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O.1l:Abstracts~ %

A semantics of the Mcalculus is presented which is different |
from any of the lattice models, so far analysed, of Scott and the
term models of Morris and Barendregt. The original mofivation was
to do forAi—expressions what Scott had done for flow-~diagrams,
| namely construct a 'syntactic' inverse limit 1attice; E”, in which
to represent them., A further motivation was to abstract out the
essential notion ("continuous semantics") behind the theorem that

. J !
Wadsworth proved concerning some of Scott's models, namely that the

meaning of a \~expression can be found as the (continuous) limit of
its approximate reductions. That this idea is relevant to E_ can be
Seen since the cOordinatgs of the image of a )=expression in E“
-form a subset of its approximate reductions,

To establish the basic fact of g=modelship ahout E_, it has toé

be shown that Wadsworth's theorem does indeed apply - i.e, that the;



E_~coordinates provide a sufficiently complete subset of all the

possible approximate reductions. Translating this back to the

A=calculus gives an algorithm ("i'th reductions”™) for producing

B=reductions which must be proven ‘'correct' - i.e, that it goes
sufficiently far in all cases. : this notion is christened "weak
completeness", I'th reductions are generalised to a non*determin~
istic evaluation mechanism called "inside=out reductions"™ which
behaves in almost the opposite manner to Church's "standard red=-
uctions", This generalisation is not too drastic sincekit is easy
to show that a weak completeness result for one implies the same
for the othér. The weak completeness of inside-out reductions is
established,

The E_-semantics is a 'pure' B-model in that the only n~red-

‘uctions modelled are when there are equivalent B=-reductions =~ other=-

BRI

wise they are not even comparable, Further, A—expressidns with a
normal form are maximal and isolated in E_, unsoiveable éxpressions
are 1,the fixed-point combinators'{Yili > 0} ére éqgivalenced and
the model itseif is substitutive, nqrmal;ﬂsolvable -and implies
Morris' "extensional equivalence", Finally, it is the minimal
continuous semantics in the sense that Wadsworth's theorem is true

in another semantics if and only if it is continuously derivable
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0.3:The r—-Calculus:=-

0.3.0:INTRODUCTION:~

The A-calculus, invented in the 1930's by Church, provided
for the first time a systematic notation for functions. That there
was a need for some form of standardisation was argued by Curry
and Feys - [00] - where they draw éttention to the dangers and
absurdities of ad hoc techniques like those habitually used for
differential and integral operators.

The A-calculus gives us more than the strict notion of a
function as a set of argument-value pairs in that it also encodes
a set of rules whereby we can evaluate the function on any argument.
This, of course, restricts the sort of functions that are ir-defin- |
able to those for which rules of evaluation exist - i.e. the
computable ones., This is just as well since, in the pure A-calculus,
the A-expressions themselves provide the notation for the objects
in the domain and range of the functions. So, if all functions
were A-definable, we would have the mathematically impossible
situation of a domain being the same as its own function space!

This near paradox, together with the fact that nobody really
bothered,.is the reason why it took so long - nearly thirty five
Years - for the first successful models of the A-calculus to be
discovered. Indeed, it was not clear that the evaluation - or
"reduction" - rules gave consistent results independent of the
order in which they were applied. In fact, an early formulation
— [01] - turned out to be inconsistent! The original proof of
consistency, the Church-Rosser theorem, was amazingly long and
‘complicated when we consider the simplicity of the definition of
i*calculus..whe situation has been gradually improved over the

Yearsfand possibly the shortest proof so far is that found by



Tait and Martin-Lof - see Barendregt [p2 ] - and, independently,
by Park (seé 0.4.0). Even so, it has taken a very long time to
reach this elegance!

Clearly, we must be very careful in dealing with A-calculus.
We have an intuition about how it behaves, but this is notoriously
faulty. This is why we have included so many of the details of the
technical results in this thesis. It is only too easy to say,"Well, ;
of course, that's truel!", and then find, when we finally get j
around to proving'it, either that the induction will not go through,?
no matter how hard we squeeze the hypothesis (e.g. 3.4.11) or, |
worse still, a counter-example (e.g. 5.4.2(iii)). We guote Curry
and Feys from the preface to their Combinatory Logic, volume 1, -
Lo3] - : "Some half dozen persons have written technically on
combinatory logic and most of these, including ourselves, have
published something erroneous., Since some of our fellow sinners
are among the most careful and competent logicians on the contemp-
orary scene, we regard this as evidence that the subject is
refractory. Thus fullness of exposition is necessary for accuracy;
and excessive condensation would be false economy here, even more
than it is ordinarily."

0.3.1:DEF;:~

Let I be a countably infinite set. We call I the set of

VARIABLES. Then, the set of M-EXPRESSIONS, EXP, is given by the

context-free grammar :-

EXP ::= I | AI.EXP | (EXP) (EXP)

0.3.2:NOTATION: -

Mostly, we will use s@all Roman letters to represent variables
~and small Greek letters, capital Greek letters and capital Roman
letters to represent A-expressions. Occasionally, these will be

Subscripted by natural numbers.



We adopt, also, the usual conventions about the "dot" and
associating to the left so as to avoid too much bracketing.

0.3.3:DEF:~

Let x,y €I and ¢,8 € EXP. Then,

x is NOT FREE IN vy if (x =vy),

x is NOT FREE IN Ay.e if (x = y),(x is not free in €)

and x is NOT FREE IN €(6) if (x is not free in ¢)

A(x is not free in §).

0.3.4:REMARK:~

We have not followed the usual procedure of defining "free"
and "bound" variables since we believe that they are confusing
(they are not complimentary) and unnecessary ("not freeness" is
all we need) concepts.

0.3.5:DEF:~ (Substitution Operators)

Let ¢ € EXP and x € I. Then, we define a map, [e/x]1:EXP -+ EXP,

inductively, by the following three equations :-

g, if x = y.)
Le/xly g= ’
y, if x- =2y,
Ay.8, if P.
Le/xTay.8 =< Ay.Le/x18, if Q. ’
rz.Le/x1lz/y18, if R.
where P = (x = y),
Q@ = (x- #y),(y is not free in ¢)

and R

it

(x #y),ly is free in €) ,(z is the first variable in

some fixed ennumeration of I such that z # x and z is not free

in €,6),

‘and Le/xlu(v) := [e/xIu(le/xIv).

i
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0.3.6:DEF:- " (Reduction Rules)
(a) Ax.c N Azv.ly/x]e, if y is not free in e.
(8) (Ax.e) (6) —EE—> [e/xTe.
1

(n) Ax.ex —_—n s g, 1f x is not free in e.

0.3.7:REMARK:~

Intuitively, thé substitution operator, [e/x], means "replace
all free occurrences of x with e", a-conversion is "change of
dummy variablés in the function", B-reduction is "application of
function to argument" and n-reduction reflects the principle of
extensionaiity, which is "two functions are the same if they give-
the same answers for the same data".

Next, we intrbduce Wadsworth's idea of contexts - [04] - so
as to generalise the reduction rules so that they need only apply
tp sub-expressions. Intuitively, a context is a A-expression with
a hole into which we may plug another A-expression.

O0.3.8:DEF:~

The set of CONTEXTS, CL 1, for A-expressions is that generated:-
by the context-free grammar :-
€L 1 :e= [ 1 | az.cL 1| (¢l D (EXP) | (BEXP)(CL 1)
0.3.9:LEMMA: -

Any context,Cl 1 € €[ 1, determines a map from A-expressions
to A-expressions as follows :- é
cl 1 : EXp ~——> EXP
£ t———> Cle],
where Clel is defined by,

RN

(cL 1 =01 = (clel = ¢),

(cl 1 =2xx.¢’L 1) = (clel = ax.Cc"[e]),
el I = (¢ ) (8)) = (clel = (c”Le]) (8))
and (CL 1 =s(c’l 1)) = (clel = 86(Cc*Lec]).

Proof:-



-Clear.

0.3.10:GENERALISATION:~

la

(i) If ¢ = Cle”] and § = C[§“] and ¢© ——> §°, we will
also say that ¢ ———lg——> Sa |

(11) Similarly, extend —8 > anga — 10 5 |

(iii) c > . _S - , !> are the transitive closures
of le o ’ le > , - in_ respectively.

(iv) —~————ﬂ> means a sequence of n ——————%5 S.

(v) Slmllarly, for —n8 5 and —20 > .

(vi) = nB —> ; < na >fetc..; mean whétﬂthéy SQQ;‘ - |

(vii) We can mix the reductions together so that a,B,n > ,
for example, means a sequence of 2 >, 8 > and —>>'s in any

order and with'any,number of repeats.

O.3.llt:DEF':- |

Let v be a relation on EXP. Then, ~ is SUBSTITUTIVE if (e ~ 6)
=> (cle] ~n C[G]), for all contexts C[ 1. (*)

0.3.12:LEMMA:~-

All the relations defined in O.3.lO.are substitutive.
Proof:- | |
*The relations defined in parts (i) and (ii) are the substitutive
- closures of thékoriginal définition, 0.3.6. |

~Clearly, their transitive closures and the others remain -

e B

substitutive, o - v :

0.3.13:THEOREM: -

(1) [x/x]e'—-2~> €. -
(ii) {x is not free in e”) = (x is not free in [e’/x]s).
(iii) (x is not free in £,€”) = (x is not free in [e’/y]e).

(iv) (x is not free in e) = ([e”/x]e -——~} €).

- P
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(*) This is sometimes called the "replacement property




(v) (x is not free in ¢) => ([e’/x]Ix/yle —2 Ler/yle).
(vi) —2-> is an equivalence relation on EXP.
(vii) (e —2> §) = ([e*/xle —> [e”/x]6).
(viii) (e” —2> 67°) = ([e/x]e ——> [6°/x]e).
(ix) (z #x).(z is not free in ¢,¢”) =
(Ce*/x1(Ay.e) —=> az.[e’/x1[z/y]e).
(x) (x is not free in €).(e —E> §) = (x is not free in 6).
(xi) (x-#y,2).(2 is not free in ¢7) = ,
([e’/x1ly/2le —>—> [y/z1le"/x]e).

(xii) (z #x).(z is not free in ¢°) =

(Le”/x1068/21e —=> [L[e“/x18/z1[e”/x]e) .

(xiii) (e o,18 > 8) = ([e*/x]¢e o,18 > [e”/x18).
(xiv) (er —2LB 5 5 ) = (ler/xle —22E 5 [57/x70).
(xv) (e —218 5 ) (e — 1B 5 4y =
(8 ——~2L§+—> w)A(Y'-——ELﬁf> w) , for some w ¢ EXP
Proofs-

—~See Curry and Feys - [05].

0.3.14:REMARK:~

Above are a list of some of the elementary properties of a-
and B~reducti§ns. Nevertheless, their proofs are only simple when
we compare them with some of the other proofs in A-calculus.

We yrééentlpartéw(i)‘to (xi) since these properties are
reflected later when we construct our lattice model (chapters 1,2
and 3). Because of part (vi), we will tend to consider the set of
a-equivalence classes, EXP/a, instead of tﬁe pure A-expressions.

Hence, in future, we will ,write -—Eiﬂ—f> for %,8,n > etC...,

assuming that in any reduction sequence a-conversions can take
place at any stége. Thus, we would write part (xv), for example.:-

(e —2 S 5y (e —2B 5 y) = (5 —B5 ). (y —B—> w).
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Note thét part (ix) means that we can simplify the second
equation of definitiqn 0.3.5(ii) to just the third alternative
(i.e. R) and in which any suitable z will do’(i.e. not just the
first one). |

The hardest part to prove is (xii), from which parts (xi),

(xiii) and, eventually, (xv) follow.

0.4 :S0me Classicél Results:-

0.4.0: THEOREM: - | (Church-Rosser)

(e —B> 8) (e —25 ) = (6 —B> w.(y —&> u), for some
W ¢ EXP.
Proof:f

~We will outline the proof due to Tait/Martin-Lof/Park,

o} ' -
-Let ~f~i-~9 be a reduction rule with the following properties :-

(a) "Church-Rosser" property,

‘lo |
(e —22 s 8) (e —2s v) = (8 —20 > w) (v —20 5 )
and'(b) its transitive closure, -E»§, is the same as 8 .

-Then, we can get the Church~Rosser property for > by filling

in the diagram :

.Wwhere each of the lines represents ~m—lg-} by using property (a).
“BY property (b) , we have the Church-Rosser Property for -§€>

- 18
BUte ————> just fails as a suitable candldate for ~«~lg~4%,
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since 0.3.11(xv) is not quite strongkenoﬁgh.
-However, we define "grand": reductiéns, written 3, as follows :-
(i) X I X.
(ii) Ax.e 9 w, if w —2 > Ax.c” and € 3 e”.
(11i) €(8) 2 (either e°(8°), if ¢ 3 ¢” and § 3 &~
or [§°/x]e””, if e 3 Ax.e”” and § 3 8 )
-The fact that 3 is non-deterministic is irrelevant.
-Clearly, 3 has property (b) and it is not all that complicated to
show that it has property (a) also. .
-Hence, é'wiii do for -——ig—-é and so we have_the result.

. I A T )

0.4.1:DEF: -

Let y = Clwl., Then, 1f w = Ax.e, for somexx e I and ¢ ¢ EXP,
® is an «-REDEX of v. If w = (Ax.¢)(8), for some x e I and €,8 €
-EXP, Eheﬁ‘m is a B—-REDEX of y. If w = Ax.ex,,fdr some X é I and ¢
e.EXP suéh that x is not free in e, fhen w is an n-REDEX of y.

OA4-2=DEF:—

Let ¢ ¢ EXP. Then, € is in a—-, B- or n-NORMAL FORM, respect=:...

iVely; if ¢ contains no a-, B- Or n-redekes. We write a-, 8- O
n-NF to denote the set of a-, 8- or n-normal forms.

0-4-3:LEMMA:—

B-NF is given by NF in the context-free grammar :-

HD ::= I | (HD) (NF) | | -

]

NF ::= HD | AI.NF
Proof:-
~Let Allcl = (¢ e B-NF) = (c € NF).
-Clearly, Aﬁxﬂ and (AlLel = Alx.el). \
‘~Claim- Allel JAUS] => Alec(8)D :-

~Let €(8) e B=NF. Then, e fAI.EXP and &,8 « g=NF.

" =80, by Allel LAT8T, ¢ and § e NF.

g g e -
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-Thus, e ¢ NF\ \I.EXP - i.e. ¢ € HD.

-, (8 eHD c NF.

~ -Hence, by structural induction, (Ve ¢ Exp)Al .

-We need a "cross-product"” induction to go the other way.

-Let POl

Hi

(n € B-NF).

~Let QIVD

[H]

(v € B-NF) .(v f AL.EXP).
~Then, clearly, we have the following results :-
-QMxll,
-QIyl POIVD = Qﬂu(v)ﬂ.
-QIull => PIul.,
-PIyl => PlAx.ull.

.

-+, we conclude, (Vﬁ € HD)QHﬁH and, in particular, (¥v e NF)PI,].

+

0.4.4:REMARK:~

We shall not be interested in &—normal forms at all, not
very interested in n-normal forms but very interested in g-normal
forms. Hence, and in view of the above characterisation, we shall
drop the B- when refering to these objects and write NF for g-NF.,
Further, this context free grammar of normal forms provides
& guideline for the construction of the syntactic lattices (0.7.27)
0.4.5:COR: - | |

(e -—-?--aush(e -—ﬁ—-,»y).(s,y € NF) = (§ —2—> y).

Proof:-
-By 0.4.0, (8 -E~9rw)6(y —~§~¢‘w), for éome w € EXP,
-But, since § and vy € NF, there can be no B -reductions from them.
~Hence, considering remark 0.3.14,(e —¥2~9-w)a(y —2 > 4).
-So, § — >y, by 0.3.134vi).
¥

~ The above corollary is what we mean by the "consistency" of
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B-reduction. In a normal form, there are no Bg-redexes (= function-
argument pairs) still unevaluated. The result shows that, in any

"completed” computation, it does not matter in what order the

N

B~redexes were taken,

0.4.7:DEF:~

B-cnv is the equivalence relation generated by -—§4>, Again,
we will write just cnv.for B¥cnv.
Similarly, we define n-cnv and B~n-cnv. , é

0.4.8: EXAMPLES'-

Not every computatlon termlnates in a normal form, thus

Com

setting up the conditions for 0.4.5. For example, if A = xx.xx,°*%““§
: ' .

we can only have :- o
AA"_""‘l"‘B—""} AA lB }" AA 18 > *® o8 00 9 20 00 ;

A more interesting case is the paradoxical, or fixed-point

combinator, Y = Af.II where I = Ay.f(yy). Here, we have :-

v = af.rr — 18 o aee(rn) — 18 o g £(E(zr)) —=B &

AELE(£(£(5D))) —LB > Af.£(£(£(£(2D)))) —1B 5 e ievenenn.

It is called the "fixed-point" combinator because :-

R S S S o o

- €(Ye) cnv Ye.
There is a family of "fixed-point" combinators. Starting with
YO := Y and letting G = Ay.Af.f(yf), we define Yi+l i= YiG. Suppose ,»
as an induction hypothesis, that Yi is a "fixed~point" combinator,

ie. :-

-

g s e g,

e(Y;e) env Yieo
Then, -

Y

Y3418 = (¥;6) (e) cnv G(Y,G) (e)

—~F> cUv,0) (e)) = e(¥,, 0).

. So, the induction goes through and all the Yi s are fixed-point
combinators. We feel that .the Yi‘s are doing essentially the same

vthing,vyet it is no# too hard to see that Yo CHY Y. Furthe;, it
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is probably true that Y cﬂv YJ, for all i = j!

0.4.9:REMARK:~

Returning to the Church-Rosser theorem and its extension for
-—3~>, Curry - [06 1 - develops techniques and results which we
shall find extremely useful later (chapter 6). We list them here.

0.4.10:DEF: -

Let e-—3£L—> § and let S be a redex in e. Then, see Curry -

lo71 ~ for an exhaustive definition of the RESIDUALS OF S IN 4.

0.4.11:NOTATION:~

Let € ——-l§~f> ¢ by contraction of the redex R in e. Then,

e write s-
£ ———> §,
qu we have numbered the reduction, e.g. :=
€ ~—Bﬁ> 6....;..........................(:)
or i-
e R Dy,
and S is a redex in e, then we write {SL/CD , or {S}/R, to denote
the set of residuals of S in §.

- If we have a set, S, of redexes in ¢, then we generalise the
definition of residuals of redexes to residuals of sets of redexes
by :- . |

$/@ = vuvlisi/@Dls es}.

We further generalise as follows. Let, , .
R R R

| (:}..,....ao —Li € 2 €y S - SN en;
and let S be a set of redexes in €ge Write SO := 5, Then, Si+l =
Si/ 141° the set of residuals of 5, in €i41° Then, we define 3=
! S/@ 1= T pe 7
0.4.12:DEF:~

Let § be a set of redexes in e, Then, e.¥~§¥¥-i§L>~6 is a

REDUCTION RELATIVE TO S IN ¢ if the only redexes contracted'afe



residuals of redexes of S.

Further, it is a COMPLETE RELATIVE REDUCTION OF § IN e if

5/ ® = ¢, In this case, we write :-
‘ S

€ :3""50

0.4,.13:THEOREM: -~ (Curry's Strong Property E)

Let S be a set of redexes in e and let R also be a redex in e.
Then, there is a complete relétive reduction of § in € and all
complete relatiﬁe feducfions end in the same §(up to a-conversion).

Further, R has the same residuals in § no matter which
complete relative redubtion is used,

Prbof:;

-See Curry - [081,

+

0.4.14:COR:= _ (Parallel Moves)

Let ¢ u—E~%~6 and let 5 be a set of redexes in e. Then, we can

construct the following diagram :=-

€ GD 2§

s ' s/

v ~ 8 v

o P
8%,

€

A

Proof:-

~Suppose the reduction sequence (:) is of the form (:) in 0.4.11,

~Define SO'Si""'°"S as in 0.4.11, Consider the diagram :-

n
R R R R
= 1 2 i i+l
€ = € : > ::' ¢ 00009 T > =
O ~ el Eiwgi'*‘l s s e s €n>
S A S oocc‘ood :
O. O 1 Al oo.o‘. Si Ai Si+l Sn
et g, v - v o 4 N/
- >'€“ - . e 20 00 :’ " mﬁ
O l == elw €i+l R E En 6



¥

;
3 i
;»‘M’ sl

- i 8 ' . e sequence g, —> ¢ — e is L
Consider square Al° The sequ ey €541 € 41 a completgﬁxg

16

14

relative reduction of Sy v {R; .} in e;. Now, construct el —> ef7;

o -

by a complete relative reduction of the residuals of R in €

Then, the sequence g, —> Ei —> ¢77, is another complete relative

i+l

, . a .-
reduction of S, v {Ri+l} in e, » Hence, by 0.4.13, €41 T €{i1°

-This happens in each square and, so, we have the result,

T

,.......,,,._...,._.,,WA,,,.,

0,4,15:REMARK: ~

The Church—~Rousser theorem for —E 5 is now a simple corollary %‘

. of 0.4.14, We just use it repeatedly with S a singleton set each .§
time - see Curry fo9le . : o %

Curry goes on to establishbthe Church-Rosser property for |
e—ﬁiﬁ%} and develops some useful results. We list them in the
following lemma.

'0.4.16:TL.EMMA: -

(1) (Ve e EXP) (¢ — > e* ¢ n-NF)
(11) (e =1 8), (e —1> y) = (6 =D w) (v —2> w) |
(111) (e —B£03 6) = (e “8>Y L3> 6) |
(iv) (e —Len §) => (e* -§iﬂ~5 §*), where e* and &%

are the n-normal forhs of € and § respectively. , ‘
(e —B1S ) (c —D> y) = (6 =13 6% (v —BLy sh)
(vi) (e —E203 5) (e —Eelyy) = (5 Ly ) |

| ALY Bely ),

Proof: -
(i) -Clearly, an n-reduction strictly shortens the length of an
 expression and, so, we can only do a finite number from one.
(ii) fStraightforward - see Cu;ry [101. Hence, n-normal forms
are unique. -‘ | | _ P

(iii) =-Non~trivial: although we can show quite easily that :-

(¢ —2>5 254 = (¢ >0 >,
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we cannot guarantee that the length of either the ~—ﬁ—> or ——3%>
will be restricted to at most one. |

-See Curry [11] for a correct proof.

(iv) =-Simpler that part (iii) - see Curry [12]. In fact, the
sequence from e¢* to §* is of a special form which Curry calls
"g~reductions" : in these, B-reductions are allowed only from
expressions in n-normal form.

(v) ~This is a useful corollary to part (iv) .

-Let ¢ —-§L3—> § and ¢ -3%>-y.

-Now, & —9 g* ¢ n-NF, by part (i).

-By the Church-Rosser part (ii), this e* is unique and, sg,

y —1> e*,

~-But, by part.(iv), § —L> §* and e* —LLly g%,

‘—Thus, Y —~§L&%> 8*, |
. (vi) =-Trivial, using 0.4.0 and parts (iii) and (v) aboﬁe - [1217.

T

Frequently, when proving theorems in the A-caléﬁlus, we
perform inductions on the complexity of an expression e. As far

as possible, we 5hall try to do this with structural inductions

over the context-free grammar given in 0.3.1. However, it is

neccessary occasionally to use an ordinary natural number induc-

tion over the "length" or "rank" of an expression (e.g. 0.3.13

and 0.4.20). In section 0.5, we make use of a restricted notion

of "rank" which should not be confused with the following one

which applies to all A-expressions. The following is taken from

o

Curry [281.
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0.4.18:DEF:~-

rank Ix{ 0

i

ranklix.ell 1 + rank{el]

1 + ranklell + rank[sll.

LI

rankﬂe(G)D

0.4,19:LEMMA:~

(1) rankl[a/blell = rankﬂsﬂ
(11) (e —2> 8§) => (ranklel = rank(és0)
(1ii) rank[[é/xJell = ranklel + n*rank(s0,

where n is the number of times x occurs free in e. ‘
o e T T T L T T T kv e

(iv) (e ——35L€> 8) => (rankllel = 2 + rankDéU)ﬂ
it ProOf:- S A A PR ‘ P S PN AT N IS WOTL R SO L USRI
(1) ,(ii) and (iii) -Trivial induction on the rank of e.

(iv) =Trivial structural induction on e._

0.4.20:THEOREM: -~ -
{e -§41L%> 8§ € NF) <=> (¢ ——Jiék e* ¢ NF).

Proofs=-

(<=) -Immediate.,

(=>) -This looks trivial, but, like so much else in this subject,
lacks a trivial proof. - |

~First, just note that e ~—§Lﬂ{> 6* € B=-n-NF, by 0.4.16(1).

~-The result now follows from the non-trivial lemma of Curry,

- Hindley and Seldin - [761. | , -

PR S O PR PR RRIoTe L ULR T AR

S % 2
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0.4.21:REMARK: -

The above result séys that,if we are interested in reaching
normal form,'we need not bother with n-reductions at all. Later
(0.5.9), we éhow that n-reductions are similarly irrelevant to
the quéétibh'of reaching "head normal form" "("solvability"). -
This uses a proof strongly based on the one for 0.4.20.

‘There is one other classical‘result on B-reductions in which
we‘ére interested in this thesis. The 8-reduction rule does not
specify any order in which to take B8-redexes. However, it is
'possible.to give a deterministic rulé (in fact : "always take the i
ieft*most outermost") which guarantees termination ( i.e. reaches
normal form) if termination is at all possible, This is not a |
trivial property since there are reduction rules (e.g. : "always
take the innermost") which occasionally fail to terminate when this
is clearly possible (e.g. (Ax.y) (AA)). Later (chapters 5 and 6), |
we shall give other reduction rules which also guarantee terminatior
whenever possible, | | .

0.4.22:DEF 3~

Let R and S be different g.redexes in e. Then, R is LEFT-OUTSIDE |

of § in e is defined inductively by :-

(1) € =X . $ not possible,

(ii) =

AxX.e” if R is left-outside of 8 in ¢~

L]

*"”

and (iii) e w(6) if either R = w($§)

or w = C[R] and & = C’[S]
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or R is lefteoutside of S in w

or R is left-outside of S in &.

Further, R is the LEFTMOST-OUTERMOST redex in ¢ if it is left-

outside of all the others.

0.4.23:LEMMA -~

(1) Left-outside is a total ordering on the set of redexes in
€. In particular, if e has any redexes at all, then it has a unique :

leftmost-outermost one. ' ¥

(ii) Let R be left-outside of S in ¢ and e —~§~a §. Then, R

has precisely one residual, R%, in §. Further, if S is 1eft—outside§f

{

of T in ¢, then R” is left-outside of any residuals of T in §. Also;

if T” is a new redex in § (i.e. with no ancestor in ¢), then R~ is >

left-outside of T” in ¢.
Proof:-

-By simple structural inductions on e, , : §

0.4.24:DEF: - H

R R R R, R, R P

2. 3. i i+l n ;

Let so'—_*'bel Lo 82 P a e e e ,ei 4".-...-""""“)81,102‘i

Then, this reduction sequence is STANDARD if R is not the

i+l :
residual of a redex that is left-outside of R, in e;_,, for all i = f
1,2,3,++....,n-1. The sequence is NORMAL if Ri is the leftmost-~ “
outermost redex in €417 for all i = 1,2,3,.000..,0,

0.4.25:LEMMA: ~

(i) Normal reductions are standard.
(1i) Take a standard reduction sequence with notation as above.

Let S, be a redex that is left-outside of Ry in e, 44 for some i

) i

e]{l,......,n-l}. Then, Si-l has precisely one residual, Sj' in €5

and it is left-outside of Rj+l' for alll j e {i,......,n-1}.

Finally, 8.1 has a unique residual, Sn’ in €ne

Proof:-
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(i) =Clear.

(ii) -By 0.4.23(ii), S has a unique residual, Si' in € *

i-1
-Suppose Ri+l is a residual of a redex, T, in €5-1°" Then, Ri is

left-outside of T, by the definition of standard and by 0.4.23(i).

141 10 &y

-Otherwise, Ri+l is a new redex in €5 and, so, again by O.4.23(ii),?

But then, by 0.4.23(ii), Si is left-outside of R

S, is left-outside of R

i i+1*®
~-We repeat this argument at each reduction step to complete the

lemma.

0.4,.26:REMARK: -

Thus, if ever we miss out a redex on the left-outside dﬁring
a standard reduction, it remains left out! We see that standard
reductions take their redexes in an "outside-in" order. In this,
they can be compared with the "call-by-name" mechanism for passing ;
parameters to procedures apd, so, have the same sort of inefficienc
~ the measure being the length of the reduction sequences. The
reduction rules we shall be introducing in chapters 5 and 6 work in
an "inside-out" manner. Their 'normal' form (i.e. not allowed to |
‘miss out any redexes) is analogous to the "call-by-value" mechanismi
and, so, they should be more efficient, |
0.4.27: THEOREM: -~ . (Standardisation)

Let ¢ —~ﬁ—> 6. Then, there is a standard reduction sequence

from € to §.
Proof:~

-See Curry [13],

*

'0.4.28:COR:~ (Normalisation)

~ Let ¢ —B—> 8§ ¢ NF. Then, there is a normal reduction sequeﬁcei

from € to §.
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Proof:-
-By 0.4.27, there is a standard reduction sequence from e to 4.
-If the redex contracted each time were not innermost-outermost,
there would be a redex left in §, by 0.4.25(ii).
-But, this is not possible since § is in normal form - x.<*)

-Hence, the standard reduction sequence must be normal.

+

0.4.29:COR:~
The predicate PHsH S (there ex1sts § € NF) (e :—£~> 8), is :
N RS N S AR
semi—de01dable.
he A RE g P‘I“O‘é)fé"— G W o8 B TG R T TATE A 00 e A A € IR N ey : Boat R N A e e et

~Do a normal reduction from e.
-1f Plel is true, this will terminate after a finite number of

reductions,

0.4.30:REMARK : -

In fact, the predicate PIell - "¢ has a normal form" - iswnot
decidable -~ see Barendregt [14]. In computing terms, this ean be
thought of as the "halting problem" - although there are dangers.
We might be tempted to consider all non-terminating programs as
equivalent rubbish! While it makes‘sense to lump expressione like

AA or AAA together as "useless", Y, which does not have normal form£

certainly has its uses. However, it would make sense to equivalencel

all the Yi's. For these reasons, the concept of "head normal form"

was introduced by Wadsworth - [15] - and, equivalently but independi

ently, "solvability" by Barendregt - [161.

T o Y A o G W A g S s U T T T O I S S S S OD W s W T G Gl S S I S S S e 4o A U

(*) We use the sign X to indicate a contradiction.



23

0.5:Head Normal Form and Solvability:-—

0.5.0:DEF:~

.We define the set of A-expressions in "head normal form", HNF,

by the context-free grammar :-
HEAD ::= I | (HEAD) (EXP)

HNF ::= HEAD | AI.HNF

We also define the set of A-expressions "not in head normal

form", NOH, by the context-free grammar :-

NOH ::

i

OoSol:IJEIVI.MA:_

(i) NF < HNF,

(ii) HEAD'n_AI.EXP = ¢.
(iii) HEAD n NOH = (.
(iv) HNF n NOH = ¢.

(v) HNF u NOH = EXP,

Proof:-

(AI.EXP) (EXP) | (NOH) (EXP)

| A1.NOH

(1) -From the characterisation of 0.4;3, this is clear since the

generating grammar is a restriction of that for HNF. Formally :-

~-Let Aull 2 (v e HEAD). Clearly, Alx]l and (¥u

Allu(v)D). so, by structural induction, (¥u e HD)Alul.

-

-Now, let BIull = (u € HNF). We have, (¥u ¢ HD) BIull. Clearly,

(Yu € NF) (BOpl => BOAx.pD). ., (¥u e NF)BIul - i.e. NF c HNF,

m

(1i) -Let A@ul = (u { A1.ExP).

-Clearly, Alx] and (¥u e HEAD) (Alpl => Allu(e)D).

~-., by structural induction, (¥u € HEAD)Allul.

(iii) -Let Alul = (u;f NOH) .

~Clearly, Alxl.

-Claim: (¥u € HEAD) (Alull = Allu(e)ll) :-

»

-If u(e) € NOH, then either v e NOH - ¥ to Alul

€ HD) (Allul]l =

- Oor U ¢ AI.EXP
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- X to part (ii).
-Hence, by structural induction, (¥Yu € HEAD) AQull.
(iv) -Let Afu] = (u {Non).
-Then, (¥u ¢ HEAD)A[Mull, by part (iii).
-Clearly, (¥u e HNF) (Alul = ADx.uD).
-Hence, by structural induction, | (¥u € HNF)ATuI.
(v) =Let Aflull = (u € EXP).
-Clearly, AIxD and (¥u € HEAD) (Alull = Alu(e) D).
- ., by induction, (¥u e HEAD) AMuD. Thus, HEAD < EXP.
-Also, (¥u € HNF) (Aul = Alx.ul).
-, by induction, (¥u eHNF)AMuIl. Thus, HNF < EXP.
-Next, we have Al(Ax.c¢) (8) 1.
-And, (Y e NOH) (Aull => AMu(e) D . ADx.ul).
- .. by induction, (¥u eNOH)AMul. Thus, NOH < EXP.
-, HNF u NOH < EXP, |
-Conversely, let Bllell = (¢ e HNF u NOH).
-Then, Bk, since x €I < HEAD c HNF < HNF u NOH.
-Clearly, Blel = BDhx.cI.
-Claim: BleD.BISDN = Ble(s) 1 :=-

-If ¢ ¢ NOH, then €(8§) ¢ NOH, and so we h‘ave the clain.

-Otherwise, ¢ eHNF, by Ble]. Either ¢ € AI.HNF, in which case

m

e(8) eNOH and we have the claim, or ¢ € HEAD, in which case ¢(§)
HEAD < HNF and we have the claim. (In fact, we do not need Bls IL.)
-., by induction, (¥e eEXP) Ble]. Thus, EXP < HNF U NOH,

" HNF UNOH = EXP'
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0.5.2:LEMMA: -

(i)  (u € HEAD) .(u —2>> u”) = ([x/yJu, u” ¢ HEAD).
(11) (u €HNF ) .(y —2> w9 = (Ix/y Ju,u” < HNF ).
(1ii) (@ €NOH ) .(u —=> u?) = ([e/yIu,u” ¢ NOH ).
Proof:~

(n ——g4> p’) = ([x/yIu,u” e HEAD).

1

(i) -Let Alul
~-Clearly, AIxI and (¥u ¢ HEAD) (Allvl = Alu(e) D).
-So, by induction, (Vﬁ € HEAD) Allull.

(ii) -For this we define a rank on HNF :-

p,u € HEAD 0]
rank ( ) 3= .
AX.u,n € HNF 1 + rank(u)

~Let P(i) = (u € HNF).(rank(u) = i) .(p —2=> p*) =

| ([x/ylu,n” € HNF).(rank([x/yJu),rank(u”) = i).
-We have P(0), by part (i).
~Claim: P(i) = P(i+l), ¥i 2 0 :-

-Let yu ”“ﬁﬂ> u”, where u ¢ HNF and rank(n) i+l.

~Then, p = AX.v, where v € HNF and rank(v) i.

-Either p” = Ax.v” and v ——> v~*, in which case v’ ¢ HNF with
rank i, by P(i), and so u” e HNF with rank i+l.

-0r u’ = Ay.[y/x]v; where y is not free in v, in which case
[y/x]lv e HNF with rank i, by P(i), and SO p” ¢ HNF with rank i+l.

-Also, ta/b]u = [a/bl(Ax.v)

N Ac.[a/b][c/x]v, by 0.3.13(ix), where ¢ =

a,b and is not free in v. |

. ¢ HNF with rank i+l, using P(1i) twice.

-Hence, [a/blu e HNF with rank i+l, by the first half of this
‘glaim, proved above. ’ |

’ -;, by ordinary induction, (¥i 2 0)P(i).

(iii) -For this we define a rank on NOH :-
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T(ax.e) (8), ¢ f NOH 0
rank{u(e), u € NOH t=4¢1 + rank(u)?.
AxX.u, u € NCH 1 + rank(u)

~Let Q(i) = (u € NOH).(rank(uw) = i) .(n —2> u°) =
(Le/yJu,u” € NOH) . (rank ([x/y Ju) ,rank (n”) = 1).

-Claim: Q(O’ 3=

~Let (Mx.e€) (8) —2> u”, where e {NOH.

~Then, € € HNF,'by 0.5.1(iv), and so Ax.e ¢ HNF.

-But, B’ = (Ax”".€”)(8”), where AxX.e —=> ix~.¢” and § —=> §°
and, so, ﬁ’ € NOH., Further, Ax“.e” ¢ HNF, by part (ii), and, so,
e’ % NOH and rank(u”) = O.

-Now, clearly, [&/yI1(Ax.c¢€) (§) e NOH.

-But, [a/yIl(Ax.¢e) € HNF, by Part (ii), and, so,
rank (la/yJ1(Ax.€) (6)) = O,
~Claim: Q@(i) = Q(i+l), ¥i 2 0 :- |

-Let u ~—g%> u”, where u € NOH and rank(u) = i+l.

~If u = v(8), where v € NOH and rank(v) = i, then pu* = vf(&‘),k
where v ——3%> v:, 6 -ﬁ$> §“., By @(i), v~ € NOH with rank i and, so,
p” € NOH with rank i+l. Also, [e/yIu = ([e/yIv) ([e/y18) e NOH, by
Q(i), and, if € = a ¢ I, then it has rank i+l, by @(i) again.

~If p = Ax.v, where v ¢ NOH and rank(v) = i, then either u* =
Ax.v? and v —~ﬁ€> v’, in which case v* ¢ NOH with rank i, by @(1i),

and so u” € NOH with rank 1+1 $ or u* = Ay.ly/x]v, in which case

[y/xlv e NOH with rank i, by @(i), and so u” e NOH with rank i+l.

Also, ~[e/yl(Ax.v) —>> Az.[e/y1lz/xlv, by 0.3.13(ix), e NOH, using
Q(i) twice, and, if € = a ¢ I, then we also get rank i+l, ;, done.

&

-.., by ordinary induction, (¥i 2 O)Q(i).

*

0.5.3:REMARK:~

‘The above lemma is one of those "obvious" results about the
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A-calculus that seems to want an awful lot of proving! We had to
use an induction on rank in patts (ii) and (iii) since the straight-
foreward structural induction fails. Later (see section 4.1), we
introduce a technique that enables us to use structural inductions
in cases like these. In principle, we could replace all our struct-
ural inductions with various forms of rank indudtions, but we prefer
to use the former because they seem more natural and are more
compact. To compare the techniques, look at the proofs of :-
(u e NOH) => ([e/x]Ju e NOH),

in 0.5.2(iii) and 5.0.3.
0.5.4:LEMMA:~ |

(0 e HNF) . (u —£20> ) = (5 < HNF).

Proof:=—-

(u——-—w—%ﬁ) => (§ e HEAD).
~Clearly, AlxI.

-Let Alul

~Claim: AHuB => Allu(e)ll, Yu € HEAD :-
-By 0.5.1(ii), u(e) is not a g-redex.
~Let n(e) —=2> s,
-Either § = u”(e) and u _;iE;; u” or § = u(e”) and ¢ ——lﬁ%> £’
-So, by Allull, we must have § ¢ HEAD.

—— by induction, we have (¥u € HEAD)Aul.

-Let A’[ul = (u —-l—§> 6) => (8 e HNF).

-We have, (¥p € HEAD)A“[ull, since HEAD < HNF,

-Claims: 4-°[ull = A-MAx.ull, ¥Yu € HNF :-
-If Ax.u -l§€> 6§, then ¢ —~5€> AX.p” and ——i§€> TR
~-But, by A“[lull, u* € HNF and, s0, AxX.u” ¢ HNF.

~ -S0, by 0.5.2(i1), § ¢ ENF,

., by‘induction,'we have (¥u € HNF)4-Tul.

-Hence, (u € HNF). (¢ ~—Eﬁ> 8) => (§. ¢ HNF).

~Let BIuD = (u —13 §) = (5 ¢ HEAD),
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-Clearly, fﬂkﬂ and, similarly to above,since u(¢) cannot be an n-
redex, Blul = Blu(e) I, ¥y ¢ HEAD. |
—l, by induction, (¥u e HEAD) Blul,
—Let B-Mull = (p —=0> §) = (& e HNF).
~-As before, we have, (¥u € HEAD) B-[Iul.
~Claim: B“0ull = B"Mx.ul, ¥Yu € HNF :-
~Let Ax.l f—lﬂ%> §. If § —> Ax.p” and u -lﬂ%> u”, then
§ €HNF, by B-Oul, as before. |
-Otherwise, 6§ = p”, where p = u”x and x is not free in p~”. In
this case; AX.,u € HNF = Ax.u”x € HNF => u“x ¢ HNF => u“x ¢ HEAD
=> u” € HEAD = y” € HNF => § ¢ HNF,
-., by induction, (¥u € HNF)B-[Oul.
~-Hence, (n € HNF).(u —-ﬂ€> §) => (8§ € HNF),
-And so, (u. € HNF) .(u ~—§Lﬂ€>6) => (§ ¢ HNF).

+

0,5.5:DEP: - (Wadsworth)

SOL := {e¢ € EXP|(there exists e’ e HNF) (e —E01> %)},
INSOL := EXP\SOL.

0.5.6:EXAMPLES : =

(1) Any expression with a normal form is in SOL.
(11) Recall A := Ax.xx and let T := Ax.xxx. Then, AA, AAA and
TT € INSOL, |
(1ii) (Vi 2 0) (¥, € SOL).
Proof:-
(1) -Clear, by 0.5.1(i).

(ii) —WriteVen for e€ecec.ve..e (n times).

'»fThen,.{e’|A2 ~—EL3%> e’} = {42} < NoH.
" -and, {e”|ad B0y 43 = (a3} < nom.

~and, {e”|1%2 By e-} = (1®|n > 2} ¢ NoOH.

(1ii) -Let P(i) = (¥, ~—Ef>-kf.f(v), for some vké EXP).
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-Clearly, P(0), since YO ~—E€> Af.£(22), by 0.4.8.

.

-Suppose P(i), for some i 2 O, | » L
_ ’ : ¥
~Then, Y, ., = ¥,6 —E> O£.£(v)) (6) —E> G(v) —E> e £(vh). i

-., by induction, (¥i = 0)P(i).

e e

-But, Af.f£(v) € HNF and, so, (Vi z 0)(Y; e SOL). ,

0.5.7:REMARK: -~

© "The spikey lineé represent f-n—-reduction paths from the exp-

reséiqns'e, -and v to €7, §° and v”*, respectively. Since ¢ ¢ HNF,
its path‘ﬁust always remain inside HNF, by 0.5.4. Since v € INSOL,
its path, by’definition, must always remain inside NOH and, fairly
obviously, inside INSOL. Similarly, we note that we cannot have a

8,n

path from some ¢ € SOL to ¢” ¢ INSOL, since ¢ o°* e HNF

and so, by the Church-Rosser theorem for -§Lﬁs§, o ——Eiﬂ€> c”°”,

where 07 —21%> 67~ yhich, by 0.5.4, is in HNF - ¥ to o~ < INSOL.

Finally, if & € SOL. n NOH, then there is a path that eventually
crosses over to HNF. | |

Next, we will show that we need only consider B~redu¢tion

. sequences to determine elements of SOL. Again, this seems an

-

obvious sort of result, particularly as it is quite easy to

ln;>_v, e HNF, then v w~;§€> v*

show that, if v ¢ NOH and. v

ménd that by'means of a head redex (see 0.5.10). However, it is

not clear how to proceed in view of the problems deséribed.in the

proof pf 0.4.16(iii). The folldwing proof is an adaption of the
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Curry/Hindley/Seldin proof of 0.4.20; it is, however, simvler
since the inductions can be performéd "serially" rather than
"nested". |

? 0.5.8:LEMMA: - ‘

(1) (e —1 § ¢ HEAD) = (e —2-> c* ¢ HNF)

(11) (e —2> 8§ ¢ HNF) => (e —E-> e% « HNTF).

Proof:-.

(1) -By induction on the (general) rank of e, as defined in 0.4.18.

-Let A(n) = (¢ —1> § ¢ HEAD) (rankfell < n)

=> (¢ B > &% & HNF).k
~-Clearly, 4(0), since rankflel = O => e ¢ I c HNF.
~Claim: A(n-1) => A(n), for any n > O :~

~-Suppose 4(n-1). '

-Let ¢ —> § ¢ HEAD.and rankfel] = n.

-If € ¢ HNF, then trivial; so, suppose & ¢ NOH.

-Case 1: ¢ = Ax,e” and e&” ¢ NOH :~-

-Now,

(Ax.e”) (%) ——TeP sx

& D% v, by 0.4.16(v).

v -Since § ¢ HEAD, we must have vy = §"x ¢ HEAD and
§ —Eany 5,

-But, rankle”l = n~1 and so &~

B

= £ 7% ¢ HNF,

T

by 4(n-1).
. ~Hence, € = Ax.e” —E maxen = e® ¢ HNF.
-Case/Z: g = (kx.v)ylﬁz......ﬁs, where s 2 l‘:w.
| | -We must have 5 = wﬂiﬁé......ﬁ;, where Ax,v m«ﬂf§ T
- and pi‘———ﬂ> ﬁi, for 1 < i < s. |
-Further, since § ¢ HEAD, 50 is‘w « HEAD,

~As in case 1, we deduce that v ~#ﬂw§~w’x, where
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T —Ben T
-3ince Ax.v -§Lﬂ%} ™", x does not occur free in 7”7,
~Hence, 7°x has only one free occurrence of x.
-:, v has only one freevoccurrence of %, since
n~reductions cannot cancel free x's,
~Let ¢~ = ([ul/x]v)uz......us - 1l.e. ¢ -—l§%> €7
~Then, rankle“l < n, by 0.4.19(iii). 4

~-Now,

€

-,

€

LB:”

§*, by Q.4.16(v).

—
—_—T
~-Purther, 8§° ¢ HEAD, by the proof of 0.5.4.

~.s by 4(n-1), e~ ———B-} ge* ¢ HNF. .
B

- ~Thus, ¢ > e* ¢ HNF,

~Since these are the only cases for e, we have 4(n).
~., by induction, (¥n 2 0)4(n).
(ii) =-By induction on the (restricted to HNF) rank of §, as
defined in the proof of 0.5.2(ii). To avoid confusion with
part (i) above, we shall rename this as the "arity" of §.

~-We use the following obvious properties Which can be proved

with a straightforward structural induction on HNF :~

it

(¢ € m9F) (¢ —E£> ¢7) = (arityle-0 = aritylel)

1W§§ £*) => (arityle~T aritYUeU).

in

(e € HNF)A(E
-Let P(n) = (¢ —I1 ¢ ¢ HNF), (arityNsl < n)
. = (¢ —E> ¢* ¢ HNF).
-By part (i), we have FP(@). |
~Claim: P(n-1) = P(n), for any n > O :=
| ~Suppose P(n-1).
-Let € +ﬁ1£§%6 e HNF and arityllsll = n..

~Then, § = Xa.§” and 8§~ € HNF,
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~1f ¢ ¢ ﬁNF, then trivial; so, suppoéé ¢ ¢ NOH.

~-If ¢ = (Ax.v)uluz.....;us, where s > 1, as in case 2 of
part (i) above, then § = mufuj......u = X to & = ra.s5”.
-', &= Ax.c” and e” ¢ NOH.
~As in case 1 of part (i) above,,we have ¢~ —1% y and
‘(Aa;a’)x -§Lﬂ%> Yo | |
-Case 1l: vy = (}aia”)x-and 8§~ ~—§Lﬂ%§ §°° 1~

-Let y* = tx/a]s".

~Now, 67 € HNF = §“” ¢ HNF = y~ ¢ HNF, by 0.5.2
and 0.5.4.

~Further, aritylly”l = arityl§-~{ < arity(s~-0 = n-1.
~Case 2: (ra.$§7)x -§Lﬂ€> (Aa.8"")x ‘

18 or 1n
[x/al6”” —EL0 > y :=
-Let yv° = y. ’
-Again, y” e HNF and arityly“0 < n-1l.

-In either case, e"%éﬁlﬂ?é>y’ ¢ HNF and arityfly”ll < n-1,

“But, £ —E3 u —1> yv-, by 0.4.16 (iii).
-., by P(n-1), w ~m§€§ w* ¢ HNF.
; 8 > Ax.n ——-E—%ix.w* = g¢* ¢ HNF,

ee 2 £ = XX.E’
.

ey P(n) .

-, by induction, (¥n 2 0)P(n).
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0.5.9: THEOREM: -

SOL = {e ¢ EXP|(there exists e” ¢ HNF) (e —E—> ) }.
Proof:—v
-Let € ¢ SOL.,
-Then, € ——£L35> e” € HNF.,
-By 0.4.16(iii), ¢ —&> y _n > £* e HNF.
-., by 0.5.’8’(11)., £ —-——3-—} Y ——-—B--)'W" e HNF,
' i

0.5.10:LEMMA: -

¢

(v € NOH),(v -l§€> v?).(v” € HNF) => (the redex contracted

" in v‘ié 1eftmost—outermost).

Proof:-
~Let ADvl £ (v ——i§€> v’).(v” € HNF) => (the redex contracted in w»

is the 1eftmdét-o@termost).
~Claim: AD(Ax.€) (8)1 5=
-Le£ (Ax.€) (8) ——léé> v~ and v° € HNF. |
b'—Either v: —2> (Ax.e’) (8) - X'— or v’ = (Ax.e )(6’) X -
or v~ [G/xJe and the leftmost-outermost redex was contracted.
-Claim: AlOvl = Allv(e)l, ¥v e NOH 1=
. -Letv v(e) ——1—8—9 v’va'ndv’ € HNF.

il

~If v’ = v(e”), then v* is still in NOH - x.‘ |

-If v* = ule) aﬁd v w—lgé}Au,‘then u eFHEAD, since v~ ¢ HNF.

—Hence; byAAﬂvB, thefleftmost~outermost'rédex of v was con-
tracted. But, this ié the leftmost-outermost redex of v(e), since,
if v e AI. EXP, then so is u - X to u ekHEAD by 0.5.1(ii).

-The only other possibility is for v{e) to have ‘been a g-redex:
- which was the one contracted But, this is leftmost—outermost.
-Claim: Alvll = AlAx.v], ¥v ¢ NOH :~-

 ~Let Ax.v ~fi5€} v” and v~ € HNF.

~Thén, v~© 4~5{> Ax.u and v —~£§€> TN
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-But, Ax.p € HNF, by 0.5.2(ii), and so pu e HNF.
-Thus, by A40v]l, the redex contracted is leftmost-outermost in
v, which is leftmost-outermost in ix.v.

—;, by structural induction, (¥v ¢ NOH)A[v].

+

0.5.11:THEOREM: ~ (Wadswoxrth)

Let ¢ ¢ SOL. Then, the normal reduction sequence reaches an
expression in HNF. Further, if we denote the first expression in
HNF reached during the normal reduction sequence by ¢*, then :-

(e -—jL%> €”).(e” € HNF) => (¢e* ——Ji€> £°)

Proof:-
~Let ¢ € SOL., If € ¢ HNF, then trivial. Suppose not.
~Then, & —> ¢” ¢ HNF.

-By 0.4.27, there is a standard reduction sequence :-

1 1 o1 .
€=€0 B>€l B>o.no.i"'—'—8—_>€n=€‘

-Let p be such that Ep € NOH and ¢ ¢ HNF.

p+l
-Then, the redex contracted in ep is leftmost-outermost, by 0.5.10.
-But, if there were a redex, Ri' that was left-outside any of the
redexes contracted in 60'81""""€p—l' then it would have a
unique residual that was left-outside of the one contracted in €p
by 0.4.25(4i1) - X.

-;, the sequénce £ —~E€> Ep+l is normal.

-Writing e* for Ep+l' we see that c¥* w—§€> €%

t

0.5.12:COR: -

The predicate PIell,

i

(e € SOL), is semi-decidable.

s

Proof:-

~Same as the proof of 0.4.29.
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0.5.13:COR:~ (Wadsworth)

(1) (e € SOL) <=> (AX.e € SOL).
(ii) (e e INSOL) => ([&8/x]Je ¢ INSOL) = (.()\x. e) (§) e INSOL).
(iii) (e e INSOL) => (e(8) e INSOL).
Proof:~
(i) -By 0.5.9, trivial.
(ii) -This is the tricky part.
-Let P(i) = (e ¢ NOH);(rank(a) = i) .(R is the leftmost-outermost
redex in ¢) (e —%> ¢°) = (the residual of R in ¢~ and [8/x]c is
unique and still 1eftmost—outermost)A(rank([a/b]s) = i),
-In p(i), by "the residual of R in [§/x]e" we mean "the residual of%
R relative to (Ax.e) (8) ——§%> [§/%x]e". Also, the "rank™ is that "
defined on NOH in the proof of 0.5.2(iii). '
~We leave the induction of (¥i 2 0) P(i) as-an exercise,

-Now, let e ¢ NOH and R be its leftmost-outermost redex.

-Then, by 0.4.14, we may construct the diagram :-

R

(Ax.¢€) (6) > (Ax.¢€”) (§)
R~ N

[8/x e > [§/x1e”,

where R” is the residual of R which is unique and leftmost-outermost
by the above.

~So0, if €& e INSOL, the normal reduction sequence from ¢ -

18 e 18 18
P Pl ”

6380 1 82

is non—terminating and never reaches HNF,

LA LR I IR I B I N

-By the above argument,

[6/x 3y —=£> [6/x3e; —2E> To/x3e, —2B> L.,
" is the normal reduction sequence from [5/x le.

~But, (Vi 2 0) ([8/x]ey e NOH) , by 0.5.2(iii), since e, e NOH.

i
- ., by 0.5.11, [6/x]e e INSOL.



34

~FPinally, (Ax.e) (8) ¢ iNSOL, since it g-reduces to an element.of
INSOL, [&6/x]e, by remark 0.5.7.
(iii) -Let ¢ € INSOL. Again, consider the normal reduction sequence ]
from e, with notation as in part (ii).
~-If €4 { AI.EXP, for all i 2 0, then :-

eo () —E> o () —E> o () 2> L,
is the'non—terminating normal reduction sequence from ¢(§) and it
remains in NOH, since gy € NOH, for all i 2 O, Hence, g(s) € INSOL,?
by 0.5.11.
-On the other hand, let p be the first number such that ey € AI.EX?;
-Then, ep = Ax.0 and w € NOH;
-Now, by part (ii) above, (Ax.w) (§) e INSOL.
-But, e(§) ——E€> (Ax.w) (6§), and so, again by remark 0.5.7, we havei

~e(8§) e INSOL.

0.5.14:REMARK:~

Theorém 0.5.9 shows that we need only look at B;reductions to
decide if an expression is in SOL. Theorem 0.5.11 narrows this down
to the deterministic procedure of checking the normal order
sequence., It also says that the first HNF-form produced by this
method is “minimal“ in‘the sense that all other HNF-forms of the
expression are reducible from it.

This might suggest thét normal reductions provide an efficient
‘way to get an HNF since it reaches this "minimum" one. However, |
normal reductions are inherently inefficient and we feel that’when~
ever a normal reduction feaches an HNF, alternative paths to HNF
v’may exist that are shorter. Further, the HNF thus produced will be
"?better“ or "tell us more" than the "minimum" one found by the

normal reduction.

As we mentioned in 0.4.26, we shall later be studying
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g-reduction rules known as "inside-out” and a deterministic version

called "i'th reductions". We shall see that these also provide a

sufficient number of reductions to decide membership of SOL (6.8.2).
These reductions are much more efficient than standaﬁd ones and

may provide powerful tools for analysing reductions in general, To
indicate what we meén, we shall prove again the important patt (iii)

of the above corollary: first using inside-out reductions :=-

e” &7 ‘

—t E(8) > €7 (6 7) A P> uw, by 6.1.9(1).
-By 6.1.12, €” € NOH => w € NOH - X.

~Let €(8) e SOL. Then, e(8)

.

“wy E€~emm————>c” € HNF and,'so; e € SCL.

, and, secondly, using i'th reductions :-

-Let e(8) € SOL. bhen, i<e(6)> € HNF, for some i 2 1,
by 6.8.2(iv).

~Now, i<e(§)> = Api(i<e>,i<6>),

-By 5.0.11, i<e> € NOH = Api(i<e>,i€6>) ¢ NOH —){(’

—;, i<e> € HNF and, so, € € SOL,

To finish this section, we relate SOL, which was defined from
Wadsworth's notion of head normal form, with Barendregt's notion
of "solvable" - [171],

O0.5.15:DEF:~- (Barendregt)

Let € € EXP., Then, € is SOLVABLE if there exist 61,......,6n

€ EXP such that 66162......5n has a normal form.

O0.5.16:LEMMA:—

”

(1) (e is solvable) => (e € SOL).
(ii) (e € 80L) # (e is solvable).
Proof:-

(i) -Let ¢ € INSOL.



36

~Then, by 0.5.13(iii), for all 61,62, ...... ’%16 EXP, we still have
.66162."...61'1 € INSOL.
-In particular, 56152......6n does not have a normal form.

-;, € is not solvable.

(ii) - Consider x(AA) € HEAD. Then, x(AA) € SOL.

B - \ " :

- & - -

But' X(AA) -‘Ldzn‘otbc‘(sn __——_> X(AA) 6162.....,511 ENF. All reductlon@
are of this form and, so, x(AA) is not solvable.

+

0.5.17:DEF:=

Let © €EXP. Then, € is CLOSED if {x|x is not free in ¢} = I,

0.5.18:LEMMA:~ .
(i) (e is closed)a(E‘——§%> e”’) => (e” is closed).

(ii) (€ ¢ HEAD) => (e is not closed). |
(1ii) (¢ is closéd)n(e e SOL) => (e is solvable).
Proofs=- .
(i) -By 0.3.13(x).
(ii) -Trivial structural induction on HEAD,
(iii) —Léﬁ € be closed and in SOL.-Then,‘é —~§%> af!e HNF, where g’:
is closed, by part'(i), and so e’-{.HEAD,.by,part (ii). -

~«, €° must be of the form :-

Ax, W AX. . 3 evime
xl' xz.‘....‘.}xsy.la.lyl.I.‘....Ay.t‘awlwz.‘...‘wn.u

i

“Define: K ACJ.ACZ........XCi.b,‘Vl 2 0.

it .
- . — ) ' 8 ' .

Then' 6616200;0‘068Kn -—’—% £ 6162..".‘"68Kn

B .A - - F I -
‘*»'Ayl.)\yz."....Ayt.anlwz“..“wn

B P - - »
—_—>Ayl;>\y2.oooov.xyt.b € NFQ

-

ey € isg solvéble,

- 0.5.19:COR: -

(¥ closed £) (¢ is solvable <= ¢ ¢ soL).

Proofs-
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-By 0.5.16(i) and 0.5.18(iii).

0.6:Lattice Theory:-—

0.6.0:REMARK: -

The techniques of usinQ lattice theory to build models of
computing phenomena;fin particular the’lfcalculus, wefe realised
by Scott. For a detailed descrlptlon, 1nclud1ng motivatlon, we’qq“
refer to hlS papers - [18] - and to those of Reynolds - [19] -‘
and Wadsworth - [20] . We confine ourselves here ‘Yo 'a formal e

presentation of the ideas involved and brief motivation.

0.6.1:DEF:~

A relation, E, on a set, 5, is a PARTIAL ORDERING if it is :-

(1) REFLEXIVE : (¥a € S)(a = a)
- {i1) TRANSITIVE : (Ya,b,c € S)((a € b).(b = ¢c) => (a = ¢)) and

(1ii) ANTI-SYMMETRIC: (Va,b ¢ S)((a = b).(b = a) = (a = b))«

Let X be a subset of S. Then, the LEAST UPPER BOUND of X, LIX,
is an element of 8§ such that :- |
(iv) (¥x ¢ X) (x = UUX) and

V) ¥y €S)((¥x e X (x = y) = (UX <= y)).

» The GREATEST LOWER BOUND of X, [1X, is an element of S such
- that :- . o | | ‘ : » .
(vi) (¥x ¢ X)(IX = x) and
(vii)« (Wy € S) ((Wx € X)(y £ x) = (y =[IX)). |
If X is a two element set, {x,y}, we write x Yy forLJX and
X M y for HX. | ,
<S,5> is a LATTICE if, for all finite subséts, both_the least
upper bound and the greatest lower bound exist. It is a COMPLETE

lattice if the least upper bound exists for all subsets.
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0.6,2:LEMMA: -

(i) Let <8,=> be a set with a partial orderlng. Let X be a
subset of X. Then, if eitherlJX or[ﬂx exist, they are unique,
: (ii) A finite lattice is complete.
(iii) In a complete lattice, greatest lower bounds of arbitrary
subsets also exist. |
(iv) In a complete lattlce there exist unique top and bottom
elempnts, T and L, such that (Vx e 8Y(L Ex 5 T). |
Proof:=—
(i) fLetLJX exist and let 1 be another least upper bound.
~By O.‘6.1(v)‘, we havellX = 1 and 1 &LIx.
—L, by anti-symmetry, 0.6.1(iii), 1 =Lx.
-Similarly, for[lX.
(ii) -Clear.
(iii) ~Let'x c 8, a complete lattice.
&Thén,LJ{yl(Vx € X) (y & x)} exists. But, this is[]X.

(iv) -Let T =8 and 1 =Lll¢g.

0.6.3:MOTIVATION:~

Within most "data-types" found in computing, there is a notion
of "approximation" given by the "information content" of its
‘elements., This corresponds precisely with that of a partial order-
ing. On simple typés (e.g.‘natﬁral numbers, truth values), this
brdering is trivial (i.e. x £ x only), but on the more complex ones
(e.g.‘real numbers, character strings, sets, functions) the struct-
ure is correspondingly r;yher - see Reynolds [21],

The notion of taking least upper bounds is the "pooling" or
"anding™ of the information available and, so, we have complete
lat#ices for our data~types to ensure we can always do this. Of

course, this process might lead to inconsistencies and this is what

%

B e R R S
. B ] Y B .

3

g
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the top element, 7, represents. The bottom element, ,, represents
what we usually have when we start a computation - i.e. no idea
about the final outcomel

0.6.4:DEF:~

Let <S,5> and <S°,5°> be sets with partial orderings. Then, a
function, f:S + S°, is MONOTONIC if (¥x,y eS)((x = y) = (f(x) =~
£(y))).

Let X ¢ 8. Then, X is DIRECTED subset if (¥x,y gX)(there
exists z eX)(x,y = 2).

Let <S,=> and <S“,g> be complete lattices. Then, a function,

f:8 » S~, is CONTINUOUS if, for all directed subsets X of § :~-

FUX) =UEX) = LHE) |x e X},

Further, f is COMPLETELY ADDITIVE if the above equation holds

 for any subset X,

0.6.5:LEMMA s~

(i) Completely additive =»> continuous =»> monotonic,
(ii) If 8 is finite, then continuous <=> monotonic.,
(iii) Let <S,=> be a complete lattice and f:S -+ S be monotonic.
Then, f has a minimal fixed point, uf e.S -i.e. =
(£(uf) = pf)
and (Vs e S) ((f(s8) = 8) = (uf & s)).
(iv) If f is continuous in part (iii),Athen ﬁf is given, con-
structively, by :- ‘
uf = Lieb (0 |1 = o1
* Proof:-
(i) -Trivial, )
(ii) -Clearly, if X is directed and finite, then X ¢ X.
~Hence, the result,
(111) -uf is given by [ls e S|f(s) =s)}, (This is the Tarski fixed-

point theorem.)
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(iv) =-Trivial,

0.6.6:MOTIVATION :~

Programs define computable functions between data-types. If é
we give more information about the data to the program, it is |
sensible to expect more information about the answer - or, at 1east,:
not less or inconsistent information. Hence, we expect computable |
functions to be monotonic.

The simplest example of a directed set is a chain,

'{xi[xi £ Xg,q0 Vi > O}.
We will often have an "infinite“ object represented by a chain Qf
"finite" "approximations" which grédually "tend" to'the object.
This is because a computer can only hold a finite amount of inf-
ormation at a time., For instance, we could represent the real
number 1 by giving a (directed) sequence of its decimal expansions,
{3,3.1,3.14,3.142,......},
where we read "3.14" as "somewhere between 3.135 and 3.145". Note
that the boundaries are exactly and finitely specified.'We Will
make precise this notion of "finite approximation" presently,
Now, the sensible way for a computer to eValuaté a function on
an infinite object,[J{xili 2 0}, is to evaluate it on the finite

approximations, x ’ and hope that this leads to the correct answer

i
- i.e. that :-
Elxl12 o) =Uiex)|12 0}

This hope is not forlorn if f is continuous and, so, continuity is
another property we exggct computable functions to have. The fact
that they then have minimai fixed innts‘enables us to characterise
programming phenomena like looping and recursion. We shall not be
concerned with this in this thesis, but there is a connection with

the fixed-point combinators, Y -VSee section 7.1.

i
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We do not expect computable functions to be completely
additive,

0.6.7:DEF:- {Scott)

Let <«S,=> be a complete lattice. Then, we define the set of
subsets, OP, of S by X ¢ OP if t—
(1) (x eX).(x g2y) = (y €¢X)
and (ii) (D is directed) (D ¢ X) => (D nX = @).

0.6.8:REMARK: -

- We do, not propose to dlSCUSS topology in thlS the51s. However, ;

O-topology under

which the topological notion of contlnulty does correspond with

that defined in 0.6.4. For the development of the theory of partial ©
orderings, complete and continuous (see below) lattices from the

point of view of T.-topological spaces, we refer to Scott - [22].

0
We only defined the class OP so as to introduce the following

concepts,

0.6.9:DEF;:~ (Scott)

Let <S,e> be a complete lattice. Then, we define the TOPOLOG—A g,

ICAL ORDERING, <, as follows 3=

(x < V) if‘(there exists X € OP) (X ¢ {z]|x = z}%$y~€ X). :
Then, x is ISOLATED if x < xX. Finally, the lattice is CONTINU~§“
ous if, ;
(¥y < 8) (v = Lix|x < ¥y} - R §
0.6.10:MOTIVATION : - |

“In our data~types, we have many -infinite objects. In order to

 be able to compute over ;hem, as described in 0.6.6, we have to be

-able to represent them by a sequence of finite objects. The relation

g can be read as "is a finite approximation of" - for instance,
with sets, X <Y iff X is a finite subset of Y; whlle, w1th partial

functions, £ «(g iff g is defined and agrees with f whenever £ is
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defined and the domain of f is finite. Hence, we expect our data-

types to be continuous,

0.6.,11:LEMMA:- {(Scott)

Let <S,e> be a complete lattice. Then,
(1) 1 < x,
(ii) x <y = X =¥,
(iii) x <<y E 2 == x < 2,
(iv) X 8§ Y 2 => X2,
(v) x <2 and y< 2 => X 4, Y=< 2Z,
(vi) x is isolated <=> {z|x € z} ¢ OP,
(vii) if D is directed, then x <UD <=> x < d, for some d e D.
Further, if S is continuous, then,
(viii) X k y = X< 2 <Yy, for some z €8S,
(ix) (X 2 y) <= (2 <X => 2z <Y), |
(x) (x <y) <= ((D is directed), (y £UD) = (x = d),(da «¢D)),
(xi) the function, £ : S — S
Yb—> x4V, is continuous.,
Also, parts (viii) and (ix) together imply S is continuous.
Proof:-

~See Scott [23].

0.6.12:DEF:—

Let <S,=> be a set with a partial ordering, Then, it has the.

ASCENDING CHAIN CONDITION, ACC, if for all ascending chains,

o 50581552ESB...-...........,

there is a finite number, n = 0, such that Sy = S, for all 1 2 n,

&«

- 0.6,13:THEOREM:~-

- Let <S,=> be a countable lattice with the ACC. Then, it is
- complete and, if D is a direcﬁed subset, thenlID ¢ D. Thus, S is

continuous with all its elements isolated. Further, if <S-,=°> is
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a complete lattice and £ : § + S° is monotonic, then f is also .
continuous. |
Pioof:-
-Let D = {dgsdyseeenen} g S
-Define: vy &= do and ”i+1'5= My U di+l'
-Then,§uo £ uy = ou, s..;..., clearly.
-By the ACC, there are only finitely many different “i's‘

-Let v be the largest one.,

~Clearly, . (Vi 2 0)(di € u, 7).

m
Q
—
.

-Suppose, (vi é O)(di

-

.-Then, by a trivial induction, (Wi » d)fﬁ{ £ g) =~ i.e. 1 € g

R =lJD and, s0, S is complete.

.

-Now, suppose D is directed.

-But, 7 = Hy o fér some k > 0. : o &

=d.o],_,‘ dlu...-..udk.

-Since D is directed, there exists nx0 such that ¢ & dn‘

~Thus, part (ii) of definition 0.6.7 is always true..
-i.e. (¥s ¢ S)({z]|s = z} ¢ OP).
-i.e. (¥s ¢ S)(s is isolated), by 0.6.11(vi).

-i.e. (¥s ¢ 8)(s =U{x|x=< s}), since s < s,

‘—-i.e. S is continuous.

-Further, if £ : 8 + S8/ is monotonic and D is directed in S, then

£(UD) = UE£(D).
-But, £UD) = £(d) ¢ £(D). A
-., £UD) = LU£(D) - and, so, f(uD)'=lJf(D) - i.e. f is continuous.,

0,6.14:REMARK:~

The ACC allows lattices to have "downwards pointing limit

points" but not "upwards pointihg" ones., They"can'be;}however,~_
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infinitely "broad". The lattices we construct in chapter 1 have
the stronger property of "finite depth" (see below), in which
"d.p.l.p.'s" are not allowed either,

0.6.15:DEF:~

Let <S,=> be a set with a partial ordering. Then, it has

FINITE DEPTH if there exists a positive integer n such that :-

= = P ! = . .
Sg £ 83 Seeesee® 85, = 5y sj, for some O £ 1 <« j < n

In particular, it has a FINITE DEPTH OF n if n is the least

such number,

0.6.16:LEMMA:~

Finite => finite depth => ACC,
Proof:-

-Trivial,

0.6.17:DEF:~

Let A be a set and <L,s>, <M,=“> be lattices. Then,
(i) L + M is the disjoint union of L and M, identifying the r.'s
and L's. We induce an ordering, £°“, on it as suggested by the

picture :-

1

(i) L x M is the cartesian product of L and M. Then, we define
(a,b) =°* (c,d) iff asec and b =~ 4,

(iii) (A » M) is the set of functions from A to M. We define

£ e-- g iff f(a) =~ gla), for all a e A,

‘(iv)"gg:f M} is the set of monotonic functions from L to M. Same

ordering as in part (iii);
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(v) [L + M] is the set of continuous functions from L to M. Same
ordering as in part (iii).

'0.6,18:THEQREM: =~ {Scott)

(i) All the above orderings are partial orderings that make

L+M,LxM, (A->M, and {L + M} into lattices.
(ii) If L and M are complete, then so are L + M, L x M, ?
(A > M), {L » M} and [L » M7, (") b
(iii) If L and M aré continuous, then so are I x M and [L =+ MJ.?
(Further, if r is isolated in both L and M, then L + M is continuous é

and T is isolated in L + M and_L x M,

-~

(iv) Let S be another complete lattice. Then ‘3= "

(f e L xM >8] <= (V1 ¢ LY (£, e [M » 8]1) . (Vm ¢ M)(gm-e (L »81),

where, ) E
£ : M —>S  and £, 1 L—>s8 g

o om—> 1, 1 —> £(1,m) |

Proofi- \ %%

-See Scott [241],

0.6.19:DEF;=

Let <L,=> and <M,=-“> be complete lattices. Then,‘L is a

RETRACTION of M if there exist maps £ ¢ [L + Ml and g e M » L]

‘such that gef = id;, where 1d; is the identity map in U gﬁ

Further, L is a PROJECTION of M if we also have feog = id, < [M » M1,

In this case, we write :=

. £ : V
L 4 M, | N
g U ‘ ’ : C

4

. although we usually omit the maps, f and g, when it is clear what

Py
y

they are. Note that f and g are not neccessarily unique. We call

- £ the inclusion~mapping and g the projection mapping.

O - T T T W - S " o S R . W i A A W Y. S S e SO G e G W WD SN M s W SO N S S W W A S W S W W G - -

(*) Also, the ACC and finite depth are preserved by + and x.

I3
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0.6.20: THEOREM: -

Let L and M be complete continuous lattices. Then, L <{L + M,
L 4L xMand L  [L » L].

Proof:-
-First two parts, obvious,

-pefine: f : L ——> [L » L], where fl : L —> L.,

1 > £y X b—>1
~-pDefine: g : [L - L] ——> L .
h —> h(1)

£ .
-Then, L < (1L -+ 1Ll.
g .
~N.B: there exist other suitable pairs, <f,g> - see Scott [54],

0.6.21:DEF:~

Let <(Li'¢i,i+l'¢i+l,i)>izo be a sequence of complete lattices é
such that,
Ly < Ly

by ¢35 341 €Dy > Byppd and ¢y 4 e [Dyy - 1y,

Then, the INVERSE LIMIT, L , is defined by :-

L := {<lo'll'12'0.lt.ooo.o.o>'li' € Li and li = ¢i+l’i(li+l)}.

[ ]

We define an ordering on L_ by :-

<1 € <12>% if (Vi =2 0) (1, = 13

1”1=0 i”i=0 -
We define ¢, j‘e [Li -+ Lj] by composition of the maps we
’ . N
-already have, with o5 4 being the identity. Further,
’ .
: L, ——> L
4)1’” i ‘ ©
1y > <4y 5230254
and,

u ¢, (L),
i=0 Lpe it

Finally, the DIRECT LIMIT is’
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" 0.6.22: THEOREM: - (Scott) -

(i) In the above definition, L” is a complete lattice where,

if s is any subset of L , then :-
Lls = <§;g¢j,i(LH¢»,j(s)ls € SH>; e

and wheref{¢j 4 Wte, j(s)[s € S})[J = O} is a directed chain in L.
4 4 :

In particular, if D is a directed subset of L , then :-

Lio = <lte, ;(@1]d € D¥>7 40

(ii) The maps ¢, ., ¢ and ¢ are continuous.,
i,] w,i

i,e
(iii) For all i < j, Li<] Lj and Li<] L«

(iv) For all 1 ¢ L , 1 = L*J¢i Wb, 4 (1), the limit of a
i=o0 tre T

directed chain,

(v) Let S be a complete lattice. Then,

(f eI > L1) <= (vi20)(¢, jof e[S 1L;1).
(vi) If L, is continuous, for all i 2 O, then so is L .

Proofs~ | |
(1), (ii), (1ii) and (iv) =-Trivial,
(v) (=>) -Trivial, since composition preserves continuity.
(<=) -Now, |

o
£ls) = L;4¢i,w°¢“'i°f(s)' by part (iv) abovef

-Then, f is continuous, by 0.6.18(ii), since it is the limit of
continuous maps., |

I'4

(vi) -See Scott [25]+
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0.6.23:DEF:~

Let <S,e> be a complete lattice. Then, a subset, B, of S is a
SUB-BASIS of § if, for all 8 ¢S :-
s =|l{b ¢B|b = s},
Further, it is a BASIS of S if it is closed under the taking
of least upper bounds of finite subsets - i.e. if :=-

(B ¢ B)A(B’;is finite) = (UB* ¢B).

We call the lattice COUNTABLY BASED if it has a countable

basis,

0.6,24:LEMMA: -
. Let QS,§>.be a complete lattiééiﬁThéH,be R e & *““‘E:

(1) S is a basis of S,

(ii) S8 is countably based <=> § has a countable sub-basis,

(iii) S is countably based => S has cardinality at most that of the lf

continuum,

(iv) If B is a basis of S, both {b ¢ B|lb = s} and {b (B|lb < s} are

directed subsets of §,

(v) Let B ¢ S. Then, é is a continuous lattice with sub-basis B <=>
(¥s e 8)(s =Llb ¢ B|b <s}),

(vi) If <L;5’> is a complete lattice and both 8 and L are coﬁntably ;
based, then it does not necessarily follow that [S -+ Ljis countably;

based,

Proof:=- .

(i) ,(ii) and (iii) ~-Trivial.
(fv) -First part is trivial and the second is true by 0.6.11(v).

(v) (=>) ~Let S be contihuous and have a sub-basis B. ' L

Li{x|x < s}, by continuity, : ﬁ
Lilib ¢ B]b = x}|x <s} 1 o 4
=U ¢ B]b = x< s} = kb ¢ B]b < s}, by 0.6.11(iv). “

-Then, s

T

S, by O.S.ll(ii). Hence,;we have equality throughout.
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(<=) -Now, s =L kb ¢B|b < s} =] l{x[x <s} = s, by 0.6,11(ii).

-Hence, we have equality and 8 is continuous,.

G SR

-Also, s =ldb ¢ B|b < s} eldb ¢ B|b = s}, again by 0.6.11(ii).

e

e s.
-Hence, we have equality and B is a sub-basis.
(vi) -See Reynolds - [26] - for a counter—-example,
0.6.25:LEMMA:~
(i) -Let L and M.be.complete continuQus countably based lattices;,
Then, so are L x M, [L » M] and, provided the 1.'s are isolated,
A R e A e e A R R R L e R L R R R R R e | &7 R EFERPECRL T L ORI U S R R B PO «r
(ii) Let Li<d Li+l’ for all i = O, where each Li is a complete |
continuous lattice with countable basis B, such that ) (B,) £
. i i,i+1%1 -
Bi+l‘ Then, the inverse limit, L _, is countably based by, §§
i

U ¢ (B,).
i=p Te® 1

Hence, if Li is countable for all i 2 0, the direct limit forms a
countable basis for the inverse limit,
Proof:—

-See Reynolds [27], |

0.6.26:MOTIVATION -~

We expect our data~-types to be countably based since éeélements
of. a countable set.are something that can be repreéented exactly %
and finitely in a computer - e.g. by using their numerical position:
iﬁ some enumeration., Then, by 0.6.24(v), the computer can get at
any member of the data-type by a_cbntinuous approximation of these
"finite" "basic" elements, Notice that, by‘0.6.24(iii) and 0.6.25,

‘ the}cardinality of our data-types is always bounded by the continu-v

um, no matter to what heights of functionality we rise.
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We have listed the properties of lattices we shall be using in(%
this thesis. However, in section 7.5, we shall consider briefly |
semi~lattices, and so we end this section with ther. We use a more
richly structured notion of semi-lattice than that usually defined,
in that we insist on l.u.b.'s if some upper bound exists.,

0.6.27:DEF:~

Let <S,%> be a set with a partial ordering. Then, S is a SEMI-
LATTICE if, for all non-empty finite subsets, the greatesf lower
bound exists and, provided some upper bound exists, so does the
least uppei bound.

‘Further, S is DIRECTEDLY COMPLETE if the least upper bound of

I A

all directed subsets exists. In this case, we define continuous |
functions, open sets,<, isolated elements and continuity in the
same way as for complete lattices,

0.6.28:LEMMA: ~

(1) If 8 is a semi~lattice, we can extend it to a lattice by
adjoining a "top" element. . | f
(ii) If S is a directedly complete semi-lattice, then the |
greatest lower bound of all non-empty subsets exists. Furthet, the'
lattice extension, S v {r}, is complete, A
Proof:-
(i) -In s v {r}, we extend the partial ordering so that s « T, for
all s €8, |
-Let a,b evs. If a and b have a common upper bound in S, then a b 3
exists.“Otherwise, T is the only upper bound in § u {1} and, so,
awmub=T, .
-Hence, S U {T} is a lattice.
(ii)‘+Let X ¢ 8, where S is a directedly complete semi-lattice and
X is non-empty.

-Let a,b E x, for some x € X. Then, a wu b exists, since S is a
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semi—lattice, and a4 b = x.

~-Thus, the set {a|(¥x € X)(a £ x)} is directed - in fact, it is
closed under ,. (Note that if X were empty, there is’ no guarantee
that a 4 b exists.) . ' | £
-Hence, ||{a] (¥x € X) (a & x)} exists and, as in 0.6.2(iii), is[IX.
-Now, let X ¢ S u {r}. “
-If X =@ or T € X, then[]X is given by T.
~-Otherwise, X is a non-empty subset of S.

-So, by the above argument, []X exists,

-2 (¥X ¢ 8 v {1} (X exists).

=wr (VX ¢ S v {T}) (X exists and is given by]j{a](vx e X)(x £ a)}).
+ i

0.6.29:LEMMA:~" ' |

Let <S8,&> be a lattice and let S‘*g-s and be ciosed under a -

i.e. 1~
(a e 8°).(b=a) = (b ¢ S”).
" Then,

(1) s~ is a semi-lattice.

Now, suppose § is complete and S- is directedly complete. Then,
(ii) (X is open in 8) =» (X n S” is open in S§°), |
(iii) (¥x°,y” € S*) ((x* < y” in 8) => (x" < y~ in S;)).

Further, if S is continuous, then,
(iv) 8” is continuous,
(v) (X“is open in S8°) <=> (there exists X open in 8) (X* = X g S'),f
(vi) (Wx”,y” ¢ S*)((x" < vy~ in 8) <w>(x'-<’y'}in S°)) |

Proofi= _
(1) -We assume that S-* = é - otherwise all parts are trivial.
~Then, 1 ¢ §7.
~-Let X be a finite subset of S-.

-If X has an upper bound, z say, then LIX in S is such that UX € Z.
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Thus, LUX € s-.
-Now, suppose X is non-empty and take[}X in S Then, there is an x
e X such that []X & x and, so, [|X ¢ S“ since X ¢ S-.
(ii) -Let X be open in S.
-Let x ¢ X n 8” and x €Y ¢€S”. Then, y- ¢ X 5 8-,
-Let D be directed in S8~ and lID ¢ X ns-,
-Then, D is directed in S and Up ex.
-2+ D nX 2@ - i.e. (there exists d eD)(d e€X).
-But, d e LD € ‘8, and so d e S‘.k
-., D n (x né') z d.
', X nS is open in 'S" U G e e e R ey
(iii) -Let x°,y” €S” and x“ < Yy~ in S.
-Then, there exists X, open in 8§, such that y- ¢ X and X ¢

{z €S|x* & z}.

e

-By part (ii), X nS~” is open. But, y*  €¢X nS” and X nS~ ¢
{z” e€S*|x” = z“},
- X" <Yy invS', ;;
(iv)=Suppose S is continuous and let s~ € S-. §
-Then,k s* =|l{x|x < s8° in S} : %
e | J{x|x <s” in 8" }, by part (iii). “ é
ss,byOGll(ii) %
,‘_Hence » we have equality throughout and S is continuous. §
(v) (<=) =By part (ii). | - | %

(=>) -Let X” be open in S-.

~-Let X+be its }closure in S under s.

-Clearly, if x € X and x € y, then vy ¢X.

- =Let D be directed in 8 and LD }e X.

"—Then,‘ X* = UD,' for some x* ¢ X”, by the co"nstruction of X.
~Let D* := {d  x°|d" € D}. |

~Then, D."; is directed and, by 0.6.11(x1i), l__!I);j-»== (K1) x"' = X*,
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-l (there exists d* ¢D”)(d” eX7).

-, (there exists @ e¢D)(d m X~ e X’).

-.r (there exists d ¢D)(d ¢X), since d » x~ & d.

-:, X is open in S. |

-Clearly, X* = X nS8”, since X” is closed under € in S~,

(vi) (=>)=-By part (iii).

(<= ~Let x’,y’ €eS” and x"L ¥y~ in S8”°,

~Then, there exists X”, open in 87, such that y* €X” and X* £
{z” es”|x” = z°}.

-Define X as in part (v) and, then, X is open in 8§, y” €X and X £

{z es|x” ® z}.

-0 X' Yy’ in 8,

0.6.30:MOTTVATION ;-

So, we see that in restricting our data-types to semi-~lattices

we make them like the "bottom halves" of lattices. The "incorrect"
or "inconsistent" elements are not represented and, so, only
"consistent" information is allowed to be "pooled". This may be a
sensible thing to do. However, since the theory goes through for
lattices, we might as well use them - we can alwajs "prune" them

down to a suitable semi~lattice afterwards, as is done in 7.5,

0.7:8emanticg:=-

0.7.0%DEF:=-

An ordered pair, <8,f>, is a SEMANTICS of the.i-calculus if 8§

'is a set and f : EXP ~—> S. It induces a SEMANTIC EQUIVALENCE,

E<S,f>' on EXP by :-

€ = 5 if £l = £I40,

<S;f>
We define an ordering, S, on semantics by inclusion of the
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induced semantic equivalences - i.e. 2-
< > £ <8~7,f*> if = c =
S, f £ <S,f> = TS, £f-57

where we are considering the semantic equivalences as subsets of

EXP x EXP, If we have <S,f> < <5~“,f“> and <§~,f“> < <S,f>, then we

say the two semantics are EQUIVALENT and write <S~*,f*> = <S5,f>.

We say the semantics <S~,f-“> is DERIVABLE from <S,f> if there
is a function, g :S + S~“, such that £“ = gof. Further, if S and S~
are topological spaces and g is continuous, then <S~*,f~*> is

CONTINUOUSLY DERIVABLE from <S,f>,

0.7.1:LEMMA:~-

(i) A semantic equivalence is an equivalence relation on EXP.

(ii) = is an équivalgnce relation on semantics.

(iii) < is a partial ordering on semantics modulo =.

(iv) Let p be an equivalence relation on EXP and [p] be the
map that produces equivalence classes. Then, <EXP/p,[p]> is a
semantics of the A-calculus.

(v) <8,f> = <EXP/= 1>,

<s,f$[§<s,f>

(vi) If <S,f> is a semantics, then f(EXP) and EXP/= e

<5, £> ar
isomorphic as sets. Further, if S has a partial ordering, then we

can induce a partial ordering on EXP/E such that the isomor=-

<g,£f>
phism is monotonic in both directions. Also, if f£f(EXP) is a direct-

edly complete semi-lattice, then so is EXP/= and the isomor-

<g,f>
phism is continuous in both directions. -

(vii) Derivable <= 2,

(viii) <EXP,id>, where id[le]l := ¢, and <{*},const>, where
constlle]l := *, are the minipal and maximal semantics - i.e. 3=

<EXP,id> < és;f> < <{*},const>,
(ix) <EXP/—23, 2515 < <EXP/cnv, [cnv]>
< <EXP/B-n-cnv,[B-n-cnv1>.

Proofs-
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(i), (i1), (iii), (iv). and (v) =Trivial.,
(vi) =Define p : EXP/= —> f(EXP). i

==iine <S,f> |
—Clearly, p is well-defined, 1-1 and onto. :

~Hence, p is a set isomorphism'with_inverse p—l.
-If S has a partial Qrdering, €, we induce an ordering, =<S f>, on
EXP/% g g> PY - .

€ E § if f[le]l = f[81.

<g, £ : ‘ g
-Clearly, this ordering is well-defined and makes p and Pf;wmoanM$)%'
tonic. / .

cLFa % ogE N Tk I PR P PN LR R S Y

—Let f(EXP) be dlrectedly complete. Lef D be a dlrected set in

Wil

EXP/= . Claim: LUD is given by p de(D)) :-

<s,f£>
~-Since p is monotonic, p(D) is directed in f(EXP) and so

l(Up(D)) exists.
~Now, & ¢ D= p(d) e p(D) = p(d) =lp(D) = d & p tlp(D)),
. -1,
since p is monotonic.
-And, (V4 e€ D)(d & 2) => (¥d ¢ D) (p(d) = p(z))
=> (Up(D) = p(z)) |
= (ptlp(D) = 2).
-Hence, claim. is established.

-:, EXP/= is directédly complete.

<g,f>
~Clearly, pD) = pep l@p(D)) =Lp(D).

-+, P is continuous,
-Let S° be directed in f(EXP).

~Then, p L(Us") = p-ldeOP-l(S‘))‘=LJp;l(S‘).
-Hence, p"l is continuous. o

I'd

(vii) =-Clearly, derivable = =.

v

-Suppose <S,f> £ <8°,f">. We have
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s:afmm)émww—mm—-~>f (EXP) ¢ 8~

NN

-Now, 6 is well-defined, since if e E<S £ § then ¢ §<S’ £5 8§, by
. 14 14

the definition of <.

-pefine g A — G

| P‘oeop'l(s), if s e £(EXP)
s b——>
anything, if s { £ (EXP)
~Then, gef[el = p-o0ep Tofllel = p o6([el) = p~(Lel”) = £ Iel.
~Hence, <S~,f°> is derivable from <§,f>.

4 (viii) and (ix) -Trivial.

0.7.2:DEF:-

Let <S,f> be a semantlcs. Then, it is :~‘;‘“‘
an anODFL if <EXP/—~¢ [—>]> < <§, f>
'a (B-)MODEL if <EXP/cnv,[cnv1> < <S,£>

and a f-n- MODEL if <EXP/B-n~cnv;[B—n—cnv]>»ﬁ ?s,f>.

The gsemantics is SUBSTITUTIVE if ~<S f> is a substitutive

relation on EXP.
The semantics is NORMAL if, whenever E:has a normal form and

6 does not, then € £ S,

s, f>° |
The semantics is SOLVABLE if, ‘whenever € €SOL and § sINSOL,

then e £ 8.

<S f>
0.7.3;LEMMA s~

All the semantics defined so far are substitutive and, except
for <{% ,const> normal and solvable.
Proof:-

~Trivial.
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0.7.4:REMARK: =

The trivial semantics,'<EXP,id$, is only worth investigating
if all we are interested in is the syntax of )-expressions. The
minimal o¢-model, <EXP/~3§,D~Q>]>, tells us a bit more than the pure
sfntax in that wé are informed that a-~convertible expressions mean
the same thing. Then, the minimal model and B-n-model tell more aﬁd

more about the meaning of.A~expressions; We shall not really be

- interested in any semantics that are not, at least, models.

0f course, we do not always gain insiéht by considering larger
(under <) semantics. In the extreme case, the degenerate semantics,
<{*},const>, swamps all meaning with the statement :"all expressions
are equal",., Our intuition tells us that some are more egual than

others ~ for instance, expressions with a normal form have got

nothing to do with those in INSOL - hence, the definitions of norm-

ality and solvability.

We expect our: semantics to be substitutive since,replacing
parts of programs with other parts that have the same meaning,
should not affect the overall meéning of the whole program‘A

Still, the minimal model, based only on g-conversion, does not
satisfy our intuition, even though it is normal, solveable and
substitutive. We have said before that our intuition is not able
to distinguish between elements of INSOL and the same is true for
the fixed-point combinators, Yi; but <EXP/cnv, [env]> distinguishes!

We can crudely resolve part of this problem by deriving from
the minimal model :-

<EXP/canINSOL,[cnvaNSOL]>,

. where we have'declared all the elements of INSOL equivalent,
- However, although we have retained normality and solvability we

’have lost substitutivityl For, while AA = AAA, since they are both

in iNSOL, x(AA) % x(AAA), since they are both in SOL and are not
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Q-convertible.

We can crudely resolve the rest of the problem by

further, the model :-

<EXP/cnvv&,[cnvvm]>,

where we have declared equivalent all elerents that do =»
normal form - i.e. ¢ o § if neither e nor § have a norms!
This certainly equivalences the Yi's but, clearly, we h:
far - we do not want ¥ £ AA : the model is unsolvable!
also lost substitutivity : Y(Ax.y) ~—E€> y € NF but (A¢
INSOL and, so, Y(Ax.y)’gggvﬁ'(AA)(Ax.y).

Decent semantics should lie somewhere in between

a good place to start looking is their substitutive clr

ot

‘rictions.
6.7.5:DEF:-
Let p be any relation on EXP. Then, 3 is, its SUBSTITULIV
" CLOSURE if it is the smallest super-relation of p that

utive, Further, 5 is its SUBSTITUTIVE RESTRICTION if it
largest sub-relation of p that is substitutive.

0.7.6:LEMMA: -

(1) e ¢.8). sreyibe g Che ) dd, = GLE D) e p 67,

(11) (e § 8) <= (¥ contexts C[ 1) (C[el p C[&1).

b(iii) (p is transitive)’#> (6 is~transitive).

(iv) (p is a partial ordering) => (g is a partial orde:

(v) (p-is an equivalence relation) = (X is an equ!
relati?n).

PrYo@fir

-Trivial.

0.7, 7:EXAMPLE s~

Let § be the transitive closure of the substitutive
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_(_:_r}_YVINSOL. Then,
(i) § is an equivalence relation,
(ii) <EXP/cnv INSOL,[cnv INSOL]> < EXp/g,[81> (%)
and (iii) <EXP/5,[§1> is a substitutive normal solvable model in
which all elements of INSOL are equivalent,
Progfzy
(i) and (ii) =-Trivial.
(iii) =-<EXP/§,(§]> is substitutive by definition and it is a model,
equivalencing all elements of INSOL, by part (ii).
-We will show later that it is < a normal solvable semantics and,

so, it is itself normal and solvable (0.7.9£x)) .

4

0.7.8:REMARK:~
We do not think, however, that this model solves the problem

with the fixed-point combinators. We sketch a possible proof of

.
this. First, establish a Church-Rosser property for §. Let ~—l—€>
be the substitutive closure of INSOL (N.B. € INSOL 8 iff €,6 €

* *
INSOL) and let ——> be the transitive closure of ——1—€>. Let 1 be

*
the “‘transitive closure of B:>v > . Clearly,

(1) § is the transitive closure of the symmetric closure of ¢ -

i.e. 34
{e §. 68) <= (there exist EQrEyresesent €y such that ¢ = €0 and
- g .
8 £ and, for all O s i <n, either e ¥ e .1 O €544 1 ei).

The next two stages in this aféument can be deduced trivially,
later, by reference to another seméntics in which INSOL is charaét-
erised (0.7.9(x)).

(1) (6,6~ and C[s] eINSOL) => (Cls-1 eINSOL),
(1ii) (s —B> §-).(Cls] €INSOL) = (c[s-] eINSOL).

For the next two stages, we need a notion of rank on Ai-expre-

(*)- Barendregt calls this system #,in his thestis.
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ssions as given in 0.4.18, Then, we can prove :- ' i_
(1v) (¢ —2> ¢7) = ([8/ale ——> [§/ak "), P
(V) (5§ —23> §°) = ([8/ak ——> [6°/ale), |

by means of a "course-of-values" induction on the rank of ¢ (N.B.l:e

the proof of part (iV) also requires 0.5.13(ii) - N.B.2: alteinat—
ively, as mentioned in 0.5.3, we could prove these with a structural 
induction on ¢, enriched with the technique of COVO, as described

in section 4.1). : i

Now, we can get at,
(vi) (e —2> §) (e —2> 3 = (8 —> u) (v —E> ),
(vii) (¢ —E> o). (e =5 3 = (s —> w) . (v —E> w),

by structural inductions on e, using parts (ii),(iii),(iv) and (v).

From these, we can immediately deduce,
(Viii) (e —> §) ale —> W) => (5 —> 0) (Y —> o),
(1) (¢ =25 o). (c —2> y = (6 —2> . (v =283y,
() (e —E> 6).(c —> V) = (6§ —> w) . (v —E> o),
(x1) (e 1 8).(e ¥ 9 => (6 T 0, (v 10,
(xii) (e § 8) <> (e T u) (8 T w),

where the last part coﬁes from parts (i) and (xi). Next, we claim,

(xiii)‘(YO —E> cre1) => (& € sow), o 3
(xiv)'(Yl -§ﬁ>rctaj) => (§ e SOL). (Conjecture)

Now,‘part (xiii) is trivial, since YO ——ﬁﬁ> € implies that ¢ '“:>
Af.£7(x1), for some n > O. We feel that Y, (and probably all the

Yi'sé has a similar property. By the way, it is not true in generalik
that an expression with no unsolvable sub-expressions (like ?1)

”

- ‘only has reductions with the same property = i.e. unsolvable sub-

expressions can be created during a g-reduction : IA 4 £(a0).

Anyway, conjecturing part (xiv) to be true, we must have,

(xv) (Y5 1) = (¥, —£> o),
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(xvi) (¥} 1 ¢) = (¥, —E>e),
and, hence,
(xvii) (Y5 F'¥)), |
since, otherwise, by parts (xii),(xv) and (xvi), we would have

Y, cnv ¥, = ¥ to 0.4.8.

o]
Let us tackle this problem from the other direction, namely
with the substitutive restriction of 'cnvvr;; this leads to greater

sSucCcess.

0.7.9:EXAMPLE

Let p be a relation on EXP deflned by =
(e p 8) if (e “:"ﬁ‘>\)'ENF) - (§ —E>)

Then,

| (1) (¢ does not have a normal form) == (?61 e EXP) (e p §8),

(ii) o is reflexive and transitive,
(iii) (¢ cny §) <=> (e p 8),.(8 p €)a

In this case, we write ¢ << § for e p § and say that e " IS

. EXTENDED BY §. The substitutive restriction of‘cnvv% is written =

and called EXTENSIONAL EQUIVALENCE. Then,

(1v) (e = §) <= (e << §) (8 << ¢),

(v) <EXP/=,[=1> is a substitutive normal solvable model and << is
a well-defined partial ordering on it, |

(vi) Expressions with a normal form are maximal - i.,e, :=

£ ---§-->\>‘ e NF) . (e << §) => (e'm §) => (e

R

),
(Vii). Elements of INSOL are minimal - i.e. =
N (¢ € INSOL) => (¥é €eEXP) (s << §),

Hence, (Vec,8 € INSOL) (e = §), and (e e INSOL) <=> (e = aa),

- (viii) (¥1 2 0) (Yi = YO) '

(ix) Hence, <EXP/§5,[§1]> =< <EXP/+,[=D,
(x) We can resolve the forward references glven in 0.7. 7(iil)k

and at stages (ii) and (iii) of remark 0.7.8.
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" Proof:-
(i), (ii) , (4ii) and (iv) =-Trivial, using 0.7.6(ii).
(v) =By definition, = is substitutive,
-By 0.7.6(iv) and part (iv), << is a well-defined partial ordering,
—Aléo, e cnv § <=> (¥ contexts C[ 1) (CLel cnv CL§])
=> (¥ contexts C[ 1) (CLel cnv, ~ CL68])
<=> ¢ = §,

-Hence, the semantics is a model,

-If € has a normal form and § does not have one, then ¢ not(cnvvm).ﬁ
' :
and, so, ¢ # 6. Thus, the model is normal.

~Let e € SOL and § € INSOL., Let C[ ] be the context which first
closes ¢ and then applies the‘construction of 0.5.,18(iii) -~ i.e. i

C[ ] is of the form : (Axl,lxz.......,)xr.[ ])(61)(52)......(53)(Kn)

'Then, Cle] has a normal form but, by 0.5.13(i) and (iii), C[d] €

B VSV R —

INSOL. So, in this case, Cl €] not(ggzvﬁ) C[é],Awhich implies ¢ # 8,
Hence, the model is solvable. : | _ . A : %
(vi) =Now, € << 8§ => ¢ p §, ‘ |
-So, if e—--—-@«} v’ e NF, then 6——-B——> Ve - : S i
-Hence, e¢cnv § and, by part (v), & = 8, |

(vii) =See Morris [29] or Wadsworth [301] or 6.8.4(i),

S e o gy

(viii) =As with 0.7.7(iii), it will be trivial to show this result
later when we produce a semantics, < <EXP/=;[=J>, in which these
fixed-point combinators have already been made equivalent (6.8.3). :
(ix)“-By parts (v) and (vii), <EXP/=,[=]1> is seen to be a sehéntics§
that is z’<EXP/§§XVINSOL,[gQXVINSOL]>. Since, by part (v), it is |
~ substitutive,.we deduce’ the result.
{x) -By part (ix), <EXP/§,[8]1% must be normal and sclvable , since, .

';otherwise, <EXP/z,r¢Ju.woula not be - g'to paft (v) .

_~In both, stages {(ii) and (iii) of remark-O}%;&;;we~have & =487,
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'in 0.7.9(viii). The material in this section is being introduced

" extensional equivalence, This is the same as 0.7.9 except that we

0.7 1L EXAMPLE ¢ - (Morris)

63

LR A

-Hence, CL8] = C[§-] and,.so, C[6°] e INSOL. /+

0.7.10:REMARK:~

Anyway, we see that we have been successful with this approach
in overcoming the objections raised in 0.7.4 concerning the minimal
model, Further, we have introduced a partial ordering, <<, which
has elements of INSOL minimal and expressions with a normal form
maximal = i.e. this ordering agrees with our intuition about the
"information content" of M-expressions,

We hope the reader does not mind forward references such as

for background interest only and will not be made use of in the

main part of this thesis.

For the sake of completeness, we give next Morris' original

throw in n-reductions as well, Its properties are much the same as
0.7.9, but it also has the very nice characterisation that forms

the last part of the following.

Let p be a relation on EXP defined by :=- v
(¢ p &) 1f (e 205y ¢NF) = (& B=mmcnv 6).
Then, |
(1) (e does not have a normal form) => (¥& ¢ EXP) (e p §),
(11) p is reflexive and ‘transitive,
(111) (e =nmgny v & <= (e p )8 p o).
In this case, we writé € &—n;€< § for e X § and say that

¢ IS B=n=~ EXTENDED BY &§. The substitutive rasériction of B—nhcnvv¢

is written B=n-== and Clal led B=n=EXTENSIONAL EQUIVALENCE, Then,

(iv) (e B=n== §) <=> (g B=n=<< 8).(§ B=n=<< ),
(v) <EXP/B~n==,[B=n~=]> is a substitutive normal solvable B~n~mode%

and B~n+~<< is a well~defined partial ordeéring on it,
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(vi) Expressions with a (B=n-)normal form are maximal = i.e. s=-

(¢ =215y e NF)a(c B-n=<< §) => (e B=n=cny 8) => (e B=n-= 3),
(vii) Elemenfs of INSOL are minimal = i.e. =

(e € INSOL) => (¥§ ¢ EXP)(c B=n-<< ), | i
lence, (¥e,8 ¢ INSOL) (¢ B=n=-= §), *
(viii) <EXP/=,[=1> < <EXP/B=n==,[B=n==]>,
(ix) (Vi 2 0) (¥, B=n=-= Y.),
(x) <EXP/g=n-cnv, INSOL,[g=n-cnv INSOLI> < <EXP/B-—n-=,‘[8-‘n-”]>- |
Hence, defining B=-n-§ in the obvious way, the'subsgitutive-B~n—modef
it gives is < that given by B=n-=, aﬁd is therefore normai and

solvable,.

- (xi) <EXP/B-n-=,[B=-n=-s1> is the maximal normal substitutive model.

" Proofs-

(1), (1i) , (iii), (iv),(v),(vi) and (vii) -Same as the corresponding

'parts of 0.7.9, bearing in mind that € has a normal form iff € has

a B=n-normal forﬁl(0.4.20),vthe>origina1 definition of SOL (0.5.5)
and theorem 0.5.9. : : o !
(viii) =Clear, by 0.7.6(il) and cnv => B-ﬁ;ggz.
(ix) Either from 0.7.9(viii) and part (viii)vaﬁove‘gg_we can show
this directly using the model described in 0.7.22,
(x) -By parts (v) and (vii), as in the proof of 0.7.9(ix).
(xi) —Let <S,f5 be a normal ;ubstitutive model,
~-Now, by definition, <EXP/B=n-=,[B~n==]> is the maximal substitutive
sub=semantics of <EXP/B-n—gngN,[B-nﬁgggvmj>, so all we need to show
is that <s,f> < <EXP/B-n~g§XVN,[B~n—g§zv%]> $=

-Let ¢ not(f~-n-cnv ") o,

-Either ¢ has a normal form and § does not : in this case,
flel = £0410, since <8,f> is normal, |

-0r e and § both have normal form and ¢ Bén~ggx 5 : in this

case, we quote the following theorem of B&hm [31] - see also

[
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Curry [77] - and as iﬁterpreted,by’Wadsworth (327 :-

"if ¢ and & both have normal forms but s:B-n*gZz §, then there
exists a context C[ ] such that Clel —£ > x and cr63 —E> Y
and where x # y." (Bohm's theorem)

Take the context, C[ 1, provided by the above and suppose that
£lel = £0801. Let T be any expression that does not have a normal
form. Then,

£IrT = £L(Ax.CLe1) (r)], since <S,f> is a model.

it

i

‘fﬁ(lx.cféj)(r)ﬂ, since <8,f> is substitutive,
= fllyll, since <S,f> is a model - but this is a

contradiction to the normality of <S,f>. Hence, flel = £[I681.

- £

.o § => ¢ B-nhcnvpm Se

v E<S'f>
-;, <EXP/B=n==,[B=-n==]> is the maximal normal substitutive model
and, sb, sinée it is solv able py part (v), so also will be any
other normal substitutive model.

F

" 0,7.12yREMARK $ -

All the semantics we have looked at so far have héd an implic:
éonstruction - all that has been done is the taking of (highly
undecidable) equivalence relations based on "syntactic" conversioni
rules of the_k—calculus. The following serantics are more truly
"semantic" in nature in that an explicit construction is given,
They are mostly going to lie somewhere in the region bounded by
<gxp/§,05]1> and <EXP/B=-n=§ ,[B=n=§]> on the one hand, and <EXp/=,[=
and <EXP/B=n-=,[8-n-=1> on the other. The first two were discovere

by Scott.

0.7.13:EXAMPLE : - (scott)
' *
Let D, be a complete continuous countably based latticef %hem
Di+l 1= [Di > Di], for all i =2 O.
Also,

. (*) D, should have more than one element,
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: DO — Dl' and where kx : Do —_— DO'
X > kx a FH——> X
and,
¢l,0 : Dl —— DO.
x > x(1)
Further, for all i 21,
by ,441 * B3 T Piar
d | > $3.1,1°9°%,4-1
and,
$541,1 ° Pivl > Dy |
dygq F> ¢3,3-1°%41% %1,
Then, for all i 2 O,
(1) D, is a complete continuous countably based lattice,
(ii) Dy <] D41
Let D_ be the inverse limit of this system. We define an

application on D_ in the "Currxy" form :-

BAp, D, —> (D, —> D_),

=]

| <ds>i.0 P Apr(<di>imO)
where,

Ap, “df;o) : D —> D_.

Now,
(iii) bm is a complete continuous countably bésed lattice,
(iv) App is completely additive and doubly strict,*
(v) Apr?<di>:mO) is continuous - i.e. Apr e D~ [D ~ Dm]],>

(vi) ApD is injective, surjective and has a continuous inverse
<«

vgiven by -

Apgl : [p_ » D1 —>D,,

o
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B

where fi t= ¢w,i pofed;. “1,. € D, o |
(vii) Hence, we have :-
(x = y) <= (2py (x) = Ap, (¥)),
and, in particular, "extensionality" - i.e. :-
(x = y) <= (Apo(x) = Apr(y)).
(viii) Also, ApD is an isomorphism such that :-

[+ ) -] [

nerg >

In order to define our semantics, we find it necessary to

introduce the notion of environments to take care of free wvariables..
ok R A IO L Yo ey e e

We deflne ENV s= (I - D ). We also”deflne a modifying operator,

-

M AR EE T GG T W SN B B S SRR S Tt T i et A e

O

- ~
[/1:D_ xI—> (ENV > ENV), %
t

(6,%) > [§/%]

!

where,
[6§/x] : ENV =3 ENV, -
o —> [6/x1p
where,
[6/x1p : I —>D_ |
p(y), if x =2y
Yy —> | . o
|18, if x =y :

oy e v

Then, we note,

{(ix) [ / ] is completely additive on its first argument - i.e. :-

Up/x1 = Ll{[6/x1[é6 e D}, for any D ¢ D_. ;

In particular, ifbD;is directed, then so is {[§/x]|& ¢ D},
(x). [é/x] is completely additive and, again, if R is directed in

ENV, then so is {[&6/x1o|p € R}.

Now, we are ready to define our semantic function, ' i
D ¢ (EXP » (ENV + D)),
inductively on the structure of EXP, by means of the following

three equations :- ! o o !

o w5

; e
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¢

(D1) pOxI(p) 2= p(x)

(02) pMx.eN(p) = Apg (as e D_.DI=1([6/x1p))

(D3) DU (8) I(p) := Apy (DLel(p)) (PIsT(o)) .
Before proceeding, we must :ﬁeck that the above equations make
sense : in particular D2 - in order for Apgl to be defined, we

have to have its argument continuous :=-

(xi) DIel is continuous - i.e. D ¢ (EXP » [ENV = D_1) - and, hence,

(A6 e¢D_.DEI([8/x10)) e [D_ > D_1,
(xii) <[ENV - D_1,p> is a semantics of the A-calculus,
(xiii) The above sewantics is substitutive, Further, the partial
ordering induced from [ENV = D_] onto EXP as in 0.7.1(vi) is also
substitutive,
(xiv) <[ENV -+ Dm],D> is a B-n-model,
(xv) If ¢ is closed, then D[el is a constant map in [ENV -+ D_7J.
Hence, we can consider closed_i—expressions as being modelled just
by Dw,
(xvi) Let ¢ and § both have B-n-normal forms. Then,
Dllel = DIéll => e B-n-cnv § => DIel = DL,
In particular,
DMell = DIl <= ¢ p=n-cnv §,
(xvii) The fixed-point combinators, Yi’ are equivalenced,
(xviii) Y is‘the same as the lattice-theoretic minimal fixed=-point
operator ﬁ (see 0;6.5(1V)), in the sense that :- |
DIY(e)I (p) = wlApy (LD (0)),
(xix) <[ENV -+ D 1,D> is not :ormal‘
Proof:-
(i) -By 0.6.25(1).
(ii) -By O.6.20,vD0 4 Dl' The rest fall by induction.
(iii) -By 0.6.,25(ii). |

(iv), (v) and (vi) -See Scott [33].

7
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(vii) and (viii) ~-By parts(v) and (vi).
(ix) and (x) -Trivial. v .
(xi) =This is something that was not done in Wadsworth [34], and so
we set it out here. k
-Let A[el = (DIel e [ENV > D J).
~Claim: Afle]l =>(X¢§ € Dw.D[Ia]]([cS/x]p)' € [Dco - Dw]) =

-Let D be directed in D .

-Then, D[[t—:J]([UD/X]p) = DLeD(L{[8/x1p |8 € D}), by part (ix).

= L{DIeT(L6/x1p) |6 €D}, by ALI.

~Claim: AQx] :-

-Let R be directed in ENV,

~Then, DIxIMUR) = WR) (x) = Llo(x) |o e R} = LHDIxI(p) |0~ € R}.
-Claim: Alle]l => AlXx.e] :-

~Let R be directed in ENV; ‘ ,

~Then, pMax.cI(UR) = Apgl(as €D .DEI(Ls/x1UR)), which is

properly defined, by Alel and the first claim above.

il

Ap;l(la eD .DIe(U{L6/x1p|p €R}), by part (x).

Ap;;j‘(}\&' eDm.U{DlIeB([S/x]p) le erR}D, by Alel,

= Ap;;i (U{AS‘ eD_ . Dl I( [6/x10) |p €R}), clearly, and with

the set remaining directed.

it

U{Apgl(ka' €D . DIel( [&/x 1)) lp €R}, by part (vi).
LEkpDx.eI(p) |p- € R},
~Claim: AMeD.ADSD => AL(8) I :-

H]

~-Let R be directed in ENV,
-~ =Then, D[e(¢) I(LR) = ApD (2 ILIR) ) ( DISTUR)) ‘
ApD (Lo 0Ce) Jo eRD (LUDLT(o ) |0~ eRD), by Alel.ALL
(LJ{ApD (DR X))o ¢ R AUDTT6E-) 6" € R1), by (1v).
=LJ{ApD E16)) LPBIE ) - ¢ R [ € B}
=LJ{ApD (pEeD(e)) (DIST(e“)|p,p” € R}, by part (v).

L]

]

“LJ{APD (preg ")) (DII(S]](D”)HD € R}, since R is dir-
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“ by part(xiv), DIxI'€ Pyl - ¥; sincerD;-has more ‘than one-element,}

see that ENV has a countable sﬁb-—basis,'{fi j‘i,j > 0}, where :-
A ’

basis of D,. Hence, ENV is'countablykbasea (0.6.24(ii)). Further,

ecﬁed.
= L{pLe(8)I(p) |p € R}

-Hence, by structural induction, (Ve e EXP)AlcI.

(xii) -By part (xi).

(xiii) -Trivial.

(xiv) and (xv) -See Wadsworth [351].

(xvi) -Let ¢ and § both have g-p-normal forms but e B-n-cfv s.

-As in 0.7.11(xi), Bohm'é theorem tells us that there exists a
B8

context C[ 1 such that Clel ;;§-> x and C[¢] Y.

-So, by part (xiii), if DIel € DISI, then DICL[e1l € DICLS1D and so,'i;

-The rest is.trivigl. ]
(xvii) and (xviii) -See Wadsworth [36] and Park [37]. %
(xix).—Let F a=flf,3x,ly.x(fy). ‘

—Then,'F(I)»-EL1€> I and so, by part (xviii), DO¥(¥)D = DILII.

-But, it is not too difficult to show the reverse inequality - see

Wadsworth [38]., Hence, DIII = DI¥(F)I. ‘

-But, Y(F) does not have a normal form since it is in the A-I-cal-

culus and the subexpression Y does not have normal form - see Curry |

L391.

0.7.14:REMARK: -

PR E s i ae

Note that ENV is itself a complete lattice (0.6.18(i)) and so,

therefére, are [ENV - ENV] and [ENV + D,] (0.6.18(ii)). We can élso;

i,3 |
’ - |by, if n = i,
nb—>{ 7
' 1, if n# i,

and whére'{bé,bl,bz,......}.....} is an ennumeration of a countable .
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we can deduce that ENV.is continuous as fcllows extend I to the
complete continuous countably based lattice I~ by adjoining a
bottom and top ; then, [I“ » D_] is a c.c.c. lattice (0.6.25(i)) ;
clearly, (I » D_) is isomorphic to the set of doubly-strict element:
of [I” ~» D_1, which is a retraction ; but, all retracts of contin-
uous lattices, according to a theorem of Scott [40], are theméelves
continuous laﬁtices. Thus, ENV is a c.c.c. lattice and we are very
pleased to find that the whole of the underlying set of this moéél,
[ENV - Dw],_is one also., ﬂ

We made no resﬁrictions on the initial c.c.c. lattice,'DO,
except thét it has more than one -element. Indeed, the two element

lattice'{T;L} will do, although, for reasons of the use to which

these lattices are put, Scott prefers the "truth table" lattice

'{T;true}false,l}, in which true and false are incomparable. It is

o does not chanc

the final semantics - i.e. they are all equivalent under = - but

extremely probable that the choice of the initial D

the author has not seen a "concrete" proof of this. '

Until 0:7.13(xix), <[ENV - D_1,D> had been showing all the
good‘properties of the ones based upon = and B-n-=., The discovery
of the non-normality of the model caused a bit of a shock! Since it
seemed reasoﬂéble to consider expressions with a normal form anal-
ogous to programs that terminate, a semantics that sometimes fails
to distinguish normal frbm‘non—normal forms might be thought to be
inappropriate for certain applications like termination problems.
Howevér,‘the blame has now been firmly laid at the feet of A-cal-
culus itself, which, after all, must allow sentences like "W(F) = T
to be adjoined to it without throwing up any inconsistencies. We
wshall‘continue to explain this away later (0.7.27%).

Perhaps, the more subtle property of solv@pjlity is more

crucial to decent semantics. We shall'see that the above model has

"
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L R

0.7.16:FEMARK :~

So, all we have to do to show solvability is to establish

that all members of INSOL are L in the model., This corresponds with '

¥
3

the properties (vii) of the extensional equivalence models (0.7.9

and 0.7.11).

P < e Foazae

0.7.17:DEF 2=

Let Q {1. Then,
Q-EXP ::= @ | I | AI.Q-EXP | (Q-EXP) (Q-EXP)

If € € Q-EXP, then :-

and 2(c) —Lus g | | 1
As in 0.3.10, define ¥—Q€> és the substitutive and transitive '
closure of -jﬁi%> . g

' Extend the definition of D, so that it applies to Q—expfessionsg

by adding the extra equation :-
(D0°) D-Oal 3= ..

Define an "approximation" function, n i EXP —> Q-EXP, by :-

1
5

»r
X '

~
X.€

..
K
P

a4
_AxX. €

_ Q, 1f ¢ e AI.EXP
and €(9d)

i

g('(s‘) " if not

' Then, we have :-

EXP — > [ENV > D_1 ‘
N D~
Q-EXP
Q.7.18:LEMMA: - §
(i) Q-expressions always have an w~normal form. , g
' b
(1i) <[ENV » D_1,D"> is an w-model of the A-@-calculus - i.e., |
(e —%> §) = (D70l = D UsI). §
_ : i

S

o7




74

(111) (e eNOH) = (2 —2— @) = (D"[FI = 1).
(iv) <[ENV ~ D_1,D"en> is a semantics of the.X~calculus that is
"approximate" to <[ENV =+ D_1,D> =~ i.e. :- |
(Ve e EXP) (DIED = DIel).
Note, however, that it is not substitutive.

(v) (e —B> s) = (p°I%1 = p°ISD).

(vi) Hence, for all ¢ ¢ EXP,‘LHD‘Egﬂle ——§€> §} € D{Iel, where the :

set is directed.
Proof:=-

(i) -Obvious, since -l£€> strictly shortens the expression.

(1i) =-Simple structural induction on €' ¢ 8=EXP to show modelling of?

just the substitutive closure of —i£%> . Hence, the transitive
closure.
(iii) =-First => by a trivial structural induction on NOH,
-Second => by part (ii).
(iv) —Trivial structural induction on EXP.
" =It is not substitutive since D’E§ﬂ = Dyl = Dmlx.yxn = D'E{;t§;ﬂ
but DIFAl # 1 = D L(x.y%) ().
(v) =Trivial structural induction on EXP,
(vi) -If ¢ —E> &, then 0°I%] = D61, by part (iv).

= Dlell, by 0.7.13(xiv).
-Hence, the inequality. _
~The set is directed since, if ¢ —+ﬁ€> § and € ~—§€> Y, then, by
the Church-Rosser theorem for —~E~%> , there exists an & such that
¢ ~—Eﬁ> £ and Y-—~§%> &€ and, so, by part (v), D’ﬁgﬁ € D’Egj and
D°IY. = D IED.

’ +

© 0.7.19:THEOREM:~  (Wadsworth)
For all ¢ ¢ EXp, DIl = Llip-r%1]e —£-> s},

Proof:-

b




|
|
|
|
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~Non-trivial - see Wadsworth [41].

0.7.20:COR:z~

(i) (e eSOL) <=> (D[Iell = 1).
(ii) <[ENV - D_1,D> is solvable,
(iii) <EXP/B-n-5,[B-n-§]> < <[ENV - D_1,D>
£ <EXP/B-n==,[B=n==]>.
Proof:=-
(1) (=) =By 0.7.15(iii).
(<=) -Let ¢ € INSOL.
~Then, if ¢ —> §, & €NOH, by definition.
-., plel = Lhp-ms1] ¢ —&> 6}, by 0.7.19.
= 1, by 0.7.18(iii).

]

(11) -By part (i). |
(iii) =-First inequality by part (i) and 0.7.13(xiii) and (xiv).
-Second non~inequality by 0.7.11(V)‘and O.7.13(xix),'

E

0.7.21:REMARK:~

- We think of the symbol @ as beiné "ﬁﬁdefined". Thus, the
w-rules were designed to be consistent with this intuition. The
Q—expfessiom ¥ can be thought of as the "inférmation immediately
available" from the expression & - i.é. it answers the question :
"if we cannot be botheredrtg eyaluate any B-redexes and simpiy
treat them as unknown quantities, what have we got in e 2"

So, Wadsworth's theorem says that, in the <[ENV » D_1,D>~

semantics, expressions are represented by the limit of the repre-

- sentations of the information immediately available from all the

expressions reducible from it. This is a very good and sensible

property for semantics to have and later (7.6.1) we will make a

definition out of the theorem and christen it "continuity".

TR G I R R 2

Py
L S
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Next, we present a model which is normal. The proof of the
counter—-example in 0.7.13(xix) depends upon the property of "ext-
ensionality", 0.7.13(vii), and so it is not surprising that the new f
model is not an n-model. However, of course, normal p-models do
exist - e.g. <EXP/B-n-cnv,[B8-n-cnvl>,

0.7.22:EXAMPLE :~ (Scott)

* .
Let D0 be a complete continuous countably based lattice with .

* .
an isolated v. We call DO the atomic lattice. Then,
* Lk LA _ :
Pigy #= Bo * [Py ~ Dy 1 ¥

where, if L is any lattice, then LT is the same lattice with an

extra T adjoined. (We need this so as to ensure that the lattices

we construct always have an isolated T so as to ensure that their
lattice sums always remain continuous - see 0.6.18(iii).) Also,
* * : *
¢O,l : DO > Dy
: * * ;
. - |
do > do € Do € Dy
and,
* * *
2,0 D1 > Dg
* *
dp b—> ot MR ¥
Further, for all i =z 1,
* * *
4,141 * Dy > Dy
b d; o0, s 10 if A, € [D)_3 Di 1
| -1,1°%1°% ,i-1" R -
di —_ di ;f o ;* v i i-1 i 1‘
it % <% :
and, _
* * *
© 41,4 F Dy — >0y
: ' * od 04)* "fd [D* -*D*]
4o b ,4-1°%41°% 1,40 F G449 Dy » D31
i di,qr if d; , €Dy
i1’ i+l €70

Then, for all i =2 O,

*
i

isolated T,

(i) D, is a complete continuous countably based lattice with an
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(11) The above maps are well-defined and make D 4 Di+l

Let D°° be the inverse limit of this system, Define the pred-

icate : Atom(<d,>% ') (vi = 0)(di =d. € DS). Then, clearly,

1]

i"i=0 (0]
) * * © ’
not(Atom(<di>i=o)) = (Vi 2 1)(d; e [D;_; » D; 1) & (<d;>7 45 *4).
Then, A
' * *. T
Ap =D —--—->(D ——> D)
| T,lf <dl>lO=T
<di>i=o »eL, if <di>i==0 zT and- Atom(<di {= O) ’

* [+ .
Ap (<di>i=o), if not(Atom(<di>i=o))
whe:e, if not(Atom(<di>i=o)),‘ |
. . .: D.* ; i b*. N

x >0 "L_J‘P w° di41 )

(N.B., we should write ApD* instead of Ap to remain strictly'logical

Ap (<d1 1“0

with our notation.)
Now, -
(1ii) Q: is.a complete continuous countably based lattice with an
isolatéd'T,
(iv) Ap* is well-defined,completely additive and doubly striét;
(v ap* e [p' + D'+ D173,
(vi) While Ap* is not injective, it;is surjective. If we define
Ap*-l iﬁ the same way as in 0.7.13(vi) and extend it so that it
maps thé extra f‘to‘T'e q:, it is continuous and makes :--
m - 01" q o,
~(vii3kWe have ”partial extengionality“ - i.e, if not(Atom(x)) and
not(AtQm(y)) $m
 (xce y) <=> (.;&‘p* (x) s ap (y))
:énd, o " | :
(x = y) <> (2p"(x) = 2" ().

Oﬁherwise,‘if Atom(x) then either Ap*(x)'nli (if x #7) or Ap*(x) =
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T (if x=171),
(viii) Define,
~ o' i pt——> )+ o >l
g oo o(d), if Atom(a)
a ——> M
ap (d), if not(Atom(d))
Then, 6* is an isomorphism with a well-defined continuous inverse :=—

* - * * * *
o*~L : pl + [l » pLT —> Dl |

* *
dy €Dy . 4’0,”(&0)

* * _T | ; L |
{f e¢[D, * D] Ap T (f)

so, we have :-

. S s . RO

-

*

BOAR b SR eV N e e s e e . . * H T e e e e i e ke b
RN AR € Ay s Wiy W B vy : Lo SEOREL L RSN g e Rl o T R TRt o e L
A D =D + D D::] [ : ® ' ¥ R BT ;

® o
* * * .k )
Next, we define ENV and D " € (EXP > (ENV = D_)) in the same
: * K- *
way as in 0.7.13, except that we use Ap ,Ap 1 and D instead of

1

Ap, sAp,” and D,.

(ix) , (%), (x1) ,(xii) and (xiii) Same as the corresponding parts of
the previous model (0.7.13), with suitablé *'s attached. Thus, our
semantics is <[ENV * D_1,D > and we write ¥ and £ for the induced&

. *
equivalence relation and partial ordering (modulo ¥ ) on EXP,

* %*
(xiv) <[ENV* *D,1,0 > is a model but not an "-model. However,

(e —> & = (e = 4,
There are cases whén n-reductions are modelled, not only when the
reductions could have been B's - e.g. 3=

(¢ € AI.EXP) .(x is not free in &) = llx.s(x)'if €),
but also in their own right - e.g. x(Ay.xy) h xx while ay.xy z* x, 
(xv)_This is 0.7.13(xv) %, | | |
(xvi) Let ¢ and § have B-n-normal formg., Then,

 p'el = DT = € Ben-cnv 8.

In particular, o | | '

* * . -
D I[el = D 081 => ¢ B-n=cnv &,
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11}

* .
Yi) 14

% * * T %
(xviii) Defining w : [D_ > D] —> D,

(xvii) (¥i ® 0) (¥,
T, if d = (the extra) T
d —_—> ’

pd, if d‘efD:f*D:]
* ) * * *
D I¥(e)I(p) =pn (Ap (D Lel(p))),

%*
(xix) Let F be as in the proof of 0.7.13(xix). Then, Y(F) £ I,

%*
(xx) (o0 €SOL) => (D [ol = 1).
Now, extend‘D* to D*'~in the same way as p was extended to D°
in 0.7.17. Then,
* I *
(xxi) <[ENV =+ D_1,D “> is an w-model of the A-Q-calculus,
IR . . ’ . *; ~. NS A X g w"«
(xxii) (e eNOH) => (I "HMED = &), & =~ = f« aie
* * *
(xxiii). <[ENV =+ D_1,D “ov> is a semantics of the A-calculus that
* * *
is "approximate" to <[ENV -+ D_1,D >,
—_ e ) &* o~ * ~
(xxiv) (e —E>6) = (D “l= D B,
) . ’ : . * 0~ g *
(xxv) Hence, for all e eEXP, LHD “81|e —=> §} & D [l , where

the set is directed,

We also have Wadsworth's theorem,
(xxvi) For all e ¢ EXP, D*meﬂ =lJ{p*'u§n|£ -—£4> §},
(xxvii) (e e SOL) <= (D el = 1),
(xxviii) <[ENV = D:],D*w is solvable.

. * * *
(xxix) <(ENV =+ D_1,D > is normal,

) * * * '
(xxx) <EXP/§,[§]1> < <[ENV > D_1,D > < <EXP/B-n-=,[B-n-=]>,
 Proof:-

(i),}..,(xiii) -Similar to 0.7.13 =-see Wadsworth [421.

(xivz -Modelship is proved in the same way as for <[ENV =+ D_1,D>.
-We do not have an n-model but increases in value after n~reductionsi
_ sinceifhe fuhction space€ is a‘projectidn of thé semantic Space s in ?
ND“ they were isomorphic. | |

;—For'details of this and the examples cited - see Wadsworth [431.,

‘(XV) -See 0.7.13(xv).

L e e
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(xvi) -We are éble to prove this in the same way as 0.7.13(xvi),
since EChm's theorem says we need only B~reductions to reduce
the expressions in the contexts to their respective variables.
This is just as well, since <D:,D*> does not model n-reductions.
This also explains why this resuit is weaker than the corres-

ponding one for <D_,D>. See also remark 0.7.23,

(xvii) and (xviii) =-Similar to 0.7.13.

(xix) =-See Wadsworth [45].

i
{
.

(xx) =-Similar to 0.7.15(iii), noting that Ap ~L(£) = L iff £
(%xi),¢¢.,(xxv) =-Similar to 0.7.18. |

(xxvi) =-Similar to 0.7.19.

(xxvii) -Similar to 0.7.20(1).

(kxviii) =By part (xxvii).

(xxix)~See Wadsworth [46],

(xxx) ~First < since we have a substitutive model that equivalencec
members of INSOL.

-Second <, by 0.7.11(xi), since we have a normal substitutive

model,

0.7.23:FEMARK: - )

Thus, <[ENV* »> DX],D*» has most of the good points of

s e g
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S

s - g

<[ENV =+ D_1,D> and has normality as well. Unfortunately, it has
introduced some unpredictable quirks with regérds when it models

n-reductions. The model is not an n-model, but neither does it have

T e

all the properties we would like to see associated with g-models.
In particular, 0.7.22(xxviii) is not really the result we would

like to see corresponding to 0.7.13(xvi). What we wanted was that,

" A AR S o S

whenever ¢ and § have normal forms, then :-

* * * *
D [l = D 8] = ¢ cnv § => p [[ell = D [I81,
so that, ;
p*IeD = p*[6] <= ¢ cnv §. - N o ’%

“But this deSire is quite simply denied by the example in O.7.22(xivy€
if we take x(Ay.xy) for ¢ and xx for §. ‘ |

Next, we present a pathologlcal version of 0.7.13, discovered

by Park, in Wthh things go drastically wrong.;

O’7'24'EXAMPLE'~ (Park)

Let Dg be the two point lattice, {y,1}. Construct D+ exactly g
&1

as in 0.7.13 except that we define the initial retractlon, D* < IZ)‘r ¥

dlfferently. In 0.7.13, this was defined as :-

DTS SRR

identity function

t
Dy

identity function

This is the only alternative way of making a projection. Now, define

t ¢

Ap+‘and D' e (EXP » [ENV =~ Dl]) as prescribed in 0.7.13, That

things have gone very wrong can be deduced from the result -
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pTraAD - = 1.

In fact, it is possible, by starting with a more complicated Dg+

and choosing a suitable initial projection, to produce a system

it in which piTaap = t1

[24]

Amongst the consequences are the facts that Y cannot equal the

¥ operator in the sense of 0.7.13(xviii) - otherwise,‘since 0.7.15
part (i) is still valid for this model, its part (ii) would lead to
a contradiction = and that Wadsworth's theorem, 0.7.19,. cannot hold

since :-
Lipt-msn]aa —E> 53 = Lkpt-maany = ptepex

= 1 = D OAAT.

t T

However, <[ENV ' -+ DIj,D > is a substitutive B-n-model, even
though a very strange one.
" Proofi- - |

-See Park [471],

0.7.25: REMARK: -

There is a well known theorem - see Séott [48] - that says
that any'complete continuous countably based lattice can be émbed-
ded as a retraction of P{(w) - the set of subsets of the natufal
numbers, itself a complete continuous latticé coﬁntably based by
the finite subsets. Briefly, any element is uniquely repieéenteé by
the limit of the basis elements topologiéally less than (<€) it, so
all we have to do is ennumerate that basis. For an account of this
embead}ng in a particular instance, see section 7.4.

?herefqre, it is not surprising that P(w) should provide the
domain for models of the X-calculus. The following example defines
«aAsemantic function directly from EXP. It was discovered originally

by Plotkin - [49] - and later, independéntly, by Scott - [50].

Pt ot s
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0.7.26:EXAMPLE : ~ (Plotkin/Scott)

Let'{eo,el,ez,.........;.;} be a (recursive) enumeration of
the finite subsets of u. Everything relies,upon the continuous
lattice property of P{w) - namely that all sets are characterised
by their finite subsets :=-

(S ¢ w) = (S = b{en[en'g S} . |
We will define an application function that retracts P(y) on =
. to its continuous function space. Then; to construct fhe model, we
just use the technique -of environments exactly as in 0.7.13.

We find it easier to define the reverse application, Ap*l,

first, Let £ € [P(w) + P(w)] and S ¢ P(w). Then,

i

£(s). = £(ule e ¢ s}

i

U{f(en)len c S}
= ule |e < f(e)) aid e ¢ S},
Hence, £ is characterised by the set of pairs,’{<en,em> e, <
f(en)}. Define another ennumeration of pairs,
VoW X W ——— gy,
and we are ready to define :-
"Ap~1' : Plw) » P(w) :-¥~—€> P (u)

£ f— ~>‘;v<n,m>|em c fle )},

It is clear that we should then define :-
Ap, & P(u) —> (P(u) » P(a)),
§ b———=>2p_(8)
where, e ' '
ap, () : Plu) —>>P(w)
' X F--;>u{em!en c X and v<n,m> ¢ S}.
Then, V 7
.(i) Ap, is completely additive, Ap;l is continuous and both are
 doubly strict, | |
(11) Ap, € [P(u) + [P(s) » P(u)]],
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s -1, .0 _
(iii) propr (£) £,
-1
(iv) Ap “.Ap (S) 5 S.-
w ® = . |
Next, we define ENVY and p ¢ (EXP » (ENV® 4 P(w))) in the sare
way as in 0.7.13. Then,

(v) Plel ¢ [ENV® > P(w)1,

(vi) <[ENV® P(m)];P>‘is a well-defined substitutive semantics of
the )-calculus. The induced partial ordering, E® (modulo the seman-
. tic equivalence =%), is also substitutive,
(vii) <[ENVY & P(w)1,P> is a model but not an n-model. However,
(e —1> 5) = (e &8 ¢).
As with D:, we have :~-
(e € AI.EXP) ,(x is not free in ¢) => (Ax.e(x) =% e),
But, unlike D:}kwe have :-
x(ay.xy) #Y xx.

(viii) Let ¢ and § have normal forms. Then,

PEEB e PIS]] => ¢ B=n=cnv §
and so,
Pllell = P61 => ¢ B=n=-chv §,

(ix) PO¥(e)D(p) = U(AFw(PESD(D)))r
(x) pr(Pﬂlﬂ(p))‘w identity function on P(w) and, so, PIAAl = i,
(x1) (o e SOL) => (PLoll = 1). |
F'Proof:~
(i),...,(iv) -Straightforward - see Scott [51].
(v) yoeeo,(xi) ~Similar to the corresponding results of 0.7.22.
—ParE (vii) is interesting. The reason why n-reductions decreése
the ;epres§ntation in P(w) 1is because Ap;lopr is‘"greater than"
. the identity function ; in D:, it was "less than",
&vClaim: x(ay.xy) #¥ xx :-
~Let S'a"{v<n,n>[n > 0},

fThen, pr(s) = Idp(w)' the identity function on P(w).
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fHowever, Ap;l(IdP(w))‘='{v<n,m>}em c eh}, which is strictly
larger than 8. )
-Let p e ENVY such that p(x) = S.
-Then, PlIx(iy.xy)l(p) = pr(P[(X]](p)) (PLxy.xyD(p))
= 2p_(8) (Ap, (v & P (w) . PIxyI(L7/y10)))

i

Ap;l(kﬂ'e P(w).Ap (p(x))(m)
1

i

Ap “eAp (S)
2 5
= ap (8)(8)

PllxxT (o)«

L]

“0.,7.27:REMARK ¢ ~

There are a number of obvious questions to be answered about

the above model. The most important one, we feel, is whether

Wadsworth's theorem applies. If it does, then <[ENVY > P(w)1,P>
will be solv able and normal, the fixed-point combinators will be
- equivalenced and we will be able to place the semantics between
&xp/5,[§]> and <EXP/B~n-=,[B-n-=]>, Is it s <EXP/=,[=]> ? Unfort-
unately, we have not had time in this thesis to consider these
questions. By the way, in [521], Scott‘calls pr "§2§"~and*Ap;l‘
“g£§g§"; One last note we find interesting : since [ENVY +>P(w)] is
itself a c.c.c. lattice, it is embedded as a retract of P(w) and,
so, we may consider P(w) as being, on its own, the underlying set
of the model. |

.The last four models are all of a simrilar nature and we call

'their type "Scott-models". Briefly, to build a Scott-model, all we

need is a lattice, L, whose continuous function space, [L -+ L], can
be embedded as a retract in L by means of "application" functions,
~'APL and Ap;;. Then, forming the set of "environments" ENVL as

(1 -~ L),'we can produce a well-defined serantics, <[ENVL + Ll,L>,
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by'means of the equations :~

p(x),

[l

LIxn(p)

i

LIAx.eT(p)
and LLe(8)1(p) := Ap, (LLel (p) ) (LIS (p)).

apzt(Ar € L.LLI([2/x10)) .

These semantics will always be a model ané the induced relations,
= and EL' will be substitutive. n-conversion depends on how Ap;lo
Ap; behaves. In D, and,D:, this was the identity and we got an
n-model; while in D: it was smaller than the identity and in P(w)
it was greater, with corresponding effects on the semantics of»

n~reductions,

The model constructed in this thesis is not a Scott-model in
the above sense, Its motivation is to capture the essential fééture
about semantics that allow Wadsworth's theorem to work. Decent
semantics should allow this theorem since it reflects very basic
.and natural ideas about the meaning of A-expressions (seg 0.7.21).
Clearly, semantics that are £ <EXP/g-n-cnv,INSOL,[g-n=-cnv, INSOLI; "
do nﬁt have it, since amongst its implications is the equivalencing
of the fixed-point combinators,'{Yi]i 2 0}, Wwe do not want tovcon~

sider semantics 2 <EXP/chv“,[cnva]>,'since they make Y = AA, The

x
Scott-models defined by D, and D_ have it, P(w) might, but DZ does
not. Although the A~calculus was invented to represent‘funétions;

it remains in fact a purely formal syntactical sYstem, representing

only computable functions. Thus, it would be a surprise if Scott=

models, constructed from set-theoretic continuocus function spaces

“{N.B. continuous does not imply computable = in fact,’pEEXPj is
spreéd very thinly across [ENV »* D_,]), were minimal in this very
basic respect,

What we need is something more closely related to EXP, and,

PR ¢ P W R P
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preferably; still with an explicit construction. This rules out the
extensional equivalence models, one of which, in any case, lies on
the wrong side of the D:fScott-model for minimality. The key is
provided by Scott's paper : "The Lattice of Flow Diagrams" - [53].
In this paper, the elements of the lattices are all "syntactical"

entities., We start with two "atomic" lattices isomorphic to :=-

T

- atoms
(countable)

@ ® 5 860 8 9 60 800000 s

‘ L
In one, the "atoms" are the function symbols allowed in the flow

diagrams and, in the other, they are the predicate symbols. In this
first lattice, we can represent flow diagrams of length one - i.e.
just consisting of one function box, We construct, theh, larger and
larger lattices from these bésic ones by pureiy syntactical means
(e.q. cross¥products), so as to be able to represehtllonger énd
‘longer lqbp~free flow diagrams. These latﬁices fit together as pro-
jeqtions,enabling us to take the inverse iimit in which we cén rep—’
resent all flow diagrams. If we make a Small change in Scott‘s
construction we can produce an object from which"useful analogies
for the a-calculus can be drawn. We show that this change makes

no essentlal difference to the (31mple) flow diagram semantics.

To explain and ]ustify this, we assume that the reader is familiar

with [53] and its notation which we use for the next three pages,

-



Consider the following two diagrams :-

2 | Y

These can be thought to correspond tp the unsolvable X-expressions
YA and YB, Now, we have spent some time arguing that sensible
semantics ought to equivalence such objects, However, in the flow
diagram lattice, E, they are, respectively, the minimal fixed
points of the continuous functions (Ax ¢ E.2;x%) and (ax ¢ E.B;x),
which we shall write as (ux e E?A;x) and (ux ¢ E.B;x). Since we
used "pure" cross~products in the construction of E, we have :-
Azt = (A,L) = (L,L) =1
Thus, (ux ¢ E.A;x) # (ux ¢ E.B;x). However, take any simple

semantics, V ¢ [E +~ [S »~ S]], We have some state iattice, S, and

m

‘function/predicate semantics, F e [F » (S » s]) and B

[B > [S » T1], that are simple in the sense that FOL0 = L1 and
*
BO1N = 1( ) _ see page 41, section 6 of [53], We have :-
Viux e E.A3x0 = VUL_JAn;lU
n=0

o0
I n . . .
= via"; 10, since V is continuous,
n=0

= ___‘_.'l’/DAn[]OV[].L[] =I IVDAnU°.l. = 1,
n=0 n=0

Thus, the two diagrams are semantically equivalent to bottom,

e - i S G o e T Grn T T R W e = = = G e - Sem S e e L R TS T G G D M T G G S e S G G e AR T e e S S W S e

(*) Such lattice functions are called STRICT, If we also have the

top element preserved, they are called DOUBLY STRICT,
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However, they would fail to be equivalent if we chose a non-
(*)

strict F or B. This is sometimes necessary when we wish to

PR ey e ae o o7

describe side-effects., For example, suppose [AD and [BI are
fprint "A"[} and Oprint "B"} and S‘is the lattice of strings over
some alphaget‘(with.an extra top), partially ordered by "initial
part of", If the program goes into an infinite loop, we do not

lose the current output. Thus,

FOLD = identity.
Also, because F must be monotonic and we cannot rewrite previous
output, we ﬁust have :=-

FOf} = identity,
for all £ ¢ F, So, in these semantics, thé diagrams are not
equivalent, There is something unsavoury here in that the semantics
of the loop is only the least fixed point above the identity
function, while in all simple semantics :- |

Vlux € EJA;X] = uX € [S + SI1.VIA[eX.

In the clinical world of the A-B-K~calculus, we do not.have
such nasty; noisy things as line-printers and, so, we are peffectly é
justified in keeping.our semantics "simple"., In this case, we have, ;
loosély.spéaking i-

| o vDAzal = vOP > 1,00 = 4, _
in their respective lattiées. Therefore, it makes ﬁo differende
semaﬁtically if we build in these equivalences during the |
construction of E - i,e, construct Dn;Dn as (Dn X_Dn)/§, where n

is an equivalence relation such that (an,L) " (L,1) etceses It is

4

"easy to show that all the Dn’s remain complete lattices and that

s s s

" the projection functions work properly and continuously so that

(*) See previous page.

»
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the inverse limit, E, can be constrﬁcted exaéﬁly as before, E‘is
now much more economical in that infinite loops do not require
the whole of the inverse limit in order to be represented, but
can be handled merely by the bottom element of the original
"atomic" lattice. Fgrther} E now directly reflects our feeling :=-

(bx ¢ BE.A;x) = YA S YB = (ux ¢ E.B;x).

We can now classify flow diagrams according to our new E as
follows :~-

(1) diagrams that "never terminate" are representéd by the 1
element - e.g. -

¥ T

A A

T A | o | | A
* | | A
‘ C

N
N\

Y

\Z
w
Y

v

(ii) "loop-free' diagrams except for some “nonwterminating“'

ey wre s

R ks B

PO ——

P

O

.
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branches always fit in at some finite stace in the inverse limit -

¥ Y

e.g. -

A A
<
T
\ A
B P>>-1>+ B >
N2
C < c

V2 | 7

< e gt v s

o

(i1i) the rest can be unravelled to infinitely long "loop=free"

diagrams that fit into the limit - e.g. :=-

N
A <
A
B
Cc
\

We draw an analogy between the above three cases and A-expre-
ssions that are :-

(i) in INSOL -~ e.g. AA =~ (“bottom".x?expressions),

(i1) in SOL and reduces to an HNF, all of whose sub-parts are
either in HNF or INSOL - e.g. x(AA), anything with a normal form =
("finite" A-expressions),

. (iii) in SOL but does not reduce as above = e.g. ¥ - ("infin-
ite" A-expressions). |

In this case, we can see why £he non-normality of models of

the A-calculus may not be such a bad thing after all, Consider the

following two schema/flow-diagrams (acknowledgements to Wadsworth

for this example) i~
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£(x) = x = ‘ (c.f. I)

g(x) =z if zero(x) then x else succ(g(pred(x)) (c.f. Y(F))

3t}

Now,'f is loop—-free of length 1 and so is in "normal form“'of
type (ii), while g is recursive but its branches do terminate some-
times and so it is of type (iii). In the purely syntactical lattice
of flow-diagrams, the two schema are not equivalent - the model
distinguishes between all three types (i.e. it is solvable and
normal). Clearly, however, there are models derivable from it, based
on function spaces, in which £ and g are equivalent, Nobédy minds
the non-normality of these models - on the contrary, that is their
whole point - although there would be trouble if they failed to
distinguish type (i) from the other two (i.e. were not solvable),

How, then, should we construct our "Lattice of A~Expressions"?
Obviously,'we should start with an "atomic" lattice, I* := Iy{v,L}.
There, we can represent expressions of length 1 - i.e. variables.

We might be tempted to continue as follows :-

it

E I° - S .

o °* . _
E; + (I' x E;) + (B, x E)),

L]

Bivr ¢
following the context-free grammar definition of EXP. We could
define an initial projectionEO < El' by maéping all non-r eléments
of (I \x»EO) + (Ei x El) to L and leaving,EO alone ; the remgining
projections, Ei <3'Ei+l,_coﬁld.then be.defined inductively in the
obvious way. Clearly, we can represent all A-expressions in the
inverse limit = but, all we need, in fact, is the direct limit! Thig
doe; not help very much as there are no interesting limit points ini
the imagé’of EXP which“might lead to new equivalences. In fact, theg
semantics produced in this way is no better than the trivial one,
<EXP,1id>. We could improve the situation by defining a‘constructiong
XI.Ei, which is (I x Ei) with a-convertible forms equivalenced

together, thus getting the minimal a-model, (N.B. this a-equivalencé

‘ V {

. : ¢
| | | |
o . P
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on (I x Ei)_is very quickly decidable and, éo, does not really alter
the explicit nature of the construction); We could try to build in
more meaning by defining Ei(Ei)' which is Ei x Ei with all elemenfs
(l,ei) equivalenced and elements (T,ei).equivalenced. This is cert-
ainly ﬁore interesting but, since neither , nor 7 will be in ihe
image of EXP, makes no difference! | |
We are on the wrong track. Referring back to our_analogy‘with

flow-diagrams gives us the guidance we need. We have :-

"loop=free" <> "normal form"

"non-terminating" <«-» "unsolvgple"
Thevfinite lattices in the inverse limit flow-diagram lattice were
constructed to accomodate larger and larger loop-free diagfams.
Therefore, we should build our finite lattices only to accomodate
larger aﬁd larger normal forms. To tailor them thus, we simply
follow the context~free definition of normal forms (0.,4.3). Since
this consists of two equations, we'construct a pair of simﬁltaenous‘
inverse limits, E_ and A_, from :- |

E, :=A = I

o =%
Eypp 1= ALE, + A
Bigp 3= 17+ Ay (By ).

Examples of the sort of representations of -expressions we

hope to get in E_ follow :-

X S KKK K KK KK K KKK K K KK KK e veenen s
xy - <1,¢,xy,xy,xy,xy;xy,xy,xy,xy,xy,xy,xy,.,.......>
D > <L,Ax.y,Xx.y,Xx}ijx.y,Ax.y,lx.y,kx.y,.........>
CAXGXY > <Lyl gl AR XY p AR XY p AR XY AKX XYy AKX e XY e enonnnnad
f(yy) > <L, 1, 8(0) £ (yY) E(YY) s E(YY) s E(YY) v E(YY) reennen>

CAy.£(yy) > <L L LAY E (L) AT E(YY) AT e E (YY) et veneinnnn>
b(rc.dd) + <1,b(1),b(1),b(1) ,b(rc.dd) ,b(Ac.dd) ;. iivennnee>
(Ay.xy) (b) - <l,4,x%b,xb,xb,xb,xb,xb,xb,xb,xb,xb,xb,.........>
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AA > <.L'J.’J.’.L'J.'Oon-y.o.o...-..-....t-ouo..o.oonoooo.)
x(aA) o o<l L XY )XY pX(L) feveveaenennnensesesescancene
Y(£) + <lypl E(L) ,E(E(0)) L, E(E(E(L))) L, E(E(£(E(L)))) 4000 e

Note that we will certainly not have an n-model. In fact, x

and Ay.xy will be incomparable - the same is true for x(Ay.xy) and
XX. Hence, we can immediately deduce that this semantics is not
derivable from the Scott-Dw,D:-models and that it is not continu-
ously derivable from the Scott-P(uw)=-model. Thus, we have a candidaté
for ﬁinimality with respect to Wadsworth's theorem. |

Note,‘also, that expressions are ngturally represented by tﬂe
limit of some of their approximate reductions =~ namely their coor=
dinatés. These coordinates do not prcyide all the approximate red=- >
uctions possible. To get Wadsworth's theorem, which we shall need
to prove "modellship", we have to show that they provide a "dense"
subset of them = i;é. their limit is the same as the limit of all
possible approximate reductions, This is non=-trivial : we have to
delve into the properties of certain "evaluation mechanisms" to
establish it,

Just as syntax does not tell us the whole story about A—calﬁ

culus, neither does semantics, There is also what Wadsworth called

pragmatics, which concerns itself with, amongst other things,

evaluation mechanisms,., These fields of study are not distinct, but
are richly interndependént. In this thesis, we find that we have to:;
go into the pragmatics of )-calculus ("inside-out reductioné“) in |
order to establish a basic property ("modelship") of a semantics

(Ew) that is essentially syntactical in its nature.

”

0.7.28:SUMMARY s ~

We hope that this section on the semantics of A-K-g-n-calculus
has provided sufficient information for the motivation of the con-

struction of the E“° model and, also, fOr'a'framework inkwhichkto
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view it. We summarise the semantics we have discussed by means of

R

the following latticé -

rd

where O is <EXP,id>,

' l is <EXP/(];[Q]->'

2 is <EXP/cnv,[ch]>,j.

3 is <EXP/cnvaNSOL,[cnvaNSOL]>,

|



94

-4 is <EXP/g-n-cnv,[8=-n=-cnvls>,

5 is <EXP/B~n-canINSOL,[B~n-canINSOL]>,

6 is <EXP/B-n-§,[B-n-51>,
7 is <EXP/§,[§1>,

8 is <[ENV' » D'1,07>,
9 is <[ENV » D_1,D>,

10 is <[ENV" + D.1,0">,
11 is <[ENV® = P(u)]1,P>,
12 is <E_,E>,

13 is <EXP/=,[=1>,

14 is <EXP/B=n=-=,[8~n=-=]>,

e

15 is <EXP/cnv,~,[cnv v]15,

16 is <EXP/B-n-cnv,~,[B-n-cnv, ~1>

and 17 is <{*},const>.

In the abovellattice, the relations (7 £ 12 £ 13) will be
proved later in 6.8.3 and (12 < 10,12 < 9) in 7.6.14, The "dotted"
relations (12 < 11 < 13,6 s 8) are only conjectures. All ﬁhe sem=-
antics, excepting {3,5,15,16}, are substitutive. 2bove 1, they are
all a-models; above 2, they are all médels; above 4, they are all
B-n-models; above 3, they all equivalence elements of INSOL; above
12, they allvequivalence the fixed-point combinators (see 4.0.5) !
below 14, they are all normal and solvable, Also, 14 is the max-
imal normal substitutive model and we will show that 12 is the

minimal continuous (= Wadsworth's theorem is true - see section 7.6;

semantics,

-

“0.7.29:POSTSCRIPT s = (Added in print)

There are, of course, many more semantics than we have
discussed here and it should be one aim of computer science
theory to build a comprehensive classification of them all,

" Each new semantics gives us new insights into the subject,



- then the overall procedures, C[A] and C[B], are similarlv related," :

94.1

sometimes in entirely unexpected ways (e.g. 9 and its non—hdrmality
or 12 and inside-out réductions). Further curiosities mright be
uncovered by a study of 8, 2nother worthwhile pursuit micght be

to see how the semantics can cope with the addition of extra
constants and reductions to the X-calculus (e.g. numbers and pairs
and their associated functions).

There are also many other relations between the above 17
semantics to consider. For instance, are they all different? Levy
has pointed out that 7 # 12 : because Af.(ly.fz(yy))(Xy.fz(yy))
and xf.f((xy.fz(yy))(Ay.fz(yy))) are different in 7 but are both
equivalent to Y in 12, In this case, are there any interesting
semantics between 7 and 127 What about between 6 and 14?2?? Are
there any positive relationships omitted? Yeé, thére are! The
diagram on page 93 is not guite a lattice since neither 12u6 nor
14n9 are indicated. However, in as yet unpublished work, Wadsworth
and J.M,E.Hyland (Christ Church, Oxford) heve shown, independently,’
that 9 is the substitutive restriction of the maximal solvable
semantics, <{1,T},(Xe ¢ EXP. e ¢ SOL + T1,1) > = i,e, "9 is the
maximal solvable substitutive semantics™, although thev do not

quite put it like that! Thus, 14 < 9, Also, Hyland has proved :

e sny s

Wadsworth's theorem in 11 (i.e. "11 is continuous"), and, so, we
will have 12 < 11 < 14,
The process of taking the substitutive restrictions and

substitutive (transitive) closures of suitably chosen elementary

SR g Sy S

non~substitutive semantics seems to yield ocuite powerful results,

-

Further, if we start with a (8-n-)model, the process is sure to
yield a (B-n-)mwodel, ‘We also get very pleasing computational
analogies : "if two procecdures, 2 and B, are related in some way

and we enclose them, in turn, within any larger procedure, C[ 1,
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It seems, therefore, hichly inétructive to pursue this appfdach
and we note that such characterisations of 11 and 12 have been
made by Hyland., We wonder abkout the substitutive restrictions of
3 and 5, Finally, in view of the above characterisation of 9, we
may also be wonéering what is the maximal normal suvbstitutive
serantics - i.e. the substitutive restriction of the maximal
normal semantics, <{T,t},(Ae € EXP.e has normal form - T,1)>,

For a variety of obvious reasons, it is a (8=n=)model and, so,

by 0.7;11(xi), it must be 14! Hence, we have a simpler character-
isation of 14 together with a strengthened Morris' theorem to the

effeét that "14 is the maximal normal substitutive semantics®.
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1:THE FINITE LATTICES, En AND An.

1.0:Constructing the Base:-

1.0.0:DEF:~

Let I” be the countable simple atomic lattice :=-

T

L3N] [N A A A A A N I

Let I be the set of "atoms", I“\{T,1}. (We shall use symbols like
a,b,c,x,y,z,xl,xz}...etc... for elements of I - the cohtext in

which they are used preventing confusion with the variables of EXP.)

1.0.1:LEMMA:~
| I is a complete continuous lattice of finite dépth, 3, with
ail its elements isolated.
Proof:-
-Clearly, it has a finite depth of 3.

~;, by 0.6.13 and 0.6.16, we have the result.

*

1.0.2:DEF:~

-

Let x,y € I. Then,
S Ix/yl: 17 ——>1°
i, if y si}

i ."—"‘—"‘9 .
X, ify=1
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1.0.3:LEMMA:~

(i) [x/x] is the identity map on I”.
(ii) [x/yli = {I} <= i = {I}
(iii) (a- #d) (b 2¢c,d) = ([a/bl and [c/d] commute).
(iv) [x/y] is monotone and so continuous.
Proof:- |
-Straightforward checking of all possible caées.
-In part (iv), monotone => continuous, by 0.6.13, 0.6.16 and 1.0.1.

+

1.0.4:DEF:-

Let x € I. Then, x is NOT FREE INv € I if x #vy.

1l O.5:LEMMA:~-

-

(i) x is not free in T,L € I”°.

(ii) (x-#2y) = (y is not free in [x/ylz).

(iii) (y is not free in z € I”) => ([x/y]é = z).

(iv) (x #a)~(x is not free in z) = (k is not free in [a/blz).
(v) (y is not free in w) = ([x/ylly/zlw = [x/z1w).

(vi) (x is not freevin Y:,2) = (x is not free in y_z,y,2).

(vii) Let x,a € I. Then,

{xuz} {z} {Ex/a]y,d [x/a]z}

[x/al oy : .

Y2 e [x/aly - [x/alz

Further, if x is not free in y,z € I, there is equality.
(viii) ]|{x|x is free in z € I°}| =< 1,
Proof:- |

()4 (ii), (iii) and (iv) - Trivial.

(v) and (vi) -Straightforward checking of all possible cases.

(vii) -First part is a consequence of l.O.B(iv).

~The equality part is more straightforward checking.

(viii) -By "x is free" we mean "not(x is not free)".

-Clearly, |{x|x is free in z € I“}| = 0 or 1.

t
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1.0.6:DEF:— (Base Lattices)

=I".

Let EO = AO :

1.0.7:REMARK: -

We are trying to construct lattices of normal forms. A syntax
for them is given in 0.4.3. In following these rules, we find we
have to construct two sequences of lattices in parallel. Hence,
the need fot two base lattices,

We need all of the following induction hypothesis to cérry it
through.

1.0.8:DEF;:~ (Induction Hypothesis - )

_G(i) g (Ei,Ai are completé continuous lattices of finite
depth with all £heir elements isolated)
& ([x/x] is the identity function on Ei’Ai)
& ((a- #2d).(b =#c,d) = ([a/bl and [c/d] commute))
& ([x/y] is a continuous function on Ei’Ai)
d‘((x~:£y) = (y.is not free in [x/y]n) where n «¢ Ei,Ai))
& ([x/yln = {I} <= 9 = {I}, ¥n e E,,A,)
&,(x ig not free in {I in Ei,Ai)
& ((y is not free in n ¢ Ei,Ai) => ([k/y]n = 1)
& ((x #za).(x is not‘free in n e Ei'Ai) => (x is not free in
N _ [a/bIn))
& ((y is not free in n ¢ Ei,Ai) => ([x/y1ly/2In = [x/21n))

& ((x is not free in n,n” « Ei,Ai) => (x 1is not free in n w N’

N0t e B LAL))

T n.,n7| |=2| |[x/aln _, [x/aln”
& ([x/al ‘ ). (if x is not free in n,n”",

In

N gqn” [x/aln  [x/aln”
we have equality)

& (I{xlx is free in n ¢ E;,A }| < “) .
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1.0.9:THEOREM: -

G(0).,
Proof:=-

-By 1.0.1,1.0.3 and 1.0.5.

l.1:Constructing the Rest:-

1.1.0:DEF:=-

Suppose G(i), for some i 2 O. Then, TRy is a relation on

+

I x E, such that :-

i
(x,€) a;,, (y,n) if (there exists z e I)(z is not free in ¢,n)
([z/x]e = [z/y]ﬁ).

1.1.1:REMARK:~

The ai's are to model the a-conversion of i-calculus.

1.1.2:LEMMA:~

(x,€) a1 (¥,m) <e~> Wz € I)([z/xJe = [z/yIn).

Proof:-
(=>) -We have z € I and not free in e,n ¢ Ei such that [z/x]le =
(z/yIn. |
~-.., for any z” eI, [z*/x]e = [2°/2z1[z/x]e, by G(i).
= [z°/2][z/y]In
= [z°/yIn, by G(1).
(<=) -|{z]|z is free in ¢ or n}| < |{z]z is free in ¢}]
) + |{z]z is free in n}
. < w, by G(i).
-But |I] = » and so |{2|z is not free in e and n}| > O.

-Hence, there exists z ¢ I not free in ¢,n.

=-We always had [z/xle = [z2/yIn.
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1.1.3:REMARK:~

The above characterisation makes d. easier to work with,

i+l
1.1.4:COR:~

(1) (x,7) ai'*‘l

(1i) (y is not free in e) => ((x,¢) % (y.ly/x1e).

(y,7) and (x,1) @, (y,L1).

+1
Proof:—-

~Then [z/x]{}} = {I} = [z/y]{I}, by G(i).

~Hence, the result, by 1.1.2.

(ii) ~Let z € I.

~Then, [z/x]e = [z/y1ly/x]e, by G(i).

-Hence, the result, by 1.1.2,

1.1.5:REMARK: -

Part (ii) of the above corollary models the a-conversion
rule of 0.3.6(1).

1.1.6:LEMMA:~

TRy is an equivalence relation on I x Ei‘

i+
Proof:-

-Clear, using 1.1.2,

1.1.7:NOTATION:-

We Write_lI.Ei for the set of equivalence classes,
| (T xEy) /ey |
Also, we write Ax.e for the equivalence class, [(x,e)1.

1.1.8:LEMMA:~ .

Let x #y €I, The'n,

[x/yIn)
[y/x1e).

Ax.e = Ay.n <= (x is not free in n).(e

i

<=> (y 1is not free in €).(n

Proof:-




Pe . ' .,
(*fA(w>) -Suppose AX.e = AY.n. o ,‘,/]
" ~Then, [x/yIn = [x/xJe, by 1.1.2. s
o = g, ’bY @(i). | - e : } o

3 ~But. Y is not free in [x/yIn, by G(1). .

 =Similarly, [y/xle = n and x is not free in n.

‘ k *c1aar1y, it is a partial ordering, by lemmas 1.1.10 and 1 1 2 (for
‘;s;antidﬁymmetry)‘\ |

“;0 Yy is not free in e.

(<= ~Let 2z €¢I, ~‘kf : f§ i ii"
~Then, [z/xlc = [2/x10x/y In = cz/y:m. by etd)s .
‘~:, A, = Ay.n, by 1 1.2, L ;

31 1.9:mr;- M) | o R
‘£ is a relation on AI. By such that i- -
ﬂlx.ejs Ay.n if (thara exists z ¢ I)(z is not free in e,ﬁ)
([z2/x]e & [z/y]n).
1.1.10:1EMMAs - X |
COx.e = Ayan) <= (Vz e I)([z/x]e = [2/yIn).
Proofs~ ‘ | |

~Same as 1.1.2, using monotonicity of ,[2/2"1, bY'g(in

N [l L .
% *

1.1 11:LEMMA:- »‘

fﬂnet Ax.e £ Ay n and AX“.e” = Ax.e and Ay“.n” = AYene ‘fijff' o
Q*Let 2 € I. Then, [z/x* le” = [z/x1e, by 1.1.2, /0o
: ' N -

5 is a. well~defined partial ordering on xx.mi

e [z/yln, by 1.1.10,
= [z/y*In*, by 1.1.2.
-Hence, = is well-defiried, by 1.1.10.

e 5 e . e - + . .
&&uh“uﬁn-\dunhhad—uum“ﬁluwuamn&ﬁmuﬂnﬁnﬁﬁu ﬁ‘ﬁ_“““.ﬂv‘”&ﬁ“‘&ﬁﬁ-“hﬂ&ﬁ‘dw&“ﬂﬂ““‘“ﬁﬂﬁ‘*““m ;

(*) To prove & Is well=defined directly, proeeed as in 1, t n éxceptlﬁg that

Al R L

5 x mu&t be chosen not free inc, €%, n, n”.
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1.1.12:LEMMA: -

(i) XX.e = AX.n <= € = n.

(ii) AX.e & AX.n <=> ¢

in
e
.

Proof:-
-Trivial, by 1.1.2,1.1.10 and [z/z’]kis monotonic, by G(i). -
| T

1.1.13:THEOREM:~

<AI.Ei,E> is a lattice, with :-
Ax.e ., Ay.n = iz.([z/xTe  [2/y]1n)
and AX.€ ¢ AY.n = Az.([z/x]e o [2/yIn),
where z‘e I and is not free in g,n e Ei'
Proof:~
-Claim: the choice of z is immaterial :-
-Let z,2z° be not free in e,n and z-=22z2".
~Then, z° is not free in [z/x]e,[z/y]ﬁ, by‘G(i).
-~y [27/21([z/x]e o [2/y]0)
= [z°/z1lz/x]e ., [2°/21[2z/y1In, by G(;).
= [z°/x]e ., [z’/y]n; by G(i).
-5, Az ([z/xle , [z/yIn) = Aaz”.([z"/xJe o, [z°/yIn), by 1.1.8,
since z~ is not free in [z /xle ., [zw/y]n, by G(i).

-Now, let z° ¢ I.

-Then, [z'/x]e,[z’/y]n_

m

[z°/x]e  [2°/y]In

[z°/z1[z/x]e , [2°/21[2/yIn, by G(i).
[z”/2z]1([z/x1e , [z/yIn), by G(i).
=%, ax.e,Ay.n = Az.([z/x]e  [2/yIn), by 1.1.10.

mn

-Suppose Ax.e,Ay.n £ Ad.S.

-By G(i), we can choose z° ¢ I such that z“ is not free‘in e,n,8
'e:Ei and z© = z. -

~Then, z~ is not free in [z/x]e,[z/y]n, by G(i).

-But , [2” /dls 2 [z°/x]¢e,[2"/yIn, by 1.1.10.
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1Y)

-So, [z~°/d1§ [z°/x]e o [27/y]n
[z°/z1[z/x]e , [2°/21(2/v]In, by G(i).

[z°/z1([z/x1¢ L,tz/y]n), by G(i).

-But, also, we have z” not free in [z/x]e ., [2/yIn, by G(i).

-.r 2.8 2 az.([z/x]e ., [2/yIn), by definition 1.1.9.
~l, AX.e . Ay.n = Az. ([z/x1e o [2/yIn).
~Similarly, Ax.e  Ay.n = Az.([z/x]e  [2/y1n).

*

1.1.14:COR:-

(1) Ax.e .4 Axon AxX. (€ 1y n)
and AX.e m AX.n = AX.(c mn).
(ii) The T and 1 of the lattice are given by Ax.T and Ax..,
. respectively. \
Proof:-

(i) -Let z € I and be not free in ¢,n. Also, let z: #x.

-Then, Ax.e ., AX.n Az. ([z/x]e ., [2/xIn), by 1.1.13.
= xz.[lz/x1(e , n), by G(i).
= AX.(e . yn), by 1.1.8, since z is not free in
€ N, by G(1).
-Similarly, AxX.€ — AX.n = AX.(€ ¢ n).
(ii) - Let Ay.n‘g_kI.Ei and z € I,
-Then, [z/x]L =1 & [z2/yIn € T = [2/x]T, by G(i).
~S0, Ax.l1 € ily.n £ Ax.T, by 1.1.10.
~Hence, the result (N.B. ix.L = Ay.lL and Ax.T = Ay.T, by 1.1.4(1)).
. *.

1,1,15:LEMMA:~- - .

The lattice, <AI.Ei,E>, has finite depth.
Proof:-
«ﬁEi has finite depth - say n - by G(i). .

--Let.().xo.e0 -3 Axl.el E tirene ? Axn,en) be a chain in the lattice.
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-Now, |{z|z is free in €gr€preverrere ]

= | v {z]z is free in,ai}] < =, by G(i).
i=0
-y {z|z is not free in eo,el,......,gn}-:tg. Choose such a z.

-Then, by 1.1.10, ([z/xO]e0 5 [z/xllel € teeone E [z/xﬁ]en) is a
chain in Ei;

-So, [z/xj]sj = [z/x ]€j+l' for some O < j < n.

j+1
-And, kxj.ej = ij+1‘€j+l' by definition 1.1l.0.
has finite depth.

~Thus, AI.E;

1.1.16:COR:~

<XI.Ei,E> is a complete continuous countable lattice with a11§
its elements isolated.

Proof:-
—lAI.EiI < |1 x Eil = =, by G(1i).

-The rest is due to theorem 0.6.13.

1.1.17:DEF:~

E :m_XI.Ei + A,.

i+l i

1.1.18:LEMMA:~-

E is a countable complete continuous lattice of finite

i+l
depth with all its elements isolated.

- Proof:- |
~True about Ai' by G(i).‘ . ' : §
-True about_AI.Ei, by 1.1.16. |

© <., true about their direct sum, Ej,1’ by 0.6.18.
. B +

1.1.19:REMARK:~-

We have shown how to construct E;,; 9iven E, and A . Next,

but

- we construct Ai+l using Ei+l‘and Ai. We could have used Ei

Ei+1.makes the construction more efficient.

e
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1.1.20:DEF;:~

~ is a relation on Ai x Ei+1 such that -

(a,€) ~ (a7,€7) if (a =7 = a7) (a =1

(e

a’)

€)).

y((a =10a%)

1.1.21:LEMMA:~
~ is an equivalence relatlon on Ai x Ei+1'
Proof:-

-Trivial.

1.1.22:NOTATION:—

We write Ai(Ei+1) for the set of equivalence classes,
(By X Eypq)/~e |
Alsq, we write a(e) for the equivalence class, [(a,e)].

1.1.23:REMARK:~

The construction Ai(Ei+l) is going to be used to represent
simple application of approximate normal forms. We factor out the
equivalence, ~, so that when the operétor is "under-" or "over-
defined”, then so is the result,

1.1.24:DEF:~

£ is a relatiqn on Ai(Ei+l) such that -
a(e) £ a”(e”) if (a = 1) (a” =7T) ((a = a”), (e 5 %)),

. 1.1.25:LEMMA:~

€ is a well-defined partial oraering on Ai(Ei+l).

Proof:-
-Straightforward checking of all possible cases.

. *

" 1.1.26: THEQOREM: ~

<Ai(Ei+l),5> is a lattice, with :-
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a’(e”), if a = 1

a(e) o a”(e”) ale), if o~ = 1 ‘ .

(e a’)(e e, otherwise

and,
a;(e’), if a=71 ]
a(e) ma”(e”) =qale), if " =7 d e
(¢ b a”) (e e”), otherwise]
Proof:~

-Consider a(e) and a”(e7).
-Suppose & = 1 -
4 ~Then, a(€),a”(e”) € a”(e”).
~-If a(e),a"(e”) £ B(n), then a”(e”) £ B(n).
-l, a(e) L, a"(e”) = a”(e”).
~Similarly, if a” = L, then a(e) ,, a”(e”) = a(e).
~-Suppose a # 1L #a” - -
~Then, a(e),a’(e’) & (a a’) (e €’). |
~If a(e),2”(e”) & B(n), then either 8 = T - in which case,
(o ya%) (e 4e”) E B(n), or a,a” £ B and €, € n - in which case,

P

¢a,,a” = B,e .4,€° 2 n and so (¢ wa”) (e w e”)

B(n).
_‘:00 G(&) ua‘(E’) = ((l uu') (8 w3 E’).
-Similarly, for the greatest iower bounds.

¥

1.1.27:LEMMA:~

The lattice, <Ai(Ei+l),E> has finite depth.
Proof:-

-A; and E i have finite depth - say n and m respectively - by ¢ (i)

and 1.1.18,

~Let (aO(eo) L al(al) E Ltieaes E 2(€n+m-2)) be a chain.

o
n+m-
- =Suppose the inequalities are all strict :-

= T then o 2 T,

-Tf ay = 1 then a n+m-3

#21l, If o

1 n+m-2
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-Tn either or neither or both of the above cases, we have :-
ay € @) T seeenn R Ai

and ec E El E L B B B B 2 E in E

h+m=~2 i+l*

~-Since A, has finite depth of n, (m~-1) of the ai'é must_be

i
the same.

-8imilarly, (n-1) of the ei's are equal.,

-But, (m-1) + (n=-1) = min-2 > m+n-1, the number of elements
in the original chain - i.e. it must overlap somewhere.

~S0, there exists j such that uj = aj+l and ej = £j+l’

-., there exists j such that aj(ej) = “j+l(€j+l) - g(.
-Hence the lattice has finite depth (= n+m-2).

1.1.28:COR:~

<Ai(Ei+l)'E> is a complete continuous countable lattice with
all its elements isolated. “ |
Proof:-

-2, B ] s [a; x B, 4] ==, by G(1) and 1.1.18.

-The rest is due to theorem 0.6.13.

1.1.29:DEP:~

Ay 3= T+ 2(By ).
1.1.30:LEMMAz~-

‘Ai+1 is a continuous countable complete lattice of finite
depth with all its elements isolated.

" . Proof:-

':True_about I, by 1.0.1.

~True about A, (E by 1.1.28.

141) 7 o
-., true about their direct sum, A0 by 0.6.18.

+ .
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1.2:Carrying through the Induction:=-

" 1.2.0:REMARK:=~

We have constructed Ei+l and Ai+l from Ei and Ai' but we still
have to complete the induction hypothesis, G(i+l). For this, we
must define the simple "change of variables" operator, [x/y], and

'
what it means tg Ps;"n9tv£ree in" over E, , and A,y ;.

1.2.1;DEF:~

Let x,y € I. Then,
Lx/y1 ¢ By .y ——> By

Az.si Aw.[x/y][w/z]ei
F‘“€> ’
4 [x/y]ai
. Also,

where w #x, w #y and w is not free in &

Lx/yd : By —> 27 -
Z [x/y1z
'—-—} L ]
ai(€i+l) [x/y]ai([x/y]ei+l)

We are using subscripts to indicate to which lattice an

1.2.2:REMARK:~

element belongs. Thus, ai(ei+l)'e Ai(Ei+l) c Ai+l' where qi'e.Ai

and €541 € Eju1- Also, strictly speaking, the functions [x/y]

+ i
should be subscripted to indicate on which lattice they operate. ;

We have omitted them in the hope that the context makes things
clear - e.g. :-

[x/y]E a; = [x/y]A a; €A, ©E

s 410
141 i i+l

. FX/YJA1+12 = [x/y]IZ'e I
and [x/y]Ai+lai(ei+1) = [x/y]Aiai([x/y]Ei+lei+l)‘e Ai(Ei+l) c Ai+l

1.2.3:LEMMA: -

The above maps are well-defined and doubly strict.

Ed

Proof:-

~The least obvious case is to show that [x/y](kz.ai) is well-defines
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when T,1 #Xz.e; e AL.E; C.Ei¥l‘
~Claim: the choice of w in definition 1.2.1 does not matter :-‘
-Let w,w” #Xx,y and w,w” be not free in €y
-Also, suppose W' #W”, |
~Then, w is not free in'ei,[w‘/z]ei,[x/y][w’/z]ai, by G(i).
[x/y][w/w’][w’/z]ei, by G(i).
[x/y][w/z]ei, by G(i).

it

-But, [w/w’][x/y][w’/z]ei

!

—:, Aw.[x/y]tw/z]ei = Aw’.[x/y][w‘/z]ei, by 1.1.8.
-Claim: the choice of representative does not matter :-

~Let xz.si = Az ‘Ei and z =#2z2”°,

-Then, 2z~ is not free in €y and [z’/z]ei = e{ e by 1.1.8.

-Choose w- #X,y,2”° and not free in €.

~Then, w is not free in [z’/z]ei, by G(i).

-or [x/y1(A27.€]) [x/y1(Az".[z"/z]¢,)

Aw.[x/y][w/z’][z’/é]ei

fl

.Aw.[x/y][w/z]ei, by G(i).

[x/y](kz.ei).
-To complete the proof, check that [x/y] is doubly strict on the

various representations of T and 1 in Ei+1 and Ai+l -i.e. {TAi,

AZoTo, JAZ70Tr peeeeeed,{l, 2200, ,AZ7.0, ,eeaae {7 L, T, (&, ..),
Ei Ei : Ai Ei Ei I Ai i+1

(ei:’_l)'o-oouo} and {-LI;'-!-A (ei"‘l)'lAi(ej’_'*‘l),.....‘}‘

1
¢

.
Ay

1.2.4:LEMMA:~

(1) Ix/y1Qy.e) = Y. €.
(11) (z-=2x,y) = ([x/y](lz.ei) zkxz.[x/yjei),
. Proof:- .
(i) ~Choose w :fi,y'and not free in € -
4Then, [x/y](ly.ei) = Aw.[x/y]iw/y]ei.
- -But, y is not free in [w/y]ei, by G(i).

—So,}w.[x/y][w/y]ei = Aw.[w/y]ei, by G(i).
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= Ay.e;, by 1.1.8.

(ii) ~Choose w = x,y and not free in,si, again.

—Theh, [x/y](lz.ei) Aw.[x/y][w/z]ei

v=,kw.[w/z][x/y]ei, by G (i).

Az.{x/y]ei, by 1.1.8, since w is not free
in [x/y1e;, by G(i). |

+

1.2.5:LEMMA:~

[x/%x] is the identity function on Ei+1'Ai+l'

Proof:=-

lz.ei Aw.[x/x][w/z]si
-[x/x] =
' %y [x/x]ai

Xw.[w/z]ei
= r by 6(1).

@5

) Az.ei, by 1.1.8.
Gi '
z | [x/x]z
-[x/%x] = _
| . (e ,q) [x/x]e; ([x/x]ey 4) )

z, by 1.0.3(i). }
ai(ei+l), by ¢(i) and above.

E
1.2.6:LEMMA:~ ,
=d7T = = 4T .
[x/yIn = {1} <=>n = {1}' for n e.Ei+l'Ai+l'
Proof:-
“[x/y1(Az.¢;) =-{§} <= Aw.[x/y][w/z]e; = {I}

s=> [x/yl[w/z]e; = 97, by 1.1.14(11).
<=> [w/z]e ={ﬂ:bYGﬁL
T
R bY‘G(i).
i}, by.1.1.14(ii).

-EX/y]ai = {I}'<“5 ay = {I}, by ¢(i).

< =0 [ ==

s
Pt and
T d

<=> AZ,E, =
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-[x/ylz = {I} <=> Z = {I},by 1.0.3(ii).

—[x/y]ai(ei+l) = {I} <=> [x/y]di([x/y]si+l) = {I} -
<=> [x/yJai = {I}, by definition 1.1.24.
<= a, = {I}, by G(i).

{T}, by definition 1.1.24,

L
&

< oy leggg) =

1.2.7:LEMMA: -

Let a,b,c,d €¢I and a #d and b # ¢,d. Then, [a/b] and [c/d]
commute on Ei+l'Ai+l’
Proof:- -
-Choose w' # a,b,c,d and not free in €y o
-Choose w”  # a,b,c,d,w and not free in €.
-Then, w” is not free in [c/d][w/z]ai,[a/b][w/z]ei; by G(1).
' Az.ei Aw.[c/d][w/z]si
~-S0, [a/bllc/dl = [a/b]
oy [c/d]ai '
Aw',[a/b][w’/w][c/d][w/z]si
[a/b][c/d]osi
Aw’.[w’/w][a/b][c/d][w/z]ei
» by G(i).
L'c/d][a/b]ai
‘ ,Aw’.[w’/w][c/d][a/b][w/z]ei, by G(i).
~ |tesatta/mia,

{Aw’.[c/d][w’/w][a/b][w/z]ei, by G(i).}

-
=

[c/d][a/b]o:i

lw.[a/b][w/z]ei
N [cr/al
[a/b]ui

v Xz.ei
[c/d1la/b] .
%4

‘ z [c/dlz '
~Also, [a/blle/dl , = [a/bl
. ai(ei"!"l) [C/djai([C/d] €i+l)

i
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{[a/b][c/d]z }
[a/b][c/d]ai([a/b][c/d]ei+l)

[c/d1la/blz, by 1.0.3(iii). K
[c/d][a/b]ai([c/d][a/b]si+l), by G(i) and above.

I

Z
[e/alla/b]] }.
oy (eg4q)

1.2.8:LEMMA:—

[x/y] is monotonic, and so,continuous, on Ei+1'Ai+l’

Proof:~
-Let Xa.e & Ab.n, where a,b € I and ¢,n « Ei'

-Choose w' # x,y and not free in e¢,n.

~Then, [w/ale & [w/blIn.

-8o0, [x/yllw/ale = [x/yllw/bln, since [x/y] ié monotonic, by
G(1). ) |

-, [x/y1(ra.¢)

Aaw.[x/y1lw/ale
Aw.[x/y1lw/ble, by 1.1.12(ii).

n

—If'ai € a{, then [x/y]ai € [x/y]ai, by G(i).

-If z £ z°, then [x/ylz = [x/ylz”, by 1.0.3(iv).

~Let a, (e; ) = aj(efyg).
~-If @, = L1 or a£‘= T, then the result is trivial, by 1.2.6.
-If not, then a; € ai and €i41 €£+l’

-Then, [x/y]ai(ei+l) = [x/y]ai([x/y]si+l)

n

[x/y]ai([x/y]s{+l); by G(i) and above.
. = [X/y3(1£(€£+1)0
- [x/y] is monotonic on Ei+1'Ai+1 and so continuous, by 0.6.13,

1.1.18 and 1.1.30.
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1.2.9:DEF:-
x is NOT FREE IN e Eypq if 3=
%
either x = y or (x-#y),(x is not free in e, €E;)

x is not free in a; € Ai

Z
x is NOT FREE IN <. } € i+l if 2~
i+l)

@y (e
X 1is not free in z ¢ I~
either (o, = J.)V(ai =T) ggi(x is not free in a; e A,

A(x is not free in ¢, e E

: i+l 1+l)
s L1020 10:LEMMA = 0 e et BT eS e R0 T S et o Ry 6D L

The above definition ie well-defined ena x is not free in 71,1
EierrPisne

Proof:-
~-Clearly, x is not free in any of the representations of T-aﬁd L
in Ei+l and Ai+1 (see end of proof of 1.2.3 for list of these), . g
-The only problem is when x is not free in Ay.ei. | |
~Suppose Ay. ey = Az. Ny where y- # z. |
‘-Claim~ x is not free in Az. ni':-

-If x = z, trivial.

~-Suppose x  # 2. We must show x is not free in ny; € Ei'

-Now, z is not free in e; and ny = [z/y]ei; by 1.1.8.

-So, if x # y, then trivial, by G(i).

-

and so, again, trivial,

-If x #y, then x is ﬁot free in €y

by G(1). |
-y the definition is well-defined.

rd

1.2. 11:LEMMA: -

- Let x- 2y € I. Then, y is not free in [x/y]e + € Ei+1 and

"y is not free in [x/y]u € A

i+l i+l*
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Proof:~-

-Suppose €441

-Choose w- # X,y and not free in €y

= lZ.ei.

-Then, [x/y](xz.ei) = Aw.[x/y][w/z]ei.

-But, y is not free in [x/y][w/z]si, by G(i), since x- zy.

~.v Y is not free in XW.[x/y][w/z]ei, since vy =z w.
~If Ei41 = @47 then y is not free in [x/yjai, by G(i).

“If oy

-Suppose a; ., = ai(€i+l)‘

i

z, then y is not free in [x/yJ]z, by 1.0.5(ii).

-Now, y is not free in [x/y]ai, by G(i).
-And, y is not free in [x/y]ei+l, by above.

-., ¥ is not-free in [x/ylay ([x/yTe; q) = [x/yTay (eg 4)

+
1.2.12:LEMMA:~
€ € €
(y is not free in{ i+1}) = ([x/y]{ i+l}= { i+l}).
*1+1 %1+l %141
Proof:-
 -Suppose e, ; = AZ.€.

-If y = z, then [x/y](ky.ei) = Ay.ei), by 1.2.4(i).
-If y- =22, then y is not free in €y € Ei'
-Choose w- #x,y,2 and not free in €y
-Now, vy is not free in [w/z]si, by G(i).

-So, [x/y1(Az.e;) = Aw.[x/y1lw/z]e;

1]

.Aw.[w/z]ei, by G(1).
= )\z.ei, by 1;1080

~If €4, = oy, then.[x/yla; = a;, by G(i).

-If « z, then [x/ylz = 2z, by 1.0.5(iii).

i+1
-Suppose a; ., = a;(e;,4).

T : T
-If a; = {l}, then %441 ='{l} and -so x/yai+l = “i+1'by 1.2.6

-If not, then y is not free in @yr€5490
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-So, [x/ylag(ey ) = [x/ylog ([x/yle; 1)
by G(i) and above.

t

= a;(e5 )y

1.2,13:LEMMA:~

Let x*#2a € I. Then,

€

€, :
(x is not free in{ l+l}) => (x is not free in [a/b]{ l+1}).
*i+1 %141
Proof:—
~Suppose €41 = Ay.ai.
-Choose w - #a,b and not free in € o
~Then, Ay.e; = . lw/yJe;, by 1.1.4(i1).
-And, [a/b](xy.si) =,Aw.[a/b][w/y]ei.
-Since x is not free in €5 417 either x = w - in which case
result is trivial - or (x #w),(x is not free in [w/yJe;) - in

which case x is not free in [a/b][w/y]ei, by G(i), since x #a,

and so, again, we have the result,

-If‘€i+l = 0, we have the result by G(i).
-If o, = z, we have the result by 1.0.5(iv).,
-Suppose @y = ai(ei+i).
-I1f @il = {I ;, we have the result by 1.2.6 and 1.2.10.

-If not, then x is not free in A r€54qe

-Thus, x is not free in [a/b]ai,[a/b]ei+l

-S0, X is not free in {a/b]ai([a/b]ei+l) = [a/b]ai(si+l).

+

1.2.14:LEMMA: -
o | €i+1 | €i+1 €i+1
(x is not free in Yy = ([z/x]lx/y] = [z/y]
| B G B 5 1 *1+1 *1+1
Proof:-

- =Assume z # x #y -~ otherwise trivial, by 1.2.5.

-Suppose €41 = Aa.si.

» by G(i) and above.

}’“
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-Assume, without loss‘of generality, that x #a - since, if
X = a, choose a“ such that x - #a” and a” is not free in €5 and
work with Aa‘.[a’/a]ei, by 1.1.8. So, x is not free in €4

-Choose w,w” ¢ I such that w zw~” and w,w’ 2x,y,2 and w,w”

are not free in €y e

~Then, [z/x1[x/y](Aa. ¢ [z/x](lw.[x/y][w/a]si)

1)
= Aw’.[z/x][w’/w][x/y][w/a]ei, since

w” is not free in [x/y][w/a]si, by G(i).

i

lw’.[w’/w][z/x][x/y]EW/a]ei, by G(iﬁ

Aw. [z/x][x/y][w/a]ei, by 1.1.8,
since w” is not free in [z/x][x/y][w/ajei, by G(i).

= Aw.[z/y][w/ajei, by ¢(i), since x
is not free in [w/a]ei,‘by G(i). |

= [z/y](la.ei).
-If Eipl = @y WE have the result by G(i).
-If A 41 = @» we have the result by 1.0.5(v),

-Suppose @ 4y = ai(ei+l). |
’.—If a, = {I}, then the result is trivial, by 1.2.6.
-If not, then x is not free in Gy r€40q0
-So, [z/x][x/y]ai(si+l) = [z/x][x/y]ai([z/x][x/y]ei+l)

= [z/y]ai([z/y]ei+l), by ¢(i) and

above.
1.2.15:LEMMA: -
' £ €., !
(x is not free in { i+1’ i+l}) = §
“ ®1+17% 41 |

)

. (x is not free in {
. ‘ ) a

€141 w Ei4178441 M g:{ﬁul}
141 @ OE417%841 T Oy

Proof:-

S
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d
~I1f €i41 € AL.Ey and ef 4 € A;y Or vice-versa, then €i+l{ } €i+l

~

i

{T}, and in either case x is not free, by 1.2.10.
-Similarly, if “i+l'a£+l are in different parts of Ai+l' the resulg

is trivial.
- suppose they are always in the same half of the lattice sum,
-Suppose €41 = Aa.e and e£+1 = Ab.n. |
-As in the proof of the last lemma, we may assume, w.l.0.g., -
that x- #a,b and, so, x is not free in ¢,n.
-Then, Aa.e . Ab.n = ix.([x/ale ., [x/bln), by theorem 1.1.13,
and in which x is not free,
-Similarly, for the greatest lower bound.
-If ¢ = a, and €£+l = a{, we have the result by G(i).

i+l

-If G4 = @ and @i = a“, we have the result by 1.0.5(vi).

-Suppose a,  ; = a(B) and af , = v(8).

il

-If o = 1, then a(B)  Y(8) = vy(§), in which x is not free.

ot 1 AR 5 1 5 1 50 iy e b

and "o LU L, " " x " n no
-If a =T, then " ., " = T., " " ox " "

and " M " o=y(8), " * x " " 0,
-If y = 1, then " s " = q(B), " " x " n n :

and " e "o L, " n x " " "
-If vy = 1, then "o "o T, " " x " on "

and " " = a(B), " " X o "o,

-If none of these, then x is not free in «,8,v,8.
-Then, x is not free in (a _, ¥),(a ¢ ¥) (8 1y 8),(B  8)y by

G(i)‘and above,

-So, x is not free dn (o, ) (B o S),(a nY)(B M S)
= a(B) w3 Y(8),a(B) n Y{8).

F
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1.2.16:LEMMA:~

a 4

(x is not free in {
i+if %41

ei+l'e{+1})

®i41 0 %5417% 41 P %4
i {[x/y]ei+l o Dx/y el o Tx/yley g ™ [x/y]e§_+l}
[x/y]ai+l‘# [x/y]ai+l,[x/y]ai+l r;[x/Y]ai+i

(EX/Y]{81+1 o E{417841 O s_{+1}

Proof:-
-As in the proof of the last lemma, we may assume, w.l.o.g., that
Ei+l’€£+l’ai+l and a£+l are in the same halves of their respective%
lattice sums - otherwise we are operating on {I}'and so the resulti
is tri?ial,'by 1.2,.6.
-Suppose €141 = Aa, e and €£+l = Ab.n.
-Again, we may assume, w.l.o.g., that a-#x #b, so that x isé
not free in g,n. |
-Choose w € I such that w is not free in e,n and w- ¢x,y.'
(N.B. it is always possible to‘make such a choice since I has an
infinite number of elements and we are excluding only a finite
nuﬁﬁer - the "free" variables of € and n - by G(1i).)
-Then, [x/y1(Xa.c¢) ;J[x/y](lb.n)
(xw.[x/y][w/a]e) s (AW, [x/y1Ilw/bIn)
aw. (Ix/yllw/ale oy [x/y1lw/bIn), by 1.1.14(1).

Aw.([x/y]([w/a]s w [w/bln)), by G(i), since x is not
free in [w/ale,[w/bln, by G(i).
. = [x/yI1aw. ([w/ale , [w/bIn), by 1.2.4(ii).
= [x/yl(Aa.e o, Ab.n),
-Similarly, for the greatest lower bound.

-If €41 = ai and e£+1 = mi, we have the result by G(i).

~If e, ,, =a and o, , = a”, we have the result by 1.0.5(vii),

-Suppose a, ; = a(Q) and af , = v(8).
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-It is trivial to check that the result holds when a,y = T, i
~0Otherwise, x is not fiee in d,B,Y,6.

-So, [x/y1(a(B) ., v(8)) x/y o o v) (B o 6)

x/y e o VI (X/YIHB u 8))

(x/yle o /Y1) (X/Y 1B w [x/¥18),

il

by G(i) and above.

[x/y1a([x/y18) o [x/y1y([x/y18),
by:1.1.26, since [x/yla = .1-=[x/yly, by 1.2.6.
= [x/yla(B) o, [x/¥Iv(8).
~Similarly, for the greatest lower bound.
~-N.B, if x were free originally, we would have the inequalities

of G(i+l) as a result of the monotonicity of [x/y], proved in 1.2.8.

%
1.2.17:LEMMA:~ :
|[{x € I|x is free in {fi+1}}| < ., o §
Proof:- f141 :

-]{x|x is free in Aa.ei}l < |{x|x is free in ei}] < », by ¢g(i).
-If'ei+1 = a;, we have the result by G¢(i).

-If €i+l = a, we have the result by 1.0.5(viii).

-|{x]x is free in ai(ei+l)}| s |{x]x is free in o;}]| + [{x]x is‘ |
free in Ei+l}" since we have equality if a; FT,L and O otherwise.é

d
i

< =, by ¢(i) and above. |
o

1.2.18:THEOREM: -

(Wi 2 0)G(1).
Proof:-

=G (0), by 1.0.9,

| -For i:2 0, G(i) => G (i+l), by 1;1.18,1,1.30,1.2.5,1.2.6;1.2.7,
1.2.8,1.2.16,1.2;11,1.2.12,1.2.13,1.2.14,1.2.15,1.2.16 and 1.2.17.

e
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2;PROJECTIONS AND THE INVERSE LIMITS E_,A_.

w

2.0:Initial Projections:~

2.0.0:DEP:~

-
%1,0 ' B > Eq
’ B r
% %
- Ny
%,1 ¢ Bo > By
EO; > eoi
®1,0 * & > R,

O(El) L, if aovt T,
N
aéd eo'l : AO > Al
oyt ‘}fao.

2.,0,1:LEMMA:~
fhe above maps are well-defined and doubly strict,
Proof:- | | ‘
-By definition, they are doubly strict.
- ~The only equivalence classes not T or L are in,AI.EO.
-If‘ﬁx.so = Ay.noﬂz'r, then ¢l'o(Ax.eO) =1 = ¢l'0(ky.no).

; | +

. 2.0.2:LEMMA: -

~ The following diagrams commute :-

E. < — g -
O @1'0 1 :
[x/y] o [x/y]
; 0,1 S
EO: ) El

1,0.



120

and o
’ 0,1 _
A < =~ A
0 81'0 1l
[x/y] g [x/y]
‘ 0,1 R
A < ~ A
0 61,0 1
Proof:-
-Straightforward.

2.0,3:LEMMA: -

*1,o'¢o,1'°1,o’eo,l are monotonic and, so, continuous.
Proof:-
~Monotonicity is straightforward.
-Continuity follows from 0.6.13, since the lattices have finite
depth by 1.2.18, and hence the ACC by 0.6.164
+

2.0.4:LEMMA:~

Ey < E; and Ay q A,.

Proofs=-

kx.eo‘ T ' L 1 XX.EO
—¢0;10¢l,0 = éo,l = E .
% % % %

“41,0°%,10%0) = ¢41,0(%) = -

X X X X
-0 °p = g, = = .
O'l l,o ﬂo(al) X z'T 0,1 l .L. ao(el)

=01,0°%,1(%) = 9 ola) = 9@

2.0.5:LEMMA : ~
b 7 (&)
(1) x is not free in {%)} => X is not free in { 0,17 .

“O ‘ eo'l(ao)
44) % i & o ole)
(ii) x is not free in {l} = x is not free in 4 1© F’l}.
" Proofs:- "1 el,O(GI)
~Trivial.



2.0.6:DEF: -

H(i)

= 00y, 51851,

strict and continuous)

s 7 ©
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(Induction Hypothesis - H)

1,i-17%-1,1

& (the following diagrams commute :-

are well-defined, doubly

3-1,1 R
-1 % ,1-1 i
[x/y]l ¢i-—l,i \‘[ x/y1]
fim1 < %,1-1 !
and, _
®i-1,1 N
Ri1 € 5 11 N
[x/y Jn ei-l s \ [x/y]
Bjoy < o 11 = By )

€ - ¢, (e.._).
& (x is not free in{ . 1}==> X is not free in{ i-1,i""i-1 })
| %51 83-1,1¢%5-1)

€

: by o _q(ey)
& (x is not free in{ i}==> x is not free in{ i,4i-171 })
BN 85 ,1-1(23)
& (Ei_lq Ei and Ai—l<] Ai)‘
2.0,7:LEMMA: ~
2(1).
Proof:-

-By lemmas 2.0.1,2.0.2,2.0.3,2.0.4 and 2.0.5.

*

'2.1:The Other Projections:-

I'e

| Suppose H(i), for some i 2 1., Then,



122

> E

i+l e i -

Ax. €, o axed, g (ey)
{ » 1}| , ;{ i,i-1%'71 }'
Ly 8 ,i-1¢23)

> E

45,141 ¢ i+l

AX. €, | AXo b, 5 (e, _4)
{ ; ,i l}|‘ > { i-1,i""i-1 }'
%-1 8y-1,10%-1) )

Oi41,1 -
X X

et . ‘__—_> B } T . . r

| (8] O1,1-1101) g3 (o))

i > A

N . | |
—>1 R r
#3-1(¢) O1-1,1(049) (05547 (54))

%141

2.1.1:LEMMA:~-

The above maps are well-defined and doubly strict.
Proof:-
-First, check well-definedness and double strictness on the
various representations of T and L in E, ,,A; ,,E; and Ai.

-Then, we must deal with the equivalence classes of_xI.Ei,AI.Ei_l.

--Supposevxa.ei =‘Ab.ni € Ei;i‘"
“Let x ¢ I. |
—Now, [x/a]@i'i_l(ei) = ¢i'i_l([x/a]ei),_by H(i).
o - - a’¢i'i_l([x/b]ni)} by 1.1.2.
» o= [X/b]¢i,i—l(“i)’ by H(i).
-Hence, Aa.¢i’i~l(ei)_# Ab.¢i'i;l(ni); by 1,1;2. |

”‘—i,e.‘¢i*1;i(la.ei) = ¢i+l,1‘kb'ni)’

o

B EE—

Bl

£ R R e

eSi@ilarly,-¢i'i+l(la;ei~l) = ¢i,i+1(*b’"i-;) if.ka-si-l = Ab.ny 4.
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2.1.2:LEMMA: -~

[x/¥106341,5 = ¢341,1°¥/¥0s
[x/¥3063 341 = ¢1,141°0%/¥ s
[x/¥1°0541,1 = P141,1°0¥/¥Ts
[e/y1e05 141 = 03,341 ° /Y]
Proof:-
—¢i+l’i°[x/y](ka.ei) = ¢i+l'i(kw.[x/y][w/a]si), where w- # x,y and .
is not free in €y

Aw.¢i’i_l([x/y][w/a]ei)
= Aw.[x/y][w/a]¢i’i_l(ei)p by H(i).

= [x/y1(ra.¢,

1,i-l(€i))' since w is not free

in gy 4y (eg)s by BQ).
= [x/yTed;,; 3 (Aacey).
“$y41,1°0%/¥]0y =0y 5 golx/ylay = [x/ylesy ;_y(a;), by H(i).
= Dx/ydedgg, (o). |
~-Similarly, [x/y]c'ctai':H_l'z ¢i,i+l°[x/y]'

i

olx/yJla = [x/yla [x/y]oei+l'i(a).

T0i41,1
Oy4p, a0 tX/ ey (g g) = 04y, (Ix/Y ey (Tx/yTe; )

03,1-1°0%/¥Jag (69 soTx/¥Tey )

i

[x/y]°ei,i—l(ai)([X/Y]°¢i+1,i(ei+l))' by

H(i) and above.

|

Lx/yd (0, s (eg) (by4,4(e5490))

H]

[x/y]oei+l’i(ai(ei+1)).
-Similarly, Ex/yloei,i+l = ei,i+l°[x/y]'

T | +
2.1.3:LEMMA:~ p

(i) x’is not free in {

€341 141,14 ""1+1’}i

0541,1(®141)

. ) € . Vo ¢ (e)
(ii) x is not free in‘{ j{}‘” X is not free in {\i'i+l i }.
o3 93,141 (%)

}m x is not free in{
%i+1
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Proof:~-
(i) -Suppose €41 = Ay.ei.
’ -As in the proof of 1.2.14, we may assume, w.l.o.g., that

x #y and, so, x is not free in €y

~Then, x is not free in ¢ (ei), by E(i).

i,i-1

‘=Thus, x is not free in iy. ¢l i- l(ei) = ¢i+l'i(ky;ei).

-1f €i41 = @47 then x is not free in oy € Ai => X 1sdnot free in
ei,i—l(ai) € Ay qr by H(i), = x is not free in ¢1+1 l( l)'e E;. :
~-If a1 = @ then x is not free in a ¢ I => x is not free in a ¢?

=> x is not free in ei+l i(a) € Ai.
r
~-Suppose G541 = ai(ei+l).

' T
-If a, = {l}, then el+1 i(al+l) { ; by 2.1.1.

-If not, then x is not free in oy and x is not free in

€141 € Eigne
~-Then, x is not free in ei'i_l(ai)'e A,;_; and x is not free

in - Ei' by H(i) and above.

541,154
-So, x is not free in ei,i-l(ai)(¢i+l,i(€i+l)) € Ai'

, ~i.e. x is not free in ei+1,i(“i(si+l))‘€‘Ai‘

(ii) ~Similar to part (1),

2.1.4:LEMMA: -

The maps ¢i+l'i'¢i,i+l'ei+l,i and ei'i+l;are monotonic and, !
hence, continuous. ‘
Proof:~-
“Let €541 F fi4re

~1f si+l ~-r, then trivial, by 2.1.1.

-Suppose €41 — ka.ei s Ab.ni'=‘e§+1.
~-Let x ¢ I. Then, [x/a]°¢i,i-l(ei) = ¢i'i_l°[x/a]ei, by H(i).é

n

= [x/b]°¢i'i_l(ni).

Bt
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-So, Aa.¢i,i_l(ei) € Ab. ¢, by 1.1.10.

l'i__l(ﬂi) 14
-i.e. ¢i+l,i(la'€i) 5 ¢i+1'i(kb.ni)'

-1f €41 = %4 S a{ = €£+l' then trivial, by #(i).:

Ter %541,1
-Similarly, éi 141 is monotonic.
’ 14

is monotonic.

~Let a; .0 T 84

~-If 41 =aesa’ = a£+l, then trivial, since 6

identity map.

i+1,1 is the

—Suppose a; .5 = o; (€ 4) = af(ef ) = af,.

~-If a; = 1 or a{ = T, then trivial, by 2.1.1,

-If not, then @y € af and €41 = ei+l.
6

~Then, 8; ;_y(a3) € 85 jop(ef) and ¢;.9 30ei49) = 0540,5 (efyy)

by H(i) and above,

=50, 8;41,1 (05 (e540)) = 0y 5 g (ay) (854, 5 (egyq))

in

0y ,1-1008) (4547 5 (efq))

* Oi41,1(0f(ef4g))e
- e i t i . )
v 841,118 monotonic,
-Similarly, ei,i+l iskmonotonic. ’
-Hence, the maps are continuous, by 0.6.13,0.6.16 and 1.2.18,

2.1.5:LEMMA:~

By AEjy and By JBy,.

Proof:~ ‘ _
L AN °¢ = 15 » by H(i)
17441 %i41,4) 6 ot (a.) .
i i-1,i Yi,i-1'V"41 i :
and 1.1.12. ; .

. -‘¢  | . .o . Ax, E'i"l. o Ax. d)'i'i_lod,i_l'i,(ei-l) B AX. ei“l
e ey, 8 (ay_q) Tl !
i-1 1,i-1°71-1,1'%1-1 o5-1 )

by H(i) and 1.1.12.
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81,1 %%, 1-1000) (& 41 °0547, 1(€1+1))}

}, by H(i) and def. 1.1.24.
1+1)

=%41,1°% i+1{ } { | | }
’ ’ 4.1 (&) 8y ,1-1%-1,1 (%10 (8547, 1°%5, 341 (54))

}r by A(i) and above.
l]_(e)

+

2.1.6:THEOREM: ~

(Vi 2 1)),
Proof:-
-H(1), by 2.0.7,
-For i > 1, A(i) = pg(i+l), by 2.1.1,2.1.2,2.1.3,2.1.4 and 2.1.5.

ey by induction, the theorem.

2.2:Inverse Limits:~

2.2.0:DEP: -

E, @ Ipverse limit of <Ei'¢i+l,i>i=o

i

= {<EO'El,_o.oou-.oo>l€i € Ei and ei = ¢i+l'i(si+l)}‘

A, := Inverse limit of <Ai'ei+1,i>i=0

= {<0lo,01,........>lai‘ € Ai and ai = Bi+l'i(ui+l)}.

2.2 1: THEOREM: -

E, and A, are complete continuous lattices.
Proof:~

-By theorems 1.2.18,2.1.6 and 0.6.22.
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2.2.2:DEF:~

Define ¢i,j'ei,j’¢i,w’e' ;9 . and 6 ., as in 0.6.21.

-

2,2.3:LEMMA: -

(i) All the above maps are doubly strict and continuous.

(ii) The following diagrams commute :-

. %,
< ~ E.,
) i q)jli ' J
Ix/y ] b [x/y]
E ilj N
< =~ E
*51 .
and
eirj | '
A, € A
1 ®5,1 ]
[x/y] 5. [x/y]
A = 2 A,
: 55,1 ]
(iii) % is not free in => x is not free in ’ .
‘ oy ei,j(“i)

(iv) For i = j, E; 4 Ej and Aiq Aj. Also, Ei < E_ and Aiq Awi
Proof:-

-Either trivial or by 0.6.22,

2.2.4:DEF:~

Let x,y € I. Then,

[x/y] : E ' >>E°°

o0

<e3%5-0 > <[x/yley>y 4

and,
[x/y1 : A_ - > A
5 | %3 i==o P> <lx/yleg>ig « J
b4 is NOT FREE IN <ei i C e E_if (¥i 2 0) (x is not free in €y € Eix

X is NOT FREE IN <ai i=0 e A if (¥vi 2 O)(x is not free in a

1€y
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2.2.5:LEMMA: -

(i) The following diagrams commute :-

.¢i'oo’ S~
E, < e E_
[x/y1 6 x/y 1]
i’w w
E; < - E_
and
ei:“’ o
A, € = A
i ew,i
[x/y] 0 [x/y]
i’OO 0
Ai < ew N Aw »
14

f1 ti,-08)
(1ii) % is not free in => x is not free in ’ .
el 1,(%)

€ ¢°°i(8)
(iii) x is not free in => x is not free in ’ .
a _ 8, i(a)
4

Proof:~-

-Trivial, using 2.2.3(ii) and (iii).

2.2.6:NOTATION:~-

When we use symbols like ¢,a” for elements of Ew,Aw; we will
assume they are of the form <€%i-0 and <a£>i=0’ respectively.

2.2.7:RECALL:~

Let ¢,e” ¢ E_  and a,a” ¢ A_. Then, by 0.6.22,

€ — e* P <_——J{¢j i(s P 8 )} i_o
- and «o a’” = <L_j{6 (a a‘)}> , Where the sets form
] L] jaitty e i=0

e

directed chainsf

&

“V2.2.8:THEOREM:-

(1) I[x/yl is a continuous map on E_,A_.
(ii) [x/x] is the iaentity map on E_,A .
(iii) (a #d).(b - =2c,d) = ([a/b]‘ and [¢c/d] commute).

(* these reults are reflected for s
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(iv) [x/yIn = {Ij}<=¢vn = {I}w ¥n e€E_,A_.

(v) x is not free in T or L in E_,A_.-
(vi) (x-=zy) = (y is not free in [x/yIn, ¥n ¢ E_,A_).

(vii) (y is not free in n ¢E_,A_) => ([x/yIn = n).

(viii) (x #a).(x is not free in n « Ew,Am) => (x is not free

in [a/blIn).

(ix) (y is not free in n € E_,A ) = ([x/ylly/zIn = [x/z]n).

(x) (x is not free in n,n” €E_,A ) = (x is noé free in '
nn’yn an” €E_,A).

(x1) (x is not free in n,n” ¢ E_,A)) =

{n .__,n'} {[x/a]n o [x/a]n’}
([x/al = ).
n mn’ [x/aln n [x/aln”

If x were free, then we would have the usual inegualities.

Proof:-
(1) -By 0.6.22(v), f:L + E_ is continuous iff ¢ °f L > Ei is
continuous for all i 2 O.
-But, ¢w'i°[x/y] = [x/y]°¢w'i, by 2.2.5(i), which, being the
composition of continuous functions, is continuous.
-Hence, [x/y] is continuous on Ew‘and, similarly, on A_.
(1), (111), (iv) , (v) , (vi), (vii), (viii) and (ix) -Trivial.
(x) -Let x be not free in n,n” € E_.
-Then, (¥j 2 0) (x is not free in "j'"5 ebEj).
-S0, (¥j 2 0) (x is not free in nj h,n’ € E.), by 1.2.18.
-Thus, (vi,j 2 0)(x is not free in ¢J i(n L.nj) € Ei)' by 2.2.3.
-But, n ,n° = <}uj{¢j i(n w n: )§>i,0, by 2.2.7.
-Since Ei has finite depth, and by 0 6.13, g’J{¢j i(“j uanj)} =
¢k g (N LJnk), for some k 2 Os
-Thus, (¥i 2 0)(x is not free in L—J{¢3,i("j L.nj)})..
-i.e. x is not free in n ,n” e E .

-Similarly, x is not free in n  ,n”" e€A_and n ,n" € E_,A .

i

(* this result is reflected for n's)
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(xi) -In general, we have the inequalities, by part (i).

~-Let x be not free in n,n” €~Em.

0

Trhens Di/al(nan ) = b/l (0y,1 (g e ng) amor BY 2247

o«

<j=0{[x/a]°¢j'i(r|j = nj) }>i=0

it

= <jao{¢jri°[X/a](nj w1y by 2.2.3(ii).
= <j=0{¢j,i([x/a]"j uJEX/a]ng)}>iaO, by 1.2.18.

= [x/aln 4 [x/aln”, by 2.2.7.

-Similarly, for the other three cases.

2.2.9:REMARK:~

We have now constructed an E_ which contains elements like
those exampled in 0.7.27. If ¢ ¢ E_, we can see that it is nearly
always of the form,

<.L,AX.€6,)\X‘ El,)»x. 65'.-.‘0.-0>' ‘

where ¢” ¢E_ or,

<aé,a6,ai,a§,a§,ai,..........>,
where o~ €A_.
Further, if a e A_, it is always either of the form,
<8,8,8,2,3,8,2,8,3,87¢000000:>, |
where a eI or,
<1,05(e0) 105 (e3) a5 (e5) unnnn>,
where a” eA_and e” € E_.

» This uncertainty in the decompoéition\of E_ arises because
it is possible for elem§nts of E_ to have infinitely many free
~ variables. For example, let <xo,xl,x2,......> be an enumeration
of the elements of I. Consider,

g = <L,1,xO(L),xo(xl(L)),xo(xl(xz(L))),........>.

- Then, x is not free in ¢ <=> x is not free in si, ¥i 20 <=> x # X
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¥i 2 0 - ¥, since the xi's were an ennumeration. Thus, all elements
of I are free in e.

Suppose we want to construct an element like A?.?(e). What
can we choose for "?"? There is nothing left! However, such an
element exists quite happily in E_ :-

SLyLy L, ARy Kg (1) ) AK] X (X5 (1)) )%y oy (%o (%7 (1)) 4 ennnnnsn>s
There is no way to express this element in the form_:-

<L,Ax.eo,xx.el,Ax.ez,........>. |

This awkwardness comes about because we use the same set for
both the free variables and the not free variables. The not free’
variables are really only for use as pointers and they do not have
the actual physical significance of the free ones.

Technically, there may be several ways of getting out of this
(e.g. reserving a special symbol, X, for just such an eventuality
and not allowing it to occur free - using different sets, I and T,&
for free and not free variables - a squeétion of Reynolds - [551] -
altering all the definitions accordingly and checking them!), but ’
we do not think it worth all the trouble because :~- |

(a) it makes’the constructions clumsy and inelegant,
(b) we don't mind E_ catering for more than the pure
~Acalculus with terms like A?.2(e) above, |
{(c) when we dgal with the A-definable elements of E_ .,
the'problem does not occur
and (d) E_ decomposes very nicely anyhow, provided we aren't
so naive about it,(2.2.20)."

2.2.10:DEF: =

E

Let ¢¢i+l,i be ¢i+2,i+l restricted to XI.Ei+l,

003,141 " ®i41,142 " " AL.Ey,
8541,1 " 142,101 N " By (Byyp) and
864,141  %i+1,142 o TR (E ).
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2.2.11:LEMMA:

(¥i 2 2) (H(i) restricted to AI.Ei_1 and Ai-i(Ei))'
Proof:-

2.2.12:DEF:~

AI.E_, := Inverse limit of <AI'Ei’¢¢i+l,i>i=O"

A (E,) := Inverse limit of <Ai(Ei+l)'eei+l,i>i=0'

Also, ¢¢i,j’eei,j’¢¢i,w'eei,W'¢¢w,i and 66 i

[4

as in 0.6.21.

Also, [x/y] on AI.E_ and A_(E_) and NOT FREE IN are defined
coordinate-wise, as in 2.2.4.

2.2.13:LEMMA: -

Suitable adaptions of 2.2.1,2.2.3,2.2.5 and 2.2.8.
Proof:-

~Straightforward.

2,2.14:LEMMA:~

Let ¢ ¢ E_ and e #7T,L, Then, either :-

e I and €7

(¥i 2 1) (there exists i-1 €By_p) ey = Axy.ef 4),

Xy
or (exclusively) :-
(¥1 2 1) (there exists a;q € Ai_l)(ei = ai_l).
Proof:-
-Since e€-#71,1, there exists j 2 1 such that ajz T,Ll.

~Either €y = ij.sj_l where ej_1_¢ T,L &=

—Clearly, ¥1 s i < j, ¢ = ij°€{-1' where ej_; =
$5-1,1-1(85-1) - ’

J

fSuppose j < i. Consider ejo If €, = oy _;, then e, = ay.p €

rd

Aj—l c Ej —AX. So, ej#* a;_; - i.e. #he;e exists Xy € I and el 1

Ei_l~SUCh that e, = Axi.e

- k'a.-i ’“
Or sj ’ aj_l T,L :

E .
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-Clearly, V1 <i < j, & = 95 s where &g = ej—l,i—l(aj~l)’

-Suppose j < i. ConsiderAei. If g = kxi. f—l' then ej-=

Axi.ej_l € )\I.E:,’_tl c Ej - X. So, € = O g -
2.2.15:DEF:~

™t E, ———> AL.E
‘ (1, if e = T.
<Axi-e£_l>z=l , if either-clause abovef>

1, if or-clause above.

L, if e = 1, | J

‘and”

T, if e = T.
L, if either-clause above.

£ > %

<0;_1%>j=1r 1if or-clause above.

L, if e = L,

where»xi_l,ei__l and a,_ , are as given by 2.2.14. Also,
nl"l : AI.E, ——> E_
<« L
ARy €3> g —> SLp<ARy e €45 6>
and

-1'

T2

: A —> B
AR T e L ATRL IS |
2.2.16:LEMMA: -~ ~ . S

TirToeTy and “;1 are well-defined and continuous.
~ Proof:-

~Trivial, by 2.2.13,2.2.14 and 0.6.22.

- v  o :+,“

2.2.17:LEMMA;:~
‘Let « €A and a® T,1. Then, either :-

(¥1 2 O) (there exists a € I)(a; = a),
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or (exclusively) :-

(¥i 2 1) (there exists a{_l' gAi-l and e € Ei)(ai = a{_l(ei)).

Proof:-

-Trivial, similar to 2.2.14,

2.2.18:DEF:-

¢1=Am—-——->1‘

T, if o = T.

a, if either-clause above.
o > >

L, if or-clause above.

1, if a = 1.
and
¥y 2 A, —> A_(E)
'T, if o =T,
L, if either-clause above.

<°£~l(€i)>;=l' if or-clause above.

L' if G = 1-0
. : y

where a,a{_l and e; are as given by 2.2.17. Also,
w;lz I* —> A,
a "—""'> <a>i=—-"0

and

w;la A_(E,) > A_
<ay_yleg) >y > <dy<oy 1 (55)>5 9>

2.2.19:LEMMA: -

wl,wz,wil and w;l are well-defined and continuous.

Proof:~

4

-Trivial, as in 2.2.16.
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2.2.20:THEOREM: -~

Under the maps defined in 2.2.15 and 2.2.18,
AMLE_,A < E_

and I°,A_(E) < A_.

Further, under the obvious direct sum maps, Tyt Ty, uI + ﬂ;l,

v, + ¥, and wzl + wgl

E, = AI.E_ + A_

©

» we have :-

Vand A =1"+ Aw(Ew);
Proof:-

~Trivial.
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3:APPLICATION AND SUBSTITUTION IN E,-

3.0:Finite Applications and Substitution:-

3.0.0:REMARK: ~

In any model of the A~calculus we ought to defiﬁe

an application so as to capture the notion of B-reduction,
Ap : E xE_ » E_

This should extend the partial application which already
exists,by 2.2.20,where e=a A ,cE_, and 6eE_ = Aple,8) =
Ap(a,8) = a(8) eA _(E ), c A_ c E_.

We now only have to define Ap for when e = Ax.e” ¢
AI.LE, < E_.

We will define Ap coordinate-wise following the definition
of B-reduction, 0.3.6, as closely as possible. Thus, we will.
also have to define a substitution operator,

le/x1 : E, ~ E_,

similarly coordinate-wise. This will, of course, have to
extend the operator we already have when ¢ = ael, ¢ A< E_.

3.0. 1:DEF.:-

Let xeI and eieEi. Then,

. 4 . '
le /%1y : I > Ey |
y, if x =2y

-

Yyt
€4 ifx=y

- 3.0.2:LEMMA s~

Eei/x]I is monotonic, and so continuous. It is doubly
.strict. Also, ei € eq” =%'[ai/x31 € [si’/ij (in [I'+Ei]).
Proofs:-

-Trivial.
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3.0.3:DEF:—~

[el/x]Eo 1= [sl/x]I € [I’+El], = [EO*El]
ez/x]AO 1= [ez/x]I € [If+E2], = [AO+E2]
For i 2 2,
ei‘/x]Ei~l : Ei—l ————> E.
AY- €49 s AZ. [e l/x] l_z[z/y];:i_z '
®j-2 A WIS EY

where z # x and z is not free ine? ,,6, 5.

For i =z 3,

: : —> E,
[el/x]A Ay, E,

i-2
vy — [ei/x]Iy
ai_3(ei_2) l([e 1/X] 3ai_3,
_,/x] i o)
1 17 Ei-2 i-2
For i 2 1,
. N,
Apy & EyxE, > Bin
(6 _q0e5) ; { o (D)
(Ax’€i~l'gi) i, l+l([€ /XJ . ei*l)
1 1
3.0.4:REMARK: -

In the above definition, where there appear expressions

like e{re]_, and o

i-1 i YLy we imply that :-
b3,1-1(83) = ey and 855 y3(e5 5) = 0y 3

The def&nition seems rather complicated! There are many
different ways the types of the functions could have been
arraned - e.g. Api e[Eiin+Ei] - but we still have to use
various prpjections and inclusions to make them fit: the above
seems to be the cleanesé way to do it. All the ways would
‘be équivalent, however, in that they lead to the same function
Ap, when it is eventually defined as %;gApi.

| As before, see 1.2.2, we will omit mosf of the subscripts

on the‘substitution operators, hoping the context indicates
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on whiéh lattice they are operating in each instance.

The definition is inductively defihed and so, most
of the theorems on it will require proofs by induction.
The following "induction schema" is designed to handle
such proofs.

3.0.5:LEMMA:-  (SPQR-induction)

F(S(1),¥i20) . Q(1) . R(2)

F(P(i-1) . @(i-1) . R(i-1) . S(i) = R(i)),¥i=3
F(@(i-1) . R(i) = @(i)),viz2

F(@(i) = P(i)),¥izl

(P(i) . Q(i)),¥i=1
and R (i) ,v¥i=2.

Proof:-
-2 (1) gives us P(l).
-Q (1) .R(2) gives us @(2), which gives us P(2).
-:we have P(2).Q(2).R(2).
-But,P (i) .Q (i) .R(i)=R (i+l), since S(i),¥iz0.
-And,@ (i) R (i+1)=> Q@ (i+1).
-And, @ (i+1)=P (i+l).
~2,¥122,P (1)@ (1) R (1)= P (1+1).@ (1+1) R (i+1) .
-2, by ordinafy induction, we have, '

viz2, P(1i).@(i).E(1).

3.0.6:REMARK: ~

We will use the above schemekas follows :-
S (i) <~ sentences about [ei/x]I

P ( i) Py n ’" AP

i
L) " " [ei/x]Ei;
R(i) <« " " [ei/x]A R

i-2
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3,.0.7:COR:~

Api and [ei/XJEi-l are defined, ¥iz2l. Also, [s:{/xin“2
is defined, ¥iz2. '

Proof:~

~Let S(i) = [ei/x]I~is defined.

-— " P (i) = Api n 'll “

- n Q (l) = [e /X] noon .

VB |

. R (i) = [e /X] " ", .
| I A VI

~Then, ¥iz0, §(i), by defn. 3.0.1.
""' ‘=hnd;‘wé have @(1).R(2), since @(1)=6(1) and 2(2)=5(2), by 3.0.3.% ¢
-Clearly, ¥iz2, @(i-1) ,R(i)>@(i), by defn. 3.0.3.
- ", ¥i23, P(i-1),Q(i-1) .R(i-1).8(i)=R(i), by 3.0.3.
- ', ¥izl, Q(i)=P(i), by 3.0.3.
- , by lemma 3.0.5, P(i).Q(i), ¥ixl, and R(i), vi22.

*

3.1:Basic Properties of [ei/x] and Apii:

3.1.0:DEF: =

(*)
5
Let {%}(i) = ([si/x] is well-defined and doubly strict)

& ([2/271002/2"1¢;/x] = [2/2°10e,/xD) .

& (x#z,z” and z° is not free in ¢, = [si/x][z/z’] = [z/z’][ai/x])_

i

. z ' : z z
& (x is not free in{:i_;}=» [ei/x][x/y]{:i_l} = [Ei/yj{ii-y})
. , i-2) i-2. i-2

v -

(*) In this, and similat, definitions, we are defining three
o _ : o top
hypotheses simultaenously - choose one from the {middle

o ‘ ‘ lower |
alternatives consistently. : _

v,
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3.0.7:COR: -

Api and [ei/X]Ei_l are defined, ¥izl. Also, [si/x]Ai-z
is defined, ¥iz2.
Proof:-

~-Let S(i) = [si/x]I is defined.

P P (i) = Api " n .

- " Qi) = [e,/x] wom .
i Ei—l

- " R(i) = [e,/x] e,
i Ai~2

-Then, ¥iz0, S(i), by defn. 3.0.1.

—Aﬁd, we havé @(1) .R(2), since Q(l)zs(l) and R(2)=5(2), by 3.0.3.
-Clearly, ¥Wi22, @(i-1) .R(i)=@(i), by defn. 3.0.3. |

- " , ¥iz3, P(i-1).,.Q(i-1) ,R(i-1).S(i)=R(1i), by 3.0.3.

- ", wWizl, Q(1)=P(i), by 3.0.3.

-, by’lemma 3.0.5, P(i).Q(i), ¥i=l, and R(i), Vix2.

*

3.1l:Basic Properties of Eei/x] and A i

3.1.0:DEF:~

S .
Let {%}(i) z ([si/x] is well-defined and doubly strict)
R .

& ([z/zfj[[z/z']ei/XJ = EZ/Z’][ei/X])

& (x#z,.z° and z~ is not free in N =>'[ei/x][z/z'] = [z/z’][ei/x])Af

. z i z ]z
& (x is not free in {si_;}w» [ei/x][x/y]{ei_l} = [ci/y]{ai_l})
o o Q.
- i-2 i-2 i-2
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z
& (a is not free in‘e{,{zi_l} =
' i-2

z
a is not free in [Ei/x]{}i-¥})

%i-2

l-

; z

& (a is not free in e = a is not free in [g{/a]{}. 1}).
. o2

i-2

Let P(1) = (Api is well-defined)
& '(Api({‘:},ei') = {[})
& ([z/z‘]Api(ei,ei) = Api([z/z']ei,[z/z‘]ei)
& (a is not free in ejre] = a is not free in Api(si,ei)).

3,1.1:LEMMA:~

(¥i20)s5 (i) .
Proof:-
-Straightforeward examination of all possibilities.

t

3.1.,2:LEMMA:~

Suppose P (i-1) .r(i~1), for some i:»3. Then, [e_{/x]A
i-2
is well-defined and doubly strict.

Proof:-

Ty
-[ef/x1(r ) = [ef/x]{ }
i A i
i-2 T (e )
.= By_q fi-2
frime
Apy (e 1/xIr,  slef 1/x1e; )

i-3

TI’ by3.l.1
N APi._l(TE l[Ei_l/X]'Ei_z) ’ by R(i—l)
i-1

’ 'z o
- "'TE .
. : {TEi, by P (i-l)} i

-Similarly, [e;/x1 (1 ) =1, .
! i Ay0 E;
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3.1.3:LEMMA: -

Suppose P (i-1) . (i-1) .R(i-1), for some i23. Let z,z”¢l”.

Then, [z/z’][[Z/Z‘]ei/X]A = [Z/Z‘][ei/X]A .
i-2 i-2
Proof:— |
. Y
-[Z/Z’][[Z/Z’]ei/X]{ }
oay-3le;_p)
[EZ/Z’Jef/XJy
= EZ/Z’] '
([EZ/Z Tes_ l/X]a ~3:[[2/2° Teg. l/xjel 2)

by 2.1.6, since ¢i,i—1'[2/z lej = [z/2z° ]°¢i,i—l(€i) = [2/2°]e{_q-
[2/2°10[2/2"1e{/x]y }
Ap, 1 (Cz/2°10(2/2°1e]_/%]a; 3.[2/2 100z/2°1¢] 1/x:lei 2)
by P(i-1). _
{ [z/2*1[ej/x]y, by 3.1.1.

([z/2" 1eg /x]a, [z/2°10el_,/%]e,_,), by @(i-1) }
-1 -1 i-37 i-1 i-2 "R (i-1)

i

[si/X]Y
(z/z°]
l([s 1/X3a 3![5 l/xjei 2)! bY P(i l)

. Yy
[z/z'][ei/x]{ }.
ai—B(Ei_z)

3.1.4:LEMMA:~

Suppose P (i-1).Q (i-1) .R(i-1), for some iz3. Let x,z,z” el
such that x#z,z” and z° is not free in ei. Then, '

[ei/x][z/Z‘J = [Z/Z'][ei/X]-

{ y }
ay3ley_5)

[sf/X][Z/Z ly
Api l([Ei l/x][z/z ]a 3'[5 l/X][Z/Z ]Ei 2)

Proof:~

-[e;/X]{Z/Z']
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[z/z‘][ef/x]y, by 3.1.1.
Ap l([z/z ][el 1/x]a 3,[2/2 ][sl l/x]el 2), by @(i-1)

VAR(i-l), s;nce z’ is notkfree in el—l = 1 1_1(31), by 2.1.6.

[ef/x]y
(z/z”]
Ap, _ l([e l/x]a 3,[6 l/x]e 2), by P(i- l)

Y
[z/z’][ei/x]{ }.
(e, .)
-3'7i-2

3.1.5:LEMMA:~

Suppose P(i-1) .4 (i-1) ,R(i-1), for some i23. Let x be not

free in o . Then,

1-2Py-2
Le;/x1lx/y1(a; 5) = Lef/yI(a,_,).

Proof:-
z
-Lel/x1lx/y]
i a (e )
i=-3'7i-2

[ei/x][x/y]z }
) {Api_l([ei_l/X]k/y]ai~3,[e{_l/X]k/Y]ei_z)
([e;/ylz, by 3.1.1. | 1
< apy . l([ei 1/y]ai 3 i—l/yjei-Z)' if (*), by Q(i-l)A}(i-l):
L{A.pi ITH _1/x1Tx/yle; o), if (**), by R(i-1).

o z T
= Lef/y] r Af 0y 3 29 (-
a, (e,

o = Lej/ylag 3ley o).

r— .
iy
- -
| SR
-
(78
Fh
2
fote
1
W
|
- =i

, T
(*Y 0, _, # {1} and x is not free in %y _3r€5_ 9"
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3.1.6:LEMMA:~

Suppose P(i-1).Q(i-1) .R(i-1), for some i>3. Let a be
not free in Ei'“i-z' Then, a is not free in ;si/x]ui_z,’éBi.
Proof:-

=If a,_

j-2 = veI, then a is not free in [g{/x]y, by 3.1.1.

T ] k]
If o, , ai—3(€i-2 ;}, in which case

[Si/XJai—Z = {1 + by 3.1.2, and a is not free in it; or a is

not free in ®i.3784.9 and then, since a is not free in el_1¢

]

), then either a3 = {

=v¢i'i_l(e£), by 2.1.6, we have a not free in [€£~1/X]ai—3’
Lef /xle 5, by @(i-1).R(i-1).
-5, a is not free in Api—l([ei-l/x3a1—3'[Ei-l/X]Ei—z)' by P(i-1),

= [ef/xla;_,.

3.1.7:LEMMA:~

Suppose P(i-1l) .4 (i~1) .R(i-1), for some i23. Let a be not

free in €fe Then, a is not fre; in [;{/alai_z.

Proof:-
-If @i o =Yy then a is not free in [e{/a]y, by 3.1.1.
~-If @y _o =‘ai—3(€i-2)' then, since a is not free in Ei—l'

by 2.1.6, a is not free in [ei—l/a]“i—B’[ei—l/ajei—z' by
Q@(i-1) \R(i-1).
~hea is not free in Ap, ,(lef ;/ala; 4,[ef j/ale; ,),
by P(i-1), = [ef/ala; -

- ’ *

3.1.8:LEMMA:~

L4

P(i-1) .Q@(i-1) .R(i-1)=>R(i), Wwi23.

* Proof:-

- -By lemmas 3.1.2,3.1.3,3.1.4,3.1.5,3.1.6 and 3.1.7.

*
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3.1.9:LEMMA: -

Suppose @(i-1) ,r(i), for some i>2. Then, [Ei/XJEi;l is
well-defined and doubly strict. '
Proof:-
=-First of all, check that the choice of z in defn. 3.0.3 does
not matter.
-Let x,z,2” L. Let x#2,z°. Let z#2-.
-Let z,z” be not free in ef_17€5-2°
~Claim; Az.[ef_/x1[2/¥1e; 5 = A2°.[e]_1/X1[2°/¥1e4_5 3~
-Now, z” is not free in [z/yle;_,, by 1.2.18.
-:,2”° is not free in [ei—l/x][Z/y]Ei—Z’ by g(i-1).

-Also, [z7/z]le]_/X1(2/¥le;_,

L]

Cef 1/%1027/2102/¥1e;_ o+ by @(i-1).
= [ei_l/x][z’/y]ai_z, by 1.2.18.
-Hence, by lemma 1.1.8, the claim is established.
-Next, sSuppose AY.e; o =_Aw.[w/y]ei_2, where w is not free

in ¢ and w # VY. Then,

i-2 ,
Lei/x10w.lw/yle, o) = Az.([ef_1/x102/WIlW/¥le;_5),
where z=x,w and is not free in e, , (= -2 is not free

in [w/y]ei_z, by 1.2.18).

il

Ag.([ei_l/x][z/y]ei_z), by 1.2.18.
= [ef/x10Ay.e;_5) .

-Finally, check for strictness. Well,
AYT g :
= [el/x] i-2
i-1 i Ta }
: i=-2

o Az.[si_l/x][z/y]TE ’ _ AZ.T o , by g (i-1).
o= i-2% = i-1 =Tg -
« EEE/XJTA TEi: by R(i). i

Lel /Xty

i-2
-Similarly, [ei/x]LE =dp .
' i-1 i
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3.1.10:LEMMA:~

Suppose g(i-1) .r(i), for some ix»2. Let 2z,z“ . Then,

EZ/Z’JEEZ/Z’]e{/xj = EZ/Z’][ei/XJ-

Proof:- :
Ay.ei_z
—EZ/Z’][[Z/Z‘]ei/XJ
)

Aw.[[z/z’]ej’__l/x][w/y]ei_2 ‘
= [z/2"] , where ww,z,z2” and
[Cz/z"1ef/x]a, _,
is not free in ei’ei—Z' since ¢i'i_l-[z/z’]€£= [z/z’]e{_l,
by 1.2.18.
{Aw.[z/z’][[z/z‘]ei_l/x][w/y]ei_z, by l.2.4(ii)i}
[2/2°1002z/2"1¢]/%XTa; _,
{Aw.[z/z‘][ei_l/x][w/y]si~2, by Q(i—l)}
[z/z'JEEE/x]ai_z, by R(1).
aw.lel . /x1lw/yle, _,, by 1.2.4(ii).
[ei/x]ai_2

AY. €, _
[z/z’][a{/x]{ . 2}.
: )

it

3.1.11:LEMMA:~

Suppose Q(i~1)AR(i), for SOme i22. Let x¥#z,z” and z~
be not free in ei € Ei' Then,

[e;/x102/2°] = [2/2"10<; /%1,

Proof:-
~-I1f 2=z", trivial by 1.2.18. So,suppose z=zz~".
~Choose w,w” I such thag w,w ¥’ ,x and‘wzz,w’ and w,w” are
- not free in e{_l,si;z.

-Then ’

.[z/z’][ei/x]{ = [z/z] ‘
| | Ei1/%ay o

Ay.ei_z}r {Xw.[e{_l/x][w/y]si_z
%1-2 |




146

AW Lz/z 3w /MIlel_/x1w/Y1e, _,

= , Since w” is not free
[z/z°10e]/%XTa;_o '

in [ai—l/X][w/Y]€i~2’ by @(i-1) and 1.2.18.

) {Aw‘.[w‘/w][z/z'][ei_l/x][w/y]ei_z, by 1.2.18.}
Lz/z710ef/x]a;_,
w7 Lef_/%10w"/w1l2/2°10w/¥Te;_5s bY Q(i—l).}

[ei/X][z/z‘]ai_zl bY R(i) .

‘XW.[Z/Z’][W/yjsi_z ‘
[ei/X] , since w* is not free in

[z/z']ai_z
[2/271[W/¥]e5_o-
Ay.ei_z
= Lej/x1lz/z"] .
o
i-2
F
3.1.12:LEMMA:~ ‘

Suppose @ (i-1) .r(i), for some ix>2. Let x be not free
in €i_1° Then,

[e{/x1[x/yle,_ = [el/¥le; ;-

Proof:-
-Choose w,w” I such that w,w’#x,y and w,w” are not free in
ei_l;and w” is not free in e and wzw”. (N.B. we can always
make such choices since there are only finitely many free
variables in si-l’ei , by 1.2.18, and I is infinite.)
~-Then, w,w” are not free in ¢i—1,i-2(€i—1)'= €4.psand
¢i,i—l(€i)’ = 8i~l' by 2.1.6.
~-», w is not free in [x/y][w/z]ei_z‘e E. o by 1.2.18.‘

-

| \Zoey o AW Ix/y1Iw/2]e; _,
. -So, [ei/XJEX/Y] = [e;/xj

| C!i_z [X/YJai_z
{1w’.[ei_l/XJEW’/WJEX/y]EW/ZJei_z}

Lel/x1x/yla, _,
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——{ Aw,.[ei_l/xjtx/y][w'/z]ei_z, by 1.2.14 (twice) }

[e;/x10x/yTa,_,

{Aw’.[s{_l/y][w’/z]ei_z, by @(i-1), since x is not free in

[s{/y]ai_z, by R(i). [w’/z]ei_z, by 2.1.6 and
)\Zos 1.2.14.
= [e{/y] i-2 .
| ®j-2
T
3.1.13:LEMMA:~

Suppose @(i-1) \R(i), for some i22. Let a be not free in
ElrEs_1° Then, a is not free in [Ei/X]ei—l'
Proof:~-

~Suppose, w.l.0.9., e,

jm1 T AYeey o with y #a - by 1.1.8.

-Then, a is not fgee'in €2
-But, a is not free in €1+ by 2.1.6.

-Choose z ¢ I such that z # x,a and z is not free in ei-l'si-Z‘

~-Then, a is not free in [ei—l/XJ[Z/YJEi—Z' by 1.2.14 and @(i-1l).

=%, @ is not free in Az.lef ,/x1[2/¥le;_,, = [ef/X]e; ;.
-On the other hand, suppose €41 = G52

-Then, we have the result by R(i).

3.1.14:LEMMA: -
SupposeVQ(i—l);R(i),‘for some i22. Let a be not free in
e;- Then, a is not free in [ef/ale; ;.

Proof:-

L

~Suppose e;_; = Ay.e; 5. Now, a is not free in ef.1r by 2.1.6.
-Choose z # a and not free in ei_l,ei_z."
-Then, a is not free in [ei_l/aJ[z/y]ei_z, by @(i-1).

“—z, a is not free in Az.[e{_l/a][z/y];i_z, = [e{/a](xy.e ).

i-2

~If ¢,

4=1 = %j-p+ We have the result by R(i).

F

b
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3.1.15:LEMMA:~

@(i-1) .r(i)=¢q (i), Vviz2.
Proof:-
-By lemmas 3.1.9,3.l.10,3.1.11,3.1.12,3.1.13 and 3.1.14.

t

3.1.16:LEMMA:-

Suppose @(i), for some izl. Then, Api is well-defined

T T
and, Api({ Ei},ei) =={ Ei+%}.
'LE 'LE «

, i i+l
Proof:—

-Clearly, Api is well-defined on its second argument.

~-Suppose Ax.ei_l =.ly.[y/x]ei_iy'where Yy # X and y is not
free in €41
~Then, Ap, (\y.[y/x]e; ,.,e]) = ¢i,i+l([€£/y][Y/X]ei—l)

It

by, 141 (Lef/xTe; 1), by @(i).
Api(lx.ei l,sf).
b, (Ces /x]T )
i,i+41° 71 B,
(e‘)

o 1+1(TE ) s by Q(4). }

lx.TE
-Also, Api( i—l},ei)
A

T
i-1

f"‘"""‘*r-—ﬁq

TE ' by 2.1.6.
, i+l
~Similarly, Ap.(L, ,€]) = .
i'"E i E
i i+l

-

3.1,17:LEMMA:~

Suppose Q(i), for some i2l. Let z,z” € I. Then,

'A[z/z’]Api(si;ei) = ap, ((z/23e ,(2/27Te])

* Proof:-

-~Suppose z # z“. Otherwise trivial, by 1.2.18.
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-Then, Api([z/z’] ,EZ/Z‘Jei)
Gi-1
{xw.[z/z’][W/X]ei_l

= Ap, (

N },[Z/Z’]ei), where w 2 z,z2” and is

[Z/Z']ui_l
not free in Ej-1"
] {¢i’i+l([[Z/Z‘JE£/W][Z/Z‘][W/X]ei_l)}
[z/2°3a; 1 ([2/271€])
¢. .. 1([2/27100[2/2")e/WIlW/X]e, _4)
- { i,i+1 i i 1.}, by @(i), since
[z/27Ja;_; (€])
w # z,z° and z° is not free in [z/z{lei, by 1.2.18.

¢: +,q(02/2°1es/Wilw/x]e, _,)

_ { i,i+l ALEy i-1 }’ by g(i).
Lz/27Ja;_q(e])

- {¢i,i+1‘tz/z'][ei/xJei-l)

) ) }, by @(i).
Lz/2"]a; _, (e])

il

{[z/z'].¢i'i+l([ei/x]ei_l), by 2.1.6.}
[z/z"Ja;_, (€]}

H]

AX.€
[z/z*]eApi({ i 1},e;).
- “i-1

3.1.18:LEMMA: -

Suppose @ (1), for some i»1l. Let a be not free in ei,ei.

Then, a is not free in Api(ei'ei)‘
Proofs=-:

-qupose E, = AX.t€ Assume, w.l.0.g., x 2z a, by 1.1.8.

i i-1°
~Then, a is not free in €j-1"

-5, a is not free in [ei/x]ei_l, by ¢ (1).

- = , a is not free in oy i+l([8£/x]ei—l)' by 2.1.6,
14

= Ap, (AxX.e;_q1,€]).

= a,_;+ then the result is trivial.

t

i
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3.1.19:LEMMA s~

Q(i)= p(i), ¥iz=l.
Proof:- |

~-By lemmas 3.1,16,3.1.17 and 3.1.18.

3.1.20:THEOREM:~

(vizl) (P(i) .q(i)) and (¥i=2)R(i).

Proof:~
-We have @(l) and R(2), since @(1l)=g(1l) and R(2)=g(2).
-., by lemmas 3.1.1,3.1.8,3.1.15,3.1.19 and 3.0.5, we

have the result.

3.2:Continuity of Api and [si/x]:—

3.2.0:DEF:- | |

- [s
Let {Q}(i) = ([ei/x] is monotone)
R)
‘ & (eg Eny = [e,/x] = [n;/x]1).
Let pP(i) = (Api is monotone).

3.2.1:REMARK: ~

We have redefined the g5,p,Q and g of,3.i.0, whose scope
is for section 3.1 only. The present definition is valid for
section 3.2 only. When we refer to these sections, we must be
~careful to make éure what g,P,9 and R represent.

3.2.2:LEMMA:~

s(i), vi=o.
Proof:-

-By 3.@.2.
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3.2.3:LEMMA: -

p(i-l)AQ(i—l)AR(i~l)=>R(i), viy3.
Proof:-
-Suppose p(i-l)AQ(i-l)AR(i-l); for some 1i,3.
-Let 'ai_z c ni__z € i 2 Claim: [g'/X](xl 2 § € [g{/X]ni__z i
-1f G35 = L OF n, , = T ,then tr1v1al, since [Ei/x]
is doubly strict, by 3.1.20.
—s: Suppose @i 7L and Njog #Te
~ur ay_5 and nj-p are in the same sub-lattice of Ay o1
that is either I+ or A 3(E 2).
-If @j.o = ¥, then Njmp =¥ also, and we are home.

~Then, a -3 6 ny. -3 and €j.9 E 5 -2 since “1 2 %1

and ni_z‘ T Thusl [Ei/xjai_z = [e.{/X]ai"B(Ei"z)

APy {fef 1/%Tay_3slef 1/x1e;_,)

i

Api 1([8 l/X]ni 3l[€i l/x](sl"‘z)' bY P(l 1)AQ (i- 1),\}?(1"1)
= [s’/X]nl_3(Gi 2)
= [ei/x]ni_z, and the claim is established.

A~;, [ei/x] is monotonic on Ai—2'

-Suppose e{ € ”i' Then,

| y Lef/x]y
[ ef/x] =
o0;-30e5p) APy 1 (ef 1/Xlay_solef 1/XTe;_,)
[ni/x]y, by 3.0.2,
Ai>l__ (Eni l/xhi 3,[n1_1/><] €;.p) ¢ By P (i- l)AQ(l 1), (i-1) and

t

since ¢ i 1 is monotong, by 2,.1.6.

y
= [n{/XJ{ .
a5-30e55) L
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3.2,4:LEMMA: ~

Q(i-1) .r(i)= (i), ¥ix2.
Proof:-
-Suppose @(i-1) ,g(i), for some izz.
-Suppose éi-l € Ny € Ai-l'
-Claim: [ei/X]ei—l 4 [e{/x]ni_l :=
-As in the last proof,we may assume that €41 * L

njep #7 and they are either both in AI.E, , or both in A, ,.

-Suppose e;_1 = AY.€;_, and Njay = AWed; o
-Choose z ¢ I such that z = x and is not free in el 1

€45 and &, ,. Then,

Lef/xTe; 4 = [e]/x1(AY.e;_,)

= Az.[a{_l/x][z/y]ei_z

€ Az.[e]_,/x1[2/wlé,_,, by ¢(i-1) and 1.1.12, since
[z/yle;_, = [2/wls,_,, by defn. 1.1.9.

= [Si/X](AW.G )

1-2
= Lef/xIng -

-If ¢ . we have the

i-1 = %32 A gy S By €Ay
claim by rR(i). Hence, the claim is established.

-, [ei/x] ;s monotonic on Ei-l'

- =Suppose el € ni. Then(

AY.€. _ Az.[el_ /x][z/yje -
[ei/x]{ i-2 _ { i-1 i-2

}, where z 2 x and
ef/xTay_p

*i-2
is not free in ef_ ,/nj_y and g;_o.

_ {xz.[qi_l/XJEZ/yJei_z. by -1
14

[n{/XJa;_,» by R(1)
" - E n;_"‘l' by 2‘106' and by 1010120

AY.e,_
= [n;/xﬂ{ i=2],
%i-2
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3.2.5:LEMMA: -

Q(i)=P(i), vi=l. . -
Proofs:~-
~-Suppose Q(i), for some iz=1l,

-Let (eiiai) € (ﬂirni) €’ Eiin-

-We may aséume that ey # 1 and n; #T, as before, since
Ap.({T fET) = {T . by 3.1.20, and so monotonicity
i'je i L
would be clear.
-We are trying to establish Api(si,ei) e Api(ni,ni).

-Now, ei»and n, are in the same sublattice of Ei'

i

-Suppose ¢ € B . Then,

i %i-1 i-1 - "4
Ap; (a;_qee7) = oy _q(e])

i

in

Bi_l(e ‘_}:) Api(Bi_lpeg.)-

—Suppose ey = Xx.ei_l and n; = Ay.di_l.
~Let z be not free in Ei-l'si—l' Then,

Ap; (Axeey _qse3) = ¢y 54 (Lef/xTey q)

= ¢i,i+l([€1/z][2/x]€i~l)’ by 3.1.20,
¢y 341 (Ce]/2102/y18 1), by @(i) and 2.1.6.
= 4y 341 (Ce3/¥18, 1), by 3.1.20.
= Api(ly.ai_l,si).

-, BApy(e;,e3) = Apy(nym3)

[Ay.6 ., _
= Ap, ( i-1 ,€5)
i 8 i
i-1 .

. i {¢i,1+1‘[€1/yjai_1’}
' B (e])

é {fili+1([n;/y]6i_l), by @ (i) and 2.lf6.

B 1(0})

ap. ( AR n%) = Ap (n“n’)
i 8 i ittirtie
i-1

R
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3,2,.6:THEOREM: -

(¥iz1) ((p(i) (1)) and (Vi=2)g(i).
Proof:- |
-@(1)=5(1) and gr(2)=5(2).

~2,@(1).r(2), by 3.2.2.

-:’:’ by lemmas 3.2.2'3.2.3,302.4'3.205 and 3.0.5' we are home.

t

3.2.7:COR: -

Api is continuous on Eiin and [si/X] is continucus on

- . et . o LI R L W TR T RPN
I°,E, A .
rByog and Ay_pe

Proof:=

-By 1.2.,18, I’,Ei_l,Ai_2 and Ei have finite depth.

L= Eiin has finite depth,

-, the functions are continuous, by 3.2.6 and 0.6,13,

t

3.3:More Properties of Api and [ei/x] -

3.3.0:LEMMA: ~

sl z _
Let {Q}(i)s (x is not free in {e }=».
: A _ i-1
R : ai_z

: ) Zz . 2z o ‘ -
EEE/X]{ei-l} = {gi-l,i(8171) N
L%i-2 i-2,1i-1 ‘%ij-2
" Then, (¥i20)s(i) and (¥ix1)g@ (i) and (Wix2)g(i).

Proof:=

,fClaim:“S(i); ¥i»0 3=~

=X is not free in'z = xX-# z = [‘ei/x]z = z, by 3.0.1.
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~Claim: @(i-1) R(i-1)=>pg(i), ¥i=23 :-
-Let X be not free in aj-2°
~Assume ai~2~
by 3.1.20 and 2.1.6, Then,
[Ei/x]ai_2 [Lef/x] ., e )}
i-3'7i-2
{[e{/x]y }
Bpy (Lef_y/%Ta; _3.0ef /%16y

il

I

Bp; (05 3 3-0(853)rd5 5 510(e 00}

VAR(i—l), since x is not free in Gs _37E5_oe

83-3,1-205-30 (445 5.9 0(e5.5))
= 02,11 . )}) = 05.2,i-1(a5.5)-
i-3'%8i-2'J

—Claim: @ (i-1).B (i)=@ (i), ¥iz2 :-

-Let x be not free in €ia1 Then,

. AYQEI -
[s‘i/x]{ i 2}
%i-2

[E'/x]ei_l

Cei/xayp

=:{Az‘¢i~2,i—l([z/y]€i—2)

8 4-2,1-113.5)
since x is not free in [z/¥le, 5, by 1.2.18.

‘free in 31_.113 i=2°

}, by g (i-1).g (1),

Xz z2/v]) €42 )

=by.q,50 'a
1=2
=0 1,1 ) =¢4-1,i(e5-1)
i-2 ‘

.-Lét P(i) = true. Then, since g(1)z s(1) and g(2)=z g(2), we

have the result by 3.0.5.

#T,Lt , since otherwise result is trivial,

y, by (i), which we have above,
» by @(i-1)

{Az.[si_l/x][z/yjei_z} ‘where z » x and is not
14

TSR e S
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3.3.1:COR: -

Let x be not free in ¢, ,. Then, ¥izl,

Api(AX. Ei_ll 3.{) = ¢i_l'i+l(€i_l).

Proof:-

TApi()\Xo si"‘l' 5{) = ¢i,i+l([€£/x] Ei-l)

= ¢i,i+l.¢i"l,i(ai-—l)' by 3.3.0.

¢5-1,1+1 e51)

-

3.3.2:COR:~ »
(i) [EE/X](Ax.ei-Z) = (bi_l’i(AXo €i_2)p ¥izl,
(i1) (y = x) . (y is not free in e{) =
(Cef/x1AYee o) = A¥.[ef_1/%1e4_5).
Proof:-
(i) =By defn. 1.2.9, x is not freé in AXegg oo
-+, by 3.3.0, we have the result,

(ii) -Choose z # x and not free in €5-17€4-2"

~Then, [ef/x1(AY.e;_5) = rz.[ef_1/X1[2/¥1e;_,

i

Az.[2/y1[e_1/X1e;_,» by 3.1.20.

i

y.[ei_l/x]gi_z,‘since z is not

free in [ei-l/x]ei~2' by 3.1.20.

3.3.3:REMARK: - o : .

| Theorems 3.1.20 and 3.2.7 géve‘us the basic properties
of Aéi and [éi/x]. Results 3.3.0,3.3.1 and 3.3.2 show properties
which are useful for manfpulating these operators. |
- The foliowing lemma relates the operato: [ei/x] withk
the old variable swap opefator [y/x]. Be careful not to -
 confﬁse [y/x] € [Ei-l*Ei]f an instance of [;i/x] Qhen‘gi =Yy,
- with [y/x] ¢ [Ep»Ed. )

-
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3.3.4:LEMMA:~

S\ | Z '
Let g (1) = ([w/x]{I } €1
E, ¢i-2
at” |
| i-2)
{[W/X]Z (of defn., 1.,0.2.) o }
= ).

¢i~l,i([w/X]€i~l) (of defn. 1.2.1.)
05251 ([W/x"1a;_5) (of defn. 1.2.1.)

Then; (¥i20) S(i) and (Vizi)Q(i) and (¥>2JRr(1).
Proof:~ | | |

~Clearly, S(i), Viéo, by defn. 3.0.1.

~Claim: @(i-1) \R(i-1)=>R(i), Vi23 :-

» Y
-Lw/x] oy = [w/x] { ‘ }
- A, -2 .

{tw/x]ly }
2p, _, ([w/x] oy _ae [w/x] € _o)
i-1 A, _3%i-3 E;_, “i-2

{Ew/x]y, by S(i). }
‘Api_l(ei~3,i~2°fw/x]ai_3,¢i_2'i_l°[w/x]e._z), by @(i-1) .gp(i~-1). ;
{[w/x]y . }

.91_3' i-ZQ [W/X] Qi"‘3 ( (bi_z ,i"lc EW/XJ €i__2)

if

.[w/x]y
TP ( )
A2 sty (Dw/xde, )

i

Y | | |
ei_zli_l(tw/x]{ )}) = ei~2,i~1([w/X]“i-2)'
| %1-3"'%5-2 |

~Claim: @ (i-1) R{(i)=@Q (i), ¥iz2 :-

o .Ay.ei_2
(e; 1) = EW/X]E'~1{ }

—Lw/x1g
’ i""l . 1 Gi__z
{Az.[w/x]E Ez/y]ei~2’ where z # x and 2z is not free
— i_.z . .
EW/xinuz(ai”z) in w,e,_,-

i} {Az.¢i_2'i~l([w/x][z/y]ei_z), by Q(i~1).}
'8
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, )\z.[w/x][z/y]ei_2 )
- ¢i_lli [w/x]ai—z :

AV. €
i-2 _

c”1-1,;1(["’/"]{
*i-2

-But, R(2)=g(2) and ¢@(1)=g(1).

-3, we have the result, by 3.0.5, letting p(i) strue.

+

3.3.5:LEMMA: -

s
Let { @ }1i)

H

Z Z
‘¢i+1,i°[€£+1/xj{€i } 2 [ei/xj{ei-l}’°
*i-1 ®j-2

~ Let p(i) = (¢i+2,i+1°Api+l(€i+l'€£+l) a Api(ei,ei)).

Then, (¥i20)s(i) and (V2l)(p(i)AQ(i)) and (¥i22) p(i).
Proof:~- |

-Clearly, ¢;,; ;°kf,1/%12 = [ef/x]z, Wi20.

-~ S(i)’ ViZOO

-Claim: R(2) :-

-If o, = 2, we have result by 5(2).

1

~If o) = aé(ei?, then o, = ; and result is trivial,

(o)
since [si/le = 4, by 3.,1.20,
~Claim: @Q(1) :-

-1f e = Z e EO,-= I; then we have the result by s(1).

~-If ei =.*Y-56’r then €p T L and, as above, we are home.

~Claim: P(i-1) .@(i=1) .R(i-1)= R(i), wi»3 :-

A3

y

. ;r .

“8541,1°Fi41/%1% 01 T 0441, 100 841 /%] e )
: Gj-2'%41

rd

- ( [efe1/*1¥
i+l,i

)

Api([s;/XJai_z,[e;/XJei_l)}

{[Ei/x]y, by S(i). ’
‘ e[ e]/X1a;y_pr0; 5 oL €f/X1e; ), by P(i-1).

Ap; 108y ,5-1
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[}7)

[ei/ny _ }
Api-l(tei—l/XJai-3'[Ei—l/xJei—Z)' by Q(i—lhﬂR(ifl) and 3.2.6.

[e{/xl{a e )} = Lef/xJaf 5.
i-3'"i-2

~Claim: §(i-1) R(1)=>@(i), Vis»2 :-
| ‘ - o - ‘ Ay. €i-l
“0541,1°0811 /%1807 = 054,00 /x]

%i-1
(Az.Cel/x1lz/ye, _
= 9541,1¢

l}), where z # x and not free in efreg 1
A L)

{Az.¢i’i_l°[e£/x][z/y]€i_l}
541,1°0€ i /¥l

{Az.[ei_l/x][z/y]einz, by @(i-1),2.1.6 and 1.1.12.}

[Ei/XJai—Z' by R(i}.

HY

il

Ay.ei_z, since z is not free in 85-1'81-2' by 2.1.6.}‘

[e’/X]{
i

= [ei/x]ei_l.
-Claim: Q(i)=P (i), ¥izl :-
: _kx.%i .
“0342,i+1° PP 4 1€341)
i

¢i+1,i+2°[€£+1/XJ€i}) ) {Ee§+1/x]ei, by 2.1.6.}

aifl(ei)

1l

¢i+2,i+1({ (e? )
3 '€i41

{¢i,i+1°¢i+1,i°[8£+1/XJ€i' by 2'1'6'}

a;_j(e3)

) o[el/xle _1¢ by @(i) AX.e, _

a;_q(e])

u

1

-a, by 3.0.5, we have the result.

’ T

'3.3.6:LEMMA: -

In lemma 3.3.5, we cannot have equality.

Procof:-
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-Let y #a,b and L. = a,b.
-Then, ¢3'20[Ax.€2/y]a(b) = ¢3'2(a(b)) = a(b).
-But, [Ax.el/yjl = 1. Contradiction to equality —)(.

T

3.3.7:REMARK ¢~

The inequality in lemma 3.3.5 is highly regrettable, since
otherwise it would be very easy to prove later that Ew modelled
B-reduction. However, it does seem to be inherent ih the system.
It arises because of the inclusion, éi,i+l' in definition 3.0.3
and, as was mentioned in 3.0.4, there seems to be no way to
define the operators avoiding an inclusion.

There is an analogous situation in Scott's DOo model, where
the application, also defined coordinatewise, fails to provide'
an exact sequence of resulting coordinates, and so necessitates
the taking of a least upper bound.

Thus, we maintain that this inexactness is a feéture of the
~A-calculus itself and may be a reason why it can be so exceeaingly ;

difficult to prove theorems about it.

3.3.8:COR: -
0] Z z .
Let i =2 k. Then, ¥k 2 {1}, ¢i,k°[€i/x] €512 [ek/xj Exml(®
2 %32 )

Also, Wk 2 1y ;.5 yu0°®Py g (65 q0ef ) 2 Bop (e yregyy) .
- Proof;-
-Trivial, by repeated applications of 3.3.5.
: 4
3.3.9:COR: -
The sets {¢1+1,w°Api(€i'€i)l121}' {¢i,m°[€i/x]€i~l|i21}

and {¢i'mo[e£/x]ai_2|iz2} are directed in E_.

Proof:~

TVIZLs 0442,.°PP141 (854108 540)



16l

B141, 00 P, i 41° 0542, PPy 41 Lega1 7 efyy) v PY 20203 (iv) .

by 2.2.3(iv).

i

i

b341,w° 0142,141°PP 141 (epgnrefan) s
2 ¢i+l,®°Api(€i'€£), by 3.305.

-Similarly, ¥ix1, ¢i+l'mo[g£+l/X]gi a ¢i,w°[€f/x]€i-l'

- " , Vix2, ¢i+l,w°[€£+l/x]ai—l 3‘¢i,w°[€f/x]“i-2'

-%, the sets form, in fact, directed chains in Em.

F

3.4:Infinite Application and Substitution:-

3.4.0:DEF:~
Ap: E _XE > E_
(E ,€ ) b H{¢i+l'moApi(€ilei)}wb
[e” /X1, t Ej ‘ y E|
. L-ll{¢im°f€i/x3€i—1}
1=
[e”/x1, ¢ A > E
o
¢ b %:£{¢i o[el/x]ai_z}
3.4.1:REMARK:~

As before, we will omit subscripts from the substitution
operators when safe to do so.
The following lemma gives a characterisation of the operators

which is sometimes easier to use.

3.4.2:LEMMA: -
(2]
- (=]
V= ° £,
apce = {0,500, 0 o} j=0°
>} - . ©
[e’/x]E: = <i‘ _ll{d)i,j(’[ei/}(]ai-l})j-——o and
had [+ ]
e~ £ = # ! [e Jo. }>.
[e’/x] = {d)i,J /% 1=2 =0 ?

where the above sets are directed.
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Proof:-

_¢m'joAp(€,€') ¢m'j(L;£{¢i+l,moApi(ei,g£)})

i

o«

il

g;;{¢m,j°¢i+l,w°Api(€i'ei)}' since ¢m'j is

continuous, by 2.2.3(i), and the set is directed, by 3.3.9,

which implies the resulting set is also directed.

%
= H{(bi_*_l,j"APi(@irE-{)}, by 2.2.3(iV)-.

-Similarly for the others.

3.4.3:REMARK:~

Notice that in the above characterisation of Ap and [e/x],
since the sets are subsets of various Ej's, which have finite
depth by 1.2.18, the actual j'th coordinate must be one of the
¢i+l,j°Api(€i'€i) etc..., for some finite i. This is useful in
some of the later proofs.

3.4,4:THEOREM: ~

(1) Ce”/x] is doubly strict over E_ and A_.
(11) ap({i},e”) = {)}.
(iii) [z/z710(z/2"]e”/x] = [2/271[e”/X].
(iv) [z/z°18p(e,e”) = Ap([z/z"1e,[2/2"1e").
(v) (xb¥ 2,2°)A(2° is not free in g¢”) =>
([e”/x102/2°1 = [2/2”1(e"/x1).
(vi) (x is not free in ¢,0) =>
. (Ce”/x10x/y1{} = [e/y1{]).
(vii) (a is not free in e‘;{z})~=>
(a is no; free in [e’/xj{Z}).
(viii) (a is not free in e”) —>

(a is not free in [e’/aj{g}).
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(ix) (a is not free in e,e”) => (a is not free in Ap(e,e”)).

(x) (x is not free in {g}) => ([e’/x]{Z} =‘{§}).

(xi) [e“/x] and Ap are continuous maps.

(xii) [w/x]E = [w/x] and wzo[w/x]A = [w/x].

Proof:~
-(1),(ii), (iid) ,(iv) ,(v) ,(vi) and (%) are trivial, by 2.1.6,2.2.8
and 3.1.20.
~(vii), (viii) and (ix) are trivial, by 3.4.2,1.2.18 and 2.1.6,
noting remark 3.4.3.
-(xi) is trivial, by 3.2.7, since we note that,

o
ap = If;llwiﬂ’mozxpio<¢w,i.¢m,i)},

where (¢m,i'¢w,i) is the clearly continuous projection on the
cross-product defined in the obvious Way.bThus, Ap is the least
upper bound of continuous maps and is therefore continuous itself.
Similarly for [e”/x].
-(xii) Well, by 3.4.2 :-

[w/x]Ee = <L*J{¢i,j°[w/X]Ei_1

o0
[e°]
= <£;{{¢i,j°¢i—l,i°EW/X]€i-l}>j=O' by 3.3.4.

e
€i-17735=0

= <£;%{¢i,j°[W/XJEi}>j=o' by 2.2.3(iv).

= <[w/xle.>. . = [w/xle.
W/xIE5% a0 = LW/x]
Similarly for [w/x]A - the m, is a trivial detail to get the

types of the functions compatible.

3.4.5:NOTATION:—

Let € ¢ E, and X e.I. Then, write x for <x>:=O e E,, and

. o]
 Ax.e for <1,<Ax.e.>

i:o>ie Ew.
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3.4.6:LEMMA:~

(i) x is not free in y <=> x = y.
(ii) x is not free in Jy.e <=> X % y or x is not free in ¢.
(iii) x is not free in Ap(eg,n) <= x is not free in ¢,n.
Proof: -

-(i) and (ii) are trivial, by 3.4.5.

~(iii) is the same as 3.4.4(ix).

3.4.7:LEMMA ;-
Let y be not free in e. Then, Ax.e = Ay.[y/Xx]e.
Proof:-
-AX.E = <1l,<)\X. ei i o>
= <l,<ky.[y/x]ei>i=o>, by 1.1.8.

= Ay.[y/x]e, by 2.1.6.

3.4.8:LEMMA: ~

Ap(Ax.e,e”) = [e”/x]¢c.

Proof:-
- o
"APV(AXOEIE)) = U¢i+l OApi‘(AX-Ei_lIE;.) ‘
o
= [Q,/x]ao
F
3.4.9:COR:~

.Let x be not free in ¢ ¢ E_. Then,
Ap(Ax.e,e”) = g.

Proof:=-

© =-Bp(AX.e,e”) = [e”/x]e, by 3.4.8

e, by 3.4.4(x).

i
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3.4.10:LEMMA:~

(1) EE/QJY = {

Y, 1f x 2y el

g, if x =y EI}.

(i1) [e”/x1(Ax.€) = AX.e.

(iii) (y = x) .(y is not free in ¢*) =>
([e”/x1(Ay.€) = \y.[e"/x]e).

(iv) (z ¢»x)A(z is not free in ¢”,g) =>
(Ce”/x1(Xg.€) = Az.[e”/x][z/Y]e).

Proof:-

-(1) [e/xly = <£;4¢i,j°[€i/XJY>§=o

w )
{fg;4¢i,j(y)>j=o, if x =2 y. }
[ 0 . —

<£;{¢i,j(€i)>j=o’ if x =y.

{fY>;=°' if x =2y, y, if x 2 y}

<Ej>;a0' if x = vy. g, if x =y

-(ii) x is not free in Ax.e, by 3.4.6(ii). Thus, we have the

result by 3.4.4(x).

-(1ii) [e”/x1(Ay.e) = <£;£¢i'jo[e£/x](Ay.gi_2)>j=o
= <£;%¢i,j(AY‘[Ei-l/X38152)>j=o' by 3.3.2(ii)

— <L°ij}\ - / o
B (AL F S IR B RS T TR L P i I

4 -
. -3
<l'<Ay‘£;{¢i,j~l°[Ei/x]ei—l>jcl by 1.1.14(4i).

- <;,<Ay.¢w’j_1o[g»/x]e>§=l>, by 3.4.2.

“= <L,<t, s Oy.[e”/xle)>3_ 1> = AY.[e”/x]e.
= (iv) [a’/XJ(Ay.e)k= [e’(;](kz.[z/y]e),by 3,4.7.
= Az.[e”"/x][2/y]le, by part (iii) above.

t
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3.4.11:REMARK: -

We have shown that [e/x] extends [y/x], by 3.4.4(xii),
as was required in remark 3.0.0. We see that the concept of
"not free in" in E_ is very similar to the notion of )~-calculus,
by 3.4.6. We see that the notion of g-conversion is reflected
by 3.4.7. We see that the notion of g-reduction is reflected
by 3.4.8.

We almost see that the substitution operator of A-calculus
is given by [e/x], by 3.4.10. What is missing is the identity,

[e/x]ap(8,n) = Ap([e/x]d,[s/x]n).

Notice that we do have this when ¢ =y ¢ I, by 3.4.4(iv).
This identity proves very difficult to establish. We can push
coordinates around so as to obtaiﬁ expressions like :-

©

Le“/x]Ap(e,8) = E;{¢i+2,w°[€£+2/x] Ap, (e,,64)
and,

oo

Ap([;’/x]e,[e’/x]d) = £;{¢i+l,woApi([e{/x]ei_l,[ei/xjsi_l).
But when we try an induction, & la 3.0.5, on these expressions,
it will not go through. The trouble arises from the "inexactness"
mentioned in 3.3.7.

This identity is all that is needed to establish E_as a
model of the A-calculus. We are forced to retreat back into the
pure A-calculus in ordervté get it.

We end this section by showing the existence of the I and
K combinators in E_. We cannot yet givé S kecause of the missing
ideng;ty.

3.4,12:LEMMA:~

o«

(1) Ap(ix.x,e’) = g”,
(ii) Ap(Ap(ix.Ay.x,e),ce”) = ¢, if y = x and there exists

z # y,x such that z is not free in ¢.
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Proof:-

[e’/x1x, by 3.4.8.

il

=(i) Ap(xx.x,e”)

e,’ by 3.4.10(1).

- (ii) Ap (Ap(Ax.AY.X,¢e) re”) = Ap([e/x7(Wy.%) ,e”), by 3.4.8.

Ap(Az.[e/x]1%x,¢”), by 3.4.10%i) and

i

3.4.4(xii).

2p(rz.e,e”), by 3.4.10(i).
€ by 3.4.9.

3.5:Summary of the Construction of E and Ap :-~

- I = Simple atomic lattice of variable names (countable).

- {EO -7 } and {Ei+l T OMLE; By }
» — ’
Bo =1 Al =T+ A (B )
T 41,0% By * Eg | y
[r=.eq 1 (unless Ax.eq = oy =71)
o ' 7 la L
) | 0
- ¢0,l : By ¢ Ey (since Eqy ='AO)‘
™ - Y
61;0 : Al > AO .
{ x } {x }
ao(el)' —) 1 (unless a,(eq) = x =71)
- 8 Ay ¢ A, (since Ay =1 ).

2p(Az.[e/%X][2/Y]%,e”), by 3.4.10(iv).



N
%541,i ¢ EBia ? By .
{lx.ei} %oy 59 (eyg)
| —
ay ei,i—l(ai)
N
i41,i * Rin1 7 By .

X X
{“i(€1+1)} {ei,i-l(ai)(¢i+l,i(€i+l);}

Similarly for ¢i,i+l and ei,i+l‘

s o
o Inverse limit of <Ei+l'¢i+l,i>i=o

. o
B +17%141,1%1=0
. [+ +]
AI.E°° = Inverse limit of <AI‘Ei’¢¢i+1,i>i=O

B

Inverse limit of <Ai
[+ <)
A_(E ) = Inverse limit of <Ai(Ei+1)’eei+l,i>i=O .

AI.E_ + A,
1° + A_(E)]

b= e
8
oo

. . | N
Cey/x1; ¢ I - E; .
\ Y, if x 2y
yl ?
- €4 ifx=y

= [e,/x1; € [Ey > Ey]

= [ep/x1p e [By + Epl

: Ei—l - > E, (i 2 2)

{fy.si_z} ' {fz.[ei‘l/X]Ei—ZEZ/YJQi"Z' where

[si/XJA

a —

®i-2

* X and z is not free in €{-17€j-2°*



- \ .
Lei/xlp, o F Pi-2 N (i = 3)
{ Y } [ef/x1.y
> . .
ai_B(Ei__z) Api_l([ei_l/X]Ai—3a1_3’
[E.’_ /x] €, _ )
i-1 | E,_, i-2
- ) \ 2
Bpy = 'Ei X Ei 7 Eina (i 1)
Ax.e, _ ey s (Lel/x] € )
({ : 1}:8{) b———> { l:l+1’ 7B, i1 } .
-1 o5-1(e)
[e’/x]E : E, - )Eoo .
<€:>5 0 > L—:_—J¢i,°°([€i/XJE. €5-1)
i=1 i-1 x
[e‘/x]A : A, } E, : .
it -
<a,>. 4 > E:%¢i,w([€i/XJA, oy _,)
= i-2
Ap : Ew X Ew > Eoo .
(<es>3-0r<€i>i=0) F7 j'-—__:':{d)i'}'l,oo(Api(Ej_'gi))

t
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4:E_-SEMANTICS OF THE A-CALCULUS.

4,.0:The Semantical Functionf :=-

4.0.0:REMARK: -

Vle are now going to be using A-expressions. These have a
similar notation to that we have built up to describé elements
of E_. We must be careful to realise when we are talking ahout
elements bfiEXP from those of E_. In general, elements of EXP

are enclosed within double square brackets, [ J .

4,0.1:DEF:-
Let EXP be the set of )-expressions as defined in 0.3.1.

We define the semantical function,f , from EXP to E_, by the
following three equatibns $-

ExI = X ‘ (s1)
EDx.el = Ax.EQel (82)
Efe(n)] = Ap(ELel, EOInD) (83)

4.0.2:REMARK: -

On the right hand side of equations S1 and S2 above, we
are using the notation of 3.4.5, We are also using the same
notation for the variables in EXP and elements of EO.
4.0.3:EXAMPLES: - | |

EIxT R S F5.F5 5 I3 5 45 F5 95 5 55 5 JIIN
Exy] = <L,1,xy,xy,xy,xy,xy,xy,xy,xy,..,...>
"EMx.y] = <¢,Zx.y,Ax.y,xx.y,xx.y,lx.y,.......>
| EIxx.xyll =~<1,L,1,Ax.xy,AX.xy,Ax.xy,Ax.xy,....>
ELf(yy)T = <L LB EYY) B YY) By reeeenne>
EMy.£(yy)]T = <l,L,1,A7.£(0) , Ay E(yY), >
Eb(Ac.dd)T = <4,b(1),b(1),b(1),b(Ac.dd), ceurenea>
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El{ dy.xy) (bl . =<1 4 ,xb,xb,xb,xb,xb,xb,xbh,xb,...c..>

Eﬂ(l}c.xx)(b(.xx)ﬂ S R S N fesecee>

Ely (£ =< 200,200,200, D, s

Proof:- | |
—EkD = x = K, X, XX Kjeveennns >

-EkylD = Ap(x,y) = H¢i+l,“°Api(x'Y)
l=

‘L__lcbi*.l'm(xy) = SLp LXY XY )XY XY e >
i= : :

~EDx.yD] = x. ElyD = Xx.y.
-E'L'L)\x.xyﬁ = Ax‘.<1, ;L,xy,xy,xy,xy,........x
- EOE (yy) D

M

f

b1 ooBPy (£,7Y) = Li‘cb- _(E(yy))

o 3‘<llllf(l)lf(YY)lf(YY)I~0--o‘0-->o
~EMAy. £(yy)T = Ay.<i, 4, E(L) ,E (YY) sE(YY) revennnaad.
~Elb (Ac.dd) T

v = g¢i+l'woApi(b,lc.dd) = Q‘bi-&l,m(b()‘c’dd))

Ap(b,<L, 1,4, c.dd,xc.dd,.euveees>) v

= <'L‘lb(-|-) lb(l) lb(l) ’ b()\C.dd) 'b(ACndd) press s « e

!

-EL(Ay.xy) (p)T = Ap(Ay.EQxyl,b)

i

[b/y]E<J.,1,xy,xy,........>, by 3.4.8.

[B/YI<L )L )XY XYy evenesead>, by 3.4.4(xid).

it

o= <1,1,0b/y1x([Lb/YIY) reeeeanee>

= <J-'-L’xb'xb'xb'xb'xb'.....Q.Q>.

-

AP (KL, L 1 jAX XKy oo s o> <L Ll sl AKX XX o0 e>)

Lo
. = L-;J@i+l,w°~Api (}x.xx,)\x.;{x) .

-

LT (Ax.xx) Ax.xx)]

]

. =Now, let P (i) Api(kx.xx,XX.xx) =4, for i > 3.

-Claim: P (3) :-

--Ap3 (Ax.xx,AX.Xx) }”-'= ¢3'4°[Ax.xx/3§] E2 (xx)
= ¢3;4°[AX'XX/X]Ai(3x)

AP (£, <Ly LYY s YYrYY YT v e enneeae®hine s s cn s e oa e



172

= ¢3'4 oApz( [/x ]Elx, [i/x ]A x)

= ¢3,4 °Ap2( Ly/x ]on, [J/X:EA x)

o o

= ¢3'4‘°AP2(-L: -L) = ¢'3’4(J.) iR €.E40

-Claim: P(i)=>P(i+l), ¥i 2 3 :~-

o[AX.XxX/X ]A (xx)
i-1
541,142 PPy ([Ax.xx/x ]Ai_zx'
[AX.XxX/X T X)
i-2
oApi {(Ax.XX, AX .XX)

—Api+l(>\x.xx,>\x.xx) = ¢i+1,i+2

041,142
b141,142(4)0 Y PO
= 1 € Ei+2'
...’., by induction, P(i), ¥i =z 3.

—%, EI(x.xx) (x.xx)] = chi_'_l o) = 1o

-To evaluate EIY(f)I, we have first to evaluaté EYD.
~Now, Y = Af. (Ay.£(yy)) (Ayv.£(yy)).
-And, ED(Ay.£(yy)) (Ay.£(yy))1
= AS(Q,L,L,)\y.f(L),)\y.f(yy),....>,<1,1,¢,>\y.f(;),)\y.f(yy),...>
g:4¢i+1,m°Api(Ay.f(yy),Ay.f(yy)).

-Suppose i = 6. Then, Ap, (Ay.£(yy),Ay.£(yy))

= d)j_'_:L.;.]_"[}‘Y-f(}’Y)/Y]Ai’__zf(YY) |
= ¢i'i+loApi__l(Uy.f(yy)/y]A £,00y.£(yy) /1, ,3(yy))

= ¢ili+1°Api_l(f.Api_z(Eky.f(yy)/y]Ai_4y,[Ay-f(yy)/yJAi_4y))
~By noting how the projections work in the above,

Ap, (Ay.£(yy) JAy.£(yy)) = ¢, (£(Ap,(1,1)))

_ 4 4,5 2

bg,5(£W)) = £01) € Eg.

4

¢5'6(f(AP3()\Y'f(J.)r;\Y'f(J.))))

¢5,6(f(¢3'4°[>\y.f(l)/Y]Alf(l)))
= ¢5’6(f(¢3'4(f(1.)))), since y is

Ap; (Ay.£(yy) Ay.£(yy))

it
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not free in f(1).
2
("L) €E6‘

-», by induction, we see that, ¥i 2z 4,

ap, My 8(yy) My £(yy)) = £4772 (), vhere "" neans

"integer divide”.

L~J¢i+l,w(f(i—l)%2(l))

£ (1)

=, EL(Ay.£(vy)) Ay . £(yyN) T

no
. =
sl g 1l
o

i=

<1,1,£(3), £2(1y, f3(¢),........>.

-, ElyD = <1,L,1,Af, f(L),AE, £2 (L) ,Af. £3 (L) pevenened,

-5, EDy(£)] = ap(EIYD,f) = [_J¢l+l w°Ap, (Af. fl 205),6)
= o, oolesel, (g1 (1))
i=2 i, Ei-—l
= |0, WwolE/£2(e 72 (1)), by 3.3.4.
= i1 |
i-2 ‘
- bi_l'w(f (L)), by 1.2.18.
= <1, 1,0, 62,3, ft iy, ol o
4
4.0f4:REMARK:-

Thus, it seems that expressions ﬁhat are in normal form
are mapped elementarily to their obvious images in E, . Notice
that they are embedded in an En' where n is finite,

Also, B-convertible elements could well have the same
semantics - e.g. (Ay.xy) (b) and (xb). |

.(lx.xx)(Xx.xx) is mapped to L. We will show that all
X—expressions with no head normal form go to i,

The Y combﬁlator ha$ a representation that looks like the

Aminimal flxed point operator - but see sectlon 7.1. The following

lemma shows that all the Yi combinators have the same semantlcs

in E, under E, even though Y, is not convertibhle to Y.

et 9 e s e s
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Notice that E  does not model n -conversion, since EX] =

EMyy.xy1D,

4,0.5:LEMMA s~

All the fixed point combinators, Yi' have the same semantics

in Eew under E.

Proof:-
-Recall from 0.4.8 that, |G = Av. f.£(yE)
YO =Y .
Yipp = Y36 V1 20

~Then, E¥,T = E[,GI = Ap(EW], EIGD) .

-By comparing with the examples in 4.0.3, we see :-
EIGI = <1, 1,10, AV AL E(0) ) AV AL E(YVE) yJeennnnee>e

-Also, by 4.0.3, we have :-

EOYD = <1y Ly 4y AEeE (1) ) AEaE2 (L) )enrnnnnn>n

® i-2
-y EY, T = L;3¢i+l'moApi(xf.f (1) Ay Af.E(yE))

= [_5¢i LIAYAEE(rE) /£], £172 (),
1= ’ i~2

-In the following, we will omit the inclusions ¢i ‘

lj.’
~-Let P(1i) = [Ay-kf.f(yf)/f]A fl_z(i) = Af.fi—S(L) e B,
i-2
-We will establish P(i), ¥i > 6.

-Note that )\f.fi"5

(-L)‘ € Ei"'3 d Ei'
~-Claim: P(6) :-

~-First we evaluate [Ay.xf.f(yf)/f]A f3(1)

]

3
Ap, ([AY.A£.£(1)/£1, £,0Ay.AE-£(1)/£1. E£2(1))
4 AZ A2

= Ap4(ky-xf-f(x),Apj([l/f]A f:[l/f]A £(1)))
N 1 1
=‘Ap4(xy.xf.f(i),ApB(L;EL/fJA £(1)))
1l
= Ap4(Ay.xf.f(L),1) = ELVYJE AELE(L) = Af.E(L) € ES'
3 ‘
4

(1)

~Then,_txy.if.f(yf)/fJA‘f
| By
= Apg ([AY.A£.E(yE)/£1, £,[hy.AE.£ (yE) /€], £3 (1))

_ 3 3
= Aps(xy.xf.f(yf),Af.f(l)), by above,
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= [M.£(1)/y], M.£(yf)
3
= Ag.DMLE()/y ], (9(y9))
2

= Xg.ApB([Af-f(L)/Y]A g, [xf.f(i)/y]Alyg) '

| a

= Ag.Ap, (g,2p, (L¥/y], v, [y ]Aog))
Ag.g(l),= AMELE(1) .

= Ag.Ap,(9,Ap,(1,9))
—:, we have P(6).

-Claim: P(i)=>P(i+l), ¥i 2 6 :-
' i-1

~well, Diy.ML£(yf)/£1,  £70 (1)
i-1 _
= Ap, (\y. M. £(yE), DAy AELE(yE)/E], €772 (1))
. i-2
= Ap, (A\y. AE.£(y£) , AE. £ 3(1)), by P(i).
= DMLETT )yl MLEWE) T
P P v St ‘- ii_z g ! . SIENENITS T S s at [ PR T g e FANIE PR
= Ag.DAE.E 72 (1) /v, 9ve)
1-3
i-5
= Ag.Ap, _,(g,[AE.£7 " (1) /¥y, 4yq) .
, ‘- . |
= Ag-g(Api_3([xf.fi 5(1)/y1A v AE.£5 5(l)/Y]A 9))
i-5 '

i-5

i-5
(Note that in the above line we have Af.f (1) € E;,_3, which

just fits.)
= Ag.g(Ap, 5 AE.£172 (1) ,9))
Ag.g(lg/f], £175(1)) = ag.g(La/£1£273 (1)), by 3.3.4.

i-5 _ _
Ag;g(gi 5(l)) = '/\g-gi 4 i-4

(L)Y = Af.f

it

(L) € Ei+l'

-., we have the claim,
-l, by induction, we have P(i), ¥i = 6.

o0
-5, EIv,D = ! !q;i,wo[;\y.xf;f(yf)/f]A £172 (1), since the set
| = | | -2 |

forms a chain.

2| i-5 |7 ‘ i
= j‘_—:-_'Jd)i'm()\f.f (1)) —»~L4¢i+2,oo(>‘f‘# (1))
ETYD

1=

L

-.,'. E = F V = )
-y ELYD = FIY, D = EIYGG......q]
o= ETY D, by repeated use of above.
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4.1:Change of Variables Operators :-

4,1.0:DEF -

The CHANGE OF VARIABLES OPERATORS, (COVO), form the

following set :-
{[ao/al][az/é3]......[anfl/énll(n 2 0) n(a; is a variable
for all 0 <i <n)}l.

4,1.1:REMARK:~-

The above definition is deliberately ambiguous in that it
refers to operators both in the A-calculus and on E_. The context
in which they are used should resolve this problem. In the
following lemmas, if the context is A-calculus, the "=" should

They are just the set of finite (possibly zero) compositions
of single change of variable operators, [a/b]. We shall use symbolsé
like Y, Xi etc... to represent them.

4.1.2:LEMMA: ~

COVO is closed under composition and forms a semi-group
with identity [a/al. é
Proof:-
-Clearly, COVO is closed under composition and composition of
operators is associative.
-Also, la/alex = X = x°la/al, either by 2.2.8(ii) if we are in
Ews or clearly if in A-calculus. |

-Note that [a/al = [b/bl] = the zero length element. We will call

»

this element the null element. ~ !
-Note also that COVO is not commutative and is not a group, since
" [a/bllb/al = [a/al only if b is not free in the element heing

operated on.
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4.1.3:DEF:~

Let y = [ay/a;1[a,/a3]......[8 _1/a ] ¢ COVO. Let x be a
variable. Then, x is NOT IN X if x za,, for all O < i < n.

4,1.4:LEMMA:~

(i) X(Ay.€) = Ax.X[x/y]1€, where x is not in X and not free

in €,

(ii) X(w(e))
Proof:~
(i) ~Let X = [ao/al]......[an_l/an] and x be not in X and not

free in €.

~Then, X(\y.E€) [ao/al]......[an_l/an](ly.e)
= Iag/ayle...lay_s/a 1. [a__i/a_1[x/YIE,

by 3.4.10(iv) if in E,, or clearly if in A-calculus.

(X (W)) (X(¢)) , restricted to the A-calculus.

= [ag/ayl... 8y g/, ,1Mx.Ta, o/a, o1la,_ /3, 10x/y]

by 3.4.10(iii) if in E_, or clearly if in A-calculus.

i

Ax.[ad/alj......[an_l/an][x/y]a, repeating the

above.

i

Ax.x[x/y]e.
(ii) =-Trivial,

4.1.5:COR:~

*®

(1) C£8/x1x(2y.¢€) = Az.[68/x1x(z/yle, where z =zXx, not in ¥
and. not ffee in §, €. ”
(ii) Restricting ourselves to the A-calculus,
L8/x0x(w(e)) = ([8/x1x(w)) ([8/x1x(e)).
(iii) Restricting ourselves to E_»

XxeAp (e, 8) = Ap(x(e),x(8)).

{
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Proof:-

[6/x1(xz.x[z/yle), by 4.1.4(i).
Az L[S8/x1xlz/y1(e), by 3.4.10(iii) if in E_»

(1) =[68/xIx{dy.€)

or clearly if in A-calculus.

(ii) ~Trivial.

(iii) ~-Trivial, by repeated use of 3.4.4(iv).
| +

4.1.6:REMARK:~-

We have introduced COVO to deal with a technical problem
that occurs later. We will be doing structural inductions on
the formation of expressions, € € EXP, in which terms like
[8/x]e are wanted in the hypothesis A[lell. When we try to prove
the case (Allel]l => AllAy.ell), we start off with the term ES/X](XY.E).f
But this is Az.[8/x1[z/yle, for some z #x and not free in § or
€, and we cannot use Allel since we have [6/x][z/y]e and not [G/XJe.E

Therefore, we replace [é/x]evwith [8/x]x(e) in Alel - i.e. |
an hypothesis about € for all §,x and ¥. Then, when we start wiﬁh
[8/xIx(Ay.€), we get Az.[6/x1Ix[z/yle, by 4.1.5(i), where z- # x,
not in x and not free in § or e. But, now we can apply 40el to
[8/x1x[z/yle, since xelz/yl € COVO, by 4.1.2.

The presence of ¥ in Allel does not disturb too much the
other two pafts of the inductions, namely Allyl and (4AQwlA4Icl] =>
Al (e) D). |

We cannot exiend the whole of 4.l.5(ii) to E_ because of the

missing identity of remark 3.4.11, but have to be content with its

part (iil).
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4.2:The Semantical Relations = and € :-

4.2.0:DEF ;-

Let €,¢” €EXP. Then,

e’ if Elel = Ele”]

L

€

n

and € e’ if E[le] = Ele”1.

4.2.1:LEMMA:~

is an equivalence relation and & is a partial ordering
(modulo =) on EXP. Also,
(e 2 %) = (AX.e ® Ax.e”)

and (e € €”).(8 € &%) => (e(§)

in

E‘(5'))'

and e are

W

together with similar results for =z. Finally,

substitutive - i.e. for any context c¢[ 1,

(e £ €7) = (Clel = Cl[e”])
and (¢ = €”) => (C[el = C[e”]).
Proof;—-

~Trivial, because of the lattice properties of E_ and the
monotonicity of Ap. Then, an easy induction on the structure

of contexts gets the substitutivity.

4.2.2:REMARK:~ -

The fact that the semantical functionvE produces substitutive
relations is very‘impbrtant - see remark 0.7.4. Later we will
define another semantical function, v, to E whose semantics,
while easily shown to give a g-model, are very difficult.to prove
substitutive. The trick will be to prove g = 7.

Next, we rewrite the results at the end of the last chapter.
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4,2.,3:THEOREM: -

(1) x is not free in € => x is not free in Elell.
(ii) x is not free in e => [Ele”1/x1E0el = EleT.
(iii) x is not free in e => (X.e)(e”) = €.
{E[Iyl], if x =y
(iv) [ELel/x1EQYD = .
Elleld, if x = y}
(v) (z #x),(z is not free in e¢”,e) =
([EQe~D/x1EMy.e] = Az.[E0e-0/x102/y1E0]) -
(vi) Elllx/ylel = [x/y1Elel].
(vii) e —~3—% e => ¢ = g”,
(viii) (¢ € AI.EXP).(x is not free in e) => (¢ = Ax.e(X)).

(ix) Let z be not free in € ¢ EXP. Then,

(Ay.Ax.yx) (Az.e (2))

i

Az.e (2)

m

(Ay.xx.yx) ().

Proof:~
(i) ~-By structural induction on e, using definition 0.3.1 and
lemma 3.4.6. |

(ii) -By part (i) and 3.4.4(x)..

]

(iii) -E0 (\x.e) (¢”)] = Ap(Ax.E[el ,EDe’D)

Elel, by part (i) and 3.4.9.
(iv) -By 3.4.10(i). |
(v) ;By part (i) and 3.4.10(iv).
(vi) -This is proved by structural induction on €. However,
because of the bound variables problem described in 4.1.6, we
introduce elements of COVO into the hypothesis.
~Let ALl = (Elx ()] = xoEIel).
~Claim: A0l :- o
-Suppose ¥ = [ao/bol[al/bl]......Ean/bn].

~Let X; = [ai/ti]......tgn/gnl, for 0 i< n.
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-Then, E@x(x)1 = Ellay/bylx; (x)1 |
{Eaxl(x)n.if by ::xl(x).}

Ay if bo = xl(x).

L

f

[ao/bblEEXl(x)n' by part (iv)  above.

it

[ay/bg1lay/by 1E0x, ()1, similarly.

-

xoEIxI, by repeating the above process;
-Claim: AQel => AMAX.e] :- |
—Chéose y not in xy and not free in ¢.
ElA yx [y/x1el
AY.Elx[y/x1lel, by S2.
AY-x[y/*1EQeD, by Alel.

ft

-—‘i‘hen, Elx (Ax.e)]

L]

N

x O x.EQell), by 4.1.4(1).

#

~Claim: Alul.A0el = Allw ()] :-

_-qu}AEﬁx(w(s))D Eﬂ(x(w))(x(a))ﬂ . by 4.1.4(ii).‘

i

Ap (Fllx )1 ,E0x (€)1), by S3.

.

AP (xoEluwll rxoElel ), by Al ALeD -
= xoAp (FLul ,£0cD), by 4.1.5(iii).
= XOEEm(e)ﬂ,;bY s3.

" -Hence, (Ve e EXP)ALeD. '

',(viif'—Let y be not free in ¢.
‘;Claim:‘XX;e = Ay.[Ly/xle .z~ |
-Now, y is not free ih.Eﬁaﬁ, bfypart (i).;
"‘-S'b, EEXy.[ })/X] el = Ay.EQL v/x1e] : .
= Ay.[ Y/XIELeD , by part (vi).




-Suppose € —2 5e” b

Yy

182.

Ax.Ellell, by 3.4.7.

Elxx.eD.

just one a-conversion. Then, € must be i

of the form ClAx.6] and e” must be of the form ClAy.[ly/x161,

where y is not free in §. Therefore, € £ €¢”, by above and 4.2.1.

. o - . .
-S0, if € ——) €” by an arbitrary number of a-conversions, we

have € = €7, since =

(viii) ~Let € = Ay.e” and x be not free in €.
~Choose z # x and not free in e”.
~Then, € = Az.[z/yle”, by part (vii).

-Now, x is not free in [z/yle”.

-, EDI x.e (x)T

]

H

—l, Ax.e(x) = €.

(ix) -We will show first that Az.e(z) = (Ay.Ax.yx) (€).

-Now, Ax.yx ~—§—} Az.yz.

-S0,EL(Ay.Ax.yx) (€)1

is transitive, by 4.2.1 again.

EMx.(rz.[z/y1e”) (x)I, by 4.2.1.
Ax.Ap(Az.EQ[z/y1e”],x)
Ax.[x/z]EMLz/yle”], by 3.4.8.

Az .EMlz/yle’l, by part (i) and 3.4.7.
EDz.[z/y1e”] |

= Ellel, by part (vii).

il

i

It

il

il

EE(Xy.Xz.yz)(s)D, by part (vii).
Ap(Ay.Az.ElQyz],Ele])
[EQel/yIrz.Elyz]
Az.(E[el/y1EDyz], by 3.4.10(iii) and part (il
Az . [EQel/YI<L,L,¥2,¥Y2,ec0e..>. by 4.0.3. |
Az.U¢i,mo[ei/y]yz, where e, = ¢m’i°EE£B.
2z .U¢i ,oo°Api-1 ( [ei_l/yjy, [ei_l/y]z)
AZJJ¢i'm°Api_l(ei_l,z) = Az.Ap(Elel,z)
Az.Fle(2z)] = EMrz.e(z).
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~Choose a not free in ¢.

(A\y.Ax.yx) (Aa.e(a)), by part (vii).

~Then, (AY.AX.YxX) (AZ.c(2))

I

rz.(la.e(a)) (z), by above, since

z is not free in ra.e(a).

i

Aa.e(a), by part (viii), since z

is not free in la.c(a).

Az.e(z), by part (vii).

t

4.2.4:LEMMA:-

(1) I(e”) = e”.
(1i) K(e) (¢”) = e.

Proof:=-

]

(1) -EII(e")D = Ap (EMAx.x1,E[e"])

Ap (Ax.x%,E[e”T)

]

= Elle”l, by 3.4.12(i).
(ii) -E0K(e) (™)1

i

Ap (Ap (EOAx.Ay.x],EMe]) ,ELe"T)
Ap (Ap (Ax.Ay.x,E[e]l) ,ETe”])

i

il

EMel, by 3.4.12(ii), since there are only

finitely many free variables in € e EXP.

+

4,2.5:REMARK s =

So we see that <E_,E> models o-conversion and looks
promising as a model for B-conversion. We do not yet have,
€ -—§~) e” => ¢ = e’,
siqce, although,

‘ Ef(Ax.€) (™)1

A

Ap (Ax.EIecl,EMe"])

fl

[ETe“1/x]EMel, by 3.4.8,
we do not have,

[EQe 1 /x1E0e]

i

EMle”/x1el,
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since the structural induction on ¢ fails to go through in the
case ¢ = n(8), because of the missing identi£y mentioned in 3.4.11.
For the same reason, we cannot yet prove that,
S(e) (y) (8) = (e6) (y8).
We claim, however, that these‘results are true and that we will o
prove them.

By 4.2.3(viii), we see that <E_,E> models n-conversion on
abstractions. This is also what happens in Scott's mddel + atoms
(0.7.22) and‘with the P(w) model (0.7.26).

4. 2 3(ix) is just playing around with the "apply" combinator,
'Ay AX.yx. We see that n-redexes are fixed p01nts of “apply“ and S
that n-redexes are semantically equivalent to their contractums
when operated on by'"apply". These results are necessary if
<E_,E> is going to be a B-model.

Next, we are going to define another semantical function, E.
This will be closely connected with the process of taking

"approximants" of A-expressions (0.7.17).

4.3:Approximate Application and Substitution:-

4,3.0:DEF:~
[ei/x]} = [ei/x]I
[el/x]EO 1= [al/x]I' | -
[ez/x]AO = [ez/x]I
For i 2 2, '
[Ei/XJEi—l : By - — Ey
AY-€4_o Az.£si;l/x]§i_2{z/y]ei_2
[
%o Lej/x1y 047

. , i-2 : {
Where z- #x and is nqt free in €1-17€3-2° v | , ;
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[si/x]ii_z : Ay, » > Ey
| Y o [res/x17y .
{ } . AL [ A v :
oy 3(e; 00 Api_l([ei_l/x]Ai_3ai_3, ‘
‘ lel_/x1.  €,_.)
1-17%8,; ) %1-2

BBy s By x By ——> B,

C[Axeey ' 1
( rei) F‘“"? . .
% ¢3-1 (830

'4.3.1:LEMMA:-

- (1) The above maps are all monbtone, and hence continuous,
; as well.

(11) . [e,/x]" is doubly strict and,

T T T
Api(. lei) = .
1 Ll

k(iii)v[ei/x]” = [e;/x] and ﬁ;i = Ap, .

with [ei/x]" monotone with respect to e

i) =

(v) (x-=#a,b) (b is not free in ¢
| [ey/x17[a/bl= [a/blle,/x1".

€

© (vi) (x is not free in {i'l}) - ([Ei/x]”[x/y]{ i"i}
. ; o
%42

ai'-Z ; ‘
- . 1
= [e{/y]"{fi 1}).
*i-2
. V ’ €1 n
(vii) (a is not free in e/, (-~ ")) =>
. -2 |
(a is not free in [e{/x]” B I
. P

(viii) (a is not free in ei) =>

(a is not free in [e//al” ).
o -2




186

J. Iy v ~ ’ P g
(ix) (a is not free in ei,si) => (a is not free in Api(ei,si)).

. €, €4 d}'__ (e _ )
(x) (x is not free in { + l}) => ([g{/x]~{ i 1} =’{ i-1,i'7i-1 })'
#1-2 1-2 81-2,1-1(%52))

(xi) [x/y]éi-l = ¢i—l,i°[x/y]'
| [x/y]ii-z = 91~2 i- l°[x/y]. .
(xii) The sets {¢i wolE /%1 e, _ l]i z 1}, {¢; °£€£/x]”ui_2]i > 2}
and {¢i+l Ap (ei,ei)li > l} are directed chains in E_.
(xiii) (v #x)a(y is not free in ei)'ﬁ> “
([ei/x] (Ay. €y o) = Ay Cef l/x]"si_é).
Proof:- A -
(1), (ii) and (iii) -By a trivial induction of type 3.0.5.
(iv) -Clear. | |
(v) -Another trivial 3.0;5—induction, using part (iv).
(vi), (vii), (viii), (ix), (x),(xi) and (xii) -All trivial 3.0.5-
inductions.
(xii1) -Choose z - #x and not free in €7 ;,e; ,.
-Then, [ei/x]”(ky.ai_z) = Az.[ef ,/x17[z/yle; , Co |

it

Az.[z/y][ei_l/x]~ei_2, by part (v).
= Ay.[e l/x] €, Since z is not free

in [e;_l/x]"ei_z, by part (vii),

4.3.2:DEF:=
[e”/x17 := L_J¢i Lo [e] /%17 l°¢m,i—1'€ [E_ +EJ. .

[e”/x1; = H¢ o[e{/x); <6, e [A_ ~E_1.
, 1,07 1%, T ,i-2
"

Ap‘ = L;]"¢i+lj°°o‘api°(¢°°l_i xq)m'i) € [Eoo*Eeo > Eoo]'

4.3, 3-LEMMA'—

(1) The above maps are all continuous, with [e/x] monotone

with respect to € as well,
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~ T T!
(ii) [e/x1” is doubly strict and Ap({ },g') =‘{ },
L 1
(iii) ﬁ% = Ap, [e/x]é L= [e/x]E and [s/x]i € [e/x]A.
(iv) [a/bledp(e,e”) = £p(la/ble,la/ble”). |
(v) (x-=a,b).(b is not free in g) =>

(Le/x17[a/b] = [a/blle/x17).

£ € €
(vi) (x is not free in { }) => ([e’/x]”[x/y]{ } = [e’/y]"{‘}).,
o ‘ al a

€ .
(vii) (a is not free in e’,{ }) =>
)

e
(a is not free in [e‘/x]"{ }).

o
€

(viii) (a is not free in €”) => (a is not free in [e”/al™ Y.
‘ o

(ix) (a is not free in €,e”) => (a is not free in ﬁ%(e,e’)).

: € € €
(x) (x is not free in ) => ([e”/x77 = ).
o a a

~ _ L U
(xi) [x/y]E = [x/y]E and [x/y]A =, [x/y}A.
(xii) We can compute ﬁ% instantly by,

L, if n,(e) = 1.
£o(c,8) = { 2 | }

Ap(e,8), if not.

my T hod, T TeE T, (€),8)

]

where, .
£: A XE ——3A_(E)
, (ar0) = <o (e;,))>] 5
(%xiii) (e =271) => (ﬂb(e,&): 27T).
Proof:-. .
(1), (ii) , (1ii), (iv) , (v) , (vi) , (x) and (xi) -Trivial, from the
coriesponding parts of 4.3.1, noting 4.3.1(xii). ’

" (vii), (viii) and (ix) -Also trivial, noting remark 3.4.3.



188

(xii) -By observation of the definition.

(xiii) =~Trivial,by part (xii).

4,3.4:LEMMA:~

e’, if x =y
(1) [e”/x1 (y) =4 , .
' ; y » if x 2y

(ii) (z = xX)a(2z is not free in e’,g) => |
(Le’/xI50y.€) = Az.[e”/x) lz/yle).
(ii1) (y- #x)~(y is not free in €”) =>
(Te”/x15(Ay.€) = xy.[e'/x];s).
(iv), [e’/x]ééé(e,ﬁ) = 55([6'/X]§e,[€’/x3§6).
Proof:-
(i) and (ii) ~Trivial, from their definitions.
(iii) ~-Trivial, by 4.3.1(xiii).
(iv) =-If né(e) = 1, then wz([e’/xjés) = 1, also.
-+, LH.S. = L = R.H.S., by 4.3.3(xii) and (ii).
-I1f wz(s)-¢ L, then ¢ = <d0,<ai>:=o>.
-, Bp(Te/x13e,Le”/x158)
(L_4¢i 1,wlef /%0 7ay 3,$;§¢3_1 o l/x] 85-2)

= &_;4 g_;:_lz%(¢i_l [Ei l/X] C‘l 3'¢ 3“1/XJ~6j—2)'

by 4.3.1(xii) and 4.3.3(i).

-

B X - et - -~
- L;;Ap(¢i‘l,m°[€i°l/X]'ai“3'¢i-l,w°[81-l/x3 61_2)
o — ° ~ - ~ - -~ .

the definition of Ap and fp, .

i

il

[e’/x1;Ap(e,8), by 4.3.3(xii).

- o .’ 3 ) . ) '~ | i | -
¥;£¢i,mé[ei/x] a; 308, 5) = [e /XJE<l'l'<mi(Gi+l)>i§O>

F T ———
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4.3.5:REMARK:~ ’ :

Part (iv) of the above is analogous to the identity that
is missing for the "un-tilda'd" operators. So, these operators

are better behaved in that respect.

We needed part (iii) for technical reasons in 4.4.3, below,

and this was why 4.3.1 was so lengthy.

4.4:The Approximate Semantics ﬁ,g and £:-

4,.4.0:DEF:-
Brxd = x (51)
FIrx.ell = Ax.ﬁﬁtﬂ (53)
Ble(8)T = Ap(FIel,ZIsD) (§3)
4,4,1:LEMMA s~
o
(i) £ < E.

(ii) (x is not free in € € EXP) => (x is not free in EEEB).

(111) EMeD =T.

Proof:-
(1), (ii) and (iii)-By structural induction, using 4.3.3(iii), (ix)
and (xiii). |

| +

4.4.2:LEMMA:¥

(1) [éuen/x]“ﬁayn‘a‘{

Flel, if x = y
FoyDd, if x-zy}'
(ii) (z #Xx)a(z is not free in €7,g) => |
) | ((EDe’1/x1"EM\y.el = Az.[EOe"D/x1"[z/y1ELel).
(1ii) (y # x)A(y is not free in %) =>
([EQe“1/x1"EMy.el = Ay.[EIe“1/x17EleD).

(iv) [EDe”TI/x1"EMe(8)T = Rp([EMe’D/x1"Elel, (EMe”1/x1~ELST) .
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Proof:-

-By using 4.

4.1(ii), this is just a restatement of 4.3.4.

4.4,3:LEMMA:

EILS/x]

)

x(e)l = [%HGD/x]“fﬂx(e)].

Proof:~

~Let A{el]l be the above statemént.

-Claim: Ayl

“ZUrs/xIx (YT

-~Claim: Alel

) {ﬁ:’n:an, if x = y(y). }

EOx(y)T, if x- = x(y).
[EISD/x1"Elx(y)D, by 4.4.2(i).

-Choose z: #x, not in y and not free in §,e.

-Then,

-Claim: Alw]

EOLS/x1x (\y.e)] ﬁﬂkz.ta/x]x[z/y]eﬂ |
= Az.FO[8/x1x[z/ylel, by 8. |
‘= Az.[FI81/x1"Flx[z/ylel, by Alel. |
= [FI81/x1"FMz.x[z/y1el, by 4.4.2(iii)
= [EI81/x1"EDx(Ay.€)T.

AATED => Allw(e)] =~

~ERIS/xIx (w(e))T = EM(L8/xIx(w)) ([8/x1x(€))T

i

—
==

=

B (FIIS/x1x (@) 1,5008/%1x (€)T), by §3.

£ ((FI81/x1"FIx ()1, (5181 /x1"Bx (€)]) , by ALuwlaAlel.
[E061/x1Ap (Elx (w)1,EDx (e)T), by 4.4.2(iv).
[EIs1/x1"Elx(w(e))D, by §3.

-., by structural induction, (Ve ¢ EXP)A[eI.

-

*

4.4,.4:THEOREM:- - .

Flls/x el = [ElsT/% 1" FleD,

Proof:-

" -This is a special case of 4.4.3, when ¥ is the null COVO.

+
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4.4.5:COR:~

Flla/x1el = [a/x1Z0eD.
Proof:-

-By 4.3.3(xi),4.4.4 and S1.

4.4.6:DEF: -

Let £,¢” € EXP. Then,

(1) € & e¢° if Elel € EQe”T
and (ii) € & ¢~ if E[Mel = Ele’3.
4.4,.7:1LEMMA:~

As in 4.2.1, = is an equivalence relation and € is a partial

ordering modulo the equivalence classes. Also,

e

(e € €”) => (Ax.c € Ax.e”)

and (e & €)a(8 E 67) = (e(8) £ e7(87)),
together with similar results for =, Finally, g and = are
substitutive. | |

Proof:-

-Same as 4.2.1.

4.4,8:LEMMA: -
£ —2) ¢ => e =e”,

Proof:-

]

-Let y be not free in ¢.
~-Claim: Ax.e = Ay.ly/xle :-

-ﬁﬂly.[y/x]sﬂ Ay.ﬁﬂ[y/x]eﬂ = Ay.[y/x]gﬁsﬂ, by 4.4.5.

it

Ax.ETell, by 4.4.1(ii).
= "E"&AXoe]]o

~Rest of the proof is the same as that of 4.2.3(vii).

+
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4,4,9:LEMMA: -
eJ&'——)e’:)ege’..' . 1

Proof:—-

~Let Plel (e __QLl§9 £’) => (e E £”) - i.e. we do at most one

.B—reduction when going from € ——> €7,

~Clearly, POxI, since no reductions are possible.
-Claim: PIel => PIAx.€l :-
~Let Ax.c¢ ——Qilﬁa £”.

~-Then, Ax.c ——ELiﬁé Ax.e””, where ¢~ —2 % xx.e”” and

-0, EMAx.€] = Ax.EOel & Ax.ETe”°D, by PLel.
= ElAx.e”"] = EMe“D], by 4.4.8.
-Claim: POelAPIST => POe(8)T :- |

-Let €(§) ~—2Ll§) n.

-If ¢ = Ax.e”, then EIe(8)] = 1, by 4.3.3(xii).
| | Eml.

-Otherwise, n = €¢”(87) with ¢ ~—3~9 e’; ) -34l§9 8' or’
€ ~—9i;§9 e, § —=3 &7,

-In either case, Ele(3)1

il

in

Ap (ETel,FmsD)
Ap(EMe”1,E08°T1), by 4.4.8,4.3.3(1)

n

and PIel.PIdT.

]

Fle”(6°)] = FOnd.
-+, (¥e e EXP)PIe].

-Hence, the lemma, since g is transitive, by 4.4.7.

*

EN

4.4.10:COR:~

{Ele’D]e __ﬁ;ﬁ_} €“} is a directed subset of E_.

. Proofs:-

-Lete_;__u'_'..@_.éyande__.q_'...s_,)s.
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-Then, by the Church-Rosser theorem, there exists an n such that,

Y -—ng—9 n and § ——gLé—é Ne

4.5:Characterisation of

-, yEnand 5§ £, by 4.4.9.

NOH,HNF and HEAD:-

4.5.0:LEMMA:~
) ~
(1) ¢m'ooAp(e,6) = L eEO.
(ii) ¢m’0(kx.e) = I € EO.

(11i) ¢w,ooﬁﬂsﬂ = 1 <=> ¢ ¢ (AI.EXP u (EXP) (EXP)).

Proof:-

(1) -¢m'0°£§(e,6)'z b0 0°Ty owz‘log(wz(e);s), by 4.3.3(xii).

(ii) —¢m'o(lx.e) = ¢w'o(<L,<lx.ei>i=o>), by 3.4.5.

(iii) -EXP

1

1.

I

-0 = I n (AI.EXP u (EXP) (EXP)).

-€ €I => ¢

- € AI.EXP

R .~
= x => ¢m'ooEﬂsﬂ =x-#1, , |
~ ~
=> g = Ax.e” => Ele]l = Ax.Ee”1

- ¢m'oo§Ee] = 1, by part (ii).

- € (EXP) (EXP) => ¢ = w(6)

= ¢, ooElLel = be o°Ap(EMwI,ETST) = 1, by part

-Hence the result.

-

4.5.1:LEMMA:~

(1)
(ii)
(1ii)
(iv)

€

€

€ HEAD => §H£B # 1 and wzcgﬁeﬂ'

€ HNF => émen- # 1,

¢ HNF\HEAD => nzoﬁﬁbn

—
=

kI u (AI.EXP u (EXP) (EXP)).

Lo

¥l

o S S 0

(1).
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(v) € € HEAD => E[lell- # 1 and 1T2°EHI€]] 1,
(vi) € € HNF => Efle]l = 1.
(vii) € € HNF\HEAD => ﬂzaEl[eﬂ = 1,
Proof:-

(1) -Let Pl = (Elel = 1).

-Recall the definition of NOH - 0.5.0.

-Claim: PE(Ax.s) (6)0 :-

-EL (Ax.e) (8)1 = Ap(EDAx.el,EI51)

it

1, by 4.3.3(xii), since vzog'[[kx.e]]
nz()\x.g‘[[eﬂ) = 1,
-Claim: P[Iel => PMAx.el :-
~EM\x.e] = Ax.ETeD = Ax.1, by PIel.
= l.
-Claim: P[ell => Ple ()T :-
-ETe (8)1

Ap (ETel,EMST) = Ap(1,ET81), by PIeT.
= 1, by 4.3.3(i1). |

— by structural induction, (Ve e NOH)P[el.

(i1) -Let PIED = (FNel - = 1)a(m 0B lel - 2 1).

-Clearly, PIxI.

-Claim: Plel => PHe(8)D :~

~Fle (8)T = Kp(Elel,Frsq) = nz‘l

o9, "ok (n, e ELeT, EL6T)
%1, since m,oElel =1, by PIel.
—myoB e ()T = myom, toy, Lot (m o FlleD, FT8T)
= \}12-105(ﬂ205’11'€.]],5l[6]]) . #:1, as above.
—.'.,“by structural induction, (¥e € HEAD)P[el.
(111) -Let PLel = (FMeD = 41).
~-Now, € _e HEAD => P[] ,’ by part (ii).
-Claim: P[el => PEA#.E]] :-
-#MAx.e] = Ax.FIeDl =1, by PIel.

- by structural induction, (¥e € HNF)Plel.
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(iv) =& ¢ HNF\HEAD => (g = Ax.e’)A(e’ e¢ HNF).

i

oELell = nz(xx.ﬁme’n) = .

.
—”' ™

2

(v) =By part (ii), since ol E, by 4.4.1(1i) and T, is monotonic,

by 2.2.16.
(vi) -By part (iii) and ¥ £ g.

(vii) =-Same as proof of part (iv).

4.5.2:THEOREM:~

(1) € ¢ NOH <=> F[e] = 1.
(11) € ¢ HNF <=> FQel - #1.
(1ii) € € HEAD <=> ToF[e] = 1.
Proof:—

-By 4.5.1 and,

4.5.3:COR:~

(1) %,i"i'lleﬂ =X 1 ¢E = ¢

X

(11) %, i°§E£ﬂ = AX-E;_I»::l => g —>3 Ay.8” and y is not
4 : .

free in Si—l and ¢w'i_lo§ﬂ3'ﬂ = [y/xJe

-~

i-1°

(111) q‘)w'iog'{[e:ﬂ =0, _,(€] 1) #1=>¢ =a(e’) and

¢”'1_19Ema:ﬂ = ai"'?.. and ¢N,i"l°EE€ B
Proof:- _

o ~ ~
(1) -6, ;°Flel =x =1 => ¢, oF[el
¥ - [

”~ — Ve i

(ii) -¢w’i°EEEB ”_Ax'ei—l» e

=> FIE]- =1 and T, o Elel =

1.

ei_lt

=> € ¢ HNF\HEAD, by 4.5.2(ii) and (iii).

=> ¢ = Ay.§", with §° € HNF.
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-But, ¢ j°FIry.8°D = ¢, ; Oy.2Ls°1) = av.¢, 3_1°Fls7d.
~
.-'." either y = x or y is not free in ¢7_; and ¢, ;_°FI8°T =

P

[y/x]ei_l. But, if vy = x, then ¢ ——2-9 Ay“7.877, with the correct
properties.
~ . . =‘ .
(iii) —¢m’ioEE£B =0y ,(ef ) #L => 7, oF[el =1
=> ¢ € HEAD, by 4.5.2(iii).
-Now, € * I, since € €I => € =x => ¢ ,oF[e]l = x - X .
14 . .
—l, € = a(e”), where a ¢ HEAD.
¢w,i°

= 0,31 FID (8

i

-Then, ¢w,ioﬁﬁu(€')] ﬂ2~low2-1o£(wzoﬁﬁaﬂ,gﬁe’ﬂ)

oELe’D) .

©,j-1

-, ¢m'i_logggn = 0y _, and ¢w'i_1°EE€ 1 = € 17 since ai_z(si_l).

¢1ami§&ﬁ'¢T,by4.Llﬁiﬁ.

4,5.4:REMARK:~

The above corollary means that we know some of the syntax
of an expression if we know a non-1L coordinate of its approximate

semantics. This will be very useful in the next sections.

4.6:The Semantical Function V:-

4.6.0:DEF;: -

V : EXP > E

e — U{EMe"T]e 2By ey, | -
4.6.1:THEOREM: - ’ ‘ '

. <E_,V> is a B-model.
Proof:-

; ~Ciearly, if ¢ ——gLé—a 8§, then VlIel =2 vIsI.

-If ¢ ——ng—a‘e’, by the Church-Rosser theorem, there exists a §°

‘'such that e’,——gié—é §” and § —-gig—a 8%,
-But, then ¢” € 6”, by 4.4.9, and so VIel = VI&I.
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~Hence, VIl m-Vﬁﬁﬂ.

4.6.2:LEMMA: -

<E_,V> is solvable. In fact,
€ € SOL <=> V[el = 1.

Proof:- '
(=>) -Let € e SOL. Then, ¢ —28 3N ¢~ . uyr.
-mmn,vkﬂé'mkﬁ,byA.&l.

2 FTe]-#1, by 4.5.2(ii).

~l, Vel - = 1
(<=) -Let ¢ ¢ INSOL. Then, ¢ —2E 3 ¢~ — ¢~ ¢ nom.

-5, VOED = L1}, by 4.5.2(i).

Il

i

L.

4.6.3:REMARK:—

These‘simple results show E_ to be a very interesting
object.

Recently, some work of Lévy has come to my attention - [561,
where he also constructs a syntacticai (semi-) lattice, W.
Indeed, there is probably a simple istorphism from ¥ to the

bottom half of E_ (Low(E_) - see section 7.5) which identifies

his semantics, 8, with V.

However, V does not tell us anything about application in
the model. Further, it is hard to prove that the semantical
equlvalence derived from V is substitutive - in particular,

(V[[e:}} Ve D) ~(VIST = VIS“D) => (VIe(8)T = VIE“(S§™)I).

We will show that E V, thus making <E_,E> a model and

4giving us substitutivity for V. For the moment, we will show

“that £ €V,
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4,.6.4:DEF;:~

S
Let (@ }(i) (
R

. 2 ~
([6/x7e —2B 5 n)A(tai/xj{%i_l} £ ¢, ;°EMD).
i-2
E

M N

tH

i—¥}’6i € 9, 3.1°E0el, 6, (oF1SI) => (3n e ExP)
-2 -

2

R

Let P(i)

i

(6518 = 65 5° Eeﬂ.¢w,i°5E6D) => (3n e EXP)
(e(8) —2:8 ) (apy (e;,8,) = ¢, o, oFID).
4.6.5:REMARK:-

The above definition has scope from 4.6.4 to 4.6.10.

4.6.6:LEMMA: -

'(#i‘é’b)S(i); N I L
Proof:-

-Assume z *# 1, otherwise trivial. .

-z E ¢w;i_logﬂéﬂ =>z = ¢m,i_1°§E€B' since 7 = ¢m'i_1°§Eeﬂ,

by 4.4.1(iii).

| | e, by 4.5.3(i).

]

-Suppose z = X :-
-Take n = [§/x1x = §.
-Then, [§,/x]x = 6, = ¢ AP
i w, i
-Suppose 2 ¥#X :-
-Take n = [§/x]z = z.

) [
fThen, EGi/x]z =z = ¢w’ioEEzﬂ.

4.6.7:LEMMA ;-

(Wi o2 1)@ (1) => P(1)).
- Proof:-
-Again, assume ei~¢‘1, éincefotherwise trivial. .

~-Suppose ei = ai-l - : v

-Then, T # Qb'i°EﬁéB =01 2o, =g,
Hj*” ‘ ey ki °EI[€B L T

2
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-Take n = €(§).
'~Then, Ap, (€;,8;) = (51) =T, (8))
,oEIIe:]](qS oFOsD)
-1

"

it

ow °EUroE&m EEB)

¢

L2 ,1+l 2
¢ OAp(EEEI]v,EE(S'.U)
¢

o 1+1°E[InIl

-Suppose €, = Ax.ei_l T

~Then, T-#¢, ,°Blel = Ax.§]_3 Ax.ef ;= L.
. ' 2N ,

€1-1 M-fi1 |
-n, € —>3 Ay.v and y is not free 1n ei—l and ¢w'i_loﬁﬂvﬂ
= [y/x]s 1; by 4.5.3(ii). ‘
=Then, Ap, (e 4484) = ¢4 141 [Gi/X]ei_

¢i 141° L84 /x]é“

| = b3, 141° o[§, /y][y/x]ei 1+ since 'y is not

free in = _,. |

. € ¢l 141 % iOEﬂhﬂ, by Q(i), where
e(8) —2 (Ay. V) (8) —By [6/yTv —2eB 3 o,

-», the result.

4.6.8:LEMMA: -

(Vi 2 2)(Q(i-1)AR(1) => @(1)).
'P:oof:é |
-Assume €11 # 1, since otherwise trivial.
—Suppose €11 5 AY.€ j-2°
' -As in the last lemma, we get € ——) Az.v and z is not
free in Ei o and ¢> i °EEVII = [z/y]s. 22 [Z/yjsi 2
-Assume, w.l.0. g , that z *x and is not free in §.
i- 2‘: Az. [6 l/x][z/y]si 5
Az, 5q °FnI, by Q(i-1), where
' L4 . .

—Then, [Gi/x]ei_l € ESi/x]Xy e

m

[o/xlv —2B y g,

]

¢w’i§§ﬁkz.nﬂ; whefe‘[6/x]e ~45L§—) Xz.n.
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-Suppose Ei—lAa Gy e Then, we have the result by R(i).

t

4.6.9:LEMMA: -

(¥i 2 3) (P(i=1) ~Q(i-1) AR(i=-1) => R(1i)).
Proof:- |

~Assume Uf g # 1, since otherwise trivial.
-Suppose 0, _, = Y;_5(ef 5) - | |
~ . — — -»
-We have T- ¢¢w'i_loEE£] = ¥y.3(e{_ ) 2 Yi-3(€i—2) % 1.

» ~ — -
-«, € = Y(e”) and ¢w,i_2°EHNB = Yij.3 2 Yio3 and

~N - L ma . .
b, j-p°BLe™] = €7 5 2 el ,, by 4.4.3(iid).

=y 08, /xT0y o = 06, /%1y, _5(ef_5)
= Ap, (D8, /%1y, 5,08, ,/x]ef_,), where

~
s oET6T,

1-1 % P 4-1
=ay D8y /%y 3 5 ¢, 5 1°FIND, by R(i-1), where
[6/x1y —22B 3y n,

.

-~ . fad ]
—, [éi_l/x]ei_2 =3 ¢w’i_1°EﬂmD, by @(i-1), where

[6/x1e” —22B 5 4,

-, [Si/x]ai_2 £ ¢m'ioﬁﬂvﬂ, by P(i-1l), where [§/x]e =
[6/x1y(e”) = [8/xly([8/x1e”) —2eB y n(w) —2B 5,
-Suppose Oy o = Z. Then, we have the result by S(i), by 4.6.6.

+

4.6.10:COR:~-

(vi 2 0)S(i), (¥i > 1) (P(i)AQ (1)) and (¥i 2 2)R(1).
Proof:-

5(2) and Q(1) = S(1).

i

-Clearly, R(2)
—;, by 3.0.5,4.6.6,4.6.7,4.6.8 and 4.6.9, we have the result.
+

4.6.11:THEOREM:

§

E =V,

Proofs-
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~Let 4lcl = (FIc] = VIED).

-Clearly, Alx1. |

-Claim: Alel => AlAx.el :-

Ax.EieB € Ax.Vlel, by Alel.
Ax.U{gﬁe’Dle_-—gié—é €}
U{lx.ﬁﬁe’ﬂle--giﬁ—> e’}, by 4.4.10.
= Lﬁﬁikx.s’ﬂtsvu—gLﬁwﬁ e’}
’J{§E€’>ﬂlkx.€ -—EL§~9 s”}-

= VlAx.el.

- =Elxx.€]

i

it

il

[
i

i

~Claim: ALelAALST => Ale(8)T :-

=9, (°FIel € ¢, ,°VIED, ¥i > 0, by ALeI.
r . ’

14

it

b i(LHﬁEs'DIa 2B 5 ey
= Llte,, ; ~Freme — %8 5 ¢°), by 4.4.10.

. . i . ‘.(], i ‘ .
. =«, there exists an €~ such that. ¢ -~%§~9 €™ and ei =

9o ;°FlIel E'¢m'io§[€iﬂ, since €, 1s isolated in the finite depth

14

lattice Ei'

-Similarly, ¥i 2 O, there exists a Si such that ¢ 4~QL§~9-61 :
= ‘o I ON i ‘
and Gi “'¢w,i EHGEVE ¢w,i ETS7.
«l, by 4.6.10, ¥i 2 1, there exists an nl such that
a,B i1 a,B i c S i
e(8) > €7(87) —==—5 n” and Ap, (g,,8,) = ¢w,i+1 Eln~D1.
~-Then, Ele(8)T = ap(Elel,ZIs1)

i

[

Ed®i4n, 2Py (€508y)
= | Jo o9 ... oEMn’D, by ab
- %141, 0%, 14 PFAN Sy DY above.
. E g’[[hl]] ?.U{ﬁ[n:ﬂ[s(ﬁ) ...._9.'..@._..) n}
| =] ,
=" Ve (8)T.

~Hence, by structural induction, (¥e € EXP)4[cT.

+
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4.6.12:COR:~

¢ ¢ INSOL => Ellell = 1.
Proof:—-

~-By 4.6.2 and 4.6.11.

4.7:Characterization of -<:—‘

4.7.0:DEF:~

The set of elements in the direct limit, U{¢n °°(En)[n 2 0},
!
are FINITE elements. A A-expression, € € EXP, is FINITE if Elel
is finite.

4.7.1:LEMMA:~

(e ¢ E, is finite) <=> (¢ o¢ (e) = €, for some n 2 0).
n,® ‘eo,n
Proof:-

~-Trivial.,

4.7.2:EXAMPLES : -

- {i) Y is not finite.
(ii) Elements of INSOL are finite.
Proof:-

-By 4.0.3 and 4.6.12.

4.7.3:LEMMA:~-

# is a finite function - i.e. its image lies in the direct
limit. |

Proof:-
-Let P[lel = (there exists an n 2 0)( ¢n'w°¢w’nogﬁeﬂ = 5&&3).

-Then, PIxXD, with n = O.

-Also, clearly, PIel => PMix.el.
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-Claim: PIe]~PIST => PIe(8)D :-

-Let n,m be the numbers referred to in P[el,P[SI.

-Let p = max(n,m).

L ~ e d

° ° 8
cbp,w ¢°°,p Ap (E[eT, EOST)
A ° oﬂ ° 6E~E6 N
o6, wobe, oo ELEL b o6, oETSD),

]

~Then, ¢p'mo¢w'poEﬁg(6)].

i

by 4.3.3(xii).
= Ap(EMeD, £081), by PIeI.PIST.
= Fre(8)I. |

-w, by structural induction, (¥e e EXP)Plel.

-Hence, the result, by 4.7.1.

4,7.4:LEMMA: -

e ¢ NF => F[ell = Elel = V.
Proofs-
~Clearly, vIel = Elel, if € ¢ NF.
-But, £ = FE Vv, by 4.4.1(i) and4.6.11.

-Hence, the result.

4.7.5:COR:=

Normal forms are finite,
Proof:=-

-By 4.7.3 and 4.7.4.

407-6:REMRK:—'

. Thus, we have justified the remark in 4.6.4 about normal
 forms beipg mapped "elementarily" by E.
‘We now wish to characterise <; Recall, by O.Gﬁli(x), that‘
(e < §) <=> (¥ directed D) (8 = LD => there is a d ¢ D s.t. ¢ € q).
~ We note that, in Ei' < is just £, since‘Ei has finite depth,

by 0.6.13.
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4.7.7:LEMMA:~

EIYD is not isolated.
Proof:- )
-Let D ='{¢i’”o¢»'iomr¥n[i 2 0}.
-Then, D is directed and EIYI = LID. |
;But, by 4.0.3, there is no 4 € D such that EIY] € 4.
-So, EMYTD 4 EOYI. |
n

4.7.8:COR:~

< is different from = in E - -

~FIY] £ FOVI.

4.7.9 :THEOREM: -

Let ¢,§ €Es and € £ & and € be finité; Then, € € §.
Proof:-

-Let D be directed and § & Up.

b, (€).

'n
-Now, & :=¢, (&) =9, wp) =Ll (o).

-Let n be such that £ = ¢

°
n,®

~Also, ¢

«©

,n(D) is directed in En’
-But, €, = Gn and so €y < 6n' by remark 4.7.6.
—l, there exists 4 € D such that €_ € ¢ (d).
. : n *®,n
-But, ¥i < n, ey € 9, i(d), by monotonicity.
rd

n,

-And, Vi >mn, €; = ¢w,i(€) = ¢¢'i°¢“$ °¢w,n(€) = ¢n,i(€n)

in

¢n'i°¢“'n(d),»by~monotonicity.
d).

| ¢w,if ) |

Cmwr (Wi 20)(ey Edy) - i.e. e E 4.

-«

4]

-ny, £ L8, by remark 4.7.6.
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4.7.10:COR: -

In E_, finite = isolated.
Proof:- |
(=>) -¢ £ € and € finite => ¢ isolated, by 4.7.9.
(<=) =-Let e < . Now, ¢ L_J¢l w® Vo i(e:)
-l, € E'¢n o’ P (s), for some n 2 O, since the set is directed.
14

——y E = ¢n,w°¢w,n(€) - ji.e. € is finite. ,

4.7.11:COR:~-

For all ¢ € EXP and n 2 0, there exists an €” such that
O(.B - : ‘ ~ -
£ ”‘“LT*9 € andk¢n'w°¢”'n°EE€H = Ele’I.
" Proof:-
-9

1,

°od oElell = ETe] = VIeD.

eo,n

-Hence, . the result, since the L.H.S.yis finite and so < VIeND,

by 4.7.10 and 4.7.9.

 4.7.12:COR:-

The converse of 4.7.9 is not true.

Proof:—-

-By 4;6,10, T €71, since 1 is finite.,"

- =But, ¥e € E, ; e T ~-1i.e. eT1, by'O.G.il(iv).

-In particular, EQY] < T.

-But, E[¥] is not finite, by 4.7.2(i)."

4.7.13:DEF:-

»

Let €,6 e EXP. Then, e < § if EMe] < EQSI. Also, ¢ is

ISOLATED if E[el is isolated.

" 4.7.14:LEMMA:-

(i) ¥ is not isolated.

(ii) In EXP, finite = isolated.
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(iii) Normal forms are isolated.
(iv) Elements of INSOL ére isolated.
Proof:—-

-BY 4.7.7,4.7.10,4.7.5 and 4.7.2(ii).

4.7.15:LEMMA: -

Let v E ﬁé(e,é) # 7. Then, there exist ¢” = g, §° € § such
that v = Ap(e”,87). (N.B. We are in fhe lattice.)
Proof:-
-If v = 1, take ¢ = 1, 6 = § and we are home.
-If v- =1, then nz(s)- 21 and € = <do,<ai>zzo>, where a; e Ai
< Bijqe
—;, there exists an n 2.2 such that ¥i 2 n,
L-#v, E di—2(si—l)° 2T,
-So, ¥i = n, v, = a{_z(ﬁz_l),
-n, v = Ap(e”,8”), where ¢” = <a

e” ¢ and 6 & §.

4.7.16:LEMMA :~

(v E‘ﬁﬂdn) => (v = gﬁe’ﬂ, for some €” € EXP),

Proof:~
-Let Plel be the lemma.
-Claim: PIxI :-

-Let v £ FIxI = <X>z=o'
. ~—Then, vi = 1 or X, ¥i 2 0.

-If v; =L, take €’ = AA, else take €” = x.
~Claim: Pllell => Pﬁlx;ei :- |

—Let v £ FMix.e] = Ax.Elel.

~Then, v = Ax.V and Vv € Frel.

"-:o, v = 5[[3'3' by PHEJ].
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- W ~
-y V = AX.V = AX.Ele’D] = EDMX.€7.
-Claim: PIel.POST => POels)] :-

—Let v £ #Ie(8)T = Ap(Flel,Z06T) -

n

-Then, v = ﬁ%(u,c), where p E %Eaﬂ and ¢ E gﬁéﬂ, by 4.7.15.

~So, u = FTe’] and ¢ = EI6°0, by PlelAPIST.
-5, v = Ap(EIe”T,ED87]) = FIe”(57)D.
-l, by structural induction, (¥e ¢ EXP)P[el.

+

4.7.17:THEOREM:~

Let €,8 ¢ EXP. Then, (¢ € §) <=> (¢ € 6).(ec is finite).
Proof:-
(<=) -By 4.7-90
(=>) ~Let € < §. Then, Ele] < E[IST.
i=0 ' '
-So, Elel £ ¢ °d oE[8], for some n 2 O,
n,o Teo.n .
o oE[{IS] = §E6’B, for some §°, by 4.7.11.
n,® ‘e,n
"'SO' E[IE]] E gu:almo

~w, E0cll = EQe”l], for some ¢, by 4.7.16.
-So, Elell is finite, by 4.7.3.

-Hence, € is finite. (We always had € £ §.)

+

4.8:Characterisation of € and Normality of <E_,V> :-

4.8.0:REMARK:~

From now on, we are going to be working mainly within the
A-calculus: It makeé sense, therefore, to give a purely syntactic
characterisation of the approximate semantic relation £,

The characterisation shows € to have a strong connection
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with Wadsworth's notion of "direct approximant" - [57].

The results we have for g (from the lattice properties)
would be tedious to prove if we worked solely in the A-calculus,
using 4.8.4 as a definition.

4.8.1:LEMMA:~

x € 8§ =>x = 8.
Proof:-
-1 %, oBMXD = x £ ¢, (oFIST- #7, by 4.4.1(iii).
? 14
%y x = ¢, JoFIST = 1.

7

-~, § €I, byd.5.0(iii), and can only be x.

+

4.8.2:LEMMA:~

€ € AL.EXP and € ¢ NOH and € € § => ¢ ——2—9 Ax.e” and
§ —%5 Axx.6” and e~ € §°.
Proof:-
-Let € = Xa.c””,
~-Now, Elel - #1, by 4.5.2(i), and so, for some i 2 1,
. ¢w'io§EAa.e’fﬂ’= Aa.efl) E ¢w'iogﬁﬁﬂ z7T.
i ¢m,i°5ﬂ53 = Ab.§77; #1, for some b,8;”,.
-, § —2%5 Ab.§°", for some b,8””, by 4.5.3(ii).
-Choose x not free in €°7,8”“. Then,
> __2_9 Ax.€”, where €” = [x/ale””,
and § —>) Ax.§”, where §° = [x/bI1§"".

-But, Ax.tc” [ Ax.8°, by 4.4.8, since ¢ g 5.

tn

EMA\x.67T.
Ax.ET6T.
-i.e. ﬁﬁe’ﬂ ] gHG’B.

P4
-ibeo € E 6’._

-ie. EMx.e”1

~i.e. Ax.EIe”T

in
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4,8.3:LEMMA:~

€ ¢ (EXP) (EXP) and € 4NOH and ¢ & 6§ => § = w’(n”) and
w & w’ and n & n° and where ¢ = w(n).

Proof:-
-In this case, € ¢ HEAD. So ﬂzogﬂtﬂ #1, by 4.5,2(iii).
-But, ﬂ2°§ﬂéﬂ = ﬂ20§E63, by monotonicity (2.2.16), and so
w2°§E3]' #1 - i.,e. § € HEAD, by 4.5.2(iii) again.
-If § = x ¢ I, then ¢m'ic§E€] E x, ¥i 2 0, and so,'

either ¢m,ioéu:s:n‘ =1, ¥1i20-Y.

or ¢, joFlel = x, ¥i 2 0, = & = x, byd.5.3(1) - ¥ .
-y 8 = w"(n"), with w” e HEAD.
-Now, we have € = w(n), with w e HEAD.
-But, Zlell = EIST.
-l R (FruD,FInd) £ Ap(Fle’1,50n7D).
-Since ﬂzoﬁﬂwﬂ- ¢1.-¢'n2°§EM'B, by 4.5.2(iii), by the simpie
characterisation of Ap given in 4.3.3(xii) we must have
Flwl = FIw’D and FIn1 € Em-I.

-

4 ~
-i,e. w T w”  and n & n”.

4.8.4:THEOREM: -

g € § <=> either ¢ e NOH,
or e=x=3,
g_:_:_ € —> % Ax.e” ¢ HNF,
8 ~—2~9 Ax.§” and ¢~ € §°,
or € = w(n) e HEAD, ‘
§ = w'(n”) and w € w” and n € n-.
Proéf:- ’
(<=) -¢ e NOH => ENell = 1, by 4.5.2(i).
EmsD.

n

g =x =6 = Flel] = x = FIST.
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-Let ¢ —>* > Ax.e” ? HNF, § ——2—9 Ax.8” and ¢° e §”%.
Ex.e”D, by 4.4.8.

= Ax.ETe”T
= FMAx.6°]

-Then, ﬁﬂzﬂ

it

Ax.é&Sfﬂ, since €~ Z §”.

n

it

#1157, by 4.4.8.

-Let € = w(n) e HEAD, 6§ = w' ' (n7), w € w” and n<€n-.

~Then, Zlel = EMw(n)D = Ap (ETwl,ZInD)

-1

Ap (F0w’D,EIn"1), since Ap is monotone, by 4.3.3(i).
Emw” (n")1 = E@s1.
§.

il

~
€

(=>) ~-Let ¢
-If ﬁESB = 1,we have € ¢ NOH, by 4.5.2(i).
-Suppose §H£3~ #L - i.e. € { NOH.
-g e I => second clause of the theorem, by 4.8.1.
-¢ € AI.EXP => third clause, by 4.8.2,
-£ € (EXP) (EXP) => fourth clause, by 4.8.3.

s

4.8.5:REMARK:~

Using this characterisation of g, we will prove that
normal forms are incomparable under €. This is fairly obvious
from the examples 4.0.3.

4,.8.6:LEMMA s~

Normal forms are maximal under & modulo —3— - i.e. :-
(e e NF)a(e & 8) = (¢ =2 ).
- Proof:- : '

8) = (x(e) —2 §).

HIR

-Let Aﬁﬂﬂ.; (e ;TNF)A(x(e)

-Claim: Ally]
-Now, x(y) € I. So, by 4.8.4, x(y) = 6.
-Claim: Allell => AllAy. eB -
A-Let Ay € € NF and xixygs)
~Then, x(Ay e) € NF < HNF.
.'., by 4.8.4 and 4.1.4(i), we can find a z such that z is
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not in X and not free in € and :-
X{Ay.€) ——9—9 Az.x[z/y]e,
é —2 5 Az.8"
and x[z/yle g s5-. ,
-But, € € NF, and so, by Alel, xlz/yle —-2—9 §°,
~Thus, x(Ay.e) ——) 6.
-Claim: Afwl.Alel => AE@(E)BF:-

inx

~-Let w{e) ¢ NF and x(w(e)) S.

I

~Then, 8§ = w’(e”) and x(w) w?, x(c) £ e”, by 4.8.4,
-But, both w and € are in NF.
-50, by AUwBAAﬁtﬂ, X (w) ——2—9 w” and x(¢) ——g—} e”.
~Thus, x(w(e)) ——) 8.

‘—l, by structural induction, (¥e ¢ EXp)Alel.

~Hence, the lemma, taking ¥ as null.

4,8,.7:CORz~

Normal forms are incomparable under E.
Proof:-

-Let €, ¢ NF and € € §,

—Then, € € §, by 4.7.4, and so € —>> &, by 4.8.6.
4.8.8:LEMMA:~
Normal forms are maximal under £ modulo G—E-— - i.e.

(€ e NF)a(e = 8) = (5 — ¢).
. Proof:-
QLet € € NF and ¢ € §.
~Then, §Eéﬂ = Eflell & E&ﬁﬂ e VI§D, by 4.7.4 and 4.6.11.
-%, EMel < V8D, by 4.7.3 and 4.7.9.
~Thus, g'[fd] EEIIS'}], for some &8 such that 6~——3—'-§——) 8”7,
-But, € —2 355, by 4.8.6, and sé; 6'-§4§—9 €.

+
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4,8.9:THEOREM: ~

<E,,V> is a normal model of the A-calculus.
.Proof:~
~Let £ have a normal form but § not have one.

%8 y ¢* ¢ NF.

~Let €
-Suppose VIel = VIS :-
~Then, EQe’D] = VIe”l = VIel = VISD.
-So, Ele”’D = %ES'H; for some 8”7 s.t. § ——ELQ—) §“, as in prooff
-But, £hen £? —2 3 8%, by 4.8.6. ; of 4.8.8, |
ey 8 B S s e np - X .

PR N Coe e e ¢ .o 3 L A A

4,.9:Requirement for <E_,E> to be a B-Model:- ’ o |

4.9.6:PROPERT¥ X3 | T E
(e —2B 3 ey — (RO’ = EMeD).

4.9.1:LEMMA:-

<E,,E> is a B-model <=> Property X <=> E = V,
Proof: -
-Suppose <E_,E> is a B-model :-

-Let € Q’B 8’0

~Then, gﬂe'ﬂ e Flle”l, by 4.4.1.

| = Elell, since.it is a model. y

-Suppose prbperty X = | .
- =Now, VIel =lJ{ﬁEe’B]e -—ELQ—Q e’}

-

mn

Elle]l, by property X.

=w, E =7V, by 4.6.11,

-If E = V, then <E_,E> is a B-model, by 4.6.1.

4.9.2:LEMMA: -

(e ,__&_:_L@_, €%) => (Fe”] = Elel).
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Proof:-
-We do a structural induction on €.
-The only interesting case is (Ax.eg) (§) -3Ll§? [6/x]¢e.. §

-Then, EI(Ax.€) (8§)T = Ap(ix.E0e],EM8T)

[E061/x1ELel, by 3.4.8.

u

[E18D/x1°ELel, by 4.3.3(iii) and 4.4.1(1).

Fre/x1el, by 4.4.4.

+

4.9.3:REMARK:~

It is a pity, but there seems to be no obvious way to
extend 4.9.2 to property X.

Property X is saying that the epproximate semantics of a

reductum holds léss information than the complete semantics
of the expression that was reduced. This should be true if E,
E and € really do correspond to our intuition.: |

Notice that we have the reverse problem to that of Wadsworth
- [58]. We know that expressions with no HNF are 1 (4.6.12), .
but we do not have modelship. We can do E & V, while Wadsworth
had the converse. |

We could, of course; prove modelship directly if we could
establish the missing identity of 3.4.11 and then follow the

scheme outliﬁed in 4.2.5. We repeat this scheme here, for the

sake of completeness. ‘ -

4.9.4:PROPERTY Y:-

For all ¢,8,n € E_,

 [e/x1ap(8,n) = Ap(le/x18,[e/xIn).

I'4

4.9.5:PROPERTY %:-

. For all ¢,6,n € EXP,

[E0el/x)Ap (EL81,EMT) = Ap([ELeD/X1ETST, [Flel/x1EID) .
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4.9.6:LEMMA:~

Property Y => Property 2.
Proof:-

-Trivial.

4.9.7:LEMMA:~

<E_,E> is a B-model <=>’Property Z.

Proof:-

M

(<=) ~Let Allel EQ@le”/xIx(e)D = [ELe"1/x1EDx () 1.

-Then, the structural induction goes through as in the proof of
lemma 4.4.3, using 4.2.3 and property Z instead of 4.4.2.

-So, in particular, we have Elle”/xJell = [Elc"1/x1ETeD.

-Now, let POel = (¢ ——Enge e’) => (e = 7).

-The structural induction is the same as in 4.9.2. Again, the %
only interesting case is (Ax.e) (§) ~—3L£é} [§/x]e. %
~Then, Ell{Ax.€) (8)] = [EILSI/x]JEMe“]: = EMLS§/x]e], by above.

~This time there is no trouble in extending P[el to :-
o.8 €,

(e e”) => (e

since = is transitive.

—_ <E,:E> is a B-model.

(=>) ~-Now, (Ax.8n) (g) g-QQX ((Ax.6) (e)) ((Ax.n) (€)).
L, Oxesn)(e) = ((x.8) (£)) ((Axam) (e)) .

-But, EIl(Ax.dn) (e)1

il

2Ap (Ax.EISn1,EMel)
[ELel/x1EMSnT, by 3.4.8.

I

. [Elel/x1Ap (ELST ,EMND) .
-And, EL((Ax.8) (e)) ((Ax.n) (e))] = Ap(EL(Xx.8) (e)1,EL(Ax.n) (e)]
= Ap (Ap (Ax.EI81,ETe]) ,Ap (Ax. EInI ,ELeD) )

= Ap([Elel/x1EL8T,[ELel/x1EInD), by 3.4.8.
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4.10:summary of the Main Results of this Chabter:~

EsEc= T |
<Ew,E>, <E_, B> and %Ew,vﬁ model "not free in",
<E_,f> and <E_, B> are substitutive g-models.
Further, their iﬁduéed partial orderings, T and €, are substitutive.
<E_, V> is a normal solvable model. (Substitutivity ?)
<Ew,E>_is a model <uo'E = y <=5 Property X <= Propérty Z
| <= Eroperﬁy.Y.

E1rs/x1e0 = (E160/xT Elel. |
(e —E>c) = (e £ ).
(el?;lﬁ%> e*) = (Ele”] = EQeD) -
(e < 8) <=> (e = S)A(e is finite). |
g~normal forms are isolated. (N.B. finite = isolated)
(e € INSOL) = ((¥s ¢ EXP)(e £ 8)) (EQe] = 1)- ‘
(Vi 2 O)(Yi = YO). |
Noting thatlJ{EUe’ﬁ!s -§€> e’} = ylell, we can represent the |
relationship so far established between E; f'and v pictorially -

1\

E

©0

However, we maintain that E = v,
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%:I'TH REDUCTIONS.

5.0:I'th Application and Substitution:-

5,0.0:DEF: -~

apt(e,8) = e(8).
[6/x]16 = [§/x]e.

For i = 2,

i [G/XJle’, if e = Ax.e”
Ap (eg,8) =
e(8), if‘e-f AI.EXPR
and,
[(8/x]e, if € ¢ I y NOH
i - i""l - : *
[8§/%x1 e ={ A2.[6/X] [z/yle”, if (%) ’
ap e /xattu, asxt Ty, i (20
where (*) = (e = Ay.e” ¢ HNF).(z # x and is not free in §,e”)
and (**) = (¢ = w(n) ¢ HEAD).
5.0.1:REMARK :~

In the above definition we are trying to copy 3.0.3 as
closely as possible. Wheh corputing Api as opposed to Api, the
only differepces should be those of notation - superscripts
for subscripﬁé, nothing for projections and expressions in NOH
for 1's. This expléins why, when € ¢ NOH, we must do no work
in computing [é/x]ie, so that we remain in NOH - compare with
[8/x1; 41 = 1.

Before going any further, we must establish a few basic
properties of i'th appiications and substitutions - in particular

that they are well-defined up to a-conversion. Compare the

_ following induction hypothesis with that of 3.1.0. It has scope

from 5.0.2 to 5.0.11 inclusive.
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5.0.2:DEF: -

Let P(1i) = (Api is well-defined up to g-conversion)
& (e —%> 7,6 —25 7 = Api(e,8) —2> apT(c”,87))
& (¢ ¢ NOH => ApY(e,s8) e NOH)
& (ApY([x/yle,[x/¥18) —2= [x/y1Ap (e,8))
& (a is not free in ¢,§ => a is not free in Api(e,S)).
Let @Q(i) = ([s/x]i is well-defined up to ag-conversion)
& (e —%5 e7,6 —25 67 = [o/x1te —%> [se/xten)
& (e e NOH => [6/x1%¢ e NOH)
& (a is not free in € =» [6/a]i[a/x]g ey [6/X]ig)
8 (z » x,y) = ([[x/y16/21 (x/yle —2> (x/y106/21%¢)
& (a is not free in ¢,8§ => a is not free in [6/x]ie)
& (x is not free in ¢ => [6/x]ie —25 ¢).

5.0.3:LEMMA =

P(1) .@(1).

Proof:—-
-All parts are obvious except for the third clause of g(1). Bﬁt
we already have this by 0.5.2(iii), or as follows :-

~Let Allell = {[8/x]x(e) € NOH).

-Clearly, Al(Aa.u) (v)T and AlIsj => Alle (w)TAATra. €],

-a, by structural induction, (¥e' ¢ NOH)a[e].

*

5.0.4:LEMMA:~

Qi) => p(i), ¥i 2 2.
. Proofs:=-
-Suppose Q(i),for some i > 2,
.‘~Then, clearly Agi is wéll~defined up to a—éonversion.
-Let € —* ¢” and § —>-> §”. If ¢ § AI.EXP, then O.K. If not,

~then ¢ = ix.n and ¢” = either Ax".n” or Ax.n”"":~



218

-If ¢’ = xx”.n", then x is not free in pn” and n = xX/X°n".
-Then, Api(lx.n,é) = [S/X]in = [g/x]i[x/x‘]n’ ‘
—25 [a/x°7n", By (i),
—> [6‘/x’]in’, by @(i).
= Api(Ax’.n’,a’).
-On the other hand, if e” = Ax.n””, then n —&> f--,
[G/X]in —2> [6’/X3in", by q(i).

o= Apl(AX-n'f:(S’)c

-Thus, Api(Xx:n,é)

~So, either way,Api(e,é) —2> Api(e’pd‘)-
~Let € ¢ NOH.
- =If ¢ f AI.EXP, then Api(e,s) = ¢(§) ¢ NOH also.
-If € = Ax.e”, then ¢” ¢ NOH and so,
Api(kx.e',ﬁ) = [6/x]is’-e;NOH, by @(i).
-The next clause is trivial if a-f AI.EXP. Otherwise,
Api([x/y]ka.e',[x/Y]ﬁ) —2 Api(kz.[x/y][z/a]e’,[X/Y]61:
by above, where z =z x,y and is not free in g¢~”.
= [[x/y18/21 1x/y1[2/aTe”
—% 5 [x/y106/21 [2/a1e”, by (i).
—2 3 [x/yi08/a1te”, by g(4).
= [x/y12pT (Aa.e”,6) .
-Finally, let a be not free in ¢,S§.
-If 5'{ AI.EXP, then a is not free in Api(e,é), trivially.
~-Suppose ¢ =.Ax.e*. Then, € —>>» Ax".e””, where a = x* and
is not free in e€”°.
-But, Api(lx’.s”,é) = [6/x’]is”, in which a is not free,
by @(i).
-, a is not free in ébi(e,a), since this is a-convertible to

Ap,l'()\x’.t»:“,(ﬂ .
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5.0.5:LEMMA: -

Suppose ¢@(i-1) .p(i-1), for some i » 2. Then, [s/x]i is
well-defined up to g-conversion.

Proof:- '
~Consider [6/x]ie.
~If ¢ ¢I y NOH, then trivial.
—Suppose € = AX.e” ¢ HNF,
-Let 2,27 =2 X and be not free in §,e” and z » z~.
~-Now, z~ is not free in [z/y]e”, and so, by g(i-1) , is not free
in [6/x1  Trz/ye”.
-But, [z°/2106/x1  trz/yie” ,

—8%% [rz°/216/x1" T1z"/2102/v 1", by g(i-1).

— [6/x]i~l[2’/y]g’, since z is not free in 5,3’{

-5 azere/xt asyies =2 azrlssxit Tz /e

-Finally, if ¢ = wi(n) Q'HEAD,‘then [a/XJlg is well-defined up

to d—cdhversion by ¢ (i-1) .p(i-1) - (twice).

T

5.0,6:LEMMA: -

Suppose @ (i-1).p(i-1), for some i » 2. Let ¢ e h and
§ —%> 6. Then, [6/x17¢ —2—> [6°/x]7e".

Proof:-
~If € € I y NOH, then trivial.

~Suppose € = AY.n e HNF,

-If ¢ = Ay.n", then n LEEN n’.
~Choose z =z x and not free in §,n. Then; 2 is also not free in pn~°.
~Then, [6/x1 MLz/yIn —%> [6°/x1 ' [2/yIn", by ¢ (i-1) ,since
Cz/yIn —%> [z/yIn".

- ta/x]i(xy.n) —-ﬁ> [6’/x]i(ky.n’).

-On the other hand, if ¢” = Ay"“.n””, then y is not free in n*~

-

“and [y/y”""In” ='n.
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-Choose z # x and not free in §,n,n”"”. Then,

. i-

s/x1 Gyon) = az.rs/x1  Yrz/ym

, Az. [6/x1" T r2/y 10y /Y I :
——g—} Az.[s/x]l_l[z/y"]n”,,by Q(i—l).

= [d/x]l(ky'/.nJ») .

-Finally, suppose ¢ = w(n) ¢ HEAD.
-Then, ¢” = w”(n”), with 4y —2&> 4~ and n —%> p~.
-Then, [5/x]iw(n) —&5 [§°/x17 0w’ (n”), by g(i-1) .p(i-1).

T

5.0.7:LEMMA;-

Suppose @ (i-1) .p(i-1), for some i > 2. Let a be not free
in €. Then, [6/all[a/x1e —2> [6/x1%€.

Proof:~
-~If ¢ €I v NOH, then trivial.
-Suppose € = Ay.e” ¢ HNF.
-Choose z and z”° such that (z 2 2')A(z,z‘.¢ a,x).(z is not free
in €“).(2” is not free in ¢”,8). Then, note that a is not free
in [2z7/y]e”.

=5, [8/altra/x1Oy.e”)

L]

r6/a1t (\z.ra/x102/¥1e”)
az”.r8/a1 Yz sz1ra/x10 2 /976
—2 3 az-.rs/a1i ra/xrze vae

—2 3 azeups/x1 iz /y1e7, by g (i-1) .
= ts/x1tOyeen) .

~-Finally, suppose € = w(n) e HEAD. Then, a is not free in y,n.
[s/a1% (L a/x1w) (La/xIn)

ap s /a1t M asxin, 6 /a1 as/xn)
25 apt re/mi i, re/x i), by  (1-1)
- 6/x1tw ) . E AP (i-1).

]

”-:d.[aya]i[a/x]w(n)
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5.0.8:LEMMA:~

Suppose @(i-1) .p(i-1), for some i > 2. Then, if z g x,y,
[[X/YJG/Z]i[X/Y]e —%> [x/y106/27" €.

Proof:-
-If ¢ ¢NOH y I, then so is [x/y]e, by ¢(1), and the result
is trivial.
-Suppose € = Aa.w ¢ HNF.
-Choose b and c such that (b 2 c).(b,c = x,y,z)ﬁ(b,é are not
free in w,8). Note that c is not free in [X/Y18,[x/yY][b/2]w.

~-Then, [EX/YJG/ZJiEX/yJ(Aa-w)

—%3 [[x/y16/21 (Ab.[x/y]1[b/a]w)
= Ac.[rx/y18/21 Lre/birx/y1b/a10
—2> AC-[[X/YJG/Z]i~1[X/Y][C/b][b/a]w
- Ac.[x/y]tG/ZJ [c/a]m, by Q(i -1).
= [x/y1(c.r8/21% [C/a]w) B
= [x/y106/21 (ha.u) .

~Finally, suppose ¢ = w(n) ¢ HEAD.

-Then, [[x/y16/2] EX/yJw(n)

[[X/YJS/ZJ (EX/YJw)([X/Y]n)

= ap  Hrrx/vis/21t [x/YJw,cEX/YJS/ZJi"I[X/YJnS
—2 5 apt L rxyirssz1t N oxsvins /2t

by @(i-1).p (i-1). |
—=3 rx/v1mt (/218 Y0, 067208 L by B2,
= [x/y108/21 () .

) T

5.0.9:LEMMA: ~

«

Suppose Q(i—l)AP(i-l), for some i > 2.’Let a be not free
in ¢,8. Then, a is not free in [6/x]ie.

Proof:-
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-If ¢ ¢I y NOH, then trivial.
-Suppose ¢ ='ky.t‘. Choose z & X,a and not free in £”

~-Then, a is not free in [z2/yje”’.

-w, @ is not free in [6/x3i~1[z/y]€’, by p(i-1).

-., a is not free in Az.[s/X]i-l[z/y]g’ = [a/x]i(xy.g’).
-Finally, suppose g = w(n) ¢ HEAD. Then, a is not free in y,n.
-., a is not free in [6/x31_1w,[5/x3i—1n, by g(i-1).

i-1

-., a is not free in Api—l([s/x] m,[d/x]l—ln), by p(i-1),

= [S/X]iw(n).

5.0.10:LEMMA: ~

Suppose @(i-1) .p(i-1), for some i » 2. Then, if x is not
free in ¢, [a/x]ia —2.s ¢,

Proof:-
-If ¢ ¢ I v NOH, then 0.K.
-If € = Ay.e” ¢ HNF, choose z z x and not free in Sse”
~Since x is not free in ¢, = \Ay.e”, we have that x is not free
in [z/yle”. |
=Thus, [6/x]i.()\y.e’) = AZ-[d/xJi“1[2/st'

—2> \z.[2/y]e”, by g(i-1).
| —2> Ay.e”.
-If ¢ = w(n) ¢ HEAD, then x is not free in Q,n.
~Then, [6/x]iw(n) = Api;l(EG/X]i-lm,[S/X]i-ln)
.;;9-9 Api-l(w,n), by Q(i-i)Ap(i-l)-

. ‘ = wl(n), since w ¢ HEAD,

" 5.,0.11:THEOREM: ~
(Vi 2 1) (P (1) @ (1)) .

Proof:-
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e have P (1)@ (1) ,by 5.0.3.
~-Now, € € NOH => [6/x]is= Eé/xje e NOH, by'Q(l).
-5, P(i-1) @ (i-1)=>q@ (1), ¥i > 2, by 5.0.5,5.0.6,5.0.7,5.0.8,
5.0.9,5.0.10 and abo&e.
~And, Q(i)=>P (i), ¥i = 2, by 5.0.4.
—ny P(i-1) Q@ (i-1)=>P (i) @ (i), Wi = 2.
~., by ordinary induction, P(i).Q(i), ¥i = 1.
T

5.0.12:COR:-

If =z ¢-x and is not free in §, then, for all i 2 2,
o te/xitOzee) —2> az.fe/x1tle.
Proof:-
-Let z # x and be not free in §. Choose z” # x and not free
in §,e. ‘ |
~Then, [8/x1%(hz.e) = az”.[s/x31 7 027 /216 |
—% 5 az°.[[2" /216 /5117 2" /27¢, by 5.0.11,
sinée'z is not free in §.
S ALY Az'.[z'/z][é/x]i—le, by 5.0.11, since
x % z,2°.
— Az.[d/x]iule, since z” is not free

in [6/x1% e, by 5.0.11.

5.1:Preservation of *wQL§~> and & ;-

-

5.1.0:LEMMA:~
' ' o,B ¢! . - a B i
(e(8) ——L=> rp~(€,8)) and ([8/xle ———> [§/x17¢e).

Proof:-

~Let P(i) and Q(i) be the above sentence.
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-Clearly, P(1).q(1). _
~Claim: @(i)=>P(i), ¥ > 2 -
-e fAT.EXE = c(8) = apt(e,8).
-g = AX.e” => (Ax.e”) (§) ——E—% [8§/x]1e”
| 2By rs/x1te”, by g(i).
= Api(xx.e‘,a).
~Claim: P(1-1) A@(i-1)=>g(1) ¥ 2 2 -
[S/XJié.

-c¢ €I u NOH => [§/X]¢

~¢ = AY.e” ¢ HNF and z =z x and not free in §,e¢” =>

Az.[8/x][2/Y]1e”
—giﬁé Az.[a/x]i-l[z/y]e', by g(i-1).
= rs/x1  (ay.e?) .

[8/x1(Ay.€”)

-¢ = w({n) ¢ HEAD =>
[8/x1w(n) = ([8/x]Jw) ([8§/%xIn) |
o, B i-1 Lo oi-1
—L2> ([8/x1° “w) ([8/x1° "m), by g(i-1).
2By apt L (ra/x1t e, o/x1 ), by pl1-1
= [G/XJiw(n).
~-Thus, by induction, p(i).g(i), ¥ > 1.

i

5.1.1:LEMMA;:- | , |
£ '&ﬁ) S.‘y 8 "Q'L'@é §7 => Api(E'S) —QL&)Api(e',G').
e 2By oo, 5 2oy 5o oy ro/xte By [8-/x1%e”.

Proof:-

-Let p (i) and ¢(i) be the above two sentences, respeptively.
-Clearly, p (1) . (1).
~Claim: g (1)=>p (i), ¥.> 2 :-
~-If e‘/ AI.EXP; clearly p(i).
- 7If not, then ¢ —2 5 Ax.n, €° —%> Ax.n",n ~3i§> n’.
-Then;‘Api(e,G) S Api(ern,s), by 5.0.10.
= [a/x]in
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~:By [87/xMMn”, by o(1).
= apt(x.n”, 8%
—2 5 apt(e”,5%), by 5.0.11.
~Claim: pP(i-1) .g@(i-1)=>¢(i), Qi 2 2:-
-If € ¢I y NOH, then [6/x]ie = [8/X]e
2By 157/x7e”
.24@9‘[5’/x]i5’, by 5.1.0.
~If ¢ % AI.HNF, € ——9—9 Ay.n, €~ —2 Avy.n”, n —giﬁévn’,
-Choose z - ¢ x and not free in §,n,n”.
~Note that [z/yIn *2459 [z/yIn~.
~Then, [§/x1%e —2> [6/x11(Ay.n), by 5.0.11.
= 2z.18/x1 ez /9 n
S-T1IN Az.[a’/x]i_ltz/y]n’, by g(i-1).
= 18°/x1* Oy.n”)
—2> [s°/x17e”, by 5.0.11.
‘ ' -If € = w(n) e HEAD, then ¢” = w’(n’)Aand w —QLQQ w’,
n _24&; n’. | .
-Then, [6/x]ie = Api_l([6/x]i—lw,[6/x]i—lﬁ).
-But, [6/x11 1w 2By r5-/x117Yu”, by g(i-1).
-rna, [6/x11 T 2By r52/x11 7107, by g(1-1).
-L, ts/xate 2By apt l(rse/mat e, ts /xat by pU1-D).
B = 16°/x1te", |

-., by induction, P(i).@(i), ¥ = 1.

5.1.2:REMARK:~-

In the proof of the above theorem, wé see how neccessary
it is that [6/x]ie ddés nothing when ¢ ¢ NOH. Since, when ¢ =
w(n) and € —2+Q> €”, if we could not assure that e'e'HEQD, we
would not be able to say anything about e”.

Thus, without this clause, i'th applications and
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substitutions, although well-defined up to a-conversion, would

behavé badly with respect to B—feductions.,

5.1.3:THEOREM:~ | | S
Api(s.é) By Api+l(e,6).

/e te 2By g, 1t e,

Proof:-
-Let P(i) and @(i) be the above two sentences, respectively;
~Claim: P(1) and (1) :-
-Clegrly &(1l), since [6/x]28 = [6/x]le.
-If ¢ { AI.EXP, Ap°(e,8) = e(8) = Ap'(e,8).
-Otherwise, Ap (Ax.e%,8) = (dx.e”) (8) ’
—E > ro/x3e”
= [8/x1%”
= Apz(lx.e’,d).

-Claim: @(i)=>P(i), ¥i 2 2 :-

e(8) = ap™tl(e,6).
[§/x17€”

By /21t ler, by gi),
= Apl+l(kx.e',6).

-If € ¢ AI.EXP, Api(e,s)
-Otherwise, Api(Ax.e’,S)

]

-Claim: P(i-1)AQ(i-1)=>Q(i), ¥i > 2 :- |
~If € I v NoH, [8/x1%e = [8/xle = [8/x1 1 e.
-If € = Ay.€” € HNF, and z # X and is not free in §,¢”,
§/x L(hy.e”) = Az. ta/xji'ltz/yja
——Lf> Az.[§/x] [z/y]e, by ¢ (i-1).
} [6/x11+1(ky e”).
; ;If € = w(n) e HEAD, then [§/x] w(n) = Api-l(fﬁ/xli-lw,
) CoezxtTh.

'—But, [6/x]i 1w ——L~9 [6/x] w, by Q(i 1) .
-And, ts/x1 1y —9429 [6/x1n, by @ (i-1).
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-5, rs/xTrem 2By apt L (rs/x1rw, to/xtn), by 5.1.1.
2By apt(re/xtw, /%1 ), by P(i-1).
= ts/x 7 w(ny.

~Thus, by induction, P(i).Q(i), ¥i = 1.

5.1.4:COR:~

Api(el S) € Api+l(er $).
[6/x1te & ro/x1i*le.
Proof:-

-By 5.1.3 and 4.4.9.

5.1.5:REMARK:~

Thus, we see that i'th applications and substitutions form
a chain under B-reductions, and hence E, with increasing i.

Finally, in this section, we check that these definitions
are well behaved with respect to € -‘i.e. a result similér td

that of 5.1.1, First, though, a trivial property of T,

5.1.6:LEMMA; -
e €¢e”, 6§ 88" => [§/x]c & [8°/x]e”.
Proof:-

-EMC8/x1eD = [ENsD/x1"ETED, by 4.4.4.

i

(ETs“D/x1"EQe”D, by 4.3.3(i).
ENLs”/x1e’D.

5.1.7:DEF:~

P(i) = (¢ € ¢”, 6 € §° = Api(e,G) € Api(s',G')).
Q(i) = (e & ¢*, 6-E

s = [o/x1te & ro/maitery.

5.1.8:LEMMA:~

Q (i)=>P (1), ¥i = 2.
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Proof:-

m

e(8) e“(87), by 4.4.7.

-If € fAI.EXP, apT (e, 8)

m

.Api(e’,S’), since there is equality

if ¢° va.EXP and otherwise €7(8”°) ¢ NOH, which gives g, by 4.8.4.
-Suppose € €eXI.EXP. If € NOH, then so is Api(e,é), by 5.0.11,
and hence P (i), by 4.8.4.

-Otherwise, ¢ —2 AX.n eHNF, and ¢” —>> Ax.n” and n T n’,

by 4.8.4.

~Then, Apl(e,8) —%> ap® (1x.n,8), by 5.0.11.

[8/%Tn

[6°/xT'n", by g (1).

ny il

ApT (Ax.n”,87%)

—2&> apt(e”,§%), by 5.0.11.
-+ P(i), by 4.4.8. |

t
5.1.9:LEMMA: -
P(i-1) A@(i-1)=>@(i), ¥i = 2.
Proof:-
~e =z €I =>¢" =2z, by 4,8.4.
= [8/x11z = [8/x72
€ [§”/x1z, by 5.1.6.
= [87/x1% 5.

~€ € NOH => [5/X]i8 e NOH, by 5.0.11.

=> @(i), by 4.8.4. |
-€ € AI.HNF => ¢ —>> Ay.n, e° —2> Ay.n” and n € n", by 4.8.4.

-Choose z # x and not free in §,8°,n,n".
~Then, [§/x1e —%> [§/xji(xy.n), by 5.0.11.
= az.06/x1 L 2 910
A € Az.[é’/x]i—ltz/y}n, by ¢ (i-1), since [ z/y]In e
Lz/yIn®, by 5.1.6. |
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B [6’/x]i(xy.n')
—% 5 [5”/x1%¢”, by 5.0.11.
-w, Q(i), by 4.4.8.

~

! ~
-Finally, € = w(n) € HEAD => ¢” = 0”(n”) and w € w”, n

mny

by 4.8.4.
—Then, [8/x1 ) = apt Y (rs/x1  Lu, 16711 0.
—But, [6/x1% Yw £ 162/x1 " 1w”, by o(i-1).

ny

[6’/x]i“1n', by @(i-1).

Api-l([é’/x]i-l

-and, [§/x1F 1y

w’,[&'/x]i_ln'), by P(i-1). .

iy

-, s/x1te )
8 /x1 e (7).

I

5.1.10:THEOREM: ~

Proof:-
-Clearly, P(1)A€d(1), by 4.4.7 and 5.1.6. -

—:, by induction, using 5.1.8 and 5.1.9, we get the result.

t

5.2:Relationship with E i~

5.2.0:REMARK: -~

Since i'th application and substitution were "modelled"
after the applicatioh and substitution operators of E_, we

should expect a strong connection.

5.2.1:DEF:~
" p(1) = Foapi(e,8)] € apEren,Fuel).
9 (i) = Fprs/x1ted = rEmen/xfran.
5.2.2:LEMMA: -

P(1).9(1).

Proof:-
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-Fgapt(e,8)] = Ele(8)D = Ap(ELel,ETsD)

Ap(Elel,E08D), by 4.3.3(iii).

in

~FOCs/x1 el = EOLs/xTel
= [F0s0/x1°EQel, by 4.4.4.
c [FO61/x150el, by 4.3.3(iii).
¥
5.2.3:LEMMA: -

Q(i)=>P(i), ¥i 2 2,
Proof:-
-Suppose € f AI.EXP,
~-Then, iEApi(e,G)ﬂ = ﬁﬁe(a)ﬂ c Ap(ﬁﬂeﬂ,gﬂ3ﬂ), as in the proof
of 5.2.2.
-Suppose € = Ax.e”.
gﬂfﬁ/xjis’ﬂ _
[EDsI/x1EQe”D, by Q(i).

-Then, 5Ehpi(lx.€',6)ﬂ

in

~ ~
Ap (Ax.E[le”D,E08T), by 3.4.8.

Ap(FMx.e°D,E0s0) .

t

5.2.4:REMARK: -

We need the following technical lemma for the other -
induction step. Part (i) was mentioned in 3.4.11.

5.2.5:LEMMA: -

(1) Aap(le/xle,le”/x18)
- L’4¢i+l': Api([eg/x]ei_l,[ei/xléi_l).

« (ii) 11'2((-:) # 1 =>

Ap(le”/xJk,le”/x) = [s'/x]ﬁ%(e,&)

[E:'/X]A.p(s 16) .

Proofs=-
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.(i) -Ap(le?/x 1e, [e”/x 18)

Ap(L_“l wolel/x]e, 14 l_; ' o[ej'/x ]aj_l)‘

= .__1¢k+l BBy (8, 1 € L;M

= ,_4¢k+1 - Apk(L__l¢>l kotg*/xu;l l,l__J Lo e oleg/xas;_

- “4¢k+l . L_J(Apk(¢iik°[ejt/xv]€i_l,¢j xoLes/x385_ 1))
l__l¢k+l m(LqLApk(ﬁb SLei/x1e; 1 v0; polef/x16,_ 1”

k‘l L_i¢k+l'm Apk(¢i k°[€ /X]€1 A /%185 _q)

__l L—A¢k+l 0°0341, k1 °BPy ([e] /x]e l,[e')xga; l),aby 1.3.5.
'r*l¢l+l - Api([e /x]e; —prle] /x16 -1 | .

L_J L_J¢k+l o APy (0, Jxeley/xley lr¢ kOEEJ/X]Gi_l), since

wole/x1e; )00, ([_=_l¢. wol€5/% 185 1))

T - ]

in

1

vthis is the least upper bound of a larger set (consider i = k).
-:, we have equality and this part is proved.
(ii) -If ﬂz(e) # 1, then €51 = -3 € A Y ¥i > 2.

;, Ap(Le”/xJe,le”/x16)

{_—_s

2¢l+l moApi([E /x]ai 2![8 /xjél l)p by part (i).

e
8 1

= 2¢1+1 ® i+1/X3“i—2(51-1)

ot
U

e
Le”/x1Ap(e,$)

]

[}

[s’/x]Ap(e,S); by 4.3.3(xii).

5.2.6:LEMMA: ~

s

P (i-1)AQ (i-1)=>Q (i), Wi = 2.
Proof:-

_-If € € Tu NOH, then E[[6/x]ie] = EH[cS/x’lEJJ [Euan/xmzen,
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as‘in the proof of 5.2;2;
-Suppose ¢ = Ay.e” e HNF. Choose z =x and not free in G;e’.
'-Then, EE[G/x]i(AY-E’)ﬂ
= Bmz.r6/x1  trz/v1e7T
~='Az.Eﬁ[6/x]i-1[z/y]e’
£ Az, (BUs1/x150L2/y1e"1, by QCi-1).

= [FI80/x1)rzZ. EE[Z/Y]S B, by 4. 3 4(iii), since z is not free...:

in E@sT, by 4.4.1(ii).
[F051/x15 M0 z.[2/y]e"D"
[E&an/xjﬁuxy €”], by 4.4.8.

]

-Finally, suppose ¢ = w(n) e HEAD. Then, w e HEAD and so
T,oBTul - % 1, by 4.4.2(111). | |

~-Then, FLrs/x1tw(m1 = Frapt(re/x1tle, ts /%1 1ny 3

ap (Frrs /=1t ul ﬁmts/x]_ L, by Pa-1).

ap ([F181/x1E 1], [F 18T /x1E D), by @(1-1).
(Ers1/x18p (FD, EInD) , by 5.2.5(i1).
'tiﬁﬁn/xlﬁﬁm(n)ﬁiv |

il . mn

5.2, 7 THEOREM"

P(i)AQ(i), vi > 1.
 Proof:-
-By inductiéﬁ; using’$;2;2;5.2.3 and 5.2.6.
| $

‘5'-2.8:R‘EMARK:"‘

LN

We have now done the work in this section iﬁat is needed

for the deVelopmant of the thesis, since we will obtain fromk .
this, in the next saction, a sufficient condltion for property
X to be true. .

However, to show we are on the right track, we can get a
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result with Api on the R.H.S. of a & and prove the condition
neccessary as well.
For this reason, and the fact that the result and its proof

aré almost identical to 4.6.10, we only sketch the proof here.

5.2.9:THEOREM: -
S 2 ~ [od
Let {Q (i) = (&g 108y 5 ¢, j_1°Felsd, 4°EMST)
R ay_> o !
pA ~ i |
=> ([8,/xWe; 1< b, ;°ELL8/x17(e) D).
%3-2

Let P(1) = (e;,8, € ¢, ,°Flel,0, ,°FI8I)
~> (Bp, (e;,8,) = 6, 415020 (e, 8)D).
Then, (¥i 2 0)(S(i)) and (¥i 2 1) (P(i).Q(i)) and (¥i 2 2) (R(1)
Proof:- ’ |
~Look at definition 4.6.4. All we have to show is that [6/x]i(e )

Api(e,ﬁ) are suitable choices for n such that [§/x]e "-ELE€>‘U;
e (8) —?5$E€> n respectively.

~-Consider 4.6.6 :—~ » (S(i), ¥i =z 0)
-n = [§/x]z = [6/x]iz.
~Consider 4.6.7 :- (Q(i) => P(i), ¥i =2 1)
- -If ei =04y then ﬂzogﬂsﬂ-t L.

-+, € € HEAD and so ¢ f AI.EXP.

-5, n = e(8) = Api(e,s).

~If ¢ ts/y1ty, by (i)

Api(ky.v,‘ﬁ) —2 Api(ers) ’

1 = Ax.ei_l,lwe get n

since ¢ —=3 Ay.V.
~-Consider 4.6.8 :- (Q(i-1) AR(1) => Q(i), ¥i =2 2).
-If €51 = Ay.ei_z, we get,
Az.n = Az.[&/x]i“lv, by g(i-1).

-—gf> [6/x]i(kz.v)y since z # x and is not free
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in §, by 5.0.11.
-2 [6/x]ié, since € —>—¥ Az.v.
“If ey = 04_ov then O.K. by R(i).
~Consider 4.6.9 :- (P(i-1) AQ (i-1) AR(i-1) => R(1))
-If @, o, = ai—3(€i—2)’ we get,
v = aptlre/x1 e, 16/x11 e ), by P(i-1).0(i-1) R(1-1).
= 8/x1 (e (e?)) = [o/x1te.
“If oy 5 = 2, then O0.K. by S(i).
—l, the theorem, by an SPQR-induction as in 4.6.10.

*

5.3:I'th Reductions:=-

5.3.0:DEF:-

i<x> = R (i =2 1)
i<ix.e> = Ax.i<e>
i<e (8)> = ApT (i<e>,1<8>).

5.3.1:REMARK:~

Compare the above definition with that of the semantic
function E, 4.0.1.

We use angle brackets, < >, rather than [ I, since the
result of applying i is another A-expression.

We could haﬁe defined these reductions slightly differently,
e.qg. 1<e(8)> = Apt L (i-1<e>,i-1<6>), |
but this makes no difference to our thesis.

5.3.,2:LEMMA:~

(i) i<e> is wellidefined up to a-conversion.
(11) i<[x/yle> = [x/yli<e>.

(1iii) a is not free in € => a is not free in i<e>,
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(iv) & —2—y £° => i<e> —2 ) i<e”>,
Proof: -

~-Trivial, by doing a structural induction on € and using 5.0.11.

F

5.3.3:THEOREM:~

The i'th reductions form a chain under ——gié—a and &,

Proof:-

i<e> —3B o 5ices,

11}

~Let Pllel

-Clearly, POxDI and (Plel => POAx.ell).

-Claim: PIel.POSD => PHe(8)DT :-

~i<e(8)> = Api(i<e>,i<6>)

~—9L9—9 Api(i+l<s>,i+l<6>), by 5.1.1,P0el and PDSI.
—0eB 5 apt*l(i+1<e>,141<8>), by 5.1.3.
= 1+1<e(8)>.

-+, (Ve e EXP)PLel.

-Finally, —B 5 =5 &, by4.4.9.

5.3.4:EXAMPLES:~

(i) 1<e> = ¢,

(ii) € e NF => i<e> f—2~9 €.

(ii1) 2<(ry.xy)(b)> = xb.

(iv) [6/x1e —2B 5 2c(ax.e) (8)>.
v e =28y acr(e)s.

(vi) e —2B 5 3<x(e) (8)>.

(vii) i<Ad> —23 aa.

(viii) i<¥> = kf.fiéz(ggl), where Y = Af.spl and i*2 means
an intéger divide. ~

Proof:~

(i) -By a simple structural induction on €.
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(1ii) - 2<(Ay.xy) (b)> = Ap2(2<xy.xy>,2<b>)

= Apz(ky.xy,b),'by part (ii).

= [b/y1%(xy) = [b/ylxy = xb.

(iv) =-2<(xx.€) (8)>

Ap2 (Ax.2<e>,2<65)

[2<6>/X]22<e> = [2<8>/x]2<e>

<%gi§—— [§/x]e, by 5.3.3.
(v) -e = [e/x]x __24@_9 2<I(e)>, by part (iv).

(vi) =3<K(e) (8)> = Ap> (Ap> (K,3<e>),3<6>)

<28 ap3ap3(x,e),6), by 5.3.3 and 5.1.1.

= ap3 ([e/x13 (Ay.x) ,8)

= Ap3(Xz.[e/k]2[z/y]x,6), where z- # x and is

not free in e.

= ap3 (Az.[e/x1x,8)

= [6/2]26 =

L

Ap3(lz.e,6)

§/z]¢ 'e, since z is not free in €.

i

(vii) -By 5.3.3, a4 —22B 3 jcans,

-But, AA only reduces to itself.

~n, i<ad> —2 3 a4,

(viii) -i<y> = i<Xf.spl> = i<Af. (Ay.£f(yy)) (Ay.£(yy))>
= A£.2pT (AYE(yy) WAy £(yy)) .

-And, Ap?(Ay.f(yy).\y.£(yy))

-
=

H]

]

spl.
Ely-f(yy)/ylzf(yy)
[hy.£(yy) /y1E(yy)

£(spl) .

-Then, for i = 3, Api(ly.f(yy),ly-f(yy))

= Dy £lyy) /vy 1Y (vw)

= apt N (Day. £ yy) 91 LE, Dayl e tey) 291 L (gv))
= apt e, a0t 2 (. £ (yy) 1Py, Dy £ (ry) /911 2y
= £(Ap "2 (Ay. £ (yy) Ay . E(y¥)).
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-, ¥iz> 1, Api(xy‘f(yy),xy-f(yy)) = fi*z(sg ).

—:.' i<yY> = Af-fl%z(se )o

5.3.5:REMARK:~

Thus, we see that i'th reductions are non-trivial and, in
the case of Y, go arbitrarily deep. The question is whether they
always will.

Note that we have not got the result,

(e —2B 5 ¢7) = (i<e> —2B 3 5ce75y,
from 5.1.1, since, if we try a structural induction on £, we do
not know the form of ¢” when ¢ = w(§).

Note also that the result corresponding to 5.1.10,

(e |
is not true, since I(x) & AA, but 2<I(x)> = x & AA = 2<AA>,

m

£”) => (i<e> € i<e”>) - %,

We also have not been able to show,
(ev) (87) —2Ly i<s(e) (8) (v)>,
for sufficiently large i, since this would involve pushing i'th
substitions through i'th applications and this seems to lead to
as many troubles as trying to establish properties Y 6r Z.

5.3.6:THEOREM: -~

Eri<e>] € Flel.
Proof:-h | |
-Let P[el be the above sentence.
-Clearly, PIxI.
-Claim: Plell => PIAx.€] :-
-Eli<Ax.e>] = Elix.i<e>] =‘Ax.§ﬁi<e>l‘] £ Ax.E[el, by Plel.
EEAQ.&B.

]

~Claim: PE?BAPﬂﬁn => Plle(8)0 :-

—Eﬂi<éf65$ﬂ = g&Api(i<s>,i<6>)n
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in

Ap (Bli<e>D,EQi<6>D), by 5.2.7.

in

Ap(E(el ,EN81), by PlelAPDST.

i

EQe (8)1.

e ? (VE € EXP)PHSH .

5.3.7:COR:~

o0

Fli<e>] € Elel.
i=1 o

Proof:-

-Trivial.

5.3.8:REMARK:~

As in the last section (see 5.2.8), wé have now done the
work that is needed, since we will show later that,

[+
Vel & }~J5Ei<e>ﬂ,
o

and so deduce F = V. However, to show we are chasing a neccessary
condition, we prove one more result, analogous to 4.6.11.

5.3.9: THEOREM: -

Elel = L~4§Hi<s>n.
i= -

Proof:- ,
-Look at the proof of 4.6.11. Let 4[lel be the theorem.
-Clearly, AlxI. | | ‘
-(Alle] => AQAx.cl) is proved as in 4,6.11, using 5.3.3 inétead
of 4.4.10. | o
.-(AﬁéﬁAAESB => Alle (8§)I) is proved as in 4.6.11, only we use ji<e>,

i i

ki<6> instead of ¢”,6",. Then, by'5.2.9,

L4

Bpy (eg18,) & ¢, 341°FIAP" (3;<e>,k;<6>) 1

i

o~ : -
¢‘m'i+l’08[ﬁni<€(6)>.ﬂ, where m, = max(]i'ki'i)' |

Hence, the result.
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-., by structural induction, (¥e ¢ EXP)4[cl.

+

5.3.10:COR:~

glel = || ¥ri<esT.
i=1

Proof:-

-Trivial.

5.3.11:REMARK: -

Thus, the semantics of an expression are given by the limit
of the approximate semantics of the i'th reductions. This is a.
stronger result than Wadsworth's [59], which we shall show carries

over to the usual Scott models.

5.4:Completeness of Reduction Rules:=

5.4.0:DEF:—-

Let R be a rule for defining a set of f-reductions of a
A-expression. We write ¢ —~§~9 § if § is reducible from ¢ by

"the rule R. Then, the rule is STRONGLY COMPLETE if,

(ev_~24§_% e”) =>(¢ m_ﬁwg §)ale” _~§L§_9 §) .
The rule is WEAKLY COMPLETE if,
(e =B 5 %) =(e —Ey s).(e” € 0),

5.4.1:LEMMA:~

(i) Strongly complete => weakly complete.

(1i) R is weakly complete <=> Vel =L {E0e"T e -@~% e’}.
beof:~ y |
(1) -By 4.4.9.

(ii) (=>) -Clearly, vIel = t{Fre'n]e —E3 ¢-}.

- -But, that the inequality holds the other way around, is jJust
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weak completeness.,

In

viel
UtErenle —5— &3,

(<=) -Let ¢ ——QLQ—Q €¢”. Then, Ele”D

by hypothesis.
-But, Eﬁe’ﬂ is finite, by 4.7.3, and so,
Fre’n < LFnsn]e —F— s3.
-, EDe”T E‘§E6ﬂ, for some § such that ¢ -—E—a s.
-i.e. € € §, where ¢ ——5—9 8.

'5.4,2: (COUNTER~) EXAMPLES : -

(1) Standard reductions are strongly complete.

(ii) Normal reductions are not even weakly complete.
(iii) I'th reductions are not strongly complete.
Proof:~-

(1) -1f ¢ —2B 3 ¢* then ¢ —Standard 5 .- 4y 5. 3,40,

-

-Hence, strong completeness, with § = €7,
(ii) -Let e = x(AA) (Iy).
~-The only normal reductions are a-convertible ‘to e.
-But, € —-9i§~9 x (M) (y) é e. (This is from Wadsworth‘- [60])
(iii) -Let T = Ax.xxx. Write e for ee€......c (n times).
~Then, T2 —%8 5 1%, ¥n > 2. also, T ——%{é-a 2, ¥n > 3.
-But, A% —2B 522 ona 1<a?> —25 4%, by 5.3.4(vid).
~-Consider € = (Ax.Az(xx))(Tj.
-Now, € ——giﬁ—) A%72 ——2L§—9 AzTn, ¥n = 2.
~But, i<e> = Api(i<xx.A2(Xx)>,i<T>)
- —2 5 apt(ax.i<a2(xx)>,T), by 5.3.4(ii).
= t1/x1tapt (1<a?s 1<xx0), Vi 2 2.
—% 5 r1/x1tapt (42,2%), by 5.3.4(i1), (vii) and 5.0.1l.
= [T/x]iAz(xx), since Az f AI.EXP.
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= [T/x]Az(xx), since Az(xx) ¢ NOH.

= A%12, yi 2 2.

-, A%rP ——2‘745-—) i<e>, ¥i 2 1 and n = 3.

5.4.3:PROPERTY M:~-

I'th reductions are weakly complete.

5.4.4:THEOREM: ~-
Property M’<x> Property X.
Proof:- ;
(=>) =-¢ —~EL§~% e’ => ¢” € i<e>, for some i’z l.‘
=> Ele”] E ﬁﬂi<e>ﬂ |
=> Fle’] = ETel, by 5.3.6.

(<=) =VIel Ellell, by 4.9.1.

H

1o o
[}fmi<e>n]4 = 1}, by 5.3.10.
-., property M, by 5.4.1(ii).
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6 : INSIDE-OUT REDUCTIONS.

6.0:Comparing Reduction Rules:-

6.0.0:REMARK: —

In this chapter, we shall be trying to prove facts about
certain reduction rules. So, first of all, we generate a
language in which to talk.~

6.0.1:DEF:~-

-

Let R and 5 be two rules for defining sets of B-reductions
of Afexpressions. Then, R is STRONGLY COMPLETE RELATIVE to S if,
(e ~—§—9»e’) => (g —~E—a 8)A(e” ——§—9 §).
Also, R is WEARLY COMPLETE RELATIVE to § if,
(e 23 ¢) = (¢ =B §)a(e” & 0).

Further, R is STRONGLY (resp. WEAKLY) EQUIVALENT to S if

R is strongly (resp. weakly) complete relative to § and S is
.strongly (resp. weakly) complete relative to R.

6.0.2:DEF:~-

The FULL reduction rule,U, is such that,
e —¥ 3 e’ <> ¢ —2By -
The EMPTY reduction rule,, is such that;
{e]e =5 ¢°} = g. - .

6.0.3:LEMMA: -

, (i) S is a sub-rule of R => R is strongly complete relative
to*S. |

(ii) Strong relative completeness (resp. equivalence) =>
weak relative completeness (resp.‘equivalence);

(iii) U is strongly complete relative to R which is strongly

complete relative to ..
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_(iv) B is strongly (resp. weakly) complete relative to U
<=> R is strongly (resp. weakly) equivalent to W
<=> R is strongly (resp. weakly) complete,

(v) Strong (resp. weak) equivalence is an equivalence
relation on the set of reduction rules.

(vi) Strong (resp. weak) relative completeness is a partial
ordering on the set of reduction rules modulo strong (resp. weak)
equivalence. (Think of the relation as 2) |

(vii) The set of reduction rules modulo the equivalencescpf
part (v), respecﬁively, forms a complete lattice under the partial
orderings of (vi), respectively, with 1 = wand 1 =£. ‘

(viii) R is weakly complete relative to g

<=> LH{#ge ple —&> €’} 2 L{Fre n]e —£> €”}.
(ix) R is weakly equivalent to § ‘
<=> |} Eren]e —ES5 e} = LKEre’D]e —55 ¢},
Proof:-
(1) ,(ii), (iii), (iv),(v) and (vi) -Trivial.
‘(vii) ~Let'{[3a]|a e Al be a set of strong (resp. weak) equivalence
classes of reduction rules indexed by some arbitrary set A,
-Define a reduction rule, g, by -
e‘~—£—% e’ iff e-——ﬁi}'e', for some a A.
-Claim: [R] = LH[Ra]{a ¢ A} -

-If € ——fééve’ then ¢ -£~9 €”, and so'R is strongly complete
relative to R, ¥a ¢A - i.e. [F] is an upper bound.

‘—Supposé S is strongly (resp. weakly) complete relative to
Ra' Ya ;A. | X |

~Let € ——> ¢”. Then, € —23% ¢, for some a ¢ A, and so
e —2 3 &5, where ¢~ ——Ei§—9 (resp. E) §.

-n, 8 is strongly (resp. weakly) complete relaﬁive to R.

‘-Hence, we have a complete lattice since arbitrary U's exist.
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-Clearly, T =U and 1 =, by part (iii) above.
.(viii) (=>) -Let R be weakly complete relative to S.

-Let ¢ *~§~) e’ Then,‘s ——ii—> § and €” & § - i.e. Ee"1 = EOSD.
-Hence, the result.

(<=) -Assume R.H.S. and let s‘-—é—e e’

~Then, Ele’D

in

LHELST |e —2— 6}
Ufﬁ&ﬁﬂle ——E-é 8§}, by assumption.

in

~%, by 4.7.3 and 4.7.9,
Foen < L(Emsn]e —F—y 53
-., there exists a & such that e ——5—9 § and e” £ 3.

-«», R is weakly complete relative to S.

(ix) -Trivial, by part (viii).

6.1:Inside-0Out Reductions:-

6.1.0:REMARK:~

We are going to be working more and more inside A-calculus.
Recall the definitions of redexes, residuals and complete |
relative reductions and the notation developed for these in
section 0.4.

The notion of inside—out reductions is contrary to standard

| reductions where outermost redexes are contracted first. With
inside-out reductions you must contract inside redexes fiist.
. There is no insistence, however, of contracting inner redexes
-~ as there is in "call-by-name" - but, once a redex, (Ax.eg) (§),
is contracted, all residuals of any subredexes of € or § are
g protected from iurther contraction. If you wanted then contracted,
%Qf you should have done so earlier. Thus, insidefout reductions

are fairly efficient compared with other rules, as we shall see
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later, and we are reminded of Vuillenmin's "call-by-need"
mechanism - [611, S
The idea of 1nside—out reductions was suggested to me by

 David Park as a means of describing how i'th reductlons worked.

6.1.1:DEF:~ » S | | i

Let, . ‘
R R ,
1, ' 3 n
eo . / el } 82 ) >‘-o-o_oc ———-—)Sn, - . oo PR

be a sequence of B—reduétions where Ri is the redex contracted

in going from €1 to si. Then, thé sequence is INSIDE-OUT if,

whenever 1 < i < j < n, the redex Rj is not the residual of any
subredex of Ry relative to the sﬁbsequeﬁce €41 —> e ™ €41
Further, the sequence remains inside—out with the insertion of

-

a-conversions at any stage. We write,

N
- ‘ 80 7 E:n..
6.1.2:EXAMPLES:~ -
;;'~ The following reduction sequences ére all insidé—out :-

(1) (. xax)(ly y((Az. Z)y)) — (Ax. xax)(ly YY)
—> (Ay. Yy)(a)(hy Yyl — aa(ky yy)
(1i) (Af. £3 (a))((Ax Ay. YX)b) — (A£. £3 (a))(ky yb)
—-—é (AY yb) ((Ay. yb)((ky yb) (a)))
--% (Ay. yb)((ky yb)(ab)) ~—~—9 (Ay yb) (abb) —> abbb.
(ili) (Ax y)(AA) —2 Y.
(iv) (Ay.A(ya)) (1) —> (y. (ya) (ya)) (1) ~———9 (1a) (1a)
~——~} a(Ia) --9 aa.
6.1. 3: REMARK : -

- Examples (1) and (ii) ébove were taken from Wadsworth - [62] fQ
‘where we see thaﬁ in case (i) inside—buﬁ reductions are more
efficient than~“normal graph reductions", while in case (ii)
they are equally S0. | .

Example (iii) is to show that inside-out reductions can
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terminate where the “call-by—value" méchanism would get stuck.
Example (iv) shows that inside-out reductions are not always

the most efficient way, since it takes 4 reduction steps while

it is possible to do it in 3. Still, "normal.graph reductions"

take 4 as well. MaYbe, if we only insisted on the inside-out

property for the "rand" of Ri’ we could overcome this inefficiency.

But, then we will move slightly away from our i'th reductions.

6.1.4:COUNTER~-EXAMPLE 3~

I'th reductions are not strongly complete relative to
inside~out reductions.
Proof:—
-This is the same counter-example as in 5.4.2(iii).
-Let € = (Ax.Az(xx))(T), as before. |
~Then, € —> A%72 —_ AzTn, is inside-out, for all n 2 3.

-But, i<e> = AZTZ, for all i. 2 1, as before.

F

6.1.5:DEF:~

Let vy be a subexpression df e.‘Then € e—-%z—é § means that
there is a\B-reduction sequence from'e to § such that none of
the residuals of any subredex of Y in €, relative to the reductions
so far carried out, is ever contracted. “E

6.1.6:NOTATION :~

Recall that we numbefvreduction sequénces by,

g ——> 6 ®

or, .
€ ——-———@—-————)6

If we concatenate sequences like,

e—2 558 5,08 5,,

we get the sequence,

QD:D; 6O

€ - - }no
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If we run seqguences in parallel, we write,

®?‘@ > §(n).

e(y) ..

We write, L A

@ 2 v}

to indicate,

Y
R L T PP €)'

We generalise and combine the above definitions in the

obvious way so as to allow,
Y Y
€ 7 A &8,
Y
€ 2 > § etc....

Thén, we will get sentences like,
® 2 {v,v’}.
‘Finally, if,
(Ax.€) (6) ——@—) [6/x]e —-—-@-——) N,
and ®; @2 {5,¢}, wz will just write,

€
[6/x1]e AP n.

6.1.7:DEF:~

€ ——-—-S—-P———) § means that there is a B-reduction sequence

from € to § which has < n B-reductions. This extends, in the
<n '

obvious way to € >§ etc....

6.1.8:REMARK:~

We can read " ® 2 {yl" as "reduction sequence (3 does not
admit residuals of sub-redexes of §'Y" or "(@ does not touch y"
or " ® bans sub-redexes of yY" or "y is protected during @ " etc...
This notion is closely related to inside-out reductions,
since if :-
kis inside-out, where @ is just the contfaétion of the indicated

sub-redex of §, then @ ; ® 2 {u,v}.

We needed the last part of thé notaﬁion,6.1.6, since € is
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not neccessarily a sub-expression of [§/x]e. Neither is § and
it might even occur repeatedly.
We now ﬁake a crucial observatioh about inside-out reductions
which enables us to use induction on them - both structural
and on the lenéth 6f the sequences.

6.1.9:THEOREM: -

(1) (e(8) ——————n) <= (em-ae‘)ﬁ(a-:-ng——)v)
. £

~(e(87) e A }n)n
Y Y
(11) (Ax.e——PAhn) <=> (0 —23 Ax.n") ale~—P—Pn").
Proof:- |

-Clear.

6.1.10:REMARK:~

Note that in part (i) of the above theorem, either £“(8§°) = n,

vy

or €” = Ax.¢e and the last reduction sequence must be of the

form,
6’ el‘
(A.e")(8§7) —> [87/x1e”” APy 1.

We end this section with an observation concerning NOH.

6.1.11:LEMMA:~-

Let £ € NOH. Then,
(6/x1e —~—¢:~% n) => (n € NOH).(e € AI.NOH <=>'n € AI.NOH).
Proof:- h | |
-=Intuitively, this is clear, since the reéiduals of the head
redex of € are not contracted and so a head redex is preserved.
-gpwever, as an exercise in our notation, we will ‘prove this
formally with a structural induction on the form of NOH.
-Again, wé have to inéroduce,a change of variables operator
into the induction hypothesis, but this can virtually be ignored

except for the abstraction case.
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x(€)
-Let Allel = ([8/x1x(e) A——> n) => (n € NOH) ~(€ € AI.EXP

<=>n € AI.EXP).
~First, note that Alel => ¢ ¢ I.
~Claim: AD(Aa.p) (V) :-

i x(Aa.u) (v)
-Let [6/xIx(Aa.n) (v) A > N.

-Now, (Aa.u) (v) # AI.EXP, so all we have to show is tha£
n e NOH\AI.NOH. |

-But, [§/xIx(Ara.n) (V) = (Az.[@/x]x[z/a]u)([8/§]x(v)), where
z2 #x, not in X and not free in S,u;

~This external redex is not contracted and so its residual,
still external, will remain in n - i.,e. n € NOH\AI.NOH.
~Claim: Allel => Alg (W) :-

x(e(w))
-Let [8/x1x(e(w)) A > n.

-Now, € ¢ I, since Allell.

~If € € AI.EXP, we have the result by the first claim.

-l, suppose € € (EXP) (EXP). -

-Now, €(w) ¢ AI.EXP and so, again, we must show n e NOH\AI.NOH.

- -But, [&§/xIx(e(w)) = ([&6/x1x(e)) ([§/x]x(w)), where [&/xIx(€)

'f AI.EXP. Therefore, the reductions to n must lie intefnal,
within these two parts,vat least until the left one becomes an
abstraction_— i.e. until, :

[8/x]x(e) —~—?z£ila e’ e A\I.EXP.
~-But, this is impossible, by Allell, since ¢ § AI.EXP.
-Further, all such €” ¢ NOH and so n e (NOH) (EXP).
-e, T € NOH\AI.NOH.

-

-Claim: Allell => AM\y.ell :-

. v X(Ay.€)
-Let [§/xIx(Ay.€) A > Ne.

-But, [§/xIx(Ay.e) = 2z.[8/x1x[z/yle, where z =x, not in Y,

and not free in §,e.
. xtz/yle _ . - _
-, [6/xIxlz/v1e A > n and n ——> Az.n € AIL.EXP.
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-+, by Alel, N e NOH. Thus, n e NOH.
-., by structural induction, (¥e ¢ NOH)A[eI.

-So, letting y be the null COVO, we get the lemma.

f

6.1.12:COR:-
(e € NOH) A (€ (98) —;—)n) => (n e NOH).
Proof:- |

-If ¢ ¢ AI.EXP, then n = €(§7) e (NOH) (EXP) < NOH. :
-If ¢ = Ax.e”, with € € NOH, then the reduction is of the form,

€
(x.e”) (8) —2B 5 (x.e”) (67) ——> [6°/x]e” —A—> n.
-%, N eNOH, by 6.1.11. ‘

4

6.2:Weak Equivalence of I'th and Inside-Out Redugtions:-

6.2.0:LEMMA: ~
€ § i : ;
€(6) 2 W y Ap~ (g,8). %‘
€ S i , }
[8§/x1(€) 7~ 7 > [§/x1" (g).
Proof:= E

'—Léf'P(i)'and Q(i) be the.éboﬁe two sentences réspectivély.
~Then, clearly, P(1).@(1).
~Claim: @(i) => P(i), ¥i 2 2 :-
-If ¢ ¢ MI.EXP, then trivial, since €(§) = Api(e,G).
~-If ¢ = Ax.€”, then Api(kx.e’,S) = [6/x]fa’.
. -But, (Ax.e”) (8) —> [8/x1e” PN yr6/x1%e”, by @ (1),
and it is inside-out, by 6.1.9(i).

. . Ax.e” & i
=, (AX.€7) (8)~ A va }AP (Ax.e”,8).

~Claim: P(i-1)A@(i-1) =>Q(i), Wi 2 2 :- |
~If ¢ € I u NOH, then trivial, since [§/x]e = [6/x]is.

-If € = Ay.e” ¢ HNF, then, choosing z # x and not free in §,e”,




251

[8§/x1(Ay.e”) = rz.[8/x1[2/y1e”

(z/yle” s {-1
2 _ 2 YAz [6/%] (z/yle”, by @(i-1).

= ts/x1 Oy.e”).

~Therefore, we have,
rz.[z/yle” 8 i -
[8/x1(\z.[z/y1e”) N e A [6/x1" (Az.[2/y1e”

—ioeu r
Ay.e” ) i
[6/%1(AY.€”) P ra 3[8/x1  (Ay.€”).

-Finally, if € = w(n) e HEAD, then, ‘
8 w ' :

[6/x10 PP 316 /%1110, by Qei-1), B
PR i-1 |

and [§/xIn ~—~—~"rr-Pr >[8/x] n, by @(i-1).

-But, by P(i-1),

i- ;
- [§/x1] [8/x1" ™n |
1=1y) 2 Q ‘A yI6/x1tw(n).

-Then, by 6.1.9(1), @ *x® ; @ is inside-out. |

i-1 1
w

(rs/x11 1w (18 /%3

-But, also, @ *x@ :;® A {§,u,n}, since residuals of

sub-redexes of §,w,n relative to (D x (® must be sub-redexes

i-1

of [6/x]i_1co and [§/%x]1" ~n, which are protected during @

ey @x@:;® 2 {§,u(n}, since w(n) is not a redex, being
an element of HEAD.

-, by induction, (¥i > 1) (P(1).Q(1)).

6.2.1:CORz~

I'th reductions are inside-out.
Proof:-
-Let Allel = (€ ———pi<e>).,
-Clearly, Alxll and (Alel => AllAx.el).
-Claim: AQwlaADnD => AMw(n)D :-

-Trivially, w(n)--—-—-~«)l<m(n)>.
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w(n) : > (i<w>) (L <n>), by AQwl , ABnD.

icy>

i<n>

. Api(i<w>,i<n>)
31

i<w(n)>.

"'n’ by 6;109(1‘.)' w(n)w“’w"}i<w(n)>t
-S0, by structural induction, (¥e e EXP)ABEg:n

+

6.2.2:COR:~

Inside-out reductions are strongly complete relative to
i'th reductions.
Proof:-

-By 6.0.3(1i) and 6.2.1.

6.2.3:REMARK:~

The above result is not surprising since this was the
motivation for introducing inside-out reductions,
However, we now get the bonus of i'th reductions "dominating"

inside-out reductions, thus establishing weak equivalence.

6.2,4:LEMMA:~
e & - . 4
( e(8)~ 7 ?; yn) => (n € Ap~(e,8), for some i 2 1).
. .
([6/x] (€) P~ Pnmyn) => (n £ [5/X]i€, for some i 2 1).
Proof:- . |

-Let P(n) and @(n) be the above two sentences respectively, but
with "< n" written above the L.H.S. reduction sequences.

~Clearly, P(0) and @(0), with i = 1.
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-Claim: @ (n-1) => p(n), ¥n 2 1 :-
-If ¢ ¢ \I.EXP, then trivial since e(§) = n = Apl(s,G).

-If ¢ = Ax.e”, then the reduction must be,
8 e’
(Ax.e”) (8) — [8/x1e” AP ST sn,

*

=w, N £ [6/x]ie’, for some i 2 1, by @(n-1).
= apT (Ax.e”,8).
-Claim: P(n) => @(n), ¥n =2 1 :-
-We do a structural induction on e. Again thevbound variable
causes a little problem in the abstraction case.
8 x(e) o 4
(L8/xTx (e) AP ~ >n)

=> (n & [6/x]ix(e), for some i 2 1).

Ht

~Let Alle]l

-Then, @(n) = (Ve ¢ EXP)A[e].
-Clearly, ADyl, since n = [§/x1x(e) in this case.
-Claim: Allel => A\y.el :-

§ X (Ay.€) <n -
-Let [§/x1x(Ay.c€) R » N.

-By 6.1.9(ii),
8 ﬁxtz/y]e <n

[86/x1x[z/y]e > .. >N, where z- #x,

not in x and is not free in §,e. Also, n ——Efé Az.n.

-By Alel, n £ [6/x]i_lx[z/y]e, for some i 2 2.
=%, 0 #azrs/x1 Ixrz/vle, by 5.0.4.

| ts/x1t (ay.e).

-Claim: AMwlAAlel => Allw(e)l :-

. ¢ xlw(e)) .
~Let [§/x1x(w(e)) e o >N

i

-If w(e) € NOH, then so is x(w(e)) and also, by 6.1.11,
n. Thus, the result is trivial. (N.B. This is where the induction

breaks down if we tried to prove a "strong" version - i.e. using

——QL§—9 instead of §.3

-4, we suppose w(e) e HEAD. Then, by 6.1.9(i),
(18/x1x(w PP & WIS T YR N A L5 SN
and (p(v) ?P ?y =R ).
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ine

Api(u, V), by P(n).
apt (16/x Px(w, [8/x Fx()), by AWTAALeD

Thus, n

131

and 5.1.10.
apt(r8/x Px(w, 8/%x Px(e)), where

mne

m = max(i,j,k), by 5.2.10.
g ap™(L8/x Px(w, [8/x T'x(e)), by 5.1.4.
= [6/xfw+lx(w(e)), since x(w) (x(e)) e¢ HEAD.
-;, by structural induction, (¥e e:EXP)Aﬂsﬂ..

L

-, by ordinary induction, (¥n 2 0) (P(n) .@(n)).
8

6.2.5:THEOREM: -

I'th reductions are weakly complete relative to inside-out
reductions.

Proof:-

Im

-Let Allel = (e 8) => (8§ i<e>), for some 1 =2 1.
~Clearly, AlxI.

-Claim: Allel => ADx.e] :~

~Let Ax.,€~—~———)F. ,
-Then, €¢~———————98" and § —>% Az.6”, by 6.1.9(ii).

—%, § 2 Ax.86” € Ax.i<e> , by Alell, = i<Ax.E>.
~Claim: ADel.AIST => Ale(8)T :-

-Let ef6)-w-w-9n.

~Then, €~~—————Pe”’, § ~~—~—~——3§" and €”(8") PPN,
by 6.1.9(i).

TR g€ api(e”,67), by 6.2.4.
g apT (j<e>,k<8>), by ATel.ADST and 5.1.10.
’ = Apm(m<e>:m<6>), where m = max(i,j,k), by 5.3.3,5.1.10 j
and 5.1.4. |

m<e (§)>.

o

-850, by structural induction, (Vs'e EXP)AEEB.

t
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6.2.6:COR:~

Inside—-out reductions are weakly equivalent to i'th
reductions.
Proof:-

-By 6.2.2,6.0.3(ii) and 6.2.5.

6.2.7:REMARK:~

Thts, inside-out reductions have turned out to be a
particularly relevant tYpe of reduction to study when seeking
results about i'th reductions.

6.2.8:PROPERTY A:-

Inside-out reductions are strongly complete.

6.2.9:PROPERTY B:-

Inside-out reductions are weakly complete.

6.2.10 LEMMA:~-

Property B <=> Property M.
Proof:- |

-By 6.0.3(iv) and 6.2.6.

6.2.11:REMARK: ~ |

In the rest of this chapter, we aré chasing property B,
siﬁce it seems that our notion of weak cémpléteness is precisely
what we need, while strong completeness is redundant.

-If inside-out (or i'th) redu@iions are weakly com?lete,

then, given any reduction, we can match the result symbol by

-

.symbol with the result of an inside-out reduction except, possibly,

for parts that are in NOH. If these parts eventually emerge into
HNF, then we can match it, but if they stay stuck in NOH no matter
how you try to reduce it, these parts are unsolvagble and not

important and so what does it matter if we cannot match»thém?
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We end this section with a crucial Church-Rosser property
for ~—~—————>'s. It is very easy to prove here, but if we could
strengthen it by replacing the € with an __2;&_9 , the development
in the rest of this chapter would establish property A.

We use the term "weak" to describe results involving g. The

a,B

corresponding result involving , we will call "strong".

6.2.12:LEMMA:~ (Weak Church-Rosser Theorem for-«~v«~w§'s.)-

Let €~~————)¢ and € ~~~———3»y. Then, there exists an n
. such that €w—————>n and &,y € q.

Proof:-
-By 6.2.5, 8§ € i<e> and vy E j<é>, for some i,j = 1.
-So, 8,y & k<e>, where k - max (i,3), by 5.3.3.
~-But, €&~~—~————>k<e>, by 6.2.1. :

~Take n := k<e>,

6.3:Weak Parallel Moves:-

6.3.0:DEF:~
> ) < n ~ " '
P(n) = (e(8) PP SN A(8 E §7)a(e E )
e’ 8§ _ -
| => (e7(§7) ; AP —>n7)a(n En7).
. e . ,\
Qn) = ([6/x)em—Pnn 2 n)a(s & 6%)ale E e7)
, . e” &7 <n
=> ([67 /%1€ P >n°)~(n € n7).
6.3.1:LEMMA:~ |

. (1) P(0).Q(0).
(11) @(n-1) => P(n), ¥n = 1.
Proof:? ’
(i) =Trivial.
(ii) - If € J/ AI.EXP, then trivial since n = €(§). .

-If ¢ = Ax.w, the reduction must be,
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§ w
(Ax.w) (§) — [8/x]w AT >N.

o
-Now, Ax.w £ €”. If AxX.w e NCH, then w ¢ NOH and so n e NOH,

by 6.1.11. Hence, the result, taking n” := €¢”(§7). )

~Otherwise, by 4.8.4, Ax.w —~£—? AY.y, €7 —-Q—% Ay.y” and y & y~.

-Since we can insert a-conversions into inside-out reductions,

we have,

U | § v -
(x.0) () —% Oy.v) ) 5 ro/ylyeap 2270 on,
- ﬁ 6 7\Y < n-1 - ¢ -
-By Q(n-1), [§°/y]ly T . »n” and n & n”.
. 6, Y’ £ h
“wr (AY. YY) (7)) PP »n”.
. e” &7 <n
=wr €7(87) P P D >n". ‘ _

6.3.2: REMARK:~

This section is just to establish a technical result which
is necessary later,
We complete the last stage of the induction with another

structural induction. Again, we have the difficulty with bound

variables,
6.3.3:DEF:~-
Let Allel = ((8§ € §7)A(x(e) E ") A([6/x]x () P >n)
) . 5» e)
=>-(n & n) a([6°/x]e P PAID 517,
6.3.4:LEMMA:~
(i) AmvyD.

(11) Alel => AM\y.€T . .
Proof:-
(i) -Trivial, since there can be no reductidnsQ

. ~ ~ \ § X(AY'E)Sn
(11) -Let & =67, x(Ay.€e) € ¢” and [§/xIx(Ay.€) A

2N~
-If Ay.e e NOH, then so is y(Ay.e) and., thus, n, by 6.1.11.

-Then, the result is trivial, taking n~ := [6§°/x]e”. |

- =If )Ay.ec e HNF, thén there exists z =#x, not in x, not free in ¢,

§” and ¢ such that [8/x1x(Ay.€) = Az.[&/xjx[z/yle and xl[z/yle E €,
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. -Hence, @ (n), with x as the null change of variables operator.

*

6.3.7:THEOREM: -

(vn = 0) (P(n).@(n)).
;Proof:—

-By ordinary induction, using 6.3.1 and 6.3.6.

+

6.4:Commutativity of Reduction Path Diagrams:- -

6.4.0:RECALL:~

Let Re be a set of sub-redexes of e. Then,
R
£ 2 > 6,

means that e reduces to § by a complete relative reduction of‘RE.
We know, by Curry - [63] - and 0.4.13, that the‘order in which
we contract the redexes in Rs does not matter. We could, for A
instance, make the reduction standard. Alternatively, we could
make it inside-out, merely by contracting the innermost ones first,
thus obtaining what Curry calls a "minimal relative reduction"
- [64]. Again, we note the efficiency of inside-out reductions.
Suppose we also have,
e=eo‘ls)el lB>€2 16>_””.__1__8_>€n _®,
then Ré/(:>'is the -set of residuals of the redexes in Rekfelative

to the sequence (:).
.- Let (:) be the initial part of (:) as far as €y Then, there

is a parallel sequence,

-

s =6, —B>08 —E>5, B> ... —E> @

such that, o
R /(:>
€ S 0§
) ”~ i r

by 0.4.14.
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Note, also, that if (:) is a sequence that extends (:),

then (R€/<:>)/(:) = RS/C:);(:).

6.4.1:REMARK:~

We shall be interested in finding circumstances in which
the fact that (:), in 6.4.0 above, is inside-out implies the

same about (:).

This is not true in general. For example, let :-

€ = (Ax.I(xab)) (K) —> (Mx.xab) (K) —> Kab —> (Ay.a) (b) —> a.

Then, this is inside-out and, in fact, is the only possible

-

Now, let Re = {e} and we have ¢ ———~§€> I(Kab) =: 8. The ‘
parallel reduction sequence is then :-

§ = I (Kab) — > Kab ————> Kab —> (Ay.a) (b) —> a,

which is not inside-out.

The circumstances we are looking for will be a strong
version of 6.3.7. Before we gét on to this, however, we have to
introduce a concept of "commutativity" of residuals.amongst the
complex reduction path diagrams that can be drawn. Curry called
this notion "equivalent reduction paths"™ - [65] - and his
"property E" providés our first example. The need for such a
concept in the present proof was first shown by J.R.Hindley,
and we will remark ﬁpcn this later (6.7.6). |

First, though, we‘givé an "obvious" technical result- about

.résiduals;

6.4.2:LEMMA:~

A redex cannot be the residual of two distinct redexes
relative to the same reduction path.

Proof:~

a,18

-Let Allell = (S,R are sub-redexes of a)A(S #R). (€ §)

- (Us/(D) am/ (D =m. ‘
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-Clearly, AlIx] and (Allel => Al\x.€]).
-Claim: AfwlAAlel => Allw(e)] == |

-If wl(e) 0,18y w’(e) or w(e”), then clear: by induction
if both R and 8§ are in either w or €, or trivially if R and S
are split between w‘and €.

-If w(e) = (Ax.w) (e¢) —> [e/x]Jw, then the result is also

clear.

-Hence, by structural induction, (¥e ¢ EXP)A[e].

-Let P(n) = (S,R are sub-redexes of €).(S = R).(e =n GD > §)

- (s1/(2) o tr1/(2) = 9.

-Claim: P(n-1) => P(n), ¥n 2 1 :~-
-Now, € s n-l ®>6' .18 ,®>6,where@=

@:®.
sy p-1), 81/(3) o r1/Q) = 4.
-Take any S~ e'{S}/(:> and R” e'{R}/(:>. Then, S #R”, and

-Clearly, P(0).

they are sub-redexes of §~7.
-So, by 40670 above,'{s’}/(:> ri{R’}/(:) = ¢,
SISV ORIV OEREY OV ORRLOY.O!
otis' /(D) o my@ls” < 151/(3),
R™ ¢ {R}/®}

]

= .
~Thus, by induction, we have (¥n 2 OiP(n)."v

-Hence, the lemma,

™

6.4.3:DEF:-

Suppose we have é diagram of reduction paths. Let € be on it

and let R_ be some set of sub-redexes of e. Then, the diagram

COMMUTES FOR RE IN €¢ if, for any § on the diagram and paths (:)
and (:) such that,




.

we have (¥p ¢ Re)({p}/@ = {o}/(@).
6.4.4:NOTATION:~-

We write (:) to denote the set of all sub-redexes of €.
If a diagram has a unique source expression, € - i.e. for all
§ on the diagram, there is a path from £ to § - welsay that the
diagram COMMUTES if it commutes for (:) in €. N

6.4.5 LEMMA

Let D be a diagram which commutes for'R€ in € and let

O TN

8\\\\\~‘S;Z",,/;76.

Then, (Re/@ = Re/@)’ Also, if Re c Re’ then D commutes for
Re in €.
Proof:~

-Trivial.

6.4.6:EXAMPLES:~

/\‘—g/\d , where @‘and @ are

complete relative reductions of some R8 in €. Then, the diagraﬁ

(i) Suppose €

commutes.
(i1) Diagrams with loops tend not to commute - e.g. :-
(e o
where @ is one B-reduction and @ is just o-conversions.
(iii) The following diagram does not commute for {AA} in
A(AD) - ’
A(AA) (AA) (AL), ‘
where (:) and (:) are the contractions of the left and right

redex, AA, respectively.
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(iv) The following diagram commutes for {Ix} in (Xa.b) (Ix) :-

(Ma.b) (Ix)‘k @ > (Aa.b) (x)

®

Proof:-
(1) -Let p € (:). . .
-If p e R, then {p}/(D = {0}/ = @, since @ ang @) are
complete relative reductions.
-1£ p § R_, then {p}/(@D = {p}/(D, by 0.4.13.
(11) —{AA}/@ g = {88} = {20}/ . .
(1ii) -{AA}/@ ®:0 - g+ (A} NV OTIOF
.(iv) —{Ix}/(:);(:) = =.{Ix}/(:).

6.4.7:REMARK:~

6.4.6(1) is just a restatement of Curryis (strong) property
E (0.4.13). |
6.4.6(ii) is due to Hindley. Note that (@) Maa} but @)
contracts AA.
In 6.4.6(iii), both @,@ and. @;@;@ contract a
residual of AA, yet the diagram still does not commute.
In 6.4.6(iv), we see that commutativity does not imply that
a residual of a redex is contracted along one path iff it is
contracted along all paﬁhs. )
6.4.8:LEMMA: -
Tt (e’////”zf5~*\\\§§6) commutes for R in €, then
\—/’ |
B, /\ __o_>

e”, where (Re’/ 3) ¢ Re‘

§7) commutes for R - in




Proof:~

-Let Y B 3 RE:“

~then, {v'}/®:Q: @

'{Y’}/@ € Re’/@ g.'Re.

6.4.9:COR:~

Consider :-

@
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(SOOI O;

((y¥/@)1/@)/(@ , by 6.4.5, since

i

®:@:@
| +

®

€ > $ > Y
@l A @l : |®
e’ > 67 >y" .

Then, if square A commut
Rg in § and R_/(D < Ry,
Proof:-

-Let p € Re.

-Then, {p}/@;@ ;®

-Hence, the result.

6.4.10:CORz~

Consider :=-

es for e in € and square B commutes for

the whole diagram commutes for R€ in €.

'{p}/@;@;@, by 6.4.8.
'{p}/@;@;@, by 6.4.8.

o'_@‘>€1"‘@—> 2 n-1 _‘®—>
i Al ’ Az l A3 ® ® & >0 0 b e e s An~l L An
8 > 8, > 4, > e D8 ——>

Suppose square Ai commutes for R

€i-1

where 1 < i < n,. Then, the whole diagram commutes for R, in g,.

Proofs:-

-By 6.4.9, square Al;Az commutes for Re

-By 6.4.9, square (Al;A2

o)

in 80‘

in ..
0

0.
);A3 commutes for R
€

in €51 and (Rei-l/<:>) S Re'

j’n

én'

’
i
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~-Hence, by repeated application of 6.4.9, we get the result.

6.4.11:COR:-

Consider how "parallel" sequences are constructed as in

corollary 0.4.14 (or 6.4.0) :-

Reo«l/ A J/eo/@) \Leo/@);@ A R€/®;f..;@.

4 (o]
8 —> & > 6, > teiieee ——> 6 .

Then, thef&hdle diagram.qommutes.

Proof:-
~Each reduction (:) is just one B—reduction, say of the redex
Oj-1 1n €59+
~The two ways around each square Ai are merely two ways of
carrying out a complete relative reduction of Re /(:);;..:; (::D
o
-30, by 6.4.6(1i), each square Ai commutes.

~;, by 6.4.10, the whole diagram commutes, since, clearly,
<@/@> : (=)

6.4.12:REMARK:~

We now return to the gqguestion of when the construction of’
such parallel sequences preserves inside-outness, as well as
commutes residuals.

6.4.13:LEMMA: ~

_ Let (60 —_> 61 —> L ~é>-6m) be inside-out. Then, so
is ([So/x]e —_> [Sl/x]e > e —> [Gm/x]s).
Proof:—- ’

~Let Allel

([60/x]x(e) —> tinees —> [Sm/x]x(e)) is inside-out.

-Then, the structural induction goes through very easily.

A Y

+
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6.4.14:LEMMA: -
Let (eok ——-} €1 -—-—> cerres > en) be inside-out. Then, so
is ([8/xleg —> [8/xJe] —> wevvne —> [8/xTe ). -

Proof:=-

~This is clear, since merely replacing free x's with §'s in the

first sequence has no effect on the reductions.

+

6.4.15:THEOREM: ~
' @ ~ ' @ ~
Let € > €, and ‘60 > Gm‘ Then, we may
construct the following diagram :-
(Xy- ei) (6‘0) > ()\y.el) (8,)
[85/¥ 15, ® > [8,/y e, .

such that it commhtes.

Further, if @ and @ are inside-out, then so are @
and, in particular, @.

Finally, if R and Ry are sets of sub-redexes of €9 and 60
respectively, such that @i‘Re and . @]‘Ra, then G‘))]‘(R8 ] R(S)
and, in particular, @7‘(R U Rg) .

Proofs-

-We construct @ 1= @ @ @ @ , Where @ is the

null-g-reduction sequence - i.e, :-

(Ay.€g) (84 - > (y.gg) (§) +evnnn @ 360
and (\y.ep) (6 ) > Oyee) 6) oo @D @ .

—-'Ilhen, construct @ ,@ and _ in the usual parallel way of

corollary 0.4.14, where R ='{(>\y.eo) (60)}.
-By 6.4.11, the diagrém commutes.,
~-Now, @ = @;, where :-
[8,/v7e, > 08 /yleg eveeenn. (D
and [8_/yle, > 08 /yle veeeee...(®.
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-S8o, if @ and @ are inside—_out, then so are @ and ,
by 6.4.13 and 6.4.14, -
-But the residuals of all sub-redexes of the redexes contracted
during @ mst be sub-redexes of the various occurences of cSm in
15, /v ley- |
-But, no sub-redexes of the occurences of Gm in [6m/y]eo are ever
contracted during . |
~Hence, @ is inside-out as well, v
-Now, suppose @7‘12 and @?RG. Then, clearly, @?(R U RG)‘
-Consider any reductlon step in @, e.qg. where :-
(Ay.€4) (85) > ® > (Ay.e ) (8)
o] "o l@ jo
[So/y]e @ > [(Sm/y]en.
-We have @ @ @ and % @ and @ is
just the contraction of the sub~redex, T in p.
-Define: @ 1= U{@Ip' ¢ R}
-Now, T / (@ u @)/@, since ©7'(Re U Rg).
-By construction, @ is an inside-out complete relative reduction
of {1}/ € .

-w, we have {71}/ @ n (@ u @)/@; @ = @, since otherwise

there would be a redex in {7w}/ @ that was the residual of two

distinct sub-redexes of y relative to @ » hamely 7 and one from

(@ v @)/@ - X to 6.4.2,

-Now, square A commutes, by 6.4.11, and so,

m /@ 0 (®) v @)/@=¢
-Thus, nb residual of a sub-redex of (RE ] RG) relative to @;
is contracted during y@ .
~We ‘can‘_ show this at each step of the eonstruction ofy the diagram
and s-o @,@ (Re u Rs) - i.e. @7‘(12e U RG)’
| -
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6.4.16:REMARK:~

So we have found one example of where inside-outness is
preserved. In the next section, we shall use this in chasing

property B.

6.5:Properties C,D and E:-

6.5.0:PROPERTY C:~

1By >n) => (€ ~—~———>n")a(n & n7).

(é'

6.5.1: LEMMA

T Property C <=> Fgoperty B:J"‘“
Proof:-

(<=) -Trivial, since ¢ ~————{> n.

(=>) -Let € -9~§€> S.

-Then, € = €g —P> €1 "> cevees —> €, 4 —> ¢, = 0§, where

1 o 1
-S0, €, 5~~———>€,", where g E €y by property C.
~And, 8n-3“””“””*€>8n2' where enl g enz, by property C.

-Hence, the result, by repeated use of property C.

+

6.5.2:PROPERTY Dz~
([8/x] gD 1N) => (§ D8 7) a (E D)
6; 3’

Al[87 /%] € A P> 1 ) (0 & 17).

6.5.3:LEMMA:~

Property D <=> Property C.,

Proof:-

(<=) -Let [6/x36-—‘—-~——>n ¢ HNF - otherwise trivial (n”-= [§/x]e)..:

~Then, (Ax.e) (§) —2385 rs/xle .

— (Ax.€) (§) ~~—————>n", where n € n~, By property C.
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‘ e” &7
Cme) AX.€ D AXLE T, § 87 and (Ax.e7) (§7) >n",
by 6.1.9(1). But,' (n € HNF) => (n” ¢ HNF) => (n” # (Ax.e”) (5%)).

"~ 6’

€
=, [87/x]e” e > { RN

(=>) -Let Alell be such that (¥e e EXP)A[lell = Property C.
-Clearly, AlIxI and (Alel => AlAx.el).

-Claim: Aﬁu]AAHMI =>AAHy(v)I -

-Let u(v) a'.m} B . >1n.
-Case 1l: u = Ax;u’ and § = [v/xJu” :=-
-Then, [v/x1u"wer->n.
-By property Dr;Y***;*“”5>V"' u’~jf-vw%>u”, n § n
and [V /21U " P >n". | ‘
—e) B> AX. 0”7 and (Ax.u”7) (v77) ?y ‘ ?y >n"".
—«y by 6.1.9(1), u(V) ~m——>n"".
-Case 2: 8§ = u”(v) and u ——QLLQ>»u’ :-
-Now, M~ (V)~m———r>n. v
=By 6;§.9(§1, uim;w~v»~e>u”, va~v«~w~e>v”‘and
u v

e (v 7) 2 A >n. |
-But, u —2238s - S>u””.
—;,.u-w»~“~§>u"’ and E:: & H:”, by Alul.
-But, u”’(v”) #y %Q) >n”, where n & n~, -

"by the weak’parallel moves théotem, 6.3.7.
-S0, H{V)~———>n", by 6.1.9(1). _ |
~Case 3: & = u(v”) and v -QL£§€>‘v’:- : .
-Same as case 2, using AVl instead of Alud.
' ~Hence, claim is established.

»

~;, by structural induction, property C.

6.5.4:PROPERTY E:~

W € 8 ) € .
([8/x]w(e) P—P——P—~>n) => (w(e) e ',?‘6 >p)a(n En7)
, P

([8/x1p ~mPePA>n )
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6.5.5:LEMMA: -

Property E => Property D.

Proof:-
~Let Alell = ([8/%1X(€) e DN) => (§oooo87) A} () >e”)
. §° €7 .
~([87/x1e™ A A—~>n")a(n E n7).

~Clearly, Allyl.
-Claim: AQel => AQAy.el :-
-Let [8/%x1x(Ay.€) ~—————>1.
-Choose z - #x, not in y and not free in §,e.
—Then,'EG/x]x(Ay.e)'= Az.[8/x1x[z/yle, by 4.1.5(i).
-Ana, [§/x1x[2/y Je ~~—~——>T, where n —>> Xz.n, by 6.1.9(ii)
-w, by A, §~~—>87, xl[z/yle—~———De", 7 %R and
[§°/x]e” 7§ ?? >n". ‘ :
§° €~

-So, Az.[8"/x1e” PP 2207, by 6.1.9(il),

-Now, since z cannot be free in 87, Az.[87/x1e” = [§7/x]1(Az.e”
~-Also, Az.xlz/yle~——————>Az.e”, by 6.1.9(ii), and rz.x[z/yle
= y(Ay.€).
-Finally, n € Az.n 2 Az.n”, and so we have Al\y.el.
-—Claim:‘AﬁwﬂﬁAﬂsﬂ => Allw(e)] :-
~Let [§/xIx(w(€))vr——>n.
- =Then, by 6.t;9(i), [8/% 1% (@) —~—————>1u, [§/x1%(€) DV

and u(v) PPN

"':"1 6“”""’""’"‘}5"‘ X (W) ~——————>u", [§7/x]u” 7 vianee” JTH

and p € p°, by Alwl.

.

N Ty 57“**”“€>5": x(g)—~—rm—>e”, [§"7/x]e” P P>V
and v € v*, by Alel.

-Now, by the weak Church-Rosser theorem, 6.2.12, we have

GMG,”; Where 61'6,0) g 6aAa.

-Then, by the weak parallel moves theorem, 6.3.7, u” g u’’,
6”/ w’ i 6.‘)) 8'
vd ,‘“:_ \)’A’ [slza/x]w) ‘]ﬂ 7% >u))' [6‘,'/}{]8)‘ ;b Iﬂ )v.‘)
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o, Pl

H Vv ”
-Further, u”"(v"") AmP>n”, where n € n”, again

by 6.3.7.
~Next, by 6.4.15, [8/x1x(0) ——3>[8"""/x]u" and
[8/x1x(€) ——nr-D[87 7" /x]e".

-We have :-

[§/x1x(w(e)) = ([6/x]x(w))([6/x]x(e))

é

8§77 /x1u"(e”) = ([677 / Jw?) ([8°77/x1e”)
u”

v
n’.
6»;» wa ef
-In particular, [§77"/x]u”(e”) AP P> 7,
by 6.1.9(1).
. w® €7 .
-w, by propeg:siig E, w’(e7) A~—~—P~>p, n° € n°”" and
p

§°77/x1p ra Am——>n" ",
-Thence, X(®(g))~———————>p, by 6.1.9(i), and n € n°”, giving
us Alw(e)l. |

’-:,,bykstructural induction, (¥e ¢ EXP)Allel, and so property D.

+

6.5.6:REMARK;—

Note that in the proof of 6.5.5 we used the weak Church-Rosser
‘theorem. If we had a strong version, we could develop strong

versions of propertiés C,D and E, relating them back to property A,
the strong form of property B, This would be useful begause we will

eventually prove &he strong version of property E.
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Summing up the situation at present, it is :-
<E B> is a‘B—model of the A-calculus
<=> X <=> 7 <=> M <=> B <=> C <=> D

A
Y

A E

6.6:Strong Parallel Moves:-

6.6.0:NOTATION:~

Let Re and R, be sets of‘sub—redexes of € and § respectively.
Let (Ax.¢g) (98) -—Sfl€> [§/xJe. Then, we will allow ourselves the

license of writing just Re and RG for Re/(:) and R6/<:>' when the
context makes it clear to which expression the sub-redexes belong,

6.6.1:REMARK: ~

R R
Let e----§->e’ and 6-—--~§-—->6’. Then, by 6.4.15, we can

build up the diagram :-

(Ay.€) (8) ——@—> [6/x1e
| @ @
(Ay.€7) (67) -S:%> [§°/x]e”.

Note that @,@ is a complete relative (inside-out)
reduction of R U Ry U'{(ky.e)(é)}.

By the way the diagram was constructed, (:);(:) is also a
complete relative reduction of R_ U Ry v {(Ay.€) (8)}, and so we
can say thatis a complete relative (inside-out) reduction of
R. U Rg, sub-redexes of [§/xle. |

€

Thus, it makes sense to write,
" R6 U R

[8/x]e > 187 /x1e”,
6.6.2:DEF:~ ’
€ ) ' R
p(n) £ (e(6) PPt @ =n >N) A (€~ € > )
R . ‘
~ (6 8 >8§°) => (we can construct the diagram :-
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€ )
e(8) AP @ _sn

7 >N
R, U Ry s R v Rs) /D
€7 (87) —A—P >n", ‘ -
such that it commutes) . _
§ € R
Qm) = ([8/xle—PmA B _sB_Sny (e Se>e”)
R .
(S 8 >8§°) => (we can construct the diagram :-
| ' £ D
[8/x]€ ——PnP s >n
Rg U R_ 5o o (Rg v Re)/@
[8°/x]e PP >n~,

such that it commutes).

6.6.3:LEMMAs~

(i) P(0)AQ(0).
(ii) @(n-1) => P(n), ¥n 2 1,

Proof:-
(1) -Trivial, taking n” = €”(87), [§°/x]e” respectively.
€ 8 (i) n - Re
(ii) -Let (e(8) AP S >n)ale >e”)

Rs

~ (9 >87).

-If €(8) is not a redex, then (:) is trivial - i.e. %(6) 2 Ny
-and so the construction is trivial as in part (i).

-Suppose € = Ax.t. Consider the diagram :-

() £
(Ax.’é‘)(ﬁ)[ﬁ/x]’é‘ R @ <0zl >

R- U R ‘ A Rs U 3;:-6, : B (Rg v R=) /(3

()\X.E') (6’) —®~'> [5'/}(]%—’ ,?‘ 77\ @ }ﬂ'.

e | ’ SR _ R'g _ _ o

~-We must have (Re = R—-S-)A(e«mwv—;e’)h(h{.e’ —> 7).

-also, @O = @:®.

-Construct square A by 6.4.15 and remark 6.6.1.

!

-Construct square B by € (n-1).
-But, both squares A and B commute, and so, by 6.4.9, the whole

- diagram commutes.
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-Further, by 6.1.9(1), (6);(®) is inside-out.
-Finally, (RS u R—e-)/@'= R(S u R—-)/@ @ by 6.6.0.
= (R, v R)/(D.

+
6.6.4:DEF;:— :
Alell = ([(S/x]x(e) ,7‘6 ,X(E) @ £ >Sn)
Alx(e) ~ “xe) \e )A(wa~>6 ) => (we can construct. :~

' S x (g)
[8/x1x () A2 @ =0 _5q
R6 v R)((e) 5~ -

] (Rs U RX(E))/@
C[87/x1e” AP —>n,

such that it commutes).

6.6.5:REMARK:~

As usual, n is fixed in Allel (along with €), while G,X,x,
Rs'Rx(e) and n are free. We have,
(Ve € EXP)Allel => Q(n).

6.6.6:LEMMA s~

(i) AlyD.
(ii) Alel => AllAy.el.
Proof:-
(1) -Trivial, sinée (:) can only be oa-conversions, since f6/x]x(y)
is either a variable or §, whose sub-redexes are protected |

during @. | . -

¢  x(Ay.e)
(1i) -Let ([S8/xIx(Ay.e) A2 =2 S

R R
(B> 8 A (X Ay ) e XAY2E) 5y,

-Choose 2z #x, not in x and not free in §,¢c.
~Then, [§/xIx(Ay.¢€) = Az . [8/x1xlz/y]e.
-Also, x(Ay.g) = lz x[z/yle.

_ x[z/y)e >
‘ Also, X[_Z/Y]‘a € ; Wwhere €° -——-> Az.E” and Rx[z/y]e

Rx’(ky-&‘)’ ‘




-Also, [6/x]x[z/y]e‘ 2 » - = }F, where
n 2> 2z.%, by 6.1.9(ii).

~By Allell, we have :-

8 ?3[z/y]s C) <n

[8/x1x[2/y]e P <n_y3
Rs ¥ Byrz/yle (Rg v Rx[Z/Y]e)/@\!/
v o v

[8°/xTe” A2 ~>»n",

such that it commutes.

-Hence, by prefixing every expression with "iz.", we get :-

‘ §  x(ay.e) |
[8/x]x(Ay.€) A A n >n

s Y Bxoy.e) Ry VR g,/ @

[6°/x]e” A A — >(Az.n"),

such that it commutes.

6.6.7:LEMMA:~

Suppose P(n), where n 2 1. Then,
ATwl ATel = Allw(e)T.

Proof:-

- ) x(w(ke)) ' R
~Let ([&§/x1x(w(e)) P n >n).(6w-—v~‘s-—v}6’)

Rylule))

> o).

A(x(w(e))~

~There are two cases to consider.

-Case 1: yx(w(e)) {Rx(w(s)) - .
X (w)

-We have Rx(w(ﬁz) = Rx(w) u Rx(e)' where x(uw)

Ry (e
>e” and w’(e”) = o,

x ()-

-Consider the following diagram :-

>’

’
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. §  x(w) x (€)
([8/xTx(w)) ([8/x1x(€)) Al A @ =n > u(v)
(R, u (R, u
§ § 8 A (Rﬁ u R ( u R )/’QD Q@
X(w) X(e) 6—- w» E’ ’ :
(C6°/x] w”) ([6°/x] €7) A S . @ >u"{v”)
4and '
u(v) ,"u —}"v @ =8>
€9 | B “ @ ...
TR .

P

.
TR ARV W S WUV V. & S

&

-By 6.1.‘9(1), we decompose @ = @ ; @ .
~Then, by Alwl.4lell, we construct two squares in parallel to
. make square A,

-Square A commutes for [§/xIx(w) v [§/xIx(e) « If
[6§/x1x(w(e)) is a redex it is contrécted neither during @ : @
nor @ : @ and it has the same unique residual both ways - namely"
u”(v”?). Thus, square A commutes.

-If p(v) = n, we are finished.‘

-Otherwise, uv(v) is a redex which gets contracted during: @ -

-Then, x(w(e)) is not a redex, since u(v) would be its
residual relative to @ and @ ; @ Mx(w(e))} - X .

=5, x(w) {XI.EXP‘. | | -

-Further, x(w) e HEAD, since otherwise x(é) € NOH\AI.NOH which:
implies u e NOH\AI.NOH, by 6.1.11 - X to u(v) is a redex.

-Thus, we may conclude that w” € HEAD and so w”(e”) is not a
.redex.' ’

—Now,’ éonstru_ct sguare B, by ‘P (n).It éommutes and éo the
~combined diagram A;B commutes, by 6.4.9.

-By 6.1.9(1), @ ; @ is inside-out.
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-Clearly, @ ; @ M§’,w”,e”}, and so @ ; @ Ms 07 ()}

-Finally, @ is a complete relative reduction of

s Y Rx(w) Rx(e))/@ )/® = (RG v Rx(w(e)))/®"

-Thus, we have established 4fw(e) 0 in this case.

((R

<

-Case 2: x{a(e)) €R ( ()

-This time w = Ay.w and Rx(w(s)) = R u R v {x(w(e))l.

X (w) x (€)
-Now, the external redex, x(w(e)), must be the last one
contracted in an inside-out complete relative reductlon of R (m(e))'
-Thus, x(w(e)) X(“’(E)) >0, must be of the form :-
Betw) Y By ‘ 18
(x(w)) (x(e)) - >w’(e”) ——> 0.

~Choosing z #x, not in y and not free in 8,0, we can analyse

this further into :-
R - u R
(rz.x[z/yTw) (x(€)) x[2/y Ju

x{e 5 (z.57) (e7) —> [e7/zTa",
where Rx[z/yJ'Z; = Rx(w) and [e°/2]uw” = o,

-Consider the following diagram :-

_ § xlz/ylu x(e) __“
(xz.[8/x1x[2/yTuw) ([§/x1x(€)) A A > (2z.p) (v)

(Ry U R [proia) @ o C (Rg UR (v UR (4)/ €9
X(E) 6» 75' ea
— 21 N o’ »
(Az.[8°/xJw”) ([6°/x]e”) PP P >(Az.u )(v;)
€| D - LX)
/. §° w* g @ - -
[[6°/x1e” /218" /% ]0" e o B >[v/z1(u”)

il
[6°/x1[e“/z]w”, by 0.3.13(xii), since z cannot be free

) I in §-.
[6°/x]o.. | ‘
-By 6.1.9(i) and (ii), @ = €9, since (xz.7) (v), being a
residual of x(w(e)), cannot be contracted. ‘

-Square C is constructed by AlwDl. AN, just the same way as
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square A in case 1 aone - i.e, AZ.w” = w~” and Az.ﬂ’ = p’. Again,
it commutes.

-Next, construct square D by 6.4.15 - it commutes and so,
by 6.4.9, the whole diagram commutes. Further, é} Ms*,u”,e"),
and so, by 6.4.15,  @9 Mé8°,0°,¢”)}. Notice that we are using our
license o0of 6.6.0 at two levels here.

-According to the ponstruction of 6.4.15, the sequence @9
is in two parts : the first being, |

] §° €° w’ _
[08°/x)e’ /2108 /2 J0 " PP PS> [v /216" /% T0 7,

-~

and the second being,

(v2/21[8°/x]uw” PP P> [V /2T 7,

-In these two parts, it is clear that no residual in
[e“/z]u” = i.e. o - is being contracted and so é@ Mé&”,0l}.
-By our ‘é..nalysis above, @ : @ is a complete relative
insidé-out reduction of (R(s U Rx(w(s))) from [6/x]x(w(c)).
-But, 1§ x €9 ; €I is inside-out, by 6.1.9(i), and it is
é. complete reiative ‘reduction of ’(RG ) Rx(m(s)))/ @ from ne
L _

6.6.8:THEOREM: -

(¥n 2 0) (P(n).@(n)).
Proof:- _
-P(n) = (Veme‘EXP)AEeﬂ, by 6.6.6 and 6.6.7.
=> @(n), ¥n =2 1, ' ‘ o -

-Hence, the theorem, by 6.6.3 and above.

*

N

6.6.9:COR:~ : : | & |
el | | 6 .
Let (€(8) P >n)a<e———@———>e'),(c >5°).

Then, we may construct the diagram :-
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: € §
e(a)Mn

A
e”(67) ,Z 72 }n‘l

such that it commutes.

Proof:-
A A

Ay 2 3 B
-Let Ezeo___""}el >€2 >.u.ooooo ———>€n

]

e” be @.
B B B o
- = l 2\ 3\ b - .
Let § = 6, —=> &, > 4, > e —> 5 = 57 be @

-Suppose n > m (it does not really matter). Thén, by repeated use

Fd

. B

of theorem 6.6.8, we may comstruct -

e(8) = 30(605 ?‘EO —)“60 ~ @ >ng = n‘ &
'fAi,Bl} | {a,,B,}/ B
31\(21) 271 201 @51 >\“/1
{a,,B,} o {Az,Bz}
v : | \Z

A} B A, 1/(@5.n)

. € 3 g
e (87) = e () —rft T € v -

-Each individual square commutes, and so the whole diagram

commutes, by 6.4.10.

6.6.10:COR: = _
- - € ‘ ‘ g
Let ([8/x]ewm—PinPon), (6 —2E 5 57) (e 2B o0y,

Then, We'may construct the diagram :-
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§ £
[§/x]e A >N
§ €7

[6°/x]e” P >n’,

such that it commutes.
Proof:-

~Similar to 6.6.9.

6.6.11 :REMARK:~

These results will be very useful in studying inside-out
reductions. Notice that they are "strong" results - i.e. independen

of the concept of E.

6.7:5trong Serial Moves:-

6.7.0:DEF:~

§ €
P(n) = ([6/x]e 2 A @ D >q

J@;@?‘{ﬁ,e}) — (we can construct -

8 € R
[6/x]¢ 2 @ _=n >N~ n @ >
6

such that it commutes).

6.7.1:LEMMA:~

P(0). .

Proof:-
~Take i~ = fi and @ = @.
~ ~Then, G s, ) because (2), =~®;@, NS, e},
‘ - n
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6.7.2:DEF:~-

§ x(¢€) R
([8/xx(€) A7 @ =1 > L @ > i)

Allel
.((:);(:)ﬁ{&,x(e)}) => (we can construct :-

8 x(€) R .
[8/x1x(€) AP @ =8 > i @ >f

such that it commutes) .

6.7.3:REMARK:~
| Again, as in 6.6.5, Alel should really be written Alle,nl.
We have, |
(¥e € EXP)Ale]l = P(n).
6.7.4:LEMMA:~
(1) Alyl.
(i1) AleDd = AMry.el.

Proof:=-

(i) -similar to 6.7.1, since (:) is a trivial sequence.

§  x(iy.e) R
(1i) -Let [8/x1x(Ay.€) A A =1 >n 2 ®>ﬁ.

-Then, choosing z- #x, not in x and not free in §,¢e, we have,
§  xlz/yle _ R— N
[6/x1x[2/Y]€ PP Q@ _ sn > " © >,

where n —= Az.7m, i —> Az.ﬁ and Rn = R;, by 4.1.5(i) and 6.1.9(ii).

- by Alell, we bonstruct :-

§ x[z/y]e _ R—
[6/x1x[z/y]e A A @ =Dy n >

7 . P T

such that it commutes. Prefixing with "iz.", we get Ay.€l.

+
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6.7.5:LEMMA:~

Suppose P(n-1), for some n 2 1. Then,
ATwll ALl = Allw(e)].

Proof:- v '( ()
: 8 x(lwle R
-Let ([&6/x1x(w(e)) AP @ LU ] @ > 1)

I

and (@ @ AMo,xtu(eNd.

-By lemma 6.1.9(i), sequence @ is of the form :-
§ x(w) x(€)
([8/xIx(w)) ([6/x1x (€) )PP 7

<n \ :
@ >u (V) PP >N

-Case 1l: (u(v)  #n) :- ' ‘ o ‘t

-Consider diagram X below.

-We will construct the sequences in numerical order.
~-We must have u o= Ay.ﬁ* and = @ ; @ .
-Thus,@=@;®;®. g
~Note that y(w(e)) cannot be a redex, since otherwise
(Ay.u*) (v) would be its residual and @ Myx(w(e))} - % . |
-We partition Rn into two disjoint sets :- *
Rn} = Rn+, v Rn-" » -
where Rn+ = {p ¢ Rnlp has an ancestor sub-redex of v or u*}
. and R = Rn\R’ndF{
~Let Ru* = {p]p is a sub-redex of u* and {p}/ @ H @ an+ |
z g} anﬂ R, = {p|p is a sub-redex of v and {p}/ @ ; @ an+ z g}
~Then, Rn+ < (R, Ru*)/ @ H @ . ' |
-Now, @ is a cdmplete relative reduction of Rn' and so we
may do a complete reduction of Rn— first, @ , and then the rest,
by 0.4.13. Further, triangle G commutes, by 6.4.6(i).
-But, @ : @ Mv,u*} and so, by P(n-1), we construct @
and @ so that tra;;ezium E commutes.
~Next, we construct @ and @ , by 6.4.11, so that

trapezium F- commutes.

-By 6.1.9(1), : @ is inside—oﬁt and @ :_@ Miy.u*,v}.



283

So, by the strong parallel moves theorem 6.6.8, we may construct
@ ’ @ and @ , again so that trapezium C commutes.
-Now, @ is a complete relative reduction of :- - ' |
R, vR)/ OO =®,vr)/O:Q:@;:Q,
since E commutes and by 6.4.8. | ’
-But, @ is a complete relative reduction of :-

Rn/@;@ S(Ru*uR)/@ @ @ @,byabove.

-Hence, we may construct @ so that triangle D commutes,

O S o e s

by 6.4.6(i). (See remark 6.7.6.)

~-Next, if there were a residual of a sub-redex of x(w) Qr 6 in

1’
AN G T MENIY Lo Ty R ‘V-n%

Ru ' then there would be a residual of a subredex of x(w) or 6 in

+
Rn c Rn - X, since @ ; @ 7‘{6,x(w)}. So, Ru* contains no i

residual sub-redexes of x(w) or § and, similarly, Rv contains no
residual sub-redexes of x(€) or 6§ - i.e. @ : @ M, x(w),x(e)}.
~Thus, by Alwl .Alell, we may construct @ and @ so that

square A commutes for u + «¢ Square A

commutes, since if [8/x1x(w(e)) is a redex, its residual relative

to @ or @ : @ ; @ is (Ay.ff*) (v°) both waYs.

-Finally, by the strong parallel moves corollary 6.6.9, we

construct @ and @ so that square B commutes.

-We just havé to check that the whole diagram commutes. Let

p be a sub-redex of [§/x]lx(w(e)). Then, |
/@ =GO
| o}/ O
o ="/ ©)
- ="{p}/ ©
="{o}/ @
="{p}/ © G9
= {p}/ @, ; @ ’

‘using 6.4.8, since each sub-diagram commutes. ., diagram X commutés.g

~e

-
1

-y

L}

.
14

-e

-
~
~
T e

~e

6o

~
~e
~e
~e

0000 O
00900 ® O
OPOOO OO

~e

~e

~e

.. .
14 7

PRE®®
®

OO ® .

“e

- -
r 14

-
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o+
6.7.8:REMARK: -

We shall use the following corollary of the above theorem
to establish the "strong" property E. It combines the ideas of

both serial and parallel moves, thus enabling us to move in an

inside-out manner over "two dimensions",.

6.7.9:COR:~ (Strong Serial and Parallel Moves)

- -Commuta.tivity is established as in 6.7.5,

v u*

R .
Let ([v/ylu* AP @ >n) and (n i @ >1f) .

Then, there exist sets of sub-redexes Ru* and R, of u* and v

respectively, so that we may construct the following diagram :-

N v u*
275 S M - R— >0

EFG

such that it commutes.

Proof:—-
-Look at diagram X from the proof of 6.7.5.
~Define Ru* and R, as done there and construct the sub-diagram EFG
similarly,‘ using the full theorem 6.7.7 instead of P(n-1).
-Also, construct the paralielogramv c* as done in 6.'7.5; ‘except
that we use the  Q(n) part of 6.6.,8 instead of the P(n). Thus, @
is the sequence par£11e1 to relative to the contraction of

the external rad@xs is the "tail" of . after the first
head reduction; whlle . is the same as in 6.7.5. ’

t

5
e,
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6.8:S5trong Property E:=

6.8.0:THEQOREM: -~

8 w € o w €
Let ([§/x]w(e) AP -P>n). Then, (w(e) P> p)

and we may construct the following diagram :-

. 6 W €
(Ax.w(€)) (8) —> [§/xJu(e) P A B> 1)
)
€
« s 0
(Ax.p) (8) ——> [§/x]p v A - >n",

such that it commutes.

Proof:-
-If w(e) is not a redex, then the result is frivial with p = w(eg)
and n” := n,

—

-Suppose w = Ay.w,

—

7

_ § w £ @
~Let ([8/x1(Ay.w) (¢€) S A S . >n) .

~-Then, for some z - # x and not free in §,w :-

_ v 8 [z/y]w € @
(Az.[8/x1[z/y1uw) ([6/x]€) b o s >0

7 7

-By lemma 6.1.9(i) and (ii), we have :-

s _ 8 Iz/ylw G -

/x1z/y1w v N . > U,

[8/x]e ,7‘6' ,7‘6 @ >V

‘and (Az. W) (V) ?‘E .7‘“ @ >n.
:If » is sequence @ pz;efixed by "Az.", we }have @ = @:@:

where () := @)= { Note that B)As, (Ay.) (¢)}.
-Suppose sequence is of the form :-

_ o p o
(XZ.}J)(\)) 2‘*’0 l}‘yl 2> ss v e -—"13>‘¥ =n .o.ooooo

n
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~Let 2y := (Ay.w) (€) .
-Let P(i) = (there exist @i,\lfi e EXP and pathS @ . @ @ and

—

@ such that <I>O 71"” — cbi and we can construct -
§ $
: QD_ > 0 (5) .
A 2 ~
(lx.@o) (8) — » [8/x]<1>0 / 7 - ,‘1’0
8 §

el
Y

® NG}

2
A

| A2 | § ¢ . Y
.(‘?«x.¢i) (8). ——@> [5/x]<1>i--—~,zw_w¢3w@~> V< 8/ _ wi' ,
such that it commutes and where . @ @ and square A

is constructed as in 6.4.15).,

-In the i:egt of this proof we will write @ for @x .
-Cléar‘ly,’ we have P(0), since we already have @ and .
-Claim: p(1) :- ) | _ ’

~By 6.7.9', construct @, and @ so that square B
commutes.

-In this case, R, ='{‘1’6} ='{pl}, R4 =‘{<I>o} and R = ¢ (see
notation of 6.7.9).

~Then, @ is just the contraction of the residual of the
redex % relative to @ |

—Clearly, we can construct . and @ by 6.4.15 so that
squ’are A commutes. Hence, » by 6.4.9, the whole diagram commutes.
-Claim: P(i) => P(i+l), ¥ 1 < i < n :-

-Consider diagram Y. . | | : |

-By P(i), cons‘truﬂct @, , ' ’V and @ so that the
‘sub-diagram AB commutes. | -

~-Now, @ is just the contraction of the redex pi»+‘1"

-So, by 6.4.11, wé may construct @ and - @ so that square
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C commutes. | _ . - ‘
-But, Pi+1 f (@ U @ u @)/@-@, since @;@;@
is an initial part of @ and @7{6,w, e},

- {pl+l}/. n (@ @ @)/@ @ . = ¢§, since

otherwise there would be a redex in {p }/. with two distinct

i+l :
ancestors in Y., name}y pi+l' and one from (@ u @ U @)/@;@,{
which contradicts 6.4.2 - X.

-Since AB commutes, we have, using 6.6.0,

'{pi_'_«l}/. n () v ® v @)/@-@ =g.

-Next, construct @ @ ’ and @ ’ by 6.7.9, so that

€ e

square D commutes .

-In this case, R = @, since {p, }/ contains no residuals

i+l
of 6. Also, Ru* contains no residuals of any sub-redexes of w or €,

since otherwise so would {pi+l}7‘o ¥X. Thus, @ @ Mo, e},

-Construct @ and we have, by 6.4.15, that square E commutes.

v

-Now, sequence @ is of the form :-

o

and ; @ 71w, el.

~.: by 6.7.7, we may construct :-

. e "(:" . .
@ - 10‘1 >@lz [e/y]-(;; ;ﬂ /7‘ 10.2 >(Di e 80 000 @'

Le/yTw

®i417

such that it commutes.

~Then, letting @) = - @ and constructlng . and

@‘, we have that segment F ccmmutes.
-Again, by 6.4. 15 , construct @ and @ S0 that square G

“commutes.
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- -Also, by 6.4.15, construct @ so that the sub-diagram
consisting of @ ’ @ ’ @ énd @ commutes.

-Finally, by the strong parallel moves corallary 6.6.10, we
construcft @ and @ so that square H commutes.

~Now, we have constructed the sequences required for P(i+l),

namely :-
T €
(2 PP >0 1) |
and | 8 QO ® :
(Ax.2,) (8) D, [8/% 10 mm—Pn >,
{6 5
i

©
©
®

& B

i -
(Ax. 9, ,,) (8) —@> [8/% 30, )~~~ > ¥ Yiere

& 7“1\@ 6

-Square A is constructed by 6.4.15, so all that remains is

to check commutativity.,.

{w}/@ @ @ ='{w}/®;@;@

i

| A RN DR
@ i:0: O ©: 60,
using 6.4.8, since each sub-diagram commutes.

-Hence, diagram Y commutes and we have P(i+l).
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-., by ordinary induction, we have P(n). But, this is the theorem
with p := ¢ and n* 1= ¥’, since ¢, = w(e) and ¥, = n.

0
+

»
n

6.8.1:COR:s~

Properties E,D,C,B,M,X,Z and <E_,E> = <E_,V> is a normal
solveable B-model of the X-K-B8=-calculus.

Proof:=-

N

-Property E, by 6.8.0, since ——2L§€>==

6.8.2:COR:~

(i) If an expression has a normal form, then it can be reached
by an inside-out reduction.
(ii) If an expression has a normal form, then it is an i'th
reduction for a suitably large i.
(iii) If ¢ ¢ SOL, then e —————>§" ¢ HNF.
(iv) If ¢ € SOL, then i<e> ¢ HNF, for a suitably large i.
Proof:-
(i) -Let ¢ ——£L£€> § e NF.
.=Then, by the weak completeness of inside-out reductions,
g~——————>§" and § & §-,
-But, since.normal‘forms are maximal under £ (4.8.6), &° ——9%> 8.
(ii’ -Same és part (i), using the weak completeness of i'th
 reductions.
(111) -Let ¢ e SOL. Then, ¢ —%E 5 5 «mr.
-Again, by property B, £ ~~—————>5" and § & §-.
-But, by the characterisation of HNF in 4.5.2(ii), &§“ ¢ HNF.

(iv) -Same as part (iii), using property M.

*
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" 6,8.3:COR:~

<ExP/§,[51> < <E_,E> < <EXP/=,[=1>,

Proof:~- » | o
-<EXP/cnv, INSOL,[cnv, INSOLI]> S.<Ew,E>, by 4.6.12 and since <E_,E>
is a model by 6.8.1.
-Hence, the first inequality, since <E_,E> is substitutive.
-Let ¢ not(gggv&) S,
-Either ¢ has a normal form and 8 does not (or vice=-versa) : in
this case, ¢ 7§, since <E_,E> is normal by 6.8.1 and 4.8.9.

-0r ¢ and § both have norral form, but € cfv 6§ : in this case, if ‘

-

‘¢ £ §, then ¢ -£L€> e’ € NI and, by 6;8.1,AL‘ £ ¢, Thus, by 4.8.8,
§ ——£L€> e - i.,e. e cnv § - X. Hence, ¢ Z S,

—:, <E_,E> = <EXP/can%,[cnvv&]>, and so we get the second inequal-

ity, since, again, <E_,E> is substitutive,

f

6.8.4:COR: -
(1) (e ¢ INSOL) => (¥§ e EXP) (e << 8),  (see 0.7.9(vii))
(i1) (e e INSOL)A(¢8 has normal form)
=> (¢ is a "constant" function). (see Barendregt[78])
Proof:- | |
(i) -We use the hétation of 0.7.9 in this proof.
-Let Cle] —E >y e NF.
=Then, v = C[e] & C[8], since <E_,E> is a‘substitutive model.
| ~Hence, C[$] ~—ﬁ*>'u, by 4.8.8.
°, Cle]l p C[8], for all contexts C[ 1], and, S0, € << §.
~(ii) -By part (i) ,e << §, for all s e EXP,
-:, e p 468, for all § ¢ EXP.

- ¢8 reaches the same normal form as ¢e for all § e EXP,

t
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6.9:Alternative Proof:-

Whilst preparing this thesis, a proof of the strong complete-
. R . L N
ness of inside-out reductions has come to my attention. The proof .

is due to J.J.Lévy - [66].

Briefly, his proof is as follows. He describes a version of :

Wadsworth's typedyl4calculus-— [67] -, the difference being that

you are not allowed to contract g-redexes of degree zero. Thus,

typed g-normal forms’are typed~expressions whose ohly'redexes have
‘degree zero. Any innermost sequence-ofytyped B-reductionskleads to
a typed normal form and this sequence is cléérly (typed) inside—out.:
Further, the typed,i—calculus has a Church-Rosser property and so
the typéd norﬁal form is unique up to typed'a*conversions. So, if |
,E‘~f~——~€>-D is a typed reduction, then there is a typed expression, :

D”, which is the typed normal form of both E and D, such that :-

typed >p
f:.ype::'i\\\\l’l BZ/////yped (*)

Now, any ordinary reduction seqﬁence can be simulated byfé

typed reduction - i.e. if ¢ ——> § then there are typed express- |

‘ions E and D such that E typed » and det(E) = e and QEE(D) =
8, where det is just the function from typed expreséions toyordinar;
expressions that removes the type asSignmenté; ’ k
| ‘Further, any tYped reduction has a correspohding "isomorphic"

AN

Aordinary reduction - i.e. if E typed > D then det(E) *€>-det(D)

- and properties of the’ reduction like "e——>" or "ﬁfy}“ are

preserved.

S0, if ¢ ———> &, then E typed s b yhere det(E) = ¢ and

det (D) = §. Then, we get the diagram-(*)‘above'togéthér'with fhe_




296

corresponding type-free diagram :-

v

-

4

where 6§ = det(D”). Hence, property A - inside-out reductions are

strongly complete,
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7:EPILOGUE,

7.0:Review of <E , E>:—

[
E_ is the inverse-limit of a sequence of countable finite-dept

1

lattices, <Ei>;;0. It is therefore a complete continuous lattice
) had i
which is countably based by the direct-limit, y 5 (Ei). There is
i=0 *'°% (

another inverse-limit structure, A_, constructed in parallel with

E_, so that the following decompositions hold :-~

13

E

ALLE_ + A
O.....(202020).

i

A

[ J

I+ A_(E)
Notice how this decomposition matches the context-~free deserip
description of )~expressions in  g-normal form :-
NF ::= AI.NF | HD
cee.(0.4.3).,
HD ::= I | HD(NF)

'Indeed, each Ei‘contains finitely long syntactic objects which
closely resemble )-expressions in g-normal form, modulo —ﬁﬁn except
that they allow the symbols T and L as well as ordinary variables.
For this reason, we call E_, a syntactic lattice. |

Using the rules of B-conversion as a guide, we define an
- application, Ap € [E”‘x E_~E_], as the limit of i'th coordinate
applications, This turns out to be continuous, |

Then, using the'decompositions of 2.2.20 to handle the variable
and abstraction cases and Ap to handle the combinations, we find it:
very,natural to define a semantic function, E, from i-expressions
to E_. This definition is constructive in the sense that, given any
1A—expression, we do not&need to know anything about A-calculus to |
compute its value in E_.

We can visualise the situation as follgws. Let "Ap" be a black

box with two input lines and one output. On each input line, it
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receives an infinite increasing sequence of approximate information

about its argumentsvand it outputs a similar sequence of information»

about its answer =

<& >"°
7~

~

<Loiy<Bpy (ey08)>7 1>
: 7 i

Ap

We also have various trivial boxes with labels like "aa" that

have the following behaviour :-

R " . D T . o, B e v £ . » . - v B .
- . £ A % <. o g i T [ Y

<si>i=o <¢,<Aa.ei>i=0>

A\ 4

Y

a

Then, for example, to evaluate EFI(Ay.ra.x(I(Kyc))) (a)3, we set.

up the network :=-
x o1 |
~
I 2 N\
10

> V , : a0 - .
\‘—"__—_ )\'a-}\];__'l

N/

K 3
o e — | w R -
4 . .
> | a4 | ap 2>
c b5 P ‘////,/’f
rg , - ‘
a b6 : ' _

Vs -
We break up the expression inﬁo its normal-form sub-expréssions
and ine one input line for each chunk, The rest of the connections.
are dictatgd by the syntax of the expression. In the above example;/
we woﬁld push the follow&ng sequences into the input lines :=
| Vline 1 carries <X,X,;X,;X,.ce000000s0000000e>,
line 2 carries <y ,AC.C,AC.Crececcssannnaes>y

~ line 3 carries <¢,;,Ap,zq.p,xp,Xq.p,}...“>,~
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line 4 carries <Y, Y ¥ iVreecescccconsasssnsed>,
1ine 5 Carries <C,C,C,Cresecececsscsoncnosd>
and line 6 carriesS <a,8,8,8,cc000r000000r0s0esss>4
The system then causes :- . i
line 7 to have <¢,1,1,1q.y,xq.y,..............;......;.....>¢
line 8 to have NN A ) A 4 R R R R R
line 9 to have <l,L,L,L,1,Y 1Y 1Y 7secccescsscscasscsssssssnssd;
line 10 to have <L,i,XL,XL,XL,Xl,Xy,Xy,........}............>§
line 11 +to have <1,1,x,Aa.x;,xa.xx,xa.XL,Aa.ki,xa.xy,.......>{
line 12 to have <L,1,L}i,Ay,Aa.XL,Ay,Aa.XL,Ay,Aa.xL,
AV e A8 XL ) AV e dAeXY poseaenonsansd
and line 13 to have <i1,1,1,1,1,Ab.x1, b.x1, b.x1,2b.x1,Ab.Xa,...>
We see that the final output line, 13 , starts by producing
undefined symbols, but then gives increasing amounts of information
and finally settles on the normal form of the input expression.
But, does <E_,E> always model B-conversion?‘Computing several

examples encourages this speculation (4.0.3), and, in particular,

i1

we have I(e) = e and K(e) (§) e (4.2.4). However, we soon see that
the revérse is not true, since expressions in INSOL - e.é. AA and
AAA - seem to be all mapped to L;but AA cfv AAA. Thus, the semantic
given by <E_,E> agrees with our intuifion which lumps expressioné
like AA and AAA‘together as "equally bad" in that "no useful inf=-

ormation" can be extracted from them, no matter how much they are

reduced,

-

7.1:The ¥ Combinator:-

The fixed-point combinators,'{Yili 2 0}, form another counter-
example to = => cnv. We know that YO cv ¥, and yet they are all
‘equivalent under = (4.0.5),

Let us examine Y, = YO' further. In aﬁy decent semantics, it
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should have something to .do with fixed-point operators. We may
continuously map E_ into its continuous function space by "Currying"
the application function = i.e. - |
APC(E)(G) := Ap(e,d). : |
Thus, for any e ¢E_, Apc(e) is a continuous function in
[E_ > E_J. As such, it has a minimal fixed point ﬁApC(e) , which we
shall write as just pe, and it is given by :=-

we += wpe(e) = L tapg ()0, by 0.6.5(m).
i=

i

| lap(e, aple,eeennn,Bple, ) unn.a))
=0

i

jL;é¢i+l,woApi(eiIApi_l(Ei-l’o.ouo.'Apl(al'_L).....‘);)'

by similar reasoning to 5.2.5. -
On the other hand, if e = Elel, we also have :-

El¥(e) 0 = Ap(<y, J.,.L,Af.f(.L),)\f.fz(L),......>,E), by 4.0.3.

-2
6541, Ry (ML E (1), &)

IV NN S ¢

[ af

[N
U
N

o= i=0¢i+l'.°°Api( eilApi_l(Ei_lyoun.oc'Apl(El'_L) ......)) ' by

suitable juggling of the indices,
So, we have the following theorem relati_ng Y and u e
E (e D = uEleD,
or, aiternatively, the (Curry) <€ ,,E>-semantics of Y is the same aé

the minimal fixed-point operator :-

-~

i

APC °E'ﬂY]] He

-

I
"7.2:Review of F and Vi-

By using just the decompositions of 2.2.20, we define an

A"a&pproximate" semantic function 5, € E. (In fact, we first defined
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an approximéte application on E_, ﬁﬁ; which used these decomposit-
ions.) -
An alternative method to»have defined ﬁﬁ and one that is more
in common with other approaches - see Wadsworth [68] and Lévy [69] ,
is to define first of all a A-Q-calculus as is described in 0.7.17.
Briefly, the symbol Q is added to the list of wvariables, but it is
not allowed to be bound. This @ stands for the "undefined" symbol
and so we naturally invent the w-rules :-
ax.8 —2>
- and Q(§) ———ﬂ€> Q,
to agree with our intuition of "undefinedness". Then, & is extended:
to a semantic function E“ on the A-Q-calculus by extending the
definition in 4.0.1 with :~-
(s07) E-Iel = 4,
It had better be true that <E_,%"> models the w-rules and this
is trivial to check. Next, we should define an approximation map,

n 3 EXP + @-EXP, by -

H

~
X 1= X,

AXX.€ 1= X, £

i

i

P
and e(¢) : Q, if e € AI.,EXP
%, if not
Then,’we define our approximate semantics as <E”,E'°&>. We
claim, however, that this is the same as <E”,§g; Note that if € €
NOH, then ¢ —*Ji%>SL by a trivial induction on the formation of
NOH.*Recall the following characterisations of NOH,HNF and HEAD by
E -
- V o~
e eNOH <= Elel =1
e €HNF <= EDeDl =1  $......(4.5.2)
, ' ~
e €HEAD <=> m, oEllell = 1

N ~
Now, do a structural induction on Allell = (ELell= E-EI), The
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cases Alx] and (Alel => A\y.el) are trivial. Claim: (AQwl.ADSD =
Allw(8) M) == ,
~w(§) ¢ NOH => E[uw(8)] = 1 = E“[(s)I. S |
-w(d)?’ NOH => w € HEAD = nzogﬂ(ﬂ z 1 ;
= EMu(8)D = Ap(EMI, £LsD) -

Ap(ZL,T, FIsT) , by 4.3.3(xii).
Ap(E*[ol,E°[81) , by Alwl.ATsT.

= ' IN(8)T = E°04(0) I
Thus, we have our claim that the two ways of defining approximate
semantics are the same. | ‘,,
From &, we derive the substitutive relations £ and &. The =
relation € is of considerable use later and we give a pufely syn-
tactic characterisation (4.8.4). We see that _.Ji;> > € (4.4.9) and

deduce, using the Church-Rosser theorem, that the set of Bg=-reduct-

ions of an expression form a directed set under g,

ke T g e

Next, we define our alternative semantic function, VvV, as the
(directed) limit of the approximate semantics of the B—reduétions.
By the equivalence described above, this is the same as Wadsworth's
noticn of the limit of the extended semantics of the approximated
g~reductions - see Wadsworth [70]. We have :-

VD :=| J(Fren]e —2E> 4)
=Ltz mf1]e —2E> 5},

Now, V is not constructive in the way that E is. We need to

e R e L e e e

know about A-calculus in order to compute mGﬂ. Given the semantics !
of th\expressions under V¥, we do not know how to combine them in k
E_ so as to remain consistent with V. Of course, the answer is to
use Ap, but it is not eas§ to prove :- : k | |

VIO T = Ap(VED, VIS .

For the same reason, we cannot easily deduce that the semantic

equiValence induced by Vv is substitutive. However, it is easy to %
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show that <g_,V> is a solvable. (4.6.2) model (4.6.1) in which :-
€ € SOL <=> VIl = 1. |

Furtﬁer, we show that £ & ¥V (4.6.11) and, so, we can deduce that if
e ¢ INSOL, then Eﬁeﬂ = 1, which is a bonus for the.<E”,E>—semantics.

Clearly, we want to show that F = ¥V, so thk t the (then coinc-
ident) semantics has both sets of properties. Initially, we can at
leas£ observe that they are the same on elements in normal form
(4.7.4).
| We inveétigate the relation < in E,.. We call elements in the
direct limit finite. We find that if ¢ € § and € is finite, then
e <6 (4.7.9). If we remain in the image of E, then the converse
also is true (4.7.17). Also, finite and isolated are svnonymous
(4.7.14). Moiéover, the <€ ,F>-semantics of normal forms are
isolafed and this suggests that the semantics are normal. Anyway,

we see that the <€ ,V>-semantics are normal (4.8.9).

7.3:Review of I'th and Inside-Out Reductions:-

The motivation for introducing these reduction rules is to
prove that the semantic functions EF and V are the same. However,
it is possible that inside-out reductions, in particular, will
have applications elsewhere as a tool for analysing reductions in
general (see 0.5.14).

~ I'th reductions define constructively a sequence of expressiohs

which form a chain under —2-23> (5.3.3). They were derived by
examining the way in which F works and, so, it is not surprising

-

that,

L4

ELel= | JEmi<esd.. oo iv. .. (5.3.10).

:

i=1
Now, i'th reductions are not strongly complete (5.3.12 and 14),

but weak completeness is all that is needed to prove E = V (5,3.13).

The proof of weak completeness was still elusive and so i'th-
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reductions were generalised to the non-constructive rule of inside-
outness (6.2.1). Now, i'th reductions ére not strongly complete
with respect to inside-out reductions (6.1.4), but they do turn out
to be weakly equivaleht (6.2.6). Thus, the proof of g % V7 now rests
upoh the weak completeness of inside-out reductions (property B),
to which the rest of the chapter is devoted and where it is finally
proved (6.8.1)., In fact, Lévy has since proved that inside-out
reductions are strongly complete (see section 6.9 and [71]). It is‘
interesting to note that, therefore, inside-out reductions have the
same completeness properties as standard ones : they are both
strongly complete (5.3.14) and their "normal" versions - i.e. where
we are not allowed to skip any redexés - are not even weakly

complete, by 5.3.14 again and the fact that :-
(Ax.y) (A8) —> y

"normal"

but (Ax.y) (AA) > (ax.y) (AA) only
and v ¥ (Ax.y) (44).,
The weak completeness of inside-out reductions has an inter-
pretation in ordinary programming terms. This is because of the

following very nice property of inside~out reductions :

-

£

(Cle] ~~———>n) <= (gemm——>ec"), (C[e"] A >n) .

This is a simple generalisation of 6.1.9 and it is self-evident

(simple induction on the complexity of contexts : (a) prove true
for the trivial context [ ] and, then, (b) assuming true for C[ ],
prove true for Ax.C[ ], 6(C[ 1) and (CL 1) (8), using 6.1.9). Really,
it is just a restatement of the idea of inside-outness, namely that"
sub-expressions are evaluated first (though not necceséarily fully)
and then their values are passed to the rest of the expression -
i.e. no further computation on them is permitted. The weak complete-
‘ness theorem, saying that we can always compute like this and get

all the answers possible by any other mechanism, lets us instantly
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deduce the following (stronger) theorem of Wadsworth - [72] :-
"if Cle] o,8 (i) )rn,‘then we can construct :-
C[e] 0‘98 (D\n

e

@ tm@
é,
C[E']**~?-~£:l~€>n'".

Of course, if n were in normal form, then n = n” (6.8.2) and if n

e SOL, then so is n”. We interpret n € n” as "n~” tells us more, but
consistent, information than n". We note that since we have now got
s£rong completeness (property A), then (:) can be replaced with an
~—EL§€> : however, if all we are looking for is the "information
content"™ of the reduced expressions, then € is a perfectly good

measure.,

7.4:Embedding of E_ in P(uw):~

7.4.0:REMARK:~

Since E_ is a complete continuous countably-based lattice} it
is embedded as a retraction in P(w) - see section 0.7.25. It would
be interesting to see whether the P(uw)-semantics obtained from this
embeddiﬁq was equivalent to the Plotkin/Scott P{w)-model described
in the same‘section,i.e. whether <€ _,E> = <[ENV -+ P(w)],P>, We are
inclined to think not, simply because of the very different images
of XMxexpressions in P(w) ; for instancé, finite Mexpressions (e.g.
I) are represented by finite subsets in our interpretation (7.5.7),
but by infinite subsets in theirg (0.7.26(vii)).,

In this section, wé give the embedding of E, into the set of

Asubsets of the countable basis, the direct limit. This can be trans-

fered, trivially, to P(w) by some ennumeration of that basis,
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7.4.1:DEF:-
emb, : E, > ey, )
e b .:>‘{¢i'”(e£)|s£ 2 ei}.
emb : E_ >:P(L:J¢i W (E;))
i=0 !
<ei>;=ol—-—~{>-igoembi(ei).
- 7.4.2:LEMMA: -
(1) emb(1) =’{¢O'”(1EO)}and emb(t) = i£O¢i'”(Ei).

(ii) embi and emb are continuous,

(iii) If <ei>i=0

(iv) embi(si) c embi(éi) => e, € 61.

e E_, then embi(ei) S embi+l(ei+l).

(v) emb(e) ¢ emb(8) => ¢ & 3,
(vi) embi and emb are injective.
(vii) E_, and emb(E_ ) are homeomorphic.;
" Proofs~-
(i) -Clear.
(ii) -If ei's Gi' then, clearly, embi(ei) c embi(éi).
—Hénce, embi is monotonic,

-Hence, embi is continuous, since Ei has finite depth,

-Hence, emb is continuous, since it is the limit of the continuous

- emb = y emb.ed -
. " i=0 i ’ i
(iii) -Let <Ei>i=0'e E,.
—Le€‘¢i'“(ei)'s embi(ei). Then, e; € €y

mer by, (50 6y paa(f) E fpage

= byay, ety 141 (50 € emby (e L)
-i.e. ¢i'”(ei) e emb, (e, 1),
mesemby(eg) £ emby g (eyy) .

‘(iv)‘—Let embi(si) [ embi(éi),
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-Now,'¢i'”(ei) € embi(ei).

c

-. = - - 5
wo by, (85) = ¢y (87), where &5 £ 9,

ar b, gob L(50) =0 ety ((05).

m -

-u' Ei = 61 - iOe' ei éib
(v) -Let emb(tc) ¢ emb(6). Consider Ei‘

() € emb (&) g emb(e),

-Now, ¢i,

- . ) = ¢, §7), for some j and where 6§ € §,,
Tt ¢l’”(€l) ¢J,~( J)' or some j 3

Tt ‘Z,i°¢i,n(si) = 4Z,i°¢j,;(6§)’

:-.’.. o = 45,108

-But, ¢j'i(65) € ¢j,i(5j) E 61,

-So, for all 1 2 0, ¢ =8 = i.e. €€ Ce |

(vi) -emb, (e;) € emb, (8;) <= e, = 6, by parts (ii) and (iv).

-’ = b = §
wr emb, (&) = emb, (§) <= ¢ = 9.

-Similarly, emb(€) S emb($) <=> ¢ £, by parts (ii) and (v).
-, emb(e) =emb(8 <=> e = §, -

-, embi and emb are injective,

‘(vii) -By parts (ii),(v) and (vi), emb is continuous and injective
and embfl exists on emb(E ) and is monotonic,

~-Let X be directed in emb (E_) .

1

~Then, emb —(X) is directed in E_.and, so,

-But,lJemb"l

(xX) = emb-l°emb(Uemb~1(X))
= emb™ ! (vembeemb™1 (%)) = emb™t(ux).
-Hence, emb » is continuous and emb is a lattice homeomorphism,

7.4.3:REMARK:~

Thus, -we have an igpmorphic image of E_ in P(w) by vyeemb,
where y is any ennumeration of the direct limit, To show that it
is a retraction, we quote the following theorem of Scott - [731],
We also use it to generalise the‘application function oh E“ to an

application over the whole of P(uw.
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7.4.4:THEOREM: - (Scott)

If D is a complete continuous lattice and e : X »+ Y is some

subspace embedding, then for each £ ¢ [X - D], there is an extension
F ¢ [Y » D] so that the triangle,

X_ e}y

‘D
commutes, Furthermore, the maximal extension in the partially
ordered set [Y » D] is given by :-
T(y) = LIH[NE(x) |e(x) <U}|U is open and y € U},
Proofs= |

-See Scott [737,

©7.4.,5:COR: -

E.° is a retraction of P(w), -
" Proofs-
-We have yoemb : E”'w-€>'P(w) is a subspace embedding, by 7.4.2."

- e by 7.4.4, we can construct the continuous map p so that the

following triangle commutes =

E - emb > P (w)
:Lciien‘x::i_t};\\\\\\\1 B(///il
. E . '

-Hence, E is a retraction of P(w),

' '7'.'4‘.'.6‘:'CO'R: et
| We can define a continuous application function, 2p®, on P(uw)

so that it is well-behaved with respect to the Xcalculus model, -

®(w, yeemboE>, in the sense that :-
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ApY (yoemboEI €l , yoembe ETST) = yoembeELe(8)T.
Proofs=-
-Clearly, (ycemb x yoemb) e [E_ x E_ + P(w) x P(w)] is a subspace

embedding,

—,',, by 7.4.4, we may construct pr so that the following diagram

commutes s~
( yoemb x yoemb)

> p(w) x P(w)

Yo embe Ap Apm

P(w)
veemboAp (ELel ,ELSD)

-.., BpY( Y°eir\b°E'DZ€Ii , YeembeE[[S8])
= yoembeELe(8)l,

+ ,

- 7.5:Pruning the Lattices=-

7.5, 0:REMARK ¢ =

In this section, we remove the top hélf of the lattice E_,
giving ourselves a directedly complete continuous and countably
based sub-semi-lattice, Low(E_), which still contains the image of
‘the semantic function E, The need for the top half of the lattice
is, therefore, aebatable since it plays no part in the modelling
of the_ircalculus ( A=calculus throws up no "inconsistencies"™ which
would require T elements for their representation).,

7.5, L+DEF s~

Low (I ’) = I°\{T},

Low(Ei+1) 3= {Ax.ei|x' €I and ¢ <Low(E;)}
u {°‘i|°‘j_ €L0W(Ai)}.
Low(a, ;) 3= Low(I®) U {ui(ei+l)|ai € Low (A,) |
and e, 4 ELOW(Ei-bl)}"k
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7.5.2:LEMMA:~

(i) Let P(i) = (Low(Ei) and Low(Ai) are well-defined subsets

of Ei and A rexpeétively)

i 4
‘& (a; eLow(a;) = [x/yjai e Low (A;))
& (L e Low(Ei) and Low(Ai))
) & (T { Low(Ei) or Low(Ai)).

Then, (¥i =2 0)P(1i).

(ii) Let p(i)

(e

& (a

€ Low(Ei))A(ei

i

ei) => (ei € LOW(Ei))

ai) - (&5 e Low(a,))).

i

n

i € Low(Ai))h(oti

Then, (Vi =2 O)P(i).
(iii) (vi 2 0)(Low(Ei) and Low(Ai) are sub-semi-lattices of

Ei and Ai respectively).

(iv) Let P(1) = (e, e Low(E ) <= ({ef|e]

& (a; eLow(a)) <= ({aj|a]

n

ei} is finite)

in

ai} is finite).
Then, (Vi =2 0)P(1).

(v) Let P(1)

t

(Ei € Low(Ei));(s‘ €

1+1 (61))

*1,i+1

=> (e

i+ = ¢5,541 (1))

& (o £ 0

i,14+1(23))

= (o =0y j4pfe)).

‘ekLow(Ai))A(ai+l

i .

Then, (¥i 2 O)r(i).

(vi) Let P(i) = (Low(Ei) 4 Low(Ei+l))'& (Low(Ai) g Low(Ai+ ).

; 1
Then, (Vi =z O)P(1).

(vii) Let p (1) = (Api € [Low(Ei) x Low(Ei) + Low(Ei+l)]).

Let q}i) = (ei € Low(Ei)) = ([ei/x]I e [Low(I ) - Low(gi)]).
Let @ (1) = (e e Low(E,)) = ([ei/iji—l € [Low(E, ,) » Low(E,)]1).
Let R(1i) = (si’e Low(Ei)S = ([Ei/X]A € [Low(Ai_z) -+ Low(Ei)]).

~ 1-2
Then, (¥i 2 0)S (i) and (Vi 2 1) (p(i).@(i)) and (Vi » 2)r(i).

Proof:-~

(i) =-Straightforward but tedious : what we are after here is the



311

well-definedness.
(ii) =-Trivial induction.
(iii) =-Consequence of part (ii), by 0.6.29(i).

(iv), (v), (vi) and (vii) =-Trivial,

7.5.3:COR:f

(i) (vi = O)(ei € Low(Ei))‘<=> (emb (s ) is a finite subset).
(ii) (vi = O)(ei'e Low(Ei)) = (embi+1°¢i,i+l( i)'= emb (e )).
Proofs=-

(1) -By 7.5.2(iv), since ¢.'@ is injective,

(ii) -By 7.4.2(iii), emb, (ei) c embl_’_l ¢1,i+l(€i)'

-Let €, « Low(Ei).

“Then, by,; (e{y) e embyeby 4y (6)
(ey)

<m> g7

ivl T %141
- Ei+l = ¢i,i+l(€i)' by 7.5.2(V)o

= bia1,e05000) = % L065).

by notation.

1
o]
o
s

-~
oM
I

= $541,1 04

in

bi41,1°%, 141 (50 = &5

i+l Ciq4) cemby(E).

-, embi+l°¢i,i+l(€i) [ embi(ei) and, so;.they are equal.

7.5.4: THEOREM: -
£ € U ¢ (Low(Ei)) <> emb(e) is a finite subset.
i=0 :
Proofs=~

(=) ~Let e = ¢ ,~(€k)' where g € Low(Ek).
~Then, emb(e) = emb, (c,), by 7.4.2(iii) and 7.5.3(ii).
fThence, by 7.5.3(1), emb(e) is finite.
(<=) -Let e e E )\ v ¢ o (E ).
i=o 1%
~Then, {4 u(ei)li > 0} is an infinite subset of emb(t).
’ ;

—Thﬁs, emb(e) is an infinite set,
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-Now, let ¢ ¢ v ¢

Lot BN 6

(Low(E.)).
i=0 *r 1

i

-Then, ¢ (ek) and ey € Ek\Low(Ek).

= ¢k'“
-But, embk(ek) is infinite, by 7.5.3(i), and, sire embk(ek) c
emb(e), we have that emb(e) is infinite,

7.5.5:LEMMA: -

(1) Let Afel = (BIel e U #,
i=0 *¢

“(Low(Ei))). Then, (Ve ¢ EXP)A[el.
(ii) Let P(i) = (e, ¢ Low(E.,) = ¢ (e ) = %”[[S]], some € e EXP)
i i i, 1
Then, (Vi 2 O)p(i).
Proof:—‘
(i) and (ii) -Both inductions are straightforward.

+

7.5.6:CORs~

(FLel|c < EXP) = L(Low(E)) .

|| 2 ]

¢
i=0 1o

Proof:-

-BY 7.505.

7.5.7:THEOREM: -

e is a finite Xexpression <=> emb°Zlc] is a finite subset,
Proof:-

-Claim: ¢ is a finite JXexpression <=> E[e] = ﬁgs'], some €7 =
(<= =-Clear, by 4.7.3.
(=) -plel = [ hFren|e —2E> )
O EEG]]{LJ{g’[[e’;He——gLE—} €”}, by 4.7.9.
-, EL = EleT.
-But, g’l{e’ J= E"[[e’]]yr- E[€¢], since <€ _,r> is a model.
~Hence, Flell = ﬁme‘m and the claim is established.,

-..r we have the result, by 7.5.6 and 7.5.4.

R
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7.5.8:DEF:~

>N
+1,i i=
{e ¢E Iei ¢ Low(E,),¥i 2 0}.

Low(E“) 1= Inverse limit of <Low(Ei),¢i

!

i+l,i i=0
{o e A Iai € Low(Ai),Vi 2 0},

l

Low(A_ ) := Inverse limit of <wa(Ai),8

7.5.2:LEMMA:~

(1) L e Low(E_) and Low(A_).

(11) T { Lo&(ﬁw) or Low(A_).

(1ii) (e e Low(E_)),(e” = ) => (¢ ¢ Low(E_)).
(iv) (& € Low(A_)) .(a” ?'a) => (a” ¢ Low(A )).
PIOOf': -

-Trivial, by 7.5.2(i) and (ii).

7.5.103THEOREM; ~

(1) Low(E,) and Low (A ) are sub-semi-lattices of E_ and A_.
v (11) Low(E,) and Low(A,) are directedly complete.

(iii) Low(E_) and Low(A,_,) are continuous.

(iv) Let 8,¢ E{LCW(E“); Then, (8 | § in Low(E_.)) <=> (e ¢ &
inE_,). Same for Low(A,). |

| Proof:-

(1) =By 7.5.9(iii) and (iv) and 0.6.29(i).
(ii) -Let D be directed in Low(E,) .
-~Then, D is directéd in E”.
~Taking the least upper bound in E_, we‘qet i

Idp = <UDi>iao' where D, = ¢",1(D)' by 0.6.22(ii).

-

i

-But, since E, has finite depth,LiDi'e D, .

| --,',,LJDi =8, for some § € D ¢ Low(E,).

4

' —:.,LJDi € Low(Ei), for all i 2 0, and, so,LJD € Low(En). 
_—Similarly, Low(A,) is directedly complete,

(iii)»and (iv) =By 0.6.29(iv) and (vi) respectively.

F
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" 7.5.11:LEMMA:~

(1) e,e” eI@W(E“) = Ap(e,aﬂ’ €Low(E“).

(ii) e,e” e Low(E ) = [e’/x]e ¢ Low(En). |

(111) e” e Low(E ) and o e Low(A ) = [e”/x]a e Low(E ).
Proof:~-

-By 7.5.2(vii) and 7.5.10(ii).

7.5.12:COR:~

(Ve € EXP) (Elell ¢ Low(E_)).
Proofs~
~Trivial structural induction, using 7.5.11(i).

+

7.5.13:COR:=
v ¢, (Low(E;)) < {E[elle ¢ EXP} c Low(E).
i=0 *’

Proof:~-
-By a trivial structural induction on :-
Allel £ (there exists €° ¢ EXP)(ﬁEkB = Ele°1),
we get {E0el|e ¢ EXP} ¢ {Elel|e e EXP},
-Heﬁce, the inequalities, by 7.5.6 and 7.5.12.
~They are strict because, for instance, the?e does not exist an €
- € EXP such that guﬁﬂ = EI¥]. Also, Low(E ) contains elements with

infinitely many free variables, as remarked upon in 2.2.9 :-

eage <hy1yxg(0) 30 (%) (1)) %o (5 (X5 (1)) 4 evua>e

:% : i !
!

7.5.14: REMARK's -

Thus, we see that the semi-lattice Low(E ) contains that paft :

had {

|

of E_ that models A-expressions. Theorem 7.5.4 shows that it would %

have been sensible to define only the elements of the (semi-)directg

limit, v bi .(Low(Ei)), as finite. Also, we have in Low(E_ ) that
i=0 !
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(¢ € 8) <=> (¢ = §).(¢ is finite) and we see that it is better
behaved than E_ in this respect (see 4.7.12 and 4.7.17). Also,
while 4.7.17 shows that the <E_,E>-derived notions of £, £ and
finiteness on A-expressions have our intuitive relationship,
theorem 7.5.7 shows that finiteness makes sense as well,

Another good thing about Low(E”) is its'economy; for 7.5.13
shows that the direct limit, which forms its countable basis and i
of which it is the directed completion, is wholly A-definable.
Incidentally, since it is a trivial induction to show that Low(E )
and Low(A”) form countable bases for E_ and A_, the (semi-)directk

limits, vy ¢; _(Low(E;)) and v 6, _(Low(a,)), form countable bases

i =0 - i i=0 1, 1 :
for E_ and A_, by 0.6.25(ii). In particular, E_ is countably based
by the "approximate normal forms" (:= the image of E%, by 7.5.6.

Further, since they consist entirely of elements that are isolated

in E_, by 4.7.3 and 4.7.10, we see that E_ is an algebraic lattice |
- see Scott [741]. i

Maybe it would have been bettér tb have defined initially only
the Low(E ) system. If we want, we can always make it into a lattice
by adjoining a v, by 0.6.28(1). Alternatively, we could have exten=-

ded the relation ~on A (1.1.20) to :=-

1 * By ;
{a,e) ~ (a”,e”) iff (a=7T = a’)v(e =71 = g7)
. v(a'g L= o"‘)v((d‘a &')A(e = e')).

Then, making a corresponding extension to & on Ai(Ei+l)' carry on

defining E_ as before. ' %

Anyway, this is just a question of the aesthetics of the actuaf

model used, As far as the semantics of the >calculus is concerned;%

i

it does not matter whether we have E_ or Low(E ) as the target of Ei
. ’ : i

In fact,

Low(E ) ,E> = E _,E>
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© 7.6:Continuous Semantics:=

-

' 7.6.0:REMARK :~

Ihv0.7.0, we defined an ordering on arbitrary Semanticé of the
véx-calculus by inclusion of thé inducéd equivalence relations., Since
E_ is so syntactic»in'nature,(i.e. closely related to EXP) there
ought to be some sense in which <E_,E> prbvides_a minimal semantics.j
It ié cértainly not.normality,,subStitutivity‘ér modelship since
these all apply to the trivial term model, <EXP/§QX,[g§z]>, ffom
which <E_,F> is derivable. HoWever,rwelhavé'discussed many réasons
why.this trivial model should bevrejected'énd for which %E',E> is
acceptible - e.g. unsolvable ,ekpressioﬁs and fixedeoint combinat-
ors. | |
| What else is there that makes a semantic function good ?

Scott's theory uses lattices whose pattial orderings reflect the
information céntent of the data being modelled : it is, then, quite
naiurai to justify the belief that éomputablekfunctionskover the
data are continuous (0.6.6). Similarly, we maintain tha£ the sem—-
antic_funbﬁion itself should be "continuOus";

€ reflects precisely éur intuitive notion of the ihfbrmatidn;
available from just looking at the syﬁtax of an expression - i.e.
it ignores unevaluated redexes énd considers only those sub-parts

‘that are fUlly'worked'out. Let.us call this thevsyntactical inform-

ation of an expression and'writg ? Of'e‘(é.f.’7.2); Clearly, any

decent semantics, <L,F>, when restricted so as 6n1y to look at the

'syntactical.information, <L,§>,'shoﬁld be monotone with respectyto

o

mng

- - . Further, the intuitive meaning of an expression is the union
of the syntactic,information held in all the expressions reducible

from it. Now, any ﬁecent semantics should refiect this intuition :-
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FIeD = LitFre-1]e —2tB> ¢y,
and this implies a "continuity" of the semantic function from our
intuition, for we can then write :=- o
FIv{® e —28 5 )y = L Fre-1]e —2E> ey
This justifies the terminology of the following definition. We
claim that <E_,%> is the minimal continuous semantics and, g6 , is
coincident with our intuition.

7.6.1:DEF:~

Let <L, F> be some semantics of the A-calculus where L is a

directedly complete semi=-lattice., Then, <L,§> is a WELL-BEHAVED

APPROXIMATE semantics to <L,F> if :~-
(1) 7 is monotone with respect to &
and (i1) FLeD = LEFre-ple —2B> €73,

We say that <L,F> is a CONTINUOUS semantics if it has a well-

behaved approximate,

7.6.2:LEMMA s~

(1) <E_.,E> is continuous.
(ii) <[ENV - D_1,D> is continuous.
_(1ii) <[ENV*»> D*],p*> is continuous.
Proof:-
(1) -By definiﬁion, % is monotone with respect to g,
-:, since £ = V, g is well-behaved.
(ii) -Let DIe] := 0°[%0, where D- and ~ are as defined in 0.7.17.
-Then, using 4.8.4, it is a trivial structural induction to show
that § is monotonic with respect to g,
~Thus, the good~behaviour of D is just the crucial theorem Wadswortl
proved (0.7.19). .
(iii) ~-Same as part(ii), defining 5*&@3 = D*'Egﬂ, using the defin-

itions of 0.7.22 and its part (xxvi).
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TR WY

7.6, 3:LEMMA: -
Let <L,P> be a contlnuous semantlcs w1th a well behaved approx—

imate <L,F>. Then,

(1) 7 e F,

(ii) {gﬁe‘ﬂle -2L§€> e’} is a direeted subset of L,
(111) PLel = LFLe D] em—3me")
= | kFri<e>T[i 2 1},

YT T

where the sets are also dlrected

(1v) <L F> 1s a model,~

vy (e,é € INSOL) A b e EXP) -> (FUeu = Fnsn € Fﬂyn).

(vi) <M, &> is ctsly. derlvable from <L,F> => <M,G> is CtSn

| Pioof-— | ‘ |
(i) -FIel U{F[[e ;ﬂle ——-—‘-—’—-g-’.—}‘e‘} = Fllel.
(ii) -Let F[[Lu]] FlIGJ} € {Fﬂje “Ile ———-L-—-} € }
~Then, ‘¢ —vﬁLéé> w,é and so,‘by'the Church—Rosser theorem, we have

o e 1 W

» ‘w'g‘_..g.!.@.;; G, _.'./w'd g G , |
"'...:l ;E[w]]'Z’ILSI! = Z’IIO’]] € {f[[x—:’:ﬂle ____9‘__0_@_; e”}.

—Hehce, the set is directed.

gty gy e

s

(iil)'-The sets are dlrecteﬁ by a 51mi1ar proof to that of part (11)
using 6.2.12and 5.3.3 instead of the C-R theorem.

- =Their limitsfequal Fle] because of the weak completeness of inside«?
ejout and i'th reductions and part (i) of definitionw7.6.l. ' i
(iv)besimpie:céR corollary, analogous to 4.6.1. o | ;
(v) -Cleaily, €,8 ;;NOH w>‘§ﬂe] = 3[6], since s»é S, by_4;8.4.
-Hence, ¢ e.INSOL > FEEH = fﬁﬁl Hence, the result.

-Also (e e INSOL) AY € EXP) = (Flcl = Fren ?ﬂyu

m

FiyD).
(vi) —There exists an f € {L + M] such that G = foF., |

- S &

. =Let G t= £oF. Claim' 7 is well-behaved -
_evg”é‘ms fﬁen = FE&B => GEQB £ Gméﬂ, by the monotonicity of f,
fopmgn = f(LH?H}’BIe ~—EL£€>AE‘}) |
lJ{fogmﬁ’ﬁ]e-e5L§$> e”}, since theiset is directed.

~=GIel
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B
= lGre ] e —2+~> ¢“}.
-:, 5 is a well-behaved approximate to G.

-.; <M,G> is continuous.

7.6.4:REMARK:~

We have said before that E_ is syntactic in nature - i.e.
"close" to EXP. We make use of this, now, by defining a way back
from part of E_, to EXP.

7.6.5:DEF:=

syn : Low(I*) ——————> EXP
X X

) ."“—_‘_—} .
1 AA

synEi: Low(Ei) ————> EXP

AX.€, 4 Ax.synEi_l(ei_l) '
o351 syny (o, ;)

i-1 %

syn, @ Tow(3,) ———> EXP

X {synI (x) }
a;_q(ey) syn, (ai_l)(synEi(si)) ‘

i-1
7.6.6:LEMMA;~

are well-defined up to %)

Let P (1) é“(synE and syn
By Ay
& (synE ([x/y]ei) = [x/y]synE (ei))
i i

& (synAi([x/y]ai) = [x/y]synA (ai))
i

& (y is not free in e, => y is not free in syn_ (e,))
. i Ei i

& (y is not free in o, = y is not free in syn, (ai))
‘ : i

i
& ey = ) = (oyng (c)) € syng (e10))
& (lay = a)) = .“"’Y"Ai"“i’ g SY“Ai‘“i’”
& (synEi(ei) & syn,
& (synAi(ai) £ syn

(¢i,i+l(ei)))

(ei,i+l(ai)))

i+l
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& (synE (LE‘),synA (lA') e NCH) .
i i i
Then, (¥i = O) p(i).
Proof:-

~-Straightforward and trivial induction,.

7.6.7:NOTATION =~

We will just write syn, for syn_ .
1 Ei

7.6.8:COR:~

<€i>;=0 € Low (E, ) =¥ {syni(si)li > 0} is a chain under %,

Proof;-.
-syni(ei) = syn 1+1 i l+1(ei), by 7.6.6.
g
-— y i+l( i+1)' by 7.606.
7.6.9:LEMMA:~

Let Alle]l = (there exists 1 2 0) (V] 2 i)(synjoén ,°§kaﬂ 2 ¢).

’

Then, (Ve € EXP)Alel,
Proof:-
-Clearly, Al0xl, with i=o0, :
~Claim: ALs] =>4Dx.€l :- |
~-Let i be that which is in Allell,
-Then, for all j = i,
°4, s, °EDy.el = syn_ o4, . o (Ay.Flel)

3+l *, 3+ j+1 e, j+1
-

’

~
Ay.syn,c¢_ °E[€l
J *.]

= \y.e, by Allel.

syn

it

it

-

~Claim: Alel ALSD => ALe(8)1 :-
-If €(8) € NOH, then syn,°o¢ _°E[e(8§)I] = syn, (1, ) e NOH,
< J. %] J Ej
by 7.6.6, and so is € €(5), by 4.8.4.
~-If €(8) e HEAD, then let k be the max1mum of the i's in ATel

and ALST plus 1.
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-Then, for all j z k,

it

Ele(s)T syn ((‘ ELeD) ( ELs1))
. ° .2 . . o . o .
synj ) )3 eld 3 ¢“;J 1 € ¢u'3.1 8

(syny_jo4, 5 ooFLeD)

( . 40
Syn]"l ¢'°JJ
€(8), by Al ATST.

118

-Hence, by structural induction, (¥e e EXP)4A[Lel,

*

7.6, 10:DEF:~

~ ;
Let <L,F,F> be a continuous semantics., Extend L to a complete

lattice by adjoining a1t (see 0.6.28). Then, we define :-

?i : By >Lu {1}
T, if Ei { Low(Ei)
si : > ; e,), if " ¢ Low(E
osyni( i) i ei € low i)
and
F: E, >Lvu {r}
<g >* A7
®1" i=0 """"9’1.[_-__;-!)1"1‘61)‘
7.6.11:LEMMA:=-
(1) Fi is well~defined, monotonic and, so, continuous.
(ii) {Fi(ei)li 2 0} is a chain in L, where <ei>i=0 cE_.

(iii) 7 is continuous.

Proof:-

(1) =F, is well-defined since syhi

i

‘is well-defined up to £ and ¥
does'not detect such differences. '

—If.ii £ Si and Ei € Low(Ei), then so is ei, by 7.5.2(ii).

~ .
-Thus, syni(ei) S syni(ei), by 7.6.6,

. : 4 y , ‘
- fksyni(ﬁi) £ Fosyni(ei), since 5 is monotonic w.r.t.%.

~If €] { Low(E,), then F € ,) = 1 =F , €]). | ;
7:, Fi is monotonic and, so, continuous, since Ei has finite depth.?;

(1) =If<e >/ o e Low(E"), then {Fi(ei

<

iz o ='1${syni(si)l iz 0}1’5

~ g_
;__1°E'[[5.1]) t

i
}
|
]
!
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which is a chain by 7.6.8 and'sincevg is monotone w.r.t. £,
—otherwise; there exists i 2 O such‘that for all jkski'.ej‘e Low(Ej))g
~Then, as above, {Fj(aj)!j < i} forms a chain while the rest of the

set consiéts of just the v element.

(iii) -F is continuous since it is the limit of continuous'maps,

71”’»,1' by part (i).
7.6.12:THEOREM:~
(1) Fof = F.
(11) FoE = F.
Proofe:-

(1) =FoE[e] = LHFi°¢” ioﬁﬂ?ﬂli > o}
: 4

LkFosyn, o, ,oFre1]i = O}, by 7.5.6.
, |

W

!

P, by 7.6.9 and 7.6.11(ii).
FEFrglc —2£>c°)), by 6.5.1.

= LkFofrenle —2E-> e}, by 7.6.11(44d).
=U{§[[s]]|s' --—93—'—-§—>e’}, by part (i).

= FEEH; since ¥ is well;behaved w.r.t. F.

n

]

(ii). ~FoE[Iel

'7.6.13:COR:~

<L,F> is a continubus semantics if and only if it is continu=-
ously‘derivable from <E_,E>.

?roof:— -
-By 7.6.2(i), 7.6.3(vi), 7.6.11(iii) and 7.6.12(ii).

N ’ ‘f .

7.6.14:COR:~

4

<E,,E> is the minimal continuous semantics.
Proof:-

-By 7.6.13 and 0.7.1(vii).

L i S e e
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7.6.,15:COR:~

(1) Well-behaved approximates are unique.

(1i) Let <L,?> be a contlnuous semantics. Then, the flxed~p01nt

combinators, {Yili 2 O}, are all equlvalenced. ‘Further,

FIY (&)1 = l__ije (88) 7.

(1ii) Let’ <L,F> be a continuous Scott-model (see 0.7, 27). Then,

FDY(e)D(p) = nFUeﬂ(p).'
Proof:-=
(i) -Let 7 and ? both be well—behaVed approximates to r.
i‘-Then, define, as in 7.6.10, functions 7 and F.
—ny by 7.6.12(i1), FeE = F = Fo.
-So, F and % are identical on the image of EXP under E.:
-But, the image ;f EXP under ﬁiis contained in this, by 7.5.13

and 7.5.6.

~ -
-Hence, ?oE’ = Fof,
'. - -~ ”
'-u"bY»7o6-12_(i)’ F o= F.' )

(ii)}-Yi = Yj' for all i,j = 0, by 4.0.5.

-Hence, Yi j' for all i,j 2 0, by 7.6.14.

E<L,F>
‘=Further, FIY(c)I= FoEHX(E)E F(uEE?]), by section 7.1.

L

F(L“JEEE (AA)]), by definition of wu.
n=0 - ‘

= L”b?ogﬁgn(AA)ﬂ,by 7.6.ll(iii).
n= ‘ , _ R

oo = L“' (AA)] by 7 6. lZ(ii)
: ' ‘ n=0 .

(iii) -Let L = [ENV - D],”where'ENv‘z (I + D).
-We define uFDeU(p)p as in section 7. 1, by Currying the applic-
ation function.

-One property of such Scott-models is that the value of a

i
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combinator (i.e. a.closed.i-ekpression) is independent of the
environment used. _

- =In particular, FlAaAl(p) = FUAAU(p’); for all p,p” ¢ ENV,
-Since thé semantics is continuous, FIAAl = FIxl, by 7.6.3(v).
-Choose p € ENV such_thatipﬂxﬂ = 1l'e¢ D, |
~Then, FUAAI(p) & FIxl(p) = L. | _
: —:, FOAAD(p) = L and, so,vFBAAD % Lbe L, by the above reﬁarks.
-Incidéntally, ﬁhis means that all unsolvable elements are L in
a continuous Scott-model and,ksd, the (Park-perturbed-Scott)

model (see 0}7.24)‘cannot be continuous.

~Now, FUY(é)ﬂ(p)‘= (L_LFﬂen(AA)H)(p), by part (ii) above..

i

Leeranne

n=0

= L] aprenoni®rnaanen
n=0 ' |

L{l(zxpwnempm“m
n= '

wFlel (o).

i

]

7.6.16:REMARK: =

The degenerate méximal semantics, <{*},¢Qnst>, is clearly
continuous and,‘so;‘continuity‘does.nct imply»properties like
- normality, solvability or extensional equivalence (i.e. semantic
equivalence implies é‘of 0.7.11), Neithér does it imply substit-
utivity = |

-Claim: <EXP/cnvﬁ¢,fcnv‘&]> is not substitutive :-

~Well, for oné thing, if it were, there would have been
no need to define Morris' <EXP/=,[=1>.
- -But, in particular, Y cnv v LY.

-And,_Y(lx.y) cnv,. vy not(cnv‘w) (AA) (Ax.Y) .
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-Claim: <EXP/cnv,v,[cnv ~]> is continuous :-

'EXP/EEXAN becomes a directedly complete semi-lattice by -
defihing (el € [8] ife does not have a normal form or [el = [§1].

-Define: T : EXP ———~—€>-EXP/Q§3;~
[AA], if € * NF
[e] , if e ¢ NF

-Then, it 1s trivial to check that 1 is a well-behaved
approximate'tevtégzi&J; | ‘ | o ' i

- ‘However, continuity is quite good at ruling out some "bad"

semantics - e.g. the proof of 7.6.15(iii), where,‘in so doing,
it provides,ﬁhe answer to a question of~D;Park {75]. Also,
continuity does imply a number of good points - e.g. 7;6.3(111),
(iv) and:(v) and 7.6.15(1) and (ii).;Further; by the proof of
}pért (iii) of i.6.15 again, we:see that, in continuous Scott-
‘models, unsolvable elements are 'L énd the Y combinators mimic
the minimal fixed-point operator ﬁ. Finally, continuous semantics
must'respect~ail the equivalenées and orderings made by its-
}minimal formulation,'<E”,E;; aﬁd.so, éince this also has all the
niqe‘properties ofbnormality,vsolvability, exteﬁsibnal equivalence
and substitutivity - not to méntion continuity, what it d&es to

the fixed-point combinators (4.0.5 and section 7.1) anéd the fact
that it is a good (4.8.8) model - we feel that‘its further

investigation may be worthwhile.
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8: REFERENCES.

- g.0:Explanation:=

References are indicated in the text of this thesis by positive

numbers in square brackets, sometimes with an author's name - e.qg.

Wadsworth

[30]. We proceed by a method of "indirect addreséiné".

Look up the number in section 8.1 to get the particular part of the

work being cited - in our case, item 3.3.8 of <P>, Finally, search

alphabetically in section 8.2 for the key letter enclosed in the

angle brackets,

8.1l:Numeric:~

[00]
[01]
[021]
(031
[04]
[051]
[061]
. [07]
[o8l
[091]
[10]
[11]
[121]
513]
[14]
(151
[161
[171
(181

§3A of «D>,

<C> and <E>, ,

Appendix IT of <A>.

Page'VIII of <D»>,

Page 17 of <P>, V..

§3E of <D»>.

Chapter 4 of <D»>.

§4A4 and §4Bl, definition 1 of <D»>,
§4A4 (E), §4A5(D), §4B3 and §4C2 of <D>,
§4A3, theorem 4 of <D>.

§4D1 of <D>;

§4D2 of <D>,

§4D3 of <D»,

§4E1 of <D»>,

lf3.16 of <A>,

3.1 of <P>.,

3.2.1 of <A>,

Same as [161.

<N>, <M>, <K> and <L>,



[19]
[20]
[21]
[22]
(231
[24]
[25]
[26]
[27]
(28]
[29]
(301
[31]
[32]
[33]
[34]
(351
(361
- [37]
[38]
[39]
L40]
C411]
[42]
1431
[44]
[45]
461
[47]
[48]
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<J>.

<p§;

Page 10 of <J>.

<K>, .

2.2 and 2.7 of <K>; exercises 7 and 8 of <O>,
2.6 and 3.3 of <K>. |

4,1 of <K>,

Pages 139 - 141 of <J>.

Theorems 11 aﬁd 14 and exercise 1l8a of <J>,
§3E3 of <D>,

<G>, ' -

3.3.8 of <P>.

<B>,

2.4.4 of <p>,

4.4 of <K>,

2.2 of <p>, _
2.3.8vand remérk following 2.4.1 of <P>,
2.5.1 and 2.5.8 of <P>.

<H>.
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