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ABSTRACT 

In this thesis we study the irreducible characters 

of the Weyl groups of the simple Lie algebras, in order 

to give a unified approach to this problem. 

Chapter one sets up notation. In chapter two we 

give some known results on the character theory of 

W~yl groups of type A (the symme~ric group) using Weyl 

subgroups. These are a common feature of Weyl . gI'oUpS , 

and allow us, in chapter three, to generalize to type C. 

Chapter four deals with type D Which presents a more 

difficult problem; chapter five is a brief study of the 

Weyl groups of type B, and finally, chapter six deals 
---

with the calculations in the exceptional types G2 , F4 

and ES. 
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INTRODUCTION 

The '.'leyl groups of the simple Lie algebras were 

classified many years ago and their conjugacy classes 

and irreducible characters were individually determined 

by many people (Frobenius, Schur, Young, Specht, Frame 

and Kondo, to name but a few) in wnny different ways. 

However, up till recently l:u unified approach had been 

obtained, using the COQffion structure of the Weyl groups 

as reflection groups. It is desirable to do this in 

view of the importance of Weyl groups in wBny branches 

of mathematics; for example, immediate applications 

can be envisaged in the theories of algebraic groups 

and Cheva lley gro11ps. 

Carter [5] has given such a unified approach to 

the problem of determining the conjugacy classes, and 

this thesis is directed towards solving the same problem 

for the irreducible characters. The fundamental idea in 

Carter's paper is that of a Weyl subgroup. He gives a 

correspondence (which is in general not a bijection) 

hotween the conjugacy classes and certain admissible 

diagrams. Some of these diagrams correspond to the 

Dynkin diagrams of Weyl subgroups and the others to, 

what we shall call, semi-Coxeter types. 

As the numbers of conjugacy classes and irreducible 

characters are equal, one would hope that a shlilar 

association could be obtained between the irreducible 

characters and Weyl subgrou~~s or semi-Coxeter types. 

In the ','feyl group of type A, the syrmnetric group, 

we reformulate sor.1e of the known results in order to 



exhibit this association (which in this case is a 

bijection). ,,'[e then go on to consider Weyl groups of 

type C and show that these results generalize very well. 

The ~ituation in Weyl groups of type D is rather more 

complicated and the association is not so easy to find. 

However, we are able to give an algorithm which allows 

us to calculate the irreducible constituents of the 

principal character of a Weyl subg:,oup induced up to 

the Weyl group. This generalizes an algorithm introduced 

in type C which further extends the usual partial ordering 

on partitions in type A. A discussion in §4.7 shows how 

the results in type D should lead to the required _ 

a ssocia tion. 

We also give a short chapter, mainly for completeness 

sake, on Weyl groups of type B, giving a similar algorithm 

for this case. We conclud o with a chapter on the 

exceptional Weyl groups of types G2 , F4 and E6 and 

c~lculate the association that we want. 

Parabolic subgroups are the usual tools for attacking 

probleMs of this kind, but methods using them are often 

unsatisfactory. For example, Solomon [17] has siven a 

cl.8Gomposi tion of the group a 1gebra of a finite Coxeter 

group, which is far from complete; it would appear that 

Weyl subgroups may well lead to a refinement of the 

decomposition. It is with this idea in mind that we 

examine Solomon t s results in the cs se of "/eyl groups of 

types A, C and D. 

Unless othe~vise statej the results in this thesis 

are believed to be new. 
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ChaptE'r one 11OTATIOE ANl) TEm.:Il~OLOGY 

In this chapter We introduce the necessary notation 

and terminology, and state, and in some cases prove, a 

few elementary character theoretic results. 

§1.1 Weyl groups 

All groups considered ~n this thesis will be finite 

8nd all Lie algebras finite-dimensional, semi-simple and 

over the complex field. 

Much of the terminology in this section may be found 

in Jacobson [13]. 

Let V be a Euclidean space of dimension 1. For each 

non-zero vector r in V, lp,t wr be the reflection in the 

"-hyperplane or~ogonal to r. 

Thus Wr(X) = x - 2(r,x)r 
(r,r) 

Let ~ be a subset of V satisfying the following 

axioms: 

(i) ~ is a finite subset of non-zero vectors which span V; 

(ii) if r,s E ~ then wr(s) E ~ ; 

(~ii) if r,s E ~ then 2(r,s) is a rational integer; 
(1' ,iT 

(iv) if r,~r E ~ where ~ is r881~ then ~ = +1. 

Then Q is a root system of some semi-simple Lie algebra, 

whose Weyl group is isomorphic to the group W of orthogonal 

transformations of V generated by the reflections vir for 

all r E ~. The dimension 1 of V is called the rank of W. 

Definitions 

(i) A sub-root system of a root system ~ is a subset of ~ 
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which is itself a root system in the space which it spans. 

(ii) If IV is tm Weyl group of ~ , a Weyl subgroup of W 

is the subgroup generated by the reflections wr corresponding 

to the roots r E ~t, where ~, is a sub-root system of ~. 

The graphs which are Dynkin diagrams of Weyl subgroups 

of a Weyl group W may be obtained by a standard 

algorithm ([2], [7J ). To the Dynkin diagram of W is 

a~ded a node corresponding to the negative of the highest 

root, forming the extended Dynkin diagram. Th~ Dynkin 

diagrams of all possible Weyl subgroups may be obtained as 

follows. Take the extended Dynkin diagram of ~ (the root 

system whose Weyl group is W) and remove one or more nod"'ls 

in all possible ways. Take also the duals of the diagrams 
.... 

obtained in the same way from the dual system ~ (which is 

obtained from ~ by interchanging long and short roots). 

Then repeat the process with the diagrams obtained, and 

continue any number of times. 

It is then ea sy to determine the maxima 1 'Ney~ suberoups 

of W - the proper Weyl subgroups of W not contained in 

any other proper Vieyl subgroup of W. These have rank 

equal to rank ;V or rank W - 1 • So the Dynkin diagrams 

of the ma~imal Weyl subgroups are those obtained by 

leaving out a node from the extendAd Dynkin diagram of 

Wand also by leaving out a node from the Dynkin diagram 

of W, and eliminating those of rank equal to r·ank VI -1 U' ~"- W 

contained inside those whose rank is 'rank ':I. 

The Weyl subgroups Which are obtained by leaving out 

a ny number of nodes from the Dynkin dia gra m of W, are 

generated by a subset of the generating set of Wand are 

called parabolic sube;roups of W. 



So much for the general theory. The simple Lie 

algebras have been classified [13] and their ';leyl groups 

are: 

WeAl) 1~1 

VI(Bl ) t'!! W(Cl) 1~2 

W(Dl ) l~3 

W(G2 ) 

W(F4 ) 

VI(E6 ) 

W(E7) 

W(ES) 

It will occassionally be convenient to add to this list 

two more Weyl groups 

W(C 1) - the cyclic group of order 2 generated by 

a sign change (see chapter three). The und~rlying Lie 

algebra is of type A1 so W(C 1 )~W(A1) • 

W(D2 ) - the non-cyclic group of ord~r 4 generated 

by a transposition and a product of 2 sign changes (see 

chapter four). In this case the undprlying Lie algebra 

A1+A1 ;.s not simple. 

The Weyl group WeAl) is isomorphic to the symmetric 

group Sl+1 on 1+1 letters; 

3 

W(B
l

) and w(e l ) are both isomorphic to the hyper-octahedral 

group of ord~r 2l.1~ ; 

W(D l ) is a subgroup of W(Cl) of index 2 ; 

W(G
2

) is isomorphic to the dihedral group of 0rder 12 ; 

W(F
4

) is a soluble group of ordAr 1152, isomorphic to the 

orthogona 1 group 04 (3) leaving invariant a quadra tic form 

of maxima 1 index in a 4-dimens:L.ona 1 vector space over the 

Galois field of 3 elements. 
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We shall mainly be lnterested in the four infinite 

families, and their Weyl subgroups are given in the 

relevant chapters. We can a Iso obta in the maxima 1 "Ieyl 

subgroups in each case, which again are listed in the 

sections where we use them. Notice that W(B
l

) and W(C
l
), 

although isomorphic, have different Weyl subgroups bectiuse 

the underlying root systems are different. 

A fundamental distinction between WeAl) and '1eyl 

groups of other types is tha t in \'/ (AI) a lNeyl . eubgroup 

is always conjugate to a p~rabolic subgroup, so that in 

the symmetric group the two ideas are equivalent; it is 

only in the other cases that a distinction arises. 

§1.2 Some character theoretic results 

We shall be assuming a background of (ordinary) 

character theory, but we give here a few of the important 

results, many of which appear in Curtis and Reiner [6]. 

If r,J are 2 sets J~I will mean J is a proper subset 

of I (J£I and J~I) • 

Let G be a group (assumed to be finite), then its 

order is denoted by IGt. iVe adopt the convention tha t 

xY = yxy-1 Where x,yEG, so that Hg = gHg-1 Where H is 

a subgroup of G (H~G) and gEG. ~'re use < > to mean 

the group generated by the elements inside the diamond 

brackets. 

All characters and representations (unless otherwise 

stated) will be assumed to be over the complex field ~, 

so that all tensor products are also over~. A representation 

module of a group G will be called, interchangeably, a 
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~G- or G-modul~. 

lR,iQ., l.d~note the rasls, rationals and rational 

integers respectively. 

( , ) will dAnote the scalar product of characters, 

and where we need to specify the group we shall write 

e.g. ( , )G • 

Let X b~ a character of a group H and K~H~G. Then 

'XG denotes the induced character of G, X
K 

the restricted 

character of K. We also w":':i.te gXfor the character of 
'-1 

N=Hg d·~fined by gX(n) = X( gng- i ) for all n EN. 

If H4G, We define the centralizer of Xin G to be 

It is easy to see that 

The ';'Ieyl groups VI admit a homomorphism 

£.: Vi .... [+1 ,-1} d~fined by E. (r i ) = -1 for r i E I, 

where I is the generating set of involutions of W. Thus 

[ is a linear character of Wand will be called the 

sign character of W. 1 (or \v) will always denote the 

principal character of W. 

A result that is fundamental to our work is a theorem 

in character' theory due to Macl'.::ey 

Theorem 1.2.1 (tlaclcey's Formula) 

Let H,K ~ G and suppose (Y11 is a set of (H,K)

double coset representatives in G. Suppose also that 

X is a character of H, e a character of K. Then 

Because the scalar pl~oduct is sYmmetric, which 



character is conjugated is unimportant. In applying 

this theorem we shall always assume that y = 1. 

6 

An equivalent result, which we shall only use once, 

is also due to Mackey 

Theorem 1.2.2 (Mackey's Subgroup Formula) 

With the notation of 1.2.1 

A particular case of these results (when H = G) is 

Theorem 1.2-3 (Frobcnius' Reciprocity Formula) 

With the notation of 1.2.1 

= (X, e) 
K 

The application of this theorem will invariably be 

indicated by the phrase 'by Frobenius t • 

A useful result (TIhich We state in a restricted 

form) is 

Lemma 1.2.4 

Let H ~ G, Xa character of G, e a character of H. 

Then 

= 

Lemma 1.2.5 

(i) Let H,K ~ G such that G = HK and H n K = 1. 

Suppose X is a character of G such that 

X(hk) ~ e(h)¢(k) , for all h E H, k E K, where e is a 

character of H, ~ a character of K. Then 



(li) Suppose G ; H x K and Hi ~ H, K1 ~ K and 

e is a character of Hi' ¢ a character of Ki • Then 

(e.~)HxK = eH.~K 

(lil) If H ~ K ~ G ,Xa character of Hand g E (!, 

then 

= 

Proof 

(i) is trivial to check using 

(x,X) = 1 L X(g)X(g-1) 
fITl gEG 

(ii) and (iii) follow immedia tely from the formula 

(Xa character of H ~ G) 

G 
X. (y) = 

.\ A -1 
1 L X(xyx ) 

tID xEG 
1\ 

Where X (y) = 0 if Y E G'\. H 
1\ 

a nd X- (y ) = x. ( y ) if Y E H • 

Lemma 1.2.6 

Proof 

Suppose H ~ G, X,O both characters of G. Then 

(X,e) *' 0 :;> (X , e ) :P 0 
H H 

(X, e) =r:. 0 9 'X, e have an irreduci ble constituent, 

¢ say, in COI:'~'11on. Hence XH' e
H 

have the character ,e5H of 

H in co~~on, so (lH' err) * 0 

\'Ie conclud". this chapter with a couple 01 l'esults 

about representation modules. 

Let G be a group and A = ~G , its complox eroup 

algebra. Let * be the unique <V-linear map A -+ A such 

that g* = g-1 for all g E G. Then Wa sea that * is an 

7 



involutory anti-au tomor-;hism of !,. The map * was 

introduced by Solo:non [17] , and he proved 

TheorpUl 1.2.7 ([17J ler::r.1El 6) 

If x E A then Ax and Ax* are isomorphic A-modules. 

Note that if X is a character of G and e is an 

idempotent of A defined by 

e 

then e* = e • 

If B, C are two A-modules such that B is isomorphic 

to a submodule of 0, We write B ~ C • 
'" 

Lemma 1.2.8 

Let e
1

, e
2

,e be idempotents of A and suppose Ae 11 

8 

Ae
2

, Ae afford the characters A
1

, x.
2

, 'X of G respectively. 

Suppose also that the left A-module Ae3, where e3 = e 1e2 ' 

affords tho character )(3 of G. Then 

Proof 

Suppose that e is an irreducible constituent of 

X such that (e,X3) ~ 0 let As' afford e. Then 

Ae' ~ Ae
3 

= Ae 1e
2 

~ Ae2 so (e, X
2

) ':j;: 0 • 

However, 

Ae' ~ Ae
3 

= Ae i e2 ~ A(e 1e2 )* 

= Ae~e1 

by 1.2.7 

* ~ Ae1 

f;! Ae
i 

by 1.2.7 again 

So Ae' £ AC 1 
and therefore (e,1<.2) :f: 0 . Because 

(e,X-) ¢ 0 We have that ('x, Xi) to 0 and (X, X2) f.: 0 • 



Lemma 1.2.9 

Let H ~ G and A' = ~H. Suppose A'e is an A'-module 

affording the character X of H. Then Ae affords the 

character X G of G. 

proof 

This follows from the definition of the induced 

representation, since 

Ae = A c2> A I e = (A' e) G 
A' 

9 
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Chapt8r two THE SY!.iI\~TRIC GROUP 

Frobenius, Specht, Young and many others have 

contributed much to the character th80ry of the symmetric 

group. However, we shall be presenting their results here 

in a nau llght, occas.ionally with neW proofs, as W8 shall 

CO viewing the symmetric group as the Weyl group of 

type A. This will enable ~g to apply the methods to other 

Weyl groups of simple Lie algebras. 

§2.1 Somo, classical results 

In this chapt8r only, we write VI = WeAl) ~ Sl+1 • 

It might be more natural to use ::.. instead of 1-:-1 for 

the symmetric group, but we shall stick to a notation 

more in keeping with our overall view. 

~,lany of the assumed results appear in [6J (pp 190-197), 

and in [1J (chapter IV). 

Definition 

A ~rti tion A of 1+1 (written )., ~ 1+1 or 1),,/ = 1+1), 

is a sequence L~ 1 ' ),2' ... ,A ) of int8gers such that 
I' 

>'1 ~ A ~ > 0 and ). + A + +A = 1+1 . . . . . . • 
2 1 2 I' 

/\ 1 ' . . . ,A are 
I' 

ca lIed the parts of A. 

Young ([18] and [19J) introduced the idea of frames 

and tableaux. 

Suppose A = (>'1' ••• ,A) I- 1+1. r 
Then the fram') 

associated with A consists of ~ squares in the first 
1 

row, A squares in the second row, 
2 

••• , and A squares 
1" 



in the last row. 

e.g. if 1+1 = 9 then the frame corresponding to 

(3,3,2,1), which we shall often write os (,221 ), is 

A tableau (or diagram) DA corresponding to A is 

obtained by filling the sqares of the frame with the 
1\ 

symbols 1, ••• , 1+1 in any order. 

The dual ( tableau is obtained from the original 
- ( frame 

( tableau by interchanging the rows and colwnns. 
( frame 

The dual frame gives riSe to a partition of 1+1 which 

is denoted by A' and is ca lled the ~ of >. • 

The row stabilizer R{D~) of a tableaux D~ is the 

group of row permutations of D~ • 

11 

i.e. R(D),) = [pES1+1 : p permutes the symbols in each row of DAl 

Simi larly, the column stabiliz~ C (D).) is the grou.p 

of column permutations and so is the row stabilizer of 

the dual tableau D • 
A I 

Now R (D).) ec S>. x ••• x S>. and this is a '.'leyl subgroup 
, r 

of W of type A + ••• + A • In fact all Weyl 
>., -1 ).,.-1 

subgroups of 'f{ can be considered in this way as the ro';t 

stabilizer of some diagram. Thus the Weyl subgroups can 
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be parameterized by the partitions of 1+1, so that a Weyl 

subgroup isomorphic to S x... x S \ will be vrri tten W • 
>', "1' >" 

in particular W = W • 
(1+1) 

Thus VI}. = R (D x) , W A' = C (D A) • 

The group 'N acts on a diagram D). by dp,fining wD>.. for 

W E \V, to be the diagram obtained by applying VI to the 

symbols in D>.. 

Vie then have the following easy, but fundamental, result 

Lemma 2.1 .1 ([6] 28.10) 

If VI E W, .x.. 1- 1+1 then 
-1 C(WDA} ; wC(D),,}w • 

R(WD,.} 
-1 

= wR (D). }w and 

It follows that any two isomorphic Weyl subgroups 

of Ware conjugate via the element of W that transforms 

one associated diagram into the other. 

Definition 

Two symbols which lie in the same row (resp. column) 

of a diagram are said to be collinear (resp. co-columnar). 

Lemma 2.1.2 ([6] 28.11) 

An element w E \7 is express ible in the form w = P9. , 

Where PEW).. , q E W}., , if and only if no tvlO collinear 

symbols of DA are co-coluranar in WDx • 

Let A ; CW - the group a Igebra of ','1 over aJ. We 

d~fine two essential idempotents of A {an essential 

idempoten~ being a scalar multiple of an idempotent} 

= p , = t:{q}q 



where £ is the sign character of W, 

"/ Thus Af;. >. ' AT} A afford the characters 1y,' 
>. 

respectively of IV considered as A-modules. 

c \V and C w I A 

Let e). = f;.),T}).' Notice that e). d~pends on \V>. ,W>., and 
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hence on the particular arrangement of the symbols in D>., 

However a different arrangement only gives rise to 

-1 l we).w , for some w E W, by 2,1.2, ~nd hence tiO an 

A-module isomorphic to Ae >.. 

The following result appears in [6J (28.15) 

Theorem 2.1.3 

Let A I- 1+1. For each diagram D>., e -\ is essentia 11y 

ld~mpotent and Ae>. is a minimal left ideal of A, hence 

an irreducible A-module. Further, ideals coming from 

different diagrams with the same frame are isomorphic, 

but ideals from diagrams with different frames are not. 

Thus the ideals fAe>-f Where A ranges over all the 

partitions of 1+1, gives a full set of non-isomorphic 

irreducible A-modules. 

Notation 

The irreducible character of W afford~d by Ae~ 
>. 

will be denoted by x:. 

Thus the irreducible characters of i'i may be 

parameterized by partitions of 1+1; we shall be giving 

an alternative characterization of XA in §2.2 . 

The above results hold if We replace ~ by~. Hence 

(with respect to some basis depending on the representation) 



the matrix ~mtries of any representation of '~'l lie in IQ,. 

However, by a result in [6] (75.4), they ore also algebraic 

integers and so are rational inteeers. 

Thus We have 

Theorem 2.1.4 

Any complex representation of W may be affordp,d b'J 

a basis with respect to Which the rr~trix entries consist 

of rational integers. In particular, the characters of 

Ware (rational) integral-valued. 

One can obtain a decomposition of the group algebra 

A into minimal left ideals by using the notion of 

standard tableaux. 

Definition 

A standard tableau is a tableau in Which the numbers 

increase in every row from left to l'ight and in every 

column downwards. 

NOVI A splits up into a number of simple rings Ai' 

1~i~r Le. A = A1 e) ••• ®Ar and each Ai consists of 

a direct sum of isomorphic minimal left ideals of A, 

which are not isomorphic "ti~ any that OCCU1" in an A.j,jfi. 

Theor'em 2.1.5 ([1] IV,4.G) 

'The minimal left ideals which arise from 'che standard 

tableaux beloneing to one frame in the way indicated in 

2.1.3, are linearly independent and span a simple rinG 

Thus A is the direct sum of the minimal left id0als 

Which arise from the standard tableaux belonging to allY 
" 

frame associated with a partition of 1+1. 

A 

,0 i • 
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It follows the t the degree of X). is equal to the number 

of standard tableaux belonging to a frame associated with 

~. This leads to a formula for the degree. 

Definition 

Let A I- 1+1 and FA its associated frame. The square 

in the ith row and jth colu@1 is c&lled the ij-node • 

The number of squares to the right and below this nodp. 

(including the ij-nodg) is called the hook length 0; the 

ij-nodA. The hook product H~ is the product of the 

1+1 hook lengths. 

A hook graQh is a partition of the form (i,1 1+1- i ) 

for some i E [1, 

graph is a hook. 

••• 

Theorem 2. 1. 6 ([10] the orem 1) 

ry>'(1) ()t A.. = 1+1. 
HA 

Thus the frame of a hook 

Fina lly, Vie s ta te a further formula (which is 1.lsed 

) f '\I). (\ '-1) to in proving 2.1.5 relating the degree 0 ~ AI 

degrees of characters of partitions of 1+1. 

Ler.una 2.1.7 

Le t A!- 1. Then 

( 1 + 1) t ( 1) = [Xi 1) 
I"-

summed over all partitions J..L of 1+1 whose frame may be 

obtained by adding a squal'e to ·che end of a roV! of the 

frame of A. 



Deco:-:1posi tion of induced pr...!E.s?lE.a 1 character 

Let A \-1-1-1 and fix a diagram D}, and We let 

WA = R(D A). The aim of this section is to decompose 

1WW into its irreducible components. 
). 

First we obtain an alternative characterization 

of x!'. We shall need: 

Lemma 2.2.1 

If yEW, then W>.. n Y\'~I y -1 conta ins only eve: l 

permuta tions if and only if' y E VV>.. W).I • 

Proof 

Suppose V/ \ n yW I y-1 conta ins only even permuta tions 
" A 

and that there exist two symbols a,b E /1, ••• ,1+1} 

such that a,b are collinear in DA and co-columnar in 

yD>.. Let t be the transposition (ab). 

Hence t E R (D).) n C (yD>. ) 

= R{DA ) n yC (D,>. )y-1 by 2.1.1 

= w n~;{ y-1 
>. "'A' 

Which is a contradiction since t is an odd pernutation. 

Thus no two collinear symbols of D). are co-columnar in 

yD>.. and so by 2.1.2, Y E VI),. IVA' • 

Conversely, let y == pq where p E "v q E 10' , ), , 
" A' • 

Then "I n \'/ ( )-1 I'>. pq.)., pq = '"I n .s' p-1 
'A 1)' I ( 

A 

= p(p-1 W>.p r' ) -1 n I).., p 

== peW), n '.'I, )p-1 
A 

== p(R(D>.) n C(D>.»p-1 

== p.1.p -1 

== 1 

16 

so certainly ~.'.').. n yrlxy-1 only contains even pcrL'lutntlons. 



Lemma 2.2.2 

Proof 

(1 'if , 
\VA 

E W) 
W, 

,\ 

= 

By Ma ckey' s formula 

= 

1 

(1W n.....1Q y-1 
>. ;J' A' 

, 

where l y il is a set of (VI).., Vly; ) -double coset representa tive~ ~ 

Now 

<=> \v>. nyw),.,y-1 

are linear 

* 0 

= since both charactsrs 

<='> VI). n yW>."y-1 contains only even permutations 

~ y EW)..W>..,by 2.2.1 

¢:!> y = Y1 = 1 

Thus only the first term is non-zero and is 

(\v" nW)..I' [w). nwA) = (1 11]' E~1J) = 1 

which proves the lemma. 

I.t follows from 2.2.2 that 1 vrl and l.,W contain a 
\ A Ii>.,/ 

unique common irreducible constituent; we shall show that 
). 

this is X . 
VI 

1'Jr is affordAd by t:18 A-module A~>.. 
").. 

C' W 
L by the 

, VIA' 

A-module AT). and x.X 
by the irred~clble A-module A~>..T)>. • 

It is clear that A~AT)A ~ AT)~. It follows, using 1.2.7, 

that A~xT)x s A(~A~>')* = AT)x~>. ~ A~~. Thus A~)..T)l is 

isomorphic both to a Submodule of A~). and of AT). • 

).. "/ 
Hence X. is an irreduc ible component of both 1",'i and 

" ). 
W t,.. and by 2.2.2 the result follows. We have thus proved 

IV>.' 

Theorenl_ 2.2 • .3 
x 

'X. is the unique conwon irl-'educible constituent of 



1 Wand E. Wand occurs VIi th mul tiplici ty one. 
\V).. W).I 

We now define a partial ordering on the partitions 

of 1+1; this ordering is weaker than the lexicographic 

ordAring which is often used (see e.g. [6] p 191) but 

is much more natural for our purposes as will become 

apparent in later sections. 

Definition 

10 

Let • • • , \J J- 1 + 1 and ?- = (A, 
""- """ I 

••• ,f-;)f-1+1 • 

if _ ~ ),. ~ ~ I ~~ f for 
,; I 1::::./ 

Then ~ ~ f4 if a nd only 

m = 1, ••• , min(r,s). 

This is not a total ordering (e.g. (32 ) and (412) 

are not comparable) and We shall be investigating the 

partial ordering further in §2.3 • 

However, We can now utilize this ordpring to 

W decompose \v • 
>. 

Lemma 2.2.4 

Let A 'f- 1-1+1 and suppose ),.~)--L. Then if DA, Df-l

are corresponding diagrams, then there exist two symbols 

collinear in DA and co-columnar in D~ • 

Proof 

Put A= (h" oU ,.>.,..) ,JA= (tt,~ .•• ,rs) • 

Suppose that any 2 symbols collinear in D,.\ are not 

co-columnar in Dr-' '.rhel'ofore, the >.., entries in the 

first row of D>. must occur in different columns of D~ • 

Since Dr- has jA-, columns we have __ " ~ j-t-,. Apply a colwnll 

permutation to Df<- to obtain a new diagram n;" so teat the 
I 

entries in the first row of D>. appear in the first row of Dr- • 



..... -1 

NoW, inductively assume L ~~, (Vie have 
~~I 

A. ~ F, above) and tha t the entries in the first m-1 

rows of D \ Ii e in the first m-1 rows of D' t and no two 
/\ f'- ' 

symbols collinear in DA are co-columnar in D". Then 
I"'-

the A~ entries in the mth row of D~ lie in different 

colurr.ns of Dll 
F ' 

and We can bring them up, via a colunm 

I~ 

permutation, to occupy squares in the first m rows of Dt'. 
"" M. I-'-

It follows that I. .\~ ~ '[ {{-~ . lience by induction, 
~ =- I L=-' 

this holds for all m, so that A ~ jJ... ,contradicting our 

hypothesis, which proves the lemma. 

corollaE.] 2.2.5 

Let ). , fl /-1+1 • Then 

Proof 

( 1 W 
W ' >. 

\" F~ .1) = 0 
'v"/ • 

/J'-' 

As in the proof of 2.2.2, if fYi J is a set of 

(W ). ,~/) -double coset representatives 

= the numb().~> of yl s E {y i J such that 

w).. n y\~y-1 conta ins only even permuta tions. 

By 2.2.4, there exist 2 symbols, a,b say, collinear 

in D,\ and co-columnar in yD/,,- (where 'a>.. = R (D », W!'- ;:; R (Dj'-) ) 

for any yEW. 

Hence the transposition t ; (ab) E R(DA ) n C(yD~) 

; wAn yW,y-1 
r-

Since t is an odd pe::>mutaticn it follovvs that 
,,, ,', 

(\'/' , E. v/) = 0 • 
>. r' 

The previous corollary allows us to give an alternative 

proof of a well-h~oVln result 



Corollary 2.2.6 

Proof 

'\/).. = 'V 1"-. Suppose "- f\.... The!! by 2.2.3 x: occurs as a 

cormnon irreducible constituent of 1 W 
W). 

and t. ','[ 
lH I ,I/",-

occurs as a common irreducible constituent of 

and X>' 
W 1V{ and 

E. w 
w • A 

Thus 
1-"-

Eu t A '1= I"-

£. \};) :f o. 
). -

It follows from 2.2.5 

that one of the above multiplicities is zero, contradicting 

our assumption tha t x: = ~. 

Since the conjugacy classes of Ware parameterized 

by partitions of 1+1, We have that all irreducible 
).. 

characters of W have the form X where >..}- 1+1. 

We are now in the position to give the main theoren 

of this section, which was originally proved by Frobenius. 

Theorem 2.2.7 

Let ).. 'F 1-1+1. Then 

and 

1 'if = 
\'fA 

E VI 
pr I 
").. 

= 

x'A + 

Xl. + 

La~-X:-
?-> }.. 

Lb X 
r<>- F 

where a
f
,-, br- are non-nega t i ve inte gers • 

Proof 
\~. 

Suppose ( 1, -r 1 , x!) :1= ° , then by 
,~ r ItA .... 

so that ( 1w; , [",II) i- 0 and hence, by 
il'r' 

~. ! 

(E ',', fJ-
2.2.3 , )C ) 

'" "r 
2.2.5, A ~!L .. 

( 1\'[" , X).) = 1 by 2.2.3 proving the first equation. 
>. 

second equation follows similarly. 

=#: 0, 

The 



In §2.3 we shail strengthen 2.2.7 and show thBt both 

ap.. and bl'- are non-zero. 

This theorem allows us to define a bijection be~veen 

the Weyl subgroups and irreducible characters of W in a 

manner Which will generalize to other Weyl groups. 

Define a map 

X : set of Weyl subgroups ~ set of irreducible characters 

W VI _ 
(X-, 1T~r ) t= 0 and (X, 1 ) - 0 ). 

11)\ W f I 
)(irred. character 

, 

X~W >.) 
I 

Proof I 
i 2.2.7 

i 

for all Weyl subgroups WI =~'{r-

such that r > A 

= [?LA 1 for all partitions ~ of 1+1 

shows (A.:, 1vt) t: 0 
).. 

Suppose }J.. >).. • 
I 

By 2.2.~ (X~ 1 w) .; , VI :P 0, so putttng 

"'1 ." th t 'Y ~ d:. X (,ft, \ ). 'r-Yf =~, We see a F'- 'F IV 1\ r-

J 

Also (;( ,1 W) :;. 0 
: W 

f. ud by 2.2. 7 t l > A -,> (X A 1 Vi) = 0 
- , 1" 

. >.. A 
so X. E X (VI>. ). 

Thus X(W).,) = f)(>'} 

§2.3 The partial ordqring on partitions 

In this section We shall give a more convenient 

definiti.on of the pa:'tial ordering defined in §2.2, 

which will simplify some of the proofs. 

In the rest of this section we shall assume that 

A,f"t 1+1 and A = (A" ••• ,~,...) , fA= (fAl' ••• ,f-s). 

''r-

It will often be convenient to abuse notation Dy 

referring to a diagram or frame of a partition A simply 
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a s A itself. It \"/ill be clear from the context, when 

not specifically stated, what is meant e.g. in 2.3.1 

We are dealing with the frames. 

Theorem 2.;.1 

),. ~ f- if and only if fA- may be obtained from A by 

repeating as many times as is necessary the operation of 

taking a square from the end of a row of A and adding it 

onto the end of a row higher up so as to obtain an.:ther 

partition. 

This process will often be referred to as 'moving 

(squares) up'. 

Proof 

Suppose ~ may be obtained from A by the given algorithm. 

If we move a square up from the jth row of A to the ith 

row (i<j) to obtain a partition v = (v
1

,v
2

, ••• ) then 
.... 
L AJt. - L v k for m~j or m<:i 

lz..:o/ l=-/ 
""" f 

'"'-

and AIt. = LV -1 ~ LV for i~m<j 
J..;. , ~;I k I<.=-, k 

Thus A ~ v. Since ~ is a partial ordering, repeating 

the process gives A ~ ~ • 

Conversely suppose A ~~. We have 
'" ""-L )..~ ~ L t-'-i. for all m, and We may suppose A < ~ • 

c::::-, .. :::..t· 

Vie choose k to be the first row in which AI{ differs 

frolfl ric. ie e. A' =j...(, for i<k 
~ I ~ .. 

and AI.! -< jA~ 

Let j be the last row in which \ differs from fAj 

i.e. >-.: = ~~ for i>j 

and AJ' > j-l-J 

Since .\ < /L and I A 1 = J~ J , k and j exist. Now,Tllove a 

square from the jth row up to the kth row to obtain a 
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partition v. It follows from the first part that \ /\ < v. 

If v = (v
1

, ••• , vI') then 

'" ""-

Lv = L r-;. for m<k or m~j 
I:=-/ i ;=-/ 

"'"' '"' "" Lv. = L },. + 1 ~ L~;. for k~m>j ~~=-I J. .: ... .=., L 

\.-= I 

Hence v ~?- , so We may repeat the operation of moving 

one square up in v. Eventually We will reach~, proving 

the theol~em. 

We can now prove a fundamental property of this 

ordering 

Lemma 2.3.g (Duality Relation) 

).. ~;-L <=>)AI ~ A I 

Proof 

It will be sufficient to prove the implication in 

one direction. So suppose ~ ~ fA-. By 2.3.1 We may mOVe 

squares up inside ~ to obtain F' But this means that 

V{e are moving down inside,?-I to obta in ),'. Hence, by 

203.1, f..ll ~),I • 

The rest of this section will be dn.voted to showing 

that all the irreducible characters ~which may occur in 
1" 

the decomposition of \/ given in 2.2.7 actually do 
>. 

occur. This is a special case of the Littlewood-Richardson 

rule (see [15]) which gives a method of calculating the 

multiplici.ty a,u- = (1,.,W , x.:) . However, as VIe shall not 
, ).. 

need the full power of this rule, it is worth giving an 

alternative proof that a~_ is non-zero. 

We first prove the converse of 2.2.4 



v~ IlL,S '2 ° 3 0.3 

Let Dx be a diagram corresponding to A and suppose 

~ ~~. Then there exists a diagram D~ corresponding to 

fLsuch that no two collinear symbols in DA are co-columnar 

in D~. 

Proof 

By possibly renumbering the symbols in D~ We may 

assume that the symbols in D). are given by numbering 

t:-,_3 squares consecutively from the top left-hand COl"ner 

moving across each row and then onto the next row; this 

will be called the natural ordering of the symbols in DAo 

Since A ~ f-L , we may mcve squares up in the frame for 

). to obtain the frame .for)A. Thus We may move up the 

squares in DA in the same way to obtain a diagrsm for /-L 

(by keeping the symbols in their squares). To obtain 

the Y'equired D,u. we move the squares up in D A in this way, 

except for the following case: 

Suppose , and j>i+1 and We are required to 

move 2 consecutive squares in row j of DA containing the 

symbols a,a+1 and put them onto the end of ro~ i and 

row i+1 respectively 
0). 

L 6j L-

L-tl L. -t-/ 

b 

0.. a..-t/ 

J 

Let b be the symbol occurring at the end of roVi i+1 of 

D )'. Then move this aqua re up to roVi i (even though this 



rna y not be a llov/ed in the dRfini tion of moving squares 

up in 2.3.1) and then move the squares containing the 

symbols a,&+1 onto the end of roV! i+1 of the resulting 

diagram. 

25 

By the transitivity of the ordp,ring We may then 

repeat the process, on moving squares up , to ob.tain Dp.. • 

It is clear from the construction that no 2 symbols are 

collinear in DA and co-columnar in ~ • 

The proof of the next theorem was suggested to me 

by J.A. Green 

Theorem 2.3.4 

Suppose A lS; F and that D)., D/",- are corresponding 

diagrams such tha t no 2 collinear symbols of D>. are 

co-columnar in Dr. Then, with the notation of §2.1, 

l;>,.e".... 'f: 0 

Proof 

Let W
A 

= R(D>.) and \'1,).1...= R(Dr<.); the condition in the 

statement of the theorem becomes R(D) n C{~.tJ = 1 • 

We have that A = (\' ••• ,Ar) where ).,~ ... ~ )..,.>0, 

and We shall use induction on the number of parts n>. say, 

of A not equal to 1. 

If n). = ° then .x = (1 r ) and the result is trivial because 

t;, A ~ 1. 

However, it will be necessary to prove the case in vlhich 

n). = 1. Thus A = (\' 11+1-.>.,) with \ > 1. 

To show ~ e f ° it will be sufficient to shoVi that 
.A ;-c. 

the coefficient of the unit element 10f W in t:.>. e(~,- is 

non-zero. This coefficient is r [( q ) sUmr.1ed over those 
~ 

f \,1 elements q of VI such that there exist elements p.1-'- 0 .1-'-
t'- fA. 



and p~ of W). such that p p q = 1-
A I"'- )-<. 

Suppose that the symbols in the first rovi of D). are 

1 a 1 ' ••• ,e.\ 1 and let b ¢ i a 1 ' • •• ,a.\, } . Then because , 

p .A (b) = b we have that p (b) = q-1(b) = c, say. Hence 
l"- F 

band c are collinear in D~ and co-columnar in D~ , so 

We must have b = c i.e. q (b) = b. Thus in the cycle 
f'-

d"lcomposition of qtt only the symboLs [a
1

, ••• ,a>.,1 

20 

can occur, i.e. q~ E W). , so if qr<-:j: 1 it containsltwo 

distinct symbols which are collinear in D>. and co-(,._~lumnar 

in D~, an impossibility. Hence q = 1 and therefore 
f'-

[[.(q)=LL(1) > O. Sowehaveshownthat~e fO 
F ~~ 

for n = 1. 
A. 

Now suppose n
A 

> 1 and that if v 1-- 1+1, v ~ ~ and 

R(D~) n C(D~ = 1 then nv < n A ::> ~ve~ r O. 
I . '" _ 4.~ - _ 1+1- AS 
He let A - (A" ••• ,).",_,,1 ) and A. - (A,,1 ) 

W"<--e. ~-=A>. ' ,)0 >'s '>1; ~ +1 =-1, a......{ i;-; (it-/) -(II.(r .. · "->'J ... } 

which are both partibions of 1+1. Notice that, because 

n}. '> 1, 

); ~ l' < >. ~ F, n >: < n>. and n X S 1 

So by induction, if ~ ~ v, R(DX) n C(Dv ) = 1 then 

~>:ev =/; O. However, ev is P multiple of a primitive 

idp.mpotent (2.1.3) so 

= I 
>. ~v ••• 

\':herc R(D>:) n C(Dv ) = I and ~ are positive non=Z8ro integers. 

Similarly, because n"7":O: 1 < n 
A .\, 

= L y~ ee 
~~~ 

•• e (2) 

where R(D
X

) n C(D~) = 1 and y~ are positive non-zero integers. 

We are a t liberty to choose D'A and D-x as We I>:'..ease. 

So order the symbols in tho first ~-1 rows of D~ in the 
,\ 
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same way as in the first ~-1 rows of DA and order the 

symbols in the firs t row of D.
X 

in the same way a s the J'th 

row of D)... 

It follows that with these orderings, l;., = l;.~l;._. Thus, 
1\ A A 

from (1) and (2), 

summed over the appropria te v, ~. But if v =F ~, e
v 

and e ~ 

are orthogonal primitive idempotents which afford ~ ~.stinct 

irreducible characters of IV (2.1 e3). - rv 
Hence, as A ~ ).. $ 

l;. = Lxye 
>. r;~v v v v ••• 

where R(D~) n C(Dv ) = 1 and R(D~) n C(Dv ) = 1. 

Hence because xvyv * 0 for such partitions v of 1+1, 

~).. ev :j:. O. 

Returning to vL, as we have arranged R(D~) ~ R(D ), 
r A .A 

r-J 

R(D-X) ~ R(D>.), VIe know that fA ~ A > ).. and R(DX) n C(D~) = 1 

and R(D_) n C(D ) = 1. 
A i.J... 

Hence l;. e f 0, which, by induction, completes the theorem. 
>.. ~ 

Remark 

In (3), for v to satisfy the required conditions it 

is easy to see that, in fact, A ~ Vj this verifies part 

Lemma 2.3.5 

= X 
)..' 

Proof 
I 

XX is the unique common irreducible 



constituent of vr and E VI 1ur • 
" ).' 

'IN 
>.. 

But 
).. 'V (X>' , 'V Lt~ (£ X , 1\1/ ) = .[ • 1,.: ) since 1 1 , ':r', 

>.. ).. 

= (X' , <- '1'1) 
W>.,' 

= 1 by 2.2.3 

and A ~ w) (x.>' £..E. W) (Cx. , = 
1'/ ' VI 'j, A 

= (X>" , W 
1'1 ) 

I;' ).. 

= 1 by 2.2.3 

Hence [. x:. is a cormnon cons ti tuent of 1 VI and c.. Wand is 
i\ A I'r >..' W A 

also irreducible since ([. 'X ,[ X ) = (XA, XA) = 1 • 
1\ )..' 

So [. X = It • 

Corollary 203.6 

(1 W ~) :f. 0 <=> A ~~ W ' >. 
. VI , -x.:) ;f <=> ,\~~ (c: 0 

Proof 
WA, 

If (\vW 
, 'XI-'-) '* 0 then ,\ ~ f-L by 2.2.7. Conversely, 

).. 

let A ~~. Therefore, by 2.3.3, there exist diagrams 

D~ and D~ satisfying the conditions of 2.3.4. Hence, by 

203.4, 1;). e/_~ ::j: 0, so that Ae/",-- ~ At;.),. since AejA is irreducible. 

But A~}.. affords the character W , and Ae affords Xf'l , 1n 
"A l"-

so ( W 
1W).. 

, x.f'-) ~ o. 
The second half of the result follows from 2.2.7 and 

the fact that 

=> ~, ~ f-L' 

;;> \1. 1-<' (\, ~x:. ) :i: 0 by the first part 
A' 

VI I => ([. 1, '/ ,.[ ~) :(: 0 
\ , 

A 



§2.4 A decomposition of the group algebra of W(~ 

Solomon [17] has giver~ a decomposition of the group 

algebra of an arbitrary finite Coxeter group, and in this 

section We interpret his results 2S applied to the 

symmetric group. In la ter chapters We loole a t the decompc1si tio 

for other- Weyl groups. 

By tensoring with ~, 1!!e shall assume thot all modules, 

representations and characters are over the field of 

complex numbers. In particular, A = .~VI. otherwise W'e 

sha 11 use the same nota tion as in [17J. 

The generating set I for W is the set of 1 

transpos i tions Let J ~ I, 

then W
J 

is the parabolic subgroup of W generated by the 

elements of J. Now, W
J 

is also a Y/eyl subgroup of W, 

and hence is of the form w~ for some partition f of 1+1. 

Thus each subset J of I dp'fines a unique partition r of 

1+1 and We write p(J) = f • 

We fix an arbitrary subset J of I. Let p (J) = ~ , 
1\ 

and since J - the complement of J in I - is also a subset 
... 

of I, We call put p (J) ==;-<-1 , where fA f- 1+1 (we use the 

dua 1 of fA for convenience only). 

Then define 

t: == J I w 
wc ', ~, J 

, 1) 1\ = 
J 

L l (w)w 
Vf::::' J 

(these differ from [17} ocly by a scalar multiple, but 

the module At;. JTJ J is the same in both ca s eS ), so tha t 



~J = ~~ '~J:::; ~~ as defined in §2.1. 

Solomon [17] shows that the module A~J~J affords 

the cha ra c tel" Y';J of W Whel~e 

= ! ) /K-J/ \-1 
\I{ 

1".1 ' 
trK 

We shall be investigating the irreducible submodules 

Theorem 2.4.1 

Let .A I- 1+1. 
>. 

Then (y ,X) :f 0 :;. ~ ( ~ ~ /'-i. 
J 

30 

i.e. A~ ~A only contains irreducible submodules isomorphic 
J J 

to some Al;,A ~>. ' where ~ ~ A ~;«- • 

Proof 

By 1.2.8, since A~J 
~ VI affords c (1 2 9) W ' • ..,. 

f'-

;.. 
(y ,X):p 0 

J 

Lemma 2.4.~ 

Hence f ~ f"L • 

Proof 

( , 'X./ .. ) ~J = 1 

Suppose J ~ K 01. Then if p (K) :;: 0-, C>- ~onsists of 

e with complete rO"Ns moved up. In particular r > r · 
6 (W,-yf()= He nc e, by 2. 3., \" f'.... 

c-

Thus, 



, 
Similarly, (\) " , r!L) 

J 
NoY' by [17J lernma 7 , 
Thus 

(y ,-x:) 
J 

= 

;;;: 

1 

1 

E..y 
J 

by 2.2.7 

since p(J) 

== '+-1'1 
J 

, 
= (y~ ,x:) 

J 
= 1 

;;;: j-LI . 

It follows immediately from above and 2.4.1 

that ~ ~?- • 

Solomon [17J theorem 4, a Is 0 shows tha t if I J I = p 

then A~ ~A has a unique irreducible submodule isomorphic 
J J 

31 

to 1\ PV of dimension (~), rlhere V is the Euclidean space 

of dimension 1 which affords the Witt representation of 

W as a reflection group. 

In our CBse V is the hyperplane of ]R1+1 consisting 

of the points whose sum of the coordinates is zero ([3J , 

table I). We shall now identify j\PV and the irreducible 

character it affords. 

Suppose 15/ = p 

~efinitio? 

Let ~ be the partition of 1+1 given by 

(S ;;;: (1-p-l-1, 1 p) • Then we call (3 the hook graph for J 

and X f3 the hook charac tElr for J • 
II' • 

Notice that the hook graph depends only on the ordAr 

of J, and that X i3 (1) ;;;: (1) by 2.1.6. 
P 

If ~ /- 1+1 then let rCA) ;;;: the number of rows of 

(the frame of) A • 



Proof 

(i) r(e) = p+1 

(ii) (Y
J

, "J,../3) = 1 

32 

(i) Let De be the diagram corresponding to (' which 

is defined by V'lJ. Then there exists an element x ot \V 

such that xD(' is a diagram corresponding to ~ whose 

symbols a1"e naturally orde'lred. 

Hence, ,R(xDe) = Xw
J
x-1 (2."1.1) 

I ~ ::x-1 

I 
By construction :" 

I 

i r-' 
JX - U I (a • +1 a. +2 ) , (a i +2 a i + 3 ), ••• ,( a i ... 1 -1 a i + 1 >1 

}=-o 1. J. 

where 

and 

j 

i e i = I 

I 
I 

I:: 
::; 

= 

! 8 2 = 
I 

• 
• 

ar 1 -. 
, a r i , t 

Hence' 1\ 
JX = 

so that 
r-1 

( ~I , • • • , ~,.) so that r(~) = r 
0 

P, 

~, + ~l. . 

= (!, + ••• + e"'-I 
. = () + + ()~. = 1+1 \t ,. •• \..-

.f (s1 a1~.1),(a2 a 2+1) , ••• , (a r _1 a r _1+1)} 

== I ~ I = I I I - I JX I 
= l-IJI 

= p since IJ
A

/ -- p 

Hence reel = r = p+1 

(11) Move up all the squares of e that do not lie 



in the first column, up to the first row. This gives 

us a frame whose first column has length equal to the 

length of the first colum..'1 of e which is r(f) ;:: p+1. 

Since this frame is a hook by d~finition, it represents 

the partition (1-p+1,1 P) = ~. Thus, by 2.3.1 ~ ~ ~ • 

Now suppose J~K S-I and p(K) = 0\. Then ~ is 

obtained from f by moving up whole rows. 

i.e. r(~) < r(r} = p+~ = rea) 

But if 0( ~ (1 then it is clear from 2.3.1 that r(O() ~ r(B). 

Thus 0( ~ (3 • 

Therefore, by 2.3.6, 

Hence 

;:: 

= 

= (1WW ,XII) ; 0 b;y 2.,.6 since (3 ~ f!J 
e 

/J"'/ -y11 Thus we have shown = p => (y , ~ ) ; 0 J 

Now the fundamental result in [17J is that 

so that 

X reg 

character of W. 

A = L Al; 1) 1\ 

;r;;.!. J J 

, where J(reg is the regular 

Hence (~) = ~ (1) = ('X.
reg , x.,13) = ;rfx. (YJ ' XfJ ) 

But there are (~) subsets J of I such tbat IJI ::: P, 

and for each of these (Y , Xfl) :J: O. It follows immediately J . 
-v fl ) t 11 that fI,J

K 
,X13) = 0 that (Y

J 
' ~ = 1; and, incid~n a y, \, 

if Iii * p • 

Theorem 2.4.! 

Let Xbe the irreducible character of W afforded 

by I\PV. Then X = x p
• Thus /\ Pv £f Al;,(l1)/l 
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Proof' 

X- is irreducible so 'X = x.),. for some }. I- 1+1. 

Let J = !(12),(2}), ••• ,(l-p l-p+1)} 

" hence J = t(1-p+1 l-p+2), ••• ,(1 1+1)1 

so tha t I J I = p. 

Then ~::: p (J) = (1-P+1, 1 p) = (J 

and I .) f<- = PlJ ::: (p+1 ,1 1- p ) = fJ I i.e. F = i1 

By 137] I\Pv is an irreducible submodule 

and therefore (\JJ J ' 'Xx ) :/= .). Hence, by 2.4.1, 

i.e. (3 ~ >. ~ (3 so that ). =(3 as required. 

It will be of interest to determine for whic~ J, the 

module A~JTlJ is irreducible. We show that this happens 

for only a few subsets J of I, so that the decomposition 

given in [17] (th.eorem 2) is far from being a complete 

decomposition of A. 

Definition 

Let J be a subset of I. Then J is qecomposable if 

J = J 1 u J 2 such that all the elements of J 1 commute 

with all the elements of J
2

• Otherwise J is 

indecomposable 

It is easy to see that J is indp.composable if and 

only if J consists only of consecutive generating involutions. 

Theorem 2.4.5 
1\ 

AtJTl J is irreducible if and only if both J and J 

are indecomposable. 

Proof 

Suppose A~JTlJ is irreducible so that Y
J 

is irreducible. 

I J" I t Let = P, then by 2.4.2, 2.4.3, f = {fJ = t"-, so tha 
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e , I"'- and therefore jA/~ are all hook graphs. Thus the 
A 

generating sets J, J consist of consecutive generators 

and so are indecomposable. 
1\ 

Conversely, suppose that both J, J are indecomposable. 

Then it is easy to see that r =r-. Hence 

A~J~JA = A~ n = A~ ~ which is an irreducible A-module e ~ (' e 
affording the character xC' • 

§2.5 The maximal \,leyl subgroups of WeAl) 
. -

In the final section of this chapter Vie deal with 

the maximal \'Ieyl subgroups of W, which can be determined 

by the algorithm in §1.1. 

They are the Weyl groups of type Al _1 and Ai + Al - i _1 
for 1 ~ i ~ 1-2 • 

In 2.2.8 we defined a bijection X from the set of 

Wey1 subgroups of W to the set of irreducible characters 

of W. So if W' is a Weyl subgroup of W we define AwiW) 
to be the irreducible character of W associated in this 

way with \"'. 

We shall be particul&rly intarested in the case 

W' :: W (A 1_
1 

) • Suppos e W" is a V/eyl subgroup of Wt then 

it has associa ted with it an irreducible character X II (W' ) 
W 

of WI. However, VI" ~ ~ a Iso a Wey1 subgroup of 'tI to 

which the irreducible character X I (W) is associated. Wi. 

The next result will show that these associations are 

consistent in the sense that 

Vi r X (WI )1 
LVI" j 

:: X , (VI) 
w' 

+ higher terms ••• (1) 



where We order the irreducible characters by their

corresponding partitions: 

then )(. >.. ~ "'It <=> 

)0 

Now suppose >.. r 1 and X./ /I ('/1 r) = X>' , so tha t by our 

construction W" = w>.. • 

We let ). = (A" ••• , Ar) and \* = (' ') 1\ "'" ••• ,/I,., 1 which 

it ,* -- ('1) • We can VIr e as 1\ /I Then >.. * f-- 1+1 and 

\'l * S!I S x. •• x, S x S 1 " S >. x ••• ~ S ~ W = vr 1/ 
A A, ).~ , >.,. >.. • 

A* 
Rence XV{ Ii (W) = X since W" ~ VI * as a Vfeyl subgroup 

). 

of \V. Thus ( 1) becomes 

>.* = 'X. + 

for some non-negative integers a~ • 

The theorem we prove is slightly stronger than is 

required above, and is a special case of the Murnaghan-

Nakayamsrule ([1J VI,3.1) 

Theorem 2.5.1 

Let A r- 1 and A* :::: ( >.1) • TheLl 

* 
(XA)W = XA + I 'X~ 

r'-

* summed over all those partitions /u(~ A ) of 1+1 such 

that the frame for ~consists of that of A with one 

square added to the end of a row. 

* In particular, fL > .\ 
Proof 

Let fL be an arbitrary partition of 1+1. Define a 

partition:\ of 1+1 by ). = (\+1,\, ••• ,>.,.) where 

A = (>.,' ••• ,~) • Hence >:' = 0.' 1) ;:()..,)* • 

Thus w ~W 
X ' >,' 

and W*SfW 
). >. • 
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( IV ~, tv}-(. ) ).J,. 0 ' 
A- \/'- r by Frobenius 

W' 
:.. (1 W' ) =... W). , (x!"" )WI ¢ 0 and 

=> (1w: ' ('X!")W) :1= 0 and 
). >. 

(E.'ii,' (-x!"-)W ) :;. 0 by Frobenius 
x >.' 

again 

=> (\v ' (~)w ) f; 0 and (£ (Xf<.) ) #. 0 
W>., 

, 
W-I x* A* .\ 

=> (1 
W 

, At) ¢ 0 (£ 
W 

, ):tt) and * 0 onoe more 
W}..)fo WX' 

Froben;.~.LS 

~ A* :E;f'l:E; A by 2.3.6 

i. e. fA = (A f' ••• ,).~+ 1, ••• , At') for some i suoh tha t 

}.t-I > )..:. so that fA has the form required. 
I 

by 

W~ have left to show that A * ~ r :E;). ='> «'X.>.)W ,,,/!-) = 1 •. 

* So suppose ~ ~ /'A :E; ). so tha t f-A- oons is ts of A wi th a 
i 
, th 

square added to the i row for some i. 
f 

'X: is afforded py the minimal left ideal Ae,... of A = G:W, 

and 'Xi is afforded by the minimal left ideal A 'e>. of 
I 

A' = CVI' • 
, 

I VI 
Henoe(X>') is afforded by the (no longer minimal) left 

I 

ideal Ae), of A. 

We shall sho?1 AeJA,S Ae>. ; it will be suffioient to 

* .J,. ( ) * prove er-e). .,. 0, 1.2.7, for then Ae~<, Ael\ S! Ae>., • 

Let D~ be a diagram corresponding to ~ then let D~ 

be the diagram of fA given by adding a square oontaining 

the symbol 1+1 to the ith row of DA • 

Thus R(DA) ~ R(D~) and C(D~) ~ C(D~) so that WA ~ W~ 

and VI >"/:E; WJ-A-' • 

It follows easily from this faot, that ~ ~ = ~ • Henoe 
~ >. l-'-

e = e,.. e: = f;,..~,.. ~ >- f; \. = f;,...~,.. {. >. • 

of 1 in e 1s given by ~ E(q ) 
~ 

Therefore the ooef~icient 

summed over all elements 



q of ~ ... / I such tha t there exist elements p of 'j"' and 
~ f"- f"- r 

p, of W, such that p q p = 1. 
"" ,.. ,.. }, 

Hence q = p-1 p-1 E W (-,,/ i,7,) so q E R(D ) n C(D.J = 1. 
~ ,.,.. >. r- A f"- f"- F 

Thus the coefficient of 1 in e is non-zero so e e* 4 o. 
~ ).. 

Hence 

(XX )w = 

where the a~ls are non-zero positive integers. By 

considering the degrees of the characters in this equation, 

it follows from 2.1.7 that ar-= 1, provine; thetheol'c:m. 

In 2.2.7 we have only given the decomposition of 

the linear characters 1, e on inducing up to VI from n 

Weyl subgroup. It is of interest to notA what happens 

when We induce up an arbitrary irreducible character 

from a \Veyl subgroup; since all the \Veyl subgroups of W 

are direct products of V/eyl groups of type A, it will 

be §Ufficient to consider inducing irreducible characters 

up from maximal Weyl subgroups of Vi, as any \Veyl subgroup 

is contained in a maximal one. 

We have already dealt with the maximal \Veyl subgroup 

W(A
l

_
1

) in 2.5.1; the result for the oneS of type 

Ai + Al _i _1 (1 ~ i ~ 1-2) 1s given in chapter three (3.6.4) 

where the notation and proof properly belong. 



Ohapter three ~~ GROUPS OF TYPE 0 

The Wayl group of type 0 has also been extensively 

studied (sometimes under the guise of the/hyper-octahedral 

group); Young [20] determined the conjugacy classes and 

irreducible characters and Osima @6] considered the 

group as an example of a generalized symmetric group. 

Again, We shall be considering this group as -I;:le Weyl 

group of the-simple Lie algebra 01 in much the same way 

as Vie studied the \"leyl group of Al • 

We shall not be assuming (apart, of course, from the 

definition) any known results about this group, as nearly 

all the proofs We give are neW (as far as is lmown). 

In part:J.cular, We generalize the partial ordering on 

partitions given in §2.2, to one on pairs of partitions. 

The results in this chapter certainly do justify 

Osima's idea of consid8ring this group as a generalization 

of the symmetric group. 

§3.1 The conjugacy classes and irreducible characters 

We shall give some notation which will be used in 

this and the next ~IO chapters. 

Let G = ':l(01) - the V!eyl group of rank 1 of type O. 

Then G is the group of permutations of the s:J;~j:-iols 

f1, ••• ,1,-1, ••• ,-1} generated by the involutions 

[(12),(23), ••• ,(1-1 1),(1,-1)} 

(ab) and (1,-1) 

b ...... a 

-a ~ -b 

-b ........ -a 

where 

1 1-+ -1 

-1 .- l' 



We shall express the elements of G as products of 

cycles of the following form: 
,-
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(a) positive n-cycles (a 1 82 ••• an) for 1 ~ n ~ 1 and 

which maIlS 

a 1 ~ a
2 

.....,... a
3 
~ ••• - a t-+ a n 1 

and -8 
1 
~ -8 

2 ~ -a 
3 
~ ••• ~-a ~-a 1 n 

(b) neeative n-cycles (a 1 a
2 ••• an) fOI' 2 ~ n ~ 1 and 

:t.ai E l1 , ••• ,1) which maps 

a 1 ~-'82 ....... ••• ~ an ~ -a 1 ~~~'2 ...... ••• .... -a .....,.. a 
n 1 

(c) negative 1-cycles (i,-i) for 1 ~ i ~ 1 , called 

sign change~ which maps i ~ -i ~ i 

The cycles are multiplied together in much the same 

way as those in the symmetric group, remembering the fact 

that (a 1 a 2 ••• an) is shorthand for 

Thus G is the split extension 

N 91 C2 x ••• x C2 is the subgroup 
I 

~ 

of N 

of G 

••• a ) (a , -a ) 
n n n 

by H, where 

generated by the 

sign changes, and H :; 8
1 

- the symmetric group on 1 letters, 

and H acts on N in the obv-iousway viz. H permutes the 1 

cyclic groups of order 2. 

Hence tG/ :; /1T1 /H/ :; 2l.H 

Notation: We let W(C
1

) :; {(1),(1,-1~ 

As in the symmetric group we may express any element 

of G as the product of disjoint (positive and negative) 

cycles. 



Definition 

Let g E G. Suppose g is the product of disjoint 

cycles c 1 ••• cr d1 ••• ds ' where, for 1 ~ i ~ r, ci is a 

positive mi -cyc1e, and for 1 ~ j ~ s, d j is a negative 

nj-cyc1e. Then the signed cyc}e-typ~ of g is the set of 

integers (m1,. •• ,~ ; n
1

, ••• ,nr ). 

Note 

The signed cycle-type is ordered in the sense :.ihat 

(m , ••• ,m . n • • • ,11 ) is not the same as , 
1 ' 1 r s 
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(n1 ' ••• ,n . m
1

, • • • , ,m ) since the first set corresponds 
r s 

to positive cycles and the second to negative cycles. 

Lemma 3. 1 !1. 

~vo elements of G are conjugate if and only if 

they have the same signed cycle-type. 

Proof 

Let g E G and let g ~ c 1 ••• cr d1 ••• ds be the 

decomposition of g into disjoint cycles, where c i 

(1~i~r) are positive cycles, d. (1~j~s) are negative 
J 

cycles. 

Fix c ; c
i 

; (a ••• a ) say where a 1 , •• 0,a E~+1, ••• ,+11 1 m In.--

Then if x E G, 

xcx -1 = (x (a 1) •• " x (a m) ) 

a positive cycle of the same length as c. 

Similarly, if d ; d. ~ (b ••• b ) = (b 1 ••• b -b1 J 1 n n 

then 

xdx-1 ~ (x(b
1

) ••• 

a negative cycle of the same length as d. 

• •• -b ) n 



has the same signed cycle-type as g. 

.xd x-1 
s 

Conversely, suppose g is as above and that 

g' = c~ ••• c~d1 ••• d~ has the same signed-cycle type as g. 

If 

c = ( a ••• a) and c' = ( a 11 • • • a m' ) 
1 III 

then c and c' are conjugate via an element x E G such 

that x(si) = ai for 1~i~m. 

Similarly, if 

d = (b • e • b) and d i :: (b I ••• b I ) 
1 n 1 n 
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are conjugat3 via an element x ~ G such that x(b.) = x(b l ) 
J j 

Thus, since all the cycles are disjoint, We can choose 

• an element x E G such that g' = xgx-1 • 

Definition -.;;-----...... ~--
A pair of _p_artitions. (>. ;1-'-) of 1 consists of partitions 

A , jA such tha t I >./ + I;-t-I = 1. 

Let g E G have signed cycle-type (A" ••• , Ar; f-,"'" f-J 

where We arrange the cycles so t~at >. ~... ~ At" > 0, , 
/A, ~ ••• ~ rs > O. Then this defines a pair of 

partitions (\;fd of 1 \7her'e A = (>.." ••• ,A,,) and 

,AA- = (t't, ••• , (i ) • 
Hence, by 3.1.1, we have shown that the conjugacy 

classes of G are parameterized by pairs of partitions 

of 1. 

We turn nou to the irreducible character's of G~ 

Since G has a fairly larse normal subgroup N, We can use 

the methods of Clifford (see [11J and Bz] (17.11)). 



Theoraem 3.1.2 

Let ~ be an iraraeduc1ble oharacter of N, C = C
H 

(C; ) 

and V an iraraeduc1ble charasctera of C. Then C ~ S x S m n 
wheras m + n = 1, and wherae m is the nUmbera of generaat1ng 

sign ohanges of N on whioh ~ takes the value 1, and n is 

the numbera on whioh ~ takes the value -1. 

Defina a map r): NC ~ «:: by 91 (nc) = c; (n) \V{e). 

Then rp is an 1raraeduoible oharaactera of NC, and we wraite 

~ = ~ 'Jl. Also 

(a) ~G is an iraraeducible oharaacter of G; 
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(b) if f6 1 = c; 1""1 ' ¢2 = ~2't'2 then ¢1 G = r;2 G if 

and only if both c; 1 = hC;2 and y 1 = h'f'2 fora some h E H; 

(0) everay irreduoible oharaactera of G may be obtained 

in this way i.e. has the form ~G for some ¢ • 

Praoof , 

Sinoe N is abelian, C; is a linear oharactera. Thus 

if (i,-i) is a sign ohange, which therefore has ord~r 2, 

c; (i,-1) = !1. Relabel the symbols [1, ••• ,1) so that 

t; (1,-1) = ••• = c; (m,-m) (some m) 

c; (m+1 ,-(m+1» = ••• = ~ (1,-1) 

and write 

N1 = «1,-1), • • • , (m,-m) > 
N2 = « m+ 1 , - (m+ 1 ) ) , ••• , (l,-l) '> 

so that N = 't..T •. 1 X N 
2 • 

Let 0 E C then 0t; (i,-i) = ~(c{i),-c{i». Thus 

Ct; = ~ if and only if (i,-i) E N1 => ( 0 ( i) , -c ( i » E N1 

and (i,-i) E N2 => (c (i) , -c (1» EN 
2 

.Thus the elements of C arae precisely those which permute 

the symbols 11, ••• ,m) and {m+1, ••• , l} indopende:r:tly. 

Hence C ~ S x S wherae n = I-m. m n 



The symbols L1, ••• ,m] will be called symbols of 

the first tIpe and [(m+1), ••• ,I} sYmbols of the second 

!rue 
Every element of Na is uniquely expressible in the 

form nc where n E N, c E a, because N n a = 1. 

Let V
1 

be the N-module affording ~ and V
2 

the a-module 
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affording • Then V
1 

x V
2 

is an NO-module with character 

¢. For, the module axiOrn3 are easy to check, with the 

one exception which we noW prove: 

suppose n,n' EN, c,c' E a, V1 E V1 , v2 E V2 then we 

must show 

= 

c" = (v1®v2 )(nn t .cc t ) 

~ = v (nn t c ) ® v (cc') by definition of 
1 2 

the tensor product of modules 

c· = (v n)n' ® '(v c)c' 
1 2 ••• (1) 

since V1,V2 are modules. 

But c~ E C = aH(~) so that ~(cnc-1) = ~(n) for all n EN. 

Because ~ is linear, ~ is the representation of N afforded 

by V
1 

1.e. v1n = v1~(n) for all n E N. 

It follows that 

v n' = v ~(n') = v1~(cn'c-1) 
1 1 

and therefore ... 
(v

1
n)n'C = (v

1
n)n' 

Returning to (1) 

(v ~ v 2) (nc. n' c t) = (v 1 n) n' @ (v 2 c) c ' 



as required. 

The character afforded by V 1 ® V
2 

is the character 

p as d0fined in' the theorem. p is irreducible since 
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JS (1) = C; (1) It'( 1) > 0 and (~,9)NC ;: (~'C;)N(Y'~)c as N n C ;: 

= 1 as ~ ,'fJ are 1rrec1ucibll 

(a) We show ¢G is ::l.rreducible. 

Firstly, ¢G(1) ;: IG:NCI~(1) > o. 

Secondly, by Mackey's formula 

I 
where [Yi ) is a set of (NC,NC)-double coset representatives. 

Let L = NO n(NC)Y;: NC n NCY since N<1 G 

= N(O n CY) 

? N 

(p (y~) ) ~ 0 so that (c;,Yc;) f 0 because ¢ = ~(1).c;, 
N, N N 

and therefore c; = Y C;, so Y E C G(C ) • 

Now NC = nCH(e;) ;: N(Ca(c;) n H) ;: CG(c;) n NH by the modular la 

:.. C (e;) n G 
G 

;: Co(e;) 

Thus y E C G (c;) = NC i. e. y = 1. 

GO) Hence (? , 9 ) = (p , 1 = 1, so pG is an irreducible 

character of G. 

(b) Suppose P1
G ;: p G and let C

1 
;: CH('1) , C ;: CH('2) 

2 2 

Then, if n E N 

P1 0 (n) ;: /O: NC 1/ L 91 (x) 
xEC (n) nNC 1 Ic (n) I 

(where C (n) is the conjugacy class of G containing n, and 



since N<1 G, NOO 1 ::: 1, C(n)mW 1 :;:; C'(n)nn) 

Hence 

:::Y1(1) lG:N/ L <;1(X) 

1° 1/ iC(;)i xEC (n) nN 

::: (01/-1l4(1)t;1 G(n) 

\C2IY1(1)(t;1G)N::: IC 1/Y2(1) (C;2G)N 

Evaluating the degrees of both s1des 

/C21Y1 (1) iG:N I 

Thus by (2) 

::: 

::: 

••• 

• • • (2) 

Suppose, for a contradiction, that for all h E H, 
h 

~1 r t;2· Because G ::: lTH and t;1 (1=1,2) are characters 

of N, We have that t;1 f gt;2 for all g E G. These are 

46 

irreducible characters so (t;1' gt;2) ::: 0 for all g E G. 

NoW, by ~mckeyts formula, letting l Yi
1 be a set of (N.N)

double coset representatives 

So 

::: [ ( (t; 1 ) N nnY , ( y c; 2 ) N nNY ) 

yE[Y1] 

::: \ L (t;1' YC;2)N 

yE [y 11 
= 0 by above 

::: 

::: 

::: 0 by above 

by Frobeni1J.s 

by (3) 

which is a cof\:tI'adiction, sinco c; G is a character of G. 
1 



_ h-' 
Thus there exists an h E H such that ~1 - ~2 • 

So 0 - 0 ( )::; 0 (h ) - 0 ( )h - h 
1 - H ~ 1 H ~2 - H '2 - O2 • 

It will be sufficient to prove the result for h = 1 

i.e. that ~1 ::; 1;2 implies y 1 ::; '1
2

- For, 

h", _ h h _ h 
)"2 - t; 2 Y 2 - ~ 1 1f2 • 

assumption. 

h G G Also ( ~) ::; ¢ = 9 G by 
221 

But ¢1 = t;1 Y1 ' so by the result for h=1, We have 
h 

'+' = "f. a s required. 
1 2 

Therefore We let ~. ::: ~ 1 = ~2 ' 0 ::; 0
1 

= O
2 

' T=HC. 
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Suppose that Y, + \Y L and '"Y" '1'1..' ••• ,V/t are all the distinct 

irreducible characters of 0 and let Pi = 'iYi (1~i~k) -

irreducible characters of T. 
T 

NoW, (c; ,¢ i) - (~ , (9\) N ) by Froben1us 

= (t; , Yi(1)I;) 

='1\(1) = P;1(1) 

Thus 
T _ 

c; - a 1511 + ••• + ak¢k + >- , where ). is a 

character of T such that (.\ ,Pi) = o for i ,.. [1, ••• ,k) c 

and a
i 

= Y i (1) = ?i(1) ~ o. 

R Now because i Y~J ~=/is a complete set of irreducible charact~rs 

of 0, 

10) +>.(1) = a 2 .... 1 .,. • • 

::; a 1
p1 (1) + 

= ,T(n 

+ a
k 

2 + ).. (1 ) 

• •• + sk"k ( 1) 4o). (1 ) 

= IT:N I = 10 I 

Hence }. (1) = 0 so A = O. Therefore T = 
~ 

.' =-1 

and it follows by the transitivity of induction that 
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~O 
k 

I. G 
(4 ) ~ = ai¢i .... 

i = I 
Vie now compute G G 

(<; ,e; ) • 

Let jG:T/ = t and the set GjT :::; f g1 T, ,gtT 1 ••• 
Hence, if nEN 

<;O(n) ;:; 1 L (ge; ) (n) 
TNT bEG 

t-
::: hL L gi 

( t; )(n) as To ::: C G (C; ) 
INI 

G Thus (C; )N ::: 

Therefore, 

l =- I 

.:- .::... I 

G G 
(, ,t; ) = 

G «, )N ,,) by Fl'obenius 

t- gi 
;:; 'IT:N/ L ( "e;) 

= IT:N/ 

<=> 8i... ;: fA <-> E C ( ) - T ... .. - gi G e; - • 

Our contradiction now follows, since by (4) and above 

I I 
. G G 

T:N :::; (e; ,e; ) 

~ (a +a )2 + a 2 + 
123 

> a
1

2 + ••• + a
k

2 

... .,. a 2 
k 

:::; I C I :::; IT:N J , a transparent impo . .:s io111. ty. 

Thus We have shown ~~ = YL , completing this part of 

tho theorem. 
h h 

Now sUppose c: 1 :::; <;2 and '1-'1:::; Y1. for snme hER. 

h h h G G 
Then ~1 :::; C; 2· Y2:::; ?2 so 91 = ~2 ' completing (b). 

(e) We use a combinatorial argument to show that all 

the irreducible characters of G may be obtained in the 
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manner described. 

By (b), ~O detemines, up to conjugation by an element 

of H, an irreducible charoctar t; of N, which in turn 

determines integers m,n such that m+n=l, and 

C = CH(t;) ~ Sm x Sn. But if ¢G also gives ht; then 

h h 
CH( ,) :;: CH(e:) ~ CR(,) so gives rise to the same integers. 

G 
Thus ~ determines uniquely integers m,n such that 

m+n=l • 

o Also, ¢ determines, up to conjugation by an element 

of H, an irreducible character Yof Sm x Sn ' which is 

therefore a product of two irreducible characters X-, x.f-\
of S,8 respectively, where), r m,)-t rna Because h y m n 
determines the same partitions A,~ We see that ~G 

determines, in a unique way, a pair of partitions (>-;fL) 

of 1 i.e. given (),;F) We can construct, uniquely, ¢G. 

However, the number of irreducible characters of G 

is equal to the number of conjugacy classes of G, Which 

by P 42 is the number of pairs of partitions of 1. Thus 

We have all the irreducible characters of G. 

Notation 

In ;.1.2(c), We showed how to associate with a 

given,O a unique pair of partitions (),;~~. We therefore 

write rpG as X{.)..;;-<-) • 

Hence the irreducible characters of G are also 

parameterized by pairs of partitions of 1. 

We shall always USe the notation of 301.2. 

We note here, for reference, a technical lemma 
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Lenuna 3.1.; 

( 1) ( ~ G) N = I c I -1 ~(1) (c; G) N 

(ii) (~G)H = \fJH 

Proof 

(1) was proved in 3.1.2 

(1i) if h E H let CH(h) be the conjugacy class in H 

containing h, and CG(h} the conjugacy class in G containing 

h. Fix h E H, then 

~G(h) ::: IG:NC/ 
I C

G 
(h)l 

¢(x) 

SuppOSe x ::: ghg-1 E NC where g = nh1' n E N, h1E H • 

-1 _ () Since x E NC and N<l G We have that h1hh1 E C - C
H 

C; , 

so h1hh1- 1 centralizes c;. 

NoW ~(x) = C; [n(h1hh~1n-1 h
1
h-1 h~1 D V(h1hh~1) by definition 

h hh-1 
:;; C; (n) 1 1 C; (n-1 )'f-l(h1hh~1) since c; is linear 

Thus 

since h hh-1 E C 
1 1 

::: ~)(h hh-1) again since c; is linear 
1 1 

rpG (h) = IG:JTC! 
IcG (h)! 

= IH:cl. leG (h)l 

IcG (h)j IcuCh») 

H 
= Y (h) proving the lemma. 



We conclude with the following well-known result 

Thoorem 3.1.4, 

Any complex representation of Gmay be afforded by 

a basis with respe.ct to which the matrix entries consist 

of rational integers. In particular, the characters of 

G are rational integral-valued. 

Proof 
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From 3.1.2, VIe see that the ~,rreducible represent.st:tons 

of G may be obtained from those of the symmetric group 

by 

(i) tensoring these representations together and 

with representations which only take the values +1: 
_.,1 

(ii) inducing up the representations obtained 1n (1). 

The theorem then follows from 2.1.4, since the operations 

in (i), (ii) clearly preserve the required properties. 

§3.2 Two linear characters of W(Ol) 

G has four linear characters. Let wi = (1 i+1), 

1~i~I-1, and WI = (1,-1). Then G is generated by 

[w
1

, ••• ,w11 subject only to the defining relations 

([3] p 279) 

(W
1
w

2
)3 = (w

2
w;)3 = ••• = (W

I
_

2
w

1
=1)3 = (Wl~1Wl)4 

It follows that G can only have the following linear 

characters; (1 ~ i ~ 1-1) 

(b) the sign charae ter E. where .. ..- c(wi )=-1, E(wl)~1 

(c) the Ipne sign chara,etel: l;. where l;.{w i )=1, 1;(Yo" )=-1 
1 

Cd) the shoI'.t s1~character_ 1) where T) (wi) =-1, 1) (WI) =1 
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The last two namos Were chosen because wl corresponds 

to the long root in the Dynkin di!lgram for W(Cl}. 

Thus 

(a) 1(g) = 1 for all g E G 

(b) E(permutatlon) = sign of permutation, [(sign change) =-1 

(c) ~(permutation) = 1, ~(sign change) =-1 

(d) ~(permutation) = sign of pernlutation, ~(Sigll change) = 1 

Lemna 3.2.1 

Proof' 

(i) G G 
C ~ = 1) so E..F;.W = tlW 

(1i) [ . 'i .~ ; tt ) = )... (ft.'; ~) 

(iii) l;.~(A;f-) = X (~;A) 

(iv) 1] .'X.(A ;f-) = X. (A';t') 

(1) G~ = 1] trivially. The rest follows from 1.2.4 

(il) Let ')(.(A;fL)= rpG , so LX(A;tt) =LpG 

= ([ ¢)G by 1.2.4 
'tiT" .uv 

Now [ .p = (€ ~).(f y) • BecauSe [N takes the value 
NO N 0 

-1 on sign changes, it interchanges the symbols of the 

first and second type so that 0E(~) U Sn x Sm • 

4J = 'X-"'. Xl"- by definition so 

l;.NC¢ = (t;.N~)· (t;.CY) = (t;.N~). Y by definition of l;.. 

Because l;.N takes the value -1 on sign changes it interchange~ 

the symbols of the first and second type. 



Al s 0 \f = X ~ x..~ , s 0 ~ x.U..; !-<- ) ::: 'X. (}.t; A) 

(iv) follows from the first three parts. 

The two linear characte~s We shall be interested 

in are ~ and ~ rather than 1 and [ as in the symmetric 

group. However, the previous lemma shows that the 

distinction is more notational than anything else, as 

We shall popt out when We have proved, for 0, a result 

corresponding to that of 2.2.7 for 8
1
+

1 
• 

Remark 

We shall only be interested in the Weyl suberoups 

of G which are Wayl groups of regular root systems (l.e. 

root systems which are additively closed). This is 
tDlleier e.Le~t: of 0-
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because, in VI{C l ), anYA Weyl subgroup is conjugate to t:L C~~e:~r 

'-~t cf one of these regular Weyl subgroups (see [5]), and so, 

for our purpoSes, may be ignored. 

Thus in the rest of this chapter Weyl subgroups 

will always be assumed to be regular. 

The V/eyl subgroups of 0 are of the form' 

8 \ X ••• X 8, x W (C ~() x ••• x W (C ~) 
AI I\.r' f ... 

where L A ~ + [r ~ ::: 1. 

We shall write thi.s SUbgI'OUP as W (A ;r) putting 

A::: (\! ••• , A,) , fL = V-I, ••• ,1'-J) and We rnJ3.y aSSume 

tha t ).. I ~ ••• ~ Ar> 0, !", ~ •• • ~,~ > o. Thus the 

Weyl subgroups of 0 may be parameterized by pairs of 

partitions of I. 

Let D (A;~) be a pair of diagrams for ). and f:'

obtained by filling the frames associated with A and ~ 



wi th the :::ymbols L 1, ••• ,1,-1 " ... ,-I J (in any Ordel'1) 

such that the moduli of all the nUmbers appearing are 

distinct. We often wri te D ( " ; 1"-) = D), v D fA- • 

Definition 
..... M ....... 

A £.q,v~ per.muta.t.i~l! of a dlagrElm D (>.<fL) is an elenent 

p of G suell that p permutes the symbolS in each row of 

DA and in each row of Dr, and changes the Sign of the 

symbols in Dr- • 

The E2~ st~~ilize.£ R(D(A;~J) is the group of row 

pel'1mutations of D{ .... ~d • 
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Now R (D (>.:..~) ~ S '\ x .... x S~. r X W ( C fA ( ) X ••• x W ( C ~) 

=\1{A~t"-J 

Thus all the Weyl subgroups of G can be considered as 

the row stabilizer of some diagram D(A~~) • As in the 

symmetric group, G acts on a diagram D(A:~J by defining 

gD(~~~J for g E G, to be the diagram obtained by applying 

g to the symbolS in D (>. :r-J . 

It is then easy to see that R(gD (~~rl) = gR(D{>'~I'")g-1 
soliha t any tvlO isomorphic Weyl subgroups a1'1e conjugate 

via the element of G that transforms one associated 

diagram into the other. 

-
Comparing 2.3.5 with 3.2.1(ii), it is natural to 

make the following definition 

Defin~tlon 

(("-' ; A') is called tho duol of ()..; !~). Similarly 

define the dual of a frame, diagram or Weyl subgroup. 



.:.t< 

The reason for cons1d3ring the cl~ractars ~, ~ is 

conta1ned in the next tew results. 

We let (A;~) be a pair of partitions of 1 such 
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that A = (A" ••• '~r), tJ'-= (jl.." ••• ,;t.r) and IAI= m, 1/1../= n. 

Theorem; .2.2 

= 1 

Proof 

Thus 

Let W = \v( and adopt the nota tion of §;.1. 
>';'f') 

(F"wG 
, X>'~,.,.) = (c"wG , ~G) 

= L. (F"Wn(NC)Y' (Yp)wn(NC')y) 
yE [Yi) 

by Mackey1 s formula, where [Y1 ] 1s a set of (W,NC)

double coset representat1ves. 

Suppose (~Wn(Na)Y '(Y')wn(NC)Y) ~ 0, then because 

w n (NO)Y = Vi n NaY ~ w n N as N<t G , We have 

(~WnN ' (Y pS)WnN) F O. 

NOVI N = N1 )( N2 as 1n ;.1.2, and We choose Wp\;r
J 

so that 

D(>..~r-) is tilled with the symbols {1, ••• ,1] where 11, ••• ,m) 
--

ollcur in D>. and tm+1, •• • ,11 in Dr. It 1s then 

immediate that W n N = N2 • Since N2 ~ N, 

(Y 9S ) = (3' i; ) yJ (1) • Thus (~N ' (Y,) N ~} ( 1» f 0 -
N2 N2 1 2 

so (~N ' (Y~)N ) P 0 and because the characters are 
2 2 

linear t = (Y~) • But by construction of ~, 
N2 N2 

by definition of ,. It follows that ~ = Y, because ~ 
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'" 
takes the value 1 on N1• Therefore Y E CG(~) = NC , 

and so y = 1. 

Hence (~ I ¢ ). 
WONC wonc 

But W = SA X S x ••• x S~ x W(C ) x ••• x W(C ) 
(h l r!"-, f-J 

= S>.,X ••• X S)"x NfL,SfL,X ••• x Nt<s St"-s 

with the obvious notation 

=(NM.x ••• xNu)(S;..X ••• XS xs x ••• ).(8) 
(I !' J ' 1 A,. ~, !As" 

since the direct factors commute 

Thus 'tV ~ NC and W n N = N x x N - N 1-'-, ••• !As - 2' 

w n H = S x ••• X S'rx S X ••• X S = W x W • At t\ fA, fA.r.\ /A ... " 

where \V). and WI"-- are the appropriato Weyl subgroups of 

Sm and Sn respectively. 

So We See that i'7 = (W 0 N) (W n H) • Hence 

G 'X (>'~t") (~ ¢v/) (~W = , 
VV 

, 

= (~ ~ )(~ , 'V ) , 
WnN WnN WnH WnH 

= (E;.N ' ~ N ) (1", X'W ~ ) 
, I'T xN 

2 l2 "A 'f... "1\ ' ~ 

= ( ( 1 ) 8m X ~ ) (( 1 ) Sn , X,'A ) 
W,,' WI" 

= 1 by 2~2.7 , completing the proof of 

the theorem. 

-
Corollary 3,2.2.. 



Proof , 

(1)w 
Q Xl>';',..» (tt 

G , XJ>";t) , = by 3.2.1 
W (,...' : }.,' ) (fA'; ~,) 

= (t G [ X (>-~1'-1 '" 
W(r';)..' ) 

I 

= (t G 
I Afr '; >..~) by 3.2.1 

W(r'~ A') 

= 1 by 3.2.2 

Theorem ,3.2.4 

proof 

Write W = W( I Wi = W{, " and Suppose D, is 
i 'A.;r) r~>'J " 
I 

:t'illed:with the symbols \1, ••• ,m1 end D with 
(W-

I 
I 

(m+1, ••• ,1) where 

GiG 
(tw ',1)w') 

I 

= 

I ~ 1= m. Then by 1mckeyt s formula 
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I 

where ,t Y i ) is a set of (W,W') -double coset representatives. 

Now W n N = Nand similarly W' n N = N so 
2 1 

N = N1 x N2 ~ WW' • Therefore we may assume that, because 

G = NH, each Yi E H. 

Suppose (t:' (y~» :l: 0 then since the 
~wmv' y' "wmv' y r , 

characters are linear (. "\7' = ('11) so by wnw' " wmv' '1 , 

d~tinition of t, 1), W n w'Y does not contain a 

transposition or a sign change. 

WlY 1s the row stabilize%' of yD, '. ,d= yD I v yD, I • 
II"-,Al r " 

We olaim that yD A, contains the same symbols as thoge 

in D • 
>. 



For, 

suppoSe not; then there exists a symbol a such that 

a appears in yD A, but not in DA • We write a E yD
A

, , 

a ~ D>... Since a ¢ DA ' we have that a E D~ and hence 

(a,-a) E W. Similarly a E yD).., implies (a,-a) E wrY 

so (a,-a) E W n VI'Y , a contradiction. The fact that 

D A. and yD)./ both contain m squares proveS the claim. 
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Because W n wrY does not contain any transpositions, 

no 'tv'10 collinear symbols of D.>, are co-columnar in ;-])1\ I • 

Hence, by 2.1.2, Y/s = pq , where p E WA ' q E VI>.., • 
m 

Similarly, '11 = P1 Q1 ' where P1 E WI'- ' q1 E Wr , • 
. Sn 

Hence '1 = pqP1q1 = (PP1)(qq1) since the diagrams DA ' D~ 

are dis j oint and therefore VIA n W fL = 1 

= (PP 1)(q1 q ) 

E (W, x w ) (VI ; x \V I ) 
1\ f" I-'- >. 

1.e. y = 1. 

S ( ~ G G) = (~ T) But it is clear 
o "'w ' T)Wr ~wnwl ' wnw' • 

G) = 1 as required. , T)WI 

Hence 

3.2.2, 3.2.3 and 3.2.4 together show that 

the unique common irreducible constituent of t: 
W 

.(I>..;/u) 
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§3.3 An algorithm fOl" W(e l ) _._- -,-----
In this section We generalize 2.2$7 (alJrl.. 2.3.6) to 

G, and in so doing define a partial ordering on the pairs 

of partitions of 1. We first define a reflexive, anti

symmetric relation on the pairs of partitions of 1, which 

will give us an algorithm for determining exactly which 

."rreducible characters occur in ~wf} , for a given Weyl 

subgroup W of G. 

Let (oq,1) and (,\ ;t..) ue pairs of partilJions of 1. 

By the usual abuse of notation We shall refer to the frames 

also as (~;~) and (A;~) respectively. 

We write (A;~) ~ (~;P) (and in later chapters, 

where We introduce further algorithms, We shall write 

. ~ ), if (0(;/1) may be obta ined from (A if<.) by 
c 

first (a) removing connected squares from the end of a 

row of A and placing them, in the same ord0r, 

a t the bottom of jvl ; 

thon (b) repeating (a) with squares from different 

roVlS of ). ; 

then (c) reordering the resulting rows so as to give 

frameS of a pair of partitions (~;~), say; 

finally (d) moving up inside ~ and S , according to the 

usual partial ordering on partitions, so as 

to obta in 0( and [!, respectively (so 0 ~ 0( 

and J ~ (3 ). 

Remark, 

It is easy to See that ~ is reflexive and anti-



symmetric but is not transitive because e.g. 

( 2 , 0 ) ~ (1, 1) and (1, 1) .... (0, 1 2) bu t ( 2 , 0 ) +- (0, 1 2) • 

Later on We shall extend ... to a partial ordering. 

We can now state the first main result of this 

section 

Theorem 3 • .8 

Let (0\.;(3) and ('\;p) be pairs of partitions of 1. 

Then, with the usual notation, 

Before proving this We need a lemma 

Let W = R(D (A; f-J ). Then 

(a) W = (N n VI) (II n W) and (N n W) n (H n W) = 1 

If also g E Hand 0 = 0H(~) for some irreducible 

character ~ of N 

(b) Wg = (N n Wg)(ll n Wg
) and (N n Wg

) n (li n Wg ) = 1 

(c) NO n Wg = (N n Wg)(O n Wg ) and (N n Wg)n(ll n Wg ) = 1 

Proof 

(a) w = S X 
A, 

= S X x, 

••• 

••• 

x S A X W ( 0 M ) X ••• x \"/ ( 0 '" ) 
r /1 r-J 

x S >-r X N;-<, S,M-, x ••• x Nfls Sj-<J ' with 

the obvious notation 

= (N x ••• XN )(SX x 
1-<, !-<.I, 

••• :Ie: S x B x ••• x S ) 
). r j{, "M-f 

= (WnN) (Wnn) 

(b) ~YfS = (N n W)g(H n W)g by (a) 

(c) 

~ (N n Wg ) (H n Wg ) sin~e N <l G, g E H 

~ Wg hence equality 

Let x E NO n W
g 

and by (b) x = nc = n h for some 1 

n EN, cEO, n 1 E N n wS , h E H n .\.,8 • 

GO 



Hence n~1n =hc-
1 EI~ n H = 1, so n =n1 and c ~c1 

and therefore c E C n H n Wg = C n wg and n E N n rIg. 

80 x = nc E (N n V{g) (C n wg) "'[hlch implies 

WS ~ (N n Wg
) (c n WS) ~ rig ?=,roving (0). 

The trivial intersections all follow from the fact 

that N n H = 1. 

,!roof of 3.3.1 

Suppose first that (l; G , X(u.;tf) ::;. o. 
Wo.:",) 

We use the notation of §3.1 and also let W = W{>. ~,u...; _ 

Hence 
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where lSi] is a set of (W,NC)-double coset representatives 

and since G ::: NH We !My suppose each g1 E H. 

Thus there ex1s ts g E fg
1
1 such tha t (fl*- g, n< S) r 0 

-"'NCnW "'NcnW 

We let ~I::: m, J~I = n and let N ::: N1 x N2 as in 3.1.2 

so that t; (a,-a) ::: 1 for (a,-a) E N1 and f; (a,-a) = -1 

for (a,-a) E N
2

• Now by 3-3.2(c) 

Hence 

the value -1 on all sign changes in G and hence'on those 

in N n Wg ~ Thus N n Wg ~ N 2 • 

Now Wg defines a diagram D (>.;)-'-) , so s inca N n .,'!g ~ N2 , 

all the symbols in Df"- are of the second type. We may also 



assume the t the symbols of the second type in n.\ lie e t 

the ends of the l"OWS, since y/g only defines D (A;,M-) up to 

row permutations (and sign changes in D fA-)' Hence We may 

remove squares from D>. and pat them on the bottom of D)-~ 

(so that moved squares in the same row remain in the same 

row) and then reorder the rows to obtain a diagram Dnf;.I;) 

of a pair of partitions (~'; S) of 1 such that Dr contains 

all the symbols of the first type and DJ the symbols of 

the second type. This corresponds to the operatio:~ 

(a), (b) and (c) on p 59. So to show (>-';f<-) ~ (oq/3) 

We only have to sho'liv 0 ~ 0( , .:S' ~ f3 • 

By construction /'01 = m :: /0<...1 , IJ/=n=JsJ 

By (A) ( g~ y) :f 0 However, l; takes the value 
~cnwg, cnwg . 

Now C n Wg 
a (Sm n Wg ) X (Sn n Wg) since C et Sm X Sn 

and so C n WB permutes the symbolS of each type 

independr-mtly, and therefore these actions commute. 

Hence, by definition of Y , 

But Sm n Wg is the group of row permutations of the symbols 

of the first type in D (A:~) and thus the group of row 

permutations of Dr' Therefore Sm n Wg :: R(Dij) :: W~ 

_ a V/eyl subgroup of 8
m

, Sim1larly, Sn n Wg :: R (DJ ) 

Henco, 

( \v ' X ~ ) ( \v ' X-\v ) :I: 0 
~ 0 ~ .5 

,and by Frobenius (1w
Sm , x..~) f: 0 
r 

Sn , ,,-I» "'r' 0 and (1'"r 
11.5 

from which it follows by 203.6 that '0 ~ C( and 

- W - J 



Thus by the above remarks (A;/{.) ~ ('t;ft) • 

Conversely, suppose (~;~) ~ (~;~) • Therefore 

we may move parts of rows of A acr03S to~ to obtain a 

pa i1" of parti tiona «5'; J) of 1 such tha t ~ .;; 0( , J, {1 • 

Hence IA1 ~ 10/ = 10<1 = m end If"J~ /8/ = /(.1/ = n. 

So define D (>. :.rJ to be a diagram of (.\ itt) filled with the 

symbols 11, ••• ,1] such that l1, ••• ,m] all occur in DA • 

Let W = W(>..~r) = R(D("':'~J). Then 

Nnw = N~lx ••• 

tNrlW = 'NOW and 

X NM ~ N by const~lction. 
, -s 2 

thereforl'} (tumv ' 'Nnw) l' o. 

=> «1W )Sm , 'X,0l) :I: 0 
~ 

Sn (J 
=). (( \v) , 'X. ) :j: 0 

$ 

Hence 

Also, by 

( Sm -v" S xP 
(tNmv ' 'Nmv) \v ' I\. ) (1W n , ):j:. 0 and thls 

tl' .& 

So 

ls, by the proof of the first part of the theorem, the 

firs t summand in the MackeY' formula for (tw G , X to(,:, fJ) ) • 

Hence 

(t
w

G , X1cr..;(J) ) :j: 0 proving the theorem. 

We no,' wish to extend ~ to· a partial ordering on 

the pairs of partitions of 1. 

The reason why -. 1s not transitive is that We are 

not allowed to split up a row when moving it across so 

"that e.g. (2,0) i+- (0,1 2). This gives us a hint as to 

how to define a partial ordering. 

Definition 

Let (~;~) , (A;~) be pairs of partitions of i. 

Then (x ifL) .;; (cq(J) it We may obtain (cq{.1) from (X;j-t) by 

6} 



,-
(a) removing a square from tile end of a row of A and 

putting i-;; at the bottom of i-"'- ; 

(b) repea t1ng (a) as many times as is necessary to 

obtain a pair of partitions (o;~) of 1; 

(0) moving up inside (5 and S to obtain 0( and (3 

respectively (so that 0' ~ c:( , J ~ iJ ) • 

It is clear that (>-.;/1..) ....,.. (c>(j(J) => (>-;,U) ~ (C(j/.l) 

and that (Air-) ~ (oljp) if and only if there exist ::'~:irs 

of partitions (C~ ;0:) of 1 such that 

(>.. ;t"-) ~ (~, i o~) ...,. ( ~,.; ~) ~ ••• ~ (~I\.; ~) ~ (Ol; tJ) 

« C'~; 0;.) is obtained from (~ .. -d 0:) by moving across one 
.-/ 

square a t a time and letting U,,; 0"',,) ;:; (0;J». 

Lemma 3-3-;2. 

~ is a partial ordering 

Proof 

This is clear 

Lemma ,.,.! (Duality Relation for ~ ) 

("iF) ~ (",-;/1) <;:;> (fJ';C(I) ~ (;<-';),') 

pro<?f 

It Vlill be Sufficient to prove the implication in 

one direction. \7e may also suppoSe (C( ;f) is obtained 

from (A if'") by moving only one square from).. to f"\ -

·For, we rna y VIr! te 

(>.i(l) ~ (P, ;~) ~ ••• ~ (~~;(j',,-) ~ (c<i/l) 

Where each term is obtained from the previous one by 
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moving one square across except that ~ .... ~ Cl( and ~ ~ (.J • 

By assumption, 



( ' ') (' () (' ') (' I ()" ; e", ~ IY'\._I; ~ "'-, ~. •• ~ 0;; P, ~ r; A ) 

How by 2.3.2, 0(1 ~ ~.'\.' and {l' ~ ~ I 

so (tJ'; 0( I) ~ (0;::' ;C~) ~ (Ill; >--') i.e. «(1'; C(i) ~ (rt; A') 

So SuppoSe We have moved one square from A to j4 

to obtain (0(; (J) • Hence We may move one square from 

~ to 0( to obtain (/'-;(\) from (fl;q). Therefore, vre may 
.. I 

mOVe one square from {J to C{ I to obtain (it'; A I) from 

(pi joe') i.e. (,1t;i1\/) ~ (r';A') as required. 

This enables us to prove the same result for ~ 

Lenun!l 3.3 .5 (Duality Hela tion for ~ ) 

<=> ( ' ') (I ") (3;c{ ~ tt ;1'\ 

Proof ,.-

Suppose ((\jf'l) -+ ~x..;p) then (\;t<) ~ (q;(1) so 

«(>';0(/) ~ (rt ;>.') by 3.3.4. 

We must show «(JI; 0\,') ~ ({"I; AI) , so by definition 

of the opera tions defined by ~ and ..... it will be enough 

to show tha t when Vle move rows from (J I to 0<.' we do not 

split theSe rows up. It will be easier to prove this 

diagramatically. We must show that 

OJ OJ 
in moving across from (1' to 0( 

(" ;1"-) ~ (0<..; //) We have that 

• 

B 

But since 

in movi:ng across from >, to f-'-, and in doing the reverSe 

operation to obtain ("I; A') from {(J / ; 0(') we See that the 
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first diagram must indeed be the case. 

Theorem 3.,.6 

= 

where a f and b l ) are non-negat1ve 1ntegers 
lG(~") (4:~~,1 

Proof 
I _ 

The first equation follows from 3e2e2 end 3.3.1. 

The second equation comeS front the first by multiplying 

it by t, and using 3.2.1 and 3.3.4 (after relabelling). 
I 

I 

Remark' 

If in 3.3.6 We replace ~ by ~ , using 3.,.5, We 

will then have non-zero coefficients by 3.,.7 below. 
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As promised in §3.2, We shall show that, by a change of 

notation, we could USe the linear characters 1, l.. 1nstead 

of t, 'f). 

Theorem, 3.3.7 

(f. G , 'X. (""; /3)} :f 0 <.=> (A ifA) ~ (0<.;13) 
-'\V l>';t'-J 

('f)W G , rx.l(A~I1)) :F 0 4=> (.l\.;;) ~ (IX;/.1) 
(,,,, '; }.:) 

Proof 
-

The first part 1s 3.,.1. The Second folloW's from 



the first by :;.2.1 from which We obtain 

G , X{«;(1) ) (1)W <='> (I" ; >.' ) ~ (;71; 0\') 
, (j'-' :- >.. ') 

<=> (O(j(l) -'(>';/",-) by :;.3.5 

So by multiplying the results in 3.3.7 by ~ and 

using :;.2.1 \'Ie have 

Theore~ 3.2 • .§ 

Similarly, using 3.3.6 We obtain 

Theorem 3.3.9 

1 
G = X (1-<; >..J + L a X(t1;"() 

W ( fl;. «. ) 
(>.. ~ 1") (A:".,.i< ((1: «J 

I 

X(fA;>")+ E G = L b 
X(/l;O() 

W(r'; )..,) (r1;<t..j 
{ >.. ;1"-1 > ( (l ~ c( ) 

where a and b
l 

are non-negative integers. 
({3;.rx.) ,,1 :,.",,) 

v ((J .; '<.J So We may replace ~, 1) by 1, {.. if' We write "-
(CC fJ) instead of' X / as defined in §:;.1. 

We now define a bijection betwoen the Weyl subgroups 

and irreducible characters of G. 

Define a map 

6? 

X : set of Weyl subgroups -)- set of irreducible charactel~S 

by 

X (VI (, _,-J) = f 'X lrred. G Ch~ra ctor : (X,E,\'I~ ",) F 0 and 1 
) (X'~{I ) - 0 for all Weyl subgroups 



Theorem 3~1..10 

X(W (A;!"'"» = ~ X()..;t')) for all pairs of partitions 

(A ;{"-) of 1. 

Proof 

This follows from 3.,.6 with the same proof as 

§3.4 Decompositi~n of the grou~ algebra 

into minimal left ideals 
~ ._-

This section is a generalization to G of some of 

the results in §2.1, especially 2.1., and 2.1.5. 

Let A = CG - the complex group algebra of G. Let 

().. ;r-) be a pair of partitions of 1 and vr(>..;~) a Weyl 

subgroup of G. We define two essential idempotents of G 

q 
(". ) -tv' 

and let 

= 

= 

I w~(w) 

wEN ()., , M.) 
~I 

L wT) (w) 
wen ( I, ,\/) 

t'--

(note that w( n W / ):: 1) 
>-.. : t'- ) {("'- :). ( 

G 
Then Ap( J affords the character ~.W of G, 

>"~r (,\:1'-) 

and Aq 
( >"~r-) 

affords, G • 
"W( I 'J r ~). 

Theorem 2.!±!.1. 
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Ae is a minimal left ideal of A affording ~. (A~,"-) 
(>.. ;,M.) 

Proof' 

Let e = To show that e is a multiple of 



a primitive idempotent We may follow the proof in the 

symmotric group for e>- ([6] 28.15); this is purely 

routine. 
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Alternatively, We may u.~e the first two lemmas in 

[4J and 3.3.6, from which the result immediately follows. 

Hence As is a minimal left ideal and is isomorphic 

(using the * -map) to a submodule of both Ap(>..~f'-j and 

Aq( ). Hence Ae affords an irreducible 
>.. :.. (V'- G 

Which is a component of both ~ and 
W(x:,I'-J 

charact-::L' 
G 

TJW ' so by 
(/,-':),,') 

§3.2 affords -xJ>'~f'A) • 
Because X(>-':,I'-I = X{O(~,1J implies ~ =0( and ~ = (1 

We See that ideals of the form Ae(>"'MJ coming from different 
" 

diagrams with the same frame are isomorphic but ideals 

from diagrams with different frames are not; so 'the 

ideals i Ae P'~l"l)] where (x ;1'-) ranges over all pail's of 

partitions of 1, gives a full set of non-isomorphic 

irreducible A-modules. 

Frame [8] has already introduced standard tableaux 

for G and given the formula for the number of standard 

tableaux of a given framp~ 

Definition 

A standard tableau is a diaaram Dr . filled with '-' >":rJ 

the symbols 11, ... ,11 such that both DA and D~are 

standard tableaux for the appropriate symmetric groups. 

Let H A be the hook product of a frame of A • 

Define the hook produ~~ of (A;~) to be H(X~~) = HAR~ 



Lemma 3.4.2 

The number of standard tableaux of the frame 

associated with (.\;/".) is given by 1t 

proo:r 

H 
(;';tt-) 
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Let /.\ I ;:: m, It-I::: n and let D (~:I"-) be a standard 

tableau. Then there are (ili) ways of assigning the symbols 

r 1, ••• ,1) to each half of D(A;..;<A-) • No'v by 2.1.6 there 

are ml ways of ordering the symbols in D) to give a 
H). 

a standard tableau and similarly n\ ways of obtaining 
Ht'-

a standard tableau Dr. Hence the number of standard 

tableau corresponding to (A ;1') is 

= 

Lemma 2.4.1 

= number of standard tableaux 

Proof . 
ti ry{>";/",,) = rl.G where With the usual nota on A r 

~ = C; \f and I.p = X>. . XI"- e Let /A/ = m, 'i l :; n. 

'rhus X(A~/"') (1) ::: IG:Ncl c; (1) t: (1) x.:< 1) 

= IH:~ m! n! by 2.1.6 

rr:-~ 

;:: I! m! n.1 --- since C ~ S x S m n 



A splits up into a number of simple rings A , 
i 

A = A1 + A2 + ••• + AI' ' where each Ai consists of a 

direct sum of isomorphic minimal left idee,ls of A, which 

are not isomorphic to any that occur in A., j f i. 
J 

The next theorem is proved in exactly the seme way 

as that in the symmetric group ([1] IV,4.6) utilizing 

the prev!ous ~vo lew~as, and 1s routine so We shvll ~~t 

[,lve the proof 

!!}~orem 3.4.1 
The minimal left ideals Which arise from the 

standard tableaux belonging to a given frame are 

linearly independent and span a simple ring Ai- Thus 

A is the direot sum of the minimal left ideals which 

arise from the standard tablea~~ belonging to any frame 

assooiated with a pair of partitions of 1. 

§3.5 Solomon'S ~~compos1t~9n o~~he gro~ 

algebra of W{Cl) 

As in §2.4 We interpret Solomon 071 for the Weyl 

group W(Cl). Again We may assume that all modules; 

representations and charaoters are over the field of 

complex numbers. 
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The rna in fee ture distinguishing G from t:'e syr:L.'11etric 

group is that not all Weyl subgroups of G are oonjugate 

to a parabolic subgroup. Indeed it is easy to See that 

the parabolic subgroups of G are the Weyl subgroups 

W {O(;/lj such that f1:, has only 1 or 0 parts (since \'ftc(; f1,) 

must include Sign ohanges (a,-a) for every symbol a 
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occurring in D /3 ). 

The generating set I for G is the set of 1-1 

transpositions and one sign change, i(12),(23), ••• ,(1-1 1))1,-1)] 

Let J S I , then the parabol:l.i} subgroup n
J 

= W (C ~ <_) for 

some pair of partitions (n d of 1 such that 0- has only 

1 or 0 parts. We therefore write p(J) = (f;~). 

1\ 
We fix an arbitrary subset J of I. Let J be the 

1\ 

«(3I;v;.') complement of J in I, and p (J) = (~;cr), p(J) = 

(again, We USe the dual for convenience only). 

Define 

L \ 
E..(w)w l;J = W 1)/\ = L , 

we"r J 
w8VII J J 

as in §2.4 (which should not be confused with the linear 

characters l;,~ of G). Then A~Ji)J affords the character 

Y J = 
. /K-JI 

(-1) 

Theorem }.5.1 

of G, by [17] • 

Let (~;F) be a pair of partitions of 1. Then 

Proof 

Since A~J affords 1
WJ

G = \1 G and Ai)j affords 
{('; ~ ) 

Ew G We have (1.2.8) 
((ll.:~') 

(y 'Xil";')..) =F 0 => (1 G 
J ' w(~;c_) 

;:;'> (e;u-) ~n;t'-) ~(oqp) by 3.3.8 



Lemma 3.5.? 

Hence (c;o-) -> (q; fJ) 

proof -
Suppose J~ K S I and let p(K) = (0'; J), so that 

(0--; ~) is obtained from (f ;a-) by moving whole roVlS up 

:1.nside t ' and moving whole rows of e across to the 

end of cr. In particular 1 (\ ;0-) -;: (0; J) so (;)~;6) ~ (p d 

since ~ is anti-symnetric. Hence by 3.3.8 

G (1 G , Xfo--: p)) :: 0 i.e. ( 1W , )((a-~ e) :: o. 
W (Ir~JJ K 

L Thus (Y
J 

, x:o-; eJ ) :: 

:: 

:: 

C 
(1W

K 
(fT"' [) 

' X ~. ) 
J~K~I 

( 1 G, X (cr~ r) ) 
WJ 

1 by 3.3.9 

Similarly, (Y
J 

,X{o..'; (I') :: 1 since p{J) = (rJ';oe '). 

Now by [J 7J lemma 7, ['t' ::: 4'" • Hence 
J J 

(It,, X(fJ;. .... J):: (f'l) ,['X{(J;,,-,)::: (Y. ,"X/C<flh by 3.2.1 
J ' J J 

= 1 

It folloVis from 3.5.1 that (C;a-) ~(O(;{l). 

We now identify the irreducible module /\ PV 
1 

defined in [17] , and in this caSe V =]{ ([3], table III). 

Suppose IJI = p • 

Definitio,!! 

Let (A ;\.L) be the pair of partitions of 1 given by 
f 



(Xitl.) = (1
P 

j 1-p) • \Ve call C~;F') the ££ok graph for J 

and 'Xi'<; >..) the hook character of J • 

the 

Notice that the hook graph (\ jll.) depends only on 

order of J and that x{f')>'}U) = (;) by 3.4.3. 

As in §2.4, let rev) :::: the nu.mber of rows of (the 

frame of) a partition v. 

Proof 

(1) 

(i1) 

r(~) :::: p 

(y 'xJf"<:- >.) :::: 1 
J ' 

(i) Since p(J) := (f ;0-) We have that J :::: J1v J
2 

where p(J 1) ::: p and p(J
2

) :::: 0- , (writing p(¢) = (0». 

Let I~I :::: m, la-I:::: n. Then 151 :::: 1 - IJ/ • But if 

(1,-1) E J then (1,-1) ¢ J , hence a-:p 0 => 0(:::: 0 
1\ 

(p(J) :::: «(31 ;0\.'» and canverse1y, O(:f 0 :::: () :::: o. 

So IJI:::: m - IJ
1

1 • By 2.4.3, because p(J
1

) :::: ~ , 

l' ( f) :::: m - I J 1 I :::: I J I ::: p as required. 

(i1) Move across to C" all but the squares which do 

not lie 1n the firs t column of ~ and then move up to the 

first row of ~. Since r(~) :::: p, we obtain (1 P jl-p) :::: 

(>dt-). Thus «( jo-) -+ (>.;~). 

Now suppose J~K 5:'1 and p(K) := (:1;S). Then (o;J) 
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1s obtained from (x j 0-) by moving whole rows up in, f and 

also across to ~. Hence 1'(6) < r(~) = p :::: r(~), so 

(Oj~) ~ (X;~) and therefore by 3.3.8 

(1W G , X-1r-! >.) = o. Hence 
K 

(Y A.it"!>') = (1 G, X(t"!)..) :f 0 by 3.3.8 since 
J ' WJ 



So /.1/ ::: p -> (y ,X(r~A) *- o. Because there are 
1 J 1 

(p) subsets of I of order p and 'l_ffA~)..) (1) ::: (p)' V!c have 

as in 2.4.3 (V
J 

' X!,.'~ >.) ::: 1 {and (Y
1
\: ,xfl< A) = 0 if 

IKlt pl. 

~orem 205 .. 4 

Let X- be the irreducible character of G afforded 

by I\PV. Then X - X( .... ). >.) 

Proof 

X is irreducible so 'X = XiS; O' tor some pair of 

parti tions (~)~; J) of 1. 

Let J 
II 

= ~(P+1 P+2), 0 •• ,(1-1 1),(1,-1) 1 
::: H 12) , (23), ••• ,(p p+1) 1 hence J 

so that IJI ::: p. 

Then (e; 0-) = P (J) ::: (1 p; 1-p) - V. ;/'-) • 

By [17] I\PV is an il~1'educib1e submodule of Af;Jtlj and 

therefore (Y
J

, XtJ;r J ) :;. o. So by 3.5.1 (C;o-) ~ (Q;d') 

i.e. '" i/'L) ~ (0'; S) • 

Now let J ::: 1(12), ••• ,(l-p 1-p+1)1 

so J = r(1-p+1 1-p+2), ••• ,(1-1 1),(1,-1)] , IJJ ::: p. 

Then «(.)' ;0\./) ::: p(J) ;; (i 1 - P iP) = (ft-';A') • Hence 

(V<,;(l) = ('\;/;)0 Again (\~ , 'X!J~'r) :/= 0 so by 3e5.1, 

(Qid) ~ (<X.;/J), 1.e. (a;d) ~ (A;r). 

So (.\ ;,M) -+ (0'; d) ~ (x ;;<-) and s inca ... is anti-symmetric 

(A ;f\-) ::; (If; d) as required. 

We now show that there are only two subsets J of 

I such that Af;J~J is irreducible, so that Solomonta 

decomposition is a long way from being a complete, 

decomposition of A. 
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Theorem 3.5.5 

A~J~J is irreducible if and only if J ::: ¢ or J = I 

Proof 

SuppOSe Al; J1'I J (and ~her8fore Y J) is irreducible. 
1\ 

Let IJI::: p, then by 3.5.2, 3.5.3 

(c ~()) ::: (0;.; ~) = (A; F) ::: (1 p 

therefol'e (J = (l-p) and 0( I::: (p) • 

I-p) 
A 

But J n J = ¢, so 

'1'6 

either IT:: 0 or 0( = o. Hence p = 0 or p ::: 1. Therefore 

(f;cr) ::;: (- • 1) or ( f;d ::: (1 1 . ) so J ::: I OJ' , , 
J = ¢. 

Conversely, suppoSe J = I, then Al;Jt}J = A.1 which 

affords the unit character of G. If.r = ¢; AF"Jt}J = At, 

which affords the sign character E of G. In both cases, 

therefore, Al; 1'1.1 is irreducible. 
J J 

§3.6 Maximal and Othel" Weyl subgroups ofW(Cl ) 

In §3.3 We defined a bijection X from the set of 

Wayl subgroups of G to the set of irreducible characters 

of G. We want to prove this is consistent in much the 

same way as in §2.5, and this is done in 3.6.1. 

The IT'.8ximal Weyl SUbgl'oUpS of G are of type Al _1 
and C1 + C1_1 for 1 :.; i :.; 1-1. Thus W(Cl~1) is not a 

maximal Weyl subgroup of G, and We considAl' the maximal 

oneS later on 1n thi~ section. 

Define (~~ in §2.5 ) * ()..n where A is a partition A ::: 

Theorem 2.6.1 

Let (A ;/~) be a pair of partitions of 1-1 and let 

* * (h ;1"') ::: (>. ill) - a pair of partitions of 1. Then 
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= + 

summed ove~ all those pairs of pa~ti tions Cot if!) (:p (~if!..) *) 

of 1 obtained from (A;~ by adding a squa~e to the end 

of a ~oW of ~ or by adding a square to the end of a row 

* of f-". In pa~t1culaI', (oq~) > (~;,«-) • 

Proof' , 

Notat10n: Gt == W(Cl _
1

). so a' == N':tI' , H' == Sl_1 • 

?C{«;~)== ¢G with the usual notat10n, and 

)({~;~) == ~tOI with the notation as in §3.1, except that 

We dash the appropriate symbols. We shall also assume 

H' is the symmetric gI'OUp on the letters [1, ••• ,1-11 • 
, 
i 

L~t r = « x.f" !~) ) G , X (o<.; Ii) • Then 

r =F 0 I=> 0 " \" (nlil 
: ~ r Nlc'n(NC)Y 
; ~ [Y11 

, Yq, ) 
, N'O' n(NC)Y 

where :ty
1
1is a set of (N'Ct ,NO)-doable coset 

~epresentat1ves and each Y1 E H. Hence for some 

(BI Y 'Y~Nlo.n(NO)Y); o. 
T N'C' n(NC) 

It is easy to See that N'O' n (HO)Y == N'O' n NCY 

= N' (0' n OY) 

Hence (Y4I) y) 'F 0 
o'ne 

Let />.1 == m' , If'-I = n' ,/0</ = m, JIlI= n • 

Now ~I takes the value 1 (resp. -1) on the sign changes 

given by the mt (resp. n t > symbols of the first (resp. 

second) type. Sim1larly for ~. Thus Yt; takes the value 



1 (~esp. -1) on m (resp. n) sign changes. 

Since c; t :: (Y, )NI We have mt ~ m and n' ~ n. But 

m + n = 1, m' + n' :: 1-1 so m = ro' or rat ... 1 and 

n = n' "'" 1 or nt. Therefore We may assume that in Gt 

11, ••• ,m') are the symbols of the first type and 

fm t +1, •.• ,1-1j are the symbo13 of the second type. So 
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ne have that in G, by rearranging the symbols, [1, ••• ,mt } 

are a130 of the firflt type and [ m'+1 , ••• ,1-11 are also 

of the second type and the symbol 1 1s undeterminet~. 

It follows imnled:tate1y that c; t == 'Nt so 

••• (A) 

We now show that y = 1. 

Let (b,-b) E Nand y-1(b) * 1 so (y-1(b),_y-1(b» EN' 

Then 
-1 

Y c;(b,-b) == c;(y-1(b),_y-1(b» = Yc;(y-1 (b),-y-1(b» by (A) 

:: ,(b,-b) 

Now consider (1,-1) ~ Nt. Then if 

(1) y-1 1 :: 1 then y-1~(l,_l) :: c;(y-1 1 ,_y-11) :: ~(1,-1) 

(li) y-1 1 f 1 then (y-11,_y-11) E Nt so as for b above 

y-\ (1,-1) = c; (1:-1) 

Finally, 

suppoSe y(l) :: a r 1, so (a,-a) E N' • Then 

c; (a,-tl) :: Yc; (a,-a) by (A) 

= c; (ya , -ya ) 

= ••• 
::I c;(yr-1a,_~-1a) byapplylng (A) 

r-1 ) vrhere y ~in.c;l\.\deg the r-cyc1e (1 a ya ••• y a 

:: ,(1,-1) by applying (A) again 

= ,(y-1 a ,_y-1 n ) 

Y-1 
== c: (a,-a) 



Hence for all symbols d E £1, ••• ,lJ , 
-1 

7 ~(d,-d) = ,(d,-d) i.e. y-1 E aRC') = a , so yEa 

and therefore y is in the first double coset NfC'NC 

so y = 1. 

Hence r f: 0 ~ r = (r) t , P ) 
N'O'nna N'O'nNa 

= 

since by construction O. < a 

= 

= 1 • (V' , '" 0 t ) 

(X'>' , xC( ) ('X.~, XfJ ) 
Bml Sn l 

= 

becaUSe Or ~ Sm l x Sn l and Sm' ~ Sm ' Sn l ~ Sn • 
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So 
S 

and «~) n , Xll) .. 0 by Frobeniu.s 

If (a) m = ml + 1 and n = n' , then JA = (!, and by 

2.5.1 , ~ is obtained by adding a square to the end of 

a row of A J or if (b) m = ml and n = n' + 1 then .x = 0( 

and by 2.5.1, p is obtained by adding a squ.are to the 

en.d of a row of;v--. Hence (~;/I) is obtained by adding 

a square to the end of a row of A or fA. In either 

caSe, by 2.5.1, «XA)Sm ,'X«) = 1 = «x.~Bn ,Xfl) , 

so r = 1. 

Finally, if (~;~) is obtained b7 adding a square to 

the end of a row of ,\ or/,,- We See by 2.5.1 that 
S S (exA ) m , XGt} = 1 = ((At) n ,'Xfl) and t;' = t; so the 

Nt 

first term in the sunnnand of f' is non-zero 1.e·. r ~ o. 
Hence X{IJ(..!/l}occurs in the decomposition of (X(>I..!f'J)G. 

We now give the decomposition for inducing an 

irreducible charaoter up from a maximal Wayl subgroup of G. 



(Inducing up from Al ) 
-1 

Let >. 1- 1 and (<<; ,i) a puit' of part! tions. of 1. 

Then 

((X» G , x{((; II) ) ,.J. 0 => (>-; -) ~ (.\;(J) ~ (-, >.) T 

and 

«XA) G , 'xJ)...; -}) ::; 1 

Proof 

SuppOSe 0 f (t\,,)G ,'X.(O(~(j) ::; (X>., x.{:)fi}) by 

Froben1us. Hence by 2.2.7 

N W ::; W and W - Vi' a y,r 1 b f ow). (',. _) I -, I S .ey su groups 0 
A ). (A ; -) 

G, so using Frobenius again 

and by 3.3.8 (>.;-) ~ «(3;1:() -+ (-p.) • It folloVls 

tha t C\; -) ~ (oe.;l-\) ~ (-; A) by moving across a 

complementary set of squares. 

Also «X,X)G ,XU.:-) = (lex, X~L~-'-J) by FrobeniuB 

H 
::; (X>' , Y ) by 3.1.3 

and by defin! tion C c: H, 't' = X). 

::; (x.>- ~ X~) 

::; 1 s inca X). is irreduc1b Ie. 

Theorem 3.6.) (Inducing up from C1 + Cl _i ) 

Let (\;~) be D pair of partitions of i and (~;~) 

a pair of partitions of j, Whore 1 + j ::; 1; let (~;~) 

be a pair of partitions of 1. Then 
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(0<..;-) ~ (A; r) ~ (-;0:.) and (/3;-) ...... (/-; 0) ... (_jp) 

Proof 

We let 01 =W(01) , OJ ::W(Oj) and 0
1 

::H
1
H

1
, 

OJ :: NjH j and USe the obvious notat1on for characters. 

Let Z :: Hi x Hj and Y :: G1 x OJ. Than N :: Hi x N j 

and Y :: NZ. 

Let LJ = « 'X.(~~r) • X(f;C:-) 0 , 'X..(O(:IJ) 

G OJ 0 G 
= «~i 1 • ¢j ) , ~ ) 

:: «(¢i 0 Pj)G1XG j )0 , pO) by 1.2.5(11) 

( ( '" ,,() G , rf,G) b t it t :: ~i. rj r y rans ivi y of 

induction 

:: 
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where l 8 i ) is a s eti of (NO' ,NC) -double coset representatives 

8 1 E Hand Cr :: C1 x OJ :: 0H(~i) x CH(~j) • 

Hence L1 ¥ 0 imn11es that there ex1sts 
'"' 

g E i go; 1 ... 
such that 

«¢1·~j)NC·nNCg , g$SNC' ONCg) :j; 0 • 

But NO' n NCg :: N(CtO cg) s1nce g E H • Thus 

~ "i · ~j , ,) F 0 

~ (~i' (g')N1)(~j' (gC;)N
j

) r:O, sincoN =Ni XlIj 

and g~ is linear 

and • 



Let />./= m1 ' 

10(./ ::: m, I f~ I = n • 

Jr·/ :: n
1

, I r I = m , la-I:: n , 
j j 

02 

It folloV1S, as in 3.6.1, that mi + mj :: m , n
i 

+ nj = n , 

so by ordering the symbols correctly We have 

Henco 

::: 
'1·~ j 

::: 
'N ·C;N i ~ j 

= <; • 

eo g E 0H(~) = C which is in the first double coset, 

1.e. g = 1. 

Now We have ensured that ot = 0 x 0 1 j 

:;;:8 x8 xS xS 
mi nl mj nj 

=8 xS xS xS 
mi mj n1 nj 

~ 8 x S = 0 m n 

Therefore NO' ~ NO. 80 

= 

= 

= (~,e;) (Y~ • \,./.; , yo') by £bove 

= «Xx • ~>.Cx.f :x.o-) , (X". xA) 0' ) since C; 1s irreducible 

, (X."'./0) ) 
(Sm xSm )x(Sn xSn ) 

i -j i j 

= (x\ x." , X 0.. ) (X,..... X (r , 'X (1 ) 

8miX8mj SniXSnj 

S . S = «X). • x..1') m , X"'- ) «T. XI.') n , X(J ) 

:: 
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; ~(e ) , G = w(e ) • m n n 

So L1:f: 0 => «X~) Gm , X(>.;~) rJ: 0 and (()((l) Gn , Xll-<;o-) :f 0 

and therefore by 3.6.2 

(oq-) ~ (>-;r) -+ (-;~) and «(3;-) --!J>- (!-;o-) ~ (-;(3) , 

proving the theorem. 

We shall now give the theorem, mentioned at t:-'e 

end of chapter two, about 1nducil~ up the irreducible 

characters from the maximal Weyl subgroup Ai + Al _
1

_
1 

of WeAl) • 

Theorem 3 •• 6 • .i 

Suppos e >. I- 1+1 , 0\ I- i+1 , (3 t-1-i. Let W = 81+1 • 

Then 

«X~.X.i1)W ,X>.) F 0 implies (A;-) -+ (cqp) ~ (-;>.J 

Proof . 
Regard VI ~ Gt = W(01+1) • 

=> cxf:-: fJ ) , X,\) :f: 0 by 3.1.3(1i) 
VI 

by Frobenius 

by 3.6.2 • 



Chapter ,four !1SYL GROUPS OF .~E ~ 

The Weyl group of type D has been rather less well 

studied, and poseS problems that do not occur in either 

the symmetric group or ~;;eyl groups of type a. 

Young [20] determined the oonjagaoy classes and 

irreducible oharaoters. We shall be oonsidering this 

group in the same manner as the groups in the prev:J ~.-.le 

two ohapters, although We oannot expeot to get such 

'nice' results. However, We can give an algorithm to 

determine the decomposition of 1
W

W{Dl ) , where ';; is a 

Weyl subgroup of W (Dl ) • 
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§4.1 The conjugaoy olasses and_irreducible charaoters 

Throughout this ohapter We shall be using the 

notation of ohapter three. 

Let K = W(D
1

) - the Weyl group of rank 1 of type D. 

Then K is a subgroup of Q = Weal) of index 2, henoe 

K <l G. We oan des crib e K by cons idering 1 t D. S a sub group 

of Gj viz. an element g E G lie.3 in K if and only if 

the cycle decomposition of g ir.to disjoint oycles oontains 
n.e, ",1; we 

an even number of 4 0yclp,s. 
1-1 

It is then clear that I G:K I = 2 so IKI = z .U 

K n N is the subgroup of index 2 of N, generated by 

pa1rs of sign ohanges. If We remember that a negative 

cycle is a positive cycle multiplied by a sign cnange 

(p 40) We see that K = (K n N)H. 

Kotation: we let Y/{D
2

) ~ i (1) ,( 12) , (1,-1) (2,-2) , (1 ,-2)} 

which 1s isomorphio to the non-cyclic group of order 4. 
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The conjugacy classes of K Were given by Carter [5J 

Lemma 4.1.1 . 
Two elements of K are conjugate if and only if they 

have the same signed cycle-type, except that if all the 

cycles are even and positive there are ~NO conjugacy 

classes .. 

In the latter case, the conjugacy classes consist 

of elements in which the total number or negative ~~gns 

appearing in the cycles is even or in which the total 

number is odd. 

We turn noW to the irreducible characters, where 
, , 

We find a similar situation to that 10 4.1.1. 

Theorem 4.1.2 

W1th the usual notation, let (A;~) be a pair of 

parti tiona of 1. Then 

(i) 

A :f~ ; 

(ii) 

(ii1) 

~l~;~) is an irreducible character of K if 
k 

Xl>";,..., == x(~;).'. 
K K' 

X o.;}.) is the sum of 2 distinct irreducible 
k . 

characters of K of the same d~gree; 

(iv) every irreducible character of K has the form 
~ 

f)"r}· x.1)';)'} X' (>.1ft) 01' is a component of - k for- some A ,r- ; 
I< 

(v) all the irreducible characters of K mentioned 

10 (lv) are distinct. 

Before proving 4.1.2, we prove the following, more 

general, re3ult 

Lemma 4.1.~ 

For the purposes of this lemma only, let G , K be 



arbitrary finite groups such that K is a subgroup of G 

of ind~x 2. 

(a) 

either (i) 

Let e be an ir'reducible characteJ.' of K. Then 

eG is irreducible and (aG) = e ... 0 1 , where 
K 

at is an irreducible character of K such 

that a ~ et and aO = e.O • , 
or 

o 
(ii) a = 7(/+ XL where 'X. i X are distinct 

I L 

irreducible characters of 0 such that 

(x I)K = a = ('X2.)K • 

(b) Let X. be an irreducible charact~r of G. Then 

either (i) X
K 

is irreducible and (~) G = X ... X' Where 

X. t is an irreducible character of G, X F 'X t 

and X
K 

= X-'K ; 

or (ii) X = a ... a where °
1 , e

2 
are distinct 

K 1 2 
irreducible characters of K 8~ch that 

G G 
9 1 =X.=62 • 

Proof 
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(a) Let T = cG(e) so K ~ T ~ G (e is a class function 

on K) hence either (i) T = K or (li) T = G. 

(1) T = K 

Therefore (eG,aG) = I 
yE [Yi1 

Where i Yi 1 Is a set of (K,K)-double coset representatives. 

Hence (a
KnKy 

, (Ya) KnKY) =F 0 => (6 Y,,' , 'VI 

=> a = Ye 

=> yET => 

Therefore (eG , aG) = (e , e) = 1 , hence eG 

irreducible. 

So «eG)K ' e) = (eG , eG) by Frobenius 

= 1 

:;: 0 (K <1 G) 

Y = 1 

is 



Let {eO)K = e + e l whero e t is a chvracter of K such 

that (a , at) ::: O. Thus 

( a G , e to) :: « 6 G) K ' a') = ( e+6' , e r) = (e' , e') 1= 0« 

So since eO is irreducible, at 0 = (e' ,e r)eO + X where 
G _ 

X1s a character or 0 such that (X,e ) - O. 

Now at ("1) ::: (eO
)K{1) - a(1) = 2a(1) - a(1) ::: e(1) • So 

29 ( 1) ::: 2a' (1) = e' G (1) ::: (e t ,e t ) a G (1) .t- X( 1 ) 

i.e. 2e(1) ::: 2(6' ,el)e(1) + X-(1) • Hence X(1) = 0, 

so X = 0, and (e' ,e i ) ::: 1 and So e l is irreducible and 
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~IG ::: aG and (e,er) ::: 0 implip.s a * at, which proveS (i), 

(1i) T::: G 
-r 

Let e
G = '~I niXi 

charac tel's of O. 

all k E K 

aG(k) = 

1 (eO)::: ze • .e. K 

~=-, 

Where Xi are d1stinct irreducible 

Since 0 = c (e) it follows that for 
G 

::: 1 -IK/ 
L 

gEG 

O(k) 

= 2a(k) 

Hence 

••• (1) 

Also, by Froben1us, (eG,eO) = «eG)K ' e) ::: (z6,a) ::: Z 

since 6 is irreducible. Thus I' = 2 Bnd n
1
= n

Z 
= 1, so 

eO = ;(1 +X
Z 

and from (1).! C.X1 )K + CtS)K = 2e. BecaUSe 

a is irreducible We See that Vt} ~ 6 ::: (X) proving (ii). 
1 K 2 K 

(b) 

irreducible characters of K. 

where 61 are dlstjnct 
o 

By (a), 6 i is either 

irreducible or the sum of tITo distinct irreducibles. 

Hence mi ::: (X
K 

' e
1

) = (X, a
i 
0) by Frobenius 

= 0 or 1. 
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"*= 

-Theretore We may wrlte )(K = ~~51 where e
i 

are distinct 

lrreduclble characters of K such that (e
i

G ,f() = 1. 

So 61 G = X + ~ i where e1 ther Xi 1s an 1rreducible 

character of G such that X
1 

F X and ~ = ()(i)K E!. 

Hence-
t 

(X ) G 
K 

= L5 G = 
;;::.1 i 

t-

So 2X-( 1) = tX( 1) + I X1 e 1 ) 
.=, , and theretore-

e1 ther (1) t = 1 and XK = 61, which is lrreducible 
G 

~K) = X + X-1 , X
K 

= ex..)K 

and 

or (il) t,= 2 andX
K 

= 51 + 52 and 5
1

G =X= 6
2

G 

completing the le~~a. 

We revert to the notation in chapter three 

Lemma 4.1.4 

Let )(= ¢G be an irreduclble character o~ G, then 

XK = {flSL)K w~~re L = (K n N)C« 
., . 

Proof 

NC.K = NK since 0 = 0He~) ~ H ~ K 

~ NH = G 

So G = NO.K. Slnce ¢ is an irreducible character of NO, 

lt follows, by Mackey's subgroup formula 1.2.2, that 

(~G)K = (PL)K • 
\ 

The followlng combinatorial result 1s of independent 

interes t and was proved by Young ([20J S8) 

Lemma 4.1.5 

Let 

A be the number of ordered pairs of partitions (~;fL) of 

1 such that the number of parts of f4- are even; 



B be the number of partitions A of 1 such that all'the 

parts of >. are even; 

C be the number of unordered pairs (A;~) of partitions 

of 1; 

D be the number of part1.tions'\of 1/2 (define D = 0 if 

1 is odd). 

Then A ... B = C ... D 

This will turn out to be the statement that tLu 

number of conjugacy classes of K is equal to the number 

of irreducible characters of K. Indeed, from 4.1.1, 

We See that the number of conjugacy classes of K is 

precisely A ... B. 

We are now 1n a pos1tion to prove 4.1.2 

Proof of 4.1 .p 

We first prove (i1) 

With the usual notation let Xp.·~t') = ¢1 G , t!:;~J = ¢2G 

Where P1 =, 1Y1 ' ?2 = '2 Y2 • 
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By d8finitiol'l '1(8,-8) ::: -<;'2(a,-8) for all a E (1, ••• ,1] . 
Since K n N is generated by pairs of sign changeS 

Hence by 4.1.4 

'XlA~t"~ :: {(P1 )L)K ::: 

(i) By 4.1.3, 

or 1s the sum of 2 1rreduc1bles. 



Suppose the latter is the 

where 01' O2 are distinct 

and 

(>- 'tAl . 
ca S €I ; then X / :: 0 + e 

k 1 2 

irreducible characters of K, 

O G :: x.l A i,v-l = e G 
1 2 • But by (i1) 

XY'''~).J = 01 ... °
2 

so that 01 G c X1f"-;)..) = e G. Hence 

xi>-;tc) = X(/"-~A)and therefore (>-j;-t) = (j<.j~), a 

contradiction since ). f r . 

Therefol~e X((\:r) (AT!'!) is irreducible. It follows from 
I<-

4.1., that if e = X~\~/"") (>-:f;"'-) 
_ 'V (fA~ q 
- Ak 

then eO :: x(,\<,...l. X (/",),.) 

(B.i) I (iv) I (v) We use the notation in 4.1.5. 

The irl'educible characters X P<rJ (),rl-l) have not been 
k. I 

shown to be distinct, but there are at most C - D of 

them (by (ii». Also the number of irreducible 

characters of K :: the number of conjugacy classes of K 

=A+B 

:: C + D by 4.1.5 

Hence We have unaccounted for at least (C ... D) - (C - D) 

= 2D irreducible characters of K. The only caSe we have 
( A • A.) 

not considered is that of X- ~ ,of which there can be 
( }..; ~) 

at most D of theme By 4.'i." X k is a sum of one or 

two irreducible characters of K. 
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The only way we can reconcile all these inequalities 

is for X /.\;>.) to be th~ sum of two irreducible characters 
k 

of K for all pairs of partitions (A;),) of 1; for all 

the irreducible characters so far obtained to be distinct; 

and for all the ipreduclble characters of K to be of the 

/).. 'M} (' ) t f v 0.;>-).' form X" r, r,"'- or the componen 0' some I'-
k k 



We shall return to an investigation of the 
(). . ).) 

irreducible components of )( J (which only occur when 
K. 

1 1s even) in a later section. 

The Weyl subgroups of K have the form 

S~,X •• _ x SA~X W(D~I) x ••• x W(D~s) 

L ). ~ + L. ~ ~ = 1 and f' ~ r= 1. 

Where 

We shall write this subgroup as W( ) puttirc 
). i~ 

A = (\, ••• , Ar), !"'-= (r" ••• ,r.,) and we may assume 
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tha t A I ~ ••• ~ Ar > 0, JA, ~ ••• ~ ~J > 1. Thus the 

Weyl subgroups may be parameterized by pairs of partitions 

(Air-) of 1 such that no part of/-L is 1. 

Just as in §3.2, We may consider \10')r-) as the row 

stabilizer of a diagram D (>,:,.....) , where in this cas e a 

row permutation of D(,I,~~) is an element of K which permutes 

the symbols in each row of D). and in each row of D~ 

and also changes the signs of an ~ number of symbols 

in Dr-. 

Definition 

A pair of partitions (~;r) of 1 is called bad if 

fL = 0 and all the parts of A Bre even. 

OtherVlise (>'if-L) is cnlled sood. 

It 1s evidp,nt from 4.1.1 and the fact that 

R(gD(>'~r)) = gR(D(,,~,...)g-1 for all g E G that (see [5J) 

Lemma 4.2.1 

(a) If (). itt) is good , Weyl subgroups isomorphic 



to W(~;~Jare conjugate to it in K. In particular, if 

x = (1,-1) E G\ K then W x is conjugate, in K, to 
(>':r' 

W(A:I-"-) • 
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(b) If (Ai~) is bad, then the set of Weyl subgroups 

isomorphic to W(~~F) splits up into two conjugacy classes. 

In particular, with x as above, W x 1s not conjugate 
O'~rl 

in K to W (>,~,u-l • 

We now wish to descr'.be an algorithm for determining 

for a given pair of partitions C~;,.u-) of 1, which pair 

of partitions (~;I'» of 1 satisfy 

( 1 K ,X-[0( ~ IJ)} f' 0 • 
W (>..;,...) I( 

However, since the Weyl subgroups of K are parameterized 

by ordered pairs of partitions (~ir) such that no part 

X
,fI(l,1) 

of~ is 1, and the characters of K of the form K~ 

by unordered pairs of partitions (4.1.2), we cannot 

expect to get any sort of relation. 

Definition 

Let (Air) be an ordered pair of partitions of 1 

such that no part of r .. is 1, and (oc.;t3) an unordered pair. 

Write () itt} ... (0\.;(3) if (0( it!) may be obtained from (A ill) 
D . 

by 

(a) removing connected squares from the end of a 

row of A and placing them, in the same order, 

a t the bottom of fA- '; 

(b) repeating (a) with squares from different rows 

of A i 

and at the same time, but independently, (so no square is 



moved twice) 

then 

(c) t~ansfe~rlng complete rows oflL and placing 

them at the bottom of'\ ; 

Cd) reordering the resulting rows so as to give 

frames of a pair of partitions (o;J) say; 

and f1nally 

(e) moving up inside ~ and J , aocording to the 

usual partial ordering on partitions, so ~s 

to obtain 0( and f1 respect1vely (so o~ 0( and 

j 
,-

By moving across a complementary set of squares 
I 

between A and ~ We See that 
i 

C,\ iF) ~ (otj(.!) 

which 1s consistent with our choice of (0<.;/3) to be 

unordered. 

The algorithm introduced 1n chapter three for G 
I 

will .trom now on be written as ~ • It is clear that 
C 

(prov1ded no part of fA is 1) 

C>. ;,M-) ~ «q,1) => (~;I"-) D~ (01.;(5) 
. C 

We can now state 

Theorem 4.2.2 

Let (A;F)' (~;~) be ordered (resp. unordered) pairs 

of part1tions o~ 1 such that no part of ~ 1s 1. Then 

The follow1ng lemma is proved in precisely the 

same way as 3.3.2 
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Let W :: R(D(~. J). Then ,JA-

[a) W:: (NnW) (HOW) and (NrJVI) n (HnVI) ;;: 1 

If. also Y E H, 0 :: 0H k ) for some irreducible 

:haracter ~ of Nand L :: (KmnO 

:b) WY :: (NnwY) (HnV'y) and (NnWY) n (HnWY) :: 1 

:0) LfW/Y:: (NnWY) (onWY) and (NnW:;"') n(onwY) :: 1 

'roof of 4.2.2 

Suppose first that (1 K , )C~;~) + 0 and let 
\V ().. )f<-/ k 

r :: W • Then by 4.1.4 and Maclteyl s formula, 
( >. ; /'-~} 

Ie 
rf (\v X e<;I1) :: (1 K 

, k W ' 

here ~Yil 1s a set of (W,L)-double coset representativos 

nd we may assume Y
1 

E H. Thus there exists y ELY 1 1 
uch that (Y1 y , ~ Y ) ~ o. w nL rW nL 

We let /0<./:: m , /,11:: n , N == N )( N (as 1n 3.1.2) 
1 2 

o that ~ (a,-o) :: 1 for (a,-e) E Nand <; (a,-8) :: -1 
1 

or (a,-s) E N
2

• NoW by 4.2.3(0) 

:f (Y1wYnL' f\vYnL) = (Y\rnwY' C:;NOWY) (Y1 cnwy ,YcnwY) 

enoe 

(y 1 ,.) ,k 0 and 
NnWY , "'NnWY r 

) <; takes the value 1 on the pairs of s1gn changes in 

nwY (W"K,soNnWY~NnK). 

No" WY defines a diagram D( and WY only changes 
>';/",LJ 

• •• (A) 



the signs of symbols in D~. Thus in anyone row of D)-'I

the symbols must either all be of the first type or all 

of the second type (otherwise c; :rV =1= 1). Hence We may 
Nm"ftl 

transfer those complete rows of D~ which contain symbols 
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of the first type to DA ' and independently moVe the 

squares of DA (so that moved squares in the same row stay 

in the same row) containing the symbols of the second 

type to D~. On reordoring the rows We obtain a diagram 

DCo;JJ of a pair of partitions (0';<5') of 1 such that L~o 

contains all the symbols of the first type and DS contains 

all the symbols of the second type. This corresponds 

to operations (a), (b), (e), (d) on p 92-}. So to show 

(oX ir) ~ (oq{3) we have only to show « ~ 0( , J ~ f., • 

By construction /(r/ = m = )0(: , I J/ = n = }IJ I • 
I 

I 

By (A)' above 

But this is exactly the same stage that We reached in 

the proof of 3.3.1. So by precisely the same argument 

and therefore by 2.3.6, Q E; ot.. and c ~ f.. • 

SO O.;r-) :D'" (.x.;{1) • 

Conversely, suppose (~ir) ~ (~i~). Therefore We 
D 

may move parts of rows of.A across to /""- and complete 

rows of~ across to \ to obtain a pair of partitions 

(0 is) of 1 such that 0 ~ 0( , d ~ ~ • Hence We 11'ay define 

a diagram D(>';t'-J filled with the symbols J1, ••• ,11 such 

that each row of D~ contains only symbols of one type. 

Then let W = Wl ) = R(D{ I)' so all pairs of 
A:I'" >":fA 

sign changes in N n VI consist of symbols which Bre of 
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the same type 1. e. 'NnvV = 1. So (c; , 1 ):f 0 • 
NnW Nm'l 

Also by 2.3.6, since o~cx and S~(J 

and this is, by the proof of the first part of the theor8m, 

the f1rst summand in the Mackey formula for 
K l«-;I3) K [0(;r3) 

(1W ' X K ). Hence (\v ' x.. k ) =f 0, proving the 

t~1eorem. 

Remark 

If j1~ = 0 then W(>.; _; 1s a Weyl subgroup of G and as 

such is also wr1 tten W 0.; _) • Now 

(1 K ,X[o(~Il)=(1 K ,xt:;~J)=(1 G 

W1>';-J k W(>':_J Wt>.;-J 

So by 3.3.8 and 4.2.2 

0, 0 - ) ~ (0( °fJ ) , D ' <=> (). ; - ) ~ (C\ i f.I ) 
C 

a result which can be seen to be true from the definitions 

of -0;. and ~ • 
C . D 

Before We can strengthen 4.2.2 and flnd which 

irreducible components of X. (o<.)o<..) occur 1n 1 K Where 
I< WC)..;r) 

(A ir) ~ (o-..jO() We shall need to study these components 

more carefully. 

• 
§4.3 The remaining irreducible characte~~ 

In this section We shall assume that 1 is even, so 
l~' \) that characters of the form X. ' do occur. 

k 
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Let x = (1,-1) - a single sign change, so x E G\K • 

Hence G/K = ~ K, xK 1 = 1 K, Kx J 

For the whole of -this section A i- 1/2 • 

Lemma 4.3.1 
X ()..;~) ;: e + xe 

k }, ). 

where G~, xe). are distinct irreducible characters of K. 

Proof 
(>" - 'AJ 

By 4.1. 3, X: = e). .. e! Where a>. ;. a1 and 

from the proof of 4.1.3(a) we see ·that 0G(eA) =K • 
Because x!>";}.j is a class function on G 

e>. + at = XU.;'') ;: X XlA; AI = Xo + Xa ' A K I<. >. ~ 

Now a>.. , e- x xa r are all irreducible , a). so >. ' A 

either ax = xa or at = xe 
>. >. >. • 

But x generates G/K so, since GA is a class function on 

K, a), = Xa}, =>e>.. =gG).for all g E G 

=> 0G(0).) = G, a contradiction • 

Hence e~ 
.x 

= ,ax proving the lemma. 

x We would like to obtain e). and eAo in the form of 

induced characters in much the same way as we did for 

X (A; 1'") • 

(>.. • '>.) 
BY' definition of X. ' the number of symbolS of the 

first type is the same as the number of symbols of the 

second type viz. 1/2. So we arrange the symbols so 

that 

~(a,-a) = 1 for a E f1, ••• ,1/2] 
and ~ (a,-e) = -1 for a E fl / 2+1, ••• ,lJ 

We noVi d",f1ne an involution in H which interchanges 

the symbols of the first type into those of the second 



jype and vice-versa. 

Let y ; (1 1/2+1)(2 1/2+2) ••• (1/
2 

1) and note 

ihat y E K • 

'roof 

Let tEL then t E (K n N)O 

= K n NO by the module. rIa'/.' 

:: K n 0G (~) = OK (, ) 

t... = to and hanoe t - d th f t 0..... <:.' <;KON - t;KnN an ere ore E T. 

ence L ~ T. 

By definition of Y, Yt:. (a,-a) = ~ (a,-a) fOl~ all 

E 11,. •• ,1) and so Y,(a,-n) (b,-b) = c;(a,-a)(b,-b) 

or all a,b E [1, ••• ,1). Since K n N is generated 

y sign changes Y'KnN = t:.
KnN 

and thel"efoI'e yET. Thus 

<Y> ~ T. 

Ala 0 Y f OK (~ ):: L so L n < y '> :: 1 • 
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Conversely, let t E T so that \ = c; 
'KnN KnN 

• Suppose 

¢ L, then there exists (n,-a) E N such that 

; (a,-a) = -c; (a,-a) • Let (a , ••• ,a ) be the subset of ( 1 r 

1 I ••• , 11 such tha t t <; (a i 7 -8 i) :: ~ (a i i -9 i) for 1 ~ i ~ r, 

ad \ (b,-b) = ,(b,-b) for b ¢ [81' ••• ,a1.) • 

Then tc;(b,-b} (ai,-ai) = ~(b,-b)(ai,-ai)' a 

:mtradiction, sinoe \KnN :: 'KnN' Thus \ (a,-o.) = -, (a,-a) 

)r all a E [1, ••• ,1) so tyc; (a,-a) :: c; (a,-a) ar:.d 

lerefora ty E OK (,) = L. Hence t E L<y> • 

;Jmma 4.-1.0 2., 

9L is irreducible 
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Proof 

" = t; ~ SO'L = t; Knn Y. Therefore 

(~L ' fSL) = (t;KON ' ~KIlN) (~ ,y) = 1 since t;KIlN is linear 

and Y is irreducible. 

The group < y> has two irreducible characters 1, 1: 

say where '1::"(y) = -1. 

Define maps CJL : T ~ CD (i=1 ,2) 

by w, (ly) = yS (1) and ""'t (ly) :: JiS (1) ley) :: -,is <,I) for 

all 1 E L. 

We can write t..J.= '" 't
" l'L' 

Lemma 4.3,-.4. 

Where 1:",= 1, 

w, , c...')./... are ir'l'educible characters of T 

Proof . 

• 

Let Vi be the <y;>-rnodule affording 't: Where 't', = 
~l = t , and let U be the L-module affording ~L • 

Then U ® Vi are T-modules affording characters w':' (i=1,2) 

For, the module axioms are easy to check with the one 

exception which We now prove. 

Suppose l 1y' , 1
2
y" E T (11,12 ELand y' ,yq = 1 or y) 

and u E U, v E Vi. Then We must show 

(u@v i )(11yt.12y") = [(u ®V)11 Y'] (12yll) 

Let U afford the representation R of L, P the representation 

of KIlN affording C:
KnN 

(so P = ~KIlN) and Q the representation 

of 0 affording y _ Then by definition of , , 

R = P @Q. Hence U
1

12
Y = U 1R(12

Y) for all u1 E U., 

Let 12 ::I nc (n E KnN , c E C). But by definition of y, 

y Interchanges the symbols of each type so that Y E CHeC) 

1.e. oY = c for all c E C. Therefore 12
Y = nYcY = nYc. 



100 

So 

= U 1t;lmn (n)Q.{c) since yET 

= u 1 
1 Z 

But ul
j 

E U, so (U1
1

)lzY = {u1
1
)lz 

Hence 

as required. 

= (u®v )(1 1 ytY'yll) 
i 1 2 

= u(l 1 y f
) @v (y'y") 

1 2 i 

= (ul )1 y' ® {\'iY' )yll 
1 2 

= {U1
1
)12€){v i ya)y 'l byabove 

= (U1
1 

® v 1y l) (12y " ) 

= [(u x Vi)11Y~ (12Y") 

It is clear the t u ® V 1 affords Cj~, therefore l.J/, 

'""1- are charactex's of T. 

Finally, = (PL1-; , .¢r."r-:) 

= (P
L 

' PL ) (?:.:, 'fJ 

= 1 by 4.3.3 

Thus "'I , wL are irreducible characters of T. 

LenTIna 4.3 • .§. 

w K are irreducible characters of K, i = 1,2 .. 
Proof . , 

Let (kiJ be a set of (T,T)-double coset 

representatives then by Mackey's formula 



( wI< c.J.K) = .' \. 

k 
Suppose «"'~)TnTk , ( l.JJTnTk ) f 0 tor Some k E [k

i
] 

Then T n Tk = L<y> n Lk<y>k 

= (KnN)C<y> n (KnN)Ck<y>k (KnN <l K) 

~KnN 

« CJ J ,( k c.J J ):f 0 by 1. 2. 6 
KnN KON 

Theretore 

But ("-'JKnN = ~KnNl['~(1) = 'KIlN. Hence 

k E T 1.e. k = 1 

Thus (CJ ~ I< , cJ ~ 1<) = «(J;: , £J ~) = 1 by 4.3.4 

We can now prove the resu~t we are atter 

Tpeorem 4.3.6 

and or v1ce-versa 

Proof' 

Let X. = X {)..:, }.j. Then 

("t..1< ' w~ K) = «¢L)K , w~K.) = [ 
kE!k11 
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Where jk11 1s a set of (L,T)-double coset representatives. 

Now 

Cn{ (k£...) k):f: 0 => (d , (kw_) ):f= 0 
rLnTk , ~ LnT r KnN ~ KnN 

since LnTk ~ KnN 

=> (t; KnN ' kt; KON) -:p .0 

=> k E T => k=1 

Thus 

(XK,,,,~I<) = (plLnT' (1.J~)LnT) = (PL , (w:)L) 

= (PL ' PL) = 1 by 4~3.3 



Th S Y = W 1< + ,," + e h e i u I~k I ~L W era s a character of K 

such tha t ( 6' , w ~ ) ::: 0", i ::: 1,2 • 

Bu t )(. k ( 1) ::: (~L) K ( 1 ) ::: I K: L/ ~ ( 1) 

and (w,K + wI-" )(1) ::: IK:TI ("',(1) + "'1-(1» 

::: I K : T I 2~ ( 1 ) == I K: L/ 9 ( 1) 

sinc~ !T:L/ ::: \<y>1 ::: 2 • 

Hence e(1) ::: 0 so e ::: o. Therefore X- ::: c..i I<. + CJ l< I<. I z.. 

But w~k(i=1,2) are irreducible and also X
k
= e). + xe~ 

is a decomposition into irreducible characters of K. 

So WI K::: SA and '-'10
k

::: XSA or vice-versa 

Notation -
x Since our choice of SA ' SA is completely 

arbitrary (x2 ::: 1) We shall assume from now on that 

and xe ::: c.J I< 
.>. 'L-. 

The following is well-known, but it will be 

convenient to prove it here 

Oo,rollarl 4.3.7 
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Any complex representation of K may be afforded by 

a basis with respect to which the matrix entries consist 

of rational integers. In particular, the characters of 

K are rational integral-valued. 

Proof 

From 4.1.2 and 4.3.6 we see that the irreducible 

representations of K may be obtained from those of the 

symmetric group by 

(i) tenaoring these, and various restrictions of 

the~e, representations together and with representations 

Which take the values !1; 



(ii) inducing up representations in (i). 

The theorem then follows by 2.1.4, since the operations 

In (i), (li) clearly preserve the r~quired properties. 

§4.4 Completion of the decomposition of the 

induced_princip~l_character 

We now return to the problem of determining which 
x v 

of e", and 9/:1( occur in 1W...... • or COUl"'se these may 
t>.;/"'"J 
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1 if ( 'V {«!o<.) 1 K ) ~ ° t' t ( ) ( ) on y occur "- I< ' . T so na A ;1' -+ .:1(; 0( 

Wl)..,~rJ D 

So throughout this section assume that 1 is even, 

that (Air) and (~;~) are pairs of partit10ns of 1 

(therefore <X J- 1/2) such that no part of )A-is 1, and 

(,\ ir) ~ (cx..;0() • 
D 

There will be two caseS: (A;~) good or bad. 

Theorem 4.4.1 

Suppose (~;~) is good. Then 

K 
(1W ' aU() 

{J.·.,,.,.1 

proof 

Let W = W{ >..;,.,...1 • 
Since (1 K , ')((D<..:o<.) ~ 0, 

W I< 
e or xe" 

t( Cl( 

occur in 1 K • 
W 

We shall assume without loss of generality that 

(\vK , eo{) = a/:l( f 0. By 4.2.1, vr = \Vk for soine k E K. 

Hence 
x K x K 

(K4 G) {1 }K (x2 = t) {\y> = ( \v) = 
WX 

(1 )K 
k 

(1 K) similarly = = \yk W 



104 

Thus 1 K = a e + so 1 K = x 1 K = a xe + • • • W « c( \V W ot "\: • •• 

(1 K I XOo( ) =~ F 0 • W 
i.e. 

Since X
lq;fIt/ 

= e 
I:: q I the theorem tolloW3 1mmed1ately. 

Theorem 4.4.2 

=> 

=> 

and (1 K e
A

) (1 K :x: 
SA) = 1 = 

\V . 
I 

We),.; ). ) 
I 

I l,\,'\) 
I 
I 

Proof' i 

Let W = W C>,;~) X = X o.;~1 
I I 1>./ = m , /j4/ = n . 

We shall assume that W = R (O{A;rl) where Do.;!' I 1s a 
I 

d1agrabt, where Dx is t1lled w1 th the symbols ~ 1 , ••• ,m ) 

which are ot the first type and D~ 1s f1lled w1th 

[ m+1 I ••• ,11 which are of' the seoond type. Hence 

H n w , e. So W = (N n VO (H n W) (4.2.;) 

, (N 0 K)e (W , K) 

= L 

Also We have tha t ~Wmt = 1 

Now 

so I ~WON) = 1 • 

(1
WOL 

I J!S ) =( 1 ,~ ) (1 , Y. ) (4;2.; ) 
wnL WON WON wne wne 

x..'A 
I wns) (\vns 

m n 
, X."'\'1 ns >' 

n 

:au t w n 8m = W).. and W n an = W ~ • 

So 



by Froben1us 

= 1 by 2.2.7 

By Mackey's formula, if tk11 1s a set of (L,W)-double 

coset representatives, where each k
i 

E H, 

I (1_'k , flf...'k ) 
( \r-nL \r-nL 

kElki } 

( 1 K 'K) = (1 K ('" )K) = 
W ' K W' rL 

Thus the first summand is (\vnL ' J\vnL) = 1, by above 

Suppos e now tha t (1 _.k , P __ Jc ) =j: 0 for Some k E [k ]. 
, \rnL W-nL i 

Because, Wk n L ~ Wk n N (4.2.3) We have that 

(1Wk , PWk ):f: 0 and hence (1 k , t;_.k );Ii; 0, 
, nN, ON W m~ w--nN 

I 
I k 

therefore C; k = 1._'k i. e. C; = 1 since N<1 G I W nN w-nN wnn 

But we: knOl1 tha t N = N 1 x N 2 (defined by (>'ijL» and by 

oonstruction of W, W n N = K n N2 • Henoe k~WnN = 1 
2 
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Thus 1,1' (a,-a), (b,-b) E N 
2 

k 
We have that C; [(a,-a) (b,-b)] 

Therefore 
k either (a,-a) E N1 

k or (a,-a) E N2 

and 

and 

k _ 
It follows that N1 - N1 or N k = N 

1 2 

(a) Suppose 1)../:;' Irl i.e. m =F n 

If N 1 k = J
2 

then I N 1 I = I N 21 • But I n 1 I :; ~, IN 2 I = ~ 
so m = n , a oontradiction. Therefore N k = N and so 

1 1 

N k = N 1.e. k E C = CH(t;) < L • So k = 1 and 
2 2 

K 
(1W ,X K ) = (1wnL ' PwnL) = 1 

(b) Suppose 1>.1 = Ir-I • 
If N k = N then N k = N • Therefore N

1
ky = N1 and 

1 2 2 1 

= 1. 



N2
ky = N2 , so ky E 0 which implies k E O<y> ~ L<y> • 

Thus k is in the same (L,W)- double coset as y, and so 

We may assume that k = y. 

So We have shown that at most two swnmands in the 

Mackey formula are non-zero and are given by the double 

coset representatives 1 and y. By 4.2., 

o r (1wknL ' ~\yknL) = (\yknN ' ~wknN) (\vknc 'Ywknc) 

= (1. ~) ) for k = 1 or y. 
wkno ' i'wknc 

Bu t Wk n 0 = (Wk n s ) x (Wk n S) and I A I = V·~ J m . m 

so y just interchanges the symbols in Dx and D~. It 
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follows that W
y n 8m = W,.u.. and Wy n Sn = W>.. • TheI'eforo 

o :f: (1 Y 
W no 

, y ) = (1 
wYno \V 

IA-

by Frobenius. 

, XA 

W 
~ 

, x.r< ) 
VI}. 

TheI'efore, by 2.,.6, I"- ~ A ~ I-'- so A = fL 

Hence 

(i) A:f:jA- implies tha t the sumr.uand with k = Y 

is zero so that only the firs'(; summand is non-zero and 

a s in (a ), (\vK , X I() = 1 

(ii) }. = fA , the swnmand with k = Y is 

«\v )8m ,X~)«1W )8m ,X>') = 1 by 2.2.7 
}. ).. 

Thus both the summands with k = 1 and k = Y contribute 

the value 1 i.e. (1WK , x,~) = 2 • 

(N.B. the double cosets LW and LiN are not equal, for, 

if they were then y E DV ~ L (p 104) 

contradiction) • 

= 0 (c;), a 
K 



Finally, (1~~rK , e).) = 1 = (1 K , xe,) by 4.4.1, since 
" W" 

implies (~;~) is good. 

We now deal with the ca~eS in which (A;~) is bad. 

So for the rest of this section We suppose that ~ = 0 

and all parts of A" are even, and A f- 1. Hence 
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A = (2\11 ' ••• ,2Vr ) for Some part1tion v = (v
1 

of 1/2. Vie shall wrIte v = 1).. and).. = 2v. 
2 

, ••• ,v ) 
r 

We shall continue to Suppose that ~ ~ 1/2 

C.X ; -) ~ (1)(; oc.) 
D 

Theorem 4.4.3 

With the above notation and the remark below 
I 

(1 K I, 
w(.\}_) 

Proof 

., - (1 K xe ) 
, <>l 

W 
(>.~-) 

and 

:;. 0 

(<<. • 0<) 
Let W = W (";. -J ; 0 = 0H (t;) corresponds to X = x.. I< -

We choose W = R(D(~;_) = R(D A) where DA is filled with 

the symbols l1,.'-~ ,11 in the fo llowi08 way : 

because A = 2V , We may wri to D>. = Dy + D y I , D y correspondIng 

to the left-halt of D and D I to the right. 
v 

the symbols [1, ••• ,1/2J in the natural Fill D with 
y 

ordering and then fill Dv' with the symbols \"1/2+ 1 , ••• ,1 J 

in the natural ordering. 

It follows that W ~ Hand yEW. 

Remark 

We have two choices for Wo.~-) (4.2.1), eltheI' W 

as defined above or ~ (x = (1,-1». But if we use 
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WX, then the only effect on the theorem is to interchange 

90( and xe« , giving the negative of the loft-hand side 

of the equation in the statement of the theorem. The 

proof of the theorem, using vtt, will be exactly the same 

as the proof We give belo"v for V{, and so We might as 

well suppose W(>'~_J = W. In fact as using WX only leads 

to a change in notation, We will in future assume 

wu;_) = w ~ H the symmetric group on ~1, •• e,l) • 

Before continuing with the proof of the theorem, 

we will prove a couple of preliminary lemmas 

i 

Lemma 4.4.4 (compare with 2.1.2) 

Let z E H, cEO, w E W. 
i 

implies z E OW • 

Proof' : -

Then -1 oy = zwz 

Since all the elements in the statement of the 
I 

lemma are inside H, We can work in the symmetric group. 

Now W = ReDA), so by 2.1.1, zwz-1 E R(zDA). Also cy 

does not have a fixed point in [1, ••• ,11 because 

cyeD) = oeD ')= D ' • v v v 
Oonsid~r first,. the top row of zD~. Let 

(a 1 ••• ar ) be a oyole in the decomposition of cy suoh 

that a 1 ' ••• ,ar ooour in the top row of zD>.. As 

oyeD) = D ., either a or a ED ond, by writing v v 1 2 v . 
(a2 ••• ar a 1) if necessary, we may suppose a 1 E Dv • 

Henoe 8 1 E Dv ' a2 E Dv' , a~ E Dv ' ••• 

and because OY(8r ) = 81 ' we have ar E Dv' so that r is 

even. Thus 



Now We also have, by construction, 

1 , 2 , ••• , r/2 E Dv 

Bet 

Then c
1 

E C • 

ED: 
v 

Bo the top row of c1ZDA contains the symbols 

f 1,2, ••• ,%,l~+1'72 +2,."~ '72 +~] in SOnIe order • 

Let z1 :::: c1z then R(z1D~) :::: c1R(ZD~)c1-1 , so 

c1(cy)c1- 1 E R(z1D~). But c1(cy)c1- 1 = (c10YC
1

- 1y)y • 

Th.en set c
2 

:::: c1Cyc1- 1y E a (as aY :::: 0) so 

c2Y E ~(Z1DA) , and therefore 
I 
r c2Y :::: z1wtz1-1 for some Wi E W. 
i 

But c2Y is easily Seen to contain the cycle 

.(1 ~+1 ••• % llz+r/
2

) and therefore We may apply th.e 

same process as before to the rest of the elements in 

the top row. 

Repeating this process enough times we obtain a 

diagram z2DA with z2 :::: c
3

z , c
3 

E 0, and such that z2DA 

has the same symbols in its top row (in some order) as 

D).. Remembering tha t cy has no fixed points, we may 

repeat the procesS with the other rows to obtain a 

diagram z*D>., such that z* :::: c*z, c* E C and z*n~ has 

the same symbols (in some order) in each of its rows 

as D,\. Therefore there exists w·· E W such that 

* *- * * * w z v~ :::: D~ i.e. w z :::: 1 which implies z E W. 

Finally, z :::: c*-1 z * E aV{ as required. 

iVe let T :::: aK('KnN) :::: L<y> as usual. 

Lemma 4.4.5 

If z E H then 

109 
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T n "'''z-1 = (a n zWz-1) ky> n zl~rz-1 \ ~II ., I 

= (L n zVlz-1 ) «y> n z\7z-1) 

Proof 

Firstly, L n zWz-1 :: (K n N)a n zWz-1 

~ (K 0 N)a n H as VI ~ H, z E H 

= a 
Because also a ~ L, L n zWz-1 :: a n zWz-1 • Thus it 

is sufficient to prove the first oqua1ity~ Trivially 

(a n zVlz-1) «y> n zWz-1) T n zVlz-1 • 

Conversely, let t E T n zWz-1 = L<y> n zWz-1 

Therefore t = lyl :: zwz-1 , where y' :: y or 1, W E W, 1 E L 

Bu t L = (KnH) C so 1 :: nc, n EN, c E e. 

Hence ncy' = zwz-1 = n = (zWZ-1)yl-1 c-1 E H 

- n E NOH:: 1 

Thus cy' = zwz-1 • If 

(a) yl = 1 then c = zwz-1 so that t = c = zwz-1 E a nzwz-1 

Which is a subgroup of (enzWz-1) «y>OzWz-1 ) 

(b) yl = Y then cy = zwz-1 , so by 4.4.4, z E ew. 

Hence z = c11,11 ' c 1 
cy = c w ww -1c -1 

1 1 1 1 

E 0, w 
1 

EW • Therefore 

= c = yc W VIW -1 c -1 1 1 1 1 

= c 1 (yw 1 W\'11 -1) c 1 -1 

E c Wc -1 
1 1 

:: zWz-1 

_1 1 
Thus cEO n zWz • • As cy E zWz-' 

we have y E <y> n zWz-1 so that 

t = cy E (C n zVlz-1) «y> n zWz-1) 

proving the lemma. 

We return now to the proof of the theorem. 

Let e = eO( or xec( and "t, = 1, "t' 'l. = 1: , therefore 

as y E aH(a) 



(1 K , e) 
w 

.... ..: 
I I • 

where lZi] is a set of (T,W)-double coset representatives 

and each zi E H. So by 4.4.5 

(1 K ,·e) 
Vi = 

••• (A) 

by definition of lJ • 

But < Y"> n zWz-1 = 1 => Y E zWz-1 

.. 
=> Y = zwz- I some W E W 

='> zE""xr,,,.TW 
V" '"II by 4.4.4 

='> z = 1 

Conversely, as yEW, z = 1 => <y '> n zWz-1 f 1 

Now 

( tt, ) . z 
<y>nw 

= for all z 

Hence 

, ('t~) z 
<Y>f'fN 

= if z = 1 and i = 2 

otherwise 

So from (A) 

( 1 K e) 
VI ' Q( 

(1 K Xe ) 
, \V ' 0( 

= 

(i.e. the decompositions of the Maokey formula only 

differ in the first summand) 

However, as in the proof of 4.4.5, L n w = c n w. 
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, p ) 
cml 

Then We only have to show 

B = (1cnw ' 'omv) 

::I ( 1 S mv ' X <>.. ) (1 , xC{ ) 
m 8mffiV Bmm, 8mfllfl 

as c n w = (8 n W) x (8 n W) m m 

But by the oonstruotion of W, Smn W = Wv ' so 

B = (1W 8m ,x. «.. ) 2 

v • 

Finally, in ord~r to show B ~ 0 it is sufficient, 

by 2. ~ • 6, to shoW' tha t v ~ 0\. • 

By assumption, ex ;-) ~ (0(.;0<.) so (X;-) ~ (DC.;OL) as on 
D C 

p 96. Therefore (A;-) ...lJ>. (0<;0<.) ~ e-;~) so that o C 
(Aj-) ~ (-;2~) which implieS A ~ 2~ by moving the whole 

of A Boross to the right-hand side. 

Now 20<. = (20<." ••• ,2<ts ) and>' = (2V 1 ' ••• ,2Vr > so that 

..,. ...... 

~ ~ 20( ='> L 2V i ~ L 20(~ for all m 
, 

~:= ( "';:., .... 
"" => ~ Vi ~ L o(~ 'for all m 

~.::= I ..... =- I 

=> V ~o( , oomp1eting the theorem. 

Finally, We prove 

Theorem 4.4.6 

With the notation of 4.4.~ 

K 
(1W ' Oo().::f 0 <:=> v ~ 0( 

P .. ;-) 

and (1\1 K , Xs .. ) F 0 <=> 
6 • .! -} 

iJ"p. 

v<O( 



Again We need a preliminary ler.1ma, which USes' the 

same notation as the theorem 

Lemma 4.4.7 

Proof 

Let W = W{>,; _) be the Weyl subgroup of K defined 

in 4.4.3 so that W ~ H. 

ZElz i ] 
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where lZi1 is a set of (L,W)-double coset representatives, 

with zi E H. Hence, as in 4.4.5, L n WZ = e n W~ • 

Thus 

(1 K Xl"';")::: 
W' k 

I (1enwz , ¢enwZ) 
ZElzi 1 

= [ (1enwZ , "'enwZ) 
zE tZil 

Suppose (1 z' Y ):(= 0 for some Z E [Zi 1 • emf enwZ 

We may as well assume that in zD{A;_J (where W = R(D(~;_)) 
all the symbols of the second type l1e at the ends of 

rows of ZD(A~_) as this only has the effect of multiplying 

Z by an element w E W, which is in the same (L,W)-double 

coset as z. 

Thus e n WZ = W¥, X ViJ where (oiJ) is a pair of 

partitions of 1 with '(, J /- ~ , and Dilr; ~) is obtained 

by moving the squares in D(A;~ containing symbols of 

the second type over to the right-hand side, and 

reordering the two resulting diagrams. Therefore 



= 

so by 2.3.6, T ~ v and S~ v. 

We shall shoW' that 0 = v and 8 ~ v. Hence 

ZD(\ ) = D + D 
I\~- ~ J 

= D + D , = D • 80 z=1. v v (),:--J 

(1 , Y ) 
cnw cnw 

Su v 811 = « 1 W ) 7'G , X ) ( ( 1 ) 72 , X v ) 
v Wv , 

80 we have only left to show 0'::; J' = v. 

By construction of 0', J , for all k there exist 

i k ' jk such that Ak = 2Vk ::;; o~ It + [; ,;'~ where 

0' = (0" ••• , 'Os) and S = (S" ••• , ~s ) 

(add zeros to ensure that '0 and J have the same number 

of parts) and A= (2v1, ••• ,2vs) (automatically A has 

s parts). 

Pu tting k = 1 '('~ + 8, = 2v • 
, I J, 1 

But 0\ ~ 
~ , 0', ~ v 1 since 0 ~ v and similarly 

S~ ,~ J, ~ v
1 

since d ~ v. 

114 

Therefore 0' = d' = v and 0, :::; S, = v • This starts 
~, J, 1 1 

off the induction. 

Suppose, for k < r, We have 0L = dl = vk. Since o~ v 

NoW 0\ + 
Lj"" 

'(' 

'[ vi we 
'"=-, 
C' = 2vr '-r 

have or ~ vr and similarly J~~ Yr· 

and we already have o~ = dk = vk 

for k < r. So ir ~ rand jr ~ r. Hence 

0- ~ Q ~ v and 6.J' ~ J ~ v and so 0' = S ,- = v • 
'f" .,.. r ,.. r r • r 

Therefore by induction, Ok = Sk = vk for all k 

1.e. '0 = J = v, proving tho lemma. 
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Proof of 4.4.6 -
<=> (~;-) n+ {O(jo(} 

...... => v <!' tv 81th f ~ ,~a n e proo of 4.4.3 

<='> 8m 0( 2 
{ ( 1 W) , X) f 0 by 2. 3 • 6 

v 

( ·1 K e) w ' 0( 
( 1 wK 

, Xe..:) ~ 0 by 4.4., 

proving the first part of the theorem. 
I 

Now let v = 0{ • Then 

+ ( 1 K xe ) 
w ' v 

= ( 1W
K , "V (1(-.1; "}) = 

A. 1 by 4.4.7 
i 
! K 

By the 'first part (1 , a ) + o. Hence 
W v 

(1W
K 

, ev ) = 1 and (1\~ , Xav ) = o. Therefore 

=> v f= C( and v ~ ~ as above 

.- Finally, suppose v -< 0( then we show (1WK , xeO(.) ;. 0 

which will finish the theorem. 

By the proof of 4.4.3 (p 96) 

(1 K Xa ) = 
w ' 0(. 

where fZil is a set of (T,W)-double coset representatives, 

zi E H, and 

if Z .,. 1 

if Z ::. 1 

Also 
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S 8 
::: «1 ) m x..«-){(1 ) P. 'VOL) 

Wt ' WJ ' "-

where 8m n zWz-1 ::: Wr , 8n n zWz-1 ::: W
J 

and m ::: ~ ::: n. 

We shall ohoose a z ¢ rr.V (below) suoh that r ~ c:(and 

d' ~ 0\. (If,J depend on z). Then by 2.3.6, 

(1 K 
W 

, xeD() -F 0 as z :f 1. 

It will be sUffioient to ohoose z ¢ CWo We have 

that v<o< Let v = fA-- (0) (I) (rj 
0(. • < F < ••• <?- = 

where f'- l~) is obtained from Fli:-d by moving up one square. 

Let v ::: (v 1' ••• , v r) • Then 

(,) 
::: (v

1 ,vI') fA-i , ••• '~i+1, • •• ,v 3-1, ••• i 

some i<3 (rearranged to give a partition). 

Let {!J::: (v l' ••• ,v i-1 , ••• ,v j+1, ••• ,vI') rearranged 

to givr a partition of ~2. 

It is easy to see that (3 E; FIll < 0( • 

and ~ i< 0( • 

(tl 
Thus fA- < 0( 

Now D (A: _) ::: D,\ ::: Dy + Dv t where Dv is filled 
i ' 

with {1 , ••• ,:It, 1 in the natural 
2 

order, and D t is filled v 
with i~ +1, ••• ,11 in the natural order. 

.2 
We may therefore 

obtain a diagram Dr-(l' from Dv by moving a square 

oontaining the symbol a E [1, ••• ,~] and D~ may be 

obtained from D ' by moving a square oontaining the 
v 

symbol b E ll~+1, ••• ,1} • Then a, b lie in rows j and 

i respectively, of D~ • 

Let z ::: Cab) E H. 

the symbols a and b. 

Then to form zDA we just swap 

It follows then that 0" ::: fA- {I} 

and .;::: (l , so 0 < ~ and J' < 0( , and therefore 0- E; 0( 

and .r E; 0( • We have left to show z ¢ CWo 

Suppose, for a contradiotion, z E CWo Then 

z ::: c1w with 0 1 E C , W E W, and so o(ab) ::: w where 
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c = C1-
1 

E C. Express c aD a product of disjoint cycles. 

One of these cycles must contain b, otherwise w(a) ~ b, 

an impossibility, as We have chosen a and b to l1e in 

different rows of D~. Therefore c contains a cycle 

(b d1 ••• dt ), and since the cycles are disjoint 

c = x(b d1 ••• dt ) where x does not contain any of the 

symbols h, d
1

, ••• ,dt • 

Suppose a = ~ , 1 , k' t. Then w = x(h d
1 

••• dt)(ab) E W. 

Thus weal = d1 ' W(d1 ) = d
2 

' ••• , w(d
t

) = h , anG so 

all the symbols a, d1 , d2 , ••• , dt , b are collinear in 

D~ , again an impossibility. 

Thus tor some k, a = dk • However, C s S, x 8, , so We 
I ~ ~ 

can assume each cycle lies in one of the syrr~etr1c 

groups and is therefore in C. Thus (b d
1 

••• d
t

) E C 

and because a = ~ some k, z = (ab) E Cia contradiction 

since a E [1, ••• ,1;,:1 and bE IlL+1, ••• ,1]. This 
, 2 ~ 

contradiction shows that z E avl and completes the theorem. 

§4.5 Solomon's decomposition of the group 

algebra of \'I(D,I) . 
We interpret Solomon [17} for the Weyl group weDl' ~ 

As usual, We rr~y assume that all modules, representations 

and characters are over the field of complex numbers. 

The generating set I for K = W(DI ) is 

t (12),(23), ••• ,(1-1 1),(1-1,-1)] and the parabolic 

subgroups of K are the Weyl subgroups W(c{;fJ} such that 

~ bas only 1 or 0 parts. 

The results for K are more complicated than those 

for G, as will be illustrated in the examples below. 



We shall therefore confine ourselves to determining 

/\ Pv of' [17] where V = :R1 ([3] , table IV). 

Let J S I, then the parabolIc subgroup WJ = VI (~ ; tr) 

for some pair of partitions (00-) of 1 such that a- has 

only 1 or 0 parts and ~ f (1) • We can then write 

p(J) = H;cr). 
A 

Fix an arbItrary subset J of I, let J be the 

complement of J in I, and p(J) 

Define 

I e = r W· and llJ 
::I [, (w)w 

J 
weNJ WEWJ 

so that A~ 1) 1\ affords the oharaoter 
J J 
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'+' L IM-JJ 
1 K ( 17 ) = (-1) J WM Jc:M~I 

Theorem 4.5.1 -
Let (~;r) be a pair of partitions of 1. Then 

=> 

Proof' 

As in previous chapters 

(y v f A:!'-) "* 0 => (1 K xt>.:.rJ):;: 0 and (l K ,X (~;r)j :;. 0 
J ,I\-k. W' j( W'" If;tr) • {(JI;D(I) 

and (a/jot ' ) n+ (1".';)/) by 4.2.2 

Examples 

(a) It is possible that 
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Let J = (12),(23), ••• ,(1-1 1)} so (~;~) = p(J) = (1;-). 

Thus M.2 J implies M = J or M = I, and W J ~ H ~ G. 

Henoe 

= 

by Frobenius 

= 1 by 3.3.9 and the faot 

that 
C-'l) 

X ' = 1 

I : 
from the definition in §3.1 

1 - 1 = 0 

(b) Si~ilarly, it is possible that (4J
J 

' X l
:.:

(3

) = 0 

(of~ 3~5.2) 

Let i = [(12), (23), , (1-1 1) J so ((31 ;et / ) = p(J) ••• 

As forI (a), (1jJ " Xl II ';. t1(, I) ) 
J' /( = 0 • Now by ft7] 1ennna 7, 

y" = £Y. and so by 3.2.1 (\1 , X. (:; /11 ) = o. J J 
, 

J 

= 

We nO?1 wish to identify 11 PV so We suppose I J I = p. 

Definition 

Let (A;~) be the pair of partitions of 1 given by 

(>. ;r-) = (1 P ; l-p). We call (A ;/A) the hook ,graph for J 

f A· ... 1 
and X .f the hook character of J. 

K 

The hook graph (~;~) depends only on the order of 
(II;",) 1 

J and X I< (1) = (p) by 3.4.3. 

\ ... d h X{A'r} 1 i d ibl Wl1ess 1 = 2 Now 1\ TIA- ~n ence 1<' S rre uc e, 

and p = 1. However., when 1 = 2, K is a decomposa~J.e 

Coxeter group and therefore exc1ud~d from Solomon's 

oonsideration ([17J theorem 4), and in this caSe 1\ 1V = V 

(1;-). 



120 

1s reduc1ble. We shall therefore assume for the purposes 

of this sect10n that l~ 3. 

The following lemma may be proved in precisely the 

same way as 3.5.3 

_L_emma=_4o.:.~ 

(1) The number of roViS of e = r(~) = p 

(11) (Y
J 

' x(~~,..) = 1 . 

Theorem 4.5.3 

Let X be the irreducible character of K afforded 

by 1\ PV. Then X. = X. o·;r) 
I< 

Proof 

The proof 1s somewhat more complex than that for 

G. 
(b". S J 

'X. is irreducible, so X- = X 1<- for some pair of 

partitions (o;d) of K such that 'b'" r.r , or 'X;:: eO( or 

for soma partition Ol, of 72 • 
.'.':. 

Let J = !(P+1 P+2), ••• ,(1-1 1~(1-1,-1)1 

hence J = [(12),(23), ••• ,(p p+1) J so that ljl ::: p. 

Then (e;o-) = p(J) = (1 P ; I-p) = (A;r-) • By [17] I\PV 

1s an irreducible submodule of A~J~J and therefore 
w;J) . 

(Y
J 

' X ) + o. So (lY J ' 'X k ) ¢ 0 or (YJ ' e",) ;. 0 or 
(fJ('IIC.) ~ 

('tJJ ' xeor.) :F O. In the last two caseS (Y
J 

,x. k,- ) r o. 
Therefore by 4.5.1, (p;o-) ~ (<f;J) or (no-) -~ (OCjoc). 

\ D D 

If' We a llow ~ = cf. = ct then we can put thes e rasul ts 

together as (r ;o-) ~ (0 jJ ) 

1.e. (1 P ; l-p) ~ (a;J) • 

Now let J 1 = (12), ••• ,(l-p I-P+1») 

so J1 = [(1-P+1 1~P+2), ••• ,(1-1 1), (1-1 ,-1) 1 



Again (YJ 1 ' X-) f 0 

«(1' • 0{, f) -+ ($' • ir') • 
, , D ' 

Hence 

so (allowing '0;::: J ~ 0( ) by 4.5.1 

Thus (1
l

- p ; P ) ~ (.} i ; 0 ') 

We break the proof up into four caseS: 
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(a) Suppose (1 P ; l-p) ~(lf;J) and (1 l - p ; p) ~(6'.O'). 
· C C ' 

Then by 3.3.5, (o;J) c+- (1 P ; l-p) and since Cis anti-

symmetric 

(~;J) = (1 P ; l-p) (so 0 '* J ) 

X 
= X(l.;I"") . 

and K as required. 

(b) Suppose (1 P ; I-p) t- (a;d) and (1 1
-

p 
; p) ~ (6' ; ~I). 

Then the right-hand row must be moved to the left in 

both oas as. Therefore I ~ I 'P and /'0' = 1'0 I / ~ l-p. 

However /0' I + I cf 1 = l, therefore I J J ;::: p , l'ir I;::: I-p. 

It follows that ~ = 1P , (} I = 11- p • Therefore 
(L-I;/") (lP:,l-pJ (A~t"J 

(o;~) = (l-p ; 1P ). So 'X. = XI< ;:::A I< = X~, 
(0) Suppose (1 P ; I-p) ~( ; ) but (1 l - p 

; p) ."ii"' CJ' ;0'). 
. C 0 

Therefore by 3~3.5, (6';0- 1) ~('Il-p; p) so that 
C 

1" ( .&') ~ I-p. 

Also (1 l - p ; p) ~ Cr' ; ~/) means We have to move the 

row of length p over to the left-hand side. Thus 

either (f" = 1 and J' = (p, 11- p -1) 

or 0" = 0 and ~' ~(p,11-p) and because r(J') ~ I-p -
J' = (P,1 l - p ) or (P+1,1 1

-
p - 1 ) 

or (p,2, 11- p- 2 ) • 

Hence 

(0' jS) = (1 · (l-p), 1P- 1 ) , 
or (- • (1-p+1) ,1 p-1) , 
or (- · (1-p),1 P ) , 
or (- ! {l_n \ _ <:> _ 1 1-p-2 \ 
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(ri;J) 
We see fltom this that 0:;' J therefore X::: X " 

k" 
( X{lr;J) :j: 0 (K (o;J) 

Now '-VJ ' k so 1,V ' X I< ):j: 0 (1.2.8) 
1 J 1 

as a Wey1 subgroup 

of H. Suppose that 0 = O. Therefore 

I< 
, X{~; ld ) (1 H 

(-; J) 
o r;. (1W = ,XI-( ) 

J1 W (1-P+1, 1P-1) 

by Froben1us 

= (1 H 
, Xd

) 
\V (1-p+1, 1P-1) 

using ;.1.;(1i). 

Therefore by 2.2.7, 

already restricted ~ above. 

Thus 0 = 0 => J = (1-p+1, 1 p-1 ) • 
I 

So (o;J) = (1 ; l-P,1 P- 1 ) or (-; l-P+1,1 P-1). 

But X- 1s afforded by !\ Pv so X(1) = d1m 1\ Pv = (~). 
1.e. X lir;d)(1) = (1) P • 

If' 0 = 0 then x.lJ";cf)( 1) = 11 
l(l-p) l (p-1)' 

us1ng 3.4.3. 

Equating this \v1th (1), We See that p = 1, 
P (r. J) 

so 
/d; tJ 

= XI<, «r; J) = (-; 11) and therefore X = 'X. /<' 

If 0= 1 then 'XJ~; ~ ~ 1) = 1\ 

= X (>';rl 
K 

(1-1 ) (1-p-111 (p-1 IT 

for p = 1 

and equating th1s with (~), we find p = 1-1 or p = 1. 

Hence (~;J) = (1 ; 11- 1 ) or (1 ; 1-1) 

Finally, 

Cd) Suppose 

Therefore by 

= (A;~) or (fjA) respectively 

(1 P ; I-p) 04- ('O;J) but (1 1- p 

3"~3.5, (0;&) ~ (1 P j I-p) so 
C 

j p) c> (J' ; 0- ') • 

that 1'(0) ~ p. 



Also (1 P ; l-p) #- (ojJ) means \Ve have to move the row 

of leng~h l-p over to the left-hand side. Thus 

either ~ = 1 and Y = (l_P,1 P- 1 ) 

or S = 0 and 0' = (l-p, 1P ) or (l-P+1, 1P- 1 ) 

or (1-P,2,1 P- 2 ) 

and so ~ =1= s • 
v1lf;J) = 'YlJ;lf} 

But 'X- = I'- K. /I.. K and these Wfjre exactly the caSeS 
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X
I >'21'" 

covered in (e). So the same argument shows X = K. • 

§4~6 The maximal Weyl subgroups of W(Dl ) . . . . 

The maximal Weyl subgroups of K are of type 

Dl _1 ' ,A l _1 and Di + Dl_i (2 ~ i ~ 1-2). 
I 

In this section We give the decompos1tion for 

inducing an irreducible character up from a maximal 
, 

Weyl subgroup of K. We can usually reduce the problem 

to considering G by using Frobenius reciprocity. 

Th,eorem 4.,6.1 (Inducing up from Dl _1 ) 

Let (Aj~) be a pair of partitions of 1-1 and (~;~) 

a pair of partitions of 1. Then 1f Kt = W(D1_
1

) 

«Xl>.;,...)K X (O(;/J) '* 0 <='> (<< it!) may be obta1ned 
k' ' I< 

from (~;r) or (t4A) by adding a square to the end of a 

row orA orl4-; 1.e. (eq/!) EYO\;r),say • 

Furthermore, 

(1) 1 odd: 

Suppose (oqp) E Yo" ) , then 
-f'-

=> 
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=> 

Xl 
and if e = e~ or 6A where Xl = «1-1),-(1-1)}, then 

(&K 'Y c«.;IJ)} :f: 0 
'A.. k 

<=> 

in which caSe 

(ii) 1 even: 

Suppose (cq,1) EY{>..:f'A) , then 

=> X{r(JJI) = 
'I< 1 

=> «XO':I"')K X (t(;(I() = 
1<' , I( 2 

, 

and in/this case 
I 

«X (>':f"J)K , a) = 1 
K' 

where e = e~ or xe~ , x = (1,-1). 

Proof 

Let GI = W(C
l

_
1

) • 

«X-l).~,;»K , X(~"}) = ([C/(I}.k:/f"J}K]G, X(CC;II}) 

by Frobeniua 

= 

by transitivity of induction 

= ([( X (~~) ) GI] G , xlot~tlJ) 

as K' ~ Gt ~ G 

= «X.(>':"")+x.("~'\»G , ')({«;I1» 

+ ••• 

Thus the first part of the theorem follows from 3e?1. 

(i) 1 odd: 

(A) 

If ). :;.~ then (0l.i/l) cannot be obtained by adding a square, 
.li ,'.", 
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(as 1 odd 1mplies lex. I f till ) 

Therefore one of the terms in (A) is' zero and the other 

takes the value 1, by 3.6.1 

1.e. (ex.(A:rJ)K, X(oC;.IJ) = 1 
/(., 

If ). =fA then (~;{l) can be obtained by adding a square 

to both eA;~) and (~;~), so both terms in (A) take the 

value 1 1.e. «'X (~,AJ)K , X{O';/JI) = 2. 

Let e = 6, or x'a so 
" >. 

= by Froben11..l_s 

= ( (eGt)G , 'V (OC;llJ) K 
1\ as' ~ Gt ~ G 

= ( (X (.\;. AI) G , X (:J(; 13 J ) by 4. 1 .3 

which takes the value 1 if and only 1f (0.::;,4) EY(>..!)..) 

by 3.6.1. 

(i1) 1 even: 

If 0( =r 1'> then (O(;t!) cannot be obtained by adding a 

square, from both (A;~) and (~i~) (as 1-1 odd 1mplies 

\AI :f lr-'). Therefore, as in (i), 

({X 1>'.:,...1 )K , X (ll;fJ) = 1. 
k.' 

If ~ = ~ then (QiP) can be obtained by adding a square, 

from both (Xif'") and C~q).) so, as in (i), 

«'V {>';f"J)K X (OC;C(» = 2. 
I'- 1(1 , 

Finally, since the elements of K' can be chosen so as 

not to 1nvolve the symbol 1 , (Xe~)Kr = (e«)Kf ex = (1,-1» 

Therefore 

( (X (X;,.,.) )K , G
d

) 

k' ~ 
= 

by Frobenius 

:; ( x{~;,...J 
!< I , 

bv Frobeniua 
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= 1 by above, 

where e = eo(. or Xe<'( • 

Theorem 4;.6.~ (Inducing up from Al _
1

) 

Let At- 1 and (ot;,1) a pair of partitions of 1. 

and 

X t>.;-J) = 
, I< 1 

Proof 
• 

This follows immediately fr'om 3.6.2 using Frobeniu8 

reciprocity. 

Theorem 4.6.l (Inducing up from Di + Dl _i ) 

Let (~;~) be a pair of partitions of i and (r;~) 

a pair of partitions of j, where i + j = 1; let (~;~) 

be a pair of partitions of 1. Let Ki = W(Di ) , 

Kj = W(D j ). Then 

«X l>"~f') • 'X. ((l;uj )K X (<t;t.1) + 0 implies one of the 
k ~ K.; , k 

.. 
following holds: 

(i) (0(; -) c ().;r) ...... (-;0<.) and (~;-) .....,. (....t.; u-) c - ~ (-;{J) 
0 

(ii) (~ i-) c+ (Ai 0-) ~ (-i~) and ({3;-) Q-> (r;(' ) ..... (-; (.I) 
c c 

(ill) (~;-) ~ (fl;tri -+ (-;0() and (Il; -) .... ( A;.r ) --... (-;11) 
c c c 

(lv) (0(; -) 0+ ~n) ~ (-;oe) and «(3;-) ~ 
(>. ;0-) ~ (-;11) 

Proof' 
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= by Frobenius 

= 

as Ki x Kj ~ Gi x Gj ~ G 

= ([(X{~;)Gi.(X(fl~;')Gj]G, X(I(;p) by 1.2.5(ii) 

= by 4.1.3 

= «;'X.().!"". X-(brJ)G ,x,( .... ;I1» + «X(A:.t"I. x,r;r/)G , Xl"';"') 

+ 

I 

I 
i 

dx't';')..}. X{r;tl)G , 'X.lC(~/J') + «Xlt';).). ')({('~~)G , Aloc;,,) 

i 

Thus if r f 0 then one of the summands 1s non-zero. 

The theorem then follows from 3.6.3. 

§4:7 Some remarks o~ Weyl groups of type D 

The situation in W(D
l

) is not quite so good as in 

WeAl) and W(el ). In both ot the latter caSeS We Were 

able to find a bijection between the irreducible 

characters and the Weyl subgroups, and gave a partial 

ordering on partitions or pairs of partitions which 

parameterized both of these sets. In other words We 

Were able to give a partial ordering on the Weyl subgroups 

and then defined, where W = WeAl) or W(Ol> and W1 is a 

Weyl~ubgroup of W, 

= f irred. chara cter X.: (1W 1 \V, XJ"fO but (1
W2

W, 'XJ =0 } 

1 for all Wevl subErrouns VI. ~uch tha t \L > YL 



The map X turned out to be a bijection. 

We would like to find an ordering of tho Weyl 

subgroups and/or irreducible characters of W(D
l

) so 

that if. We- Were to define X as above, then X would be 

almost a bijection. We certainly could not expect X to 

be a bi.iection as the number of Weyl subgroups of '{l(Dl ) 

is, in general, less than the llumber of irreducible 

characters. Thus the set X(W
i

) will sometimes contain 

more than one irreducible character. However, if ~c 

could also find a partial ord0ring on the irreducible 

characters, then We would choose to associate with Wi' 

the (we hope) unique character which is the lowest in 

X(Wi ) with respect to the ordering, and call this a 

dominant charactar. 
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This leaves us with a set of non-dominant characters. 

We would then lll<e to associate each of these with a 

semi-Coxeter type Di(a j ) or Di(b j ) (see [5]) in a 

consistent way. Indeed, we would hope that the resulting 

bijection between irreducible characters and Weyl 

subgroups or semi-Coxeter types is consistent in the 

following manner (cf. §2.5 and 3.6.1) : 

letX. be an irreducible character of W(D
1

) associated 

with a Weyl subgroup or seml-Coxeter type W, and 

Suppose .,.. 

X W(Dl +i ) = 

('X~ irreducible characters of W{Dl +1»· 
Then We would like there to be a unique lowest character 

X (say) of the set [X, ••• ,X r 1 , with respect to the 
I , 

partial ordAring on the irreducible characters, such 

that a1 = 1 and X, is associated with 'if inside YV{D1+1)· 



It is for th1s reason that We have included the section 

§4~6 on maximal Weyl subgroups. 

It turns out that it is possible to give such a 

biject10n in Weyl groups of type D of low rank 

(i.e. 1 ~ 7) and we list the results for 1 :: 4 and 

1 :: 5 in §4.8. 

A study of theSe low rank groups reveals the 

follo1;ving facts: 

SUppose VI (~;}I-/ is a Weyl subgroup of K = VleDl) (1 ~ 7) 
(o(.; (J) 

and ?( k is an irreducible character associated with 
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W (A~r.). It seems that we may obtain (oq/!) (an unordF3red 

pa1r) from (A ;,......) (wh1ch 1s ordered and no part ot f"- 1s 1) 

by the: map S where 

= ( '* \ '**) ~ If'- ; 1\ 

where A '* I .x '** are obtained by sp11tting each of the 

parts of ).. almost evenly (dl1pending onfA-). Note that 

(A ;1"-) 

this 

I , '* ~ (>. I~ ; 
D 

'** ,\ ) but no moving up is requ1red in 

operation. 

If ). has all its parts even so that A = 2v then 

8(A;-) = (v;v) and the two Weyl subgroups VI (),~ _) 

(see 4.2.1 and remark p 107) seem to be associated 
x tv; ~) 

wi th the two irreducible components 6v and ev of X k • 

(l-;;j) 
Also it seems that X. K should be associated 

with Dl (a j ) in W(Dl ) (1 ~ j < ~). 

If (~;~) and (~;~) are two pairs of partitions 

of 1 such that /oe./ = I r I and 1(3/:: lu-I and oC~ P I 

~ ~~ then it appears that the ordering of the characters 
y(<'t;/I) '\I (P;.c-) 

sa tisfies I'- K. ~ I\.... k. • 

To show that the problem 1s not solely due to the 



fact that, with the characters of \7(D
l
), We are dealing 

with un~rdered pairs of partitions, We have included a 

chapter 011 W(Bl ), which contains W(Dl ) as a regular 
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Weyl subgroup. It will be S~en that here, although the 

characters are parameterized by ordered pairs of partitions, 

the problem seems to be equivalent to that for WeD ), 
1 

as the operation ~defined in that chapter is very 
B 

similar to ~ • 
D 

§4.8 The groups W(D4) and W(D5) 

We list the bijection, found by direct calculation, 

between the irreducible characters of W(D4 ) and W(D5) 
I 
I 

and their Weyl subgroups and semi-Goxeter types. The 

tables Were used for the calculations for W(F4 ) and 

VlCE6) in chapter six. 

The notation is as follows : 

the first column gives the type of the Weyl subgroup or 

semi-ooxeter type; the second column gives the pair of 

partitions (~;r) parameterizing the Weyl subBroup w(~;~) 

(where appropriate); the last column gives the pair of 
{G(;/lJ 

partitions (~;~) parameterizing the character X k ' 

(we shall wr! te this so tha t /0<. I ~ I f.q ). 
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TABLE 1 

~ wo.;,....) 'X. /'"; Il) 
I< 

D4 (- ; 4) (4 • -) , 
D 4 (a 1) (3 . 1) , 

D3 (1 • 3) (31 ; -) , 

A3 (4 · -) (2 ; 2) , 
D2 + D2 C- o 22) (22 ; -) , 

A1, + D2 (2 • 2) (21 ; 1) , 
Ai (31 • -) (2 ; 12) 2 , 

D2 (1 2 ; 2) (21 2 ; -) 

A1 + A1 (22 ; -) (1 2 · 12) , 
A' (21 2 ; -) ( 13 · 1) 1 , 
~, (1 4 ; -) (1 4 · -) , 

1.-, 



D5 

D5 (s1) 

D4 

A4 

D3 + D2 

A1 t D3 

D4 (S1) 

D3 
! 

A2 + D2 

A3 

D2 + D2 

A2 + A1 

A1 + D2 

A2 

A1 + A1 

D2 

A1 

¢ 

TABLE 2 

(- ; 5) 

(1 ; 4) 

(5 ; -) 

(- ; 32) 

(2 ; 3) 

(1 2 ; 3) 

(3 ; 2) 

(41 ; -) 

(1 ; 22) 

(32 ; -) 

(21 ; 2) 

(31 2 ; -) 

(22 1 ; -) 

(1 3 ; 2) 

(21 3 ; -) 

(1 5 ; -) 

X1o(;ll) 
K 

(5 ; -) 

(4 ; 1) 

(41 ; -) 

(32 ; -) 

(31 ; 1) 

(3 ; 12) 

C~12 ; -) 

(22 ; 1) 

(31 ; 2) 

(22 1 ; -) 

(21 ; 12) 

(21 2 ; 1) 

(1 3 ; 2) 

(1 3 ; 12) 

(21 3 ; -) 

(1 4 ; 1) 

(1 5 ; -) 
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Chapter. five WEYL GHOUPS OF !ypE B 

For the sake of complet~ness, We give an algorithm 

for Weyl groups of type B, similar to ones in types C 

and D (§'.3 and §4.2), and include some results on 

inducing up irreducible characters from maximal Weyl 

subgroups of this group. 
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W(Bl ) is isomorphic to W(el ) and hence has tb0 same 

characters. However the Weyl subgroups are different, 

which would lead to a different association of irreducible 

characters to Weyl subgroups (cf. §4.7). 

We let G = W(Bl ) and, as far as the character theory 

goes, USe the same notation as in chapters three and four. 

§5.1 An algorithm for W(Bl ) . 
R,emark 

As in chapter three, We shall only be interested 

in the regular Weyl subgroups, although in this caSe 

they do not form a complete set of conjugates. For 

example in W (B4 ), the Wey:;,. subgro~p of type B2 + BZ 

is not conjugate to any regular one. In the rest of 

this chapter we shall assume all Weyl subgroups are 

regular. 

The Weyl subgroups of G have the form 

s\ X ••• X S x WeD ) x 
~ Ar ~I ••• x WeD ) x YI{Bt ) 

fl-r 

where L ). ~ + L t-t ~ + t = 1 and !'-~:;. 1 , t ~ d. 

We shall wr1 te this subgroup as W(>\ ;f"; t) where 



ass ume too t >. , ~ ••• >, >. r > 0, fA I ~ ••• ~)-{ J "> 1 • 

Thus the Weyl subgroups may be parameterized by triples 

of partitions (>';f-;t) where no part orlA is 1 and t~O 

(we shall write t for the partition (t), and interpret 

W(Bt ) = 1 when t = 0). 
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As in previous chapters, W(~~~!tJ may be regarded as 

the row stabilizer of a diagram Du,;,....~t) , where a row 

permutation of DlA~~~t} permutes the symbols in eac~ row 

of DA ' D~ , Dt (8 single row), changes the sign of an 

even number of symbols in D~ and changes the sign of 

any number of symbols in Dt • 

w~ shall be interested in gi'iTing an algorithm 
I 

which dAtermines which pair of partitions (~;~) of 1 

satisfy 
, G 
; (1 , X(o(:J1') rF 0 I. Wu .. ; I":~) 

Definition 

Let (~;~;t) be a triple of partltions of 1 such 

that no part of ,10-\. is 1 and t ~ 0, and let Cex.;/3) be an 

(ordered) pair of partitions of 1. Write 

(~;,v.; t) S-- (0(;(3) if (0(; (.l) may be obtained from (>.. j,u.j t) 

by 

(a) removing connected squares from the end of a 

roW of ~ and placing them, in the same ordp.r, 

at the bottom of f'- j 

(b) repeating Ca) with squareS from different rows 

of >. ; 

and at the same time, but independently, (so no squ8re 

is moved twice) 



(c) transterriI'l..g complete rows of J-l- and placing 

them at the bottom of ~ ; 

and again at the same time, but independently, 
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Cd) transferring the Whole of t across to the bottom 

of A ; 

then 

(e) reordering the resulting rows so as to give a 

pair of partitions, (<r;J) say; 

and finally 

(f) movir~ up inside 0 and S , according to the 

usual partial ordering on partitions, so as 

to obtain ot and fl respectively (so b"" 0( and 

Remark 

If t = 0 then U ;f'-; -) ~ (oc.;J3) <=> (A;ft.) n+ (e<';(J). 

Indeed, for t = 0, Wt>':r» is a Weyl subgroup of type 

VI (A:,....) ot WeDl) and as 

'X (/1(;/3) ) , /( by Frobenius 

we would expect to get 'I:;he same algorithm, in this case, 

as in W(Dl ). 

It is for this reason that it appears that the problem 

of associating irreducible characters to Wayl subgroups 

in WeBl) Seems to be equivalent to that tor W(D1) (see 

§4.7). 

Theorem 5.1 .1, 
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The following lemma is proved in precisely the same 

way as 3.3.2 

Lemma 5.1.2 

Let W = R(D (~;"";'-i) • Then 

(a) \V = (N n W) (H n Vf) and (N n Vf) n (H n W) = 1 

If also g E H, 0 = 0H(~) for some irreducible character 

c of N 

(b) ~ :: (N n WS) (H n Wg ) and (N n Wg ) n (H n wg) = 1 

(c) NO n wg = (N n Wg ) (0 n wg) and (N n WS) n (0' n ,:,-g) :; 1 

Proof of 5.1.1 

L t w - Vi Then we (1 G ~ Xc"';"}) .Is 0 • e - (>";'fL;t). suppose W r r 

Hence, with the usual notation, 

i 
o = (1W

G 
, X( ... ;II') = (1WG , p$G) 

= [ (g1WgONO ' PWgnNO) 

gE 19i1 

where 19i1 1s a set of (W,NO)-double coset representatives 

and ea,ch gi E H. Thus there exists g E (gi 1 such that 

Let 10(1 = m, 1M = n and we have tha t t; takes the value 

1 on all sign changes in wg. Now Wg defines a diagram 

D (A ;fA;.-t) , and therefore in any row of DfL all the symbolS 

are of the same type, and all the symbols in Dt ' are of 

the same type. Hence We may transfer those complete 

rows of D~ Which contain symbols of the first type to 

D~ , independently move the squares of D~ (so that moved 
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squares in tho sama row stay in tho same row) containing 

tho symbols of the Second type to D~ and, again 

independently, roove the whole of Dt acrons to D>. • On 

reordering We 0 bta in a diagram D (~'; J I of a pa ir of pa rti tions (0; $) 

of 1 such that Dr contains all the symbols of the first 

type and DJ all the symbolS of the second type. This 

corresponds to operations (a), (b), (c), (d) and (e) on 

p 134-5. So to show (r. it-;t) ~ (0<:j/l) Vle only have to 

show 0' ~ 0( , J ~ (J • 

By construction, 10'/::; m = Jed , IJ 1= n = In I 
-

and (1cmvs ' Ycm¥S) * o. Again, just as in 3.3.1, We 

obtain! 
I 

o :1= (1C nwg , 't'c OWg ) = 

I 
so '0" .10( and d " (J • 
Hence (A;~it) ~ (~;Il) • 

. I B 

Conversely, suppose (Air-it) B"" (oq(.l). Therefore we 

may moVe parts of rows of). across to j-<- , com.plete 

rows of fA across to >. , tlnd the whole of t across to 

~ , to obtain a pair of partitions (0;') of 1 such that 

'0 ~ 0( and 6' ~ (3. Hence We may define a diagram DIA:/,_:t) 

filled with the symbols [1, ••• ,1) such that each row of 

D~ contains only symbolS cf one type, and Dt only contains 

symbols of the first type. 

Let W = R(D(>., ,.....;t) ) so all pairs of sign changes 

in NOW consist of symbols which are of the same type 

1.e. ~Nnv{ = 1. Also, by 2.3.6, since (( ~ c;( and 

r " (3 

( ) )Sm ,X«) «1m )Sn , XII) #: 0 
1NrlW ' t;NOW « \, II 

and this is by the proof of the first part of the theorem, 
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the first summand in the Mackey formula for (1 G ,. x.(a:)/f) • 
W 

§5.2 The maximal Weyl subgroups of W{B1 ) 

The maximal Weyl subgroups of G are of type 

Bl _1 ' Dl ,and Dl _
i 

+ Bi for 1 ~ i ~ 1-2 • 

Inducing up irreduoible charaoters from the maximal 

Weyl subgroups We obtaL~ the following results. All 

the theorems folIo" almost straight-away from those for 

W(el ) (§3.6) in the same manner as We proved them for 

W(D
l

) (§4.6) ; thus We shall omit the proofs. 

Theorem 5.2.1 (Induoing up from Bl _1) 

Let (A;~) be a pair or partitions of 1-1 and let 

(A;~)* = (A*;~) = (A1;~) • Then 

= + 

summed over all those pairs of partitions (~;~) (¢ (A;~)*) 

of 1 obtained from (~;~) by adding a square to the end 

of a row of A or by adding a square to the end of a 
" 

row of fA- • 

Theorem 5.2.2 (Induoing up from Dl ) . -
Let (,\ J,M.) and (.';Il) be pairs of partitions of 1 

and K = W(Dl ). Then 

If 1 is even, (eG , X.''';/l') '4 0 <=> 0( = ). = fJ 

where e = e~ or xeA • 
!n par~:toular. al:1,. non-zero multiplicities are 1. 



Theorem 5.2.; (Inducing up from Bi + D1_i ) 

Let (A;,J be a pair of partitions of i, (~;~) a 

pair of partitions of j, where i + j = 1. Let 
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K
j 

= W(D j ), and (~;Il) be a pair of partitions of 1. Then 

( ex C,\;,.,.J. 'Xtl'~~-J) G , x.1"; /»)) :jJ 0 implies 
,J 

l 

either (0\.;_) c+ (.A;~) ~ (-;~) and (f-!;-) ~ (!'-;o-) ? (-;(1) 



Chapter six WEYL GROUPS OF EXCEPTIONAL TYPE 

In this chapter We give an association between 

the irreducible characters and the'Weyl subgroups of 

the Weyl groups of type G
2 

' F 4 ~Ild ES • 

Using a computer, similar results ought to be 

obtainable for Weyl groups of type E7 and E8 • 

As the number of Weyl subgroups differs from the 

number of irreducible characters in each caSe,;we could 

not expect this association to be a bijection. 

We shall USe the notation in [5] • 

§6.1 Construction of the mappin& Y 

The details given in this section are similar to 

those in §4.7. 

Let W be a Weyl group of type G2 ' F4 or ES , and 

suppose WI is a Weyl subgroup of W. We first calculate 

the irreducible characters occurring in 1W'W, U~ing the 

information on the conjugacy classes given in [5] , and 

the character tables in [9] and [14] (the Vleyl group 

of type G
2 

is the dihedral group of ord~r 12 and so is 

easy to work with). 
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From this We wish to associate a set of irreducible 

characters to the Weyl subgroup W' using a partial 

ordering ~ on the Weyl subgroups 

i.e. X(W') VI ( =1 X-irred. character of W : (1 .. " ' X) =F 0 bUlj 
VI VI 

( \V' , ')() = 0 for all W o'1l subgrou"" W" > IV j 



In dBfining the partial ordering We work from the 

highest Weyl subgroup downwards (highest means with 

respect to the ordering). We let \V be. the hi~~est Weyl 
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. W 
subgroup so 'W is the principal character. Inductively, 

suppose W=W
" 

••• ,WI' have been ordered and so X(W, ) , ••• 

,X(Wr ) determined. Let SX(Wi ) = [X" ••• , X j } • 

Then We look at those Weyl subgroups WI of W for which 

1 W contains the minimal number of irreducible 
W' 

characters not in the set ~ X" ••• ,XJ J. Then these 

Weyl subgroups are defined to be the next in the partial 

ordering and X(W t ) as the set of irreducible characters 

occurring in ' WI
W but not in lx" ••• ,XJJ. The unique 

lowest (with respect to the ordering) Weyl subgroup is 

1 since inducing up to W from it gives the regaler 

character, Which contains all the irreducible characters 

of W. 

Thus for each Weyl subgroup W' We have defined X(W'). 

We are then able to giVe a partial ordering ~ on the 

I " i 1 irreducible characters of W. Let, X. , X be irreduc b e 

characters of Wand suppose x. 1 E X(Vf' ), X" E X(W
Il
). 

Define 

X' < X" WI < W 1/ 

By cons truc tion of X, if X (WI) n X (W ") :f: ¢, then W' and 

Wll are not comparable \Vlth respect to ~, but 

WI :;;; Will <=> w" :;;; W"' , so that the above definition 

is well-defined. 

The Weyl groups of each type then have their own 

particular problems, so we deal with each separately. 
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(a) W(G2) 

It turns out that IX(VlI)1 ;: 1 for each Weyl subgroup 

W' of W(G2) , and We define a reVerse mapping from the 

set of irreducible characters to the set of Weyl subgroups 

of W(G2 ) : 

Y ()(.> ::; f \V': X E X (l~t ) 1 
The results are given In table 3, along with the ordering 

on the Weyl subgroups. 

(b) \V(E
6

) 

In this. case, the number of irreducible characters of 

VI(E6) (,i.e. 25) equals the number of Weyl subgroups 

(l.e. 21) plus the number of semi-Goxeter types (i.e. 4). 
i 

It is therefore desirable to obtain a bijeotion between 
i 

these setS. 

Now the semi-Coxeter types in E6 are E6 (a 1) , E6 (a2) , 
i -

D5 (a1)i , D4 (a 1) (see [5]) and the last tvro lie inside 
f 

the maximal Weyl subgroup W(D5) of f/(E6). 

Inside WeD5) We have associated to D5 (a 1) and D4 (a 1) 

irreduoible characters of W(D5) (see table 2), call 

them X, , 'Xl.. respectively. In order to obtain & 

oonsistent association of irreduoible oharacters to \1eyl 

subgroups and semi-Coxeter typeS (as in §4.7), we oaloulate 

X~(E6) and 'X.
t
W(E6) • Then, inside VI(E

6
) , we assooiate 

irreduoible character of 

X:V(E6) • 

Similarly, for those Weyl subgroups W' for Which 

/X(W t )/ > 1, We associate to VI' the lowest irreducible 

character in XCVii.} (which is unique except for one case). 

Finally, to E6 (a 1) and E6 (8 2), We associate 

(arbitrarily) the remaining ~vo irreducible characters. 



We thus obta in a bij ec-tiion X1 between the VTeyl 

subgroups and ~emi-Coxeter tYPes and the irreducible 

characters. Note that the final result 1s not unique 

i.e. there are ~{o ways of d~fining X1 satisfying the 

given conditions (see table 4). 

The reverSe mapping 

y(x.) = t WI : X E X1 (W
t ) 1 

is just Y = X1- 1 since X1 is a bijection (WI may be a 

semi-Coxeter type here). 

-The resul-t is given in table 4. 

(c) W(F4} 
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In W(F4), the number of Weyl subgroups is ,7, the number 

of semi-Coxeter types is 3 (given by F4 (8 1), D4 (a 1) and 

D4(a1)~ Where ~ denoteS 8 short root system), but the 

number of irreducible characters is 25. Thus We cannot 

hope to get anything like a bijection. 

As in W(E6), to each Weyl subgroup Wf We associate 

the set of lowest characters in X(WI ). Using table 1, 

We induce up to \y(F 4) the irreducible characters X" X'l 

of D4 ' D4 respectively, Which correspond to D4 (a 1) , 
f".J 

D4 (a 1) respectively. Then, in W(F4), We associate to 
..v 

each of D4 (a 1) and D4 (a1) the set of lowest irreducible 
W(F ) W(F4) characters of W(F4 ) in AI 4 and Xl respectively. 

This still leaves some choice, so the final 

criterion applied is the idea of duality be~veen long 

and short roots. 

Let "~I' be any Weyl subgroup or semi-Coxeter type 

in W(F4 ) and \7' its dual (possibly W' and W' are conjugate 

inside W(F4}). Then given any irreducible character ?L 
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irreducible character of V/(F ) 
4 

W(F4 ) 
( 1Wr , 'X ) ¢ 0 -#> 

which satisfies 

r 0 

(such duals exist by inspectill£! 1 W(F 4) 1", W(F4 ) and 
.., W' '\'It 

'V 

are unique). A character is often self-dual 1.e. X == X 

We then demand that in the association X
1 

of 

chal'1acters to Weylsubgroups and sami-Coxeter types, 

Where Wt is a Wayl subrr~oup or semi-Coxetsr type. 

It then follovls that I X1 (VVI ) I == 1, and We associate 

the one rema ining irreducible character to F 4 (a 1 )~. , 

In table 5 We give the unique result, using the 

reVerse mapping 

y(X) == f WI: X. E X
1 

(WI) 1 

§6.2 ~e ftu't.h,ep..Yl'marks 

In W(G2 ) and W(F4 ), because of the existence of 

roots of different lengths, ~10 Weyl subgroups may have 

the same Coxeter element and so be conjugate; similarly, 

semi-Coxeter classes may be representable in various 

ways. Thus .... 7e have equivalemt Weyl subgroups or semi

Coxetel' types which represent the same conjugacy class. 

Theseal"'e listed below; types are equ.ivalent 1f 

and only if they are written on the same line. 



W(F4 ) • . 
2A1 '" 2A1 

3A1 '" 
2A1 + A1 

'V '" 2A1 + A1 3A1 

A3 B2 -.. A1 
'" B2 + A1 A3 

,..J N 

4A1 2A1 +2A 4A 
1 1 

'" .'" '" A3 + A1 B2 + 2A1 B2 + 2A1 A3 + A1 

D4 
<V 

B3 + 1'1 
N 

D4 °3 + A1 

D4 (a1) 
..v 

2B2 D4 (a1) 

B4 °4 

However, a different sort of equivalenoe may be 

defined using the oharaoters : 

W' and W" are equivalent if and only if there exists 

an irreduoible oharaoter X- suoh that W' , Wit E Y(XJ 

(W' ,WI! are Weyl subgroups or semi-Coxeter types). 

The fOl"m this equivalenoe takes is evident in the 

tables, and in both W{G2) and W(F4) We get a oompletely 

different equivalenoe from that defined using the 

oonjugaoy olasses. 

§6.3 The tables 

The notation used in the tables is as follows : 

In W(G
2

) and W(F4) ~ denotes a system of short roots, 

without ~ the system oonsists of long roots. 

The first oolumn of eaoh of the tables gives,the 

irreduo1ble characters of the Weyl group; the second 
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column gives the Weyl subgroups or semi-Coxeter types 

given by the mapping Y defined in §6.1. 

In W( G2) ,X-" 'XL , XJ , )(... are the characters of 

degree 1 (x,( the principal character, X
t 
the sign 

character) and Xr , X, the characters of degree 2. 

In W(E6) We give in the third column Frame's 

notation for the characters in [9] • 
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In W(F4 ), the characters are numbered consecutively 

on p 152 of [14J (XI is the principal character etc.). 



Tf.BLE 3 

~ ~ 

'X. 1 G2 

X-2 ¢ 

)(.3 A2 

')(4 A 2 
'" X5 A1 + A1 

X6 A1 , ,-.J 

A1 

The ordering of the Weyl subgroups 1n W(G2) 



'X
1 

X2 

X3 

~ 

~ 
X-6 

.x, 
Xa 
Xs 
)(10 

/(11 

~2 
X13 

?<-14 

x.. 5 

~6 
X-17 

X
18 

X19 

~o 
)(21 

X-22 

'X23 

X-24 

X- 25 

Ee 

D5 

D5 (a 1) 

Ee(a 1) 

A5 

TABLE 4 

A4 ~ A, or Ee(as ) 

A4 

A5 ... A1 

D4 

Ee(a2) or A4 + A1 

D4 (s1) 

A3 ... A1 

2AS + A1 

A3 ... 2A1 

3A2 

¢ 

A1 

A2 

2A1 

3A1 

AS ... A1 

A3 

4A1 

2As 

A2 ... 2A1 
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Frame's notation for X 

1 
P 

ep 

15p 

20p 

30p 

64 
P 

81p 

15q 

24p 

60p 

20s 

90s 

80s 
60s 

10s 

1n 

6n 

15n 

SOn 

30n 

64n 

8.1n 

15m 

24n 

60n 



149 

TABLE 5 . -

~ Y(X) -
x.. F4 

~ D4 

X, tv 

D4 

~ ¢ 

Xs B4 

Ya '" 4A1 

X, 04 

?fa' 4A1 , 

'Xi 
9; 2B2 

~O '" B~+ A1 , O~ ... A1 

'Xt1 B2 ... 2A1 

'Xr2 
,..., 

B2 ... 2A1 
N '" 'X,~ 2A1 ' A1 + A1 ' 2A1 

r-J 

'X, 4 A2 ... A2 

115 
fY 

A2 ' A2 

'>',6 
", 

2A1 + 2A1 

'>17 F4 (a 1) 

1-18 A~ ... A1 ' A~ , D4 (a1) 

)(19 
IV IV '" A~ + A1 ' A~ , D4 (s1) 

~O 
,..J 

A1 ' A1 

X21 B~ 

~2 '" ,v 

2A1 ... A1 ' ~A1 

~~ O~ 

~4 2A1 
f'I 

+ A1 , ~A1 
IV '" 

~5 B2 + A1 , B2 ' A1 + A2 ' B2 + A1 ' A1 + A 
2 



1 

2 

4 

5 

6 

7 

8 

9 
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