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ABSTRACT; 

This thesis considers some problems in Dyn~mic31 

Systems concerned with zeta functions and with Anosov 

diffeomorphisms. 

In chapter 1 Bowen's method of expressing a b3.sic 

set of an Axiom A diffeomorphism as a quotient of a 

subshift of finite type is used ,to calcul'1te the num­

bers of periodic points of the diffeomorphism and 

show that its zeta function is ration31 which gives 

an affirmative answer to a question of Sm~le. 

The rest of the thesis is concerned with Anosov 

diffeomorphisms of nilm3nifolds. Ch3pter 2 contains 

some facts about nilmanifolds describing them as 

twisted products of tori. Anilmanifold has a maximal 

torus factor. A hyperbolic nilmanifold automorphism 

projects onto an automorphism of this torus qnd we 
, 

say it has the toral automorphism as a factor. In 

chapter 3 we generalize this situation to show that 

many diffeomorphisms of other manifolds h3ve toral 

automorphisms as factors and give some examples. 

In the last chapter we use a spectral sequence 

associated to another decomposition of a nilrnanifold 

into tori to calculate the Lefschetz number of any 

diffeomorphism of the nilmanifold. This enables us 

to prove a necessary condition on the map induced by 

an Anosov, diffeomorphism of a nilmanifold on its 

fundamental group. Then we consider the question of 

finding hyperbolic automorphisJ1'ls of nilmanifolds ' 



from the decomposition into tori. Fin311y we calcul­

ate the zeta function of such an automorphism. 
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INTHODUCTJON. 

The subject of dif'ferenti'3.ble dynamical sytems 

studies a diffeomorphism f or a flow ~t on a smooth 

compact connected manifold M and in particular the 

global and geometric properties of the orbits of f 

or~. The idea is to mimic a ~hysical system with 

state space M and with CftX the state of the system 

at time t if it is in state x at time O. 

It is sensible to study only flows q> whose orbits 

have the same properties as the orbits of every 

nearby flow l because a physical system is subject to 

small perturbations in the controlling forces and to 

inaccuracies of measurement so that we could not have 

been sure whether our system was in fact represented 

by ~ or y. Such a flow , is said to he stable. For 

some years the main problem in this subtiect 'was to 

find a precise definition of stability so that stable 

flows were dense in the C1-topology in the space of 

all flows on M and also that stable flows were amenable 

to some form of classification. It is best to tackle 

problems on flows for diffeomorphisms first because 

it is easier to work with diffeomorphisms and yet not 

too hard to extend results proved for diffeomorphisms 

to flows - see the remark on this at the end of 

chapter 1. 

The problem is then to investigate the orbit 

structure of a diffeomorphism f having some stability 
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property. One e~sily noticed form of behaviour of 

our system will be regularly rereated beh~viotir. This 

corresponds to a periodic point of f i.e. a point x 

s.t. fnx=x for some n. An important question about f 

will be to discover how many periodic points of each 

period n it has ~nd ensure this is the s~me for all 

diffeomorrhisms close enough to f. 

Define a closed subset A of M to be an attractor 

for f if it is contained in some open set U and 

A = nn~OfnU. That is all points near A approach A 

under repeated applioatiori of f. An attractor 6ff 

will be of particular interest because it determines 

the behaviour of the system started anywhere within an 

open subset of the state space, in fact anywhere 

within its basin of attraction Un€~fnU. 

UIlder this definition the whole manifold M is an 

attract or for any f whereas we really want to invest­

igate the simplest pieces into which the attractors 

of f can be broken down. So we impose the condition 

of topological transitivity on an attractor. flA is 

topologically transitive if 3x£A s.t. A = cl{fnx;n£Z}. 

Then A acts as a whole and we should like to under­

stand its structure. There will be only a finite 

number of topologically transitive attractors if we 

impose the condition that f satisfy Axiom A [29]. 

This was Smale's candidate for a condition on diffeo­

morphisms that would ensure they had a particular 

kind of stability called fl-stability and were amenable 

to classification. Unfortunately in [31] he found that 



these diffeomorrhisrns were not dense in the srace of 

all diffeomorphisms but Franks (10) and Guckenheimer 

[12] h~ve found sli~htly stronger stability conditions 

that imply Axiom A. 

Before proceeding with this discussion of dynam­

ical systems we had better give the main definitions. 

Let M be a smooth comp~ct connected manifold without 

boundary and Diff(M) the space of 01 diffeomorphisrns 

of M with the C1-topology. Let f£DiffClV). 

Definition. Let NmCf) be the number of fixed Toints 

of fm. The zeta function of f-is 
,~ . 

~(f,t) = expL":=1C1/m)Nm(f)'brn. 

Definition. The nonwandering !?et nCf) = {xdJ[;for 

every neighbourhood U of x 3n s.t. fnUnU.~ 0}. 

Definition. f satisfies Axiom A if 

(a) the restriction of the tangent bundle to n TaM 

has two conttnuous Df-invariant subbundles E S , EU 

with TnM = ESliEu and for any Riemannian metric 3 con­

stants c,'A c>O, 0<"<1 s.t. 

and 

Vx£n,n~O 

and (b) the periodic points of f are dense in O. 

Theorem. (Smale's Spectral decomposition theorem) 

If f satisfies Axiom A then n can be written as 

~v ... u~ where the ~ are closed disjoint f-invariant 

subsets on each of which f is topologically transitive. 

The sets ~ are called basic sets. 

Definition. f is an Anosov diffeomornhism if it 



satisfies Axiom A (a) with o replaced by M. 

Definition. f,g€Diff(M) are topologically conjugate 

if 3 a homeomorphism h:M~M s.t. hf=gh. 

Definition. f is structurally stable if it has a 

neighbourhood in Diff(M) consisting of diffeomorphisms 

topologically conjugate to it. 

Theorem. (Anosov [1]) Any Anosov diffeomorphism is 

structurally stable. 

However, few examples of Anosov diffeomorphisms 

are known and these only on tori and nilmanifolds 

(and manifolds finitely covered by them) - the so-

.called hyperbolic toral automorphisms and hyperbolic 

nilmanifold autornorphisms, see e. g. [8]. Franks [8) 

and Newhouse [21) have shown that if an Anosov 

diffeomorphism f has ES or EU 1-dimensional then f is 

a hyperbolic toral automorphism but there are not 

many other results about Anosov diffeomorphisms of an 

arbitrary manifold. 

Part of the attractiveness of the subject of 

differentiable dynamical systems lies in the fact that 

a wide range of tools from other branches of 

mathematics can be used to attack its problems. 

Moser's proof of the structural stability of Anosov 

diffeomorphisms as expounded by Mather [29; pp.792-5] 
uses a manifold of maps and an implicit function 

theorem. Proofs of the existence of stable manifolds 

have used ~he stability properties of hyperbolic 

automorphisms of Banach spaces, see e.g. [15]. Sinai 

5 



[28J and Bowen [3,4 and 5] have looked at connections 

with measure theory, entropy and topolQgical dynamics. 

Smale [29J used the idea of Lefschetz number from 

algebraic topology to count periodic points. In [30J 

he used a handle decomposition of M to show that any 

f is isotopic to one satisfying Axiom A. And Franks 

[8] approached Anosov diffeomorphisms via their 

homotopy theoretic properties. 

In this thesis chapter 1 uses Bowen's work to 

calculate ~(g,t) for an Axiom A diffeomorphism g and 

show it is a rational function of t. Chapter 2 

contains some facts about nilmanifolds that are 

needed later, describing in particular how a 

nilmanifold decomposes into tori. Chapter 3 uses 

work of Franks to show that if f induces a hyperbolic 

map on H1(M;Z) then f:M.-?M has a hyperbolic tora,1 

automorphism as a factor and then gives some examples. 

In chapter 4 M is a nilmanifold and f:M.-?M is an 

Anosov diffeomorphism. §4.2 summarises what is known 

about such f after a theorem in §4.1 which uses 

Lefschetz numbers and a spectral sequence to obtain a 

necessary condition on f*:~1(M)~~1(M). §4.3 

considers hyperbolic automorphisms of nilmanifolds 

from the algebraic point of view and §4.4 calculates 

the zeta function of such an automorphism. 

I should like to record my grateful thanks to my 

wife Hanne for all her support and encouragement 

during the last three years, to the two supervisors I 

6 



have had in the course of this work, Frofessor R. 

Bowen and Professor E. C. Zeeman, for introducing me 

to dynamical systems and for much guidance and help 

and to the Science Research Council who sUTPorted me 

financially. 
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Chapter 1. AXIOM A DJFFEOMOHFHISMS HAVE HATIOKAL 
- ==-

ZETA FUNCTIONS. 

1.1 Introduction. 

This resul twas con.iectured by Smale [29; p. 785] 

and its value is to show th9.t the numbers of periodic 

pofnts of all orders of the diffeomorphism are deter­

mined by the finite number of zeros and poles of the 

zeta function. In [34J Williams gives a survey of 

results on this function up to 1968. Then in [11] 

Guckenheimer showed by using 9. double cover and the 

Lefschetz Tr9.ce Formula that an Axiom A diffeomorphism 

has r_'ltional zeta function provided it s'ltisfies the 

no cycle property. Since the theorem of this charter 

W3S first proved Simon [27] has found a set (with non­

empty interior) of diffeomorphisms not satisfying 

Axiom A whose zeta functions are not rational. 

In [4] Bowen, following Sinai [28], proved the 

existence of a M9.rkov partition of a basic set nb of 

an Axiom A diffeomorphism by means of which fib can be 

expressed as a quotient of a subshift of finite type. 

Since the existence of Markov partitions does not 

depend on the no cycle property and the zet9. function 

/ of a s~bshift of finite type is known from [7] this 

seems a natural method for approaching the zeta func-
I 

tion. In this chapter this partition is used in §3 

to construct new sub shifts by means of which the 

periodic points of rib can be counted in §4. This 



ch3pter has appeared in the Bulletin of the London 

Mathematical Society vo]ume 3 (1971) pages 21"5-220. 

1.2 Markov P3rtitions. 

Let g:M~M be an Axiom A diffeomorphism 3nd re­

call from the introduction Smale's Srectral Decom­

position Theorem which says that neg) = 01 u ••• vnc 

where each basic set nb is closed and g-inv~riant 

and glOb is topologically transitive. It is clear 

that Nm(g) = r~=1Nm(g\nb) so that, as in [29; p.766], 

~(g,t) = exp ~:=1(1/m) {L~=1Nm(g\nb)}tm 

= exp r~=1 r:=1(1/m)Nm(g\nb)t~ 
= 1T~=1 ~(gl~, t) (1) 

Thus it is sufficient to prove that ~(g,nb,t) is 

rational for each b. 

Let f = glOb for some fixed b. Then f:~~b is 

expansive with expansive constant £>0 say. This 

means that, for any two distinct points x,ycOb, there 

is n s.t. d(fnx,fny»£. Then according to [4] there 

is a Markov partition for fib, that is a finite cover 

e of ~ by closed subsets called rectangles whose 

diameters we require here to be less than £/2. The 

rectangles are pairwise disjoint except possibly for 

the intersection of their bound3ries. And if Ej£e 

then (figure 1.1) 

x , y E E j ~ WS (x, £)" WU 
( y , e) £ E j . 

Finally the rectangles satisfy the 'Markov property' 
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I 
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I 
I 

-1 { u } f W fx, t)nEk 

I , 

10 

E. 
J 

, 
-1{ s } ..J f VI ~x, £ )n~ 

Figure 1.1 Figure 1.2 

that if Ej,Ekee and X(intEjnf-1(intEk) then (figure 

1.2) 

and 
WS(x, t)nEj C f-1{Ws (fx,£ )nEkI 

WU(x,t)nEj ~ f=;{WU(fX,&)nE
k

} 
} (2) 

Define the transition m3trix T = (t(Ej,E
k

)) ry 

t ( E j , Ek ) = 1 if 

f(intEj)nintEk I 0 

and t(Ej,Ek ) = 0 otherwise. Then T gives rise to a 

subshift of fini.te type 'T::"{T)~I\(T) as follows. I,et 

E = (En)~ be a sequence of elements of e such n=-«I 
that t(En ,En+1 ) = 1 for all n. Let A(T) = the set 

of all such sequences. Let T:A(T)~A(T) be defined 

by TE =F where Fn = En+1 for all n. Now the map 

T:~(T)~nb given by ~E = n~=_~f-nEn is well defined 

by the conditions (2) 3nd exransiveness. v is one 

/ to one almost everywhere and gives a commutative 

diagram 

A(T) ~ A(T) 

T~ ~ A: 
f 



The interested reader may consult (4) for proofs ond 

more details of these Markov partitions. 

From a knowledge of this sub shift and of which 

rectangles intersect it is rossible to calculate 

~(f,t). The rectangles E1 , .•. ,Er are said to be rel­

a ted if E1 n ••. nEr I 0'. 'l'he following lemm8 WQ8 shown 

me by Bowen. 

1 r Lemma 1. Let E , ..• ,E be distinct elements of ~(T). 
1 r If, for each n, the rectangles E-; ..• ,E are related 
n n 

then ~E1 = ~E2 = ••• = vEr. 

Proof. Let ~Ej = xj,n
b

. fnxj£Ej, fnxk£Ek. So 
n n 

de fnx j , fn~k) ~ diam(E~uE~) < £/2+ £/2 = & 

for all n. But £ is an expansive constant for f. So 

x j = xk as required. 

In (5] by a detailed investigation for arbitrary 

xcQb of the T-relationship between the rectangles to 

which x belongs and those to which fx belongs Bowen 

shows 

Proposition 10. There is an integer d such that, for 
-1 all x, ~ x has at most d elements. 

Corollary 11. E is a periodic element of AC T) if and 

only if ~E is a periodic ~oint of nb under f. 

f Proposition 12. If 1E = ~F is periodic under f and if 

En = Fn for some n then En = Fnfor all n. 

These results are needed for 

Lemma 2. If E1, ..• ,Er are as in Lemma 1 and e3ch is 
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periodic under T (with possihly different periods) 

then t(Ej,Ek 1) = 0 for J' ~ k n n+ r . 

Proof. By Proposition 12 of [5] for each n E~, ... ,E~ 

are distinct. Choose m>O such that ~Ej = Ej for 

each j. Suppose contrary to the Lemma that there qre 

, , , , 

Figure 1.3 

j,k,h such that j I k and 

t(ER,E~~1) = 1. Figure 1.3 

shows part of the directed 

graph with vertex set e and 

adjacency matrix T. Related 

rectangles are joined by 

dotted lines. A point of 

A(T) is a two-way infinite 

path in this graph. Ej,Ek 

are paths round the inner and 

outer squares respectively. (m = 4 in the figure~) 

For each integer p construct points vP of A(T) with 

paths going round the inner square until time h+pm 

and then round the outer square. More precisely" 

vP = Ej for n ! h+'I'Im vP = Ek for n> h+pm. Then all the n n ".t'" n n 

faints vP are distinct and by Lemma 1 they have the 

same image under~. But this contradicts Proposition 

10 of [5J and 

1.3 The Subshifts A( A, ). 
--- ---1-

'1,"t'= fTC implies that 'TT{Fix(-r m)} c Fix(fID) but 

Nm(T) INm(f) for two reasons: 

(1) At the boundaries of the rectangles, that is 

where they intersect, Tr is m3.ny to one so several 
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points of FixS-cm) may be mapped to the same point of 

Fix( f m). 

(2) m If x has period m under f then f ma~ rotate or 

reflect the manifold in the neighbourhood of x. If, 

further, x E EjnEk then it might for example inter­

change Ej and Ek and consequently T~ would inter­

ch'lnge the elements of 1r-
1x containing E

j 
and E

k
. 

Therefore in this case these elements of ~-1x would 

have period 2m rather than m. 

To capture the points x that have several inverse 

images the obvious thing to do is to construct sub­

shifts whose symbols are sets of r related rectangles 

for various r. Unfortunately this a}:}:roach is too 

simple because we find ourselves counting the points 

x too often, and so we need an algebraic device of 

k-tuples of sets of related rectangles to cancel out 

the overcounting. For the moment we confine ourselves 

to the formal definitions and the reasons will become 

apparent in the next section. 

Define q to be the largest integer such that there 

is a set of q. related rectangles. Fix k between 1 and 

q. Let i = (11' .•. ' i k ) be a fixed k-tuple of posi ti ve 

integers and put Iii =~ij. We suppose that \il ~ q. 

Now for each j = 1, ••• ,k let e. be a set of i. related 
J J 

rectangles. Let u= (e1 , .•• ,ek ) be a k-tuple of such 

sets, such that the rectangles in Ue j are all distinct 

and all related. Let A. be the set of all such 
~ 

k-tuples u. 

13 



We now rroceed to define a transition matrix A. 
1. 

for the symbol set Ai' induced by the original trans-

ition matrix T. Let e j = {E1, ••• ,EP}, f j= {F1, •.• ,FP} 

be two sets of P related rectangles. Write tee .,f.)=1 
J J 

if there is a relabelling of the Fls such that 

t(~,Fh)=1 for h=1, ••• ,po Note that by Lemma 2 any 

such relabelling must be unique. Write tee .,f.)=O 
J J 

14 

otherwise. Now given two elements of Ai u=(e1 , •.• ,ek), 

w=(f1 , ••• ,fk ) write a(u,v)=1 if t(e j ,f j )=1 for j=1, .•• ,k 

and write a(u,v)=O otherwise. This defines the trans­

ition matrix A. for A.. From the symbol set A. and 
1. 1. 1. 

the transition matrix Ai construct in the usual way 

the subshift of finite tYTe ~i:A(Ai)-7A(Ai). 

Remark. e = A-1 , T = A1 and T:I\(T)~I\{T) is the same as 

CX1:I\(A1)~A(A1). Moreover in the case where each i j =1 

A. may be obtained as that submatrix of the tensor 
l. 

product of T with itself k times corresponding to 

those rows and columns that belong to Ai' 

1.4 The Result. 

Theorem 1. Nm(f) = L (-1 )k+1Nm( CXi) where the sum is 

taken over a~l i= (i1 , •.. ,ik ) with 1,k(q and \i\~q. 

Proof. Any point of !\(Ai ) gives rise in a natural way 

to Iii points of A(T) as follows. Let y=(y)~ be n n=-oo 

a point of ~Ai) and let YO=(e1 , .•• ,e k)· Then each 

Eh € Ue j determines a unique point .pe.NT); for instance 

zg=~, z~=the unique Fh( Uf j' where Y1=(f1 ,··· ,fk ), 
h h h h h .. h 

such that teE ,F )=1, and z2' z3'···' z_1' z_2'··· 

are defined inductively. Therefore zh is uniquely 



determined, 1,h'\i\. 

Now 1TZh = Z € 0b where ~z is independent of h by 

Lemma 1. Define ~:A(Ai)--)~ by ~y=z. Then ~~i=f~. 

If yeFix(O(~) then CPy€Fix(fID ). So every p~int counted 

in NID(~i) corresponds under ~ to a point counted in 

Nm(f). 

So it is sufficient to show, that, for each ;, _~ _: :_:­

z€Fix(fm), ~(_1)k+1N'(~.) =1 where N' counts only m 1 - m 
. t . -1 -1 {1 r} \ \ p01n s 1n cp z. Let 1T z = Z , ••• , z • If i >r 

-1 . ( ID) then <f Z0F1X ()( i = rJ. The remaining i may be divided 

into three sets B, C, D thus 

B = {i; \ il < r} 

C = {i; Ii \ =r and k)1) 

D = {i;k=1, i1=r} = {r} • 

Define t:B~C by ",(i1 ,··· ,ik ) = (i1 , •• • ,i k ,r-i1- •.. -i
k
). 

t is a bijection. t can be used to show that 

rB(-1)k+1N~(()(i) + LC(-1)k+1N~(~i) = 0 

as follows. 

Let x be a point of Fix(~~) with ~x=z and ieB. 

Define y in FiX(~;i) with ~Y=z thus: the first k sets 

of Yn are the k sets of xn in that order and the 

(k+1 )-th set o"f Yn is the set of r-i1- ... -ik rectangles 

in {z~, ••• ,z~} but not in a set of xn0 By Lemma 2, 

t(z~'Z~+1) =1 but t(Z~,z~+1) = 0 if hlp. The rectangles 

in x are paired with those in x 1 according to the n n+ 
matrix Tso those in the (k+1)~h set of Yn can be 

paired with those tn the (k+1 )-th set of y n+1 . Thus 

a(Yn'Yn+1)= 1 and yeA(Ati ). rJioreover, for each n, 

x =X and rmz=z so that n n+m 
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{Zn1 , ••. ,znr} = {z 1 , •.• , z r }, n+m n+m 
so Yn=Yn+m and Y£FiX(~~). 

S · . 1 l' -r.l' ( m) -1 lml 8.r Y gl ven ye t' lX C)Cti n <p z obtain 

XEJ4'ix(<x~)n <p -1 z by simply omitting the (k+1 )-th set of 

Yn to get xn' These two operations are mutually 

16 

1· nv rd' b" t· F' (m) -1 . ( m) -1 e se an gl ve a lJec lon lX\<X i n<p Z~F1X\OC""i n<p z. 

Therefore 

It remains to prove that LDC-1 )k+1 N,(oc.) =1. The m 1 

only point in m-1 znACA ) is w where w ={z1, ... ,zr}= 
T r n n n 

{E€ e; fnz€E) . wn+m = {E£€; fn+m z €E) = {E6e; fnZ€E} = w
n

' so 

. (m) -1 W~F1X «; n~ Z and 

rD(-1)k+1N~(OCi).= C-1)2N~Cotr) = 1 

as required. This concludes the proof. 

Corollary. 

Proof. This follows from theorem 1 by the argument 

of (1) above. 

Theorem 2. ~Cg) is rational if g satisfies Axiom A. 

Proof. From [7] ~(oc.i) is rational. In fact ~C<Xi) = 

. {det (I-tA i )}-1 • Hence, from the Corollary, ~(f) is 

rational, and ~(g) is just the product of c functions 

i like 1C f ). 

Question. The zeta function of a toral Anosov diffeo­

morphism with eigenvalues 'A1 , .•. ,'>. n is given in [29; 

p.769] as a rroduct and quotient of terms 

(1-l. ~ .... ~. t). The same formula arplies to the 
11 12 lk 



nilmanifold examples (see §4.4). If we are given the 
( 1)k+1 

zet3 function as II· )(~.) - is it possible to 
1 ~ 1 

recover the original eigenvalues "1""'''n from those 

of the matrices A.? 
1 

Remark. The simplest basic sets for Axiom A diffeo-

morrhisms are the O-dimensional ones which are just 

subshifts of finite type. As described in §1.2 any 

other basic set can be expressed as a quotient of a 

subshift of finite type. Recently Bowen has been 

extending his work to Axiom A flows. Here he finds 

that the simplest type of basic set (apart from fixed 

points) is 1-dimensional (actually the suspension of 

a subshift of finite type 'ia t a time which varies in a 

Lipschitz manner). Any other basic set is a finite­

to-one quotient of one of these. In [6] he makes use 

of the methods of this chapter, in particul3r theorem 

1, to show that the zeta function of an Axiom A flow 

is a product and quotient of zeta functions of certain 

1-dimensional basic sets. This and Bowen's other 

successes with Axiom A flows illustrate the process 

of obtaining results for diffeomorphisms and then 

extending them to flows. 
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Chapter 2. NILMANIFOLDS. 

2.1 Frelimin3.ry Facts. 

This chapter contains some facts about nilmanifolds 

which will be needed later on. 

Definition. A nilmanifold is a compact homogeneous 

space N/D where N is a connected simply connected nil­

potent Lie group and D is a uniform discrete subgroup 

of N. 

Malcev [19] investigated nilmanifolds in some 

detail and we quote the following two results from his 

paper. 

18 

Fact 1. Nilmanifolds are determined by their fundament3.1 

group D. For an abstract group D to be the fundamental 

group of some nilmanifold it is necessary and sufficient 

that D be finitely generated torsion-free and nilpotent. 

Fact 2. If .N/D is 3. nilmanifold then any automorphism 
, 

of the group Dcan be uniquely extended to an automor-

phism of N. 

This automorphism preserves the subgroup D.and 

induces a diffeomorphism of N/D which we m3.Y call a 

nilmanifold automorphism. 

N/D is a K(D,1) since its universal cover N is 

contractible, see [25; p.180]. From theorem 8.1.11 of 

[32] we get immediately 

Fact 3. f1,f2:N/D~N/D are freely homotoric if and only 

if the endomorph isms they induce on the fundamental 

group D are conjugate i.e. differ by an inner automor­

phism of D. 
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Our interest in nilmanifolds arises from the fact 

that some of them ~dmit Anosov diffeomorphisms - the 

so-called hyperbolic nilm~nifold automorphisms. The 

simplest manifolds known to admit Anosov diffeomorlhisms 

are the tori and a nilmanifold can be expressed as a 

'twisted producf of tori. There are two methods of 

decomposing a nilmanifold into tori. 

2.2 The Torus Decomposition Using the Lower Central 

Series. 

The first method is described by Parry in [22]. 

Werec311 only as much as we shall need in the next 

chapter. Let N1=[N,N]=the subgroup of N gener3.ted by 

elements of the form x-1y-1 xy for any x,yeN. There is 

an obvious projection from N/D to the space N/N1 ·D. 

(The dot denotes semidirect lroduct.) The space N/N1 ·D 

is a torus isomorrhic to (N/N1 )/(N1 ·D/N1 ). Its univer­

sal covering space is N/N 1- and its fundamental group is 

N1 'D/N1 which is isomorphic to D/(N1"D). 

Let us investig~te the group D/(N1nD) more closely. 

n1 = [D,D] is clearly a subgroup of N1nD and by Malcev's 

description of D as "spanning" N we see th3.t D1 C3.D 

only have finitely many cosets in N 1(\ D. Now D/D 
1 

is 

an abelian group and D/(N1"D) is a free abelian group. 

We deduce that D/(N1nD), the fundamental group of the 

torus N/N1 .D, is the quotient of Din1 by its torsion 

subgroup. Notice th3.t D=~1(N/D) so D/D
1

=H1(N/D;Z). 

The torus N/N 1 . D is known as the maxim:3.l torus factor 

of the nilmanifold N/D. We use the universal coeffic-
.. , 

ient theorem (e.g. 5.4.13c of [13]) by which •. ' 



H1(M;~) = H1(M;Z)~~ 
and recqll that the group of homomorphisms from the 

torsion subgroup of H1 to ~ is trivial. Thus 

H1N/DjZ)::: D/D
1

d1Z ~D/(N1(\D)~Z. ~H1(N/N1.D;tz)~T{, ~ 
H 

1 
(N/N 1 

• D ;~) . 
We sum this up as 

Proposition 1. A nilmanifold N/D has a m3ximal torus 

factor N/N 1 • D and H 1 (N/D j?Z) = H 1 (N/N1 .D ;~). 

2.3 The Torus Decomposition Using the Upper Central 

Series. 

I should like ,to thank Frofessor W. Parry for 

discussions on this section. In chapter 4 we shall 

need this second method of decomposing a nilmanifold 

into tori which goes as follows. 

Definition. The upper central series 

{el =GOcG1cG2C ••• cG 

of a group G is defined inductively. G1 is the centre 

of G. Let Pi be the projection of G onto G/Gi • Gi +1 
is defined to be pi1 (the centre of G/Gi ). 

For the nilpotent groups Nand D the upper central 

series {e) =NOC:N1c •.• C:Nc=N and {e)=DocD1c ••• C:Dc=D have 

finite length c. (That the two series have the same 

length could be proved as a corollary to Lemma 1.) We 

shall use these central series to find a torus which 

acts on N/D with quotient srace another nilrnanifold. 

The torus will be N1/D1 • Let n be the Lie algebra of 

N and exp:n~N the exponential map (which is injective). 
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Lemma 1. N1AD = D1 . 

Proof. Clearly fi1nDcD1 and D1CD. We must show that 
-1 -1 D1cN1 or exp D1cexp N1=the centre of n. But if 

t£exp-1 D1 then [\,1)1 =0 for all ,?€exp-1 D, and we know 

th!3.t exp-1 D spansn as a vector space. Thus [~,,?1=0 
for all ?€fl as required. 

Lemma 2. N1/N1AD~ N1 ·D/D. 

Proof. The obvious m!3.p x(N1nD)~xeD for xeN1 is an 

isomorphism. 

Lemma 3. N1/D1 is comp~ct and a torus. 

Proof. Let P be the vector space over the rationals 

spanned by exp-1 D. Then P with the bracket of n is a 

rational Lie algebra (the one discussed by Malcev in 

§4 of ~9]) and n=PeR. Clearly exp:1 D1 spans P1 , the 

centre of P. Let 01, ... ,8n texp-1 D span P. Then the 

centre of n is n1=n~=1 ker(ad 8. :n~n) and, see [16; 
1 

p ~ 28] ~ this is 

n~=1{ker(ad 0i :p~p)eR} = tn ~=1ker(ad Si : P-?P»)eR = P 1sR • 

So n1=P1eR and N1/D1 is compact. N1/D1 is a torus 

because it is the compact quotient space of a Euclidean 

space N1 by a free abelian group D1 · 

Lemma 4. N1 ·D is closed in N. 

Proof. 

Choose en £D1 s.t. xnen is contained in a compact set 

which is possible by Lemma 3. Then, taking a sub-

sequence if necessary, xnen~x, say, in N1 . But 

xnene~1dn~m so e~1dn is a convergent sequence in the 
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discrete group D. -1 .•• en dn=d, say, in D for n>some nO' 

xd=m so mE:N1 ·D as required. 

Now the torus N1/D1 acts on our nilm9.nifold N/D 

by (xD1,yD)~:XYD for XE:N1,y~N. This is well-defined 

since elements of D1 commute with y. The orbit space 

of this action is N/N1 'D which~is (N/N1 )/(D/D1 ) another 

nilmanifold. (By Lemma 4 N/N1 'D has the quotient 

topology.) When we use the same method to construct a 

torus acting on this nilmanifold we see from the def-

22 

inition of the upper central series that it is precisely 

(N2/N1 )/(D2/D1 ) and the orbit space is the nilmanifold 

(N/N2 )/(D/D2 ). Repeating this procedure we get 

Proposition 2. The nilmanifold N/D is the extension of 

N1 /D1 by (N2/N1 )/(D2/D1 ) by •.• by (N/Nc_1 )/(D/Dc_1)' 

Each of these spaces is a torus and their fundamental 

groups are the quotient groups Di /Di _1 i=1,2, .•• ,c of 

the upper central series of D. 

Recall theorem 2 of [20J which says that Di /Di _1 

is ~ abelian for each i, a fact which is not 

necessarily true of the lower central series of D. 

The nilmanifold N/D may be called a c-step nilmanifold. 



Chapter 3. ANOSOV DIFFEOMORIHISMS AS ~QTORS. 

3.1 Introduction. 

In this chapter we sh~ll consider some commuting 

diagrams 
f 

M~M 

k~ ~k 
Tr -? Tr 

g 

where g is a hyperbolic toral automorphism, f is a 

diffeomorphism of M and k:M~Tr is a continuous map. 

We shall say that g is g factor of f borrowing the 

word from the measure theorists' terminology. 

The motivation for this chapter comes from 

Pro~lem. Given an Anosov diffeomorphism f:M~M is f 

topologically conjugate to a hyperbolic nilmanifold 

automorphism? 

If f*:H1(M;Z)~H1(M;Z) is hyperboLic (i.e. any" 

element of GL(r~) representing it has no eigenvalues 

of modulus 1) we shall set up a commutative diagram of 

the above form in which, if M is a nilmanifold, the 

torus Tr must be the maximal torus factor of" M 

described in chapter 2. Three more stages would be 

necessary to solve the problem above but we have not 

made any rrogress with them. 

(1) Show that f* must be hyperbolic. In this 

direction Hirsch [14J has shown that f* cannot hqve a 

root of unity as an eigenvalue under certain conditions 
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on M (every infinite c.",clic cover of M must have 

finite dimensional rational homology). 

(2) Show that k is the projection of a continuous 

fibre bundle and that the restriction of f to the 

fibre is again an Anosov diffeomorphism of a manifold 

so that we can apply the procedure again. Eventually 

the fibre would have dimension ~3 and it is known [8 

and 21J that this would have to be a hyperbolic toral 

automorphism. In this way M would be expressed as a 

sequence of torus extensions and these extensions 

could be examined to check that M is a nilmanifold. 

(3) Modify this procedure to take account of the 

fact that M might be an infranilmanifold. 

3.2 Finding ~he TorusTr ~ the ~uotient Map ~. 

Inlthis section all spaces have base points and 

the maps are base point preserving. We shall need a 

result of Franks, 2 .10f [8J. 

Theorem. (Franks) If g:Tr--l)Tr is a hyperbolic toral 

automorphism then it is a lJ1 diffeomorphism, i.e. 

given any homeomorphism f:K~K of a compact CW complex 

K and any map 

commutes then there 

homotopic to h s.t. 

r exists a unique map k:K~T " 
f 

K~K 

k ~ ~ k commutes. 
Tr~ Tr 

g 
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We st~rt with a homeomorphism f that has a fixed 

point which we designate the base point. It follows 

from the Universal Coefficient ~heorem that H1(M;Z) 

is a free abelian group ~r for so~e r. Choose 

generators cx1 "" ;~r' We assume f*:H1 (M;1L)-7H1 (M;Z) 

is hyperbolic.' ,Let G rerresent f* w.r.t. the basis 

~1""'~r' G and its transpose are hyperbolic 

elements of GL(r ,Z) • I,et g be the hyperbolic toral 

automorphism of ~ induced by the transpose of G. 

Then G=g* :H1 (Tr ;Z)~H1 (Tr ;Z). " -.';-

Next we construct a map h:M~Tr using a suggestion 

of Zeeman. 
1 . 

H (M;Z) can be regarded as the homotopy 

classes of maps M~S1. Take a representative hi:M~S1 
I' of the class ~i for i=1, ••• ,r. Put h=h1~ •.• xhr:M~T • 

Lemma 1. 

Froof. I' 1 Let Pi:T ~S denote projection onto the ~th 

factor for i=1, ••• ,r and use square brackets to denote 

homotopy classes. Then Pih=hi so h*[Pi1=~i' h* is an 

isomorphism and the diagram 
-I f*=G 

H1 (M;Z) ~ H1(M;Z) 

h • t ,.,t . f' h!lf 
H1 (Tr ;Z) ~ H (Tr;i) 

g =G 

commutes. 

/ and these r homotopies can be combined to give 

-1 ghf ~. 

Theorem 1. Let H be the space of those base point 

preserving homeomorrhisms of the compact manifold M 

whose induced map on H~;1L) =Zr is hyperbolic. Let 

25 



G be the space of continuous based maps from M to Tr 

homotopic to h and give Hand C the CO-topology. Then 

there is a continuous map ,:H~C s.t. the diagram 
f 

M~M 

<pCf)~ ~~Cf) 
Tr~ Tr 

g 

commutes where fEH and g is the hyperbolic toral 

* 1 C 1 automorphism defined as above from f :H M;Z)~H CM;Z). 

Proof. Franks' theorem and Lemma 1 guarantee the 

existence and uniqueness of ~Cf)=k. It only remains 

to establish the continuity of ~ at the point f. 

From the proof of Franks' theorem we recall that if 

f1 is a homeomorphism of M close to f then 

~Cf)-~Cf1) = CF-I)-1{g~Cf)f11_~Cf)} 
where F is the hyperbolic automorphism h~ghf11 of 

the Banach space of homotopically trivial maps from 

M to Tr so that F-I has a continuous inverse on th~s 

space. Now ~Cf)=g~Cf)f-1 so 

,Cf)-,Cf1 ) = CF-I)-1{g,(f)f11_g~(f)f-1}. 

Since g,Cf) is uniformly continuous we have that 

"Cf1 ) is close -to tpCf) when f1 is close to f as 

required. 

3.3 Applications to Anosov Diffeomorphisms. 

If M is itself a torus then by choosing ~ = [Pi] 

we get C to be the space of maps Tr~Tr homotopic to 

the identity and find 

Proposition 1. A hyperbolic toral automorphism g is a 

factor of any homeomorphism f homotopic to it. 
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Proof. This was realised by Franks, see Le~m~ (1.1) 

of (91, in the case where f has a fixed point. But 

the Lefschetz number of f is non-zero by Proposition 

(4.15)(a) of [29]. Now by (11.3) of [18J f has a 

fixed point. 

Proposition 2. A hyperbolic nilmanifold automorphism 

g is a factor of any homeomorphism f homotopic to it. 

Proof. If f has a fixed point then this proposition 

is an immediate corollary of Theorem (2.2) of [8J 

which says that g is a TT1 diffeomorphism. f alw~ys 

has a fixed pOint because its Lefschetz number is 

non-zero as will be proved in §4.1. 

In particular if f is a diffeomorphism C1 close 

to g then, by uniqueness, the quotient map taking f 

to g is the homeomorphism homotopic to the identity 

which is guaranteed by the structural st~bility of g. 

Notice how Propositions 1 and 2 overlap with the 

topological stability theorem of Walters [33] which 

says that any Anosov diffeomorphism is a factor of 

each homeomorphism cO close to it. It is natural to 

ask the 

Question. Is it true for an arbitrary Anosov 

diffeomorphism g that g is a factor of any ., 'k~) 

/ homeomorphism f homotopic to it? 

If M is a nilmanifold N/D then, by proposition 1 

of chapter 2, the torus Tr of theorem 1 is the 

maximal torus factor N/N1 'D. If f1:N/D~N/D is a 

hyperbolic nilmanifold automorphism then by uniqueness 
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~(f1) must be T, the projection of the fibre bundle 

v:N/D~N/N1.D. ~ is certainly smooth but this should 

not lead us to expect any differentiability in ~(f2) 

for other diffeomorphisms f 2 • In fact let f2 be 

0
1 

close to f1 and conjugate to it by a homeomorphism 

j. From the diagram 

:r 
M-4M 

j ~ ~ j 

M~M 

1r~ 1 ~-rr 
Tr~ Tr 

g 

we see that ~(f2)~~j which need not be differentiable. 

However, ~(f2) is still the projection of a continuous 

fibre bundle. Thus we might hope to improve theorem 1 

to say that ~(f) is a fibre bundle projection if f is 

Anosov but not to say that ~(f) is differentiable. 

3.4 Apnlications to Axiom! Diffeornorphisms. 

Throughout this section f is a homeomorphism of 

the manifold M and f-:H1 (M;Z)4H1(M;Z) is assumed to 

be hyperbolic. It is clear that ~(f)(M) is a 

connected closed g-invariant subspace of Tr. Since 

g is ergodic w.r.t. Haar measure either ~(f)(M) has 

empty interior or it is the whole of Tr. 

We consider Tr as the quotient of the r-dimensional 

cube I r by th~ standard equivalence relation ~~ If 

,Cf) does not map M 2B1Q Tr=Ir/~ then we can compose 

i t with ~a retraction into ~Ir /,.., to get a m9.p 

homotopic to ~Cf) and h1x ..• xhr that is into ~Ir/~. 
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Pro£osition ,. A sufficient condition on M for ~(f) 

t6 be surjective is th9t if h1 , •.• ,hr are 

representatives of generators of [M,S1]=H1(M;Z) then 

the smash product h111. ••• l\h :M~Sr is not - r 

homotopically trivial. 

Next we look at the situation where cp(f)(M) is 

the whole of Tr. 

Proposition 4. If ~(f) is surjective so is ~(f)\nCf). 

Proof. If <p(f) is surjective and cp(f)nCf) is a proper 

closed subset oi Tr then:there is a periodic point y 

of g not in cp(f)fi(f). n Let g y=y. 
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is a non-empty closed f-invariant set disjoint from nc f) 

which is impossible. 

Proposition 5. If f is an Axiom A diff~omorphism ~nd 

q(f) is surjective then there is a basic set ~ eay 

of f s.t. <f(f)l~ is surjective. 

Proof. Let y be a point of Tr with dense g-orbit. 

By Proposition 4 there is an ~!l(f) s.t. ~(f)x=y. . . ~ 

Let ~ be the basic set-to which x belongs. Then 

cp(f).o,contains the closure of the g-orbit of cr(f)x 

which is Tr. 

Also interesting but not new is 

Proposition 6. If f satisfies Axiom A then 

and 

,(f)W~(X) c W:(~(f)X) 

~(f)W~(X) c W~(<f(f)X) for xeM. 



3.5 Exam£les. 

We close this chapter with some examples 

illustrating the results of the previous section. 

Example 1. 2 Here we take M=T where ~Cf) is homotopic 

to the identity and therefore surjective. Let g be 

a hyperbolic ~utomorphism of T2 and f a DA 

diffeomorphism derived from g as described in [29; 

p.789]. (f-1 is considered in more detail in [35]. ) 
v .. _ .. -. --

x y x z 

g f 

Figure 3.1 

The hyperbolic fixed point 0 of g denoted by x 

has tecome three fixed points X,y,z of f. See 

figure 1. x is a point sink with a 2-dimensional 

stqble manifold. The other basic set, A say, is 

1-di~ensional. The unstable manifolds are the 

horizontal lines in the figure just as' for g except 

that W~Cy) and W~Cz) stop at X and W~Cx)={x}. 

By theorem 1 g is a factor of f. ,Cf) maps 

x,y and z to x. It maps the 2-dimensional W~(x) 

onto the vertical line W~Cx) by a 'pinching' 

procedure sending a typical point w to v on the same 

horizontal line. Thus we cannot in general expect 

~(f) to be open. Also the 1-dimensional sets W~(y) 

and W~Cz) are sent onto W:(x). But the image of 

W~Cy) is only the left half of W~(x) so we cannot 
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improve the c signs to = in proposition 6 qbove even 

when the stable manifolds of f and g have the same 

dimension. 

A is locally the product of a Cantor set and an 

interval and it is clearly A that satisfies 

proposition 5 and is mapped onto Tr. In the 

expanding or unstable direction where A is a Cantor 

set W~(Y)'A is a union of intervals each of which is 

mapped to a pOint. That is how the Cantor set is 

mapped onto an interval. 

An unsolved problem in the theory of Anosov 

diffeomorphisms is the following. Given a 

hyperbolic automorphism g ofoTr (r~4) is there an 

Anosov diffeomorphism f homotopic to gbut having 

~(f)ITr? If there was such an f then g would be a 

factor of it. Also f would have a basic set ~ s.t. 

,(f)D.., =Tr. Suppose the splitting of f is into j­

and (r-j)-dimensional subspaces.and suppose j,r-j. 

By [21] j~2. f must have a source or a sink besides 

Q,. That is f must have another basic set whose 

dimension is at least j. In our example 1 1\ occupies 

so much of T2 that there is only really room for 

another basic set to be a point. 

Question. Is there room in Tr for a j-dimensional 

basic set as well as anon, which satisfies <pC f)01 =T
r

? 
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Example 2. We give an example of f:M"-7M for which 

,(f) is not surjective on the orientgble 2-dimensional 

manifold M of genus 2, the connected sum of two copies 

of T2, T~ and T~ s3y. Let f1:T;~T~ be the eX3mple 1 

above with 1-dimensional source A1 and point sink x1 . 

Let f2:T~~T~ be the inverse of this diffeomorphism 

having a 1-dimensional sink A2 and point source x2 • 

Now remove small discs centres x1 ,x2 and join T~ and 

~ together at the bound:1ries ABOD of these discs as 

in figure 2. We get the manifold M and a 

diffeomorphism ~ of M that maps some points from T~ 

into T~. The basic sets of f are just the 1-

dimensional source A1 and the 1-dimensional sink A2 . 

This diffeomorphism was constructed in conjunction 

with David Ohillingworth as a counterexample to a 

theorem of R. V. Plykiri [23] that a diffeomorphism of 

a 2-dimensional manifold satisfying Axiom A and the 

no cycle property and having a 1-dimensional basic 

set must also have a point souce or sink. 
"Za. 

2 AGe T1,f1 'I. 

AGe ~ 
2 

'31 T2 ,f2 
b b 

Figure 3.2 ~2. 

H1 (M;Z)= Z4= (Z$Z)$(Z$Z) and the induced map fll! 

is g*$g*. This gives rise to the hyperbolic 

automorphism gxg of T4 = T2xT2. and by theorem 1 gxg is 
4 

a factor of f.by a continuous map cp(f):M~T • 

We first describe a map h:M~T4 to which ,Cf) 
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will be homotopic. h maps 2 2 4 2 T1 to T xOcT 'lnd T2 to 

OxT2cT4 so that the circle ABCD is pinched to a point 

and the image hM is 

figure 3. 

just the wedge 

) 
h 

Figure 3.3 

of two tori, 

-----, 
I 
I 
I 
I 
I 

see 

In order to understand the quotient map ~(f) it 

will be helpful to see the stable and unstable 

manifolds in M, which are shown in figure 4 for the 

parts of M in figure 2. Notice bow the 2-cell 

w~ (x1 ) in T~ is foliated by stable m'lnifolds coming 
122 

into T1 from T2 and returning again, but that this 

pattern is divided in two by the exceptional lines 

W~(Y2) and W~(Z2) that' do not return into T~. 
Incidentally it is the need for the stable manifolds 

... ' 
I 

..... , 
} 

~- --- - -'" 

--- ........ ...- ; -.. 
".; 

T2 
1 Figure 3.4 Y2 

-----dashed lines represent unstable manifolds. 

, solid lines represent stable manifolds and the 

circle AECD. 

--
T2 

2 
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to return into T~ that ensures they have a point of 

non-transversal intersection, w for examrle, with an 

unstable manifold and prevents f from being an Anosov 

diffeomorphism. 

Now we can describe cpef), which we shall denote 

by k. First recall that we have a map described in 

example 1 that will take A1 onto T2xO and another 

taking "2 onto 2 
O~T • That deals with the nonwandering 

points. Notice that our map sends the fixed points 

Y1,z1'Y2,z2 to the point 0 in T4. The wandering 

points of f are near A1 in past time and near A2 in 

future time. To be more precise the roint t 

approaches the line W~(Y1) in past time and the line 

W~(z2) in future time. Now kW~(Y1) is a line winding 

from 0 around the torus T2xO at an irrational angle. 

kW~(Z1) is the same line, and kW~(Y2) and kW~(z2) are 
2 .. ' both a similar line winding round the torus OKT. " 

kA 

kW~(Y1)cT2xO In figure 5 we draw 

kB 

kD 

Figure 3.5 

part of the immersed 

plane "spanned" by 

kW~(Y1) and kW~(Y2). 

It is the projection 

of a plane in the 

universal cover R4 

of T4 and is 

invariant under the 

automorphi.sm gxg of T4. The image of the circle ABeD 

is in this plane as shown. 

34 



Since all the wandering points of f wander from 

T~ across to T~ they must come near the circle ABCD 

at some time. Consider a point t of M just on the T2 
1 

side of the circle ABCD. Either the stable and 

unstable manifolds of t both intersect the circle or 

this is true of ft just on the T~ side of the circle. 

Thus kt or kft is in the plane drawn in figure 5, and 

by the invariance of this plane all wandering points 

of f ere mapped into it by k. In fact the image of: 

the wandering set is bounded by curves like hyperbolas 

touching k(ABCD). See figure 6. The boundary of this 

set is the image of points such as w or E in figure 4 

where W~(w) and W~(w) meet non-transversally. The 

wandering points in T~ are divided in two by W~(B) 

g'nd WSCD) and each half is folded in two by the map k 
f 

2 to make a crease or fin on the torus T xO=kA1 • 

So the image kMc:T4 is a wedge of two tori each of 

which has a fin winding round it at an irrational 

angle and shrinking as it goes. See figure 7 where () 

only one quarter of the fin is drawn, i.e. one 

quadrant of figure 6. 

k ---

Figure 3.6 Figure 3.7 
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From this ex~mple we see the complexity possible 

in the closed g-invariant subset <p( f) on of IJ.ir . We 

also see that cp(f).Q. is not necessarily equal to cp(f)(M) 

and there need not be a basic set.{).1 with ~(f)~=cp(f)n. 

(Compare propositions 4 and 5.) 

We remark that this manifold does not sati~fy 

Hirsch IS condi.tion [14] that every infinite cyclic 

cover of it should have finite dimensional rational 

homology. So we m3Y ask the 

Question. What is the relation between Hirsch's 

condition and the condition of proposition 31 

EX"lmple 3. 2 2 Let g:T -->T be a hyperbolic automorphism 

having two fixed points, 0 and t say. Modify g to f1 

as in example 1 breaking the fixed point 0 into three 

fixed points O,y and z where 0 is a point sink and 

y,z£~1 the 1-dimensional source. For xeA1 
W~ (x)nQ(f1 ) is now disconnected while w~ (x)nn(f1 ) 

1 1 
is connected. Now modify f1 in a neighbourhood of the 

fixed point t to get a diffeomorphism f with the 

stable manifolds broken up too. t is now a }::oint 

source of f, 0 is a point sink and there is one 

infinite basic set A say. A is a saddle and a Cantor 

set as in Smale's horseshoe example [29]. Since f is 

homotopic to g our theorem says that g is a factor of 

f and ~(f) is homotopic to the identity and so . 

surjective. Clearly the basic set mapped by ,Cf) 

onto T2 is A. This shows that ~ in proposition 5 

need not be a source or sink. 
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The process of going from g to f1 to f may be 

regarded a~ pulling first a point sink and then a 

point source out of O(g)=T2 . Similarly using ~(f) to 

go back from f to g may be thought of as feeding t 

and then 0 back into A thereby restoring to A its 

2-dimensionality and mqking it the whole manifold so 

that g is an Anosov diffeomorphism. 

Recently Smale [30J has used handle decompositions 

to show that any diffeomorphism is isotopic to -one ::­

satisfying Axiom A with a point source, a point sink 

and all other basic sets O-dimensional saddles. If we 

could develop a process of feeding a Q~dimensional 

basic set into a basic set A raising the dimension of 

A and get an obstruction theory for this process this 

would give a method of tackling the problem of which 

manifolds M (and which homotopy classes of 

diffeomorphisms of M) admit Anosov diffeomorphisms. 
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Chapter 4. ANOSOV DIFFEOMORPHISMS ON NILMANIFOLDS. 

4.1 ~ Induced Map Q£ the Fundamental Group. 

In this section we calculate the Lefschetz number 

of an Anosov diffeomorphism of a nilmanifold M=N/D 

and so obtain a necessary condition on the map it 

induces on the fundamental group D as strong as that 

found by Franks [9] for the torus. His result may be 

rephrased as 
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Theorem. (Franks) Let Tn be the n-dimensional torus 

and f:Tn~Tn an Anosov diffeomorphism. Then 

f.:T1(Tn)~~1(Tn) has no roots of unity as eigenvalues. 

We shall use the torus decomposition of M 

described in §2.3. M is a series of extensions of 

tori whose fundamental groups are Di /Di _1 i=1, ••• ,c. 

Let f be a homeomorphism of M and f. the automorphism 

it induces on the fundamental group D. Since we have 

not yet mentioned base points f 1/1 is only defined·:up to 

an inner automorphism of D but that is sufficient for 

our purposes. f preserves the upper central series • 
of D and so induces automorphis~s 'i:Di/Di_1~Di/Di_1 

for i=1, ••• ,c. (It can be· shown that an inner 

automor~h~sm of D induces the identity on each Di /Di _1 

Theorem 1. 

• IS are uniquely defined.) We shall prove 
1 

If f is an Anosov diffeomorphism then none 

of the ~i's have a root of unity as an eigenvalue. 

As we remarked in §3.1 Hirsch [14J proved this 

for the map induced by f on H1 (M;R). ,Our proof uses 



a spectral sequence to calculate the Lefschetz number 

of f and shows the remarkable fact that it is 

independent of the twists with which the tori are put 

together to make u~ M. 

Proof. Choose an automorphism of D induced by f. By 

fact 2 of §2.1 it extends uniquely to an autom~rphism 

G:N~N which induces a nilmanifold automorphism g of 

N/D. The diffeomorphisms f,g induce conjugate 

automorphisms of the fundamental group D and so by 

fact 3 of §2.1 induce the same map of H (M) . • 
Therefore L(f)=L(g). 

The automorphism ~i of the fundamental group of 

the i~h torus of M is induced by an automorphism gi 

say of this torus and g:M~M is the extension of g1 

by g2 by ••• by gc. We show that L(g)=L(g1 x ... xgc)· 
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A special case of this' was noticed by Bowen [3; p. 395J. 

In fact it follows from the, next lemma by induction 

on c and the observation that the condition about 

trivial action is satisfied because the series {Di} 

is central. 

Lemma 1. Let ".:X,.~B,* be a fibre bundle with fibre 

F=~-1. and suppose ~1(B) acts trivially on the 

homology of F. Assume that at least one of B,F is 

compact. Let (V;x) be a bundle map i.e. a pair of 

continuous maps s.t. the diagram 

X,. ~ X,. 
,..~ ~1T 

'B,. ? B,. 

commutes and let (0)= tiF. Then L(t) = L( X)tc.»)· 



,I 

Rem~rk. V:X~X and xx~:BxF-7BxF differ by twists in 

the fibres so the lemma says that the Lefschetz 

number ignores these twists. If V=idX then the result 

reduces to the multiplicative property of the Euler 

characteristic (theorem 9.3.1 of [32J) which, however, 

is true without the condition of trivial qction. This 

condition is required here since the Klein bottle K is 

an 81 bundle over S1 failing to satisfy it and the map 

y:K-+K that induces the identity in the fibre but 

wraps the base three times round itself has Lefschetz 

number -2 but the corresponding map of T2 has 

Lefschetz number 0. 

Proof of Lemma 1. We use cubical singular homology 

with real coefficients and the Serre spectral 

sequence, see [24J and [13J. Let ~D(X) be the real 

vector space with basis all maps of the standard 
o 

n-cube In into X such that all vertices are mapped to 

*. Filter ~[](X) as follows. Take a basis element 

~f~[JCX), ~:In~X and define p to be the least integer 

such that '1TG"( u1 ' ••• , un) i sindependen t of up+1 '" • ,un' 

Then ~€~[Jp(X). Now ~:X,.~X,* induces a chain map of 

0[J(X) to itself which preserves the filtration by p. 
n 
So V induces a map which we denote by t. on every 

term E~q of the spectral sequence obtained from ~[]p' 

Define 

LCt,Er ) = [p, q (-1 )p+qtraceCt.: E~q ~E~q)' 
The Hopf Trace Theorem, see e. g. 5.1.18 of [13], says 

that the Lefschetz number of a chain map of a finitely 
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generated chain group is the same as the Lefschetz 

number of the induced map on its homology groups. 

Er+1 " d f" d . ~s e 1ne as the homology of the chain group 

E
r 

so L(t,Er ) = L(t,Er +1 ). 

Now E~q = Hp(BjHq(F» = Hp (B)8Hq(F) by the 

assumption of trivial action and H (BxF) = 
n 

EBp+q=nHp(B)eHq(F) by the Kunneth formula. So 
. .,,2 

LC-t,E ) = L(XlCw). 

Since one of B,F is compact there is an m such 

that Em = E 00 • 
pq pq 

L(t,E OO
) = 

Then 

L p' q( -1 )p+qtrace('" : EOI> ~Eoo ) 
, '(!If pq pq 

= Z:n(-1)ntrace('I~ :H (X)~H (X» 
'1'* n n 

= L(t)· 

Therefore 

Completion of Proof of Theorem 1. Now we can calculate 

L(f) = L(g) = L(g1 K ••• xgc) = TT(1-A) 
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where the product is taken over all eigenvalues A 

counted with multiplicity of all the maps <Pi [29; p.769]. 

If one of these eigenvalues is a jth root of unity 

then L(f jr) = 0 for any r according to this calculation. 

But some f jr must have a fixed point. So L(f jr) 10 if 

we can show that all the fixed roints of f
jr 

have the 

same Lefschetz index. This is easy if the expanding 

bundle EU is orientable, see [9 j p .123J. Noreover if 

EU is not orientable we can use the same trick as 

Franks. Namely we construct ~ covering fl of f
jr 

on 

the covering space of M corresponding to that subgroup 



H of D=~1(M) which is the inverse image of 2D/[D,D] 

under the Hurewicz map D~D/[D,D]=H1(M;Z). Then fl 

is an Anosov diffeomorphism with orientable expanding 

bundle so the map induced by f' on H and hence the 

map induced by f on D has no eigenvalues which are 

roots of unity. This completes the proof of theorem 1. 

Corollary 1. A hyperbolic nilmanifold 8utomorr-hi sm g 

has LEg) I O. 

Proof. L(g)=11(1-~) so L(g)=O implies so~e ~=1. 

Alternatively, g has the fixed point eD and its 

expanding bundle is orientable so L(g)IO. This 

corollary was needed for proposition 2 of chapter 3. 

4.2 Summary of What is Known About These 

Diffeomorphisms. 

In Franks' investigation of Anosov diffeomorphisms 

on tori t9J he also proved the 
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Theorem. (Franks) If f:~~Tn is an Anosov·li . .t(\; 

diffeomorphism with n(f)=~ and if f.:H1(T
n

;R)-?H1 (T
n

;R) 

is hyperbolic then f is topologically conjugate to a 

hyperbolic toral automorphism. 

Theorem 2. If f:N/D4N/D is an Anosov diffeomorphism' 

with O(f)=N/D and inducing a hyperbolic automorphism 

(i.e. one for which the 'irs have no eigenvalues of 

modulus one) on the fundamental group D then f is 

topologically conjugate to a hyperbolic nilman1fold 

automorphism. 

Proof. De~ine g to be a hyperbolic nilmanifold 

automorphism homotopic to f as in the proof of 



theorem 1. Proposition 2 of chapter 3 says that g is 

a factor of f by a continuous map, k Sqy, homotopic 

to the identity. Now (1.5) to (1.8) of [9J go 

through as in the torus case to prove that k is a 

local homeomorphism and hence a homeomorphism. 

Putting together theorems 1 and 2 of this chapter 

we see that the open questions about Anosov 

diffeomorphisms of nilmanifolds are the same as those 

for tori: 

(1) Is there an Anosov diffeomorphism f of N/D whose 

induced map on the fundamental group is hyperbolic 

but with nonwandering set not the whole manifold? 

(2) Is there an Anosov diffeomorphism f of N/D whose 

induced map on the fundamental group has an eigenvalue 

of modulus one but not a root of unity? 

4.3 H;yperbolic Automorphisms of Nilmanifolds. 

If the two open questions of the previous section 

could be answered in the negative the only work 

remaining in the classification of Anosov 

diffeomorphisms of nilmanifolds would be to "find 

their hyperbolic automorphisms. By facts 1 and 2 of 

§2.1 that means find the hYrerbolic automorphisms of 

finitely generated torsion-free nilpotent groups. 

Now an automorphism <p of D hreaks down as in §4.1 
r.i 

into c automorphisms ~i of Di /Di _1 =Z for i=1, .•• ,c. 

So we can 

r 1 ,···,rc 

i=1, ••• ,c 

rephrase our question as follows. Given 

and hyperbolic elements ~i€GL(ri'~) for 
" r 1 

which of the possible extensions of ~ by 
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r 2 r 
~ by •.• by ~ c admit an automorphism built from 

'P1 ' • • • ,tp c ? 

§4.1 says that as far as the number of periodic 

points is concerned it does not m~tter with what 

twists the tori are put together to make the 

nilmanifold. Here we ask how much information is 

lost by this approach, i.e. what twists were possible 

for particular automorphisms of the tori. (In [2a] 

Auslander and Scheuneman investigated hyperbolic 

automorphisms of nilmanifolds N/D but purely in terms 

of automorphisms of the Lie algebra of N fixing a 

"Z-subalgebra" of it.) 

An extension of the group A by the group B is 

defined to be an exact sequence 

1-4A-4G-4B-41 

where 1 denotes the· group with only one element. 

Since D was broken down by its upper central series 

we shall only be concerned with centr~l extensions, 

that is where iA is in the centre of G. In particular 

A must be abelian. The central extensions of A by B 

are in one-one correspondence with the elements of 

H2 (B;A), see [17; p.212) for example. 

Let B be any group and A an abelian group. Let 

~~ be automorphisms of A and B respectively. Which 

extensions D of A by B admit an automorphism S s.t. 

the following diagram commutes? 

1 ~ A-4 D 4 B ~ 1 

~ oc~ S~ ~~ t 
14A-7D4B~1 

(1 ) 

(We shall say that S is an extension of ~ by ~.) 
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By [17; p. 214) these extensions 9.re precisely the 

ones corresponding to elements d£H2 (BjA) for which 

oc.~d = ~·d where «w,~" are the automorphisms of H2 (B;A) 

induced by ~:A~A,~:B~B. If d and d' satisfy this 

condition so does md+m'd' for m,rn'£~. Thus we get 

Proposition 1. The central extensions of A by B 

admitting an automorphism ~ making the diagram (1) 

commute form a sub ~-module of H2 (BjA). 

To use this condition for building groups D of 

nilpotency class (the length of the upper central 

series) c and hyperbolic automorphisms of them 

involves calculating H2 of groups like D which, even 

with the technique of the spectral sequence of a 

group extension, is very heavy going. But the 

condition is certainly useful for groups of nilpotency 

class 2. 

For such groups D we consider central extensions 

of Za by ~b for positive integers a,b. What is 

H2 (Zb;Za)? First consider ~(ZGb;Z).The cohomology 

of a group G is isomorphic to the cohomology of an 

Eilenberg-MacLane space K(G,1). This is either taken 

as the definition of H*(G) or deduced from the 

. abstract definition as in [13; p. 461J • The torus Tb 

. is a K(Zb,1) so H2 (Zb jZ ) = (ZbAZb)~Z where ~ means 

the exterior product and G~H means the group of 

homomorphisms from G to H. It follows that 

H2(Zb;Za) = (ZbAZb)~Za. This can be regarded as the 
. Zb Zb~a 

group of skew-symmetric homomorph~sms x • 
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Now take hyperbolic elements ~€GL(a,~) and 

~(GL(b,Z). Let ~1, ••• ,Aa be the eigenvalues of « 

and P1' •• ' '~b those of ~ (counting multiplicity). 

The eigenvalues of ~.-1~.:(ZbA~b)~Za~(Zb~Zb)~Za are 
-1 -1 

Aifj ~k ' 1'i~a, 1,j<k(b. For example, if oc and ~ 

are both diagonalizable and x1 '.'.'x 'Y yare a' 1"·' ,. b 

bases of eigenvectors in Ca,Cb then the eigenvalue 
?t -1 -1 .-1 
i~j Pk of ~ ~. corresponds to the eigenvector 

d£(Cb"Cb)"'Ca defined by d(y.,yk)=x., dey y)--x 
J 1. k' j - i' 

d sends all other pairs of basis vectors to zero. 

This is because (~*-1«*(d»)(Yj'Yk) = «d(~-1Yj,~-1Yk) 
_ -1 -1 ( ) -1 -1 -1 -1 
- f'lj f-k a.d Yj'Yk = fj fk «(xi) = Aifj fIk. d(Yj'Yk) 

th t ~.-1 ~ -1-1 
so a i ~.d = nifj fk d. 

We are interested in fixed points of ~""-10(* so we 

want this transformation to have an eigenvalue 1. If 

~irj1,u.k1 = 1 for some i, j ,k, j;lk, then a" 

corresponding eigenvector will have rational 

coordinates so some multiple of it will have integer 

coordinates. Thus we get 

Proposition 2. If ~£GL(a,Z) and ~€GL(b,Z) are 

hyperbolic matrices, p(~) and p(~) are their 

characteristic equations and there are two roots of 

p(~) _whose product i~ a root of p(<<) then there is a 

non-toral (a+b)-dimensional two-step nilmanifold 

supporting an Anosov diffeomorphism which induces on 

the fundamental group an extension of ~ by~. All 

hyperbolic automorphisms of two-step nilmanifolds are 

obtained in this way by varying «,~,a and b. If on 

the other hand there are no two roots of p(~) whose 
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product is a root of p(<<) only the trivial extension 

is possible, that is only the hyperbolic automorphism 

induced by ~x~ on the torus Ta +b • 

Is the non-toral nilmanifold in Proposition 2 

unique or are there many such? To answer this question 

we shall need a lemma. 

Lemma 2. Let H be a subgroup of the free abelian group 

A=Za so that rH is also a subgroup of A for any r6Z. 

Then among the quotient groups A/(rH), r(Z, there are 

infinitely many non-isomorphic groups. 

Proof. It suffices to show that, having constructed 

Sq~Sq_1> ••• >s1>O so that all the groups A/(siH) are 

non-isomorphic we can construct Sq+1>Sq. The result 

will then follow by induction on q since the induction 

can be started with s1=1. Choose x€A s.t. x+sqH is an 

element of largest possible finite order, m say, in 

A/(SqH). mx£sqH but if O<j<m then jX¢SqH. 

47 

Case 1. m=1. x€SqH and A/(sqH) has trivial torsion 

subgroup. Choose YESqH s.t. 1ZESqH with y=2z. Then 

y~2s H and so A/(2s H) has non-trivial torsion subgroup. 
q q 

PUt s 1=2s. q+ q 
Case 2. m>1. Put sq+1=msq • x,sqH so mx;sq+1H• Also 

if O<j<m jX;Sq+1HcSqH. Therefore x+Sq+1H has order >m 

but ,m2 • Since the maximal order of the torsion 

elements of A/CSqH) increases monotonically with q all 

these groups are non-isomorphic. 

This lemma is needed for 



Proposition 3. If N/D is an Ca+b)-dimensional two-step 

nilmanifold with Za as the centre of D and N/D admits 

a hyperbolic nilmanifold a~tomorphism given by an 

automorphism of D that is an extension of ~ by P for 

some fixed hyperbolic elements ~~GLCa,Z),~,GLCb,Z) 

then there is a countably infinite set of 

non-homeomorphic nilmanifolds with the same properties. 

Proof. There is an extension 1~~~~zb~1,Where 
iZa =D1 the centre of D, given by a ~.-10( -invariant 

• • 
element dEH2 (Zb ;Za). For any r .. Z rd is also a ~.-1ot.*_ 

invariant element of H2C~b;Za). So rd corresponds to 

a central extension DCr), say, of Za by Zb that ~dinitis 
, . 

·'-"t· '-.1' ,':-' "" ,. .".,.'",. ...... j-

~n automorphism which is an extension of ex by~. It 

will be sufficient to find an infinite number of non-

isomorphic groups among these DCr). 

As before let D(r)1 denote the centre of D(r) and 

D(r)1 that subgroup of DCr) generated by all elements 

-1 -1 D() Th . 1 . s of the form p q pq for p,qe r. e 1nc US10n 

between the upper and lower central series of D(r) can 

now be displayed as 

{e} c:: D(r)1 c: D(r) 
II u 1 II 

{e} c D(r) c:: DCr) 

We sliall investigate DCr)1/D(r)1. (This same 

Was considered in [2] for 3-dimensional / quotient group "" 

nilmanifolds.) 

To calculate the groups DCr)1' D(r)1 we must first 

explain how the group D(r) is defined from the element 

rd of'H2 (Zb;Za). The underlying set of DCr) is 
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{(x,u);x£Za, u£ZbJ. The group operation on this set 

is defined using a cocycle representing the 

cohomology class rd. A 2-cochain is a function (not 

necessarily a homomorphism) from ZbxZp~Za. Such a 

cochain is a cocycle precisely when the product we now 

define is associative. Let ~:ZbxZb~Za be a cocycle 

representing d and use the cocycle r~ to represent rd. 

The product in D(r) of elements (x,u) and (y,v) is 

defined to be 

(x+y+rcr( u, v)), Utv). 

This is equal to (y,v)(x,u) = (y+x+r~(v,u),v+u) if and 

only if r~(u,v)= r~(v,u). But this is equivalent to 

~(u,v) = ~(v,u). Thus (x,u) commutes with all elements 

in D(r) if and only if it does in D. :.D(r)1~D1=Za. 

Now (x,u)-1 = (-x-r~(u,-u),-u). So 

(x,u)-1(y,v)-1(x,u)(y,v) = 

(-r~(u,-u)-r~(v,-v)+r~(-u,-v)+ro(u,v)+r6(-u-v,u+v),O) 

But this generator of D(r)1 is just r times a generator 

of D1. Thus D(r)1= rD1. Now, by Lemma 2, there are 

infinitely many groups D(r) with non-isomorphic 

. D(r)1/D(r)1. Hence there are infinitely many 

non-isomorphic groups D(r) and so the corresponding 

nilmanifolds are non-homeomorphic. 

A question not investigated here is what 

automorphisms 0 are possible in the commutative diagram 

1 ~ Za -? D -? Zb -? 1 

~ oct tJ ~!b ! 
1 ~ Za -7 D -7 Z ~ 1 
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for fixed D,«,~. It would seem that there are many 

such automorphisms not necessarily conjugate ,to each 

other in the group Aut(D) and [17; p.216] connects 

this question with the group H1(Zb;~a) = Zb~~a. 

Smale's Example. We illustrate this section now by 

showing how proposition 2 applies to the two 

hyperbolic automorphisms Smale defined on a certain 

6-dimensional two-step nilmanifold in [29; p. 762). 
, 

In this example he defines a 6-dimensional nilpotent 

Lie group G and .. a uniform discrete subgroup r of it. 

r is the group we have called D. Smale works mainly 

with the subset r 0 = exp -1r of the Lie algebra of G. 

This is a set of matrices with entries in the field 

Q(~3). ~ denotes the automorphism of Q(J3) sending 

./3 to -../3. rO is the set of 6x6 matrices (~ ~Ir) 

where P = 0 0 y ,x ,y, z have the form m+n-l3 for (
0 x Z) , 
000 

'T< ..... 
I;' ~ .'.:. 

m,neZ and p" denotes the result of applying {f to each 

entry of P. 

An element of rO is clearly determined by the 

matrix P. We define generators for r by specifying 

the matrix P for the corresponding elements of rOo 

J 1 ,J2 h'ave x=1 and ./3 respectively and other entries O. 

II y=1 " ,J 3 " " " " 

" .J3 II z=1 " " " II 

L2 
have bracket zero with all these 

Now only L1 and 

generators so the centre of r (which we call r1 ) is 

{ . L 1 r/r.
1 

is generated by 
generated by expL1 ,exp 2 J • 

the cosets of the remaining generators of r, namely 

" 
II ,; . 
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{exPJ1,exPJ2,eXPK1,eXPK2}' So this nilmanifold is a 

princip3.1 fibre bundle with fibre T2 and b3.se T4. 

Now let S be the hyperbolic matrix (2 3) C 1 2 €GL 2,7E) 

who:se eigenvalues are 1=2+./3 and ')..-1=2_-13. Smale's 

first hyperbolic automorphism induces ct
1

=s3 on r
1 

and 

~1=(~ ~2) on r/r1 both m9.trices w.r.t. the generators 

described above. ~1 has eigenvalues ~,A-1,A2,~-2 and 

~ has ,,3, ~-3 so the conditions of proposition 2 are 

clearly satified. Smale's second hyperbolic " . . 
• J 

au omorp 1sm 1n uces ct2=S '~2= _ so we have two t h ' 'd -2 (8 0 ) 
o S 3 

eigenvalues of ~2 whose product is an eigenvalue of "'2" 

4.4 Zeta Functions. 

The reference for this section is §r.4 of [29]. 

The false zeta function of a diffeomorphism f, %(f,t), 

is defined by 

1Cf,t) = exp~:=1(1/m)LCfm)tm. 

If the Lefschetz index of all the fixed points of fm 

is the same then N (f) = \L(fm)\ and ~(f) is easily m 

calculated from lCf). In §4.1 we found that an 

Anosov diffeomorphism f of a nilmanifold has the same 

Lefschetz number as a certain associated automorphism 

of the torus of the same dimension. Thus if A1,··· '~n 
are all the eigenvalues of all the ~i's counted with 

multiplicity then 
,C -1 )k+1 

'} ( f , t ) = IT ( 1 -/\ . i\ . ••• "i t ) 
~ 11 12 k 

where the product is t~ken over all (i1 ,···,ik ) s.t. 
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Suppose now that g is a hyperbolic nilmanifold 

automorphism so that \~i\ 11 for each i. ~(g) depends 
'>I 

on ~(g), the dimension of the expanding bundle EU and 

whether Dg preserves or reverses the orientation of EU. 

These last two can be calculated from those ~. with 
1 

IAi l>1 and are the same for g1x ••• xgc. These remarks 

prove 

Thus the zeta function does not distinguish 

between the nilmanifold automorphism and the associated 

toral automorphism. But this does not detract from its 

power to distinguish between diffeomorphisms of the 

same manifold. 

g:N/~N/D is covered by an automorphism G:N~N 

. which induces an automorphism of the Lie algebra of N. 

The eigenvalues of this automorphism are just ~1, ••• ,An. 

If the Lie algebra is not abelian then there must be 

eigenspaces corresponding to eigenvalues Ai'Aj say 

whose bracket is not zero making Ai~j an eigenvalue 

too. Hence 

Proposition 2. The zeta function above of a product 

of toral automorphisms can only be the zeta function 

of a non-torel nilmanifold automorphism if a factor 

for which k=1 cancels with a factor for which k=2. 

Question. Can more information ab~ut which factors of 

t . which nilmanifolds admit ~(g1x ••• xgc) cancel de ermlne 

an automorphism corresponding to g1 x ••• xgc? 
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