q-group for some $q \in \pi$; the Sylow q-subgroups of H are cyclic, by 3.3.2, so $M / \Phi(H)$ is cyclic. Therefore H is supersoluble.

Let F_{π} and F_{π}, be the Hall π-subgroup and Hall π^{\prime}-subgroup respectively of $F(H)$; thus $F(H)=F_{\pi} \times F_{\pi^{\prime}}$. $\boldsymbol{F}_{\boldsymbol{\pi}}$ has cyclic Sylow subgroups, and hence is itself cyclic; $F^{\prime}{ }^{\prime}$ has trivial Frattini subgroup, and is therefore abellan. Because H is supersoluble, $H / F(H)$ is also abelian (by H8, VI, 9.1(b)). Hence H is metabelian.
3.3.4 Theorem Let $G \in \mathscr{S}^{*}(\mathbb{O})$. Then $G / F(G)$ is supersoluble and metabelian. Hence $G \in E_{\Phi^{3}}{ }^{3}$.

Proof Since $F(G / \Phi(G))=F(G) / \Phi(G)$, (by H8, III, 4.2(d)), it will be enough to prove the result for $G / \Phi(G)$, and hence it can be assumed that $\Phi(G)=1$. Then $F(G)$ can be decomposed, as $F(G)=V_{1} \times \ldots \times V_{t}$ say, into a direct product of minimal normal subgroups of G, and $\mathbf{F}(G)$ has a complement, $H \underset{t}{ }$ say, in G. Also

$$
F(G)=C_{G}(F(G))=\bigcap_{i=1}^{t} C_{G}\left(V_{i}\right)
$$

As in the preliminaries of Section 2.7, let

$$
N_{i}=c_{H}\left(v_{i}\right) v_{1} \ldots \hat{v}_{i} \ldots v_{t} \quad(i=1, \ldots, t)
$$

Then N_{i} is normal in G, and G / N_{i} is a primitive soluble group, with unique minimal normal subgroup $C_{G}\left(V_{i}\right) / N_{i}$. Also $G / N_{i} \in Q S^{*}(\gamma \tau)=S^{*}(\gamma)$, so, by 3.3 .3 , $G / C_{G}\left(V_{i}\right)$ is supersoluble and metabelian. Since the class of supersoluble groups and the class of metabelian groups are both R_{0}-closed, it follows that $G / \bigcap_{i=1}^{t} C_{G}\left(V_{i}\right)$, i.e. $G / F(G)$, is supersoluble and metabelian. Q.e.d.

A conjecture which might be considered as a possible converse to 3.3 .4 is that all supersoluble metabelian groups belong to $\&(\%)$. But this is not the case; e.g. let G be the split extension of $\langle a\rangle=C_{25}$ by $\langle x\rangle=C_{4}$, with action defined by $a^{x}=a^{7}$. Then $U=\left\langle a^{5}, x^{2}\right\rangle$ avoids the complemented chief factors of G, and so, by 3.2.9, U is unsupplemented in G. But U is not nilpotent, so $G \notin \mathscr{S}(\partial)$.

Now consider $\&(O)$, where $O l$ denotes the class of abelian groups. From the results of 3.2,

$$
\mathscr{H}(\theta)=\left\{Q, S, R_{0}\right\} \&(O)
$$

The question of solubility of $\mathscr{S}(\%)$-groups remains open. Nevertheless, as in the case of $\&(\%)$, only soluble $\&(O)$-groups will be investigated. The only results given here are immediate consequences of Theorem 3.3.4.
3.3.5 Theorem Let $G \in \mathscr{S}^{*}(O)$. Then $G / F(G)$ is metabelian and supersoluble, and $G \in C \mathscr{C}^{4}$.

Proof It follows at once from 3.3.4 that $G / F(G)$ is metabelian and supersoluble, and $G / \Phi(G) \in O^{3}$. Also, $\Phi(G)$ unsupplemented in G, so $\Phi(G)$ is abelian. Therefore $G \in O^{4}$.
3.3.6 Example The unsupplemented subgroups of $G L(2,3)$ are all cyclic. Therefore $G L(2,3) \in \mathcal{S}^{*}(\%)$, and so the bound of 4 on the derived length of $S^{*}(O)$-groups cannot be improved:

Proof Let $G=G L(2,3)$ and let $N=F(G)$. Thus N is a quaternion group, and $G / N \cong S_{3}$. Therefore $G / N \in \mathscr{G}$, and so, by 3.2 .6 , all the unsupplemented subgroups of G are contained in N. N itself has a complement in G, so
all the unsupplemented subgroups of G are proper subgroups of N, and are therefore cyclic.
.$\otimes(\sigma)$ and $\mathscr{(O)}$ may be far removed from the archetype , because it may be that neither class consists solely of soluble groups. However, 3.3 .7 gives a guarantee of the solubility of $\mathscr{X}(\mathcal{X})$-groups, provided that a severe restriction is placed on the class \tilde{X}. The proof of 3.3.7 requires the use of two well-known, but very deep, results, namely the theorem of Feit and Thompson, that a group of odd order is soluble, and the results of Brauer and Suzuki, which show that a group with a quaternion or generalized quaternion Sylow 2-subgroup cannot be simple.
3.3.7 Theorem If \mathcal{X} is a class of groups such that $c_{2} \times c_{2} \notin \mathscr{X}$, then $\mathscr{H}(\mathcal{X}) \subseteq E(\mathscr{R}$.

Proof It will be enough to prove that $\&(Q \mathcal{X}) \subseteq E(M$, and hence it can be assumed that \mathcal{X} is Q-closed.

Suppose that the result is false, and let G be a minimal non-soluble group belonging to $\mathcal{H}(\mathcal{X)}$. By 3.2.13, 3.2.15(a), and the added hypothesis that X is Q-closed,
(※) is QS-closed, so G must be a simple group.
Let G_{2} be a Sylow 2-subgroup of G, and suppose that G_{2} has a subgroup. $H \cong C_{2} \times C_{2}$. Now $G \in \mathscr{H}(X)$, so H has a supplement S in G such that $H \cap S \in \mathcal{X}$; since $C_{2} \times C_{2} \notin \mathscr{X}$, it follows that $H \cap S<H$, and so $|H \cap S|$ is either 1 or 2 . Then $|G: S|=|H: H \cap S|=2$ or 4 ; therefore, considering the permutation representation of G on the cosets of S, and recalling that G is simple, it follows that G is isomorphic to a subgroup of the soluble group S_{4}. This is of course a contradiction, so G_{2} cannot contain a subgroup isomorphic to $C_{2} \times C_{2}$. Therefore (since $G_{2}>1$, by the Feit-Thompson Theorem) G_{2} contains precisely one element of order 2 , so, by (S2, 9.7.3), G_{2} is either cyclic or quaternion or generalised quaternion. The work of Brauer and Suzuki precludes the last two possibilities. If the first arises, then, by the well-known "Burnside Transfer Theorem", G has a normal 2-complement, so G is not simple, a contradiction. Therefore such a group as G cannot exist, and the theorem is proved.

Perhaps the most natural class to choose which has the property of X in 3.3 .7 is the class of cyclic groups, which will be denoted here by \mathcal{L}. The remainder of this section is devoted to deriving some information about $\mathscr{\&}$ (よ).
3.3.8 Suppose V_{1} and V_{2} are abelian minimal normal subgroups of a group G, which are not G-isomorphic. If $\mathrm{U}_{1}<\mathrm{V}_{1}$ and $\mathrm{J}_{2}<\mathrm{V}_{2}$ then $\mathrm{U}_{1} \mathrm{U}_{2}$ is unsupplemented in G.

Proof By 3.2.5(b), it can be assumed that both U_{1} and U_{2} are non-trivial. Suppose that S is a proper supplement to $U_{1} U_{2}$ in G. Then $S V_{1} V_{2}=G$, and hence, since $V_{1} V_{2}$ is abelian, $S \cap V_{1} V_{2}$ is normal in G. Thus, because $\mathrm{V}_{1} \underset{\mathrm{G}}{\neq \mathrm{V}_{2}}$, $\mathrm{S} \cap \mathrm{V}_{1} \mathrm{~V}_{2}=\mathrm{V}_{1}$ or V_{2}. (If $\mathrm{S} \cap \mathrm{V}_{1} \mathrm{~V}_{2}=\mathrm{V}_{1} \mathrm{~V}_{2}$ then $S=G$). But then $S \cap V_{1} V_{2}$ is not a supplement to $U_{1} U_{2}$ in $V_{1} V_{2}$, a contradiction. Therefore $U_{1} U_{2}$ is unsupplemented in G.

Two standard definitions are now needed:
Definitions Let G be a soluble group and H / K a chief factor of G; suppose that H / K is a p-group and $|H / K|=p^{n}$. Then n is called the rank of the chief factor H / K.

If $N \leqslant M$ and N and M are normal subgroups of G, then $r_{G}(M / N)$ denotes the maximum of the ranks of the chief factors of G between N and $M . r_{G}(G / I)$ is abbreviated to $r(G)$, and called the rank of G.
3.3.9 Theorem Suppose $G \in \mathscr{L}(よ)$. Then
(a) G is soluble;
(b) $G / F(G)$ is supersoluble and metabelian, $r_{G}(F(G) / \Phi(G)) \leqslant 2$, and $\Phi(G)$ is cyclic;
(c) the praefrattini subgroups of G are cyclic;
(d) for any given prime number p, any two p-chief factors of G of rank 2 are G-isomorphic.

Proof (a) is immediate from 3.3.7.
(b) The first statement of (b) follows from 3.3.4, and the last is obvious (and follows from (c), in any case). For the remaining assertion, suppose H / K is a chief factor of G of rank at least 3, and let p be the prime number of which $|\mathrm{H} / \mathrm{K}|$ is a power. Then H / K has a proper subgroup $\mathrm{U} / \mathrm{K} \cong \mathrm{C}_{\mathrm{p}} \times \mathrm{C}_{\mathrm{p}}$. By 3.2.5(b), U / K is unsupplemented in G / K, so $G / K \notin \mathscr{\&}(\mathcal{L})$. This gives a contradiction, because $\&(\mathcal{L})$ is Q-closed, by 3.2.15(a).
(c) is immediate from 3.2.7 and the remarks which follow it.
(d) From (b), chief factors of G of rank 2, if any
be G-isomorphic to factors
exist, must \mathcal{L} between $\Phi(G)$ and $F(G)$. Let $N=\Phi(G)$ and write $F(G) / N=V_{1} / N \times \ldots \times V_{t} / N$, where each V_{i} is a minimal normal subgroup of G / N. Suppose $\left|V_{i} / N\right|=\left|V_{j} / N\right|=p^{2}$ for some prime number p, where $i, j \in\{I, \ldots, t\}$ and $i \neq j$. Let U_{i} / N and U_{j} / N be subgroups of V_{i} / N and V_{j} / N respectively, each of order p. Then, since $U_{i} U_{j} / N$ is not cyclic, and
$G / N \in \operatorname{Q\& }(\mathcal{L})=\&(\mathcal{L}), U_{i} U_{j} / N$ cannot be unsupplemented in G / N. Therefore, by 3.3.8, $\mathrm{V}_{\mathrm{i}} / \mathrm{N} \underset{\mathrm{G}}{\cong} \mathrm{V}_{\mathrm{j}} / \mathrm{N}$. Q.e.d.
$G L(2,3) \in \mathscr{\&}(\mathcal{L})$, by 3.3 .6 , so, as in the case of $\&^{*}(O)$-groups, the bound of 4 on the derived length of \&(よ)-groups is "best-possible".

Conditions (a)-(d) of 3.3.9 are not sufficient to ensure that $G \in \&(J)$. For example, $C_{4} \times A_{4}$ satisfies all of these conditions, and it is easily shown, with the help of 3.2.12, that $C_{4} \times A_{4}$ has an unsupplemented subgroup isomorphic to $C_{2} \times C_{2}$, so that $C_{4} \times A_{4} \notin \mathscr{\&}(\mathcal{L})$.

Unlike $\mathscr{\&}(\gamma)$ and $\mathscr{\&}(\%), \mathscr{L})$ does not have the useful property of being R_{0}-closed (the above example, $C_{4} \times A_{4}$, illustrates this), so there arises the problem of determining whether or not a given subdirect product of $\&(\mathcal{L})$-groups is itself an $\mathcal{L}(\mathcal{L})$-group. In the last result of this section, an answer is given to the corresponding question in the easier case of a direct product of $\&(\mathcal{L})$-groups.
3.3.10 Theorem Suppose $G_{1}, G_{2} \in \mathscr{L}(\mathcal{L})$, and for each i. let $\sigma_{i}=\{p: p$ is a prime divisor of the order of an unsupplemented subgroup of $\left.G_{i}\right\}$.
Then $G_{1} \times G_{2} \in \mathscr{S}(\mathcal{L})$ if and only if $\sigma_{1} \cap \sigma_{2}=\varnothing$.

Proof If $p \in \sigma_{1} \cap \sigma_{2}$, then for each i, G_{i} contains an unsupplemented subgroup U_{i} of order p. Then $U_{1} \times U_{2}$ is not cyclic, and, by 3.2.12, $\mathrm{U}_{1} \times \mathrm{U}_{2}$ is unsupplemented in $G_{1} \times G_{2}$. Thus $G_{1} \times G_{2} \notin \mathscr{(\mathcal { L })}$.

Now suppose $\sigma_{1} \cap \sigma_{2}$ is empty, and let U be an unsupplemented subgroup of $G_{1} \times G_{2}$. By 3.2.12, there are unsupplemented subgroups U_{1} of G_{1} and U_{2} of G_{2} such that $U \leqslant U_{1} \times U_{2} \cdot G_{i} \in \mathscr{L}(\mathcal{L})$, so U_{i} is cyclic ($i=1,2$). Also, U_{i} is a σ_{i}-group $(i=1,2)$, so $\left(\left|U_{1}\right|,\left|U_{2}\right|\right)=1$, and therefore $U_{1} \times U_{2}$ is cyclic. Hence $\left.G_{1} \times G_{2} \in \mathcal{H} \mathcal{L}\right)$.

3.4 Groups with complemented π-subgroups.

To obtain another example of a class of groups of the form $s(X)$, let \mathfrak{X} be the class of all π-groups for some fixed set π of prime numbers. An appropriate notation for $\mathscr{(H)}$ in this case is $\mathscr{S}(\pi)$. By 3.2.13 and 3.2.15, $\&(\pi)$ is $\left\{Q, S, R_{o}\right\}$-closed.

Notation Let $\mathscr{C}(\pi)$ denote the class of groups defined by: $G \in \mathscr{G}(\pi)$ if and only if every π-subgroup of G has a complement in G. If π consists of a single prime number p, then $\mathscr{C}(\{p\})$ will be abbreviated to $\mathscr{C}(p)$. ($\mathscr{C}(p)$ should not be confused with the class \mathscr{G}_{p}., investigated in Chapter 2).
3.4.1 $\&(\pi)=\ell(\pi)$.

Proof A π-intersection supplement to a π - -subgroup of G is clearly a complement to H in G. Therefore

$$
\mathscr{S}(\pi) \subseteq \mathscr{C}\left(\pi^{\prime}\right) .
$$

Suppose $G \in \mathscr{C}\left(\pi^{\prime}\right)$; then every non-trivial π^{\prime}-subgroup of G has a complement in G, which is in particular a proper supplement in G. Hence the unsupplemented subgroups of G must all be π-groups, and therefore, by 3.2.2, $\mathrm{G} \in \mathscr{\&}(\pi)$. Therefore

$$
\mathscr{C}\left(\pi^{\prime}\right) \subseteq \&(\pi) .
$$

In the light of 3.4 .1 , it is natural to consider $\mathscr{C}(\pi)$ rather than $\mathcal{H}(\pi)$; results about the one class lead to dual theorems about the other.
3.4.2 $\mathscr{C}(\pi)$ is $\left\{Q, S, R_{0}\right\}$-closed.

Proof This is just 3.2 .13 and 3.2.15 applied to the class $\&\left(\pi^{\prime}\right)$.
3.4.3 Theorem For any group $G, G \in \mathscr{G}(\pi)$ if and only if the π-subgroups of G of prime order have complements in G .

Proof It is clear that the first condition implies the second. For the converse, suppose that the second condition holds, i.e. :

Every π-subgroup of G of prime order has a
complement in G
Proceed by induction on $|G|$. Let H be a π-subgroup of G. If $H=1$ then H certainly has a complement in G, so it is safe to assume that $H>1$. Let P be a subgroup of H, of prime order. By hypothesis, P has a complement, K say, in G. Hypothesis (1) carries over to subgroups of G , by 1.3.2(a), so by induction, $K \in \mathscr{C}(\pi)$. Thus the π-subgroup $H \cap K$ of K has a complement, C say, in K. C is then a complement to H in G, because $\mathrm{HC}=\mathrm{H}(\mathrm{H} \cap \mathrm{K}) \mathrm{C}=\mathrm{HK}=\mathrm{G} \quad$ and $\quad \mathrm{H} \cap \mathrm{C}=\mathrm{H} \cap \mathrm{K} \cap \mathrm{C}=1$. Therefore $G \in \mathscr{C}(\pi)$.

3.4.4 Corollary $\quad \mathscr{C}(\pi)=\bigcap_{p \in \pi} \mathscr{C}(p)$.

Proof This is immediate from 3.4.3.

Thus some knowledge of the class $\mathscr{C}(\pi)$, for an arbitrary set π.of prime numbers, can be gained from information about $\mathscr{C}(p)$-groups, for an arbitrary prime number p. It is obvious that (for $p \neq 2$) $\mathscr{C}(p)$-groups are not necessarily soluble, since every p'-group will belong to $\mathscr{C}(p)$. It would be reasonable to hope that $\mathscr{C}(p)$-groups should necessarily be p-soluble, but even this is not true in general, as is shown in 3.4.5. Before that result, two standard definitions are recalled.

Definitions Let π be a set of primes.

(I) A group is π-soluble if each of its chief factors is either an abelian π-group or a π^{\prime}-group.
(2) A group is π-supersoluble if each of its chief factors is either a cyclic π-group or a π^{\prime}-group.
3.4.5 Theorem (a) If $G \in \mathscr{C}(2)$ then G is 2-soluble (and therefore soluble, by the Feit-Thompson Theorem).
(b) If $G \in \mathscr{C}(3)$ then G is 3-soluble.
(c) For $p \geqslant 5, \mathscr{C}(p)$-groups are not necessarily p-soluble.

Proof Let p be any prime number, and suppose that G is a group of minimal order such that, $G \in \mathscr{C}(p)$ and G is not p-soluble. Since $\mathscr{C}(p)$ is QS-closed, it follows that G is simple. $p||G|$ (otherwise G would certainly be p-soluble), so G contains a subgroup H of order p. A complement K to H in G has index p in G, and thus, considering the permutation representation of G on the cosets of K, G is isomorphic to a subgroup of S_{p} (the symmetric group of degree p). If $p \leqslant 3$ then it follows that G is soluble and a fortiori p-soluble, a contradiction. For general p, the argument shows that if G is a simple group in $\mathscr{C}(p)$, and $p||G|$, then p is the largest prime divisor of $|G|$, and $\left.p^{2}\right\}|G|$. For $p \geqslant 5$, A_{p} has these properties, and indeed $A_{p} \in \mathscr{C}(p)$: any cycle of length p in A_{p} is complemented in A_{p} by the stabilizer of any symbol.

The next result should be compared with Theorem 3.1.1. 3.4.6 Theorem Let p be a prime number and let G be a p-soluble group. Then $G \in \mathscr{C}(p)$ if and only if G is p-supersoluble and has elementary abelian Sylow p-subgroups.

Proof (1) Suppose that $G \in \mathscr{C}(p)$, and let H / K be a p-chief factor of G. Suppose that H / K is not cyclic, and let L be such that $K<L<H$. Then by 3.2.5(b),
L / K is unsupplemented in G / K, which contradicts the fact that $G / K \in Q^{\mathscr{G}}(p)=\mathscr{G}(p)=\mathscr{\&}\left(p^{\prime}\right)$. Hence G is p-supersoluble. If. G_{p} is a Sylow p-subgroup of G, then $G_{p} \in S \mathscr{C}(p)=\mathscr{G}(p)$, so in particular $\Phi\left(G_{p}\right)=1$, and hence G_{p} is elementary abelian.
(2) Suppose now that G is p-supersoluble and has elementary abelian Sylow p-subgroups, and use induction on $|G|$. Let N be a minimal normal subgroup of G, and let P be a p-subgroup of G. The hypotheses on G are clearly inherited by quotients of G, so by induction, $G / N \in \mathscr{C}(p)$, and hence $P N / N$ has a complement in G / N. Thus, if $P \cap N=1$ then P has a complement in G, by 1.3.3(a); so assume $P \cap \mathbb{N}>1$. Then, since G is p-supersoluble, it follows that $P \cap N=N$ and $|N|=p$. But, by 1.4.8, all the normal p-subgroups of G have complements in G; therefore $P \cap N$ has a complement in G, and hence, by 1.3.3(a) again, P has a complement in G. Therefore $G \in \mathscr{C}(p)$.

There is no corresponding "local" version of the other part of 3.1.1, i.e. it is not true that, if G is p-soluble then $G \in \mathscr{C}(p)$ if and only if $G \in S D D_{0} R(p)$ (where $R(p)$ denotes the class of p-soluble groups whose order is not divisible by p^{2}). To demonstrate this, it is useful to first make the following observation:

Lemma If $X=S X, G \in S D_{0} X$ and G has a unique minimal normal subgroup, then $G \in \mathcal{X}$.

Proof Suppose $G \leqslant G_{1} \times \ldots \times G_{n}$, with $G_{i} \in \mathscr{X}$ ($i=1, \ldots, n$), and use induction on n. If $n=I$ then $G \in S X=X$. Suppose that $n>1, G \cap G_{i}$ is a normal subgroup of G for each i, so, because G has a unique minimal normal subgroup, $G \cap G_{i}=1$ for all but (at most) one i. Thus it can be assumed that $G \cap G_{n}=1$. Then $G \cong G G_{n} / G_{n}$, hence G is isomorphic to a subgroup of $G_{1} \times \ldots \times G_{n-1}$, and therefore, by induction, $G \in X$.

Suppose that G_{1} and G_{2} belong to $R(p)$, and p divides both $\left|G_{1}\right|$ and $\left|G_{2}\right|$. Then $G_{1} \times G_{2} \notin R(p)$, but $G_{1} \times G_{2} \in \mathscr{G}(p)$. Suppose that G is a group with a complemented unique minimal normal subgroup V, which is a p^{\prime}-group, such that $G / N \cong G_{1} \times G_{2}$. Then it is easily seen (using 3.4.6) that $G \in \mathscr{C}(p)$. But $G \notin \mathscr{R}(p)$, so, by the lemma, $G \in S D_{0} \mathcal{R}(p)$, i.e. $G \in \mathscr{G}(p) \backslash S D_{0} \mathbb{R}(p)$.

An example of such a group G is easily constructed: GL(2,7) has subgroups

$$
G_{1}=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)\right\rangle \cong s_{3}
$$

and

$$
G_{2}=\left\langle\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\right\rangle \cong c_{3}
$$

Thus $G_{1}, G_{2} \in R(3)$ and $\left\langle G_{1}, G_{2}\right\rangle \cong G_{1} \times G_{2}$. Let v be
a GF(7)-space of dimension 2 ; then the split extension $\mathbf{G}=\left(G_{1} \times G_{2}\right) V$ (with a natural action of $G_{1} \times G_{2}$ on V) is a group of the desired form, and so $G \in \mathscr{C}(3) \backslash S D_{0} \mathcal{R}(3)$.

In view of 3.4 .4 , Theorem 3.4 .6 has the following immediate corollary:
3.4.7 Corollary If π is a set of prime numbers and G is a π-soluble group, then $G \in \mathscr{C}(\pi)$ if and only if G is π-supersoluble and, for all $p \in \pi, G$ has elementary abelian Sylow p-subzroups.

Notice that $A_{5} \in \mathscr{C}\left(\{2,3\}^{\prime}\right)$, so that $\mathscr{C}(\pi)$-groups are not necessarily soluble even if $\left|\pi^{\prime}\right|=2$. However, 3.4 .8 shows that, if $|\pi|=1$ then $\mathscr{C}(\pi)$-groups are soluble.
3.4.8 Theorem For any prime number $p, \mathscr{C}\left(p^{\prime}\right)$-groups are soluble. (Of course, if $p \neq 2$, the result follows from 3.4.5(a), but the proof given here does not appeal to the FeitThompson Theorem).

Proof Suppose that the result is false, and let G be a minimal non-soluble $\mathscr{C}\left(p^{\prime}\right)$-group. Then, as in the proof of
3.4.5, G is simple. Let q be a prime divisor of $|G|$, different from p : such a q exists, of course, for otherwise G would be nilpotent. Then $G \in \mathscr{C}(q)$, so the argument of the proof of 3.4 .5 shows that G is isomorphic to a subgroup of S_{q}. Therefore q is the largest prime divisor of $|G|$. This shows that G is a $\{p, q\}$-group, because q was chosen arbitrarily from amongst the prime divisors of $|G|$ distinct from p. It now follows, by a well-known theorem of Burnside, that G is soluble. This is a contradiction, and so the result must be true.

REFERENCES

(Cl) Cernikov, S.N. : Groups with systems of complemented subgroups. Mat. Sb. N.S. 35(77), 93-128 (1954). English translation: Amer. Math. Soc. Translations (2) 17, 117-152 (1961).
(C2) Cernikova, N.V. : Groups with complemented subgroups. Mat. Sb. N.S. 39(81), 273-292 (1956). English translation: Amer. Math. Soc. Translations (2) 17, 153-172 (1961).
(C3) Christensen, C. : Complementation in groups. Math. Z. 84, 52-69 (1964)
(C4) Christensen, C. : Groups with complemented normał subgroups. J. London Math. Soc. 42, 208-216 (1967).
(DI) Dinerstein, N.T. : Finiteness conditions in groups with systems of complemented subgroups. Math. 2. 106, 321-336 (1968).
(D2) Dixon, J.D. : Complements of normal subgroups in infinite groups. Proc. London Math. Soc. (3) 17, 431-446 (1967).
(GI) Gaschütz, W. : Praefrattinigruppen. Arch. Math. 13, 418-426 (1962).
(G2) Gorenstein, D. : Finite groups. Harper and Row (1968).
(H1) Hall, P. : A note on soluble groups. J. London Math. Soc. 3, 98-105 (1928).
(H2) Hall, P. : A characteristic property of soluble groups. J. London Math. Soc. 12, 188-200 (1937).
(H3) Hall, P. : On the Sylow systems of a soluble group. Proc. London Math. Soc. 43, 316-323 (1937).
(H4) Hall, P. : On the system normalizers of a soluble group. Proc. London Math. Soc. 43, 507-528 (1937).
(H5) Hall, P. : Complemented groups. J. London Math. Soc. 12, 201-204 (1937).
(H6) Hall, P. : On non strictly simple groups. Proc. Camb. Phil. Soc. 59, 531-553 (1963).
(H7) Huppert, B. : Lineare auflösbare Gruppen. Math. Z. 67, 479-518 (1957).
(H8) Huppert, B. : Endliche Gruppen I. Springer-Verlag (1967).
(H9) Huppert, B. : Zur Theorie der Formationen. Arch. Math. 19, 561-574 (1968).
(Rl) Rose, J.S. : Finite soluble groups with pronormal system normalizers. Proc. London Math. Soc. 17, 447-469 (1967).
(R2) Rose, J.S. : Absolutely faithful group actions. Proc. Camb. Phil. Soc. 66, 231-237 (1969).
(S1) Schunck, H. : G-Untergruppen in endlichen auflosbären Gruppen. Math. Z. 97, 326-330 (1967).
(S2) Scott, W.R. : Group theory. Prentice-Hall (1964).
(S3). Seriev, V.A. : Groups with complemented non-normal subgroups. Soviet Math. Dokl. 8, No. 1, 51-53 (1967).
(Z1) Zub, O.M. : Finite groups in which all non-cyclic subgroups have complements. Dopovidi Akad. Nauk. Ukrain. RSR Ser A, 891-894 (1968). Math. Reviews: No. 3589 (Vol.41, No.3).

