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ABSTRACT

This thesis ié a study of the restrictions which are
imposed on the structure of a finite group by some
conditions on its lattice of subgroups. The conditions
considered fall into two categories: either (1) ihe demand
is made that certain of the subgroups of the group should
have complements, or (2) it is épecified that'all subgroups
should have supplements of a particular kind. |

There are three chapters. Chapter 1 develops some
techniqﬁes and resultsvaboﬁt comélements and pronormality
which are used latef, mainly in Chapter 2. A problem from
category (1) above is the subject of Chapter 2, which is an
investigation of finite groups with the property that all
the pronormal subgroups have complements. Necessary and
sufficient conditions are given for a soluble group of
derived length at most 3 to have that property. Chapter 3
is concerned with category (2); théﬂbasic theme is that of
a finite group @ in which each‘subgroup H has a supple-

ment S such that H n S belongs to some prescribéd

class X.
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CHAPTER 1

l.l Introduction

In (H1) and‘(HE), Hall showed that a necessary and
sufficient condition for a finite group to be soluble is
that every Sylow subgroup of the group should have a
complement. Much of the subsequent development im the
theory of finite soluﬁle groups stems from this and related
results in (H1) and (H2), and from the ideas in (H3) and
(H4) which cdnsequentlyvarise.

A different emphasis can be put on the theorem quoted
. above, by expressing it as follows: the class of finite groups
in which every Sylow subgfoup has a complement coincides
with the class of finite soluble groups. This leads
naturally to aﬁ interest in classes of groups in which
certain,kinds:of subgroups have complements; such questions
may loosely be described as "'complementation problems". The
most obvious complementationrproblem to csnsider is that of
groups in which all subgroups have complements; this class
was studied by Hall in (H5), and was shown to have a
simple structure: it coincides with the'class of suﬁer-
‘soiuble groups in which all the Sylow subgroups are
elementary abelian..

The idea of examining complementation problems has

been taken up by many authors, although nothing rivalling
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the importance of Hall's original result on soluble groups
has emerged. Many papers On such'topics, in both finite and
infinite.groups, have appeared in Russian journals, and
perhaps the most deserving of mention is the work of
Cermikov (Cl) and Cernmikova (C2), in which the results of
(H5) arevéxténded to infihite groups. Fufther reference to
.Russian papers in this area can be found in (S3), which is
itself on groups in which all the non-normal Subgroups
have complements. A more recent contribution is (Zl), on
groups in which all the nom~cyclic subgroups have comple-
ments. |

A ﬁatural complementation problem to .consider is that
-of groups in which all the normal subgroups have comple-
ments. Such groups have been examined in (c3), (c4) and
(D1); they are mentioned further in 1.4, and appear
frequently in the investigations of Chapter 2.

Iﬁ the present work, attention is ;onfined entirely
to finite groups, and there are two main themes, neither
of which is considered in the papers mentioned above.
Chapter 2 is an investigation of a complementation problem,
namely the question of finite groups with the property that
all the pronormal subgroups have complemeﬁts. Neceséary and
sufficient conditions are obtained for a soluble group of
derived length at most 3> to have this property. The second
theme (the Subject of Chapter 3) is an attempt to find some

interesting problems similar to the question of groups in



3

which all the subgroups have complements. The idea which
is most extensively explored is that 6f finite groups in
which every subgroup has an X-intersection supplement,
whe;e X is somevprescribéd class of groups. (An X-
1n¢ersgction.supplement to a subgroup ﬁ of a group &

is a éupplement S such that H NS belongs to X ). It
is shown that, if every subgroup of a finite group G has
a cyclic intersection supplement, them G- is soluble and
has rank at most 2.,Aléo, if @ 4is a finite soluble group
in which'every subgroup'has an ahelian intersection supple-~
ment, then G has derived length at most 4. If ¥ is a set
of prime numbers, then the study of finite groups in which
all the subgroups have T\-intersection supplements (i.e. the
intersection is a N-group) leads to a complementation
problem, namely the Question of finite groups in which all
the‘n-subgroups'have complements. It is shown that a finite
K-~-soluble group G hés all its ®-subgroups complemented if
and only if, for each prime number p in the set T,

G is p¥supersoluble and has eleméntary abelian Sylow p-~-
subgroups.

The subject matter of Chapter 1 lies in well-explored
téfritory, s0 all the results have probably been noted
befﬁre, possibly in a different guise: most are well known,
or are simple deductions frqm’wgl; known theorems. The
results of Cﬁépters 2 and 3 are, to the best of my know-
ledge, original, except where an explicit reference’is

given.



1.2 Notation, assumed results

The notation»used is fairly standard in contemporary
group theory, and corresponds.to that given in 1.1 of (G2),
so it will not be necessary to give an exhaustive list.
Some further notations, which do not appear in (G2), but

which are used here, are listed below:

HG: H is a subgroup of G ;
HLG: H 1is a proper subgroup of G ;

h 1

g : hgh (where g and h are elements of some

group G ).

The language of classes and closure operations, first
introduced by P.Hall (H6, p.533) is used throughout, since
it provides a convenient and economical way of expressing
many results. The usual conventions are adopted that, if
3( is a class of groups then X contains all groups of
order 1, and if G € X then X contains all groups
isomorphic to @ . If X and ‘Y are classes of groups
then X’g is the class defined by: G € 3‘:.13 if and only
if G has a normal subgroup N such that. N ¢ X and
G/N'e@{ . The only closure operatioms which are used are
S, Sn’ Q, RO, DO’ E and E§= the definitions of which are

now given:

G e sX & G is isomorphic to a subgroup of an 3€—group;



Ge §X & G is isomorphic to a subnormal subgroup
of an . X-group;

Ge QX & G is isomorphic to a quotient group of
an X-group;

G € Rox & G has normal subgroups Nis oe0 LN, (where

| r is finite) such that Ny A ...A N, = 1
| and  @/N;e X  (i=1,...,r,);

G e DO'X & G is isomorphic to a direct product of
X-groups;

G € E3€- &> G has a finite series 1 = G £6,<... <6 =@
such that 'for each i = l,..,n-1, G, is normal
in @ ,; and Gi+l/ G, € X ;

G € F@X ¢ G has a normal subgroup N < B(G) (where
&(a) denotes the Frattini subgroup of G)
such that G/NeX. |

If A and B are closure operations, then {A,B}x
is the smallest class containing Xk which is both A-closed
and B-closed. Often {4,B} will coincide with one of the

natura}ly—defined products‘ AB, BA; e.g. {Q,RO} = QRO .

{s,0} = sp, , 1s,q} = as .

| If C is a unary closure pperation, i.e. if

C)C = erjaec((}.) ~ for every class of groups X , then thei-e

is a unigque largest C-closed class contained in 3€ . This

class is denoted by 3€_C, is given by

xc = {Gi : C(G)gx} ’.



and is called the C-interior of 36. The only closure

operation for which this concept'is used here is,As.

Two important clésses of groups are a and IJ\C: Ol,
denotes the class of finite abeliam groups, and gx.the
class of finite nilpotent groups. Thus ECLis the class

'of finite soluble groups. If n is a positive integer,
‘ then CﬂP denotes the class of finite soluble groups of

derived length at most n .

Whenever the word "group" appears,it can be taken to
mean "finite group'. Many basic results of finite group
theory (e.g. the contents of the first three chapters of
«(G2) ) may be used without explicit reference. The phrase.
“elementary abelian group" will refer to an abelian group,
the Sylow subgrqups of which are of prime exponent: it will
not be restricted to apply only to groups of prime-power

order.

Most of the arguments are concerned with finite soluble
groups. The fact that a p-chief factor of a finite soluble
~group G can be regarded as an irreducible Zptﬁl-module'
_perﬁits the introduction.of representation theory techniques;
one result which is particularly valuable in this context
is Clifford's Theorem (H8,E,l7.3) which gives detailed
information about the restriction of an irreducible
representation to a normal subgroup. An important special

case in which these techniques are useful is that of a
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soluble group G with a unique minimal normal subgroup V
.which has a complement in G . Such a group G is called

a primitive soluble group (becaﬁse, if H is a maximal

subgroup of G which complements V in G , then the
permutation representation of G on the cosets of H is
a faithful representation of G as a primitive permutation
group). The significant properties of primitive soluble

groups are given in (H8, II, 3.2 and 3.3).

The following standard notation is used in construct-

ing particular examples of groups:

Cn : the ¢yclic group of order n ;
5, : the symmetric group of degree n ;
An : the alternating group of degree n ;

‘GL(n,F) : the general linear group of degreé n over F ;

SL(n,F) : the special lihear group of degree n over F .

‘Statements of standard definitions and results are
sprinkled throughout the text, on the principle that it is
better to give these when they are needed rather than list

them all in one long and tedious introductory section.



1.3 Complements

Definitions Let H be a subgroup of a group G . A

supplement to H iin. @ is a subgroup K of G such that
HK = G . A complement to H in G is a suﬁgroup K of G
such that HK = G 'and HNK =1 .

Clearly, a complement in G to a subgrdup H of @
is a set of coset représentatives of H in @ which
happens to form a group. As only finite groups are under
consideration, either of the following alternative criteria
can be used to show that K is a complement to H in @ :
(a) HK =G and [HIIKl = |G} ;

(b) HNK =1 and |HIIKlI = la} .

1.3.1 If K is a complemeﬁt to H in G , then for any

2 is a complement to Hb in G .

a, b€G, K
A similar statement holds with "supplement" substituted
everywhere for "complement". 1.3.1l, which is well-known and
easily proved, shows that, in a sense, it would be more
natural to consider complementary conjugacy classes of sub-

groups, rather than subgroups which complement each other.

One of the most useful tools for dealing with questions
involving complements or supplements is the so-called

"Dedekind modular law" for subgroups, which can be stated



as follows:

If H, K and L are subgroups of a group G and
KH, then HNKL =KHANL) .
(It is not necessary to assume‘that KL or K(HAL) is a
subgroup, although this is almost aiways the case when the
result is applied). This Dedekind law will be used
freqﬁently in the sequel, probably without further explicit
reference. It makes its first appeararnce in the proofs of

some of the following }esults.

1.3.2 Let G be a group and let H be a subgroup of G
which has a complement C in G .

(a) If H<K <G then CNK is a complement to H
in K.

(b) If .N is a normal subgroup of G and N< H , then
ACN/N is a complement to H/N "in G/N .

Proof (a) H(CNK) =HCN K =GNK =K,

and - HN(CNK) = (HNC)NK =1 .

(b) H(CN) = (HC)N = G ,

and HNCN = (Hf\C)N = N ..

1.3.3 (2a) If H is a subgroup of G and there exists
a normal subgroup N of G such that, HN/K has a
complement in G/N and H NN has a complement in G ,
ther H has a complement in G .

(b) Sulr;pose G = KN , where N is normal in G » KL G,
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and KNAN=1, and let H be a subgroup of G , If Cl

is a complement to HN NK in K ’ Ca is a complement to

HAN in N, and C, and C, permute (i.e. Ci¢, is a

group), then C;C, 1is a complement to H in G .

(c) Suppose @G = GnGn—l"’GZGI , where for egch

i= 1,...,n-l s. GiGi—l"'Gl is normal in G and

G, .. N G.G. '...Gl =1 .Let H be a subgroup of G . If

i+l i“i-1

Cl is a complement tq. kaiGl in Gl and for each i»1,

C is a complement to H G.G

bermules woithe I R I AT I e
¥ ML w3

. pormalizes G qens

and C +1'A ClCl__l C1 s, then Cncn-l"'cl is

i+l

i

a complement'to' H in G .

Proof (a) Let K/N be a complement to HN/N in G/N .
By 1.3.2(a), ENN has a complement, C say, in K .
Then

HC = H(HNN)C = HK = G ,
and HNC=HAHNH NKNAC=HNANNC=1.
Therefore C 1s a complement to H in G .

(b) H C,Cs = H(Hr\N)CZCl = HNCy = HN(HN(\K)Cl = HNK = G .

it

Also HANC.C H N HN N C.C
1% 162

E N (ENNC,)C, (as C, < NHN)

"H N (HNf\K(\Cl)C2 =HNC, =1.

(c) .It is enough to prove by induction on i that for

each 1, C;C; ;...C; is a complement to H MGG ;...G4
in GiGi—l"'Gl . This is certainly true when i =1 .

Suppose it is true for a particular i ; then an application
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of (b), with Gi+lGi"’Gl » Gy4q o GiGi-l"’Gl ’
H C\Gi+1Gi...G1 » Cj,, and Cici;l"’cl in place of G ,
K,N, H, Cl and C2 respectively, shows immediately

that it is also true for i+l . Hence the result holds.

In some ways, complements are not "well-behaved", as
is illustrated by the following examples; this often
hampers the investigation of complementation problems.

1.3.4 Example Let G =8

L

(a) The complements of a given subgroup of G are not
necessarily all isomprphic:

Let B = {(123),(12)) , V = {12)(34),(13)(24)) ,

K = <(1231+)> ; thenm V and K are both complements to H
in @ , but are not isomorphic.

(b) If a subgroup H of @ has a complement in @& , and
K G, then it is not necessarily true that HNK has a
complement in K :

Let H = {(1234) , K = 4 ; then ((123),(12)) is a
complement to H in G , But HAK (= <(13)(214.)>’ ) is a
prbber, non-trivial subgroup of the minimal ﬁormal subgroup
of K , and therefore cannot have a complement in K .

(c) A supplement to a complemented subgroup of G need
not‘contain a complement:

Let "H = <(123L+)> , K = Al}. as in (b); then H is a supple-
ment to K in G , and K has a complement in G . If H
contained a complement to K in G , then that complement

would be of order 2 ; but <313)(24£> is the only subgroup
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of H of order 2, and (13)(24) €K .

1.3.5 Example If H has a complement in a group G and

N is normal in G , it does not necessarily follow that
HN/N has a complement in G/N . (Cf. 1.3.2(b) ):

Let  V; = (vy,wd ¥C,XC, (i=1,2), and let G
be the split extension of Vi_x V2 by <§> c C3 , where

X _ X _ .

S R I PR L (1 =1,2).

Thus (v ¥, (1= 1,2). Let H = {v1,¥,» ; then
<?“’\V1V2?ﬂvlw2> is a complement to H in G , but

HVZ/ v, (= <&i>v2/ Va) has no complement. in G/V2 (2 Ah) .

- because it is a proper non-trivial subgroup of the unique

minimal normal subgroup of G/V2 .

1.3.6 Example A subgroup H of G such that H K €6 ,

which has a complement in G , can have.a complement in K
"which does not extend to a complement in @ :

Let G = {a,b) X {c) , where (a,b) ¥ 85 , with
& = b2:= 1 and aP = a™t , and (&) ¥ C; . Let H = O |
K=&, , ¢ = <§€> . Then H has a complement in G ,
and C‘ is a éomplement to H inm K , but € is not
contained in any complement to H in G , because no
2-element of G normalizes C .

(This example is used in (D2) for a different .purpose,
namely to show that a normal subgroupA H of a group G
which has a unique conjugacy class of complements in G

can have more than one conjugacy class of complements in a

(normal) subgroup K of G which contains H ).
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1.4 Groups with complemented normal subgroups

Definitions Let H/K be a normal factor of a group G

‘(i.e. H and KX are normal subgroups of G and KQH).

(1) H/K is a complemented factor of G if H/K has a

complement in G/K .

(2) H/K 1is a Frattini factor of G if H/K < &(G/K) .

(3) A subgroup L of G is said to cover H/X if
(LAH)X = H ; L is said to avoid H/K if (LfiH)K =K .
(4) A subgroup L of G is said to have the cover-

avoidance property if, for each chief factor H/K of G ,

L either covers H/K or avoids H/K .

1.4.1 Theorem Suppose G has a chief series

l=GO<GI<”‘<Gn=G’
and H G covers or avoids each of the chief factors in
this series. If the factors covered by E are all comple=

mented, then H has a complement in G .

ggggiz By induction onn . If n=1, then H=1 or
H=@G, so H has a complement in G . Suppose that the
result holds for groups with fewer tham n chief factors

. in‘a chief series,.and let G = G/Gl . The "bar convention"
will be used, i.e. the image of a subgroup K of G under
the natural epimorphism G = G will be denoted by K .

Then 1 ='El-< Eé <...< Eﬁ = G is a chief series of
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@ and H covers or avoids each factor in this series.
For 12> 2 , H covers -éi/ 'éi_l- if and only if H covers
Gi/ Giq s and Ei/ Ei-l is a complemented chief factor
of G if and only if G/ 6y 1 is a complemented chief
factor of G . Hence by the induction hypothesis, H has
a complement in G , 1.e. HGl/ Gl has a complement in
.G/Gl .

Now consider HnGl : if HNG, =1 then HNOG

1 1
certainly has a complement in G ; if H N G1> 1 then,
by hypothesis, H must cover G,/ 1 and so HN G =G .
The hypbtheses then imply that Gl has a complement in G.
Thus, in every case', HN Gl has a complement in G .
Therefore, by 1.3.3(a), H has a complement in @G .
Notatio;l Let 611 denote the class of finite groups in

which every normal subgroup has a complement.

1.4.2 6n is Q-closed. .

Proof Let Ge@, and let N be a normal subgroup of
G . Let H/N be a normal subgroup of G/N ; then H is
normal in G , and so H has a complement in G . Then by
1.3.2(b), H/N has a complement in G/N . Therefore

G/N € 5n .
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l.4.3 Theorem The following are equivalent:

(1) cefB ;

(2) all the chief factors of G are complemented;

(3) G has a chief series in which all the chief factors
are complemented; |

(4) every subgroup of G which has the cover-avoidance
prope}ty has a complemént in G .

Proof (1) =>.(2) : immediate from 1.4.2.

(2) =>(3) : trivial.

(3) =$»(4) : follows at once from 1.4;1.

(4) = (1) : normal'subgroups have the cover-avoidance

pr%%rty, 50 this is obvious.

In_a soluble group, every chief factor is either a
Frattini factor or is couplemented, hence:

l.4.4 Corollary If G is soluble then G ¢ gn if and

only if G has no Frattini chief factors in a given chief

series.

Since the praefrattini subgroups of a soluble group
cover Frattini chief factors and avoid complemented ones,
l.4.4 is equivalent to Theorem 6.6 in (Gl), in which

.Gasbhﬁtz observes that a soluble group has trivial prae-
frattini subgroups if and only if every normal subgroup

"has a complement.
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Notation Let 6 denote the class of groups in which

every subgroup has a complement.

' The following corollary to l.4.4 is used in 3.1
l.4.5 Ge G if ang only if G is supersoluble and G e gn'
232_9_1; Suppose Ge@ y then bbviously Gegn . Also it
is shown in (H5) that @Z—groups are supersoluble.

Now. suppose G 1is a supersoluble group which belongs
to G&, and proceéd by induction on |{G|. Let N be a
minimal normal subgroup of G ; then G/N e@n by 1.4.2,
and G/N is supersoluble, so by induction, G/N e @ .
Thus, given any subgroup H of G , HN/N has a complement
~in. @/N . Since G is supersoluble, HA N is either 1
or N , and so, because G e@n s, AN has a complement

in G . Therefore, by 1.3.3(a), H has a complement in G.

Hence G e%.

For the sake of the investigations in Chapter 2, it

is useful to explore further the closure properties of E%n.

1.4.6 %

n is Ro~closed.

Proof Suppose G 'is a group which has normal subgroups

N and N2 such that Nl(\N2=l and both G/Nl and

1
- G/N,
will be enough to show that G € gn .

belong to @n . To show that gn is Ro-closed, it

Let H bYe a normal subgroup of G ; then HNl/ N, is

normal in G/Nl » 80 HN,/ N, has a complement in G/N, .
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Also (Han)N2 is normal in G , so (Han)NZ / N, bas
a complement in G/H2 . Since '(Han) N N‘2
follows by 1.3.3(a) that H NN, has a complement in G .

=1, it

Another application of 1.3.3(a) then shows that H has a

complement in G . Therefore G ¢ gn . Q.e.d.

‘In (D1), it is shown that, if a group G has the
minimum condition on subgroups and all its characteristic
.subgroups have compleménts, then all its normal subgroups
have complements (of course, the first condition always
holds for finite groups). It is easily deduced from this
that %n " is Sn-clo;sed. A short alternative proof that
Qn n B0l is Sn-closed (which is all that is needed for the
purposes of the present work) is now given.

1.4.7 A soiuble normal subgroup of a @n-group is itself
in ﬂn . In partticular, gn N Ea is Sn—closed.
Proof Let G ¢ gn , and let H be a soluble normal sub-
group of G . Let N be a minimal normal bsubgroup of G
contained in H . Using induction on |G| , it can be assumed
that H/N € gn . Thus for each normal subgroup K of H ,
KN/N has a complement in H/N. Consider K AN : N is
elementary abelian, so K NN is an abelian normal sub~ -
group of H . Hence, by III, 4.4 of (H8), KN N will
‘have a complement in H provided. KNNN®PH) =1 . But .
() < H(6) , by (H8, III, 3.3(b) ), and B(G) =1,

because G € gn ; thus KN N does have a complement in H.
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Therefore, by 1.3.3(a), K has a complement in H . Hence

He § . " Q.e.d.

With the help of the following result, which is an
immediate consequence of an important theorem of Gaschiitz
on complements of abelian normal subgroups, a description
of the S-interior of € 1s obtained in 1.4.9.

1.4.8 Let p be a prime number and suppose that the
group G has elementafy abelian -Sylow p-subgroups. Then
every normal p-subgroup of G has a complement in G .
Proof Let N be’a normal p-subgroup of G , and let GP
be a Sylow p-subgroup of G .'Gp is elementary abelian,
s0 N 1is abelian and has a complement in Gp ; further,
(|N|,|G5Gp\) = 1 . Therefore, by (H8, I, 17.4), N has a

complement in G .

1.4.9 Theorem The following conditions are equivalent:

(1) @ es%%s ;

- (2) the Sylow subgroups of G are all elementary abelian;

(3) every subgroup of G has trivial Frattini subgroup.

. S
Proof That (1) implies (2) is clear, for if G € é% ,
p 1is a prime number and Gp is a Sylow p-subgroup of G-,
then Gpe gn , SO @_(Gp) = 1 and hence Gp is elementary
abelian.

(2) = (3) : Let % denote the class of groups with

elementary abelian Sylow subgroups. 3@ is clearly S-closed,
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80 it will be enough to show that a group in £ must have
trivial Frattini subgroup. Let e b , and for a contra-
diction suppose that &(G) > 1 . Let N be a minimal
normal subgroup of G such that N L P(G) . a) is
nilpotent, so N is a p-group for some prime number p ;
but then, by 1.4.8, N has a complement in G , which
contz;adicts N {®a) .

(3) = (1) : Suppose that (3) holds, and let H be
a subgroup of @ . Let. N be a hormal subgroup of H ,
and let S be a minimal supplement to N in H . It is
well known that in this situation, NN S £ (S) (other-
wise, if M ié a maximal.subgroup'of S such that
NANS {M‘ » then M is a supplement to N in H , contra-
dictirig the choice of S ). But by hypothesis, §(S) = 1 ,
0 NAS = l' and S 1is a complement to N in H .

Therefore G € gns . ‘ : Q.e.d.

1.4.10 gives an elementary proof, which does not rely
- on Gaschiitz's sophisticated theorem, of the implication
,(2) =» (1) in 1.4.9, in the case of a soluble group.
1.4.10 ég(\Eag%S , Wwhere d(g is the class of groups
with elementary abelian Sylow subgfoups.

_111_‘99_1:‘_ Let G ¢ d‘ﬁn Ea Sincé fgnEOL is S-closed, it
will be enough to show G € {Qn . Let N be a minimal
normal subgroup of G , and let p be the prime of which

IN] is a power.
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e/N € & n EQL, so0, using induction on |a&| , it can
be. assumed that G/N € ‘6n . Hence, by 1.4.3, it will be
enough to show that N has a complement in G . If
N = CG(N) , then ’G is primitive soluble, and s0 N has
a complement in G . Thus it can be assumed that N <:CG(N).
Let M/N be a chief factor of G with M L C,(N) , and
.let q be the prime number og which ]M/NI is a power.

If q'# p it follows that, if Mq is a Sylow q-sub-
group of M , then M - MQN , M NN =1 and [hq, N] = 1.
Thus Mq is characteristic in M and therefore normal in

N}

G . By induction, ‘G/Mq € %; , 80 (since G/N e @; also)
ce REG =94 -

If gq=p , then M is a p-group and so (by hypothesis)
is elgmentary abelian; thus M can be regarded as a
Zp[?/CG(Mﬂ -module. CG(M) contains the Sylow p-subgroups
of G, s0O G/CG(M) is a p'-group; hence, uéing Maschke's
Theorem, M = N x L , where L is normal in G . By

induction, G/L € %; , so, as before, G € R&@n = ﬁ; .
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1.5 Pronormal subgroups

Well-known results about pronormal subgroups, which
are used in the study (in Chapter 2) of groups in which all
the pronormal subgroups have complements, are collected

together in this section.

Definitions ‘A subgroup L of a group G is said to be

pronormal in G if for every g € G , L and L8 are
conjugate in their join <L,Lg> . L is said to be abnormal

in @ if ge(L,Lg> for all geG .

Perhaps the most obvious examples of pronormal sub-
groups of a group G are the Sylow subgrogps of G , and
also, if G 1is soluble, the Hall subgroups of G . Normal
subgroups of (& are clearly pronormal, and any maximal
subgroup obviously_must be either normal or abnormal in @G,

and hence is pronormal in G .

1.5.1 Let H €G . Then H is abnormal im 6 if and
only if H is both pronormal and self-normalizing in G .
Proof Suppose H is abnormal in G ; then H is cert-~
aiﬁly pronormal in G . Suppose g € NG(H) ; then
(u;uB) = H , s0 g € H . Hence N,(H) = H .

Now suppose H is both pronormal and self-normalizing

in G.. Let g ©be any element of G . Then there is an
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element x of (H,Hg> such that H* = 8 s+ and hence
=l .
gx ~ € N.(H) = H . Therefore g € Hx < (4,68 . Thus H is

abnormal in G .

feveral basic properties of pronormal subgroups are
given/?Rl): those which will be needed in Chapter 2 are
recorded below, in 1.5.2 - 1.5.5 .
1.5.2 (R1, 1.3) If N is a normal subgroup of G and
NELLG, then L ié pronormal in G if and only if
L/N is pronmormal in G/N .
1.5.3 (R1, 1l.4) ’va L is pronormal in G and N is
normal in G , then LN is pronormal in @ and

No(LN) = N (L)N .

1. .q) (R1, 1.5) If HL G, then H is both pronormal
and subnormal - in G 4if and only if H 4is normal in G .

1.5.5 (R1, 1.6) If L is pronormal in G then NG(L)

is abnormal in G .

1.5.6 Suppose G = HN , where N is normal in G and
HAN=1.1If L is a pronormal subgroup of G then
i.N nH is propormal in H .
Proof - LN is pronormal in G by 1.5.3, so, by replacing
L by LN , it can be assumed that L >N . Let h € H .
Then |

<L,Lh) = {(LnHN,. (L_nH)hN) = _-(L..nH, (LnH)h) N ...(1)

. h
As L 4is pronormal in G , there exists x € (L,L ) such
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that L" = 1¥ . By (1), there exists y € (Lo, (Lom)t)
such thaﬁ x€ yN £ yL . Thus LX = 1Y , and so0

(Lou) =Yg = 1¥nH = 1Bam = (Lam)?P .

" Therefore LAH is pronormal in H .

A fundamental fact about system normalizers (which are
defined in (HY) ) is used in a later proof (2.6.16), and is
recorded heré for convenience.b
lLQLZ Every abnormal'subgroup of a soluble group G
contains a system normalizer of @ .

Proof Phe system normalizers of G are the minimal sub-

>

abnormal subgroﬁps of G (H3, VI, 11.21).

§ rich source of pronormal subgroups of soluble groups
arises from the theory of "formations", a brief summary of
the elements of which is now gi?en. A lucid exposition of
the basic theory can be found in (H8, VI, Section 7).

A formation is a QRO—closed class of groups; a

saturated formation is a {Q,RO,Eg}-closed class of groups.

A formation function f is a function which assigns to

each prime number p either a formation f(p) or the

empty set @ . Given a formation function £ , a saturated
forhation &5 can be defined by specifying that G Dbelongs
to’ Ef if and only if, for each prime number p and each p-
chief factor H/K of G, G/ Cy(H/K) € £(p) .

(If f£(p) =@ this is interpreted to mean that p does
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not divide |a]). & .is said to be locally defined by f .

A result of fundamental importance is that every saturated
formation of solqb;e groups has a local definition (HS, QI,
7.25).

If & is a formation and G is a group, then the
Y-residual of G s, denoted by d3 , 15 the intersection of
all the normal sﬁbgroups N of G such that G/N € & .

An F-projector of° G is a subgroup F of G such that

F €& and, whenever F HE G , then Fi® = H . The
important property of .E#projectors is that, if éf is a -
saturatgd formation then every sqluble group has a unique
éonjughcy class of Eﬁ@u@jectors . In.the case of the
saturated formation 7t, the Wbprojectors of a soluble
group @ coincide with the nilpotent self-normalizing sub-
grouﬁs of G discovered by R.W.Carter (and consequently

known as "Carter subgroups").

The promised rich source of pronormal subgroupsrcan
now be revealed:

; 1.5.8 Let E} be a saturated formation, and N a soluble
normal subgroup of a group G . Then the Ehprojgctors of
N are pronormal in G .

Proof Let F be an Ekprojector of N, and let g € G-.
It is easily checked that ® is an 3iprojector of N,
and hence that F and F® are both 3iprojectors of

<F,Fg> . Thus F and F® are conjugate in (F,Fg> .
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l;é;ﬁ If G is a soluble group and 2} is a saturated
formation containing ﬂl, then the ziquojectors of G
are abnormal in G .
Proof Let F be an -projector of G . By 1.5.8, F is
pronormal in G , s0 by 1.5.1, it will be enough to show
that F is self-normalizing in G . Let H = NG(F) ,
suppoée H>F ahd let K be a maximal normal subgroup
of H containing F . Then H/K is of prime order, and so
H/K e'(flg‘é} . But then; bj definition of an :lprojector,.

FK =H, a contradiction. Therefore F = NG(F).

In determining whether a given subgroup of a group is
pronormal, the following criterion (1.5.10) is often help-
ful; 1.5.11, which is deduced from it, is put to use in
2.6 and 2.7 . ‘

1.5.10 (Gaschiitz (?2) ) Let H be a subgroup of G and
suppose N is normal in G . Then H is pronormal in G
if and only if

(1) =N is-pronormél in G ;

(2) H 4is pronormal in NG(HN) -

Proof That H being pronormal implies (1) and (2) is
deious. Conversely, suppose that (1) and (2) hold, and
let g€ G . Let J = {H,H8) ; then by (1), there exists
x € (N, (BN)8) = JN such that (HN)® = (HN)® . Writing

x =ny with né€ N, y € J , then (HN)g = (uN)Y , and so0
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-1 : -1
gy = € NG(HN) . Thus, by (2), there exists ze€ (H,Hgy )gJ

=1
such that B =pn% ; then zy e J and uB = g%

Therefore H 4is pronormal in @& .

1.5.11 Let G = HV , where V is normal in G ,
and HNV =1. Let L be a pronormal subgroup of H ,
and suppose that W €V is such that

(1) Vv and NH(L) both normalize W , and

2) ,njgw.

Then LW is pronormal in @G .

Proof (i) LV is pronormal in @G
To prove this, suppose g € G ; then g = vh for some

ve€V and heH, so (Lv)& (LV)h . As L dis pronormal

n

in H , there exists x € (L,Lh)-g Qav, (LV)h> such that
1! = 1¥ | and hence (V)P = (LV)¥ .

(ii) LW is pronormal in - N, (LV) .

In fact LW is normal in N (LV) ; for, let g € Ny(LV) .
Then g = hv , with h e H, v € V , from which it follows

that h € NH(LV(\H)>= Ny(L) . Thus

(L& = LAV
= L'W . (by (1) )
< Lf,ow
= LW ~ (by (2) )

Applying 1.5.10, (i) and (ii) imply that LW is pro-

normal in G .
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1.5.12 Let L be a pronormal subgroup of G and let N
be an abelian n9rma1 subgroup of G . Then NG(LN) norm-
alizes LA N .
Proof Let g € N (LN) = N, (L)N (using 1.5.3); then
g = xn with x e N'G(L) and n € N , and therefore

(LamE = AN = L'aN

(LaN)® = LaN (as N 1is abelian)
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CHAPTER 2

2.1 Metabelian groups with complemented pronormal subgroups

Let E% denote the class of finite groups in which
every pronormal subgroup has a complement. Some important
observationslaboﬁf g; can be made immediately:

2.1.1 - B¢ 8 neld.

gigé; The Sylow subgroups of a group G are all pro- .
normal; but if the Sylow subgroups of G all have comple-
ments in. G , then G 1is soluble. Hence ﬁ%-groups are
soluble. Also ihe normal subgroups of a group are all pro-

normal, 8O E?P c Gn .

-

2.1.2 G% is Q-closed .

Proof Let G € 6; and let N be a normal subgroup of
G . If H/ﬁ is a prénormal subgroup of G/N , then by
1.5.2, H is pronormal in G , so H has a complément in
G and hence, by 1.3.2(b), H/N has a complement in G/N .

Therefore G/N € %% .

Unlike g; s 6% is neither Sn-closed nor Rofclosed .
(in fact 6% is not even Do-closed); this is shown in
Examples 2.7.5 and 2.7.6 . The remainder of 2.1 is devoted
to showing that when attention is confined to metabelian

groups,‘eg coinc?des with ﬁ% -



. 29
2.1.3 {gnnaa is S-closed.
Proof  Suppose that the result is false, and let G be a
group of minimal order such that, G € 6;¢\O€ and G
possesses a subgroup H not in G% . Then H 4is not con-
tained in any proper normal subgroup of @ ,, because
EL»r\Efx is Sn-qlosed (1.4.7). Since HG' is normal in G,
it follows that HG' = G . Now G is metabelian, so G
is abelian; hence H N G' is normal in both H and G! R
and therefore in G . | oo
If ENG' =1, then
HEH/(Ene') 2 He'/e' = a/c' € o = § ,
i.e. H € @%1 y & COntradiction. Hence HANG'> 1, and
therefore BnG' contains a minimai normal subgrouﬁ, N say,
of G . Now aﬁy normal subgroup of H contained in H n G
is normal in G (because HG' = G and G' € 1); consequ-
ently, N is also a minimal normal subgroup of H .
la/Nl < lal ., so, because of the way in which G was
chosen, H/N € E%', But N has a complement in G , because
G € E; , 50 N has a complement in H (by 1.3.2(a)). |
Therefore, by 1.4.3, H € 6; , a contradiction. Therefore a

group such as G cannot exist, and thus the theorenm is

proved.

2:1.% and 1.4.9 together yield the following immediate

corollary:

S T
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2.1.4 Corollary (Cf. (C3), Theorem 5.4)

6 0B = La0R,

where $ is the class of groups in which all the Sylow

subgroups are elementary abélian.

2;1;2 Suppose L is pronormal in G , and L €N ,

where N is a metabelian normal subgroup of G . Let M
be a normal subgroup of G contained im N such that both
M and N/M are abelién. Then LM and L A M are both
normal in G . _

Proof | LM/M { N/M , and N/M is an abelian normal sub-
group of G/M , so LM/M is subnormal in G/M . But LM/M
Y is pronormal in. G/M , by 1.5.3 and 1.5.2, so by 1.5.4,
LM/M is normal in G/M ; thus LM is normal in G .

By 1l.5.12, NG(LM) normalizes L A M ; hence L NM

is normal in G .

2.1.6 Theorem If G € @; , then every pronormal subgroup

of G which is contained;glmetabelian normal subgroup of
G has a complement in G .

Proof Let" L be a pronormal subgroup of G , where

G € ﬁ; , and suppose L £ N, where N is a metabelian
norﬁal subgroup of G ; let M = N' ., Then by 2.1.5, L N M
and LM are both normalvin G . Since G and G/M both
belong to & , it follows that LM/M has a complement in
'G/M and LANM has a complement in G . Therefore, by

1.3.3(a), L has a complement in G .
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Together, 2.1.4 and 2.1.6 yield the following char-

acterisation of metabelian gp-groups:

2 2
2.1.7 Corollary ep n0F = gn n(0c = ¥ nOLZ ,
i.e. , if @ is metabelian then G € lfp if and only if

the Sylow subgroups of G are elementary abelian.
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2.2 Purther properties of groups in Q n OLZ .
Il

Several lemmas, which will be used later in investigat-
ing gpn Ol? , are collected together here. The main
lemmas, 2.2.4 and 2.2.5, are rather 'technical', and the
reader might prefer to omit this section, re?prning to it

only when it becomeés necessary.

2.2.1 Let He® n Of , let F = F(H) , and let F < F

be a normal subgroup of H . Then for any subgroup S of H,

(a) [Fo, S] and Cp (8) are both normal subgroups of Hj
" o

' = S

(») F = [F,, 5] x CFo(‘ ) .

(Hence [Fo’ S, S] = [Fo’ S]' and C[F S] (s) =1).
o’ _

Proof Let B he a complement to F in H, and let

B'o = SFNB . Then, as F 1is abelian,

[Fo’ S:} = [Fo" SFj = [Fo’ SF”B] = [Fo’ Bo] -

Suppos‘e now that aj € CFo(S) , and let b€ B, .
Then b = sa for some s € S, a € F, and so

Eo,.aO] = [sa,ao—_] Es,ao]a[a,'ao] = 1.

. - |
Therefore CFO(S) = CFO(BO) . |
Conversely, suppose a, € Cp (BO) , and let s € S .

- 0
Then s € SF = BOF , SO0 8 = boa for some b-o € Bo and

a € F . Hence

o] = Bets 2] = Borac*fose] = 2 -

Therefore CFO(BO) c CFO(S) .
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thus [F, S] = [F,, B] ana cFo(s) = Cp (By) , s0

it can be assumed that S = Bo o
(a) Given any h € H, h = ba for some b.€ B and

a € F , and so

[Fo’ Bo]h

[Fob’ Bob]a

[Fo’ Bo]'a ( B, is normal in B as B is abelian)

it

EFO,,_-BOJ (as F is abelian).
Hence EE‘O, Bé] is normal in H .

Let a, € CF (Bo) and let b€ B ; thenm for any bo € Bo’

[aob’ | bo]

o

'[a b]b (as B is abelian)
o’ "o
1

b ' ;
Hence a, € CFO(BO) . Therefore B normalizes CFO(BO) s
and so (since F is abelian) Cp (Bo) is normal in H .

0

m 2
(b) Let H_ = B/F, . Then H_ € an J , because
gnn Ol,a is S8~closed (by 2.1.3), so in particular, Q(Ho) = 1.
Now F, < F(Ho) and [Fo, Bo] is normal in H_  , s0 there
is a normal subgroup N of H, such that F = [FO,BO] X N.

Then [N,B)] € Nn [Fo,.Bo] =1, 80 NK CFO.(BO) . On the

other hand,
[Fo’-'Bo]nCFO(BO) N Ho'n Z(Ho) gé(H'o) = 1,
56 N = CFO(BO) .
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2.2.2 Let G be a group and N a normal subgroup of @,
and suppose B is a complement to N in G . If N <N
o
is normal in G and B, £ B is normal in B then B N
oo
is normal in G if and only if [N,Bo] Q,No .
Proof If BoNo is normal in G then
. [N’Bo] < N r\BoNo = No
Now suppose [N,,Bo] N, , and let g € G . Then
g =bn for some b€ B, n€N, and so

& _ g 0y ' =
(BoNo) - Bo N, < Bo[N’Bo]No - BoNo .
2.2.%3 Suppose that F(G) is abelian, and N is an
abelian normal subgroup of G . If N has a complement B
in G and Cyx(N) =1, then N = F(G) .

Proof B N F(G) centralizes N, so BNAF(G) = 1.

2.2.4 Let He@ n0F, let a=0' and 2z =201 .
Suppose that S > 1 is a subgroup of H such that
SNAZ =1, and let Z.0 be a subgroup of Z_. Let

A, = [A,8] (thus A > 1), and let H = SA x Z -

(o}
If N is a normal subgroup of Ho , but N contains no
non-trivial ‘normal subgroup-of H contained in A , then

(a) N F(H) =24 %32 ;

(p) F(H/ N) = F(H)) / N .

Proof (a} HY = .EAo,s] = A, and cAo(s) = 1.

CS(AOZO) = CS(AO) =S, . (say) .
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Then [A,5.] < [4,8] =4, g ¢, (5)).
But by 2.2.1(b), [A,so] ncA'(so') = 1,80 [as]=1,

i.e. 8, < Cy(A) = AZ . Therefore S, € 8NAz =1, so

CS(AOZO) = 1 , and hence, by 2.2.3, AOZO F(Ho) .

Since N is normal in H  , [Ao, N] £ N . But [AO,N] ’
is normal in H , by 2.2.1(a), and by hypothesis, N con-
tains no non-trivial normal subgroups of H which are
contained in A . Ther.efore [Ao, N] =1 , and so

N sCHO(AO) = AZ, = F(H,)

(b) Let Ao = Ml Xe woX Mt , where the Mi are mini-
mal normal subgroups of H . By hypothesis, N N Mi <M,
s0 for each i there is a minimal normal subgroup 'Ni of
Ho such that

LIRS My and NN N = 1.

Therefore Ho has a factor group H / N such that N<N

and , asswﬁi withouk \oss o{ emeanA:é?M 2o, W~ \gowavp\,usm c\ass

of c\srou\os Un INL N T has erdiekly ove r&sewcmh\g.ww%sk- Ny, o N,
AZ/N N, %X N,
H :
o

Now for a fixed i in {l,..,t} , let Mi be a
p, -group, let H = H/Cy(M;) , and consider M; as an irr-

educible Zpi[ﬁ]-modgle, Since H!' = A <CH(Mi) ’ i is

abelian and hence, as a Zp [E]—module (using the%bar con-
i -

vention"), M; is homogeneous (i.e the irreducible ZP-[E]_
i

submodules of M; are all isomorphic).

Therefore CS(Ni) = CS(Mi)>, and so
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t .
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Applying 2.2.3 to Ho/ N, , it follows that

F(HO/NO) = Aoz‘o/ N, , and therefore, as N <No ,

F(HO/N) = AOZO/N = F(Ho)/N .

2.2.5 Let Hegnnﬁf', let A =H' and % = Z(H) as

in 2.2.4, and let B be a complement to F(H) = A X Z in
ﬁ y thus H = BA X Z2 . Let Bo be a subgroup of B and
let C Dbe a complement to B, in H . Then:

(2) [2, cnEg] gc'.

() If z € Z then there exists c € C and b e B, such
that |b] divides |z| and ¢ = bz . It then follows
that <c> = <bz) X (2,) , where {z) = (2,) x{z,) and
(lv) ,,[z21)=1 , (lb[,lzll)= lz4] -

Proof (a) Take .any a€A and any ¢ € C N BZ . Since

H

BOC , there exist ho € Bo and o € C such that

b-lco . Then

0
[co’ c] [boa’ c] = [.bo’ c]a[a, c]
‘ [a, c] (c € BZ so [bo’ c] = 1)
Hence [a, c] = [co, cl € ¢', and therefore
[a, caBz] C'.
-1

() Let =z € Z . Then z=ho <, for some bOEB

a

0 ]
c, €C ; i.e. ¢, = byz ."Let 7 denote the set of prime

is a
=b b, s where ,bﬂl

divisors of |z| , and write b
(o] ™
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n-element and b“, is a w'-element. Then

{by2) = Lopubez) = (o) x Kbz

Let m = 'bw" ; then (sz)m = bﬁ?gm.,_i.e. .gom = bﬁ.mzm .

Now (m,|z|) =1, so there is an integer n such that

mn =1 (mod |z]) . Thus

mn mn
C, = gr Z. .

Therefore, taking ‘'c = comn and b = b“mn , the result is

established.
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2.3 The invariant dF§A2

Throughout 2.3, let A denote an abelian group and
let F = GF(pf) sy Where p 1is a prime number and f is a
natural number.
Definition The number dF(A) is defined by:

dF(A) = max{?imFV : V an irreducible F[A]-module} .

The nature of the.invgriant dF(A) can be elucidated
by making use of the fundamental result (H8, II, 3.10) that
if A has a faithful irreducible representation over F ,
then A 4is cyclic, and the degree of the representation is

determined as the smallest natural number n such that

p?n =1 (mod [a]) .
(The essence of this theorem is that the only kind of
situation in which an abglian group can have a faithful
irreducible representation over GF(pf) is one in which a
subgroﬁp of the multiplicative group of GF(pfn) acts (by
multiplication) on the additive group of GF(pfn) , the
latter being regarded as a vector space over GF(pf) ).

’

2.3.1 Suppose 91,9, --- 59 are all the prime divisors

e.
of"Ap,‘ (where A is the p-complement of A), and qil

pl
is the exponent of Aq (the Sylow q; -subgroup of 4), for
each 1 € {i,...,s} . Let d be the smallest natural

£d = el e

, e
number such that  p 1 (mod qq .qzau...qss )

Then d = dF(A) .
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e e
Proof A has a cyclic factor group of order q; ...qss ’
and hence has an irreducible representation over F of
degree d (corresponding to a faithful irreducible re-
presentation of the factor group). Hence dF(A) >4 .
Let V be an irreducible F[A]-module, and let
C =C,(V) . Then V is a faithful irreducidle F[A/C]-

module, so A/C is cyclic and dim _V is the smallest

F
natural number n such that p™ = 1 (moa jascl) -
But |A/C| must be a divisor of 479, .-.q, (as A/C is
a cyclic p'-group), so pfd = 1 (mod |A/C|) . Therefore

n ld . Hence dF(A) = d.

Corollary The F-dimension of any irreducible F[A]-

module is a divisor of dF(A)».

2.3.2 Let d = dF(A) , and let E = GF(pfd) . Then E is
a splitting field for A . ) |
Proof 1Let V be an irreducible E[A]Qmodule, and let
dimgV = n . Let C = C,(V) . Then pf9® = 1 (mod |a/cl) ,
and this congruence holds (givemn f and d ) for no natural
numﬁer smalier than n . But 2.3.1 shows that

pfd 21 (mod |A/Ao|) for any cyclic factor group A/Aom

of A . Hence  n =1, i.e. the E-dimension of any irreduc-

ible E[A]-module is 1 . Q.e.d.

Here and later 1lcm(m,n) denotes the lowest common

multiple of m and n .
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2.3.3 (a) If A & A then dp(a))|dp(4) .

(b) 1If A, , A, are subgroups of A and A= A4, , then

Hence, if dp(A;) =1 then dp(a) = dg(4;) .

Proof (a) This is immediate from 2.3.1 : let d = dF(A)

and -do = dF(AO) . Then d 4is the smallest natural number
' o e e
such that pfd =1 (moqull...qu) (with notation as

in 2.3.1), and do is the smallest natural number such that

[

fd f T f

f
P © =1 (mod qll.u.qss) , where q;i is the exponent
i .
of the Sylow qi;subgroup of A . Since f, e, for each
N | o fd 1 s
i, it follows that p =1 (mod gy ...q.) , and

hence dol a.

(b) Let d; = dF(Ai) , (1 =1,2) , and let

d' = lcm(dl,da)‘. By (a), both dy and d, divide d ,

SO d" d. -
' fd1 ey
Now for each 1 € {l,...,é} , either p = 1 (mod a )
£4. S ‘e,
or P 2z (mod:qil) , as e, = max{?il,eia} , where

e
qiij denotes the exponent of the Sylow qi-subgroup of Aj .

'
Therefore .pfd

e. :
1 (mod qil) for each i , and thus

! (mod °1 qes) which implies that d}d' ..
p ql e o0 s 3 )

Therefore d = d' .
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2.3.4 Theorem Let G be a group, let N be an abelian

normal subgroup of G , and let "F = GF(pf) . If V is a
faithful irreducible F[G]-module, then the dimension of
the irreducible F[N]-submodules of V 1is precisely dF(N).
Proof Let W be an irreducible F[N]-submodule of V ,

and let C = CN(W) . Then by Clifford's Theorem,

V= 3w,
geaq

and CN(Wg) = c& for each g € G . Thus. CN(V) = Mcé .
geG

Since V is faithful, it follows that C contains no non-
trivial normal subgroup of G .

dimFW is determined as the smallest natural number
fa _

d such that p'®= 1 (mod |N/C|), so, by2.3.1,

to establish the result it will be enough to show that
e e

'N/Cl ...q & , where Q;,...,q9, are the distinct

ki fferem:t o e_
prime numberst1v1d1ng ]N], and a is the exponent of the

Sylow qy -subgroup of N .

Let Ni denote the Sylow 9 -subgroup of N and let

UJ.-(Ni) = {;Sqi . x € Ni} .

Then for each Jj =1,...,e;~-1, (%(Ni) 'is a character-

istic subgroup of N. , and therefore a normal subgroup of

e, =1
G . In partlcular, it follows that eltheﬁzﬂcé 1( 3 3
In the
or O 1(N5) {c I(%e first case ssm—emly—srise=if N;
‘t\r\P—‘w

is of exponent 9 ;Acertainly Ni'§ c, so there is an
element x of N; of order gq; such that x € C ; thus

&GHPNC = 1. In the second case, there is an element X



[y LI-Z
. ( ei-l) .
qi ei
of N; such that 'x £ C ; then x has order ay
and {x) A C = 1 . Thus in both cases, N/C has an element
e .

of order qii_. The result now follows.
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2.4 Metabelian groups with faithful irreducible

representations.

The results obtained in this sectién are needed in 2.6
to construct some useful pronormal subgroups of the group
considered there. Two more theorems from (H8), namely
Ef 13.2 and ¥, 13.3 , are used in the proofs.

‘Throughout 2.4, H denotes a metabelian group, N is
a normal subgroup of ﬁ such that both N and H/N are
abelian, F = GF(p), and V is a faithful irreducible

F[H]-module.

2.4.1 Suppose F 1s a splitting field for N . Then:

(a) the homogeneous components of VN all have stab-

ilizer CH(N) ;

(b) if N = C (N) then dimV = jm:N]| .
Proof (a) Let VN = Vl ® ... @ Vt be the decomposition

of 'VN into homogeneous compeonents, and let S be the
stabilizer of V, . Then N €5 , and hence 5 is normal
in H (as H/N is abelian). Since the stabilizers of

V,,...,V, are all conjugates of S5, it follows that all

t
the homogeneous components have stabilizer S .
? . A .
Let ¢C, = CS(Vi) (i=11,...,t) . Since F 1is a
splitting field for N , and N is abelian, N acts on
each Vi as a group of scalar matrices, s0

N.Ci/ Ci Q Z(S/Ci) for each 1 ,

i.e. [N,8]gcy .But V is a faithful F[H]-module,
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so C,N¢c, n...n C, = 1, and therefore [N,S] =1,
i.e. s‘g cH(N) . Since it is always true that S Z'CH(N) ,

it follows that S = Cy(N) .

(b) If N = CH(N) -then by (a) and Cliffords Theorem,

each Vi is an irreducible F[N]—module, and therefore Vi
has dimension 1 (since N is abelian and F is a split=~
ting‘field for N ). Hence dimFV = ‘H:SldimFVl = lH:N‘ .
2.4.2  Suppose that " F isva splitting field for N ,
—-N—e—Gﬁ(-N-)-, and N has a complement B in H . Let N, KN
be a normal subgroup of H and let B, < B . Then the
dimension of an irreducible F[BONOJ-submodule U of Vv

is at least |BO:CBO(NO)| ; if QBO(NO) =1 then

dim, U = |B_| .
Proof Let W be an irreducible F[N_ ]-submodule of V .
Then
‘beB, W ¥ Wb & DbecCyN) ........(*%)
F[N,] ‘
The implication from right to left is obvious. For the
converse, suppose that b € B , and that there is an F[Na]-
isomorphism ¢ : W > Wb . F is a splitting field for N ,
and therefore for No , 850 W 4is one-dimensional : let

W= (& , and let g € F be such that w = g(wb) .

Then for gny n, € No ’
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¢ is an F[No]-isomorphism

= (whdny = (m )

= (E(wd))n = E((wn )b)
= §(wbn) = g(wn b)
= bn b 't e Cy_ (W) -

Therefore [b,No] <Cy (W) . Since [b,No] is a normal
)

subgroup of H , it follows, by Clifford's Theorem, that

[o.w,] < Cy (V) - But 'V is a faithrul module, 50
[?,No] = 1, i.e. b€ Cy(N ) . This establishes (*) .

Now consider U , an irreducible F[BONO] ~submodule
of V, and let W be an irreducible F[N_]-submodule of
U.Let r= IBO:CBO(NO)\ , and let {l,bz,...,br}. be a

set of coset representatives of CB‘ (No) in Bo . Then .
[+]

by (*), W, Wo,, ... , Wb are pairwise inequivalent

irreducible F[N ]-submodules of U , s0

‘U ? WQWb Q....eWhr.

2

Hence dimp U 3 r = IBO:CBO(NO)! .

If CBO(NO) =1, then B, = {1,b2,...,br} , 50O

WeWw,®... Wb, is an F[BoNo]—submodule of U, and
therefore must be the whole of U . Hence dim, U = lBe‘ .
2.4.3 If N =Cy(N) then dimy V is divisible by

lem( |H:N|, dp(¥) ) . |

Proof It -follows from 2.3.4 that the dimension of the

irreducible F[N]-submodules of V is dF(N), S0



_ 46
do(N) | dim, V . It remains to show that Ju:n | divides
‘ dimF v .

Let d ='dF(N) ‘and let E = aF(pT%) ; then E is a
Galois extension of F and also a splitting field for N

(by 2.3.2). Let V' = E @ V ; then by (88, ¥, 13.3), V"

decomposes into a direct sum of irreducible "algebraically

. %* * R
conjugate" E[H]-modules, Vi, Va, cevi s Vn say. Each 'V;
is also a faithful E[H]-module, since V* is faithful, so
[
by 2.4.1(b), dimE v, = |H:N‘ . Therefore dimg V' ois

divisible by lH:N] » and so, since dimy V' = dim. v , the

F
proof is complete.

2.4, Suppose that N = CH(N) and N has a complement
B in H . Then:

(a) Cy(B) >0 and [v,B] <V :

(b) if N KN is normal in H and B, = Cg(N_) , then
V has an F[BONO]-submodule W of codimension dF(No).;

such that ‘Bo centralizes V/W .

Proof (a) As in the proof of 2.4.3, let d =’dF(N) , let
*-
E = GF(pfd)., and consider V =E & V . Then, as before,

*

Vv = VI @ ... & V: » Where each V; is a faithful irreduc-
ible E[H]-module; consider V;?. The situation is as in
2.4.2 (with E , VI&, N , B playing the roles of F , V ,
N, » B, respectively), and since CB(N) =1, it can be

seen that, as in the last part of the proof of 2.4.2, if
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% . %*-
Wl is an irreducible E[N]-submodule of ~Vl and
* %* - »- '
B = {l,ba,....,br} , then Wy, Wyb,,..., Wb are pairwise
inequivalent E[N]-modules and
* * 'l-_b @ *

It now follows that if W, € W \ O , then

Wy #Wib, +o.lt wlbr # 0 , and so CVI(B) >0 .

. T : r _
Also W ={Z E;(wyby) ’q’i € E, X g = O} is a proper
i=1 i=1

* .

* *
E[B]-submodule of V; , and B centralizes Vy/ Vg -

Therefore Cy*(B) > 0 and [V*, B] <V

Let G be the Galois group of E over F ; then V*
is a G-module, with the action described in (H8, V, 13.2).
Straightforward calculations show that c,*(8) and [V, B]
are G-submodules of V. ; therefore, by (H3, v, 13.2),
of V such that

there are F[B]-submodules. U and U

1 2
* * ] '
C,*B) =E U , [v,B]=E&TU, . Now
u€U; & 1®ué€Cy*(B)
< VYoeB 1®ub=160u
& VYoeB, ub=u
& u e Cy(B) .
Therefore CV(B) = Uy >0 .
. * -
Also, given ve€eV and beB, 1@ v,b] € EI , B],
and therefore [v,b] € U, . Hence [V,B] <U, <V .

fd

- O
(b) Let dj = dp(N,) , E = GF(p ) , and
*

v = E,®;V . In (a) it was shown that [V,B] £V ; hence
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% #*. ) *
[V ’ B]<V , and therefore [V s Bo] < V" . Because N,
*
cgntralizes B, » [V ’ Bo] is an EO[NO-_l-submodule of V' ’
‘ e » *: V
and therefore V = V /[v, Bo] is an EO[BONO]—module.
E, is a splitting field for N_ (by 2.3.2), so V is a
direct sum of one-dimensional EO[NO]-submodules. In
particular, V has an Eo[Nol-submodule Wo of
: N - * L
codimension 1 , W, = wo/[v , Bo] , say. Since B  acts
— . %
trivially on V , wo is in fact an EO[BONO]-submodule of
¥* .
v of codimension 1 , such that B0 acts trivially on
*: .
v /wo .
Let G  be the Galois group of E/ .over F , and,

: * -
with the action of G, on V  as described in (u8, ¥,

13.2), et W = (Ve . [v', B] is a @ -submodule
: geGOO [o] o -

of V , so W*'}/ [V*‘, Bo] , and hence B, centralizes
x, * *
Vv /W . Also W is both an EO[BONO]-submodule, and a
* —
G, -submodule, of V , and therefore (by H8, V, 13.2).. V

( . ‘
has an F[BONO]-submodule W such that W = E, QF w.

50

Now GO has order do s
S * . e
codlmEow < |Go|c°dlmEOWQ = 4 .
Hence* codim W €4, . On.the other hand, W isa.proper
F[No] -submodule of V , so codimF Wy dp(Ny) =4, .

Therefore codimF W= do .
* * .
Since W > [v¥, B,] , and W' =E & W, it follows,
as in the proof of (a), that W }[V,Bo] , and therefore

B0 centralizes V/W .
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2.5 A fepresentation theorem

As a last preliminary to the study of 351\09 ,
another result from representation @heory is developed. The
result (2,5.2) is based on a theorem in (H8), from the
statement and proof of which the following information is

collected:

2.5.1 (H8, 11, 3.11) -Let G Dbe a group, let F = GF(pf),
and suppose that V is a faithful F[G]-module. Let N

be an abelian normal subgroup of G , and suppose that, as
an F[N]—module, V is homogeneous. Let k be the dimension
~of the irreducible F[N]-submodules of V . Then N is
cyclic, say N = (;) , and k is determined as the small-

est natural number such that pfk’z

1 (mod |N|) .
(Thus k = a,(m ).

Let V' be the direct sum of dim_V / k copies of

‘ F
fk)

E = GF(p . Then there is a monomorphism x- H>gi of N
into the multiplicative group of E such that F[ﬁ]‘= E,
and a linear isomorphism.of F-spaces S: v ->V*4 such that
(vx)‘S = véf for all vevV.
A semi-linear action of G on V*i (regarded as an ~
E—épace) is defined by vsg = (vg)s . The subgroup of
G of elements whose action is linear is precisely CG(N) .

_ %
Thus if N £ Z(@) , the action of G on V 1is

linear, and V* becomes a faithful E[G]-module.
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2.5.2 Let G,N,F,E,V and V be as in 2.5.1,
and suppose that N £ Z(G) . Further, suppose thaﬁ N has
a complement K in G (thus G = K X N ). Let K, be a
subgroup of K , let W be an F-subspace of V , and let

* $

W = W" . Then:
(a) W is an F[KON]-submodule of V if and only if
%*. R *
W is an E[Ko]-submodule of V
(b) if W is an F[K,N]-submodule of V then

C. (W) =c, (W) .
KO KO

( (a) shows that there is a one-one correspondence Between
the F[KON]-submodules of V and the E[Ko]-submodules of

*
V , in which irreducible submodules correspond to irred-

ucible submodules).

Proof (a) Suppose that W is an F[FON]-submodule of Vv .

* * *
W is an F-subspace of .V , and Wk < W , because
*

v* € W*E => v = ‘wsg for some w € W

=> vV (wx)<S for some w € W

* *

= v €W .
* *
Therefore, as E = F{E} , W is an E-subspace of V .
. * )6 6 *
Also, k, € X, = Wik = (Wko c W2 = W . Therefore
* . *
W is an E[Ko]—submodule of V .
' *
Conversely, suppose that W 1is an E[Ko]-submodule
of V* ; then W is clearly an F[Ko]—submodule of V .
#*
Also, if w € W then (wx ) = wéﬁ ewd=w , and there-

fore wx € W . Hence w_’is an F[KON]—module.



(b) k € Cy (w)

7887

wko=w for all we W

(wko)8 = w<S for all we W

w5ko = w‘s'for all we W

s
k € C, (W°) .
(o} Ko

51
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. 3
2.6 Primitive soluble groups in gp!\cn

The ultimate aim of this section is to give necessary
and sufficient conditions for a primitive soluble group of
derived length 3 to lie in ep ; this aim is achieved in
Theorem 2.6.19 . |

‘Throughout 2.6, G denotes a primitive soluble group
of derived length 3 ; V is the unique minimal normal sub-
group of & , and p is the prime number of which the
order of V4 is a power. H is a complement to V in G
thus H € OE , and V can be regarded as a faithful

irreducible ZP[H]-module. The invariant dz (X) (where

P
X is an abelian group) introduced in 2.3 will be referred

to frequently, and will always be abbreviated to d(X) .

2.6.1 ¢l e-@% if and only if H € g; .

Proof This is an immediate consequence of Theorem 1.4.3 .

by .
Thus, by 2.1.8, G € § if and only if H has element-

ary abelian Sylow subgroups. It will be assumed from now on
that He@r'l.Let A=H', 7=2H , and let B bea
complement to AZ (;='F(H) ) in H . Thus

H=BAXZ .

2.6.2 (a) A, 2, an&“B‘ﬁaré all elementary abelian, L
(v) CA(B) =1 and CB(A) =1.
(¢) If BOS B then NH(BO) =B CA(BO)Z .

(d) AZ 1is a p'-group.

s C':)QQ .
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Proof (a),(b) and (c) follow from the fact that

2 o
He B A0l and the derinitions of A, % and B .
(d) V is a faithful irreducible zP[H]-module, 50
OP(H) = 1 , and therefore AZ (a direct product of

minimal normal subgroups of H ) must be a p'-group.

2.6.3 If N is a non-trivial normal subgroup of H
then CV<N) =1 .

Proof It follows immediately from Clifford's Theorem that
if N centralizes some non-trivial element of V then N
must centralize the whole of V ; this cannot happen,

because V 1is faithful.

Consider the action of Z on V : since CH(Z) =H,
it follows from Clifford'!'s Theorem that .VZ is homogen=-
eous; thus the sitﬁation is precisely that discussed in 2.5,
with H, 2 , ZP in place of G , N, F respectively.
Hence, by 2.5.1 , writing F = GF( pd(Z) ) , to V there
corresponds a faithful irreducible F[H]-module V* of

F~dimension 'dimz v / d(Z2) . By 2.5.2(a) (with BA in
p

place of K ), V' is in fact an irreducible F[BA]-module,
*
and there is a bijection Ww>W between the Zp-sub-
*
spaces of V and the F-subspaces of V such that, for

any K < BA, if W isa ZP[KOZ]-submodule of V of

Zp-dimension n, then W is an F[Ko]—submodule of V¥
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of F-dimension n / d(Z) . Also, W is irreducible if and

*
only if W 4is irreducible, and CK (w) = CK (W*) .
0 o

2.6.4 dimZpV is divisible by  d(Z) lem(|B|, da(a) ) ,

where F = GF( pd(z) ) .

Proof 2.4.3 can be applied to the metabelian group H
and faithful irreducible F[H]-module V , with AZ play-
ing the part of the seif—centralizing normal subgroup N

of H::_this shows that dim V* is divisible by

F
lcm(]H:AZl, dF(A;) ) . Now dp(2) = 1, so by 2.3.3(b),
dp(42) = dg(4) ; also |H:4z| = |B| . Thererfore dim, v
is divisible by lem(|B|, dF(A) ) . The result now follows,
. *
as  dimp V. = dim, V / d(z) .
NS A . p

2.6.5 V has a Zp[BZ]-submodule W of codimension d(Zz)
such that B centralizes V/W .
Proof This is a straightforward application of 2.4.4(b),

with AZ , Z and Zp for N, N° and F respectively.

2.6.6 For'any B ,XB, B, is pronormal in H .
Proocf By 1.5.8 , it will be enough to show that B, is
a Carter subgrogp'of BO[A,BO] , since the latter subgroup
is normal in H , by 2.2.1(a) and 2.2.2 . Write A = [4,B_];
then by 2.2.1(b), CAO(BO) =1, so B, is self-normalizing
in B A, . Since B is abelian, it follows that B, is a

Carter subgroup of Bvo .



55
2.6.7 Let W be the Zp[BZ]—submodule of V described

in 2.6.5 , and suppose that B0 < B is such that

CA(BO) = 1 . Then Bow is pronormal in @G .

Proof Bo is pronormal in H , by 2.6.6 , and

NH(BO) = BCA(.BQ) 2 = BZ : thus NH(BO) normalizes W .
The result follows, by applying 1.5.11 (with B0 playing

the part of L ) .

2.6.8 Suppose Bo< B, W<V is normalized by B, »

and S is a supplement to B‘ow in G . Then SNANV>1.

Proof The result holds for S if and only if it holds
for some conjugate of S ; this justifies the following
manoeuvres,

The p-complement, HP say, of H is a p-camplement of
G , so it can be arranged, by replacing S by a conjugate
if necessary, that P contains a p-complement, sP say,
of S . Let S be a Sylow p-subgroup of S , and let B

iy
be the Sylow p-subgroup of B . Since AZ is a p'-group,

P

every Sylow p-subgroup of G has the form Bph V for some

h

h € H ; hence, by replacing S by S , it can be arranged

tha:t SP QBPV . (Note that the new choice of S retains
the property that Sp<_ wP ).

Let x be an element of Sp\ Bp : such an element
must exist, because otherwise § = spsp <H , whence S

could not be a supplement to BW in G . Then x = vb for
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some v €V and b € B? , With v #Z 1 . Thus

b = vt

X € SV . Now SV 1is a supplement to B, (and
therefore to B ) in G , so SVN H is a supplement to

B in H . Hence if a is an arbitrary element of A ,

there exist, bl € B and X, € SVMNH such that a = blxl .
Consequently ,

: X

[a,0] = [o1x, v] = [by, v] 1[xl, v] = [x;, b] € sV .

Therefore  [A,b] £ 5V N A

spspv NE’ N 4

sp(spv NnNEP) na

PN a
<8 .

If b=1 then 1 #x=v € SNV ; thus it can be
assumed that b # 1 . Then [A,b] is a non-trivial normal
subgroup of H , s0 Cv([A,b]) = 1 . Hence there exists
a; € [4,b] such that [a), v] #1 . But
[gl, vb] = [al, é][él’ v]b , and hwoth [?l’ vb] and
[al, b] belong to S ; therefore [?l’ y]b is a non-

trivial element of SNV . I.e. sNnv>1,. Q.e.d.

It is now possible to give a necessary condition for G

to 1ie in f?p .



57

2.6.9 Theorem If G € Qp then d(A) ld(Z) )

Proof Suppose G € Gg » and consider the pronormal sub-
group BW of G , where W is the ZP[BZ]-submodule of
V , of codimension d(2) , described in 2.6.5 . It is first
shown that:

.Bw has a complement C din G such that C N H
complements B in H and CNV complements W in V .

R ¢ D

If C is a complement to BW in G s then

| | '
lcl = -'%V‘T = -ll—%%-“-yw-“- = lH:BHV:Wl = ‘AZ‘Pd(Z) .

Since AZ 4is a p'-group, it follows that a p-coﬁplement
of C has order [AZ| . The p-complement of H is a,
p-complement of G , so it can be arranged, by replacing
"C by a conjugate if necessary, that H contains a
p~complement , cP ‘say, of C . Then?w'order considerations,
: c? is a complement to B in H .f......f......(a)

Let Z = Gzé) ; then z_  =c b, for some cg ec?,

bb € B . Hence

Z c b b
(en¥) ° = (cnV) °0 - (cnv) °< (ccnv)w

(the final inclusion holds because B centralizes V/W ).
Therefore (CNV)W is a zp[z]-submodule of V ; but
CNAV>1l, by 2.6.8, and codim W = d(Z) , so it follows
that (CNAV)W = V . Therefore

CNYV is a complement to W in V  ...ccceveese(3)
Hence, by (2) and (3), the complement C is of the form

specified in (1).
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The next objegtive is to show that
z <cP (4)

Again let Z = (z0); by 2.2.5(b), there exist c_ € CP,
b, € B such that |by| divides |z |, ¢ = bz , and
Eo> = Gom) X () 1 mhore ) = G x(ap) ant
(oglslz,0) =1, ([ogl,lzg]) = |zg| . Then both of bz,
and z, lie in CP ; also |b | = |b 2| = [2].

Suppose % {QP- ; then b # 1. Let

B = oz )[a, bz ] x Gy -

By 2.2.5(a), [A,b,2,] <[4, BzNcP] cP , and so
H) €cP . Let V, be an irreducible 2[4, ]-subnodule oz v ,

1= CH (Vl) . It is easily checked that Hl is a

3
normal subgroup of H , from which it follows, by an argu-

ment like that at  the beginning of the proof of 2.3.4 ,
- that Nl contains no non-trivial normal subgroups of H .

LoD

Thus the situation is precisely like that in 2.2.k4, with

<§°z1>, <%2>?;gl!.nlvkiqul?Q?AOf‘ S, Z,, H,, N respect-

ively. Hence _ '
Ny R = [As vz X

and . F(Hl/Nl) = F(Hl)/ Ny .

Let H, = Hj/N; ; them V; is a faithful irreducible

1
Zp[ﬁi]-module, and the split extension ﬁlvl is a primitive
soluble group in ﬁzlr\Cﬂ? . Therefore, by 2.6.4 , dim, Vy
is.divisible by _ P
d({z,)) lem(|byzy | dp(d;) ),

where the "bar conventién" (alluded to already in the proofs

of 1.4.1 and 2.2.4) is used, Al = [A, bozll, and
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Po=oar( 5820 ) s W R and o) = Iyl

it is clear that N; N <boz1> = "1 , and hence that

'bozl‘ = ‘bozll = lzll - Also N, f\<?2> is normal in H

so N, N {z,) = 1, hence‘[EE‘ =-lz2| , and therefore
d((EE)) = d(<;2>) . Hence the remark about dim, v,y yields
the information that ’
|21 a(<z,) dimzpvl .
It is clear that d(<z¥>) < ‘zﬂ -1 g |z;] and p are
k .

coQ#ime, s0 the congruence p =1 (mod lzll) holds when
k = ¢(|zl|) , where ¢ is Euler's function; but ¢(]zl|)
divides (\zll - 1) ), and thus

dimZle 2 |z,|a(éz0)

> a(Czp) 4(Kz))
> 4Kz >) (by 2.3.3(b) )
= d(z) .

Hence the dimension of the irreducible Zp[Hl]-submod-
ules of V éxceeds d(z) . since H; g c? , it follows
that the dimension of any non-trivial ZP[CP]—submodule of
V exceeds d(Z) ;‘but this gives a contradiction, because
(3) imp}ies.that cnNnv has_ZP-dimension d(Z) . Therefore

z€c?, i.e. (4) is established.

The last major step is to prove that
A <cp l.‘.ll.l.'..'t.....(s)

Suppose A 4§Cp‘; then there exists a minimal normal
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subgroup N of H , contained in A , such that N ¢ cP

Suppose n € N\CP ; then there exist b,€B, c, € cP

1
such that n = bJ'c, , and by £1 . In fact

[a,0,] = 2 R ()

To prove this, suppose for a contradiction that [n,bl] £1l.

*
Let ,<b‘> = C<b >(n) ; then (since B is elementary abel-
1 .

ian) there is an element b' Z#1 in B such that b, = b*b'
and (B = G % @) .. Now ¢b'> acts fixed-point-free on
N, for, given x # 1 in.<b'> , X acts non~trivially on
N, so 'CN(X)«< N ; but CN(x) is normal in H by 2.2.1(a)}
therefore CN(x) = 1 . Hence, by (H8, V, 8.5), <}1>N is
a Frobenius group, with Frobenius kernel N . It follows,
because b'n € N, that b'n belongs to a conjugate in .
<?')N of <b'> . One consequence of this is that lb'nl
diviges [b'| . wow (|o*[,[6']) =1, since (p) = &'y,
and soO (lb*l,lb'nl) = 1 also. Therefore

CULDINRGNS
Recall that ¢y = bjn =bbn. [b*, b'n:l= 1, so

*

c]!b*| = (b'n')h]*‘ ‘, hence <b'n> = <(b'n)‘b |>< c? .
But b'n bélongs to a conjugate in <b'>N of <b'> <B,

h:

1
and cPn B 1 for any h € H . This implies bn =1,

. .
hence b =1 and n =1, a contradiction. Thus (6)
holds.

Suppose that q 1is the prime of which INl\is a power.

Then n% =1, so blq = blqnq = (bln)q = clq e cP . 1t

follows that bl and ¢y both have order gq .

.
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It is now possible to show that

4 p
[A’ cl] gc oo--.ou.-uou-u--;.(?)
Let M be a minimal normal subgroup of H contained in
[aseq] 5 then. M= M, cq] x ey = [M,c,) .
-1
Let m €M ; then m =Dbyc, for some b, € B, c, € CP .

By the usual commutator manipulationms,

[92, cl] [bam, bln] = [?2’ bln]m[@, bln]
B P PN R LR AP
i.e. [ca, cl] = [ba,'n][m, cl-] . Hence

[m ,.'cl]q = [ca , cl]q e c? .

But M is a q'-group, because otherwise the g-element

°1
would centralize some non-trivial element of M , so it

follows that M = [M » 1] <P . It is immediate from this
“that (7) holds, as [A, cl] is a direct product of minimal

normal subgroups of H .

Let H, = (cD[A, e ] x 2.
H2 is easily seen to be normal in H , and Hag cP by
(4) and (7). An argument similar to that applied to Hy
earlier is now employed. Let VZ' be an irreducible Zp[ﬁZ]-

submodule of V , and let N, = C, (V,). Then, as in the .
2 =, "2 |

previous argument, N, contains no non-trivial normal sub-

groups of H , and so N, £ F(Ha) = [A, cl] X % , and
F(H,/N,) = [A, ci]Z / N, . Now 2.6.4 , applied to the

split extension. H,V, , where H, = H,/N, , shows that
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dimsz2 is divisible by d(Z) lem(|cy|,dp(R,) ) , where
the bar conzention is used, A, = [A, ci] , and

d
F=GF( p (2) ) . As in the case of Hl s 1t is easily

shown that d(Z) = d(Z) and |Ei‘ = Icll = q . Therefore

eumzpv2 > 4(2)|eq| > a2,

i.e. the dimension of the irreducible Zp[Ha]-submodules

of V, exceeds d(z) ; but HE<Cp and CNV has Zp-

dimension d(Z) . Thus the assumption that A4 {ZCP has at
last given rise to a contradiction, and consequently (5) is

esﬁablishéd.

Hence, by (4) and (5), Az €CP, and so cnV is a
2 [4z]-submodule of V , from which it follows that
d(Az) = d(Z) . Therefore d(A) | d(Z) , and the theorem is

proved.

Theofem 2.6.9 gives a condition on the Fitting subgroup
of H which must necessarily hold if G € ﬁg . The next
important result (2.6.13) is another necessary conditioﬁ,
that G € ﬁ% , involving the action of the complement B

of F(H) on F(H) . The condition is that the action of

B on F(H) should be absolutely faithful in the sense

defined in (R2), i.e. that for every subgroup B; of B,

CB(CF(H)(B:L)) = Bl .
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It is clear that B acts absolutely faithfully on
a\oSo\sz,\tj
F(H) (= A x2) if and only if .B acts{faithfully on A

2.6.10 Suppose d(A) ld(Z) , let B, be a subgroup of
B, and let B = CB(CA(Bl)). Then V has a proper

ZP[B CA(Bl} Z] -submodule U of codimension at most
IB:BO\d(z) such that B_ centralizes V/U .

Proof By 2.4.4(b), with AZ, CA(Bl)Z’ Zp

N, N,, F respectively, V has a 2[B.C,(B,)2]-submodule

in place of

W, of codimension d(CA(Bl)Z) , such that BO centralizes
V/W . Since d(A)' d(z) , codim W = d(z) .

Let B, be a complement to B, in B, and let

U=/ W . Then U is a’ 2 [3 c,(B,) Z]-submodule of VvV,
beB pL” "AT

2
and codim U < |B,|codim W = |B:B_|d(2) . Also -[v, B,| €W,
and [Y, Bo] is a B-submodule of. V , so [V, Bo] U .

Hence U has all the desipred properties.

2.6.11 Suppose d(A) |d(z) , let By be a subgroup of
B, and let- U be as in 2.6.10 . Then BlU is pronormal
in G .

Proof B, is pronormal in H by 2.6.6 , [v, Bl] <£vu,

1
and Ng(B;) ( =B C,(B)) 2 ) normalizes U , so the

vresult is immediate from 1.5.11 .
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2.6.12 (a) If d(a) 'd(Z) then dim, V = |Bla(z)

(b) Suppose d(A) \d(Z) , let A, < A be a normal sub-
group of H , and let B KB . If V, is an irreducible

Zp[gvoé}submodule o; V then dimzp ‘B :C (A Jla@ .
it CBéAO) =1 then dimzpvo = |B,|a(2) .

Proof (a) Gonsider the faithful irreducible F[BAZ )-module
v , where F = aF( deZ)_) , introduced in the remarks
preceding 2.6.4 . Since d(A) | d(Z) , F is a splitting
field for AZ , and therefore, by 2.4.1(h), with AZ , v

in place of N', V. respectively, dimF V lH AZ| \B\

Z

Therefore dim, V = d(z).dim, V. = |Bld(2) .
P |

*
(b) Consider V. , the irreducible F[B A ]-submodule of V'

*
corresponding to V, . By 2.4.2 , with V , A%, A, , V. in

place of V,-N, N,» U respectively, dimg V ‘B :C (A )‘
*
and dlmF Vo = \Bo\ if CBéAO) = 1 . The desired results

) ' *
now follow from the fact that dim, V, = d(Z).dimF v .
. p (o) (o}

2.6.13 Theorem If G € 6; then B acts absolutely

faithfully on A .

Proof Let G € g; , and let Bl be a subgroup of B . To
prove the theorem, it must be shown that

cp(cA(Bl)) = By -
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Let. B, = cB(cA(Bl)) - By 2.6.9 , d(4a) | da(2) , so
2.6.10 ,.2.6.11 and 2.6.12 can be applied. In par£icular,
G has a pronormal subgroup B1U s Where U is the
ZP[B C,(By) 5]—submodule of V described in 2.6.10 , such
that d(2) < codim U <|B:Bo\d(Z) . Let C be a comple-
ment to ElU in G . Then by 2.6.8 ,

' cnv >1 e, (1)
Cvn H is,g supplement in H to B1 ; also CV N Bl has
a complement in H (every subgroup of B has a complement
in H ), and therefore has a cémplement, Cl say, in CV " H.
It then.follows that:

c

1 is a complement to Bl in H, and C

normalizes C AN V ceeeeans e ececnnctaseacanones cee.a(2)

An argument similar to one in the proof of 2.6.9 is
now employed to show that
ccv-n-oao.o.o.-u-coo(B)

Z2<C
z = &, - By 2.2.5(b), with

Aséume Z :'gcl , and let
Blf Cl in place of Bo’ q'_ respectively, there exist
¢, € C;, b, €B; such that ]bll divides |z | and
¢y = blzo , .and consequently, if zb = 292, with
oyl 5 12503 = 10 (o, lzg]) = lzg| 5 then
<cl> = <b.1z1> X <z2> .
Let B, =C;N B (hence B =3By X B,); then By(b,z,)
is a group, and by 2.2.5(a), [A, B2.<blz]>:‘ gep .o It

follows, defining

SRR CEV LPERCEV EX T
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that
Hy £ G- B (S

It is clear also that Hl -is a normal subgroup of H .
Let Vl be an irreducible Z [ ]-submodule of V , and

let N, = CHivl),“ Then 2.2.4 can be applied, as in the

proof of 2.6.9 , to show that

< F(y) = 2, B,z x <Za>
and F(Hl/Nl) = F(H, )/N .

Let 'H = B)/N) ; then 2.6.4 , applied to the primitive

’ééi;blelté{;h;cn'-grpup Hlvl (split extension) shows that
a5 Lem([Bo0ay |4 4(X) ) atvides dimy ¥,
where F = ar( pi(<Z2?) y | Ay = [A,_ BZ<‘plz1>], and the bar

convention is used. The same kind of argument as in the

corresponding part of the prodf of 2.6.9 now shows that
dim, v PR ERCENEKCRY
IBal‘Zlid(<ég>)
> IB,la(2) .

Since C AV is a Zp[cl]-module (by (2)), and therefore a
Zp[ﬁl]-moduie (by (4)), and C NV is non~-trivial (by (1)),
this shows that dim, (Cr\V) > B |d(z) . But )
|8,| = \clnB\ = |B: Bl\ and

im, (CAV) € codin U  |B:B[d(2) < |B:By|d(z)  .....(5)

- P
This gives a contradiction; hence (3) holds.
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Let H, = BZ[A, B,| X2 . By 2.6.12, as C.Bé[A, B,]) =1,

the Zp-dimension of any irreducible Zp[Ha]-submodule of V
is |B,la(z) , i.e. |B:B |a(2) . Now by 2.2.5(a),
[A, 32] $C1 » and hence, using (3) as well, H, c, .
Therefore C NV is a (non-trivial) ZP[HZ]-submodule of
V , and so

dim,’ (CNV) > |B:B, | d(2) cereeneeeasd(6)
(5) and (6) togethzr i'mply that IB:Bll' = |B:Bo| , and thus

(since By <:Bo) the desired result, i.e. that B, = B_,

1 o
follows.

Although it is not necessarnglpfoving the theorem,
it is useful for future purposes to notice that the above
argument implies that C N V is a complement to U in V ,
and hence that C,(CNV) is a complement to B U in V.
Thus from the proof of 2.6.13 can be extracted the follow-

ing result:

2.6.14 If G e ﬁ% ; By and U are as in the proof
of 2.6.13 , and C is a complement to BlU in @ such

that C = (CAH)(CAV) , then Z<CANH.
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2.6.9 and 2.6.13 give necessary conditions for G to

lie in ep ; the remainder of 2.6 is devoted to shéwing that
these conditions together are sufficient for G to be a

leg-groupf

N
»

' 2.6.15  Suppose d(a) ‘d(Z) and B acts absolutely
faithfully on A . Let Bl be a subgroup of B and let

B2 be a complement to Bl in B ; thus B = B, X B

1 2 °
Then any irreducible ZP[BZAZ]—submodule of 'V is also

irreducible as a ZP[?ZCA(Bl?Z]-module.

Proof let Vi

V . Then by 2.6.12(b),

be an irreducible ZP[BZAZ]-submodule of

dimzp\fl = |B,la(2) R ¢ 5
By hypothesis, CB(CA(BI)) = B1 , 80
CBQCA(B’J')) = B, N Cy(C,(B))) =B, "By = 1 . Thus by
2.6.12(b) again, if v, is an irreducible Zp[?ch(Bl)%]-
. submodule of V , then

dimzpva = |Ba‘d(Z) ' ---oo--.ooo-o-a.(a)

The result now follows from (1) and (2).

The wording of the next lemma is dictated by the needs
of Section 2.7 . The notation FZ(G) denotes the second
term in the upper Fitting series of G j i.e. FZ(G) is

given by: F2(G) / F(G) = F( G/F(@) ) .
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2.6.16 Suppose that whenever B is decomposed as
B.; Bl X _}32 B each irreducible Zp[BaAZ]-submodule of Y
is an irreducible ZP[BZCA(BI)Z]-module. Let F = FZ(G) =
AZV . If L 1is a pronormal subgroup of G , WLV is
normalized by NG(LV) , and C/F is a complement to LF/F
rin G/F , then W has a complement in V which is normal-

ized:by C .

Proof LV H is a pronormal subgroup of H , by 1.5.346,
So NH(LVHH) is abnormal»v in H, by 1.5.5 . Therefore,
by 1.5.;7 s NH(L\H\H) contains g system normalizer of H .
Now H e'n,a s BO by' (H8, vI, 12.4) , the systemlnormalizers
of H coincide with the Carter subgroups ‘of H , and hence
NH(LvnH) contains a Carter subgroup of H . But BZ is
clearly a Carter subgroup of H , 80 NH(LVnH) >,B.hz for
some h € H . It is easily seen that the result holds for

L provided it holds for some conjugate of L ; thus it is

, -1
legitimate to replace L by Lh and hence arrange that

NH(LV(\ H) 2 BZ .

2=C{\B;'t:hus B=BlXB2.

LV N HL LF.NH = BjAZ , s0 CA(Bl) ch(LvnH) , and

therefore  N(LVAH) > B €,(B,) Z . Hence the hypothesis.

Let B, =LFNB, B

that W is normalized by NG(LV) implies that:

i ; - s ®a 0 0 0 008 l
Wis a ZP[B c,(By) z] submodule of V (1)

B.AZ is a normal subgroup of H , so, writing V

2
additively and using Clifford's Theorem, there is a
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decomposition
1 Tciearly, it can bQASSume?f'\\lt W<V | Hence
of V into irreducible zp[BaAz]-modules.,(the indexing of

the V. can be chosen so that, for some s >=1

h 3

WA (V, ®...0V) =0, but

‘Wn(Vl@...G)VSQVi)>O fo_r any i»s ....(2)

Let U:Vle...'@v then

s
U is a Zb[BaAZ]-@odule P )
If U®W<KV, then without loss of generality it can be
‘assumed that Vs+lJ‘1§ U®W. By (1) and (3), UG W is a
Zp[BZC A(By)Z]-module, and, by the main hypothesis, V_,  is
an irreducible Zp[ﬁch(Bl)Z1-module; therefore
(T ® W) N v;ﬂ =0,and s0 WA (U@V_,.) =0 . But this
contradicts (2) . Hence U@ W=V . U is a ZP[BZAZ]-sub-

module of V , and hence U is normalized by BZAZV , 1l.e.

by C ; this completes the proof.

é.6.l7 Corollary If for every decomposition of B as

B=Bl>( BZ-’

is an irreducible Zp[BZCA(Bl)Z -module, then G € ﬁ; .

each irreducible Zp[BaAZ]-submodule of V

Proof 1Let L be a pronormal subgroup of G , let C/F
be a complement to LF/F in G/F , and let B2 =CnNnB.
By 1.5.12, LAV is normalized by NG(LV) , 80 by 2.6.16,

LNV has a complement ,' U say, in V which is normalized
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by B,AZ (£C)
LVN H is pronormal in H -by 1.5.6 , and Hé(’f ,

so it follows from 2.1.5 that LV A AZ is normal in H .
Consequently thére is a normal subgroup N of H such
that AZ = (LVOAZ) X N . Also B, 1is a complement
to LVAZ N B (: LFNB) in B, and therefore, by 1.3.3(b)
BZN 'is a complement to LVN H in H . Hence, again by
1.3.3(b), BZNﬁ is a complement to L in G . Therefore
cet .

Rt

2.6.18 Theorem The following are equivalent:
(1) Gce %% ; ,
(2) d(A) \ d(zZ) , and B acts absolutely faithfully on A ;

(3) whenever B is expressed as B = Bl X Ba s €ach
irreducible Zp[ﬁaAZ]-submodule of V is irreducible as

a zp[Bac A(Bl)Z]—module )

Proof (1) => (2) : Theorems 2.6.9 and 2.6.13;

(2) . = (3)
(3) => (1) : Corollary 2.6.17 .

2.6.15;

To sum up the main investigation of this section, a

"gelf-contained" version of 2.6.18 is given in 2.6.19 .
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2.6.19 Theorem Let G be a primitive soluble group of

dgrived length at most 3, let V be the unique minimal
normal subgroup of . G , where V is a p-group, say, and
let H be a complement to V in G . Then G ¢ &; if
and only if the following three conditions hold:
(a) H has elementary abelian Sylow subgroups;

() dy(F(H)) = d,(%(H)) ;
Y : Y
(¢c) if B 4is a complement to F(H) in H then B acts

absolutely faithfully on F(H) .

The last result of 2.6 shows that the condition, in
2.6.18, that B should act absolutely faithfully on A ,
. '_can be expressed in different ways. |
2.6.20 Let B be an elementary abelian group which acts

fixed - point -free

faithfully on a group A (i.e. CA(B) = 1); then the
following are equivalent:

(1) B acts absolutely faithfully on A ;

(2) the mapping X = CA(X) , from the set of subgroups

of B into the set of subgroups of A , is injective;

(3) CA(BO)'> 1 for every maximal subgroup B, of B .

Proof ' (1) & (2) : See (R2, 1.1). This is true even when
B is a non-abelian group.
.(l) =3 (3) : If for some maximal subgroup B, of B,

C,(B)) =1, then Cy(C,(B,)) = B> B .
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(3) => (2) : Suppose (2) does not hold. Then B has sub~

groups B, and. B, , with B, # B, , such that

CA(Bl) = CA(BZ) . Hence

s0 B2 can be replaced by BlB2 , and thus it can be
assumed that By < B, . Since B 1is elementary abelian,

B has a subgroup ;BB such that B = B, X B3 . Hence

1= cA(B)' CA(BaBlBB)

ch(BZ) fa) CA(BlBB)

CA(Bl) N CA(BlBB)

[]

CA(BlB3) .
Thus if Bo is a maximal subgroup of B containing BlB3 ,

then CA(Bo) =1 , and so (3) does not hold.
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2.7 Groups inr(z? with complemented pronormal subgroups

In this section necessary and sufficient conditions
are found for a soluble group of derived length at most 3

to belong to %; .

Let G e0f . 1r & is to 1te in %, . then clearly
the following two conditions must be met:
(a) &(6) =1 ;
(b) the primitive soluble quotient groups of G all
belong to e; .
If (a) and (b) hold then G € 6; (because, a soluble group
with trivial Frattini subgroup is in the residual closure
of its set of primitive soluble quotient gfoups, ﬁ% c ﬁ; ,

and %; is Ro-closed).

It will be assumed throughout 2.7 that (a) and (b)
hold, and hence that G € gnn (7‘/3 . It follows that there
are minimal normal subgroups Vl’ VZ’ ey Vt of G, for
some t 21 , such that |

F(G) = V., X V, X oo XV

1 t
Let H be a complement to F(G) in G , and for each
ie{l,...,t} let

A
Ny = Cg(Vy) VyoooVyenVy

where the "hat" has the usual meaning, i.e. that Vi is to
be omitted from the product. Then Ni is a normal subgroup

of G and ViNi = CG(Vi) ; G/Ni is a primitive soluble
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group with unique minimal normal subgroup ViNi/Ni , and

HNi/Ni is a complement to ViNi/Ni in G/Ni .

For each i € {i,...,t} , define the subgroup F(i)(G)
of G by

P 0) /eg(v) = B /o) )

2.7.1 Let s e {;,..,,t} , let N be a normal subgroup

of G contained in N; N ... AN_, and let G = G/N .

Then, using the bar convention, for each i € {l,...,s} :

(a) ca(vi) = Co(Vy) = VN,
® @ = Do

(¢) If N=N;A...n N, then F(G) = V...V, and

l.
U@ n..n FE@ = R @
(where Fa(G) is the second term of the upper Fitting

series of G , i.e. FZ(G) / F@) = F(G/F(G) ) ).

Proof (a) Eec-é(Vi) &= [Vi,g] <N
= [Vi,g]<vinNi=1

& g € CG(Vi) .

(b) Abbreviate F(l)(G) to F, . Ina g;-group, there
are no Frattini factors, so the Fitting subgroup is deter-
mined as the unigue abelian self—centfalizing normal sub-

group. Now Fi/Cz(V;) (= F4/Cq(Vy) ) is abelian, from
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the definition of F,; , 80 to establish (b) it will be
enough to show that F;/CE(V;) is'self-centralizing in

E/CE(V]:_) :

& g e CG( Fi/CG(Vi) )
&> g € Fi .

(c) Now suppose N=Nln...(\Ns.Then Vi,Vé,...,V;

are minimal normal subgrou It ¥ . = - =
groups of G and Vs+l = cee = Vt =1,

v

BO F(G,) = V:L
5 —_— 5 B
F(G) € A cg(V;) = Ql Calvy) = Ql NV, (by (a))
= Q;L"Nivi (as N, » N for each i € {1,...,5})
s B 5 p
Now. inNiVi = igl Cy(V;IF(@) = (incH(vi) ) F(6) S NF(@) ,

F(G) .
Hence F(G) = '\'fl"fa' = F(G) .

so  F(G) < NF(G)

Let F, be the subgroup of G containing N such that
F = F,(® . It is clear that ,F/N; < F(&/N;) for each
i=1,...,8 , i.e. 'ﬁgF_i for each i = l,...,5 .

Thus FLFy A ... NF .
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Conversely,
g € Fl n...nNn Fs
= 8 € Cg( F;/Ca(Vy) ) (i =1,...,s)
> DA< G-
_ 5 5
= [F.e]l<N[7.8]< Nz = r@®
i=1 i=1 %1

= g€ Cz( F/F(G) ) =F.

2.7.2 Theorem If G € gp then

drP !, (F9@)) = [FP @) o 53 (g)]

for all i,je {1,...,t} .

Proof Suppose G 1is a counterexample, i.e., G € 6; but
the condition on the F(l)(G) does not hold. Then without

loss 0of generality it can be assumed that
dr w1, |F(2)(G)|) >F V@ nr @] L.

Consider G = G/N;NN, . G e Q@ = t’,’P ; also

Ny AN, < r(l)(e) A2l |, so

drP @1, 1F@b > IFD@ n 5@ @] ....2)
But by 2.7.1(b), P = F3@)  fori = 1,2, so
(2) shows that G is also a counterexample to the theorem.

Hence, replacing G by G , it can be assumed that t = 2 ,
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s0 that G has juet two minimal normal subgroups, Vl and

Vo

otherwise CG(Vl) = CG(VZ) = F(G) , and hence

(note that Vl and V2 cannot be G-isomorphic, because

F(l)(G) = F(Z)(G) =‘F2(G) s Which contradicts (1) ).

From now on write Fi for F(i)(G) let V = VlV2

= F(e) , and let F=TF,(@) = F,A F, (using 2.7.1(c)).
Recall that H is a complement to V in @ ; let B be
a complement to Fn Hv (= F(H)) din H . Thus, as

He g (\OL , B is elementary abelian; also B is a comp-
lement to F in G . Further F;, n B is a complement to

F in F, (i = 1,2), and thus

(|rnBl, IF,nB) (lrp s Py, Ip,: P

_ ( |7 | 2 )
RN AN I A N
> 1 (by (1)).

Let q be a prime number which divides both ‘Fln Bl and
lehB‘ , and for each 1 let bi be an element of order

g in Fin‘B.Let b = b,b, ; then béF:L and béFa.

Since B 1is elementary abelian, a complement Bl to

F; A B in B, such that (by < B, ; can be constructed.

Now let G = G/N ‘(where . Ny is the normal subgroup of G

1
defined in the remarks preceding 2 7.1). 'l‘hen G e Qg g
and G is a prlmltlve soluble group in 0(, , With unique
minimal normal subgroup '\}'1 . 2b> is a subgroup of a comp=-

lement B, to F(H) in ¥ , so, applying 2.6.10 to G

l.
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(with <b> playing the role of "Bl“ in that result),

there is a subgroup Ul of G , with Nl < Ul <V1Nl,, such
that U, is normalized by N-ﬁ(<b$) , ﬁ/ul is centralized
by '2b>‘, and (since C-BI(CF(E)((DS?) =<b>» by 2.6.19),
the codimension of T, im V, is |§I:(b)‘dz (z(H)) ,
P

where pl' is the prime number of which ‘Vll is a powér.
Let W, = Ul(\. Vy ; then 1<W, < v, Wl is normalized
by Ny(<b?) , and <b> centralizes V,/W; . To establish
the last assertion, note that, since ‘ <b> centralizes
T/ (v b] SU NV = .

The same argument applied to G':/N2 demonstrates the

existence of a subgroup W of V

2 2
N (<b>) normalizes W, , and {b> centralizes VoW,

such that 1< Wa< v, ,

Hence N (<b)>) normalizes W,W, and {b> centralizes
V/WW, . Also <b> is pronormal in H , as <b> is a
Carter subgroup of the normal subgroup <b>E?‘(H) ’ b] of H

(cf. 2.6.6). Hence by 1.5.11 , <b>WlW2 is pronormal in G .

Now G € gp , and hence there exists a complement, C
say, to <b>wlw2 in G . CV is then a supplement to <b)
in G , and therefore (as b is of prime order gq) either
CV =@ or |G:CU| =q . If CV =@ then CNV isa
nofmal subgroup of G , and so CN YV is one of 1, Vl,

V,, Vv (recall that V; # V,); hence €NV =1, because
: . . G - .

ér“xyho't.hef possibility would contradict cnwlw2 = 1°', Then

C is a complement to V in G , and therefore



' _ 80
lel/lvl. But

Ic| =
le] = le/|¢epuWy[ = lal/atullw,| ; therefore
[v] = qlwl||w2‘ , and hence q = |V1/Wl|lV2/Wé‘ , which

is impossible, as q isa prime number and lVi/Wi\ > 1 for
each i . Hence CV # G, and s0 |G:CV| = q , whence CV
is a complement to <b> in G ; thus CV N H is a comple-

ment'to <B> in H . Also

lenv| = letlvl _ lal V|- = lV=W1W

80 CNY
AR A R 2l

is a complement to WW, in V . It follows that
(CVAH)(CAV) is a complement to <b>W1W2 in G, and
hence, replacing C vby (CVnHE)(CNV) , it can be assumed
thats
<b>WlW2 has a complement € in G such that
¢ = (CAE)(CAY) erernerareeeasieene(3)
It is useful to show further that
CNY = (Cf\Vl)(Cf\Va) , and as a first step it is

necessary to show

B N Cy(vy) > 1 S P €19

Suppose that (4) does not hold. Then, since CH(Vl) is
normal in H , it follows that
[} .
[2, cqv] €E ncyvy) =1, |
and therefore CH(V1)< 7(H) . Let H = H/CH(Vl) . Then

Eezd < [H,n] oV NnH =1
_ & h € Z(H) ,
so 2z(H) = Z(H) .
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Therefore F(H) = ﬁ' x Z(H) = H' x Z(H) = F(H) .
But  F( H/C(Vy) ) = FinH/ C4(Vy) , s0 it can be deduced
that F, = F <F, . This contradicts (1). Therefore (4)
holds.

Let N be a non-trivial normal subgroup of H
contained in H'(\ CH(Vl) ; thus

[Tl, N] = 1 for each subgroup Tl of vy ceeeese(B)
Now V, is an irreduc;ble Zpa[H]-module (where p, is

the prime number of which ‘VZ‘ is a power), so Clifford's

Theorem can be applied to , to show that, if

VZ‘N

CVéN) > 1 then Cvél\[) =V, , i.e. N QCH(Va) . But

N ¢;CH(V2) , for otherwise N CH(Vl) P\CH(Va) = CH(V) =1 .
Therefore

[TZ, N] >1 for each non-trivial subgroup T., of V

Thus, b& (5) and (6), a non-trivial subgroup of Vl

cannot be H'-isomorphic to a subgrbup of V2 , and hence,

if T <V is normalized by H then T = (TAV))(TAV,)

Ceeteeeeeans ceeo(7)

Suppose that M is a minimal normal subgroup of H

such that M<& CNH . Then (COHM =H (as C NH has

prime index q in H), so M is a g-group. Now

H e QL N 05 , 80 by 2.1.4 , H has elementary abelian Sylow

q~subgroups; hence

[M,b] =1 e, el (8)
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By 2.2.1(a), [M, an] is normal in H , so
[M,lC(\B] =1 or M.' An argument like the one used to
establish 2.2.5(a) shows that [M,CAB]<cNE, and,
since MKCNE , it follows that

[M,cnB] =1 e )
But B = <{b) x (CAB) , so0 (8).and (9) imply that B is
centralized by M : Therefore M Z(H) .

Hence all the minimal normal subgroups of H which
are contained in H are also contained in C N H , and
therefope |

B'gcns R & 1))

From (7) and (lO)’it follows that .

CNAV = (CnV,)(CAV,) , and thus

c ='(C!\H)(C!\V1)(CﬁV2) ceessenssss(1)

Given i € {1,2} , suppose that Ni* CV ; then
CVN:.L =G, and s0 C AN Vi , being normalized by C and
centralized by V and Ni , must be a normal subgroup of
G . Then CN Vi = 1 or Vi , which gives a contradiction,
because a particular consequence of (1l) is that
1<c¢ r\vi< vV, for i =1,2 . Hence
\

'Niscv (i = 1,2) P ¢ F-)

In particular,

cH(Vi)é cVvAH=CNAHE (i=12) ...0...(13)



Let G = G/N1 .

C=(CNEXCAV) , and C
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Then:

is a complement to

(oW in G e . (14)
For,
CNy = (CNH)X(C AV )(CNV,) Cu(Vy) V, (by (11))
= (cnm)(Cnvy) Vv, (using (13)) ,
and thus
CNy M HN; = (CN;AHIN; = (CNH)N, , and
CNy N V4N = (CNyNV N, = (CNV N, N ¢ 1))
This proves C = (CNAH)(CNV) . Also,
ey A YWy Ny
= CNj N cv (\<b>wlNl ( oNy < eV, by (12))

= CNy N (v N <oy )W 1y
= CNy N WyN;

= CNlﬁ VlN N V. N

1 171
= (CAVIN) N W Ny

= (CNAV{NW Ny INy

= (C N (VNNW) Ny

= (C f\Wl)Nl

i

Nl .

Hence

1
COW; = G , s0

that

G , and therefore

TN QoW =1 .

(using (12) again)

(by (15))

(as V

Further, as W, <.Nl , it is clear

C is a complement to <b>wl in

(14) is established.
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Now 2.6.14 can be applied to the primitive soluble

group G , with <py, WI, c, ﬁ;'VI in place of B,,U,C,
H, V respectively.(recall that W; corresponds to the
subgroup U constructed in 2,6.10) : this shows that
Z(H) € TN E . Therefore (invoking (10)), |

F(H) = B x 2 EENT .

‘Since F N H = FZ(E) N H = F(H) , it follows that

<
£evnaxm (by (12))

Similarly, by considering G/N2 , it can be shown
that F,N H < C N H . Therefore
hY
b = b,b, € (F;nB)(F,nB) <C .
This is a contradiction, as C is a complement to <§)W1W2
in G . Therefore no such group as G can exist, and so

the theorem is proved.

2.7.3 Theorem If
AFP @], [ P@h = [F3 @ n $a |

for all i, j € {1,...,t} , then Ge?p.
Proof As before, F\1(G) will be abbreviated to F; .
Suppose that the condition on the Fi holds, and let L

be an arbitrary pronormal subgroup of G; to prove the
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theorem, it will be enough to produce a complement to L
in G .

Let F = F2(G)A; then F=F N ...N F, , by 2.7.1(c),
and G/F 1is elementary abelian. Let 935 -++ 5 4, be the
distinct prime divisors of lG/Fl . Then
G/F = Sl/F Xeeo X sr/F , Where Sj/F is the Sylow qy-
subgroup of G/F (j = 1,...,r). Let
Fij i (1 =1,...,t ; j:l,...,r)';
thus Fij/F is the Sylow qj-subgroup of Fi/F . For every

=FnNnSs

je{l,...,r} and all 1i,ke {1,...,t} , either

gF or ij <Fij

i (for otherwise,

13
(17 5/F |4 B y/FD) > [(Fy 0 R /F], which leads to o
contradiction of the hypothesis of the theorem). Therefore,
for each J € {},...,r}- there is an ordering

F S;.-a'é;Fi

1,5 $F

15, g

of Flj’ ooy th . This fact is now used to construct a

sequence of subgroups of. Sj

Let C

CEJ be such that %ﬁj/F is a complement to
(LFAF. .)/F in F, ./ F . Then, because S./F is
ll’J ll’J

n B [F to (FaFa,)/F
elementary abelian, a complement ¢zj/FK’can be constructed
.'17

such that JFANF. ./ F = C,./F . Continuing this_
) ?33/ n 11’3 / {,?J &
‘ bgro £C..<€... £Cu. of S. can be
process, subgr ups 3%3 \'%ﬁJ & \'ﬂgJ j

constructed such that, for each k € {i,-..,t} s iﬁj/F is
)

a complement to (LF(\Fi j) / F in 128 j / F, and
k, k’
Ce.NF. . = Cg. for each £ <k .
3 Tig.d A
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The process can be carried one step farther, to produce a

subgroup: Cj of Sj such that - Cj/F is a complement to

LFNS.)/F in S./ . =
( J)/. in J/F , and an Fit,j %Ej . Hence
‘ )
C;NFj;=C;y foreah ie {1,...,1;} .

Having constructed C:j for each j € {},...,r} , let

C = clcz...cr s B0 that C/F = Cl/F X oue X Cr/F .
Since LF/F = LFr\S1 / F %... ¥ LF(\Sr / F, it follows
that

C/F is a complement to LF/F in G/F  ....eee..(l)
Further, it will be shown that, for each i € {l,...,t} ,

CFi/Fi is a complement to LFi/Fi in G/Fi P ¢-3

Consider an arbitrary i e_{l,...,t} . For each

Jje€ {i,...,r} R SjFi/Fi is the Sylow qj-subgroup of G/Fi

(LFf\Sj}Fi / F; 1is the Sylow qj-subgroup of LFi/Fi , and
chi/Fi is the Sylow qj—subgroup of CFi/Fi ; hence , to
prove (2), it is enough to show that:

chi/Fi is a complement to (LF(\Sj)Fi/Fi in SjFi/Fi

S &3
It is c¢lear that the two subgroups supplement each other

in SjFi/Fi" Also,

ACjFi N (LF(\Sj)Fi

]

(cj N (LF(\SJ-)Fi) F;

. . N NS.)F. .
(CJ.ASJ (LF SJ)Fl) F;

(c:j n (Sj(\Fi)(LFf\Sj)) Fy

: s s ns. .
(G‘J N FlJ(LF S,J)) Fy
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= (cj n Cij(LFﬂFij)(LFnSj)) F,  (as Cij/F is a
complement to (LFnFij)/F in Fij/F )
= (Cj N Cij(LFnSj)) Fy
= ((cjn LF(\SJ.)Cij) F, (as cij <cj)
= F Cij Fi (as CJ/F is a complement to

(LFnsj)/F in Sj/F)

Therefore (3) holds, and consequently (2) is proved.

Coﬁtinuing with an arbitrary i e {l,...,t}-, let
G = G/Ni .G is a brimitive soluble quotient group of G ,
50 by one of the two overall assumptions of this section,
G e @% . Now 2.6.16 is applied to G . 2.6.18 shows that
the first hypothesis of 2.6.16 is equivalent to the
condition that the primitive soluble group which is the
subject of the lemma is a %%—group, so it holds for G .
Fz(_é) = T‘; , L is pronormal in G (by 1.5.3 and 1.5.2),
and EF;/?; is a complement to ff;/f; in E/?I (by (2)
and the fact that Ni:é Fi). By 1.5.12, NG(LV) normalizes
L NV ; therefore NG(LV) nornalizes (L(\V)Vl...Vi_l N Vi .

By 1.5.3, Ng(LV)) = Ng(LV) = N (LV) , so Ng(LV;)

normalizes (Lr\V)Vl...Vi_l NV, . Therefore, by 2.6.16,

LAYV ..V,

WiI> Ni)’ in Vv, , such that W, is normalized by CFi .

NV, has a complement, WZ say (where

Therefore CFi normalizes Wi/\ Vi , which is a complement

i = W. "N V., .
to (LI\V)Vl...Vi_l(\ Vi in Vi . Let Ui Wl Vl
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Then, by 1.3.3(c), applied to V = vlva...vt ,
Ul"‘Ut is a complement to LAV in V , and U

is normalized by C ceeeeens chereenn ceeeo(l)

Let B be a complement to F h H (= F(H) ) in H ;
then C = (CNAB)F = (CNAB) F(H) V , and
c an’ is a com?lement to, LFNB in B A 62
LV N H is pronormal in H , by 1.5.6, and H is
metabelian, so by 2.1.5, LV N F(H) is normal in H .

Therefore there is a normal subgroup, N say, of H such

that

F
(Lvnﬂ-x)) XN o eeneen.. e (6)
LF B, so by (5), (6) and

F(H)

Now (LVAH) F(H) B

B}

1.3.3(b),

(CNB)N is a complement to LVAH in H  ...... (7)
(CaB £C, so (CNB)N normalizes U;...U, ; therefore,
by (4), (7) and 1.3.3(b) again, (Cr\B)NUl...Ug is a
complement to L in @ . Therefore G € %% . Q.e.d.

The results of the section are summarised in 2.7.4 ,

which, together with 2.6.19 , yields a complete description

3
of &% F\OL .
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2.7.4 Theorem Let G be a soluble group of derived

length at most 3. Then G € %% if and only if all the
following conditions are satisfied :

(a) &(G) =1 ;

(b) the primitive soluble quotient groups of G all
belong to %% H

(¢) 4if F(GQ) = Vi X eal X V, , where the V, are minimal

normal subgroups of G , and Fl, FZ’ ey Ft £ G are
defined by

Fi/Cq(Vy) = FE/CG(V) ) (i=1,...,0),

then (1%, |, [F,) = |5 n Fjl for each i, J € {1,...,t}.

The question of further investigation of @% seems to
be difficult : it appears to be reasonable to conjecture
)
that %; Q(j, , in which case 2.7.4 would give a complete
description of %% . However it is apparent that an invest-
igation of that conjecture, using technigues analogous to

those developed in this chapter, would be a formidable task.

Chapter 2 ends with two examples which substantiate
the statement, made in section 2.1, that %% is neither

Sn—closed nor Do-closedf
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2.7.5 Example Let w € GF(52) be such that (»3 =1

H

and define H L GL(2, 52) by

= L) E D)6 e

Then H % S3 X 03 . Let V be a GF(52)-space of
dimension 2 , and let G be the semidirect product HV
(with a natural action of H on V). Then G is a
primitive soluble group, and 2.6.18 can be applied to show
that G € @p .

Let H, = <(O 1),(0 ')> ¥ 55 then H)V

1 0 i -

is a normal subgroup of G , and it is easily seen that a
primitive soluble quotient group of HlV violates condition
() of 2.6.19 . Thus HlV & %% , and hence %% is not

S ~closed.
n

2.7.6 Example Define H GL(2,7) by
1 -1 ~
H = <(0 ),(O )>=53,
1 0 1 -1

let V be a GF(7)-space of dimension 2 , and let G be the

-semidirect ﬁroduct HV (with a natural action); then G 1is
a primitive soluble group. It is easy to check that G
satisfies the conditions of 2:6.19 , so G € %; . However

G X G violates condition (c) of 2.7.4 , 80 G X G & @p .
Hence %% is not Do—closed. (The principle behind this
exanple can of course be applied to any group G of derived

length 3 , to show that G % G & ﬁ% ).
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CHAPTER 3 -

3,1 Groups with Frattini intersection supplements

Recall that @ denotes the class of groups in which
every subgroup has a complement (studied in H5).;Chapter 3
is concerned with classes of groups of which 4 may be
regarded as the archetype. The class considered in this
section turns out td be no more than the "saturation" of
Q , 1.e. the smallest saturated formation containing g .
For convénience, Hall's description of e will first be
set down. Let ﬁhydenote the class of groups of square-free
order,vi.e. ce® if and only if, for every prime number
p, 2 { el .

3,1.1 Theorem (H5) .The following are equivalent:
(1) e @;
(2) @e sDR;

-

(3) G is supersoluble and the Sylow subgroups of G are

all elementary abelian.

Definition A'supplement S in a group G to a subgroup

H of G is called a Frattini intersection supplement if

EHn s <®@) .
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Throughout 3.1, °3’ will denote the class of groups in

which every subgroup has a Frattini intersection supplement.

M 3‘ is Q-closed.
Proof "Let G € 3 and let N be a normal subgroup of G .
Let H/N be a subgroup of G/N . Then H has a Frattini
intersection supplement S in G . SN/N is a supplement
to H/N in G/N , and

H/N A SN/N = (HAS)N/N € 3(G)N/N < ®(G/N) .

Therefore G/N € 3 .

3.1.3 If Ged and BG) =1 then Ge @ .

Proof This is immediate from the definition of o .

3,1., Ged if and only if a/8(a) € 8.
Proof Let G ed . Then G/E(G) € F by 3.1.2 , and
G/8(G) has trivial Frattini subgroup, so by 3.1l.3 ,
¢/8(c) e €.

Conversely, suppose 6/8(G) € @ . Let H £ G ; then
H3(G)/8(G) has a complement, S/8(G) say, in G/&(G) .

Thus HS = G and H nS < HE(G) N S = &(G) . Therefore

ce J.

Thus 3 = Eﬁe . The next theorem shows that :3‘ is a

saturated formation, and gives a local definition for 3’ .
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Note that the fact that Q is a formation does not
immediately imply that Ege is a formation : 3.1.6
exhibits an example of a formation X such that Eﬁx« is

not Ro-closed.

3.1.'5 Theorem 3’ is a saturated formation and is locally

defined by the formation function f ,where for each prime
number p , G € f(p) " if and only if @G is an elementary

abelian group of exponent dividing p-1 .

Proof Let & be the saturated formation locally defined
by the formation function f . It is weli known that the
class of supersoluble groups (which will be denoted
hereafter by :j) is a saturated formation, locally defined
by the formation function i‘o , where for each' prime number
pr, Ge€ fo(p) if and only if G is abelian and has
expoﬁent dividing p-1 . It is cleér that

£(p) = £,(p) n § (for all p) ceeerneneed(1),

80 in particular, :}*g 8 . Since e-groups are supersoluble,

it is also true that o = E 8 ¢ .

- (1) :}Gﬁf : let G € ‘3", let p be a prime number,
and let H/K be a p-chief factor of G . & edJ , 80
G/CG(H/K) e for(p). F(G) is the intersection of the .

centralizers of the chief factors of G (H8, III, 4.3), so
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in particular, &(@) < F(@) <CG(H/K) . Therefore (using

(1)) 6/cg(u/k) e £.(p) n € = £(p) . Hence G e F .

(1) FeF:let ce ; it will be enough to
show G/Q(Q) e B , 80 it is permissible to assume that
®(G) =1, and show that Ge ¥ . Ged, so by 1.4.5 , -
it is enough to show G e en . _

F(G) = f\CG(H/K) , the intersection being taken over
all the chief .factors of G , and G/C4(H/K) € #(p) € §
for each prime number ‘p' and each p-chief factor H/K
of G . Therefore o
| a/F(¢) € R G = 8 B -
By assumption, &(G) = 1 , so by (H8, III, L4.4),

every normal subgroup of G contained in F(G) has
a complement in G : R -
Let H be a normal subgroup of G ; then HF(G) / F(G)
has a complement in G/&(G) , by (2), and H n F(G) has
a complement in G , by (3). Therefore, by 1.3.3(a), H
has a complement in G . Hence G e e; , and the proof is

complete. ’ -

A similar study can be made of groups in which each
normal subgroup has a Fratpini intersection supplement.
The class of all such groups coincides with E@ﬁu , and is
a saturated formatior (though not consisting of soluble

groups). In fact it can easily be proved that :
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E§€n = {G:G/F(G) € Qn} = ﬂ@n

It follows immediately that E§€n is a saturated formation,
as it is well known that, if ¥ is a formation then W%

is a saturated formation.

3.1.6 Example In (S1), Schunck gives an example which

shows that a "saturated homomorph" (or "Schunck class") is
not necessarily a formation. The example can also be used

to show. that, if x is a formation, it does not necessarily
follow that ‘EQ.% is a saturated formation.

Let % be the class of groups defined by : G € X ir
and only if G is 2~perfect and has abelian Sylow 2-sub-
groups. (To say that a group is 'g-perfect", for some set
T of prime numbers, means that it has no non-trivial
n-quotient groups). It follows from (H9), Lemma 1.6, that

¥ is a formation. A, € X , and so ~SL(2,3) € E§3€ (the

I
Frattini quotient group of SL(2,3) is isomorphic to A#).
Let G = SL(2,3) x (&) , where {b) ¥.C, , and

let {a) = P(SL(2,3)) (2 C, ). Then Ny = ¢av) and
N, = (o) are normal subgroups of G , N;nN, =1, and
G/Ni % SL(2,3) for each 1 ; hence G € R (E§(£) .

If G € E§3€ then,since @(G) = <a> =C, , and 80
G/8(G) = A

I

or Al+ X C2 e £ . But neither of these groups is 2-perfect,

therefore G ¢ EQX . Hence Ro(EQ‘%) # Eé,')e , and 80 E§3€

x €, , it must follow that either G € X

is not a formation.
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3._2 Groups with X-intersection' supplements.

In the last section an attempt was made to find a
generalisation of the concept of a g—group, but this did
not lead very far from '@ . A more general approach is
tried in this section, although the basic idea, of putting
restrictions on the intersection of a subgroup and a

supplement, is retained.

Definition Let X be a class of groups. If S is a
supplement in a group G to a subgroup H of G , such

that Hn S e€X , then S is called an X-intersection

supplement to H in G . .

Notation Let J(X) denote the class of groups in which
every subgroup has an x-intersection supplement. I.e.
¢ e 3(¥) if and only if for a2ll H <G there exists

S<G such that HS =G and HNnSe X.

As an example, let 36 be the class of groups of order

1 ; then S = €. It is clear that, for any class X ,.
£ c X)) , and in fact 36%9«8(36) .

Definition A subgroup H of a group G is said to be

unsupplemented in G if H " has no proper supplement in

G, i.e. the. only subgroup of G which is a supplement to

H is G itself.
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2.1 Any subgroup H of a group G has a supplement

S in G such that HN S is unsupplemented in @ .

Proof Let S 'be a minimal supplement to H in G
(i.e. no proper subgroup of S is a supplement to K
in. G). Suppose H NS has a proper supplement, T say,
in ‘G» . Then

H(T n S)

H(HAS)(TNS) = H((HAS)T nS)

HGnSs) = HS = G,

80 by choice of S, TAS =S, i.e. 8 T . But then

HNSS<T,s0 T=(HAS)I =G, a contradiction.

Therefore H N S 1s an unsupplemented subgroup of G .

3.2.2 Theorem For any group G and any class & ,

G € JX) if and only if the unsupplemented subgroups

of G are all X-groups.

_13;_9_0}‘_ (1) Let G € &¥) and suppose that H is an |
unsupplemented sub.group of G . Since G is the only
‘supplement to H in G , it must follow that H = HnG € X .
(2) Suppose that the unsupplemented subgroups of G.
are all X-groups, and let H be any subgroup of G . By
3.2.1 , H ha‘é‘, a supplement S in G such that HanS is

unsupplemented' in G . Hence HA S € 36 , and therefore

G e X .
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Theorem 3.2.2 effectively reduces the study of .@C%)
to the question of which subgroups of a given groﬁp are
unsupplemented. However this ques?iOn is one to which a
complete answer is difficult to find; the following series
of results gives some partial information on the subject.
One interesting consequence of 3.2.2 is that (taking X
to Be the class of groups of order 1), if every non-trivial

subgroup of GA has a proper supplement im G then G € e .

3.2.3 (é) If H is unsupplemented in G then the same
is true of any subgroup of H.

(p) If H<LG and K is unsupplemenf;ed in H, then K
is unsupplemented in G .

(¢) If H is unsupplemented in G and N is normal in

G then HN/N is unsupplemented in G/N .

Proof (a) A supplement in G to a subgroup of ‘H is

also a supplement in G to H .

(b) .Suppose S is a supplement to K in G . Then
K(SNnH) =H, so SAH=H and hence K< H<S .
Therefore S =G .

(¢} Suppose S/N is a supplement to HN/N in G/N . Then

HS = ﬁNS =G, and so S = G . Thus HN/N is unsupplemented

in G/N .
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From 3.2.3(a) it follows that, if all the unsupple-

mented subgroups of G are %-groups, then they are in
fact all 3€S—groups-. Hence:

3.2.4 For any class of groups % , &%) = S(%°)

3.2.5 (a) (H8, III, 3.2(b)) If N is normal in G then
N is unsupplemented in G 1if and only if N <€ &(G) .
(b) If M is an abelian minimal normal subgroup of G

then every proper subgroup of M 1is unsupplemented in @ .

Proof (a) If there exists a maximal subgroup H of G
such that N4 H , then HN = G , and so N has a proper
supplement in G .

(b) Suppose H <M . A supplement S to H in G
is also a supplement to M in G . Thus M NS 1s normal
in G, so MNANS=1o0orM.But MNS>1, because MANS
is a supplement to H in M and H < M ; therefore

MNS =M. Thus H< S, and hence S =G .

32,2.6 1If H is unsupplemented in G then HgGg .

Proof Let N = Ge , and let H G . Then HN/N has a
complement, C/N say, in G/N . If H{N then HN>N,
so C< @G, and therefore H has a proper supplenent

(namely C) in G .
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3.2.7 Let G be a group and let ml, ,'ﬂ'@ be the

distinct conjugacy classes of maximal subgroups of G . For
each 1 , choose Mi e@nﬁ ; then every subgroup of G

contained in M1 Nn...n Mr is unsupplemented in G .

M Suppose H < Ml N...Nn Mr sy and H has a proper
supplement S in.G . Let M be a maximal subgroup of G
whiqh contains S ;vthus HM = G . Without loss of general-
ity it can be assumed that M = Mlg for some g € G ; but
then HMl = G , a contradiction. Hence H is unsupplement-

ed in- G .

In (G1), Gaschﬁtz defined the praefrattini subgfoups
of a soluble group, and showed that a subgroup W of a
soluble group G is a praefrattini subgroup of G if and
only if, (1) W covers each Frattini chief factor of @G ,
and (2) W is contained in some conjugate in G of each
maximal subgroup of G . From (2) it follows, by 3.2.7 ,
that the praefrattini subgroups of G aré unsupplemented
inn G .

Praefrattini subgroups, as well as covering Frattini.
chiefAfactors, avoid complemented chief factors. It is not
true that every subgroup of a soluble group G which
avoids all the complemented chief factors of G , is con-
tained in a praefrattini subgroup of G , but it will be
shown that any such subgroup is unsupplemented in G :

this is the result of 3.2.9 .
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3.2.8 (H7, Theorems 13, 14) If G is soluble and has a

faithful irreducible representation of degree n over

GF(p), then

(IGIp denotes the order of the Sylow p-subgroups of G ).

3.2.9 Theorem If G is soluble and H £ G avoids all

the complemented chief factors of G , then H is unsupp-

lemented in G .

Proof | Suppose that the result is false, and let G be'a
minimal counterexample. Then G has a subgroup H which
avoids all the complemented chief factérs of >G , and yet
has a proper suppiement in G . Let M be a maximal sub-
group of 'g which supplements H , and suppose that M
contains a minimal norma} subgroup N of G . Themn M/N
is a proper supplement to HN/N in G/N , and HN/N
avoidé all the complemented chief factors of G/N ; but
this contradicts the choice af G . Therefore M has
trivial core,nand so G 1is a ﬁrimitive soluble group.

Let V- be the unique minimal normal subgroup of G ,
~and suppose‘ |V| =_pn s, P being a prime number. The
maximal subgroup M will be a complement to V in G,
and hence |G:M| = [V| = p® . Now HM =G , s0
ilH:uaM = |EM|/IM) = la: M| = p® , and therefore
‘H‘éTB.pn . Since ¥H avoids all the complemented chief

factors of G, HENV = 1 , and therefore
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n
< = 1 = i
p < IHlp |Hv/v|p < le/glp M|, i.e.

n .
‘M‘p>/p s 00000 oontco-o-cooooc-oo(l)

But V can be regarded as a faithful irreducible Zp[M}-

module, of dimension n , and hence, by 3.2.8 ,

IMlpépn’l e, e (2)

Inequalities (1) and (2) are incompatible, so no such

group as G can exist.

3.2.10 If &(@) =1 then each normal subgroup of @
contained in F(G) has a complement in G . If in addition
G 1is supersoluble, then every subgroup of F(G) has a

complement in G .

Proof The first result has been observed previously (in
the proof of 3.1.5), and is a direct consequence of (H8,
ITI, 4.4). Now suppose that G is supersoluble, and let
H<LFG) . Let K be a complement to F(G) in G , and

write @) = V, X...% Vt , Where the Vi are minimal

1
normal subgroups of G : each Vi is of prime order. It
can be assumed that the indexing is chosen so that, for
some s € {1,...,t} , Hn (V] %...xV) =1, but

HA (V) Xe..xV, xV,)>1 for any i>s . Write
Vo=V %..XV_, and suppose that HV < F(G) . Then
Vi{ HV for some i € {l,...,t} . Since V, has prime
order, it follows that Vitﬁ HV = 1 , and hence

Han (Vv x Vi) = 1, a contradiction. Hence HV = F(G) , and
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therefore KV is a complement to H in @

The next theorem gives complete information about the
unsupplemented subgroups of G when G is either a
nilpotent or a supersoluble group.

5.2.11 Theorem (a): If G is nilpotent then H is

unsupplemented in @ if and only if H < &(Q) .
(b) If @ 4is supersoluble then H is unsupplemented
in G if and only if H € W for some praefrattini sub-

group W of G .

Proof (a) In a ﬁilpotent group G , G/€(G) is elementary
abelian, so 'Ge £ ®(G@) (in fact Gg = ®(G) ). The result
follows, by 3.2.6 .

(b) That subgroups of praefrattini subgroups are
unsupplemented is immediate from 3.2.3(a) and the remarks
following 3.2.7 .

For the converse, suppose that H is unsupplemented
in @ , and proceed by induction on gl . If T = ®(6) > 1,
then by induction there is a praefrattini subgroup W/T
of G/T such that HT/T < W/T ( HT/T is unsupplemented-
in G/T , by 3.2.3(c) ); then W is a praefrattini sub-
group of G and H < W . Thus it can be assumed that
$(G) = 1 ; hence, by 3.2.10, every subgroup of F(G) has

a complement in G . Therefore H N F(G) =1 , since
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otherwise a”éomplement to HAFG) in G would be a
proper supplement to H in G , contradicting the
hypothesis that H - is unsupplemented in G .

Let p Dbe the largest prime divisor of |G| . Since
G 1is supersoluble, G has a normal»Sylow p-subgroup,
whiqh is consequently contained in F(G) . Thus
p'k ‘G/F(G)l , and in particular, p X |H\ .

Let V be a minimalinormal subgroup of G , of
order p . By inductioh, HV/V € W/V for some praefrattini
subgroup W of G , and hence H < WV . Every complement
to VvV in @ contains a p-complement of G , and hence
contains a conjugate of H ; therefore H £ K for some
complement K to V. in @G . K is a maximal subgroup of
G, so W, being>a praefrattinivsubgroup of G, is con~
tained in some conjdgate of K. Thus,(since G = KV ,
there exists an element 'x in V with WK . Then
W= WY , and so - -

E<W NnK = WY A K = W(VAK) = W,
i.e. H is contained in WX y & praefrattini subgroup

of G . Q.e.d.

The result of 3.2.11(b) is false for any soluble group
G which is not supersoluble. For, if G is such a group,
then by (H8, VI, 9.9) there is a non-cyclic chief factor of

@ between P(G) and F(G) , and therefore, since
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F(G)/2(G) can be expressed as a'direct'product of minimal
nqrmallsubgroups of G/®(G) , G has a non-cyclic chief
factor of the form .H/®(G) . Choosing U such that
$(G) <U<H, it follows from 3.2.5(b) that U/B(G) is
unsupplemented in G/&(G) , and hence (by 3.3.1(a) in the
next section) U is unsupplemented'in G . U does not
avoid the complemented chief factor H/®(G) of G, so

U cannot be contained in a praefrattini subgroup of G .

The last of this series of results on unsupplemented
subgroups is concerned with the unsupplemented subgroups

of a direct product.

3.2.12 Let Gy and G, be groups. Then U is an
unsupplemented subgroup of G1 X G2 if and only if there

exist unsupplemented subgroups U, of Gi (i = 1,2) such

i
that U < Ul XU, .

Proof Let @G = Gl X G2 . Suppose U is unsupplemented
in G , and.let Uy be the projection G a»Gi (i =1,2).
Then by 3.2.3(c), Urey is unsupplemented in G; for each. i .
Also U< Uﬂl x Ur, .

For the converse, by 3.2.3(a) it will be enough to

prove that, if U; 1is unsupplemented in Gy (i = 1,2)

Ul X U2 ’

then U, X UZ is unsupplemented in G . Let U



106

and suppose that S is a sgpplement to U in G . Let
S, = SNGU, . Then S,U, is a group, and is thus a
supplement to U1 in GlU2 . Therefore SlUZr\ Gl is a
supplement to Ul in Gl , and henqe Slet\ Gl = Gl ,
i.e. 5,0, P G, . A fortiori, G, & SU, . Therefore

G = SU = SU,U) <SU,G) =SU, ,

and s0 S is a supplement to U2 in G . But Ua is
unsupplemented in G , by 3.2.3(b); hence S = G .

Therefore U is unsupplemented in G . "~ Q.e.d.

3.2.12 suggests the conjecture that, if N, and N

1 2
are normal subgroups of G , Ny AN, =1, and H €6 is
such that HN,/N,  is unsupplemented in G/N; '(i = 1,2),
then H is unsupplemented in G . However Example 1.3.5

can be used to refute this conjecture: with the notation

of that example, v, 1is normal in G (i = 1,2), v, nv, = 1,
and HVi/Vi is unsupplemented in G/Vi (i = 1,2), but H

has a complement in G .

Some of the information which has been obtained about
unsupplemented subgroups is now put to use in making

further observations about S(X).
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3,2.13  For any class of groups &% , SX) is S-closed.
(Since it has already been seen that W§(¥) = SeS) , this

result is not surprising).

Proof Let G € J(X) and let HLG . If U is an
unsupplemented subgroup of H , them by 3.2.3(b), U is
unsupplemented in G , and therefore, by 3.2.2, U € X .

Hence, applying 3.2.2 again, it follows that H e J(X).

3,2.14 Theorem Let ¥ be any class of groups.-:

(a) If G is nilpotent then @G € §(X) if and only if
B) e X° .
(b) If G is supersoluble then G € SX%) if ana only

if the praefrattini subgroups of G belong to 3€S .

Proof (a) is immediate from 3.2.2 and 3%.2.11(a); (b) is

immediate from 3.2.2 and 3.2.11(b).

3.2.13 shows that S(X) is always S-closed; in 3.2.15
the closure properties of B&(X%) are examined further.
_5_.2‘.1§ (a) If X is Q-closed then so is 48(96)_

(b) 1If X is Ro-cIOSed then so is o&%)

Proof Let X = Q¥, let G € %) , and let N be a

normal subgroup of G . Let H/N <G/N . Then H has a
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supplement S in G such that HAS eX . 1t follows
that SN/N is a supplement to H/N in G/N and
H/N A SN/N = (HnS)N/N € X = X . Therefore a/N € J%) .

(b) Suppose X = R03€ , and suppose that @ is a

group with normal subgroups Nl and N such that

2
N,AN, =1 and G/N),&/N, both belong to B(¥). suppose
thai: U is an unsupplemented subgroup of G ; then by
3.2.3(c), UNi/Ni is unsupplemented in G/Ni for each i .
Hence, by 3.2.2, UNi/Ni € ¥ . But then U/(UAN;) and
U/(UAN,) both belong to X , and therefore U e RX =X .
Therefo.re, by 3.2.2 again, G € .:8(36), and so 03(39) is

’ Ro-closed.
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%.3 Nilpotent, abelian, and cyclic intersection supplements

The properties of W(¥) are nowlconsidered for
particular choices of 36 . In analogy with the archetype
£ - (1) , the kind of properties sought are, e.g.,
solubility, bounds on the derived length of soluble 'ug(x)-

groups, and bounds on the rank of chief factors.

First consider W), where Tl is the class of nil-

potent groups. The results of 3.2 show immediately that

T < dBH = {a,5,RJSM0 .

It seems very reasonable to conjecture that AR
W (0 -groups are nécessarily solu‘gxle, although this gquestion
has not been settled.Only soluble groups in vS(’ﬂ) will be
considered here, sO for convenience the following notation

is introduced: for any class of groups X , let

&%) = S%) n e0l.

3.3.1 (a) Let N be a normal subgroup of a group G , and
let S be a minimal supplement to N in G (hence N O S
is unsupplemented in G). Suppose that U >N and U/N is
unsupplemented in G/N . Then U A S is an unsupplemented

subgroup of G .
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(b) Suppose that G has an abelian minimal normal sub-
group V which has a unique conjugacy class of complements
in G . Let H be a complement to V in G , and suppose
that U 1is an unsupplemented subgroup of H . If U norm-
alizes aproper subgroup W of V , then UW is unsupple-

mented in G .

Proof (a) Suppose that T 1is a supplement to Un S in
G . Them TN S is’a éupplement to UAS in S, and s0O
(Tl\S)N/N is a supplement to (UNS)N/N ( = U/N ) in
G/N . Therefore (Tf\S)N = @ , because U/N is unsuppl-
mented in G/N . Hence
(NNS)(TAS) = N(TAS)N S =5,
50
(NNAS)T = (NAS)(TNAS)T = ST 2 (UNS)T = G .
Thus T = G , because N N S is unsupplemented in G .
Therefore UMN S is unsupplemented in G .
(b) Suppose that S is a supplement to UW in G .
Then SV/V is a supplement to UV/V in G/V . By 3.2.3(b),
U is unsupplemented in & , so0 by 3.2.3(c), UV/¥ is unsupp-
lemented in' G/V . Therefore SV = G . Hence, because. V is
abelian and normal in G, SNV is normal imn G , and -
so, since V 1is a minimal normal subgroup of G , either
(1) snv=1 or (2) snV=YV.
If (1) holds then § is a complement to V in G,

s0 by hypothesis S = g8 for some g € G . Therefore,
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since a conjugate of a‘supplement is itself a supplement,
H is a supplement to UW in @ . But this is impossible,
because

|zow| = |uwl| = |B|{w| < le| .
Therefore (2) holds, hence V < S , and therefore S = G

Thus UW 1is unsupplemented in G Q.e.d.

If in 3.3.1(b) the condition that the complements of
V are all conjugate is omitted, then the result fails.
Example 1.3.5 can be used to illustrate this: in the nota-
tion of that example, the minimal normal subgroup Vl has
a complement H; = <k>V2 , and H; has an unsupplemented
subgroup U = <ﬁé> . <w2> normalizes the proper subgroup
W= <&l> of V, , but UW= <@2><&i> is not an unsupple-
mented subgroup of & , because (X, vV, WW,S is a

complement to UW in G .

3.3.2 Let p be a prime number and n a positive
integer., Let T= ﬂ(p,n) be the set of prime numbers q
such that ql.(pn—l) , but q l’ (pF-1) for r <m.
'Then for all q €  , the Sylow g-subgroups of GL(n,p) are

cyclic.

Préof Let q € 7¥ and let qa be the order of the Sylow

q-subgroups of GL(n,p) . It is well known that
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leL(n,p)| = o2 V(" o 1)Ly, L (p-1)
and therefore qa |(pn-l) (since q does not divide any
other factor in the above expression for |GL(n,p)| ).
GL(n,p) has a cyclic subgroup of order (p™-1), corresp-

onding to the multiplicative group of GF(pn), and there-

fore GL(n,p) has a cyclic subgroup of order q?

3.3.% Theoren let G be a primitive soluble group in

S , with unique minimal normal subgroup V (of order
p? , say). Let H be a complement to V in G . Then H

is supersoluble and metabelian, and thus @G e(ﬂ? .

Proof Regard V as a faithful irreducible Zp[HJ—module.
Suppose that U is a non~trivial unéupplemented p'-subgroup
of H. H e QS(0) = \.3(’6‘0,_ so U is nilpotent. Let x be a non-
‘trivial elemént of U ; x is a p'-element, so by Maschke's
Theorem,

V=V, 8...8V_,
where the V; are irreducible Zp[(x)]—modules. x cannot
act trivially on all the Vi , since V 1is a faithful
<k>~module, so assume without loss of generality that x -
acfs ﬁon—trivially‘on Vy . Then <z>Vl is a non-nilpotent
subgroup of G . If V;, <V, then <x>Vl‘ is unsupplemented
in @ , by 3.3.1(b); but G € §(@Y , so this cannot be so0,

and therefore V, =V , i.e. {x) acts irreducibly on V .
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Thus V is a faithful irreducible Zp[(x}}mmdule, of
degree n , so0, by (H8, II, 3.10), x is a T-element,
where ¢ =7n(p,n) is as defined in 3.3.2 . Hence U is
a nilpotent R-group, and is therefore cyclic, by 3.3.2 .
Thus : |

All the non-trivial unsupplemented p'-subgroups of H
are‘cyclic'ﬁ#groups, and act irreducibly on V ......(1)

Let N be a minimal normal subgroup of H . Because

H has a faithful irreducible representation over Z_ ,
OP(H) must be trivial (H8, ¥, 5.17), and so N is a
p'-groub. Suppose that N is not cyclic, and choose U
such that 1 < U< N . Then, by 3.2.5(b), U is unsupple-
mented in H, so, by (1), U acts irreducibly on V , and
hence, a fortiori, N acts (faithfully and) irreducibly on
V. But N is noﬁ-cyclic, s0 this contradicts (H8, II,
3.10). Therefore :’

The minimal normal subgroups of H are all cyclic

| (@)

Another consequence 6f the fact that Op(H) =1 is
that ©(H) is a p'-group, and hence, by (1),

®(H) is a cyclic N-group PP 2

To show that H is supersoluble, it will be enough,
by (H8, VI, 9.9), to show that the chief factors of H
between ®(H) and F(H) are cyclic. Since F(H)/®(H) 1is
a direct product of minimal normal subgroups of H/®(H) ,

it will therefore be enough to show that the minimal normal
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subgroups of H/@(ﬁ) are cyclic. Let M/®(H) be a minimal
nofmal subgroup of H/®(H) . If .M/8(H) is a w'-group,
then (because $(H) is a R-group, by (3)) M = $(H) X N ,

where N is a minimal normal subgroup of H ; N is

eyclic, by (2), and so M/®(H) is cyclic. If, on the other
hand, M/®(H) is a W-group, then M/®(H) is a g-group for
some q € ™ ; the Sylow g-subgroups of H are cyclic, by

3.3.2 , 80 M(Q(H) is cyclic . Therefore H is supersol- -
uble. ' | | -

Let Fp and F_, be the Hall w-subgroup and Hall

'n'-subgfoup respectively of F(H) ; thus F(H) = F . X FW, .
F.

Ll

E“,

ian. Because H is supersoluble, H/F(H) is also abelian

has cyclic Sylow subgroups, and hence is itself cyclic;

has trivial Frattini subgroup, and is therefore abel-

(by H8, VI, 9.1(b)). Hence H is metabelian.

3.3.4 Theorem Let G e ua(WD . Then G/F(@) is supersol=-

uble and metabellan Hence G € Lé%

Proof Since F( G/&(G) ) = F(@) / ¥(e) , (by H8, III,
L.2(d)), it will be enough to prove the result for a/a(G)
and hence it can be assumed that ®(G) = 1 . Then F¥(G)
can be decomposed, as F(G) = V)Xo vV, say, into a
direct product of minimal normal subgroups of G , and
F(G) has a complement, H say, in G . Also

F(@) = C,(F(G)) = (\ Cg(Vy) .

1._
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As in the preliminaries of Section 2.7, let
N, = ) 7 -
Ay = cH(Vi Vl.’.vi. ..Vt (l = l’ocu,t)o
Then N; is normal in G , and G/Ni is a primitive
soluble group, with unique minimal normal subgroup
%
Ca(V /N, « Also G/N, € @f (M) = S°(M) , s0, by 3.3.3,
G/CG(Vi) is supersoluble and metabelian. Since the class

of supersoluble groups and the class of metabelian groups

t
are both R -closed, it follows that G/ N Ce(Vy) 5 d.e.
_ i=1 ¢ 7
G/F(G) , is supersoluble and metabelian. ' Q.e.d.

A conjecture which might be considered as a possible
converse to 3.3.4 is that all supersoluble metabelian groups
belong to SAD . But this is not the case; e.g. let G be
the split extension of <{a) = 025 by <x>.= 04 , with
action defined by a” = af . Then U = (a5, x2> avoids
the complemented chief factors of G , and so, by 3.2.9 ,

U is unsupplemented in G . But U dis not nilpotent, so

G € S .
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Now consider (00 , where (Ol denotes the class of

abelian groups. From the results of 3.2,

SO = {Q,5,R}E00 .

The question of solubility of $(()-groups remains open.

Nevertheless, as in the case of S@Y , only soluble
() -groups will be investigated. The only results given

here are immediate consequences of Theorem 3.3.L .

*
3.3.5 Theorem Let G € & OO . Then G/F(G) is metabel-

) L
ian and supersoluble, and G eOl .

Proof It follows at once from 3.3.4 that G/F(G) is
metabelian and supersoluble, and G/®(G) € OE . Also, ®(G)

unsupplemented in G , so ®(G) is abelian. Therefore S

L
ce(l .

3.3.6 Example The unsupplemented subgroups of GL(2,3)

are all cyclic. Therefore GL(2,3) € B (@ , and so the
*
bound of 4 on the derived length of s (Ol)—groups cannot

be improved.

Proof Let G = GL(2,3) and let N = F(G) . Thus N is
a quaternion group, and G/N 2 S3 . Therefore G/N € 4 ,
and so, by 3.2.6 , all the unsupplemented subgroups of G

are contained in N . N itself has a complement in G , so
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all the unsupplemented subgroups of G are proper sub-

groups of N , and are therefore cyclic.

-,03('0'0)' and u&(OL) may be far removed from the archetype
¢ , because ’it,_. may be ,that\ neither class consists solely
of' sollible groups. Howéver, 3.3.7 gives a guarantee of
the solubility of S(¥)-groups, provided that a severe
restriction is placed on the class X The px;oof of
3.3.7 requires the use of two well-known, but very deep,
results, namely the theorem of Feit and Thompson, that a
group of odd order is soluble, and the results of Brauer
and Suzuki, which show that a group with a quaternion or

generalized quaternion Sylow 2-subgroup cannot be simple.

%.3.7 Theorem it ¥ is a class of groups such that

C,XC, € X , then 8% < =L.

Proof It will be enough to prove that Jg¥ < ell, and
hence it can be assumed that ¥ is Q-closed.

Suppose that the result is false, and let G be a
minimal non-soluble group belonging to \\8(%) . By 3.2.13 ,

3,2.15(a) , and the added hypothesis that X is Q-closed,
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J(x) is QS-closed, so G must be a simple group.

Let (:‘:‘2 be a Sylow 2-subgroup of G , and suppose that
G2 has a subgroup H = Cax C‘2 . Now G e u&(%), so0 H has
a supplement S in G such that H NS € ¥ ; since
C,xC, & X, 1t follows that EN S< H, and so |HnS| is
either 1 or 2 . Then |@:8| = |E:Ha5| =2 0r 4 ;
thefefore, considering the permutation representation of
G on the cosgts of S , and recalling that G is simple,
it follows that G 1is isomorphic to a subgroup of the

soluble group S, . This is of cburse a contradiction, so

L
G‘r2 cannot contain a subgroup isomorphic to C_%XC, .

27 V2

Therefore (since G2 > 1, by the Feit~Thompson Theorem)
({2 contains precisely one element of order 2 , 50, by
(s, 9.7.3), G2 is either cyclic or quaternion or_general'-
ised quaternion. The work of Brauer and Suzuki precludes
the last two possibilities. If the first arises, then, by
the well-known "Burnside Transfer Theorem", G has a normal
2-complement, so G is not simple, a contradiction. |

Therefore such a group as G cannot exist, and the theorem

is proved.

Perhaps the most natural class to choose which has the
property of % in 3.3.7 is the class of cyclic groups,
which will be denoted here by J‘i . The remainder of this

section is devoted to deriving some informa_tion about J(&).
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3.3.8 Suppose vy and V2 are abelian minimal normal
subgroups of a group G , which are not G-isomorphic. If
U1< vy and U2<.V2 then U1U2 is unsupplemented in @G .
Proof By 3.2.5(b), it can be assumed that both U, and
U2 vare non-trivial. Suppose that S is aproper supplement
to U,U, in G . Then SV,V, = G , and hence, since V)V,

is abelian, S O ViV, 1is normal in G . Thus, because

Vo

vlaG!vz, SNV, = VyorV, . (If SaV,V, =V,

then S = G). But then S N V,V, is not a supplement to
UlU2 in VlV2 , a contradiction. Therefore U1U2 is

unsupplemented in G .

Two standard definitions are now needed:

Definitions Let G be a soluble group and H/K a chief
factor of G ; suppose that H/K is a p-groub and

n

lH/Kl = p' . Then n is called the rank of the chief

factor H/K.

If NEM and N and M 'are normal subgroups of G ,
then rG(M/ﬁ) denotes the maximum of the ranks of the
chief factors of G between N and M . rG(G/l) is

abbreviated to r(G), and called the rank of G .



120

" 3.3,9 Theorem Suppose @G € le:) . Then
(a) G 4is soluble;
(b) G/F(G) is supersoluble and metabelian,
r.( F(6)/R(G) ) €2, and ®(G) is cyclic;
(c) the praefrattini subgroups of G are cyclic;
(d) for any given prime number p ; any two p-chief

factors of G° of rank 2 are G-isomorphic.

Proof (a) is immediaté from %3.3.7 .

(b) The first statement of (b) follows from 3.3.4 ,
and the last is obvious (and follows from (c), in any case).
For the remaining assertion, suppose H/K is a chief factor
of G of rank at least 3, and let p be the prime number
of which lH/Kl is a power. Then H/K has a proper subgroup
U/K = Cpx Cp . By 3.2.5(bv), U/K is unsupplemented in G/K ,
s0 G/K & ag(et»). This gives a contradiction, because u3(£)
is Q-closed, by 3.2.15(a).

(c) is immediate from 3.2.7 and the remarks which
follow it. R

(d) From (b), chief factors of G of rank 2, if any

be G —isomorbhic ko factors
exist, must;die between P(G) and F(G) . Let N = §(a)
and write TF(G)/N = Vl/N X vee X Vt/N , where each v,
'is a minimal normal subgroup of G/N . Suppose
|Vi/N' = [VJ/N| = p2 for some prime number p , where
i,je {1,...,t} and 1 £ J . Let U;/N and U/N be
subgroups of Vi/N and. Vj/N respectively, each of order

p . Then, since Uin/N is not cyclic, and
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G/N‘ € Q&) =) , U;Us/N cannot be unsupplemented in

G/N . Therefore, by 3.3.8, vi/N' i vj/N . Q.e.d.

GL(2,3) € J(&) , vy 3.3.6, 80, as in the case of
W" (O)-groups, the bound of 4 on the derived length of
dtg(x)-groups is "best-possiblet,

Conditions (a)-(d) of 3.3.9 are not sufficient to
ensure that G € 8(L). For example, C4XA4 satisfies all
of these conditions, and it is easily shown, with the help
of 3.2..12, that qu Al+ has an unsupplemented subgroup

isomorphic to CZKCE sy S0 that C qu g JX).

L
Unlike 08('“) and ug(OL), ug(I:) does not have the useful

property of being Ro-closed (the above ex@ple, C#x»A s

illustrates this), so fhere arises the problem of determining

whether or not a given subdirect product of J(ﬂ)-groups is

itself an «S(i)—group. In the last result of this section,

an answer is given to the corresponding question in the

easier case of a direct product of dg(S)—groups.

3.3.10 Theorem Suppose G, , G, e.,S(Si) , and for each i

let o = {p: p is a prime divisor of the order of an

unsupplemented subgroup of Gi} .

Then &, X G, e 8% if and only if 63 NG, = F .
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Proof If p € 0, (O, , then for €ach i , G, contains an

unsupplemented subgroup Ui of order p . Then Ul X U2

is not cyclic, and, by 3.2.12, Ul X U2 is unsupplemented
in @) X G, . Thus G, % G, € J(X) .
Now suppose Gic\ Oé is empty, and let U be an

unsupplemented subgroup of Gl X G2_' By 3.2.12, there are

unsupplemented subgroups U of G, and U, of G2 such

1 1 2
that U< U XU, . G, € &), so U; is cyclic (i =1,2).
Also, U, is a g;-group (i = 1,2), so (|Ul|, |U2|) =1,

and therefore U; X U 'is cyclic. Hence G, %G, € XL .

2
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3.4 Groups with complemented ®-subgroups.

To obtain another example of a class of groups of the
form 98(%), let X ©be the class of all W-groups for some
fixed set ™ of prime numbers. An appropriate notation for
B(®) in this case is J(x). By 3.2.13 and 3.2.15, J(x) is
{Q,S,Ro}-closed.

Notation Let ‘e(ﬂ) denote the class 6f groups defined by:
G € ‘e(f) if and only if every T-subgroup ofi G has a
complement in G . If  consists of a single prime number
p , then '@({p}) will be abbreviated to ¥(p).

( ¥(p) should not be confused with the class gp "

investigated in Chapter 2).

341 S = Bw) .

Proof A W-intersection supplement to a W'-subgroup of G
is clearly -a complement to H in G . Therefore
S(x) € B(w) |
Suppose G € ‘@(7\") ; then every non-trivial n'—subgrdnup
of G .has a complement in G , which is in particular a .
proper supplement in G . Hence the unsupplemented subgroups
of @G must all be m-groups, and therefore, by 3.2.2,

G € d8(1r). Therefore
g(w') c J('K) .
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In the light of 3.4.1, it is natural to consider §(f)

rather than \8(“) ; results about the one class lead to

dual theorems about the other.
4.2 @(1\') is (Q,S,Ro}-closed.
Proof This is just 3.2.13 and 3.2.15 applied to the

claés ug(ﬁ').

3.4.3 Theorem For any group G , G € B(x) if and only

if the W-subgroups of G of prime order have complements

in G .

Proof It is clear that the first condition implies the
second. For the converse, supp$se that the second condition
holds, i.e.

Every T-subgroup of G of prime order has a
complement in G tesssesennas ceeeeaesa(l)
Proceed by induction on |G| . Let H be a ®w-subgroup of
G.If H=1then H certainly has a complement in G ,
so it is safe to assume that H > 1 . Let P be a subgroup
of H , of prime order. By hypothesis, P has a complement,
K say, in G . Hypothesis (1) carries over to subgroups of
G, by 1.3.2(a), so by induction, K € B(™). Thus the
R-subgroup HAn K of K has a complement, C say, in K .
C is then a complement to H in G , because

HC = H(HNK)C = HK =G and HNC=HAKAC =1.

Therefore G € gﬂTﬂ .
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3.4.4 corollary  $(m) = N¥y) .
PETY

Pr¥oof This is immediate from 3.4.3 .,

Thus some knowledge of the class g(n) , for an
arbitrary set 7v ..Q,f.P?jf",‘fu .numbers, can be gained from
information about ‘@(p)—g;oups, for ‘an arbitrary prime
number p . It is obvi,ou’s that (for p £ 2) g(p)—groups are
not necessarily soluble, since every p'-group will belong
to @(p) . It would be reasonable to hope that g(p)-groups
should necessarily be p-soluble, but even this is not true
in general, as is shown in 3.4.5 . Before that result, two

standard definitions are recalled.

Definitions Let 7t be a set of primes.

(1) A group is w-soluble if each of its chief factors is

either an abelian T-group or a T'-group.

(2) A group is M-supersoluble if each of its chief factors

is either a cyclic T-group or a T'-group.

3.4.5 Theorém (a) If Ge(@(a) then G is 2~soluble

(and therefore soluble, by the Feit-Thompson Theorem).

(b) If G e ©(3) then G is 3-soluble.

. (c) For p>5, € (p)-groups are not necessarily p-soluble.
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Proof Let p be any prime number, and suppose that G
is a group of minimal ordef such that, G € @(p) ;nd G is
not p-soluble. Since g(p) is QS-closed, it folloﬁs that

G is simple. p ‘|G| v(otherwise G would certainly be
p-soluble), s0 G contains a subgroup H of order p .

A complement K to H in G has index p in G , and
thus, considering the permutation representation of G. on
the cosets of K , G 4is isomorphic to a subgroup of Sp
| (the symmetric group o.f degree p). If p <3 then it
followslthat G 1is soluble and a fortiofi p-soluble, a
contradiction. For general p , the argument shows that if
G is a simple group in %(p), and pl [G] , then p is
the largest prime divisor of |G|, and' pai’lG| . For p 25,
Ap has these properties, and indegd AP € ﬁkp) : an¥ cycle
»of length p in AP is complemented in Ap by the

stabilizer of any symbol.

The next result should be compared with Theorem 3.1.1._

3.,.6 Theorem Let p be a prime number and let @ be a

p-soluble group. Then G € G(p) if and only if G is

p-supersoluble and has elementary abelian Sylow p-subgroups.

Proof (1) Suppose that G e 8(p), and let H/K be a
p-chief factor of G . Suppose that H/K is not cyclic,

and let L be such that K <L < H . Then by 3.2.5(b),
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L/K is unsupplemented in G/K , which contradicts the

fact that G/K € Q%) = G(p) = Sp') . Hence ¢ is
p-supersoluble. If . Gp is a Sylow p-subgroup of G , then
e, s8(p) = €(p) , so in particular $(6) =1, and hence
Gp is elementary abelian.

(2) Suppose now that G is p-supersoluble and has
eleﬁentary abelian Sylow p-subgroups, and use induction on
|g] . Let N be a minimal normal subgroup of G , and let
P be a p-subgroup of G . The hypotheses on G are clearly"
inherited by quotients of G , &0 by induction, G/N € ﬁkp),
and henﬁe PN/N has a complement in G/N . Thus, if
PA N =Al then P has a complement in G , by 1.3.3(a); so
assume P A N > 1 . Then,since G is p-supersoluble, it
follows that P AN =N and [N| =p . But,by 1.4.8, all
the normal p-subgroups of G have complements in G ;
therefore P NN has a complement in -G , and hence, by
1.3.3(a) again, P has a complement in G . Therefore

ce B . \ Q.e.d.

There is no correspondihg ulocal" version of the other
part of 3.1.1, i.e. it is not true that, if G dis p-soluble
then G € e(P) if and only if G € SDOWP) _ (where ’R(p)
denotes the class of p-soluble groups whose order is not
divisible by pz). To demonstrate this, it is useful to

first make the following observation:
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Lemma If X = sX y G € SDO\’*: and G has a unique minimal
normal subgroup, then G € x.
Proof  Suppose G sGlx...an', with Gi e,%‘
(i = i,...,n), and use induction on n . If n =1 then
Ge SE£=%. suppose that n >1 . G n G, is a normal sub-
gropp of G for each 1 , so, because G has a unique
minimal normal subgroup, g n Gi = 1 for all but (at most)
one i . Thus it can be assumed that G n Gn = 1 . Then
G = GGn/Gn , hence @ is isomorphic to a subgroup of

Gy X...x @ _; , and therefore, by induction, G ek .

Suppose that G, and G, belong to R(p), and p

1 2
divides both || and |G,| . Then @ x @, € R(p) , but

G, X G, € Q(p) . Suppose that G is a group with a comple-

1

mented unique minimal normal subgroup V , which is a

e

p'-group, such that G/N G, X G, . Then it is easily
seén (using 3.4.6) that G € B(p). ]‘::ut G é’&p) , 80, by
the lemma, G¢ SDR(p), i.e. & e B(») \ 50 RAp) .

An example of such a group G 1is easily constructed:
GL(2,7) has subgroups

W (L6 D

0

and G, = <(2 ‘2))>Ec3

0

Thus G, , G, €R(3) and {ay G2> ¥ Gy X G, - Let V De
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a GF(7)-space of dimension 2 ; then the split extension
G = (Glx GZ)V (with a natural action of G XG, on V)

is a group of the desired form, and so G € €(3) \ SDO’R@) .

In view of 3.4.4 , Theorem 3.4.6 has the following

immediate corollary:

3.4.7 Corollary If W is a set of prime numbers and @G

is a W-soluble group, then @ ee(‘ﬂ) if and only if G is
R-supersoluble and, for all p € X, G has elementary

- abelian Sylow p-subgroups.

Notice that A eg({a,j}') , 50 that €(r)-groups are

b

not necessarily soluble even if l-n'l = 2 . However, 3.4.8

shows that, if |wx'| =1 then g(ﬂ)—_g‘roups are soluble.

3,4.8 Theorem For any prime number p , e(p')-groups

are soluble.

(Of course,.if p # 2 , the result follows from 3.4.5(a),
but the proof given here does not appeal to the Feit-

Thdmpson Theorem).

Proof Suppose/that the result is false, and let- G be a

minimal non-soluble g(p')-group. Then, as in the proof of
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3.4.5, G is simple. Let q be a prime divisor of la| ,
different from p : such a q exists, of course, for
otherwise G would be nilpotent. Then G g Y(q) , so the
argument of the proof of 3.4.5 shows that G is isomorphic
to a subgroup of Sq . Therefore q is the largest prime
divisor of |G| . This shows that G is a {p,q}-group,
because q was chosen arbitrarily from amongst the prime
divisors of |G| distinct from p . It now folloys, by a
well-known theorem of,ﬁurnside, that G 1is soluble. This

is a contradiction, and so the result must be true.
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