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ABSTRACT.

This thesis considers some problems in Dynamical
Systems concerned with zeta functions and with Anosov
diffeomorrhisms.

In chapter 1 Bowen's method of expressing a basic
set of an Axiom A diffeomorrhism as a quotient of a
subshift of finite type is used ‘to calculate the num-
bers of periodic points of the diffeomorphism and
show that its zeta function is rational which gives
an affirmative answer to a question of Smale.

The rest of the thesis is concerned with Anosov
diffeomorphisms of nilmanifolds. Chapter 2 contains
some facté about nilmanifolds describing them as
twisted products of tori. A nilmanifold has a maximal
torus factor. A hyperbolic nilmanifold automorphism
projects onto an automprphism of this torus and we
say it has the toral automorphisﬁ as‘a factor. 1In
chapter 3 we generalize this situation to show that
many diffeomorphisms of other manifolds have toral
automorphisms as factors and give some examples.

In the 1ast‘chafter~we use a spectral sequence
associated to another decomposition of a nilmanifold
into tori to calculate the Lefschetz number of any
diffeomorphism of the nilmanifold. This enatles us
to prove a necessary condition on the map induced by
an Anosov,diffeomorphism of a nilmanifold on its
fundamental group. Then we consider the question of

finding hyperbolic automorrhisms of nilmanifolds "~ -



from the decomposition into tori. Finally we calcul-

ate the zeta function of such an automorphisn.
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INTRODUCTION.

The subject of differentiable dynamical sytems
studies a diffeomorphism f or a flow @y On a smooth
compact connected manifold M and in particular the
global and geometric prorerties of the orbits of f
or o. The idea is to mimic a pﬂysical system with
state space M and with PiX the state of the system
at time t if it is in state x at time O.

It is sensible to study only flows P whose orbits
have the same prorerties as the orbits of every
nearby flow w because a physical system is subject to
small perturbations in the controlling forces and to
inaccuracies of measurement so that we could not have
been sure whether our system was in fact represented
by @ or §. Such a flow P is said to be stable. TFor
some years the main problem in this subject was to
find a precise definition of stability so that stable
flows were dense in the Cq—topology in the space of
all flows on M and also that stable flows were amenatle
to some form of classification. It is best to tackle
rroblems on flows for diffeomorphisms first because
it is easier to work with diffeomorrhisms and yet not
too hard to extend results proved for diffeomorprhisms
to flows - see the remark on this at the end of
chapter 1.

The protlem is then to investigate the orbit

structure of a diffeomorphism f having some stability



prorerty. One easily noticed form of tehaviour of

our system will be regularly rereated behaviour. This
corresponds to a periodic rpoint of f i.e. a point x
s.t. fPx=x for some n. An important question about f
will be to discover how many periodic points of each
period n it has and ensure this is the same for all
diffeomorphiéms close enough to f.

Define a closed subset A of M to be an attractor
for £ if it is contained in some oren set U and
A= nnzofnU' That is all points near A approach A
under repeated application of f. An attractor of f
will be of particular interest because it determines
the behaviour df the system started anywhere within an
open subset of the state space, in fact anywhere
within its basin of attraction UnernU.

Under this definition the whole manifold M is an
attractor for any f whereas we really want to invest-
igate the simpleSt pieces into which the attractors
of £ cén be broken down. §So we impose the condition

of topological tramsitivity on an attractor. fla is

topologically transitive if dxeA s.t. A = cl{fnx;nez}.
Theﬁ A acts as a whole and we should like to under-
stand its structure. There will be only a finite
number of topologically transitive attractors if we
impose the condition that f satisfy Axiom A [29].

This was Smale's candidate for a condition on diffeo-
morphisms that would ensure they had a particular
kind of stability called Q-stability and were amenatle

to classification. Unfortunately in [31] he found that



these diffeomorrhisms were not dense in the srace of
all diffeomorphisms but Franks [10] and Guckenheimer
[12] have found slightly stronger stability conditions

that imply Axiom A.

Before proceeding with this discussion of dynam-
ical systems we had better give the main definitions.
Let M be a smooth compact connected manifold without
boundary and Diff(M) the space of Cq diffeomorphisms
of M with the C'-topology. Let feDifr(M).

Definition. Let Nm(f) be the number of fixed points

of f. The zeta function of f is

S U(f,t) = exp Z;___,l(’l/m)Nm(f)tsm.

Definition. The nonwandering set Q(f) = {xeM;for

every neighbourhood U of x 3n s.t. £2UnU % 2}.

‘Definition. f satisfies Axiom A if

(a) the restriction of the tangent bundle to 0} TM
has two continuous Df-invariant subbundles Es, EY
with TpM = ESeEY and for any Riemannian metric 3 con-
stants ¢\ ¢>0, O<%<1 s.t.

“DfilEi“<cln and
e "B N <cA™  VxeQn30

and (b) the peribdic points of f are dense in Q2.

L

N 3 -

Theorem. (Smale's Spectral decomposition theorem)
If f satisfies Axiom A.then.flcan be written as |
Iynu..uf% where the ) are closed disjoint f-invariant
‘subsets on each of which f is topologically transitive.
The sets Ql are called basic sets. |

Definition. f is an Anosov diffeomorphism if it




satisfies Axiom A (a) with () rerlaced by M.

Definition. f,geDiff(M) are topologically conjumate

if 3 a homeomorphism h:M-»M s.t. hf=gh.

Definition. f is structurally stable if it has a
neighbourhood in Diff(M) consisting of diffeomorphisms
topologically conjugate to it.

Theorem. (Anosov [1]) Any Anosov diffeomorphism is

structurally stable.

‘However, few examples of Anosov diffeomofphisms
are known and these only on tori and nilmanifolds
(and manifolds finitely covered by them) - the so-
.called hyperbolic toral automorphisms and hyperbolic ‘
nilmanifold sutomorphisms, see e.g. [8]. Franks &ﬂ
and Newhouse [21] have shown that if an Anosov
diffeomorphism f has E° or EY 1-dimensional then f is
a hyperbolic toral automorphism but there are not

many other results about Anosov diffeomorphisms of an

arbitrary manifold.

Part of the attractiveness of the subject of
differentiable dynamical systems lies in the fact that
a wide range of tools from other branches of
mathematics can be used to attack its problems.
Moser's proof of the structural stahility of Anosov
diffeomorphisms as expoﬁnded by Mather [29; pp.792-5]
uses a manifold of maps and an implicit function
thedrem.. Préofs of the existence of stable manifolds
have used the stability properties of hyperbolig

sutomorphisms of Banach spaces, see e.g. [15]. Sinai



[28] and Bowen [3,4 and 5] have looked at connections
with measure theory, entropy and topological dynamics.
Smale [29] used the idea of Lefschetz number from
algebraic topology to count periodic points. In EBQ]
he used a handle decomposition of M to show that any
f is isotopic to one satisfying Axiom A. And Franks
[8] approached Anosov diffeomorphisms via their

homotopy theoretic properties.

In this thesis chapter 1 uses Bowen's wofk to
calculate ¢(g,t) for an Axiom A diffeomorphism g and
show it is a rational function of t. Chapter 2
contains some facts about nilmanifolds that are
needed later,‘describing in particular how a
nilmanifold decomposes into tori. Chapter 3 uses
work of Franks to show that if f induces a hyperbolic
map on Hq(M;Z) then f:M—>M has a hyperbolic toral
automorrhism as a factor and then gives some examples.
In chapter 4 M is a nilmanifold and f:M—>M is an
Anosov diffeomorphism. §4.2 summarises what is known
about such f after a theorem in §4.1 which uses
Lefschetz numbers and a spectral sequence to obtain a
necessary condition on f,: 1(M)—9ﬂa(M). §4.3
considers hyperbolic automorrhisms of nilmanifolds
from the algebraic point of view and §4.4 calculates

the zeta function of such an automorphism.

I should like to record my grateful thanks to my
wife Hanne for all her support and encouragement

during the last three years, to the two supervisors I



have had in the course of this work, Frofessor R.

Bowen and Professor E. C. Zeeman, for introducing me
to dynamical s&stems and for much guidance and help
and to the Science Research Council who surported me

financially.



Chapter 1. AXIOM A DIFFEOMORFPHISMS HAVE RATIONAT

————

ZETA FUNCTICNS.

1.1 Introduction.

This result was conjectured by Smale [29; p.785]
and its value is to show that the numbers of periodic
points of all orders of the diffeomorphism_are deter-
mined by the finite number of zeros and poles of the
zeta function. In [34] Williams gives a survey of
results on this function up to 1968. Then in [11]
Guckenheimer showed by using a double cover and the
Lefschetz Trace Formula that an Axiom A diffeomorrhism
has rational zeta function provided it satisfies the
no cycle prorerty. Since the theorem of this charter
was first rroved Simon [27] has found a set (with non-
empty interior) of diffeomorphisms not satisfying

Axiom A whose zeta functions are not rational.

In [4] Bowen, following Sinai [28], rroved the
existence of a Markov partition of a basic set Qb of
an Axiom A diffeomorphism by means of which Qb can te
exrressed as a quotient of a subshift of finite tyre.
Since the existence of Markov rartitions does not
derend on the no cycle prorerty and the zeta function
of a subshift of finite type is known from [7] this
seems a natural method for approaching the zeta func-
tion. 1In this chapter this partition is used in §3
to construct new subshifts by means of which the

reriodic points ofilb can be counted in §4. This



chapter has arreared in the Bulletin of the London

Mathematical Society volume 3 (1971) pages 215-220.

1.2 Markov Partitions.

Let g:M—>M be an Axiom A diffeomorphism and re-
call from the introduction Smale's Spectral Decom-
rosition Theorem which says that QUg) = f%u...uf%
where each basic set Qb is closed and g-invariant
and gulb is torologically transitive. It is clear

that N_(g) = gqum(g\Qb) so that, as in [29; p.766],

Ueg,t)

exp Zo 1(1/m) {£8_N_ (10, )} "
exp 2§=1 :=1(1/m)Nm(gu1b)ti |
b 3Bl 1) 1)

Thus it is sufficient to prove that I(g|Q),.,t) is

rational for each b.

Let f = gK)b for some fixed b. Then f:,—0, is
expansive with exransive constant £>0 say. This
means that, for any two distinct points xgytﬁb,there
is n s.t. d(£fx,fy)>e. Then according to [4] there

is a Markov partition for‘ﬂb, that is a finite cover

e of nb by closed subsets called rectangles whose
diameters we require'here to be less than &/2. The
rectangles are pairwise disjoint excert possibly for
the intersection of their boundaries. And if Ejee
then (figure 1.1)

x,yeEJ. =2 W (x,e)aW(y,e) € EJ..
Finally the rectangles satisfy the ‘Markov property'
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Figure 1.1 Figure 1.2

that if EJ,Ekeﬁ and xeintEjnf-q(intEk) then (figure
1.2)

W (x,e)nE, ¢ £ H{wS(rx,t)nE, } /
and J k (2)

Wu(x,e)nEj > fjl{wu(fx,é)nEk}

Define the transition matrix T = (t(Ej’Ek)) ty

6(E5,B) = 1 if
f(intEj)nintEk £ 0
and t(Ej,Ek) = O otherwise. Then T gives rise to a
subshift of finite type T:A{T)=>A(T) as follows. Let
o
E = (En)n=—w be a sequence of elements of € such
that t(En’En+1) = 1 for all n. Let A(T) = the set
of all such sequences. Let T:A(T)—>A(T) be defined
by TE = F where Fn = En+1 for all n. Now the map
. -n . .

T:A(T)—aﬂb given by mE =(\;;_mf B, is well defined
- by the conditions (2) and exransiveness. w is one
to one almost everywhere and gives a commutative

diagram

ANT) S A(T)

LS



The interested reader mayvconsult f4] for proofs and
more details of these Markov partitions.

From a knowledge of this subshift and of which
rectahgles intersect it is Tossible to calculate 1.

Uf,t). The rectangles Eqs.++,E 3re said to be rel-

r
ated if E,In...nEr # @. 'The following lemms was shown

me by Bowen.

Lemma 1. Let E',...,E” be distinct elements of A(T).

If, for each n, the rectangles Eg;...,EE aré related

1 2 r

then *YE = «FE~ = ... = wE

Proof. Let w&) = x%eq. "xJerd, txFerk. so

a(£"x9, %) ¢ aiam(BIUER) ¢ e/2+e/2 = ¢
for all n. But € is an expansive constant for f. So

k

x9 = x* as required.

- In [5] by a detailed investigation for arbitrary
erb of the T-relationship between the rectangles to
which x belongs and those to which fx belongs Bowen
shows

Proposition 10. There is an integer d such that, for
l‘

all x, v x has at most d elements.

Corollary 11. E is a periodic element of A(T) if and

only if wE is a periodic roint of nb'under f.

-, Proposition 12. If «E = wF is periodic under f and if

En = Fn for some n then En = Fn'for all n.

These results are needed for

Lemma 2. If E1,...,Er are as in Lemma 1 and each is

1



periodic under T (with possibly different periods)

j K .
then t(Eg,En+1) = 0 for § £ k.

Proof. By Proposition 12 of [5] for each n & EL
n,'ll ,. n

are distinct. Choose m>0 such that *'EY = Ej for

each j. Suprose contrary to the Lemma that there are

J,k,h such that j # k and

A4

\ k J k. _ .
\\\ Ej,’A%1 t(E ’Eh+1) = 1. Pigure 1.3
> s shows part of the directed
A A i Y graph with vertex set € and
B adjacency matrix T. Related
3 o~ s\ -
/EIJH_2 Eﬁ+3\\ rectangles are joined by
p ,
4 N dotted lines. A point of
Ek Ek _
h+2 b+l A(T) is a two-way infinite
Figure 1.3 path in this graph. EJ,EF

are paths round the inner and
outer squares reSpectively. (m = 4 in the figure;)
For each integer p construct points vP of A(T) with
paths going round the inner square until time h+pm
and then round the outer square. More precisely,.
vg =1"J;:.]1 for n < h+pm, v§= EE for n> h+pm. Then all the
roints vP are distinct and by Lemma 1 they have the
same image under w. But this contradicts Proposition

J gk -
10 of [5] and so t(E;,E; ,) =0.

1.3 The Subshifts A(A.).

Tv=fw implies that 'Tr{FiX(Tm)} c Fix(£™) but
Nﬁ(T)i!Nm(f) for two reasons: ‘
(1) At the boundaries of the réctangles, that is

where they intersect, w is many to one so several -

12



points of Fixgrm) may be mapped to the same point of
Fix(£").

(2) If x has period m under f then f™ may rotate or
reflect the manifold in the neighbourhood of x. If,
further, xe:Eank then it might for example inter-
change Ej and Ek and consequently‘T? would inter-
change the elements of T x containing Ej and E,.

Therefore in this case these elements of 1F1x would

have period 2m rather than m.

'_To capture the roints x that have several inverse
images the obvious thing to do is to construct sub-
shifts whose symbols are sets of r related rectangles
for various r. Unfortunately this arrroach is too
simple because we find ourselves counting the points
x too often, and so we need an algebraic device of
k-tuples of sets of related rectangles to cancel out
the overcounting. For the moment we confine ourselves
to the formal definitions and tﬁe.reasons will become

apparent in the next section.

Define q to be the largest integer such that there
is a set of q_félated rectangles. Fix k between 1 and
q. Let i= (i%,...,ik) be a fixed k-tuple of positive
integers and put \i|'=ZiJ. #e suppose that i} £ q.
Now for each j=1,...,k let ej be a set of ij related
rectangles. Let u= (eq,...,ek) be a k-tuple of such
sets,.such that the rectangles in Uej are all distinct
and all related. Let 4, be the set of all such

k-tuples u.

13
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ﬁe now rroceed to define altransition matrix Ai
for the symbol set n&, induced by the original trans-
ition matrix T. Let ey={8',...,BP}, £,- {F,... 7P}
be two sets of p related‘rectangles. Wirite t(ej,fj)=1
if there is a relabelling of the F's such that
£(E®,F1)=1 for h=1,...,p. Note that by Lemma 2 any
such relabelling must be unique: Write t(ej,fj)=0
otherwise. Now given two elements of Ai u=(e1,...,ek),
W=(f1,...,fk) write a(u,v)=1 if t(ej,fj)=1 for j=1,...,k
and write a(u,v)=0 otherwise. This defines the trans-
ition matrix A, for Ai. From the symbol set.ﬂi and
the transition matrix Ai construct in the usual way
the subshift of finite type oy :A(A;)—>AA,).

Remark. €==*1, T =A, and : N(T)>NT) is the same as
qth(Aq)—éA(Aq). Moréover in the case where each ij=1
Ai may be obtained as that submatrix of the tensor
product of T with itself k times corresponding to

those rows and columns that belong to A&.

1.4 The Result.

Theorem 1. Nm(f)= 2:(-1)k+1Nm(ai) where the sum is

taken over all i= (i ,...,i;) with 1sk<q and lil €qa.

Proof. Any point of A(Ai) gives rise in a natural way
to |i] points of A(T) as follows. Let y=(yn);’=_°° be
a point of ﬂ(Ai) and let yo=(e1,...,ek). Then each
Ehe\Je. determines a unique point JEP(T); for instance
zg=Eh, z?=the unique Fhe\)fj, where y1=(f1,...,fk),
h h _h
such that t(ED,FR)=1, and 23, 23,--, 2.qs Zlps:+>

are defined inductively. Therefore zh is uniquely



determined, 1g<hgli].

Now 7z = ze(lb where z is independent of h by
Lemma 1. Define Q:A(Ai)—aﬂb bty @y=z. Then po; =fo.
If yeFix(a?) then deFix(fm). So every point counted
in Nm(ai) corresponds under ¢ to a point counted in
Nm(f).

So it is sufficient to show.that, for each :. Sl
zeFix(fm), Z(—1)k+1Nﬁ(qi) =41 where N, counts only
points in ?_12. Let v 1z = {zq,...,zr}. It |il>r
then q—qzqux(a?)==¢. The remaining i may be divided

\

into three sets B, C, D thus

B = {i;]ij<r}
¢ = {i;]il=r ana w1}
D= {i;k=1, i,=r} = {r}.

Define an—->c by q,(i,,,...,ik) = (11,...,11{,1«-1,'-...-1

¢'is a bijection. 'W can be used to show that
21" () + T (-0 () = 0

as follows,

k)'

Let x be a point of Fix(u?) with @x=2z and ieB.
Define y in Fix(«$i) with ¢y=z thus: the first k sets

of y, are the k sets of Xn in that order and the

(k+1)th set of Y, is the set of r-i -...-i, rectangles
in {zl,...,zg} but not in a set of X, By Lemma 2,

h .
t(zg,zg+q) =1 but t(zn,zg+1)==0 if h#p. The rectangles

in x, are praired with those in L

matrix T so those in the (k+1)th set of y, can be

1 according to the

paired with those in the (k+1)th set of Y,,q+ Thus
a(yn,yn+1)= 1 and yEA(AWi)' Moreover, for each n,

M
= nd £ 'z=z so that
Xn Xnam 2 S

15
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r} {
Z L B Z LI
{ n? ? Zn+m? ’ n+m}

m

s0 y =y and yeFix(a, .
Vi

n+m

Similarly given yeFix(u$i)an1z obtain
xeFix(x])ng 'z by simply omitting the (k+1)th set of
Y to get X, These two operations are mutually
inverse and give a bijection FixGx?)nQ-qz—aFixme )nq_%n

Vi

Therefore
_ayk+1y k+2.,
(-1 Nm(ai)+(—1) NmG“Vi) = 0 and ZBfEC=O.

It remains to prove that ZD(-1)k+1

Nn'l(oci) =1. The
~only point in ¢"1znA(Ar) is w where w ={z1 ...,z£}=
{Ec€;r"2¢R}). wn+m:={Ee€;fn+mzeE} {Bee;sr zeE}= W, SO
weFix(«m)nQ"qz and
k+1.., '
S () = (=D () = 1
as required. This concludes the proof.
k+1
Corollarv (£) = \]TI g(a )( -1)
il€q

Proof. This follows from theorem 1 by the argument

of (1) above.
Theorem 2. {(g) is rational if g satisfies Axiom 4.

Proof. From {7] Z(ui) is rational. In fact Zﬁxi) =
{dét(I—tAi)}‘q. Hence, from the Corollary, J(f) is
rational, and Z(g) is just the product of c¢ functions

like U(F).

Question. The zeta function of a toral Anosov diffeo-

morphism with eigenvalues %1,...;Rn is given in [29;

p.769] as a product and quotient of terms

(1-A; A, ...N, t). The same formula arplies to the
i1, i,
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nilmanifold examples (see §4.4). 1If we are given the
_1yk+1
zeta function as TI;Z(ai)( 1) is it possible to
recover the original eigenvalues A ,...,)n from those

of the matrices Ai?

Remark. The simplest basic sets for Axiom A diffeo-
morrhisms are the O-dimensional ones which are Jjust
subshifts of finite type. As described in §1.2 any
other basic set can be expressed as a quotient of a
subshift of finite type. Recently.Bowen has been
extending his work to Axiom A flows. Here he finds
that the simplest type of basic set (apart from fixed
pointé) is 1-dimensional (actually the suspension of
a subshift of finite typeiat a time which varies in a
Lipschitz manner). Any other basic set is a finite-

'to-one.quotient of bne of these. 1In [6] he makes use
of the methods of this chapter, in particular theorem
1, to show that the zeta function of an Axiom A flow
is 2 product and quotient of zeta functibns of certain
1-dimensional basic sets. This and Bowen's other
successes with Axiom A flows illustrate the process

" of obtaining results for diffeomorphisms and then

extending them to flows.
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Chapter 2. NILMANIFOIDS.

2.1 Preliminary Facts.

This chapter contains some facts about nilmanifolds
which will be needed later on.

Definition. A nilmanifold is a compact homogeneous

space N/D where N is a connected simply connected nil-
potent Lie group and D is a uniform discrete subgroup
of N. |

Malcev [19] investigated nilmanifolds in some
detail and we quote the following two results from his
paper.

Fact 1; Nilmanifolds are determined by their fundamental
groupiD. For an abstract group D to be the fundamental
group of some nilmanifold it is necessary and sufficient
thaﬁ D be finitely generated tdrsion—free and nilpotent.

Fact 2. If N/D is a nilmanifold then any automorphism
of the group D'can\be uniquely extended to an auﬁomor-
phiém.of N.

This automorphism preserves the subgrour D.and
induces a diffeomorprhism of N/D which we may call a
nilmanifold automorphism.

N/D is a K(D,1) since its universal cover N is
contractible, see [25; p.180]. From theorem 8.1.11 of
[32] we get immediately

(Fact 3. fq,fE:N/D—aN/D are freely homotoric if and only
if the endomorphisms they induce on thé fundamental
group D are conjugate i.e. differ by an inner automor-

phism of D.
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OQur interest in nilmanifolds arises from the fact
that some of them admit Anosov diffeomorphisms - the
so-called hyperbolic nilmanifold automorphisms. The
simplest manifolds known to admit Anosov diffeomorrhisms
. are the.tori and a nilmanifold can be expressed as.a
‘twisted product' of tori. There are two methods of

decomposing a nilmanifold into tori.

2.2 The Torus Decomposition Using the Lower Central

Series.
The first method is described by Parry in [22].
We recall only 2s much as we shall need in the next

chapter. Let N1=[N,N]=the subgroup of N generated by

1,1
J

elements of the form x xy for any x,y€N. There is
an obvious projection from N/D to the space N/N1°D.
(The dot denotes semidirect rroduct.) The space N/Nq-D
is‘a torus isomoryhic to (N/Nq)/(Nq'D/Nq). Its univer-
sal covering space is N/N1 and its fundamental group is

Nq-D/N1 which is isomorphic to D/(N aD).

Let us investigate the group D/(Nan) more closely.
Dj:[D,D] is clearly a subgroup of Nan and by Malcev's
descrirtion of D as "spanning" N we see that D1 can
only have finitely many cosets in Nx\D. Now D/D1 is
an abelian group and D/(Nan) is a free abelian group.
We deduce that D/(NﬂnD), the.fundamental group of the
torus N/Nq-D, is the quotient of"D/‘D1 by its torsion
subgroup. Notice that D=wﬁ(N/D) S0 D/D1=H1(N/D;Z).

The torus N/Nq-D is known as the maximal torus factor

of the nilmanifold N/D. We use the universal coeffic-

ient theorem (e.g. 5.4.13c of [13]) by which .’
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H (M2) = H,(M;2)hZ
and recall that the group of homomorrhisms from the
torsion subgroup of H,l to Z is trivial. Thus
B{6/D;2) = 0/0 Wz 2 D/(K WD)z H,(N/N' Dz )A%
8 (v/N"p;z).

We sum this up as

Proposition 1. A nilmanifold N/D has a maximal torus

factor N/N'-D and H'(N/Djz) = H (N/N'.D;Z).

2.5 The Torus Decomposition Using the Upper Central

Series.
I shoﬁld like to thank Professor W. Parry for
discussions on this’section. In chapter 4 we shall
need this second method of decomposing a nilmanifold

into tori which goes as follows.,

Definition. The upper central series

{e}=GOCG1cG2C...CG ‘
of a group G is defined inductively. G1 is the centre
of G. Let Py be the projection of G onto G/Gi' Gi+1
is defined to be pzq(the centre of G/Gi).

For the nilpotent grours N and D the upper central
series {e}=Ny<N,c...=N =N and {e}=DycD,c...<D =D have
finite length ¢. (That the two series have the same
length could be proved as a corollary to Lemma 1.) We
shall use these central series to find a torus which
acts on' N/D with quotient srace another nilmanifold.

The torus will be Nq/Dq. Let N1 be the Lie algebra of

"N and expMN->N the exponential map (which is injective).
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Lemma 1. NynD = D1.

Froof. Clearly N,nDeD, and D,eD. We must show that
D,=N, or exp_qucexp-1N1=the centre of W. But if
Eeexp-,'D,] then [E,\ﬂ =0 for all peexp_"D, and we know
that exp—qD spans fl as a vector space. Thus [E,\;] %O

for all yefl as required.

Lemma 2. Nq/Nan ==N1-D/D,

Proof. The obvious map x(Nan)FéxeD for xeN, is an

isomorphism.

Lemma 3. N,]/D1 is compact and a torus.

Proof. Let P be the vector space over the rationals

spanned by exp_qD. Then P with the bracket of N is a

rational Lie algebra (the one discussed by Malcev in
§4 of [19]) and N=PeR. Clearly exp:1D1 spans P,, the
centre of P. Let 81,...,8neexp_1D span P. Then the
centre of W is nq=ﬂfi1=,] ker(adsi:n-—én) and, see [16;

p 28] this is _ _ C
n
3oqlker(adg P+P)8R} {ﬂ qker(adg, :P->P)YoR = P eR.
So ﬂq-PqeR and N,]/D1 is compact. N1/D1 is a torus
because it is the compact quotient space of a Euclidean

space N1 by a free abelian group Dq.

Lemma 4. N1oD is closed in N.

Proof. Take sequences anNq’ dneD s.t. xndnémeN as n-yeo.

Choose e €D, s.t. x e  is contained in a compact set

which is’possible by Lemma 3. Then, taking a sub-

sequence if necessary, X, €,9X, 853Y, in N1 But
-1 -1

) d_ is a convergent sequence in the
x e.e, d »m so e ‘d, g q ,

21
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1

discrete group D. :.e; d =d, say, in D for n>some n

xd=m so meNq-D as required. °
Now the torus N1/D1 acts on our nilmanifold N/D
by (xDq,yD)héxyD for xeN,,yeN. This is well-defined
since elements of D1 commute with y. The orbit space
of this action is N/Nq'D whichiis (N/Nq)/(D/Dq) another
nilmanifold. (By Lemma 4 N/Nq-D has the quotient
topology.) When we use the same method to constructva
torus acting on this nilmanifold we see from the def-
inition of the upper central series that it is precisely
(N2/N1)/(D2/D1) and the orbit space is the nilmanifold
(N/Ng)/(D/Dg). Répeating this procedure we get
Proposition 2. The nilmanifold N/D is the extension of
N,/D; by (N5/N;)/(Dy/Dy) by ... by (N/N,_,)/(D/D,_4).

Each of these spaces is a torus and their fundamental

grours are the quotient groups Di/Di-1 i¥1,2,...,c of

the upper central series of D.

Recall theorem 2 of [20] which says that D;/D;_4
is free abelian for each i, a fact which is not
necessarily true of the lower central series of D.-

The nilmanifold N/D may be called a c-step nilmanifold.
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Chapter 5. ANOEOV DIFFEQOMORFHISMS AS FACTORS.

3.1 Introduction.

In this charter we shall consider some commuting

diagrams

M
k|,
i

H e =

£

S
k

— T

g

where g is a hyperbolic toral automorphism, f is a

diffeomorphism of M and k:M->T" is a continuous map.

We shall say that g is a factor of f borrowing the

word from the measure theorists' terminology.

The motivation for this chapter comes from
Problem. Given an Anosov diffeomorphism f:M-—>M is f
torologically conjugate to a hyperbolic nilmanifold

automorphism?

If £*:8'(M;z)—>B" (M;Z) is hyperbolic (i.e. any .
element of GL(r,Z) representing it has no eigenvalues
of modulus 1) we shall set up a commutative diagram of
the above form in which, if M is a nilmanifold, the
torus T must be the maximal torus factor of M
described in chapter'Z. Three more stages woulh be
necessary to solve the problem above but we have not
made any rrogress with them.

(1) Show that f* must be hyperbolic. In this
direction Hirsch [14] has shown that f* cannot have a

root of unity as an eigenvalue under certain conditions



on M (every infinite c-clic cover of M must have
finite dimensional ratiocnal homology).

(2) show that k is the projection of a continuous
fibre bundle and that the restriction of f to the
fibre is again an Anosov diffeomorphism of a manifold
so that we can apply the procedure again. Eventually
the fibre would have dimension <3 and it is known [8
and 24] that this would have to be a hyperbolic toral
automorphism. In this way M would be expressed as a
sequence of torus extensions and these extensions
could be examined to check that M is a nilmanifoid.
(3) Modify this procedure to take account of the

fac¢t that M might be an infranilmanifold.

3.2 Finding the Torus T' and the Quotient Map k.

In:this section all spaces have base points and
the maps are base point preserving. We shall need a

result of Franks, 2.1 of [8&].

Theorem. (Franks) If g:T'—>TT is a hyperbolic toral .
automorphism then it is a TQ diffeomorphism, i.e.
given any homedmorphism f:K—>K of a compact CW complex
K and any map h:E—>T" s.t.

™, (K) £$'ﬂq(K)
h, | J B

* *
o (TF)=> e (T7)
LF

commutes then there exists a unique mapfk:K—aT?

f
homotopic to h s.t. K-~-=>K
k ¢ ¢ k commutes.
r T

>
8



We start'with a homeomorphism f that has a fixed
roint which we designate the base point. It follows
from the Universal Coefficient Theorem that Hq(M;z)
is a free abelian group Z* for some r. Choose

generators o, ,...,% We assume f*:Hq(M;Z)—aﬂq(M;Z)

I‘.
is hyrerbolic.  .Let G rerresent f* w.r.t. the basis

Oy ge ooy G and its transpose are hyperbolic

r.
elements of GL(r,Z). Let g be the hyperbolic toral
automorphism of 7" induced by the transpose of G.

Then G=g®:H(T%;Z)—>H (T7;Z).

Next we construct a map h:M—>TT using a suggestion

of Zeeman. Hq(M;Z) can be regarded as the homotopy

classes of maps M—ésq. Take a representative hi:M—>S

of the class «; for i=1,...,r. Put h=h,x...xh_:M—>TT,

t]

T

Lemma 1. ghf~ h

1 denote projection onto the ith

Proof. Let pi:Tr—>S
factor for i=1,...,r and use square brackets to denote
homotopy classes. Then p;h=h; so h*[pi]=“i' h* is an

isomorphism and the diagram
*

1 =G 4
H'(M;Z) €&—— H (M;2)
*

h - : Bl P - h*
B (T732) ¢s— H (1732)
e~ g =G .
SRR S A AP _ -
commutes. Ebighf 1]=f* "h’*g"’[pi_]:oz,i s0 pighf —pih
, and these r homotopies can be combined to give
ght ™2,

Theorem 1. Let H be the space of those base point
preserving homeomorrhisms of the compact manifold M

whose induced map on HWM;Z)==Er is hyperbolic. Let
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€ be the space of continuous based maps from M to TT
homotopic to h and give H and C the Co—topology. Then
there is a continuous map ?:H—BC s.t. the diagranm
T
M—>M
(D)) Je(o)
r b

T —
g

commutes where feH and g is the hyperbolic toral

automorphism defined as above from f*:Hq(M;Z)—>H1(M;Z).

Proof. Franks' theorem and Lemma 1 guarantee the
existence and uniqueness of ¢(f)=k. It only remains
to establish the continuity of ¢ at the point f.
From the proof of Franks' theorem we recall that if
f1 is a homeomorphism of M close to f then

Q(£)-¢(£4) = (F-1) " {gq(£)13 -p(£)}
where F is the hyperbolic automorﬁhism hhéghf;

1 of

the Banach space of homotopically trivial maps from
M to T so that F-I has a continuous inverse on this
space. Now q(f)=g¢(f)f'1 50

o(£)-(£,) = (F-1)7{gq(£); -go(r)e™"}.
Since gq@(f) is uniformly continuous we have that
Q(fﬁ) is close'to g(f) when f, is close to f as

required.

3.3 Applications to Anosov Diffeomorphisms.

If M is itself a torus then by choosing & =[p;]
we get C to be the space ofvmaps N homotopic to
the identity and find

Proposition 1. A hyperbolic toral éutomorphism g is a

factor of any homeomorphism f homotopic to it.



Proof. This was realised by Franks, sece Lemma (1.1)
of (9], in the case where f has a fixed point. But
the Lefschetz number of f is non-zeré by Froposition

(4.15)(a) of [29]. Now by (11.3) of [18] f has a

fixed point.

Proposition 2. A hyperbolic nilmanifold automorphism

g is a factor of any homeomorphism f homotopic to it.
Proof. If f has a fixed point then this proposition
is an immediate corollary of Theorem (2.2) of [8]
which says that g is a'ﬂa diffeomorphism. f always
has a fixed point because its Lefschetz number is

non-zero as will be proved in §4.1.

In particular if f is a diffeomorphism Cq close
to g then, by uniqueness, the quotient map taking f
to g is the homeomorphism homotoric to the identity
which is guaranteed by the structural stability of g.
Notice how Propositions 1 and 2 overlap with the
topological stability theorem of Walters [33] which
says that any Anosov diffeomorphism is a factor of
each homeomorphism CO close to it. It is natural to
ask the

Question. Is it true for an arbitrary Anosov

diffeomorphism g that g is a factor of any .. '3

homeomorphism f homotopic to it?

If M is a nilmanifold N/D then, by prorosition 1
of chapter 2, the torus ?T of theorem 1 is the
maximal torus factor N/N1-D. If fq:N/D—éN/D is a

hyperbolic nilmanifold automorphism then by uniqueness
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?(fq) must be w, the projection of the fibre bundle
mN/D->N/N'-D. 1r is certainly smooth but this should
not lead us to expect any differentiability in q(fg)
for other diffeomorphisms f2. In fact let f2 be

01 close to f1 and conjugate to it by a homeomorrhism

J. From the diagram

5
M—>M
il J 3
M—?—éM
v T
Tr—g—éTr

we see that q(f2)§vj which need not be differentiable.
However, ?(f2) is still the projection of a continuous
fibre bundle. Thus we might hope to improve theorem 1
to say that q(f) is a fibre bundle projection if f is
Anosov but not to say that @(f) is differentiable.

3.4 Applications to Axiom A Diffeomorphisms.

Throughout this section f is a homeomorrhism of
the manifold M and £™:H1(M;Z)—>H (M;Z) is assumed to
be hyperbolic. It is clear tggt q(f)(M) is a
connected closed g-invariant subspace of ", Since
g is érgodic w.r.t. Haar measure either @(£)(M) has

empty interior or it is the whole of 7T,

We consider T as the quotient of the r-dimensional
cube IT by the standard equivalence relation ~, If
?(f) does not map M onto T'=I'/~ then we can compose
it with:a retraction into 3IT/ to get a map

homotopic to @(f) and h,x...xh, that is into a1 I~



29

/(31T /~) is just ST. Hence

Proposition 3. A sufficient condition on M for ¢(f)

to be surjective is that if h,],...,hr are
representatives of generators of [M,Sq]=H1(M;Z) then
the smash product h,a...ah :M->S" is not

homotopically trivial.

Next we look at the situation where @(f)(M) is
the whole of TT.
Proposition 4. If q(f) is surjective so is Q(fﬂ(}(f).
Proof. If @(f) is surjective and q(f)X)Wf) is a proper

closed subset of T then' there is a periodic point y

of g not in @(f)ﬂ(f). Let gny=y. Then LJ?=1{q(f)}—1giy

is a non-empty closed f-invariant set disjoint from QU(f)

which is impossible.

Proposition 5. If f is an Axiom A diffeomorphism and

q(f) is surjective then there is a basic set fy fay

of f s.t. q(fﬂ!}1 is surjective.
Let y be a point of T’ with dense g-orbit.

Proof.
By Proposition 4 there is an xe{Af) s.t. @(f)x=y.
Let £, be the basic set to which x belongs. Then

'q(f)fg contains the closure of the g-orbit of @(f)x
which is TT.
Also interesting but not new is

.Proposition 6. If f satisfies Axiom A then

Q(EIWG(x) = Wa(g(£)x)
and q(f)W%(x) < W;(q(f)x) for xeM.
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. c,,,r g 3.5 Examples.

We close this chapter with some examples

illustrating the results of the previous section.

Example 1. Here we take M=T2 where @(f) is homotopic

to the identity and therefore surjective. Let g be
a hyperbolic automorphism of T and f a DA
diffeomorphism derived from g as described in [29;

p.789]. (f’q is considered in more detail in [35].)

w v
N RRly il Sk Rl
2 X N , y XY A
~ r'd i N 5 V) Z. AN
T - kgl . < L4
A
N
g £
Figure 3.1

The hyperbolic fixed‘poiht O of g denoted by x
has tecome three fixed points x,y,z of f. See
figure 1. x is a point sink with a 2-dimensional
stable manifold. The other basic set, A say, is
1-dimensional. The unstable manifolds are the
horizontal lines in the figure just as for g except

that W?(y) and W?(z) stop at x and W?(x)={x}.

By theorem 1 g is a factor of f. ¢(f) maps
x,y and z to x. It maps the 2-dimensional W?(x)
onto the vertical line WZ(X) by a 'pinching'
procedure sending a typical point w to v on the same
horizontal line. Thus we cannot in general expect
¢(f) to be open. Also the 1-dimensional sets W?(y)
and W?(z) are sent onto WZ(X). Rut the image of

W?(y) is only the left half of Wg(x) so we cannot



improve the < signs to = in proposition 6 atove even
when the stable manifolds of f and g have the same

dimension.

A is locally the product of a Cantor set and an
interval and it is clearly A that satisfies
proposition 5 and is mapped onto ™. In the
expanding or unstable direcﬁion where A is a Cantor
set Wg(y)\A is a union of intervals each of which is
mapped to a point. That is how the Cantor sét is

mapped onto an interval.

An unsolved problem in the theory of Anosov
diffeomorphisms is the following. Given a
hyperbolic automorphism g of.Tr (r24) is there an
Anosov diffeomorphism f homotopic to g but having
O(£)#TF? If there was such an f then g would be a
factor of it. Also f would have a basic set£11 s.t.
¢(£)ﬂﬂ=Tr; Suppose the splitting of £ is into Jj-
and (r-j)-dimensional subspaces.and suppose Jj<r-j.
By [21] j22. f must have a source or a sink besides
f%. That is f ﬁust have another basic set whoée
dimension is at‘least j. In our examrle 1 A occupies

2

so much of T“ that there is only really room for

§
another basic set to be a point.

Question. Is there room in T¥ for a j-dimensional
basic set as well as an,{ﬁ which satisfies ¢(f)(%=Tr?



. Example 2. We give an example of f:M->N for which
Q(f) is not surjective on the orientable 2-dimensional

manifold M of genus 2, the connected sum of two copies

of T2, 12 and T3 say. Let £1:T5—512 be the example 1

above with 1-dimensional source A1 and point sink x

.me 2
Let fg.Te-éTe

having a 1-dimensional sink A2 and point source x

/].
be the inverse of this diffeomorphism

on
Now remove small discs centres Xq9X5 and join Tf and
Tg together at the boundaries ABCD of these discs as
in figure 2. We get the manifold M and a
diffeomorphism f of M that maps some points from Tﬁ
into Tg. The basic sets of £ are Jjust the 1-
dimensional source A, and the 71-dimensional sink A,.
This diffeomorphism was constructed in conjunction
with David Chillingworth as a counterexample to a

| theorem of R. V. Plykin [23] that a diffeomorphism of
a 2-dimensional manifold satisfying Axiom A and the
no cycle property and having a 1-dimensional basic

set must also have a point souce or sink.

D \?/‘
Figure 3.2 s
B'(M;Z) = 2= (ZeZ)e(ZeZ) and the induced map £
is g*eg*. This gives rise to the hyperbolic '

automorphism gxg of T4= TexT2.and by theorem 1 gxg is

n
a factor of f.by a continuous map q(f):M—)T .

We first describe a map h:M->T' to which @(f)
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will be homotopic. h maps T? to T2x0=’1‘4 and T2 to

2
0xT°T* o that the circle ARCD is pinched to a point

and the image hM is just the wedge of two tori, see

figure 3.
_— T4
h
M
Figufe 3.3

'In order to understand the quotient map q(f) it
will be helpful to see the stable and unstable
~manifolds in M, which are shown in figure 4 for the
parts of M in figure 2. Notice how the 2-cell
W? (x4) in Tﬁ is foliated by stable manifolds coming
inlo T% from Tg and returning again, but that this
pattern is divided in two by the exceptional lines

W?(ya) and W?(Zg) that do not return into Tg.
Incidentally it is the need for the stable manifolds

z, -
==~y
Figure 3.4
————— dashed lines represent unstable manifolds.

solid lines represent stable manifolds and the

circle ARCD.



to return into Tg that ensures they have a point of

non-trangversal intersection, w for example, with an
unstable manifold and prevents f from being an Anosov

diffeomorphism.

Now we can describe ¢(f), which we shall denote
by k. First recall that we have a map described in
example 1 that will take A1 onto T2x0 and another
taking /\2 onto OxT2. ‘That deals with the nonwandering
points. Notice that our mép sends the fixed roints
Y1124132125 té the point O in T4. The wanderiqg
roints of f are near A1 in past time and near A2 in _
future time. To be more precise the roint t
approaches the line W?(yq) in past time and the line
Wi(z,) in future time. Now kW3(y,) is a line winding
from O around the torus T2x0 at an irrational angle.
kwi(zq) is the same line, and kW%(ye) and kW?(zg) are

both a similar line winding round the torus OxTe. T

2
kW?(Yq)‘T x0 In figure 5 we draw
kB part of the immersed
////ﬂh\\\\ . plane "spanned" by
KA 0 |k kW3(y,) and kWe(y,).
( .u ye0 T2 471 72
[—
\\\\- kW ¢ (35)=0x It is the projection
kD of a plane in the
universal cover R4
of ‘1‘4 and is
Figure 3.5
invariant under the
4

automorphism gxg of T'. The image of the circle ABCD

is in this plane as shown.



35

Since all the wandering points of f wander from
Ti across to Tg they must come near the circle ARCD
at some time. Consider a point t of M just on the T?
side of the circle ABCD. ZXither the stable and
unstable manifolds of t both intersect the circle or
this is true of ft just on the Tg side of the circle.
Thus kt or kft is in the plane drawn in figure 5, and
by the invariancé of this plane all wandering points
of f are mapped into it by k. In fact the image of =~
the wandering set is bounded by curves like hyperbolas
touching k(ABCD). See figure 6. The boundary of this
set is the image of points such as w or E in figure 4
where W?(w) and W?(w) meet non-transversally. The
wandering points in Ti are divided in two by W?(B)
and W?(D) and each half is folded in two by the map k

to make a crease or fin on the torus T2x0=kAq.

So the image koT% is a wedge of two tori each of
which has a fin winding round it at an irrational
angle.andlshrinking as it goes. See figure 7 where o
" only one guarter of the fin is drawn, i.e. one

quadrant of figure 6.

kw

kB

kC ~
pointg ©

Figure 3.6 Figure 3.7



From this example we see the complexity possible
in the closed g-invariant subset e(£) (M) of ™, We
also see that ¢(f)Q is not necessarily equal to @(f)(M)
and there need not be a basic setfllwdth Q(f)Qq=q(fX1.

(Compare propositions 4 and 5.)

We remark that this manifold does not satisfy
Hirsch's condition [14] that every infinite cyclic
cover of it should have finite dimensional rational
homology. SQ we may ask the |

Question. What is the relation between Hirsch's

condition and the condition of proposition 3%

Example 3. Let g:T2~9T2 be a hyperbolic automorphism
having two fixed roints, O and t say. Modify g to fq'
as in example 1 breaking the fixed point O into three
fixed points O,y and z where O is a point sink and
Y,zel, the 1-dimensional source. For xeh,,

Wlf1 (x)nQ(f,]) is now disconnected while W;(x)nﬂ(f,])
isqconnected. Now modify f1 in a neighbourhood of the
fixed point t to get a diffeomorrhism f with the -
stable manifolds broken up too. t is now a roint
source of f,.O is a point sink and there is one
infinite basic set A say. A is a saddle and a Cantor
set as in Smale's horseshoe example [29]. Since f is
homotopic to g our theorem says that g is a factor of
f and Q(f) is homotopic to the identity and so
surjective. Clearly the basic set mapped by ?(f)
onto T is A. This shows that Qﬂ in proposition 5

need not be a source or sink.



The process of going from g to f1 to f may ve
regarded as pulling first a point sink and then a
point source out of‘I?(g)=T2. Similarly using @(f) to
go back from f to g may be thought of as feeding t
and then O back into A thereby restoring to A its
2-dimensionality and making it the whole manifold so
that g is an Anosov diffeomorphism.

Recently Smale [30] has ﬁsed handle decompositions
to show that ény diffeomorphism is isotopic to one -
satisfying Axiom A with a point source, a point sink
and all other basic sets O-dimensional saddles. If we
could develop a process of feeding a O-dimensional
basic set into a basic set A raising the dimension of
N and get an obstruction theory for this process this
would give a method of tackling the probiem of which
manifolds M (and which homotopy claéses of

diffeomorphisms of M) admit Anosov diffeomorphisus.

37
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Chapter 4. ANOSOV DIFFEOMORPHISMS ON NILMANIFOLDS.

4.1 The Induced Map on the Fundamental Group.

In this section we calculate the Lefschetz number
of an Anosov diffeomorphism of a nilmanifold M=N/D
and so obtain a necessary condition on the map it
induces on the fundamental group D as strong as that
found by Franks [9] for the torus. His result may be
rephrased as |

Theorem. (Franks) Let T" be the n-dimensional torus
and £:T"—T" an Anosov diffeomorrhism. Then

f*:vﬁ(Tn)—émq(Tn) has no roots of unity as eigenvalues.,

We shall use the torus decomposition of M
described in §2.3. M is a series of extensions of
tori whose fundamental groups are Di/Di-1 i=1,...,4cC.
Let f be a homeomorphism of M and f: the automorphism
it iﬁduces én the fundamental gréup D. Since we have
notAyet mentioned base points f* is only defined up. to
an inner automorphism of D but that is sufficient for
our purposes. f* preserves the upper central series
of D apd so induces automorphisms Qi:Di/Di_1—9Di/Di_1
for i=1,...,c. (It can be shown that an inner
automorphism of D induces the identity on each D,/D;_,4
snd so the ,'s are uniQuely defined.) We shall prove
Theorem 1. If f is an Anosov diffeomorphism then none

of the Qi's have a root of unity as an eigenvalue.

As we remarked in §3%.1 Hirsch [14] proved this

for the map induced by f on Hq(M;R). , Our proof uses
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a spectral sequence to calculate the Lefschetz number
of f and shows the remarkable fact that it is
independent of the twists with which the tori are put

together to make up M.

Proof. Choose an automorphism of D induced by f. Ry
fact 2 of_§2.1 it extends uniguely to an automorphism
G:N—N which induces a nilmanifold automorphism g of
N/D. The diffeomorphisms f,g induce conjugate
automorphisms of the fundamental group D énd so by
fact 3 of §2.1 induce the same map of H*(M).
Theréfore L(£)=L(g).

The automorphism P4 of the fundamental group of

the ith torus of M is induced by an automorphism 84

say of this torus and g:M-—>M is the extension of 84

be g bY ... by g,- We show that L(g):L(g1x...xgc),

A special case of this was noticed by Bowen [3; p.395].
In fact it follows from the next lemma by induction

on ¢ and the observation that the condition about
trivial action is satisfied because the series {Di}

is central.

. Lemmsa 1. Let mX,*»—>B,* be a fibre bundle with fibre

P |

+ and suppose “H(B) acts trivially on the
homology of F. Assume that at least one of B,F is
compact. Let ({,x) be a bundle map i.e. a pair of

continuous maps s.t. the diagram

X,» i; Xyx
| v

commutes and let w=¥|F. Then LCW)==L(xxw)-



Remark. yux—ax and yxw:BxF-—>ExF differ by twists in
the fibres so the lemma says that the Lefschetz
number ignores these twists. If'\p=idX then the result
reduces to the multiplicative property of the Euler
characteristic (theorem 9.3.1 of [32]) which, however,
is true without the condition of trivial action. This
condition is required here since the Klein bottle K is

1 bundle over s’ failing to satisfy it and the map

an S
¥:K—K that induces the identity in the fibre but
wraps the base three times round itself has Lefschetz
number -2 but the corresponding map of T2 has

Lefschetz number O.

Proof of Lemma 1. We use cubical singular homology

with real coefficients and the Serre spectral
sequence, see [24] and [(13]. Let gt](x).be the real
vector space:with basis all mars of the standard
'n-cube.In into X such that all vertices are mapped to
*., Filter g[](X) as follows. Take a basis element
ceg[](x), o: I'=>X and define p to be the least integer
such that wf(uq,...,un) is independent of LIYPTERERUSE
Then segtjp(X)3 Now :X,*—>X,* induces a chain map of
g[](X) to itself which preserves the filtration by p.
So ¥ induces a map which we denote by &* on every

term E;q of the spectral sequence obtained from gEJp'

Define

ry . % p+d ;BT —>EC ).
L({,E ) = E:p,q(-ﬂ) trace(w& pq“9 pq)
The Hopf Trace Theorem, see €.8. 5.1.18 of [13], says

that the Lefschetz number of a chain map of a finitely
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generated chain group is the same as the Lefschetz

number of the induced map on its homology groups.
r+1 . .

E is defined as the homology of the chain group

E' so L(Y,E") = L(y,E°*").

5 .
oq = Hp(B;Hq(F)) = Hp(B)qu(F) by the

assumption of trivial action and Hn(BxF) =

Now E

95p+q=an<B>@Hq(F) by the Kunneth formula. So
L(y,E°) = L(yxe).

Since one of B,F is compact there is an m such

that B/ =E%. Then
L(y,E®) = Zp,q(-’l)p+qtrace(¢*:E;q-—>E;q)
= Z (1) trace(y, :H (X)->H_(X))
= LY.
Therefore

Ly) = LOHE) = L,E) = Ly,E°) = Liyxw).

Completion of Proof of Theorem 1. Now we can calculate
L(f) = L(g) = L(ggx...xg.) = TI(1-2)

where the product is taken over all eigenvalues A

counted with multiplicity of all the maps ¢; [29; p.769].
If one of these eigenvalues is a jth root of unity

then L(fjr)==0 for any r according to this calculation.
But some £9T must have a fixed point. So L(£9T) 40 if
we can show that all the fixed roints of fjr have the
same Lefschetz index. This is easy if the expanding
bundle E is orientable, see [9; p.123]. Noreqver if

EY is not orientable we can use thevsame trick as
Franks. Namely we construct a covering f' of fjr on

the covering space of M corresponding to that subgroup
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H of D=“ﬁ(M) which is the inverse image of 2D/[D,D]
under the Hurewicz map D—éD/[D,D]=H1(M;Z). Then f'
is an Anosov diffeomorphism with orientable expanding
bundle so the map induced by f' on H and hence the
map induced by f on D has no eigenvalues which are

roots of unity. This completes the proof of theorem 1.

Corollary 1. A hyperbolic nilmanifold automorthism g

has Lfg) ¥ O.

Proof. L(g)=TI(1-2) so L(g)=0 implies some A=1.
Alternatively, g has the fixed point eD and its
expanding bundle is orientable so L(g)#0. This

corollary was needed for pfoposition 2 of chapter 3.

4.2 Summary of What is Known About These

Diffeomorphisms.

In Franks' investigation of Anosov diffeomorphisms
on tori [9) he also proved the
Theorem. (Franks) If £:T—>T2 is an Anosov iiffle
diffeomorphism with ((f)=T" and if f*:H,l(’l‘n;R)%H,‘(Tn;R)
is hyperbolic then f is topologically conjugate to a

hyperbolic toral automorphism.

Theorem 2. If f£:N/D->N/D is an Anosov diffeomorphism-
with Q(£)=N/D and inducing a hyperbolic automorrhism
(i.e. one for which the @, 's have no eigenvalues of
modulus one) on the fundamental group D then f is
topologicaily conjugate to a hyperbolic nilmanifold
automorphism.

Proof. Define g to be a hyperbolic nilmanifold

automorphism homotopic to f as in the proof of



theofem 1. Proposition 2 of chapter 3 says that g is
a factor of f by a continuous map, k 53y, homotopic
to the identity. Now (1.5) to (1.8) of [9] go
through as in the torus case to prove that k is s

local homeomorphism and hence a homeomorphism.

Putting together theorems 1 and 2 of this chapter
we see that the 6pen questions about Anosov
diffeomorrhisms of nilmapifolds are the same as those
for tori: ‘

(1) Is there an Anosov diffeomorphism f of N/D whose
induced map on the fundamental group is hyperbolic

but with nonwandering set not the whole manifold?

(2) Is there an Anosov diffeomorphism f of N/D whose
induced map on the fundamental group has an eigenvalue

of modulus one but not a root of unity?

4.3 Hyperbolic Automorphisms of Nilmanifolds.

If the tWo open questions of the previous section
could be answered in the negative the only work
remaining in the classification of Anosov
diffedmorphisms of nilmanifolds would be to find
their hyperbolic automorphisms. By facts 1 and 2 of
§2.1 that means find the hyrerbolic automorphisms of
finitely generated torsion-free nilpotent groups.

Now an automorphism @ of D breaks dow;-as in §4.1
into c¢ automorphisms @; of Di/Di_1-=Zwl for i=1,...,c.
So we can rephrase our question as follows. Given
TyreeesTq and hyperbtolic elements qﬁeG%(ri,Z) fg: -
i=1,...,¢ which of the possible extens1oqs of Z by
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Z 2 by ... by Z ¢ admit an automorphism built from

¢1,...,9c?

§4.1 says that as far as the number of periodic
points is concerned it does not matter with what
twists the tori are put together to make the
nilmanifold. Here we ask how much information is
lost by this approach, i.e. what twists were possible
for particular automorphisms of the tori. (In [2a]
Auslander and Scheuneman investigated hyperbolic
automorphisms of nilmanifolds N/D but purely in terms
of automorphisms of the Lie algebra of N fixing a

"g_subalgebra" of it.)

An extension of the group A by the group B is

defined to be an exact sequence
PRI N N

where 1 denotes the group with only one element.
Since D was broken down by its upper central series
we shall only be concerned with central extensions,
that is where iA'is in the centre of G. 1In particular
A must be abelian. The central extensions of A by B

are in one-one correspondence with the elements of

H2(B;A), see [17; p.212] for example.

Let B be any group and A an abelian group. Let
«,p be automorphisms of A and B respectively. Which
extensions D of A by B admit an automorphism S_S.t.
the following diagram commutes?
Rt Be S
1 >A->D—>B-—>>1 :

(We shall say that & is an extension of o by B.)
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By [17; p.214] these extensions are precisely the
ones corresponding to elements deH2(B;A) for which
u;d==ﬁfd wherefq%,p* are the automorphisms of HE(B;A)
induced by e«:A~>A,R:B—>B. If d and d' satisfy this
condition so does md+m'd' for m,m'eZ. Thus we get

Proposition 1. The central extensions of A by B

admitting an automorphism 8 making the diagram (1) <

commute form a sub Z-module of H2(B;A).

To use this condition for building groups D of
nilpotency class (the length of the upper central
series) ¢ and hyperbolic automorphisms of them
involves calculating H2 of groups like D which, even
with the technique of the spectral sequence of a
group extension, is very heavy going. But the
condition is certainly useful for groups of nilpotency

class 2.

For such groups D we consider central extensions

of Z2 by B°

for positive integers a,b. What is
H2(Zb;za)? First consider Hzczb;z). ‘The cohomology
of a group G is isomorphic to the cohomology of an
Eilenberg-MacLane space K(G,1). This is either taken

as the definition of H¥(G) or deduced from the

' b
abstract definition as in [13; p.461]. The torus T

is 8 K(ZP,1) so H2(2P;m) = (ZPAZP)AZ where A means
the exterior product and G4H means the group of

homomorphisms from G to H. It follows that
H2(Zb;za) = (ZbkzP)AZa. This can be regarded as the

. b ,b pa
group of skew-symmetric homomorphisms Z xZ —>& .



Now take hyperbolic elements «eGL(a,%) and
ReGL(b,Z). Let %1,...,Ra be the eigenvalues of «
and pmyy...,umy those of g (counting multiplicity).

. . *-1 o,b b
The eigenvalues of p a*.(z AZ )Aza—é(szzb)aza are
-1 -1 .
miFﬁ P o 1¢igca, 1¢j¢kg<b. For example, if « and B

are both diagonalizable and xq,...,xa;yq,...,yb are

b

bases of eigenvectors in Ca,C then the eigenvalue

Y -1

Aifﬁ My of R* o, corresponds to the eigenvector
b .b a .

de(CAC”)AC” defined by d(yj,yk)=xi, d(yk,yj)=-xi,

d sends all other pairs of basis vectors to zero.

. . #*= -1 -
Thls1181because (B u*(d))(yj,yk) = ad(B yjaﬁ 1yk)

We are interested in fixed points of ]&'—1«* so we
want this transformation to have an eigenvalue 1. If
ﬂifgﬁuﬂq = 1 for some i,j,k, j#k, then a. -
corresponding eigenvector will have rational
coordinates so some multiple of it will have integer
coordinates. Thus we get

Proposition 2. If «xeGL(a,Z) and BeGL(b,Z) are

hyperbolic matrices, p(x) and p(B) are their

" characteristic equations and there are two roots of
p(p)_whose product is a root of p(e) then there is a
non-toral (a+b)-dimensional two-step nilmanifold
supporting an Anosov diffeomorphism which induces on
the fundamental group an extension of « by B. ‘All
hyperbolic automorphisms of two-step nilmaﬁifolds are
obtained in this way by varying «,R,a and b. If on

the other hand there are no two roots of p(B) whose
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product is a root of p(x) only the trivial extension
is possible, that is only the hypertolic automorphism

induced by axB on the torus Ta+b

Is the non-toral nilmanifold in Proposition 2
unique or are there many such? To answer this question

we shall need a lemma.

Lemma 2. Let H be a subgroup of the free abelian group
A=Z2 so that rH is also a subgroup of A‘for any rea.
Then among the quotient groups A/(rH), reZ, there are

infinitely many non-isomorrhic groups.

Proof. It suffices to show that, having constructed
sq>sq_1>...>s1>0 so that all the groups A/(siH) are

non-isomorphic we can construct s >sq. The result

q+1
will then follow by induction on q since the induction

can be started with sq=1. Choosé xeA s.t. x+qu is an

element of largest possible finite order, m say, in
A/(qu). mxequ.but if O<j<m then jx#qu.
Case 1. m=1. xequ and A/(qu) has trivial torsion
subgroup. Choose yequ s.t. E%equ with y=2z. Then
y¢2qu and so A/(2qu) has non-trivial torsion subgroup.

Put sq+1=2sq.
Case 2. m»1. Put s

=msq. xfs H so mx¢SQ+1H. Also

q
if 0¢j<m jx¢sq+1Hcqu. Therefore x+sq+1H has order >m

q+1

/

but ‘ma. Since the maximal order of the torsion

elements of A/(qu) increases monotonically with g all

these groups are non-isomorphic.

This lemma is needed for
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Proposition 3. If N/D is an (a+b)-dimensional two-step

nilmanifold with Z% as the centre of D and N/D admits
a hyperbolic nilmanifold automorphism given by an
automorphism of D that is an extension of « by B for
some fixed hyperbolic elements «eGL(a,Z), peGL(b,Z)
then there is a countably infinite set of

non-homeomorphic nilmanifolds with the same properties.

Proof. There is an extension 1—9%339D£Lzb—91,where
iza=Dq the centre of D, given by a B*'qu*-invariant
element deHg(Zb;Za). For any r6Z rd is also a gf-q -
invariant element of H2CZb;Zé). So fd corresponds to

a central extension D(r), say, of 2% by zP

that admivs
An &Automorphism which is an extension of « by g. It
will be sufficient to find an infinite number of non-

isomorphic groups among these D(r).

As before let D(r)q'denote the centre of D(r) and
D(-r)’I that subgroup of D(r) generated by all elements

1Pq for p,qeD(r). The inclusions

of the form pqu'
between the upper and lower central series of D(r) can
now be displayed as
| e} = D(x); = D(x)
@ =o' =nle) .
We shall investigate D(r)q/D(r)q. (This same

quotient group was considered in [2] for 3-dimensional

nilmanifolds.)

1 .
To calculate the groups D(r)q, D(r) we must first
explain how the group D(r) is defined from the element

rd of'H2Czb;Za). The underlying set of D(r) is



{(x,u);xeza, ugzb}. The group operation on this set
is defined using a cocycle representing the
cohomology class rd. A 2-cochain is a function (not
necessarily a homomorphism) from bezb—aza, Such a
cochain is a cocycle precisely when the product we now
define is associative. Let a-szzb—éz be a cocycle.
representing d and use the cocycle re to represent rd.
The product in D(r) of elements (x,u) and (y,v) is
defined to be

(x+y+re(u,v)j,utv).
This is equal to (y,v)(x,u) = (y+x+re(v,u),v+u) if and
only if re(u,v)=re(v,u). But this is equivalent to
6(u,v) = s(v,u). Thus (x,u) commutes with all elements

in D(r) if and only if it does in D. .‘.D(r),| "=’D,' =z2,

Now (x,u)’q = (-x-r6(u,-u),-u). So
(x,u)"](y,V)""(x,u)(y,VD =
(-re(u,-u)-re(v,-v)+re(-u,-v)+re(u,v)+rs(-u-v,u+v),0)
But this generator of D(r)'l is just r times a generator
of D). Thus D(r)1= en’. Now, by Lemma 2, there are
infinitely many groups D(r) with non-isomorphic
D(r)q/D(r)q. Hence there are infinitely many

non-isomorphic groups D(r) and so the corresponding

nilmanifolds are non-homeomorphic.

A question not investigated here is what
automorphisms & are possible in the commutative diagram

1522 5D —>2z° >

L4, 4 H,

1 —> z% — D - Z — 1
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for fixed D,«,p. It would seem that there are many
such automorphisms not necessarily conjugate to each

other in the group Aut(D) and [17; p.216) connects
this question with the group H'(Z°;z2) = zP4z?®.

Smale's Example. We illustrate this section now by

showing how proposition 2 applies to the two
hyperbolic automorphisms Smale defined on a certain
6-dimensional two-step nilmanifold in [29; p.762].
In this example he definés a 6-dimensional nilpotent
Lie group G and a uniform discrete subgroup M of it.
" is the group we have called D. Smale works mainly
with the subset rb==exp'1P of the Lie algebra of G.
This is a set of matrices with entries in the field
Q(W3). & denotes the automorphism of Q(W3) sending
J3 to -43. Mo is the set of 6x6 matrices (P 0 )

o p°
0x 2z . '
where P={0 O y| ; X,¥,z have the form m+nd3 for
000

ﬁ:;ez and F¥ denotes the result of aprlying ¢ to each

entry of P.

An element of fb is clearly determined by the
matrix P. We define generators for M by specifying

the matrix P for the corresponding elements of rb.

nave x=1 and +3 respectively and other entries O.

B K n
n T 1
1" y.. ’l " J 5 . - 1 ) 1 ”

ith all these
Now only L,| and L2 have bracket zero with a e

generators SO the centre of ™ (which we call ra) is

generated by {exqu;expLe}. P/F} is generated by

the cosets of the remaining generators of M, namely



{eXPJﬂ’exPJ2’GXPKﬂ’eXPKQ}' So this nilmanifold is E}
principal fibre bundle with fibre T2 and base 7%

Now let S be the hyperbolic matrix (3 g)eGL(E,Z)

whose eigenvalues are A=2+43 and 1-1=2-43. Smale's

£3 . . .
irst hyperbolic automorphism induces u,l=S5 on FH and

/S 0 .
pq-(o S2> on ryrg both matrices w.r.t. the generators

FIE

described above. B, has eigenvalues a,x*“,xz,k‘g and.
«, has 13,)f3 s0 the conditions of proposition 2 are

clearly satified. Smale's second hyperbolic . ..
S 0

automorphism induces a2=S_2,ﬁ2=(
0 s~

3> S0 we have two

eigenvalues of P> whose product is an eigenvalue of Use

4.4 Zeta Functions.

The reference for this section is §I.4 of [29].
The false zeta function of a diffeomorphism f, f(f;t),
is defined by

L,t) = epo;,}(’l/m)L(fm)tm.

If the Lefschetz index of all the fixed points of f"
is the same then N _(f)= |L(£™)| and U(£) is easily
calculated from th). In §4.1 we found that an
Anosov diffeomorrhism f of a nilmanifold has the same
Lefschétz'number as a certain associated automorphism
of the torus of the same dimension. Thus if Rd,...,%n
are all the eigenvalues of all the ¢;'s counted with
multiplicity then | ‘(_1)k+1
Y£,t) = TT(“‘“i,,“iz“"‘ikt)

where the product is taken over all (11""’ik) 5.t.
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1&11<12<...<ik<n.

Suppose’now that g is a hyrerbolic nilmanifold
automorphism so that \%i‘¥1 for each i. (g) derends
P~
on {(g), the dimension of the expanding bundle EY ang
whether Dg preserves or reverses the orientation of EY.

These last two can be calculated from those Ai with

|ﬂi‘>1 and are the same for gq%-.+.x8,. These remarks

prove

Proposition 4. Z(g) = Z(gqx...xgc).

Thus the zeta function does not distinguish
between the nilmanifold automorphism and the associated
toral automorphism. But this does not detract from its
power to distinguish between diffeomorphisms of the

same manifold.

g:N/D—N/D is covered by an automorphism G:N—>N
- which induces an automorphism of the Lié algebra of N.
The eigenvalues of this automorphism are just 21,...,Kn.
If the Lie algebra is not abelian then there must be
eigenspaces corresponding to eigenvalues %i’aj say
whose bracket is not zero making “imj an eigenvalue
too. Hence

Proposition 5. The zeta function aboye of a product

of toral automorphisms can only be the zeta function
6f a non-toral nilmanifold automorphism if a factor
for which k=1 cancels with a factor for which k=2.

Question. Can more information abbut which factors of

i ich nilmanifolds admit
Z(g1x...xgc) cancel determine whic

an automorphism corresponding to 81*---*807
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