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ABSTRACT 10 

A new contact detection algorithm between three-dimensional non-spherical particles in 11 

the discrete element method (DEM) is proposed.  Houlsby previously proposed the concept 12 

of potential particles where an arbitrarily shaped convex particle can be defined using a 2nd 13 

degree polynomial function [1].  The equations in 2-D has been presented and solved using 14 

the Newton-Raphson method.  Here the necessary mathematics is presented for the 3-D 15 

case, which involves non-trivial extensions from 2-D.  The polynomial structure of the 16 

equations is exploited so that they are second-order cone representable.  Second order-cone 17 

programs have been established to be theoretically and practically tractable, and can be 18 

solved efficiently using primal-dual interior-point methods [13].  Several examples are 19 

included in this paper to illustrate the capability of the algorithm for particles of various 20 

shapes. 21 

 22 
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NOTATIONS 25 

a, b, c, d constants defining a plane in 3D 26 

f   mathematical function defining a potential particle 27 

k  fraction of the spherical term of a potential particle, and when subscripted 28 
represents that the coefficients with k has been factored out  29 

pi   slack variables for the planar terms of a potential particle 30 

q   unit quaternion 31 

Q   rotation matrix 32 

r  radius of the curvature at the edges of a potential function without the 33 
spherical term 34 

R   radius of the spherical part of the particle 35 

s   slack variable for a potential function 36 

x, y, z  Cartesian coordinates 37 

x   vector of Cartesian coordinates  38 

w   constants for slack variables 39 

θ   particle orientation 40 

A   subscript identifying particle A 41 

B   subscript identifying particle B 42 

 43 

 44 

 1 INTRODUCTION 45 

 46 

Although spheres remain popular in the discrete element method (DEM) because of their 47 

computational efficiency in contact detection, particles in real life are largely non-48 

spherical.  Granular and powder materials are present in many shapes, most of which are 49 

non-spherical.  The processing of these materials is important in many engineering 50 



applications.  These encompass operations such as storage, conveying, mixing and sizing 51 

from small scale pharmaceutical or food processing operations, where composition control 52 

may be critical, to large scale industry storage where wall stresses may be important.  Non-53 

spherical granular particles, e.g. tablets, are frequently encountered in the chemical, food 54 

and pharmaceutical industries. The flow, arching and jamming mechanisms of these 55 

particles in hoppers and silos are more complex than for spherical particles. For instance, 56 

Cleary & Sawley [8] showed that the effect of particle shape on hopper discharge and 57 

stress patterns can be significant.  Wu & Cocks [19] and Mack et al. [20] have compared 58 

the results of DEM simulations with real experimental data in 2-D and 3-D respectively. 59 

They showed that particle shapes can significantly influence the particle flow properties. 60 

 61 

Various methods to model non-spherical particles have been proposed in the literature, 62 

most of which impose restrictions on the shape of the particles, i.e., either the particle has 63 

to be polyhedral or the particle shape is restricted to a particular type of function [2, 3, 4, 5, 64 

6, 7, 9].  In applications such as powder technology, where particles may assume a wide 65 

range of shapes, it is important to have a 3-D contact detection algorithm that is as general 66 

as possible so that the same algorithm can be used repeatedly for different processes.  This 67 

also allows numerical parametric studies to be performed across different particle shapes 68 

without being limited by the capability of the contact detection algorithm that has been 69 

implemented into the DEM code.  The method of potential particles introduced by Houlsby 70 

[1] can model any convex particle shape from circular to roughly polygonal in 2-D and 71 

from spherical to roughly polyhedral in 3-D.  In his paper, the contact detection algorithm 72 

in 2-D has been presented and solved using the Newton-Raphson method.  Here, the 73 

solution for the 3-D case, which involves some non-trivial extensions from 2-D, is 74 

presented.  The equations to be solved are formulated into a second-order cone program 75 



(SOCP), which has been widely established to be theoretically and practically tractable.  76 

SOCP solvers are generally held to be robust and efficient because they can use primal-77 

dual interior-point methods. 78 

 79 

In the next section, the mathematical formulation of the proposed contact detection 80 

algorithm is illustrated.  In the following section, three numerical examples are provided to 81 

illustrate the capabilities of the algorithm for non-spherical particles of different shapes.  82 

The robustness of the algorithm was tested for particles of both low and high aspect ratios. 83 

 84 

 85 

     2  THEORY AND METHODOLOGY 86 

2.1  Particle Definition 87 

 88 

Based on the notion that a convex particle can be constructed from an assembly of lines in 89 

2-D or planes in 3-D, Houlsby [1] describes an arbitrary convex particle in terms of a 2nd 90 

degree polynomial function (with respect to a local coordinate system).  In 3-D, it can be 91 

expressed as: 92 
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where (ai, bi, ci) is the normal vector of the ith plane defined with respect to the particle 94 

local coordinate system, and di is the distance of the plane to the local origin.  〈 〉 are 95 

Macaulay brackets, i.e., 〈x〉 = x for x > 0; 〈x〉 = 0 for x ≤ 0.  The planes are assembled such 96 

that their normal vectors point outwards.  They are summed quadratically and expanded by 97 

a distance r (see Figure 1(a)), which is also related to the radius of the curvature at the 98 

corners [1].  Further, a “shadow” spherical particle is added; R is the radius of the sphere, 99 



with 0 < k ≤ 1 denoting the fraction of sphericity of the particle (see Figure 1(b), (c) and 100 

(d)).  Houlsby [1] calls this function a “potential particle”, which has the following 101 

properties (see Figure 2):  102 

• f = 0 defines the particle surface, 103 

• f < 0“inside” the particle, 104 

• f > 0 “outside” the particle, 105 

• the particle is strictly convex, and any surface f=constant is strictly convex. 106 

For computational reasons, the expression in Eq. (1) is normalised (slightly changing the 107 

meaning of k): 108 
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Figure 1  Construction of potential particles (a) constituent planes are squared and 114 

expanded by a constant r.  A fraction of sphere is added.  Particles with the spherical term 115 

are visible in (b) k = 0.9, (c) k =0.7, (d) k  = 0.4 116 

 117 

 118 

2.2  Transforming the Reference System 119 

Consider two potential particles, particle A fA(xA, yA, zA) = 0 and particle B fB(xB, yB, zB) = 120 

0 defined in their local coordinates (xA, yA, zA) and (xB, yB, zB) respectively.  For the 121 

purpose of contact detection between a pair of particles, it is necessary to work with the 122 

positions and orientations of the particles with respect to the same global coordinate 123 

system.  A point x in the global coordinate system can be calculated from the local 124 

coordinate system xA or xB using the following expression:   125 

     A A A= + 0x Q x x  

⎪⎭

⎪
⎬
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 (3) 
     B B B= + 0x Q x x  



where x0A and x0B are the particle centres of particle A and B respectively, and QA and QB 126 

are the rotation matrices which can be derived from the particle orientations with respect to 127 

the global reference system.  In some 3-D DEM codes such as YADE, the orientations of 128 

the particles in 3-D are stored as unit quaternions [12].  The operation to rotate a vector 129 

from ( )zyx ,,=x  to ( )**,*,* zyx=x  by an angle θ  clockwise about a vector with 130 

direction cosines ( )cba ,,  can be expressed as 1* −= qvqx  where q and q-1 are unit 131 

quaternions defined as ( ) ( ) ( ) ( )( )kji 2sin,2sin,2sin,2cos θθθθ cbaq = and 132 

( ) ( ) ( ) ( )( )kji 2sin,2sin,2sin,2cos1 θθθθ cbaq −−−=− .   Alternatively, this operation can 133 

be expressed as a rotation matrix [10]: 134 
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where ( ) θθ cos12sin2 2 −==F .   135 

 136 

 137 

Figure 2  Definition of a potential particle in three-dimension. 138 

 139 



 140 

2.3  Contact Detection Algorithm 141 

To perform contact detection between a pair of potential particles fA and fB, Houlsby [1] 142 

proposes that one can solve one of the constrained minimisation problems below: 143 

• minimise fA subject to the constraint fB = 0 144 

• minimise fA+ fB subject to the constraint fA – fB = 0  145 

Here, the second method is adopted, which corresponds to finding a point which is midway 146 

and closest to both (with respect to the potential functions of the particles).  It is 147 

noteworthy that the presence of Macaulay brackets in Eq. (1) results in a discontinuity in 148 

the second derivatives which can cause convergence issues in the process of optimisation.  149 

Harkness [11] later suggested that the terms consisting of the Macaulay brackets can be 150 

raised to a 3rd degree.  However, the result of formulating the optimisation problem into a 151 

second-order cone program (SOCP) makes this step unnecessary.  The ith term in the 152 

Macaulay brackets are each replaced with slack variables pi and inequality constraints: 153 
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After some algebraic manipulations (see Appendix A), the second-order cone program can 154 

be formulated as follows: 155 
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Note that the variables with subscript k are related to the original variables in Eq. (2), (3), 158 

(4) and (5) through: 159 
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 160 

Eq. (6) can be input directly into second-order cone optimisers such as MOSEK [14].  161 

There is overlap if both sA < 1.0 and sB < 1.0.  Notice that a linear inequality is introduced 162 

for every plane “i”.  If there is overlap, the optimal point (xAk
*, yAk

*, zAk
*) has to be 163 

transformed back to the original local coordinates of particle A (xA
*, yA

*, zA
*) using Eq. (8).  164 

Thereafter, one can find the global Cartesian coordinates using Eq. (4).  This point is then 165 

used as the contact point, i.e, the point at which contact forces are applied between two 166 

particles.   167 

 168 

 169 

2.4  Calculating the Contact Normal 170 

For particles of equal stiffness, the unit vector identifying the direction of the plane of 171 

contact (i.e. the normal to the plane) can be calculated as the average between the two unit 172 

normal vectors of the two interacting particles. The contact normal can be assigned as a 173 

weighted average of the normal vectors of the interacting particles at the contact point 174 

based on the particle stiffnesses.  For each particle, the normal vector has been calculated 175 

at the point of contact with the other particle.  In local coordinates, the normal vector of a 176 

particle can be calculated as: 177 
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The normal vector can be transformed into global coordinates using Eq.(4).  The overlap 179 

distance can be found by performing a line search along the contact normal and bracketing 180 

two points, i.e., one on particle A (fA = 0) and the other on particle B (fB = 0) (see Figure 181 

3).  The overlap distance is the distance between these two points. 182 

 183 

 184 

Figure 3  Schematic of overlapping potential particles.  Overlap is exaggerated for the 185 

purpose of illustration. 2-D polygons are plotted for sake of explanation. 186 

 187 

 188 

     3  EXAMPLES 189 



To illustrate the capability and robustness of the proposed contact detection algorithm, 190 

some example simulations were run using the open-source discrete element code YADE 191 

[12]. The second-order cone program (SOCP) was solved using the conic optimiser 192 

MOSEK [13, 14].  For every potential contact, MOSEK was called as an external library in 193 

a routine in YADE, by specifying inputs which consists of the objective function and 194 

constraints.  The solution calculated by MOSEK was then used as the contact point.   195 

 196 

 197 

3.1 TEST A 198 

 199 

In the first simulation, 360 cubes were generated with random orientations.  Subsequently, 200 

they were allowed to fall under gravity impacting the base of a prismatic container (see 201 

Figure 4(a)).  All the particles were assumed to be frictionless.  In this example, a 202 

combination of several contact conditions, involving angular corners, angular edges and 203 

roughly flat surfaces is present throughout the simulation so that the robustness of the 204 

algorithm can be tested.  Once the cubes have settled (Figure 4(b)), an orifice at the base of 205 

the container was opened (Figure 4(c)).  The size of the orifice was 3 × 3 times the edge 206 

length of the cubes, while the size of the base was 9 × 9 times the edge length of the cubes.  207 

The simulation was repeated with tetrahedral particles (see Figure 5), whose size was 208 

chosen as to be tightly inscribed in the cubes. The volume of these tetrahedra is one-third 209 

that of the circumscribing cubes, and their edge length is 2  times the length of the cubes.  210 

The adopted contact law in the normal direction is linear elasticity (elastic spring acting 211 

only in compression) whereas in the shear direction is linearly elastic-perfectly plastic 212 

(elastic spring plus a frictional slider).  The contact stiffness in both directions has been 213 

assumed to be 1 GN/m.  In the performed numerical experiments, the density of the 214 



particles was scaled to 10000 kg/m3.  The density of the tetrahedron was assumed to be 3 215 

times the cube density so that they have the same mass.  Table 1 summarises the 216 

parameters used in this test. The flow of the particles over time is shown in Figure 6.  The 217 

simulation correctly shows that the flow rates of particles through an orifice are influenced 218 

by their shapes; an inaccurate algorithm is likely to have resulted in similar flow rates 219 

between shapes if the same particle size is modelled.  The difference between the 220 

deposition levels after settling (before the orifice is opened) is also captured realistically by 221 

the contact detection algorithm (see Figure 4 (b) and Figure 5 (b)); note that the volume 222 

ratio for a tetrahedron inscribed in a cube is 1:3. 223 

 224 

TABLE 1: Parameters for Test A 225 

Parameters Values 

Density 10000 kg/m3 

Normal stiffness 1 GN/m 

Shear stiffness 1 GN/m 

Friction angle of particles and containers 0° 

Container dimension 9 m × 9 m  × 14 m 

Orifice dimension 3 m × 3m 

Cube dimension 1 m × 1m × 1 m 

 226 

 227 



(a) (b) (c)  228 

Figure 4  Simulations of cube-shaped particles (a) filling the container (b) settling  and (c) 229 

flowing through the orifice 230 

 231 

 232 

(a) (b) (c)  233 



Figure 5  Simulations of tetrahedral-shaped particles (a) filling the container (b) settling  234 

and (c) flowing through the orifice 235 

 236 

 237 
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Figure 6  Discharge flow of particles through the orifice over time.  It should be noted that 240 

t=0 in this figure is the time when the orifice is opened, not the start of the simulation 241 

 242 

 243 

 244 

3.3 TEST B 245 

 246 

In this test, simulations were carried out using frictionless particles of high aspect ratios.  247 

In the first test, the prisms have aspect ratios of 1:3.  In the second test, the prisms have 248 

aspect ratios of 1:8.  First, like in Test A, the particles were generated with random 249 

orientations and allowed to fall under gravity impacting each other inside a container.  The 250 



density and contact stiffness of the particles were the same as in Test A.  Figure 7 (a) and 251 

Figure 8 (a) show the particles falling under gravity and dynamically re-orienting 252 

themselves in the container.  Figure 7 (b) and Figure 8 (b) show the configurations of the 253 

particles after they have settled.  These particles re-aligned nicely with the container, 254 

showing that the algorithm is able to model particles of high aspect ratios realistically.  The 255 

results conform to physical experience. 256 

 257 

(a)     (b)  258 

Figure 7 Simulations of prisms of aspect ratio 1:3 (a) filling the container and dynamically 259 

changing positions (b) after settling.  Some particles are leaning against the front wall of 260 

the container (transparent in this figure).  The accuracy of the figure is limited by the size 261 

of tessellations of the visualisation tool. 262 

 263 



(a)    (b)  264 

 265 

Figure 8 Simulations of prisms of aspect ratio 1:8 (a) filling the container and dynamically 266 

changing positions (b) after settling.  Some particles are leaning against the front wall of 267 

the container (transparent in this figure).  The accuracy of the figure is limited by the size 268 

of tessellations of the visualisation tool. 269 

 270 

 271 

 272 

 273 

3.3 TEST C 274 

 275 

The conic optimisation formulation in Eq. (6) can be solved using a variety of numerical 276 

techniques. The computation time for contact detection depends on the details of the 277 

numerical technique used to solve the optimisation problem.  From our experience, primal-278 

dual interior-point methods which can take advantage of second-order cone constraints are 279 



robust, e.g. MOSEK [14] and CPLEX [15].  But the same formulation can be solved using 280 

other general non-linear optimisation software [18].  The choice of the optimisation 281 

software depends on its compatibility with the DEM code in terms of programming 282 

language, operating system, cost of the licence and compiler version restrictions.   283 

 284 

The computation time also depends on the termination criteria that are set for the 285 

optimisation task.  Most well-developed optimisation softwares make use of more than two 286 

termination criteria and offer a range of “refinement” parameters.  These termination 287 

criteria and “refinement” parameters are normally different between optimisation softwares 288 

since different optimisation techniques are used.  Values for the termination criteria are set 289 

based on the accuracy desired by the users.  Note, however, that even considering the same 290 

software, the numerical values of the termination criteria are not universal because certain 291 

particle shapes may be more sensitive to the criteria than others. 292 

 293 

For quasi-static problems, the contact point for a pair of particles in contact may be very 294 

close to the contact point in the previous time step.  With a good starting point, warm-295 

starting allows the solver to take less Newton steps to satisfy the same termination criteria.  296 

It is worth noting that although primal-dual interior point methods are preferred in the 297 

optimisation literature to solve second-order cone programs because of their efficiency and 298 

robustness, they do not allow warm-starting, i.e. they cannot make use of user-supplied 299 

starting point information.  If the modeller wishes to warm-start, the conventional primal 300 

barrier method can be used to solve the second-order cone program [16].  Depending on 301 

the experience of the modeller, he may wish to program his own Newton method for the 302 

optimisation problem to allow more flexibility in fine-tuning the parameters for the solver, 303 

e.g. aggressiveness (increment of penalty parameters), convergence tolerances, and starting 304 



point strategies.  Another convenient way to warm-start is to use general non-linear 305 

optimisation softwares which can make use of user-supplied starting point information.  306 

Since different solvers (or strategies) may have different performances in terms of speed 307 

and robustness, it is recommended that more than one solver is employed in the DEM code 308 

of interest.  Different solvers can be called under different circumstances, depending on the 309 

strategy of the modeller.  The fine-tuning strategies usually relate to the experience of the 310 

modeller.  In general, the computation time increases with the strictness of the termination 311 

criteria (normally at the expenses of accuracy) and reduces with the “tuning” 312 

aggressiveness (normally at the expenses of robustness).  The overall run-time of a DEM 313 

calculation further depends on the type of simulation and its parameters which are likely to 314 

affect the number of “fortuitous encounters” of good starting points.  It is also affected 315 

inherently by the particle shape; certain shapes experience higher coordination numbers 316 

(number of contacts per particle) and certain shapes can be more efficiently inscribed 317 

inside axes-aligned bounding boxes or spheres which are used before the actual contact 318 

resolution stage.  319 

   320 

As an example, we show the computation time to solve Eq. (6) for a pair of particles in 321 

contact (see Figure 9) using MOSEK and the primal barrier method code which can be 322 

downloaded from [17].  In the primal barrier solver, we have substituted the equality 323 

constraints into the objective and constraint functions (refer to Eq. (6)) so that the 324 

equations are solved in terms of global coordinates rather than using two sets of local 325 

coordinates.  Note that the formulation in Eq. (6) is proposed here because it is accepted by 326 

the majority of conic or non-linear optimisation solvers; certain conic optimisation 327 

software may impose restrictions on the mathematical expressions of the second-order 328 

cones, e.g. CPLEX and MOSEK [14, 15].  In the first simulation (refer to Figure 9), we 329 



used the primal barrier method for contact detection.  These particles were fixed in space.  330 

Using one of the two cores of the Intel Core 2 Duo processor, the computation time for the 331 

barrier method with warm-starting was 366 µs; default values in [17] for the penalty 332 

increment parameter and termination criteria were used.  Using a more aggressive penalty 333 

parameter with the same termination criteria, the computation time was 48 µs. In these two 334 

barrier calculations, we have used the contact point calculated at the previous time-step as 335 

the starting point.  At the starting point, we have chosen the slack variables s’s and p’s in 336 

Eq. (6) such that the inequalities are satisfied to within a margin of 10-5.  Using exact 337 

values without perturbation may cause numerical difficulties since the inequalities are 338 

modelled inside log functions in the barrier method.  These implementation details will 339 

vary with the type of numerical technique.  The computation time for MOSEK using its 340 

default termination criterion was 428 µs.  Table 2 shows the results of this exercise. 341 

 342 

 343 

TABLE 2: Computation time comparison between choices of solvers 344 

  Computation time with non-spherical particles in Figure 9 
 Spheres Primal barrier 

method [17] with 
tuning 

Primal barrier 
method [17] 
without tuning 

Primal-dual 
interior point 
method 
(MOSEK) 

Computation 
time per contact 
between two 
particles 

0.1 µs 48 µs 366 µs 428 µs 

 345 

 346 



 347 

Figure 9 Two rounded tetrahedral particles in contact 348 

 349 

 350 

     4  CONCLUSIONS 351 

The mathematics for the contact detection between potential particles in 3-D is presented.  352 

The optimisation problem was cast into a second-order cone program which is generally 353 

held to be one of the most robust formulations in the field of convex optimisation.  354 

Simulations were run to test the robustness and capability of the contact detection 355 

algorithm.  An example involved roughly angular particles settling into a prismatic 356 

container.  However, any convex particle could have been used.  A wide range of contact 357 

types involving angular corners, angular edges and roughly flat surfaces were tested in this 358 

example.  Then, the particles were allowed to flow through an orifice under gravity.  359 

Particles with high aspect ratios were also modelled falling and settling into a container.  360 

They were able to realign nicely among themselves inside the container upon settling.  In 361 

the paper, it has been shown that potential particles together with the proposed contact 362 

detection algorithm can be used to model non-spherical particles for engineering 363 



applications.  The advantage of this method is that it can model any convex shape from 364 

rounded to roughly polyhedral, and can be solved using ubiquitous optimisation software.   365 

 366 

 367 
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 371 
APPENDIX A: Derivation of the second order cone program (SOCP) 372 

Consider the optimisation problem: 373 

 minimise BA ff +  
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 (A.1) subject to 

BA ff =  

where Af and Bf are the potential functions of Particle A and B which according to the 374 

definition in (2) can be expressed as: 375 
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where ),,( AAA zyx and ),,( BBB zyx  are the local coordinates with respect to Particle A and 376 

B respectively.  It is convenient to optimise over the global Cartesian coordinate system, so 377 

that:  378 

A A A B B B+ = +0 0Q x x Q x x    A A B B B A⇒ − = −0 0Q x Q x x x   (A.3) 



where ),,( AAAA zyx=x and ),,( BBBB zyx=x while A0x and B0x denote the positions of 379 

Particle A and B. AQ and BQ are rotation matrices which can be used to transform vectors 380 

from the local reference systems of the particles to the global coordinate system. 381 

 382 

Recalling that 〈 〉  in (A.2) are Macaulay brackets, i.e., 〈x〉 = x for x > 0; 〈x〉 = 0 for x ≤ 0.  383 

For the purpose of minimisation, the Macaulay brackets can be replaced with auxiliary 384 

slack variables pi and adding additional constraints so that: 385 
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By further introducing: 386 
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the potential function can be expressed in terms of these new variables: 387 
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 389 



Introducing slack variables sA and sB with 0A ≥s and 0B ≥s , and the constants Apw , Asw , 390 

Bpw and Bsw : 391 
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As k

Rw =     (spherical component of particle A) 

B
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Bp 1 k
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−

=     (planar component of particle B) 

B

B
Bs k

Rw =     (spherical component of particle B) 

we can express the optimisation problem as a second order cone program: 392 

     minimise sA+sB 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

 

(A.8) 

 

     subject to 

     A
2
Ak

2
Ak

2
Ak

1

2
Ak

A

szyxp
N

i
i ≤+++∑

=

 

     B
2
Bk

2
Bk

2
Bk

1

2
Bk

B

szyxp
N

i
i ≤+++∑

=
 

     BA ss =  

( ) A0B013BBkBs12BBkBs11BBkBs13AAkAs12AAkAs11AAkAs xxQzwQywQxwQzwQywQxw −=++−++
 

( ) A0B023BBkBs22BBkBs21BBkBs23AAkAs22AAkAs21AAkAs yyQzwQywQxwQzwQywQxw −=++−++
 

( ) A0B033BBkBs32BBkBs31BBkBs33AAkAs32AAkAs31AAkAs zzQzwQywQxwQzwQywQxw −=++−++
 

     ,AAkApAkAAkAkAAsAkAAs iiiii dpwzcwybwxaw ≤−++      ,,...,1 ANi =  

     ,BBkBpBkBBkBkBBsBkBBs iiiii dpwzcwybwxaw ≤−++      ,,...,1 BNi =  



     ,0Ak ≥ip       ,,...,1 ANi =  

     ,0Bk ≥ip       ,,...,1 BNi =  

     0A ≥s  

     0B ≥s  

where the constants The last two constraints 0Ak ≥ip  and 0Bk ≥ip in (A.8) can be omitted 393 

from the formulation because they are minimised over their squared values.  For any point 394 

in which they are negative, they will assume the value 0 since their quadratic expressions 395 

in the cones are minimised.  Further, because MOSEK does not allow variables to be 396 

repeated in separate cones ( As and Bs in our case), the linear constraint BA ss = has to be 397 

specified.  In other optimisation codes, one can remove this linear constraint and replace 398 

As and Bs using the same variable. 399 

 400 
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