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ABSTRACT

In this thesis we study the irreducible characters
of the Weyl groups of the simple Lie algebras, in order
to glve & unified approach to this problem.

Chapter one sets up notation. In chapter two we
give some known results on the character theory of
W2yl groups of type A (the symmetric group) using Weyl
subgroups. These are a common feature of Weylfgroups
and allow us, In chapter three, to generalize to type C.
Chapter four deals with type D which presents a more
difficult problem; chapter five is é brief study of the
Weyl groups of type B, and fina}ly, chapter six deals
with the calculations in the exceptional types Gz, F4

and E6'
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INTRODUCTION

The /eyl groups of the simple Lie algebras were
classlfled many years ago and their conjugacy classes
and irreduclble characters were individually determined
by many people (Frobenius, Schur, Young, Specht, Frame
and Kondo, to name but a few) in many different ways.,
However, up till recently 1:0 unified approach had been
obtained, using the common structure of the Weyl groups
as reflection groups. It is desirable to do this in
vliew of the importance of Weyl groups in many branghes
of mathematics; for example, immediate applications
can be envisaged in the theories of algebraic groups
and Chevalley grocups.

Carter [5] has given such a unified approach to
the problem of determining the conjugacy classes, and
this thesis is directed towards solving the same problem
for the irreducible characters. The fundamental 1dea in
Carter's paper i1s that of a \eyl subgroup. He gives a
correspondence (which is in general not a bijection)
batween the conjugacy classes and certain admissible
disgrams. Some of these diagrams correspond to the
Dyﬁkin disgrams of Weyl subgroups and the others to,
what we shall call, seml-Coxeter types.

As the numbers of conjugacy classes and irreducible
characters are equal,one would hope that a sinilar
association could be obtained between the irreducible
characters and Weyl subgrouss or semi-Coxeter types.

In the Weyl group of type A, the symmetric group,

we reformulate some of the known results in order to




exhibit this assoclation (which in this case is a
bijection). Ve then go on to consider Weyl groups of
type C and show that these results generalize very well.
The situation in Weyl groups of type D is rather more
complicated and the association 1s not so easy to find.
However, we are able to give an algorithm which allows

us to calculate the irreducible constituents of the
principal character of a Weyl subgroup induced up to

the Weyl group. This genevralizes an algorithm introduced
in type C which further extends the usual partial ordering
on partitions in type A. A discussion in §4.7 shows how
the results in type D should lead to the required
association.

We ealso give a short chapter, mainly for completeness
sake, on Weyl grcups of type B, giving a similar algorithm
for this case. We conclude with a chapter on the
exceptional Weyl groups of types Gg, F4 and Eg and
calculate the asssociation that we want.

Parabolic subgroups are the usual tools for attacking
préblems of this kind, but methods using them are often
unsatisfactory. For example, Solomon [17] has given a
dacomposition of the group algebra of a finlte Coxeter
group, which is far from complete; it would appear that
We&l subgroups may well lead to a refinement of the
deconmposition. It is with this idea in mind that we
examine Solomon's results in the case of ‘eyl groups of

types A, C and D,

Unless otherwise stated the results in this thesis

are believed to be new.
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Chapter ons IBOTATIOL AND TERIMINOLOGY

In this chapter we introduce the necessary notation
and terminology, and state, and in some cases prove, a

few elementary character theoretic results.

§1.1 Weyl groups

All groups considered in this thesis will be finite
and all Lie algebras finite-dimensional, sehi—simple and
over the complex field, V

Much of the terminology in this section may be found
in Jacobson [13]. )

Let V be a Tuclidean space of dimension 1, For each
non-zero vector r in V, let . be the reflection in the

hyperplane orﬁbgonal to r.

Thus w,.(x) =x - 2(r,x)r
r
(r,r)
Let d be a subset of V satisfying the following

axioms:

(1) ¢ is a finite subset of non-zero vectors which span V;

M

(i1) if r,s € § then wr(s) SR

is & rational integer;

(+ii) if r,s € § then 2(r,s)
(r,7)

(iv) if r,Er € § where § is real, then & = #1.

Then § is a root system of some semi-simple Lle algebrs,
whose Weyl group is isomorphic to the group W of orthogonal
transformations of V generated by the reflectlons w, for

all v € § . The dimension 1 of V is called the rank of W.

Definitions

(1) A sub-root system of & root system § is a subset of D
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which is itself a root system in the space which it spans.

(11) If W is the Weyl group of § , a Weyl subgroup of W

1s the subgroup generated by the reflesctions W, corresponding

to the roots r € §', where §' is a sub-root system of J.

The graphs which ars Dynkin diagrams of Weyl subgroups
of a Weyl group W may be obtained by a standard
algorithm ([2],[7]). To the Dynkin diagram of W is
added a node corresponding to the negative of the highest
root, forming the extended Dynkin diagram. The Dynkin
diagrams of all possible Weyl subgroups may be obtained as
follows. Take the extended Dynkin diagram of § (the root
system whose Weyl group is W) and remove one or more nodas
in all possible ways. Take also the duals of the diagrams
obtained in the same way from the dual system @ (which 1is
obtained from § by interchanging long and short roots).
Then repeat the process with the diagrams obtalned, and
continue any number of times.

It is then easy to determine the maximal Weyi subgroups

of W - the proper Weyl subgroups of W not contained in
any other proper Weyl subgroup of W. These have rank
equal to rank W or rank WV - 1 , So the Dynkin diagrams
of the maximal Weyl subgroups are those obtalned by
leaving out a node from the extended Dyukin diagram of
W and also by leaving out a node from the Dynkin diagram
of W, and eliminating those of rank equal to rank W -1 ¢r varh W
contained inside those whose rank is rank '/,

The Weyl subgroups which are obtained by leaving out
any number of nodes from the Dynkin diagram of W, are
generatad by a subset of the generating set of W and are

called parabolic subgroups of W.




So much for the general theory. The simple Lie
algebras have been classified ﬁ}] and thelr eyl groups
are:

W(Ay) 131

W(Bl) = W(Cl) 1>2

W(Dl) 123

w(c,)

W(F,)

W(Eg)

W(E,)

W(EB)

It will occassionally be convenlent to add to this 1list
two more Weyl groups N

W(C1) - the cyclic group of order 2 generated by
& slgn change (see chapter three). The underlying Lie
algebra 1s of type A, so W(C1)EW(A1).

W(Dg) - the non-cyclic group of order 4 generated
by a transposltion and a product of 2 sign changes (see
chapter four). In this case the underlying Lie algebra
A1+A1 is not simple.

The Weyl group W(A;) is isomorphic to the symmetric

group S on 1+1 letters;

141 -
W(Bl) and W(Gl) are both 1somorphic to the hyper-octahedral

group of order 21

J1L 2

W(Dl) i1s a subgroup of W(Cl) of index 2 ;

W(G9) is isomorphic to the dihedral group of order 12 ;
W(F4) is a soluble group of order 1152, lsomorphic to the
orthogonal group 04(3) leaving invariant a quadratic form

of maximal index in a 4-dimensional vector space ovsr the

Galols field of 3 elements.



We shall mainly be interested in the four infinite
families, and thelr Weyl subgroups are glven in the
relevant chapters. We can also obtain the maximal eyl
subgroups in each case, which again are listed in the
sections where we use them. Notice that W(Bl) and W(cl),
although isomorphic, have different Weyl subgroups because
the underlying root systems are different.

A fundamental distinction between W(Al) and Weyl
groups of other types is that in W(Al) a Weyl . =ubgroup
is always conjugate to a parsbolic subgroup, so that in
the symmetric group the two ideas are equivalent; it is

only in the other cases that a distinction arises.

§1.2 Some character theoretic results

We shall be assuming a background of (ordinary)
character theory, but we glve here a few of the important
results, many of which appear in Curtis and Reiner [6].

If 1,J are 2 sets J¢I will mean J is a proper subset
of I (JeIl and J#I).

Let G be a group (assumed to be finite), then its
order is denoted by /G| . e adopt the convention that
xJ = yxy’1 where x,yEG, so that EE = gHg-1 where H is
a subgroup of G (H<G) and g&G . Ve use < > %o mean
the group generated by the elements inside the diamond
brackets.

All characters and representations (unless otherwise
stated) willl be assumed to be over the complex field C,

so that all tensor products are also over C. A representation

module of a group G will be called, interchangeably, &
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€G- or G-module.

R,8,7Z denote the reals, rationals and rational
integers respectively.

( 5 ) will denote the scalar product of characters,
and where we need to specify the group we shall write
es8. (, )g -

Let X be a character of a group H and K<E<G . Then
'XG denotes the induced character of G"XK the restricted
character of K. We also write 8% for the character of
N=Hg-1 d~fined by Ex(n) = XXgng—i) for all n € N.

If HaG, we define the centralizer of X in G to be

]

x}

Ca(X) = (g €0 : Bx
CG(X)X for all x S G.

1

It is easy to see that CG(XXJ
The eyl groups W sdmit a homomorphism

£+ W — [+1,-1} dafined by &(ry) = -1 for r, €1,

where I is the generating set of involutions of W. Thus

€ 1is a linear character of W and will be called the

sign character of W. 1 {or 1W) will always denote the
]

principal character of V.

A result that is fundamental to our work is a theorem
in character theory dus to lackey

Theorem 1.2.1 (liackey's Formuls)

Let H,X < G and suppose [y;}{ is a seb of (H,K) -
double coset representatives in G. Suppose also That

X is s character of H, © a character of K. Then

G <
e = X Ox e )
vely) E T WK

Because the scalar product is symmetric, which



character is conjugated is unimportant. In applying

this theorem we shall always assume that y = 1,

An equivalent result, which we shall only use once,
is also due to Mackey

Theorem 1.2.2 (Mackey's Subgroup Formula)

With the notation of 1.2.1

K

¢ S ¥
X 2
(x7) (( X)Hymi)

K
vEly, ]
A particular case of these results (when H = G) is

Theorem 1.2.3 (Frobenius! Reciprocity Formula)

With the notation of 1.2.1
G -
(X’e ) = (XK’G)

The application of this theorem will invariably be
indicated by the phrase 'by Frobenius!.

A useful result (which we state in a restricted
form) is

Lemna 1.2.4

Let H < G, X& character of G, © a character of H.
Then
X .o% = (xH.e)G

Lemma8 1.2¢5

(L) Let H,K < G such that G = HK and H n X = 1.
Suppose X is a character of G such that
X (hk) = 6(h)g(k) , for all h € H, k € K, where 0 is a

character of H, ¢ a character of K. Then

(X, X) = (8,0)(g,¢)



(11) Suppose G = H x X and H1 < H, K1 < X and

© 1s a charactsr of H1, ¢ & character of K1 « Then

HxK '
(6.6) = o, gt
(111) If H <X < 6 ,Xa character of H and g € «,

then -1
By = (gX)Kg
Proof

(1) is trivial to check using

K,X) = 1 3 Xe)Xg™h
Gl g

(1i) and (iii) follow immediately from the formula

(X & character of H < G)

7(G(y) = 1 ;z.fiixyx-1)
|1H x€6

whers 3((3’)
and  X(y) =X(y) ify €H.

0 if y € G\NH

Lemma 1.2.6

Suppose H < G, X,0 both characters of G. Then
(X,0) # 0 = (xH, eH) # 0
Proof
(X, ®) # 0 3 %,6 have an irreducible constituent,
¢ say, in cormon. HenceiKH, ©._. have the character ﬁH of

H
H in common 850 (X © #0
! ( H, H)

We conclud- this chapter with & couple of results
about representation modules.

Let G be a group and A = €G , its complex group
algebra. Let * be thne unique ¢-linear map A — A such

that g* = g~! for all g € G. Then We see that * is an



involutory anti-sutomorviism of 4, The map * was

introduced by Solomon [17] , and he proved

Theorem 1.2.7 ( ﬁ?] lerma 6)

If x € A then Ax and Ax* are isomorphic A-modules.

Note that if X is a character of G and e is an

idempotent of A defined Dby

e = X(1) S Xeha
1G] gcG

then e* = e . {
If B, C are two A-modules such that B is isomorphic
to a submodule of £, we write B < C .

Lemma 1.2.8

Let 845 05,0 be idempotents of A and suppose Ae1,

2
Ae,, Ae afford the characters 7(1,'Xb, X of G respectively.

Suppose 2lso that the left A-module Ae where e = €465 ,

3’
affords the character 7(3 of G. Then

(X, XB) £0 > (X, X)) #0 and (X,%;) #0
Proof

Suppose that © is an irreducible constituent of

X such thet (e,ys) £ 0 ; let Ae' afford 6. Then

1 = F o
Ae! < Ae3 Ae1e2 < Aey, SO (6,3&2) 0
However,
Ae' 5 As; = Ae,e, = Alegeg)* by 1.2.7
= Aegef
< AeT
= Ae by 1.2.7 again

’
So Ae' < Ac, and therefore (e,:&g) # 0 . Because

(6,%) # O we have that (X,X) #0 and (X,X) #0 .



Lemma 1.2.9

Let H < G and A' = CH ., Suppose A'e 1s an A!'-module
affording the character X of H. Then Ae affords the
charscter XG of G.

Proof
This follows from the definition of the induced

representation, since

Ae’-‘AQ;‘,A‘e. = (A'e)G .
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Chapter two THE SYMMETRIC GROUP

Frobenius, Specht, Young and many others have
contributed much to the character theory of the symmetric
group. However, we shall be presenting thelr results here
in a new light, occassionally with new proofs, as we shall
te viewing the symmetric group as the Veyl group of
type A. This will enable 3 to apply the methods to other

Weyl groups of simple Lle algebras.

§2.1 Soma classical results

In this chapter only, we write W = W(Al) = 81*1 .
It migh% be more natural to use 1 instead of 141 for
the symmetric group, but we shall stlick to a notation
more in keeping with our overall view,

Many of the assumed results appear in [6] (pp 190-197),

and in [1] (chapter IV).

Definition
A partition A of 1+1 (written X F1+1 or IX = 1+1),
is a sequence (A1,A2, cee ,Ar) of integers such that

M 22 7 vee >0 @and A + A 4+ ... A =141,
2 1 2 r

Ay eoe Ar are called the parts of A,

Young ([18] and [19]) introduced the idea of frames
and tébleaux.

Suppose A = (A5 «vs ,A,) F 11 . Thon the frams
associated with A consistg of %1 squares in the first

row, ,kz squares in the second row, ... , &and AP squares



in the last row.
e.g. 1f 1+1 = 9 then the frame corresponding to

(3,3,2,1), which we shall often write as (3%21), is

A tableau (or diagram) D, corresponding to \ is
obtained by filling the %@ares of the frame with the
symbols 1, .., l+1 in any order.

The dual ( tableau is obtained from the original
( frame

( tableau by interchanging the rows and columns,
( frame

The dual frame gives rise to a partition of 1l+1 which
is denoted by \' and is called the dual of X .

The row stabilizer R(DA) of & tablesux D, 1s the

A

group of row permutations of D, .

i.e. R(D,) = [pcS : p permutes the symbols in each row of D, |

1+1
Similarly, the column stabilizer C(D,) is the group

of column permutations and so is the row stabilizer of

the dual tableau DA' .

Now R(D,) = 8, x ... x 8, and this is a Weyl sudgroup

A

of W of type A, + ...t A . In fact all Weyl

'

subgroups of W can be considered in this way as the row

stabilizer of some diagram. Thus the Weyl subgroups can



T2

)

be parameterized by the partitlons of 1+1, so that a Veyl

subgroup isomorphic to S, x .., X% sA

, will be written Wy s

r
in particular W = W
(1+1)
Thus W, =R(D,) , W, =C(D,} .
The group V¥ acts on a diagram DA by defining wD, for
w € W, to be the diagram obtained by applying w to the
symbols in D,.
We then have the following easy, but fundamental, result

Lemma 2.1.1 ([6] 28.10)

IfweW, AF1l+41 then R(WD,) = WR(D,\)W_1 and

c(wD,) =.wc(D>‘)w_1 .

It follows that any two isomorphic Weyl subgroups
of W are conjugate via the element of W that transforms

one asSociated diagram into the other .

Definition
Two symbols which lie in the same row (resp. column)

of a diagram are said to be collinear (resp. co-colummar).

Lemma 2.1.2 ([6] 28.11)

An element w € W is expressible in the form w = pq ,
where p € W, , q € Wy, , 1f and only 1f no two collinesar

symbols of DA are co-cclumnar in WD, .

Let A = CW ~ the group algebra of 7 over €. Ve
d~fine two essential idempotents of & (an essentlal

idempotent being a scalar multiple of an idempotent)

€A=Zp,n=zé(q)q

q’:“.i '\I
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where £ 1s the sign character of .

"v \v
W and & W

respectively of W considered s A-modules,

Thus A&A ’ A“A afford the characters 1

Let e, = &,n, + Notice that e, depends on W, sW,r and
hence on the particular arrangement of the symbols in DA.
However a different arrangement only gives rise to
wexw'1 , for some w € W, by 2.1.2, and hence to an

A-module isomorphic to Ae, .

The following resul$ appears in [6] (28.15)

Theorem 2.1,.3

Let At 1+1., For each diagram D,, e, is essentially
1dempotént and Ae, is a minimal left ideal of A, hence
an irreducible A-module. Further, ideals coming from
differént diagrams with the same frame are isomorphic,
but ideals from diagrams with different frames are not.
Thus the ideals {Aex} where )\ ranges over all the
partitions of 141, gives a full set of non-isomorphic
irreducible A-modules.

Notation |

The irreducible character of W afforded by Ae,

A
will be denoted by X.

Thus the irreducible characters of VW may Dbe
parameterized by partitions of 1+1; we shall be giving

N
an alternative characterization of X  in §2.2 .

The above results hold if we replace ¢ by . Hence

(with respect to some basis depending on the representation)



=

e

the matrix entries of any representation of 'V lis in Q.
However, by a result in [6] (75.4), they are also algebraic
integers and so are rational integers.

Thus we have

Theorem 2.,1.4

Any complex representation of W may be afforded by
a basis with respect to which the metrix entries consist
of rational integers. In rarticular, the characters of

W are (rational) integral-valued.

One can obtain a decomposition of the group algebra
A into minimal left ideals by using the notion of
standard tableaux.
Definition

A standard tebleau is a tableau in which the numbers

increase in every row from left to right and in every

column downwards.

Now A splits up into a number of simple rings Ai,
1<i<r l.e. A = A, D .o ®Ar and each A, consists of
a direct sum of isomorphic minimal left ldeals of A,

which sare not isomorphic to any that occur in an Aj,j?i.

Theorem 2.1.5 ([1] 1Iv,4.8)

'The minimal left ideals which arise from the stvandard
tableaux belonging to one frame in the way indicated in
2.1.3, are linearly independent and span a2 simple ring 4;.
Thus A is the direct sum of the wminimal left ideals

which arise from the standard tableaux belonging bto aiy

frame assoclated with a partition of 1+1.



(1)

It follows that the degree of 7(}is equal to the number
of standard tableaux belonglng to a frame associated with

A. This lesds tc a formula for the degree.

Definition

Let A+ 141 and F, 1ts associated frame. The square
in the 1% row and jth column is called the 1j-node .
The number of squares to the right and below this node

(including the ij-node) is called the hook length < the

~1j-node. The hook product H, is the product of the

141 hook lengths,
A hook graph is a partition of the form (1,11*1“1)
for some i € {1, +os , 1+1] . Thus the frame of a hook

graph is a hook,

Theorem 2.1.6 ( [10] theorem 1)

xN1) = (1+1)
Hy

Finally, we state a further formula (which is used
)
in proving 2.1.5) relating the degree of X' (A1) to
degrees of characters of partitions of 1+1.

Terma 2.1.7

Let A+l . Then

(1) X'(1) =y XU)
/L

summed over all partitions mM of 1+1 whose frame may be
obtained by edding a square to che end of & rovw of the

frame of A.
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§2.2 Decomposition of induced principal character

Let AF1+1 and fix a diasgram D, and we let

W, = R(D,)e The aim of this section is to decompose

W

W&

1 into its irreducible components.

First we obtain an alternative characterization
A

of X« We shall need:

Lemma 2.241

If y € W, then W, 0 ywyy'1 contains only eve::
permutations if and only if y € wkwx .
Proof

Suppose W, N 37'\"{\,31"1

contains only even permutations
and that there exist two symbols a,b € {1, ... ,1+1]
such that a,b are collinear in D, and co-columnar in
yD, + Let t be the transposition (ab).

Hence t € R(Dy) N C(YQX)

R(D,) 0 yC(D, )y~ by 2e1.1

A n;w&,y’1
which is a conbtradiction since t is an odd permutstion.
Thus no two collinear symbols of D, are co-columnar in

yD, and so by 2.1.2, 7 € W;WA,.

i

Conversely, let y pq Where p € WA sy A E Wy

Then W, N pq‘-.‘.’)\,(pq)_1 Wy n p‘f‘.:\,p"'1
= p(p'1Wkp n Wx)p-1
= (i, n¥p”

= p(R(D,) N C(D,))p"

= p.1.p"1
= 1

so certainly W, N yﬂ*y only contains even permutations.



"l

Lemma 2.2.2

(1“’:1 ) =

Proof

By Mackey's formula

i W
(1, ,¢,.") = (1 y
‘ A\ A -1 ’ 14 1 : -1 )
W WX yE §yi] w,\ ﬂyW/\, y W ﬂyW,\, y
where {y,;] is & set of (W, ,¥,)-double coset representstives.
Now ( 1“’ ath -1 9 yé’w Nov, -1 ) ¥ 0]
¥ A yv )‘I y A y'»)‘, y
L6 1 . - = J _ s h e
W, Ny, y 1 ?WA”YWVY 1 Since both characters

are linear

&> W, n ywxy“1 contains only even permutations
& y e W, W, by 2.2.1

<> y‘=y1=1

Thus only the first term is non-zero and is

= '3 =
“wA ity ? EwA mvk/) (ays “py) !

which proves the lemma.

It follows from 2.2.2 that 1,” and ,W conbtain a
Wy Wy

unique common irreducible constituent; we shall show that
this 1s X .

1‘”&? Ls affordad by the A-module AL, , &7
A-module An, and X’ by the irreducible A-module AE,n, .
It is clear that'Ai)\nA < An . It follows, using 1.2.7,
that A&xnk £t A(Exnx)* = Anxgx < A&x » Thus AiAnA is
isomorphic both to a submodule of AE‘X and of An, .
Hence X* is en irreducible component of both 1, and

I,A

Eww and by 2.2.2 the result follows. We have thus proved :
A

Theorem Z2.2¢3

A
X" 1s the unique common irreducible constituent of
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t;w and‘wa and occurs with multiplicity one.
] /
A x

We now define a partial ordering on the partitions
of 1l+1; this ordering is weaker than the lexicographic
ordering which is often used (see e.g. [6] p 191) but
is much more natural for our purposes as will become
apparent in later sections,
Definition ,

Let A= (M, ves A )F 141 and (= (Ms eoe ypo)F 11,
Then A <t if and only if S‘)\;s i/«;, for

o= -y

m = 1, see min(r,s).

This 1s not a total ordering (e.g. (32) and (412)
are not comparable) and we shall be investigating the
partial ordering further in §2.3 .

However, we can now utlllze this ordering to
W

W,

decompose 1

Lemma 2.2.4

Let A, F1+1 and suppose A ¢ AL . Then if D,, D
are corresponding diagrams, then there exist two symbols
collinear in DA and co-cclumnar in QH .
Proof

Put A= (N, eee ,0) 5 AT (M, cee 450 o

Suppose that any 2 symbols collinear in D, are not

co=-columnar in D# .

Therefore, the X\, entries in the
first row of D, must occur in different columns of QM_.
Since D, has M, columns we have A < M, . Apply a column
permutation to D, to obtain & new diagram QL so that the

sntries in the first row of DA appear in the first row ofigl .
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Now, inductively assume g; \i< 2 M., (we have
A, € m, sbove) and that the ené;ies 1£:éhe first m-1
rows of D, lie in the first m-1 rows of QL', and no two
symbols collinear in D, are co-columnar in D;j. Then
the )\ entries in the mth row of D, 1lle in different
columns of QL', and we can bring them up, via a column
permutation, to occupy iquaresmén the first m rows of QL'.

It follows that ‘Z;A;g ). M: . Hence by induction,

iz c=

this holds for all m, so that A < s ,contradicting our

hypothesls, which proves the lemma.

Corollary 2.2.5

Let M, F1+1, Then

W W
= : =
A $ M (1, » &y ) 0.
A ~
Proof

As in the proof of 2.2.2, if fyi] is a set of

(W}‘,W,)-double coset representatives

/-&

(1WW ,‘€WW) = the numbor of y's € {yi} such that
A Ve

1

W, n yW,y~' contains only even permutations.
/vL

By 2.2.4, there exist 2 symbols, a,b say, collinear
in D, and co-columnar in yD,  (where i, = R(D,), ﬂﬁ_= R(Qﬂ))
for any y € W,

Hence the transposition t = (ab) € R(D,) n c(yga)

= w)‘ n Y“'Lay_1

Since t is an odd permutation it follows that
1 w
)

L1 B E
(1 b 4 xv ,
Vs

, =0 .
W,

The previouscorollary allows us to give an glternative

proof of a well-known result



Corollary 2.2.6

App » X xS
Proof

A
Suppose X =X, Ther by 2.2.3 X occurs as a

common irreduclble constituent of 1ww and’gnﬂ' and 7(A
2 v /.&I
occurs as & common irreducible constituent of 1Ww and
M
€W . Thus
Ty w W
| W W
(1w , 6&7,) # 0 and (1," £¥V/) # 0,
A #~ + A

But A #m = Mg or M4 A . It follows from 2.2.g
that one of the above multiplicities is zero, contradicting

our assumption that X*= X

Since the conjugacy classes of W are parameterized
by partitions of 141, we have that all irreducible

A
characters of W have the form X' where Mr 1+1.

We are now in the positlon to give the main theorenm
of this section, which was originglly proved by Frobenilus,

Theoren 2.2.7

Let A,p F1¥1. Then

v b
1"sv‘1 = X * Z a/“ X}L
P PO
and
g W j(f > ’
A\t 4 ' = + b/,g ’X,
‘A <N

where aﬁ,gk are non-negative integers.

Proof

v,
“l"l'r C '\"{’ - ) 'f"
so that (1w » £,') # 0 and hence, bY 2.2¢5, A S
}‘ i |'}LI .

,X*) = 1 by 2.2.3 proving the first equation. The

1 y'-, fL
Suppose (L)’ ,7@L) # 0 , then by 2.2.% (& ,X) #0,
A

second equation follows similarly,.
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In §2.3 we shall strengthen 2.2.7 and show that both
a8, and b,,,L are non-zero.

This theorem allows us to define a bijection betwsen
the Weyl subgroups and irreducible characters of W in a
manner which will generalize to other Weyl groups.

Define a map

X 3 set of Weyl subgroups —» set of irreducible characters

by ‘

X(W,) = Xirred. character : (X’1WY) £ 0 and (X’1w'n'»f) =0 )
for all Weyl subgroups W? =, )
Such that s > J

Theorem 2.2.8

X(;Wx) = i')(*} for all partitions ) of 1+1
2.2.7 shows (x",1w‘f’) 0 > Aep
Suppos; MA>Xx o By 2.2.3 (7("",1ww) # 0, so putbing
V{t = 'v‘J,:& we see that ?L"¢ X(WA). ~
o A%lso (x> ,1WW) # 0 sud by 2.2.7 A 7X (7(‘,1“,‘”) =0
S0 Xxe X(W, ) ' :

Tilus X(w,) = [x*])

§2.3 = The partial ordering on partitions

In this sedtion we shall glve a2 more convenlent
definition of the partial ordering defined in §2.2,
which will simplify some of the proofs. .

In the rest of this section we shall assume that
A Let and A= (XN, aee GA) 5 A= (M, oo sH5)

It will often be convenlent to abuse notation py

referring to a dlagram or frame of a partition A\ simply



as A\ itself, It will be clear from the context, when
not specifically stated, what is meant e.g. in 2.3.1

we are dealing with the frames.

Theorem 2341

Asp if and only if 4« may be obtailned from A by
repeating as many times as is necessary the operation of
taking a square from the end of a row of A and adding it
onto the end of a row higher up so as to obtain an.:ther
partition.

This process will often be referred to ss 'moving
(squares) up'.

Proof

Sﬁppose Mm may be obtained from A by the given algorithm.

If we ﬁove a square up from the jth row cf A to the ith

row (i<j) to obtain a partition v = (v, v ) then

2’ LN

= >/'
::4—, Ay ‘E‘vk form m*j or m<i
and LZ;; AN T kZ:_‘vk--1 < E vy for ism<j

Thus X\ € v. Since < is a partial orderlng, repeating
the process gives A S M.
Conversely suppose X <o . We have
”Z\ Mg i/ﬂ for all m, and We may suppose A< .
W;—;hooégik to be the first row in which Ak differs

from s, 1.e. X!

. = pm, for i<k
and A, <My,
Let j be the last row in which A; differs from s,
1,0, X =M.  for i>] |
and A, DAY
Since A<t and A=/l , k and j exist. Now wove a

th kth

square from the j row up to the row to obtain a
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partition v, It follows from the first part that ‘ A< vV,

1
0

If v = (V1, cee o Vr,) then
C:Z’ vy = ‘Z::: i for m<k or mjyj
~ ~ [4aY
Z v, = Z Ao+ 1< Z M for kzmsj

Hence v < A, 80 We may repeat the operation of moving
one square up in v. Eventually we will reach ., proving

the theorem.

We can now prove a fundamental property of this
ordering

Lemma 2.3.2 (Duality Relation)

)\s/u, L Mo N
Proof

It will be sufficient to prove the implication in
one direction. So suppose A <x . By 2.3.1 we may move
squares up inside A\ to obtain,ﬁL. But this means that

We are moving down inside m' to obtain A'. Hence, by

2e3a1, MV < A

The rest of this section will be devoted to showing

that all the irreducible characters X' which may occur in
wl
Wy
occur. This 1is a special case of the Littlewood-Richardson

the decomposition of 1 given in 2.2.7 actually do

rule (sees [15]) which gives a method of calculating the
multiplicity a, = (1"

AN
X
need the full power of this rule, it is worth giving an

Xﬂ) . However, as we shall not

alternative proof that aﬂ_is non-zero.

We first prove the converse of 2.2.4



Temnna 2.3.3

Let D, be a diagram corresponding to A and suppose
A<m o Then there exists a diagram D, corresponding to
M such that no two collinear symbols in D, are co-columnar
in QM,.

Proot
By posslbly renumbering the symbols in Dﬂ_we may

assume that the symbols 1n D, are given by numbaring

A
th2 squares consecutively from the top left-hand corner
moving across each row and then onto the next row; this

will be called the natural ordering of the symbols in Dy.

Since M € ;o , Wo may mcve squares up iIn the frame for
A to obtain the frame for s« . Thus We may move up the
squares in D, in the same way to obtain a diagram for s
(by keeping the symbols in their squares). To obtain
the vequired D, We move the squares up in DA in this way,
except for the following case:
Suppose A; = Ay, , and jy>i+1 and we are required to
move 2 consecutive squares in row j of D, containing ths
symbols a,a+1 and put them onto the end of row i and

row i+1 resnectively
0
D, M

Lt b il o joti

j a jatl J

Let b be the symbol occurring at the end of row i+i of

D Then move this square up to row i (even though this

A.
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mey not be allowed in the definition of moving squares
up in 2,3.1) and then move the squares containing the
symbols &,a+1 onto the end of row i+1 of the resulting
diagram.

By the transitivity of the ordering we may then
repeat the process, on moving squares up , to obtain Dp‘.
It is clear from the construction that no 2 symbols are
collinear in DA and co-columnar in 94 .

The proof of the next theorem was suggested to me
by J.A., Green

Theorem 2.,3.4

Suppose » € o and that D,, D, are corresponding
diagrahs such that no 2 collinear symbols of D, are
co~-columnar in D, . Then, with the notation of §2.1,

E,e. ¥ O
Proof

Let WA = R(D,) and W, = R(D, ); the condition in the
statement of the theorem becomes R(D,) N C(QM) =1 .

We have that A = (X, «.ee ,X.) Where )\ »...2 X >0,
and Wwe shall use induction on the number of parts n, say,
of A\ not equal to 1.

If n, =0 then A= (17) and the result is trivial because
£, = 1.

However, it will be necessary to prove the case in which
n, =1. Thus \= (x,, 12°77%) with X, >1.

A .
To show a)?ﬂ # 0 it will be sufficient to show that
the coefficient of the unit element 1 of W in Ekqu is
non—Zero. This coefficlent is Zﬁlqk) summed over those

elements qﬂ~of WF such that there exist elements pﬂ_of\'(;L



Ab e =

and pk of J) such that p*giqk 1.

Suppose that the symbols in the first row of DA are
181, «vs 48, ] and let b ¢ ia1, <o+ 58, | . Then because

- = =1 =

pA(b) = b we have that Ru‘b) =aq, (b) = ¢, say. Hence
b and ¢ are collinear in Qh and co-columnar in D, so
we must have b = ¢ 1i.e. qﬁ}b),= b, Thus in the cycle
dacomposition of q, only the symbols {91, eos 5a,1
can occur, i.e. q €W, , so If qﬂ_# 1 it contains: two
distinct symbols which are collinear in DA and co=-c.olumnar
in D, an impossibility. Hence q,= 1 and therefore
ZTC(%A) = 2 &£(1) > 0. So we have shown that &Aq#_f 0
for n, = 1.

Now suppose n, > 1 and that if vk 141, v < 4 and

=> E,8u # 0.

i

R(QM) O C(DM) 1 then n <o,

~ - +_>\
We let A = (X, «os ,ar,,1**) and X = (A,,11 =79

Whee SzAy 30 Ag 2l . Xgoy = andl t= (LD —(N ¢ o 725,)
which are both narti Yons of 1+1, ©Notice that, because

n, > 1,

A
So by induction, if X < v, R(D;) 0 C(D,) = 1 then

,\s,\<>\<,u,n,x<n andnxs1

g.e, # 0, However, e, is @ multiple of a primitive

idempotent (2.1.3) so

£, = X ) (1)
A

- '\S‘g\) xvev co0

where R(D.) N C(Dv) = i and X, are positive ncn=zero integers.
)

Similarly, because n7=1 <n,

5:\_ = ——Z ycee s (2)
A

where R(Dy) N C(D,) = 1 and v, are positive non-zero integers.
§ ;
We are at liberty to choose Dy and D_ as we please.

So order the symbols in the first $-1 rows of DT in the



same way as in the first -1 rows of D, and order the

symbols in the first row of D_ in the same way as the rth

A
row of DA'
It follows that with these orderings, § =E_f_ . Thus,

A A A
from (1) and (2),

&, 7 Z _Z Xy €y e
Ag ASP

summed over the appropriate v,¢. But if v #°¢, °, and ®p

are orthogonal primitive idempotents which afford distinet

-_— ~

irreducivble characters of W (2.1.3). Hence, as A\ < A ,

E = 2 x y. . oo (3)

A re vYv v

where R(D_.) N C(D_) = 1 and R(D_) n C(D. ) = 1.
iy v A v

Hence because x # 0 for such partitions v of 1+1,

vy

EAev ¥ 0,
Returning to s, as We have arranged R(DX) < R(DA),

R(D;) < R(D,), we know that s> X >X and R(Dy) 0 C(D,) = 1

and R(DX) n C(DM) = 1,

Hence 5xeﬂ-# 0, which, by induction, completes the theorem.

Remark

In (3), for v to satisfy the required conditions it

is easy to see that, in fact, )\ < v; this verifies part

Lerma 24345

!

ex> = x>

Proof

— at—pnnn

!

A .
By 2.2.3, X  1is the unique common irreducible



1A%

constituent of 1ww and 5Ww .
it AI A
\ Y _ A .
But (X, 1Wi) = (X, 5.1‘;"}4) since £t = 1
)\ 3
= A it
T L&
AI
= 1 Dby 2.2.3
A W
and (X, éw ) = (X, é.é‘w)
i, W,
= A )
- (x- ) 1w)
‘;J)\
= 1 by 2e243

A * ’

Hence ¢ X' is a common constituent of 1w” and éWH and 1is
LAY A

also irreducible since (£X ,£X) = (X%, x*) =1 .

So £ X)\_—. K’\.

I

Corollary 2.3,6

(L7, X F0 = A
A

(aw"",x’*) 20 <> A3au
Proof

Ir (1ww , X)) # 0 then X\ <t by 2.2.7. Conversely,
let A <M t Therefore, by 2.3.3, there exist dlagrams

DA and QM satisfying the conditions of 2.3.4. Hence, by

2.3.4, EAQ& # 0, so that Aeﬁ>< Aéx since Ae, 1s irreducidle.

But AL, affords the character 1WW , and Aeﬂ_affords ~x,

A

so (1.V ,x*) # 0.
- wy,

The second half of the result follows from 2.2.7 and

the fact that
Ar o =Nt gt (2.3.2)

. ]
=> (H?J .X*) # 0 by the first part

A

X !
=> (£.1ww sy EXN)Y # 0

4
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, X #0 by 2.3.5

§2.4 A decomposition of the group algebra of W(A,)

Solomon [17] has givern a decomposition of the group
algebra of an arbitrary finite Coxeter group, and in this
gsection we interpret his results os applisd to the
symmetric group. In latervchapters we look at the decompousitio
for other Weyl groups.

By tensoring with ¢, we shall assume that all modules,
representations and characters are over the field of
complex numbers, In particular, A = ¢W . Otherwise We
shall use the same notation as in [17].

The generating set I for W is the set of 1
transpositions  [(12),(23), «ee ,(1 1#1)} . Let J < I,
then WJ is the parabolic subgroup of W gensrated by the
elements of J. Now, WJ is also a Veyl subgroup of W,
and hence is of the form W? for some partition ¢ of 1+1.
Thus each subset J of I defines a unique partition ¢ of

1+7 and we write p(J) =0 .

We Tix an arbitrary subset J of I. Let p(J) =¢ ,
and since 3 - the complement of J in I - is also & subset
of I, we caun putb p(3) = ut , where s+ 1+1 (we use the
dusl of am for convenlence only).

Then define

£, = WQZ;W , n3 = ) &myw

J J 7 ‘:‘:l’l,j“
(these differ from [17] ovly by a scalar multiple, but

the module AanS is the same in both cases), so that



= 4 = 3 asdfied' 2471
§J E,»(, s M3 T, efined in §2.1

Solomon [17] shows that the module AF,Jnj affords

the character ‘\HT of ¥ where

K-~
Wy o= 2 ey Il W
JsKel K

We shall be investigating the irreducibls submodules

of A&Jf)j‘. .

Theorem 2441

/

Lot A F 1#1. Then (¥, XY 20 B ge N M
i.e. A&Jn3 only contains irreducible submodules isomorphic
to some A&xnx » Where ¢t < )\ < M.
Proof

By 1.2.8, since AE,J = AE,.(, affords 1‘,‘(W

and Ana = A

affords & W (1.2.9)
W,

. - 1514 )\
v Xy k0 = (1, X ) Foand (£ ,X) =0
J W? il
/J.
> Q0 g Ag M Dby 2.3.6

Lemma 2.4.2

i
-

? = . M
(v o X = (v, X

Hence ( s M
Proof
Suppose J ¢ K <I. Then if p(RK) = ¢, o consists of

¢ with complete rows moved up. In particular > €.
)

7
Hence, by 2.3.6, (1. ,%%) =0 1.e. (1 " xfy = o
W Wi oo .
Thus, w. ,x') = 2 (1., ", x5
J JeKel "K
W
= (1 ,)L(’)
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= 1 by 2.2.7

!
Similarly, (VS ,73L) 1 since p(J) =pt

Now by [17] lemma 7 , flw/J =V,
Thus

(v, X)) = &y ,ex) = (v, ,X*) by 2.3.5
J J J
= 1
It foilows ilmmediately from above and 2.4.1

that ¢ < .

Solomon [i17] theorem 4, also shows that if |J| = p
then A&Jnj has & unique lrreducible submodule isomorphic
to APV of dimension (%), where V is the Euclideqp space
of dimension 1 which affords the Wittt representation of
Y as a reflection group.

In our cese V is the hyperplane of R1+1 consisting
of the points whose sum of the coordinates is zero ([3] ,
table I). We shall now identify APV and the irreducible

character it affords,

Suppose [3] =p
Definition
Let R be the partition of 1+1 given by

R = (1-p+1,1p) . Then we call 3 the hook graph for J

and 7(ﬂthe hook character for J .

Notice that the hook graph depends only on the ordar

of J, and that X*(1) = (£) by 2.1.6.

1
1Y
If M\ F 1+1 then let r(A) = the number of rows of

(the frame of) A .



Lemma 2.4.3
(1) r(e) = p+t
(11) (v S ¥X8) = 1

Proof

(1) Let D(J bebthe diagram corresponding to ¢ which
ls defined by WJ « Then there exists an element x of W
such that xD, is a diagram corresponding to ¢ whose
symbols are naturally ordered.

Hence, R(xDe) =W x~1 (2e1.1)

| J
|
| = W
! xJx”1
= W
: g
| .

By construction
-

* = Ha, 1 8,42),(8,+2 8,%3), oees 5(8;. =1 84,4)]
S {8y 842, (878 857505 eer 21854970 Biag
=0
i

where | € = (0, ese »0) so that r(¢) =r
1 ;

and ga =0

) o} ‘

:31 = Pl
!_8 = ( '|"Ql>
2
i
.
t ar“1 = (" o cet L g ef‘—l
%ar = eo'.".oo +e(‘=1+1

Hence ' /A : '
7= ey a4, (ay ag41), ceey (8, a1 )

so that A

| r-1 = |3%| = 17| - 13%]

= 1-|J/

= p since |J/=p
Hence 71(¢) =1r = p+i1

(11) Move up all the squares of ¢ that do not lle



in the first column, up to the first row. This gives
us a frame whose flrst column has length equal to the
length of the first column of @ which ig n(f) = p+i.
Since this frame 1s a hook by definitlon, it represents
the partition (1-p+1,1°) =g . Thus, by 2.3.1 ¢ < £ .
Now suppose JSK<I and p(K) =A, Then « is
obtalned from ¢ by moving up whole rows.,
l.e. r(a) < r(p) = p+1 =r(B)
But 1f a< g then it is clear from 2.3.1 that r(x) > r(R).
Thus x £ 3 «
Therefore, by 2.3.6, . (1 W ,Yﬂ) =0

Wy
Hence
[ _ W 4
(v, ) = 2 (1,7 ,%K)
J TekeX WK
2
= (1, " ,%x")
WJ
= W R
(1,' »X ) #0Dby 2.3.6 since (< A
e

; 4 .
Thus we have shown l.ﬂ =p => (\yJ ,X') #0
Now the fundamental result in [17] is that

A= > A%

‘qn
I JJ

W

so that
~_ Te8 = ZWJ , Where X & is the regular
T
character of V. . _
1 d N o
Hence (r) =X (1) = ( reg xf) = 2. (v, LX)
P 1 TeZ J N
But there are (-p) subsets J of I such that |J| = p,
and for each of these (\,)J ,‘Xﬂ)_ # 0, It follows immediately
" =
that (¥, ,X%) = 1; and, incidentally, that (¥  ,X") =0

1f Kl #p .

Theorem 2.4.4

Lot X be the irreducible character of W afforded

I
by APV. Then X =X". Thus NFv = AE—';;U/;



Proof
X 1s irreducidble so X = X' for some X 141.
Let J = [(12),(23), «es o(1-p 1-p+1) ]
hence J = {(l-p+1 1-p+2), wes ,(1 141)]
so that |3l =p,
)

1
n

Then € = p(J) = (L-p+1,1P)

and /4'= piJ) (p+1,11-p) =R’ leee = p
By [17] APV is an irreducible submodule of AiJn3
and therefore (w& ,'Xx) # . Hence, by 2.4.1, RSA <M

l.e. B €A < so that A =4 as required.

It will be of interest to determine for which J, the
modgle A&Jn3 is irreducible. We éhow that this happens
for only & few subsets J of I, so that the decomposition
given.in [17] (theorem 2) is far from being a complete
decomposition of A. ‘

Definition
Let J be a subset of I. Then J is decomposable 1if

J =J,VY J, such that all the elements of J, commute

1
wiﬁh all the elements of J2 e Otherwise J is

indecomposable

It is easy to see that J is indecomposable if and

only if J consisis oniy of consecutive generating invoiutlons.

Theorem 2.4.5

A

Agg“& is irreducible if and only if both J end J
are indecomposable.
Proof
Suppose AiJnf is irreducible so that w& is irreducible.

Let |J| = p, then by 2.4.2, 2.4.3, @ =& =p+, so that
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¢ » » and therefore m' are all hook graphs. Thus the
generating sets J, 3 consist of consecutive generators
and so are indecomposable,

Conversely, suppose that both J, 3 are 1ndecomposeable,.
Then i1t 1s easy to see that ( =4, Hence
Ang3 = A&enﬂ»= A%;en(J which 1s an irreducible A-module
affording the character X© .

§2.5 The maximal Weyl subgroups of W(A,)

In the final section of this chapter we deal with
the maximal Veyl subgroups of W, which can be determined
by the algorithm in §1.1.

and A, + A

They are the Weyl groups of type A1-1 n

1-i-1
for 1 €1 < 1-2 .

In 2.2.8 we defined a bijection X from the set of
Weyl subgroups of W to the set of irreducible characters
of W. So if W' is a Weyl subgroup of W we define 7<W§W)
to be the irreducible character of W associated in this
way with W,

We shall be particulurly interested in the case

wWro= V(A Suppose W' is a Weyl subgroup of W' then

117
it has associated with it an irreducible character”)ﬁw” (we)
of W'. However, W" s also & Weyl subgroup of W to
which the irreducible character X (W) is associated.

W '

The next result will show that these associatlons are

consistent in the sense that

W
(4 )] = X‘!J,,(\r'l) + higher terms ces (1)

X

"



where we order the irreducible characters by their
corresponding partitions:

if N ,utrl+t  thon X < X B e u

/
Now suppose A+ 1 and ’)Q{,,('.’*I') = XA » So that by our

construction W' =W, .
We let A= (X, ... ,A) and )\* = (%, ... ,h., 1) which

we can write as >\* = (M) « Then ,\*!— 1+1 and

T x ™8 X 44 X 5 =y
\JA* S/\. erx S1 a_ S)\'X LN ] x SArg VVx \l’ ')

,\*
Hence X‘«V” (w)y =X since W' = W,\* as a Weyl subgroup

of W. Thus (1) becomes

. *
(7L'\)w = x * D 8. Xt
‘ >N

for some non-negatlve integers a,. .

The theorem we prove is slightly stronger than is
required above, and is a special case of the Murnaghan-
Nakayama rule ([1] VI,3.1)

Theorem 251

*
Let Ar1 and X = (M\1) + Then

*
COMIEIE G Yo
s

summed over all those partitions (% /'\*) of 1+1 such
that the frame for s consists of that of X with one
square added to the end of a row,
In particular, i > .\* .
Proof

Let M be an arbitrary partition of 1+1. D‘efine a

partition A of 141 by 3 = (A F1, 0, a0 , A\.) Where

7_’

>\ = ()\,, sce ,)\r) o Hence ’S\’: ()\11) .__.()\1)* .

Thus W_, = W and W =W ,
A Y A A
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(07 ,%") #0 = (X7, () ) #0 by Frobentus

we we
=> ®
“w, s 0),,) #0 and (f_ﬁ}" p (7&")%") t 0 Dby 24243
S (1., (W).) #0 and €, , x*), ) # 0 by Frobenius
W, w, d)‘, Wy
again
2 (1 , (X)) #0 and (¢ x* Yy +#o0
W)\ * V{,\ * . W.x, ’ ‘7;\—1
=> (1 s X) # 0 and (& » X} # 0 once more by

| Froben.us
> \F SME A DY 2.3.6
1e0e M= (X, see 3N *1, see 4),) for some i such that
Mo, >>‘i¢ so that p has the form required.
We: have left to show that A~ < M SN =>((X>‘)W ) = 1.

So suppose A" <M<Y so that s conslsts of \ with a

th row for some 1.

squaref added to the 1
X* 1s afforded by the minimal left ideal Ae, of A = OW,
and 'Xx! 1s afforded by the minimal left ideal A'e, of

|
AY = oWt
N
W

Hence ‘J(X'\. is afforded by the (no longer minimal) left

ideal Ae, of A,

We shall show Ae,  Ae, ; 1t will be sufficient to

prove e,.&ef # 0, (1.2.7), for then Aeﬁs 'Aeze = Ae, .

Let D, be a diagram corresponding to )\ then let D#
be the dlagram of s given by adding a square containing
the symbol 1+1 to the i® row of D, .

Thus R(P,) < R(D,) and G(D'\) < C(D,) so that W, < W

and W)‘,s WM, .

It follows easily from this fact, that LI IN = LI Hence
= ¥ = = o

e =ee6, =Lank =En& . Therefore the coef’icient

el o
of 1 in e 1s given by E(qﬁ) summed over all elements
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?M.Of %w such that thers exist elements P, of ﬁM_and
p, of Wx such that R*gﬁpx =1

Hence q, = 3:1 1

p: € W» (> %.) so qﬂ_E R(QA) neD) =1,
Thus the coefficient of 1 in e is non-zero so e ef % 0.
Hence

o = T e

Nspms X

where the aﬂ!s are non-zero posltive integers. By
considering the degrees of the characters inm this 2quation,
it follows from 2.1.7 that aﬁ_= 1, proving the theoicn,.

In 2.2.7 we have only given the decomposition of
the linesr characters 1, ¢ on inducing up to W from o
Weyl subgroup. It is of interest to note what happens
when we induce up an arbitrary irreducible character
from a Weyl subgroup; since all the Weyl subgroups of W
are direct products of Weyl groups of type A, it will
be sufficient to cénsider inducing irreducible characters

up from maximal Weyl subgroups of W, as any Weyl subgroup

i

n

contalned in a2 maximel one.

We have already dealt with the maximal Weyl subgroup
W(A;_,) in 2.5.1; the result for the ones of type
Ay + Ay 5 4 (1 < 1 < 1-2) is given in chepber three (3.6.4)
where the notation and proof properly belonge.



Chapter three WEYL GROUPS OF TYPE ¢

The Weyl group of type C has also been extensively
studied (sometimes under the guise of the‘hyper-octahedral
group); Young [20] determined the conjugacy classes and
irreducible characters and Osima [i5] considered the
group as an example of a generalized symmetric group.

Again, we shall be considering this group as *ue Wevl
group of The-simple Lie algebra Cl in mueh the same way
as we studied the eyl group of Al.

We shall not be assuming (apart, of course, from the
definition) any known results about this group, &s nearly
all the proofs we give are new (as far as is known).

Ih particular, we generalize the partial ordering on
partitions given in §2.2, to one on pairs of partitions.

The results in this chapter certainly do justify
Osima's ldea of considering this group as a generalization

of the symmetric group.

§3.1 The conjugacy classes and irreducible characters

We shall give some notation which will be used in
this and the next two chapters.

Let G = W(Cl) ~ the Weyl group of rank 1 of type C.
Then G is the group of permutations of the synbols

{1, eee 51,-1, «us ,-1] genorated by the involutions

[(12),(23), ees ,(1-1 1),(1,-1)] where

(ab) : & > © and (1,-1) : 1 > =1
D = a -1 = 1
-8 = =D
=D > -2
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Ve shall express the elements of G as products of
cycles of the following form:

(a) positive n-cycles (a1 By ees an) for 1< n<l and
*e; € {1, «es ,1}  which maps

81 - 82 o G >

and -z > =2 - . - -
1 2!—%-837-# .l—-)ant—ya

b oo Lo I - | e 8
5 n

1
1

(b) negative n-cycles (a1 a e an) for 2 < n < 1 and

2
iai E 11, o 00 ’1] WhiCh m&pS

8, -8 _ it s 8_ P> =g - — > -
1 2 [ 3 ) n 1 »F‘a‘z g o @ > an h'>'a1

(¢) negative 1-cycles (i,-1) for 1 < 1 <1, called

sign changes which maps I = =i = 1

The cycles are multiplied together in much the same

way as those in the symmetric group, remembering the fact

that (a1 2. eee an) is shorthand for
\

(8. 8_ see 8 =8y -8, e -an) = (a1 8y eee an)(an,-an)

Thus G is the split extension of N by H, where

N e 02 X eee X 02 is the subgroup of G generated by the

L
sign changes, and H = Sl - the symmetric group on 1 letters,

and H acts on N in the obviousway viz. H permutes the 1
cyclic groups of order 2.

Hence |G) = 1] |H] = 21.11
Notation: we let W(C,) = {(1),(1,~1)]
As in the symmetric group We may express any element

of G as the product of disjoint (positive and negstive)

cycles.
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Definition

Let g € G. Suppose g is the product of disjoint
cycles °1"‘°rd1"‘ds s Where, for 1 < 1 <r, cy is s
positive m;-cycle, and for 1 < j < s, d.: is a negative

J
nj-cycle. Then the signed cycle-type of g is the set of

integers (m1, cee ML 3 ML, ee ,nr).

Note

The signed cycle-type is ordered in the sense that

(m1’ eos ’mr H n19

(I'l see oI
17 *°* s

to positive cycles and the Second to negative cycles.

ess ,01 ) is not the same as
s

3 My ees ,mr) since the first set corresponds

Lemma 3.1.1

Two elements of G are conjugate if and only if
they have the same signed cycle-type.
Proof

Let g < G and let g = C1ooocrd1ooods be the
decomposition of g into disjoint cycles, where cy
(1gigr) are positive cycles, dj (1<j<s) are negative
cycles.

Fix e =c; = (a, .. a ) say where & ,,ecc,8, 6{11,...,11]
Then 1f x € G,

xex™1 = {x(a1) eeo x(am))
a positive cycle of the same length as ce.
= = = see -b s o0 -b

Similarly, if 4 dj (b1 ces bn (b1 bn 1 n)

then

il

xdx™! = (x(0)) ver x(by) =x(bq) eee =x(bp))

1}

(X(b1) eoe X(bnﬂ

a negative cycle of the same length as d.



Thus xgx'1 = XG1X-1' vos oxe x™ L xd x~1, v.. oxd x~1
iy 1 g

has the same signed cycle-type as g.

Convercely, suppcse g 1s as above end that
gt = c%...c;da...dé has the same signed-cycle type as Ee
Ir

c= a e e ' = ’... !

( ] .am) and ¢ (a) am)

then ¢ and ¢' are conjugate via an 2lement x € ¢ such

that x(ai) = a&

for 1<igm.
Similarly, if
d = b oe.b ¥ = '0'0 !
( ] n) and d (b1 bn)
are conjugate via an element x £ G such that x(bj) = x(b;)
(‘K,‘Kn) .

Thus, since all the cycles are disjoint, we can choose

.
an element x € G such that g! = xgx”1 .

Definit:‘;g_zl

A pair of partitions (A;x) of 1 consists of partitions

N, p such that [n[+ Iml=1,

Let g € G have signed cycle-type (X, seeesdrs pyseens )
where We arrange the cycles so that X,Z... > A >0,

M, 2 eee 2 >0, Then this defines a pair of
partitions (n;n) of 1 Where A= (X ,ees,1.) and
M E (M yeeny )

Hence, by 3.1.1, We have shown that tThs conjugacy
classes of G are parameterized by pairs of partitions

of l.

Vie turn now to the irreducible characters of‘G.
Since G has a fairly large normal subgroup N, We can use

the methods of Clifford (see [11] and [12] (17.11)).
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Theorem 36142

Let ¢ be an irreducible character of N, ¢ = CH(q)
and y an irreducible character of C. Then C = S, % 8,
where m + n = 1, and where m is the number of generating
sign changes of N on which ¢ takes the value 1, and n is
the number on which ¢ takes the value -1.

Define a map ¢ 3 NC -» € by ¢g(ne) = ¢(n)v(e).
Then ¢ is an irreducible character of NC, and we write
p ¢y . Also "

(a) ¢G is an 1rreducible character of G;

() if g, =c,¥, , 9y =ayv, then 9% =g 0 ir

and only if both G4 = h‘z andty1 = hv for some h & H;

2

(¢) every irreducible character of G may be obtained
in this way 1.e. has the form ¢G for some g .
Proof |

Since N 1s abelian, ¢ is a linear character. Thﬁs
if (i,-1) is a sign change, which therefore has order 2,
¢(1,-1) = #1. Relabel the symbols [1,..s,1] so that

4(1,—1) = L0 = ¢g(my-m) (some m)

Q(m+1,-(m‘i'1)) = eee = g(l,-1)
and write

Ny, = <(1,=1), ees o (my=m) >

N2 = <(mt1,=-(m¥1)), ees ,(1,-1)>

' = N > .
so that N N, X N2

Let ¢ € C then %¢(i,-i) = ¢(c(i),-c(i)). Thus
Ce=¢ if and only if (i,-1) € N, = (c(i),-c(i)) € N,
and (i,-1) € N2 = (c(i),-c(1l)) € N2

Thus the elements of C are precisely those which permute
the symbols [1,ees,m} and [m+1,...,1] independently.

Hence C = Sm x Sn where n = le-mn,
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The symbols {1, ses ,m] Will be called symbols of
the first type and [(m*1), «ss ,1] symbols of the second

tzEeo ]
Every element of NC 1s uniquely expressible in the

form nc where n € N, ¢ € C, because N N1 ¢ = 1,
Let V1 be the N-module affording ¢ and V2 the C-module

affording e« Then V1 x V2 is an NC-module with character
¢ For, the module axlomz are easy to check, with the

one exception which we now prove:

suppose n,n! € N, c,et € C, vy € V1, Vo S V2 then we

must show

(v1éwz)(nc.n'c') = RVfgvz)nq]n'c'

-
(V{@vz)(nc.n'c') (Vf@vz)(nn'c .cct)

I

-t
v1(nn'° ) é@'vz(cc') by definition of

the tensor product of modules

cct

| = (v1n)n' C)(vgc)c' eee (1)
since V1,V2 are modules.
But ¢ ® € ¢ = CH(q) so that c(cnc’1) = ¢{n) for all n € N.
Because ¢ is linear, ¢ 1s the representation of N afforded
by V1 il.00 v,n = v1¢(n) for all n € N.
It follows that
v1n' = v1g(n') = v1q(cn'c”1) = v1(cn'c’1) = v1n'°
and therefore

c‘(
(v1n)n‘ = (v1n)n' since vyn €V,

Returning to (1)

(V{sz)(nc.n'c') (v1n)n'<g>(vzc)c'

t ot
(v1n & vgc)n c

since vyn € V1, vz S V2
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= [(v,@vy)ne](n'e?)
as required,
The character afforded by V1<S)V2 1s the charascter

g as defined in the theorem. g 1s irreducible since
#(1) =¢(1)y(1) > 0 and (p,¢)NC = (q,c)N(V,V)C as Nng¢g =

=1 as ¢,vare irreducibli
(a) We show ¢G i1s irreducible.
Firstly, ¢G(1) = |G:NC|g(1) > O.
Secondly, by Mackey's formula

(6%, o) = )

v
€ 74 Franme)? » UPxcaqc)Y!

where [yi]is a set of (NC,NC)-double coset representatives.

Let L = NC n(w¢)Y NG n No¥  since N4 @

N(c n ¢Y)
> N

and suppose (pi,(yp) ) # 0. Then, by 1.2.6,

L

(PN’(y¢)N) # 0 so that (¢,%) F 0 Dbecause ¢N = WV(1)egy
and therefore ¢ = yq, S0 y € CG(G).
Now NC = NC,(¢c) = I(C,h(c) n H) = Cy(c) N NH by the modular la
C naG
G(c)
= Cqulg)

Thus y € CG(g) =NC dle6. ¥y = 1.

Hence (pG ’ ¢G) = (g, ¢) =1, so ﬁG is an irreducible

character of G.

(b) Suppose ¢1G =g
Then, if n € N

¢1G(n) = |G:NC4] ;i~“

xEC(n)nNC1

¢ =
and let C, = C.l¢y) 5 C

= Q.
. ; H(cz)

2

$q(x)
lc(n) |

(where C(n) is the conjugacy cless of G containing n, and



since N4 G, NNC, = 1, c(n)nNC1 = C(n)n)

=¥, (1) 1w ) )
ICq41 lc(n)l =xcC(n)nN

= -1 1
(647" (1)e Bn)
Henoe |G W, (1), Ny = Io)]¥, (0, By wee (2)

Evaluating the degrees of both sldes

[Colvy (1) lasxl = o ]\, (1) Jo:X]
Thus by (2)

(6,9 = (8, e ()

Suppose, for a contradlction, that for all h € H,
h
¢ # ¢, - Because G = NH and ¢, (1=1,2) are characters

of N, we have that ¢4 # ggz for all g € G, These sre

irreducible characters so (q1 s ng) = 0 for all g € G.

46

Now, by Mackey's formula, lettling [yi} be a set of (N,N)-

double coset representatives

@ ¢y = }: ¥
(41 »650) (e )y » Cead ey
vE 34 ]
= y
\ 2{; (¢1 s cz)N
vE[34]
= 0 Dby above
G Gy = G G) by Frobenius
So (41 ’» &, ) ((c1 )N xy ) by

(e Dy » 6,5 By (3)

= (ch ’ C1G) by Frobenius

0 by above

which is a contradictlon, since ¢1G 1s & character of G.
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Thus there exists en h € H such that 61 = hgg
- - h _ h .

Therefore, IC1| = 1021 so by (2) and (3), V(1) = V%(1)-

It will be sufficient to prove the result for h = 1
1.0, that = 1i ; = .
) at ¢, = ¢, implies \¢1 V% For,

h _h h _ nh h G _ 6. ¢

Po = 6o ¥y T &, \Hg-'AISO(ﬁz) =8, =p by
assumption,
But g, = S4%y s SO by the result for h=1, we have

h
uq = V% as required.

we let ¢ = =g = =
Therefore we let ¢ <, Sg Cc C1 C2 .

Suppose that Y # V¥, and W s\W s eee ,W, 8re all the distinct

T=NC.

irreducible characters of C and let g; = ¢qV¥y (i<igk) -
irreducible characters of T,

T -
Now, (¢~ , ¢1) = (¢, (4,)y) by Frobenlus

=¥, (1) = g (1)

Thus QT = a1¢1 +t eee ak¢k + )\ , where )\ 1s a
character of T such that (A,g;) =0 for 1 € [1,4e4,k]
and a, =‘Pi(1) = 91(1) £ 0.

Now because lvﬂiiis a complete set of irreducible characters

of ¢,

] +2(1) =a,2 4 0o + 8,2 +2(1)

8,8,(1) + «os *+ 8,8, (1) #2(1)
T
=¢7(1)

TN = o

K
Hence A (1) = 0 so A = 0. Thersfore qT = Zz_aiﬁi
I.\:,’

and it follows by the transitivity of inductlion that



We now compute (qG,qG) .

Let [G:T| = t and the set G/T = {g1T, ,gtT}

Hence, if n € N

G = 1 D (B)(n)
IN geg
E g
= 2 ) (Y@ esto=o ()
: G
INI L=1
t g
Thus (%) = Imamf ) % .
Therefore, L
G ¢ G
(¢ 5,6 ) = (g )N , ¢) Dby Frobenius
. t g
= leewl ) (e
N
= |T:N|
because ( “¢,s) ¥ 0 <> ¢ =¢ <=> g; € Cole) =T,

our contradiction now follows, since by (4) and above

. k k
renl = %% = (a9, . ) ap®

=i

<

=t

> +a )2 + a 2 4+ .0+ 8 2
> (a1 82) a3 . ak

2 2
> 8%+ se0 v o8

=|¢| = |T:N] , a transparent ilmpo.sibility.
Thus we have shown \H = #Q , completing this part of

the theorem.
h

Now supposse Sy = hc and ¥, \gl for snme h € H.

2

=h h _h G
Then @, = ¢g-\p = g, so ;% = g0, completing (b).

(c) We use a comblnatorial argument to show that all

the irreducible characters of G may be obteined in the
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manner described.

By (b), ¢G detemines, up to conjugation by an element
of H, an irreducible charactsr ¢ of N, which in turn
determines integers m,n such that m+n=1, and

- G
¢ =cCglc) @8 x5 . Butif g% also gives D¢ then
h - h .
CH( c) = CH(Q) e CH(c) 80 gives rise to the same integers.

Thus ¢G determines uniquely integers m,n such that
m+n=1 .,

Also, ¢G determines, up to conjugation by an element
of H, an irreducible character \V of Sy X Sn s Which is
therefore a product of two irreducible characters ?f,’Xf&
of Sm’Sn respectively, where A+ m, #fn., Because h )
determines the same partitions A, we see that ¢G
determines, in a unique way, a pair of partitions (X ;)
of 1 1.e. glven (\;u) we can construct, uniquely, ¢G.

However, the number of irreducible characters of G
1s equal to the number of conjugacy classes of G, which
by p 42 is the number of palrs of partitions of 1. Thus

we have all the 1lrreducibvle characters of G.

Notation

In 3.1.2(c), We showed how to associate with a
glven ¢G a unlque pair of partitions (A;»). We therefore
write pG as ')CD‘;'M) .

Hence the irreducible characters of G are also
parameterized by palrs of partitions of 1.

We shall always use ths notation of 3.1.2.

We note here, for reference, a technical lemma
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(1) Oy = leiTm 6%

(1) hHy = vE

Proof ,
(1) was proved in 3.1.2
(11) 1f h € H let cE(h) be the conjugacy class in H

containing h, and CG(h) the conjugacy class in G containing
h. Fix h € H, then

$%(n) = lo:ncl Z g (x)
1c¥(m)]  xec®(n)ne

€H.

Suppose x = ghg™! € NG where g = nh, n € N, h,

Then x = nh1hh1‘1n’1 = n(h1hh;1n'1h h'1h;1)h1hh'1

1 1

Since x € NC and N< G we have that h1hh;1 € ¢ = cyle) »
1

so h_hn_ "~

Jha, centralizes ¢.

-1

- ST -1
Now ¢(x) = g[h(h1hh n 'h h h1 i]v(h1hh1 ) by definition

1 1

-1
h,hh’ ) _
¢ 1 @ HypnsnTh)  since ¢ 1s linear

i

¢ (n)e (n"T)y(h,Bn7T)  stnce h b=l € O

V(h1hh'1) again since ¢ is linesar
1
Thus -

%(h) = lainc! ) W (nynn]")
%0 an bh] '™ exe

i

el Jm) ) wngmmh

%) o ()] h1hh;1€C

H
= ¢ (h) proving the lemma.



We conclude with the following well-known result

Thoorem 3e1.4

Any complex repruientation of G may be afforded by
a basis with respect to which the matrix entries consist
of rational integers. In particular, the characters of
G are rational iIntegral-valued.
Proof

From 3;192, we see that the irreducible repressntations
of G may be obtained from those of the symmetric group
by

(1) tensoring these representations together and
with representations which only take the values +#1:

(11) inducing up thé representations obtained in (1).
The theorem then follows from 2e1.4, since the operations

in (1), (11) clearly preserve the required properties.

§3.2 Two linear characters of W(C;)

G has four linear characters. Let wy = (1 i+1),
1<igl~1, and wy = (1,-1). Then G is generated by
(w1, eoe ,Wl} subject only to the defining relations
([3] p 279)

- - = 3 2 4
(W1W2)3 - (w2w3)3 = see = ( ) = (W w )

¥g'1-1 11 1

[

It follows that G ecan only have the following linear

characters: (1 <1< 1-1)

(a) the principal character 1 where 1(W1)=1, 1(Wl)=1

(b) the sign character ¢ where 5(W1)=-1, £(w1)=-1

(c) the long sign character E where E(Wi)=1, &(Wl):-i

(d) the short sign character n where n(wi)=-1, n(wl)=1



52

The last two namoS Were chosen because L& corresponds
to the long root in the Dynkin dlagram for W(Cl).
Thus
(a) 1(g) =1 for all g € G

(b) &£(permtation) = sign of permutation, &(sign change)

i
L
-

(¢) E(permutation) = 1, £(sign change) = =1

]
-

(8) n(pernutation) = sign of permutation, n(sign change)

Lerma 36261

(1) €& =1 so E}EWG =y, and &.ng = qu
(11) £ ) )

(111) P;.XO\”L) = o (#3A)

(:{v) n.’)k(”ﬂ) = X (N3)
Proof

(1) £E =1 trivially. The rest follows from 1.2.4

(11) et XM= g0 o sx(Mir) = g0

_ G :
= (5NC¢) by 1.24

Now o6 = (£ c)o(e V) o« Because £ takes the velue
Ene*? go ! g N
-1 on sign changes, 1t interchanges the symbols of the
first and second type so that CH(EN;) o Sn X Sm .
W= X%\ X" by definition so
A ‘ ! '
£ =& % .st“= XA X (by 243.8) = X7 X

Sy n

(M) 2 G _ o (3N)
Thus ¢£.X (sNC¢) S
(Asp) 2
(1) g = g )% ana

Eye® = (EN;).(ECV) = (E4¢)e ¥ Dby definition of &.
Because §, takes the value -1 on sign changes 1t interchanges

tho symbols of the first and second type.
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Also W= X,X", so 'c‘,x()"’*) = x (#3X)
(1v) follows from the first three parts.

The two linear characters we shall be interested
in are § and n rather than 1 and £ as in the symmetric
group. However, the previous lemms shows that the
distinction is more notational than anything else, as
we shall pépt out when we have proved, for G, a result

corresponding to that of 2e2e7 for S

141 °
Remark
We shall only be interested in the Weyl subgroups
of G which are Weyl groups of regular root systems (l.s.
root systems which are additively closed). This is
CLoneter element of o
because, in W(cl), any, Weyl subgroup is conjugate to a Coxete.
m-eat of one of these regular Weyl subgroups (see [5]), and so,
for our purposes, may be ignored.

Thus in the rest of this chapter Weyl subgroups

will always be assumed to be regular.

The Weyl subgroups of G are of the form -

Sy, X ees X8 XW(C, ) X eos x WG, )

A
where ) \:+ LA = 1.

We shall write this subgroup as W(X;ﬁ) putting
A= (N5 eoe 5A2) 5 1% (g wee s M¢) and we may assume
that XN, > eee 2 X.>0 , M 2ees > x>0 . Thus the
Weyl subgroups of G may be parameterized by palrs of
partitions of 1.

Let D(A‘ﬂJ be a pair of diagrams for X and M

4

obtained by filling the frames associated with A and
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with the symbols {1,.44,1,=1,¢¢0,-1} (in any order)
such that the moduli of all the numbers appearing are

Alstlinect, Ve often writs D( =D ubD o
Mo 2T M

s

Definition

A row permubtation of a diagram D(x'pJ is an elenent
p of G sucii that p permuites bthe symbols in each row of
DA and in each row of Dﬁ;and changes the sign of the
symbols in Dﬁk.

The row stabilizer R(D(A'#)) is the group of row

permutations of D, o

)

Now R(D(A;F)) o 8, X ess X8, X W(C, ) x ¢uu x W(Cﬁ!)
= W(A:#)
Thus all the Weyl subgroups of G can be considered as

the row stabilizer of some dlagram Dn: As 1in the

Pt
symmetric group, G acts on a diagram D(A.ﬁj by defining
gD(AVA, for g € G, to bs the diagram obtained by applying
g to the symbols in D .,

It 1s then easy to see that R(gD ) = gR(D(A:th"'
so that any two isomorphic Weyl subgroups are conjugate
via the element of G that btransforms one assoclated

diagram into the other.

Comparing 2¢3.5 with 3.2.1(ii), it is natural to
make the following definition
Definition

(~' 3)') is called the dual of (r;,). Similarly

define the dual of a frame, dlagram or Weyl subgroup;



The reason for considoring the characters £, g is
contained in the next few results,

We let (M3p) be a pair of partitions of 1 such
that X = (N yeeep),.), M= (4 000, 4) and IXI= n, Ipxl=n,
Theorem 3¢242

€ &

g X0y =y

£

e
Froof

" LetW=VW and adopt the notation of §3.1.

(A;pJ
Thus

G (A:ps) _ G a
(&w, ,“) "(EW’¢)

i

y .
Z Cwnuc)¥ » ¢ F’)wn(nc)y)
e [vy)

by Mackey's formula, where [yi] is a set of (W,NC)-
double coset répresentatives.

Suppose (B na)¥ ,(yp)wn(m)y) # 0 , then because

wn(e) =waneY > WanN as NaG , We have

y
(EWHN » Ils)wnn) F 0.

o 88 in 3.1.2, and we choose W(’\;M so that

Ds,py 18 filled with the symbols [1yeeesl] Where [1yees,m]

NOWN=N1 x N

ocour in DA and 2m+1,.;.,l) in D/;,_ o It is then

Since N2 < N,

’ (yC)N (1)) #0.
1 2

immediate that W A N = Ny o
J = (7.
(:?s)N2 Cedy #(1) .« Thus (By

so (EN ’ (y::)ﬁ ) # 0 and because the characters are

2 2
linear § = (%e) « But by construction of §,
N N
2 2
E =¢. ¢ Thus ¢ = J2) and therefore N.Y .= N_ ,
) 2 2
N2 N2 N2 N2

by deflnltion of ¢. It follows that ¢ = Y¢ because %

~
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takes the value 1 on N,. Thersfore y € cG(E) =No ,

and so y = 1,

G (i p)
Hence (&, X = (g
w2 ) ( wnne ? ¢wnNc)

But W =8, X §, X ess x 8, xW(C, ) X sse xW(C, )

[

T

=S)‘XOG.XS>‘KXN

S X ese X
LN . q&~§%

with ths obvious notation

=(N X o0e XN/,(J)(SI\xooch XS/LLX."XS \I
i ( ‘

aat)

Pa

since the direct factors cosmute

< N(Sm X Sn) = XNC
Thus W < NG and W 0N = No X ees X Ny =N, ,
WNH=8, X easo X8, X8 X eoe X8 =W _xW .,
A Ar M M5 A s

where WX and W%_are the appropriats Weyl subgroups of
Sm and Sn reSpectivelye.

So we See that W = (W NnN)(WNnH) . Hence

g ¢, x%)

W (iw s 8)

W

(E.- s & )(5, 9 A )
WnN WNN WnH WNH

= (& 2 6 )(1; . 9'\")., . )
NZ N2 "!A >€'n;M ‘..'A X‘.i'#

s
1-(1W s (XN )0 (Xf)w )

A Wx W/“ M

= Sm A 4 sn ’XM
((1“&) » X )((.Wu) s X7)

1 by 242.7 , complsoting the proof of

the theorem.

Corollary 3.2;1

()\' x)
Ky =
('QW ] )
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(0, , XMy = (g @

(w'22') “QMEXW

G .
(¢, , £X9)
(P2 N)

G

s XMy vy 3,241

= (&w
(/v\", ,\‘)
1 DY 3e2.2

, XXy by 30241

Theorem 3e2e4

¢l @

' ,l , (Ew ’ nw ‘ Yy =1
3 (op) eN)
|

w:}ita W=w, , »W =W, and suppose D, 1s
filled: with the symbols H,...,m} end D, with

[m*1,...,l) where |)\|= ms Then by Mackey's formla

; o
€%, % = Z &

Y
w ,“ W' s ( U] )
' .36[713

)

wowe Y wowe Y

whare;[yi} 1s a set of (W,W')-double coset representatives.

Now W N N = N2 and similariy W* A N = N1 so

N = Ni x N, < WW' . Therefore we may assume that, becsuse

G = NH, each y; € H.
¥
Suppos 0, then since the
DPpoSe (F’WHW'y s ( '))an'y) ? 5

characters are linear £ = (%)

so b
wowr 7 wape Y v

definlition of E, 3, W N W'Y  does not contain a
transposition or a sign change,

Wt9 1s the row stabilizer of yD, ., = 3D,V ¥D,. «

x‘
We olaim that yD,: contains the same symbols as those

in D .
A
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For,
suppose not; then there exists a symbol a such that

a appears 1n yDA, but not in DA e We write a € yp,, ,
A

a ¢ D, + Slnce a ¢ D, We have that a € D, and hence

(ay=-a) € W. Similarly a € yDA,

so (a,-a) € W N we Y » & contradiction. The fact that

implies (a,-a) € W'Y

DA and yDA, both contain m squares proves the claim,

Because W N W does not contain any transpositions,
no two collinear symbols of DA are co-colummar in ?DA, °

Hence, by 2¢1.2, YI =py ,wWhere P EW, , q €.,
S A A

= o~
Similayly, ylsn P.q, s where Py € LA q, € W}, .

Hence y = pap,q, = (pp;)(aq;) since tho diagrams D, , D

are disjoint and therefore W, N W, = 1
= (pp4) (q4q)
€ (W, xW )W, xW,)
< W

i.00 y=1.

G Gy = . .
« But 1t is clear
So (iw P T,W' ) (5an, ’ 'ﬂwnw' )

that W n W = R(D(“/“)) n R(D ) = 1., Hence

(:N)
G) -

G = r
(gw s Ty 1 as required.

. . S p) 1
34242, 34203 and 3.2.4 together show that X s

the unique common irreducible constituent of & G ana
()

U G ° e

vv(,k‘: X)
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§343 An algorithm for W(Cq)

In thls sectlon We generalize 2.2.7 {ani 2.3.6) to
G, and in so dolng define a partial ordering on the pairs
of partitions of 1. We first define a reflexive, anti-
symmetric relation on the pairs of partitions of 1, which
will give us an algorithm for determining exactly which
Jrreducible characters occur in EWG » for a given Weyl

subgroup W of Ge.

Let (x;a) and (A 3u) Lo pairs of partitions of 1.
By the usual abuse of notation we shall refer to the frames
also as (x;3) end (A;u) respectively.

We write (A;u) —> («x30) (and in later chapters,
where we introduce further algorithms, we shall write

'69-), if (x;0) may be obbtained from (A;x) by

first (a) removing connectsd squares from the end of s
row of A and placing them, in the same order,
at the bottom of L ;

then (b) repeating (a) with squares from different
rows of A ;

then (c) reordering the resulting rows so as to give
frames of a pair of partitions (¥;$), say;

finally (d) moving up inside ¥ and § , accordlng to the

usual partial ordering on partitions, so as
to obtain x and B respectively (so ¥ €«

and JSﬁ)o

Remark

It 1s easy to See that -» is reflexlve and anti-
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symmetric but is not transitive because e.g.
(2,0) — (1,1) and (1,1) = (0,12) but (2,0) -4 (0,12).

Later on we shall exbend —» to a partial ordering.

We can now state the first mein result of this

section

Thoeoren 3e¢3.1

Let (x;B) and (Aj;u) be pairs of partitions of 1.
Then, with the usual notation,

G

€, & s X ro = Gup = ()

(i)

Before proving this we need a lemma

Lemma 30302

Let W = R(D(A;ﬂ)). Then
(a) W= (NNW)HMNW) and (NNDW)N(HNW =1

If also g € Hand C = CH(q) for some irresducilble
character ¢ of N "
(o) W8 = (w nwEY(E aw8) and (N n W8 n (H n W) = 1
(c) N¢ n w8 = (¥ nw8)(c n W8) and (N n wE)n(H n Wé) =1

() W =8, X aue X S\, X W(QM,) X oes X W(CﬂJ)

A

I

=8y X ees X8, XN B X .0s X N, 8. , with

the obvious notation
= (me ...XNM)(sk’x eas X SA,X sﬂ’ X oss X Sﬂj)
= (WNN) (WNH)

) w8 = (v nwW)B(H n W) vy (a)
< (N nw8)(H nw8) since N«G, g€ H

< W& hence equality

(¢) Let x € NC N w8 ana by (b) x = nc = n4h for some

neN,c€C,nenNnw  nemauvb,



Hence n;1n = hc”1 €ENNH=1,80n-= n, and ¢ = 61
and therefore c €C NHNWE =C NWE andne N n Ve,
8o x =mnc € (N nVW8)(C nW8) which implies
w8 < (v nwB)(c nWB) < W rroving (o).

The trivial intersections all follow from the fact

that N n H = 1,

Proof ¢f 343.1

Buppose first that (E G Xy 4o,
YA
We use the notation of 3.1 and aiso let W = W,

[
x;ﬁ'&)

Boence

G iy o G Gy = &
By s X ) (gw » £7) Z ( Sromg * ° Ncnwg)
gc (8, )

where [g,] 13 a set of (W,NC)~-double coset representatives

and since G = NH we may suppoSe each g1 € H.

Thus there exists g Gfgil such that (gi g s g

0
NG nwg) F

NCNW

We let /= m, ]Al = n and let N = N1 x N2 as In 3.1.2
so that ¢(a,-a) = 1 for (a,=-a) € N1 and ¢(a,-a) = -1
for (a,-a) € Nz. Now by 3.3;2(0)

0 # F’Ncmvg ’ ﬁncmvg) (B8 * Snayd F’cnwg * cnwe

Hence

v ) FO eeo (A)

a (8 ‘
0 and { écnwg * onwe

2 .
Coyme » Symwe) *

Since £, ¢ are linear , gi But £ takes

N8~ N8 o
the value -1 on all sign changes in G and hence on those

in Nn w8 e Thus N n weé < N2 .

Now w8 defines a diagram D(qu , so since N n 8 g Nz,

all the symbols in Qﬁ_are of the second type. We may &also
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assume that the symbols of the second type in D)\ lie ot

the ends of the rows, since w8 only defines D(A; oy up to
row permutations (and sign changes in D/L). Hezw:ce We may
remove squares from D, and put them on the bottom of D,
(so that moved squares in the same row remsin in the same
row) and then reorder the rows to obtain a dilagram D(b",-s)
of a pair of partitions (¥;:) of 1 such that D, contains
all the symbols of the first type and Dé the symbols of
the second type. This corresponds to the operatio.s
(a), (b) and (e¢) onp 59. So to show (Aju) == (x38)
we only have to show ¥ <& , §< 3 .

By construction (¥l =m =l , |8 =n =/l

By () (% Vc ) # 0. However, £ takes the valus

cnwe *  cnw8

) # 0.

‘ , W
1 on the elements of H, hence “cnwg ' onw8

Now ¢ n W8 e (S 0 WE) x (5 NWE) since C o 8 xS,
and so C N W& permites the symbols of each type

independesntly, and therefore these actlons commute.

Hence, by definitlion of V ,

(1 X g) (1 Gy X8 ) #o0 .

oC
,c ’ ’ : v
Sph W8 Sph W' s n we Sph Ve

But §_ N w8 1s the group of row psrmutations of the symbols
of the first type in D O ) and thus ths group of row
permutations of D, . Thersfore S, N W8 = R(Dy) = W,
- a Weyl subgroup of Sm e« Similerly, Sn nwve = R(D(S ) = Wy

‘Hence,

(1 X5y (4

H .
Wb_ W

Xﬂ
>
W W,

« 5 Ay
SI“,X)?O and (1.‘.J6n,7&)r0

and by Frobenius (1,
.

from which 1t follows by 2.3.6 that ¥ <« and

~



Thus by the above remarks (A;u) — («3p) .

Conversely, suppose (h;m) == (x;4) . Therefore
wo may move parts of rows of )\ across to .. to obtain a
pair of partitions (¥;$) of 1 such that ¥ € « s S< 0 .
Hence || 2 I¥]= IxI=mend |u< [§] = [B]

Ile

8o define D("l/*) to be a diagram of (Aju) filled with the
symbols 11,000,1] such that h,ono,!ﬂ.] all occur in D/\ °
Let W = v,()\;/“) = R(D(‘\;/m) )o Th-en

NAW =N, x ese X N, € N2 by construction. Hence

E and therefore (§ Also, by

2¢3¢6, ¥ € X = ((1y )sm s X%) %0
5

S
S <A = ((1W)n,x”)¢o
$

o (& )(1-Sm , X )(1Wsm , X"y #0 ana this

s Q
NnW NnW Wd‘ $

is, by the proof of the first part of the theorem, the
first summand in the Mackey formmla for (ng , X 9y,
Hence

(EWG ,’Xmﬂ) ) # 0 proving the theorem.

We now wish to extend — %o a partial ordering on
the pairs of partitions of 1.

The reason why —> is not transitive 1ls that we are
not allowed to split up a row when moving 1t across so
‘that e.ge (2,0) + (0,1%). This gives us a hint as to
how to define a partial ordering.

Definition

Let (x34) » (A3n1) be pairs of partitions of 1.
Then (Aj;n) € (a348) 1f we may obtain (x;g) from (Aju) by



(a) removing a square from the end of a row of )\ and
putting 1% at the bottom of sl

(b) repeating (a) as many tilmes as is umecessary to
obtain a pair of partitions (¥;§) of i

(¢) moving up inside ¥ and § to obbtain « and 3

respsctively (so that Y¥<s« , §< 42).

It 1s clear that (h;+) = (x38) = (a3n) € (x34)
and that (A\;p) € (x3p) 1f and only 1f there exlst r=irs
of partitions (¢:j;0:) of 1 such that

(As) = (3, 50;) => (0.505) => eee = (g 30) = (x30)

((¢-3 02) 1is obtalned from (Qﬁ;q;) by moving across one

square &t a time and letting (( jon) = (v3s)).

Lomma 3e3e3

< is a partlel ordering
Proof

This is clear

Lemma 343.4 (Duality Relation for < )

(Asp) < (x30) <= (a5a) < (W 50)
Proof |

It will be sufficient to prove the implication in
one direction. We may also suppose («;p) 1is obtained.
from (A3;m») by moving only one square fromAto u .
For, we may write
(hvsm) < (0,30) € vee € (psa) € (x58)
where each term is obtained from the previous one by
moving one square across except that (.< x and o < £

By assumption,

64



! 5e) € (0,500) € eon < (o5p") < (m'50)

Now by 2¢3¢2 , ' < (., end 2'g o'

S0 (8'3a') < @500) < ('30) dees (A 3o) < (5 A)
8o suppose We have moved one square from \ to s

to obtaln (« ;) « Hence We may move one square from

A to « to obtain (x;A) from (4;«), Therefore, we may

nove one squaré from ﬂ' to a' to obtain (»'32) from

(p'5«) deee (p'3a) < ('3)') as required.

This enables us to prove the same result for -

Lomma 3.3.5 (Duality Relation for —> )

O30 = (x50) <= (p'50) = (p'52")
Proof

S\ippose (A3m) = (x3P) then (A3x) < (a34) so
(' 54') < (M'352) Dy 3e3.4.

w§ must show (0';a') => (4'3)\') , so by definition
of the: operatlions defined by < and -> 1t wlll be enough
to show that when we move rows from ' to «' we do not
split these rows upe. It will be easler to prove this

disgramatically. We mmst show thatd

>

in moving across from ' to «' . Bubt since

(A ;) => (x32) We have that

in moving across from \ to 4, and in doing the reverse

operation to obtain (.';)") from (4'; «') we see that the

€5
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first dlagram must indeed be the case.

Theorem 3¢3¢6

G = (N p) Z (x:4)
gW( . X * a(oc;/f) X
Am) Ovpl <l p)

A ' ‘
nw G = X{ */A} + Z b(qlﬂ)X("(,ﬂ)
Iyt o 7
= //\} (X;/n.} >(x 1)
Where -
here a&;ﬂ) and bkgﬁ} are non-negative integers
Proof :

Thé first equation follows from 3.2.2 and 3e3sle
The Second equation comes from the first by multiplylng
1t by ¢ and using 3.2.1 and 3.3+4 (after relabelling).
: |

Remark;
If in 3+3.6 we replace < by =» , using 3+3.5, We

will then have non-zero coefficients by 3.3.7 below.

As promised in §3.2, we shall show that, by a change of

notation, we could use the linear characters 1, ¢ 1nstead

of §, 1.

Theorem 3e3e'7

(E’w ¢ , XY 0 <@ (n) = (%30)
(A p)
G ,

(qw ’ 'Xm‘ﬂ}) 20 <= (J\;ﬂ) ->(o¢;/])
(s 0)

Proof

The first part 1s 3.3.1. The Second follows from



6%
the first by 3¢2.1 from which we obtain

G »
(nV? » X Ny = (' 50") = (p'5a)
(2

= (x58) = (23 4) by 3.3.5

S0 by multiplying the results in 3,3.7 by £ and
using 3e2¢1 Ve have
Theorem 3348

(1@

. , X/«_‘,AJ) # 0 <= ()\;,w) -—> (/Z;"‘/\)

‘)\;‘,\)

/

G (4]
(& s X7) F 0 B (fix) = (y3m)
W((u |;’\')

Similarly, using 3.3.6 we obtain
Theorem 50309

G = AN Z [P:x)
1W X( }-l- a(ﬂ;K)X
(A"/‘) (’\,'/»A'<(ﬂ.'e(j
vy ) ™
£ G = 'X(/‘*,x + Z b X{A’ )
W(/A./,)\./ {Ala()
(Np)>(6:)
where s and b are non-negative Integers,
(B.x) (8 1)
. . (7 2x)
So We may replace £, 1 by 1, ¢ if we write X

instead of X ““? as defined in §3.1.

We now define a bijection between the Weyl subgroups
.and irreducible characters of G.

Define a map
X : set of Weyl subgroups —> set of irreducible characters
by .
X0, ) = {'Xix’red. character : (X,£.C ) # 0 and

"{()‘\/A)
o :
(XsEy ) = 0 for all Weyl subgroups
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Theorem 3e3410

X(W () = [ X)) for a1l pairs of partitions
(\ ;) of 1.
Proof

This follows from 3436 wlth the same proof as

In 2.2.8.

§344 Decomposition of the group algebra

into minimal left ideals

Thils sectlon 1s a generalization to G of some of
the results in §2.1, especially 2.1e3 and 2.1.5.
Let A = €G -~ the complex group algebra of G« Lat

(A34) be a pair of partitions of 1 and ¥ a Weyl

(A:m)
subgroup of G We define two essential idempotents of G

Z wE (W)

p(\- ) )
‘ ’/\N W;()\;/M)
q = wn (W)
(N:p) wEW (' A
and let =
na ~e e(A;,q p(x;#)q(xgw)
note that W nw , = 1
(note (Nsp) ("3 )
G
Then Ap affords the character g of G,
(N:p) W
(]
and Aq affords QW G .
(X.‘/“‘) (/thx.)

Theorem 3 .41

Ae is & minimal left 1deal of A affording X (%"

(}\ :‘AA. )
Proof

Let e = o To show that e is a multiple of

e()\;/«J



a primitive idempotent we may follow the proof in ihe
symmotric group for N ([6] 28415); this 1s purely
routine.

Alternatlvely, We may uze the first two lemmas in

[4] and 3.3.6, from which the result immediately follows.

Hence Ae 1s a minimal left ideal and is isomorphic
(using the *-map) to a submodule of both Ap(Avd and
Aq(x-pd + Honce Ae affords an irreducible charact:u

G
which is a component of both § and ¢ » 80 by

a T]‘
VV(A(‘/A) “r(,u'_' N

§3.2 affords XM,
Because X“—"" = X(“”” implies ) =x and M =/

Ve See‘that ideals of the form Ae(NH” coming from different

diagrams with the same frame are is;morphic but ideals

from diagrams wlth different frames are not; so the

ideals [Aelﬂmﬂ] where ()3ux) ranges over all pairs of

partitions of 1, gives a full set of non-isomorphic

irreducible A-modules.

Frame |8] has already introduced standard tableaux
for ¢ and given the formula for the number of standard
tableaux of a given frame.

Definition

A standard tablesu 1s a diagram D(w,q filled with
the symbols [1,...,1] such that both D, and D, are

_standard tableaux for the appropriate symmetric groups.

Let H, be the hook product of a frame of X .

Define the hook product of (\;x) to be H(X‘M) = HAH’u .
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Lemms 3.4.2

The number of standard tableaux of the frame

assoclated with (N;n) 1s given by 1!
H
(x50)
Proof

Let [A\]= m, U” = n and let D(XVMJbe a stsndard
tableau. Then there are (%) ways of assignling the symbols

[15eee51] o each half of D(, . o Wow by 2.1.6 there

are ml ways of ordering the symbols in DA to give a
H)
a stbandard tableau and similarly nl ways of obtaining
H
/-L

a standard tableau Qﬁ ¢ Hence the number of standard

tableau corresponding to (r;,) is

S mbn o= _al
| H H
| AT ()\;/k)
Lerma %4443
Xjkrh1) = 1] = mumber of standard tableaux
H
(Aspe)

Proof
5. G
With the usual notation X*’=g° where
¢ =cy end W= X' X . Let I =m, |l =n

thus XM (1) = 1GsNCl ¢ (1) X (1) (1)

|H:Cl m! n! by 2.1.6

= 1! m! n! since C = Sm % Sn

B
o)
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s

A splits up into & number of simple rings Ay '
A=A+ A2 +* eee + A, , Where each Ay consists of a
direct sum of isomorphic minimal left idesls of 4, which

are not lsomorphic to any that occur in A,, j ¥ 1.
J

The next theorem is proved in exactly the seme way
as that in the symmetric group ([1] IV,4.6) utilizing
the previcus two lemmaes, and 1is routine so ws shall not

£,2ve the proof

Theorem 3.4.4

The minimal left ideals which arise from the
standard tableaux belonging to 8 gilven frame are
linearly independent and span a simple ring Ay. Thus
A is the direct sum of the minimal left ideals which
arise from the standard tsbleaux belonging to any frame

agsociated with a pair of partitions of 1.

§3.5 Solomon's decomposition of the group

algebra of W(Cq)

As in §2.4 we interpret Solomon [17] for the Weyl
group W(C;). Again we may assumé that all modules,
representations and characters are over the fleld of
complex numbers.

The main feature distinguishing G from the symmetric
"group is that not all Weyl subgroups of G are cpnjugate
to & parabolic subgroup. Indeed it is easy to see that
the parabslie subgroups of G are the Weyl subgroups
such that g has only 1 or O parts (since W(%;ﬂ)

must include sign changes (a,-a) for every symbol a
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occurring in D, ).
The generating set I for G is the set of 1-1
transpositions and one sign change, {(12),(23),...,(1-1 1%(1,_1)]
Let J=I , then the paraboli: subgroup WJ = W(C;r/for
Some pair of partitions ({; <) of 1 such that o- has only

1 or O parts. We therefore write p(J) = (p;0).

We fix an arbitrary subset J of I. Let J be the
complement of J In I, and p(J) = (Q;V), p(&) = (p' ")
(again, we use the dual for convenlence only).

Define
E_ = ZZ w o, ng = Z: E(w)w
WEW: W€W3
as in §2.4 (which should not be confused with the linear

characters £,7 of G). Then AEJn3 affords the character

|B-JI G
J X
JeK<I

Theorem 3eDe1

Let (A;1) be a pair of partitions of 1. Then

(v, y XY F00 > (030) = () = (A)

Proof
Since At affords 1wJG =1, O end Ang affords
(o)
éw G we have (1.2.8)
(n' o)
(\t} ’%’A;x)) # 0 > (1\V G ’/>(((/“J>\}) # 0 and (é' G ’IX’(:“JX}) # 0
’ (©-<) (')

= (p30) == (A3p) => (x;0) Dy 3.3.8
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Lomma 3¢5e2

(o P/ - , (A.a) -
(> X070 (v, s X 1

Hence ((30) == («34)
Proot
Suppose J$ K< I and let p(K) = (v;4), so thab
(r;s) is obtained from (p;o) by moving whole rows up
inslde { , and moving whole rows of { across to the
end of o o+ In particular, {¢;c) ;?»(3;5) so (73;4) + (p3)

since = 1is anti-symmetric. Hence by 3+3.8

(1W G 9 X[va)) =0 1le0e (1.w G ”X("Z‘F}) = Q.
(v:4) X
. ¢ g
Thus (¥ , Xty = ‘:E: (1w , XY
JeKel
= (1 G ”X(”-‘e))
WJ
= 1 by 36349

Similarly, (V3 ,76“2”7) = 1 gince p(f) = (g'sa’).
Now by [17] lemma 7, 6—»} = \#3 . Hence

Y

(k};\ ’X(ﬂlok)) = ({,\i} , ?:X[n"«)) (\4/‘4 ’Y("(iﬂj) by 3.2.1
J J J
= 1

It follows from 3.5.1 that ({;0) - (o32)

We now identify the irreducible module APV

- 1
defined in [17] , and in this case V = R ([3], table III).

A
SupposSe ,Jf =D .
Definition |
Let (A;.) be the pair of partitions of 1 given by
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- Y
(xsp0) = (17 ; 1-p) « We call (A;.) the hook graph for J
and X" the hook charscter of J .

Notice that the hook graph (\;x) depends only on
the order of J and that X*||)= (;) DY 3ede3.

As in §2.4, let r(v) = the number of rows of (the

frame of) a partition v.

Lemma 3.543

(1)  rle) =p
(11) (v, , Xy =y

Proof

1
Where p(J1) =( and p(Jz) =0, (writing p(g) = (0)).

Let (¢! =m, lcl=n . Then |J| =1 = |J| . But if

(1)  8ince p(J) = ({ ;o) We have that J = J UJ2

(1,-1) € J then (1,-1) ¢ J , hence %0 = x =0
(p(J) = (8';x')) and conversely, @*X#o0 = o =0,
So l.ﬁll =2 Mmoo |J1I « By 24443, because p(J1) =0,
r(e) =m =~ |J,|= |3] = p as required.

(11) Move across to ~ all but the squares which do
not lle in the first column of ¢ and then move up to the
first row of - « Since r(q) = p, we obtain (1p;1-p) =
(A\3)+ Thus (f_;o—) - ().

Now suppose JSK<I and p(K) = (5;8). Then (¥;4)
1s obtained from (p;o) by moving whole rows up in. ¢ and
also across to oo . Hence r(¥) < r(¢) =p =r()), so
(v38) + (A\;4) and therefore by 3.3.8
“WKG , X{#:N) = 0. Hence

] G t b
(VJ y XNy = (1WJ y XNy % o by 3¢3.8 since

{

(? ;L") - ()\;/*~)°



So ’-ﬂ =p = (\:JJ ,'X(#:x)) # 0. Because there are
(;) subsets of I of order p and,7ﬁ”*v(1) = (;), ¢ have
2s in 24405 (v, , XM) =1 (ana (Ve s X*M) =0 1r
|| # p).

Theorem 3.5¢4

Let X be the irreducible character of G afforded
by APV . Then X = G
Proof
"X is irreducible so X. = Xfl:béor some pair of
partitions (V;8) of 1.
Let 3 = [(p+1 p+2), ces ,(1-1 1),(1,-1)]
herice T = {(12),(235), vee 5(p p+1) )
so that [J] = p.
Then (Q307) = p(J) = (1p;1-p) = ()
By [17] APV is an irreducible submodule of AL n4 and
therefore (Y. , X)) # 0 . 8o by 3.5.1 ((30) ~ (534)
leee (A3p) == (¥546).
Now let J = [(12), eee ,(1=p l=p+1)]
80 T = [(Lop#1 1-p¥2), wee ,(1-1 1),(1,-1)] , 13 =p.
Then (8';a!) = p(3) = (131°P;p) = (.'3A7) o Hence
fxsp) = (x;0). Again (\3 ,7@4°T}) £ 0 80 DY 3¢5.1,
(¥53) = (w34)s Lo (£33) = (A3
8o (\3m) = (r;8) => (r34) and since =+ 1s anti-symmetric

(A3n) = (¥3$) 88 required.

We now show that there are only two subsets J of
I such that AﬁJnj\ i3 irreducible, so that Solomon's
decomposition 18 a long way from being a complete.

decomposition of A,
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Theorem 3.5¢5

AE 3 is irreducible if and only if J = gorJ=1I
Proo?

Suppose A&Jn3 (and ?herefore\ﬂJ) is irrsducible.
Lot |J] = p, thon by 3.5.2, 3+5.3

(p:0) = (x34) = (M3 = (1P 5 1-p)
therefore 0= (1-p) and «'= (p) . But J n J = g, so
elther ¢ = 0 or « =0, iHence p =0 or p =1, Therefors
(p30) = (=3 1) or (e3¢) =(11; -) 80T =1oxr
J=d.

Conversely, suppose J = I, then AiJn = A.1 which

3
affords the unit character of G, If J = ¢. AEJnﬁ = A&
which affords the sign character € of G, In both ceses,

therefore, A&qu is 1rreducible.

§3.6 Maximal and other Weyl subgroups of W(C;)

In §3.3 we defined a bijection X from the Set of
Weyl subgroups of G to the set of irrsduclble characters
of G, We want to prove this is consistent in much the
same way as in §2;5, and this 1s done in 3.6.1.,

The maximal Weyl subgroups of G are of type Al_1

and C, + C.l

i 1-4
maximal Weyl subgroup of G, and we conslder the maximal

for 1 € £ €< 1-1. Thus '.‘{(c1 1) is not a
ones later on in thi: section.

Define (as in §2.5) A* = {)\1) where ) 13 & partition

Theorsm 3.6.1

Let (\;«) be a pair of partitions of 1-1 and let

0\y$)* = (x*;ﬁj - & palr of partitions of 1., Then
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T X(L'M* + D xl:a)
summed over all those pairs of partitions (x3:;z) (# (A ;,u.)*)
of 1 obtained from (\j;u) by adding a square to the end
of a row of \ or by adding a square to the end of & row
of o « In particular, (x;z) > (x;/uc)* .
Proof |

Notation: Gt = W(°1-1). so Gt = N'g! , H!' = 8 .

fxld;ﬂ)z ¢G with the usual notation, and
) = gr® wigh the notatlon as in §3.1, except that

We dash the appropriate symbols. We shall also assume

H' 1s the symmetric group on the letters [1,...,1-1]

Lot [7 = (x**N% , x*:4) . men

|

M#o0 = 0% Z{: (p" , 8 )
| NG N(NG)T “wigra(ne)Y
i YE{yy] )

whers ;iyix is a set of (N'C!,NC)-double coset

representatives and each y; € H . Hence for some

7 GIY:L} )
| y
f ] ) 0.
(g Nrotn(we)Y ’ Pmcrae)? ?
It 13 easy to see that N'g' n (NG)Y = wict n neY
| =N (¢t n oY)
et (T ' (v ) #0
Hence (¢! ,( :)N,)(v crne¥ W)c'ncy

So (! , (VC)N') # 0 and therefore ¢! = (%),

Let IN =m' , Iwl=n' , lxl=m, |R]l=n .

Now ¢! takes the value 1 (resp. -1) on the sign changes
given by the m' (resp. nt') symbols of the first (resp.
‘second) type. Similarly for ¢. Thus ¢ takes the value
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1 (resp. -1) on m (resp. n) sign changes.

S8ince ¢! = (yﬁ)N, We have m' < m and n' < n. But
m+n=1, m'* +nt =1=1 som=m" or m' 4+ 1 and

n =n' 4+ 1 or n'« Therefore we may assume that in G!
[1,+00,m!' are the symbols of the first type and
[m#1,...,1-1] are the symbols of the Second type. 8o
ve have that in G, by rearranging the symbolS, [1,ees,m')
are also of the first type and {m'#1,...,1-1] are also
of the second type and the symbol 1 1s undetermined.

It follows 1lmmediately that ¢' = QN' 80

(yé)N, ¢ ces  (A)

Ni
We now show that y = 1.
Lot (b,~b) € N and y™1(b) #1 so (y~1(b),-y~"(b)) € N?
Then

-1
Y cb,-b) = (v 1) ,-3" ) = T (37T d),-37T (b)) by (A)
= C(b:"b)

Now consider (1,-1) ¢ N' . Then if

(1) 3711 =1 then ¥ ¢ (1,-1) = ¢(y711,-y""1) = ¢(1,-1)
(11) y~7'1 # 1 then (y~'1,-y~71) € N' so as for b above
77 (1,-1) = o (1,-1)
FMinally,
suppose y(1) =a # 1, so (a,~a) € N' . Then
c(a,=a) = Jc(a,-a) Dby (A)
= ¢(ya,-ya)

=
L A

= (7" 1a,-y""1a) by applying (a)

das the r-cycle (1l & 72 <0 yr-18)

- |
|
:

Vhere ¥ inc

¢(1,-1) by applying (4) again

il

c(y-1a,-y'1a)
y“1

(o4 (a,"a)
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Hence for all symbols d € {1,..s,1]

H4

-1

T e(a,-a) = ¢(d,-a) tee. 3 €0y(c) =C,s0y€0
and therefore y 18 in the flrst double cosest N'C!'KC
soy=1.

H #0 [N = '
ence [ > (¢ Ng e ¢N'c'nNc)

' @ )

- (¢‘Nlc1 Nig!

since by construction ¢! < ¢

= (C' ’CN,)(\]/' ’\’)')

]
£
<

"
%
X

R

n' 1 <Sno

because GV =« Sm, x 8 af

and S <8 ,S
m m

Sm S
so ((x*) 7 ,X*) #0 and ((X*)  ,X*) # 0 by Frobenius
If (a) m=m' + 1 and n =n' , then =/ and by

2.5¢1 5 X 1s obtained by adding a square to the end of
arowof \j; or if (b)) m =m' andn =n' +# 1 then ) =&
and by 2.5.1, # 1s obtained by adding a square to the
end of a row of M o Hence (a3g) 1s obtalned by adding
a square to the end of a row of A or .+ In elther
case, by 2.5.1, ((')C\)Sm Gy XT) =1 = ((X’“)Sn ,7(/)) .
so [ =1,

 Pinally, if (x3:) 1s obtained by adding a square to
the end of a row of A orm we See by 2¢5.1 that
(OB, X%) =1 = () P ,X7) and ¢t =c, so tho
first term in the summend of [’ is non-zero 1l.e.[" # 0.

) , G
Hence 'X,(“'Moccurs in the decomposition of (Xﬂ"’"}) .

We now give the decomposition for induclng an

irreducible character up from a maximal Weyl subgroup of G.



€0

Theorem 3.,6.,2 (Inducing up from Al 1)

Let A+ 1 and («x;3) a pair of partitions of 1.

Then
NN ¢ - .
(), Xy 20 B (352) = (a3a) = (=)
and
G -
(M7, x*7) =1
Proof
G .
Suppose 0 # ({X*) ,X(“"’j)) = (x, X(Z’ﬂ}) by
Frobenlus. Hence by 2.2.7
B (<'A) H (x:4) ,
(1 X ) #0 and (¢ X 0.
0 (e, » %n ) #
Now W, =W end W, =W as Weyl subgroups of
A ();_) by (xl;‘_) y g 1
G, 8o using Frobenlus again
(1 G oy X(%,‘ﬂ)) # 0 and ({v{ G , X("(,'A}) %0
W()\:_) (/\,'—)

and by 3e3.8 (A3=) = (f3x) ==> (=-32) « It follows
that (A;=) = («38) =~ (-3)) by moving across =a
complementary set of squsres.

G ‘- K
Also ((x*) , X )) = (XA, X('\ /) by Frobenius

H
= (X" yy¥) by 3.1.3
end by definition ¢ = H, ¥ =X’

1}

(Xt XM

1 since X' 1s irreducible.

Theorem 3,6,3 (Inducing up from G, + C,_,)

Let (Aj#) be a palr of partitions of 1 and (t;0)
a pair of partitions of j, where L + j = 1; let (x;p)

be a palr of partitions of 1, Then
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(X XN Xy % 5 implies
@3=) = (30) = (=520 and  (g3=) ~» (x50) => (~;7)
Proof

We let G, =W(C,) , Gy =W(C,) and @, =T, ,

Gj = NjHj and use the obvious notation for characters.
Let Z = H. x H and Y =G, xG, « T =

2] 5 j 1 3 hen N Ni x NJ
and Y = NZ. '

Let A = (XM x&HE )y

G Gy G

G

@4 %G
= (g5 « 8y R, g) by 1.2.5(11)

= ((¢1 . ¢3)G y ¢G) by transitivity of
induction
- g
;E; (3PP yermoe * Prormce’
85581}

whers [gi] is a sev of (NG',NC)-double coset representatives

t = =
gy € H and ¢ ci X cj CH(‘i) x cH(cj) .

Hence /| # 0 implies that there exlsts g € g, |
such that

g
(B8 xcrmes * Prormnoe! O ¢

But NC' n NC8 = N(ctn C8) since g € H, Thus
g = g
0 # ((gi.pj)N ’ ( P)N) ((ﬁi)Nie(ﬁj)NJ ’ ( ﬁ)N)

2 (¢4 + 65 96) FO

]
> (o, » (f%;)Ni)(cJ , (&;)NJ) #0, sinoe X =Ny x X,
g

and “¢ is linear

= 6y = (gc)N1 and ¥ = (gc)Nj



Let m-—-mi, J/“f=ni, lel=m3, lol = q
el = m , 2] =n,

i
80 by ordering the symbols correctly we have

It follows, a8 in 3.,6.1, that m + mj =m,n

Gy -cNi ’ qj -ch + Hence

g = (8 g =
¢ = ( c)Ni- ( Q)Nj JFELF

(4 (1 Y -
Ny "Ny

o g € Cylg) = C which is in the first double coset,
Lo, g = 1. |

Therefore 4 = ((F5.85) Yy .

No NG ? ¢NC'QNG

Now we have ensured that C' = C

Thereafore NC! < NC . So

A = ((ggepy) s Fygo)

(Ci R Q)(V‘»‘\f’f ’vcl)

(es6) (V. 0V, VC') by ebove
= (XXX ()C‘.Xn’)c') since ¢ is irreducible

= (X)), 00 )
(omixsmj)x(snixsnj)

(X X’ ,x“s Y (XX, X )

miXSmJ ni nj

S
= (O™ ,X“)ux‘*.?@‘)s" , X

S

= (x>0 ’X"‘)(Xw;vls , X%) by 3.1.3(11)
m n
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(A:oe) e Gy e G
= (XU, () My (e, () my
Where G = W(Cm) s G = w(c,)

G o a .

so A+0 = ((x) ™, XY #0ana ((x?) P, X"y 2
and therefore by 3.6.2

(x5=) => (30) => (=300 and  (B3-) = () = (=;8) ,

proving the theorem.

We shall now give the theorem, mentioned at ti'o
end of chapter two, about inducing up the irreduclible
characters from the maximal Weyl subgroup Ai + Al 41
of W(Aj)

Theorem 3.6.4

Suppose N F1l#1 , x Fi+41 ,3ri-1 4 Let W =S5 .

1+1
Then
(0o %) £ o tmplies (Az=) = (wg4) —> (=5)
Proot
Regard W < Gt = W(Cl+1) .

(oA L x*y #o (XX # 0 by s0103(1)

, G
=> ‘(X(O(,ﬂ), (Xk) 1) ? 0
by Frobenius
= (A3=) = (x30) = (=3;2)

by 56662 -



Chapter four WZYL GROUPS OF TYPE D

The Weyl group of type D has been rather less well
studled, and poses problems that do not occur in either
the symmetric group or Veyl groups of type C.

Young (20] determined the conjugacy classes and
irreducible characters. s shall be considering this
group in the same manner as the groups in the previ-us
two chapters, although we cannot expect to get such

'nice! results., However, we can give an algorithm to
W(Dq)

determine the decomposition of 1y s, Where W/ 15 a
Weyl subgroup of W(Dl).
§4.1 The conjugacy classes and irreducible characters

Throughout this chapter we shall be using the
notation of chapter three.

Let K = W(Dl) - the Weyl group of rank 1 of type D.
Then K is a subgroup of G = W(Cl) of index 2, hence
K<G, We can describe K by conslidering it as a subgroup
of G; viz. an element g € G 1lies in K if and only if
the cycle decomposition of g into disjoint cycles contains
an even number oéfgggfés.

It is then clear that [G:K]| =2 so [K| = 21-1.1£
K N N is the subgroup of index 2 of N, generated by
palrs of sign changes. If we remembér that a negative

cycle is a positive cycle multiplied by a sign cnange

(p 40) we see that K = (K n N)H.

Notatlon: we let VI(D,) = L(1),012),(1,-1)(2,=2),(1,-2)}

which is isomorphic to the non-cyclic group of order 4.
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The conjugacy classes of K Were given by Carter [5]

Lemma 4,161

Iwo elements of K are conjugate if and only if they
have the same signed cycle-type, except that if all the
cycles are even and poslitive there are two conjugacy

classSeS.

In the latter case, the conjugacy classes consist
of elements in which the total number of negative -:gns
appearing in the cycles is even or in which the total

number 1s odd,

We turn now to the irreducibls characters, where
Wwe find a similar situation to that in 4.1.1.

Theorem 4.1.2

With the usual notation, let (\ju) be & palr of
partit}ons of 1. Then

(1) x‘;“‘ ' 1s an irreducible character of K if
AEM

(11) rX“KW = 'X“:’";

(111) X" 1s the sun of 2 distinct irreducible
characters of K of the same degree;

(iv) every irreducible character of K has the form
'X'(:'N (A8 0;1" 1s a couponent of X‘/:U for some A, M 3}

(v) all the irreducible characters of K mentioned

in (iv) are distinct.

Before proving 4.1.2, We prove the following, more
general, result

Lemma 4e¢1e3

For the purposes of this lemma only, let G , K be
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arbitrary finlte groups such that X is a subgroup of @
of index 2.
(a) Let © be an irreducible character of X. Then
either (1) OG is irreducible and (GG)K =9 4+ 0' , where
' is an irreduclble character of K such
that 6 # o' and o = g€ H
or (11) eG = X,+ X, where X ; X are distinct
irreducible characters of G such that
(X )g =8 = )y -
(b) Let X be an irreducible charascter of G. Then
elther (i) 7(K is irreducible and L&K)G = X + X' where
X' 1s an irreducible character of G, X # X!

and X, = X'y ;

K 3
i = + wh ‘ are distinet
or (11) XK: 61 62 ere 0, 62 e ne
irreducible characters of X such that
G _ _ a
61 - X 62 .

Proof
(a) Let T = GG(G) S0 K< T< G (0 is a class function
on X) hence either (1) T =K or (ii) T = G.
(1) 7 =KX ~
Therefore (eG,eG) = }_ (eKnKy ’ (ye)KnKy)
Yelyi]
where iyi] 1s a Set of (X,K)-double coset representatives.

Hence (O , (Y8) y#o0 = (6, J8) #0 (KdG)

KnkY KngY

= o =Y

= yE&T =y3=1
Therefore (6% , %) = (6 , 6) = 1 , hence o is
irreducibles.

G

So ((GG)K s 6) ¢) by Frobenius

=1
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Let (ec')K =06 + O' where €' 13 a chavacter of K suéh
that (@ , 6') = 0., Thus

G a
(67 , %) = ((e%) , ©') = (e%e' , o1) = (o1 , 61) # 0.
8o since OG is irreducilble, G = (ev,er)eG + X where
X 1s 8 character of G such that (X,eG) =0,

Now ot () = (8%), (1) - 0(1) =20(1) - 6(1) =0(1) . So

20(1) = 20" (1)=0'%(1) = (61,01)6%(1) +X (1)
1.0. 20{1) = 2(06',0')0(1) # X(1) « Hence X(1) = 0,

so X = 0, and (0',07) = 1 and 8o ©! is irreducible and
e'G = eG eand (0,0') = 0 implies © # 6%, which proves (1).

(11) T =G

T

Let eG = ) nfxi where Xﬁ are distinet irreducible

o=

characters of G. Since G = CG(e) it follows that for
8ll k€ X

o) = 1 ) oelexg™)

&) geG IK' gEG

]
d
o
E

L}
1qv]
Le>]
E

leee (GG) 20 . Hence

Zni(’)(i)K = 20 XX (1)

=

Also, by Frobenius, (eG,eG) = ((eG)K s 0) = (20,0) = 2

.

since 6 1is irreducible, Thus r = 2 and n1= n2 =1, 8o
G"' =
0 = Xl1 +?(2 and from (1L (X%)K + ()(2)K 26. Because

0 18 irreducible we See that “1)1{ =@ = (2<2)K proving (1i)e.

S
net
(b) Let %:K = ;g%miei where €4 a;e distine
irreducible characters of K. By (a), 0y is either
irreducible or the sum of two distinct irreduclbles.

Hence m, = (X_ , ei) = (X, eiG) by Frobenlus

i K
=0or 1.
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. +

‘Therefore we may write )(K = ;Z_Gi Where ei are distinet
irreducible characters of K su::’h that (eiG X)) =1,

So eiG = X & )éi where elther Xi 1z an 1irreducible
character of G such that Xi £ X and)QK = (Xi)K or

X, = 0. Hence
1 +

¢ G ha
)" = oy = 2 (xeXy)
So 2X(1) = tX(1) + ;ixi(ﬂ and therefore

either (1) ¢t =1 aﬁa}{K = éi which is irreducible and

o ]
0T = X X, Xy = Oy

i

1 (1 G: =‘ G
or (11) t =2 and X =06y v+ 0, and 0,” =X =9,

completing the lemma.

We revert to the notation in éhapter three

Lemma 4.1.4

Let X= ¢G be an Iirreducible character of G, then
X = (g)F
£ = (%)

Proof

where L = (K N N)C.

a2 © -

NC.K = NK since C = Cy(c) < E<K
2> NH = G
S0 G = NC.K. Since ¢ 1s an irreducible character of NC,
it follows, by Mackey's subgroup formula 1.2.2, that

(8D = ()" .

The following combinatoriel result is of independent
interest and was proved by Young ([éQ] §8)
Temma 4.1.5

Let
A be the number of ordered pairs of partitions (\;u) of

1 such that the number of parts of M are even;
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B be the number of partitions A\ of 1 such that all the
parts of A are even;

C be the number of unordered pairs ();u.) of partitions
of 1;

D be the number of partitionsiof 1/2 (define D = 0 if
1 is odd).

Then A+B=0C+D

This will turn out to be tho ststement that the
number of conjugacy classes of K 1s equal to the number
of 1rreducible characters of K. Indeed, from 4.1.1,
we tee that the nurmber of conjugscy classes of K is

precisely A + B,

We are now in a position to prove 4.1+2

Proof of 4.1.2

We first prove (ii)
LY (N _
With the usual notation let X o ¢1G , XM= ¢2G
p - ) =
"here g, ¢\ ¢2 c2V2
By definltion ;1(8,-3) = -gz(a,-a) for all a € {1,...,1} .
Since K N N is generated by pairs of sign changes

(€ dxan = ©o)um

Also C = CH(¢1) = CH(QZ) =8 %8 , and

A ) A
\V1 ='X—.)8~='Xﬂ.)t = Vé =Y , say. Thus letting

L= (KnN)C, (B) = (e) W = (CZ)KHNW = (g,

Hence by 4.1.4
(r;

o K K _ i
X = Ut = e )E = K

K

(l\' ,lk
(1) By 4.1.3, X'~ é (\#+) is either irreduclble

or 1s the sum of 2 irreducibles.
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Suppose the latter is the case; then )(Q:”J= 0, + é2
where 0., 92 are distinct irreducible characters of X,
and

A |
e1G = X 2 ezG . But by (ii)

(i)
X K "91

X+ = XM gna gherefore (Azu) = (x;1), a

+ 02 so that 01G = Xjﬁﬁ%)= e & . Hence
contradiction since X\ # ~ .
Therefore Xy:fk)(X?%Q is irreducible. It follows from
441.3 that 1f 0 = X(M# (x#x)
= 7(;flﬂ

then eG =X(A;»«)+ X(»«»\)

(Lii),(div),(v) We use the notation in 4.1.5.
The irreducible characters ){f?VJ(X¢%Q have not been
shown to be distinct, but there are at most ¢ - D of
them (by (i1)). Also the number of irreducible

characters of K = the number of conjugacy clesses of K

A+ B

it

C + D by 4.1.5

Hence We have unaccounted for at least (C + D) - (C « D)
= 2D irreducible characters of K. The only case We have
t:x), of which there can be
at most D of them. By 4.?.3,'X(2;U is a sum of one or

not considered 1s that of X!

two irreduclble characters of K. ’

The only way we can reconcile all these insqualities
is for X/;”)to be the sum of two irreducible characters
of K for all pairs of partitions (A;)\) of 1; for all
the irreducible characters so far obtained to be distincti;
and for all the irreducible characters of K to be of the

) A N)
form Xft;”) (»#~) or the component of some X « )
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Wle shall return to an investigation of the
irreducible components of‘)di?)(which only occur when

1 is even) in a later section,

§4.2 An slgorithm for W(D,)

The Weyl subgroups of K have the form
S}\Ix cea X SA,X ‘V(D/’H) X e0s X W(D/'L.() where
Z,\L-!-Z/&; =1 and M: % 1,

We shall write this subgroup as W puttincg

(Asp)

A= (N s oo 3A), M= (M, eee ,4) and We may assume

,)...)X,)O, /A,>ooo>//"(_‘>1o Thus the

that A
Weyl subgroups may be parameterized by pairs of partitions
(A3p<) of 1 such that no part of m is 1.

Just as in §3.2, we may consider W(xuﬁ as the row
stabilizer of a diagram D(x;#)’ where in this case a

row perrmtation of D 1s an element of K which permutes

(A:p)

-

the symbols 1ln each row of DA and in each row of P#L
and also changes the signs of an even number of symbols
inD , .
? P
Definltion
A pair of partitions (A;x) of 1 1s called bad if
M = 0 and all the parts of ) are even.

Otherwise (Aju) 1s called good.

It is evident from 4.1.1 and the fact that
R(SD(»,J) = 81?(13()“/“))3_1 for all g € G that (see [5])

Lemma 4.2.1

(a) If (A;0) is good , Weyl subgroups isomorphic
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to W(A»ulare conjugate to it in K, In particular,'if
X

x = (1,-1) € G\ X then w(,\'/,\) is conjugate’ in K, to

Worim) o

(b) If (\;») is bad, then the set of Weyl subgroups
isomorphic to W(Ahu)splits up into two conjugacy classes.

In particular, with x as above, W x

(Ao is not conjugate

in X to W(A;MJ o

We now wish to describe an algorithm for determining
for a glven palr of partitions (\;.) of 1, which pair
of partitions (x;p) of 1 satisfy

(1WK‘ s XY # o
(A o)
However, since the Weyl subgroups of K are parameterized
by ordered palrs of partitions ();s) such that no part
of % 15 1, and the charscters of K of the form X ‘I
by unordered pairs of partitions (4.1.2), we cannot

expect to get any sort of relation.

Definition
Let (\;~) be an ordered pair of partitions of 1
such that no part‘of/-L is 1, and («34) an unordered pair,
Write () 3m) Bé.G&;ﬂ) ir ‘«;g) may be obtained from (i;x)
by
(a) removing connected squares from the end of a
row of A and placing them, in the same order,
at the bottom of pt
(b) repeating (a) with squares from different rows
‘of )\ 3 .

and at the same time, but independently, (so no square is

~.



moved twice)

(¢) transferring complete rows of .. and placing
them at the bottom of A

14

then
(d) reordering the resulting rows so as to give
frames of a palr of partitions (¥;J) say;
and finally

(e) moving up inside ¥ and 8 , according to the
usual partial ordering on partitions, So =8
to obtalin o and A respectively (so y<«x and
S$<p ).

B¥ moving across a complementary set of squares
betweeﬁ )\ and 4 we see that
O3 5> (i) = (3 => (85a)
which is consistent with our choice of (x;8) to be
unordefed.

ﬂ{he algorithm introduced in chapter three for G
will from now on be written as = . It is clear that

(provided no part.of,u.is 1)

(i) o> (5r) P (5 g (36)

We can now state

Theorem 4.,2.2

Let (A3u), (x38) be ordered (resp. unordered) pairs

of partitions of 1 such that no part of x is 1. Then

a, * o, X6 0 @ 3 = )

Winsm)

The following lemma is proved in precisely the

same WAY 88 34342

93
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semma 40205

Let W = R(D(,,,,, )¢ Then
(@) W = (NOW) (HNW) and (NnW) n (W) = 1

If also yE€H, ¢ = CH(;) for some irreducible
haracter ¢ of N and L = (KNN)¢
p) W o= (NAWY) (EnWY)  and (N0WY)n(EnwY) = 1

o) L’ = (W) (cw¥) and (T)n(cnw) = 1

'100f O0Ff 442.2

Suppose first that (1W K

, )C%f“}) #0 and lat
(3 pd h

= W(A14 « Then by 4.1.4 and Mackey's formla,

K Y K K, _
P oSk s E L S - L

4 yE{yi)

’

winL anL)

here {yil is a set of (W,L)~double coset reprssentatives
nd we may assume yi € H., Thus there exists y € Iyi]

) # 0.

y
uch that (71
ch that (Myyor * Pw¥ng

We let‘l«J =m, |A=n , N = N1X N2 (a5 1In 3.1.2)
o that ¢(a,-a) = 1 for (a,-s) € N, and ¢ (a,-s) = =1

or (a,-a) € N_ . Now by 4.2.3(ec)

2

$ (7 )y = (1 /

y
) 1cnwy d cnwy)

1wynL * winL vy Sxnay

snce

(V1 ) #0 and (Y

Yy #0 cee

1 \
NAwY ? Snawy e ° Tonw?

ince ¢ 1s linear, y1 l.e. 1

Newy | Cwawy xw? - Cnow’
> ¢ takes the value 1 on the pairs of sign changes in
aw (W<K,soNnW <N nK).

Now WY defines a diagram D(A | and WY only changes
e
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the signs of symbols in D, . Thus in any one row of D..
the symbols must elther all be of the first type or all

of the second type (otherwise ¢ # 1). Hence We may

vy
transfer those complete rows oqu%_which contain symbols
of the first type to DA » and independently move the
squares of Dy (so that moved squares in the same row stay
in the same row) containing the symbols of the second
type to D, « On reordering the rows we obtain a diagram
D(Qé) of a pair of partitions (¥;4§) of 1 such that Ly
contains all the symbols of the first type and D¢ contalins
all the symbols of the second type. This corresponds
to oper;tions (a), (b), (e), (d) on p 92~-3. So to show

() 3p) Be.(«;ﬂ) we have only to show ¥ sa , <A

By construction /&l =m =Ix! | [§/=n =]8],

By (A);above

; 'y
| o \’Jcnwy) o

But this 1is exactly the same stage that we reached in

the prbof of 3¢3.1. So by precisely the same argument

J
o ¥ “cnwy ’\’cnwy

) = (G 1P XD (g ) LX)
and therefore by 2.3.6, ' <« and § <A .
8o (A3p) > (x5p) » '

Conversely, suppose (Azm) 59-(q;ﬂ). Therefore We
may move parts of rows of A acress to and complete
rows of s across to \ to obtain a palr of partitions
(r;s§) of 1 such that ¥ <x , § <3 .« Hence We mray define
a diagram D, filled With the symbols [1,.e+,1] such
that each row of D, contalns only symbols of one type.

Then let W = W ), so all pairs of

(a:m) = RDp .y

sign changes in N N W consist of symbols which are of

i
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the same type 4i.e. 5 = 1. 8o (¢

.
Naw NOW ) #0

2

1
NN
Also by 243.6, since y <o and §< f3

S x Sy s
(1 s 6 (1 ) ,X)((1W) , XY #0

4 T W
NOW N Wk‘ f

and this 1s, by the proof of the first part of the theoremn,
the first summand in the Mackey formula for

K e 8) {x:13)
1y X ., ") « Hence (1WK "X'K ) # 0, proving the

theoremo

Remark
If /= 0 then W(A“ﬁ is a Weyl subgroup of G and as

such is also written W(A._) « Now

S Sttt I CL D SUAS IE N CI IO S )

K
w(,\;-) W(A;—} W(A; )

SO DY 338 and 4.2.2

(X;~) 5¢-0&;ﬂ) > (r;=) 5»-(«;ﬂ)
a result which can be seen to be true from the definitions
of ae-and 59..

Before we can strengthen 4.2.2 and find which

)

irreducible components of Xf; occur in 1_ ©  where

Wi m
(Aspm) 5%>Qx;ﬂ) we shall need to study these components

more carefully.

4

§4,3 The remaining irreducible characters

In this section we shall assume that 1 18 even, 80

that characters of the form Xf:x)do occur.



Let x = (1,-1) - a single sign change, 50 x € G\ K
Hence G/K = {X, xk| = [K, Kx]
For the whole of this section X F 1/2 .

Lomma 44341
(ch) x
X L S8 *7e

where Gx’ x'ex are distinet irreducible'characters of K.
Proof

B . (AN _ '

Y 4.1e3, 7(K =0 + o where 6 # 0! and
from the proof of 4.1.3(a) we see that GG(eA) =K .

Because X®¥1s a class function on @

a xIMM o XNy x x
6, *+ o} X g X =", + 70! |
Now o, , Gg ’ xe) ’ xe; are all irreducible so

elther 6, = ¥o, or o0 = %o

A A o

But x generates G/K so, Since N is a class function on

) X
K, o, =70, =6, =“89>;for all g € @
=> cG(eA) = @, a contradiction.

Hence e; = Fek proving the lemma.

We would like to obtain 6, and *¢, in the form of
induced characters in mich the same way as we did for
)fo:»). |

By definition of X**Y the number of symbols of the
first type is the same as the number of symbols of the
second type viz. 1/2 . So we arrange the symbols so
that

¢(a,-2) =1 for a € f1,...,1/21
and ¢ (a,~a) = =1 for a € il/%+1,...,1]
We now dafine an involution in H which interchanges

the symbols of the first type into those of the second
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sype and vice-versa.

Lot y = (1 1/,%1)(2 1/,42) o.. (1/, 1) and note
shat v €K .

Lot T = CK(QKHN‘) o Then T = L<y>and L N<y>= 1

Let t € L then t € (X 0 N)¢C

K N NC by the modulsr lar

Kn CG(c) = Cgle)

o tg = ¢ and hence tg =6
XnN XnN

and therefore t € T,
ence L € T,
By Gefinition of y, Y¢(a,~a) = = {a,-a) for all
€ }1,...,1] and 5o V¢ (a,=a)(b,~b) = ¢ (a,=a)(b,~b)
or all a,b € [{1,+4s,1] « Since K N N is generated

y sign changes J and therefore y € T Thus

kN CEmN
<¥y> < T.

Also y % CK(c,;)’- L soLna<cy> =1.
Conversely, let t € T so that tg =

: XNN CKnH
¢ L, then there exlsts (a,-2) € N such that

« Supposs

;(8,*8) = —C(a’na) « Lot {81,o|o,ﬂr] be the subset of

1,..,,1] such that t;(ai,-ai) = -q(ai;-ai) for 1 € 1 g 1,

ad % (b,-b) = ¢(b,=d) for b € [agyeeerap] -

Then % (b,-b) (a,,=a3) = = (b,-d)(a,,=a,), @

t
>ntradiction, since A = . Thus ¢(a,=-a) = = (a,-a)

KAN  CKNN

t
>r 81l & € [1,000,1] s0 J¢(a,-s) =¢(a,=a) ard

1erefore ty € CK(Q) = I, Hence t € L<y> .

ymma 4oéoé
¢L is irreducible



Proof
# eV s0 #1, = "»KnNV' Therefore

(B, » #r) = Ggay » sgy) (W s W) = 1 since Sxmy 18 linear

and ¢ 1is irreducible.

The group <y> has two irreducible characters 1, T
say where T(y) = ~1.

Define maps c.; T -a-m' (1=1,2) o
by ©,(1y) = ¢(1) and o,(1ly) = g(1)x(y) = -p{(1) for
all 1 € L, ‘

We can wrlte «;= pit; ‘where %, =1, T1,=T

Lomma 4,3.4

W, 5 ©, are irreduclible characters of T
Proof
Let V, be the <y>-module affording 7. where 7%= |
=T , and let U be the L-module affording g
Then U’@)V areg T-modules affording characters <, (1=1,2)
For, the module axloms are easy to check with the one
exception which we now prove.
Suppose 1,y' , 12y” ET (11,12 €L and ',y =1o0ry)
and W€ U, v € V,. Then We must show
(W@ vy) (705" ) = [(w@&w1y](y")
Let U afford the representation R of L, P the representation
of KNN affording cKﬁN (sop = cKﬂN) and @ the representation
of C affording YV « Then by definition of ¢ ,
=P(%)Q . Hence u112y = u1R(12y) for all u,
=nc (n € XKNN , ¢ € ¢). But by definition of y,

€U,
Let 12 |
¥ interchanges the symbols of each type so that y € GH(C)

e, o7 = ¢ for all ¢ € C. Therefors 1,7 = n’cY = n'ec.
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So
w, 1Y = wR(17) =uR@Ye) = u r@Y)qle)

= u1§KnN (ny)Q(c)

u1¢KnN(n)Q(c) since y € T

[l

u,P(n)Q(e)

u1R(12)

il

a, i,

il

But ul, € U, so (ul1)12y

1
1 (l )1,

Hence

(W®@v,)(1 12y'y'y”)
(1,15 @ v, (v'3")

(ul )15 ® (v,3")3"

(u11)12 é)(viy')y” by above
(ul, ®v,3') (1,5)

[(u x vi)l1yﬂ (1,5")

th)vi)(l1y'.12y”)

as required.
It 1s clear that U(:)Vi affords ©., therefore <,
¢, are characters of T,
Finally, (< ,9:) = (. » gp70)
= QﬁL ’ ﬁL)(YE,Tt)
=1 Dby 2¢3.3

Thus «, ,¢, are irreducible characters of T.

Lenma 4.5.5
K

¢©.” are irreducible characters of K, i = 1,2

Proof »
Let [k,] be a set of (T,T)-double coset

representatives then by Mackey's formula
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.K K = - k
(of, o) = L () e s (50

w

)
ke fi, | TnTK

. 4
Suppos W, - (k. ]
ppose (( )TnTk s ( UL)TnTk ) # 0 for some k € Lk, |

k

Then T N T IKy>n Lk<y>k
= (EM)c<y> n (KN)cE<y>X  (Kmv<iK)
> KNN

k
Therefore ((~.) (To: Gb o6
K ‘)Krm) 7 Oby 1.2
But (~; = \ = . .
( )KnN cKnNQJ“(” S Hence

k ) k
0 which =
xm * Sk oh implles ¢ ow = Sxmy * 5°

(¢
kGTi.e.k=1

Thus (CJ;K, CJ;K) = (U» ,CJ‘:) = 1 by 4e3e4

A9

We can now prove the result we are after

Theorem 4436

e, = U,k and xe'\ = U,Lk or vice-versa
Proof
Lot X = X, Tnen
K (K K Kk
(s ) = (5,05 = ) (g s ()

ke {4
where 5_k1] 1s a set of (L,T)-double coset representatives.
Now

X L Kk,
(Brapk » (odpm) #0 = Py » )Krm) "o

since LnTk> KNN

k A
=> (g + Cxar'? O

=> K €T = k=1
Thus
(XK’ ‘-";K) = (Ff s (w;)

) = (ﬁL » ("JC>L)
= (B » #L) T 1DV 433

LnT LnT
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o oy K K
Thus 7(K-<J, + o+ 0 where 6 18 a character of K

such that (0,o;) =0,i = 1,2 ,
But %, (1) = (g)5(1) = IK:1fp(1)
and (w,X +0 K)(1) = |K:Tl (0, (1) + 0, (1))

= |K:T2¢(1) = |K:1] g(1)
since [T:L| = |<y>| =2 .
Hence ©(1) = 0 so € = 0. Therefore Xe= 6,54 0 K
But ) K(1=1,2) are irreducible and also X, = 0, + xex

is a decomposition into irreducible characters of K.

So =9, and w =g

, or vice-versa

Notatlion
Since our choice of 8 » XGA is completsly
arbltrary (xz = 1) we shall assume from now on that

= k X K
0 -Q‘ and GA = U.‘_ .

X
The following 1s well-kmown, but it will be
convenient to prove it here

Corollary 4.3.7

Any complex representation of K may be afforded by
a8 basls with respect to which the matrix entries consist
of rational lntegers. In particular, the characters of
X are rational integral-valued.

Proof |

From 4.1.2 and 4.3.6 we sec that the irreducible
representations of K may be obtained from those of the
symmetric group by

(1) tensoring these, and various restrictions of
these; representations together and with representations

which take the values +1;



(11) induecing up representations in (1).
The theorem then follows by 2.1.4, since the operations

in (1), (ii) clearly preserve the rsquired propertiss.

§4.4 Completion of the decomposition of the

‘induced principal character

We now return to the problem of determining which

of 6 and xe occur in 1 £ « Of course these may
) " WU'/*/
only occur if (3(tfq, 1W ) %0 s0 tnat (x 304) Beﬁ(«;q)
' (A p0)

by 4.2.2.

So throughout this section assume that 1 is even,
thaf (A\;p) and (x;«) are pailrs of partitions of 1
(therefore « } 1/2) such that no part of xis 1, and
(Asm s (x3e)

There Will be two cases: ();x) good or bad.

Theorem 4.4¢1

Suppose (A;«) 1s good. Then

(=
(g 5 o0 =0y 5 LT = a0y © L X ") #o
(Ao pn) (Aspm) 2 (A )
Proof

K (e ) [ X
Let W = W(MPJ . Since (1w ,’k\k ) #0, 6 or g

occur in 1wK .

We shall assume without loss of generality that

(1K’e)=a #Oo.By40201, er':v’kfor some k € K.
W x . _

Hence

X K K
(1y)

G ®<e) = O B =)

w wx

(1

X .
)K = (1w§) similarly
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_ K K :
= 1w since 1w 1s a class function of X.

LR N

K = Kzx =

Thus 1w 8.6 * «us 50 1W = 1WK = adxeq +
K =

i.e. (1W ’ xe.() = 8, 0 .

lecw)
Since X “=0 + o , the theorem follows immediately.

Theorem 4.4.2

A #/4_ => (1vv K ’X(f:/«)) = 19
CAzp)
- - K ;
AEpa2> 0,0 LX) =
: i (r;2)
X
and (1WK o) =1 = (1 ko, %)
Proof

; = (A; - -
Let W =W, %X XM~ M=, Iul=n .

We shall assume that W = R(D(A_N) where D, , is a

sl
dlagram, where D, 13 filled With the Symbols {1,sss,m )
which ére of the first type and D, 1s filled with

[ m#1,e00,1] which are of the second type. Hence
HANW<C., So W= (NANW)(HNW (4.2.3)

< (N n K)C (W < K)

= 1
Also we have that gmm =1 so (1, s ‘wnu) =1,
Now '
e * Zar) ™ e * S (g Vg (8:2.3)
= Oy ‘wrm)“wnsm ’ 7@wfmsm)“wnsn ’ XMwnsny

But wnsm=w,\ and WnSn""'WM .

So

- S, A | 8, ”
(o * Pne) = Oy ‘wnu”“wk) » X )(“w/) X0
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by Frobenius
= 1 by 2627
By Mackey's formula, if [ki} 1s a set of (L,W)-double

coset representatives, where each k, € H,

1
K =‘ K K =
(7 2 XD = (.7, ()7 ke%: (s s Wan‘)

1)

Thus the first summand is (1 =1, b
(gng, *» Pyog) = 1+ BT above

Suppose now that (1 s P ) # 0 for some k G fz. ).
| , woan | wWEnL 1]

Because WX N L > WS N N (4.2.3) We have that

‘ # 0 and h :
“Wan D F‘ka\:) and hence “Wkrm R r.wan) # 0,

[

!

: - k
~therefore ¢ =1 l.0¢ "¢ = 1 since N« G
U twEaw W

W

But we 'know that N = N1 x I‘I2 (defined by (\3;)) and by

k

construction of W, WNN =K NN, « Henece "¢ =1
‘ 2 WnN

i 2
| k
Thus 1f (a,-a), (b,=b) € N2 we have that ¢ [(a,-a) (b,=b)] " = 1.
Therefbré
: k k
either (a,-2) € N, and (b,=b) € N,

or (et,--a)k EX and (b,--b)k € Ny

2

k _ k _
1 N1 or N’1 N2

It follows that N
(a) Suppose IN #ixl Leeem #Fn

k = s = ~ = = 2n
If N,° =N, then|N | =|N,| . But|N | =2" [N

som=n, a contradiction. Therefore N1k = N1 and so

= . ; = R k = 1 and
5 N2 l.6s kK EC GH(Q)sL So

K
(y s Xy ) = Oyor s Bor) =1

(b) Suppose A = mxl ,

K=y thenNE=n . ThereforeNky=N1 and

ir N1 2 2 1 1



Nzky =N, so ky € ¢ which implies k € C<y> < L<y> .
Thus k is in the same (L,W)- double coset as y, and so
Wo may assume that k = y. |

S0 We have shown that at most two summands in the
Mackey formula are non-zero and are given by the double

coset representatives 1 and y. By 4.243

0F (1 = (1 ) ‘
wear ? Pwknr) = ¢ W’an ’ c\hl“nN)“wknc: ’vwkn

=(1

)
¢
A s\ ) for k=1 or v.
wEna vwknc v
But W no = (WS n s ) x o n ) and IAl=iml

so y Jjust 1nterchangeé the symbols in Dy and D+ It
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follows that WY n 8, =W, anda WY n 8 =W, . Therefore

M

# (1 Vo )y=0_ ,x Yy LX)
Wync’ winc wﬁ’ W ‘w ’KW

-~ A

S S
(1 )™, X0y, X
W.. W,

by Frobenius.

Therefore, by 2¢3.6, m < A S 80 NS
Hence

(1) XN #4  implies that the summand with k =y
is zero so that only the first summand is non-zero and
as in (a) , (1W:K » X)) =1

(11) X = , the summand with k = y is

S .8 Y :
((1, )™, x*)((1 )1 ,X*) =1 by 2.2.7
w, W, .

Thus both the summands with k = 1 and k = y contribute

K =
the value 1 il.0. (1w ’XK) 2 .

(NeBe the double cosets LW and LyW are not equal, for,
if they were then y € IW < L (p 108) = (), a

contradiction),
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K =4=(1 K X ‘
Finally, (1, , 6,) =1 (1,7 5 76,) by 4.4.1, since

A=m implies (r3;u) 1s good.

We now deal with the cates in Which (j;x) is bad.

Bo for the rest of this sectlon we suppose that » = O

and all parts of )\ are even, and )\t 1. Hence

A= (2vy s ose ,ZVI,) for some partition v = (v1 s ooe ’Vr)

of 1/2. Wo shall write v = 1A and A = 2y,
2

We shall continue to suppose that « } 1/2 and
(r;-) = (x5«)
i

Theorem 4.4 .3

With the above notation and the remark below

i
. S
Weay-) Wins =) v
Proof -
(= «)

Let W =W, ._, 3 C =0C_(¢) corresponds to X = X

)
We choose W = R(D,, ) = R(D,) where D, is filled with

the symbols [1,ees,1] in the following way :

because >\ = 2v , We may write D, = Dv + DV' ’ DV corresponding
to the left-half of D and Dv' to the rilght.

Fill Dv with the symbols [1,ees,1/2] in the natural

ordering and then fill D ' with the symbols {1 /2’+1,...,1J

in the natu:éal ordering.

It follows that W< Hand y € W,

Remark
We have two cholces for W,. -) (4.2¢1), olthexr W

as defined above or W~ (x = (1,-1)). But if we use
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W", then the only effect on the theorsm is to interchange
6, and o, , giving the negative of the left-hand side
of the equation in the statement of the theorem. The
proof of the theorem, using Wx, will be exactly the same
as the prodf we glve below for W, and so we might as
well suppose W(qu =W. In fact as using wr only leads
to a chénge in notation, we will in future assume
Wi ,-) =W < E the symuetric group on [1,e00,1] .

Before continuing with the proof of the theorem,

we will prove a couple of preliminary lemmas

i
Lemma 444.4 (compare with 241.2)

Lgt z€Hy, c€C, w€E€Wse Then cy = zwz—1

J
implies 2z € CW .

r
!

Proof
Since all the elements in the statement of the
lemma are inside H, we can work in the symmetric group.
Now W‘=‘R(DA), S0 by 2.1.1, zwz=1 € R(zD,). Also cy

does not have & £ixed point in [1,...,1] because

OY(DV) = G(DV') = DV' .

Considar first, the top row of zD, . Let
(a1 «es 8,) be a cycle in the decomposition of cy such
that 84 5 eee 58, occur in the top row of zD, « AS

= L iti
ey(D ) =D ', either a 6 or a, €D, and, by writing

(85 oo @ a1) if necessary, we may suppose a, € D, .

r

Hence a, € Dv ’ az

and because cy(ar) =a, , Wo have a, € D' so that r 1s

E Dv' » a} e D\’ » QOVO

even, Thus

a.' 9 83 9 eoe ,ar-_' GDV

and a2 ’ a4 s oo 5 8, € Dv'



109

Now we also have, by construction,
1,250;0,1'/2 EDV

¥ s 1/ #1 5 eee s Lydm €D

Bet c, = (1 a,)(2 83)-.-(;é 8.1 (34*1 a,) (1442 8y e (Iptpy
Then 01 €C .

So the top_row of c1zDA contains the symbols

f1,2,...,gé,;é*1,%é*2,..;,}é+gé ] in some order .

Let z; = ¢4z then R(z,D,) = c1R(zD}\)c1"1 , SO
ci(eyle;~t € R(z;D))e But oqley)ey=t = (eqeye,~ty)y .
Then set c2 = c1cyc1-1y e€c (as ¢J = C) so
¢o¥ € R(z4D,) , and therefore

|

; co¥ = z,w'z,~1 for some w! € W.
But coy 1s easily seen to contain the cycle
‘1 ;é+1 cee gé %é+g§) and therefore we may apply the
same process as before to the rest of the elements in
the top row.

Repeating this process enough times we obtain a

diagram z D, with z

= 03z s C. € C, and such that ngA

2 2

has the same symbols in its to; row (in some order) as
D, e« Remermbering that ¢y has no fixed points, we may
repeat the process with the other rows to obtain a
diagram z*;Dx such that z* = c*z, ¢* € ¢ and z’D, has
the same symbols (in some order) in each of iUs rows
as D, . Therefore there exists w* € W such that
W*z*.Dx = DA i.o. w*z* = 1 which implies z: € W,

1

Finally, z = ¢* 'z* € CW as required.

We let T = L<y> as usual.

Lerma 4¢4.+5

If z € H then
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(¢ nz2¥z™") (cy>n 2wy

(L n zWz"1) (<y> n zhiz=T)
Firstly, L 0 zWz~' = (K n n)¢ n zwz~?
S(KNN)CNH asW<H zcH
= C
Because &8lso C < L, L n zWz~! = ¢ n zwz~! . Thus 1%
is sufficlent to prove the first equality. Trivially
(¢ nzWz= ) ky>nzwz-1) < T 0 zWz=1 .
Conversely, let t € T n zWz~! = L<y> n zWz=1
Therefore t = ly' = zwg ™ s Where y* =yor 1, wewW, LEL
But I = (KN¥)C so 1 =ne, n € N, ¢ € C.
Hence necyt = gwz=1 = n = (z*«'.rz"‘1)y"1c>"1 € H
= n € NAH = 1
Thus cy'! = zwz™1, If
(8) y* =1 then ¢ = zwz™! so that t = ¢ = zwz~1 € ¢ nz¥Wz =1
which is a subgroup of (GnzWz~1) (<y>nzWz~1)
(b) y' =y then ey = zwz~1, 50 Dy 4.4.4, z € CW.
Hence z = cqWy , ¢, € C; v, € W . Therefore
ey = c1W1WW1"1c1“1 = ¢ = yc1w1ww1"1c1”1
= c1(yw1ww1‘1)c1-1 as y € CH(C)
€ c1¥§'c1’1
= ZWz ™
Thus ¢ € ¢ N zWz™' « A8 cy € zWz~! and ¢ € 2VWz

1 so that

Wo have y €<y> N zWz~
t=ey e (CNaWz" ) (y> n zWz"T)

proving the lemma.

We return now to the proof of the theorem.

Let 6 = €, or xed and t,= 1, U, = T , therefore
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-d
-

L = ¢LT; (1=1,2)

“WK » 0) = “wK s 95)  (4.3.6)
= z T3
) Cig ©0) g 2)
ze[zi\

where {zi] 1s a set of (T,W)-double coset representstives
and each Z4 € He B0 by 44445

K

1
(W

= z | z
»0) = Z ("1, .+ 8 Y (%1 () )
z€|zy Lw® " L y w2’ y nw?

| cee (A)
by definition of w .

But <y>nzwz"l =1 = y e zwz~1

\I}
u

zwz"™! some we W

=> z €0oW<g W DY 4e4.4

= z =1
Conversely, as y €W, z =1 =><y>n sz"1 F 1
Now
(v) , =% forallsz
<y>nw <y>nw
- & = : 7 - - =
() = 74 <> <cy>AWe =1 &>z =
h <y>nWZ <y>ﬂwz ‘ v
Hence ‘
(%1 c: = (0 ifz =1and i =2
<y>my2 °’ ( )<y>an
1 otherwise
8o from (A)
K K X =
1 - (1 = (1 )
( VV 9 e“) i ( ,w [ e() ( an 2 ¢Ln,w

(1e0. the decompositions of the Mackey formula only
differ in the first summsnd)
However, as in the proof of 4.4.-5;, LAawW=CcnWw.
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We let B=(1WK:Q<) - (1K."e.<) = (1 y B
W cny Cm

S
Then We only have to show B = (1, ¥ x2 24 .

B = (o * Pomy

= (1 Xt 0 X"
By 7 g W s Smnw)

as cnws= (Smn W) x (smn W) where m = }é
S 2
= (1 m x
( 8, » X

But by the construction of W, smn W= W, » so

B = (1, °m , x%)2

Wy

Finally, in order to show B # 0 it 1s sufficient,
by 2+346, to show that v €&
By assumption, (\;-) 5 (x34) s0 (N3=) 5+ (x3<) 88 on
p 96. Therefore ():-) > (¢ 3¢) &> (-;2x) so that
(A3=) < (=;2«) which implles )\ < 2x Dby moving the whole
of A across to the right-hand side.

Now 2« = (2,5 eee 4,2« ) and ) = (2v1 s ose ,2vr,) so that

A€ 2x = ZZVi < qu° for all m
= Z v; < Z x: for all m
=y € s, completing the theorem.

Finally, we prove

Theorem 4,446

With the notation of 4.4.3

K (a; %)

(1 K , 0,) #0 &> vy g« <> (1 ,Xk)#o
') - W

(r:-) (x:-)

and (1W K R x9,,,) 0 <=> <o
(L‘ _l ;



Again we need a preliminary lemma, which uses the
same notatlon as the theorem

Lemma 4,.,4,.,7

K (v:9)
(1 ’ X ) =1
w(*rﬂ k

Proof
Let W = W(‘\;_) be the Weyl subgroup of X defined
in 4.,4.3 so that W < H.

K (V) % ’
(1 4 = 1
wooe X)) ( Ly? ? ﬁan
z€ |24 ]

where [21] 1s a set of (L,W)-double coset representatives,

with z;, € H. Hence, 88 in 4.4.5, L N W% =g n w2 ,

Thus )
K (N:v) o
» X K ) - Z (1cnwz ’ ﬂanZ)
ZE!Zi]
= )«
cnw? cnwz)
zewil

Suppose (1 s W ) #0 for some z € [z, ] .
c Ccrw® | 1

w2
Woe may as well assume that in zD(A;_’ (where W = R(D(k _)))
all the symbols of the second type lie at the ends of

rows of ZD‘*&? as this only has the effect of multiplying
z by an element w € W, which 1s in the same (L,W)=double
coset as z.

Thus C n W° =W, * W, where (v;$) is a palr of
partitions of 1 with Y,d F %é , and ijs) is obtained

by moving the squares in Dy, o containing symbols of

the second type over to the right-hand side, and
reordering the two resulting diagrams. Therefore

Y
0# (1 X, , X
P Uom * Yom® " wb, ’ wr)‘ w, ws)



114

53 S
= 1 :
= () 2y e
§
S0 DY 2636, ¥ < v and §< v,

We shall show that ¥ =y and § =y, Hence

ZD()\>_) =DE‘+ DJ =DV + Dvl """D()\}’) . 8o z=1.

K (~:9)
fe0e (1, = (1 %
¢ w ’Xk ) ( Cw ’ an)

S S
N ; Vv
((1Wv) 7 s X )((1Wv) % ;X )

= 1 by 2e2.7, a3 Toquired,.
So we have only left to show § = § =y,
By construction of ¥, 3 , for sll k there exist
1y » Jj such that A =2y, = ¥ + Sd‘k where
¥= (6 s0ee57;) and §= ($ ye0ayss)
(add zeros to ensure that ¥ and § have the same number
of parts) anmd A= (2\’1:'":2"3) (automatically A has
s parts).

Putting k = 1, To4 §; =av

1
But ¥, < ¥, < v, since ¥ < v and similerly
1

1

$¢l< d, < v, since § < v,

Therefore ¥: = 4, =v, sand ¥ = § =y

1° Thls starts

off the induction.

Suppose, for k<r, we have U, = SL = vy o Sinced<v

r v
Xb"; < Z vy We have T, < Vo and similarly J,< Vpe

[N

Now ¥: + Z‘:f = 2v, and Wwe already have ¥, = § = Vi
for k<r. So i,>r and jI,)r. Hence

. = §. = .
w <Yy <v, and § < §.<v, end so T, =V

Therefore by induction, ¥, = Sk = v, for all k
1e0¢ & = J = v, proving the lemma.
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Proof Of, 46446

(e &)
’ X ) #0 <= (5;3-) 5> b)) (402.2)
<E> v € x a8 in the proof of 4.4.3
) 8
m
E (1) ™" X2 £ 0 by 2.3.6
W,

= (1.0, e) - (,1WK , Ta ) #0 by 4.4.3

« (1.5 ,0,) %0
proving the first part of the theoremn.

No\fv let v =x , Then

i :
K " K x _ K (~v: vl
(1, s0) + (.7, %) = (17 ,X, ") =1vy 4007

' By the first part (1 , ev) # 0 « Hence

I
. ;/9)=1 and (1.X¥, 6 ) =0 . Therefor
W ’(v w o’ v . arefore

‘ " (= «)

(1WK ,;'xeq)#o =5 y #« and (1WK,'XK ) #0
| ,

’

J

[

= y #« gndy <« as above

= v«

Finally, suppose v <o then we show (1W x6«) #0
which will finish the theorem.
By the proof of 4.4.3 (p 96)

(1, , o) = Z (*1

w 2 ? ¢ )(Z WZ H4 (’tl) Z)
2€ {24 )

LW <y>n <y>nW

where fzi] is a set of (T,W)-double coset representatives,

Zy € H, and

(z1<y>nwz Y (TL)<y>nwz) = { 1 1f V4 ? 1

0 ifz =1

Also

Oram? » Poow?) = Olgmyz » Yomyz) DY 40425
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s

8
> X (1 )P

= ((1 .

Wy
where Sm n zwz=1 = Wy s Sn n zwz=1 = W, and m = % = n,
We shall choose & z ? ™ (below) such that¥ < « and
S <& (¥,5 depend on z). Then by 2.3.6,
K X

(14" » ¥ ) #0 as z # 1.

It will be sufficlent to choose z ¢ CW. We have
that v<o o Lot v = m@c ¥ | <u7=«
where /um is obtained from ,dlc'l) by moving up one square.

Let v = (v1,...,vr). Then

i (Vg s oo ,y1+1, cor Vy=1s eae vy

some 1<J (rearrenged to give a partition).

Let A ;I= (v1, cee V=1, oo ,vj+1, ses ,V,) Tearranged
to giv? a partltion of ]/2.

It is :easy toe see that g €/‘L11)<o( « Thus /um< o

and ﬂ;;<o< .

Now D(,\‘_) =D = Dv' + Dv' where Dv is filled

A
with f1,...,;é} in the natural order, and Dt is £illed
with {:1/24'1,...,1] in the natural order. We may therefore
obtain a diagram Dﬁm from Dv by moving & square
containing the symbol a € {1,...,1/2] and D, may be
obtair;ed from Dv' by moving a square containing the
symbol b € {1/24-1,...,1} . Then a, b lie in rows j and
1 respectively, of D>\ s |

Let z = (ab) € Ho Then to form 2D, we just swap
the symbols a and b. It follows then that ¥ = p ¢/

and d =8 , s0o¥V<a and $<x , and therefore ¥ < «
and 4 €x .+ We have left to show z ¢ CW.
Suppose, for a contradiction, z € C¥. Then

z =0 Withec; €C, w€EW, and so c(ab) =w where
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c = 01—1 € C. Express c as a product of disjoint cycles.

One of these cycles must contain b, otherwlse w(a) = b

?

an imposslibility, as we have chosen a sud b to 1le in
different rows of DA o« Thersfore ¢ contains a cycle
(b d1 cee dt)’ and since the cycles are disjoint

c = x(b Ay eee dt) Where x does not contain any of the
symbols b, d1,'... by
Suppose 8 =4, , 1< k< t. Thenw = x(b dy eee d.) (ab) € W,
Thus w(a) = d, » W(d1) = d2 s sse o w(dt) =5, ani so

all the symbols a, d1, dz, eoe dt’ b are collinear in
D, , again an impossibility.

Thus for some k, a = dk + However, C = S, x 8, , so Wwe
! 2 R
can asgume each cycle lles in one of ths symmetric

groups and 1s therefore in G. Thus (b d, see 4,) €C

and beéause a = dk some k, 2z = (ab) € C, a contradiction
8lnce a € [1,.00,1/21 and b € 11é+1’°"’l] ¢ This

contraaiction shows that z € CW and completes the theorem.

§4.5 Solomon!'s decomposition of the group

algebra of W(Dj)

We interpret Solomon [17] for the Weyl group W(D;) .
As usual, we may assume that all modules, representatiouns
and characters are over the field of complex numbers.

The generating set I for X = W(D,) is
[ (12),(23) 5000y (1=1 1),(1-1,-1)] and the parabolic
subgroups of X are the Weyl subgroups‘wu;ﬂ,such that
A has only 1 or 0 parts.

The results for K are more complicated than those

for G, as will be illustrated in the examples beloWs
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We shall therefore confine ourselves to determining

‘/\pV of [17] where V = R ([3] , tsble 1Iv).

Let J=I, then the parabolic subgroup WJ_ =W © o)

for some pair of partitions (¢;o) of 1 such that o has
only 1 or O parts and ¢ # (1) « We can then write
p(3) = ((39).

Fix an arbltrary subset J of I, let 3 be the
complement of J in I, and p(J) = (¢3o) , p(3) = (ﬂ‘;u').
Deflne |

E;" Z w and 'qJ = Z £ (w)w
f WGWJ WG‘J:]‘.

so that A&Jns affords the character

! | § M= ]
; Y = = K
: 3 (-1) 1W (17 )

JeM<I M

|
!
i

Theorem 4¢5e1

Let (A;#) be a palr of partitions of 1. Then
(#{T', X‘:"") #0 > (¢30) 5> (A3x) and (' ;«’) & (~'32")

Proof

As 1in previous chapters

| W K )
pa) X (xp LV N 40
(Vo ,X™) 20 = (1 , Xy %0 and (¢ , X
S i W(E’;r) K w[ﬂ':x’} K
X . X (753
= (1w ,X‘:"“’) # 0 and (1W ) ‘,XK )) #0 DY 3.2¢1
(¢.c) . nxy

= (p30) = (Azpm) and (g/'3«') 5¢-Qu‘;A’) by 44242
D

Examples | _
(a) It is possible that (v, , x“;—"”) =0 (cfe 345.2)

BT
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Let J = {(12),(23), eee ,(1-1 1)} a0 (¢5¢) = p(3) = (1;-).
Thus M2J implles M = J or M = I, and WJ < Hg G.

Hence
(e:o) = K (:v K p_ )
(\VJ ’ XAK ) (1W'J » XK ) - (1‘71 ’X(k )
- X (r;0) er)
(1W,J XY - (15 ,3<K ) (4.1.2)
- G -:t) o -:t)
(1, PO R S A

by Frobenius

1 = (1K R 1K) DY 3¢3.9 and the fact

-31)
that X "' = 1G from the definition in §3.1

5 = 1-1 =0
(b) 51@;1ar1y, 1t 1s possible that (v, , Xy =
(cfe 345.2) |
Lot & = [(12),(23), eee ,(1=1 1)) s0 (4'3«') = p(J) = (13-).
As for (a), (w3 »X\""") =0 . ¥ow by [7] lemm 7,

) (=:8)
Vg = €%, enaso by seza (v, X5 =0,

We now wish to identify /\pV. S0 We sSuppose Iﬂ = p.
Definition

Let (\;) be the pair of partitions of 1 given by
(\3) = (1P ; 1-p). We call (\3u) the hook graph for J

and 'X{KA"’“, the hook character of J.

The hook graph (i;u) depends only on the order of
(\:p)
K

(1) = (3) by 3.4.3.

(\:p)
K

T and X
Now A ## and hence X is irreducible, unless 1 =2

and p = 1. However, when 1 = 2, K is a decomposable

Coxeter group and therefore excluded from Solomon's

consideration ([17] theorem 4), and in this case /\1V =V
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is reducible. We shall therefore assume for the purposes

of this sectlon that 12 3,

The following lemma may be proved in preclsely the

same way 88 3.5.3

Lemma 4.542

(1) The number of rows of ¢ = r(e)
(11) (we , X7y =1

i
J

Theorem 4.505 . i

Let X be the irreducible character of X afforé.ed
by APV, Then X = X(:"’M)'
Proof

The proof is somewhat more complex than that for

Ge
(r-§)

Kk
partitions (y;§) of K such that ¥ #J , or X =@,  or

K 1is irreducible, so X =X for sonme pair of

xe,( for some partition oc_of }{2 .

[(p+1 p2)5 oss , (1=1 1),(1=1,=1)]
hence J = [€(12),(23), ees 5(P p+1)] so that |J] = Pe
Then (g;0) =p(3) = (17 5 1-p) = (\3) o By [17] APy

1s an irreducible submodule of AEJn $ and therefore

Let J

(\gJ s X ) #0. 8o '(l,uJ ,)((Z"”) #0 or (vJ » 6,) #0 or
vy » *0,) ¥ 0o In the last two cases (¥ ,’)Q(:"“)) # 0.
Thereforas by 4+5.1, (f ;o) = (v39) or (p30) 5" CHIE
If we allow = § = X then we can put these results
together as ((’ so) 5-> (rs5)

feee (17 5 1-p) 5> (539) &

Now let J1 = {(12), XX} ,(l*p 1—p+1)]
so 31 = [(1-P+1 l-p+2), ees (11 l),(l-1,-l)]
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, L (
Then (g'3«') = (17P 5 p) = (u32)

Again (\tJJ1 » X) ¥0 so(allowing ¥= ¢ = x ) by 4,5.1
(ﬂ';«f),ﬁe-(S';U') « Thus (11-p : D) 59.{SI;FW
Hence

H

(1 3 1-p) = (v;¢) and (1777 ; p) g ($'59")

We break the prcoof up into four casss:
(a) Suprose (1P ; 1-p) 5»-(r;é) and (117P 3 p) 69-(5’;5’).
Then by 3e3¢5, (b”;é)' 5> (1 ;s l-p) and since'c—; is anti-
symmetric

(r36) = (1% 5 1-p)  (so v #J)
and X =X(::H as required.
(0) Buppose (1° 3 1-p) 2o (r34) emd (117P 5 p) & (4'50").
Then the right-hand row must be moved to the left in
both\cases. Therefore |é/ < p and IT/=)¥'] ¢ Ll-p,
However [¥| 4 |§] = 1, therefore Id]=p , I¥Tl= 1-p,
It follows that & = 1P , ¥'=11P , Therefors
(538) = (1-p 3 1P). Bo X = X“:;lp'ﬁX{':"bﬁ= 7(:\"”
(¢) Suppose (1P ; 1-p) 5e>( ; ) vut (117P 5 p) 69-(6‘;6J)-
Therefore by 3+3¢5, (6';0 ') Ee-(11‘P ; p) so that
r(s') 3 l-p.
Also (11-P ;s P) 54» (§'; v') means we have to move the
row of length p over to the left-hand side. Thus
elther ¥' =1 and {'= (p,17P~1)

or ¥'=0 and §' »(p,1*"P) and because r(S') > 1-p
$'= (p,1*P) or (p*1,117P"1)
or (p,2,11’p'2).
Hence
(r38) = (13 (1-p),1P°T)
or (- ; (1-p+1),1°"")
or (- ; (1-p),1P)

or (- fl—n\-9_1l’p"2\
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We see from this that ¥# 4 therefore X = x( 24

K
(5:4) X (¥:4)
Now (pr1 » X ") #0 s0 (1WJ1 s X ) 0 (1.2.8)

But W £ H so0W =

W as .
T4 3-1 (l-p'i'1,1p"'1) a Weyl subgroup

of He Buppose that ¥ = 0, Thersfors

K (-:8) H (—:4)

o # (1 s X ) =
WJ1 K (

1 2
W (1-ps1,18-1) “

by Frobenius
H

{(1-p+1,1P-1)

$
“W s X°)

using 3¢1.3(1i).

Therefore by 2.2.7, | S 2 (l-p+1,1p-1) « But we have
alreadj restricted § above.

Thus “QL= 0 = d= (l-p+1,1p-1).

8o (b‘;;é) = (1 ; 1-p,iP=1) or (- ; 1l-p+1,1P-1),
But Y is afforded by APY so X(1) = dim APy = (;).
tee. X"(1) = (11,5-

| (v; )
If ¥ =0 then X "(1) = 11 using 3e4.3e.
1{l-p)i(p=-1)i

Equating this with (1), we see that p = 1, so ‘
1 P (¥ §) (4. ¥) X(/ :-)
(¥;8) = (=;1') and therefore X =X~ =X, = K

(A:
=X, ~ for p =1

If ¥=1 then X&q) = 1
‘ N (1-1) (1=p~1) 1 (p=111

and equating this with (;), We £ind p = 1-1 or p = 1.
Hence (¥3d$) = (1 3 11"1) or (1 3 1l-1)
= (As4) or (#;)) respectively

and again

X =X”Z“ - X(a’ivl - X(Z;M
Finally,
(@) BSuppose (1P ; 1-p) #& (¥34) but (117P ; p) => (§'5%7.
Therefore by 3«35, (7;d) e (1P ; 1-p) so that r(y) > p.
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Also (17 5 1-p) 67‘ (r3$) moans we have to move the row
of length l-p over to the left-~hand side. Thus

either § =1 and ¥ = (l-p,1P~ 1)
or § =0 and ¥ = (1-p,1P) or (L-p+1,1P-7)

or (1'p:291p-2)
and so ¥ #9 .
(¥;8)
K and these Ware exactly the cases

But X = X~ = X
(A:p)

covered in (c). Bo the same argument shows X= X K .

(6:7)

§4.6 . The maximal Weyl subgroups of W(Dl)

Thée maximal Weyl subgroups of X are of type
Dy 4 » A, and Dy # D14 (2 <1< 1-2).

In this section we give the decomposition for
inducing an irreducible character up from a maximal
Weyl sﬁbgroup of K¢ We can usually reduce the problem
to con#idering G by using Frobenius reclproclty.

Theorem 4¢6.1 (Inducing up from D1_1)

Let (\;x) be a palr of partitions of 1-1 and (¢38)

a pair of partitions of 1. Then 1f Kt = W(Dl-1)
((X(A:#J )K , X("(;/‘)) #0 <=> («x38) may be obtalned
Kl . .

from (A3px) or (m;1) by adding a squere to the end of &

row of A\ or s ; lee. (x38) €Y, » say.

Al )
Furthermore,
(1) 1 odd:

Suppose (x3;p) € Y('\‘#) , then

A = (xrNE ) =



(h:r) K (x:n)
(S Y SR

>
1}

3

\Il/

xt
and 1f 6 =6, or ~ 0, Where x' = ((1-1)y=(1=1)), then

K «:n) A
@ , XU #0 <= () ex

in which case
K (;ﬂ)
(67 , %" ") =1

K

(N2)

(1) 1 even:

Suppose (x;8) € ¥(,.,, , then

‘ (A:p) (x:4)
“ #0 = (xR xSy =
x =/3 = (n: ,«) K (a;0)
‘ = WX Y LX) =2
and infthis casé
: * (A:p)
: (%, ey =
where é =6, or e“ s x = (1,-1).
Prooff
Let Gt = W(Cl 1) .
,; K {ayn) K16 {;p)
(cr )™ x5y = (Lo E[E, x )

by Frobenius
((X[/\ (‘*) ) , X(ﬂ(‘,‘ﬂ))

by transitiv1ty of induction
(A2p) G lo:8
= (L], xe

as K* < G' < @
= ((X(A:/“)d. ’X’((“—'f\))G ’ (X(K:ﬂ}) by 401.3

¥

= (Lt e (e L) @)

Thus the filrst part of the theorem follows from 3e¢%5e1.
(1) 1 oda;
If A#m  then (x3a) cannot be obtalned by adding a square,

>
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from both (M;x) and (x3))  (as 1 odd implies IxI#/a/ )
Therefore one of the terms in (A) is'zero and the other
takes the value 1, by 34641 |

teee  ((XNM)E ) x4y 2y

If A =0 then (x3;8) can be obtained by adding a square
to both (i\3p) and (+32), so both terms in (A) take the
value 1 feee ((x V)%, X7y = 5,

Let © = 0, or x'eA so

(eG R X]R”U) by Frobenius

Ll

(eK , X(“:", )

K

G! e
((6-)G,X(’M) as K' < G! < @

.G v
(™A x4y by 4413

'which’takes the value 1 if and only 1f (x;p) € Y0
by 34661,
(11) 1 even:
If X¥/ then (x;4) cannot be obtained by adding a
square, from both (A;m) and (m3y) ( as 1-1 odd implies
Il #Imnl)e Therefore, as in (i),
((xrhy® , x 0y =,
If x = then («3p) can be obtalned by adding a square,
from both (A;.) and (sx;)) so,‘as in (1),
(‘X (»L:‘H)K , x(“:«z)) = 9,
Finally, since the elements of X' can be chosen So as
not to involve the symbol 1, '(xe"‘)K' = (e“)K, (x = (1,-1))
Therefore

(O )E o) = (el (o))
kl
by Frobenius '

it
~
—
-
p~
-~y
~r
-
e8]
A
~

by Frobenius
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(r:p) (K = | (A:n) (K (o =)
and ((X o Y , e) 1/2((7( by ) L, X . )
= 1 Dby above,

where © =76(,t or %o

o *

Theorem 4.6.2 (Induclng up from Al—1)

Let Ar1 and («a3p) a pair of partitions of 1.
Then

(™ JXT) 20 B 050) > (x30) = (-5)

and

()", X7y =

This follows lmmediately from 3.6.2 using Frobenius
reclprocity.

Theorem 4.,6+3 (Inducing up from D, + Dl-i)

Let (A3n) be a pair of partitions of i and ((;0)

a palr of partitions of j, whero 1 + j = 1; let (x;4)
be a pair of partitlons of 1. Let K; =W(D,) ,

K. =W e« Th
3 (Dj) en

[

v ¢

following holds:
(1) (x3=) = (Asp) — (-;x) and (8;-) 5 (e

we
R
<
——
1
-e
>
L

(11) (3=) z> (As0) o> (=3) and (A5-) o> (ns0) => (=500

Q

(111) («3=) 6+-Qu;o) 5 (=3;x) and (B83;-) & (xsp) 6*-(-§ﬂ)

(iv) (x3=-)

%

(ns3t) 5> (=3x) and (p3-) i (As0) 6»-(-;ﬂ)

Proof

Let G4 = W(Cy) , Gj = W(CJ) e« Then
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|
~
o
xﬂ\
>
X
=
=3
'
3
S

- (A 2p) (e: («2f)
= ((X K- 'Xk,‘ ) ,» X ) by Frobenius

. ., GiXGy. G -
(L@ gy 53] xesn),
as Ky x Ky < Gy x Gy < 6

RN o) G .
([(x“;’:"’) i.(X(e.;.))Cj]G s XY by 1.2.5(11)

(DX 0] [0 4 WG yen)y by 44143

((‘X’(c\lf*‘. x«;u])G ’K(“lﬂ)) * (((X.(l\:/" .’X/r_‘('))G , X(")ﬂ))

G

i
|
| G

+ ((XINH . fx(”;t’)

i

’rX("(}/-‘)) + ((,X’((A;X,.'X(e;"}) , x“‘)/j))

Thus if [7# O then one of the Summands is non-zero.

The theorem then £0llows from 3¢6e3.

|

§4.7 Some remarks on Weyl groups of type D

The situation 'in W(Dl) is not qulte so good as in
W(A,) and W(Cl). In both of the latter cases we Were
able to find a bijection between the irreducible
characte‘rs and the Weyl subgroups, and gave a partial
ordering on partitions or pairs of partitions which
parameterized both of these sets. In other words we
were able to glve a partlal ordering on the Weyl subgroups
and then defined, where W = W(A;) or W(Cy) end W, is a
Weyl\subgroup of W, .

X(W;) =(irred. character X : (1y W,X)S*O but “W W y)=0
1 2

for all Wevl subgrouns W. such that W. > W.
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The map X turned out to be a bijection.

We would like to find an ordering of the Weyl
subgroups and/or irreducible characters of W(Dl) S0
that if we  were to define X as above, then X would be
almost a bijectlon. We certainly could not expect X to
be a bljection as the number of Weyl subgroups of W(Dq)
1s, in general, less than the number of irreducidls
characbers. Thus the set X(W1) will sometimes contain
more than one lrreducible character. However, if vic
could also find a partial ordeoring on the irreducible
characters, then we would choose to associate with W1,
the (we hope) unique character which 13 the lowest in
x(W1) wlth respect to the ordering, and eall this a
dominant charactar.

This leaves us with a set of non-dominant characters.
We would then like to assoclate each of these with a
semi-Coxeter type Dj(a;) or Dy(b;) (see [5]) in a
consiétent way. Indeed, we would hope that the resulting
bljection between irreducible characters and Weyl
subgroups or semi-Coxeter types 1s consistent in the
following mamner (cfe. §2¢5 and 3.6.1) :
let X be an irreduclble characbter of W(Dl) assoclated
with a Weyl subgroup or semi-Coxeter type W, and

Suppose

XVJ(D1*1) = :=Z‘ ai ’XL

(X, irreducible characters of W(Dq,4q))e ,

Then we would like there to be a unique lowvest character
Xw (say) of the set {Xﬁ, ces ,er, with respect to the
partial ordering on the irreducible characters, such

that a; = 1 ande'is assoclated with W inside W(Dl+1).
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It 1s for this reason that we have included the section
§4.6 on maximal Weyl subgroups.

It turns out that it is possible to give such a
bijection in Weyl groups of type D of low rank
(teee 1 < 7) and we 1list the results for 1 =4 and
1 =5 in §4.8,

A study of these low rank groups reveals the

following facts: !

suppose W (a) 1S 8 Weyl subgroup of K = W(Dl) (L < 7)
and X¢?) 15 an irreducible character associated with
Wy.) + It Seems that we may obtain (x3s) (an unordered
pair) from (A;u) (which is ordered and no part of m is 1)
by the ijmap@where
;5: @ ) = (k*,,u; A

where \* , A** are obtained by splitting each of the
parts fof A almost evenly (depending onm ). Note that
(Aspm) 5—> ()\*,,_ 3 ,\**) but nb moving up is required in
this operation.

If )\ has all 1ts parts even so that A= 2v then
@E)(A;=) = (v;v) and the two Weyl subgroups W (Ar-)

(see 4.2.1 and remark p 107) seem to be associated
(V;v)

x
with the two irreducible components 6 and "o of X,

(L—-y; ) :
Also 1t seems that X "*should be associated
in W(D 1< 3§J<L).
with Dl(aj) n W( 1) ( i /2
If (x3p) and (¢;o) are two palrs of partitlons
of 1 such that IxI =/0! and 18] =/l and x<p ,
f <o then it appears that the ordering of the characters

(=; p:c)
satisfies X Kﬂ) < 'X(N .

To show that the problem is not solely due to the
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fact that, with the characters of W(Dl), We are dealing
with unordered palrs of partitions, we have included a
chapter on W(Bl), which contains W(Dy) as a regular

Weyl subgroup. It will be seen that here, although the
characters are purameterized by ordered pairs of partitions,
the problem Seems to be equivalent to that for W(Dl),

as the operation gé-defined in that chapter is very

simllar %o 5> .

§4.8  The groups W(D,) and W(Dg)

I

i

Wé list the bijectlon, found by direct caleculation,
betWeeﬁ the irreducible characters of W(D,) and W(Ds)
and théir Weyl subgroups and semi=Coxeter types. The
tablesfwere used for the calculations for W(F4) and

W(Eg) in chapter six.

The notation is as follows :
the f£irst column gives the type of the Weyl subgroup or
semi-doxeter type; the second columm gives the pair of
partitions ();u) parameterizing the Weyl subgroup W ..,
(where appropriate); the last columm gives the pair}of
(<;8

partitions («js) parameterizing the character X K !

(we shall write this so that lx! > 18] ).
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TABLE 1

K = W(D,)
T!Ee W()‘)P') rxl"‘}ﬂ)
D, (-5 4) (4 5 =)
I)3 (1 ) 3) (31 2 "')
A, (4 5 =) (2 ; 2)

D, + D, (-5 2%) (2% 5 -

Ay + D, (2 5 2) (21 5 1)
A, (31 5 =) (2 ; 1%)
D, (1% 5 2) (212 5 -)
Ay + A (22 ;5 =) (1% 5 1%)
Ay (212 ; -) (13 5 1)



K = W(Dg)

Type

TABLE 2

(135 4)
(5 ; =
(- 5 32)
(2 5 3)

(12 5 3)
(3 ; 2)

(a1 5 =)
(1 ; 29)
(32 5 =)
(21 ; 2)
(312 5 =)
(221 ; =)
(17 ; 2)
(212 ; =)

-we

(15 ; )

-
-
N
]
Ay
S

(213 5 =)

(1°

-e
!
~

132
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Chapter five WEYL GROUPS OF TYPE B

For the sake of completeness, we give an algorithm
for Weyl»groups of type B, similar to ones in types G
and D (§3¢3 and §4.2), and include some results on
inducing up irreducible characters from maximal Weyl
subgroups of this group.

W(Bl) is 1somorphic to W(Cl) and hence has the¢ same
characters. However the Weyl subgroups are different,
which would lead to a different association of irreducible
characters to Weyl subgroups (cf. §4.7).

We let G = W(Bl) and, as far as the chafacter theory

goes, uSe the same notation as in chapters three and four.

|

§5.1  An algorithm for W(B,)

Remark‘ |

As in chapter three, we shall only be intTerested
in the regular Weyl subgroups, although in this case
they do not form & complete set of conjugates. For
example in W(B4), the Weyi subgroup of type B, + B,
is not conjugate to any regular ocne. In the rest of
this chapter we shall sssume sll Weyl subgroups are

regular,

The Weyl subgroups of G have the form
* s (;
SX x see X erx ‘J(Df“,) x ces XW(D/—L‘) XWJ(Bt)

+

where 3 X\; *+ 2 m: 4t =1 and p# 1, %20.

We shall wrilte this subgroup as W( )where

Ajpmot
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A= (Xs eee 5A) and A= (4, o0e ,u) , and We may
assume that A, 2 eee 2 X >0, A3 eee > 4 >14
Thus the Weyl subgroups may be parameterized by triples
of partitions ();p;t) where no part of « is 1 and t20
(we shall write t for the partition (t), and interpret
W(Bt) = 1 when t = 0).

As 1in previous chapters, W(A;ﬂit)may be regarded as
the row stabilizer of a diagram D,....) s Where a row
permutation of D,.,...) permutes the symbols in each row
of D, ,’QA s Dy (a single row), changes the sign of an
even number of symbols in D, and changes the sign of
any number of symbols in Dy .

We shall be interested in giving an algorithm
which éetermines which pair of partitions («xjz) of 1

satisfy

5(1 ¢ (<)

| o)

0 W pese) ) #0
Definition

Let (\3ux3;t) be & triple of partitions of 1 such
that no part of m 1s 1 and t 20, and let (x35) be an
(ordered) pair of partitions of 1. Writve
(A;F;t) 5> (a3p) if (x 38) may be cbtained from (33 t)
5y

(a) removing comnected squares from the end of &

row of A and placing them, in the same order,
at the bottom of 4 ; .
(b) repeating (a) with squares from different rows
Cof A
and at the same time, but independently, (So no square

18 moved twice)
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(e) transferring complete rows of . and placing
them at the bottom of ) ;
and again at the same time, but independently,

(d) transferring the whole of t across to the bottom

of )\;
then

(e) reordering the resulting rows so as to give a
pair of partitions (¥;d) say;

and finally o '

(f) moving up inside ¥ and § , according to the
usual partial ordering on partitions, so as
to obtain X and s respectively (so ¥ < « and

F<hB ) | | |
Remark

If t =0 then (\jpm;-) 5> (c38) <=>  (a3n) 5> (x3n)e
Indeed, for t = 0, W(,‘m:~) is a Weyl subgroup of type
Wi,y OFf W(D;) and as

G

' :8) K
(1, , Xy = (1, s X
(A1) Wons

ta )

K ) by Fi‘obenius

we would expect to get the same algorithm, in this case,
as in W.(Dl) . |

It is for this reason that it appears that the problem
of assoclating 1rreducible characters to Wsyl subgroups
in W(Bl) seems to be equivalent to 't_hat for W(Dy) (see
§4.7).

Theorem Selel

G
wb\;;&:f)

(1 , Xy 20 @ (Azupb) 5> (348)
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The following lemma is proved in precisely the saime
Vay 88 3.342
Lemma 5.1.2

Let W = R(D |,

’

M{)) « Then

() W=(NAW)(HNW) and (NOW) N (EnW =1

If also g€ H, C = GH(q) for some irreducible character

¢ of N

(b) W& = (N nWE)(H nWB) and (N n W) n (H nWE) =1
(c) ¢ n w8 = (W nW8)(c n WB) and (N n wé) n (c ’An 8) =1

Proof of S5ete1

-Xl«:ﬂ)) $0.

H

th W= Winsmwse) ® Then We SuppoSe (1W?

Hence, with the usual notation,

o= 1%, x =0, &

= Z (&4 , )
- We8mie wenne
ge lgi]

e

where'[gi] is a set of (W,NC)=-double coset ropresentatives
and each g; € Ho Thus there exists g € [gi] such that

o # (1 s f ) = (1 < ) (1 v o)
wenneg WENNC Wm’ wenN wmc’w%c

by 5e1¢2, and so 1

weny | Swenm

Let X)=m , [p]=n and we have that ¢ takes the value
1 on all sign changes in W&. Now W8 defines a diagram
Dyj :pm:¢) » 8nd therefore in any row of D, all the symbols
are of the same btype, and all the symbols in D, are of
the same typé. Hence we may transfer those completé
rows of D, which contain symbols of the first type to

D independently move the squares of D, (so that moved

A 2
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squeres in the same row stay in the same row) containing

the symbols of the second type to D, and, again

1ndependent1y, move the whole of Dy across to Dy, « On
reordering we obtain a diagram D(mw’ of a pair of partitions (¥.$)
of 1 such that Dy, contains all the symbols of the first

type and D, all the symbols of the second typee This

corresponds to operations (a), (b), (e), (d) and (s) on

p 134-5. 8o to show (A,ﬁ,t) = (3p4) We only haVe to

show ¥ <x , JS<pg .

By construction, [§]=m =/l , [§l=n =8I

and (1, e » Yy ug) # 0 o Again, just as in 3,341, we

cbtain

o#(f ) = (1, )" X (1, )0, X%
nwg’ cnwé W, ’ Wy ’

so ng and J§<AB .
Hence (A,ﬂ,t) Ey-(q s .

ConverSely, suppose (A;u; ) (x30) « Therefore we
may moye parts of rows of A across tom , complete
rows o} M across to A , and the whole of t across to
A » to obtain a peir of partitions (v;¢) of 1 such that
¥<x and §< 4 + Hence we may define a diagram D!A»M:f)
filled with the symbols [1,eees1] such that each row of
D, contains only symbols ¢f one type, and Dy only contains
symbols of the first type.

Let W = R(D0¥pcf)) so all pairs of sign changes
in N N W consist of symbols which are of the same type

.00 = 1¢ AlSo, by 24346, since I < « and

SNw
§<p
S x"y #o

Cumee o) (g 175X (0 )

and this 1s by the proof of the first part of the theorem,
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the f£irst summand in the Mackey formuls for (1‘G , Xy,
v
Hence (1WG , X™*y # 0,

§5.2 The maximal Weyl subgroups of W(B,)

The maximal Weyl subgroups of G are of type
31_1 ’ Dl s and Dl-i + Bi for 1 € 1< 1-2 .

Inducing up irreduclble characters from the maximal
Weyl subgroups we obtain the foliowing results, All
the theérems follow almost stralght-away from thoge for
w(c,) (§3.6) in the same menner as We proved them for

W(D)) (§4.6) ; thus we shall omit the proofs.

|
|

| .
Theorem 5+2.1 (Inducing up from B;_,)

Let (A34) be a pair of partitions of 1-1 and let

(5% = (3300 = (11300 « Then

(X(“”‘):)G _ X(A;,«)* . Z X(«;/J)

summed over all those pairs of partitions (x3;s) (# (A ;/4_)*)
of 1 obtained from (\;u) by adding a square to the end
of a row of \ or by adding a square to the end of &

row of («L;

Theorem 5.2.2 (Inducing up from Dq)

Let (A3;u) and (:3s) be palrs of partitions of 1
and K = W(Dl) « Then

((X(A;»))G , Xl"‘,ﬂ)) 0 < (,\;#) = (q;p) or (/Lf,/\) = (K;ﬂ)

If 1 is even, (ec'»,)(,(""’”) #0 <= «=)=4
where ¢ = 0, or xe)\ .

In particular, all non-zero multiplicities are 1.
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Theorem 5¢2.3 (Inducing up from B; + Dl_i)

Let (A3x) be a pair of partitions of i, (¢j0) a

pair of partitions of j, where i + j = 1. Let

Kj = W(Dj), and («35) be a pair of partitions of 1. Then
((X(I\JI‘*’. 'Xl(”-;‘:’})c' ’ X“‘Jﬂ)) $ 0 implies
olther (x;-) = (A3 0) = (=3a) and (g5=) = (u30) = (=37)

or (w5=) 5> Q) 7> (=;2) and (85-) z> (#30) z> (=34)
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Chapter six -WEYT, GROUPS OF EXCEPTIONAL TYPE

In this chapter we give an association between
the irreducible characters and the Weyl subgroups of
the Weyl groups of type Gg s F4 gnd E6 . |

Using a computer, similar results ought to be

 obtainable for Weyl groups of type E, and E

7 8 *

As the number of Weyl subgroups differs from the
number of lrreducible characters in each case, ‘We could
not expect this assoclation to be a bijection.

We shall use the notation in [5] .

§641 Construction of the mapping Y

The details given in this section are similar to
those in §4.7.

Let W be a Weyl group of ﬁype G2 ’ F4 or Eg , and
suppose W' is a Weyl subgroup of W We first calculate
the irreducible characters occurring in 1 W

we .
information on the conjugacy classes glven in [5] , and

s, using the

the character tables in [9] and [14] (the Weyl group
of type Gz is the dihedral group of ordsr 12 and so is
easy to work with).
From this we wish to assoclate a set of irreducible
characters to the Weyl subgroup W' usling a partial
ord_ering < on the Weyl subgroups
il.e. X(W') =( Xirred. character of W : (1W‘W,X) # 0 buv ‘Z

W )
(10 $X) =0 for all Weyl subgroups wi>w



In defining the partlal ordering we work from the
highest Weyl subgroup downwards (highest means with
respect to the ordering)e We let W be the highest Weyl

‘ W '
subgroup so 1W is the principal character. Inductively,
suppose W=W1, ese sV have been ordered and so X(W1)

sX(W,,) determined. Let gx(wi) = [ X,y eeey X5 W

y oo

Then we look at those Weyl subgroups W' of W for which
1W'W contains the minimal number of irreducible

characters not in the set {X,, .. , X,]. Then these
Weyl subgroups are defined to be the next in the partial

ordering and X(W!) as the set of irreducible characters
W

Wt

lowest (with respect to the ordering) Weyl subgroup is

oceurring in 1 but not in [X,, eee , X;}o The unique
1 since inducing up to W from it gives the regular
character, which contains all the irreducible characters
of W.

Thus for each Weyl subgroup W' we have defined X(W').
We are then able to give a partial ordering < on the
irreducible characters of W. Let.X',X" be irreducible
characters of W and suppose X'€ X(W'), X" € X(W").
Define

!

X' < X" <=> w o< ow

By construction of X, 1f X(W') n X(W") # g, then W' and
W" are not comparable with respect to <, but

W' s W' <« W' <Ww” , so that the above definition

is well-defined.

The Weyl groups of each type then have their own

particular problems, so we deal with each separatgly.
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(a) Ww(as)
It turns out that |X(W')[ = 1 for each Weyl subgroup
WY of W(Gz) s 8nd We define & roverse mavping from the
set of irreducible characters to the set of Weyl subgroups
of W(Gz) s |

Y(X) ={w :+ Xexn)]
The results are glven in table 3, along with the ordering
on the Weyl subgroups.

(b) W(Ey)
In this case, the number of irreducible characters of
W(Es) gi.e. 25) equals the number of Weyl subgroups
(Leo. ?1) plus the number of semi-Coxeter types (i.e. 4).
It is ?herefore desirable to obtaln a bijection between
‘these éets.
N@w the seml-Coxeter types in Eg are Eg(a;) , Es(az) ’
'D5(é1)j, D4(a1) (see [5]) and the last two lle inside
the mg%imal Weyl subgroup W(Dg) ofAW(Es).

'inside W(Ds) Wwe have assoclated to D5(a1) and D4(a1)
irreddcible characters of W(Ds) (see table 2), call
them X,, X, respectively. In order to obtain &

consistent association of irreducible characters to Weyl

subgroups and semi-Coxeter btypes (as in §4.7), we calculate

?Cy(Es) and ‘Xwﬁ(Es) ~ Then, inside W(Eg4), Wwe assoclate

to Ds(a1) and D4(a1) the lowest irreduclble character of
\IJ ;

W(Es) -oceurring in X‘v (Eg) and ')(:W(Es) R

Similarly, for those Weyl subgroups W' for which
[X(Wr)| > 1, we assoclate to W! the lowest irreducible
character in X(W') (which is unique except for one case).

Finally, to Es(a1) and Es(ag), we assoclate

(arbitrarily) the remaining two irreducible characters.
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We thus obtaln a bijection X; between the Weyl
subgroups and semi-Coxeter types and the irreducibile
characters. Note that the final result is not unique
i.0. thers are two ways of dafining X4 satisfying the
gilven conditlons (see table 4).

The reverse mapping

Y(X) = twr : X ex,w)]

is just ¥ = X,~1 since X, is a bijection (W' may be a
semi-Coxeter type here). |

"The result is given in table 4.

(c) W(F,)
In W(Fé), the number of Weyl subgroups is 37, the number
of semi-Coxeter types 1s 3 (given by F4(a1), D4(a1) and
54(31); where ~ denotes a short root system), but the
number of irreducible characters is 25. Thus we cannot
hope to get anything like a bijection.

Aé in W(Es), to each Weyl subgroup W! we assoclate
the set of lowest characters in X(W'). Using table 1,
we induce up to W(F4) the irreducible characters X, X,
of D, , 54 respectlvely, which correspond to D4(a1) ,
54(a1) respectively. Then, in W(F4), we assoclate to
each of D4(a1) and'54(a1) the set of lowest lrreducible

chavacters of W(F,) ta xV(Fa)

and XQW(F4) respoctivelye.
This still leaves some cholce, so the final

eriterion applied is the idea of duality between long

and short roots.
Let W! be any Weyl subgroup or semi-Coxeter type

in W(F4) and W' 1ts dual (possibly W' and it are conjugate

inside W(F,)). Then given any irreducible character X
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of W(F,), We define the dual character X. to be that
irreducible character of W(F4) which satisfies

W(F,)
(1w,

W(Fé) ~

s X)) FO = (1, ,
W

) £ O

(such duals exist by inspecting 1W,W(F4) ’ 1ﬁ'W(F4) and
are unique). A character 1s often self-dusl i.e. X = 5&
We thon demand that in the association X1 of
characters to Weyl subgroups and seml-Goxeter types,
X €x,(m) & X e X, (i) |

where W' 1is a Weyl subgroup or semi-Coxetsr type.

I

It then folloﬁs that ,X1(W')| = 1, and We associate
the one remaining irreducible character to Folag)e

In table 5 We glve the unique result, using the
reverse mapping

¥(x) = [wr: Xex (wr)]

§6.2 Some further remarks

In W(Gz) and W(F4), because of the existence of
roots of different lengths, two Weyl subgroups may have
the same Coxeter element and so be conjugate; similarly,
seml-Coxeter classes may be representable in various
Ways. Thus we have equivalent Weyl subgroups or semi-
Coxeter types which.represent the same conjugacy class.

Thése-are listed below; types are equivalent 1if

and only if they are written on the same line.

W(Gz) :

o

Ag
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W(F,)
24, 2K1
34, 2R, + A
RAy + A, 3K,
A3 Bp + &,
By + Ay K3
4n, 28, + 2X1 4
As + K, By + 24, B, * 211 15,* A,
D, By + K, '
D, Cs + A,
Dy (aq) 2By 54(a1)
B, ¢,

However, a different sort of equivalence may be
defined using the characters :
W' and W' are equivalent if and only 1f there exists
an irreducible character X such that W' , W' € Y(X)
(W* W' are Weyl subgroups or semi-Coxeber types).

The fofm this equivalence takes is evident in the
tables, and in both W(Gy) and W(F,) we get a completely
different equlvalence from that defined using the

conjugacy classes.

§643 The tables

The notation used in the tables is as follows :
In W(G,) and W(Fy) ~ denotes a system of short roots,
without ~ the system consists of long roots.

The first column of each of the tables gives.the

irreducible characters of the Weyl group; the second
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column gives the Weyl subgroups or semi-Goxeter btypes
given by the mepping Y defined in §6.1.

In W(Gz) s X, 5 X, , % , X, are the characters of
degree 1 (x{the principal character, Xlthe sign
character) and X,y X, the characters of degree 2.

In W(Eg) We give in the third column Frame's
notation for the characters in [9] .

In W(F4), the characters are numbered conseéutively

on p 152 of [14] (X, is the principal character etc.).
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TABLE 3
W(Gy)
x Y(X)
X, Go
X 6
X A ,
3 ~2 J
%4 Ag
Xg Ay * Ay
X Ay s Ay

The ordering of the Weyl subgroups in W(Gg) 3

G,
2



TABLE 4

Ay * A,

A2 + 244
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Frame's notation for X

o T« B o |

"o oo



W(F,)

XFRERRRFER R R

O

TABLE 5

3 7 Ay

Fylay)

3
Bs + Ay 5 K5, Dylay)
Ay s K,

B3 N

2hq * A1 P) 3A1

Cs

2A1 +K1 ] 3A1
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2
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