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Abstract

This thesis is an attempt +to tackle +two related
problems 1n nonlinear zfunctional analysis.

The study of abstract evolution equations
started in +the early 1950's with +the development of
the theory of 1linear contraction semigroups and
holomorphic semigroups. The power of +the Dunford
integral made the holomorphic theory the more
attractive , and only in +the mnmiddle 1960's was it
realized +that +the contraction theory could easily
be generalized +to semigroups with dissipative
nonlinear infinitesimal generators.

- Since +then +the corresponding theory Ifor
evolution operators has been greatly studied , Kato
probably being the <first to do so in 1967. A
‘Holder +type continuity assumption on the time
dependence of the generators is common 1o all +this
work. It is +the purpose of Chapters I and IV +to
weaken this condition to aliow a certain amount

of discontinuity in +the +time dependence. A bounded

variation condition replaces Lipschitz continuity in
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‘Chapter I. A Riemann integrability condition replaces
a continuity condition in Chapter IV. The original
motivafion to do this came from Control Theory
where discontinuous controls play a major role.

The second purpose of this +thesis is to give
a rigorous derivation of Pontryagin's Maximum
Principle ﬁith fixed end-point <for nonlinear
evolution operétors in Banach space. Becaﬁse the
unit ball is not compact we 1replace Pontryagin's
elégant use of +the Browder Fixed Point Theorem by
an absfract controllability condition which seems
appropriate for the particular dissipative systems
discussed earlier. We have to derive a first order
;ariatibnal theory for thesé systems 'from scratch'.

Finally we have had to show the 'perturbation cone!'

is convex , a trivial result in finite dimensions.
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0. INTﬁODUCTION.
‘Iﬁ this paper we generalize a result of
T. Kato [2]. Our motivation is pertly a remark at
the end of [é], and partly the desire to consider
optimal control with fixed end points for some
partial differéntial systems, We consider the
nonlinear evolution equation
du/d£ +A(t)u =0 "0 €t <o (0.1)
where fér almost 2ll +t , A(t) is a quasi-maximal-
"accretive operator (for definition see section 1)
on a Banach space» X, with uniformly convex dual X*.
/ We have generalized the results of [2] in
the follbwing three' directions (see éonditions
I, II of section 3)
a) A(t) need only be quasi—maximal—adcretive rather
" than maximal-accretive , and the constant of quagi-
accrefionb is allowed to wvary with t.

b) The maps t - A(t)v can be of bounded variation

(they are strongly continuous in [2]).



c) . The wvalue 'of A(s)v determines a bound for A(t)v
when s <;£r, but A(t)v is roughly speaking
independent of A(s)v when s>t . This means
that 4in the control +theory situation_ the choice
of control at +time t does not prejudice the

control wvalues in future +time as far as

existence of sclutions is concerned.

Our main result of existence and uniqueness
for (0.1) is given in Theorem 2 of section 3,
The prosf involves considering the equations
“du/dt + Ah(t)u =0, u(o) = u, ; where {An(.)}n is

chosen to approximate in a suitable way to A(.)

as n - © , and solutions un(t) are known %o exist.
C (2] A (4) = AGE)(T + n7'a(3))™". In the
proof of our theorem An(.) is a piecewise constant
in time g-m-accretive operator (in fact a 'Riemann
approximetion' to A(.) ). To establish the existence
of approximating -solutions , we first consider the

time independent case of (0.1). We do this in

Theorem 1 - of section 2.



A |

In Theorem 2 and its corollaries we have paid
particﬁlar attention to the continuity properties
of the derivative of solutions of (0.1). We shall
need +these results when we come to consider

perturbations of (0.1) in Chapter II.



1. DEFINITIONS AND BASIC RESULTS.

Throughout this paper X is a reall or complex
Banach ;pace with gﬁiformly .convex dual X*.
|.| is used for +the norm on any of +the Banach
spaces X , X# s» R (reals) , C (complex numbers).
< . 5 e > represents the real pert of the pairing
between X and X*.
F:X-X  is the duelity mapping. Thus F 1is the
unique single valued map with the properties:
<x,Fx>= |Fx|?°=|x|°. In [2] it is proved
that F is uniformly continuous on bounded sets.
We use -~ (resp., % ) to represent strong (resp.

weak) convergence in Banach space,

rT represents the non-negative reals.

Nk

The symbols z or are used to denote the
fact that = or < hold almost everywhere;

where the measure in Qquestion will always be

Lebesgue measure on RY.



Lemma 1.1. If x(t) vis an X-valued curve with
weak derivative dx(s) (resp. weak right derivative
a*x(s) ) at t=s then :
x(s) £ 0
= Ix(t)l has derivative. D|x(s)]| (resp. right

derivative DV|x(s)| ) at t=1s8 .
= M) [x(s)12 = 2]x(s)| D) |x(s)] = 2 < ax(s) , Fx(s) >

Proof, It is sufficient to prove the case for the

right derivative., We have

< x(s+h) - x(s) , Fx(s) > < |x(s)|(|x(s+t)| = |x(s)])
dividing by h>0, and letting h -0 we get

< da*x(s) , Fx(s) > < |x(s)|Lim n7" (|als+n) | - |x(s)]) (1.

h-o

Now weak differentiability (on the right)v implies -
strong continuity (on +the =right) , so x(s+h) - x(s) .
Therefore |x(s+h)| - |x(s)| and Fx(s+h) - Fx(s) .

Now we have
< x(s+h) - x(s) , Fx(s+h) >> |x(s+h)|(|x(s+h)| - |x(s)])

Dividing by h>0 and letting h- O



< a*x(s) , Fx(s) >> |x(s)|T3m b~ (|x(s+h)| - |x(s)])
o

The result mnow follows by combining this with (1.1).

This Lemma generslises |2 ; Lemma 1.3] , (when X is

uniformly convex).

Corollary 1.1. Suppose x(t) is a 1locally

1)

absolutely continuous (x, valued curve on RT.

Then N

1) a/at|x(+) ]2 Z 2]x(s)] a/at]x(+)]

"

2 < dx(t) , Px(t) >
and all three expressions exist almost everyvhere,
i4) If £ : R  x R" - R  is any map with f(o,t) >0
for 21l t € R', and if
|x(t) la/at]=(£) | < £(I=x(t)[,) |x($)]
Then

a/at|x(t)| €-£(|x(+)],t)

Proof Using Lemma 1,1 and the local absolute continuity
"of %t - |x(t)| , to prove i) it is sufficient %o

show +the weak derivative dx(t) exists a.e,

This follows from +the much stronger result proved

in Xomura [4] :



'An absolutely continuous cuvrve in a reflexive
Benach space is strongly differentiable a.e, , and

is +the indefinite Bochner integral of its derivative!

ii) is essentially proved in [2; p. 515] -

Lemma 1,2, Suppose p(t) and Q(t) are locally
integrable on RT , x(t) is absolutely continuous

.on bounded intervals and x'(t) g p(t)x(t) + q(t) .

Let y(t) be the solution of y' (%) ol p(t)y(t) + q(t) ,
,&(O) = x(0) . Then x(t) <y(t), t>0.

Proof. Put  z(t) = x(t) - y(t) . Then 2z(t) is
absolutely continuous .on bounded intervals and

z'(t) b p(t)z(t). Therefore z(t)exp.(- f p(s)ds) < z(0) = O

o)
and the result follows.

Definition 1.1. et A be an operator (nonlinear)

with domain DCX. and range in X. Then A 1is

said to Dbe accretive if

< Av - Au , F(v-u) > >0 for all wu,v €D (1.2)



10

It is proved in [2] that (1.2) is equivalent +to
kKA + I being non-contractive on D for =a2l1ll k > 0.

Definition 1.2. An accretive operator A is said

to be m-accretive (m- for maximal) if renge(d + I) = X,
If A is m-accretive then A + kI is surjective
for all k>0. (For proof see [2])

Definition 1.3, . Operator A is said to Dbe

g-zccretive (g- for gquasi-), (resp. g-m-accretive)
if there exists a real number k such that A + kI
is accretive (resp. m-accretive).

I£f A is q-accretive we can define

Hl

Q@ =q(A) =Inf { k: A+ kI is accretive },.
Then -ow<gqg<c (unless D is a singleton) , and
if : k>aq ‘then A + kI ié accretive. If A  is
q-m—accretive then A + kI is/ m—-accretive for all
k2> aq.
The following results are proved in either [} or

[21 for +the case A is m-accretive. The extensions to

. g-m-accretiveness are quite easy. (See: 2lso [5]).
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Properties. Let A be g-m-accretive with domain
DCX,.and q(A) =q. Let q =max.{ o0, g} and
r = ‘|/q+ s So that r =+ o whenever q < 0, In any

case r>0, If O0<k<r and h(k) = (1 - kq)'1 then:

A) R = (kA + I)"1 is everywhere defined and

is Iipschitzian and |Rk|Lip<h(k).

B) Ay = ARk = k-1(I - Rk) is everywhere defined
and is Lipschitzian and IAleip < k1 (1 + h(k)).

c) A, is gq-accretive and q(Ak) < gh(k).

D) If u €D then . IAkuI < h(k)jAu].

E) If'uﬁEAD = 15250000y U, > U, and

lAunl bounded then u € D and Aun-W»Au.

F)‘ If x, €X n=1,2,.,.. , X, > U, kn€(0,r),
k, - 0 and |Aknxn| bounded , then
W
u€ D and Aknxn - Au.
G) If there exists C <w such that

<AV - w , (v =u) > > -Clv-u|2 for.all v €D,

then u€D and w = Au,

These results will be referred Vto as prop.A)

pI‘Op.B) etco
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2, THE TIME INDEPENDENT CASE.

Iﬁ this section (0.1) is considered with
A(t) = A, The results obtained in Theorem 1 are
not new, However they are not only needed for
the prpof of Theorem 2 , but they also motivate
that Theorem. Also it is interesting to compare
the two Theoreis to see in which respects the
weaker hypotheses of Theorem 2 entail weaker
conclusions, ’The proof of Theorem 1 is a modification
of the proof of {1 - Theorem’28] s Wwhere the case
q(A) = 0 is ‘considered. The reason why the
modification is not completely trivial is explained

pe

"in [2; Section 3 ; Remark 5.

Theorem 1. Iet A be g-m-accretive and q(4) = q.
" Then for each u, € D there exist§‘ a locally
unifermly lipschitz norm continuous u : Rf - D

such that:
.a) u(0) = Uy

b) Au(t) is weakly continuous.
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c) The weak derivative u'(t) of wu(t) exists for
all t>0 ( For t =0 only the right hand

derivative is considered.) and

u'(t) = -Au(t) (2.0)
d) [Au(t) |lexp(-qt) is non-increasing.
t
e) u(t) = u(0) - { Au(s)ds where +the integrand is
| )

locally Bochner integrable (globally if q <O ).
f) If v(t) also satisfies e) then

[u(t) - v(t)|exp(-qt) is non-increasing.

(For' some of +the basic properties of +the Bochner

integral we refer the reader to either [3] or [8] )

Proof, For O0<k<r/2 _ the integrel equation
% | ,
uk(t) =u, - { Akuk(s)ds (2.1)

can be solved using prop.B) and the contraction
' mapping principle. uk(t) is strongly continuous , so
the strong derivative exists and equals -Akuk(t).

If vk(t) satisfies (2.1) , with v, replacing u,
, :
’ then by Corollary 1.1 and prop.C)

a/atluy (t) - v (6) 2 2 —2< A (8) = Ay (8) 5 Flwy (8)-vy (%)) >

/AL

éqh(k)luk(t) - Vk(t)lz
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Theréfofe ”ﬁy ‘Lemma 1.2
hy (£) = v ()] < |ug - v, lexp(gh(k)t) (2.2)

We can put vk(t) = uk(t + h) in (2.2), Dividing
by h>0, and letting h-> 0 we get

|4 (8D} = Jup ()| < vl (0) |exp(gh(k)t)
= [, lexp(an(x) )

< JAug (k) exp(qh(k)t) < |Au [2exp(2q¥t)  (2.3)

using prop.D) and h(k) < 2,

Therefore uk(t) is locally Iipschitz continuous ,
and +the ILipschitz constant may be chosen independently
of kK, and t in a compact interval, Thus in
particular {uk(.)}k are uniformly bounded on

compacta, From (2.3) and prop.B) we get

Iuk(t) - Rkuk(t)l < 2kexp(2q+t)lAuo|‘ . (2.4)

It follows that if 0< j <r/2 then
tu (.) - uj(")-}k,jv is uniformly bounded on = compacta
and (R () - Ryu, (%)) = (uy (%) - uy(t)) = 0
uniformly on compacta as k,j - O.

Thus given a compact interveal O0<t<T and
€>0, using the uniform continuity of F , we can

#

obtain § >0 such that O0<k,j<§<7r/2 and

(2.5)
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~ Also , wusing (2.4) , we may assume that for the

same €. and § .

IR w, (£) - Rjuj(t)l < luy (%) - uj(t)l + € 0 <
2

c-l.
N
=]

Then wsing the inequality 2x <1 + x
ran2 : 2
IRy (£) - Rjuj(t)l < (1 +8)(fult) - uj(t)l + €)

Using (2.6) and +the accretiveness of A + qI

(2.6)

a/at|u, (t) - uj(t)lz g <Akuk(t)"Ajuj(t) ’ F(uk(’c)-—uj(t)) >

g 2001 + E)(Iuk(t)—uj(t)|2 +E) + R

k

where

Rk’j(t) =2< Akuk(t)—Ajuj(’c) , F(Rkuk(t)—Rjuj(t))
-F(uk(t)-uj(t)) >
Then (2.3) and (2.5) give
~ IRy s(t)] < 8€exp(2q'T) [au | = € 0O<t<™
2J ‘ (o}

Therefore by solving the differential equation
dy/dt = 2q(1 + €)(y + €) + ¢

and applying Lemma 1.2

N

(& + €/2q(1+¢€) ) {exp(2q(1+€)t) - 1}
< €'t
Since €+ 0 as E- 0; |u(t) - u;(t)| ~ 0 uniformly

on compacta as k ; j - O. Therefore uk(t) - u(t)

and u(t) is locally uniformly Lipschitz continuous,

(t)

qa # 0

q=20
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We mnow show wu(t) has the required properties
a)‘ to f) of the +theorenm.
a): Trivial.
» b): From (2.3) and prop.F) ; u(t) € D and
A (t) ¥ Au(t). Also
Aa6)| < Lin [t (8] < [Auglexp(at) (2.7)
'since h(ki -1 as k- 0.
Let t; %, so ' u(ty) - u(t), and by (2.7)
and prop.E) Au(ti) ¥ au(t).
Therefore Au(t) is weakly continuous.
e): This now follows by taking weak limits and
using bounded convergence in (2.1). The Bochner
integrability follows fr;m weak continuvity in b).

c): Follows from b) and e).
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d): Since v(t) = u{t +s) is also a solution
of (2,0) , from (2.7) we get
[Au(t + s)| < |Au(s)|exp(qt) t>0
and the result follqws.

f): Applying Corollary 1.1 to u(t) - v(t) ,

i

a/at|u(t) - v(£) |2 2 -2 < Au(t) = Av() , Flul(t) - v(t)) >

2qlu(t) - v(t)]?

Nk

and by Lemma 1,2

u(t) - v(t)| < |u(s) - v(s)|exp(q(t-8)) .

-

This completes the proof of Theorem 1.

—~ ~—

Applying result f) , the following uniqueness
condition is obtained,(An alternative condition is

given in Section 5)

Corollary 1. (Uniqueness)

If u(t) satisfies a) and e) then it is

/ unique,
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If U(t) : D-»D: u(0) - u(t) then {U(t) : $>0 }
"is a nonlinear semigroup of class Co y with

infinitesimal generator ~A 4, and contraction class -q.

Corollary 2. If X is uniformly convex then Au(t)

is strongly continuous at all but a countable number
of points , and 1is strongly continuous on the right
everywvhere. u(t) is strongly differentiable wherever
Au(t) is strong}y continuous ; and is strongly right
differentiable everywhere.

Proof. Since Au(t) is weakly continuous , it 1is
strongly continuous whenever IAu(t)l is continuous,

The monotonicity condition a) shows that |Au(t)| has
only a countable number of discontinuities.

Suppose 2t , then

E N e . ~qt
lau(t) | < Lim[au(ty)| < TEE|au(t;)| < Tam e%%3 |au(t)| ¢
. =|au(t) |

Therefore [Au(t)| is continuous on the right.
The results for +the strong differentiability of u(t)

now follow from e).

As a consequence of corollary 2 we see that
-A is the strong. derivative of the semigroup

A4 U(t) : t>0} whenever X is uniformly convex.
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3. THE TIME DEPENDENT CASE.

We now consider a 1-parameter fowily of operators

{ A(t) : XX }o <t s with the properties

For almost all t € R, A(t) is g-m-accretive with
domain D independent of +t. q(t) = q(A(t)) ( = if

A(t) not q-accretive ) is locally integrable,

For 2ll v&€D and s<t

[A(t)v = A(s)v] < [p(%) = p(s)|T(Iv])(1 + |A(s)v])

where .p(‘b) is a real valued function with locally
bounded variation ( i.e., bounded variation on compact
sets )o IL(r) is a wvositive function , bounded on

bounded sets,

If we take +the special case q(t) =0, p(t) =1,
and II also heclds for s>t then we obtain the

most general conditions considered in  [2] .

As might be expected , I and II are not

independent,

Proposition 3.1. If {A(t)} satifies I and II

then q(t) is lower semicontinuous at points of
continuity of p(t).
Proof. Suppose p(s+) = p(s) , and tg s. Then from
I A(t)v - A(s)v for all v€D, From I we get

< A(t)v - A(t)u , F(v - u) > > ~-q(t) lv-ul2 u,v € D

Taking Lim on both sides as t s , we see that

=
A(s) + Lim q(t). I is accretive. So a(s) < Lim a(%) .
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Suppose p(t-) = p(t) , and s 2:f . rUsing ii:;'hﬂ:h
1a(s)v = a(0)v| < [p(s) - p(O)[L(Iv])(* + [a(O}v]) .
Therefore |A(s)v| is Dbounded , and so again from II ,
A(s)v -+ A(t)v as s 2> t. Left lower semicontinuity

then follows wusing +the same method as before.

Even though I only requires 4(s) to be
" g-m-accretive for almost all s , prop.E) holds for all
but an , at most , countable number of points s.

In fact we have:

Proposition 3.2. | Suppose p(s+) = p(s) » Vi €D,
v, > Vv and A(s)vh bounded as n - w.
Then v €D and A(s)v, % A(s)v.

Proof. Choose t S such that A(tﬁ) is

i3
g-m-accretive, Then

< |A(ty)v, - Als)v| < Ip(ty)=-p(s) [LClvy, D (F + [als)v, ) (3

So as n - w IA(ti)vn[ is ©Dbounded. Therefore , using
prop.E) , vED and A(ty)v, % A(%)V as n -,

| Sincé A(s)vh is bounded , it is weakly
subconvergent (Eberlein-Shmulyan Theorem [3] ). By
taking a subsequence if necessary , suppose A(S)Vh ¥w.

Then from (3.1)
|A(t;)v = w]| < iiglA(ti)vh - A(s)vhj -0 as i-c

But wusing II , A(ti)V'» A(s)v as 1i-ow .

Therefore w = A(s)v , so A(s)vh ¥ a(s)v.



Without loss of generality we mnay (and do)  assume
din II p(O) =0 and p(t) non-decreasing (just
replace p by its +total wvariation) ;j and L(r) is

continuous and non-decreasing.

We now define +the following subsets of R+, all

of which have full measure:
N={1%: A(t) g-m-accretive } _
¥t (resp. N~) the Tpoints of right (resp. left)
continuity of p(t).
M=N n(xtum

+ 1 s+h
I'={s:IIm $§ qt)dt <o }

h»o+ s

So Iebesgue points of q(t) ¢ LT
With this ndtation our main +theorem is:

Theorem 2. Suppose  {A(t)} satisfies I and II,

and u, € D, Then +there exists a locally wuniformly

Lipéchitz continuous u RY = D such that:

a) u(0) = u,

. b) A(t)u(t) is weakly left continuous on M,

b)! If sENNN, t.3s, t; €M, Irq(ty) <,
then A(ti)u(ti)-ﬂ A(s)u(s) .

c) u(t)  has weak left derivative —A(t)u(t) for

_ every t €M .

c)' wu(t) has weak right derivative —A(t)u(t) for

every t € NN Nt
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S d) Given T <o there exists Q = Q(T) <
sﬁch that if -
H(t) = |A(t)u(t) |exp( - ilq(r)ldr - k(t)p(t) ) - Qk(t)p(1
then H(t) < H(s) for s<t<T and t €M,
(k(t) 4is defined in (3.16). It is continuous ,
non-negative and non-decreasing).
In partiéﬁlar H(t) is non-increasing on
fo,Tin m.
t
e) u(t) = u(0) - é A(s)u(s)ds
whére the integrand is 1locally Bochner integrzble.
(So, in particular, u(t) has strong derivatije
-A(t)u(t) almost everywhere).
f) If  v(+) satisfies e) , then

t
[v(t) - u(t)|exp( -Sq(s)ds ) is non-increasing.
)

Proof, Partition Rt into intervals of 1length

1/11 n=1’2’-coco

" Tet g2(t) Tbe the step function

— k/n :
T(t) =n §  q(s)ds (k-1)/n < t < k/n
: -1)/n
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- Then it is easy to show:

t t+1 »
glq (s)|lds < la(s)las (3.2)
(o]
" v/
| fa%(s)-a(s) &s | <2 (;§T)/nlq(s)lds (e=t)/m < & <

It follows by absolute continuity that

iﬁn(s)ds - iq(s)ds as n - o , uniformly (3.3)
for t+ in a compact ~set.
Put tg =0 and choose tp € ( (k-1)/n , k/n)
such that tﬁ €N and q(tE) < an(tﬁ) (3.4)
et ©%(t) ©be the step function
(%) = tﬁ (k-1)/n < t < x/n
So  q(6™(t)) < T(t)
Appiying Theorem 1 to the intervals [(k-1)/n R k/n] ’
and piecing together +the solutions , the equation
(a/dt)u (8) = -A(e™(%))uy (+) u_(0) = ug (5.5)
has unique solution un(t). Since un(t) is
Lipschitz on {(k>1)/n ’ kyr;l , it is wuniformly

- Lipschitz (and hence absolutely continuous) on

bounded intervals, -
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Lemma 3.1.

{un(.)}n is uniformly bounded on compacta ,

and (3.7) holds.

Proof. By Corollary 1.1
g (62, 14/t [y, (), |

2 - < a(e™(8))u (1) , Fluy(t) - u) >

Ak

- < A(8%(%) Yu () = A(O™(t))u, , Plu (t) - u ) >

+ (80" (£))u, | lu (t) - u|

Nk

{8 Juy (8)=ug | + (a7 (8))ugl } lw,(t)-u

since A(O™(%t)) + THt)I is accretive,

So again by Corollary 1.1

a/at|u, (5)-ug| < THH) fuy (5)-ug | + 1A(67 ()] (3.6)
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R

_Ndw from II we gt
a6 (£))uy | < [A0)uy| + p(t+1/n)L(|u ) (1+]A(0)u,|)
Combining this with (3.6) and applying Lemma 1.2 :
lw, ($)-u | < (exp iﬁn(s)dS) x
f) {|A(0)uo|+p(s+1/n>L<luol>(1+|A<o)uoD‘}{exp-za%)dr; as

The uniform boundedness now follows using (3.2).

By wusing (3.3) and dominated convergence we get
—_ %
Limlun(t)-uol-s (exp fa(s)ds) x
N0 (o]

%
S{IA(O)uOI+p(s)L(luol)(1+lA(O)uo|)}{eXP-iq(r)dr} as (3.1
0 o

Thus we may suppose L(Iun(t)l) < K(%) <o n= 1,2,
K(t) non-decreasing and continuous.

We put BU(t) = IA(en(t))un(f)l

Lemma 3.2, {Bn(.)}n uniformly bounded on compacta,

Proof. By d) of Theorem 1 , and (3.4) we have

IA(tE)un(t)Iexp(-ﬁn(tﬁ)t) non-increasing  on
: (k=1)/n < t € k/n
’ (3.8
Now put )

zp = |p(th,) - p(ty) |K(k/n)
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Thén using Ii we get for k =142, ¢4¢..
B(k/n) < [A(t, 4 )u (k/n)- A(t0)w, (k/n) | + |A(t0)u (k/n)|

< (1+Z2) [A(+D)u (/m) | + 22

So wusing (3.8)

B(k/n) < (1423)(exp T2(t1)/n ) B2 ((k-1)/n ) + 1z (3.9’

Also
n o) n
B (0) < (1+ZO)IA(O)uO| + I

Now for each fixed n we can solve +the difference

equation

c™(k/n) = (1+Z3) (exp T2($1)/n ) C*((k-1)/n) + 2z

- ¢™0) = B%(0)

Comparing this with (3.9) we see that B"(k/n) < c®(k/n)

Now put
k k
S™(k/n) = (exp -J/nq(S)ds YO (1+Z§)'1 ) ¢™(k/n)
(o} Ir=0
Therefore
. k/n n k .
S%(k/n)-s%((k~1)/n) = (exp -§ a(s)ds ) Z, [] (1+Z,)
o =0
n k/n
< Zy (exp -g q(s)ds )

-k
8%(k/n) < §7(0) +.Z; Zy(exp -g/nq(s)ds )

k r/n
< IA(O)uOI + I, Zﬁ(exp -J a(s)as ) (3.1C
o

rZ
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- Now wusing the inequality 1 +x<e¥ we obtain

) k
B (k/n) < ¢®(k/n) < s™(k/n) exp( fnq(s)ds + rgozg )
)

Also since K(t) and p(t) are non-decreasing

Tt b

o Zp < K(&/n)p(ty ) < K(/n)p((k+1)/n)
Combining (3.10) and (3.11) :
k/n
B™(x/n) < { |a(0)u | + K(k/n)p((k+1)/n)exp  |a(s)i:
(0]

k/n

exp( | la(s)lds + K(k/n)p((k+1)/n) )
(o]

Given n choose k so that (k-1)/n<t<k/n .

Using (3.8) we get

o X
BY(t) = IA(tﬁ)un(t)l < Bn((k-1)/n)eXP{(nt-k+1)(éﬁ1)/:¢

B ((k=1)/n) ks/n la(s)]a
< — n)ex S 3
Pty

-

Therefore

k-1)/n

( .
B2() < { [4(0)w,] + E((k-1)/n)p(k/n)exp § la(s) i

N

exp(%fnlq(S)lds + K((k-1)/n)p(k/n) )
o .

This gives the uniform bound.
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Lemma 3.3, un(t) - u(t) uniformly on compacta;ﬁ
Proof. If G(t) = K(t)(1 + sup{ B™(s) : n> 1,s<t }) ,
then G(t) is locally bounded and measurable.

Now by Corollary 1.1 ,

*

g (8)-wy (v [a/at [ (8)-ug (4)]
<A Ny (0)-A () () 5 Bl (B (8)) >
Suppose  6%(t) < ™(t) , then wusing II ,
467 (%) Juy, (£)-4 (6" (8))uy (£) | < [p(6™(£))-p(&"(£)) | &(¢)
Therefore , it m(t) = max{ q=(t) , g (t) } ,
[, ()=uy, (£) [d/at [ (8)-u ()]

[, (8)=uy, () | Ip(@n(tn-p(om(t))lé(ta) + m(t) fuy ($)-up, ()
By symmetry this also holds for ©%(t) > &"(t) ;
Using Corollary 1.1 and Lemma 1.2 , |
o, (8w ()| <

(exp Zm(S)ds) zlp(gn(s))-p(em(s))IG(s)(eXP —zm(r)dr) ds

t t+1 .
But by (3.2) , | fm(s)ds | <2 § |a(s)|ds . Also as
: o - )
n-o, p(e®(s)) - p(s) a.e.. Then by bounded
- convergence , Iun(t)-um(t)l -+ 0 uniformly on compacta ,

and the Iemma follows by completeness of X.
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©°* Now using Theorem 1, we can integrate (3.5) by

. the Bochner integral , to get

O &=t

un(t) =u, - A(Gn(s))un(s)ds

Therefore
o
Iun(t) - un(s)l < g B%(r)dr
So by Lemma 3.2 , {un(.)}n is uniformly ILipschitz
continuous on compacta , therefore so is u(.) .

Also , from (3.7) we get the growth condition
1
lu(t)-u | < (exp fq(s)ds) x
0

%
JHA)u [+p(s)L(|u ) (1+]A(0)u |} } {exp -?q(r)dr} ds
0 (o]

We now define the following subset of
.R+ x Rt x {Integers > 0} :
- S =1{(s,tyn) : 0<s<t<ow, 6%(s) <t}
Note +that if s<+t then ©%(s)<+t for all sufficien
large n .

From II we get

|a(6%(s) uy, (s) - A(t)un(s)l < |p(6™(s))-p(t) [G(s)
for all (sytyn) € 3 (3.1

where G(s) is as in the proof of ILemma 3.3.

" It follows that IA(t)un(s)l is bounded as 1
 ranges over a bounded set and (s,t,n) € S.

Now choose any s € R , then choose t>s and

t+ € N, Letting n -« we see that wu(s) €D and

A(t)un(s) ¥ a(t)uls) iusing prop.E).
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Now fix t€M, t>0., Then (t-1/n, t, n) €Sg
 for sufficiently large n , and un(t—1/n) - u(t) .
Since t €M, we must have t€EN, or +tteN s SO

by wusing prop.E) and proposition 3.2 j
A(t)u, (t-1/n) T A(t)u(t) as n-w
Again using (3.13) we gét
A(6%(-1/n))u, (t-1/n) ¥ A(t)u(%) for t € M-{0} (3.

Thus , from Lemma 3,2 , A(t)u(t) is locally bounded

on M,

We are now in a position to verify that wu(t)

satisfies conditions a) to f) of Theorem 2,

a) : Trivial

b) : Let t;2%, t; €M, tE€M. Then lA(ti)u(ti)I
is bounded as i - o , Therefore using II we obtain
A(ti)u(ti) - A(t)u(ti) -0, and IA(t)u(ti)! is bounded,
. Then using prop.E) and proposition 3.2 we obtain

A(t)u(ty) ¥ aA(t)u(t) . Thus INCRLICH ¥ a()u(t) .

Corollary : t - A(t)u(t) is almost everywhere

, seperably-valued [3] .

ZProof : Since M has full measure it is sufficient

to show H= { A(t)u(t) : t €M} is strongly separable.
Let {ti} be a countable dense subset of M, Then
EE{A(ti)u(ti)} is strongly separable and weakly closed ,
and therefore , wusing b) , contains H .

The result follows.

Al SArE @ 1 S5e S
AR = ez mmaa T b B T
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e) :+ Using this corollary and (3.14) we vsée'}thaﬁ
CA(B)u(t)  is strongly measurable (Pettis' Theorem [3} )

and therefore locally Bochner integrable. Now

+
un(t) ug - g A(On(s))un(s)ds

t+1/n n
=u, - { A(6"(s=1/n))u (s~1/n)ds
/n B
Taking weak limits on both sides and uéing bounded

convergence , we obtain e),.

b)!' : Suppose s and {ti} are as described in Db)' .
Since s € Nt ana using II , A(ti)v-» A(s)v veDb,
Since ti‘€ M, A(ti)u(ti) is bounded , and therefore
weakly subconvergent, By taking a subsequence if
hecessary s Suppose A(ti)u(ti) X¥w. Now

< A(by)v-A(E ulty) 5 Flv=u(ty)) > 2> =al(ty) [v-u(sy) |

-

Taking Lim on both sides and wusing the uniform
continuity of F

< A(s)v-w , F(v-u(s)) >> —f:?fn-@' q(ti) [v—u(s) |2
i

= "'CIV-U-(S).I2 where (0 <o

Therefore by prop.G) , w = A(s)u(s) , so w 1is wunique

and A(t )u(t;) ¥ Ags)u(s)a.

¢) : This follows from b) , e) and the fact that

M has full measure,
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e)':  Suppose s €NNN NT"., Then using e) , it

- will® be sufficient +to show
s+h '

D(h) = % é A(t)u(t)dt ﬁ A(s)u(s) as h=20

=
Since A(t)u(t) is locally bounded on M, and M has
full measure , D(h) is bounded as h -0, and so is
weakly subconvergent. Suppose D(hi) ¥w as h, 2 0,

It will be sufficient if we can show -w=A(s)u(s) .

Now for any v.€ D
< A(%)v=A(t)u(t) , F(veu(t)) >> -q(t) |[v-u(t)|?

Integrating this expression with respect to t, from
s to ‘s+th; and dividing by hy >0 ; and then

letting hi->O , it 1is weasy to see
1S+h >

< A(s)v-w , F(v-u(s))>> -Lin ES g(t)dt |v-u(s)]

h-o S

> —C|v-u(s) |2 where C <o

So using prop.G) , w = A(s)u(s) .
. £f) :+ By Corollary 1.1 and e) ,
a/dtu(t)-v(t) |2 £ -2 < A(t)u(t)-A(t)v(t) , Flui{t)-v($)) >

2 2q(%) [u(t)=v(t) |2

The result now follows by Lemma 1.2 .
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d) : Combining (3.14) and (3.12) we get for +t €N

lA(t)u(t)] < %EE‘En(t—1/n)
< { [a(0)uy] + K(+)p(t)exp ilq(s)lds J x
exp( ilq(S)lds + K(t)p(t) )
Now by contimuity of ka) and Lemma 3.3
L(Iun(t)|) - L(|u(t)|) uniformly on compacta,

Thus in (3.15) we may take

K(t) = k(t) = sup{ L(|u(s)]) }

s<t

Suppose we fix s>0 and put A(t) = A(t+s) .

Then {A(t)} satisfies I and II (with translated
p(.) and q(.)) and the solution , which we can

show is wunique wusing f) , ‘of

vi(t) —K(t)v(t) v(o) = u(s)

is  v(t)

i

u(t+s) .

From (3.15) we then get for t>s , t €M

(3.1

(3.1

: %
[A(t)u(t)]| < { |A(s)uls)]| + k(t)(p(t)-p(s))exp g!q(r)ldr }

t
exp( §la(r)lar + k(t) (p(t)-p(s)) )
S _
We have used here the inequality

sup {L(|u(r)|)} = sup {L(|u(r)])}

s<r<t osrst

(3.1
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Now since k(r) and p(r) are non-negative mnon-

decreasing ,

0 < k(t)(p(t)-p(s)) < k(t)p(t) ~ k(s)p(s) (3.18

g t
Multiplying (3.17) by exp( -{la(r)]dr - k(t)p(t) ) ,
o]

and wusing (3.18) ,

t
[A(t)u(t) [exp( ~f|a(r)|ar - k(+)p(t) )
)
< JA(s)u(s) |exp( -§|q(r)|dr - k(s)p(s) ) +
)
t
{x(t)p(t)-k(s)p(s) jexp( fla(r)|ar - k(s)p(s) )

0

Assuming + €« T<w , there is a bound Q(T) < w
for the last exponential term., This gives d) .
Remark : It is quite easy to obtain a considerably

stronger global growth condition on  |A(t)u(t)].
This completes +the procof of Theorem 2,

Corollary 1. (Uniqueness)

If v(t) is absolutely‘ continuous , v'(t) z -A(t)v(t) ,
v(0) = u(0) , then v(t) = u(t) where u(t> is the
solution given in +the theoremn,

Proof. The result of Komura [4] , mentioned in

the proof of Corollary 1.1 , shows v(t) satisfies e) ,

and therefore f) holds.
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“Cdrbliaiy 2;'.:if’ X is"uniformlyn convex fhén'—ﬂ(é)u(s)

is the strong left (resp. right) derivative of wu(t)
at t=s8 for 8 € { M - countable set }
(resp. s NnNnLY) ,
Proof. Since H(t) has at most a countable number
of discontinuities on [0,TIN" M, so does t - |A(H)u(t)] .
Therefors by b) and uniform convexity , + - A(t)u(t)
is strongly left continuous on M at all but a
countable number of points, Since M has full measure
we can use é) to obtain the result for the 1left
derivative,

Suppose s € N N N A 1t. Using c)' , e) and
uniform convexity , it will ©be sufficient if we show

+h

v s
Tm 4l § Abus)at | < |a(s)u(s)] (3.19)
h-o+ 8
Now from d): B H(t)dt < H(s) . Taking Lim of
_ s .

the left hand side as hg

(using the fact that p(s+) = p(s) ) we obtain

0 and cancelling terms

—_ 1 s+h ‘
Iim ¢ §  [a(®)u®) lat < |A(s)u(s)]
h—o+ s _

This now gives (3.19) , and completes the proof,
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4, A TPRODUCT FORMUILA,

In [5] the product formula

[n(t-s)]
Lin [T Ry, (s + i/n) x (4.1)
IIco 1=0

is used to construct an evolution operator which
under certain conditions [5 , Theorems 3.2 , 3.3 , 3.4]

is shown to generate the strong solution of
u'(t) + A(t)u(t) = 0 u(s) = x €D (4.2)

1f  {A(t)} satisfies conditions I and II ,
then +there is no guarantee that the resolvent
operators in (4.1) exist , since it may happen
that q(s + i/n) > n , even ‘for large n.

(In [5] q(.) is assumed to be constant)
The step functions On(t) constructed at the
" beginning of the proof of Theorem 2 were used
to pick out points in RY at whichv q(.). was not
'"to0 large''. It seems reasonable to modify (4.1)
, by "the same technique 4 and consider the product

formula

n(t-s))

U(t,s)x= Lim [T = (6®™(s + i/n)) x, XED, t=>s
n - 1/n
~vo 1=0



37

n —-n k/n
. Now q(0(t)) <@ (t) =n q(s) ds (k=1)/n < t < xy
_ (k=1)/n -

Thus q(0™(t)) < n/2 for large n , uniformly
for t in a compact set, Therefore the products
in (4.3) exist for large n uniformly for

(t,8) € compact triangle,

The first’ problem is +to show +the 1limit in
(4.3) exists for x € D, If q(.) were bounded
aﬁd p(.) continuous then [5 s Theorem 2.1] would
be applicable , and moreover the limit would Dbe
uniform for (t,s) € compact triangle. We believe
these  extra conditions on q(.) , p(.) are not
essential for the result., Rather fhan demonstrate
thié here we prefer to postpone +the proof to
the more general context of multivalued operators
on non-reflexive spaces 1in a seperate paper,

The second problem is +to demonstrate under
what cénditions the operator U(t,s)x does solve

,the initial wvalue problem (4.2).



38

Theorem 3. Let +the conditions of Theorem 2 be
satisfied. Suppose for some fixed s >0 thé
operators U(t,s) defined in (4.3) exist , and the
limit in (4.3) is uniform as + varies over a
compact set. Suppose t - U(t,s)x is continuoﬁs
for x € D. Then U(t,s)x solves the initial wvalue

problem (4.2).

The following elementary lemma is 7required.

1

Lemma 4.1. Y Banach space. x(.) : R-Y € L5,

{En] sequence of intervals such that O € E  and

0 # diameter E = m(En) - 0 as n -, Put

x, (%) = m(}.«:n)"‘Er;LG x(s) ds = m(E )" F{n x(s+t) ds

v ‘ ’
Then X, - X in Lloc .

i.e. JK |xn(t)-x(t)| dt - 0 for all compact
intervals K.

Proof. By [8 ’ p.21f] xn(t) - x(t) a.e,
Let K be any cqmpéct interval , and 1let I be

anotherb compact interval such that K + UEn C I.
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Let E be a measurable subset of XK,

| , |
J 1,01 av < m(z) %{n ix(s+t)| ds dt

= m(En)"1 S j |x(s+t) | dt ds
En E

< m(z_)~" 15: % Ix(t)| at ds = {lx(t)l at < oo
n

The last inequality wvalidates the interchange in
the order of integration.

Now given & > 0 there exists § =§(€) >0 such
that E CI, m(E) <§ implies

Sl at< €

E ‘

Therefore E CK , m(E) <:S implieé

Jlx (8) at < €
E

The result then follows from the Vitali Convergence

Theorem [8 ’ p.150] .

" Proof of Theorem 3. (This is a modification of a
proof given in [5]). |
The case for s > 0 requires only trivial
modification of the proof given below for s = O.
Therefore we show U(t,o)uO = u(t) , where u(t)

is the solution of (0.1) given by Theorem 2,
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nt)
. Let w (t) = i;L Ry n(07(i/0)) uy t>0
For convenience define u(t) = un(t) =u, for +t<0O

Now choose T < , and N=N(T) so that if n>N

and O<t<T then q(6™(t))<mn/2. Then

u, (t) = Ry (67(%) )u, ($-1/n) - (4.4)
Ry (PN Iy < ) = (1 - 0@/ < 2 (45
Put g (t) = A(Qn(t)ju(t - 1/n) + n(u(t - 1/2) - u(t - 2/n))
Therefore

u(t = 1/n) = Ry, (67(8))(ult - 2/n) + g, (t)/n) (4.6)

Combining (4.4) , (4.5) , (436)

-

w(8) < 1R(E)(wy(t - 1/n) + |g () [/n) (4.7)

where wn(t) = Iun(t) - u(t - 1/n)| and
w (t) - w(t) = |U(t,0)u, - u(t)| wuniformly.
Integrate inequality (4.7) from O to t < T and

rearrange
, n } w_(s) ds < ?n(ln(s)—1)w (s = 1/n) ds + fln(s)lg (s)] as
t-1/n © o n o n
% %
< 2f a*(e™(s))w (s - 1/n) ds + 2lg, ()] ds
0 o]

(4.8)
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‘Now % - 1/n < o™(t) , therefore by condition II ,

there exists a constant X such that

T
{ |A(6%(s))u(s - 1/n) - A(s - 1/n)u(s < 1/n)| ds
o

' T
<k § lp(e™(s)) - p(s - 1/n)l ds - 0 as n - «
)

Also 4 by Lemma 4.1 ,

f [ut(s) - n(u(s) —u(s - 1/n))| as - ©
o .

t T
Therefore Slgn(s)l ds < Slgn(s)l ds - O as n - oo
, R o

k
Now qt(e®™(s)) < =n S/n qt(r) ar for (k-1)/n < s <k/n
(k=1)/n
' s+2/n
So putting qn(s) = n § qt(r) ar

Svo

-

a*(6™(s)) < q.(s - 1/n) , and by Lemma 4.1,

1

loc ° Therefore

qn(S). - 29%(s) in L

{ at(on 1 < )()d»2§+(s)w(s)dc
g q (67(s))w (s = 1/n) ds» < é gn(s w (s) ds ) q £

Therefore  taking limits in (4.8)

N
ct
N
3

t
w(t) < 4S at(s)w(s) ds 0
Ed o

So by Gronwall's Temma , w(t) =0 , and U(t,0)u, = u(t).



5 . MISCELIANEOUS RIMARKS.
Remark 1. An interesting uniquenéss result can Dbe
given as follows :

We first define a set wvalued left derivative
of a continuous curve in general Banach space Y.
‘Definition ~ If wu(.) meps an open neighbourhood of
s € R continuously into Y , put

D Tu(s) = g31 co { h—1(u(s+h) - u(s))' : -nl<n<o }
So 9 u(s) is a closed convex set (possibly empty).

The following ILemmas are easy , and we leave
the proofs to the reader,
Lemma, ‘.1. If x € d u(s) and x € Fu(s) then

lu(s)] D7 lu(s)| < <x, x > .

(D" is the lower left-hand Dini derivative )
Lemma 5.2, If x(.) is a continuous real valued

function on an interval in R, snd D x(t) <O
for all t in a co-countable set , then x(t) is
non-increasing.

( [7} hes several results of this type)
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" 'Proposition 5.1. It v(t) is strongly continuous in
X, v(0) =u(0) and =-A($)v(t) € ¥7v(t) for =all but

a coun%able number of points t € Rt ; then v(t) = u(t) |
where u(t) is the solution of (0.1) given in

Theorem 2,

Proof. By part c¢) of Theorem 2. we have
“A()u(t) = d7u(t) € 37u(t) t €N
It is +then easy to show

~( A(t)u(t) - A()v(t) ) € 37( u(t) - v(t) )

t € RT- (countable)
Thus using Lemma 5.1.

fu(t)-v(+) | Qflu(t)—v(t)l < - < A(t)u(t)-a(t)v(t)

Fu(t)-v(t)) >

< q(t) Iu(t)—v(t)[2

t € Rt- (countable)

Suppose for some T>0, v(T)#u(®) . Let (r y T1
' be +the largest open interval in [0 , 7] on which
u(t) # v(t) . By continuity we have u(r) = v(r). Also
D7x(t) < q(f)x(t) » t€(r, T] - (countable)

where x(t) = |u(t)-v(%)] .
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By Proposition 3.1 , at +the points of continuity

of p(t)

% )
a(t) < Lim b~ q(s)ds

h-o+ t=h

1
If  y(t) = exp. -~ fa(s)ds then it is easy to see that
S : v

Tim n'{ y(t) - y(t-h) } < —q(t)y(t)
h-o+ .

Then
DT{x(t)y(t)} < y(t) Dx(%) - a(t)x(t)y(t) <O
f € (r, T)- (countable)

(We have wused here the inequality
Lim(ai + bi) < Lim a; + ILim by )

Therefore by Lemma 5.2 .,
x(T)y(T) < x(r)y(r) =0 so x(T) =0

This contradiction shows that u(t) = v(t) for

all + € R,
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‘;'Remark 2. Consider the following perturbation
problem, Suppose A(t) satisfies conditions I , II.

What conditions on B(t) guarantee A(t)+B(t) also

satisfy I, II ?

Proposition 5.,2. . Suppose the following hold

i) A(t) satisfies I , II.

ii) TFor almost all t € Rt B(%) is' g-m~accretive
with q(B(%t)) = q'(t) locally integrable.

iii) Domain B(t) D D

iv) B(t) satisfies II (It may be assumed A(%t),B(t)

both satisfy II for the same p(.) and IL(.) ).

v) For each T > 0 there exists K< 1 and
- ¢ : R - RY bounded on  bounded sets such that
B(t)v] < ¢(|v]) + K|A(%)v] 0<t < T,v €D (5.,1)

(so B(t) is A(t) bounded)

Then A(t)+B(t) satisfies conditions I , II.

Proof. Clearly q(A(t)+B(%)) < q(t) +q'(t) , so I
holds for A(t)+B(t) if A(t)+B(t) is g-m-accretive
whenever A(t) and B(t) are. For such a t an

inequality of the type (5.1) (with a different G)
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~holds with A(t) (resp. B(t) ) wreplaced by A(t)+q(t)I
(resp., B(t)+q'(t)Iv). Then by [6 ; Theoremv10.23 ,
A(t)+B(t)+(a(t)+q'(£))I is m-accretive ; so A(t)+B(t)
is g-m-accretive and has domain D,

Using (5.1) it is easy to see that |[A(s)v]| and
|B(s)v| are both smaller than

(=07 Ca(lv]) + A(s)v + B(s)v] )
It then follows that

[A(t)v+B(t)v - (A(s)v+B(s)v)]
< |p(t)=p(s)] T'(|v]) (1 + [A(s)v+B(s)v])

0O<ss<t, s<T.

Where L'(r) = 2(1-K)~1 T(r)y (1 + &(z)).

So II holds for A(t)+B(t).
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CHAPTER TI1,

0. In this chapter we study +the variational
equation
y'(8) + 2 A(6) (x(£))y(%) = 0 (0.1)

where x(t) 1is a solution of ((0.1) Chapter I).
One reason why (0.1) is dimportant is +that its
solutions should give first order approximations
to solutions of ((0.1) Chapter I) wunder small
perturbations of dinitial data. The wusual approach
is to assume conditions strong enough +to ensure
(0.1) has solutions , and then show these
solutions satisfy +the perturbation property.
(See for example [3 , Chapter 4] Y

In +the infinite diﬁensional case existence
of solutions of (0.1) seems difficult without
making unrealistically strong assumptions. (Howevér
see section 3 of +this chapter). We avoid this
difficulty by changing the classical argument
as follows., We first assume ggA(t)x exists in
a rather weak (Gateaux) sense. We then use

solutions of ((0.1) Chapter I) to construct a
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linear evolution operator of first order
variations. This operator may be regarded as
being the weak solution of (0.1). If (0.1) has
strong solutions then +the weak and strong
solutions coincide., The construction is based on

Lemma 1.7 which is of some interest in itself.

1. We assume (X,].]) is a Banach space with

‘ *
uniformly convex dual X .

Iet A be an accretive operator with linear

dense domain D C X.

Definition 1.1. A'(u) is said to be the (sirong)

Gateaux derivative of A at u € D if
i) A'(u) : D~ X 1linear
ii) If w,v € D then

[A(u + tv) - Au - A'(u)tv]| = o(t) as t -0
An extensive discussion of Gateaux derivatives
is in [4].

Proposition 1.2. If A'(u) exists then it 1s

unique and accretive.

(1.1)

(1.2)
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Yroof If B 1is a Gateaux derivative
[A'(u)tv - Btv| = o(t). So A'(u) = B.
To show A'(u) accretive write

t2< AV (W)Y , BV > = < A'(w)bv , Pty >

at u then

= - < A(u+tv) - Au - L' (u)tv , Ftv > + < A(ustv)-Au , Ftv >

> ~|A(uttv) - Au - A (u)tv] |tv] = 0(t2)

Dividing by t° and letting + - O we

<A'(w)v , Fv> >0

Corollary 1.3, If A'(u) exists then q(A'(u)) < q(4a).

Proof A'(u) + T = (A + qI)'(u) which

obtain

is accretive.

Let ® be a collection of g-m-accretive

operators with the same linezr dense

domains D C X.

Definition 1.4. We say () has wuniform Gateaux

derivatives ( § € (U.G.D) ) if

i) Bach A € ® has strong Gateaux derivative.

(1.3)

ii) If vy, ~u, v ,u€D, Vv Fu, |Av_ | bounded then

n

-1 L
|v~ul |Av ~Au-A'(u) (v -u)| - O as

n — o

iii) For each compact subset C of D and each

M < o there exists K <« depending only on

¢ and M such that if u,v€ C , A € ® and

|Av] + |Au] < ¥ then

|Av-Au-A' (u) (v-u) | < E|v-u]

(1.4)

(1.5)
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iv) Tor each A,B€ (i and I <o there exists X < e
such that |x|+]Ax| <M implies |Bx| < K. (1.6)

Definition 1.5. A section [0,T]- § : t - A(t)

is said to be a regular control if

*

i) x'(%) + A(t)x(%t) 0 x(s) = X, €D (1.7)
hag wunique ILipschitz continuous solution §(t,s)x0 € D,
ii)For each M < o there exists K <w such that
if lxol+|Aks)xo| < M then
II(t,s)xol+lA(t)§.(‘c,s)xol <K t € [s,T] (1.8)
iii) q(A(%)) = q(t) and {i la] <o (1.9)
Remark Theorem 1 , Chapter I shows that constant
controls are vregular. If for each A,B € ) there
exists continuous IL(.) suqh that
|Ax - Bx| < IL(|x])(1 + |Ax]) (1.10,
then Theorem 2 , Chapter I shows there are ‘'plenty'
of nonconstant regular controls.
Comparing (1.6) with (1.8) we see that if
Ai(t) is regular on [O,Ti] {i=1,2) then '
A1(t) O<t<Ty
A(t) = is regular.
{ A2(t-T1) T, <t <Ty+ T,
In this chapter we work in the class of

regular controls, This c¢lass has solutions which



satisfy +the ‘'nice' ©properties given in +the conclusion
of Theorem 2 , Chapter I. In particular T (t,s) has

t
Iipschitz constant exp | q .

Lemma 1.6, XLet A(t) be regular on [0,T], A(t) €A €(U.G.T
Let €,>0,[0,¢)~» D : € - x, strongly continuous =and
(d/ds)xslszo =¥, € X exists. Suppose

{ [A(s)x¢l. 2 O

N

€ < &) <o (1.1
Iet ¥ (t,s) be the solution of (1.7) , and set
y (8) = €71 (3(t,8)x, - E(%,8)x,)
ME,€E) = | 3 (8) + A(%) ' (3(t,8)x,)ye (1) |
Then M(t,¢) -~ 0 a.e. t € [s,T], %A(t,i)dt - 0 as €40,
(5]
Proof 1f O < ¢,&<€, s < t,t' <T then

tl
Ii(t',s)xe,—-i(t,s)xil < |x, - x,]exp é q + |E(t',s)x -
I(t,S)Xal

Thus the map [0, &kx[s,T]~ D : (£,t) ~ ¥ (%,s)x,
is continuous , so C = {¥F(t,s)x,: O <&, 8 <t < T} C D

is compact. Also

% % :
ly, ($)1 < |y (s)|exp { @ - |y, lexp é q as td0.

S
If 0< € < ¢
Altrg) = e A(E)T(t,8)x,~ A(E)E(E,8)x, — A(E) " (E(t,8)x,)ey, (t

|

0 if E(t,s)x, = 2(%,s)x,
{ly;(t)lli(‘c,S)x£ -I(t,S)Xoi'1IA(t)i(t’S)Xz -
A()E(t,8)x ) - A(t)-(1(t,s)xo)(§(t}s)x£—§(t,s)xo)i

4 .
otherwise
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By (1.8) , (1.11)  sup  |A(£)E(t,8)x,| <o .
€ £ &
t <7

n O
//‘\/ﬁ\

Then by (1.5) , Xt,€) - 0 as €e40 a,e. t €ls,T].

T
By (1.6) and dominated convergence | A(%t,£)dt - O.
S

Lemma 1.7. Let {B(t)}s <t <1 De any one- parameter

family of q(t)=-asccretive operators such that ?IQI < ooe
s

For each € € (0,¢.] let y,:[s,T]= X be strongly

absolutely continuous. Suppose Yy (s) - y, end

?{)iyz'(t) + B(t)y,(t)]dt -~ 0 as €40 (1.1:

s

Then

i) oy, () = y(t) uniformly on [s,T]}, y(t) is

continuous and y(s) =y

o

ii) If {§z(°)}o<z<'€ also satisfies the conditions
-~ o -
of this 1lemma ( §£(t) - y(t) ) then

-— t -
[y(+) - F(t)] < [y(s) - ¥(s)|exp é q (1.1

Proof Set R(X,p,t) = |3} (£)+B(t)yu(t)] + |F4(£)+B(6)F()].
Then ? R(«,p,t)dt -~ 0 as «,ploO. _
d/dtIYQ?t)—§p(t)l2 Io<yl(t)-58) 5 Flra(6)-Fo(t)) >
< =2 < B(1)7, (8)-B(£)Fp (1), Flyu($)-Fp(t)) >

+ 2]y (£)-Fa(t) IR(%,8,%)
<€ 2|y (2)-F, (8) [ (a(8) [yal$)-Fp(£) | + R(%58,%))

This gives
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1Y (8)=Fp () | < (Iyu(8)=F,(s) [+/R(«,p,t)at)exp| g (1.14)
s S
Taking ?F = ¥y, we obtain {yg(t)}x is Cauchy as
A4 0 uniformly for +t €[s,T]. This gives 1i). To

obtain ii) let d,p- 0 in (1.14).

It is now easy to prove

Corollary 1.8. ILet Dy = {yo € X : § family of curves

Ye (o) satisfying the conditions of Lemma 1.7 } and
define r\,(/(1:,8)y0 = lim y,(t). Then

i) Y(t,s) is well defined on Dy and '?(t,s)Ds C D,
ii) ¥ is an evolution operator on [0,T].

iii) [V (t,s)u = ¥(t,s)v] < |u-v|exp z q (1.15
iv) t =¥ (t,s)v is continuous on [s,T].
Definition. We call VY the pseudo-solution of
x'(t) + B(t)x(t) =0 (1.16
It follows directly that if x(t) is
absolutely continuous and satisfies (1.16) a.e.
then x(t) =¥ (t,8)x(s). So strong solutions of

(1.16) are pseudo-solutions.

Theorem 1,9. Suppose A(t) is a regular control of

0 € (U.G.D). Then corresponding to each solution
of w'(t) + A(t)u(t) 0, u(0)=u €D on [0,1]

there exists a wunique evolution operator
¢
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Y(tys) € I(X) 0<s <t <T such that
t
i) H’(t’S)IL(X) < exp j q (1.17)
: s
ii) t - V(t,s)x is continuous for all x € X,

iii) Suppose [0,¢]-~ D : ¢ - u, strongly continuous ,

u, = u(s) , ilA(s)u£] : 05 €€ &} <o, and

Y, (d/di)uilg=o . Let u,(t) be the solution

of u'(t) + A(t)u(t) ul 0, u(s) =ug. Then

lue(t) - ult) -ev(t,s)y | = ole) (1.18)
uniformly for t € (s,T].

iv) V¥ is the pseudo-solution of

x'(t) + A(E)'(u(t))x(t) = O (1.19)

Proof Set B(t) = A(t)'(u(t)) in Lemma 1.7 and
let VY (t,s) be the evolution operator constructed
in Corollary 1.8. Let Yo € D and set
ug = u(s) +ey, € D.
By (1.2) , |A(s)u | is bounded for 0 <t &
where €. is sufficiently small > 0. Also
(d/d€)uel,_ o = ¥,. Then Dby Lemma 1.6 ,
vy (t) = 6-1(ug(t)~u(t)) satisfies the conditions
of TLemma 1.7. So Yo € Ds and D C Ds’
Now let v € Dy » oF scalar (i=1,2). Let y?(t)

satisfy the conditions of ILemma 1.7 and yy(s) = v .
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l(t) also

Then by linearity of B(t) , % «ly]
i

satisfies the conditions of Lemma 1.7. Therefore
L oM(t,8)v = 1in T Ly(6) =¥(t,8)z «ivi

€0
So DS is a vector s/space of X and (t,s) is
linear. Moreover , by (1.15) ,

t
'Y(t,s)v| < |v]exp{ q , for vEe€ D
8
Y(t,8) can now be extended to all X since D,
and therefore Ds sy 1is dense in X.

Parts ii),iii) of +the +theorem now follow

directly <from ILemma 1.6 and Corollary 1.8.

2. In +this section we study the effect of
perturbations of a regular control., It is not
altogether straightforeward , and we have to
assume X 1is wuniformly convex.

It 1s feasable to write an expression for
the general form of a perturbed control. It is
rather complicated and not really necessary. To
see how complicated it can be we refer the

reader to [0,pp.84].
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Ve now must assume the following

i) X (as well as X*) is uniformly convex o (2.1)
ii) @€ (U.G.D) (2.2)
iii) A(t) is &a regular control. (2.4)

For convenience we make the following definition.

Definition 2.1. Let y € X. Suppose there exist

regular controls Ag(.) and'tnws‘tt (0 < € < ty)
such that
i) ty =t +4s for some o (2.5)
ii) The solutions x¢(t) of x'(t) + &,(+)x(t) = 0

x(0) = x, € D have the property

Xe(te) = x(%) + ey + o) (2.6)
iii) { JAg(B)xe(8)] : 0t <t , 0<t< &} <o (2.7)
Then we say y 1is realizable at t (by {Ag,tel}).

If in addition 3§ > 0 such that
xe (=N = x(t-2) + £y(t-2) + o(e)  wnif. 0 <A<§ (2.8)
A= y(t=)\) is strongly continuous; then we say

y is locally realizable.

Remark, O is locally vrealizable at t > O.

TLemma 2.2, ILet A>0. If y is locally realizable
at t and t is Lebesque point of t - A(t)x(%)
then ‘y'+-AA(t)x(t) is realizable at t. If ¥

is realizable a8t + then so is y - ABx(t) VB € @,

¢
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Proof Suppose y locally realizable at +t by
iAg,te¢l. Then by (2.8)
Xe(te=Ne) = x(t=X€) + gy(t-ne) + o(¢g)
= X(t-X€) + €y + o(¢) (2.9)
But , since t is a Lebesque point
x(t=-28) = x(t) +eXA(t)x(t) + o(x) (2.10,
Adding (2.9) , ﬂ2.10) we 8ee y + MNA(t)x(t) is
realizable at t by {A;,t¢-\¢f.
Now suppose y only realizable. Set ¥e = te+ \E
Ay (t) 0 < t< 1

B by <t <%

'3
Let §B(‘b,s) = $5(t-s) be the semi-group of

*

solutions of x'(%) % Bx(t) O. Then by

Corollary 2 , Section 2 , Chapter I.

Tp0e)x(t) = x(t) - MeBx(t) + o(¢)

(It is here we need X uniformly convex). Also by
Theorem 1.9 there exists continuous 2z(s) such +hat
Tpls)x (b)) = Bz(s)x(t) +e2(s) + o(€)

uniformly for >0, and z(0) =y. Therefore

% (Te) = Tp008)xg () = Tp0ne)x () + £2(he) + o(€)

x(t) + €(y = ABx(t)) + o(e)
Therefore y - ABx(t) 4is realizable by {A;(.)sbe}e

This completes the proof of +the Lemma,.
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Lemma 2.3, Let C(t) be +the convex cone generated by
{-Bx(t) : B €@} U {A(t)x(t)}] ¢+ >0 IL-point
Z(t) = { (2.1
{-Bx(t) : B R otherwise
Suppose y 1s locally realizable at t (by {Ag,tef).
Then all points in y + C(t) are realizable at t.
Proof Let z €y + C{t). Then
n
z2 =y +AA(t)x(t) - L )\iBix('t) A>0, }‘i >0, B, €4.
1 i
Either A= 0 or t is IL-point of A(t)x(t).
By the previous lemma y + MNA(t)x(t) 4is realizable.

Then again by the same lemma y + MNA(t)x(t) - Aanx(t)

is realizable , and so on , to give 2z realizable,

Lemma 2.4, Let y be realizable at s < t1 by
{A¢y8¢f. Then «k(t1,s)y is locally realizable at t,.
Proof Set ty =8¢+ t; - s

Ag(t) 0 < t<S€
L (t) ={

A(t+s-8¢) s, <t <t
By hypothesis X (s;) = Xs(8¢) = x(8) + €5 + o(¢€).
By Theorem 1.9 , if O < A < t1 - 8
Fe(t-A) = X (8 +ty=A=s) = F(t,-A,8)F (s¢)
= §(t1-A,s)x(s) + 8?(t1-A,S)y + of(g)
= x(t,-)\) +eV (t,=Ms)y + o(e)
Since A - Y(t,-X\»s)y is continuous » V(ty,9)y is

locally realizable at t1.



Lemmas 2.3 , 2.4 and a simple induction gives

Theorem 2.5. Bach element of the convex core K(t)

generated by o<t V(t,8)2(s) is realizable at t ,

where Z(s) is defined in (2.11),

Remerk x(t) + K(t) 1lies in +the ‘'tangent cone of

attainability'.

3. In this section we briefly consider the
problem of when a pseudo~solution of the variational
equation is a strong solution. Since a strong
solution is a pseudo-solution , we need only
consider +the problem of existence of strong
solutions, We make the following assumptions.
i) {A} € (U.¢.D) (3.1)
ii) For each u € D either A'(u) is closed , or ,

more generally , A'(u) is closable and the

closure has domain D independent of wu. (3.2)
iii) At (u)x - A (V)] < |u—v|L(|u|+|vl+|Au|+.|AV|)]A'(u)Xl (3.3

Theorem 3.1. Suppose (3.1),(3.2),(3.3) hold. Let

x(t) be the solution of x'(t) + Ax(%) 20, x(0) = x, € D.
Then
y'(t) + A'(x($))y(t) 20 y(0) =y, €T (3.4)

has wunique Lipschitz continuous solution.
¢
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Proof We show {4'(x(t)) : t > 0} satisfies the-
conditions of Theorem 2 , Chapter I.
Since x(t) is Lipschitz continuous , (3.3)
shows there exists a constant X such +that
At (x(6))x - A'(x(s))x]| < Klt-s|]a'(x(s))x] O<ss<t<?T (3.5
It remains +to show A'(u) is g-m-accretive.
By Corollary 1.3 , A'(u) is q(A)-accretive , so
for small enough A>0, I+XA'(w) has a continuous
inverse which is closed since A'(u) closed.
Therefore (see for example [5,pp178l) I + AA'(g)
has closed range.
We¢ now show the range is dense. If not ,

then by the Hahn-Banach Theorem there exists

x* €x°, |x¥| =1 such that
< (I +M'(W))x, 2 >=0 for all X € D (3.6)
Since X reflexive +there exists x € X, |x| =1

and < x,x>=1, Let O<P <1, Then since I + AA

is surjective there exists Xp € D such that

(T + 2A)(u + Xp) = (I +2A)u =rx (3.7)
-1 -1 <K (3.8)

|xp| = [(T+XA)7 (T+A4) (utxp)=(I+AA)T (I+M)u| < Kp .

-1
where K is +the ILipschitz constant of (I+M\)
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(3.7) shows |A(u + xp)| is Dbounded , and (3.8)

shows W+ Xp—>u as FP-0, So by (1.4) and (5.8)

JA(u + XP) - Au - A'(u)xr =o0(f) as PO (3.9)
Then by (3.6)

f’=-<fx,xﬁ> =-<(I+AA)(u+xr)—(I+AA)u-(I+AA'(u))xr,xﬁ>

A<:A(u+xp)—Au—A'(u)xr,x* > < ho(P) by (3.9).
Dividing by P gives 1 < o(1). So I +AA'(u) is

surjective. The proof is complete.

It may be worth noting that Theorem 3.1
doesn't fit +the standard conditions which are
usually assumed for the existence of linear
evolution operators (A'(u) does not generate an
analytic semi-group).From an extensive literature

see for example [1] or [2).

4. In all +this Chapter we have been concerned
with +the 1linearization of (1.7). Theorem 1.9 gives
conditions wunder which +the ‘'classical théory' holds
in infinite dimensions. Not much research seems *to
have been done on this problem (in fact we don't
have any references) , the probable reason being

that existence theory for abstract nonlinear partial
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differential equations is still in its infancy.
However +this problem has been studied for particular
important equations with rather suprising results.
Dr. Pironneau recently communicated to me the
following 'non-classical' phenomenon. The formal
variational equation of +the Navier-Stokes equation
has weazk solutions , but these solutions do not
appear to give <first order approximations to
solutions of the Navier-Stokes equation (presumably
in any 'reasonable' topology). It seems hopeless in
this situation to try to obtain any of the
classical optimization results in control theory.

- We should remark that although we have worked
with the strong topology of X throughout this
Chapter it 1is possible to use weaker topologies.

We have proved an analogue to Theoremi.9 using

the weak topology. The essential differegce is that
a ‘'weak version' of (1.2),(1.4),(1.5) is assumed

and then a ‘'weak-,version' of (1.18) 1is obtained.
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CHAPTER I¥IT

0. It is the purpose of this chapter to apply
the results of Chapter ITI 1o obtain some meximum
principles. It is not our intention +to obtain the
most generality possible , but rather to demonstrate
a methed , which , we hope , has wider applicebility
to nonlinear optimisation problems.

Section 1 Aemonstrates a rather pleasing
controllability property of accretive operatérs.
Section 2 formulates an abstract separation theorem.
This‘ contains the ‘'kernel' of an idea in [21.7
However our argument is much simpler +than (2],
and in particular we don't require +the ‘'tangent
;one of attainability' +to have interior point.

Paper [2) demonstrates an abstract maximum
principle for evolutionary systems in Banach space.
However it seems to contain many obscurities;
see for example Avner Friedmen's comments in [51.
One proposition which is assumed without proof
is the following: If U is +the open unit ball
in Banach space X , S :[0,11x U= X : (%,x) ~ S4(x).

S, is "a homeomorphism from U to St(U) ,

+ I should like to thank my Supervisor for

initiating my dinterest in +this paper.



St(U) open , t - St(x) is continuous and So = id
Then there exists € >0 such that O € OQQSi St(U)'
The Browder fixed point theorem shows this is
true if I is finite dimensional. Ve do not know
if it 1is +true in infinite dimensions. .It night
seem Bessaga's Theoren , see for example [4],
would supply a counterexample but we have been
unable +to show this?

In BSection 3 we prove +two maximum principles
with fixed end=point. In the <first +the 'time' at
which the end-point is attained is mnot fixed. In
the second it is. ZBEgorov 11, [2] only considered

_the first case. An elementary but important

example is given in Section 4.

I should 1like +to thank Dr. David Elworthy for

suggesting I look at Bessaga's Theorem.

section
1. In this Awe prove a controllability condition

for accretive operators. It is based on the
following observation, If q(.) in Theorem 2 (£) ,
Chapter I has integral - « on [0,T] then 2all
solutions merge together from whatever their

initial point.



Propogition 1.1. Let B be m-aécretive' with

domain D. Let X, € D and suppose z'(t) + Bz(t) = 0,

z(0) = x; has solution 2z(%t) on the non-trivial

interval [-T,01, (We do not assume backward

uniqueness , only local backward existence). Then

x'(t) + Bx(t) - t7 (x(+) - z(%)) £ 0 | (1.1)
x(s) = X, €D, -T<s<O0 (1.2)
has (unique) Lipschitz continuous solution =x(t)

on [s,0] such +that

1) 1817 M=) - a8 < 1817 x, - 2(s)] (1.3)
-1

i1)  |x(e)] < Is17' 1bll=t(s) | + Klt-s] } (1.4)

where X is defined in (1.5).

- Proof First observe that if s < € <O then ,
since z(t) 1is Iipschitz continuous , (1.1)
satisfies the conditions of Theorem 2 , Chapter I
on I[s,g]. If X, = z(s) then (1.1) ,‘(1.2) has
solution z(t). Therefore by Theorem 2(f)', Chapter I
|x(t) - z(t)] < IXO - z(s)|exp z du/u .

Integrating gives (1;}). Letting €40 shows

x(t) - z(0) = x, as %10. Thus x(t) can be defined

by continuity on [s,0].
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To obtain an estimate for +the Iipschitz
constant of x(t) it is sufficient to obtain an
essential bound of x'(t). Such an estimate is
given in Theorem 2(d) , Chapter I , but in this
case it turns out to be too weak. Ve therefore
proceed with a direct computation.

Fix small h >0 and let s < t < t+h <O,

Let X; be th; Iipschitz constant for z(t) on
[-T,0] and set y(t) = x(t+h) - x(t). Then using (1.3)
(a/at) ly($)|% = 2 < x'(t+h) - x'(t) , Fy(t) >
d -2 < Bx(t+h)=-Bx(t),Fy(t) > + 2t—1< y(t)-z(t+h)+z(t),Fy(t) >
v2{ (t+0)7 1= t71} < x(t4h) - z(t4n) , Fy(t) >
< 2161 =1y () 12 + R, [y () [}
2] (4n) " o7  Jom s 17 1xg-2 () 1y (9) |
(@/at) |y(8) ] < [t]7 =]y () [+nE, b + nlst|T Iz, - z(s) ]
(a/at) 817 1y(0) ] < nx, 14172 + nlst? 7 x, - 2(9)]
Integrating from s to ¢
1617 y(6) | < 1s1™ ly(e) [snix,+is 1™ Ixp-ate) Hi1E] T =1s17" )
Dividing by h and letting hl0 gives (1.4) with
K=K + lsi—1lxo - z(s)]| (1.5)
Remark 1.2. If B is g-m~accretive and q(B) >0
then (1.3),(1.4),(1.5) need slight modification. This

does not affect the result of the next Corollary.
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Corollary 1.3. Suppose , in addition to the

conditions of Proposition 1.1 , 2'(0) exists. ILet §> O.
Then there exists open set U in X and open interval
J C (-§0) such that if (x,4) €UN D x J and

O0< N< 1t then Xy + Ax 1s steered by (1.1) along

x(t) +to xy in 'time' interval [Xt,0] and moreover

s~ (x(s) - 2(s))] < § M <s<0 (1.6)

Ix(s) - x| < § ' (1.7)

Proof (1.6) shows that

|x(s) = x| < (§+ Ep)]s]

So, by choosing J sufficiently close to O,
(1.7) is. autcmatically satisfied. It remains to
.find U and J to satisfy (1.6).

Let B(s) be the open ball centre z(s) ,
radius §|s|. Then by (1.3) each point of B(s)ND
is steered by (1.1) %o X, along =x(t) € B(t)
(s<t<0). Now

z(s) = Xy + sz'(0) + o(|s])
Let U(s) be the open ball centre sz'(0) , radius
$|s|/2. Then for some s € (-§,0) ,

Xy + U(s) C B(s) for all s € [so,O).

Now choose s, € (so,O) such that U = U(s1)ﬂU(So) F ¢.
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Then it 1is easy to see U= n TU(s) .
8

Set J = (so,s1) .
It is now a +trivial verification to show U, J

satisfy our requirements.

2. In this section we use some of the jargon

of control theory.

If X, 0 X € DC X we say admissible control

c(t) steers x, %o x (in time interval [s,t]) if

the corresponding admissible trajectory =x(t) (assumed
unique) with initial point X, = x(s) has end-point

Xy = x(t). If c; steers x; to x;.4 in time

. a1
interval [ti’ti+{] (i = 0,1) then we assume the

-

‘compound' control is admissible and steers e to N

x, (via x;) in time interval [to,té].
Suppose to each admissible control c{t) (on [s,t})

and corresponding admissible trajectory =x(t) there

is an e&ssociated cost functional which has the form

t
FO( x(.),e(.) ) = | £2(x(u),c(u))du (2.1)
' S

Thus we can define admissible trajectories 1in
~ t o
X=RxX by t- (£ (x(u),c(u))du, x(t) )
s
Fix x  , Xy € DC X, ILet A (the set of
attainability) be the points in D to which x, can

be steered. Define A in X to be the points to
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which (O,xo) can be steered. ILet I\ be

points in X which can be steered
define

£(x) = inf { FO(x(.),c(.)) : ¢ steers
Suppose the following attainability
There exists an open set U in I
(X1 + AU C A, P((x, + AUWL) < A
Without loss in generality we can
convex and O ¢ U.

We say cone C with vertex O

to X1.

x %o

the set of

If x€ N

X, } (2.2)

condition holds:

such that

o< A< 1 (2.3)
assume U bounded,

in % is open

if C - {0} is an open set. We say the

{x+Ay : A> 0} in X is tangent to

ray

if for each

open cone C (vertex O0) containing y and

neighbourhood U of O.

(x+CNn (U-{0}]))NZ%4

(this is the geometric interpretation

eanalytic definition).

each

(2.4)

of the usual

Lemma 2.1. Iet 1 be the ray {(-X0):A>0} in X.

suppose ((x%,x;) + 1) n X = (x%x,) (This

optimality condition). Let K Dbe a

convex

is

the

cone

~
(vertex O0) in X such that each ray of (XO,X1) + K

is tangent to K. Let U be the open

in (2.3) and W= U \U.
O<A<1

set defined
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Let C = {(-A\MW):X=0}. So ¢ is an open convex
cone and 1 C9C. Then KN C = {0}.

Yroof Suppose the contrary that KN C contains =
ray. Then since C is open , we obtain from (2.4)
y = (%) + (M) € ((x%x,) + (¢ - (o)) Nk

for some X€ (0,1) , w€ ¥W. But then w = pu for

some M€ (0,1) , w€ U, Since yE¢€ L, x1-+Xp11€ A,
Then by (2.3) ‘x1 + Apu € N and [’(x1+)\,xu) <M <AL
Therefore y = (XO—X,X1+Xpu) is steerable to (xonE,x1)
for some &t > 0. This contradicts the optimality

assumption.

Proposition 2.2, If the conditions of Lemma 2.1
hold +then there exists yT = (y: , y*) €ERx X =%
such that yo<0 amd <z ,y,><0 for all z€ K.
Proof By standard separation theorems (see for
example [Nirenberg 7, pp13]) there exists yT e X"
such that

<Z9YT><‘*S<u,yT> for all z€K,u€cC

— *
Since 0€X, 1cCC, 0 << -y, for all A= 0.

Therefore W = 0 , yz < 0.

Remark It is clear +that this result can be

proved under more general conditions. In particular
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X could be any locally convex space. However by
‘taking a weaker +topology on X (for instance the
weak topology) assumption (2.3) becomes stronger.
It is also clear that X, could be replaced
by any closed convex 'target set' , and }one would
obtain +the wusual transversality condition. If the

target set also contained an interior point then

condition (2.3) is automatically satisfied.

3. We apply Proposition 2.2 to systems discussed

in Chapter II.

" Let X,X* be uniformly convex Banach spaces ,
®& € (U.G.D)

Definition 3.1. We call a section [0,T]- R :

an admissible control if [O0,T'(<T)]- W :t - A(%)

is regular.

Notice that a regular control followed by an
admissible control is admissible ; and that a
regular control is admissible , but not conversely.
Definition 3.2. If A(t) is an admissible control

on [0,T] we say =x(t) is an admissible trajectory if

x'(t) + A(E)x(t) =0 a.e. t €[0,T7] and =x(t) is

Lipschitz continuous on [0,T].

t - A(%)



Remark Since A(t) is regnlar on [0,T'(<T)] we
know x(t) is ILipschitz on [0,T7']. However the
Lipschitz constant may blow up to + « as T'4 7.
Tet f° : Xx® - R and suprose f°(x,4) eond
the Fréchet derivative (3/3x)f°%(%,L) are continuous
in the first variable. Consider +the system
(4/a£)x°(t) = £°(x(%),A(%)) x°(0) = 0 (3.1)
(d/dt)x(t) = - A(t)x(t) x(0) = x_ € D (3.2)
in X=Rx X s A(t) is regular control.
Let V(t,s) be the pseudo-solution of
(a/dt)y(t) + A(L) ' (x(t))y(t) = O (3.3)
as shown to exist in Chapter II , Theorem 1.9.

Then the variational operator for (3.1),(3.2) hes

nmatrix form

1 ’\{/o(t’s)
’\}f1(‘b,s) = (3.4)
0 Y(t’s)
.t
Y (ty8) = § (/3x)£°(x(N),A(A))o¥(x,s)dN . (3.5)

5
Theorem 3.3, (Maximum Principle)

et X , X be uniformly convex Banach spaces ,
Ge (v.¢.D) , X, s Xy € D. Suppose there exists Be M

such that



i) z'(t) + Bz(t) Zo0 s z(0) = ¥, has eclution on
[-T,0] differentiable at + = 0.
ii) There exists §>0 such that B+ h (i.e. fhe
operator x - Bx +h ) €® for all |h| < §,
and £°(x,B + h) <M <o for all |x - x| < § and
lh| < §. (Without loss in generality we may
assume & < M"1).
Suppose amongst all admissible controls AL{t) ,
steering x, %o x; by (3.2) along an admissible
trajectory , +there is an optimal control Z(t) defined
on [0,T7). That is to say X(T) = x; and (1) is
minimized. Suppose £ is regular. Then there exists

yT = ( yZ(SO) , y*) c R*x X*; i* such that if

H(z,t) =<z , "}’T('l‘,‘l:)y;e >' (3.6)
then
H( (£°(X(%),4),-2%(%)) , t ) <O (3.7)

for all t €[0,T), A €.
Noreover equality holds im (3.7) for almost all 1

if A = A(%).

4

Proof Using Theorem 2.5 in Chapter II set K to be
£9(%(%),4)

the convex cone generated by WV1(T,t) 15 (%)
—AX

f°(3£(t),K(t)))
we

and if t 1is Lebesque roint of t - ( _ -
L(t)x(t)

;
also inelude the vectors
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-2 (X(1),E (1)) \
A(4)x(t)

'\V1 (T:t) (

Then each ray of (EO(T),X1) + K is fangent to the

set X in X which are reachable by regular controls.
Using the § (given in hypothesis ii) ) in

Corollary 1.3 . we ébtain open set U C X, such thet

(1.1) steers X4 + NX € Xy + AUN D along =x(t) to X,

in time interval [Ato,O]C[—AS ,O0\, where t,€ J.

Let u(t+8) = —t—1(x(t)-z(t)). Then =x'(t) + Bx(t) + u(t) 2o

steers x; + Ax to x; in time interval [S+>$O,S].

By (1.6) , Ju(t)| <§ so B+ u(t) €R. By (1.4) , x(t)
is Iipschitz continuous. Therefore u(t) is Iipschitz
continuous on [S + Xto,S'(<S)], and so , by Theorem 2
Chapter I , B + u(t) is an admissible control (but
not necessarily regular) and x(t) is an admissible

trajectory. lMoreover

8
S £O2x(4),B + u(t))at < Alt 1 < XM <X
S+Ato

so U satisfies (2.3).
The Theorem now follows from Proposition 2.2 ,

and the observation that

O aoeo t E[O’T].

N

+H( (£2(X($),E(8)),-E(6)E(t)) , t )
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Theorem 3.4, Suppose the assumptions of Theorem 3.3
hold and X(t) is optimal amongst controls stesring
x, to x, in the given +time interval [0,T] (i.e. we
now fix T as well as X4)+ Then

CH( (£26X(%),4),-8%(t)) , t.) <

— -— — — * .
H( (£2(X(t),E(t)),-E(t)F(t)) , + ) = C = const. (3.8)
Proof Adjoin +the +time coordinate to X s SO

~

X becomes R x X x R. The variational operator

becomes

"l"1=

o O -

Y° o
Y 0
Q 1
For the set U we take U x J as constructed in

Corollary 1.3. Applying Theorem 3.3 we obtain

- _ *
H( (£°(X(t),A),-A%(t)) , t )+t <O for some t € R

*

I x

H( (£2(Z(%),E(t)),-E(£)X(t)) , t )+t =0
4. We apply Theorem 3.4 to the following
standard example.

Let X, X" be uniformly convex Banach spaces.
Let A be g-m-accretive on D C X, and suppose
A satisfies conditions (1.3),(1.4),(1.5) of

Chapter II. ILet 1 be the closed wunit ball in X.

Then {A+u:ueN} € (U.G.D).

Consider +the r control system
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x'(t) + ix(%) z u(t) € L x(0) = X, €D (4.1)
and quad¥ratic cost functional

T 2 2

(S) [u(t) 1% + o 1x(t) | at (o >0) (4.2)
Let %1 € D be the target point and suppose
x'(t) + Ax(t) = O x(0) = X,
has local backward solution differentiable at + = C.

Let x(t) be the trajectory for optimal (regular)

control u(t) ‘on [0, TI(T fixed).

Let ¥ be the pseudo-soliution of

y'(t) + A (x(t))y(t) =0
By direct computation (3.5) Dbecomes
AP (t,8)y = f <y, 2% (A,s)FX(A) > A\ (4.3)
S

F is +the duality mep whiph is Dbijective since

X,X* are wniformly convex., All the assumptions of
Theoren 3.4 are satisfied so from (3.8) we obtain
ya(lul® + LX) 1P) + < -AX(E) 4w, V() ><C (4.4)
V() = ¥ (1,85 + 2y, i NSO, E)FR(A) aa (4.5)
and equality holds a.e. in (4.4) if u'= u(t).

If z4 0 write zM= z/|z]. If y, =0 then (4.4) gives

) = N )t (4.6)

VH(8) ] - < AT(H), VI (8) > 2 ¢ = |y - < bxyy > (4.7)
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qu supypose yz'< O. Then by homogeneity we mayu
assume y: = =1/2. Then by (4.4)
q(t) = AF (V)N 0< X< 1

and A maximizes

=172 (2% + «E1)12) + AV | - < 25(8), 7 (%) >

So A= |V (t)| A1 |
) = (V) AnF ) (4.8)
The condition that u(t) is a Dboundary contfol is

Yo = 0 or |
Yo = -1/2 and

* * T *
[ (T,t)y - ‘*i (A E)FE(N)AN] > 1 (4.9)

which implies |y | > 1

5. The maximum theorems in section 3 are not as
satisfactory as we mnmight wish. The problem is that
-we were not able to steer from an ‘open set to

the target point by a regular control , only by

an adnmissible control ; but Theorem 1.9 'Chapter IT

is only wvalid -for a regular control. Until more
powerfull controllability results +than Corollary 1.3

are obtained for nonlinear dissipative systems this

problem will probably remain unresclved.
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Sov fér we' have éompie%él& igﬁoied‘ the quégfibﬁ
of existence " of optimsl controls. This problem has
been very sucessfully tackled by ILions in [6]. His
technique is standard in that he takes a minimizing
sequence of controls and then wusing sequential
compactnesé shows that a subsequence converges +to an
optimal control. However it seems hard +to topologize
the set of controls which generate strong solutions
in a suitable way. ILions considered weak solutions ,
and %hen completeness of the space of controls 1is
_usually self evident.

It may vbe possible to bring together existence
of optimal control and the maximum principle by
considering product integral representations of '
solutions. If wu(t) is Riemann integrable then the
reéults of the next Chaptef show solutions of (4.1)

have a product integral representation
n _ _ )
x(t) = Lim (I + (t/2)8)"1( . + (t/m)u(it/n)) x, (5.1)
Nwo 1i=
Thus it seems worthwhile to consider the
variational properties ot expressions like (5.1)

That is to say , when is the map X, - x(t) in

(5.1) differentiable?

¢
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CHAPTER IV

0. Introduction. In Crandall and Pazy [2] the

evolution equation

u' (t) + A(t)u(t) 2 0 s

VAN
ct
N
3

(0.1)
u(s) = x

on Banach space X is considered.

We assume +the same conditions on +the maps
x - A(t)x as f2) (see A1, A2 , A3 in section 2 ).
In [2] the maps +t - A(t)x are conditioned as follows
c1) [t Nx - a(s, x| < M |2($)-2(s) [ [L(]I=]])
where L :.[O,«J - [O,aﬁ is monotone increasing ,
and f is X wvalued and continuous.

In this paper we show C1) can be weakened,
We give analogous results for the more interesting
condition C€2) elsewhere.

Although it is often natural , when considering
concrete examples , to assume f 1is X wvalued ;
it is easy to see that all the proofs in [2]

still go through without modification if f takes
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values in any Banach space Y . Tt is particularly

interesting to take Y = C[O,T] and

0 s €t
£(t)(s) = o
|t-s| s >1%
o
where o > 0. Then ||£(t) - £(s)|]| > |i-s| and f

is continuous. Therefore all the results of [2]

hold if C1) is replaced by the HOlder continuity

condition
v o .
lats, Mx = 3(s, x| < Mt-s| n(]lx]]) A > 0
Remark, It is a consequence of +the Denjoy-

Young-Saks Theorem [7 ’ p.181 that if AKX 1 then
no real wvalued continuous f satisfies
oL
l£(t)-£(s)| = |t-s] .
Some while ago we showed (not published)
that +the proofs in [2] can be adapted to the
case T has Dbounded variation but is not necessarily
continuous (however see [5}). Ve now show Riemann

integrability of f is sufficient.
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The role of f in (C1) is +to generate an
interval function I(s,t) = ||f(s)-f(%)]|]|. Interval
functions and their Riemann integrals are discussed
in section t'. It might seem that wusing an interval
function I dinstead of £ in C1) +would produce
further generality. It +turns out +this is not the
case, If interval function I satisfies our
nypotheses , then there always exists a Riemann
integrable , Banach space valued f such that
I(s,t) < ||£(s)-£(t)|| (see ZLemma 1.1 and Remark 4.2).

The theorems of this paper are stated in
section 4., In section 5 +the basic existence result
is proved. It is stronger than [2, Theorem 2.1].

The appendix is self contained.
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1. Riemann Integrals, There are several

possible definitions for the Riemann integral of
a Banach space valued curve. The one we use is
as follows.

DEFINITION. Let o =( O=t0 < 1:1 < oeeese < ’Unz’l‘ )
be a partition of [0,7], |o| = max|t; - t;_,].

Tet §; » &'y € [tyq » t;]. Then £ is said to
be Riemann integrable on [0,T] if the directed
limit

Tn o & e;) - £ I (85 - %54) =0

In which case

g f(t)dt = ?§$;o g £(8) (65 = t5_4)

DEFINITION. A (real valued) interval
function I on [0,T] is any real valued map
with Domain(I) = {subintervals of [0,7] ] /~
where ~ identifies intervals with the same

end-points.

Tf P is a subinterval of [0,T] with

(1.1)
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end—poiﬁts a<Db, then by abuse of notation
we write I(P) = I(a,b) = I(b,a).
DEFINITION. Interval function I is said +to
be Riemann integrable on [0,7) if +the directed
limit on partitions o of [0,7], Lim iI(P) ,
o]0 P
exists and is finite.
If f is Riemann integrable and I(%,s) =
[1£(t) - £(s)|| +then (1.1) shows the interval function
P IfII(P) has Riemann integral zero. This has
a converse. Define MI(P) =sup { I(Q) : Q C P }
and consider the condition
I(syt) € I(s,r) + I(r,t) O €< rysyt < 7T (*)
Let B[0,7?] be the Banach space of bounded
functions on [0,T].

LEMMA 1.1, If dinterval function I is

positive , satisfies (*) and |P|I(P) has Riemann

integral zero then +there exists a Riemann

integrable B[0,T] valued f such that
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I(s,t) < MI(s,t) = ||£(s) = 2(£)]].

Proof. To0 show I bounded choose § >0
such that if |o|< § then Lz |P]I(P) < 1. Tet
o
Q be any interval and choose a partition o of
Q such that if P <€ & then §/2A|Q| < |P| <S§.

Then by (%)

lalT(Q) < [a] = 1(®) < |al(s/2 Ala)™" = |p|1(P)
PEG o
< 2T8_1 V1 <o

Therefore if |Q] > 1/3 +then I(Q) € N< o, If Q
has end- points t,s then at least one of the
following hold:(a) |t-s| >T/3, () |t] , |s] >12/3
(¢) |T~t| , |T-s| > T/3. Therefore by (*) ,
I1(Q) < 21 < .

Clearly I < MI and MT has the same
bound as I, It is easy to see I satisfies (*).

Now £ |PIMI(P) decreases under vrefinement

e

of &, Therefore, by Darboux Theorem (see for

example [4,pp.32] ), |P|II(P) is Riemann integrable.
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Let TF(t) be the indefinite integral. Then F(%)
is Iipschitz continuous , and by [7,pp.23]

F' (%) = Lim MI(P,) a.e. t € [0,1] (P, is eny
interval conteining t , and the 1limit is aken
as ]Ptl - 0 ). Since |P|I(P) has zero indefinite
Riemann integral , +the same theorem shous

Lim I(Py) = 0 a.e. t € [0,7].

Let + Dbe any point where both these
limits exist , and put P =[t - 1/n, t)-. Then
MI(Pn) =sup { I(rss) : t = 1/nsr<s<itj

< 2sup {I(s,t) : t -1/n<s <t} by (*).
Therefore MI(Pn) -0 88 n-oew. So F'(t) =0
a.e. t € [0,7]. Since F(0) =0, F(t) =0 and
|P|11I(P) has Riemann integral zero. To complete

the proof put

0
£(4) (s) ={
MI(t,s) s>t

Then since I satisfies (*), |I|f(%) - £(sV]] =

MI(t,s) ,» and moreover if k ,§' E[b,t] then

(1.2)
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[1£(8) - £(x) ] < |]t(%) = £(s)]] so f is Riemann
integfable.

The following corollaries are immediate.

COROLLARY 1.2, Banach space wvaluwed f is

Riemann integrable iff  Lim o) |£(t.)=f(t, || (ts=t; ,)=0
=0 o i i-1 i 7i~

COROLLARY 1.3. If +the conditions of

Lemma 1.1. hold then I, M , and f have the

same points of continuity , and arek continuous
a.e. [O,T].
Let P ©be any non-empty subset of fo,r] ,
and r > 0. Then there exists F (r,¥) < such
that if {Pi} is any finite set of disjoint
intervals each of length < 4r , and P, NY £ ¢ then
? |p, iz (2,) < P(r,¥) (1.3)
(1 P, ¢ [O,T]v, then NI(P;) = EI(B; N fo,7]) by
definition). Since |P|MI(P) has Riemann integral

zero , and MI is bounded , we have
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COROLLARY 1.4. There exists p uvhich

satisfies (1.3) and has the followins vroverties,

(1) P(r,¥) is_ continuous in r on [0O,») and
F(0,¥) = o.

(ii) P is monotone increasing in both variables.

(ive. If r<zr', Pc¥' then P(r,¥) < p(x'yy*) ).

(1ii)If NI is continuous at s then P(r,{s}) = o(r).
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2. Product Intecrals. Let Op(X) Dbe the

set of all maps with domains and ranges in

Banach space X, Let T , )‘O => 0 and

Suppose O<s<t<T and o= (s=t, <% <...,<tn=1;)

o) 1

a partition of [s,t] ’ }Li =%; - %4 > || =max My < >‘O
Let %= {§i}1n be any n-vector with k. €[s,t]

and define d(o,§) = mex sup { |§; - t| s t,_, <t < 55}
i t

= max |§1 -ty lv |§1 = til
i

For some x € X suppose 3 has the property that

n (2.1)
PS(o,k)x = iU1 Sk, M)z (2.
always exists.
DEFINITION. If +the directed limit
Lim PS(o,k)x  exists (in norm topology of X) then
d-0
-t -
the 1linit is written as [T S(uw,du)x , and is
s
called the product integral of S on [s,t] at =x.

a2
If +the limit is uwniform for (s,t,x) € Acf0,7]° x X ,

then we say the product integral is uniform on A.
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This definition of a product integral is
rather strong , and has the unusval feature
that the 'sample points' §., may 1lie outside
the intervals [t, ;,t;]. Section 4 shows the
advantage in this. The definition could be
weakened in +two directions. One might specify
Ei (say t;=t;) and then only consider those
o's for which /uiznj . e then obtain the
product formulae of [2]. Alternatively one might
take 1limits wunder refinement of & . This is

done in [8] (with &, € [t5_,»t;] ).
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3, Accretive COperaters. For the convenience

of the reader we collect together +the definition
and some properties of accretive set-valued maps.
Prcofs can be found in [1] ’ [21.

Let (X,|].|]) ve a Banach space. A C XxX is
in the class @ @) if for each A>0, dw<i
and (xi,yi) €A i=1,2 we have
Il (xyyy) = (x0ay,) 1] 2 (1—>w)l|§<1-X2||-

It AERM) A>0, <l set Jy = (Ioa)7 ,
Dy = D(Jy) = R(T4A8) , Ax =A™ (I-J))  then
(a) Jy » Ay are functions and

oz - &3] < (1=x)™" |[x-yl]

XY € DA
asx - Ayl < 277010+ (1=2w)™ ") |lz-y!]

|ax| = Lim ||Ayx|| exists if x€©®, and
A0
|ax] < inf { ||y]l : y€ Ax } if xe€ DA)NY .

(¢) set D*(A) = {x€® : |Ax] <o} . Then

DAY N ® C D*(4) C® and D*(A) C D(A)°.
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@ 1oz - =] < A =xw™" |ax]
4 x € Dy N D*(4)
layx|] < (1 =)™ |ax]|

(e) X = J’A(o(x + R Jyx ) x € Dy
0 <M< A
(1 =) [[apx]] < (1 - | [aux]]  x € DN Dy
where d\z,b\)\"1 s R=1-o
(f) Aye @ (e (1=%07")  and Ayx € AJyx if x € Dy
Properties (a) - (f) will henceforeward be

used without specific reference,
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4, The Theorens, Let (X,]

1) ve eny

Banach space , {A(t) : 0 <t < T} a 1-paremeter
family of operators (set-valued maps) on X such

that for some real ~w and some ?\O>O , >\O'w'<1

A1) A(%) € A 0

N
ot
N
=]

A2)  D® = D(A(t))® is independent of t.
A3)  R(I +MA(%)) D € 0 <A <>\O
We put J(t,A) = (I +>\A(t))_1.

Remork.4.11f sy <W, then M ("“'1’) C R (m~2).
Consequently , without loss in generality , we
assume W > O,

The +time dependence of A(t) dis conditioned
as follows.
¢) TFor each M >0 there exists interval function

I such that IPIIM(P) has Riemann integral

zero on [0;T] and such that if x¢€ p° ,

l1x|| <M and O<>‘<)‘o then

[1a(t:M)x = J(s,N)x

| < AIy(t,s) O<syt<T
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Remark.4.2. Clearly IM must be positive ,
and without loss in generality we may assume
IM satisfies condition (*) of section 1.

Therefore , by ILemma 1.1, an equivalent condition

to C) is obtained by replacing IM(t,s) in (4.1)

by |1£,(t) - £,(s)|| , where £, is Riemann
integrable,
Let L'(M) = sup { I,(P) : PC fo,7] } (4.2)

Then by ILemma 1.1 , L'(M)%w. Dividing (4.1) by X,

| Nay®)zl] = Haxe)xll | < [ay®)x - ax6)xl] <z (x| ])

so if xe€ 1%, | |att)x] - Ja(s)x] | < (lIxl]D).

Therefore  D¥ =.D*(A(t)) is independent of + ,

.and moreover if x € D¥

M(x) = sgp |a(t)x] < |a(0)x] + L' (]|x]]) < (4-3)
Suppose | A(t) : O <t < T } satisfies A1),A2),

, A3) and C) , then the following theorems hold.
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+
THEOREM 1. U(tys)x = {T J(w,dw)x € D°  exists
S
for 0<s<t<T, x€Dd° and is uniform on any

set A={ (syt,x) : 0<s <t <D, ||x|] + |4(0)x]

bounded }.
THEORIM 2, U(tss) has the following bproverties
(a)  ||U(t,8)x - U(t,8)y]|| < exp( w(t-s))||x~¥]||,xsy € D°
(b) U(sss)x = x, U(t,s)U(s,r)x = U(t,r)x  x € D°
Osr<ss<+tx«<T.
(e) (syt) » U(t,s)x is coﬁtinuous on 0<s<ts<?T,

and uniformly continuwous on A.

THEOREM 3. Let

s - s(t,s)xv= if J(t,du)x (4.4)

.represent the semigroup on D® with infinitesimal

generator A(t). Then
!

(a) Theorem 1 holds with J replaced by S.

(b) For_ almost all s < [0,7], and in particular

for a1l s at which IM is continuous for

sufficiéntly large M

| |u(s+h,s)x - S(s,h)x|| = o(h) as hioO.
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PROPOSITION 1. For any A in Theorenm |

there exists a constant X and a F with vroverties

(i),(ii),(iii) of Corollary 1.4 such thet if

(ssyt,x) € A then for sufficiently large integer m

|{u(t,s)x - i?tJ(s+i(t-s)/m , (t-s)/m)x |! <
R(t-s)m™ % +P((t-5)" /4, (s,%1)
(This should be compared with [2,Proposition 2.5])
DEFINITION. As in [2] , we say u(t) is a
strong solution of (0.1) iff wu(t) is continuous on
[s,T], locally absolutely continuous and strongly
differentiable a.e. on (s,7) » and satisfies (0.1) a.e..

THEOREM 4. If uw(t) is a2 strong solution

of (0.1) then u(t) = U(t,s)x , s <t <T.

Conversly suppose for each t » A(t) is _a closed

subset of XxX , x€ D° and t - U(t,s)x is locally

absolutely continuous and strongly differentiable

a.e. on (s,T). Then % - U(t,s)x is a strong

solution of (0.1).
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Let | PJ(c,€)x Dbe defined as in (2.1). Then
Pi(c,8)x exists for x € D°. The first part of
the next lemma follows from the Lipschitz
continuity of J(t,N). A slight modification of
the proof of [2,Lemma 2.2] gives the second part.

LEMMA 4.1, If € = exp( (t-shw(1 - |ch)™! ) <

exp( Ta(1 - >‘Ow)—1 ) then

(1) |lp3(e,8)x - PI(ek)y]] < ¢ ||x=y]] X,y € D°
(i1)  ||P3(e,8)x - x|| < C(t-s)M(x) X € D#
COROLLARY 4.2. There exists a continuous

increasing L such that ||PJ3(e,8)x|]| < L(]]x]]) » =x € Dp°.
Proof. Fix any y € D*, Then
Healw,8)x|| < ¢llz-y|| + ||pd(e,8)y]]
< ¢llz|| + (c+0)||yl| + cTu(y)
Therefore we may take L(r) = Cr + (C+1)]|ly]l + cmi(y).

%
LEMMA 4.73. Suppose DJ(u,du)x exists

uniformly (s,t,x) €A, where A is any set as

in Theorem 1. Then Theorems 1 , 2(a) ,2(b), 3(a) hold.
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Proof. By Lemma 4.1 PJ(o,%) Thas Iipschitz
bound (on D°) which converges to exp( (t-s)w) as
. o %
lo| - 0. Since , by hypothesis , PJ(v,}) - rTJ(u,du)
s
on D* as d(o,t) - 0, D* dense in D° and
PJ(s,k)x € D° , we obtain Theorems 1 , 2(a).
Theorem 2(b) is then +trivial.

{ A1(s) = A(t) : 0« s < T} satisfies conditions
A1),A2),A3) and C) , so (4.4) is well defined ,
and so is PS(s,%) on D° Given x€D°, €>0,
choosing d(s,§) sufficiently small and wusing
Theorem 1 , [1o(t,8)x - PI(o,8)x|]| < €.

Let c' = (S=t'o<t‘1 < ceesscee <t'm=t) be
any refinement of & , and }' = {g'j}1m be such

that  g'y =y e o'y s IR LAPIFRA R
Then d(e's}') = d(s,¥) and moreover as ls*'l - ©
t.
i
Pi(s'yk')x - rT r—T J(§i,du)x: PS(v,%)x . Therefore

T
i-1 _
| |U(t,s)x - PS(s,k)x|| < € and Theorem 3(a) Zfollows.
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LEMMA 4.4. Theorems 1,2,%3 imply Theorem 4.

Proof. The uniqueness part of Theorem 4
has the same proof as [2,Theorem 3.1]. The only
%
difference is that we require S IM([SAﬂi , 8)ds - O
0
as € - 0, But if -fM is taken as in Lemma 1.1
%
then 0 < IM([S/E]E y 8)ds < (S) IlfM([S/ﬂE )-fM(S)”dS

B

< ¢ 520 |12y, (18) = £,((1+1)€)[| =0 as €~ oO.
since fM is Riemann integrable.

To prove the second part of Theorem 4 we

only need show for almost all t € [s,T]
U(t,s)x € D(A(L)) » d/dtU(t,S)x + A($)U(t,8)x 20 (4.5)
The proof of [2,Theorem 3,5) shows (4.5) holds
for those t such that d/dtU(t,s)x exists and

| lu(t+h,t)x - S(t,h)x|| = o(h). Therefore by

Theorem 3(b) » (4.5) holds a.e..

To complete the proofs of the Theorems we
show the hypothesis of ILemma 4,3 , Theorems 2(c),3(b)
and Proposition 1 hold. This is done in the next

section.
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5. Main Proof. Let

A= (s:8%) 0 s <t <, |[xl| <k , A0 <K, |
For the moment we suppose (s,t,x) € A. By
Corollary 4.2 , ||PJ(e,&)x|]| < L(K)). Set I = IL(K1) s
' = L'(L(K1)) (where I'(.) is defined in (4.2))
and M =K, +L'(K;) (so by (4.3) , M(x) < M).

Suppose 0 < |o| s)\<>\0 s O < s' <s'+mA< T,

Set e(j=)&j/>\ s B, = 1=ol, and let

J J
. .
P, = Pk,k(s')xé :L_I; J(s'+ il , A)x k<m
1
Ql = Ql(ﬂ'sk)x = J!:!- J(EJ ? ’A’J)X
Then Py =1Q,=x, Q =PJ(s,¥)x

Our aim is to compare PJ(c,8)x with PJI(gq',%')x
where (g-',g') is arbitary. However a simpler
recurrence relation 1is obtained by comparing
| PI(v,E)x with P o (Note that by a suitable
choice of (so',%') we obtain P = PJ(s',%')x ).

This technique is used in [6] for the autonomous

case,
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Let a4 = llrk - Qll. Then if k,1>0 we
use condition C) +to obtain
ak’l = HJ(S'H&)\ ’ A)Pk—‘l - J(El ”ul)Ql_“}}
< [1a(st+:n, M) (e g +BP) = J(s'+kA, #y00p ||
+ Ry I(El,s'+k)\)
-1
SO =R ey g, 1 +B8,1 ) A TE SR (5.
and Lemma 4,1 to obtain
1
a0 = |12 - x| < cxe ag,1 = lx -l = CMA;&«:L]._ (5.2
where C = exp(Ta(1-Agu)™)
By comparing (5.1) » (5.2) with (A.1) in the
appendix we estimate +the quantities K,W,MJ. ,IVIj W)
which appear on the right-hand side of (A.2).
n -1 .
K=CMA, W= ]’11 (1-/51«:) <C, My <ML (5.2
n
If |m- £ o; -i|l < R then it is easy to see
‘ it
st +A1 - gjl <r , where 1r is defined by
,r= AR+ |8 +mx- %] +dls,}). | (5.¢

So Mj(l’;) ()LjMI(B(gj,r)) where B(j;j,r) is the



1@5

interval centre kj’ radius r , and MI is defined

in section 1. TLet {Bq}q be a linearly ordered

covering of the set & by a finite number of

disjoint intervals Bq each of length 2r, Now Aif

Y. € B, then tj and b, have distance at most

J q j=1

d(q',g) < r from Bq ’ So tj ’ 'tj_.l € ZBq (2Bq is

the dinterval with +the same centre as Bq and

twice the length). Therefore I M. < 4r = |2B
WY . £ Y . T
J&JMI(B(};J,r)) < |23q|MI(ZBq) Now

gl
and z
sjEBq

2B, N 2By = ¢ or singleton if p , ¢ are not
consecutive , therefore , by Corollary 1.4

£ |2B_ |MI(2B.) < 2P (r,¥) (5.5)
Substituting (5.3),(5.4),(5.5) into (A.2) , and
)
(for simplicity) setting W ="(’(t—s)/)\)3/4 s, Theorem A

n
r M.(R) <
1 4

‘gives (after some trivial estimates)

L
2
HPA,m(S')X - PI(s,8)x|]| = B, < CerI{(t..s_mx)2 + ANt-8)}

3 1

& CD O\ (4-8) T+ 20PN /4 (1-8)374 & |t-s'-m)| + as,8) 5 %) (5.6)
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By choosing &, Y in +the obvious way we
first set PJI(e,Y)x = P“,n(s)x y A(sy¥) =p , t = s+np
in (5.6). So if M <A, (s,t,x) € A
||P, . (s)x =P, (s8)x]|]| < C2rﬂi(n - mA)? o+ }% +

p gl pen - = : M np

4
CL'(An,u)" + 2CP(,\1/4(n’L)3/4 + In,,\- mi| + P s (sys+np])
Therefore P",n(s)x converges as npu - t-s < T-s ,
M- 0, Let this 1limit be U(t,s)x. Taking the
limit in (5.7)

1

||Px’m(s)x - U(t,8)x]|] < CzM{(t-s—mx)Z N )(t_s)}z+

1
CL' (M (t=-5))2 + 20P(A /4 (4-5)3/% & |t-s-m)| » (s,t] )

Proposition 1 follows setting X\ = (t-s)/m in (5.8).

Suppose & , ¥ are given , and (s'yt',x) € A.

Choose m so that |t' - s' - n|o|| < |o].

1
Then from (5.6) and (5.8) , wusing (512+132)":s lal+|p]

| PI(e,8)x - U(t',s")x|] -

< ||pJ(s,¥)x - Plcl,m(s')"” + [Pg,mls)x - U(t',s')x| |

1 3 %
< 02M(| (t=8)=(t'=s")| + 2|o])+c(Cr+Lt) [ ((t-8)"+(t'~s")")

+ 20?(]0[1/4(t-s)3/4 + |t-tr]| + |o| +d(s,k) » £)

v 20p(le] V4 tr=s)3/t 4 |s| , (s',t'D)

(5.7

(5.8)

(5.9)



a7

The hypothesis of Lemma 4,3 follows by setting
s' = s., ' =t in (5.9). Letting d(e,8) - 0 ia (5.9) ,
| [U(t,8)x = U(t*,8")x|]| < Cng(t—s)—(t'-s')l

+ 2CP(|t-t| 5 Is,t] ) (5.10)

which gives Theorem 2(c). |

To prove Theorem 3(b) set s'=s5, t'=1%,
$=1{s} in (5.9). Let |o| - 0. Then d(w»t) - t-8 = h and
PJ(s,%)x - S(s,h)x. Therefore , using <Corollary 1.4
|1S(ssh)x - U(s+h,s)x|| < 2cP(h,{s}) = o(h) if MI is
continuous at s, Theorem 3(b) now follows from
Corollary 173.

This complétes the proof of +the theorems in

section 4.



@8

Appendix, We derive an estimate for the

solutiogs of the 2-dimensional recurrence inequality
obtained in section 5 ., This recurrence inequality
is more complicated than those needed in [1] , [2]
and [6] , but our estimate ( which is in fact
superiour by a factor of 2 on the boundary
conditions ') lis derived without recourse to the
rather complicated induction arguments employed in
the abov?‘ papers.

Two elementary inequalities from probability
theory are mneeded. The first is only the
Cauchy-Schwartz inequality., The second is usually
called Chebychev's inequality [3, p.233).

LEMMA Afl. Qgﬁ X be a random variable with

finite mean M and variance s> . Let E(.) be the

2
expectation operator, so E(X)=m, E((X -p)?) = o ythen
' 4
’ 2 2
i) E( |X-m] ) < { (m-p)° + & }

ii) P |X-p| = W) < c2/n2
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From now on we assume . >
%0 P20, oA+ By =1,

Wy >1,4i=1,2,000e. , K20 , b, .>0,

THEOREM A. Suppose for k , 1 >0,

(ak,l)

satisfies +the following recurrence inejuality

2,1 € Wi%ay g 9t WiPg3 g4t o Pry k,1 >0
(A1

1
ak,O < Kk aO,l £ K %di

Let B >0, and set
M, (R) { b | : | }
. = max, . s igm m- A, - i|] <R
J i 153 ’ je1 T
n
M, = M.(c0) » vw=tTwv, . Then
J 1 1 -—

J
n 2 n ?l_-
ap,n < WK{ (m~ >1:e(i) + i:cti@i }
o B n n
+WRTC T M, LBy 4 WD M.(R) (A.2)
j=1 Y4 j+ 1 J

To prove Theorem A we first make two reductions.

LEMMA A2. Tt is sufficient to prove Theorem A

for the case Wi=1 s 1=1923000

1
-1
Proof. If W, #1 set ¢y g =2 \—1T w,T .
l L3
Then since Tw, >1, (ck'l) satisfies (A.1)
; 1+ Y

with wi=1. Therefore if Theorem A holds for Wi=1

then cj satisfies (A.2) with w=1. But
n '
— 1 = |
am’n - cm,n';‘ Hi wcl.'ﬂ’n. i
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LEMMA A3, Jithout loss in generality we may

assume the limiting case (A.3) replaces (A.1) where

8,1 =A38_q,1-1 t Pi1®k,1.1 t Py,1 k,1 >0
ak’o = Kk aO,l = K ED(i :

1
Proof. The possibility that Wl#1 has already
been covered in Lemma A2. Set Z = {(ak’l) : (ak,l)
satisfies (A.1)}. Cy,q = SUP { By (ak,l) €7 }.

Then (ck,l) satisfies (A.3).

Remark.t. This last statement depended on the
assumption that ¥, = W% , K, =W;p; are both
non-negative. In [2 , Lemma A] 7., “l are independent
of 1, but in the statement of +the Lemma they
were not assumed non-negative. However the proof
did assume this , and in fact it is easy to
show +that the estimate given is in general false
for negative ¥ or R.

Remark.?2. .The proof of Lemma A3. also assumed

2 £¢., It is easy to see by a recursion on 1 in
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(A.1) that +this 1is +the case. In fact we show
(A.3) has a solution which must of course be in

Z.

Proof of Theorem A. We derive (A.2) (with W=1)
from (A.3). Rather +than soiving (A.3) direcfly we
consider tﬁe. following slightly different boundary
value problem (A.4).

Set b =0 for k<O

k,1 —
(A.4
ay,o = X || ~w<k<o
To solve (A.4) define the following formal Laurent
series.
o
k
Al(x) = kE ay,1 X
—0
(o]
k
B(x)=°z°b x& 1>0 , By(x) = Z K |x| x
Then (A.4) is formally equivalent %o
'J | - >0
A(x) = (B +ky x ) Ay 4(x) + B, (x) 1 ‘} )

Ao(x) = Bo(x)
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Set an(x) = F%.

The solution of (A.5) is

A(x) = I Q" (x)B.(x)
n i J+ J

j=0

Now 1let Xjn be the random variable of the
number of successes of n-j+1 Bernoulli trials with
probabilities of success uj, dj+1, coeeee oy

respectively. Then +the generating function of x.°

is Q.n(x) s, and so

J
n n
B(x") = ! , Var(X,?) = Eoy By

By equating coefficients of z® in (A.6)

n
n n _ _ 4 o
ay,n = K B(|X"-m|) + 321 E P(X;  =m = 1) by g

Setting m =0 ,

oL,

n=K E(|X,"]) = K E(X,") =K Zoy

ao,

_‘Mb

Therefore (A.8) satisfies the boundary conditions

of (A.3) , and so gives the solution of (A.3).

(A.6)

(A.7)

(A.8)
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By Lemma Al , and relations (A.7)

[}
n T
E(IX1n-m|) < (m—>1:o<i)2 + ?“i e. |}

.oon _ n
D 1>(xj+1 = m-i) by 4 < 1>(|Xj+1 -

n
z ] > ROM. .
: j oLyl =1 M + MJ(R)

j+

J -2 -
<MKTT D Ay By o+ M(R)

j+
(A.2) (with W=1) now follows by substituting these

estimates into (A.8).

This completes the proof of Theorem A.
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