

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/72113

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/72113

.. . '" "

THE MINIMAL CONTINUOUS
. " - _._.

SEMANTICS OF THE LAMBDA-CALCULUS

by

PETER HUGH WELcH

Submitted for the Degree of
Doctor of Philosophy

at the
University of Warwick

December, 1974.

o

O:PROLOGUE: .'
.O.O:Contents:-

§ O:PROLOGUE ••••••••••••••••••• ' ! ••• 0

0.0: Conten ts ••• 0

O.l:Ab'stract ••• 2

0.2 :Acknowledgements •••••••••••••••••••••••••••••.•••••••••••••• 3

O.3:The ~-Calculus ••• 4
O.4:Some Classical Results •••.••••••••••••••••••••••••••••••••• 10
O.s:Head Normal Form and Solvability •••••••••••••••••••••• ~•••23
O.6:Lattice Theory •••••••••••••••••••••••••.••••••••••••••••••• 37
o. 7:Semantics ••• 53

~l:The'Other Projections ••••••••••'•••••••••••••••••••••••••• 121

§l:THE FINITE LATTICES, En AND An ••••••••••••••••••••••••••••••• 9s
1.O:Constructing the Base ••••••••••••••••••••••••••••••••••••• 9s
1.1:Constructing the Rest •••••••••• ~•••••••••••••••••••••••••• 98
1.2:Carrying through the Induction •••••••• ~••••••~~•••••••••• 107

§2cPROJECTIONS AND THE INVERSE LIMITSEoo' Aoo ••••••••••••••••••• 119
2.0:Initial Projections •••••••••••••••••••••••••••••••••••••• 119

2.2:Inverse Limits ••• 126

§3:APPLICATION AND SUBSTITUTION IN E 00•••••••••••••••••••••••••• 136
3.0:f"initeApplication and Substitution •••••••••••••••••••••• 136
3.1:Basic Properties of" [ei/x] and APi •••••:••••••••••••••••• 139
3.2:Continuity of APi and [£i/xJ••••••••••••••••••••••••••••• lsO
3.3:More Properties of APi and ['€i/x]•••••••••••••••••••••••• 154
3.4:Infinite Application and Substitution •••••••••••••••••••• 16l
3.s:Summary of the Construction of Eoo and Ap ••••••••••••••••• 167

1

§4:E~-SEMANTICS OF THE A-CALCULUS •••••••••••••••••••••••••••••• 170
4.0:The Semantica1 Function E•••••••••••••••••••••••••••••••• l70

4.l:Change of Variable Operators ••••••••••••••••••••••••••••• 176·
4.2:The Semantica1 Relations = and ~••••••••••••••••••••••••• 179
4.3:Approximate Application and Substitution ••••••••••••••••• 184

H

4.4:The Approximate Semantics E,
N ,.,
5 and = 189

4.5:Characterisation of NOH, HNF and HEAD •••••••••••••••••••• 193
4.6:The Semantica1 Function V•••••••••••••••••••••••••••••••• 196

4.7:Characterisation of ~ ••••••••••••••••••••••••••••••••••• 202
,.,4.8:Characterisation of !: and Normality: of <E ,V>•••••••••••• 207~

4.9:Requirement for <E ,E> to be a a-Mode1 ••••••••••••••••••• 212
, ~

4.10:Summary of the Main Results of this Chapter ••••••••••••• 2l5

§ 5:I'TH REDUCTIONS 216
5.0:I'th Application and Substitution •••••••••••••••••••••••• 216
5.l:Preservation of ata >and~ •••• o •••••••••••••••••• · ••••• 223
5.2:Re1ationship with E ••••••••••••••••••••••••••••••••••••• 229ee

5.3:I'th Reductions 23"
5.4:Comp1eteness of Reduction Ru1es •••••••••••••••••••••••••• 239

6.0:Comparing Reduction Ru1es •••••••••••••••••••••••••••••••• 242
§6:INSIDE-OUT REDUCTIONS ••••••••••••••••••••••••••••••••••••••• 242

6.l:Inside-Out Reductions •••••••••••••••••••••••••••••••••••• 244
6.2:Weak Equivalence of I'th and Inside-Out Reductions ••••••• 250
6.3:Weak Parallel Moves •••••••••••••••••••••••••••••••••••••• 256
6.4:Commutativity of Reduction Path Diagrams ••••••••••••••••• 259
6.5:Properties C, D and E •••••••••••••••••••••••••••••••••••• 268
6.6:Strong Parallel Moves •••••••••••••••••••••••••••••••••••• 272
6.7:Strong Serial Moves •••••••••••••••••••••••••••••••••••••• 280
6·.8:Strong Property E •••••, 288
6.9:A1ternative Proof .

. •••••••••••••••••••• •••••••••••••••••••• 295

2

§7 :EPILOGUE ••• '••••••••• 297

7.0:Reviewof <E.,E> ••• 297
7.1: The Y Cotnbinator •• ,••••••••••••••••••••••••••••••.•••••••• • 299

N7.2:Review of E and V•• 300

7.3:Review of I'th and Inside-Out Reductions ••••••••••••••••• 303
7.4:Embedding of E"" in P(w) •••••••••••••••••••••••••••••••••• 305
7.5:Pruning the Lattice •••••••••••••••••••••••••••••••••••••• 309
7.6:Continuous Semantics ••••••••••••••••••••••••••••••••••••• 316

§8 : REFERENCES •• 326

800:Explanation •• 326._

8.1:Numeric •••••••• '•• 326

8.2 :Alphabetic 329

O.l:Abstract:-
A semantics of the A-calculus is presented which is different

from any of the lattice models, so far analysed, of Scott and the
term models of Morris and Barendregt. The original motivation was
to do for A-expressions what Scott had done for flow-diagrams,
namely construct a 'syntactic' inverse limit lattice, E , in which•
to represent them •.A further motivation was to abstract out the
essential notion ("continuous semantics") behind the theorem that

J

Wadsworth proved concerning some of Scott's models, namely that
meaning of a A-expression can be found as the (continuous) limit
its a~proximate reductions. That this idea is relevant to E can be
seen since the coordinates of the image of a A-expression in E, .
.form a subset of its approximate reductions.

To establish the basic fact of a-modelship about E , it has to..
be shown that Wadsworth's theorem does indeed apply - i.e. that the

3

E -coordinates provide a sufficiently complete suhset of all the
eo

possible approximate reductions. Translating this back to the
~-calculus gives an algorithm ("i'th reductions") for producing
B-reductions which must be proven 'correct' ~ i.e. that it goes
sufficiently far in all cases, : this notion is chr-Lscened "weak
completeness". l'th reductions are generalised to a non-determin-
istic evaluation mechanism called "~nside-out reductions" which
behaves in almost the opposite manner to Church's "standard red-
uctions". This generalisation is not too drastic since it is easy
to show that a weak completeness result for one implies the same
for the other. The weak completeness of inside-out reductions is
established.

The E -semantics is a 'pure' a-model in that the only n-red-
00

uctions modelled are when there are equivalent B-reductions - other-
wise they are not even comparable. Further, A-expressions with a
normal form are maximal and isolated in E_, unsolveable expressions
ar~ L,the fixed-point combinators {Yili ~ O} are equivalenced and
the model itself is substitutive, normal, solvable and implies
Morris' "extensional equivalence". Finally, it is the minimal
continuous semantics in the sense that Wadsworth's theorem is true
in another semantics if and only if it is continuously derivable

•

9·2:Acknowledgements:-
My grateful thanks to Dr. D.M.R.Park for his guidance and

encouragement; also to Dr. J.R.Hindley for pointing out faults in
chapte~ 6, thus enabling their elimination; also to my colleagues
for many interesting discussions.

'"
Further, I am grateful to the Science Research Council for

their financial support and the computel; laboratory of the
Un.:l.versityof Kent for the use of their facil,ities.

4

0.3:The A-Calculus:-

0.3.0:INTRODUCTION:-
The A-calculus, invented in the 1930's by Church, provided

for the first time a systematic notation for functions. That there
was a need for some form of standardisation was argued by Curry
and Feys - [OOJ - where they draw attention to the dangers and
absurdities of ad hoc techniques like those habitually used for
differential and integral operators.

The A-calculus gives us more than the strict notion of a
function as a set of argument-value pairs in that it also encodes
a set of rules whereby we can evaluate the function on any argument.
This, of course, restricts the sort of functions that are A-defin-
able to those for which rules of evaluation exist - i.e. the
computable ones. This is just as well since, in the pure A-calculus,
the A-expressions themselves provide the notation for the objects
in the domain and range of the functions. So, if all functions
were A-definable, we would have the mathematically impossible
situation of a domain being the same as its own function space!

This near paradox, together with the fact that nobody really
bothered, is the reason why it took so long - nearly thirty five
years' - for the first successful models of the A-calculus to be
discovered. Indeed, it was not clear that the evaluation - or
"reduction" - rules gave consistent results independent of the
order in which they were applied. In fact, an early formulation
- [01] "'-turned out to be inconsistent! The original proof of
consistency, the Church-Rosser theorem, was amazingly long and
complicated when we consider the simplicity of the definition of
A-calculus •.The situation has been gradually improved over the
years and possibly the shortest proof so far is that found by

5

Tait and Martin-Lof - see Barendregt ~2] - and, independently,
by Park (see 0.4.0). Even so, it has taken a very long time to
reach this elegance!

Clearly, we must be very careful in dealing with A-calculus.
We have an intuition about how it behaves, but this is notoriously
faulty. This is why we have included so many of the details of the
technical results in this thesis. It is only too easy to say,"Well,
of course, that's true!", and then find, when we finally get
around to proving it, either that the induction will not go through,
no matter how hard we squeeze the hypothesis (e.g. 3.4.11) or,
worse still, a counter-example (e.g. 5.4.2(iii». We quote Curry

..
and Feys from the preface to their Combinatory Logic, volume 1, -
[03] - : "Some half dozen persons have written technically on
combinatory logic and most of these, including ourselves, have
published something erroneous. Since some of our fellow sinners
are among the most careful and competent logicians on the contemp-
orary scene, we regard this as evidence that the subject is
refractory. Thus fullness of exposition is necessary for accuracy;
and excessive condensation would be false economy here, even more
than it is ordinarily.1f
0.3.l:DEF:-

Let I be a countably infinite set. We call I the 'setof
VARIABLES. Then, the set of A-EXPRESSIONS, EXP, is given by the
context-free grammar :-

EXP ::= I I AI.EXP I (EXP)(EXP)
0.3.2;NOTATION:-

Mostly, we will use small Roman letters to represent variables
K

and small Greek letters, capital Greek letters and capital Roman
letters to represent A-expressions. Occasionally, these will be
subscripted by natural numbers.

6

We adopt, also, the usual conventions about the "dot" and
associating to the left so as to avoid too much bracketing.
O.3.3:DEF:-

Let x,y € I and e , IS € EXP. Then,
x is NOT FREE IN Y if (x ;ty) ,
x is NOT FREE IN 'Ay.e if (x = Y)v(x is not free in e:)

and x is NOT FREE IN do) if (x is not free in e:)

A(X is not free in 0).
O.3.4:REMARK:-

We have not followed the usual procedure of defining "free"
and "bound" variables since we believe that they are confusing
(they are not complimentary) and unnecessary ("not freeness" is
all we need) concepts.
O.3.5:DEF:- (Substitution Operators)

Let e € EXP and x € I. Then, we define a map, [e/x J :EXP + EXP,
inductively, by the following three equations :-

[e/xJy := {e, if x = y.}.,
y, if X· ;ty.

'Ay.o,if P.
[e/x])..y.o:= 'Ay.[e/x]o, if Q.

'Az.[e/x][z/y]o, if R.

,

where P - (x = y),
Q - ex·;ty) A (y is not free in e)

and'"R - ex ;ty) A (y is free in e) A (z is the first variable in
some fixed ennumeration of I such that z ;tx and z is not free
in e:,0) ,

and [e:/xJp (v) := [e:/xht([e:/x]v) •

7

0.3.6:DEF:- (Reduction Rules)
la(a) 'Ax.e :> 'Ay.[y/x]e, if y is not free in e.

(B) (Ax.e) (0) Ie > Co/x] e.
In(n) 'Ax.€X ---=---:>iiII> e , if x is not free in e.

0.3.7:REMARK:-
Intuitively, the substitution operator, re/x], means "replace

all free occurrences of x with e", a-conversion is "change of
dummy variables in the function", e-reduction is "appliGation of
function to argument" and n-reduction reflects the principle of
extensionality, which is "two functions are the sarne if they give
the same answers for the same data".

Next, we introduce Wadsworth's idea of contexts - [04] - so
as to generalise the reduction rules so that they need only apply
to sub-expressions • .Intuitively,.a context is a 'A-expression with
a hole into which we may plug another 'A-expression•.
0.3.8:DEF:-

The set of CONTEXTS, C[], for 'A-expressions is that generated
by the context-free grammar :-

C[] e r= [] I AI.C[] I (C[]) (EXP) I (EXP) (C[])

O.3.9:LEMMA:-
Any context,C[] € C[], determines a map from 'A-expressions

to A-expressions as follows :-
C[] : EXP ---;)+ EXP

e--)~ C[e],
where C[e] is defined by,

(C[] == []) ~ (C[e] == e),

(C I] == AX. C '" [1) =e- (C [c I = Ax ..C'" [e I) ,

(C[] == (C"'[]) (0» ~ (C[e] = (C'-[e]) (0»

and (C[] = 0 (C"[]» ~ (CCe] = <5 (C'"[e I) •

Proof:-

8

-Clear.

0.3.l0:GENERALISATION:-
la(L) If c = C[e"'] and 0 = C[o"'] and e " -----:Jo'> 0"', we will

laalso say that e ----;):::JIio o.
(ii) Similarly, extend IS > and In > •

(iii) a B]} n .:> are the transitive closures, ,
of la IS :> In :> respectively., ,

(iv) na). means sequence of la >'s.a n
(v) Similarly, for nB .> and nn > .
(vi) ~ nB '---..;...__"""':>:;;. , etc ••• mean what they say.< na' ,,' ,- .,'

(vii) We can mix the reductions together so that
for example, means a sequence of a >, B :> and n).'s in any
order and with any number of repeats.
0.3.l1:DEF:-

Let ~ be a relation on EXP. Then, ~ is SUBSTITUTIVE if (e::~ 0)

~ (C[e::]~ CEo]), for all contexts C[].(*)
0.3.l2:LEMMA:-

All the relations defined in 0.3.10 are substitutive.
Proof:-

-The relations defined in parts (i) and (ii) are the substitutive
closures of the original definition, 0.3.6.
-Clearly, their transitive closures and the others remain'
substitutive.

0.3.l3:THEOREM:-
(L) [x/x] e:: a-_i~)E:. .d

(ii) (x is not free in e") -> (x is not free in [e:"'/x]e:).
(iii) (x is'not free in e:t e") =e- (x is not free in [e:'"/y] e::).
(iv) (x is not free in e:)=e- (Ie"/x] e __a-:iJlo)E).

--_._------------------.------------------__ ...__ ...__-------
(*) This is sometimes called the "replacement pr!?p"ert:l"..'

-------------"-"~" ...,------.--.-,.,~.... ~.,, •..--. _, ..

9

(v) (x is not free in E) => ([E "Ix][x/y]E (1 :> [€ ..Iy] 8) •

(vi) a > is an equivalence relation on EXP.
(vii) (e a]) 0) => ([e"/x]e a> [e"/xJo).
(viii) (e" a > 0') -> ([e'-/x]e a» [o'/xJe).
(ix) (z ~ x) A (Z is not free in e,e ") =>

([s 'Ix] (Ay.e) Cl:> xz , [c "Ix J[z/y]e)•
(x) (x is not free in e)A (c a:> 0) => (x is not free in 0).

(xi) (x· ~y,z) A (:2 is not free in c ") =o

([e "Ix] [yIz] e a ;;. [yIz] [e ..Ix] e) •

(xii) (z :~ x) A (z is not free in e") =>

([e"/xJ[o/zJe a > [[e "Ix JO/z J [e"Ix] e) •

(xiii) (e: a,la > 0) => ([e"Ix] e a,lS > [e "Ix] 0) •

(xiv) (e" a,la :> 0) => ([e"Ix] e: a,S)0 [0" Ix] E) •

(XV) (e a,l(3 > 0) A (e a,Ia)0 y) =>

(0
a,(3.

:> e) A (Y a,a > e) , for some w €:EXP

Proof:-
-See Curry and Feys - [05J.

0.3.l4:REMARK:-
Above are a list of some of the elementary properties of a-

and a-reductions. Nevertheless, their proofs are only simple when
we compare them with some of the other proofs in A-calculus.

We prEisent parts (i) to (xi) since these properties are
reflected later when we construct our lattice model (chapters 1,2
and 3). Because of part (vi), we will tend to consider the set of
a-equivalence classes, EXP/a, instead of the pure A-expressions.
Hence, in future, we will;write __~a.,~n__>~for a,a,n----~._--~>etc •••,
assuming that in any reduction sequence a-conversions can take
place at any stage. Thus, we would write part (xv), for example.:-

(E la:> 0) A (e la;) y) => (0 a .). w) A. (Y B > w) •

10

Note that part (ix) means that we can simplify the second
equation of definition 9.3.5(ii) to just the third alternative
(i.e. R) and in which any suitablez will do (i.e. not just the
first one).

The hardest part to prove is (xii), from which parts (xi),
(xiii) and, eventually, (xv) follow.

O.4:Some Classica1 Fesults:-

O.4.0:THEOREM:-
(E 8 > 0) A (E 8_> y) > (0

(Church-Rosser)
8 ;)0 1.0) ,. (y _..:;;.e_>~ 1.0), for some

1.0 e; EXP.
Proof':-

-We will outline the proof due to Tait/Martin-Lof/Park.
10'-Let -----7>;> be a reduction rule with the following properties :-

(a) "Church-Rosser" property,
(e 'la

0> 0) A (E
la ~ y) => (0 la > 1.0) ... (y la :> (Il)

and (b) its transitive closure, a >, is the 8 >-same as .
-Then, we can get the Church-Rosser property for __ (1_> by filling
in the diagram:

y,

in the manner suggested by the diagram :-

____)Ol~,
,,______" 0O~______.» wI
e:~,' «-:: wo~~, ,~w3_____ =

, Y6~, _____-'" 1.02 ,~w5 1.0,
'fff2______. ~w4

>r(3 = y

,where each of the lines represents l_a;___>3Ia-,by using property (a) ..

f3 >.-By property (b), we have the Church-Rosser Property for
le just fails as a suitable candidate for la----~,-But,

11

since O.3.ll(xv) is not quite strong enough.
-However, we define "grand" reductions, written :),as follows :-

(i) x $ x.

(ii) AX.E ~ w, if tAl a > AX.E'"and E ~ E".
(iii) do) ~{either e'-(o"'),if e ~ E'"and 0 :) 0'" }

£E [o"'/x]e"'''',if E ~ Ax.Eand 0 ~ 0'" •

-The fact that ~ is non-deterministic is irrelevant.
-Clearly, ~ has p'ropez-cy : (b) and it is not all that complicated to
show that it has property (a) also.
-Hence, ~ will do for ____l~cr__~)and so we have~the result.

O.4.l:0EF:-
Let y = C[w]. Then, if w = Ax.e, for some x € I and e € EXP,

w is ana-REDEX of y. If w = (Ax.e) (0), for some X € I and E,tS €

EXP, thenw is a ~-REDEX of y. If w = AX. ex,.for some x € I and E
€ EXP such that x is not free in e, then w is an n-REOEX of y.

O.4.2:DEF:-
Let e € EXP. Then, e is in !!::, ~- or n-NORMAL FORM, respect...,

ively~ if e contains no a-, ~- or n-redexes. We write a-, ~- or
n-NF to denote the set of a-, ~- or n-normal forms.
O.4.3:LEMMA:-

B-NF is given by NF in the context-free grammar :-
HO ::= I I (HO) (NF)
NF ::= HO I AI.NF

Proof:-
-Let A[~D :: (e €. B-NF) =e- (e € NF).
-Clearly, A [xD and (A [e] -> A [Ax. en) •

-Claim: A[eD"A[oD==> A[e(tS)n :-

-Lete(tS) € e-NF. TheD, e I AI.EXP and e,o € B-NF.
-So, by A[eD"A[o], E and 0 € NF.

12

-Thus, E E NF\ AI.EXP - i.e. E € HD.
- :., E(0) E HD c NF.

-Hence, by structural induction, (V e e: EXP)A II ell •

-We need a "cross-product" induction to go the other way.
-Let PITliD - ()..te: a-NF).
-Let Q[v]] _ (v e: a-NF) ,,(v I AI.EXP).
-Then, clearly, we have the following results :-

-Q[x]] •

-Q[}JJJ "P[vD =o- QIT)..t(v)]].

-Q [llll .==> P[ull•

-PIT)..t]]==> P[Ax. Jill •

.•, we conclude, (V)..te: HD)QIT)..t11 and, in particular, (Vv e: NF)P[vD.

0.4.4:REMARK:-
We shall not be interested in a-normal forms at all, not

very interested in n-normal forms but very interested in a-normal
forms. Hence, and in view of the above characterisation, we shall
drop the a- when refering to these objects and write NF for S":NF.

Further, this context free grammar of normal forms provides
a guideline for the construction of the syntactic lattices (0.7.27)
0.4.5:COR:-

13 >- y)" (0 , y e: NF) =e- (0 Cl-~:>;;;a. y).

Proof:-
-By 0.4.0, (o a ;;. w),. (y B » w), for some w e: EXP.
-But, since 0 and y e: NF, there can be no B-reductions from them.
-Hence", considering remark 0.3.14, (e Cl ;;, e), (y

-so, 0 Cl
-~). y, by 0-.3.13.(vi)•

0.4.6:REMARK:-

The above corollary is what we mean by the "consistency" of

13 f
6-reduction. In a normal form, there are no e-redexes (= function- ~
argument pairs) still unevaluated. The result shows that, in any
"completed" computation, it does not matter in what order the
S-redexes were taken.
0.4.7:DEF:-

combinator, Y = Af.EE where E = Ay.f(yy). Here, we have :-
la > Af.f(EE) lS > Af.f(f(EE»Y = Af.EE

S-cnv is the equivalence relation generated by S-...:.;...._>-:31'. Again,
we will write just cnv for S-cnv.

Similarly, we define n-cnv and S-n-cnv.
0.4.8:EXAMPLES:-

Not every computation terminates in a normal form, thus
setting up the conditions for 0.4.5. For example, if 6 = Xx.xx, ,',
we can only have :-

61:. _--=l.;_(3___,>iiIo1:.1:. 1(3----=~~> ••••••••••••
A more interesting case is the paradoxical, or fixed-point

Af.f(f(f(EE») _....;1;;.;..(3>",. Af.f(f(f(f(EE»» 1(3----=.:.;...._,>iiIo•••••••••• ,.•
It is called the "fixed-point". combinator because :-

e(Ye) £!!y. Ye.
There is a family of "fixed-point" combinators. Starting with
Yo := Y and letting G = Ay.Af.f(yf), we define Yi+1 := YiG. Suppose,~
as an induction hypotheSis, that Yi is a "fixed-point" combinator,
i.e. :-

Then,

,;/ :> e«YiG) (e» = e(Yi+1€).
So, the induction goes through and all theYi's are fixed-point
combinators. We feel that.the Yi'S are doing essentially the sarne
thing, yet it is not too hard to see that YO c;ivY1• Further, it

Yi+1€ = (YiG) (e) cnv G(YiG) (e)
(3

14

is probably true that Yi c~v Yj, for all i·~ j!

0.4.9:REMARK:-
Returning to the Church-Rosser theorem and its extension for

n), Curry - ~6] - develops techniques and results which we
shall find extremely useful later (chapter 6). We list them here.
0.4.l0:DEF:-

Let e __ l..;..e_.;;.>0 and let S be a redex in e:. Then, see Curry -
[07] - for an exhaustive definition of the RESIDUALS OF S IN o.
0.4.ll:NOTATION:-

'leLet e _ __;;;;..;.._-;>",. 0 by contraction of the redex R in £. Then,
we 't'lrite :-

e R:> s,

If we have numbered the reduction, e.g. :-
e: R:> 0 ••••.••••••••••••••••••••••••••• @

or :-
R 0»0 ,

and S is a redex in e , then we write' {S}/ <D , or' {S}/R, to denote
the set of residuals of S in o.

If we have a set, S, of redexes in e:, then we generalise the
definition of residuals of redexes to residuals of sets of redexes
by :-

S/ (J): = u {{ S}/ CD IS E S}.

We further generalise as follows. Let,
0 e:o Rl)o £1 R2,) E2 R3,) ••••••
and let S be a set of redexes in EO. Write So := S. Then, Si+l :=

Si/Ri+l' ''theset of residuals of Siin e:i+l• Then, we define :-
S/(j) := S 0n

O.4.12:DEF:-
Let S be a set of redexes in e:. Then, e:

REDUCTION RELATIVE TO S IN e: if the only redexes contracted are

"

15

residuals o~ redexes of S.

Further, it is a: COMPLETE RELATIVE REDUCTION OF S IN e if
SI Q) =~. In this case, we write :-

S o.e ------------------------------~

O.4.l3:THEOREM:- (Curry's strong Property ~)
LetS be a set of redexes in E and let R also be a reaex in E.

Then, there is a compiete relative reduction of S in E and all
complete relative 'reductions end in the same 0 (up to a-conversion).

Further, R has the same residuals in 0 no matter wh Lch

complete relative reduction is used.
Proof:-

-See Curry ~ [06J.

+
O.4.14:COR:- (Parallel Moves)

Let E S» 0 and let S be a set of redexes in E. Then, we can
construct the following diagram :-

E --------.®,------~)0

S SIG)

E~ ~S ~
o ~.

Proof:-

-SUppose the reduction sequence CD is of the form 0 in 0.4.11.
-Define SO'Sl'······,Sn as in 0.4.11. Consider the diagram ._.
e = EO

RI
:>

R2 Ri Ri+l
" El ~ --~ Ei ;;. Ei+l En = C

So Aa SI Al Si A. Si+l Sna

e~= e'- :>- e;"- :> ? e-: £1+1 e;'" =0'"0 ~1 1.. n

16

by a complete relative reduction of the residuals of Ri+l in E ••a

-Consider square Ai 0 The sequence 8i ~ Ei+l -".. 81+1 is a complete'
relative reduction of Si u {Ri+l} in 8i• Now, construct e1~ E1+l

Then, the sequence ei ---;;.e1 --;> ei~l is another complete relative

The Church-Rosser theorem for S > is now a simple corollary

f
I
t
I

I
j

reduction of Si u {Ri+l} in Ei• Hence, by 0.4.13, e:i+l
-This happens in each square and, so, we have the result.

of 0.4.14. We just use it repeatedly with S a singleton set each
time - see Curry [09Jo

Curry goes on to establish the Church~Rosser property for
~~ and develops some useful results. We list them in the
following lemma.
·O.4.16:LEMMA:-

(i) ('Ie E EXP) (€ __-.!L..) e* E n-NF)
(ii) (e n > o)A(E: n ~ y) => (0 n > (0) A(Y n > (0)

(iii) (e S,n ~ 0) """> (e e) Y n > 0)

(iv) Ce: I3ln > e) => Ce* l3,n ~ e*), where e:* and 0*
are the n-normal forms of e: and e respectively.

(v) (e: l3,n) e)A(e: n ~ y) ==> (5

13, n ~ y) => (0

n >, 0*) (y
A

l3,n)0 0*) !

(vi) (e: _13~ 0) A (e S,n > (0)

A(Y ~.n ~oo).

Proof:-
(i) -ClearLy, an n-reduction strictly shortens the length of an
expression and, so, we can only do a finite number from one.
(ii) -Straightforward - see Curry [101. Hence,n-normal forms
are unique.
(iii) -Non-trivial: although we can show quite easily t.hat :-

(e In > 0 113) r) => (e 13.> 00 rr > y) ,

17

we cannot guarantee that the length of either the
will be restricted to at most one.
-See Curry [llJ for a correct proof.
(iv) -Simpler that part (iii) - see Curry [12J. In fact, the

a > or

-Let E a,n) 0 and e: n > y.

sequence from e:* to 0* is of a special form which Curry calls
"e-reductions" in these, a-reductions are allowed only from
expressions in n-normal form.
(v) -This is a useful corollary to part (i~).

-Now, e: n) e:* € n-NF, by part (i).

-But, by part (iv), 0
-Thus, y a,n > 0*.
(vi) -Trivial, using 0.4.0 and parts (iii) and (v) above - [121.

n > 0* and e:* SIn> 0*.

-By the Church-Rosser part (ii), this e:* is unique and, so,
y n > e:*.

0.4.l7:REMARK:-
Frequently, when proving theorems in the A-calculus, we

perform inductions on the complexity of an expression e:. As far
as possible, we shall try to do this with structural inductions
over the context-free grammar given in 0.3.1. However, it is
neccessary occasionally to use an ordinary natural number Lnduc+

tion over the "length" or "rank" of an expression (e.g. 0.3.13
and 0.4.20). In section 0.5, we make use of a restricted notion
of "ran~" which should not be confused with the following one
which applies to all A-expressions. The following is taken from
Curry [28J.

18

0.4.l8:DEF:-
rankOxO = 0
rankOXx.eO = 1 + rankOeD
ranklle(&)0 = 1 + rankOeO + rankO&O.

0.4.l9:LEMMA:-
(i) rankO[a/bJeO = rankOeD
(ii) (e a > 0) ~ (rankOeO = rankOoO)
(iii) rankO[o/xJeO = rankOeO + n*rankOoO,

.' "'/: ..~.'", Proof:-

where n is the number of times x occurs free in e.
(iv) (s ln >' 0) => (z ank lle f = 2 + r ank ll s ll) ,

(i),(ii) and (iii) -Trivial induction on the rank of e.
(iv) -Trivial structural induction on e.

0.4.20:THEOREM:-'
(e f3, n > 0 E: NF)' <===> (e f3 " e * E: NF).
Proof:-

«) -Immediate.
(=» -This looks trivial, but, like so much else in this subject,
lacks a trivial proof.
-First, just note that e f3,n) 0* E: f3-n-NF,by 0.4.16(i).
-The result now follows from the non-trivial lemma of Curry,
.Hindley and Seldin - [76].

19

0.4.21:REMARK:-
The above result says that,if we are interested in reaching

normal form, we need not bother with n-reductions at all. Later
(0.5.9), we show that n-reductions are similarly irrelevant to
the questiortof reaching "head normal" form" '("solvability").
This uses a proof strongly based on the one for 0.4.20.

There is one other classical result on B-reductions in which
we are interes·ted in this·thesis. The B-reduction rule does not
specify any order in which to take B-redexes. However, it is
possible to give a deterministic rule (in fact : "always take the
left-most outermost") which guarantees termination (i.e. reaches
normal form) if termination is at all possible. This is not a
trivial property since there are reduction rules (e.g. : "always
take the innermost") which occasionally fail to terminate when this
is clearly possible (e.g. (AX.y) (AA». Later (chapters 5 and 6), ;

I

Iwe shall give other reduction rules which also guarantee terminatio~
whenever possible,
0.4.22:DEF:-

ILet"Rand S be different B-redexes in E. Then, R is LEFT-OUTSIDEl
"I
!of S in E is defined inductively by :-

(i) : not possible,
(ii) € = AX.&' : if R is left-outside of S in &'

and (iii) & = 00(5) : if either R = 00(6)

or w = C[R] and 5 = C~[S]

20

or R is left-outside of 8 in w
or R is 1eft-outiide of 8 in 5.

Further, R is theLEFTM08T-OUTERMOST redex in E if it is 1eft-

outside of all the others.
0.4.23:LEMMA:-

(i) Left-outside is a total ordering on the set of redexes in
E. In particular, if E has any redexes at all, then it has a unique

leftmost-outermost one.
(ii) Let R be left-outside of 8 in E and E 8--~>~ 5. Then, R

has precisely one residual, R', in 5. Further, if 8 is left-outside
of T in E, then R' is left-outside of any residuals of T in 5. Also,
if T' is a new redex in & (i.e. with no ancestor in E), then R' is

left-outside of T' in &.
Proof:-

0.4.24:DEF:-
Ri+1

E. --~~

-By simple structural inductions on E.

......
Then, this reduction sequence is 8TANDARDif Ri+1 is not the
residual of a redex that is left-outside of'Ri in Ei-1, for all i =
1,2,3, •••••• ,n-1. The sequence is NORMAL if Ri is the 1eftmost-
outermost redex in Ei-1, for all i = l,2,3, •••••• ,n.
0.4.25:LEMMA:-

(i) Normal reductions are standard.
(i~) Take a standard reduction sequence with notation as above.

Let 8i-1 be a redex that is left-outside of Ri in Ei-1, for some i
d

e:·{1, •••••• ,n-1}. The~, 8i-1 has precisely one residual, 8j, in Ej
and it is left-outside of Rj+1, for a111 j e:.{i, •••••• ,n-1}.

"Finally, 8i-1 has a unique residual, Sn' in En.
Proof:-

21

(i) -Clear.
(ii) -By 0.4.23(ii), Si-l has a unique residual, Si' in £i-
-Suppose Ri+l is a residual of a redex, T, in Ei-l- Then, Ri is
left-outside of T, by the definition of standard and by'0.4.23(i)_
But then, by 0.4.23(i1), Si is left-outside of Ri+l in £i-
-Otherwise, Ri+l is a new redex in £i and, so, again by 0.4.23(ii),
Si is left-outside of Ri+l•
-We repeat this argument at each reduction step to complete the
lemma.

0.4.26:REMARK:-
Thus, if ever we miss out a redex on the left-outside during

a standard reduction, it remains left out! We see that standard
reductions take their redexes in an "outside-in" order. In this,
they can be compared with the "call-by-name" mechanism for passing
parameters to procedures and, so, have the same sort of inefficienc~
- the measure being the length of the reduction sequences. The
reduction rules we shall be introducing in chapters 5 and 6 work in
an "inside-out" manner. Their 'normal' form (i.e. not allowed to
miss out any redexes) is analogous to the "call-by-value" mechanism
and, so, they should be more efficient.
0.4.27:THEOREM:- (Standardisation)

Let £ a > o. Then, there is a standard reduction sequence
from € to cS.

+

Proof:-
-See Curry (13).

0.4.28:COR:- (Normalisation)
Let £ S > 0 € NF. Then, there is a normal reduction sequence

from € to o.

22

Proof:-
-By 0.4.27, there is a standard reduction sequence from e to o.
-If the redex contracted each time were not i~nermost-outermost,
there would be a redex left in 0, by 0.4.25(ii).

(*)-But, this is not possible since 0 is in normal form - X.
-Hence, the standard reduction sequence must be normal.

0.4.29:COR:-
The predicate PUell, = (there exists 0 € NF) (e B > 0), 1s

·'iI~.:\~"t,I"---~ ,,,,r'! ,'~ oft ,>,v"~'~·-,.,,,y ··l',"'" i,.",'_.,:"

semi-decidable •
• " "1' 0:; .~'''' :'-'/t ,r ,~\'f:~-VI ._~, \" .~ l 'H i~f ,..',c'(. \~l· 's .t" '/,,t." .~,~;~i~ .~\<\:-. ,~~.",,:.~Hr'''I''H ;;.~.v , 'e. !(\ 'i "~.'. :',H~I ~'7>t • f "!'h'~;<'.l.J. 1'0,,,' ill .t.J' ~';<' 1. .,., ,,- \~\.: '!o\",~~,,~," ,\ -, '\ ..•:t", . ~~,~p~'t VProof:-

-Do a normal reduction from e.

-If P[ell is true, this will terminate after a finite number of
reductions.

O. 4 • 30: REMARK: -

In fact, the predicate P[E] - liE has a normal form" - is not
decidable - see Barendregt [14]. In computing terms, this can be
thought of as the "halting problem" - although there are dangers.
We might be tempted to consider all non-terminating programs as
equivalent rubbish! While it makes sense to lump expressions like
1::..1::.. or 1::..1::..1::.. together as "useless", Y, which does not have normal form
certainly has its uses. However, it would make sense to equivalence
all the Yi's. For these reasons, the concept of "head normal form"
was in~roduced by Wadsworth - [15] -:-and, equivalently but independ-l
ently, '''solvability''by Barendregt - [16].

• . ff

~~---~--
(*) We use the sign I to indicate a contradiction.

23

0.5:Head Normal Form and Solvability:-

0.5.0:DEF:-
We define the set of A-expressions in "head normal form", HNF,

by the context-free grammar :-
HEAD' ::= I I (HEAD) (EXP)
HNF ::= HEAD I AI.HNF

We also define the set of A-expressions "not in head normal
form", NOH, by the context-free grammar :-

NOH ::= (AI.EXP) (EXP) I (NOH) (EXP) AI.NOH
0.5.l:LEMMA:-

(i) NF c HNF.
(ii) HEAD n AI.EXP = ¢.

(iii) HEAD n NOH = ¢.

(iv) HNF n NOH = ¢.

(v) HNF U NOH = EXP.
Proof:-

(i) -From the characterisation of 0.4.3, this is clear since the
generating grammar is a restriction of that for HNF. Formally :-

-Let A [11] == (11 € HEAD). Clearly, A ITxDand (Vll € HD) (A llull ->

A[ll(V)TI). So, by structural induction, (Vll € HD)AITllii.
-Now, let B[llii = (11€ HNF). We have, (Vll € HD)B[llii.Clearly,

(Vll € NF) (B[ll] -> B[AX.ll]). :., (Vll € NF)B[llii- i.e. NF c HNF.
(ii) -Let A[ll] = (11 f AI.EXP).
-Clearly, A[xii and (Vll € HEAD) (A[}!] => A[ll(£)Il).

"
-:, by structural induction, (Vll € HEAD)A[llIl.
(iii) -Let AIT}.ID - (ll I NOlI).
-Clearly, A [xII.
-Claim: (Vll € HEAD) (A ITJ.lII=> A ITJ.I (£)IJ) :-

-If }.I(€:) € NOH, then either II E NOH - X to A[J.lIl- or J.I E AI.EXP

24

- t to part (ii).

-Hence, by structural induction, (V~ E HEAD)AD~n.

(iv) -Let AIT~n :: (u I NOH).
-Then, (Vp E HEAD)A[~], by part (iii).

-Clearly, (Vp E HNF) (A [~D => A [Ax. ~]) •

-Hence, by structural induction, (V~ E HNF)A[[~].

(v) -Let AD~ n :: (u E EXP).

-Clearly, A [Ix] and (V~ € HEAD) (A [1-1] =e- A [p (e)]) •

-.:, by induction, (Vp € HEAD)A [11]. Thus, HEAD c EXP.

-Also, (Vll €HNF)(A[P]=> AITAx.~]).

- .:, by induction, (Vll E HNF)A [p TI. Thus, HNF cEXP.

-Next, we have A[(Ax.e) (o}D.

-And, (Vll E NOH) (A ITllTI => A lli.t (e) TI ,.. A [[Ax.1111) •

••_ by induction, (Vp €NOH)A IT!.t]. Thus, NOH c EXP•

••, HNF u NOH c EXP.

-Conversely, let B [t:]:: (e: .€ HNF u NOH)•

-Then, B lTx], since x € I c HEAD c HNF c HNF U NOH.

-clearly, BITe 11 =o B [lAx. e:].

-Claim: BITe],.. BITo] =e- B[e(o)] :-

-If e: € NOH, then e (0) E NOH, and so we have the claim.

-Otherwise, e: €HNF, by BITE]. Either E: € AI.HNF, in which case

e (0) € NOH and we have the claim, 9.E. c € HEAD, in which case e (0) €

HEAD c HNF and we have the claim. (In fact, we do not need B lIs D.)

- :., by induction, (Ve: € EXP) BITE]. Thus, EXP c HNF U NOH•

••, HNP' U NOH = EXP.

E X P

HNF NOH

25

O.5.2:LEMMA:-
(i) (u € HEAD) ,.,(U Cl :> u"') > ([x/y JUtu'" € HEAD) •
(ii) (U € HNF) ,.,(u Cl > U"')-> ([x/y Iu, u '" € HNF) .
(iii) (u € NOH) ,.,(u Cl

) U...) ([E/yJIl,U...€ NOH).==>

Proof:-
(i) -Let A[uD !: (u __ Cl_>~ u...) ==> ([x/yJIl,u'"€ HEAD).
-Clearly, AITxDand (Vu € HEAD) (A[uD ==> AITU(E)]).
-So, by induction, (Vu € HEAD)AITuD.
(ii) -For this we define a rank on HNF :-

rank({:~:":"H:~NF}):= t + rank(J·
-Let P(i) - (u € HNF),.,(rank (u) = i)" (u Cl > u"') ==>

([X/yJIl,Il'"€ HNF),.,(rank([x/yJu),rank(u"') = i).
-We have P(O), by part (i).
-Claim: P(i) -> P(i+l), Vi ~ 0 :-

-Let u Cl > u..., where u E HNF and rank(u) = i+l.
-Then, u = Ax.v, where v € HNF and rank(v) = i.
-Either u'"= Ax.v'" and v Cl > V ... , in which case v'" € HNF with

rank i, by P (i)I 'and so u" E HNF with rank i+l.
-Or u'"= Ay.[y/xJv, where y is not free in v, in which case

[y/xJv € HNF .with rank i, by P(i), and so u" € HNF with rank i+l.
-Also, [a/bJu = [a/bJ(Ax.v)

Cl-->~Ac.[a/bJ[c/xJv, by O.3.l3(ix), where c ~
a,b and is not free in v.

E HNF with rank i+l, using P(i) twice.
-Hence, [ajbJu € HNF with rank i+l, by the first half of this

claim, proved above.
-:, by ordinary induction, (Vi ~ O)P(i).

(iii) -For this we define a rank on NOH :-

26

(AX. E) (0) I E I NOH 0
:= 1 + rank (ll)

1 + rank (u)

rank II (E), II € NOH
AX.u , II € NOH

-Let Q(i) - (ll€NOH),,(rank(ll) =i),,(ll Cl) ll"') =>

-Claim: Q (0) :-
-Let (Ax. e) (0) Cl > u ", where e I NOH.
-Then, e € HNF, by O.S.l(iv), and so Ax.e € HNF.
-But, u " = (Ax....e"') (0"'), where AX. e Cl) AxE" and 0 Cl> 0"

and, so, u " € NOH. Further, Ax",e" € HNF, by part (ii), and, so,
e" 1 NOH and rank (u ") = O.

-Now, clearly, [E'/yJ(Ax.e) (0) € NOH.
-But, [a/yJ(Ax. c) € HNF, by part (ii), and, so,

rank (Ca/yJ (AX.E) (0» = o.
-Claim: Q(i) => Q(i+1), Vi ~ 0 :-

-Let II Cl > u ", where II € NOH and rank (ll)= i+1.
-If II = v(a), where v € NOH and rank(v) = i, then ll"= v"'(6"),

where v Cl > a". By Q (i), v" € NOH with rank i and, so,
u ' € NOH with rank i+1. Also, [e:/yJll= (Ce:/yJv)(Ce/yJO) € NOH, by
Q(i), and, if e = a € I, then it has rank i+1, by Q(i) again.

-If II = Ax.v, where v € NOH and rank(v) = i, then either ll'"=
Ax.v" and v Cl > v.., in which case v" € NOH with rank i, by Q (i),
and so ll" € NOH with rank i+1 J 2E ll"= Ay.Cy/xJv, in which case
[y/xJv € NOH with rank i, by Q(i), and so ll" € NOH with rank i+1.
A1so,~[e/yJ(Ax.v) Cl> Az.Ce:/yJ[z/xJv, by 0.3.13(ix), E NOH, using
Q(i) twice, and, if e = a E I, then we also get rank i+1. :, done.
-:••I by ordinary induction, (Vi ~ 0)Q (i)•

+
0.S.3:REMARK:-

The above lemma is one of those "obvious" results about the

27

A-calculus that seems to want an awful lot of proving! We had to
use an induction on rank in parts (ii) and (iii) since the straight-
foreward structural induction fails. Later (see section 4.1), we
introduce a technique that enables us to use structural inductions
in cases like these. In principle, we could replace all our struct-
ural inductions with various forms of rank inductions, but we prefer
to use the former because they seem more natural and are more
compact. To compare the techniques, look at the proofs of :-

(jl E NOH) => ([€/xJjl E NOH),
in 0.5.2(iii) and 5.0.3.
0.5.4:LEMMA:-

(jl E HNF) ,..(jl f3 In> c) =e- (15 E HNF) •

Proof:-
-Let A [lil] s (jl
-Clearly, A [x].

-Claim: AIT}.!] => AITjl(e)],Vjl E HEAD :-

1 f3 > c) => (15 E HEAD) •

-By 0.5.l(ii), jlee)is not a S-redex.
-Let jl(e) 113> o.
-Either 0 = jl~(e)and jl la-----)ojI> jl~ .2!: 15 = u (e"')and € 113> ...e •

-So, by A[jl], we must have 15 € HEAD •
.., by induction, we have (VlJ € HEAD) A [lJ]•

-Let A~[lJ] :: (lJ 113) 0) => (15 € HNF).
-We have, (Vll € HEAD)A~[lJD, since HEAD c HNF.
-Claim: A'" [llD=> A ~[Ax.ll],Vll € HNF :-

:-If AX.ll la> 0, then 0 ex> Ax.lJ~ and u

-But, by A'" Ilu Il , lJ'"€ HNF and, so, AX.ll'" € HNF.
"-So, by 0.5.2(i1), 15 E HNF.

-••, by induction, we have (VlJ E HNF)A'" Ilu Il ,

~Hence, ellE HNF),..(lJ 13> 0) -> (0 E HNF).
-Let BlIll] :: (u In:> cS) =e- (0 E HEAD).

28

-Clearly, B ax nand, similarly to above, since)J (g) cannot be an rr-

redex, B[Il] > B[Il(g) ll, VIl € HEAD•
•- ••, by induction, (VIl € HEAD)BUll].

-Let B'[Il] :: (Il In>o) => (0 €HNF).

-As before, we have, (VIl €HEAD) B"[Il].

-Claim: B"UIl]] => B"'UAx.IlB, VIl €HNF:-

- Let AX.u 1 n > IS. If 0 a > AX. u " and u

15 € HNF, by B" [Ill], as before.

1n > Jl", then

-Otherwise, 15 = Il", where)J =)J"x and x is not free in)J". In

this case, AX. Jl € HNF => AX. Jl"x € HNF =>)J"x € HNF => u rx € HEAD

=:> Il" E HEAD =>)J'" € HNF => 0 € HNF•.
- ••, by induction, (V)J E HNF)B"[)JTI.

-Hence, (Il € HNF)" ()J n> 15) => (0 € HNF).

- And so, ()J € HNF) " ()J 13 , n > IS) =e- (0 € HNF) •

+
0.5.5:DEF:- (Wadsworth)

SOL := {g € Expi (there exists e" E HNF) (e

INSOL := EXP\SOL.

BIn> e")}.

0.S.6:EXAMPLES:-

(i) Any expression with a normal form is in SOL.

(ii) Recall A := Ax.xx and let T := Ax.xxx. Then, AA, AAA and

TT € INSOL.

(iii) (Vi:<!: 0) (Yi € SOL).

Proo£:-

(i) -~lear, by O.S.l(i).

(ii) -Write en for eee •••••• e (n times).

~Then,{e"'IA2 B,n) e'; ="{A2} C NOH.

-And, "{ e "'I A 3 13, n > e:"} = {A 3} C NOH.

--And, {e'-I T2 13 ,n > e "} = {Tn, n:?: 2} C NOH.

(iii) -Let P (i) :: (Yi
a-;...._>~Af. f (v), for some v E EXP).

29

-Clearly, P(O), since YO !3 :> Af.f (E E), by 0.4.8.
-Suppose P(i), for some i ~ o.

e :> (Af.f('I)) (G) ___;.!3_>'7'- G (v) -4 Af. f ('I)f)•

-:, by induction, (Vi ~O)P(i).
:"But, Af.f('I) .€ HNF and, so, (Vi ~ O)(Yi € SOL).

O.5.7:REMARK:-

E X P -----
N

/ L·s

'The spikey lines represent B-n-reduction paths from the exp-
ressions £, & and v to E~, &~ and '1)-, respectively. Since £ € HNF,

its path must always remain inside HNF, by 0.5.4. Since 'I)E INSOL,
its path, by definition, must aLway s remain inside NOH and, fairly
obviously, inside INSOL • Similarly, we note that we cannot have a
path from some a € SOL to a~ ~ INSOL, since a S,n:> u-- € HNF
and so, by the Church-Rosser theorem for !3 1n .>, o '" 8 1n)- o "'.... ,

where u"'- B,n::>-crn.- which, by 0.5.4, is in HNF - 'it. to u"'€ INSOL.
Finally, if & € SOL n NOH, then there is a path that eventually
crosses over to HNF.

Next, we will show that we need only consider B-reduction
sequences to determine elements of SOL. Again, this seems an
obvious sort of result, particularly as it is quite easy to
show that, if 'I)€ NOH and- 'I) In ~ 'I)'"€ HNF, then 'I) 113> 'I)'"

and that by means of a head redex (see 0.5.10). Howe've'r, it is
not clear how to proceed in view of the problems described. in the
proof ~f 0.4.l6(iii). The following proof i~ an adaption of the

30

.enrry /Hindley /Seldin proof of 0.4.20; it is I howeve r I simpler

since the inductions can be performed "serially" rather than
"nested".
0.5.B:LEMMA:-

(i) (e: n) 15€ HEAD) =» (e: __ [3_) E* E HNF)

n > 0 € HNF) =c- (e: _JL...) e:i<' E I-INF).(ii) (e:

Proof:-
(i) -By induction on the (general) rank of c, as defined in 0.4.1B."

-Let A(n) - (8 -.~ 0 € HBAD) (rank nE: n :'5; n)
A

=> (8 B > 8* HNF).E

-Clearly, A (0) I since rank n e 0- 0 =» 8 € I c HN1?

-Claim: A(n-l) => A(n), for any n > 0 :- It

-Suppose A (n-l) •
-Let E: n > 0 € HEAD -and rank []8 a = n.
-If e: € HNF, then trivial; so, suppose E € NOH.
-Case 1: e: = lx.e:' and E' € NOH :-

-Now,
__n__ > OX

J:,n
__ ~n__ ~ y, by O.4.16(v).

-Since 0 € HEAD, we must havey ::::o~x E HEAD and
o B,n > 0'.

-But, rankGe:'D = n-l and so E~ E: ,,* € HNF,
by A(n-l).

-Hence, e: = AX.e:~ !3 ~, x '"* - ~:~ I.INF •1\ •• 8 - E i£

-Case 2:
...

(lX.V)1l1'!-l2· ••••• lls' where s :?:] '.-. .e: =

. and '!-li

-We must have ;S = 'IT'!-li'!-l2 •••••• '!-l~' wh ere Ax.v --~ 'IT

_____n)"" '!-li' for 1 .~ i s s •

-Further, since 0 € HEAD, so is 'IT E HEAD.
-As in case I, we deduce that v --.~-~ '!T'X, where

30.1

-Since >..x.v S,n > ~~,x does not occur free in ~'.
-Hence, ~'x has only one free occurrence of x.
-:, v has only one free occurrence of x, since

n-reductions cannot cancel free x's.
-Let e " = ([lll/xlv)1l2•••••• lls- i.e. e

-Then, rankDe:'O < n, byO.4.l9(iii).

IS > ..e: •

-Now,

£ n > IS

Ii f'"E:'_---:.J.n__)~ 0" I by 0.4.16 (v) •

-Further, 0" € HEAD, by the proof of 0.5.4.
-~, by A(n-l), e:" 13 ;) e:* € HNF •.

13 3> e::*€ HNF.
-Since these are the only cases for e::,we have A(n) •

.., by induction, (Vn ;?: 0) A (n)•
(ii)-By induction on the (restricted to HNF) rank of 0, as
defined in the proof of O.5.2(ii}. To avoid confusion with
part (L) above, we shall rename t.his as the "arity" of o.
-We use the following obvious properties which can be proved
with a straightforward structural induction on HNF :-

(8 E HNF) ACe: IS ~ e::")=> (arityne:'O = aritynE:O)
(8 € HNF) A (t: _!..:!-;> e ") =o- (arityOe;"n ~ arityOe::O).

-I.letpen) :: (e: !l> 0 E HNF) A (arityOoO s n)
=> (t: B ~ e:* E HMF).

-By part (L) I we have P (0) •

-Claim: P(n-l} => Pen), for any n > 0 :-
-Suppose Pen-I).
-Let e --" ~ 0 E HNF and arityDo 0 = n.·
-Then, 0 ;:;:: xa , 0" and 0'" E HNF.

30.2

-If e € HNF, then trivial; so, suppose e € NOH.

-If € = (AX. "h..l11l2' •.••• 11s' where s ~ 1, as in case 2 of

part (i) above, then 5 = Wlliui ~ll~ - • to 5 = la.5~ •

.. , e = AX. g' and g'" € NOH.

-As in case 1 of part (i) above ,we have g ~ _--,T)_> y and

BIn> y.

-Case 1: y = {l~.5"")x and 6'
-Let y"= [x/alo.......
-Now, 15'" € HNF =e- 0" € HNF ==> t : € ijNF,by O. 5 • 2

and 0.5.4.

-Further, arityOy"O = arityOc""O ~ arityOc"O = n-l.

+Case 2: (Aa.o"')x BIn:> (Aa.c"'~)x

}a or In
[x/a]O"'~ B,n > y :-

-Let y~. = y.

-Again, y'" € HNF and arityOy"O ~ n-l.

-In either case, e" S,n ~ y'" € HNF and arityOy"'O ~ n-l •.

-But, e" B > 00 n) y"', by 0.4.16{iii).

- .., by P(n-l), 00 B> 00* E HNF•

:., e = AX.e:" 13 > AX.oo B > AX.oo* = e* E HNFo

•

•- .. , P(n).

<:» by induction, (Vn ~ O)P(n).

31

O.5.9:THEOREM:-
SOL = {c € EXP! (there exists c'" € HNF) (c

Proof:-
-Let c € SOL.
-Then, e 13,n > E' E: HNF.
-By 0.4.16(iii), E 13>y
-:,by 0.5.8(ii), E 13>y

n > E" E: HNF.

a> y* E: HNF.

0.5.10:LEMMA:-
(v E: NOH) A {V le > v ")...(v" E HNF) =e- (the redex contracted

in v is leftmost-outermost).
Proof:-

-Let A [v] .!: (v 16 > v ")"(v' E HNF) => (the redex contracted in ..
is the leftmost-outermost).
-Claim: A[(Ax. E) (0)] :-

-Let (Ax.E)(o) 113)0 v' and v' € HNF.
a . ~-Either ,," . > (Ax.e") (0) - ~ - 2E v" = (Ax.e) (o') - ~ -

or v'"= [o/x]e and the leftmost-outermost redex was contracted_
-Claim: A[v] =e- A[v(e)], Vv E NOH :-

-Let v(e) 16) v'"and v" E HNF.
-If v'"= v (e"),then v" is still in NOH - t.
-.Ifv" = lJ(e) and v 1a).)..I, then lJ E HEAD, since v " € HNF ..
-Hence, by A[v], the leftmost-outermost redex of v was con-

tracted. But, this is the leftmost-outermost redex of v(e), since,
if V",E AI.EXP, then so is lJ- ~ to u E HEAD, by 0.5.1(i1) ..

-The only other possibility is for v (E) to have been a a-redex'"
.~which was the one contracted. But, this is leftmost-outermost.

-Claim: A[v] => A [Ax..v] , Vv E NOH :-
-Let Ax.vla > v'"and v'" € HNF.
-Then, v' a) AX.lJand v le > lJ.

32

-But, AX.u € HNF, by 0.5.2 (ii), and so Jl € HNF.
-Thus, by A[v], the redex contracted is leftmost-outermost in

v, which is leftmost-outermost in Ax.v.
-~, by structural induction, (Vv € NOH)A[v].

0.5.11:THEOREM:- (Wadsworth)
Let e € SOL. Then, the normal reduction sequence reaches an

expression in HNF. Further, if we denote the first expression in
HNF reached during the normal reduction sequence by e*, then :-

(e 13> e').,(e' € HNF) => (e* 13) e').
Proof:-

-Let e € SOL. If e € HNF, then trivial. Suppose not.
-Then, £ (3 > e'"€ HNF.
-By 0.4.27, there is a standard reduction sequence 0-.

e =: eO la > la > la > e =: e"'.el n
-Let p be such that e € NOH and ep+l € HNF.

P
-Then, the redex contracted in ep is leftmost-outermost, by 0..5.10.
-But, if there were a redex, Ri' that was left-outside any of the
redexes contracted in eO,el, •••••• ,ep_l, then it would have a
unique residual that was left-outside of the one contracted in ep'
by 0.4.25(11) -1J..
•-.., the sequence e 13 > ep+l is normal •

-Writing e* for ep+l' we see that e*

+
0.5.1.2:COR:-

The pJ:'edicateP[e], :: (e € SOL), is semi-decidable.
Proof:-

-Same as the proof of 0.4.29.

+

33

0.5.13:COR:- (Wadsworth)
(i) (e: € SOL) <=> (AX. e € SOL) •
(ii) (e:€INSOL) > ([e/x]e: €INSOL) > ((AX.e:)(e) €INSOL).
(iii) (e: € INSOL) > (e:(e) € INSOL) •
Proof:-

(i) -By 0.5.9, trivial.
(ii) -This is the tricky part.
-Let P(i) = (e: € NOH) A(rank{e:)= i) A(R is the leftmost-outermost
redex in e)A(e: a :> e~) => (the residual of R in e~ and [a/x]e:is
unique and still leftmost-outermost) A(rank([a/b]e:) = i).
-In P(i), by "the residual of R in [e/x]e:"we mean "the residual of
R relative to (Ax.e) (0) @ > [a/x]e". Also, the "rank" is that ..

defined on NOH in the proof of 0.5.2(iii).
-We leave the induction of (Vi ~ O)P(i) as an exercise.
-Now, let e:€ NOH and R be its leftmost-outermost redex.
-Then, by 0.4.14, we may construct the diagram :-

(AX'r (6) R' >,,_ (AX. [) (6)

[a/x]e ---"';"_--7'" [a/x]e:"',

R

where R' is the residual of R which is unique and leftmost-outermost
by the above.
-So, if E € INSOL, the normal reduction sequence from E e-•

e:= eO la> El i e > e:2 le >- • • • • • • • • • • • • I

is non-terminating and never reaches HNF.
-By the above argument,

"[a/x]e:o 1 a:> [o/x Jel,
is the normal reduction $equence from [a/x]E.
~But, (Vi ;;;e 0) ([a/x]e:i € NOH), by 0.5.2 (iii), since ei € NOH •
•., by 0.5.11, [a/x]e E: INSOL.

34

-Finally, (Ax.e;) (0) E INSOL, since it l3-reduces to an element of
INSOL, [O/XJE, by remark 0.5.7.

(iii) -Let E € INSOL. Again, consider the normal reduction sequence
from E, with notation as in part (ii).
-If Ei I AI.EXP, for all

18EO (0) ;;> El(0)
i ~ 0, then :-

113-----:>~ ,
is the non-terminating normal reduction sequence from E(O) and it
remains in NOH, since Ei E NOH, for all i ~ O. Hence, £(0) € INSOL,
by 0.5.11.

-On the other hand, let p be the first number such that Ep € AI.EXP.
-Then, £p = Ax.w and w € NOH.
-Now I by part (ii) above, ().x.w)(0) € INSOL.
-But, £(0) 13> (Ax.w) (0), and so, again by remark 0.5.7, we have
e (0) € INSOL ~

0.S.14:REMARK:-

Theorem 0.5.9 shows that we need only look at l3-reductions to
decide if an expression is in SOL. Theorem 0.5.11 narrows this down
to the deterministic procedure of checking the normal order
sequence. It also says that the first HNF-form produced by this
method is "minimal" in the sense that all other HNF-forms of the
expression are reducible from it.

This might suggest that normal reductions provide an efficient
way to get an HNF since it reaches this "minimum" one. However,
norma~ reductions are inherently inefficient and we feel that when-
ever a normal reduction reaches an HNF, alternative paths to HNF
may exist that are shorter. Further, the HNF thus produced will be
"better" or "tell us more" than the "minimum" one found by the
normal reduction.

As we mentioned in 0.4.26, we shall later be studying

35

B-reduction rules known as "inside-out" and ~ deterministic version
called "i'th reductions". We shall see that these also provide a
sufficient number of reductions to decide membership of SOL (6.8.2).
These reductions are much more efficient than standard ones and
may provide powerful tools for analysing reductions in general. To
indicate what we mean, we shall prove again the important part (iii)
of the above corollary: first using inside-out reductions :-

-Let e:(o) E SOL. Then, e:(o)----~w E HNF, by 6.8.2(iii).
e " 0 ..

.•, e (0),_,-~'-3>.;>e " (0..)-~"lF~~.f1P.->"7'w, by 6.1.9 (i) •

-By 6.1.12, e " E NOH =e- w E NOH -)t •

.. , E ~ e:"E HNF and" so, e E SOL.

I and, secondly, using i'th reductions :-
I-Let e:(o) E SOL. Then, i<e:(o)> E HNF, for some i ~ 1,

by 6.8.2(iv).
-Now, i<e:(o» = Api(i<e:>,i<o».
-By 5.0.11, i<e:> E NOH =e- Api(i<e:>,i<o» E NOH -'It
-.., i<e:> E HNF and, so, e E SOL.

To finish this section, we relate SOL, which,was defined from
Wadsworth's notion of head normal form, with Barendregt's notion
of "solvable" - [17J.
O.5.l5:DEF:- (Barendregt)

Let e:E EXP. Then, e:is SOLVABLE if there exist 0l'••••••'on
E EX~ such that e:olo2••••••on has a normal form.
a . 5 • 16 : LEl'1MA: -

(1) (e: is solvable) > (e: E SOL).
(ii) (e: ESOL) f> (e:is solvable).
Proof:-

(1) -Let e:E INSOL.

36

• -Then, by 0.5.13 (iii), for all °1, °2" ••••• ,on EO EXP, we still have

. EOl°2 •••••• on EO INSOL.

- In particular, E°1 °2, ••••• on does not have a normal form.

-.~, e Ls not solvable.

(ii) - Consider x(t.t.) EO HEAD. Then, x(t.t.) EO SOL.

-But, x(t.t.) (\ 02 •••••• 'On f3 7 x(t.A) o{oi ~o~ EO NF. All reductions

are of this form and, so, x(At.) is not solvable.

O.5.l7:DEF::":'

Let e: € EXP. Then, E is CLOSEDif' Ix [x is not free in e l = I.

o.5•18:LEMr-iA: -

(i) (e: is closed) ,,(E' f3 > e: ,..) ==> (E'" i scI 0sed) •

(ii) (e: € HEAD) => (e: is not closed).

(iii) (e: is closed) ,,(E € SOL) =>(e: is solvable) •

Proof:-

(i) -By O.3.l3(x).

(ii) -Trivial structural induction on HEAD.

(iii) -Let e be closed and in SOL. -Then,' e f3 > e ", € HNF, wheree:'"

is closed, by part (i), and so e:'" I' HEAD, by part (ii).

- ••, e " must be of the form :-

Axl' Xx2 • ••• • ••• AXs' Aa. Ay1 • ••••• • •Ayt •aw1w2 •• ' ••• ~wn" '

-Define: Ki r= AC1.Xc2 •......• Aci .b" Vi ~O.
e-Then, Eol02 osKn > E..olo2 osKn
s-->,. Ayi •Ay2······ oAyt.Knwiw2·· •••• w~
s

:>Xyi.Ay2 Xyt.b € NF•
•

~'l € is solvable.

, O. 5 •19 : COR:-

(V closed e:) (e: is sol v able <==> E € SOL).

Proof:'-

37

-By 0.5.16(i) and 0.5.18(iii).

0.6:Lattice Theory:-

0.6.0:REMARK:-
The techniques. of using lattice theory to build models of

computing phenomena, in particular the A-calculus, were realised
by Scott. For a detailed description, including motivation, we

" - < ',~ ,~' " " i' ", ", ~

refer to his papers - [18J - and to those of Reynolds - [19J -
. "-"-. _~~"'~"j~_'._':'~ ~:_:.~' ," .'!!',t .,>'.~,1¥'I.··tand Wadsworth - [20] • We confine ourselves here toa formal

presentation of the ideas involved and brief motivation.
0.6.1:DEF:-

A relation, ~, on a set, S, is a PARTIAL ORDERING if it is :-
(i) REFLEXIVE (Va E S) (a s a)

: (Va,b,c E S) «a s b) ...(b ~ c) =e- (a s cl) and(ii) TRANSITIVE
(iii) ANTI-SYMMETRIC: (Va,b E S) «a s b) ...(b ~ a) =o (a = b».

Let X be a subset of S. Then, the LEAST UPPER BOUND of X, UX,
is an element of S such that :-
(iv) (Vx E X) (x s UX) and
(v) (Vy E S) «Vx E X) (x s y) => (UX E y».

The GREATEST LOWER BOUND of X, nX, is an element of S such
that :-
(vi) (V){E X) (nX s x) and
(vii)..(Vy E S) «Vx EX) (y s x) =e- (y ~ nX».

If X is a two element set,·{x,y}, we write x u y forUX and
x n y fornX.

<S,!:>is a LATTICE if, for all finite subsets, both the least
upper bound and the greatest lower bound exist. It is a COMPLETE
lattice if the least upper bound exists for .all subsets.

38

0.6.2:LEMMA:-
(i) Let <8,=> be a set with a partial ordering. Let X be a

subset of X. Then, if eitherUX or nx exist, they are unique.
(ii) A finite lattice is complete.
(iii) In a complete lattice, greatest lower bounds of arbitrary

subsets also exist.
(iv) In a complete lattice there exist unique top and bottom

elements, T and l., such that (Vx € S) (l. s x s T).

Proof:-
(i) -LetLlx exist and let 1 be another least upper bound.
-By O.6.l(v), wehaveUX = 1 and 1 s Llx •

.., by anti-symmetry, 0.6.1 (iii), 1 =UX.
-Similarly, forf1X.
(ii)-Clear.
(iii) -Let XeS, a complete lattice.
-Then,U{yl (vx € X) (y s x)} exists. But, this isnX.
(Lv) -Let T = Us and l. := U¢.

+
0.6.3:MOTIVATION:-

Within most "data-types" found in computing, there is a notion
of "approximation" given by the "information content" of its
elements. This corresponds precisely with that of a partial order-
ing. On simple types (e.g. natural numbers, truth values), this
ordering is trivial (i.e. x = x only), but on the more complex ones
(e.g.~real numbers, character strings, sets, functions) the struct-
ure is correspondingly richer - see Reynolds [21J.,

The notion of taking least upper bounds is the "pooling" or
"anding" of the information available and, so, TJ.,'ehave compLece
lattices for our data-types to ensure we can always do this. Of
course, this process might lead to inconsistencies and this is what

39

Let X S S. Then, X is DIHECTED subset if (Vx,y· IS X) (there

the top element, T, represents. The bottom element, J., represents
what we usually have when we start a computation - i.e. no idea
about the final outcome!
O.6.4:DEF:-

Let <S,5> and <S',5'> be sets with partial orderings. Then, a
function, f:SS', is MONOTONIC if (Vx,y IS S) «x!: y) -> (f(x) E'

f(y»).

exists z IS X) (x,y = z).
Let <S,!:>and <S#,!:> be complete lattices. Then, a function,

f:SS', is CONTINUOUS if, for all directed subsets X of S :-
f(UX) = Uf(X) = U{f(x) [x IS X}.

Further, f is COMPLETELY ADDITIVE if the above equation holds
for any subset X.
O.6.5:LEMMA:-

(i) Completely additive -> continuous -> monotonic.
(ii) If S is finite, then continuous <-> monotonic.
(iii) Let <S,5> be a complete lattice and f:SS be monotonic.

Then, f has a minimal fixed point, pf IS S - i.e. :-
(f(l1f)= pf)

and (Vs IS S) «f(s) = s) -> (pf • sl)•
. .

(iv) If f is qontinuous in part (iii), then llfis given, con-
structively, by :-

....Pr'O'O'f:-
(i)-Trivial.
(ii) -Clearly, if X is directed and finite, then Ux € X.
-Hence, the result.
(iii) -l1fis given by n{s € s If(s) ES}. (This is the Tarski fixed-
point theorem.)

1

40

(iv) -Trivial.

O.6.6:MOTIVATION:-
Programs define computable functions between data-types. If

we give more information about the data to the program, it is
sensible to e.xpectmore information about the answer - or, at least,·
not less or inconsistent information. Hence, we expect computable
functions to be monotonic.

The simplest example of a directed set is a chain,
.{XilXi ~ xi+l' Vi ~ OJ.

We will often have an "infinite" object represented by a chain of
"finite" "approximations" which gradually IItend"to the object.
This is because a computer can only hold a finite amount of inf-
ormation at a time. For instance, we could represent the real
number ~ by giving a (directed) sequence of its decimal expansions,

.{3,3.l,3.l4,3.l42, ••••••},
where we read "3.14" as "somewhere between 3.135 and 3.145". Note
that the boundaries are exactly and finitely specified. We will
make precise this notion of "finite approximation" presently.

Now, the sensible way for a computer to evaluate a function on
an infinite object, U{ xi'i ~ O}, is to evaluate it on the finite
~proximations, xi' and hope that this leads to the correct answer
- i.e. that :-

f CU{ Xi'i ~ O}) = U{ f (xi)'i ~ O}.
ThiS hope is not forlorn if f is continuous and, so, continuity is
another property we expect computable functions to have. The fact
that they then have minimal fixed points enables us to characterise
programming phenomena like looping and recursion. We shall not be
ocncezned w.ith this in this thesis, but there, is a connection with
the fixed-point combinators, Yi - see section 7.1.

W··'

41

We do not expect computable functions to be completely
additive.
0.6.7:DEF:- (Scott)

Let <S,~> be a complete lattice. Then, we define the set of
subsets, .QE., of S by X ~ OP if :-

(L) (x ~ X) A (x = y) =e- (y ~ X)

and (ii) (0 is directed) A (UD s X) ==> (D n X ;t ¢) •

o. 6 • 8: REMARK.:-
We qQ."t'lotpr()po~'~,wt:.9.,q~~,P??s,:t;,8~,9~q~y.iJ:l ..t)i~~~l;e~,is.Howevel?"",

c , OP does form a set of open sets which gives S <l:. TO+t.opoLoqy under
" ... '~ • ~. \ + ~ tj",,',\.),.~. Jt ,.' ."'?"I :.\ \" "'>',1 J"I ., '. ,.,.. Ht· ~..H '".t'. " .~ .'t~.t .~(t:'.·,~~·,t',r ,\"t :),~.. ,'/ ,~" '.i "~~', ~,P;~Iyr~'. ""....."-,..'. il't';J>'~ .\,;, '., • •.. ~("~ .,<~"'~ :\.Y .: ..",It' r

which the topological notion of continuity does correspond with
that defined in 0.6.4. For the development of the theory of partial
orderings, complete and continuous (see below) lattices from the
point of view of To-topological spaces, we refer to Scott - [22].
We only defined the class OP so as to introduce the following
concepts",
0.6.9: DEF:- (Scott)

Let <S,~> be a complete lattice. Then, we define the TOPOLOG-
ICAL ORDERING, -<, as fo11ows:-

(x -<. y) if (there exists X ~ OP) (X, s {z IX ~Z})A(Y' ~ X).

Then, x is ISOLATED if x ~ x. Finally, the lattice is CONTINU-
OOS if,

(Vy ~ S) (y = Urxlx ~ y}).
O.6.10:MOTIVATION:-

~n our data-types, we have many.infinite objects. In order to
be able to compute over them, as described in 0.6.6, we have to be

."

able to represent them by a sequence of finite objects. The relation
".(ft can be read as "is a finite approximation of" ...for instance,
with sets, X --< Y iff X is a finite subset of YJ while, with partial
functions, f -II{ 9 iff 9 is defined and agrees with f whenever f is

42

defined and the domain of f is finite. Hence, we expect our data-
types to be continuous.
O.6.ll:LEMMA:- (Scott)

Let <S,!:>be a complete lattice. Then,
(L) J. -< x,

(ii) x -< y -> X : y,

(iii) x ~ Y E Z -> x < z,
(iv) x § Y < Z -> X < z,
(v) x < Z and y -< Z =c- X u y -< z,

(vi) x is isolated -c=o {z [x s z} e: OP,
(vii) if D is directed, then x -< tln <-> X < d , for some d E D.

Further, if 5 is continuous* then,
(viii) x -< y -> X -< z...(y, for some Z E 5,
(ix) (x!: y) <-> (z ""'(X -> Z -< y) ,

(x) (x -< y) <-> ({D is directed),.,(y s UD) -> (x s d)...(d e: D» ,
(xi) the function, fx : 5

y I~---->~x n y, is continuous.
--->"'5

Also, parts (viii) and (ix) together imply 5 is continuous ..
Proof:-

-See Scott [23].
"

+
0.6.12: DEF:-

Let <S,!:>be a set with a partial ordering. Then, 'it has the
ASCENDING CHAIN CONDITION, ACC, if for all ascending ch~ins,

there is a finite number, n ~ 0, such that si = sn' for all i ~ n.
0.6.13:THEOREM:-

Let <S,E> be a countable lattice with the ACe. Then, it is
complete and, if D is a directed subset, then UD E D. Thus, S is
continuous with all its eleroents isolated" Further, 'if <5",5"> is

43

a complete lattice and f : S -+ S' is monotonic, then f is also
continuous.

Proof:-
-Let D = {dO,dl, ••••••} ~ S.
-Define: Po := do and Pi+l·:= Pi U di+l•
-Then,tpo ~ PI ~ P2 ~•••••• , clearly.
-By the ACC, there are only finitely many different Pi's.
-Let w be the largest one.
-Clearly,.(Vi ~ O)(d. s PJ.' ~·w).

'J.

-Suppose, (Vi ~ 0) (di e a).

-Then, by a trivial in~uction, ~Vi ~ 6)lp~ E ~)

-:., n = UD and, so, S is complete.
i"e; 'w

~,,' .

-Now, suppose D is directed.
-But; w = Pk' for some k ~ O.

= dO u dl U • • ••• • u dk •
-Since D is directed, there exists n ~ 0 such that w ~ dn•
- :., .w = dn e D ._i.e •U D € D.
-Thus, part (ii) of definition 0.6.7 is always true.
-i.e. (Vs € S) {{zls e z} € OP).
-i.e. (Vs € S) (s is isolated), by 0.6.11(vi).
-i.e. (Vs € S) (s = U{xlx--< s}), since s -< s ,
-i.e. S is continuous.
-Further, if f : S -+ S' is monotonic and D is directed in S, then
feUD} :! Uf(D).
-But", f (llD)=f ('dl € f (D). . , , .

-:.,f(UD)~ Uf(D) - and, so, feUD) =Uf(D) - i.e. f is continuous.

o.6.1·4:REMARK:-
The ACe allows lattices to have "downwards pointing limit

pOints" but not "upwards pointing" ones. They ..canbe, however,

44

infinitely "broad". The lattices we construct in chapter 1 have
the stronger property of "finite depth" (see below), in which
"d.p.l.p.IS" are not allowed either.
O.6.15:DEF:-

Let <5,:> be a set with a partial ordering. Then, it has
FINITE DEPTH if there exists a positive integer n such that :-

Se seco _ 1 _....•• _

In particular, it has a FINITE DEPTH OF n if n is the least
such number.
O.6.16:LEMMA:-

Finite -> finite depth -> ACC.
Proof:-

-Trivial.

O.6.17:DEF:-
Let A be a set and <L,:>, <M,:~> be lattices. Then,

(L) L + M is the disjoint union of L and M, identifying the T.' s
and !'s. We induce an ordering, ~~~, on it as suggested by the
picture :-

T

•
(i~) L x M is the cartesian product of Land M. Then, we define
(a,b) :A~ (c,d) iff a ~ c and b :~ d.

"
(iii) (A ..M) is the set of functions from A to M. We define
f !'~g iff fta) :' g(a), for all aE A.
(iv) '~cr.,'+' Ml is the set of monotonic functions from L to M. Same
ordering as in part (iii).

45

(v) [L ~ M] is the set of continuous functions from L to M. Same
ordering as in part (iii).
O.6.18:THEOREH:- (Scott)

(i) All the above orderings are partial orderings that make
L + M, L x M, (A ~ H), and {L ~;M} into lattices.

(ii) If L and M are complete, then so are L + H, L x M,
(A ~ M) , . {L ~ M} and [L ~ M]. (*)

(iii) If L and M are continuous, then so are L x M and [L "t M].

Further, if T is isolated in both L and M, then L + H is continuous

flM --;>.....S and fm : L -~> S

m • ;> f (I,m) I ,_,-;>-:?J> f (I,m) •
proof:-

-See Scott [24],

O.6.19:DEF:-
Let <L,E> and <M,E'> be complete lattices. Then, L is a

RETRACTION of M if there exist maps f E: [L ~ M] and g E: [M + L]
such that gOf = i~, where idL is the identity map in [L ~ LJ.
Further, L is a PROJECTION of M if we also have fOg 5 i~ .IE. [M ~ M]
In this case, we write :-

f
L <J M ,

g

although we usually omit the maps, f and g, when it is clear what
they are. Note that f and g are not neccessarily unique. We call
fthe inclusion mapping and g the projection mapping.

-----------~------------~-----------------------------------(*) Also, the ACC and finite depth are preserved by + and x.

46

0.6.20:THEOREM:-
Let L and M be complete continuous lattices. Then, L <l L + M,

L <l L x M and L <l [L -+ L].
Proof:-

-First two parts, obvious.
-Define: f L)- [L -+ LJ, where fl . L > L..

1 I > fl xl >1
-Define: g . [L -+ LJ)L. •

h > hCt>f
-Then, L <l [L -+ LJ.

g
-N.B: there exist other suitable pairs, <f,g> - see Scott [54].

+
O.6.21:DEF:-

II()

Let «Li'+i,i+l'+i+l,i»i=O be a sequence of complete lattices
such that,

Li <l Li+l,
by 'i,i+l E [Li -+ Li+l] and +i+l,i € [Li+l -+ Li].

Then, the INVERSE LIMIT, L , is defined by :-eo
Leo := {<lo,11'12'············>fli € Li and li = 'i+l,i(li+l)}.

We define an ordering on L by e-•II()

II()

~=o if (Vi Cl: 0) (li 1£) •i=O s E

We define +i . E [Li -+ LjJ by composition of the'maps we,)
already

..

have, with 'i,i being the identity. Further,

'i,1I(): Li > Lw
li :> <+i .(li»~ 0,J J=

and,

+1I(),i: L
II()

<lj>j=O~ Ii
Finally, the DIRECT LIMIT is

47

0.6.22': THEOREM:- (Scott)
(i) In the above definition, L is a complete lattice where,

eo

if S is any subset of L , then :-
eo

Us = <0~.i (U{ .p . (s) Is € S}} > i
eo
=0 'j=O), 410,)

and where {~. i(U{~)'(s) Is € S}) Ij ~O} is a directed chain in Li•), eo,

In particular, if D is a directed subset of L , then :-
eo

U D = <U{ ~ . (d) Id € D} > i
llO

=0•eo,1

(ii) The maps'~i .,.p. and ~ i are continuous.
,) 1,eo eo,

(iii) For all i s j, Li <I Lj and Li <I Leo.

(iv) For all 1 € L , 1 = L:J~i o~ i(l), the limit of a
eo i=O'eo eo,

directed chain.
(v) Let S be a complete lattice. Then,

(f € [S -+ L]) <-> (Vi ~ 0) (, .of € [S -+ Li]) •
eo "',1

(vi) If Li is continuous, for all i ~ 0, then so is L_.
Pro'of:-

(i),(ii),(i:li) and (iv) -Trivial~
(v) (-» -Trivial, since composition preserves continuity.
«-) -Now,

f(s)' ~ L:J. 'i 0, iof(s), by part (iv) above.i==O ,00 00,
-~hen, f is continuous, by 0.6.18(ii), since it is the limit of
continuous maps.
(vi) -See Scott [25].'

48

O. 6.23 :DEF: -
Let <S,~> be a complete lattice. Then, a subset, B, of S is a

SUB-BASIS of S if, for all s E: S :-
s =U{b e:Blb s s j ,

Further, it is a BASIS of S if it is closed under the taking
of least upper bounds of finite subsets - i.e. if :-

(B'"E 1}),. (B".is finite) =» (UB...· e:B).
We call the lattice COUNTABLY BASED if it has a countable

basts ,

O.6.24:LEMMA:-
Let <S,!!:>be a complete lattic~<:Theil,'"

(i) S is a basis of S,
(ii) S is countably based <-> S has a countable sub-basis,
(iii) S is countably based -> S has cardinality at most that of the
continuum,
(iv) If B is a basis of S, both' {b e: Bib = s} and' {b e: Bib -< s I are
directed subsets of S,

(vi) If <L,~"'>is a complete lattice and both S and L are countably

(v) Let B E S. Then, S is a continuous lattice with sub-basis B <->
{Vs e:S) (s = U{b 'e: Bib -< s}),'

based, then it does ~ necessarily follow that [S + L]is
based.

Proof:-
(i),(ii) and (iii) -Trivial.
(:tv)-First part is triv.:i,.aland the second is true by O.6.ll(v). '
(v) (-» -Let S be continuous and have a sub-basis B.
-Then,s = U{xlx -< s l, by continuity.

= UdJ{b e: Bib s x} Ix <. s}
= U{b e: Bib s x -< s} = Lkb e: BIb -< s}, by O.6.ll(iv).
~ s, by O.6.ll(ii).Hence, we have equality throughout.

49

«""') -Now, s = Ufb E Bib -< s} =U{XIX -< S} s s, by 0.6.ll(ii).
-Hence, we have equality and S is continuous.
-Also, s = U{b E Bib -< s} s U{b e Bib = s}, again by 0.6.ll(ii).

! s.
-Hence, we have equality and B is a sub-basis.
(vi) -See Reynolds - [26] - for a counter-example.

U 'i (Bi) •1=0 ,eo

0.6.25:LEMMA:-
(L) .Let.Land M ..be,;.comple.te.contj..lfl,lQus.cQ,untpbly,based

Then, so are L x M, [L ~ M] and, provided the v's ar.eisolated,
L + M.

(ii) Let Li <J Li+l, for all i ~ 0, where each Li is a complete
continuous lattice with countable basis Ei such that 'i,i+l(Bi) 5

Bi+lo Then, the inverse limit, L_, is countably based by,

Hence, if Li is countable for all i ~ 0, the direct limit forms a
countable basis for the inverse limit.

Proof:-
-See Reynolds [27].

t
0.6.26':MOT"IVATION:-

We expect our data-types to be countably based since elements
of a countable set are something that can be represented exactly
"and finitely in a computer - e.g. bY'usingtheir numerical position
in some enumeration ...Then, by 0.6.24(v), the computer can get at
any member of the data-type by a continuous approximation of these
"finite" "basic" elements. Notice that, by 0.6.24(iii) and 0.6.25,
the cardinality of our data-types is always bounded by the continu-
um, no matter to what heights of functionality we rise.

50

We have listed the properties of lattices we shall be using in
this thesis. However, in section 7.5, we shall consider briefly
semi-lattices, and so we end this section with them. We use a more
richly structured notion of semi-lattice than that usually defined,
in that we insist on l.u.b.'s if some upper bound exists.
0.6.27: DEF:-

Let <S,~> be a set with a partial ordering. Then, S is a SEMI-
LATTICE if, for all non-empty finite subsets, the greatest lower
bound exists and, provided some upper bound exists, so does the
least upper bound.

Further, S is DIRECTEDLY COMPLETE if the least upper bound of
all directed subsets exists. In this ca~e, we define continuous
functions, open sets,~, isolated elements and continuity in the
same way as for complete lattices.
0.6'.28 :LEMMA:-

(i) If S is a semi-lattice, we can extend it to a lattice by
adjoining a "top" element.

(ii) If S is a directedly complete semi-lattice, then the
greatest lower bound of all non-empty subsets exists. Further, the
lattice extension, S u' {T}, is complete.

Proof:-
(i) -zn S u {T}, we extend the partial ordering so that s s T, for
all s E S.
-Let a,b E S. If a and b have a common upper bound in S, then a u b
exists. "'Otherwise, T is the only upper bound in S uJr) and, so,

aub=T.
-aence, S u {T} is a lattice.
(ii) -Let X S S, where S is a directedly complete semi-lattice and
X is non-empty.
-Let a,b 5 x, for some x E X. Then, a u b exists, since S is a

51

semi-lattice, and a u b ~ x.

-Thus, the set' {aI (Vx € X) (a !: x)} is directed - in fact , it is

closed underu. (Note that if X were empty, there is no guarantee

that a ub exists.)

-Hence, U{al (Vx € X) (a § x)} exists and, as in 0.6.2(iii), is nX.

-Now, let X S S u {T}•

-If X = ¢ or T' lE X, then nX is given by T.

-Otherwise, X is a non-empty subset of S.

-So, by the above argument, nX exists •

.., (VXc S U {T})<nx exists).

- .., (VXcS U {T})(lJXexists and is given byn{al(Vx € X) (x !: a)}).

+
0.6.29:LEMMA:-

Let <S,=> be a lattice and let S~ c S and be closed under ~ -

i.e. :-

ea € S'),. (b s a) -> (b € S~) •

Then,

(i) S~ is a semi-lattice.

Now, suppose S is complete and S' is directedly complete. Then,

(ii) ex is open in S) -> (X n S.. is open in S..),

(iii) (Vx'a: € S..) «x' -< s: in S) -> (x " -< s: in S'».

Further, if S is continuous, then,

(iv) S.. is continuous,

(v) (X'" is open in S"') <-> (there exists X open in S) (X'" = X n S"'),

(vi) (~x' .r: € S') ({x'" .0(s: in S) <-> (x' -< y" in S"»"

Proof: ...

ti) -We assume that S'" ;t ¢ - otherwise all parts are trivial.

-Then, J. E: S".

-Let X be a finite subset of S....

-If X has an upper bound, z say, then ux in S is such that Ux 5 s ,

I _

52

Thus, Ux IES"'.

-Now, suppose X is non-empty and takenx in S. Then, there is an x

IEX such that nx s x and, so, nX IES ... since X c:S

(ii) -Let X be open in S.

-Let x IEX n S... and x !:y IES< Then, y IEX n S"'.

-Let D be directed in S ... and UD IEX n S"'.

-Then, D is directed in S andUD € X.
•

;It ¢ - (there exists d IED) (d IEX)•-.., D nX i.e.

-But, d s UD IES'"I and so dIES".

- •., D n (X nS"') ;It ¢•
.... 'l \.

- •• , X fI S... is open, in S'.

(iii) -Let x'".x: € S... and x" --< Y'" in S.

-Then, there exists X, open in S, such that Y" IEX and X c
~.

, {z € S Ix~ s zL

-By part (ii), X nS'" is open. But, Y" lEX flS'" and X os- c:

, {z '" € S '"rx'" = Z ... } •

- :., x " -< s: in S".

(iv)-Suppose S is continuous and let s .. · IES...

-Then, s ... -U{xlx ~ s ... in S}

= U{xl x -(s'" in S...}, by part (iii) •

• s ..., by 0.6.ll(ii) •

(v) «-) -By part (ii).

(-» -Let X'" be open in S....

. -Hence, we have equality throughout and S'" is continuous.

-Let X~be its closure in Sunder 5.

-Clearly, if x IEX and x 5 y, then y E: X.

-Let n be directed in S and Un IEX.

-Then, x'" s Un, for some x" IEX.., by the construction of X.

-Let n'" : -' {d n x"l d € n} •

-Then, ~;. is directed and, by 0.6.ll(xi), Un'" .. <Un) rt x'" := x

53

.., (there exists d " e: D "')(d" e: X"')• !
!

t
I
I
I
!
i

t
I

.., (there exists d € D) (d M x > € X"').

•., (there exists d € D) (d € X), since d n x > !: d.
H' X is open in S.

-Clearly, X" = X n S"',since X'" is closed under s in S ...
(vi) (_-")-Bypart (iii).
«==) -Let x"',y'"€ 5'" and x"'-< y" in S
-Then, there exists X .. , open in S "',such that y '" € X" and X'" £

- ~"'
I
!

. {z .. Ii:: s"lx" !: a " l,

-Define X as in part (v) and, then, X is open in 5, s : e: X and X C

. {z € six" ! al,
. '" ..- .., x -<. y in S.

O.6.30:MOTIVATION;-
So, we see that in restricting our data-types to semi-lattices

we make them like the "bottom halves" of lattices. The "incorrect"
or "inconsistent" elements are not represented and, so, only
"consistent" information is allowed to be "pooled". This may be a
sensible thing to do. However, since the theory goes through for
lattices, we might as well use them - we can always "prune" them
down to a suitable semi-lattice afterwards, as is done in 7.5.

O.7:Semantics:-

O.7.0"':DEF:-
An ordered pair, <S,f>, is a SEMANTICS of the A-calculus if S

d' •

is a set and f : EXP --;>+ 5. It induces a SEMANTIC EQUIVALENCE,
=<S,f>' on EXP by I-

e: :: <5 If> cS if f[~ == f[0] •
We define an ordering, ~, on semantics by inclusion of the

54

induced semantic equivalences - i.e. :-
<S,f> :s; <S',f '> if = c = . ,-<S,f> - -<S" f '">

where we are considering the semantic equivalences as subsets of
EXP x EXP. If we have <S,f> s <S',f'> and <S',f"'> s <S,f>, then we
say the two semantics are EQUIVALENT and write <S"',f'> ==<S,f>.

We say the semantics <S',f;> is DERIVABLE from <S,f> if there
is a function, g :S -+- S;, such that f'"= g of. Further, if Sand S;
are topological spaces and g is continuous, then <S',f'> is
CONTINUOUSLY DERIVABLE from <S,f>.
O.7.1:LEMMA:-

(i) A semantic equivalence is an equivalence relation on EXP.
(ii) ==is an equivalence relation on semantics.
(iii) s: is a partial ordering on semantics modulo =.
(iv) Let p be an equivalence relation on EXP and [pI be the

map that produces equivalence classes. Then, <EXP/p, [p]> is a
semantics of the A-calculus.

(v) <S,f> ==<EXP/==<S,f~[==<S,f>]>.
(vi) If <S,f> is a semantics, then f(EXP) and EXP/==<S,f> are

isomorphic as sets. Further, if S has a partial ordering, then we
can induce a partial ordering on EXP/==<S,f> such that the isomor-
phism is monotonic in both directions. Also, if f(EXP) is a direct-
edly complete semi-lattice, then so is EXP/=<S,f> and the isomor-
phism is continuous in both directions.

(vii) Derivable <-> ~.
(viii) <EXP,id>, where idD:ED := E, and ~::{*},const>,where

const[e:D := *, are the miniJnal and maximal semantics - i.e. :-
<EXP,id> s <S,f> s <{*},const>.

(ix) <EXP/~, [~]> s <EXP/cnv, [~J>

:S; <EXP/13-n-cnv, [13-n-cnv] >.- -

55

(i) , (ii) , (iii) , (Lv) . and (v) -Trivial.

(vi) -Define p : EXP/= S f -~> f (EXP)•< , >
[-&J > f [E]

-Clearly, p is well-defined, 1-1 and onto.

-Hence, p is a set isomorphism with inverse p-1

-If S has a partial ordering, =, we induce an ordering, = Sf' on< , >

. EXP/ = <S ,f> by :-

e if f [E] s f[o].

-Clearly, this ordering is well-defined and makes p and p-l.mono-

tonic.
,'. .(~"','.:r ,.t I~ -qt," ·•• "I'!f' ,~.,"~.. ~.(' ">'~.t

-Let f(EXP) be directed1y complete. Let D bea directed set in

EXP/=<S,f>. Claim: UD is given by p-1(IJp(D» :-

-Since p is monotonic, p(D) is directed in f(EXP) and so

p-1(Up(D» exists.

-Now, d E D =e- p (d) E p (D) =e- p (d) ~ Up (D) -> d !: P-1 OJp(D)) ,
-1since p is monotonic.

-And, (Vd e D)(d!: z) =c- (Vd E D}(p(d) = p(z»

-> (Up (D) = p (z))

-1-> (p (Up(D» s z).

-Hence, claim is established •
•

- .. , EXP/= < S, f> is directed1y complete.

-Clearly, p(lJD) = pop-1(lJp(D» =Up(D) •
•

- .. , P is continuous.

-Let S" be directed in f (EXP)•

~Then, p-l(US") = p-1 dJpop-1 (S..» =Llp ~1(S..) •
-1-Hence, p is continuous.

(vii) -Clearly, derivable -> ~.

-Suppose <SI f> :S <S.., f'>. Wehave :-

56

S 2 f(EXP) < f EXP f" > f" (EXP) c s ..

p-l\ [i \f]- f-
EXP/= S f S EXP/= s ..'f;< , > <, >

definee by e ([E]) := [E]"'.

,
where we

-Now, e is well-defined, since if E =<S,f> 0 then E =<S",f"> 0, by

the definition of s.

-Define g : S --:>~ s ..

s f :>{p"oeop-l(s), if s € f(EXP)}

anything ,if s I f (EXP) •
.,..1

-'l'hen, gof[£:] = p"o6op of [ED = p'oe([E]) = p"([e]') == f"[e].,
-Hence, <S";f'> is derivable from <S,f>.

(viii) and (ix) -Trivial.

0.7. 2 :DEF:-

Let <S, f > be a semantics. Then, it is :-
a aana-MODEL if <EXP/~, [~]> S <S,f>,

,a (e-)MODEL if <EXP/cnv, [cnv]>s <S,£>

and a 13-n-MODEL if <EXP/13- n-cnv , [13- n-,S!!Y_] > S <S, f >.

The semantics is SUBSTITUTIVE if is a substitutive-<S,f>

relation on EXP.,

The semantics is NORMALif, whenever £:has a normal form and

o does not t then E j. <S , f > ' 0,.

The semantics is SOLVABLE if, whenever e € SOL and 6 € INSOL,

then It I-<S , f > o.
0.7. 3.:LEM~1A:'"

All the semantics defined so far are substitutive and, except

for -< {*} , const >, normal and solvable.

Proof:-

-:Triv1al.

'+

57

O. 7 .4 :REMA,RK : -

The trivial semantics, <EXP,id>, is only worth investigating
f if all we are interested in is the syntax of A-expressions. The

minimal a-model, <EXP/~,[~J>, tells us a bit more than the pure
syntax in that we are informed that a-convertible expressions mean
the same thing. Then, the minimal model and e-n-model tell more and
more about the meaning of A-expressions .We shall not really be
interested in any semantics that are not, at least, models.

Of course, we do not always gain insight by considering larger
(under ::;;)semantics. In the extreme case, the degenerate semantics,
<{*},const>, swamps all meaning with the statement :"a11 expressions
are equal". Our intuition tells us that some are more equal than
others - for instance, expressions with a normal form have got
nothing to do with those in INSOL - hence, the definitions of nor~-
a1ity and solvability.

We expect our,semantics to be substitutive since,rep1acing
parts of programs with other parts that have the same meaning,
should not affect the overall meaning of the whole program.

Still, the minimal model, based only on B-conversion, does not
satisfy our intuition, even though it is normal, solveab1e and
substitutive. We have said before that our intuition is not able
to distinguish between 'elements of INSOL and the same is true for
the fixed-point combinators, Yi, but <EXP/cnv,[~]> distinguishes!

We can crudely resolve part of this problem by deriving from
the minimal model :-

'"

",where we have declared all the elements of INSOL equivalent.
However, although we have retained normality and solvability we
have lost substitutivity! For, while AA = AAA, since they are both
in INSOL, x(AA) fo x (At::.M, since they are both in SOL and are not

BEST COpy

AVAILABLE

Poor quality text in
the original thesis.

58

We can crudely resolve the rest of the problem by

s-convertible.

further, the model :-

<EXP/cnvv~'[~v~]>'

where we have declared equivalent all elements that do (,.

normal form - i. e. c '" 0 if neither c: nor 0 have a norn, to J.

This certainly equivalences the Y. I S but, clearly, we ' ~ve 9or C (I
1

far - we do not want Y = ~~ : the model is unsolvable! 0'1", h .'vC

also lost substitutivity : Y(~x.y) B > y E NF but (b ~ x,y)

INSOL and, so, Y(Ax.y)c~ (~~) (~x.y).

Decent semantics should lie somewhere in between ,h~~(. t~
a good place to start looking is theirsubstitt.tive cl" •. I_c.::ol

rictions.

O.7.5:DEF:-

Let p be any relation on EXP. Then, ~ is :'·:-.sSUBS'IL

CLOSUREif it is the smallest super-relation (I'- P that

uti ve , Further, X is its SUBSTITUTIVERESTRIC'l'JONif i;, . I..

largest sub-relation of p that is substitutive.

O.7.6:LE~.A: -

(i) A(c: po) <=> (c: = C[c:"]) ...(o = C[o"J) ...(c " po").

(ii)
v ' ,

(c: p 0) <=> (V contexts C[]) (C[c:] p C[o]).

(iii) (p is t ran sit i ve) =/->(S is' t r ansit i ve) •

(iv) (o is a partial ordering) =c- (¢ is a partial - re)

(v) (p is an equivalence relation) => (X is an equ,

relation) •

Proof:-

-Trivial.

0.7. 7 :EXArvr_PLE:-

Let § be the transitive closure of the substitutive

59

~VINSOL. Then,
(L) § is an equivalence relation,

(ii) <EXP/cnv INSOL,[cnv INSOLJ> s <EXP/§,[§]>-v --v
(*)

r

f

Proof:-

and (iii) <EXP/§,[§]> is a substitutive normal solvable model in

which all elements of INSOL are equivalent.

(i) and (ii) -Trivial.
(iii) -<EXP/§,[§]> is substitutive by definition and it is a model,

equivalencing all elements of INSOL, by part (ii).

-We will show later that it is ~ a normal solvable semantics and,

so, it is itself normal and solvable (0.7.9{x}).

O.7.8:REMARK:-
We do not think, however, that this model solves the preb1em

with the fixed-point combinators. We sketch a possible proof of

this. First, establish a Church-Rosser property for §. Let 1* >
be the substitutive closure of INSOL (N.B. E INSOL 8 iff E/8 E

* 1*INSOL) and let -,-->~be the transitive closure of -). Let 'I be

the "transitive closure of s > v--*-)~ • Clearly,

(i) § is the transitive closure of the symmetric closure of 'I - F·.
i.e .. :~

'(E § 8) <=> (there exist EO' E1,•••••• ,En such that E = EO and

8 = En and, for all 0 ~ i < n, either Ei ,. Ei+l ~ Ei+1 'I Ei)·
The next two stages in this argument can be" deduced trivially,

later, by reference to another semantics in which INSOL is charact-..
erised (0.7.9(xl).

(ii) (8,8'"and C [8] EINSOL) =o (C [8"] E INSOL) ,

(iii) (8 B> 8"),.(C[8] €INSOL) =o (C[8"] EINSOL).

For the next two stages, we need a notion of rank on A-expre-

--
(*), Barendregt calls this system HAin his thesis. I

1

60

ssions as qiven in 0.4.18. Then,
.,.._._1_*_>7€ ..) => CC 0/ a J€

1* > 0') => ([o/aJ€:

we can prove :-
1* > [0/ a J€:..),(iv) (€

(v) (0 *--)07 [0'" /aJ€) ,
by means of a "course-of-values" induction on the rank of e (N.B.l:
the proof of part (iv) also requires 0.5.l3(ii) - N.B.2: alternat-
ively, as mentioned in 0.5.3, we could prove these with a structural

. induction on e , enriched with the technique of COVO, as described
in section 4.1).

Now, we can get at,
(vi) Ce 1* 3> 0) A(€ 1* y) (0 1* > w) " (y 1* > (tl) I> =>

lS)o),,(£ 1* * lS)(vii) (€) y) => (0 :> w) ,,(y w) I

!by structural inductions on e, using parts (ii),(iii) ,(iv) and (v).
From these, we can immediately deduce,

* * * *(viii) (e > 0) " (€ > y) ==> (0 > w)" (y ;> w) ,

lS * * 'lS(ix) (€ 3> 0) ,,(£ 3>)} ==> (0 3> w) ,,(y 3> w) ,

S > * * 13>(x) (E 0),,(£ . 3>)} > (0 3> w) " (y w) ,

(xi) (£ ,. 0)" (£ t)) -> (0 ,. w)" (y , w),

(xii) (€ § 0) <-> (e: 1f w)" (0 ,. w) I

where the last part comes from parts (i) and (xi). Next, we claim,
(xiii) (Yo e;> C[oJ) =» (0 € SOL) ,
(xiv) (Y1 S:> C[oJ) =o- (0 € SOL) • (Conjecture)

Now, part (xiii) is trivial, since YO S :> E implies that e
. nAf.f (rr), for some n ~ O. We feel that Y1 (and probably all the
Yi's~ has a similar property. By the way, it is not true in general
that an expression with no unsolvable sub-expressions (like '1)
only has reductions ''I7iththe same property'" i.e. unsolvable sub-
expressions can be created during a a-reduction : EA £(A6).

Anyway, conjecturing pqrt (xiv) to be true, we must have,
a(xv) (Yo ,.e::) -> {Yo 3> El,

61

and, hence,
(xvii) {YO/yl},

since, otherwise, by parts (xii),(xv) and (xvi), we would have
YO E!!Y Y1 ~ ~ to 0.4.8.

Let us tackle this problem from the other direction, namely
with the substitutive restriction of 'cnv rv; this leads to greater-v

success •
.O.7.9:EXAMPLE:-

Let p be a relation on EXP defined by :-
.. '13

(e: p 6) if (c -) v E NF) """> (0

Then,
(i) (c does not have a normal form) """> (V&· E EXP) (e: p 0),
(ii) p is reflexive and transitive,
(iii) (e:' 'cnv IV 8) <-> (e: p 6)A (6 p e:).

-v
vIn this ca.se,we write e < < 6 for e p 6 and say that e "IS

.EXTENDED BY o. 'l'hesubstitutive restriction of 'cnv IV is written !:!-v

arid'calledEXTENSrONAL' EQUIVALENCE. Then,
(Lv) (s !:!6) <-> (e: <<0) " (6 << e:),

(v) <EXP/!:!,[!:!J> is a substitutive normal solvable model and « is
a well-defined partial ordering on it,
(vi) Expressions with a normal form are maximal - i.e. :-

(s a;> v € NF) A (e < < 0) -> (e' on v 0) -> (c = 0),-
(vii) Elements of INSOL are minimal - i.e. :-

.. (e: E INSOL) -> (vs € EXP) (e: « 0)•
Hence, (Ve:,0 E INSOL) (e:= 0), and (e: E INSOL) -o=e- (e: = t.t.),

(viii) (Vi :2! 0) (Yi = YO),
(ix) l1enc.e,~EXP/§ , [! J> S <EXP/» , [=]} ,

(x) We can resolve the forward refe;rences given in 0.7.7 (iii)
and at stages (ii) and (iiit of remark 0.7.8.

62

,Proof:-
(i),(ii),(iii) and (iv) -Trivial, using 0.7.6(ii).
(v) -By definition, ~ is substitutive.
-By 0.7.6(iv) and part (iv), « is a well-defined partial ordering.

......> (V contexts C[I) (C[EJ'cnv 'V C[o])-v

-Also, scriv Cl<=> (V contexts C[]) (C[e:) 'cnv C[a])-

-Hence, the semantics is a model.

-,
J

-If e has a normal form and a does not have one, then e: not (£!!:Y V 'V)

and, so, e: I a. Thus, the model is normal.
-Let e E: SOL and Cl E: INSOL. Let C [] be the context which first
closes c and then applies the construction of 0.5.l8(iii) - i.e.
C[] is of the form: ().xl.).x2 •••••••• Ax • []) (01) (02) •••••• (0) (R)" , r s n
Then, C[e:] has a normal form but, by 0.5.l3(i) and (iii), C[o] E:

INSOL. So, in this case, C[E] nocrcnv 'V) C[o], which implies e: I o.-v '

-Hence, c onv Cland, by part (v),-

Hence, the model is solvable.
(vi) -Now, e: « a =o e p a.

-So', if e B» v : E: NF, then a

(vii) -See Morris [29] or Wadsworth [30] or 6.8.4 (L)•
(viii) -As with 0.7.7(iii), it will be trivial to show this result
later when we produce a semantics, s "EXP/ r:., [~]>, in which these
fixed-point combinators have already been made equivalent (6.8.3).
(ix) -By parts (v) and (vii), <EXP/=,[=]> is seen to be a semantics

'"
that is ~ <EXP/cnv INSOL,[cnv INSOL]>. Sin~e, by part (v), it is-v -v

substi tuti ve I ',vIe deduce' the result.
(x) -By part (ix), <EXP/§,[§]!:>Jrlustbe normal and solvable I since,
otherwise, ~EXP/~/r~]~.would not be - l 'to part (v).
-In both, st.ages fii) and (iii) of remark O~1~8;; we have 6 ~ IS",

63

-Hence, cEo] ~ C[cS"] and" so, C[o;]' € INSOL.., +
0.7.10 :REMARK:-

Anyway, we see that we have been successful with this approach
in overcoming the objections raised in 0.7.4 concerning the minimal
model. Further, we have introduced a partial ordering, «, which
has elements of INSOL minimal and expressions with a normal form

We hope the reader does not mind forward references such as

f
I

I

maximal - i.e. this ordering agrees with our intuition about the
"information content" of A-expressions.

in O.7.9(viii). The material in this section is being introduced
for background interest only and will not be made use of in the
main part of this thesis.

For the sake of completeness, we give next Morris' original
extensional equivalence. This is the same as 0.7.9 except that we
throw ~n n-reductions as well. Its properties are much the same as
0.7.9, but it also has the very nice characterisation that forms

-

the last part of the following.
,O.7.'l'l':EXAMPLE:- (Morris)

Let p be a relation on EXP defined by :-
(e: p 6) if (e: sl'n;>,\), € NF) =o- (e: 13- n--cnv 6).

Then,
(i) (e:does not have a normal form) =c- (Vo €EXP)(e: p 6),

(ii) III is reflexive and transitive,

vIn this case, we write e:a- n- < < 0 for e p 0 and say that
,

e:' 'IS $-n- EXTENDED BY o. The subs t Itutive restriction of l3-n'-cnv-v_. -v
,is written B-n-~ and called 'S'-'n'-EXTENSIONJ.'_L'EQUIVALENCE. Then,

(iv) (e: S-n-~ 0) <-> (s l3-n-« 0) A(O S-n-« e:),

(v) <EXP/B-n-~,[I3-n-~]> is a substitutive normal solvable
and 13-n....« is a well-defined partial' ordering on it,

IB-n-mode]
I

I

64

(vi) Expressions with a {S-n-)normal form are maximal - i.e. :-

(8 S,n?>Ve:NF) ...(t: B-n-« 0) -> (t: f3-Tr-E!.Y0) -> (t: f3-n-~ 0),

(vii) Elements of INSOLare minimal - i.e. :-

(c e:INSOL) ==>(vs e:EXP)(t: f3-n-« 0).

Hence, (Vt: ,0 € INSOL)(s S-n-~ 0),

(viii) <EXP/~,[~J> ~ <EXP/B-n-~,[f3-n-~J>,

(ix) (Vi :?! 0) (Yi f3-n-~ YO)'

(x) <EXP/S-n-cnv INSOL,[S-n-cnv INSOL]> ~ <EXP/S-n-~,[B-n-~]>.-v -v

Hence, defining S-n-§ in the obvious way, t.he·~ubst,itutivet3-n-model

it gives is s: that given by S-n-~, and is therefore normal and

solvable.

(xi) <EXP/S-n-~,[{3-n-~J> is the maximal normal substitutive moael.

, Pronf:-

(1) ,(ii),{iii) ,(iv),(v),{vi) and (vii) -Same as the corresponding

parts of 0.7.9, bearing in mind that 8 has a normal form iff e: has

a S-n-normal form (0.4.20), the original definition of SOL fo~s.S)
ana theorem 0.5.9.

(viii) -Clear, by 0.7.6 (ii) andcnv -> 6-n-'cnv.-
(Lx) Either from 0.7.9 (viii) and part (viii) ebovevor we can show

this directly using the model described in 0.7.22.
(x) -By parts (v) and (vii), as in the proof of 0.7.9 (Lx) •

(xi) -Let <S,f> be a normal substitutive model.

-Now, by definition, <EXP/f3-n-~,[S-n-~]> is the maximal substitutive

sub-semantics of <EXP/S-n-cnv IV,[S-n-cnv IV]>, so all we need to show-v -v
is that <S,f> S <EXP/B-n-cnv IV,[S-n-cnv IV]> 0-..... ----v -v·

-Let e not (B-r--cnv IV) o.-v

-Either € has a normal form and 0 does not : in this case,

fDeO ~ fOoD, since <S,f> is normal.

-Or €: and 0 both have normal form and 8 B-n-c.l!.v IS: in this

case, we quote the following theorem of BO'hIl\[31] - see also

65

Curry [77J - and as interpreted by Wadsworth [32] :-
"if e:and 0 both have normal forms but c s-n·-.sl1v0, then there
exists a context C[] such that C[e:] 8 ~x and C[6] 8 ~y

and where x ;t y." (Bohm 's theorem)
Take the context, CC], provided by the above and suppose that
f[s] = f[o]. Let r be any expression that does not have a normal

form. Then,
fITr] = f[.(Ax.C[e:])(nIl, since <S,f> is a model.

c, f[{Ax.C[OJ) (nIl, since <S,f> is substitutive.
c f[y], since <S, f> is a model - but this is a

contradiction to, the normality of <S,f>. Hence, fITs] ;t f[8].

-:., c ::<S, f> 8 ==> s 8-n'-:.s.n.YvtV 8.
_ .., <EXP/8-n-'",[B-n-l':!]>is the maximal normal substitutive model
and, so, since it is solvable by part (v), so also will be any

other normal substitutive model.

, '0. '7' • '12' :RE.tv'ARK: -

All the semantics we have looked at so far have had an implic:
construction - all that has been done is the taking of (highly
undecidable) equivalence relations based on "syntactic" conve r-sLorn
rules of the A-calculus. The following serrantics are more truly
"semantic" in nature in that an explicit construction is given.
They are mostly going to lie somewhere in the region bounded by
<EXP/§,U]> and <EXP/8-n-§,[8-n-§]> on the one hand, and <EXP/l':!,[
and <EXP/8-n-l':!,[8-n-=]> on the other. The first two were discovere

by scott.
'0.7 .13: EXA1J!.1'LE:- (Scott)

(*)
Let DC be a complete continuous countably based lattice. Then

Di+l := [Di + Di], for all i ~ C.

Also,-----------------------------~-----------------------------------~(*r DC should. have more than one element.

66

¢O,l : .Do) Dl, and where k : DO > DO'x

x > k d >xx

and,

¢1,0 • Dl > DO·•

x > X (1)

Further, for all i ~ 1,

¢' '+1 · D,·l.,l. .l.

di I

and,

¢'+l ' · Di+l·l. ,l.

di+l I.

Then, for all i ~ 0,

> Di+l,
t--->~¢i 1 ,od.oq,. , 1-,l. 1 l.,1-

-~>Di

> ¢i,i-lodi+l°q,i-l,i

(1) Di is a complete continuous countably based lattice,

(ii) Di <l Di+l•
Let D be the inverse limit of this system. vIe define an

eo

application on D in the "Curry" form :-
co

where,
Deo

()t)

<xl.'> ool.'=0 ~ U¢, =d , +1 (x ,)i=O 1,00 l. l.

Now,
(iii) D is a complete continuous countably based lattice,00 (*)

is completely additive and doubly strict,'(Lv) APD
00

(v) APD «di>~=O) i~ continuous - i.e.
00

€ [D
00

-+ [D
00

-+ D]J,
00

(vi) APD is injective, surjecti.ve and has a continuous inverse
00

given by :-
: [D -+ D]

00 00

67

(x = y) <-> (APO (x)= APO (y)) ,
00 00

(viii) Also, APO is an isomorphism such that ._
•

00

0 == [0 -+- 0] .
00 00 00

where fi := 4> 00 , i-1 0 f 0 4>i-1 ,00· E 0i'
(vii) Hence, we have :-

(x ::y) <==> CAPO (x) ::Apo (y»,
00 00

and, in particular, "extensionality" _ i.e. :-

In order to define our semantics, we find it necessary to
introduce the notion of environments to take care of free variables.

"1'\

We define ENV := (I -+- 0).We also define a modifying operator,
00

[/] : 0 x I
00

--~) (ENV -+- ENV),
(O,x) 1-1->~[o/X]

where,

. ,

Eo/x] : ENV -->,., ENV,
p > [o/X]p

where,

{

p (y) ,
y ,_t -)+

0, if
if x ;t y}.
x = y

[0 Ix] p : I -->.;)0 0
00

(ix) [/] is completely additive on its first argument
[uO/x] = U{[o/x] (0 E m , for any 0 5 0

00
•

In particular, if 0 is directed, then so is·{[o/x]la EO},
(x), [a/x] is completely additive and, again, if R is directed in

i.e. :-

Then, we note,

ENV, then so Ls .{[a/x]p IPER} •
..

Now, we are ready to define our semantic function,
D E (EXP -+ (ENV -+- 0

00
»;

inductively on the structure of EXP, by means of the following
three equations :-

68

(01) D[x](p} .- p (x)..-
(02) D[).x. e] (p) -1 . €O .Dlk]([o/x]p».- APO .().o.- co

co

(03) D[e (0)] (p) .- APO (D[e D (p)) (D [6](o)) •.-
co

Before proceeding, we must check that the above equations make
-1sense : in particular 02 - in order for APO to be defined, we

co

have to have its argument continuous :-
(xi) D[e] is continuous - i.e. D € (EXP -+ fENV -+ 0 J) - and, hence,co

t xs €o .D[f:]([o/x]p})·€ [0 -+ 0],
co co co

(xii) <[ENV -+ 0 co], D> is a semantics of the .A-calculus,
(xiii) The above semantics is substitutive. Further, the partial
ordering induced from [ENV -+ 0 J onto EXP as in 0.7.l(vi) is also

co

substitutive,
(xiv) <[ENV -+ 0],D> is a f3-n-model,

co

(xv) If e is closed, then D[e] is a constant map in [ENV -+ 0].
co

Hence, we can consider closed. A-expressions as being modelled just
by D ,

ClO

(xvi) Let e and 0 both have f3-n-normal forms. Then,
D[e] s D[o]> e f3-n-~ 0 => D[eD = D[o].

In particular,
D [ell II:: D [6] <-> e 13- n-£!!:y: 0,

(xvii) The fixed-point combinators, Yi, are equivalenced,
(xviii) Y is the same as the lattice-theoretic minimal fixed-point
operator p (see 0.6.5(iv», in the sense that :-

D[Y(e)](p)= P(APD (D[e](p}»,
co

(xix) <[ENV -+ D) ,D > is ~ normal.
Proof:-

(i) -By 0.6.25(i).
(ii) -By 0.6.20, DO <l 01• The rest fall by induction.
(iii) -By 0.6.25(ii).
(iv),(v) and (vi) -See Scott [33].

69

(vii) and (viii) -By parts(v) and (vi).

(ix) and (x) -Trivial.

(xi) -This is something that was not done in Wadsworth [34J, and so

we set it out here.

-Let A [e] :: (D[e] E' [ENV -+ 0 J) ..
00

-Claim: A[e] ->(Ao E'D .D[e]([o/xJp)· E' [D -+ 0 J) :-
. 00 00 00

-Let D be directed in D' •
00

-Then, D[e]([UD/xJp) = D[e] (U{[o/xJp 10 E'D}), by part (ix).

= U{D[e] ([o/x Jp) I0 ED}, by A [e].

-Claim: A[X] :-

-Let R be directed in ENV.
-Then, D[x] (UR) = (UR) (x) = U{p (x) I p E'R} = U{D[[x](p) 11" E'R}.

-Cl'aim: A llc ll -> A [Ax. c ll :-

-Let R be directed in ENV.
U ·-1-Then, D 1I>.x. e] (R) = APD (Ao E'Doo• Dire:] ([o/x JUR», which is

properly defined, by A[e] and the first claim above.

= AP~l (Ao E' Doo• D[e](U{ [o/x Jp I I' E'R})), by part (x).

-'1 U I= Apo (Ao <::0
00
, {D[dJ([o/xJp) p E'R}), by A[e].

-'1 U I= APO ({Ao E'Doo'D[k]([o/x Jo) p E'R}), clearly, and with
00

the set remaining directed.

= U{AP~l(AO E'Doo.D[e]([o/xJp}) Ip ER}, by part (vi).
00

= lJ[D[).x • e] (p) Io : E'R }.

-Claim: AITh] ...A[o] -> Alli(0)] :-

-Let R be directed in ENV.
.. -Then, D[d 0) leUR) = APD (DIfu](UR» (D[o](UR»

00

= Apo (LkDlli:](p) IpE:R}) (U{Dllo](p 111'''' E:R}), by AIIE] ...A[oII
00 .-

= (l.J{APD (DIl:](1'» II' E' It}) «j{D[o](p') 11' ...· E'R}), by (iv).
00

= lJ(APo(D [e] (I')) ([j{ D [0] (I' ...) I p E' R}) I p : E'R}
00

=LkAPD (D[e](p» (D[o](p"'>lp,p" E' R}, by part (v).
00 .

=U{APD (D[e:]{P""» (D[o](p»lp· E:R}, since R is dir-
00

70

ected.
= U{ D [d 0)] (p) I p € R}.

-Hence, by structural induction, (Ve € EXP) A [e:].
(xii) -By part (xi).
(xiii) -Trivial.
(xiv) and (xv) -See Wadsworth [35].
(xvi) -Let e:and 0 both havp. S-n-norrnal forms but e:S-n-c¢v o.
-As in 0.7.ll(xi), Bohm's theorem tells us that there exists a
context C[] such that C[e:J --'S> x and C[oJ S ~ly.

-So, by part (xiii), if D[e:] = D[O], then D[C[e:J]E D[C[o J] and so,
"'by"part"('xiv), D[x]'= l1[y] -"'ii"since'Dc,;"hasmore'than oneve Lemen+c-

-The rest is trivial.
(xvii) and (xviii) -See Wadsworth [36] and Park [37J.
(xix).-Let F ':=. Af,.AX.•AY.x (fy)•
-Then, 'F(I) S,n) I and so, by part (xviii), D[Y(F)D s D[l].

+

-But, it is not too difficult to show the reverse inequality - see
Wadsworth [38]. Hence, D[l] = D[Y(F)].
-But, Y(F) does not have a normal form since it is in the A-I-cal-
culus and the subexpression Y does not have normal form - see Curry

o. 7 .14' :'REt':ARK: -

Note that ENV is itself a complete lattice (0.6.l8(i»~ and so,
therefore, are [ENV ~ ENVJ and [ENV + D~] (0.6.l8(ii». We can also i

ENV has a countable sub-basis,' {fi .Ii,j,J
fi,j : I) D~,

{
b ., if n = i o}

'S. Jn '1---7~
J., if n :F i.

and where' {b6'bl,b2, •••••••••••• } is an ennumeration of a countable

~ o l, where :-see that

basis of D~o Hence, ENV is countably based (0.6.24 (ii». Further,

71

we can deduce that ENV is continuous as follows : extend I to the
complete continuous countably based lattice I~ by adjoining a
bottom and top; then, [I~ + D] is a C.C.c. lattice (0.6.25(i» •~ ,
clearly, (I + D) is isomorphic to the set of doubly-strict element:~

of [I~ + D], which is a retraction; but, all retracts of contin-
OD

uous lattices, according to a theorem of Scott [40], are themselves,
continuous lattices. Thus, ENV is a c.c.c. lattice and we are very
pleased to find that the whole of the underlying set of this model,
[ENV + D], is one also.

OD ,

We made no restrictions on the initial c.c.c. lattice, DO'
except that it has more than one element. Indeed, the two element
lattice' {T,.d will do, although I for reasons of the use to which
these lattices are 'put, Scott prefers the "truth table" lattice
{T,~,false,J.}, in which ~ and false are incomparable. It is
extremely probable that the choice of the initial DO does not chang
the final semantics - i.e. they are all equivalent under = - but
the author has nOt seen a "concrete" proof of this.

,
Until 0.7.13(xix}, <[ENV + Doo],D> had been showing all the

good properties of the ones based upon ~ and ~-n-~.The discovery
of the non-normality of the model caused a bit of a shock! Since it:
seemed reasonable to consider expressions with a normal form anal-
ogous to programs that terminate, a semantics that sometimes fails
to distinguish normal from non-normal forms might be thought to be
inappropriate for certain applications like termination problems.
However, the blame has now been firmly laid at the feet of A-cal-
culus itself, which, after all, must allow sentences like "Y(F) == I,

to be adjoined to it without throwing up any inconsistencies. We
shall continue to explain this away later (0.7.27).

Perhaps, the more subtle property of solvabili ty is more
crucial to decent semantics. We shall'see that the above model has

73

So, all we have to do to show solvability is to establish
0.7.16:REMARK:-

that all members of INSOL are ~ in the model. This corresponds with
the properties (vii) of the extensional equivalence models (0.7.9
and 0.7.11).
O. 7 .17:DEF:-

Let n 1 I. Then,
n-sxr ::= n I I I.AI.n-EXP I (n-EXP)(n-EXP)

As in 0.3.10, define
closure of lw ~ •

w? as the substitutive and transitive

If c € n-EXP I then .:-
.Ax.n .__!4 n

and n(e) l,w > n.

Extend the definition of D, so that it applies to S'l-expressions
by adding the extra equation :-

(DO') D"'[n] r= ~.

Define an "approximation" function, IV . EXP.
NI ' .
x := x,-- Ax.€AX. e: :=

8(6) r'if E· <. AI. EXP} .and :=
E(l) I if not

--;>":7' S'l-EXP,by :-

Then, we have :-
EXP D

n-EXP
0.7.18 :LEMMA:-

(i) n-expressions always have an w-normal form.
(ii) <[ENV + D~J,D"'> is an w-model of the A-n-calculus

(e w ;> 0) =>(D"'[e:] = D"ITo]).

74

(iii) (e: € NOH) -> (8 w' "" .-- G) =e- (v"[e:] = .d.

(iv) <[ENV + D J,V"e~> is a semantics of the A-calculus that is
00

"approximate" to <[ENV + DooJ,D> - i.e. :-
(Ve:'€ EXP) (V"~] s V[e:]).

Note, however, that it is not substitutive.
(v) (e: f3;>0) -> (V" [E] s V" [5]) •

(vi) Hence, for all e : E EXP, U{ V" [0] I e: 8 ;> 6} s V[e:],where the
set is directed.

Proof:-
(i) -Obvious, since loo;> strictly shortens the expression.

f!(ii) -Simple structural induction on e : E G-EXP to show modelling of ::
l

just the substitutive closure of lOO;>. Hence, the transitive N
closure.
(iii) -First> by a trivial structural induction on NOH.
-Second -> by part (ii).
(iv) -Trivial structural induction on EXP.
-It is not substitutive since V"[y] = V[yll= V[~x.yx]

~but V"[YaII ;t ~ = V"[,(Ax.yx)(a)].

,......._"

= V "[Ax.yx]

(v) ~Trivial structural induction on EXP.
(vi) -If e:8;) 0, then V"IT!] s V[o], by part (iv).

= V[e:], by O.7.13(xiv).
-Hence, the inequality.
-The set is directed since, if e . 8) 0 and e s-~~~ Y, then,

sthe Church-Rosser theorem for ;> , there exists an t such
s e :> ~ and Y e;> ~ and, so, by part (v), V"[6] 5 V "[!] and..

+
O. 7.19:THEOREM:- (Wadsworth)

,For all e E EXP, V[e:] = U{v "'[6] le: 8 ~ O}.

Proof:-

75

-Non-trivial - see Wadsworth [41J.

O.7.20:COR:-
(i) (£ € SOL) <=> (D[£] ~.d.

(ii) <[ENV + D J,D> is solvable.
co

(iii) <EXP/B-n-§,[S-n-§J> ~ <[ENV + D J,D>
ex>

I. <EXP/ S- n- ~ , [e - n- ~ J>.

Proof:-
(L) (-» -By 0.7.15 (iii).
«-) -Let £ € INSOL.
-Then, if e e :> 6, 6' € NOH, by,defini tion.

B> 6}, by 0.7.19.
= l, by 0.7.18(iii).

(ii) -By part (i).
(iii) -First inequality by part (i) and O.7.13(xiii) and (xiv).
-Second non-inequality by 0.7.11(v) and 0.7.13(xix).

O. 7. 21':REMARK:-
,We think of the symbo l, n as being "undefined". Thus, the

w-rules were designed to be consistent with this intuition. The
n-expression 't can be thought of as the "information iromediately
availablell from the expression £ - i.e. it answers the question:
"if we cannot be bothered to evaluate any $-redexes and simply
treat them as unknown quanti ties, what have we got in c ?"

So.,Wadsworth's theorem says that, in the < [ENV + DJ, D>-
~ co

semantics, expression~ are represented by the limit of the repre-
sentations of the information immediately available from all the
expressions reducible from it. This is a very good and sensible
property for semantics to have and later (7.6.1) we will make a
definition out of the theorem and christen 'it "continuity".

76

model is not an n-model. However, of course, normal n-models do

fr

Iensionality"i O.7.l3{vii), and so it is not surprising that the new
t
f

t

counter-example in 0.7.l3(xix) depends upon the property of "erl-
Next, we present a model which is normal. The proof of the

0.7. 22:EXAMPLE:- (Scott)
*Let DO be a complete continuous countably based lattice with

*an isolated T. We call DO the atomic lattice. Then,
* * * * TDi+l := DO + CDi + Di] ,

where, if L is any lattice, then LT is the same lattice with an
extra T adjoined. (We need this so as to ensure that the lattices
we construct always have an isolated T so as to ensure that their
lattice sums always remain continuous - see 0.6.l8(iii).) Also,

*~O,1 :

and,

Further, for all i ~ 1,
*~i,i+l *--->~Di+l

* *d
i

t-I --->iII> {~i-l ,i odi 0 <Jli ,!-l ,'"if
di, if di" E DO)

and,
.. *-->~Di

"* *
di+l-__ >,... {ti'1~1.di+l·+i-l,!,' if

di+l, if di+l' E DO 1
Then, for all i ~ 0,

(i) D~ is a complete continuous countably based lattice with an

isolated T,

77

* *(ii) The above maps are well-defined and make Di <l Di+l•
*Let D be the inverse limit of this system. Define the pred-
00

icate : Atom«di>~=O) :::(Vi ~ O)(di = dO
00 *not (Atom«di> i=O» :::(Vi ~ 1) (di € [Di-l

Then,

*€ DO). Then, clearly,
-+ D~ 1]) & «di>~ 0 ~.1.).1- 1=

Ap D --->"'31> (D*
00 00

<di>~=O ~ .1., if <di>i=o
* 00Ap «di> i=O) ,

where, if not (Atom« di>i=o» , .
.. ' *.. 00 .*Ap «di>i=O) : 000

~ T and'Atom « di>1=0) ,
if not(Atom«di>l=O»

T, if <d.>o:'0 =T1 1=

(N.B. we should write Apo instead of Ap to remain strictly'logicaI
00

with our notation.)
Now,

*(iii) 0 is a complete continuous countably based lattice with an
co

isolated T ,

*(iv) Ap is well-defined, completely additive and doubly strict,
* * * * T(v) Ap . € [0 -+ [0 -+ D]]

00 00 00 '

*(vi) While Ap is not injective, it is surjective. If we define
Ap*-l in the same way as in 0.7.13(vi) and extend it so that it
maps the *extra T to T' € 0 , it is continuous and makes :-.

00

** T*[0 -+ 0 J <l 0 ,
00 00 00

(vii) We have "partial extensionality" - i.e. if not (Atom (x)) and
not(Atom'(y» :-

(x 5 y)' <-> , * *(Ap (x) 5 Ap (y»
and,

(x = y) <-> * *(Ap (x) = Ap (y».
Otherwise, if Atom (x) then either AP* (x).=.1. (if X ~ T) 2!. Ap* (x) =

~.. ,,,. '11#. " ~

78

T (if x = T),

(viii) Define,
e* •• D* -~>~D* + [D* -+-D* l .

00 0 ~ 00

d 1-1 ->..;a. {.:,O (d), if Atom (d) }
Ap*(d), if not(Atom{d»

*Then, e is an isomorphism with a well-defined continuous inverse
6*-1 * * -+-D*JT *: DO + [Dm ~ > D~.

{do' € D~ } {<I>~,~(do)}
* * T I > *-1.f € [Dee -+-D co J Ap (f)

.-•

So, we have :-

Next,
* * * ~·D:JT~D~ = DO + [D~

* * * *we define ENV and D € (EXP -+-(ENV -+-D~» in tl).esame
* . *-1 *way as in 0.7.13, except that we use Ap ,Ap and D~ instead of

-1APD ,APD and D~.
ee 00

(ix),(x),(xi),(xii) and (xiii) Same as the corresponding parts of
the previous model (0.7.13), with suitable *'s attached. Thus, our

* * * -* *semantics is <[ENV -+-DcoJ,D > and we write = and!!: for the induced!
equivalence relation and partial ordering (modulo :::*)on EXP,

* * *(xiv) <[ENV -+-DooJ,D > is.a model but not an n-model. However,
(8 n> 1$) =e- (8!:* 1$).

There are cases when n-reductions are modelled, not only when the
reductions could have been a's - e.g. :-

(€. €. AI.EXP)(x is not free in €) -*-> (AX. €(x) .=. 8),

but also in their own right - e.g. x(Ay.XY) :::*xx while. AY.XY j* x,
. *(xv) This is 0.7.13(xv)·,..

(xvi,)Let, and 1$ have l3-n-normal forIll.i.Then,
* * KD [8] !: D [1$] -> e: l3-n-£:!'y'Q.

In particular,
* *D [e:] = D [lo] -> 8 l3-n.;.~ 6,

(xix) Let F be as in the proof of 0.7.13(xix). Then, Y(F) i* I,
*(xx) (0 € SOL) ==> (D [0] ;t J.).

* '*Now, extend D to D ' in the same way as D was extended to D'

* * *(xxiii), < [ENV -+- Doo]'D ' 0"">is a semantics of the A-calculus that
* * *is "approximate" to < £ENV -+- Doo]'D >,

(xxiv) (e B >' c) -> (D * , a.t] s D* , [<5]) ,

I'lf * N I(xxv) Hence, for all e : € EXP I Ut D ' [15] e

79

~ 0) {YO * Yi' ,(xvii) (Vi -
:_..'

* * *{ *(xviii) Defining u . [0 -+- Doo) Doo• 00

{
T if d = (the extra)

d > 'J.le, if a € [0: -+ D:]
* ,* * *D [Y(e:)D(p) =ll (Ap (D [e:](p»),

inO.7.17. Then,
* * *(xxi) <[ENV -+ Doo],D ~> is an w-model of the, A-n-calculus,

• " *(xxii) (E E: NOH) ==> (D ' [E] = J.) i . :'

B > o} *!: D [E] , where
the set is directed~

We also have Wadsworth's theorem,
* u* "",(xxvi) For all e € EXP, D [E] = {D' [15] 'E

, *(xxvii) (e' E SOL) <-> (D [e] ;t J.) ,

* * * -(xxviii) <[ENV ~ Dco],D >.is solvable.

B > <5},

* * *(xxix) <[ENV -+- Doo],D > is normal,
* * *(xxx) <EXPI § , [§ J> :£ <[ENV -+- D 00] ,D > s <EXPIB-n- l::!, [6-n- ==] >•.

Proof:-
(i),•••,(xiii) ";Similar to 0.7.13 -see Wadsworth [42].
(xiv) -Modelship is proved in the same way as for <[ENV ~ Doo],D>.

"

l

-We do not have an n-model but increases in value after n-reductions
since the function space is a projection of the semantic space : in
D. they were isomorphic.
-For details of this and the examples cited - see Wadsworth [43].
(xv) -See 0.7.13(xv).

80

(xvf.)-We are able to prove this in the same way as 0.7.13 (xvi.),
since BOhm's theorem says we need only a~reductions to reduce
the expressions in the contexts to their respective variables.

* *This is just as well, since <D ,D > does not model n-reductions.
00

This also explains why this result is weaker than thi corres-
pon df.nq vone for <D ,D>. See also remark 0.7.23.

00

(xvii) and (xviii) -Similar to 0.7.13.
(xix) -See Wadsworth [45J.
(xx) -Similar to 0.7.15{iii), noting that Ap*-l(f) = J. iff f = J..

(xxi), •••,(xxv) -Similar to 0.7.18.
(xxvi) -Similar to 0.7.19.
(xA~ii) -Similar to 0.7.20(1).
(xxviii) -By part (xxvii).
(xxix)-See Wadsworth [46J.
(xxx) -First s since we have a substitutive model that equivalences

members of INSOL.
-Second s, by 0.7.11(xi), since we have a normal substitutive

wodel.

O. 7. 23:PE~1AP1<:-
Thus, <[ENV* + D*],D*> has most of the good points of

00

81

<[ENV + D],D> and has normality as well. Unfortunately, it has
co

introduced some unpredictable quirks with regards when it models
n-reductions. The model is not an n-model, but neither does it have
all the properties we would like to see associated with s-models.
In particular, 0.7.22(xxviii) is not really the result we would
like to see corresponding to O. 7.l3(xvi). v.lhatwe want.ed was that,
whenever e: ando have normal forms, then .-.

* * * *D [e: lJ s D [0] ===> e: cnv 0 ==> D [e:] = D [0lJ ,-
so that,

* *D [e: Il = D [0] <.,..> e: cnv o.
But this desire is,quite simply denied by the example in 0.7.22(xiv)
if we take x IAY.xy) fe>r e: and xx for 0 ..

Next, we present a path010gica~_ version of-0.7.13, discovered
by]?,ark,'in which things go drastically wrong ."
0.7. 24':EXA'MPLE:- (Park)

Let Db be the two point lattice,'{T,.d. Construct D! exactly
as in 0.7.13 except that we define the initial retraction, Db ~ Dt
differently. I~ 0.7.13, this was defined as :-

T

D1
identity function

.L

J.
But, here we define it as :-

T

.. Dt
1

identity function

J.
This is the only alternative way of making a projection. Now, de
Apt ,and Dt, € (EXP + [ENVt + D!J) as prescribed in 0.7.13. That
things have gone very wrong can be deduced from the result :-

82

Dt [AAD ' ~. J..

In fact, it is possible, by starting with a more complicated D~t

and choosing a suitable initial projection, to produce a system
Dtt in which Dtt [t.l1], = T!

00

Amongst the consequences are the facts that Y cannot equal the
~ operator in the sense of 0.7.13(xviii) - otherwise, since 0.7.15
part (i) is still valid for this model, its part (ii) would lead to

. a contradiction - and that Wadsworth's theorem, 0.7.l9,.,cannot hold
since :-

83> s) = l.JcDt ..[t.t.]} = Dt"[Q]

= J. '# D t [t.b] •

However, < [ENV t + D: j, D t >'is a substitutive 13-n-mode l , even
though a very strange one.

-See Park [47J.

0.7« 25: REMARK:-

There is a well known theorem -.see Scott [48J '_'that says
that any complete continuous countably based lattice can be embed-
ded as a retraction of pew) - the set of subsets of the natural
numbers, itself a complete continuous lattice countably based by
the finite subsets. Briefly, ..any element is uniquely r'epreserrced by
the limit of the basis elements topologically less than «) it, so
all we have to do is ennumerate that basis. For an account of this
embedding in a particular instance, see section 7.4.

'"
Therefore, it is not surprising that pew) should provide the

domain for models of the A-calculus. The following example defines
a semantic function _9.irectlyfrom EXP. It was discovered originally
by Plotkin - [49] - and later, independently, by Scott - [50J.

83

O.7.26:EXAMPLE:- (Plotkin/Scott)
Let' {eO,e1,e2/ •••••••••••• } be a (recursive) enumeration of

the finite subsets of w. Everything relies upon the continuous
lattice property of pew) - namely that all sets are characterised
by their finite subsets :-

(S £ w) ~> (S = u{enlen £ S}).
We will define an application function that retracts pew) on

to its continuous function space. Then, to construct the model, we
just use the technique of environments exactly as in 0.7.13 •

....1We find it easier to define the reverse application, Ap ,
first. Let f E [P (w) -+ P (w)] and S E P (w). Then,

= f(u{e le cS})n n-
= u{f(e) le c S}n n-
= u.'{e Ie c fee) and e cS}.m m - n n

Hence, f is characterised by the set of pairs, {<e ,e >Ie cn m m

f(S)

f(en)}. Define another ennumeration of pairs,

v : w x w ------>~w,

and we are ready to define :-
-1Ap w pew) -+ pew).• -~>pew)

f ...I-------~{v<n,m> Iem s f(en)}.
It is clear that we should then define :-

. Ap : P (w)w --f/!') (p (w) + p (e) ,

where,
Ap (S) : P (w)w --)+P(w)

x I > u{em Ien c X and v en ,m> € S}.

Then,
(1) APw is completely additive, AP:1 is continuous and both are
doubly strict,
(i i) Apw E: [P (w) + [p (w) -+ P (w))] ,

84

(iii) Ap oAp-l(f) ~ f,
W W

(iv) Ap-1 oAp (S). :::> S.
W W -

Next, we define ENVw and P € (EXP -+ (ENVW -+ P (w») in the san-e
way as in 0.7.13. Then,
(v) PITa] € [ENVw -+ P (w) J,
(vi) <[ENVW -+ P(W)JiP> is a well-defined substitutive semantics of
the A-calculus. The induced partial ordering, EW (modulo the seman-
tic equivalence :::W), is also substitutive,
(vii) <[ENVw -+ P(w)J,p> is a model but not an n-model. However,

(e D;> 0) ==> (e: IIw 0).

*As with D , we have :-
GO

(e:' € AI.EXP),..(x is not free in c) _> (Ax.e:(x) :::w e:).

*But, unlike D , we have :-
co

x(),y.xy) iW xx.
(viii) Let e:and a have normal forms. Then,

P[e:] 5 P[o] => e:a-n-ElY a

and so,
PITe:D~ PITa]=> e a-n-cnv 0,

(ix) P[Y(e;}](p) ~ J.!(Ap(PITdl(p»),
W

(x) Ap(P[I] (p» III: identity function on P (w) and, so, PUAt.U III: .L,
. W

(xi)' (0 € SOL) .-> (PITo] ¢.1) •

.Pr'oof:-
(i),•••,(iv) -Straightforward - see Scott [51].
(v),•••,(xi) -Similar to the corresponding results of 0.7.22.
-Part (vii) is interesting. The reason why n-reductions decrease..

-1the ~epresentation in pew) is because Ap oAp is "greater than"
W W

*the identity function ; '''inD , it was "less than".
co

~Claim: x().y.xy) iW xx :-
-Let S = {v<n,n> In <:: O}.
-Then, Apw(S) = Idp(w)' the identity function on P(w).

8.5

-1+Howe ver , Apw (Idp(w}) =' {v<n,m>lem c en}' which is strictlx.
larger than S.

-Let p E ENVw such that o (x) = S.
-Then, P[x(Ay.XY)] (p) = Ap (P[xD (p)) (P[}.y.xyTI(p))w '

-1= Ap w (S) (Apw(A'ff€ P (e) • P ITxy](['IT/y]o)))

-1= Apw p~'ff'€ pew) .Apw(p(x» ('11'»

= AP: 1 oApw (S)

:> S

= Apw(S) (S)
= P[xx] (p) •

0.7'. 27:'REMARK:-

There are a number of obvious questions to be answered about
the above model. The most important one, we feel, is whether
Wadsworth's theorem applies. If it does, then <[ENVw -+- pew) J,p>
will be solv able and normal, the fixed-point combinators will be
equivalenced and we will be able to place the semantics between
<EXP/§,C§J> and <EXP/f3-n-=,ca-n-=J>. Is it ~ <EXP/=,[=J>? Unfort-
unately, we have not had time in this thesis to consider these
questions. By the way, in [52J, Scott calls Ap"fun"'and'Ap-l

w - tu

"sraEh ". One last note we find interesting : since [ENVw -+- P (w) J is
itself ac.c.c. lattice, it is embedded as a retract of pew) and,
so, we may consider pew) as being, on its own, the underlying set
of the moqel.

The last four models are all of a similar nature and we call
'"

their type "Scott-models". Briefly, to build a Scott-model, all we
,

need is a lattice, L, whose continuous function space, [L + LJ, can
be embedded as a retract in L by means of "application" functions,

-1 _.LAPL and APL • Then, forming the set of "environments" ENv as
(I -+- L), we can produce a well-defined semantics, <[ENvL -+- LJ,L>,

86

by means of the equations :-
L [x](p) .- p (x),.-
L[AX. E] (o) .- AP~l(U, € L.L [E] ([t/ x l p)).-

and L[e;(o)] (p) := APL (L[cl](p» (L[o] (p» •

These semantics will always be a model and the induced relations,
=L and ~, will be substitutive. n-conversion depends on how AP~lo

tAPL behaves. In D~ and,D~, this was the identity and we got an
*n-model; while in D~ it was smaller than the identity and in pew)

it was greater, wLth corresponding effects on the semantics of
n-reductions.

The model constructed in this thesis is not a Scott~model in
the above sense. Its motivation is to capture the essential feature
about semantics that allow Wadsworth's theorem to work. Decent
semantics should allow this theorem since it reflects very basic
and natural ideas about the meaning of, A-expressions (see 0.7"21).
Clearly, semant.ics that are ~ <EXP/S-n-~vINS0L,[I3-n-.E!.YvINSOL]>
do not have it, since amongst its implications is the equivalencing
of the fixed-point cOmbinators,' {YiIi;;::O}. We do not want to con-
sider semantics;;::<EXP/cnvv"',[.E!.Yv"'J>,since they make Y = AA. The

* tScott-models defined by DC<)and DOl)have it, pew) might, but DO)does
not. Although the A-calculus was invented to represent functions,
it remains in fact a purely formal syntactical system, representing
only computable functions. Thus, it would be a surprise if Scott-
models, constructed from ..set-theoretic continuous function spaces
(N.B. continuous does not imply computable - in fact, v[EXP:n is
spread very thinly across [ENV + DcoJ),were minimal in this very
basic respect.

What we need is something more closely related to EXP, and,

87

preferably, still with an explicit construction. This rules out the
extensional equivalence models, one of which, in any case, lies on

*the wrong side of the D -Scott-model for :rrinimality. The key is
co

provided by Scott's paper: "The Lattice of Flow Diagrams" - [53J.
In this paper, the elements of the lattices are all "syntactical"
entities. We start with two "~tomic" lattices isomorphic to :-

T

atoms!).

(countable)
................

.L
In one, the "atoms" are the function symbol~ allowed in the flow
diagrams and, in the other, they are the ~redicate symbols. In this
first lattice, we can represent flow diagrams of length one - i.e.

just consisting of one function box. We construct, then, larger and
larger lattices from these basic ones by purely syntactical means
(e.g. cross-products), so as to be able to represent longer and
longer loop-free flow diagrams. These lattices fit together as pro-
jections,enabling US to take the inverse limit in which we can rep-
resent all flow diagrams. If we make a small change in Scott's
construction we can produce an object from which useful analogies,
for the A-calculus can be drawn. We show that this change makes
no essential difference to the (simple) flow diagram semantics.
To explain and justify this, we assume that the reader is familiar
with [53J and its notation which we use for the next three pageso

uu

Consider the following two diagrams :-

B

These can be thought to correspond to the unsolvable A-expressions

YA and YB. Now, we have spent some time arguing that sensible

seman t Lcs ought to equivalence such objects. Howe ve r , in the floy,

diagram lattice, E, they are, respectively, the minimal fixed

points of the continuous functions (Ax € E.AiX) and (AX € E.BiX),

which we shall write as (l1X E E.AiX) and (l1x E E.BiX). Since we

used "pure" cross-products in the construction of E, we have :-

Thus, (l1XE E.AiX) ~ (j.lX€ E.BiX). However, take any 5?-,rr121e

semantics, V € [E + [S + SJ]. We have some state lattice, S, and

function/predicate semantics, F E [F + [S + sJJ and B E

[B + [S + TJJ, that are ~irrple in the sense that FO~O = ~ and

BOlO = ~(*) - see page 41, section 6 of [53J. v!e have :-
00

VOl1X E E.AiXO = vOUJ>.n; 10
n;:;O

= LJVOi~.ni~D, since V is continuous.
n==O

Thus, the two diagrams are semantically equivalent to bottom.

(*) Such lattice functions are called STIHCT. If we also have the

top element preserved, they are called DOUBLY STRICT.

88.1

However, they would fail to be equivalent if we chose a non-
strict (*) F or B. This is sometimes necessary when we wish to
describe side-effects. For example, suppose !lA 0 and flB 0 are

01?,r...il!t"A"O and Ot,'ri?!"B"O and S is the lattice of strings over
some aLph abon (with, an extra top), partially ordered by "initial
part of". If the program goes into an infinite loop, we do not
lose the current output. Thus,

FOolO = identity.
Also, because F must be monotonic and we cannot rewrite previous
output, we must have :-

FOfD = identity,
,for all f € F. So, in these semantics, the diagrams are not
equivalent. There is something unsavoury here in that the semantiCs
of the loop is only the. least fixed point above the identity
function, while in all simple semantics :-

VO~x € E.A;xO = ~x € [S + S].VOAOox.
In the clinical world of the A-S-K-calculus, we do not have

such nasty, noisy things as line-printers and, so, we are perfectly
just.ified in keeping.our semantics "simple". In this case, we have,
loosely speaking :-

in their respective lattices. Therefore, it makes no difference
semantically if we build in these equivalences during the

cons~ruction of E - i.e. construct 0n;On as (On x 0n)/~' where ~
is an equivalence relation such that (a ,ol)~ (ol,ol)etc •••• It is,n

'easy to show that all the On's remain complete lattices and that
the projectlon functions work properly and continuously so that
-~---~--~-----------------
(*) See previous page.

88.2

the inverse limit, E, can be constructed exactly as before. E is
now much more economical in that infinite loops do not require
the whole of the inverse limit in order to be represented, but
can be handled merely by the bottom element of the original
"atomic" lattice. Further, E now directly reflects our feeling :-

(~x € E.A;x~ ~ YA ~ YB ~ (~x € E.B;x).

We can now classify flow diagrams according to our new E as
follows :-

, (i) diagrams that "never terminate" are represented by the J.

element - e.g. :-

(i1) "loop-free" diagrams except for some "non-terminating"

89

branches always fit in at some''fintte stag-e in the inverse limit -
e.g. :-

A A

..
B

C

(iii) the rest can be unravelled to infinitely long "loop-free"
diagrams that fit into the limit - e.g. :-

A

B

C

, We draw an analogy between the above three cases and A-expre-
ssions that are :-

(i) in INSOL - e.g. b.b - ("bottom". A-expressions) ,
(ii) in SOL and reduces to an HNF, !!!of whose sub-parts are

either in HNF or INSOL - e.g. X(b.b}, anything with a normal form-
("finite" A-expressions),

...(iii) in SOL but does not reduce as above - e.g. Y - ("infin-
ite" A-expressions).

In this case, we can see why the non-normality of models of
the A-calculus may not be such a bad thing after all. Consider the
foilowing two schema/flow-diagrams (acknowledgements to Wadsworth
for this example) :-

90

~(x) :: x (c. f. I)

g(x) _ if zero{x)'then x else succ(g(pred(x» (c.f. Y(F»
Now, f is loop-free of length 1 and so is in "normal form" of

type (ii), while g is recursive but its branches do terminate some-
times and so it is of type (iii). In the purely syntactical lattice
of flow-diagrams, the two schema are not equivalent - the model
distinguishes between all three types (i.e. it is solvable and
normal). Clearly, however, there are models derivable from it, based
on function spaces, in which f and g are equivalent. Nobody minds
the non-normality of these models - on the contrary, that is their
whole point - although there would be trouble if they failed to
distinguish type (i) from the other two (i.e. were not solvable).

How, then, should we construct ,our "Lattice of A-Expressions"?
Obviously, we should start with an "atomic" lattice,I' := IU{T ,~}.

There, we can represent expressions of length 1 - i.e. variables.
We might be tempted to continue as follows :-

EO := I"

Ei+l := Ei + (r: x Ei) + (Ei x Ei),
following the context-free grammar definition of EXP. We could
define an initial projection EO <l El' by mapping all non -r elements
of (Ix EO) + (El x El) to ~ and leaving EO alone ; the rem~ining
projections, Ei <l Ei+l, could then be defined inductively in the
obvious way. Clearly, we can represent all A-expressions in the
inverse limit - but, all we need, in fact, is the direct limit! This
does not help very much as there are no interesting limit points in
the image of EXP whichKmight lead to new equivalences. In fact, the
semantics pro~uced in this way is no better than the trivial one,
<EXP,id>. We could improve the situation by defining a construction

AI.Ei, which is (I x Ei) with a-convertible forms equivalenced
together, thus getting the minimal a-model. (N.B. this a-equivalence

91

on (I x Ei) is very quickly decidable and, so, does not really alter
the !3xpl'icit nature of the construction). We could try to build in
more meaning by defining E. (E.), which is Ei x E. with all elementsa ~ a
(~,8i) equivalenced and elements (T,8i) equivalenced. This is cert-
ainly more interesting but, since neither ~ nor T will be in the
image of EXP, makes no difference!

We are on the wrong track. Referring back to our analo~ with
flow-diagrams gives us the guidance we need. We have :-

"loop-free" +-+ "normal form"
"non-terminating" +-+ "unsolvable"

The finite lattices in the inverse limit flow-diagram lattice were
constructed to accomodate larger and larger loop-free diagrams.
Therefore, we should build our finite lattices only to accomodate
larger and larger normal forms. To tailor them thus, we simply
follow the context-free definition of normal forms (0.4.3). Since
this consists of two equations, we construct a pair of simultaenous
inverse limits, E~ and A~, from :-

E .- A .- I""0·- 0'-

Ei+l := AI.Ei + Ai
Ai+1 := I' + Ai(Ei+l).

Examples of the sort of representations of,A-expressions we
hope to get in E~ follow :-

x -+ <X,XIX,X,X,x,~,x,x,x,x,x,x,x,x,x,x,x,x, ••••••••>

xy -+ <~,~,xy,xy,xy,xy,xy,xy,xy,xy,xy,xy,xy, •••••••••>

AX,y
,AX.XY -+ <~,~,~,AX,XY,AX.Xy,AX.XY,'AX.XY,AX.Xy, •••••••••• >

f(yy)
Ay.f{yy)
b(Ac.dd)

-+ <~,1,f(~),f (yy),f(yy),f(yy),f(yy),f (yy),•••••••>

-+ <~,~,~,Ay.f{~),Ay.f(yy},Ay.f(yy) ,•••••••••••••• >

-+ <~,b(~) ,b(~),b(~),b(Ac.dd) ,b(Ac.dd) ,•••••••••••>

,(Ay•xy) (b) + <~ ,~ ,xb ,xb ,xb ,xb ,xb ,xb,xb ,xb ,xb ,xb ,xb ,•••••••••>

92

..... <.L,~/J..,.L,J., •••••••••••••••••••••••••••••••••.••• >

x(AtJ

Y (f)

+ <.L,.L, X (.L) ,x (.L) ,x (.L) , ••••••••••••••••••••••••••• >

Note that we will certainly not have an n-model. In fact, x
and >..y.xywill be incomparable - the same is true for x(>..y.xy)and
xx. Hence, we can immediately deduce that this semantics is not

*derivable from the Scott-Dco,Doo-modelsand that it is not continu- ir-

ously derivable from the Scott-P(w)-model. Thus, we have a candidate!
for roinimality with respect to Wadsworth's theorem.

Note, also, that expressions are naturally represen~ed by the
limit of some of their approximate reductions - namely their coor-
dinates. These coordinates do not pro~ide all the approximate red-
uctions possible. To get Wadsworth's theorem, which we shall need
to prove "modellship", we have to show that they provide a "dense"
subset of them - i.e. their limit is the same as the limit of all
possible approximate reductions. This is non-trivial : we have to
delve into the properties of certain "evaluation mechanisms" to
establish it.

Just as syntax does not tell us the whole story about A-cal-
culus, neither does aernantd.ce, There is also what Wadsworth called
pragmatics, which concerns i,tselfwith, amongst other things,
evaluation mechanisms. These fields of study are not distinct, but
are richly inter-dependent. In this thesis, we find that we have to
go into the pragmatics of, A-calculus ("inside-out reductions") in
order to establish a basic property ("modelship") of a semantics
(Eco) that is essentially syntactical in its nature.
o.7.'28':SUMMARY:-

We hope that this section on the semantics ofA-K-a-n-calculus
has provided sufficient information for the motivation of the con-
struction of the E model and, also, for a framework in which to..,

93

view it. We summarise the semantics we have discussed by means of
the following lattice :-

where 0 is <EXP,id>,
1 is <EXP / a. , [a.] > ,
2 is <EXP /cnv, [.s!!:.Y.]>, ..
3 is <EXP/cnVyINSOL,C.s!!:.Y.yINSOL]>,

94

5 is <Exp/S-n-cnv INSOL,[B-n-cnv INSOL]>,---v ---v
6 is <EXPIB-n-§,[S-n-§]>,
7 is <EXPIs ,[§]>,

8 is <[ENVt t t-+ D],D >,
00 •

9 is <[ENV -+ D],D>,
()I)

* * *10 is <[ENV -+ D],D > •eo

11 is <[ENVw -+ P(w)],P>,

12 is <E ,E>,
""

13 is <EXPI~,[~]> ,
14 is ~EXP/B-n-~,[I3-n-=]>,
15 is <EXP/cnv ~,[cnv ~]>,-v -v

16 is <EXP/B-n-cnv ~,[B-n-cnv ~]>--v -v

and 17 is <{*},const>.
In the above lattice, the relations (7 :s; 12 :s; 13) will be

proved later in 6.8.3 and (12 :s; 10,12 :s; 9) in 7.6.14. The "dotted"
relations (12 :s; 11 :s; 13,6 :s; 8) are only conjectures. All the sem-
antics, excepting' {3,5,15,16}, are substitutive. Above I, they are
all a-models; above 2, they are all models; above 4, they are all
B-n-models; above 3, they all equivalence elements of INSOL; above
12, they all equivalence the fixed-point c~inators (see 4.0.5)
below 14, they are all normal and solVable. Also, 14 is the max-
imal normal substitutive model and we will show that 12 is the
minimal continuous (= Wadsworth's 'theorem is true - see section 7.6;
semantics.
O."7'.29:POSTSCRTPT:- (Added in print)

There are, of C"ourse, many more semantics than we have
discussed here and it should be one aim of computer science
theory to build a comprehensive classification of them all •

.Each new semantics gives us new insights into the subject,

94.1

sornetiIJiesin entirely unexpected ways (e.g. 9 and its non-normality
or 12 and Lnsf.de+out; reductions). Further cnriosities IT'ightbe
uncovered by a study of 8. Another worthwhile pursuit might be
to see how the semantics can cope with the adc1ition of extra
constants and reductions to the A-calculus (e.g. numbers and pairs
and their associated functions).

There are also many other relations between the above 17
semantics to consider. For instance, are they all different? Levy

2 2has pointed out that 7 ~ 12: because Af.CAy.f (yy» (Ay.f (yy»
2 2and),f.f«Ay.f (yy» (Ay.f (yy») are different in 7 but are both

equivalent to Y in 12. In this case, are there any interesting
semantics between 7 and l2? What about between 6 and l4??? Are
there any positive relationships omitted? Yes, there are! The
diagram on page 93 is not quite a lattice since neither l2u6 nor
14 9 are indicated. However, in as yet unpublished wo rk , Wadsworthn

and J.~.E.Hylal1d (Christ Church, Oxford) have shown, independently,
that 9 is the substitutive restriction of the maximal solvable
semantics, <{.l,r},(Ae: € EXP. e: € SOL + r,.l)> - i.e. "9 is the
maximal solvable· substitutive semantics", although they do not
quite put it like that: Thus, 14 s 9. Also, Hyland has proved
Wadsworth's theorem in 11 (i.e. "11 is continuous"), and, so, we

The process of taking the substitutive restrictions and
will have 12 s 11 s 14.

substitutive (transitive) closures of suitably chosen elementary
non-substitutive semantics seems to yield Quite powerful results.
Further, if we start with a (8-n-)model, the process is sure to
yield a (8-n-)model. "We also get very pleasing- computational
analogies : "if two procedures, A and B, are related in some way
and we enclose them, in turn, within any larger procedure, C[],
then the overall procedures, erA] and CrB], are similarly related."

94.2

It see~s, therefore, highly instructive to pursue this approach
ana we note that such characterisations of 11 and 12 have been
made by Hyland. We wonder about the substitutive restrictions of
3 and 5. Finally, in v i.ew of the above characterisation of 9, we
may also be wonde rLnq wh at,is the maximal norroal substi tuti ve
seroantics - i.e. the substitutive restriction of the maximal
normal semantics, <{T,.L},(Ae:E': EXP.e: has normal forIT'-+ T,.L».
For a variety of obvious reasons, it is a (e-n-)rrodeland, so,
by O.7.l1(xi), it must be 14: Hence, we have a sirrpler character-
isation of 14 together with a strengthened Morris' theorem to the
effect that "14 is the maximal normal substitutive semantics".

95

l:THE FINITE LATTICES, En AND An-

1.0:Constructing the Base:-

1.0.0:DEF:-
Let I' be the countable simple atomic lattice :-

T

J.
Let I be the set of "atoms", I'\{T,J.}. (We shall use symbols like
a,b,c,x,y,z,xl,x2, •••etc ••• for elements of I - the context in
which they are used preventing confusion with the variables of EXP.l
1.0.1:LEMMA:-

I' is a complete continuous lattice of finite depth, 3, with
all its elements isolated.

Proof:-
-Clearly, it has a finite depth of 3.
-:, by 0.6.13 and 0.6.16, we have the result.

+
1.0.2:DEF:-

'"Let x/y' 'E: I. Then,
[x/yJ: I'" ') I'"

i t------:iI') {i, if Y tit i}.
x, if y = i

96

1.0.3:LEMMA:-
(i) [x/x] is the identity map on I....
(ii) [x/yJi = {:} <-> i = {:}.
(iii) (a" ;td)"(b .;t c,d) => ([a/b] and [cId] commute).
(iv) [x/y] is monotone and so continuous.
Proof:-

-straightforward checking of all possible cases.
-In part (iv), monotone => continuous, by 0.6.13,0.6.16 and 1.0.1.

1.0.4:DEF:-
Let x E I. Then, x is NOT FREE IN Y E I'"if x ;t y.

1 0.5:LEMMA:-
(i) x is not free in T,~'E I....
(ii) (X";t y) => (y is not free in [x/yJz).•
(iii) (y is not free in z E I"')=> ([x/yJz = z).
(iv) (x·;t a)" (x is not free in z) => (x is not free in [a/bJz).
(v) (y is not free in w) => ([x/yJ(y/z)w = [x/z)w).
(vi) (x is not free in y,z) => (x is not free in Ywz,Ynz).
(vii) Let x,a E I. Then,

[x/aJ{.Yuz} {:!} {[x/aJY U [x/aJz}~
Ynz ~ [x/aJy M [x/aJz

Further, if x is not free in y,z E I"',there is equality.
(viii) I{xlx is free in z E I"'}I ~ 1.
Proof:-

(i}i(ii),(iii) and (iv) - ~rivial.
(v) and (vi) -Straightforward checking of all possible cases.

"
(vii) -First part is"a consequence of 1.0.3(iv).
-The equality part is more straightforward checking.
(viii) -By "x is free" we mean "not(x is not free)".
-Clearly, I{xlx is free in z E I"'}I - 0 or 1.

97

1.0.6:DEF:- (Base Lattices)
Let EO := AO := I~.

1.0.7:REMARK:-
We are trying to construct lattices of normal forms. A syntax

for them is given in 0.4.3. In following these rules, we find we
have to construct two sequences of lattices in parallel. Hence,
the need for two base lattices.

We need all of the following induction hypothesis to carry it
through.
1.0.8:DEF:- (Induction Hypothesis - G)

G(i) = (Ei/Ai are complete continuous lattices of finite
depth with all their elements isolated)
& ([x/x] is the identity function on Ei,Ai)
& «a ;td),.,(b= c sd) =o ([ajb] and [cid] commute»
& ([x/yJ is a continuous function on Ei/Ai)
& «x;t y) => (y is not free in [x/y]n, where n € Ei ,Ai»

. & ([x/yJn = {:} <9> n = {:}, Vn € Ei,Ai)
& (x i~ not free in I:} in Ei,Ail .
& «y is not free in n € Ei,Ai) => ([x/yJn = n)
& «x ;t a)...(x is not free in n € Ei IAi) =o (x is not free in

[a/bJn»
& ({y is not free in n € E. ,A.) => ([x/y][y/zJn = [x/z In l)~ ~

& «x is not free in n In' € E. ,A.) =» ex is not free in n .. n',~ ~ -..

n n n' € Ei,Ai»

& ("[x/aJ{nL..J n'} {=} {[x/aJn u [x/aJn'}),.,(if x is not free in n,n' I

nn' !.' . J:x/ a J n M [x/a J n '

we have equality)

I

98

1.0.9:THEOREM:-
G(O).

Proof:-
-By 1.0.1,1.0.3 and 1.0.5.

+
1.1:Constructing the Rest:-

1.1.0:DEF:-
Suppose G(i), for some i ~ O. Then, ai+l is a relation on

I x Ei such that :-
(xs s) ai+l (y,n) if (there exists z € I) (z is not free in e,n)

([z/xJe = [z/yJn).
1.1.1:REMARK:-

The ai's are to model the a-conversion of A~calculus.
1.1.2:LEMMA:-

(x,e) ai+l (y,n) <~. (Vz € I) ([z/xJe = [z/yJn).
Proof:-

(=» -We have z € I and not free in e , n € Ei such that [z/x Je =

[z/yJn.
-:, for any z' € I, [z'/x]e = [z'/z][z/x]e, by G(i).

= [z"'/z][z/yJn
= [z'/yJn, by G(i).

«=) -I{zlz is free in e or n}1 s I{zlz is free in e}1
+ l{zlz is free in n}

< .o, by G(i).
-But III = • and so' I{Blz is not free in e and n}1 > O.
-Hence, there exists z € I not free in e/n.

-We always had [z/xJ£ = [z/yJn.

99

1.1.3:REMARK:-
The above characterisation makes ai+l easier to work with.

1.1•4:COR:-
(i) (X,T) ai+l (y,T) and (x,.L)ai+l (y,.L).
(ii) (y is not free in c) =e- «x,d cxi+l (y,[y/x]e;).
Proof:-

(L) -Let z € I.
-Then [Z/Xl{:} = {:} = [Z/Yl{:}, by G(1).

-Hence, the result, by 1.1.2.
(ii) -Let z € I.
-Then, [z/x]e;= [z/y][y/x]e;, by G(i).
-Hence, the result, by 1.1.2.

1.1.5:REMARK:-
Part (ii) of the above corollary models the a-conversion

rule of O.3.6{i).
1.1.6:LEMMA:-

CXi+l is an equivalence relation on I x Ei•
Proof:-

-Clear, using 1.1.2.,

1.1.7:NOTATION:-
We write lI.Ei for the set of equivalence classes,

(I x Ei) /cxi+l•
Also, we write lx.~ for the equivalence class, [(x,e}J.
1.1.8:LEMMA:-

Let x ~ y € I. Then,
lx.e = ly.n <=> ex is not free in n)~(e;= [x/yJn)

<=> (y is not free in e;)A(n= [y/x]e;).
Proof:-

10Q

(-» -Suppose lle. e == 1'1..,,-

"'Then, tx/y J" == [xIx JIt, by 1.1.2.

== t , by (J (i) •

-But, y is not free in tx/Y]tI, by GCi).,

-:, "l is not free in t.

-Similarly, [y/x}e - " and x is not free in tI.

,I

1 I

«-) -Let :I .(I.

-Then, [l/x)£ - rz/x][x/yJ" III (z/y]", by. GCi)It
..

- .., lx. £ -, 1y. tI, by 1.1.2.
. I

I +
1.1.9 :DEF:- (ft)

e is a re l*ation on lI.Ei such th,at :-

lx.e = 1'1." if (there exists Z E I) (I is not free in ~,tI)

([z/xJe e [z/yJ,,).

1.1.10:LEMMA:-

Prooft-
I

-Same as 1.1.2, using monotonicity of,,[z/z;]', by GCi).,

1.1.11:tEMMA:-
i

,Ii is a,'Well"'defJ.ned part1al ordering on ~I.:ai'.
1

Proof:'"

-Let 11lt.e 'I 1y..n and lx".£'" .. lx.e: and 1"1" .,,; - 1Y.n.

·-Letiz r I. Then, [z/x;]s; .. [z/xJe, by 1.1.2.
\

! [z/y]", by 1.1.10.

== [z/y"']";,, by 1.1.2.

-Hende, e 1s wel1"'defi~ed, by 1.1.10.
"'."-Clearly, it is a partial ordering, by lemma. 1.1.10 and 1.1.2

I.ntl..isynmuatry)..

101

1.1.12:LEMMA:-
(i) Ax. e: = xx , n <=> e: = n,

(ii) AX. e: !!: lx.n -c=e- e: !!: n,
Proof:-

-Trivial, by 1.1.2,1.1.10 and [z/z~J is monotonic, by G(i).

9= .
1.1.13:THEOREM:-

<lI.Ei/!!:> is a lattice, with :-
lx.e:u ly.n = lz. ([z/x]e:u [z/yJn)

and lx.e:n ly.n = Az. ([z/x]e:n [z/y]n),
where z £ I and is not free in e:,n e Ei•

Proof:-
-Claim: the choice of z is immaterial :-

-Let z,z " be not free in e,nand z· ~ z"•
-Then, z' is not free in [z/xJe,[z/yJn, by G(i) •
•-_, [z'/z]([z/xJe w [z/yJn)

= [z'/zJ[z/xJe: u [z~/zJ[z/y]n, by G(i).

= [z~/x]e: u [z~/y]n, by G(i) •
•_, lz.([z/xJe:1o..I[z/yJn) = lz~.([z'/x]e:[z~/yJn), by 1.1.8,

since z' is not free in [z /x]eu [z /y]n, by G(i).

-Now, let z' € I.
-Then, [z'/x]e,[z'/y]n E [z'/xJe[z'/y]n

= [z'/z][z/xJe: u [z'/z][z/yJn, by G(i).

E [z'/z] ([z/x]e:u [z/y]n), by G(i)"•
•-:., lx.e:,ly.n·e Az. ([z/x]e u [z/y]n), by 1.1.10.

-Suppose lx.e:,ly.n E)d.~.
-By G (i), we can choose z " € I such that z ~ is not free in e:,n ,~

,-Then, z' is not free in [z/xJe:,[z/yJn, by G(i).

-But, [z'"IdJ~ ::? [z'/x] e:,[z~/y]n, by 1.1.10.

102

-So, [z"'/dJIS:! [z"'/xJe:u [z"'/yJn
= [z"'/zJ[z/xJe:~ [z"'/z][z/yJn, by G{i).

= [z"'/zJ([z/xJe:u [z/yJn), by G{i).

-But, also, we have z ...not free in [z/xJe:u [z/yJn, by G(i).
_, Ad.o :! AZ. ([z/xJe:u [z/yJn), by definition 1.1.9 •
•_, AX.e:u Ay.n = AZ.([Z/xJe: u [z/yJn).

-Similarly, AX.e:n Ay.n = AZ. ([z/xJe:n [z/yJn).

+
1.1.14:COR:-

(i) AX. e:L.J AX.n = AX. (e:LJ n)
and AX.e:n Ax.n = AX.(e: M n).
(ii) The T and ~ of the lattice are given by AX.T and AX.~,

respectively.
Proof:-

(L) -Let z E: I and be not free in e:,n.Also, let z· ~ x ,

-Then, AX.e:~ Ax.n = AZ. ([z/xJe:u [z/xJn), by 1.1.13.
= AZ.[Z/XJ(e: w n), by G{i).

= AX.(e:n I ; by 1.1.8, since z is not free in
e:un, by G(i).

-Similarly, AX •• n Ax.n = AX.(e:" n).
(ii) - Let Ay.n E: AI.Ei and z E: I.
-Then, [z/xJ~ = ~ E [z/yJn E T = [Z/xJT, by G(i).

-So, AX.~ E Ay.n E AX.T, by 1.1.10.
-Hence, the result (N.B. AX.~ = Ay.~ and AX.T = Ay.T, byl.l.4.(i».

+
1.1.15:LEMMA:-·

The lattice, <AI.Ei,E>, has finite depth.
Proof:-

-Ei has finite depth - say n- by G (i)•.
-Let (AXO.e:O ~ Axl.e:l! •••.••E lxn.e:n) be a chain in the lattice.

103

-Now, I{z IZ is free !n EO'El'•••••• ,En} I
= I u {zlz is free in Ei}1 < rn, by G(i).

i=O
.., {z IZ is not free in EO'El'•••••• ,En} ~¢. Choose such a z..

-Then, by 1.1.10, ([z/xOJEO s [z/xlJe:l s •••••• s [Z/XnJEn) is a
chain in Ei•
-So, [z/xjJe:j= [z/xj+lJe:j+l, for some 0 ~ j < n ,
-And, AXj.Ej = AXj+l.Ej+l, by definition 1.1.0.
-Thus, AI.Ei has finite depth.

1.1.16:COR:-
<AI.Ei,:> is a complete continuous countable lattice with all

its elements isolated.
Proof:-

-IAI.Eil ~ II x Eil = ., by G(i).
-The rest is due to theorem 0.6.13.

=1=

1.1.17:DEF:-
Ei+l := AI.Ei + Ai·

1.1.18:LEMMA:-

Proof:-

Ei+l is a countable complete continuous lattice of finite
depth with all its elements isolated.

-True about Ai' by G(i).
-True about AI.Ei, by 1.1.16.

,-"':.,true about their direct sum, Ei+l, by 0.6.18.
=1=

1.1 ..19:REMARK:-
We have shown how to construct Ei+l given Ei and Ai. Next,

we construct Ai+l using Ei+l and ~i. We,could have used Ei but
Ei+l makes the construction more efficient.

104

1.1.20:DEF:-
- is a relation on Ai x Ei+l such that :-

(a,e) - (a',e") if (a = T = a') (a = .1. = a")v
((a = a") (e = e'».'v 1\

1.1.2l:LEMMA:-
...,is an equivalence relation on Ai x Ei+l•
Proof:-

-Trivial.

+
1.1.22:NOTATION:-

We write Ai (Ei+l) for the set of equivalence classes,
(Ai x Ei+l)/-.

Also, we write aCe) for the equivalence class, [(a,e)].

1.1.23:REMARK:-
The construction Ai (Ei+l) is going to be used to represent

simple application of approximat~ normal forms. We factor out the
equivalence, tv, so that when the operator is "under-" or "over-

1.1.24:DEF:-
defined", then so is the result.

~ is a relation on Ai(Ei+l) such that :-
aCe) E a(e') if (a = l.)v(a= T)v«a E a)I\(e E e'-».

1.1.2S:LEMMA:-
E is a well-defined partial ordering on Ai(Ei+I).
Proof:-

~straightforward checking of all possible cases.

, 1.1'.26:THEOREM:-

, I'

105

tl (e) u a' (e") = a(e), if a' = .1

(a u a")(e u e'), otherwise

a'(e'), if a = .1

and,

aCe) n a'(e') = aCe), if a' = T

(a n a') (e ne'), otherwise
•

a" (e:'), if a = T

Proof:-
-Consider aCe) and a'(e").
-Suppose a = .1 :-

-Then, a(e) , a'(e ') s a' (e ') •

-If a(e),a'(e") !: f3(n), then a'(e") s f3(n).

:.,aCe) t.....I a'(e') = a'(e").
-Similarly, if a" = .1, then aCe) w a"Ce') = aCe).
-Suppose o : ;It.l ;It a' :-

-Then, aCe),a'(e'") 5 Ca '-'a") (e: we') •
-If a(e),a"'(e') !: f3(n), then either f3 = T - in which case,

+

(a L..J a") Cc u s") !: f3 (n), ~ a,a" s f3 and s , e" !: n - in which case,
a ._.a" :: f3, e: I...J e " :: n and so (a w a") C e u e ") - a (n) •

• aCe) L....t a"(~'l == (a ua") (ee:').-..,
-Similarly, for the greatest lower bounds. •

1.1.27:LEMMA:-
The lattice, <Ai(Ei+l),!:> has finite depth.
Proof:-

-Ai and Ei+l have fiRite depth - say n andm respectively - by G{i)

and 1.1.18.
-Let (aO(EO) !: al(El) !: •••••• !: an+m-2(En+m-2» be a chain.
-Suppose the inequalities are all strict :-

-If "o = .1 then a1· ;It.1. If an+m-2 = T then C1n+m-3 ;It T.

106

-In either or neither or both of the above cases, we have :-
aO = al = = an+m-2 in Ai

and eO = el = = €n+m-2 in Ei+l•
-Since Ai has finite depth of n, (m-I) of the ai's must be

the same.
-Similarly, (n-l) of the €i'S are equal.
-But, (m-l) + (n-l) = m+n-2 > m+n-l, the number of elements

in the original chain - i.e. it must overlap somewhere.
-So, there exists j such that aj = aj+l and ej = ej+l•
-:, there exists j such that aj(€j) = aj+l(ej+l) - #.

-Hence the lattice has finite depth (= n+m-2).

+
1.1.28:COR:-

<Ai(Ei+l),=> is a complete continuous countable lattice with
all its elements isolated.

Proof:-
-IAi(Ei+l) 1$ IAi x Ei+ll = e, by G(i) and 1.1.18.
-The rest is due to theorem 0.6.13.

1.1.29:DEF:-
Ai+l := I + Ai(Ei+l).

1.1.30:LEMMA:-
Ai+l is a continuous countable complete lattice of finite'

depth with all its elements isolated.
Proof:-

."-True about I, by 1.0.1.
-True about Ai(Ei+l), by 1.1.28.
-:, true about their direct sum, Ai+l, by 0.6.18.

+.

107

l.2:Carrying through the Induction:-

1.2.0:REMARK:-

We have constructed Ei+l and Ai+l from Ei and Ai' but we still
have to complete the induction hypothesis, G(i+l). For this, we
must define the simple "change of variables" operator, [x/yJ, and
what it means to be "not free in" over Ei+l and A1+l•. ..~.
lo2.l:DEF:-

Let x,y e: I. Then,
[x/y] : Ei+l ----)~ Ei+l

{
AZaOi&i}1-1 -)-31>{Awo [x/y][W/Z]£i},

[x/y]ai
where w ;t x, w ;t y and w is not free in &i' Also,

[x/yJ : Ai+l ---->-31> Ai+l

t:'i+J ~ {~:~:~:i([xjY]'i+lJ
1.2.2:REMARK:-

We are using subscripts to indicate to which lattice an
element belongs. Thus, ai (&i+l) e: Ai (Ei+l) C Ai+l, where ai· e: Ai
and £i+1 e: Ei+l• Also, strictly speaking, the functions [x/y]
should be subscripted to indicate on which lattice they operate.
We have omitted them in the hope that the context makes things
clear - e.g. :-

The above maps are well-defined and doubly strict.
Proof:-

-The least obvious case is to show that [x/yJ(Az.ei) is well-define«

L

108

-Claim: the choice of w in definition 1.2.1 does not matter :-
-Let w,w" ~ x,y and w,w" be not free in Ei•

-Also, suppose W·~v ",

-Then, w is not free in Ei,[w"/z]e:i,[x/y][w"/z]e:i, by G(i).

-But, [W/W"'][x/y][W"'/zJe:i = [x/yl[w/w"J[w"/zJe:i, by G(i).

= [x/y][w/zJei, by G(i) •
•.•, Aw.[x/yJ[w/zJEi = AW".[x/yJ[w"/zJei, by 1.1.8.

-Claim: the choice of representative does not matter :-

-Let Az.e::i = and ~ ~ z "'.

-Then, z'" is not free in e::i and [z"/zJei = e:i ' by 1.1.8.

-Choose W·~x, y, z '" and not free in e:i•

-Then~ W is not free in [z"'/z]e:i, by G(i).

-:, [x/yJ(Az"'.ei) = [x/yJ(Az".[z"/zJEi)

= Aw.[x/y][w/z"'][z"/zJei
= Aw.[x/yJ[w/zJei, by G(i).

= [x/y] (AZ• Ei) •

-To complete the proof, check that [x/y] is doubly strict on the

various representations of T and ~ in Ei+l and Ai+l - i.e. '{T
Ai
,

Az •TE ' AZ '" • TE ,......} ~{~A ,AZ • ~E ' AZ '" • ~E ,......} ~{T I .., TA (ei +1) ,
iii iii

TA (e::i+l)'······} and'{~I ..'~A (e::i+l)'~A (e::i+l)'······}·
i ... i i

+
1.2.4:LEMMA:-

(i) [x/y](Ay.ei) = Ay.e::i•

(ii) (z· ~x,y) -> ([X/yJ(AZ. Ei) = AZ.[x/yJe::i).

Proof:-

(i) -Choose W ~ x, y 'and not free in ei•

-Then, [x/y] (AY.ei) = AW.[x/y] [w/y JEi•

-But, Y is not free in [w/y]e:i, by G(i).

-So" 'Aw.[x/y] [w/y J e::i= AW.[w/y] e::i, by G (i) •

109

= Ay.e., by 1.1.8.
. ~

(ii) -Choose w ¢ x,y and not free in ei, again.
-Then, [x/y] (AZ.ei) = AW.[x/y][w/z] ei

= AW.[W/Z][x/y] ei, by G (L) ,

= Az.[x/y]ei, by 1.1.8, since W is not free
in [x/y]ei, by G(i).

+=
1.2.5:LEMMA:-

[x/x] is the identity function on Ei+l,Ai+l•
Proof:-

{
[x/X]Z }

= [x/x]ai([x/x]ei+l)

{
z, by 1.0.3(i). }

= a i (ei+1)' by G (i) and above.· •

1.2.6:LEMMA:-
[x/y]n = {:} -c=e- n = {:}, for n <EH1 ,AH1 •

Proof:-
-·[~/y](lz.e1) = { :} <->

'$==>

c=e-

~w.[x/YJ[w/.]e1 = {~}

[x/yJ[w/z]e~ = {:}, by 1.1.14(11).

[w/z]ei = {:J' by G(i).

ei = {:1, by G(i).

~z.e1 = ~i}' by 1.1.14(11).

{:}, by G (i) •

<=>

<==>

-[x/y]a1 = {:} <-> a1 =

110

-[x/yJz = {:} -c=e- z = {:}.bY 1.0.3 (HI.

-[x/yJai(ei+11 = {:} <-> [x/yJa1([x/yJei+11 = {:}

<=> [x/yJ<Xi = {:}, by definitionl.l.24.
c=e- a1 = {:}. by G(il.

<-> ai(ei+11 = {:}. by definition 1.1.24.

+
1.2.7:LEMMA:-

Let a,b,c,d € I and a ;t d and b ;t c,d. Then, [a/bJ and [c/dJ
commute on Ei+l,Ai+l•

J?roof:-
-Choose W· ;ta,b,c,d and not free in I:":i.
-Choose w ": ;t a,b,c,d,w and not free in I:":i.
-Then, w'" is not free in [c/dJ[w/zJl:":i,[a/bJ[w/zJl:":i'by GCi).

{
Az. ei} {AW.rC/dJ[w/ZJei}-So, [a/bJ[c/dJ = [a/bJ
<Xi Ec/dJ<Xi .

= {Aw"'.•Ea/bJ Ew"/wJ Ec/dJ [wiz Jei}
Ea/b] Ec/dJ<Xi

{
AW".EW"/WJ[a/bJ[C/dJEW/ZJei}= , by G (i) •
[c/d] Ea/bJ<Xi .

= {AW".EW'/W]Ec/dJEa/b]Ew/Z]E:i, by GCi)_}
[c/dJ[a/b]<Xi

= {AW ...[C/dJ[W"/WJEa/b][W/Z]E:i, by GCi).}
[c/dJ[a/bJ<Xi

~
Aw.[a/bJ[W/Z]ei}

= [c/d]
[a/bJ<Xi

= [C/d][a;b{':~ei}.

-Also, [a~][c/d]{ Z } = [a/bJ{[C/dJZ }
<Xi(ei+l) [c/dJ<Xi([c/d] ei+l)

III

= {[a/bJ[c/dJZ }
[alb J[cid Jai ([a/b J[cid Je:i+1)

= {[c/dJ[a/bJZ, by 1.0.3{iii). }
[c/dJ[a/bJai([c/dJ[a/bJe:i+l), by G(i) and above.

= [c/dJ[a/bJ{ Z .}.
ai (e:i+l)

+
1.2.8:LEMMA:-

[x/yJ is monotonic, and so,continuous, on Ei+l,Ai+1•
Proof:-

-Let Aa.e: s Ab.n, where a,b € I and e:,n € Ei•
-Choose w· ~ x,y and not free in e , n,
-Then, [w/aJ e s [w/bJn.
-So, [x/yJ[w/aJe !: [x/yJ[w/bJn, since [x/yJ is monotonic, by

G (i) •

.., [x/y](Aa.e) = AW.[X/yJ[w/aJe
~ AW.[X/yJ[w/bJe, by 1.1.12(ii).
= [x/yJ(Ab.n).

-If ai E ai, then [x/yJai E [x/yJai' by G(i).
-If Z E z', then [x/yJz E [x/yJz', by 1.O.3(iv).
-Let ai(e:i+l) !: ai(e:i+1).

-If ai = ~ or ai = T, then the result is trivial, by 1.2.6.
-If nott then ai E ai and e:i+lE e:i+l.
-Then, [x/yJai(e:i+l) = [x/yJai ([x/yJe:i+l)

!: [x/yJai([x/yJe:i+l)~ by G(i) and above.
= [x/yJai(e:i+l)·

-_, [x/yJ is monotonic on Ei+l/Ai+l and so continuous, by 0.6.13,
1.1.18 and 1.1.30.

+

112

1.2.9:DEF:-
x is NOT FREE IN

{either x = y ~ (x '~ y) (x is not free in E:iII

x is not free in ai e: Ai

{z }x is NOT FREE IN', .. . -LAi+l if :-
ai (E:i+l)

{

X is not free in z € I"
either (ai = L)v(ai = T) or (x is not free in,ai e: Ai }-

• '. • ... # 1~2.l0:LEMMA:-
The above definition is well-defined and x is not free in T,L

e: Ei+l,Ai+l.
Proof:-

-Clearly, x is not free in any of the representations of T and L

in Ei+l and Ai+l (see end of proof of 1.2.3 for list of these).
-The only problem is when x is not free in AY.E:i•
-Suppose Ay. E:i= AZ.ni I where y' ~ Z.
'-Claim: x is not free in Az.ni :-

-If x = z, trivial.
-Suppose x = a, We must show x is not free in ni e: Ei•
-Now,z is not free in E:iand ni = [z/yJE:i, by 1.1.8.
-So, if x = y, then trivial, by G(i).

-If x ~ y, then x is not free inE:i and so, again, trivial,
b'y GCi).

-:, the definition is well-defined.

1.2.ll:tEMMA:-
Let x :~ y e: :r. Then, y is not free in [x/yJ €i+l e: Ei+l and

y is not free in [x/yJai+l e: Ai+l,",

113

Proof:-
-Suppose €i+l = Az.ci·

-Choose w· ;ex,y and not free in ci.
-Then, [x/y](Az.ci) = Aw.[x/y][w/z]ci.
-But, Y is not free in [x/y] [wIz] Ei, by G (i), since X· ;ey.
-00' Y is not free in AW.[X/Y][W/Z]E., since y ;ew.

. ~

-If ci+l = ai' then y is not free in [x/y]ai, by G (i) •

-If ai+l = z, then y is not free in [x/y]z, by 1.0.5(ii).
-Suppose ai+1 = ai(ci+l).

-Now, y is not free in [x/y]ai, by G(i).
-And, y is not free in [x/y]Ei+l, by above •.-.•, y is not'free in [x/y]ai ([x/y]ci+l) = [x/y]ai (ci+l).

+
1.2.12:LEMMA:-

(y is not free in {Ei+l}) =e- ([x/YJ{Ei+l} = {<1+1}>•
ai+l ai+l ai+l

Proof:-
-Suppose Ei+l = AZ.Ei•

-If Y = z, then Lx/y I (AY·Ei) = Ay. Ei), by 1.2.4{i).
-If y·;ez, then y is not free in Ei ~ Ei•
-Choose W· ;ex,y ,Z and not free in Ei•
-Now, Y is not free in [w/zJci' by G{i).
-So, [x/y]O,z.Ei) = Aw.[x/yJ[w/zJEi

= Aw.[w/zJEi, by G(i>.

= AZ.Ei, by 1.1.8.
-If €i+l = ai' then~[x/y]ai = ai' by G{i).
-If ai+l = z, then [x/y]z = z, by 1.0.5(iii).
-Suppose ai+l = ai(Ei+l).

-rr a1 = {n, then "1+1 = {:} and so x/y a1+1 - "Hl,by 1.2.6

-If not, then y is not free in ai,Ei+l•

114

-So, [x/yJai(e:.i+l)= [x/yJai([x/yJe:.i+l)
= ai (e:.i+l),by GCi) and above ,

1.2.l3:LEMMA:-
Let x : ~a E: I. Then,

(x is not free (x is {
e:..+l}not free in [a/bJ ~).
ai+l

Proof:-
-Suppose e:.i+l= Ay.e:.i•

-Choose w ~ a,b and not free in e:.i•
-Then, Ay.e:.i= Aw.[w/yJe:.i,by 1.1.4(ii).
-And, [a/bJ(Ay.e:.i)= Aw.[a/bJ[w/yJei•
-Since x is not free in e:.i+l,either x = w - in which case

result is trivial - 2!: ex' ~ w) A (x is not free in [w/yJ ei) - in
which case x is not free in [a/bJ[w/yJei, by G(i), since x ··~a,
and so, again, we have the result.
-If e:.i+l= ai' we have the result by G(i).

-If ai+l = z, we have the result by 1.0.5(iv).
-Suppose ai+i = ai(e:.i+i).

-If ai+l = {:}, we have the result by 1.2.6 and 1.2.10.
-If not, then x is not free in ai,ei+l-
-Thus, x is not free in [a/bJai,[a/bJe:i+l, by G(i) and above_
-So, x is not free in {a/bJai([a/bJei+l) = [a/bJai(e:i+l).

+
1.2.l21:LEMMA:-

(x is not free in {~i+l}) =e- ([z/xJ [x/YJ{e:i+l} = [Z/YJ{e:i+l}>.
(li+l <li+l ai+l

Proof:-
....Assume Z ~ x ~ y - otherwise trivial, by 1.2.5.

115

-Assume, without loss of generality, that x;ta - since, if
x = a, choose a" such that x .;ta " and a'"is not free in E., anda

work with Aa'"•[a'"/a] Ei' by 1.1.8. So, x is not free in Ei•
-Choose w,w ...€ I such that W· ;tw'" and w,w'" ;tx,y,z and w,w ...

are not free in Ei•
-Then, [z/x][x/y] (Aa.Ei) = [z/x] CAw.[x/y] [w/a] Ei)

= Aw[z/x] [w"'/w][x/y][w/a]Ei, since
w'" is not free in [x/y][w/a]Ei, by G(i).

= Aw[w.../w][z/x][x/y][w/a]Ei, by G{i)

= Aw.[z/x][x/y][w/a]Ei, by 1.1.8,
since w'" is not free in [z/x][x/y][w/a]Ei, by G(i).

= Aw. [z/y][w/a]Ei, by G(i), since x
is not free in [w/a]Ei, by G(i).

= [z/yJ(Aa.Ei)·
-If Ei+l = ai' we have the result by G(i).

-If ai+l = a, we have the result by 1.O.5(v).
-Suppose ai+i = ai (Ei+1)•

-If ai = {:}. then the result is trivial, by 1.2.6.
-If not, then x is not free in ai I Ei+l"
-se , [z/x][x/y]ai(Ei+l) = [z/x][x/yJai ([z/x][x/yJEi+1)

= [z/yJai([z/yJEi+l), by G(i) and
above.

= [z/y]ai(Ei+i)·

+
1 • 2 • 1"5 : LEMMA: ...

Proof:-

116

-If <1+1 e ALE! and <;:+1 < Ai' or vice-versa, then <1+1 {~} <1+1

= { :}, and in either case x is not free, by 1.2.10.

-Similarly, if ai+l,af+l are in different parts of Ai+l, the result
is trivial •. they are always in the half of the lattice-.., suppose same sum.
-Suppose €i+l = Aa.€ and €i+l = Ab.n.

-As in the proof of the last lemma, we may assume, w .1.0.g.,
that x· ;t. a,b and, so, x is not free in €,n.

-Then, Aa.€ u Ab.n = AX. ([x/a] e u [x/b]n), by theorem 1.1.13,
and in which x is not free.

-Similarly, for the greatest lower bound.
-If €i+l = ai and €i+l = ai, we have the result by GCi).
-If ai+l = a and ai+l = a"',we have the result by 1.O.5(vi).
-Suppose ai+1 = a (~) and af+l = y (6) •

-If ex = .L, then a{~) u y (c) :: y (6) , in which x is not free ..
and " n " = .L " " X " " ", •

-If a = T, then " " = T " " X " " "u ,
and " M " = y (0) , " " x " " " •

-If y = .L, then " " = a (~), II " X " " "
and " " = .L " " X " " ", •

-If y = T, then " " = T " " X " " ",
and " n " = ex (~) , .1 " X " " " •

-If none of these, then x is not free in a,l3,y,o.
-Then, x is not free in (a t....I y) ,(a n r) , (13u 6), (~ n 6)', by

..G(i) and above •
....So, X is not free"in Cau y) (a u 6) , (a n Y) (a nO')

= a(a) u y(6) ,a(a) n y(6).

+

117

1.2.l6:LEMMA:-

Proof:-
-As in the proof of the last lemma, we may assume, w.l.o.g., that
£i+l,e1+l,ai+l and a1+1 are in the same halves of their respective
lattice sums - otherwise we are operating on {:} and so the result

is trivial, by 1.2.6.
-Suppose £i+l == Aa.£ and £1+1 == Ab.n.

-Again, we may assume, w.l.o.g., that a' "# x' ¢ b , so that x is

-Choose w 'E: I such that w is not free in e , nand W· ¢ x,y.
not free in e,n.

(N.B. it is always possible to make such a choice since I has an
infinite number of elements and we are excluding only a finite '
number - the "free" variables of £ and n - by G(i)~)

-Then, [x/yJ (Aa.e)[x/yJ (Ab.n)
== (Aw.[x/yJ[w/aJe) LJ (Aw..[x/yJ[wjbJn)
= Aw. ([x/yJ[w/aJe:w [x/yJ[wjbJn), by 1.1.14(i).
= Aw. ([x/yJ([w/aJe u [wjbJn», by G(i), since x is not

free in [w/aJe:,[w/bJn, by GCi).

== [x/y]Aw.([w/aJe u [wjbJn), by 1.2.4(ii).
e [x/yJ(Aa.e:u Ab.n).

"
-Similarly, for'the greatest lower bound •

....If £i+l == ai and e1+l == 1;1.1' we have the result by G(i).

-If ai+l == a and ai+l == a', we have the result by 1.O.5(vii).
-Suppose ai+l == a(8) and a1+l == yeo).

118

-It is trivial to check that the result holds when a,y = T,.L.

-Otherwise, x is not free in a,S,y,o.
-So, [x/y](a(8) u y(6)} = [x/y](ay) (8 6)

= [x/y] (a ~ y) { [x/y] (8 La 0»

= ([x/y]a u [x/y1y)([x/y]8 u [x/y]O),
by G(i) and above.

= [x/y]a([x/y]8)[x/y]y([x/y]o),
by.'.1.1.26,since Lx/y I c ~.L' ~ [x/y]y, by 1.2.6.

= [x/y]a(8) ~ [x/y]y(6).
-Similarly, for the greatest lower bound.

-N.B. if x were free originally, we would have the inequalities
of G(i+1) as a .resu1t of the monotonicity of [x/y], proved in 1.2.8.

1.2.17:LEMMA:-
I{x € Ilx is free in {€i+1}}1 < -.

ai+1Proof:-

,

free in €i+1}1, since we have equality if ai ~T,.L and 0 otherwise.
< ., by G(i) and above.

-I{xlx is free in Aa.€i}1 ~ I{xlx is free in Ei}1 < ., by G(l).

-If €i+1 = ai' We have the result by G(i).

-If €i+1 = a, we have the result by 1.0.5(viii).
-I{xlx is free in ai(€i+1)}1 ~ I{xlx is free in aill + I{xlx is

+
1.2.18 :THEOREM:-

"(Vi ~ O)G (1) •

Proof:-
-G(O), by 1.0.9.
-For~.!.a..(),'G (i) -> G (i+l), by 1.1.18,1.1.30,1.2.5,1.2.6,1.2.7,
1.2.8,1.2.10,1.2.11,1.2.12,1.2.13,1.2.14,1.2.15,1.2.16 and 1.2.17 •... .

119

2:PROJECTIONS AND THE INVERSE LIMITS E ,A •
00 00

2.0:Initial Projections:-

2.0.0:DEF:-

4>0,1 : EO ------)31> El
'o I)eO'

91,0 : Al ------>:JiI'AO

t<£lJ I >C.:f aO' J
and 90,1 : AO ------>7' Al

aO ') aO•

2.0.1:LEMMA:-
The above maps are well-defined and doubly strict.
Proof:-

-By definition, they are doubly strict.
-The only equivalence classes not T or ~ are in lI.EO•
-If ").x.eO:::Ay.nO ;tT, then 4>l,O{Ax.eo) ::: ~::: 4>l,O{Ay.no>.

+
.2.0.2 :LEM)1A:-

The following diagr~s commute :-
. 0,1

120

and,

Proof:-
-straightforward.

2.0.3:LEMMA:-
'1,O"O,I,el,0,60,1 are monotonic and, so, continuous.
Proof:-

-Monotonicity is straightforward.
-Continuity follows from 0.6.13, since the lattices have finite
depth by 1.2.18, and hence the ACC by 0.6.16.

2 •0. 4 : LEMMA: - .

EO <] Eland AO <I Al •
Proof:-

;
2.0.S"':LEMMA:'"

(i) xis not free in {~} -> x is not free in {+O.l ('Ol}.
. CU eO,l(~)

not fl:M in {El} ==> x is not free in {~. 0 ('il} .
~. ~,O(~)

(ii) x is
Proof:-

-Trivial.

121

2.0.6:DEF:- (Induction Hypothesis - H)

H(i) :: (CP. i l,CPi1 .,6.. ·1/·6i1 . are well-defined, doubly~, - -,~ ~/~- - ,~
strict and continuous)
& (the following diagrams commute .-.

~i-l/i
E. 1 CPi,i-1

E.

[X/YJir [[x/yJCPi-1,i
Ei-l

.,. > E .
CPi.r-; a

and,
6. 1 .~- ,~

A. 1 6i,i-l Ai
[X/YJr- n [x/yJ6. 1 .

~- I~

Ai-l 6i,i-1 Ai)

& (x is not free in {:~} =e- x is not

& (x is not free

& (Ei-l <l Ei and Ai-1 <l Ai)"
2.0.7:LEMMA:-

H(l).

Proof:-
-By lemmas 2.0.1,2.0.2,2.0.3,2.0.4 and 2.0.5.

+
2.1:~he Other projections:-

.2.1.0 :DEF :-
Suppose H(i), for some i ~ 1. Then~

122

tPi+l,i: ~i+l ------->~Ei

{
Ax.e,}' {AX.tP, , lee,}}
, 1 I > , 1,1- 1 ,

Q1 6i,i-l (ai)

6i,i+l: Ai ----->~Ai+l

ti:1(€ i)} I ;. {:i-I, i (~i-1)(~i,1+1(€ i)J, .
2.l.l:LEMMA:-

The above maps are well-defined and doubly strict.
Proof:-

-First, check well-definedness and double strictness on the
various representations of T and J. in Ei+l,Ai+l,Ei and Ai.
-Then, we must deal with the equivalence classes of AI.Ei,~I.Ei_l.
-Suppose Aa.ei = ~b.ni € Ei~l.

-Let x € I.

, \

". ,.>tt = tPi,i_l([x/bJni); by 1.1.2.
= [x/bJ'i,i_l(ni), by H(i).

-Hence, Aa'~i,i_l (ei) .= Ab.tPi,i_l(ni), by 1.1.2.
-i.e·:'i~l'i(Aa.ei} = '1+1 l(Ab.ni)·, ~,

-SimilarlY"i,i+l(~a.ei_l) = 'i,i+l(Ab.ni-l} if ~a.ei_l = ~b.ni_l.
+:

123

2.1.2:LEMMA:-
[x/YJo~i+l,i = ~i+l,io[x/YJ,
[x/YJo~i,i+1 = ~i,i+1o[x/YJ,
[x/yJoei+1,i = ei+1,io[x/yJ,
[X/y]o9i,i+1 = ei,i+1o[x/yJ.
Proof:-

-~i+1,io[x/yJ(Aa·€i)
is not free in €i.

= ~. +1 .(xw , [x/y J[w/a J€.), where W· ~ x,y anda ,~ ~.

= xw , ~. . 1 ([x/yJ [w/aJ €i)~,~-
= Aw.[x/yJ[w/aJ~ili_1(€i)' by H(i).

= [x/yJ (x a ,~. . .1(€i»' since w is not free~,~-
in ~i,i-1(€i)' by H(i).

= [x/y]o~i+1,i(Aa·€i)·
-~i+1,io[x/yJai = ai,i_lo[x/yJai = [x/yJoei,i_l(ai), by H(i).

= [x/yJo~i+l,i(ai)·
-Similarly, [x/yJo~i,i+l = ~i,i+lo[x/y].
-ei+l,io[x/y]a = [x/yJa = [x/y]oei+l,i(a).
-ei+l i0 [x/yJai (€i+l) = ai+l ,i([X/yJCli([x/yJ €i+l». ,

= ai,i_lo[x/yJai(~i+l,io[x/yJ€i+l)
= [x/yJoei,i_l(ai) ([x/yJo~i+l,i{€i+l»' by

H(i) and above.
= [x/y J(ei ,i-1 (Cli) (~i+1,i(ei+1»)
= [x/yJoei+l,i{Cli(€i+l»·

-Similarly, [x/yJoei,i+l = ei,i+lo[x/yJ.
..

=1=

2.1.3:LEMMA:-

(i) x is not free ~n {:::~} -> x is

Iii) x is not free in {::} ~ x is not free

124

Proof:-
(i) -Suppose E'+l = AY.E,.

J.. J.

-As in the proof of 1.2.14, we may assume, w.l.o.g., that
x ~ y and, so, x is not free in Ei•

-Then, x is not free in ~i,i-l(Ei)' by H(i).
-Thus, x is not free in AY·~i,i-l(Ei) = ~i+l,i(AY.Ei).

-If Ei+1 = ai' then x is not free in ai E: Ai ==> x is not free in

6i,i-l (ai) E Ai-I' by H(i), ==> x is not free in <j>'+l,(a,) E: Ei •J. ,J. J.

-If ai+1 = a, then x is not free in a E: I => x is not free in a E:].

=> X is not free in 6i+1,i (a) E: Ai.
-Suppose ai+1 = ai(Ei+1).

-If ai = {~}, then eHl,i (aiH) = {~}, by 2.1.1.

-If not, then x is not free in ai E: Ai and x is not free in
Ei+1 E: Ei+1•

-Then, x is not free in 6i,i-l(ai)
in ~i+l,i (Ei+1)' E: Ei, by H(i) and above.

-So, x is not free in 6i,i-l(ai) (~i+l,i(Ei+l) E: Ai.
-i.e. x is not free in 6i+1,i (ai(£i+l» E: Ai tt.

E: A, 1 and x is not free
J.-

(ii) -Similar to part (i).

+' .
"

2.1.4:LEMMA:-
The maps 'i+1,i,4>i,i+l,6i+1,i and 9i,i+lare monotonic and,

hence, continuous.
Proof:-

-Let Ei+1 5 £1+1.
-If -£1+1 =T, the~ trivial, by2.1.1.
-Suppose £i+1 = Aa·£i 5 Ab.ni = £1+1.
-Let x E: I. Then, [x/aJo<!>i,i_1(Ei)= 'i,i_lo[x/aJ£i' by B(i).

e 'i,i_1o[x/bJni, by B(i} and 1.1.10.
= [x/bJo<!>i,i_1(ni)·

125

-So, xa, <l>i,i-l(e:i) s Ab. <l>i,i-l(Tli)'by 1.1.10.
-i.e. 'i+l,i{Aa·e:i) !: l/>i+l,i(Ab.ni).
-If e:i+1= ai !: ai = e:i+l'then trivial, by H(i).

H' I/>i+l,iis monotonic.
-Similarly, 'i,i+l is monotonic.
-Let ai+1 E ai+l.

If = a- ai+1
identity map.

-Suppose ai+l :::ai (e:i+l) E ai (e:i+l)= ai+l.

E a~ • ai+l' then trivial, since 8i+l,i is the

-If ai ::: J. or a:-= T, then trivial, by 2.1.1.~

-If not, then a. 5 a~ and e:i+1 s e:i+1•a i
-Then, 8i,i-l (ai' s ai . l{a:") and <l>i+l,i(e:i+l),~- ~

by H{i) and above.
-So, 61+l,i(ai{e:i+1»· = ai,i-l(ai) (<I>i+l,i(e:1+1»

E ai,i-l {ai' (4)i+l,i(e:i+1»
= ai+l,i(ai(e:1+l»·

-.., ai+1,i ls monotonic .•
-S~milarly, 6i,i+1 is monotonic.
-Hence, the maps are continuous, by 0.6.13,0.6.16 and 1.2.18.

+
2.1.5:LEMMA:-

Ei ~ Ei+1 and Ai ~ Ai+1•
Proof:-

-<1>. 0<1>. {"x.ei} ={"XO<l>i-lli°4>i,i-l(e:i)} 5 {AXai·e:i}~by H(i)i;i+1 i+1,i a. a 0a (a)~i-1,i i,i-1 i

126

2.1.6:THEOREM:-
(Vi ~ 1) H(i).

Proof:-
-H(l), by 2.0.7.
-For i ~ 1, H(i) -> H(i+1), by 2.1.1,2.1.2,2.1.3,2.1.4 and 2.1.5 •
•

-~, by induction, the theorem.

+
2.2:Inverse Limits:-

2.2.0:DEF:-
...E...:= Inverse limit of <Ei'~i+1,i>i=0

=·{<EO,el,········>!Ei E Ei and Ei = ~i+1,i(ei+l)} •
...A_ := Inverse limit of <Ai,ei+1,i>i=0

= {<Cl0'Cl 1'••••••••> !Cli E Ai and Cli = e i+1,i (Cl i+1)}•
2.2."1:THEOREM:-

E...and A...are compJ.ete continuous lattices.
Proof:-

-By theorems 1.2.18,2.1.6 and 0.6.22.

127

2.2.2:DEF:-
Define +i,j,ei,j'+i,oo,ei,oo'.oo,iand eoo,ias in 0.6.21.

2.2.3:LEMMA:-
(i) All the above maps are doubly strict and continuous.
(ii) The following diagrams

+i .,J+=====~:::::====~>E.
·j,i 11J[x/yJ·i .,J--------~'-~--~> E+----:.----- j. iJ,

commute :-

and
ei ., J > A.A. e. i

[X/YJil'
J, Jf [x/yJei .IJ

Ai e. i Aj •

i:'{::} =e-
{+oo("!)}(iii) x is not free x is not free i ~/Jn •
6i,j (ai)

(iv) For i s j, Ei <l Ej and Ai <l Aj• Also, Ei <l Ecoand Ai <] Aco
Proof:-

-Either trivial or by 0.6.22.

+
2.2.4:DEF:-

Let x,y E: I. Then,

co co<&i>i=O I-l --)-+ <[x/yJ&i>i=O
and,..

[x/yJ • Aco > Aco•
coH

)
co<ai>i=O t <[x/yJai> i=O •

is cox NOT FREE IN <&1'::'1=0€ E if (Vi ~ 0) (x is not free in &i € Ei)co
cox is NOT FREE IN <a1.::.i=oE: A if (Vi ~ 0) (x is not free in ai E: Ai'co

128

2.2.S:LEMMA:-
(i) The following diagrams commute :-

~i,or)

and
ei,co

A. e A

[x/YliI
co,i if [x/yle.~,m

Ai Ame •oo,i

(H) x is not free in {::} - x is not free

(iii) x is not free in {:} =e- x is not free

Proof:-
-Trivial, using 2.2.3(ii) and (iii).

+
2.2.6:NOTATION:-

When we use symbols like €,a~ for elements of Em,Aco' we will
00 coassume they are of the form <€i>i=O and <ai>i=O' respectively.

2.2.7:RECALL:-
0.6.22,

where the sets form

2.2.8:THEOREM:-
(L) [x/y] is.a continuous map on Em,Aco.
(ii) [x/x] is the identity map on Em,Aoo.
(iii) Ca ~ d)..(b:~ o,d) ==> ([a/b] and [e/d] commute).

{* these reults are reflected for J"'I s'

129

(tv) [x/yln = {: } -c=e- n = {:}. Vn € E lA •ao ao

(v) x is not free in T or ~ in E lA •.ao ao

(vi) (x ~y) => (y is not free in [x/y In, Vn € EcolAaol•

(vii) (y is not free in n € Eao,Aao)=o ([x/y In = n) ,

(viii) (x ~ a) A (x is not free in n € E lA) => (x is not freeco ao

in [ajbJn).

(ix) (y is not free in n € Eao,Aao)=> ([x/yJ[y/zJn = [x/zJn).

(x) (x is not free in n In' € E lA) => (x is not free inao ao

(xi) (x is not free in n In' € Eao,Aao) =e-

{
n ,-,Tl'} {[x/aJn u [x/aJn'}

([x/a] =) •
n n n " [x/aJn n [x/aJn'

If x were free, then we would have the usual inequalities.

Proof:-

(i) -By 0.6.22(v), f:L + Eaois continuous iff ~ao,iof:L + Ei is

continuous for all i ~ o.
-But, ~ao,io[x/yJ = [x/yJo~ao,i' by 2.2.5(i), which, being the

composition of continuous functions, is continuous.

-Hence, [x/yJ is continuous on Eaoand, similarly, on Aao.

(ii) , (i1i) , (iv) , (v) , (vi) , (vii) , (viii) and (ix) -Trivial.

(x) -Let x be not free in n,n' € Eco.

-Then, (Vj ~ 0) (x is not free in nj I nj € Ej) •

-So, (Vj ~ 0) (x is not free in nj u nj € Ej), by 1.2.18.

-Thus, (Vi,j ~ 0) (x is not free in ~. i (nJ, u nj') € Ei), by 2.2.3.
co J,

-But, n '-' n' = <Jj{~j.i(nj u nj)}>~=o' by

-Since Ei has finite d~pth, and by 0.6.13,

~k,i(nk LJnk), for some k ~ o!
-Thus, (Vi ~ 0) ex is not free in

2.2.7.
co
~=l{~j'i{nj unj)} =

-i. e. x is not free in nun"

-Similarly, x is not free in nun'" € Acoand n w n' € Eoo,Aco•

'(* this result is reflected for n's)

130

(xi) -In general, we have the inequalities, by part (i).
-Let x be not free in n,n~ e:E •coco. co-Then, [x/a](n ~ n ") = <Lxz'a.I {cj>.. (n , &...I n:")}>i 0' by 2.2.7.j=O J,l. J J =

= <L:j{[x/aJocj>.. (n. &...I nJ:)}>~=OJ=O J,l. J

= <L:j{cf>'io[x/aJ(n. '-'nJ:) }>~=O' by 2.2.3(ii).J=O J, J
= <lJ{cf>.. ([x/aJn[x/a Jn

J
:")}>col.'=O'by 1.2.18.j=O J,l. J

= [x/aJn u [x/aJn~, by 2.2.7.
-Similarly, for the other three cases.

+
2.2.9:REMARK:-

We have now constructed an E which contains elements likeco
those exampled in 0.7.27. If € e:Eco'we can see that it is nearly
always of the form,

<1.,AX. €o'AX. €i, AX. €2'••••••••>,
where €~. e:E or,co_

where a~ e: A •co
Further, if a e: Aoo' it is always either of the form,

<a,a,a,a,a,a,a,a,a,a, •••••••• >,
where a e: Ior_,

<1.,ao(€i>,ai(€2) ,a2(€3) ,•••••>,
where a~· e A and e ": e: E ..

00 00

~ This uncertainty in the decomposition of E arises becauseco
it is possible for elements ofEco to have infinitely many free
variables. For example, let <xO,xl,x2' •••••• > be an enumeration
of the elements of I. Consider,

e = <J.,1.,xO(1.),xO(Xl (1.»,xO{xl (x2{1.») ,•••••••• >.

Then, x is not free in e -c=e- X is not free in €i' Vi ~ 0 -c=e- x ;t xiI

131

Vi ~ 0 - X, since the x. 's were an ennumeration. Thus, all elementsa

of I are free in E.

Suppose we want to construct an element like A??(£). What
can we choose for "?"? There is nothing left! However, such an
element exists quite happily in Ea> .-•

<i , ~, ~I AXO'xo (~)I AXl •"i (xO(~)),AX2 •x2 (xO(xl(~))),••••••••>.
There is no way to express this element in the form :-

This awkwardness comes about because we use the same set for
both the free variables and the not free variables. The not free
variables are really only for use as pointers and they do not have
the actual physical significance of the free ones.

Technically, there may be several ways of getting out of this
(e.g. reserving a special symbol, x, for just such an eventuality
and not allowing it to occur free - using different sets, I and I,
for free and not free variables - a suggestion of Reynolds - [55] ~
altering all the definitions accordingly and checking them!), but
we do not think it worth all the trouble because :-

(a) it makes the constructions clumsy and inelegant,
(b) we don't mind Ea>catering for more than the pure

A;·calculus with terms like A?? (E) above,
(c) when we deal with the A-definable elements of E ,a>

the problem does not occur
and (d) Ea>decomposes very nicely anyhow, provided we aren't

so "'naiveabout it.,(2.2.20).
2.2.l0:Dt:F:- ..-

Let ++1+l,i be +i+2,i+1 restricted to AI.Ei+1,

+'1,1+1 " +i+1,i+2 " " AI.Ei,

ee1+1,1 " 61+2,1+1 II " Ai+1(Ei+2) and

ee1,1+1 " ei+1,i+2 " tI Ai(E1+1).

132

2.2.ll:LEMMA:-
(Vi ~ 2) (H(i) restricted to AI.Ei_l and Ai-l{Ei».
Proof:-

-Trivial.

2.2.l2:DEF:-
co

:= Inverse limit of <AI.E·,$~·+l i>'-O.l. l. , l.- coAco(Eoo):= Inverse limit of <Ai(Ei+l),eei+l,i>i=O.
Also, <1><1> •• ,eei ·,4>4>i,eei ,<1><1> • and ee . as in 0.6.21.l.,J ,J ,co ,00 oo,l. co,l.
Also, [x/yJ on AI.Eooand Aoo(Eoo)and NOT FREE IN are defined
coordinate-wise, as in 2.2.4.
2.2.l3:LEMMA:-

Suitable adaptions of 2.2.1,2.2.3,2.2.5 and 2.2.8.
Proof:-

-Straightforward.

+
2.2.l4:LEMMA:-

Let e e Eooand €. ;.t T ,.L. Then, either :-
(Vi ~ 1) (there exists xi € I and €1-l € Ei-l) (€i = Axi• €i-1),

~ (exclusively) :-
(Vi ~ 1) (there exists ai-l € Ai-1) (€i == ai-1).

Proof:-
-Since €.;.t T ,.L, there exists j ~ 1 such that €j;.tT, J..

-Either e:j == AXj• €j'-1where €j'_i;.tT,J. :-

-Clearly, Vl Sis j, €i = Axj.e:1_l1 where e:1-1 ==

cf>j-l,i-1(€j'-l)·
-Suppose j < i. Consider €i. If €i == ai-1, then €j == aj_1 €

and e:1-1 €A. 1 c Ej - x. So, €. ;.t ai-1 - i.e. there exists Xi € IJ- i
E such that €i == Axi·€1_1·i-l

133

-Clearly, Vl siS j, Ei = eli-I'where eli-l= ej-l,i-l (elj_l).
-Suppose j < L, Consider Ei• If Ei = '-xi·El-l, then Ej =

AXi.''ej_l€ AI.Ej_l C Ej - X. SO, Ei = eli_l.

=+
2.2.1S:DEF:-

"i : Eco --->~,AI.Eco

>
r, if E = l..

T, if E = T.
00

<Axi·ei-l>i=l , if either-clause above.
l., if or-clause above.

and'

) ,

T I if E = T.

l., if either-clause above.
00<eli-l>i=l' if or-clause above •

.L, if e = l..

where xi-l,e:i-l and eli-l are as given by 2.2.14. Also,
-1iTl :,AI.Eoo) Eoo

and

00 ' 00<eli>i=O,-->~<aO' <ai> i-o":
2.~.16:LEMMA:-

-1 -1iT1,iT2,iT1and iT2 are well-defined and continuous.
Proof:-

-Trivial, by 2.2.13,2.2.14 and 0.6.22.

2.2.17:LEMMA:-
Leta E: A and a,'¢.T ,l.. Then, either :-

00

(Vi ~ 0) (there exists a E: I) (ai = a),

134

£E (exclusively) :-
(Vi ~ 1) (there exists exi-l·€ Ai-l and €i e: Ei) (exi= exi-l(€i))•

Proof:-
-Trivial, similar to 2.2.14.

2.2.l8:DEF:-
lP1 : A<» ---3>

ex II---~

and

f·· ex """-->~L, if either-clause above.
T, if ex= T.

,
<exi-l(€i»~=l' if or~clause above.
L, if ex= L.

where a,exi_land €i are as given by 2.2.17. Also,
,,,-1 I'"
"'I :

cooa I > <a>i=O
and

coo coo<exi-l(€i»i=l ~f--->~<L,<exi-l(€i»i=l>.
2.2.l9:LEMMA:-

~ Wl,w21t1Ji1 and w;l are well-defined and continuous~
Proof:-

-Trivial, as in 2.2.16.

=1=

135

2.2.20:THEOREM:-
Under the maps defined in 2.2.15 and 2.2.18,

AI.E ,A <l E
OQ OQ OQ

and I',A (E) <1 A •
00 OQ OQ

-1 -1Further, under the obvious direct sum maps, 1f 1 + 1f 2' 1f 1 + 1f2 ..,
-1 -1~1 + ~2 ' we have :-

E == AI.E + A
OQ OQ 00

Proof:-
-Trivial.

136

3:APPLICATION AND SUBSTITUTION IN E •
00

3.0:Finite Apnlications and Substitution:-

3.0.0:REHARK:-
In any model of the A-calculus we ought to define

an application so as to capture the notion of S-reduction,
Ap : E xE -+ E

00 00 00

This should extend the partial application which already
exists ,by 2.2.20, where e:=a EAoo ,EEoo' and 0 EEoo =e- Ap (8 ,0) =

Ap(a,o) = a(o) € Aoo(Eoo)' S Aoo E Eoo.
We now only have to define Ap for when 8 = AX. e:" €

AI.E c E •
00 - 00

We will define Ap coordinate-wise following the definition
of S-reduction, 0.3.6, as closely as possible. Thus, we will.
also have to define a substitution operator,

similarly coordinate-wise. This will, of course, have to
extend the operator we already have when 8 = a€I, E Aoo,S Eoo'
3.0 •1:DEF •:-

Let x €I and e:i EEi• Then,
re:i/xJI : I" > Ei

Y t-. >,. {y, if x ;t yy.}
e:i' if x =

3 •O. 2 :LE~1MA.:-

re:i/xJ I is monotonic, and so continuous. It is doubly

strict. Also, e i s e:i" =e- [e:i/X]I S re: i"/x]I (in [I"'-+Ei]).
Proof:-

-Trivial.

137

3.0.3:DEF:-
[e:l/xJE := [e:l/xJI E [I'-+E1J, = [Eo-+E1J

0

[e:2/xJA .- [e:2/xJI E [I'-+E2J, = [AO-+E2J.-
0

For i ~ 2,
[e:.'IxJE : E. 1

1 i-I 1-

{
Ay.e:i-2} H
a. 21-

---->-31- E.
1

{
Az.[e:i_l/XJE. [Z/YJe:i_2,}1-2
[e:~Ix JA a. 2
1 . 2 1-1-

where z ~x and z is not free in e:~ l,e:·2.l.- 1-

For i ~ 3,

For i ~ 1,
APi EixEi

{
<ai_lre:i> } t----7
(Ax.e:i_l,e:i>

3.0.4:REHARK:-
In the above definition, where there appear expressions

like e:~,e:~1 and ai 2,a. 3' we imply that :-
1 1- - 1-

$i,i-l(e:i> = e:i-l and &i-2,i-3(ai-2> = ai-3•
The definition seems rather complicated! There are many

different ways the types of the functions could have been
arra~ged - e.g. APi aEixEi+EiJ - but we still have to use
various projections and inclusions to make them fit: the above

,
seems to be the cleanest way to do it. All the ways would
be equivalent, however, in that they lead to the same function

co

Ap, when it is eventually defined as hbAPi'
As before, see 1.2.2, we will omit most of the subscripts

on the substitution operators, hoping the context indicates

138

on which lattice they are operating in each instance.
The definition is inductively defined and so, most

of the theorems on it will require proofs by induction.
The following "induction schema" is designed to handle
such proofs.
3.0.5:LEHHA:- (SPQR-induction)

f-(S(i),Vi~O) " Q(l) " R(2)

!-(P(i-l) " Q(i-l) " R(i-l) " SCi) => R(i»,Vi~3
1-.(~ (i-I) A R (i) =.> Q (i)),Vi ~2
~(Q(i) =.> P(i»,Vi~l

(P (i) " Q (i» ,Vi~l
and R(i),Vi~2.
Proof:-

-Q(l) gives us pel).
-Q(1)~R(2) gives us Q(2), which gives us P(2).

-~we have P(2)"Q{2)"R(2).

-But,P{i)AQ(i)AR(i)=.>R(i+l), since S(i),Vi~O.
-And,Q (i)AR (i+l)=.>Q (i+l) •
-And,Q (i+l)=.>P (i+l) •
-~,Vi~2,P(i)AQ(i)AR(i)=.>P(i+l)AQ(i+l)AR(i+l).
-~,by ordinary induction, we have,

3.O. 6:RE~1ARK:-
We will use the above scheme as follows :-

S (L) ++ sentences about [e .Ix]
~ I

P (i) ++ " II APi
Q (i) ++ tI tI [e./X]E~ . 1~-
R (i) " .. [e./xJA++

~ i-2

PAGE NUMBERING
AS ORIGINAL

THESIS.

139

3.0. 7:COR:-

Ap. and [ci/x]E are defined, Vi~l. Also, [ci/x]A
~ i-1 i-2

is defined, Vi~2.

Proof:-

"

- [ci/x]Iis defined.

APi " " •

-Let S (i)

P (L) -

" Q(i) - Le Ix] ""
i ' Ei-l

" R(i) _ [c Ix] "",
.i Ai-2

-Then, Vi~O, S(i), by defn. 3.0.1.

····..!Arid~wehaveQ(1)"R(2), s i.nce Q(l)=S(l) ana R(2)=S(2), by 3.0.3.··'~

-Clearly, Vi~2, Q(i-l)"R(i)=?Q(i), by defn. 3.0.3.

II , Vi~3, P(i~l)"Q(i-l)"R(i-l)"S(i)~R(i), by 3.0.3.

, Vi~l, Q(i)=!>P(i), by 3.0.3."
I by lemma 3.0.5, P(i)"Q(i), Vi~l, andRei), Vi~2.

3.1:Basic Properties of [€:i/x]and APi..!.:.

3.l.0:DEF:-

Let {~}~:~ = ([Ei/x] is well-defined and dovbly strict)

& ([z/z~][[z/z']c./x] = [Z/z'][€:i/x])
, ~

&, (x~,z" and z .. is not free in €:i => [ei/x][z/z"] = [z/z"][Ei/x])

& (x"is not free in ,{~~,'-I,} - [£i/X][X/Y]{~i-l} = [Ci/YJ{: i-l}>
(li-2 o.i-2 o.i-2

.__---------------...,----- ..---------------- ..-_---------------_ ..

(*) In this, and similar, definitions,

hypotheses simultaenously - choose one

alternatives consistently.

we are de{f~~!ng}three

from. the middle,',
lower

139

3.0.7:COR:-

Ap. and [E~/x]E are defined, Vi~l. Also, [E:/X]A
J. J. i-I J. i-2

is defined, Vi~2.

Proof:-

" P (i) -

[Ei/X]r is defined.

Api II II

-Let SCi) -

" Q{i) - [E./X] ""
J. Ei-l

" R (L) - [E. /x] ""
J. Ai-2

-Then, Vi~O, S{i), by defn. 3.0.1.

-And, we have Q{l) "R(2), since Q(l) ::S(l) and R(2) ::S(2), by 3.0.3.

-Clearly, Vi~2, Q(i-l} "R(i)=;.Q(i) , by defn. 3.0.3.

,Vi~3, P(i-l)"Q(i.jl)"R(i-l)"S(i)=>R(i), by 3.0.3.

, Vi~l, Q(i)=?P(i), by 3.0.3. '

, by Lemma 3.0.5, P(i)"Q{i), Vi~l, and R(i), Vi~2.

"
II

3.1:Basic Properties of [E./X] and Ap.:-- J.-. -J.---

3.1.0:DEF:-

Let{~(i) = (['i/x] ia well-defined and doubly strict)

s ([z/z"][[z/z'] E./X] = [z/z ..][E./X]). J. J.
& (x;tz,..z' and z "is not

& (x is not free in .{~i-l}~
Cii-2

free in E. =;. [E ./x][z/z'] = [z/z ..][E./X])J. J. J.

[Ei/X] [X/Y]{~i-l} = [Ei/y]{: i-l}>
Cii-2 Cii-2

140

Let P(i) = (APi is well-defined)

&<APi<{:}'<il = {:}l
s ([z/z"']Ap.(ei,e:) = Ap. ([Z/z"']e.,[Z/z"']e:)

1 1 1 1 1

& (a is not free in ei,ei => a is not free in APi(ei,ei».
3.l.l:LEMMA:-

(Vi~O)S(i)•
Proof:-

-Straightforeward examination of all possibilities.

t
3•1.2:LEMMA:-

Suppose P(i-l)~R(i-l), for some i~3. Then, [ei/x]A
i-2

is well-defined and doubly strict.

141

3.1.3:LEMMA:-

by 2.1.6, since <p.. 1,[z/z"]E:" = [z/z"]'<p. i l(E-:')= [z/z;]Ei; 1·
~/~- ~ ~, - ~ -

{
[z/z"][[z/z"]Ei/x]y }

= APi-1 ([z/z"][[z/z"]E.f._1/X](li_3'[z/z'][[z/z;] e:i_l/X]Ei-2) ,
by P (i-I) •

{
[z/z'][e:i/X]Y, by 3.1.1. }

= APi_1([z/z'][Ei_1/X](li_3,[z/z;][Ei_1/X]Ei_2) I by Q(i-1)
,.R (i-I)

by P (i-lJ

+
3.1.4:LEMMA:-

such that X~Z/Z' and z..is not free in E-:.Then,a
[Ei/X][Z/Z"] = [z/z"][ei/X].
Proof:-

-[Ei/X][Z/Z']{ Y }
(li-3(€:i-2)

{

[E -:Ix] [z/z" Jy " }

= AP:_l([Ei_l/XJ[Z/Z-Jai_3,[Ei_l/XJ[Z!Z-JEi_2)

142

{
[z/z~][e:/xJY' by 3.1.1. }

= Ap. l([Z~Z~J[E: l/xJa. 3,[Z/Z~J[E~ l/xJE. 2)' by Q(i-1)1- 1- 1- 1- 1-
....R{i-1), since z" is not free in e: 1 = ~.. l(ei"),by'2.1.6..' 1- 1,1-

{
[e:/xJy J= [z/z"J 1 .

APi_1{[ei_1/x]ai_3,[ei_1/xJEi_2)' by P{i-1).

= [Z/Z"J[Ei/XJ{ y }.
a. 3(e. 2)1- 1-

3.1. 5 :LE~:-

Suppose P{i-1),.Q{i-1),.R(i-1), for some i;;::3.Let x be not
free in ai-2 €Ai-2• Then,

[Ei/xJ[x/yJ(ai_2) = [Ei/yJ(ai_2l.

=
[ei/y]z, by 3.1.1.

=

("r .ai-3 ~ {:} and x is not free in ai-3'<i-2'

("*) ai~3 = {:}.

143

3.1.6:LEMMA:-
Suppose P{i-l) "Q{i-l) "R(i-I} , for some i~3. Let a be

not free in e; ««, 2' Then, a is not free in [e:-:-/x]a.2' £i'a ~- . a, ~-

Proof:-
-If a. 2 = YEI, then a is not free in [e:-:/x]y,by 3.1.1.~- ~

-If "i-2 = "i-3{Ei-2), then either "i-3 = {:}, in which case
[e:i/x]ai_2 = {:}, by 3.1.2, and a is not free in it; £E a is
not free in ai-3,Ei-2 and then, since a is not free in Ei-1'
= ~i,i-l(Ei)' by 2.1.6, we have a not free in [e:i_l/xJai_3'
[ei_l/x]e:i_2, by Q(i-l)"R(i-l).

-:.,a is not free in Api_1([ei_1/x]ai_3,[ei_l/x]ei_2)' by P(i-l),

= [Ei/xJai_2·

3.1.7:LEMMA:-
Suppose P(i-l}"Q(i-l)"R(i-l), for some i~3. Let a be not

free in ei. Then, a is not free in [ei/aJai_2.
Proof:-

-If ai-2 = y, then a is not free in [Ei/aJy, by 3.1.1.
-If ai-2 = ai-3(Ei-2), then, since a is not free in ei-l'
by 2.1.6, a is not fre~ in [ei_1/aJai_3,[Ei_1/aJEi_2' by
Q(i-1)"R(i-1).

-:.,a is not free in Ap. l([E: l/aJa. 3'[Ei~l/aJE. 2)'~-~- ~- - ~-
by P(i-l), = [Ei/aJai_2.

..
9=

3.1.8:LEMMA:-
P(i-I) "Q(i-1) AR(i-1)~R(i), Vi~3.

-By lemmas 3.1.2,3.1.3,3.1.4,3.1.5,3.1.6 and 3.1.7.

144

3.l.9:LEMMA:-
Suppose Q(i-l) "RCi), for some i~2. Then, [e::"/X]E' is

1 i-I
well-defined and doubly strict.

Proof:-
-First of all, check that the choice of Z in defn. 3.0.3 does
not matter.
-Let x,z,z'"El. Let XitZ,z"'.Let Z ..-2 ...

-Let z,z'"be not free in e:i-l,e:i-2.
-Claim;),z.[e::l/X][z/y]E. 2 = AZ-.[E: l/X][z"'/y]E. 2 :-1- 1- 1- 1-

z' is not free in [z/Y]e:. 2' by 1.2.18.
1-

is not free in [e:i_l/X][z/y]Ei_2, by Q(i-l).
[Z'/Z][Ei_l/X][Z/Y] Ei-2

= tEi_l/X][Z"'/Z][z/y]e:i_2'by Q(i-l).
= [ei_l/x][Z'/y]e:i_2, by 1.2~18.

-Hence, by lemma 1.1.8, the claim is established.

-Now,

-Also,

-Next, suppose Ay.e:i_2 = Aw.[w/y]e:i_2, where W is not free
in e:i-2and W ity. Then,
[e:f/X](AW.[W/y]e:i-2)= AZ. C[Ei_l/X][Z/W][W/Y] Ei-2)'
where ZitX,W and is not free in £i-2 (=?·z is not free
in [w/Y]£i-2' by 1.2.18).

= Az.([e:i_l/X][z/Y]£i_2)' by 1.2.18.
= [£i/X](AY·£i_2)·

~:~~:~::'Ch:C;'~~:J{S~~~~::::S}.Well,
i-I TA

i-2

{
Az.[e:.~.'_l/X][Z/Y]TE'} {AZ.TE ' by Q(i-l).}

. = i-2 = i-I = T •
[e:i/X]TA . TE., by R (i). Ei

i-2 1
-Similarly, [e:i'/x]~E =·L.i-I Ei

145

3.1.10:LEMMA:-

Suppose Q(i-1) ...R(i), for some i~2. Let z,z'" EI. Then,

[z/z"'][[z/z"']ei/x] = [z/z'][ei/x].

Proof:-

{

Ay.e
i
_2-[z/z'][[z/z']ei/x]

°i-2

{
AW. [[z/z"'] ei_1/x] [w/y]e: '-2 }

= [z/z'] 1 , where w;rX,Z,Z'" and
[[z/z']e:~/x]o, 2

1 1-

is not free in Ei',E, 2' since ~, i l·[Z/Z']E:= [z/z"']e:: l'
1- 1, - 1 1-

by 1.2.18.

= {A. w.[z/z-][[z/z-]"i_l/x][w/y]"i_2' by 1.2.4(ii).}

[z/z'][[z/z']ei/x]oi_2

= {AW. [z/z "'][e:i_1/x] [w/y] ei-2,

[z/z'][e:i/x]oi_2' by R(i).

{
AW. [Ei_1/x] [w/y] Ei-2,= [z/z']
[ei/x]oi_2

= [z/z'] [e:i/X]{A:. "i-2}.
. i-2

by Q (i-I) '}

by 1. 2•4(ii) '}

3.1.11:LEMMA:-

Suppose Q(i-1) ",R(i) , for some i~2. Let x~z,z'" and z'"

be not free in £i EEi• Then,

[ei/x][z/z'] = [z/z'][Ei/x].

Proof:-

-If ..z=z", trivial by 1.2.18. So,suppose Z;z!Z'.

-Choose W ,w'"El such that W ,w'";tz" ,x and WiltZ ,w' and w,w' are..
not free in e:i-1' ei -·2•

-Then,

[z/z'][e:i/X]{AY."i-2} ~
. °i-2

146

=.
{

AW',[Z/Z'][W'/W][Ei_1/X][W/y]Ei_2 ,
since w'

[Z/Z'][E:/x]a. 2
1 1-

in [E: l/x][w/y]E. 2' by Q(i-l) and 1.2.18.
1- 1-

{
AW"',[W'/W][Z/Z'][E: l/X][w/y]E. 2' by 1.2.18,}= 1- 1-

[z/z'][Ei/x]ai_2
= {AW,.[Ei_1/X][W'/W][Z/Z'][W/y] Ei-2' by Q(i-1) '}

[E:/x][Z/Z"']a. 2' by R(i).1 1-

is not free }

{
AW,[Z/Z,,"][W/Y]E'_2= [Ei/X] 1
[z/z"']a. 21-

= [Ei/x][z/z,]{AY.Ei-2}.
ai-2

, since w' is not free in }
[z/z"'][w/y]E. 2'1-

3.1.12:LEMMA:-
Suppose Q(i-1)AR(i) I for some i~2. Let X be not free

in Ei-1• Then,
[Ei/X][X/Y] Ei-1 = [Ei/Y]Ei-1'
Proof:-

-C~oose w,w'" I such that w,w"'~x,Y and w,w'" are not free in
Ei-1 and w'" is not free in Ei and w~w"'. (N.B. we can always
make such choices since there are only finitely many free
variables in £i-1,E1 I by 1.2.18, and I is infinite.)
-Then, W,W~ are not free in ~i-1,i-2(Ei-1)'= Ei_2,and
~i,i-1(£i)' = £i-1' by 2.1.6,
-:.,W is not free in [X/Y][w/z] Ei-2 € Ei-2, by 1.2.18.

.. {AZ.E_i-2_} {AW.[X/Y] [W/Z]£i_2}-So, [ei/x][x/y] = [ei/x]
ai-2 " [x/y]ai_2

_-= {lW'"•[ei_1/X]'[w""/w] [x/y] [wiz] ei-2}
[e:i/x][x/y]ai-2

147

={AW".[Ei_l/X][X/y][W"/Z]e:i_21 by 1.2.14 (twiCe).}
[e:i/x][x/y]oi_2

= { AW" •[Ei-l/Y] [w"/z] e:i-2,by Q (i-I), since x is not free in
[e::/y]o. 2' by R(i). [w"/Z]e:.2, by 2.1.6~ ~- ~-

= [Ei/Yf:~~~-l 1.2.14.

3.l.l3:LEMMA:-
Suppose Q(i-l) ...R(i), for some i~2. Let a be not free in

ri,e:i-l• Then, a is not free in [e:i/x]e:i_l.
Proof:-

-Suppose, w.l.o.g., e:i-l= Ay.e:i_2, with y ~ a - by 1.1.8.
-Then, a is not ftee in £i-2.
-But, a is not free in e:i-l'by 2.1.6.
-Choose Z ~ I such that Z ~ x/a and Z is not free in e::lie;. 2"~- ~-
-Then, a is not free in [e:i_l/x][z/y]e:i_2,by 1.2.14 and Q(i-l).
-~, a is not free in Az·[e:i_l/x][z/y] Ei-2, = [e:i/X]Ei_l.
-On the other hand, suppose Ei-1 = 0i-2.
-Then, we have the result by R(i) •

3.l.l4:LEMMA:-
SupposeQ(i-l)AR(i), for some i~2. Let a be not free in

Proof:-
-Suppose Ei-l = AY.Ei_2• Now, a is not free in El-I' by 2.1.6.
-Choose z ~ a and not free in e:i-l,Ei-2•
-Then, a is not free in [e:i_l/a][z/y]Ei-2, by Q(i-l).
-~, a is not free in Az·[e:i_l/a][z/y]Ei_2, = [Ei/a](AY.Ei_2>.
-If e:i-l= 0i-2' we have the result by R(i).

=1=

148

3.l.1S:LEMMA:-

Q(i-1) "R(i)~Q(i), Vi~2.

Proof:-

-By lemmas 3.1.9,3.1.10,3.1.11,3.1.12,3.1.13 and 3.1.1~e

3•1.16 :LEMMA:-

Suppose Q(i),

and, APi(t:+ <i)

i

for some i~l. Then, Ap. is well-defined
l.

{TE. 1= J. l.+1 •

Ei+1
Proof:-

-Clearly, APi is well-defined on its second argument.

-Suppose AX.ei-I ". AY.[y /x] Ei_1·,where y ~ X and y is not

free in E, 1.
l.-

-Then, APi(Ay. [y/x] Ei-l, ei) = <l>i,i+l ([Ei/Y] [y/x] Ei-l)

= <1>. '+1([Ei"'/X]E. 1)' by eui .l.,l. l.-

{
AXeTE }

-Also, APi (T i-n. Ei)

Ai-l

. "'. +
3•1 •17:LEMMA:-

suppose Q(i), for aome i~l. Let z,z"" ~ I. Then,

, [Z/Z"']APi (Ei,Ei) = APi ([Z/Z~Ei,[Z/Z"']Ei)·

, Proof:-

-Suppose Z ~ z Otherwise trivial, by 1.2.18.

149

-Then, APi ([Z/Z..]·{AX.Ei-1 ,[Z/Z"]Ei)(
ai-l 'J

{
AW.[Z/Z"][W/X] Ei-l}

= Ap. (,[Z / Z ..] Ei) ,
1. [Z/z"]ai_l

not free in Ei-l•
= {~i'i+l([[Z/Z"]Ei/W][Z/Z"][W/X]Ei_l)}

[z/z"]ai_1([z/z"]Ei)

where W ;tZ,Z" and is

{
~. .+1([Z/Z..][[Z/Z..]E~/w][W/x]E. I)}= 1.,1. 1. 1.- ,
[z/z "]ai-l (Ei)

W ;t z,z..and z..is not free in [z/z..] E~, by 1.2.18.1.

by Q (i) , since

(
~i '+l([Z/Z"][Ei/W][W/X]E'_l)}= ,1. 1., by Q(i}.
[z/z"]ai_l (Ei)

= {~i'i+l([Z/Z"][Ei/X]Ei_l)}, by Q(i).

[z/z"]ai_l(f£i)
= ([Z/Z.']'~i,i+l ([Ei./X]Ei-l) , by 2.1.6.}

[z/z"]ai_1 (£i)

= [z/Z"].~APi((AX.Ei-l},Ei.).
. ai-l

3.l.l8:LEMMA:-
Suppose Q(i), for some i~l. Let a be not free in Ei,E!.

Then, a is not free in APi(Ei,Ei.)'
Proof:-:

-Suppose Ei =. AX.Ei_l• Assume, w.l.o.g., X ;t a, by 1.1.8.
-Then, a is not free in El-I.
-... , a is not free in [Ei/X]Ei_l, by Q(i).

, a is not free in ~i,i+l([Ei/X]Ei-l)' by 2.1.6,
= Ap. (Ax.Ei l'E~).

l. - 1.
-If £i = ai-I' then the result is trivial.

150

3.1.19:LEMMA:-
Q(i)=7P(i) I Vi?!l.
Proof:-

-By lemmas 3.1.16,3.1.17 and 3.1.18.

3.1.20:THEOREM:-
(Vi?!l)(P(i)"Q(i» and (Vi?!2)R(i).
Proof:-

-We have Q(l) and R(2), since Q(l)=S(l) and R(2)=S(2).

:, by lemmas 3.1.1,3.1.8,3.1.15,3.1.19 and 3.0.5, we
have the result.

3.2:Continuity of APi and [&i/X]:-

3.2.0:DEF:-

Let {!}(i) - ([ei/x] is monotone)

& (&i !: ni =7 [e:i/X]s [ni/x]).
Let P(i) - (APi is monotone).

3.2.1:REMARK:-
We have redefined the S,P,Q and R of 3.1.0, whose scope

is for section 3.1 only. The present definition is valid for
section 3.2 only. When we refer to these sections, we must be

"
careful to make sure what S,P,Q and R represent.
3.2.2:LEMMA:-._

SCi), Vi?!O.
Proof:-

...By 3.<3.2.

151

3.2.3:LEMMA:-

Proof:-
-Suppose p(i-l) ..Q(i-l) ..R(i-l), for some i~3.

-Letcxi_2 ~ nr-a E: Ai-2• Claim: [e:{Ix] cxi-2 S [e:r/X]ni-2 :-
-If cxi-2 = ~ or ni-2 = T,then trivial, since [e:i/X]

is doubly strict, by 3.1.20.
-:. , suppose (li-2 ~ .L and ni-2 ~ T •

cx.2 and n , 2 are in the same sub-lattice of A. 2'~- ~- ~--:. ,

that is either I~ or A. 3(E. 2)'~- ~-
-If (l.2 = y, then n· 2 = Y also, and we are home.~- ~-
-Suppose (li-2 = (li-3{e:i-2)and ni-2 = ni-3{oi-2)'
-Then, cxi-3 , ni-3 and e:i-2~ °i-2' since cxi-2 ~ ~

and nr-z ~T. Thus, [e:,i/X](li-2 = [Er/X] (li-3 (e:i-2)
= APi1ie:,i-l/X](li-3,[e:,i_l/X]e:i_2)
~ APi-l{[e:,i-l/x]ni-3,[e:i_l/X]Oi_2)' by p(i-l)AQ(i-l) ..R(i-l).
= [e:,i/x]ni-3(oi_2)
= [e:i/X]ni_2' and the claim is established.

-t., [e:i/X] is monotonic on Ai-2•
-Suppose Ei 5 ni' Then,

[£t/
XJk_3:£i-2J = {:;~~:~; £i-l/xJai-3'[£i-l/X] £1-2)}

~ {[nt/XJY, by 3.0.2. 1
Al>i_l([ni-l/xJai_3,[ni_I/X] Ei-2), by p (i-I) ..Q (i-I)"R(i-l) ajld

since ~i,i-l is monoton~, by 2.1.6.

., [n:"/x]{ y J.
~ . ai-3(Ei-2)

152

3.2.4:LEMMA:-
Q (i-1) A R (L) =e- Q (i), Vi~2•
Proof:-

=Suppose Q(i-1)AR(i), for some i~2.
-Suppose Ei-1 £ ni-1 e: Ai-1"
-Claim: [Ei/X]Ei-1 E [Ei/x]ni_1 :-

-As in the last proof,we may assume that Ei-1 ;t.1.,

n, 1 ;t T and they are either both in AI.E. 2 or both in A. 2·~- ~-~-
-Suppose Ei-1 = AY.Ei_2 and ni-1 = AW.oi_2•
-Choose z e: I such that Z ;t X and is not free in E~ l'~-

Ei-2 and 0i-2. Then,
[Ei/x]ei_1 = [ei/X] (Ay·e:i_2)

= AZ"[Ei_1/X][z/y] ei-2
£ Az.[ei_1/x][z/W]8i_2' bYQ(i-1) and 1.1.12, since

[z/y] ei-2 s [z/W]oi_2' by defn. 1.1.9.
e [Ei/X] (Aw.oi_2)
= [ei/x] ni-1.

-If Ei-1 = <Xi-2 and ni-1 = Si-2 e: Ai-2, we have the
claim by R{i). Hence, the claim is established.

where Z ;t X and

is nQt free in e:i-1,ni-1 and Ei-2•

= {AZ. [n..i-1/X][z/y] Ei-2' by Q (i-1>}, since
[ni/x]<xi_2, by R(i)

ei-1 E ni-I' by 2.1.6, and by 1.1.12.

= [ni/xf:~~~-2}

153

3.2.5:LEMMA:-
Q(i)::?P(i), "i~l. " ..
Proof:-

-Suppose Q(i), for some i~l.
-Let (ei,ei) s (ni,ni) € EixEi•
-We may assume that ei ~.J. and ni ~ T, as before, since

APi<{: ,ei) = {: ' by 3.1.20, and so monotonicity
would be clear.
-We are trying to establish Ap. (e.,e-:')= J1Pi(n.,n-:').

11111

-Now, ei and ni are in the same sublattice of Ei•
Then,-Suppose ei = ai-l = Bi-l = ni•

Api(ai_l,ei) = ai_l{ei)
s Bi-l (e i) = APi (B. l'e-:)•1- 1

-Suppose ei = ~x.€:i-l and ni = ~y.oi-l.
-Let z be not free in €:i-l,oi-l. Then,

t-

154

3.2.6:THEOREM:-

Proof:-
-'1 (1)=8 (1) and R (2)=8 (2)•
- :. , '1 (1)...R (2) I by 3•2•2•
-X, by lemmas 3.2.2,3.2.3,3.2.4,3.2.5 and 3.0.5, we are home.

3.2.7:COR:-
APi is continuous on EixEi and [Ei/X] is continuous on

r:'IEi'_l"a~d Ai-2•
Proof:";"

, , t, ,! • '" i~ 1.. .~"

-By 1.2.18, r"',Ei_1,Ai_2 and Ei have finite depth.
-:.lEi xEi has finite depth.
-~, the functions are continuous, by 3.2.6 and 0.6.13~

3.3:More ProJ2erties of APi and LEi/X] :-

3.3.0:LEMMA:-

Let {n(t). (x is not free in {:t~}""·
[£i/X]{~i-1}' = {:i-l i(£i-1) }) •

ai~2 81-2;1-1 (ai-2)·
"Then, (Vi;;::0)8(i) and (V1;;::1)'1 (L) and (Vi;;::2)R(1)•
Proof:~

-C1aim:'S(i), V1;;::0':-
'...;xis not free in' zX·_ z.. (ei/x] Z = z, by 3.0.1.

155

-Claim: Q{i-1) R(i-1) => R{i), Vi~3 :-
A

-Let x be not free in ai-20

-Assume ai_2· ~ T ,l , since otherwise result is trivial,

by 3° 1. 20 and 2° 1.6. .Then, }

[£~/x]~.2 = [E~/X]{ Y
~ ~- ~ ai-3{Ei_2)

= {:;:~;:~-l/X]Qi-3' [£1-1/X]£i-2 }
{
YI by (i), which we have above. }

= , by q(i-1)
Api (6 i - 3, i - 2(ai - 3) ,</> i - 2,i -1 (e i ...2n,

AR(i-1), since x is not free in ai-3,e:i-2•

= {:i-3,i-2IQi-3) Iti-2,i-ll£i-2»}
= 6i-2 i_1(1 Y }) = 6i-2,i-1(ai-2).

, ~i-3(e:i-2)

-Claim: Q(i"';l)AR(i)=>Q(i), Vi~2 :-

-Let x be not free in E. 1. Then,~-
[E'" Ix] e:

i
_
1
= [e:i/xJ{Ay.e: i-2}

a i-2

= {Az.[E1-1/X] [z/y] e i-2}, where Z ~ x and is not

[e:i/x] a i-2 free in e:i_1,e:i-2.

{
A z.~ i-2 i-1 ([z/y] e:i-2)}

=. , ., by Q (i-1>. ..R (L) ,
e i -2 , i -1 (a i -2) .

since x is not free in [z/y] e:i-2, by 1.2.18.

_ . {Az.~Z/y]e:i_2}
- <fJ i-1,i (.)

a i-2

.{A Yet: i-2 I

='i-1,i(
a. 2~-

by l.l.s},.
1 =, i -1,i (e:i -1) •

Q(1)= S(1) and R(2 h: 8(2), we-Let P(i) :: true. Then, since

have the result by 3.0.5.

156

3.3.1:COR:-
Let x be not free in e. I. Then, :Vi~l,~-

APi (Ax.ei-l' e£) = ~i-l,i+l (ei-l)·
Proof:-

~APi(Ax.ei_l,e£) = ~i,i+l([ei/x]ei-l)
= ~i,i+1•~i-I,i (£i-I)' by 3.3•0 •
= ~i-l,i+l{£i-l)·

(L) [£i/X](Ax.£i_2) = ~i-l,i (Ax.£i-2)' \fi~l.
(Li.) (y # x) It. (y is not free in e-:')~

a

Proof:-
(i) -By defn. 1.2.9, X is not free in).x.£i-2.
-~, by 3.3.0, we have the result.
(ii) -Choose z ~ x and not free in £1-1,ei-2.
-Then, [ei/x](),y.ei-2) = AZ.[ei_l/X] [z/Y] ei-2

=. Az.[z/yJ[e1_1/x]ei_2' by 3.1.20.
= y.[e1-1/x]ei_2' since z is not

free in [ei_l/X]Ei_2' by 3.1.20.

t
3.3.3:REMARK:-

Theorems 3.1.20 and 3.2.7 gave us the basic properties
of APi and [Ei/X]. Results 3.3.0,3.,3.1 and 3.3.2 show properties
which are useful for manipulating these operators.

ff

The following lemma relates the operator [£i/X] with
the old variable swap operator [y/x]. Be careful not to
confuse [y/x] € [Ei-i+-Ei], an instance of [£i/X] when ei = Y,
with [y/x] € [Ei+Ei].

157

3.3.4:LEMMA:-

Let
([W/X]{ii_l}{:i:d

A. 2~-

{
[W/X]Z (of defn. 1.0.2.)

::: h,. 1 . ([wi x] I::. 1) (0 f de fn • 1. 2 • 1.)'I'~- ~ ~_
e. 2 I. 1 ([WIx Jet. 2) (0f de fn. 1. 2. 1.)~- ,~- ~-

Then, (Vi~O) S (i) and (Vi;?:l) Q (L) and (V;?:2J R (L) •

) .}

Proof: -

-Clearly, S(i), Vi~O, by defn. 3.0.1.

by Qli-l).Rli-l).}

-Claim: Q (i-I) AR (L) =>Q (i), Vi;?:2 :-

"'-[w/x]E (I::i-l) = [W/XJE.{AY. £i-2}
i-I ~-1 Cti-2

={ AZ•.[W/X] Ei_} z/y] £i-2'}I where Z ~ x and Z is not free

[w/x] A (Cti-2) in w, &i-2.
i-2

{
>"Z.4>. 2· '.1 ([w/x] [z/yJ E. 2) I by Q (i-I) o}.

::: ~- ,~- . ~-
e. 2' I ([w/x]Ct. 2),byR(i).~- ,~- ~-

158

{
AZ. [w/xJ [z/yJ Ei-2}= ¢i-l i()

, [W/xJ(li_2

= ~. 1 . ([W/XJ{AY.Ei-21) = ¢. 1 . ([w/xJE. 1)·~1- 1 1- 1 .1-, (l ,
i-2

-But, R(2) =S(2) and Q(l) =S(l).

-,!~.,we have the result, by 3.0.5, letting p(i) =~.

3.3.5:LEMMA:-

Let {R~}(i) = (<l>i+l'iO[Ei+l/XJ{~i }:! [Ei/X]{~i-l}).
(li-l (li-2

Let p(i) - (<l>i+2,i+loAPi+l(Ei+l,Ei+l) :! APi(Ei,Ei».

Then, (¥i:::O)SCi) and (¥;::l) (p(i) "Q(i» and (¥i:::2) R(i).

Proof:-

-Clearly, ¢i+l,io~i+l/xJz =
- :. , S (i), Vi :::0•

[E~/x]z, V-i:::O.
1

-Claim: R(2) :-

-If (II = z, we have result by S(2).

-If (II = (lo(EiY' then (l0 = L and result is trivial,

since [~/XJL = L, by 3.1.20.

-Claim: Q(l) :'-

-If El = z £ EO' = I; then we have the result by S(l).

-If El = AY.Eo', then EO= L and, as above, we are home.

-Claim: P(i-l) "Q(i-l) "R(i-l)==> R.u.i , ¥i~3 :- }

~-<l>i+l,io~i+l/x](I~-l = ¢i+l,io[E1+l/X]{ Y
, (li-2 (Ei-l)

= {[Ei+l/X]Y' }>
¢i+l,i(APi([Ei/X](li_2,[Ei/x]Ei_l)

';::r {[:ti/X]Y' by S(i). }

- ..Ap. 1 (¢. . 1° [Ei'/x] (Ii 2' <l>. . 1° [E~Ix] E. 1)' by p (i -1) •1- 1,1- - 1,1- 1 1-

159

3.2.J

'"-A, by 3.0.5, we have the result.

t
3.3.6:LEMMA:-

In lemma 3.3.5, we cannot have equality.
Proof:-

160

-Let y ~ a,b and .L ~ a,b.
-Then, 4>3,2o[Ax.£2/y]a(b) = 4>3,2(a(b» = a(b).
-But, [Ax.£l/Y].L = .L.Contradiction to equality -}f.

3.3.7:FEMARK:-
The inequality in leroroa3.3.5 is highly regrettable, since

otherwise it would be very easy to prove later that E modelled
00

S-reduction. However, it does seem to be inherent in the system.
It arises because of the inclusion, +i,i+l' in definition 3.0.3
and, as was mentioned in 3.0.4, there seems to be no way to
define the operators avoiding an inclusion.

There is an analogous situation in Scott's D model, where
00

the application, also defined coordinatewise, fails to provide
an exact sequence of resulting coordinates, and so necessitates

Thus, we maintain that this inexactness is a feature of the
the taking of a least upper bound.

.....A-calculus itself and may be a reason why it can be so exceedingly
difficult to prove theorems about it.
3.3.8:COR:-

Let i ~k. Then, \'k ~ m, ~i'k.[Ei/XJ{~f:~}"
Also, Vk ~ 1, 4>i+2,k+2oAPi+l(£i+l'£1+l) .= APk+l(£k+l;£k+l).

Proof:-
-Trivial, by repeated applications of 3.3.5.

+
3.3.9:COR::-

The sets {4>i+l,ooO;Pi(£i'£1>li~l}, {4>i,ooO[£1/X]£i_lli~1}
and {4>i,ooo(£i/x]ai_2Ii~2}are directed in Eoo.

Proof:-

161

== <Pi+l,co°<Poo,i+10<Pi+2,oooAPi+l(e:i+l'e:{+l), by 2.2.3(iv).
= <Pi+l,co0<Pi+2,i+loAPi+l(e:i+l,e:{+1)'by 2.2.3(iv).
== <p. 1 oAp. (e:.,e::-),by 3.3.5.~+,co ~ ~ ~

-Similarly, Vi~l, <Pi+l,ooo[e:i+l/x]e:i== <Pi,coo[e:{lx]e:i-l'
, Vi~2, <Pi+l,coo[e:i+l/x]ai-l ~ <Pi,coo[e:{/x]ai-2·

-~,the sets form, in fact, directed chains in Eco'
"

3.4:Infinite Application and Substitution:-

3.4.0:DEF:-
Ap: Ecox~ Eco

(e:,e:"')) ~l{<P i+l,ooOAPi (e:i I e:~)}

[e:'"Ix] E E Eco co
e: I > W{<Pi coo[e:j/XJe:i-l}~=l '

[e:'"Ix] A . A E. co 00

Cl I :; U{<Pi O[e:j/XJai_2}i=2 ,co

3.4.l:REMARK:-
As before, we will omit subscripts from the sUbstitution

operators when safe to do so.
The following lemma gives a characterisation of the operators

which is sometimes easier to use.
3.4.2:LEMMA:-

• Ap(E, E'l= id{$Hl,j ·APi (Ei, <;l} >;=0'
[e:"'/x]e: = U{<Pi J~o[e:;/X]_l}>;=O and

i=l '
[E 'Ix] E = ,:J{$i,j •[<{Ix] "i-J> ;=0 .

where the above sets are directed.

162

Proof:-

00

= U{¢ .o¢·+l oAp.(E.,E:")}, since ¢ ; isi=l oo,J ~ ,00 ~ ~ ~ oo,J

continuous, by 2.2.3(i), and the set is directed, by 3.3.9,
which implies the resulting set is also directed.

-Similarly for the others.

3.4.3:REMARK:-
Notice that in the above characterisation of Ap and [E/X],

since the sets are subsets of various E.'s, which have finite
J

depth by 1.2.18, the actual j'th coordinate must be one of the
¢i+l,jOAPi(Ei,Ei) etc ••• , for some finite i. This is useful in
some of the later proofs.
3.4.4:THEOREM:-

(i) [E~/X] is doubly strict over E and A •
00 00

(i i) Ap ({:} ,E ..) = {: } •

(iii) [z/z~][[Z/Z"]E"/X] = [Z/Z~][E~/X].
(iv) [z/Z~]Ap(E,E~) = Ap([Z/Z"]E,[Z/Z~]E~).
(v) (x '¢ Z,Z")A(Z~ is not free in E") ==>

([E~/X][Z/Z"] = [Z/Z"][E~/X]).
(vi) (x is not free in E,a) =>

([E"/X][X/Y]{~} = [E"/yj{~}).
(vii) (a is not free in E",{E}) .=>a

i

(a is not free in [E"/xj{E}).
a

(viii) (a is not free in E") =>

(a is not free in [E"/aj{E}~.
a .

163

(ix) (a is not free in £,£~) => (a is not free in Ap(£,£~)}.
(x) (x is not free in {El) => ([£~/xl{£} ={£}).

et et et

(xi) [£~/x] and Ap are continuous maps.
(xii) [w/x]E = [w/xJ and ~2o[w/x]A = [w/x].
Proof:-

-(i),(ii),(iii),(iv),(v),(vi) and (x) are trivial, by 2.1.6,2.2.8
and 3.1.20.
-(vii),(viii) and (ix) are trivial, by 3.4.2,1.2.18 and 2.1.6,
noting remark 3.4.3.
-(xi) is trivial, by 3.2.7, since we note that,

00

Ap = LJ {~i+1 ooOAPio(~ooi'~ooi)}'i=l' "
where (~oo,i'~oo,i)is the clearly continuous projection on the
cross-product defined in the obvious way. Thus, Ap is the least
upper bound of continuous maps and is therefore continuous itself.
Similarly for [£'/x].
-(xii) Well, by 3.4.2 :-

00

[w/x]E£ = <U {~i .o[w/x]E £i-1}>~=0i=l ,) i-1)
00

= <U {~i .o~i_1 .o[w/xJ£i_1}>~=0' by 3.3.4.i=l') ,1.)

00

= <L-l{~i .o[w/xJ£·}>~_o' by 2.2.3(iv).i=O') 1.)-

00

= <[w/xJ£j>j=O = [w/xJe:.
Similarly for [w/x]A - the 1f2is a trivial detail to get the
types of the functions compatible.

+
3.4.5":NOTATION:-

00Let s E: Eooand x e: ..I. Then, write x for <x>i=O E: EGO' and

164

3•4•6:LE~.MA:-
(i) x is not free in Y <=> X ~ y.
(ii) x is not free in Ay.E <=> X = Y or x is not free in E.
(iii) x is not free in Ap(E,n) <= x is not free in E,n.
Proof:-

-(i) and (ii) are trivial, by 3.4.5.
-(iii) is the same as 3.4.4(ix).

3.4.7:LEMMA:-
Let Y be not free in E. Then, AX.E = Ay.[Y/X]E.
Proof:-

-AX.E 00= <.L,<Ax.Ei>i=O>
00= <.L,<Ay.r.y/x]Ei>i=O>'

= Ay.[Y/X]E, by 2.1.6.
by 1.1.8.

3.4.8:LEMMA:-

Proof:-
00

-Ap (AX.E,s'") = l=! 4> i+1,00 0 Api.(Ax•Ei-1 ' Ei)

3.4.9:COR:-
...Let X be not free in e E: E • Then,00

Proof:-
-Ap(AX.E,e:"')= [E"'/X]E,by 3.4.8

= E, by 3.4.4(x).

165

3.4.10: LE.HMA:-

(L) [E/X]Y = {Y'
E,

if X ~Y' E: I}.
if X = Y E: I

(ii) [E"/X](AX.E:) = AX.E.

(iii) (Y ~ x) A(Y is not free in E") ->

([E"/X](Ay.e:) = AY.[E"/x]d.

(iv) (z ~ X)A(Z is not free in E" ,d =>

([E"/X](Ay.d = Az.[E"'/X][z/y]d.

Proof:-

-(i) [E/X]Y
00

= <I I$i .0[E./X]Y>~_0t;1 ,J 1 J-
00

{
<U$i . (Y) >~=0' if x ~ y. }

= i=l,J J
< I00 I$i . (E .) >~""o' if x = y.W ,J 1 J-_r;=0 I if x ~ y. } = {y,

<E.>~ 0' if x = y. €,J J=
-(ii) x is not free in AX.E, by 3.4.6(ii). Thus, we have the

if x ~ y}.
if X = Y

result by 3.4.4(x).

-(iii) [E"'/X] (Ay.E)

00

= <.1,<Ay.bA$i,j-10[Ei/XJEi-1>jm:1 ' by 1.1.14(i) •

... / 00= <.1,<Ay.'" . l°[E X]E>. 1>' by 3.4.2.~oo,J- J=

~= <.1,<$.(Ay.[E"'/X]E»~_l> = AY.[E"'/X]E.oo,J J-

-(iv) [E'" /x) (Ay.E) = [E" Ix] (AZ.[Z/y]e) ,by 3:.4.7.
K

= AZ.[E"'/X][Z/y]E, by part (iii) above.

166

3.4.ll:REMARK:-
We have shown that [£/x] extends [Y/X], by 3.4.4(xii),

as was required in remark 3.0.0. We see that the concept of
"not free in" in E is very similar to the notion of A-calculus,

00

by 3.4.6. We see that the notion of a-conversion is reflected
by 3.4.7. We see that the notion of S-reduction is reflected
by 3.4.8.

We almost see that the substitution operator of A-calculus
is given by [£/X], by 3.4.10. What is missing is the identity,

[£/x]Ap(o/n) = Ap([£/x]o,[£/x]n).
Notice that we do have this when e = Y E: I, by 3.4.4 (Lv),

This identity proves very difficult to establish. We can push
coordinates around so as to obtain expressions like :-

00

[£~/x]Ap(£,o) = L_j¢i+2 ooo[£i+2/X] APi(£i/oi)i=l I .

and,
00

Ap([£~/x]£,[£~/x]o) = ~¢i+l oooAPi([£i/X]£i_l/[£i/X]oi_l)·
3.=1 I

But when we try an induction, a la 3.0.5, on these expressions,
it will not go through. The trouble arises from the "inexactness"
mentioned in 3.3.7.

This identity is all that is needed to establish E as a
00

model of the A-calculus. We are forced to retreat back into the
pure A-calculus in order to get it.

We end this section by showing the existence of the I and
K combinators in Eoo'We cannot yet give S because of the missing
identity.

"
3 • 4 • 12 :LE:tA..MA: -

(L) Ap (Ax.X Ie:"') == e....
(ii) Ap(Ap{Ax.Ay.x,e:) Ie:"') = e:,if y ~ x and there exists

z ;pe y,x such that z is not free in e,

167

Proof;-
- (L) Ap (AX.X Ie:) = LeIx]x I by 3.4.8.

= e:...., by 3.4.l0(i).
-(ii) Ap(Ap(AX. Ay.X/e;)Ie:) = Ap([e:/x](AY'x) Ie:) I by 3.4.8.

= Ap(Az.[e:/x][z/Y]x,e:) t by 3.4.l0(iv}.
= Ap(AZ. [e:/x]xte:), by 3.4.l0~i} and

3 • 4 • 4 (xiL) •

= A.p(Az.e:/e:....), by 3.4.l0(i).
= e:,by 3.4.9.

3.5:Summarx of the Construction of E~ and Ap ;-

- r= Simple atomic lattice of variable names (countable).

- 4>0,1

81,'0 Al AO •

t(£Jt-,----...)·{~ (unless"0(£1)= x =T)}

- 8 :.. ·0,1

- <l>i+l,i

- e'+l .~ ,~

168

Ai+l -----~ Ai

t:(E1+) I-I-->~{ 6:,i-l ("i) ($1+1,i (E1+1)J
•

- Similarly for ¢i,i+l and ei,i+l·

00- Eoo = Inverse limit of <Ei+l'¢i+l,i>i=O
00Aoo = Inverse limit of <Ai+l,ei+1,i>i=0

00AI.E = Inverse limit of <AI.E·'¢¢·+l 1>'-0
00 ~ ~ , ~_

00Aoo(Eoo)= Inverse limit of <Ai (Ei+l) ,eei+l,i>i=O •

{
EAoo= lI.E + A }

=' I'" +ooA (E
oo

) •
00 00 00

: I'-----,40) Ei

Y 1-1------t) {y, if x ¢. Y }
Ei, if x = Y

•

•

- [Ei/X]E
1-1

(1 :t 2)

169

- [e:/xJA1 , . 21-
: Ai-2 ------7)Ei

k:3«1-J
(L ~ 3)

- Ap1 (i ~ 1)

{
CP, '+l([e:/xJE e'_l)}t-------i) 1 , 1 1 i-I 1. "
ai_l(e!)

- [e' /xJE : Eoo--------+ Eoo •
00

<ei>~=O It----t) W CPi00 ([ei/xJE, ei-l)1=1 ' 1-1

- [e'/xJA : ~ -------~ Eoo •
00

<a.;>ooi=Ot-t --~) UCP1' ([e:/xJA ai-2)~ i=2 ,00 1 i-2

- Ap : E X
00 •

170

4:E -SE~ffiNTICS OF THE A-CALCULUS.
00

4.0:The Semantical Function E :-

4.0.0:REMARK:-
i'le are now going to be using A-expressions. These have a

similar notation to that we have built up to describe elements
of E • We must be careful to realise when we are talking about

00

elements of EXP from those of E • In general, elements of EXP
00

are enclosed within double square brackets, [D •

4..0.l:DEF:-
Let EXP be the set of A-expressions as defined in 0.3.1.

We define the semantical function,E , from EXP to E , by the
00

following three equations :-
EOXD = x (Sl)

(S2)
(S3)

El!)..x. E] = AX. E[ED

E[E (n) 11 = Ap (EIIE:D, E[nD)

4.0.2:REMARK:-
On the right hand side of equations Sl and S2 above, we

are using the notation of 3~4.5. We are also using the same
notation for the variables in EXP and elements of EO.
4.0.3:EXAMPLES:-

El!XlI

ElIXy]
"EITAx.y]
E[Ax.~yll
E[f(yy}]
E [AY. f (yy)]
ElIb (Ac.dd)]

= <x,x,x,x,x,x,x,x,x,x,x,x,x, ..•..... >

= < 1., 'l.,xy , xy , xy , xy , xy , xY I xy , xy , •• ~••• >

= <~,AX.y/AX.y'AX.y,AX.y'AX.y' •••••••>

=..<.1,.1,.1,Ax.xy,Ax.xy,Ax.xy,Ax.xy, •••• >

= <.1,.1,f(.1),f(yy),f(yy),f(yy), ••••••• >

= <.1,.1,.1,AY •f (.i) , AY.f (yy) , ••••••••••• >

= <.1,b(.1),b(.1),b(.1),b(Ac.dd), •••••••• >

171

EIT(Ay. xy) (b)TI

EIJ(~. xx) (J.x. xx)D

El!{ (fJO

.= <.1. ,.1 , xb , xb , xh , xb , xb , xb , xb , xb , • • • • • • >

= <.1. ,.1 ,.1 ,.1 ,l. ,l. ,l. ,.1.,.1. ,.L ,1. ,.1. ,1. ,.1.,...... >

234=<.1.,l.,f(.L),f (.L),f (v,f <.u, >

Proof:-

- EflK D = x = <x, x , x, x , x, •••••••.• >.
00 .

- Efficy] = Ap(x,y) = I, I <l>i+1 oooAPi (x,y)t;i ,
00

= lJ<1>,+1 (xy) = <1., .1.,xy ,xy ,xy ,xy, •••••••• >.J. ,00 .
J.

,..E[Ax.yD = Ax. EITyIJ = Ax.y. .

..
-E[AX.xyIJ = Ax. <.1., .1.,xy,xy,xy,xy, •••••••• >•

.7.glIf(yy) D =. Ap (f, <1., j.,yy~yy,yy,yy, •••••••• ,>).: ; », /

= LJ <l>i~l 00oAP! (f ,yy) = I,oo1<l>i+1 00 (f (yy))
i=2' ~,

= <1.,.1. , f (.1.),f (yy) , f (yy) , • • • • • • • • »;

-E[Ay. f (yy) 11 = Ay. <.1., .1.,f (.1.) , f (yy) , f (yy) , •••••••• >.

-EIIb(Ac.dd)] = Ap(b,<.1.,.1.,.1.,Ac.dd,Ac.dd, •••••••• »
= L:J<I>'+l oooAPi(b,Ac.dd) = 1

00

1<1>'+1 (b(Ac.dd»
i=3 J. , f;;i J. ,00

= <.1.,b(.1.) ,b(.1.) ,b(.1.), b();c.dd) ,b.<J.c.dd) le ••••••• >.

-E[(Ay.XY) (b)] = Ap(Ay.E[xyD,b)

= [b/yJE<.1.,.1.,xy,xy, •••••••• >, by 3.4.8.

= [b/yJ<.1.,.1.,Xy,xy, •••••••• >, by 3.4.4(xii).

= <.1.,.1.,[b/yJx([b/y]y), •••••••• >

= <,J.. ,'.L I xb , xb ,xb ,xb ,xb, > •

-Err (Ax.xx) (Ax.xx)] = Ap «.1.,.1. ,.1.,Ax.xx, •••• > ,<.1. ,.1. ,.1.,Ax.xx, •••• »

= 100 1<I>J.'+l oAp. (AX.XX,AX.XX) •
. \ ~ ,00. J. I

. -Now, let P (i) -

-C1aim:P(3) :-

-AP3 (Ax.xx,Ax.xx) = <l>3,40[AXoxx/X]E
2

(xx)

== <I>3,4° [Ax.xx/x] A1 (xx)

Ap. (Ax.xx,Ax.xx) =.1., for i ~ 3.
J. "

172

= <P3, 4 oAP2([.1/x~1 x, [.1/x~OX)
= <P3 4 OAP2([.1/x~ x, [.1/x]Ax), 0 0
= <P3,4oAP2(ol,ol)= <P3,4(.L)=ol E,E4•

-Claim: P(i) => P(i+1), Vi ;;:;3 :-

•

= <Pi+1,i+2 o[Ax.xx/x]A. 1(xx)
1.-

= <Pi+1,i+2oAPi(CAx.xx/xlA. 2x,
1.-

[Ax. xxz'x lA x)
i-2= <Pi+1,i+2oAPi (AX.XX,AX.XX)

= <Pi+1,i+2(ol), by p(i).

= L E Ei+2 •

by induction, P(i), Vi ;;:;3.
E[(AX.XX) (AX.XX)] = l:J~i+l.~(")= ".

-APi+1(Ax.xx,Ax.xx)

- ..,
•- ..,

-To evaluate E[y(f)], we have first to evaluate EttYD.
-Now, Y = Af.(Ay.f(yy» (Ay.f(yy».
-And, Elt(Ay. f (yy)) (Ay.f (yy))]

= Ap«ol,ol,ol,Ay.f(ol),Ay.f(yy),••••>,<ol,ol,ol,Ay.f(ol),Ay.f(yy),•••>
= I ~1<Pi+1,~OAPi(Ay.f(yy),Ay.f(yy».t;1

-Su,ppose i ;;:;6. Then, APi(Ay.f(yy),Ay.f(yy»
= <Pi i+1o[Ay.f(yy)/Y]A. f(yy)

, 1.-2

= <Pi i+loAPi_1([Ay.f(yy)/ylA f,[Ay.f(YY)/Y]A (yy»
, i-3 i-3

= <Pi i+10APi_1(f,APi_2([Ay.f(yy)/Y]A y,[Ay.f(yy)/Y]A y»
, i-4 i-4

= <Pi,i+1(f(APi_2(Ay.f(yy),Ay.f(yy»)~.
-By noting how the projections work in the above,

AP4(Ay.f(yy),Ay.f(yy» = <P4,5(f(AP2(ol,ol»)
= <P4,5 (fu» = f (ol)E E5•

-Also,
AP5 (Ay.f(yy) ,Ay.f(yy» = <P5,6 (f(AP3 (Ay.f(ol),Ay.f(ol»»

= <P5 6 (f (<P3 40 [AY· f (ol)Iy]A f (ol)»
, '. ' 1

= <P5,6(f(<P3,4(f(ol»», since y is

173

not free in f(~) •

• , by induction, we see that, Vi ~ 4,
APi(Ay.i(yy),Ay.f(yy» = f(i-l)+2(~, where "+" means

"integer divide" •
•
, , E[(Ay.f (yy))(Ay.f (yy))D

- .. ,
= < ~, ~,f(~),f2 (~),f3 (~),•••••••.> •

E[y] = < ~, ~, r,Af•f (~),Af•f2 (~),Af..f3 (~),•••.•••• > •

LJoo '# 2
E[Y(f)] = Ap(E[Y],f) =' <1>'+1oooAp,(Af.f1.- (1.) ,f) ,-,'i=2 1., 1. "

= rX)l<1>iooo[f/fJ
E
, (fi-2(~»

~, 1.-1
= O<1>i-l ooo[f/fJ(fi-2(~», by 3.3.4.

i=2 '
I 00 L, i-2= ~i-l,oo(f (~», by 1.2.18.

= <~,~/f(~) ,f2 (~) ,f3 (l.) ,f4(~), ••••••••-.

- .. ,

Thus, it seems that expressions that are in normal form
4 • 0 • 4 :REr.1ARK : -

are mapped elementarily to their obvious images in Eoo' Notice
that they ar'e embedded in an E , where n .:f s finite.n

Also, S-convertible elements could well have the same
semantics - e.g. (Ay.xy) (b) and (xb).

(Ax.xx) (Ax.xx) is mapped to ~. We will show that all
A-exp~essions with no head normal form go to ~.

The Y combinator ha~ a representation that looks like the
minimal' fixed point operator - but see section 7.1. The following
lemma shows that all the Yi combinators have the same semantics
in too under E, even though YO is not convertible to Yl•

174

Notice that E does not model n -conversion, since El]{] ~
00

E[D.y. xy Il,
4.0.S:LEMf'.1A:-

All the fixed point combinators, Yi, have the same semantics
in Eoounder E.

Proof:-
= AY·Af.f(yf)

•

-Recall from 0.4.8 that, G
Yo = Y
Yi+l = YiG, Vi :<!: 0

-Then, EIlYl]= EIlYOG] = Ap(EttYIl,Em;Il).
-By comparing with the examples in 4.0.3, we see :-

-Also, by
E[YD

-In the following, we will omit the inclusions <Pi .;,J
-Let P(i):: [AY.Af.f(yf)/fJA fi-2Cd = Af.fi-SCd E Ei•i-2
-We will establish P(i), Vi :<!: 6.
-Note that Af.fi-S (J.)'E Ei-3 <I Ei•
-claim : P (6). :-

-First we evaluate [AY.Af.f(yf)/fJA f3(J.)
3= AP4([AY.Af.f(J.)/fJA f,[AY.Af.f(J.)/fJA f2(J.»

2 2
= AP4(AY.Af.f(J.),AP3([J./fJA f,[J./fJA f(J.»)

.. 1 1
= AP4(AY.Af.f(J.),AP3(J.,[J./fJA f(J.»)

1
= AP4(AY.Af.f(J.),1) = [J./yJE Af.f(J.) = Af.f(J.)'E ES'

, 3 4-Then, [Ay.Af.f(yf)/fJA f (J.)
4= APS([AY.Af.f{yf)/fJA f,[Ay.Af.f(yf)/f] f3(J.»

3 A3 .= APS(AY.Af.f(yf),Af.f(J.», by above.

175

= [Af• f (i) /y JA Af. f (yf)
3

= Ag. [Af.f(i)/yJA (g(yg»
2

= Ag.AP3([Af.f(i)/y]A g, [Af.f(i}/yJA yg)
1 1

= Ag.AP3 (g ,AP2 ([i/y JA y, [l/y JA g»o 0
= Ag.AP3(g,AP2(i,g» = Ag.g(i) = Af.f(i).

-.:, we have P(6).

-Claim: P(i)->P(i+1), Vi :?! 6 :-:-
i-1-Well, [Ay.Af.f(yf)/fJA. f (i)

].-1 . 2].-= Ap. (Ay.Af.f(yf},[Ay.Af.f(yf)/fJA f '(i»]. . 2. 5].-
].- .

= Ap. (Ay.Af.f(yf),Af.f (i», by p{].).
].

.., =. [~t·fi-5 (i) /y J1L 2 xe , f (yf)
i-5].-= Ag.[Af.f (i)/yJA g{yg)

i-3
i-5= Ag •APi _2 (g , [Af • f (L) /s JA yg}
i-5 i-4 i-5 .= Ag.g(APi_3([Af.f (i)/yJA. y,[Af.f (i)/yJA. g»

].-5 i-5].-5
(Note that in the above line we have Af. f (i)· E: E. 3' which

].-

just fits.)

1-5= Ag.g(APi_3(Af.f (i),g»
i-5 i-5= Ag.g([g/fJA f (i» = Ag.g([g/fJf (i», by 3.3.4.

i-5
=: Ag~g(gi-5(i» =: Ag.gi-4(i) = Af.fi-4(i) € Ei+1 •

•- .. , we have the claim.
•-.. , by induction, we have P(i), Vi :?! 6.

El!Yl] = 1:J~i,~'DY.Af.f(Yf)/flAi_/i-2(L)' since the set
•-.. ,

forms a chain.

=: IClOI<j). (Af.fi-5(i» =:
~ l.,ClO

=: E[YlJ •
• E[YilJ = E[Yi_1GIJ == E[YOGG•••••• Q1J

== E[YOlJ, by repeated use of above •

. == ErI.YD.

-.. ,

+
._

176

4.1:Change of Variables Operators :-

4.1.0:DEF:-
The CHANGE OF VARIABLES OPERATORS, (COVO), form the

following set :-
{[aO/al][a2 /a3]•••••• [an-1 ;an]I (n ~ 0) A (ai is a variable

for all 0 :s; i :s; n) }.

4•1. 1: REMARK: -
The above definition is deliberately ambiguous in that it

refers to operators both in the A-calculus and on Eoo. The context
in which they are used should resolve this problem. In the
following lemmas, if the context is A-calculus, the "=" should
be" et)" •

They are just the set of finite (possibly zero) compositions
of single change of variable operators, [alb]. We shall use symbols
like X, Xi etc ••• to represent them.
4.1. 2:LEMMA:'"

COVO is closed under composition and forms a semi-group
with identity [a/a].

Proof:-
-Clearly, COVO is closed under composition and composition of
operators is associative.
-Also, [a/a]ox = X == xo[a/a], either by 2.2.8(ii) if we are in
Eoo' or clearly if in A-calculus.
-Note that [a/a] = [bib] = the zero length element. We will call

..
this element the null element.
-Note also that COVO is not commutative and is not a group, since
[a/bleb/a] = [a/a] only if b is not free in the element being
operated on.

177

4.l.3:DEF:-

variable. Then, x is NOT IN X if x ~ a., for all 0 sis n,
1.

4 • 1 • 4 :LEHT'-1A:-
(i) X(Ay.E) = Ax.X[x/YJE, where x is not in X and not free

in E.

(ii) X (w (£» = (X (W» (X (£» • restricted to the A-calculus.
Proof:-

(i) -Let X = [aO/alJ •••••• [an_l/an] and x be not in X and not
free in E.
-Then, X(Ay.E) = [aO/alJ •••••• [an_l/an](Ay.E)

= [aO/al]····[a 3/a 2]Ax.[a l/a][x/y]E,n- n- n- n-
by 3.4.l0(iv) if in Eoo, or clearly if in A-calculus.

= [aO/al J•••• [an-S/an-4]Ax. [an-3/an-2] [an-l/an] [x/y]:
by 3.4.l0(iii) if in Eoo' or clearly if in A-calculus.

•

•

•

above.

= AX. X[X/y]E.
(ii) -Trivial.

4.l.S:COR:-

(L) [a/x]x(Ay.d = Az.[a/x]x[z/y]E, where Z ~x, not in X
and not free in O,E.

(ii) Restricting ourselves to the A-calculus,
[a/x] X(w (d) = ([o/X] X (w» {[o/X] X (E})•

(iii) Restricting ourselves to E ,
00

xoAp (El 0) = Ap (x(s) , X (a)) •

178

Proof:-
(i) -[o/xJX(lY.E) = [O/XJ(AZ.X[Z/yJE), by 4.1.4(i).

= AZ.[O/xJX[Z/yJ(E), by 3.4.10(iii) if in E ,
00

or clearly if in A-calculus.
(ii) -Trivial.
(iii) -Trivial, by repeated use of 3.4.4(iv).

4.1.6:REMARK:-
We have introduced COVO to deal with a technical problem

that occurs later. We will be doing structural inductions on
the formation of expressions, E E EXP I in which terms like
[O/xJE are wanted in the hypothesis A[E]. When we try tp prove
the case (A[ED => AITAY.E]), we start off with the term [O/XJ{AY.E).
But this is AZ. [o/xJ[Z/yJE, for some Z ~ x and not free in 0 or
E, and we cannot use A IT.E.ll since we have [0 /x J[z/y JE and not [0/x JE.

Therefore, we replace [O/XJE with [O/XJX(E) in AUElJ - i.e.
an hypothesis about E for all O,X and X. Then, when we start with
[O/XJX(AY.E), we get AZ. [o/xJX[Z/yJE, by 4.1.5{i), where z· ~ x,
not in X and not free in 0 or E. But, now we can apply AUt] to
[o/xJx[z/yJe, since xo[z/yJ E COVO, by 4.1.2.

The presence of X in AUED does not disturb too much the
other two parts of the inductions, namely A ITylland (A [w] AA ITt] =>

A[w(t)D).

We cannot extend the whole of 4.l.5(ii) to E because of the
00

missing identity of remark 3.4.11, but have to be content with its
part (iii).

179

4.2:The Semantical Relations - and!: :-

4.2.0:DEF:-
Let E, E: '" E EXP. Then,

and E = E "" if E [E D s E [E .. ll.

4.2.l:LEMMA:-
= is an equivalence relation and ~ is a partial ordering

(modulo =) on EXP. Also,
(E s E") =» (Ax. E s AX. E "")

and (E s E "") A (0 s 0 "") =» (d 0) s E" (0 ")) ,

together with similar results for,=. Finally, _ and ~ are
substitutive - i.e. for any context c[],

(E s E") => (C[E] s C[e:"])

and (e: - e:") ==> (C [c I - C [e: ..]) •

Proof:-
-Trivial, because of the lattice properties of E and the

co

monotonicity of Ap. Then, an easy induction on the structure
of contexts gets the substitutivity.

4.2.2:REMARK:-
The fact that the semantical function E produces substitutive

relations is very important - see remark 0.7.4. Later we will
define another semantical function, V, to E whose semantics,

co

whil~ easily shown to give a a-model, are very difficult to prove
substitutive. The trick will be to prove E = V.~

Next, we rewrite the results at the end of the last chapter.

180

4•2 •3 :THEOREf'.1:-
(i) x is not free in e:=» x is not free in Erre:D.

(ii) x is not free in e:=> [Erre:"il/x]Erre:D = Erre:!l.

(iii) x is not free in e:=> {IX. El (c '") - e •

(iv) [E[e:]/x}E[y]
= ray], if x • y}.

Errdl, if x = y
(v) (z = x) ...(z is not free in e:",e:)=>

([E[e:"'D/x]E[AY.e:D = Az.[E[e:"D/xJ[z/y]E[e:]).
(vi) Err[x/y]e:D = [x/yJEIIe:D.
(vii) e

Cl--~) e " => e :: c ",

(viii) (e € AI.EXP) ...(x is not free in e) =» (e - Ax.e:(x».
(ix) Let z be not free in e: € EXP. Then,

Az.e:(z) - (Ay.Ax.yx) (Az.e:(z))
- (Ay.Ax.yx) (e).

Proof:-
(i) -By structural induction on e:, using definition 0.3.1 and
lenuna 3.4.6.
(ii) -By part (i) and 3.4.4(x}.·
(iii) -E[(Ax.e) (e:")] = Ap (Ax.Erre],E[e"])

= E[e:D, by part (i) and 3.4.9.
(iv) -By 3.4.l0(i).
(v) -By part (i) and 3.4.10(iv).
(vi) -This is proved by structural induction on e. However,
because of the bound variables problem described in 4.1.6, we
introduce elements of COVO into the hypothesis •

..
-Let A[e:] :: (E[X (e:)D= xoE[e:]) •

-Claim: AlIxlJ :-

-Suppose X = [ao/bo] [al/bl] •••••• E an/bn] •
-Let Xi = [a1/b.] •••••• [a /b L, for 0 sis n,~ nn

181

-Then, E[x(x)Il = E[[aO/bolXl (x)D

={EUXI ~X) D, if bo ~ Xl (x) .J
aO' ~f bo = Xl(x).

= [aO/bO]EITXl(x)ll, by part (iv) above.

= [ao/bo][al/bl]EITX2 {x)l1, similarly •

•

= xoE[xD, by repeating the above process •

. -Claim: AITe:D =» A[Ax.e:D :-

-Choose Y not in X and not free in e:.

-Then, EITx (Ax.e:)l1 = ErrAY'X[Y/X]e:D

=).Y.EUX[Y/X]e:D, by 52.

= »s-« [Y/X]EUe:IJ, by AUe:]·

= X, CA x.E ITe:II), by 4.1 • 4 (i) •

= x oE[A x.e:D, by 52.

-Claim: A [wI!AA [e:ll =» A [w (e:):n :-

-Now, EITx (w (e:»D = E[(X (w» (X (e:»D , by 4.1.4 (ii).

= Ap (EUx (w)D ,E[x (e)11), by S3.

= Ap <X °E[w] ,xo E[eD), by A [w11 ...A [e:] •

= XoAp (E[w11,EUe:D), by 4.1.5 (iii) •

= xoE[w (e:)11 "by S3.

- Hence, (Ve: E: EXP lA [e:] •

'. (viif -Let Y be not free in e:.

-Claim: AX.e: :: Ay.[y/x]e: ..:-

-Now, Y is not free in ErrS], by part (i).

-So, ErrA v-t y/x] e:D = AY.E[[y/X] iD

= xv-t Y/X]Errtll,' by part (vi).

182

= Ax.E[ED, by 3.4.7.
= E[AX. ED.

-Suppose E a) E' by just one a.-conversion. Then, E must be
of the form C[AX.oJ and E' must be of the form C[Ay.[Y/XJoJ,
where y is not free in O. Therefore, E = E', by above and 4.2.1.
-So, if E a) E' by an arbitrary number of a-conversions, we
have e = E', since = is transitive, by 4.2.1 again.
(viii) -Let E = AY.E' and X be not free in E.
-Choose z ;t X and not free in E'.
-Then, E = AZ.[Z/yJE', by part (vii).
-Now, X is not free in [Z/yJE' •
•-'" E[AX.E(X)D = E[AX.(AZ.[Z/yJE') (x)II,by 4.2.1.

= Ax.Ap(AZ.E[[z/yJE'],X)
= Ax.[x/zJE[[z/yJE'D, by 3.4.8.
= Az.E[[z/y]E'], by part (i) and 3.4.7.
= EIrAz.[z/Y]E"D
= E[e], by part (vii) •

AX. E (x) = e.•
- •• I

(ix) -We will show first that Az.e (z) - (Ay.AX.YX) (e).

a-Now, AX.yX --~~) AZ.YZ.
-SO,E[(Ay.AX.yx) (E)] = E[(Ay.AZ.yZ) (E)11,by part (vii).

= Ap (AY.AZ.E[yz] ,E[e])

= [E[e]/y]Az.E[yz]
= Az.[E[E]/y]E[yz], by 3.4.10(iii) and part (i
= Az.[E[EII/y]<.L,.L,yz,yZ,.•••••». by 4.0.3.
= Az.U'i,~o[ei/Y]Yz, where Ei = ~~,ioE[e] •

. = "'Az.U4>i,~OAPi_l([ei_1/yJy, [ei_1/y]z)
= Az.U~i,~oAPi_l(Ei_l'z) = Az.Ap(E[e],z)
= Az.E[E (z)] = EID-Z.E(z)Jl.

183

-Choose a not free in e.
-Then, O.y.AX.YX) (Az.e (z) _ (Ay.AX.YX) (Aa.e (a», by part (vii).

_ AZ. (Aa.e(a» (z), by above, since
z is not free in Aa.e{a).

_ Aa.e(a), by part (viii), since z
is not free in Aa.e(a) •.

- Az.e(z), by part (vii).

4.2.4;LEMMA:-
(i) I (e ") -

,e •

(ii) K(€) (e ") :: e.

Proof:-
(i) -E[I{e'}] = Ap{E[Ax.x],E[e'])

= Ap (AX •x, E [e '])
= E[e'], by 3.4.l2(i).

(ii) -E[K{e) (e')] = Ap(Ap(E[AX.Ay.x],E[e]) ,E[e'll)
= Ap(Ap{AX.Ay.x,E[e]) ,E[e'])

= E[e], by 3.4.12 (ii), since there are only
finitely many free variables in e E EXP.

4.2.S:REMARK:-
So we see that <E~,E> models a-conversion and looks

promising as a model for B-conversion. We do not yet have,
B) e' -> e :: e',

since, although,..
E[(Ax.e) (e')] = Ap (Ax.E[eTI,E[e'l1)

= [E[e']/x]E[ell, by 3.4.8,
we do not have,

[E[e "']/x]E[e] = E[[s"/x]Ell,

184

since the structural induction on e:fails to go through in the
case e:= nCo), because of the missing identity mentioned in 3.4.11.

For the same reason, we cannot yet prove that,
S (c) (y) (0) :: (e:o)(yo) •

We claim, however, that these results are true and that we will
prove them.

By 4.2.3(viii), we see that <E IE> models n-conversion on
. 00

abstractions. This is also what happens in Scott's model + atoms
(O.7.22).and with the pew) ~ode1 (0.7.26).

4.2.3(ix) is just playing around with th~ "apply" combinator,
'Ay.'Ax.yx.We see ~hat Tj-redexes are fixed points of "app1y" and
that n-redexes are semantically equivalent to their contractums
when operated on by :"apply". These results are necessary if
<Eoo~E> is going to be a a-model. ,.,

Next, we are going to define another semantica1 function, E.

This will be closely connected with the process of taking
"approximants" of 'A-expressions (0.7.17).'

4.3:Approximate Application and Substitution:-

4.3.0:DEF:-
[e:i/x]! .- [e:i/x]!..-
[e:1/x]E .- [e:1/x]!.-

0
[e:2/x]i .- [e:2/x]!.-

0
For ~ ;;: 2,

: Ei-1 Ei

{
AY.&i~~} 1-1 --t) {AZ. [Ei.':1/X]Ei~2 [Z/Y]Ei~21,

(X1-2 [e:i/X]ii_2(Xi-2 J
where z·;tx and is not free in e:i-1,e:i-2•

185

For i ~ 3,

For i ~ 1,-APi Ei x Ei

(eX::~:l}.Oi)
4.3.l:LEMMA:-

---->~.Ei+1

I-----i) t.,(OJ ·
(i) The above maps are all monotone, and hence continuous,

with [Ei/x]~ monotone with respect to Ei as well.
(ii) . [Ei/x]'"is doubly strict and s

,...,
(iii) [Ei/X]- :: [Ei/x] and APi ::APt.

,."", ~ ".,.(iv) [a/b]oAPi (Ei,Ei) = APi ([a/b]Ei,[a/bJEi).
(v) (x ;ta,b)",(bis not free in Ei) =>

[Ei/x)-[a/b]= [a/bJ[~i/xJ-.

(vi) (X is n~t tree in {:::~} ->

, rEi~l},,(Vii) (a is not free in Ei 'L~i-2) =>

(a i)3 not free in [Oi/X1-[::j).
(viii) (a is not free in E~) =>

l.

(.ais not free in [Ei/a]- f. Ei-l}> .
lCXi-2

186

{
E. I}. 1-(x) (x is not free in)
ai-2

(xi) [x/yJi = $i-l,i 0 [x/yJ.
i-I

[x/yJA = 8i-2 .r-r 0 [x/yJ.i-2
(xii) The sets {$i,ooo[Ei/xJ~Ei_lli ~ I}, {$i,ooo[Ei/xJ~ai_2Ii ~ 2}
and {$i~l,~APi(Ei'Ei)·li ~ l} are directed chains in Eoo.
(xiii) (Y' ~X)A(Y is not free in Ei) ==>

([Ei/xJ-(AY.Ei_2) = AY.[Ei~1/xJ-Ei_2)·
Proof:-

(i),(ii5 and (iii) -By a trivial induction of type 3.0.5.
(iv) -Clear.
(v) -Another trivial 3.0.5-induction, using part (iv).
(vi), (vii),(viii},(ix),(x),{xi) and (xii) -All trivial 3.0.5-
inductions.
(xiii) -Choo.se z : .~x and not free in Ei-l' Ei-2•
-Then, [Ei/xJ-(AY.Ei_2) = AZ.[Ei_l/xJ-[z/yJEi_2

= Az.[z/yJ[Ei_l/xJ~Ei_2' by part (v).
= AY.[E1_1/xJ-Ei_2, since Z is not free

in [E~_1/xJ-Ei_2' by part (vii).

4.3.2:DEF:-

,."Ap
00

:= ~$i+l!oooAPio('oo,i x~~,i) ([EooxEoo+ Eoo]·

4.3.3:LEMMA:-

(i) The above maps are all oontinuous, with [E/XJ- monotone
with respect to E as well.

187

Iii) [<1xr is doubly strict and API{:},<') = t}.
N(iii) Ap SAp, [£/xJE S [£/xJE and [£/xJi ~ [£/xJA•

(iv) [a/b]oA'p(£,£~) = ~([a/bJ£,[a/bJ£~).
(v) (x· ~ a,b)" (b is not free in £) =>

(viii) (a is not free in e ...)

([£/xJ"'[a/bJ = [a/bJ[£/xJ"').

(vi) (x is not free in {:}) -> ([<'Ixnx/YJ{:} = [<'Iyr {:}) .

(vii) (a is not free in <"{:}) ->

(a is not free in [<'/XJ~{:}).

-> (a is not free in [<'/al-{:}).
,., ...

=> (a is not free in Ap(£,£ ».(ix) (a is not free in £,£"')

(x) (x is not free in {:}) -> ([<'/XJ-{:} = {:}).

/
...-1(xi) [x/yJi = [x yJE and [x/yJA = w2 o[x/yJA•

IV(xii) We can compute Ap instantly by,

~(£,o)

where,

(a,£)·
N(xiii) (£. ~T) => (Ap{£,o)' ~T).

Proof:-.
(i),(ii),(ili),(iv),(v),(vi),(x) and (xi) -Trivial, from the
corresponding parts of 4.3.1, noting ".3 ...1 (xii)•
(vii),(viii) and (ix) -Also trivial,noting remark 3.4.3.

188

(xii) -By observation of the definition.
(xiii) -Trivial,by part (xii).

4 • 3 • 4 : LEMlA'A : -

= {E~'~f x = y}.
y , J.f X· ~ Y

(ii) (z ~ x),,(z is not free in E~/E) =>
([E~/xJE(AY.E) = AZ.[E~/xJE[z/yJe).

(iii) (y. ~ x),,(yis not free in E~) =>
([E~/xJE(AY.E) = AY.[E~/xJ;E}.

(iv),[E~/xJEAP(E/O) = AP([E~/xJEE,[~~/xJ~o).
Proof:-

(i) and (ii) -Trivial, from their definitions.
(iii) -Trivial, by 4.3.l(xiii).
(iv) -If TI2(E) = ~, then TI2([E~/xJEE) = ~, also •
-UI L.H.S. = ~ = R.H.S., by 4.3.3(xii) and (ii).•

co-If TI2(E)-~~, then E = <cxO,<cxi>i=O>'
-:. I AP ([E~IXJEE I [E~IX]Eo)

= Ap ((L~i-l COO[El_l/x]-cxi_3I_O~J'-1 COO[EJ~_l/x]- 0j_2)
i~ I 0 J*3' --co co

= L! ~JAP('i-l,~·[Ei-l/xr"i-3"j-l,~· [Ej_l/xr~ j-2)'

by 4.3.1(xii) and 4.3.3{i).

= IcoIAP(~i_l coo[El-l/x]~cxi_3/~i_l coO[Ei_l/x]-Oi~2)~, ,

= 1:J'i'~.~i-l([Ei-l/Xl-"i-3'[<i-l/Xl-Ol-2)' from

the definition of Ap and-A'Pi-1.
00

= t=!~i,ooO[Ei/X]-CXi-3(Oi-2) = [E"'/x]E<~,~,<cxi(oi+l»~=O>

= [s...Ix] itp (E,0), by 4.3•3 (xii) .0

+

189

4.3.5:REMARK:-
Part (iv) of the above is analogous to the identity that

is missing for the "un-tilda'd" operators. So, these operators
are better behaved in that respect.

We needed part (iii) for technical reasons in 4.4.3, below,
and this was why 4.3.1 was so lengthy.

4 "fII•4:The Approximate Semantics E,: and =:-

4.4.0:DEF:-
,..
E[x] == x

,..,
(SI)

E[AX. ED = Ax.E[E]
" IV.... ""E[E (0)] = Ap (E[E] ,E[oJl)

4.4.1:LEMMA:-

,..,
(S2)
(83)

ttl(i) E !:: E.

"(ii) (x is not free in E € EXP) => (x is not free in E[ED).
"(iii) E[E] ;t T.

Proof:-
(i),(ii) and (iii)-By'structural induction, using 4.3.3(iii),(ix)
and (xiii).

4.4.2:LEMMA:- {
N _"'. ~[En, if x = y}.(i) [E[ED/x] E[yD == ~

E[y], if X· ;t y

(ii) (z ;t x)" (z is not free in E" ,E) ==>
till",. -.,N ., ~ _ ""

([E[E]/x] E[AY.ED = Az.[E[E]/x] [Z/y]E[E]).
(iii) (y ;t x)" (y is not free in E") =>

I'll ~ ...,_ . """,. ""","

([E[E]/x] E[AY.E] = Ay.[E[E]/x] E[E]).

190

Proof:-

-By using 4.4.l{ii), this is just a restatement of 4.3.4.

4.4.3:LEM.MA:-
,. N"E[[O/X]X (E)] = [E[o]/X]-E[X (E)].

Proof:-

-Let A[E] be the above statement.

-Claim: A[y] :-
'" {E[O] I if X = X(Y) • }
-E[[O/x]X (Y)] =

i[x (Y)] I if X· ~ X (Y) •

'" '"= [E[e]/x]-E[X(Y}], by 4.4.2(i).

-Claim: A [E] => A [AY.E] :-

-Choose z ~x, not in X and not free in O,E.

-Then, E[[e/x]x(AY.E)] = E[AZ.[O/X]X[Z/Y]E]
,., #'tI= AZ.E[[o/x]X[Z/Y]E], by 52.
~ . ~,.,

= Az.[E[e]/x] E[X[Z/Y]E], by A[E].

'" ... '"= [E[e]/x] E[AZ.X[Z/Y]E], by 4.4.2(iii)

"'" _"= [E[.e]/x] E[X (AY.E)].

-Claim: A [w]AA [E] => A [w {E}] :-

'" '"-EIr[e/xIx (w (E»] = E[([e/x]x (w» ([e/x]x (E»]
N N . ~ . ~

= Ap (E [[o/x]X (w) n. E [[0 Ix] X (E) ll), by 53.

N '" IV ~= [EITo]/x]-Ap(E[X(w}],E[X{E)]), by 4.4.2(iv).
~ _N ~

= [E[eD/x] E[X(W(E»], by 53 •

•- .., by structural induction, (VE € EXP)A [E].

4.4.4:THEOREM:-

Proof:-

-This is a special case of 4.4.3, when X is the null cava.
+

191

4.4.5:COR:-
... '"E[[a/x]E] = [a/x]E[E].
Proof:- ,.

-By 4.3.3{xi),4.4.4 and SI.

4.4.6:DEF:-
Let E,E'" E: EXP. Then,

Ci) H " '"E c: E'"if ErrE] !:: E[E"]
and (ii) E == E-"if E[E] #I

= E[E -"1.

4.4.7:LEMMA:-
As in 4.2.1, - "is an equivalence relation and c: is a partial

ordering modulo the equivalence cla.ses. Also,
" ,., '"(E = E -") => {Ax.E s AX.E }
,." IIIand (E s E"') ~ (0 s 0'") => (E(0) !:: E'"(0...)) I

together with similar results for ..." "--. Finally, ~ and = are
substitutive.

Proof:-
-Same as 4.2.1.

4.4.8:LEMMA:-
et) E'" -> EE == E

Proof:-
-Let y be not free in E.

-Claim: AX.E == Ay.[y/x]E :-
-E[Ay.[y/xJE] = Ay.E[[y/x]E] = Ay.[y/xJE[E], by 4.4.5.

"= Ax.E[E], by 4.4.l(i1).
II '= E fD.,x • E] •

-Rest of the proof is the same as that of 4.2.3(vii).

+

192

4.4.9:LEMMA:-
a,S) e:'"=> e:e:

Proof:-
-Let P[e:] == (e: a,lS> e:"')=> (e:~ e:') - i.e. we do at most one
S-reduction when going from e:----~).e:"'.
-Clearly, P[X], since no reductions are possible.
-Claim: P [e:D=> P [Ax. e:] :-

-Let Ax.e:
-Then, Ax.e:

a,IS) "',e: •
where e:'"

. ,., ,., ,.,-.•,E[Ax.e:ll= Ax.E[e:J] lE Ax.E[e:"''''],by P[e:].
~[~~ N;= E AX.€] = E[E], by 4.4.8.

-Claim: P[e:]",P[o] => p[e:(0)] :-

-Let e:(0) __ a~,......I.:.;.S~)n ,

'" N-If e:= Ax.e: , then E[e:(o)] = ~, by 4.3.3(xii).
,.,= E[n].

-Otherwise, n = e:'(o"')with e:
a,lS) e:"',a a) 0"'.

a) e:"',a

,., <IV '" N-In either case, E [e:(a)] = Ap (E[e:D,E [0])

s Ap(E[e:'J],E[O"']), by 4.4.8,4.3.3(i)
and P[e:]",p[a].

,., II
= E [e:' (a ...)] = E [n] •

•.•, (Ve: E: EXP)P[e:].
'"-Hence, the lemma, since c is transitive, by 4.4.7.

4.4.10:COR:-
.{EITe:"']Ie: a, a) e:;} is a directed subset of E •

co

Proof:-
-Let e: a,S> y and e: a,S) a.

193

-Then, by the Church-Rosser theorem, there exists an n such that,
y Cl, f3) nand <5

. '".. , y = "nand 0 = n, by 4.4.9 •

4.S:Characterisation of NOH,HNFandHEAD:-

4.S.0:LEMMA:-
IV

(i) ~ 0 oAp (c , <5)
00,

(ii) ~oo,O(Ax.c)
,.,

(iii) ~oo0 oE[~] =, .

Proof:-

= 1. € EO.
= .L € EO.

.L <=> e: E: (AI.EXP u (EXP) (EXP» •

= .L.

= . .L.

(iii) -EXP = I U (AI.EXP u (EXP) (EXP))•
-0 = I n (AI.EXP U (EXP) (EXP» •

.til

=> ~oo,ooE[e:]= .L, by part (ii).
-e: E: (EXP) (EXP) => e:= w(o)

III
- e: E: I => e:= .x -> ~00 00 E [e:]= X· ¢. .L.

I ." ,.,-e: E: AI.EXP => e:= Ax.e:~=> EIT£] = Ax.E[£~]

"If> oE[e:] =00,0 . .L, by part (i).
-Hence the result.

+
4.S.1:LEMMA:-

d'

"(i) e: E: NOH -> E[e:] = .L.

w I"(ii) e: e: HEAD => E[e:] ;t .L and 'IT 20 E [e:]. ;t .L.

""(iii) e e: HNF -> E [e:]. ;t .L.
,.,

(iv) .e:€ HNF\HEAD => 'IT 2oE[e:]= .L.

194

(v) e: € HEAD=> E[e:D· ~ Land 'IT20E[e:D ~ L.

(vi) c € HNF => E.[e:] ~ L.

(vii) e: € HNF\HEAD=> 'IT2eE[e:Il = 1..

Proof:-
~

(i) -Let P[e:lJ - (E[e:D = 1.).

-Recall the definition of NOH - 0.5.0.
-Claim: P[(AX.e:) (olD :-

,., ,., ,.,. ,.,
-E[(AX.e:) (olD = Ap(E[AX.e:],E[o])

,..
= 1., by 4.3.3(xii), since 'IT2oE[AX.e:] =

,.,
'IT2(Ax.E[e:]) = 1..

-Claim: P[e:] => P[AX.e:] :-
", ,.

-E[AX.e:] = Ax.E[e:] = AX.L, by P[e:].

= .L.

-Claim: P[e:] => P[e: (o)] :-

-E[e: (0)]· = Ap (_g;[e:],E[o]) = Ap (1. ,E[o]), by P[e:].

= 1., by 4.3.3(ii) •

• by structural induction, (Ve: € NOH)P[e:].-.. ,
", "(ii) -Let P[e:] :: (E[e:D· ~ 1.) ~ ('IT2oEITe:]. ~ 1.).

-Clearly, PM.

-Claim: P[e:] => P[e:(t5)] :-
", ,. N N -1 -1 III ,.,

-E[e:(o)] = Ap{E[E],E[o]) = 'IT2 °W2 o~('IT2oE[E],E[t5])

". ~ 1., since 'IT2°E [E] . ~ 1., by P [e:] •
,., . -1 -1 ,. ,.,

-'IT2oEITe:(0)] = 'lT2°'IT2 °l/J2 o~{'IT2oE[e:Il,E[e])
-1 ,., (11#

== l/J2 ° ~ ('IT2oE[e:] ,E[e]) . ¢:l., as above •

•- ••, by structural induction, eVe: E HEAD)P[e:] •..
"(iii) -Let P[e:] :: (E[e:]· ~ 1.) •

-Now, s _A HEAD=> P [e:], by part (1i).

-Claim: P['e:] => P[AX.e:] :-

I/f' "-E[AX.e:] = Ax.E[e:]· ~l., by p[e:] •

by structural induction, eVe: € HNF)P[t].
..-.. ,

195

(i v) - E e HNF\ HEAD=> (E = AX.E..) A (E" E: HNF) •
... ""--, TI2oE[E] = TI2(AX.E[E"]) = L.

N

(v) -By part (ii), since E ~ E, by 4.4.1(i) and TI2 is monotonic,

by 2.2.16.

'"(vi) -By part (iii) and E 5 E.

(vii) -Same as proof of part (iv).

4.5.2 :THEOREM:-

(i)
...

E € NOH <=> E[E] = .L •

(ii) HNF
...

E € <=> E [E] . '$. .L •

(iii) '"E' E HEAD <-> TI2oE[E] . '$. .L •

Proof:-

-By 4.5.1 and,

F

E X P

N ° H

•

a) Ay.o" and y is not

4.5.3:COR:-

free in Ei-l and +oo,i_lOEIIO"'] = [y/x]Ei_l.

" , ...(iii) +oo,i oE[E] = ai-2 (Ei-1) . '$..L ==> E = a (E") and

+to,1_1oE[a] = ai-2 and +oo,i_lOE[E"'] = Ei-l.

Proof:-
N N

(i) -+oo,i~oE[E] = X· '$..L => +oo,OoE[E] = X -> E = x, by 4.5.0(111).
N .If

(il) -+00 ,i oE[E] = _AX.Er-i "¢ .L,

'" ""-> E['E]· ¢.L and TI2oE[E] = .L.

=> E € HNF\HEAD, by 4.5.2(i1) and (iii).

-> E =).y.o", with 0'" € HNF.

196

'"-But, ¢ ,oE[AY'O"']oo,~
'"-:, either Y = x £E yis not free in £i-l and ¢oo,i_loE[o"']=

[y/x]£l-l' But, if Y = x, then £ a > AY O , with the correct
properties.

'" ~(iii) -¢00 , i0 E [€:] = ai_2 (e1-1) ~.L => 1T2 0 E [El ~.L .
=> e E: HEAD, by 4.5.2 (iii),.

,.,
-Now, £ j I, since e E: I => e = X => ¢ ,oE[£] = x - l .'f oo,~
•

r «, e = a (e ...), where a ~ HEAD.
,., '"-Then, ¢ i0 E [a (£)]00,

., . ~~. ~
-.., ¢oo,i_loE[an = ai-2 and ¢oo,i_loEIT£"'n= £1-1' since ai-2(£1-l)'
~.L and ~[£D' ~T, by 4.4.l(iii).

4.S.4:REMARK:-
The above corollary means that we know some of the syntax

of an expression if we know a non-.L coordinate of its approximate
semantics. This will be very useful in the next sections.

4.6:The Semantical Function V:-

4.6.0:DEF:-
V : EXP ----~) EGO

f--~) u{.g:[£"'n1£ a,B> s"}.£

4.6.l:THEOREM:-
....<EGOI V> is aB-model.
Proof:-

-Clearly, if £ a,@) 6, then V[£] ~ V[o].

-I££ a,B > e ..., by the Church-Rosser theorem, there exists a 0'

such that £'" a,B) 0'" and 0 a,B) 0

-But, then £'"~ 0"', by 4.4.9, and so V[£] ~ V[o].

197

-Hence, V[s]J= V[o].

4 • 6. 2 :LE~illA:-
<E ,V> is solvable. In fact,

eo

s £ SOL <=> V[e:]' ;t .i,

Proof:-
(=» -Let e: € SOL. Then, s a ,S) s '" € HNF.
-Then, V[E] = V[s "'], by 4.6 .1.

;
? E [s"']. ;t ~, by 4. 5 • 2 (i i) •

•- ••, V[s]·;t Le

«=) -Let s E INSOL. Then, e:

-:, V[s] = U{~},by 4.5.2(i).

a,S ~ ~~ '" NOHT c. => S € •

= ~.

+
4.6.3:REMARK:-

These simple results show Eoo to be a very interesting
object.

Recently, some work of Levy has come to my attention - [56J,
whE?re he also constructs a syntactical (semi-)lattice, N.

Indeed, there is probably a simple isomorphism from N to the
bottom half ofEoo (Low(Eoo)- see section 7.5) which identifies
his semantics, S, with v.

However, V does not tell us anything about application in
the model. Further, it is hard to prove that the semantical
equivalence derived from V is sUbstitutive - in particular,

(V[e:] = V[e~]),,(V[o] = V[o"']) => (V[s(o)] = V[s""{o")]).

We will show that Pi = V, thus making <Eoo,E> a model and
giving us substitutivity for V. For the moment, we will show
that E !E V.

198

4.6.4:DEF:-

Let {~}(i)-
([o/x]e: H

<P ioEITn]).co,

'" '"<P • loEITe:],<pioE[o]) => (3n ! EXP)co,~- =,

I¥ IIILet P(i) = (e:.,oi ~ <P ioE[e:D,<p ioE[o]) => (3n ! EXP)a, co, =,

(e:(o) a,s) n)",(APi(e:,i,oi)~ <P1IO,i+loIITn]).
4.6.5:REMARK:-

The above definition has scope from 4.6.4 to 4.6.10.
4.6.6:LEMMA:-
,. . . (vi ~ 0) s (1):

Proof :-
-Assume z ~ 1., otherwise trivial.

'" . '" ~-z s <Poo,i_loE[e]=> z = <Poo,i_loEITe:],since T' ~ <Poo,i_loE[e:],
by 4.4.1(iii).

=> Z = e:,by 4.5.3(i).
-Suppose z = x :-

-Take n = [o/x]x = o.
-Then, [oi/x]x

-Suppose z ~ x :-
-Take n = [o/x]z = z.

+
4.6.7:LEMMA:-

(Vi Cl: 1) (Q(i) => P (i)) •

Proof:-
...

-Again, assume e:i'~ 1., since otherwise trivial.
-Suppose Ei = ai-1 :-

/III-Then, T' ~ <Poo ,ioE[eJ] = ai-1 a ai-1 = Ei•
• N

- •• , 'IT 2°E [E] . ;It 1. •

199

-Take 11 = E(O).

'-Then, APi(Ei,O!) = a. 1 (0i) !: 'ii. 1 (0.)1-, 1- 1

-Suppose Ei = ~X.E1_1 :-
N

-Then, T' ~ $(X),i °E[E] = Xx , '£1-1 Xx , E1-l . ~ J..
##

a) ~Y.v and y is not free in '£1-1 and $oo,i_loE[v]•
- •• , E

= [y/x]'£1-l' by 4.5.3(ii).

-Then, APi (e i'o i) = $ i ,ilo[s i/xJ e 1-1

~ $i,i+l ° [oi/x]~_l.

= $i,i+lo[Oi/y][y/x]E'1_l' since y is not

free in ~1-l.

E (0) a) (~y.v) (0)

N

s $i,1+l o$oo,ioE[n], by Q(i), where

S) [0' /y]v a, S) 11.

•-00, the result.

4.6.8:LE:MMA:-
(Vi ~ 2) (Q (i -1) AR (L) ==> Q (i» •

'Proof:-

-Assume Ei-l ~.Lt since otherwise trivial.

-Suppose Ei-l = ~y. E1_2 :-

-As in the last lemma, we get E a) ~z.v and z is not
N

free .. in E'1_ 2and $m,i-l oE[v] ~ [z/y]'€12!! [z/y Je; 1-2.

-Assume, w.l.o.g , that z ~X and is not free in o.-~ .. -~-Then, [oi/x]Ei_l ~ [oi/x]~Y.Ei_2 = ~z.[oi_l/x][Z/Y]Ei_2
,.,= ~z.im,i_loE[n], by Q(i-l), where

Eo/xlv a,S) n ,
##

= $m,!oE[~z.nlJ, where EO/X]E a, S > AZ.11.

200

-Suppose si-l = ai-2• Then, we have the result by R(i).
=1=

4.6.9:LEMMA:-
(Vi ~ 3) (P(i-l) "QCi-l) "RCi-l) => R(i».
Proof:-

-Assume a. 2' ~.i, since otherwise trivial.~-
-Suppose ai-2 = Yi-3(sl-2) :-

N-We have T' ~ <Poo,i-loE[s] = Yi-3(E'1-2} = Yi-3 (s1-2) . ~.L.

• .JO IV
- ••, S = y(s } and <Poo,i_2oE[y] = Yi-3 = Yi-3 and

<Poo,i_2oE[s.JO]= €1-2 = s1-2' by 4.4.3(iii).
•-•., [oi/xJai_2 = [oi/xJYi_3 (s1-2)

= APi_l([oi_l/xJYi_3,[oi_l/xJs1_2)' where
"0i-l = <Poo,i_loE[O].

-:, [oi_l/xJYi_3 : <Poo,i_loEITn],by R(i-l), where
[o/xJy a,a) n.

• [oi_l/xJs1_2
a,a) e ,

1'1= <Poo,i_loE[wD,by Q(i-l), where- ..,
[o/x]s ..

· ~-.•, [oi/xJai_2 = <Poo,ioE[v], by P(i-l), where [o/x]s =

[0Ix] Y (s...r = [0Ix] Y (I°Ix] e .JO) a, a) n (w) a, a) v,

-Suppose ai-2 = z. Then, we have the result by S(i), by 4.6.6.

+
4.6.l0:COR:-

(Vi ~ 0)8(i), (Vi ~ 1) (P(i)"Q(i» and (Vi ~ 2)R(1).

Proof:-
-Cl..early,R (2) ::8(2) and Q (1) :: S (1) •

•-••, by 3.0. 5 ,4.6.6 ,4.6•7,4.6 .8 and 4.6 •9, we have the result.

+
4.6.ll:THEOREM:-

E = V.

Proof:-

201

-Let A [e:] ::: (E[e:] ~ V[e:]).

-Clearly, A [x].

-Claim: A [e:] => A [Ax. e::] :-

-E[Ax.e:] = Ax.E[e:] ~ AX.V[e:], by A[e:].

= AX.LJ{E[e::"']1 e

= UO.x. E[e:"'] I e: ..----'--"--j
= U{E[Ax.e:"']le:

= U{:~[e:] IAX.e::
= V[Ax. e::].

-Claim: A[e:]AA[o] => A[e: (0)] :-

a,B) c '}

a,B) s "l, by 4.4.10.
a,S 1 e::..}

a,B) e::......}

- .. , there exists an e::i such that e:: a, S) ie:: and e:i =

" i<Poo,ioE[e::] s <Poo,ioE[e::], since e::i is isolated in the finite depth

lattice Ei•

-Similarly, Vi :?: 0, there exists a oi such that 0 _.~~. oi

and 0i = <P i oE[o] s <P • o~mSi].~, ~,~
-:, by 4.6.10, Vi :?: 1, there exists an ni such that

e:(o) a,B ~ e:i(oi) a,B) ni and APi(e:i,oi) = <I>~,i+l0E'[ni.].

-Then, E[e:: (0)] = Ap(EIIE] ,E[o])

by above~

a,s) n}

-= V[E (0)].

-Hence, by structural induction, (VE € EXP) A [c] •

202

4.6.12:COR:-
e E: INSOL => E[e]' = .L.

Proof:-
-By 4.6.2 and 4.6.11.

4.7:Characterization of -<: ...

4.7.0:DEF:-
The set of elements in the direct limit, u{¢n,~(En) In ~ oJ,

are FINITE elements. A A-expression, s E EXP, is FINITE if EDen

is finite.
4.7.1:LEMMA:-

Ce E: Ew is finite) <=> ($n,~o$~,n(e) = e, for some n ~ 0).
Proof:-

-Trivial.

+
4.7.2:EXAMPLES:-

(i) Y is not finite.
(ii) Elements of INSOL are finite.
Proof:-

-By 4.0.3 and 4.6.12.

4.7.3:LEMMA:-
E is a finite function - i.e. its image lies in the direct

limit.
Proof:-

1'1 #II-Let P[e] :: (there exists an n ~ 0) ($ 0$ oE[e] = E[e]).n,~ ~,n
-Then, PrriD,with n = O.
-Also, clearly, P[e] => P[Ax. e].

203

-Claim: P[£]",P[o] :=> P[[£ (0)] :-

-Let n,m be the numbers referred to in p[£],P[o].

-Let p = max(n,m).

by 4.3.3 (xii)•
IV "" " P[£]",p[d].= Ap (E[£],E[o]) , by
'"= E[£ (0) 1I.

• by structural induction,.., (Ve: E EXP) p[e:].

-Hence, the result, by 4.7.1.

4. 7 •4 :LE~A:-
N

£ € NF => E[£] = E[£] = V[£].

Proof:-
-Clearly, V[£] "= E[£], if £ €NF.

'"-But, E = E s V, by 4.4.l(i) and4.6.ll.
-Hence, the result.

4.'7.5:COR:'"
Normal forms are finite.
Proof:-

-By 4.7.3 and 4.7.4.

4.7.6:REMARK:-
Thus, we have justified the remark in 4.0.4 about normal

forms being mapped "elementaril)!," byE •
.-We now wish to characterise~. Recall, by 0.6 .ll(x), that

(£ ~ 0) <==> (V directed D) (0 s UD => there "is a d € D s.t. &; !: d).
We note that, in Ei, -< is just =, since F.ihas finite depth,

by 0.6.13.

204

4.7.7:LEMMA:-
EUX]' is not isolated.
Proof:-

-Let D = {4>. ° cfJi °E [Y] Ii;?!O}.J.,eo eo,
-Then, D is directed and E[y]' = UD.
-But, by 4.0.3, there is no d E: D such that E[Y] s d.
-So, EITY] 1k E[Y].

4.7.8:COR:-
-< is different from !li in E •

Q()

-E[Y] s E[Y].

+
4.7.9:THEOREM:-

•Let e,° E: E co and c s ° and e be finite. Then, e -< o.
Proof:-

-Let D be directed and ° !: UD.
-Let n be such that c = cfJ ocfJ (c).n,eo eo,n·
-Now, on := cfJeo,n(O)= ~eo,n(UD) = UcfJeo,n(D).
-Also, cfJ (D) is directed in En.eo,n
-But, cn !! On and so cn -< On' by remark 4.7.6.
•-•., there exists d E D such that cn s cfJeo,n(d)•

cfJeo,i(d),by monotonicity.
cfJ (c) = <f>' °cfJ"'~'ocfJ (c) =eo,i eo,i n,CIO eo,n .
cfJi°cfJeoned}, by.monotonicity.n, ,

t: cfJeoi(d)., "

-sue , Vi s n, ci s

-And, Vi > 'n , ci =
. ,

E..

•-..,
•

(Vi;?!0) (Ci = di) - i.e. c = d.
c ~ 0, by remark 4.7.6.- ..,

+

205

4.7.l0:COR:-

In E , finite _ isolated.
co

Proof:-

(=» -E = E and E finite => E isolated, by 4.7.9.

«~l -Let E -< E. Now, E = l:b$i'~'$m,i(El •
•- •., E !: <Pn, eo 0 <Pto ,n (E), for some n ~ 0, since the set is directed •

.., E = <P o<p (E) - i.e. E is finite.n,eo eo,n

+
4.7.l1:COR:-

For all E E EXPand n ~O, there exists an E" such that

(X,S) E" and <P o<p noE[E] = E[E".:n.n,eo eo,
. Proof:-

-<P o<p oE[E] s E[E] s V[El].n,oo co,n
-Hence, .t.he result, since the L.H.S. is finite and so -< V[E'lJ,

by 4.7.10 and 4.7.9.

4.7.l2:COR:-

The converse of 4.7.9 is not true.

Proof:-

-By 4.6.10, T -< T, since T is finite •.
~

-But, TiE t! Eco, E s T - i.e. E -< T, by C.6.ll(iv).

-In particular, E [Y] -< T.

-But, E[y] is not finite, by 4.7.2(i).

4.7.13:DEF:-

Let E,O E: EXP. Then, E -< 0 if E[ED-< E[o]. Also, e: is

ISOLATEDif E[e:] is isolated.

. 4. 7 •14:LEMMA:-

(i) Y is not isolated.

(ii) In EXP, finite :: isolated.

206

(iii) Normal forms are isolated.
(iv) Elements of INSOL are isolated.
Proof:-

-BY 4.7.7,4.7.10,4.7.5 and 4.7.2(ii).

4.7.15:LEMMA:-
NLet v s Ap (E,0) if:. T. Then, there exist E'"s E, 0'" = 0 such

(N.B. We are in the lattice.)
Proof:-

-If v = ~, take E'"= ~, 0'" = 0 and we are home.
10-If V· ;t~, then 7T2(E)·;t~ and E = <<10,<cxi>i=0>'where Cli € Ai

c Ei+l •
•-••, there exists an n ~ 2 such that Vi ~ n,

~. ;t vi s cxi-2(oi-l) . ;t T.

-So, Vi ~ n, vi = ai-2(oi-l) .•
• """...,1' .."..- 00 , 00-••, v = Ap(E ,0), where E = <cxO,<cxi>i=O>and 0'" = <oi>i=O - i.e.

E'"= E and 0'" ~ o.
+

4·.7.16:LEMMA:-
."':n (""'] ...(v s E[E) -> V = E[E , for some E 'c EXP) •

Proof:-
-Let PUg] be the lemma.
-Claim: P[x] :-

~[x] CIO-Let v = = <x>i=O·
.. -Then, vi = ~ or x, Vi ~ O.

-If vi = ~, take g'"= AA, else take E'"= x.
-Claim: P[E] -> P[Ax·.g:D :-

III N-Let v s E[AX. Ell = Ax.E[g].
""-Then, v = A".v and v ~ E[ED.

• - /1/ ...
-~, V = E[E], by P[~.

207

-Claim: P[E] "P[cJ] => P[E (c)] :-

-Let v
N ~ #-Then, v = Ap(~,cr), where ~ = E[E] and cr = E[o], by 4.7.15.

~ ~ ~ ~-So, u = E[E] and cr= E[o], by P[E]"P[O].

• I'Y IV ~ ,,~ 1'1 ~(~)- ••, v = Ap(E[E],E[o]) = E[E 0] •
••., by structural induction, (VE E: EXP)P[E].

4.7.l7:THEOREM:-
Let E,O E: EXP. Then, (e ~ 0) <=> (e ~ o),,(e is finite).
Proof:-

«=) -By 4.7.9.
(=» -Let E -< ($. Then, E[e] -< E[o].

-But, E[o] = 04>i 110°4>40ioE[o].
i=O' ,

-So, E[e] ~ 4>n,4O°4>eo,noE[O],for some n ~ O.
-Now, 4>n,eo04>oo,noErrO]~ E[($~], for some o~, by 4.7.11.
-So, E[E] = E[o"ll.. ,/
- ••, E[e] = E[e], for some e, by 4.7.16.
-So, Erre] is finite, by 4.7.3.
-Hence, e is finite. (We always had e ~ o~)

+
.N4.8:Characterisation of ~ and Normality of <Eeo'V> :-

4.8.0:REMARK:-
From now on, we are going to be working mainly within the

.-
A-calcUlusi. It makes sense, therefore, to give a purely syntactic

. ,.,
characterisation of the approximate semantic relation ~.

,.,The characterisation shows ~ to have a strong connection

208

with Wadsworth's notion of "direct approximant" - [57 J.
~The results we have for ~ (from the lattice properties)

would be tedious to prove if we worked solely in the A-calculus,
using 4.8.4 as a definition.
4.8.1:LEMMA:-

~
x s 0 -> x = o.
Proof:-

~ N

-.L - ¢ <p oE[x] = x s <p oE[olI·¢ T, by 4.4.1(iii).~/O ~,O
"- .. , x = <p 00 I 0 0 E [0] - ¢ .L.

•- ••, 0 € I, by4.5.0(iii), and can only be x ,

•

+
4.8.2:LEMMA:-

,.,€ € AI.EXP and e fNOH and e C 0 => €
a) AX.0'" and €... go ",
Proof:-

a) Ax.€" and

-Let € = Aa.€
..,-Now, E[€]· ¢.L, by 4.5.2 (i), and so, for some i ~ 1,

•-...,
,.,...... -

.L ¢ <p ioE[Aa.€] = Aa.€i 1 s <p .0E[0] ¢ T.~, - oo,~
N<Poo,ioE[o] = Ab,oi~l ¢.L, for some b,oi~l'

o a ~ Ab.o, for some b/o, by 4.5.3(ii).•-..,
-Choose x not free in € /O Then,

a) AX.€.., where .. [x/aJ€,e s =

and 0 a) AX.0" , where 0" [xjbJo=

Ax.€' IV AX. cS" , by 4.4.8, ,.,-But, !:: since e s O.
-i,e. E[Ax.€"'] 1'1 ,s E[Ax. cS n.

,., ",-i.e. Ax.E[€']!: Ax.E[c-"].
-i.e. ,., "E[€ "'] s E[6"':n.

+

209

4.8.3:LEMMA:-
,.

€: € (EXP) (EXP) and e (.NOH and e t:: 0 => 0 = w" (n ") and

w ~ w'" and n ~
t:: n" and where €: = w(n).

Proof:-
1'1-In this case, s €HEAD. So 1T2oE[€:D ;t.L, by 4.5.2(iii).

'" '"-But, 1T2oE[€:] = 1T2oE[oD, by monotonicity (2.2.16), and so

"1T2oE[0]' ;t.L - i.e. o· E HEAD, by 4.5.2 (iii) again.

-If 0= x € I, then 4> ,oE[€:] = x, Vi ~ 0, and so,oo,~
ItI

either 4>oo,ioE[€:] = .L, Vi ~ 0 - ~ •
ItI

or 4> ioE[€:] = x, Vi ~ 0, => €: = x, by4.5.3(i) - t .00,
•••, o· = w'" (n ...), wi th w'" € HEAD.

-Now, we have e = w (n), with w € HEAD.
IV N

-But, E[€:D s Errol •
• """"",., NN III

- ••, Ap (E[w] ,E[n]) == Ap (E[w"'], E[n 1:1) •
~ ~ ..

-Since 1T2oE[W]' ;t.L' ;t 1T2oE[W], by 4.5.2(iii), by the simple

characterisation of Ap given in 4.3.3(xii) we must have
N ~ ~ ""
E[w] == E[w"] and E[n] s E[n"'].

-i.e. " 1'1 ...W == w'" and n = n •

4.8.4:THEOREM:-
NI

. €: s 0 <==> either e € NOH,

or e = X = 0,

ex
> AX.€:'" € HNF,or €:

0 ex > Ax.o'" and,
0'" ,€:

==

or €: = w (n) € HEAD,

o = w'" (n ...) and w and n
proof:-

«=) -€: € NOH=> E[€:] = .L, by 4.5.2 (i).
,.,

!:: E[o].
,., .

- €: = X = 0 ==> E [€:] = x = E[o].

210

-Let E ~) Ax.E' € HNF, 0 ~) Ax.o' and E' ~ 0'.
N N .-Then, E [E] = E [Ax.E'], by 4.4•8•

= Ax.E[E"] E Ax.E[oj}, since E' ~ 0'.
,., , til

= E [Ax.0] = E [0], by 4. 4 • 8 •
,., ,.,-Let E = wen) € HEAD, 0 = w'(n'), w E w' and n en'.

#II ", ,.",,.,,.,-Then, E[E] = E[w(n)] = Ap(E[w],E[n])
,.." IV .,. N .t# .,.",

E Ap(E[w],E[n]), since Ap is monotone, by 4.3.3(i).
= E[w' tn ')] = E[o].
ttl(=» -Let E r:: o•

..,-If E[E] = ~,we have E € NOH, by 4.5.2(i).
,J-Suppose E[EJ}·~ ~ - i.e. E I NOH.

-E € (EXP) (EXP) => fourth clause, by 4.8.3.

-E €. I => second clause of the theorem, by 4.8.1.
-E € AI.EXP => third clause, by 4.8.2.

4.8.5:REMARK:-
"Using this characterisation of E, we will prove that

normal forms are incomparable under E. This is fairly obvious
from the examples 4.0.3.

Normal forms are maximal under ~ modulo ~) i- .e. :-

4.8.6:LEMMA:-

(E s NF) ~ (E ~ 0) -> (E ~)0).

'"-Let A[E].= (E € NF)~(X(E) r:: 0) => (X(E)
-Claim: A·[ylJ:-

-Now, X(y) € I. So, by 4.8.4,. X(Y) = o.

a) 0) •

Pro.of:-

-Claim: A[E] => ArrAy.E] :-
-Let AY.€ € ~F and X~A.~~)

-Tb:e,~.~ X (Ay'. E) € NF c;: HNF.
"';. '.:.-

-r:: o.

• by 4.8.4 and 4.1.4(i), we can find a z such that z is-.. ,

211

not in X and not free in e and .-.
X(Ay.e:) et) Az.X[z/y]e:,

0 et) Az. 0 '"

and X(z/y Jc ~ 0'"•

-But, e: NF, and by A [e:]], X[z/yJe: et) 0'"e: so, •
-Thus, X (AY.e) et) o.

-Claim: A[w]L,A[e:] => A[w(e:)Jl :-

-Let W(E) e: NF and X(w(e:» "c o.
...

-Then, 0 = w"'(e;"') and X(w) c w'" , x (e;) by 4.8.4.

-But, both wand e; are in NF.

-So, by A [wTI"A[e:], X(w) et) w'" and x(e;) et;\ '"/ E •

-Thus, X(w(e:» et-~> s.
•- .., by structural induction, (Ve: e: EXP)A[e:].

-Hence, the lemma, taking X as null.

=1=

4.8.7:COR:-

Normal forms are incomparable under =.
Proof:-

+

-Lete:;o e:!lIF and e: s o.
,.,

-Then, e: ~ &, by 4.7.4, and so e: et) 0, by 4. 8 • 6 •

4.8.8:LEMMA:-

Normal forms are maximal under s modulo (a - i.e. :-

(e: e: NF),,(e: = 0) => (0 a) e:).

Proof:-

-Lete: e NF and e = o.
'"-Then, E[e:] = E[e:]] s E[o] s V[o], by 4.7.4 and 4.6.11.. ..,

- ••, Erre:]...(V[oD, by 4.7.3 and 4.7.9.

III _" .."-Thus, E[I;:..IJ !: E [0 Jl , for some 0'" suchrchat; s
-But, e: et)0"', by 4.8.6, and so, 0 __ et..:..l.:...a~) c,

212

4.8.9:THEOREM:-
<E~/V> is a normal model of the A-calculus.
Proof:-

-Let e have a normal form but 0 not have one.
-Let e et I 13) e ~ € NF.

-Suppose V[e] = V[o] :-

N ~-Then, E lIen
,., ".-So, E[e] s

= V[e~] = V[e] = V[o] •
f'I
E[o~], for some o~ s.t. 0

". et) 0> by 4.8.6.,
et,B) 0 ~, as in proof:

-But, then e
- ••, 0 . et, 13 > e ~ € NF X.

of 4.8.8.

4.9:Requirement for <E ,E> to be aB-Mode1:-

4 .9 .0: P'ROPERTY ·X:-

(e

4.9.1:LEMMA:-
<E~/E> is aB-model <=> Property X <=> E = V.

Proof:-

-Let e et,B)e"'.

-Suppose <E~/E> is aB-model :-

E"'[Ic-..Il-Then, "" !: E Ils ...Il , by 4.4•1•
= E[eD, since it is a model.

-Suppose property X :-
. -Now, V[e] = U{E[e"'] le et I 13) e~} s ElleD, by property X•

•--, E = V, by 4.6.11 •
.-

-If E = V, then <E~,E> is a B-mode1, by 4.6.1.

:1=

4.9.2:LEMMA:-
(e ,et 1113> e ") -> (ElIe"'] !: E[eD).

213

Proof:-
-We do a structural induction on e.
-The only interesting case is (Ax.e) (a)

-Then, E[(Ax.e) (0)] = Ap(Ax.E[e],E[o])
= [E[o]/x]E[e], by 3.4.8 •

. '" .= E[[o/x]e], by 4.4.4.

4.9.3:REMARK:-

.., '. ~
It is a pity, but there seems to be no obvious way to

extend 4. 9'. 2 to property X.

Property X is saying that the epproxf.mat.esemantics of a
reductum holds less information than the complete semantics
of the expression that was reduced. This should be true if E,
",

E and = really do correspond to our intuition.
Notice that we have the reverse problem to that of Wadsworth

- [58]. We know that expressions with no HNF are .L (4.6.12), .
but we do not have modelship. We can do E = V, while Wadsworth

We could, of course, prove modelship directly if we could
had the :conv:erse.

establish the missing identity of 3.4.11 and then. follow the
scheme o.utlined in 4.2.5. We repeat this scheme here, for the
sake of completeness.
4.9.4:PROPERTY Y:-

For all e , 6, n E Eoo'

[e/xJAp(o,n} = Ap([e/x]o,[e/xJn).
4.9.5:PROPERTY Z:-

For alle,o/n E EJq>,

[E[e]/x JAp(EITo] ,E[n]) = Ap ([E[e]!x]EITo] , [E[e]!x]E[n]) •

'.

214

4.9.6:LEMMA;-

Property Y => Property Z.

Proof:-

-Trivial.

4.9.7:LEMMA:-

<E~,E> is as-model <=> Property Z.

Proof:-

«=) -Let A[E] == E[[E"'/xJX(E)] = [E[E"']/xJE[X{E)].

-Then, the structural induction goes through as in the proof of

lemma 4.4.3, using 4.2.3 and property Z instead of 4.4.2.

-So, in particular, we have E[[E '"/x JE] = [E[£ "'lJ/xJE[El].

-Now, let P[E] == (E a,l S) E "') => (E == E"').

-The structural induction is the same as in 4.9.2. Again, the

only interesting case is (lX.E) (0)
-Then, E[(Xx, E) (0)] = [E[o]/x JE[E"']]:= E[[O/XJE], by above.

-This time there is no trouble in extending P[E] to :-

(E a,S> E"') ==~ (E == E"'),

(=» -Now, (lx.on) (E) S-.£!!.Y. «lx.o) (E» «lx.n) (E» •

since == is transitive •
•-"I <E~,E> is as-model.

•
- ••7 (lx.on) (E) == «lx.C) (E» «lx.n) (E».

-But, E[(lx.on) (E)] = Ap(lx.E[on],E[E])

= [E[E]/xJE[on], by 3.4.8.

= [EIIE]/xJAp (E[o] ,E[nJ) •

-And, E[«lx.O) (E» «lx.n) (E»] = Ap(E[{lx.o} (E)],E[(Ax.n) (E)]

= Ap(Ap(lx.E[o],E[E]) ,Ap(lx ..ElIn],E[E:D»

= Ap([EIIE]/xJElIo],[E[e:]/xJElIn]) I by 3.4.8.

T.

215

,..,
E s E = V•..<E IE>, <E I E> and <E I v> model "not free in".

co co co

<E IE> and <E ,E> are substitutive a-models.
co CC>

Further, their induced partial orderings, ~ and :, are substitutive.
<E ,V> is a normal solvable model.

co
(Substitutivity ?)

<E ,E> is a model <""'> E = V <""'> Property X <-> Property Z
co

<- Property Y.
,., /'II,.,.En[o/x]eO = [EOon/X] EOr.D.
(g f3 > c") ""'> (t g e').

(e: l§ ~ £ ..) =e- (Eil£'O s EDeil).

= 0) (g is finite).
A

(e: -< 0) <-> (c

(N.B. finite _ isolated)a-normal forms are isolated.
(e € INSOL) ==> «Vo € EXP) (e:

(Vi ~ 0) (Yi = YO).
Noting that U{EOe'nle f3 > e'} = VileO, we can represent the
relationship so far established between El ~ and V pictorially :-

t
Eco V__ --~-- __ ~~:;.~==~====~==

E

EXP

".,
E

1

However, we maintain that E = V.

216

5:I'TH REDUCTIONS.

5.0:I'th Application and Substitution:-

5.0.0:DEF:-
1Ap (e:,0) = e (0) •

[o/X]le: = [o/x]e:.
For i <!: 2,

iAp (e:,o)= {[O/Xl
i
.-, if e = A.X.e:'}

e:(o), if <! AI.EXl;'
and,

iCo/x] e:=
[o/X]e:, if e € I u NOH
Az.[o/X]i-l[z/y]e:', if (*)

Api-l([o/X]i-lW,[o/X]i-ln), i·f (**)

.,

where (*) _ (e = Ay.e:' € HNF),,(z ~ x and is not free in o,e:')
and (**) - (e = w (n}: € HEAD) •
5.0.l:REMARK:-

In the above definition we are trying to copy 3.0.3 as
closely as possible. When computing Api as opposed to Ap., the

~

only differences should be those of notation - superscripts
for subscripts, nothing for projections and expressions in NOH
for J.' s , This explains why, when e € NOH, we must do no work
in computing [o/X]ie:, so that we remain in NOH - compare with
[0 /{e] i-IJ. = J..

Before going any further, we must establish a few basic
properties of i1th applications and substitutions - in particular
that they are well-defined up to a-conversion. Compare the
following induction hypothesis "with.that of 3.1.0. It has scope
from 5.0.2 to 5.0.11 inclusive.

217

5.0.2:DEF:-
Let P (1) (Api is well-defined to a-conversion)- up

(E a ,,0 a 0' i a :> A.pi(E'",0'))& '> E) => Ap (E,s)
i

& (E E NOH => Ap (E,O) E NOH)
& (Api([x/y]E,[X/y]o) a) [x/y]Api(E/O»

i& (a is not free in E,O => a is not free in Ap (E,O».
Let Q(i) = ([o/X]i is well-defined up to a-conversion)

& (E a) E',O a) 0' => [o/X]iE a) [o'/X]iE,)
& (E E NOH> [o/X]iE E NOH)
& (a is not free in E ~ [o/a]i[a/x]E a) [o/X]iE)
& (z ¢ x,y) => ([[x/y]o/Z]i[x/y]E a) [x/y][o/Z]iE)
& (a is not free in E,O => a is not free in [o/X]iE)

i& (x is not free in E => [a/x] E a)e:).

5.0.3:LEMMA:-
P (1)Q (1) •

Proof:-
-All parts are obvious except for the third clause of Q(l). But
we already have this by 0.5.2(iii) I or as follows :-

-Let A[E]] = HO/XJX(E) € NOH).
-Clearly, A[(Aa.ll)(v)] and AilE]=> AIIE(w)]",A[Aa.E].
-A, by structural induction, (VE' E: NOH)A[E].

5.0.4:LEMMA:-
Q(i) -> P(i), Vi ~ 2.

.. Proof:-
-Suppose Q(i),for some i ~ 2.
-Then, clearly Api is well-defined up to a-conversion.
-Let E a) E' and 0 a) 0 If E I AI.EXP, then O.K. If not,
then E = Ax.n and E' = either AX'.n' .2.!. Ax.n":-

218

-If c " = AX'. n', then x is not free in n " and n = [x/x' In'.

-Then, Api(Ax.n,8) = [8/XJin = [8/XJi[X/X'Jn'

a) [o/x' Ji n', by Q(i). ~

a) [o'/X'Jin"', by Q(i).

= Api (AX"; n ..., 0 ...) •

-On the other hand, if e:'"= Ax.n"", then n a) n " ",

-Thus, ApiO,x:n,o) = [o/xln a) [8'/xln''', by Q(i).

= Api(Ax.n'o ...).

-So, either way,Api(e:,o) a> Api (e:"'t 0"') •

-Let e: E NOH.

,-If e: I AI.EXP, then Api(e:,8) = e:(o)' E NOHalso.

-If e: = Ax.e:", then c " E NOHand so,

Api(Ax.e:",o) = [8/XJie:"" E NOH, by Q(i).

-The next clause is trivial if e: f AI.EXP. Otherwise,

Api ([x/y]Aa. e:..., [x/y] 8) a > Api (Az , [x/y] [z/ a Je:..., [x/y] <5).,
, '\

by above, where z ~x,y and is not free in e:....
i= [[x/y]<5/Z] [x/y][z/a]e:"

Cl i---=~) [x/Y][8/Z] [z/a]e:", by Q(i).

Cl> [x/y][o/a]ie:"', by Q(i).

= [x/y]Api(Aa.e:",o).

-Finally, let a be not free in e:,o.

-If c f AI. EXP, then a is not free in Api (e:,0) , trivially.

5 ," Th a". ,'" h ... d- uppose e: =, AX.e:. en, e: AX.e: ,were a ~ X an

is not free in e:.......

by Q (i) •
, i

-:, a is not free in Ap (e:,o), since this is a-convertible to

Api,cAx....e:..."',o).

219

5.0.5:LEMMA:-

Suppose g(i-l) ",p(i-l), for some i ~ 2. Then,
well-defined up to a-conversion.

Proof:-
i-Consider [a/X] £.

-If e € I u NOH, then trivial.
-Suppose e = AX. s " € HNF.
-Let z , Z...'I- X and be not free in 0, c ... and z 'I- z ";
-Now, z ...IS not free in [z/Y]c"', and so, by g(i-l}, is not free
in [o/X]i-l[z/y]£

i-I-But, [z"'/z][o/X] [z/y]£ ...·
a ~ i-I

____,;;;;....p, ([z"'/Z]o/X] [z"'/Z][z/y]£"', by g(i-l).
a > [o/X]i-l[z"'/y]£"', since z is not free in 01£

:.~.Az.[o/X]i-l[z/y]£'" a> Az[o/X]i-l[z .../y]£

-Finally, if e = wen) € HEAD, then [o/X]i£ is well-defined up
to a-conversion by g(i-l)",p(i-l) - (twice).

5.0.6:LEMMA:-

Suppose g(i-l)",p(i-l), for some i ~ 2. Let £
a > 0....Then, [0/x] i£ __ex_~ [0'"/X] i£

a) £ ...and

Proof:-
-If £ E I u NOH, then trivial.
-Suppose c = AY.n € HNF.
-If e ...= AY.n"', then n ---.5L-) n "•
-S_::hoosez 'I- x and not free in o,n~ Then, z is also not free .1n n
-Then, [o/xJi-l[z/y]n a > [o"'/xJi-l[z/YJn"', by g(i-l) ,since
[z/y]n a). [z/yJn"

:., [O/X]i(AY.n) 7' [o"/X]i(AY.n"".
-On the other hand, if £'" = Ayn' then y is not free in n

220

-Choose z '¢. x and not free in 0, n ,n '""; Then,
[o/X]i(AY.n) = lz.[o/X]i-l[z/Y]n

i-I
= lZ. Co/X] [Z/Y] [y/y'""Jn "',

a ~ i-I-":~7 lZ.[o/X] [z/y"'''']n'''''',by Q{i-l).

= [o/X]i(lY"''''.n'''''').
-Finally, suppose c = w (n) e: HEAD.
-Then, e:'"= w"'(n"'),with w a) w'" and n a) n"'.
-Then, [o/X]iw(n) a) [o"'/X]iw"'(n"'),by Q(i-l)~p(i-l).

5.0.7:LEMMA:-
Suppose Q(i-l)~p(i-l), for some i ~ 2. Let a be not free

in e:.Then, [o/a]i[a/x]e: __=a_>~. [o/X]ie•
Proof:-

-If c e: I u NOH I then trivial.
-Suppose e = AY. e "'. e: HNF.
-Choose z and z ...such that (z ~ z"')~(z,z'"~ a,x)~(z is not free
in e"')~(z'"is not free in e:"',o).Then, note that a is not free
in [z.../Y]e:....
-:., [o/a]i[a/x](ly.e:"') = [o/a]i(lz.[a/x][z/Y]e:"')

i-I= lz[o/a] [z"'jZ][a/x] [z/Y]e:'"
a) Az [o/a]i-l[a/x][z /Y]e:...
a) Az [o/X]i-l[z .../Y]e: , by Q(i-l).

= [o/X]i(Ay.e:"').
-Finally, suppose e:= wen) e: HEAD. Then, a is not free in w,n •

.-:..." [o/a]i[a/x]w(n) = [o/a]i([a/x]w) ([a/x]n)
= Api-l([o/a]i-l[a/x]w,[o/a]i-l[a/x]n)
"'a, i-I i-I i-I

_';;;;"';~7 Ap ([c/X] w,[o/X] n), by Q (i-I)
= [o/x]iw(n). ~ u-ri ,

t.

221

5.0.8:LEMMA:-
Suppose Q(i-l)",p(i-l), for some L ~ 2. Then, if Z _x,y,

[[x/YJo/zJi[x/YJc ~ > [x/YJ[o/zJic.
Proof:-

-If E € NOH u I, then so is [X/YJCI by Q(l), and the result
is trivial.
-Suppose s = Aa.w € HNF.
-Choose band c such that (b ;t c)'"(b,c ;t x,y ,z)'"(b,c are not
free in 00,0). Note that c is not free in [x/YJoI[x/YJ[b/aJw,
-Then, [[X/YJo/ZJi[x/YJ(Aa.w)

a) [[x/YJo/z Ji(Ab.[x/YJ [b/aJw)
= Ac.[[x/YJo/zJi-l[c/bJ[x/YJ[b/a]w

a i-l------'7~ AC. [[x/YJo/zJ [x/YJ[c/bJ[b/aJw
a i-l Q---=~) Xc , [x/YJ[o/zJ [c/a]w, by (i-l).

= [X/Y] (Ac.[o/zJi-l[c/a]w)
= [x/y][o/zJi(Aa.w).

-Finally, suppose e = wen) e HEAD.
-Then, [[X/YJo/Z]i[x/y]w(n)

= [[X/YJo/Z]i([x/y]w) ([x/Y]n)
= Api-l([[x/y]o/Z]i-l[X/Y]Wt[[x/y]o/ZJi-l[X/Y]n)

a) Api-l([X/YJ[O/Z]i-lw,[X/YJ[O/ZJi-ln) I

by Q(i-l)",p(i-l).
a > [X/YJApi-l([o/zJi-1WI[o/Z]i-ln) I by p(i-l).

= [x/YJ[o/Z]iw(n).

5 • O. 9 :LEMMA:-
Suppose Q(i-l).....p(i-l)t for some i ~ 2. Let a be not free

in C/O. Then, a is not free in [o/xJic.
Proof:-

222

-If E € I u NOH, then trivial.

-Suppose E = Ay. E", Choose Z ~ x, a and not free in ,
E •

-Then, a is not free in [z/y lE'.
• free in Eo/X]

i-I
[z/y] E', by Q(i-l) •.., a is not

• a is free in i-I
[o/x l <t.,y. E') •.., not AZ. [o/X] [z/y] E' =

-Finally, suppose E = wen) € HEAD. Then, a is not free in w,n.

:, a is not free in [o/X]i-lW,[o/X]i-ln, by Q(i-l).

:., a is not free in Api-l ([o/x l-lw, [o/x]i-ln) , by p(i-l),

i= EO/X] w(n).

S.O.lO:LEMMA:-

Suppose Q(i-l) AP(i-l) , for some i ~ 2. Then, if x is not

Proof:-

- If E € I u NOHI then O.K •

-If E = 'AY..E' € HNF, choose Z ~ x and not free in OlE'.

-Since x is not free in El = AY.E', we have that x is not free

in {Z/Y]E"'.

~Thus, [o/X]i(AY.E"') = AZ.[O/X]i-l[Z/Y]E'

a> AZ.[Z/Y]E', by Q(i-l).

a), 'II.Y·E •

-If E = w(n) € HEAD, then x is not free in w,n.

-Then, [o/x]iw(n) = Api-l([o/X]i-lW,[o/xJi-ln)

. 'a i-I
_;:--.;r.) Ap (w,n), by Q (i-l),.p (i-I).

= w(n), since 00' E: HEAD.

5.0.11: THEOREM:-

(Vi ~ 1) (p (i)AQ (i».

Proof:-

223

-We have P(l)",Q(l) ,by 5.0.3.
-Now, E € NOH => [a/x] 1£= [a/x] e € NOH, by 'Q (1) •

-:, P(i-l) ",Q(i-l)=>Q(i) , Vi ~ 2, by 5.0.5,5.0.6,5.0.7,5.0.8,
5.0.9,5.0.10 and above.
-And, Q(i)=>P(i), Vi ~ 2, by 5.0.4 •
.., P(i-l)"Q(i-l)'=>P(i)",Q(i), Vi ~ 2 ••

.., by ordinary induction, P (i)",Q(L) , Vi <:: 1.

5 •0.12 :COR: -.
If z ~ x and is not free in 0, then, for all i ~ 2,

Proof:-
-Let z ~ x and be 'not free in <5. Choose z " ~ x and not free
in O,E.
-Th~n, [o/x]i(~z.£) = ~z".[o/xJi-l[z"/z]E:

-~ ~z".[[z"/z]a/x]i-l[z"/zJ£, by 5.0.11,
since z is not free in o.

a) ~z".[z"/z][o/x]i-l£1 by 5.0.11, since

a i-I- -) ~z.[o/xJ £, since z" is not free
i-Iin Co/x] E, by 5.0.11.

5.1:Preservation of a,S> and ~ :-~~~~~~~~~--------~~
5.1.0:LEHMA:-

(E(O) a S '1, :> Ap (£,0» and ([o/x]£
Proof:-

-Let P(i) and Q(i} be the above sentence.

224

-Clearly, P(l)AQ(l).
-Claim: Q(i)=>p(i), V ~ 2 :-

1 i+.e r AI.EXP => e:(o) = Ap (e:,0).
-e: = Ax.e:" => (Ax.e:")(0) a) [o/x]e:"

a,S) [o/X]ie:", by Q(i).

= Api(Ax.e:",o).
-Claim: p(i-l)AQ(i-l)=>Q(i),V ~ 2 :-

-e: E: I u NOH => [o/x]e: i= Co/X] e:.
= AY. e:, E: HNF and Z ~ x and not free in o,e:.. =~-e:

[o/X](Ay.e:') = AZ. [o/X][z/Y]e:"
a,S) i-l by Q(i-l).Az. Co/X] [z/Y]e:',

= [o/X]i(Ay.e:').
-e: = wen) E: HEAD ==>

[o/x]w(n) = ([o/x]w) ([o/X]n)
acS) ([o/X]i-lw) ([o/X]i-ln), by Q(i-l).
a,S) Api-l([0/xJi-1W,[0/xJi-ln), by p(i-l

= [o/X]iw(n).
-Thus, by induction, P(i)AQ(i), V ~ 1.

S.l.l:LEMMA:-
a ,S> .. s a,t?) 0' => i Cl , B) Ap i (e:..,0')•s e: , Ap (e:,o)
a,S) ,

0 ad}) 0" => [o/X]ie: a,f3> [~'/X]ie:".e: e: ,
p'roof:-

-Let.p(i) and Q(i) be the above two sentences, respectively.
-Clearly, p (1) AQ (1) •

-Claim: Q (i)=>p (L) , V,,~ 2 :-

-If e: I AI .EXP, clearly p (L) •

7-1f not, then e _.=.a-40) AX.n . e:'
'. i a i-Then, Ap (e:,o) >' Ap (xx ,n ,0) ,

i
= [o/x] n

a,B). ,n •
by 5.0.10.

225

a,B) [Q~/x]in~,by Q(i).

. i, '"~"')= Ap ,(AX. n ,V.

a >Api(e:~,o"'), by 5.0.11 •.
-Claim: p(i-l) "Q(i-l) =>Q(i), Vi ~ 2:-

-If c e:I u NOH, then [o/X]ie: = [o/X]e:
a, @) [0 '"/X] e:~
a,S> [O"'/X]ie:"',by 5.1.0.

-If e: ~ AI.HNF, e: a > Ay.n "» n Cl,S> n '"•

n

-Choose z· ~ x and not free in 0, n,n'"•
-Note that [z/y]n a, B) [z/y]n ";

i a i-Then, Co/x] e: > Co/x] (Ay.n), by 5.0.11.
= Az.[c/X]i-l[z/y]n
a,@;> Az.[c"'/X]i-l[z/y]n"', by Q(i-l).

= [c~/X]i(Ay.n~)
a) [C~/X]iE"', by 5.0.11 •

.-If e = wen)' e:HEAD, then e:'"= w"'(n~) and w a,S} w"',

a,B) n

-Then, [o/x]ie: = Api-l([o/X]i-1W,[o/X]i-ln).
-But, [c/x]i-lw a,S) [c"'/X]i-lw"',by Q(i-l).
-And, [c/x]i-ln a,s) [c"'/x]i-ln..., by Q(i-l).
:, [c/x]ie: ate) Api-l([o"'/x]i-lw ...,[c~/x]i-ln"'), by p(i-l).

= [c"'/x]ie:"'•
•.., by induction, p (i)"Q (i), V :?: 1.

S.l.2:REMARK:-
In the proof of the above theorem, we see how neccessary

it is that [0 /x] is ddes nothing when E e:NOH. Sin ce, when e:=
wen) and e: a',B) e ", if we could not assmre that E' E: HElm, we
would not be able to say anything about E"'.

Thus, without this clause, i'th applications and

226

substitutions, although well-defined up to a-conversion, would
behave badly with respect to S-reductions.
5.l.3:THEOREM:-

Api (E,0) Cl, S) Api+l (E,0)•
[o/x JiE a, S) [o/x Ji+l E.

Proof:-
-Let P(i) and Q(i) be the above two sentences, respectively.
-Claim: pel) and Q(l) :-

2 1-Cleitrly Q(l), since Co/x] E = [o/xJ E.
-If E 1 AI.EXP, Ap2(E,O) = E{O) = Apl{E,O).
-Otherwise, Apl (Ax. £''', a) = (AX. £. ,.) (6)

S > [o/x]E'"

= [0/xJ2E'"
= Ap2(AX.E"',0).

-Claim: Q(i)=>P(i), Vi ~ 2 :-
i-If E 4 AI.EXP, Ap (E,a)

-Otherwise, Api(AX.E"',a)
i+l= E(O) = Ap (c,o).

= [o/x]ic'",

-Claim: P(i-l)AQ(i-l)=>Q(i), Vi ~ 2 :-
-If EEl U NOH, Co/xli€; = [a/X]E = [o/X]i+lc•
-If e:= 'Ay.€;'"E HNF, and z ¢. x and is not free in O,E"',

i-IAZ.[O/X] [z/y]€

.. -If e = w (n) E HEAD,

i+l= Co/x] ('Ay.e:"').
then [o/xjiw(n) = Api-l([o/X]i-lW,

[a/x] i-In) •
-But, [o/x]i-lw

i-I-And, [a/x] n

a,S> [a/x]iw, by Q u-ri .
a Cl i'''':> [a/x] n , by Q (i-I) •

, .

227

.:, [o/x]iw(n) a,8') Api-l(Co/X]iw,Co/X]in), by 5.1.1.
a,S) Api([o/x]iw,[o/X]in), by p(i-l).

i+l= [a/x] wen).

-Thus, by induction, P(i)",Q(i), Vi ~ 1.

5.1.4:COR:-
i .. i+lAp (£,0) !::Ap (£,0).

[o/x]i£ ~ [o/x]i+l£.

Proof:-
-By 5.1.3 and 4.4.9.

5.l.5:REMARK:-
Thus, we see that ilth applications and substitutions form

#Ia chain under S-reductions, and hence !::,with increasing i.
Finally, in this section, we check that these definitions

,.are well behaved with respect to !::- i.e. a result similar to
that of 5.1.1. First, though, a trivial property of ~.
5.1. 6 :LEMMA:-

Proof:-
-E[[o/X]£] = [E[o]/x]"E[£ll, by 4.4.4.

s [E[o"']/x]"E[£"D, by 4.3.3 (i).
= E[ITo"/x]£"D.

5.l.7:DEF:-
p (i) (£ 0

,.,
0'" i '" Api(£ ...,o"'».t:: e: , s => Ap (£,0) s-

Q (i) ..
e:"',

,., i ,., i- (e: !:: odE 0'"=> [o/x] £ s [o/x] e:"').

5 .1.8 :LEM1-1A:-
Q (i)=>P (i), Vi ~ 2 •

.'

228

Proof:-

-If E IAI.EXP, Api(E,o) = do) ~ E'(O'), by 4.4.7.
,. Ai, ~') . th . l'te P (E,u , S1nce ere 1S equa 1 y

if E' I ~.EXP and otherwise E'(O') E NOH, which gives ~, by 4.8.4.
-Suppose E EAI.EXP. If E ENOH, then so is Api(E,o), by 5.0.11,

and hence P (i), by 4. 8. 4.
a-Otherwi se, E -...;;;....;:>~ AX.n E HNF, and E' ,n ,

by 4.8.4.
i-Then, Ap (E, 0) a >- i--~-~ Ap (Ax.n,o), by 5.0.11.

= [o/x Jin
~ [0' /x Ji n " by Q (L) ,

= Api (Ax. n', 0')

a> Api(E',o'), by 5.0.11.

- .:, P (i), by 4.4.8•

+
5 • 1. 9 : LEMMA: -

P(i-1)Q(i-1)=>Q(i), Vi :1!: 2.

Proof:-

- E = Z E I ==> E' = z, by 4. 8 •4•

=> [o/xJiz = [o/x]z
,.,
c [o'/x]z, by 5.1.6.

= [0' /x]iz.

-E E NOH=> [o/x]iE E NOH, by 5.0.11.

-> Q(i), by 4.8.4.
a- E E AI .HNF=> E :lIo Ay. n , E'"

a ,.,
----::=:>jIIoo AY.n " and n en', by 4. 8. 4 •

-Choose z "¢. x and not free in 0,0' ,n ,n' •
i-Then, Co/x] E a i

_;;;"">31110 [o/xJ (Ay.n), by 5.0.11.
d'

i-1= Az •[o/x] [z/yJ n
N , i-l ,.,s AZ.[O /x] [z/yJn, bYQ(i-1), since [z/Y]n !::

[z/y]n"', by 5.1. 6.

229

= [o"/x]i(Ay.n")
a > [o"/x]i£ .., by 5.0.11 •

Q(i), by 4.4.8.•-..,
-Finally, e = w (n) € HEAD =>

M£" = w"(n") and w c w", n Nc .."'""n ,
by 4.8.4.

i i-I i-I i-I-Then, Co/x] wen) = Ap ([o/x] w,[o/x] n) ,

-But, [o/x]i-lw ~ [o"/x]i-lw", by Q(i-l).
-And, [o/xJi-ln ~ [o"/x]i-ln .., by Q(i-l).
-~, [o/x]iw(n) ~ Api-l([o"/xJi-lw",[o"/x]i-ln"), by p(i-l) •.

= [o"/x]iw"(n").

S.l.lO:THEOREM:-

Proof:-
-Clearly, P(l)AQ(l), by 4.4.7 and 5.1.6 •
•-.., by induction, using 5.1.8 and 5.1.9, we get the result.

i.2:Relationship with E~l=

S.2.0:REMARK:-
Since i I th application and substitution were "mode.l Ied"

after the application and sUbstitution operators of E , we
co

should expect a strong connection.
S.2.1:DEF:-

". i
P (i) - EITAp (£,0)] s

Q (i) _ E[[0/x]i£!j4 s

,., ",

Ap (E [e:] ,E [0])•
,., ""[E[OIJ/X]E[O] •

5 • 2 • 2 : LE~1.MA: -

Proof:-

230

'" 1 N ""~"-EITAp (e:,c))] = EITe:(o)] = Ap(E[e:],E{!o])
N N

!: Ap(EIIe:],EITolJ), by 4.3.3 (iii).

-EII[o/x]le:] = E[[o/xJe:.Jl

= [eIToD/x]-eITe:], by 4.4.4.
,., #I= [E[o]/xJE[e:], by 4.3.3(iii).

5.2.3:LEMMA:-

Q(i)=>P(i), Vi ~ 2.

Proof:-

-Suppose e I Al. EXP.
N i #II "'"-Then, EfIAp (e:,o)] = E[e:(o)] = Ap(EIT.e:],EIToll), as in the proof

of 5.2.2.

-Suppose e: = Ax.e:~.

-Then, ~IlApi (Ax. e ~, 0)] = E[Io/xlie:"]
~ III

s [E [o]/x JE[Ie:~], by Q (i) •

", "= Ap(Ax.E[k"'],EIIo]), by3.4.8.
N "= Ap (E [Ax. e"'], E[o]) •

+
5.2.4:REMARK:-

We need the following technical lemma for the other'

induction step. Part (i) was mentioned in 3.4.11.

5 • 2 • 5 :LEM..~: -

(i) Ap([e:~Ix Je:, [e:'"Ix Jo)
00= l=l <I> i+l,-! APi ([e:i/x Je:i-I' [e:i/x Joi-I) •

'" (i i) 11' 2 (e:) ¢. J.>

Ap([e:~Ix]e:, [e:"Ix Jo) =
/'ffI

Is " Ix JAp(e:,o)

= [e:'"Ix JAp(6 ,0) •

231

l~J¢k+l,ooOAPk(¢i,kO[£i/XJEi-l'¢i,kO[ei/~JOi_l)
• 1:. "" J; $. t

by 3.3.8.

thIs is the least upper bound of a larger set (consider i = k) •
•-.., we have equality and this part is proved.

(ii) -If 1T2(E) ;t..1., then Ei-l = ai-2 € Ai-2, Vi ~ 2.

-~, Ap([E~/XJ£,[£~/x]o)
00 •

= U¢i+l oooAPi([E~/x]ai_2'[£~/X]o '-1)' by part (i).i=2' a ~ ~
00

= U¢i+l 00° [£f.+l/xJai_2 (oi-l)~=2 '
... ,.,= [£ /xJAp(E,O)

= [E~/xJAp(E,O), by 4.3.3(xii) •
..

5.2.6:LEMMA:-

P. (i-l)...Q (i-l)==>Q(i),Vi ~ 2.

proof:-
fill i,., .,."-If e € I U NOH, then EIr[0 Ix] ell = Err[o/x]cll a.= [Erro]/X]E[d] ,

232

as in the proof qf 5.2.2 •
..Suppose e:= 'Ay.e:'" € HNF. Choose z ;t.. x and not free in 0, e:"•
-Then, EII[o/XJi('Ay.e:"')I1

= EII'Az.[o/xJ i-J'[z/yJe:"]
= 'Az.E[[d/xJi-l[~/y]e:"'ll·

", '"!: 'Az.[E[olI/xJEII[z/yJe:"'ll,by Qfi-l).
IV N

= [ElIoD/x]'Az.Eqrz/yJe:"'JJ,by 4.3.4(iii), since z Ls i not; free
,., "in E[o], by 4.4.l(ii).

= [EITd]/xJE['Az.[z/yJe:"'],
= [EITd]/x]E[Ay.e:"'lI,by 4.4.8.

-Finally, suppose e = w (n) € HEAD. Then, e .€ HEAD and so
'lT2oE[wll' ;t. .1, by 4.4.2 (iii).
~Then, E[[o/x]iw{n)] = E[Api-l ([d/xJi-lw, [d/x]i-ln)]

11#. i-l". i-l
!: Ap (E[[d/x] w] ,EII[d/x] nIl), by P (i-l) ..

/II " ", ", . .s Ap ([E[d]/x]ElIw], [E[dll/x]E[nll), by Q (i-l) •
= [E[tS]/xJAP (E[w] ,ElInll),by 5.2.5 (ii) •

11# 11#

= [E[tSll/xJE[w(n)J1.

5.2.7:THEOREM:-

Proof:-
-By induction, using 5~2.2,5.2.3 and 5.2.6.

+
5.2.8:REMARK:-

We have now done the work in this section that is needed
for the development of the thesis, since we will obtain from
this, in the next section, a suf£icientcondition for property
X to be true.

However, to show we are on the right .track, we can get a

,....

233

result with Api on the R.H.S. of a E and prove the condition
neccessary as well.

For this reason, and the fact that the result and its proof
are almost identical to 4.6.10, we only sketch the proof here.
5.2.9:THEOREM:-

Let{R~}(i) = ({~i-l}'Oi = ¢ooi_loE[E],¢oo iOE[oD)
CLi-2 ' ,

=> ([Oi/X].{~i-l} s ¢oo,ioE[[o/X]i(£}]) 0

CLi-2
"" "Let P(i) = (Ei,oi = ¢oo,ioE[ED'¢oo,ioE[o])

=> (APi(Ei,oi) = ¢oo,i+loEITApi(E/O)]).
Then, (Vi ~ 0) (S(i» and (Vi ~ 1) (P(i)I'Q(i» and (Vi ~ 2) (R(i)

Proof:-
-Look at definition 4.6.4. All we have to show is that [o/x]i(e),
Api(E,O) are suitable choices for n such that [o/xJ£
e (0) 'ate> n respectively.

a.,a > n ,

-Consider 4.6.6 :-
-n = [o/x]z = [o/x]iz•

(S(i), Vi ~ 0)

~Consider 4.6.7 :- (Q(i) => P(i), Vi ~ 1)
II-If Ei = CLi-l, then 'IT 2 oEDe D .;t .1.

:.,E € HEAD and so e , AI 0 EXP 0

:.,n = e(o) = Api(E,O).
i .-IfEi = AX.E1_1,we get n = [o/y] v, by Q(i).

i .
= Ap (Ay.v,o) CL i-.;::_~>Ap (s , 0) ,

s:l,.nceE
-Consider 4.6.8 :- (Q(i-l)AR(i) => Q(i), Vi ~2}.

-If Ei-l = Ay.e1_2,we get,
Az.n = Az.[o/x]i-lv, by Q(i-l).

CL> [o/x]i(AzoV)" since z ;tx and is not free

234

in cS,by 5.0.11.
t). i

--~+~~ Co/x] E, since E t)._.;._.,.) A Z • v •

-If E. 1 = a. 2' then O.K. by R(i).~- ~-
-Consider 4.6.9 :-

-If ai 2 = a. 3(E: 2)' we get,
- ~- 1.-

v =Api-l([cS/xJi-la,[cS/xJi-lE~),
= [6/xJi(a(E~» = [cS/x]iE•

-If ai-2 = z, then O.K. by SCi) •
.., the theorem, by an SPQR-induction as in 4.6.10.

+
S.3:I'th Reductions:-

S.3.0:DEF:-
i<x> = x (i ~ 1)

i<Ax.E> = Ax.i<E>
ii<E(cS» = Ap (i<E>,i<cS».

S.3.l:REMARK:-
Compare the above definition with that of the semantic

function E, 4.0.1.

We use angle brackets, < >, rather than IT D, since the
result of applying i is another A-expression.

We could have defined these reductions slightly differently,
i<E(cS» = Api-l(i-l<E>,i-l<o»,e.g.

but this makes no difference to our thesis.
'"

S.3.2:LEMMA:-
'"(i) i<E> is well-defined up to a-conversion.

(11) i<[x/yJE> = [x/yJi<E>.
(iii) a ls not free in E => a is not free in i<E>.

235

(iv) E a) E'"==> i<E>
Proof:-

-Trivial, by doing a structural induction on E and using 5.0.11.

+
5 • 3 • 3 : THEOREM: -

The i'th reductions form a chain under a, B) and ~.
Proof:-

-Let P[ED == i<E> a,B >- i+1<E>.
-Clearly, P[xD and (P[ED => P[AX.ED).
-Claim: P[EDAP[oD => P[E(O)TI :-

-i<E(o» = Api(i<E>,i<o»
a,a) Api (i+1<E>,i+1<0» , by 5.1.1,POED and POoD.
a,B ,Api+1(i+l<E>,i+1<0», by 5.1.3.

= i+1<E(0» •
(VE E EXP) P[ED.•

00 ,

-Finally, a , B) => ~ by4 4 9
+ r •••

+
5.3.4:EXAMPLES:-

(i) l<E> == E.
(ii) E E NF> i<E.> a) E.
(iii) 2«Ay.xy~(b» = xb.
(iv) [O/XJE a , B) 2< (Ax.E) (0) > •

(v) E a,B) 2<I(E».
(vi) E a, B) 3<K (E) (0) > •

(vii) i<AA> a) AA.
i.!.2(viii) i<Y> == Af.f . (~), where Y == Af.sp1 and i+2 means

an integer divide.
Proof:-

(i) -By a simple structural induction on E.

236

(ii) -As a corollary to 5.3.3.
2(iii) - 2< o.y.xy) (b)> = Ap (2<Ay.xy>,2<b»

= Ap2(Ay.xy,b), by part (ii).
= [b/yJ2(xy) = [b/yJxy = xb.

(iv) -2< (Ax.c) (0» = Ap2 (Ax.2<e:>,2<0»
= [2<0>/xJ22<e:> = [2<0>/xJ2<e:>
< a,S [o/xJe:, by 5.3.3.

(v) -e: = [e:/xJx a,S) 2<I (e:)>, by part (iv).
(vi) -3<K(e:)(0» = Ap3 (Ap3 (K,3<e:» ,3<0»

< a,S Ap3(Ap3(K,e:),o), by 5.3.3 and 5.1.1.
= Ap3 ([e:/xJ3(Ay·.x),0)
= Ap3 (Az.[e:/xJ2[z/yJx,0), where z ~x and is

not free in e:.
= Ap3(Az.[e:/xJx,o) = Ap3(Az.e:,o)
= [0/zJ2e: = [o/zJe: = e:,since z is not free in e:.

(vii) -By 5.3.3, ~~ a,S > i<~~>.
-But, ~~ only reduces to itself.
• a-.., i<~~>)-~~.

,(viii) -i<Y> = i<Af.~> = i<Af. (Ay.f(yy» (Ay.f(yy»>
= Af .Api (Ay.,;'f.(yy)"Ay.f (yy))•

-But, Apl(Ay.f(yy),Ay.f(yy». = spl.'
-And, Ap2(Ay.f(yy),Ay.f(yy» = [Ay.f(yy)/yJ2f(yy)

= [Ay.f(yy)/yJf(yy)
= f(~).

-Then, for i ~ 3, Api(Ay.f(yy),Ay.f(yy»
= [Ay.f(yy)/yJif(YY)
= Api-l([Ay.f(yy1/yJi-lf,[Ay.f(yy)/yJi-l(yy»
= Api-1Cf,Api-2([Ay.f{yy)/yJi-2y,[Ay.f(yy)/yJi-2y»
= f(Api-2{Ay.f{yy),Ay.f(yy».

237

• it2i<Y> = Af.f (~).- •• I

5.3.5:REMARK:-
Thus, we see that i'th reductions are non-trivial and, in

the case of Y, go arbitrarily deep. The question is whether they
always will.

Note that we have not got the result,
(e: a , S) c ") => (i < e> a, S) i <e ,,0» ,

from 5.1.1, since, if we try a structural induction on e:,we do
not know the form of e:~when e:= w(o).

Note also that the result corresponding to 5.1.10,

* ~is not true, since I(x) E AA, but 2<I(x» = x , AA = 2<AA>.
We also have not been able to show,

(e:y)(oy) a,S) i<S(e:)(0) (y»,

for sufficiently large i, since this would involve pushing i'th
substitions through i'th applications and this seems to lead to
as many troubles as trying to establish properties Y or Z.
5.3.6:THEOREM:-

MEITi<e:>Ds B'[e:D.
Proof:-

-Let P[e:D be the above sentence.
-Clearly, p[xD.
-Claim: p[e:D => P[Ax.e:D :-

-E[i<Ax.e:>lI= EUAx.i<e:>D = Ax.E[i<e:>] E Ax.E[e:l1,by PlIell.
= E[AX. sIl ,

-Claim: P[ell...P[lo]=> P[e:(o)D :-

-E[i<e:(o»I1 = E[I.Api(i<e:>,i<o»D

238

= ~P(EITi<E>J],E[i<o>D), by 5.2.7.
s Ap(E[Ell,E[o]), by PDED ...PDoD.
=E[E(O)].

(VE € EXP)P[Ell•..,

5.3.7:COR:-
00

UE[i<E> n !: E{IE].
i=l
Proof:-

-Trivial.

5.3.8:REMARK:-
As in the last section (see 5.2.8) I we have now done the

work that is needed, since we will show later that,
V[E] = OfUi<E>],

i=l
and so deduce E = V. However, to show we are chasing a neccessary
condition, we prove one more result, analogous to 4.6.11.
5.3.9:THEOREM:-

00

EUED = l=l'ui<E>n.

Proof:-
-Look at the proof of 4.6.~1. Let AUeJ] be the theorem.
-Clearly, AUxD.

.
-(ArrE] -> ArrAX.ED) is proved as in 4.6.11, using 5.3.3 instead
of 4.4.10.
-(A[ED ...A[oD => A[E(O)D) is proved as in 4.6.11, only we use ji<E>,
ki<o> instead of Ei,o~. Then, by 5.2.9,

" iAPi(Ei,oi) = ~oo,i+loEUAP (ji<E>,ki<o»J]
""" .= ~oo,i+loEIDmi<E(o»D, where mi = max(ji,ki,i).

Hence, the result.

239

.., by structural induction, (Ve: e: EXP)A [e:] •

5.3.l0:COR:-
00

E[e:] = UE[i<e:>].
i=l

Proof:-
-Trivial.

5.3.11: ru~_r,,1ARK:-

Thus, the semantics of an expression are given by the limit
of the approximate semantics of the ilth reductions. This is a
stronger result than Wadsworth's [59J, which we shall show carries
over to the usual Scott models.

5.4:Completeness of Reduction Rules:-

5 • 4 .0 :DEF: - .

Let R be a rule for defining a set of a-reductions of a
,A.-expression.We write e: R) <5 if <5 is reducible from s by
the rule R. Then, the rule is STRONGLY COMPLETE if,

(e: a ,!3) c ") => (e R) <5) A (e: .. a 18 ~ (5) •

The rule is WEAKLY COMPLETE if,
(e: et,!3) e") => (e R) <5) A (c " ~ <5).

5.4.l:LEMMA:-
(i) Strongly complete => weakly complete.
(ii) R is weakly complete <=> V[e:] =U{E[E:"] le:

Proof:-
(i) -By 4.4•9•
(ii) (=» -Clearly I V[e:] ::! U{~[e: "Il I e: R ;) e " l ,

-But, that the inequality holds the other \'lay around, is just

240

weak completeness.
«=) -Let E a,S) ~E •

NThen, E[E~n = V[E]

= U{E[oIlI E R > s l,

by hypothesis.
1#-But, E[E'] is finite, by 4.7.3, and so,

R) o}.

•-.. , E[E'] = Erro], for some 0 such that E R) s ,
~ ,., h-i.e. E : 0, were E R > s ,

5.4.2: (COUNTER-)EXAMPLES:-
(i) Standard reductions are strongly complete.
(ii) Normal reductions are not even weakly complete.
(iii) lith reductions are not strongly complete.
Proof:-

(i) -If E a,S) E~ then E by 0.3.40.
-Hence, strong completeness, with 0 = E~.
(ii) -Let E = x(AA) (Iy).
-The only normal reductions are a-convertible 'to E.
-:-But,E a,a) x(AA) (y) ; E. (This is from Wadsworth - [60])
(iii) -Let T = Ax.xxx. Write En for EEE ••••••E (n times).
-Then, T2 a,a) Tn, Vn.~ 2. Also, Tn ~ T2, Vn ~ 3.
-But, A2 a,a) A2 and i<A2> a) A2, by 5.3.4 (vii).

2 .-Consider E = (Ax.A (xx» (T).
-Now, E a,B) A2T2 a,S> A2Tn, Vn ~ 2.
-But, i<E> = Api(i<Ax.A2(xx»,i<T»

a i 2___;;.;..._y) Ap (AX•i<A (xx)>,T), by 5.3•4 (ii)•
= [T/x]iApi(i<A2>,i<xx», Vi ~ 2.

a) [T/x]iApi(A2,xx), by 5.3.4(ii),(vii) and 5.0.11.
= [T/x]iA2(xx), since A2 I AI.EXP.

241

= [T/xJil2(xx), since il2(xx) €NOH.
= il2T2, Vi ~ 2.

Cl/A> i<e:>I Vi ~ 1 and n ~ 3.

5.4.3:PROPERTY M:-
I'th reductions are weakly complete.

5.4.4:THEOREM:-
Property M <=> Property X.
Proof:-

(=>) Cl,B) "" e:.#", i<1::>,for i 1.-e: e: =>" s some ~

iKe:""] ;v=> = E[i<e:>]
N=> E[e:""] = E[e:] I by 5.3.6.

«=) -V[e:] = E[e:], by 4.9.1.
= U{.~[i<e:>.lIli~ I}, by,5.3 •.10•

• property M, by 5.4.l(ii).- .. ,

242

6:INSIDE-OUT REDUCTIONS.

6.0:Comparing Reduction Rules:-

6.0.0:REMARK:-
In this chapter, we shall be trying to prove facts about

certain reduction rules. So, first of all, we generate a
language in which to talk.'
6.0.1:DEF:-

Let Rand S be two rules for defining sets of S-reductions
of A-expressions. Then, R is STRONGLY COMPLETE RELATIVE to S if,

(€ S) e ") _> (€ R)O)""(€~ 13)0).

Also, Ris lmAKLY COMPLETE RELATIVE to S if,
(€

Further, R is STRONGLY (resE. WEAKLY) EQUIVALENT to S if
R is strongly (resp. weakly) complete relative to Sand S is
strongly (resp. weakly) complete relative to R. 1

6.0.2:DEF:-
The FULL reduction rule,V, is such that,

a,B> € ",

The EMPTY reduction rule,.Cl..,is such that,
{ e ~ I s .n. ~ e ...} = l).

6.0.3:LEMMA:-
(i) S is a sub-rule of R ==> R is strongly complete relative

, ..
to S.

(ii) Strong rela!ive completeness (resp. equivalence) ->
weak relative completeness (resp. equivalence).

(iii) \T is strongly complete relative to R which is strongly
complete relative to.Q..

243

(iv) R is strongly (resp. weakly) complete relative to 1j

<=> R is strongly (resp. weakly) equivalent to V'

<=> R is strongly (resp. weakly) complete.
(v) Strong (resp. weak) equivalence is an equivalence

relation on the set of reduction rules.
(vi) Strong (resp. weak) relative completeness is a partial

ordering on the set of reduction rules modulo strong (resp. weak)
equivalence. (Think of the relation as =)

(vii) The set of reduction rules modulo the equd.vaLerice scof
part (v), respectively, forms a complete lattice under the partial
orderings of (vi), respectively, with T = u- and J. =A.

(viii) R is weakly complete relative to S

s > e '}.

(ix) R is weakly equivalent to S

Proof:-
(i),(ii),(iii),(iv),(v) and (vi) -Trivial.
(vii) -Let'{[RaJla E A} be a set of strong (resp. weak) equivalence
9lasses of reduction rules indexed by some arbitrary set A.
-Define a reduction rule, R, by :-

R
a '-, '---+7 e ,R) e" iff e

-Claim: [R] = U{[RaJla EA} :-
Ra-If £ -"";';'-f) e " then e

for some a E A.

R) s ", and so R is strongly complete
relative to Ra' Va EA - i.e. [R]' is an upper bound.

-Suppose S is strongly (resp. weakly) complete relative to

-Let £ R,,, . Ra
-.;.;._-+) £ • Then, £ ~ s", for some a e: A, and so

e 'S » 0, where £ ... acS " (,. ~7 resp. ~) o •
•....., S is strongly (resp. weakly) complete relative to R.

-Hence, we have a complete lattice since 'arbitrary U's exist.

244

-Clearly, T =V and .i =n, by part (iii) above.
(viii) (=» -Let R be weakly complete relative to S.

S '),. R .. N AI ""'T! ,.,-Let s 7 e::", Then, e) 0 and e s 0 - i.e. E[e::.Jj = E[o].

-Hence, the result.
«=) -Assume R.H.S. and let e:: S) e::....

-Then, E[e::"'] = U{E[o] [c S) o}

= U{E[o]le:: R) o}, by assumption.
•-H, by 4.7.3 and 4.7.9,

ED e::"0 ..(U{.E[tS] Ie R > O}.

-"' there exists a 0 such that e::• R) 0 and e::'" ~ o.
•-", R is weakly complete relative to S.

(ix) -Trivial, by part (viii).

+

6.l:Inside-Out Reductions:-

6.l.0:REMARK:-
We are going to be working more and more inside A-calculus.

Recall the definitions of redexes, residuals and complete
relative reductions and the notation developed for these in
section 0.4 •

.The notion of inside-out reductions is contrary to standard
reductions where outermost redexes are contracted first. With
inside-out reductions you must contract inside redexes first.

There is no insistence, however, of contracting inner redexes
..as there is in "call-by-name" - but, once a redex, (Ax.e::)(0),
is contracted, all residuals of anysubredexes of e:: or 0 are
protected from further contraction. If you wanted then contracted,
you should have done so earlier. Thus, inside-out reductions
are fairly efficient compared with other'rules, as we shall see

.245

later, and we are reminded of Vuilleminls "call-by-need"
mechanism- [61]. \ '

The idea of inside-out reductions was suggested to me by
David Park as a means of describing how ilth reductions worked.
6.l.l:DEF:-

Let,
R3

---oj) ••••.••

be a sequence of S-reductions where Ri is the redex contracted
in going from £i-l to £i. Then, the sequence is INSIDE-OUT if,
whenever 1 :s; i' < j s n, the redex Rj is not the residual of any
subredex of Ri relative to the subsequence £i-l ---? ... -7 £j-l.
Further, the sequenc~ remains inside-out with the insertion of
a-conversions at any stage. We write, ..

£o--------~----------------~------~
6.l.2:EXAMPLES:-

._, The following reduction sequences are all inside-out :-
(i) (Ax.xax) (Ay.y«AZ.Z)y» -----oj) (Ax.xax) (Ay.yy)

----t) (Ay.yy) (a)(Ay.yy)
(ii) (Af.f3(a» «AX. Ay.yx)bl)

-----oj) aa(Ay.yy) •
-----oj) (Af.f3Ca» (Ay.yb)

-~) (Ay.yb) «Ay.yb) «Ay.yb) Ca»)
--+) (Ay.yb) «Ay.yb) (ab»

(iii) (AX.y) (IlA» s-
----t) (Ay.yb) (abb) ---7) abbb ..

(iv) (Ay.A (ya» (I)
----'..,..-+) a (Ia)

-~) (Ay. (ya) (ya))(I)
--~) aa.

-~) (Ia) (Ia)

6.l.3:REMARK:-
Examples (i) and (ii).above were taken from Wadsworth - (62) -

where we see that in case (i) inside-out reductions are more
efficient than "normal graph reductions", while in case (ii)
they are equally so.

Example (iii) is to show that inside-out reductions can

246

terminate where the "c~ll-by-value" mechanism would get stuck.
Example (iv) shows that inside-out reductions are not always

the most efficient way, since it takes 4 reduction steps while
it is possible to do it in 3. still, "normal graph reductions"
take 4 as well. Maybe, if we only insisted on the inside-out
property for the "rand" of Ri' we could overcome this inefficiency.
But, then we will move slightly away from our ilth reductions.
6.l.4:COUNTER-EXAMPLE:-

lith reductions are not strongly complete relative to
inside-out reductions.

Proof:-
-This is the same counter-example as in 5.4.2(iii}.
-Let E = O.x.A2 (xx)) (T), as before.
-Then, E) A2T2) A2Tn, is inside-out, for all n ~ 3.
-But, i<E>'= A2T2, for all i·~ I, as before.

6.l.5:DEF:-
Let y be a subexpression of E. Then E

y
1) 0 means that

there is a a-reduction sequence from E to 0 such that none of
the residuals of any subredex of y in E, relative to the reductions
so far carried out, is ever contracted. '
6.l.6:NOTATlON:-

Recall that we number reduction sequences by,
. .

-----+) 0 ~ ••••• Ott. ~< .• ;~ ~ !J!' •. (3)

or,
'"

'E
(j)-_.;;::;.._~) ..0 •
..If we concatenate sequences like,

E 0> > 0 ®) y G>) 11,

we get the sequence,
0) .@;®E I

~ n.

247

If we run sequences in parallel, we write,
e:(y)

We write,
O>J{y},

to indicate,
y

e J)o (j)
We generalise and combine the above definitions in the

obvious way so as to allow,
y y'

e: " J) 0,I
Y

E ,. ~ 0 etc ••••
Then, we will get sentences like,

Q) 7' {y,y'}.

Finally, if,
(Ax.e:)Co) @) [o/x]e: <i» n,

and ® ; (j) J {O,E}, we will just write,
0 E

[O/X]E l' 7' n.
6.l.7:DEF:-

~ nE --------~) 0 means that there is a B-reduction sequence
from e:to 0 which has ~ nB-reductions. This extends, in the

s nobvious way to E--------~)o etc ••••
6.l.8:REMARK:-

We can read " G> 7' {y}" as "reduction sequence G) does not
admit residuals of sub-redexes of y" or "0> does not touch y"

or "(j) bans sub-redexes of y" or "y is protected during(j) " etc •••
This notion is closely related to inside-out reductions,

since if :-
E w) 15

"(Aa.).!)('iJ» y
Q) OJ) n,

is inside-out, where ~ is just the contraction of the indicated
sub-redex of <5, then <2>; (j).,..{).!,v} •

We needed the last part of the notation,6.l.6, since E is

248

not neccessarily a sub-expression of [o/xJE. Neither is 0 and
it might even occur repeatedly.

We now make a crucial observation about inside-out reductions
which enables us to use induction on them - both structural
and on the length of the sequences.
6.l.9:THEOREM:-

(i) (E (0) -----.) > n) <=> (E > E'")~(0 > 0")
E .. 0'

"(E..(0 ...) 7' ~ >n) •
y

Q\ Y
7')n) <=> (n) AX.n ") ~(E I' ~n") •(ii) (Ax.E -~A-~

Proof:-
-Clear.

6.1.10:REMARK:-
Note that in part (i) of the above theorem, either E"'(O')= n,

or E' = AX.Eand the last reduction sequence must be of the
form,

0'" E

fJ~ I' ~n.
We end this section with an observation concerning NOH.

6.l.ll:LEMMA:-
Let E' € NOH. Then,

([o/x]E
E
l') n) -> (n € NOH)" (E'E AI.NOH <===>.n E AI.NOH)•

Proof:-
-Intuitively, this is clear, since the residuals of the head
redex of E are not contracted and so a head redex is preserved.
-However, as an exercise in our notation, we will 'prove this..
formally with a structural induction on the form of NOH.

'"-Again, we have to introduce a change of variables operator
into the induction hypothesis, but this can virtually be ignored
except for the abstraction case.

249

x(t) .
J> > n) => (n € NOH),,(e: € AI.EXP

<=> n € AI.EXP).

-First, note that A [e:] => c ;. I.

-Claim: A[(Aa.ll) (\I)] :-
X(Aa .11) (\I)

-Let [o/xJX (Aa.ll) (\I) J» n ,

-Now, (Aa.ll) (\I) I AI.EXP, so all we have to show is that

n € NOH\AI.NOH.

-But, [o/xJX (Aa.ll) (\I). = (Az. [o/xJx[z/aJll) ([o/xJX (\I», where

z ;t x, not in X and not free in 0,11.

-This external redex is not contracted and so its residual,

still external, will remain in n - i.e. n € NOH\AI.NOH.

-Claim: A[e:] => A~(w)ll :-

-Let [o/xJX(e:(w»
X(e:{w»
7') n ,

-Now, e I I, since A [e:]_

-If e: € AI.EXP, we have the result by the first claim •
•- ••, suppose e:. €' (EXP) (EXP)•

-Now, e:(w)';, AI.EXP and so, again, we must show nE NOH\AI.NOH.

-But, [o/xJx(e:(w» = ([o/xJx(e:» ([o/xJX(w», where [o/xJX(e:)

;. AI.EXP.. Therefore, the reductions to n must lie internal,

within these two parts, at least until the left one becomes an

abstraction - i.e. until,
X(e:)

[o/x JX(c) ?) e " ~ AI.EXP.

-But, this is impossible, by Ane:O, since e: I AI.EXP.

-Further, all such c " € NOHand so n € (NOH)(EXP)•
..

- .. , n € NOH\AI.NOH.

-Claim: A [e:] => A [AY.e:] :-
"-Let [O/XJX(Ay.e:)

-But, [O/XJX(Ay.e:)

X(Ay.e:)
J1')n.

= AZ.[O/XJX[z/yJe:, where z ;tx, not in X,

and not free in o,e:.
•- ••, [o/xJX[z/yJe:

X[z/yJe:
----,:p....._-~)11 and n et) Az .11 € AI •EXP..

250

•••, by A [e:],11 € NOH. Thus, n ~ NOH •
•.., by structural induction, (Ve: € NOH) A [E].

-So, letting X be the null COVO, we get the lemma.

+
6.l.l2:COR:-

(E € NOH) '"(E (0)
E

--+J'~4)n) => tn € NOH) •
Proof:-

-If E I AI.EXP, then n = E(O"') € (NOH) (EXP) c NOH.
-If E = AX.E"', with E'" € NOH, then the reduction is of the form,

E'"
(AX.E"')(0) Cl ,a) (AX.E...) (0"')) [0 '"Ix JE... t) n •

••, n € NOH, by 6.1.11.•

6.2:Weak Equivalence of lith and Inside-Out Reduetions:-

6.2.0:LEMMA:-
E a iE(a) ~_"~,~--~~?~----~~)Ap (E,a).
E a

[a Ix] (E) f. 7'- ~ [0 Ix J i (E) •

Proof:'::
-Let P(i) and Q(i) be the above t~.,.osentences respectively.
-Then, clearly, P(l)",Q(l).
-Claim:Q(i) => P(i), Vi ~ 2 :-

-If ¢ I AI.EXP, then trivial, since 'E(a) = Api(E,o).
-If E = AX.E"',then Api(AX.E"',o) = [o/xJiE

o E '"
-But, (AX.E"')(o)) [o/xJE'" f. ~) [o/xJiE"', by Q (i),..

and it is inside-out, by 6.l.9(i).
AX.E'" 0 i. '" ~-.., (AX.E) (a)_. ---I-I'..;......._-Jf!c.;__-~)Ap (AX.E'",a) •

-Claim: P{i-l)",Q(i-l) =>Q(i), Vi ~ 2 :-

-If E € I u NOH, then trivial, since [O/XJE = [a/xJiE.
-If E = Ay.E'" € HNF, then, choosing z ~ X and not free in 15,E....

251

[O/X](AY.E'} = AZ.[cS/X][Z/Y]E'

[Z/Y]E' cS i-I
--~J~~~~~TF~~--}AZ.[cS/X] [Z/Y]E', by Q(i-l).

= [o/x]i(AY.E').

-Therefore, we have,
AZ • [z /Y]E ' cS

Co/x] (AZ.[Z/Y]E') __ ~:P~~_~~~-~'1-~-)[cS/x]i(Az. [Z/Y]E'

-i.e.,

-Finally, if E = W (n) € HEAD, then,
0 W

~ i-I[o/x]w . 1" r-- j [o/x] w, by Q(i-l),
cS n .~ i-Iand [5/x]n ~ :p ~[cS/x] n, by Q(i-l}.

-But, by P(i-l),

-Then, by 6.1.9 (i), (j) x (g) ; @ is inside-out.

-But, also, <D x <6> ; @ 1'" {cS,w,n}, since residuals of

sub-redexes of o,w,n relative to <D x ~ must be sub-redexes

of [o/x]i-l{j) and [o/x]i-ln, which are protected during @.

-:, (j)x~; CD l' {o,w(n)}, since wen) is not a redex, being

an element of HEAD •

•- ••, by induction, (Vi ~ 1) (P(i)",Q(i».

lIth reductions are inside-out.

6.2.l:COR:-

Proof:-

-Clearly, A[x] and (A [E] => A [AX.E]) •
•

-Claim: A[w]"A[nII => A[w(n)] :-

-Trivially, w(n)------·~~l<w(n».

-For all i ~ 2,

252

i<(Jl>

II

i<l.1.l(n».
-•., by 6.1.9(i), l.1.l(n)...........-~~)i<l.1.l(n».

+
-So, by structural induction, (Vs € EXP) A P, EO.

6.2.2:COR:-
Inside-out reductions are strongly complete relative to

i'th reductions.
Proof:-

-By 6.0.3(i) and 6.2.1.

6.2.3:REMARK:-
The above result is not surprising since this was the

motivation for introducing inside-out reductions.
However, we now get the bonus of i'th reductions "dominating"

inside-out reductions, thus establishing weak equivalence.

(E (0)__......._~o.-"..-+':...,.._..,....}

([0Ix] (E) ----F-~fY--..~

e: 0 1t:>-. f:
H~n) => (n s Ap (E, 0) , for some i :!!: 1)•

e 0
[o/x]ie:,~ ;,,-..:p . ~n) (n 1'1 i 1) •-> !: for some :!!:

6.2.4:LEMMA:-

Proof:-
-Let Pen) and Q(n) be the above two sentences respectively, but
with ,,~nilwritten above the L.H.S. reduction sequences.
-Clearly, P(O) and Q(O), with i = 1.

253

-Claim: Q(n-l) => pen), Vn ~ 1:-
1-If E-I AI.EXP, then trivial since E(O) = n = Ap (E,O).

--,

-If E = AX.E~, then the reduction must be,° E~ <n(AX.E ~) (0) ---7 [0 /x]E ~ t- fJ) n•
II in = Co/x] E~, for some i ~ 1, by Q(n-l).
. = Ap i (Ax.E ... ,0) •

•

-We do a structural induction on E. Again the bound variable
-Claim: Pen} => Q(n), Vn ~ 1 :-

causes a little problem in the abstraction case.° X(E) < n-Let A[E] :: ([O/X]X(E) - :p P - ~n)

... i=> (n = Co/x] X(E), for some i ~ 1).
-Then, Q(n) !: (VE .E: EXP)A[E].
-Clearly, AUY], since n = [O/X]X(E) in this case.
-Claim: A [E] => A [Ay.E] :-

o X(AY.E)-Let [o/x]X (AY.E) _--:jl'~""":Pr- !S:_n_~~ n ,

-By 6.l.9(ii),
X[Z/yJE !S:n[o/xJX[Z/yJE-.-....",c.:t.'-._;p.~---~--~)n,where· z· "# X,

a --..;;,;.._.~)Az.n.

-Claim: A [w]A [E] ==> A [w (E)] :-
o X(W(E»

-Let [O/X]X{W(E»-.---/~~~~~~~----_s--n--_'~n.

not in X and is not free in O,E. Also, n
- ,. i-l-By A[e:], n = Co/x] X[Z/yJE, for some i ~ '2.

-:, n ~ Az.[o/xJi-1X[z/yJE, by 5.0.4.
= to/x]i(AY.E).

-If W(E)' E: NO,H, then so is X(W(E» and also, by 6.1.11,
n~ Thus, the result is trivial. (N.B. This is where the induction
breaks down if we tried to prove a "strong" version - i.e. using
a,S) instead of E.)

•-..., we suppose W (E) E: HEAD. Then, by 6.l.9(i),
0 X(w) s n 0 X{E) s n([o/xJX(w) T' ~ ~u) ,([0/x JX (E)- .. ~ .".

1J v
and (ll (v) ~ f::. . s n ~ n) •

254

N iThus, n s Ap (ll, v), by P(n).

~ Api ([a/x j1 x(w) , [a/x f x< €:)), by A [w]"A [€:]

and 5.1.10.

~ Api ([a/x f1X(w) , [a/x flx(€:)), where

m = max(i,j,k), by 5.2.10.

~ APmC [a/x f1X(w), [a/x flx(€:», by 5.1.4.

= [a/x f1+l x: w(€:)), since X(w) (X(€:» € HEAD•

- ••, by structural induction, (Vs € EXP)A [€:]••

- ••, by ordinary induction, (Vn ~ 0) (P(n) "Q (n)) ••

Iith reductions are weakly complete relative to inside-out

6.2.5:THEOREM:-

reductions.

Proof:-

-Let A[€:] s (€:-."'_"'-~-~a) => (a ~ i<€:», for some i ~ 1.

-Clearly, A [x].

-Claim: A [€:] => A [Ax. €:]:-

-Le t AX .€: -7 a •

• ~"..." ~,.I> E
- - , IJ = AX • IJ Ax.i<€:> ,

(l) AZ.O"', by 6.1.9(ii).

by A[€:]., = i<Ax.:e:>.

-Then, s ---....-d~0'" and 0

-Then, €:. ~ 0 '" and e '"(0 "') •

-Claim: A[€:]"A[o] ==>A[€:(o)JJ :-

-Let €:eo), ·~n.

by 6.1.9(i).

-:, n ~ Api{€:""o'), by 6.2.4 •..
:; Api{j<€:>,k<o», by A[€:]"A[o] and 5.1.10.

C; Apm(m<€:>:m<o», where m = max(i,j,k), by 5.3.3,5.1.10

and 5.1.4.

= m<€:(o».

'-So, by structural induction, (V€: € EXP)A [€:] •

255

6.2.6:COR:-
Inside-out reductions are weakly equivalent to i'th

reductions.
Proof:-

-By 6.2.2,6.0.3(ii) and 6.2.5.

6.2.7:REMARK:-
Thus, inside-out reductions have turned out to be a

particularly relevant type of reduction to study when seeking
results about i'th reductions.
6.2.8:PROPERTY A:-

Inside-out reductions are strongly complete.
6.2.9:PROPERTY B:-

Inside-out reductions are weakly complete.
6.2.10 LEMMA:-

Property B <=> Property M.
Proof:-

-By 6.0.3(iv) and 6.2.6.

6.2.11:REMARK:-
In the rest of this chapter, we are chasing property B,

since it seems that our notion of weak completeness is precisely
what we need, while strong completeness is redundant.

If inside-out (or i'th) reductions are weakly complete,
then, given any reduction, we can match the result symbol by
symbol with the result of an inside-out reduction except, possibly,
for parts that are in NOH. If these parts eventually emerge into
HNF, then we can match it, but if they stay stuck in NOH no matter
how you try to reduce it, these parts are unsolvable and not

, .important and so what does it matter if we cannot match them?

256

We end this section with a crucial Church-Rosser property
for ~IS. It is very easy to prove here, but if we could
strengthen it by replacing the ~ with an a,B) , the development
in the rest of this chapter would establish property A.

"We use the term "weak" to describe results involving =. The
corresponding result involving a,B > , we will call "strong".
6.2.12:LEMMA:- (Weak Church-Rosser Theorem for------~)'s.)

Let e--~--~~O and e.~----~~·Y. Then, there exists an n
such that e~~-----·~>n and o,Y ~ n.

Proof:-
'" '" .-By 6.2.5, 0 = i<e> and Y = J<e>, for some i,j ~ 1.

-So, o,y ~ k<e>, where k = max(i,j), by 5.3.3.
-But, e-~·~~--~~k<e>, by 6.2.1.
-Take n := k<e>.

+
6.3:Weak Parallel Moves:-

6.3.0:DEF:-
e 0

P (n) := (e (0) ~ ~

=> (e " (0 "')

Q (n)

:s; n

=> ([O"'/X]e"'-
6.3.1:LEMMA:-

(i) P (0) "Q (0) •

(ii) Q(n-l) -> pen), Vn ~ 1.
Proof:-

(i) -Trivial.
(ii) - If e I AI.EXP, then trivial since n = e(O).
-If e = Ax.w, the reduction must be,

257

o w s n-lO.x.w) (0) ~ [o/xJw--+~~-1t~~--~)n.
-Now, AX.w g e ~. IfAx •w E: NOH, then w E: NOH and so n E: NOH,
by 6.1.11. Hence, the result, taking n~ := e:~(o~).
-Otherwise, by 4.8.4, Ax.w a) Ay.y, e:~ a) Ay.y~ and y ~ y~.
-Since we can insert a-conversions into inside-out reductions,
we have,

6.3.2:REMARK:-
This section is just to establish a technical result which

is necessary later.
We complete the last stage of the induction with another

structural induction. Again, we have the difficulty with bound
variables.
6.3.3:DEF:-

Let A [e:] o X(e:)~n
7' .;..)n)

6.3.4:LEMMA:-
(i) A 1TY1l.

(i i) A [e:]-> A [AY.t] •

Proof:-
(i) -Trivial, since there can be no reductions.
(ii) "';Let0 g o~, X(Ay.e:) g e" and [o/x]xO.y.e:)- OX(Ay·e:)~n

~ ~ ;>n-
-If is-» eNOH, then so is X(Ay.e:) and, thus, n, by 6.1.11.

-Then, the result is trivial, taking n~ := [o~/x]e:~.
-If AY.e: E: HNF, then there exists z ;t x, not in X, not free in 0,
o~ and e such that [o/x]X(AY.e) = Az. [o/x]X [z/y]e;and X[z/y]e: g e;~..

259

-Hence, Q(n), with X as the null change of variables operator.

+
6.3.7:THEOREM:-

(Vn ~ 0) (P (n)Q (n)) •

Proof:-
-By ordinary induction, using 6.3.1 and 6.3.6.

+
6.4:Commutativity of Reduction Path Diagrams:-'

.'1> • J,

6.4.0:RECALL:-
Let RE be a set of sub-redexes of E. Then,

Re
E > 0,

means that E reduces to 0 by a complete relative reduction of RE.
We know, by Curry - [63J - and 0.4.13, that the order in which

we contract the redexes in R does not matter. We could, for. E
instance, make the reduction standard. Alternatively, we could
make it inside-out, me~ely by contracting the innermost ones first,
thus obtaining what Curry calls a "minimal relative reduction"
- [64J. Again, we note the efficiency of inside-out reductions.

Suppose we also have,
le)E = EO El le

"";"")310 ••••••

then RE/~ is the-set of residuals of the redexes in RE ~elative
to the sequence ~.

.. Let @ be the initial part of 0 as far as Ei• Then, there
is a parallel sequence,

13) ••••••

such that,

by 0.4.14.

260

Note, also, that if ~ is a sequence that extends ~,
then (RE/~)/~ = RE/~;~·
6.4.I:REMARK:-

We shall be interested in finding circumstances in which
the fact that (2), in 6.4.0 above, is inside-out implies the
same about 0.

This is not true in general. For example, let :-
E = (Ax.I(xab» (K) ~ (Ax.xab) (K) ~ Kab ~ (Ay.a) (b) ~ a.

Then, this is inside-out and, in fact, is the only possible

.'
way we can have E... 7a.

R
Now, let RE = {E} and we have E E_>~I (Kab) =: c. The

parallel reduction sequence is then :-
c = I (Kab) ----->~Kab ---).,. Kab ~ (Ay.a) (b) --). a,
''I1hichis not inside-out.

The circumstances we are looking for will be a strong
version of 6.3.7. Before we get on to this, however, we have to
introduce a concept of "commutativity" of residuals amongst the
complex reduction path diagrams that can Be drawn. Curry called
tpis notion "equivalent reduction paths" - [65J - and his
"property E" provides our first example. The need for such a
concept in the'present proof was fi.rstshown by J.R.Hindley,
and we will remark upon this later (6.7.6).

First, though, we give an "obvious" technical result-about
residuals.
6.4.2:LEMMA:-

A redex cannot be the residual of two distinct redexes
relative to the same reduction path.

Proof:-
a,IS (j) > 0)-Let A [E] :: (S,R are sub-redexes of e) A (S ;t R)A (e

==> ({S}/~ It {R}/@ = fI).

261

-Clearly, A [x] and CA [E] => A [Ax.ED) •
-Claim: A [W] AA[E] => A [w (E)] :-

-If w (d
. laa, > W~(E) or W(E~), then clear: by induction

if both Rand S are in either W or E, or trivially if Rand S
are split between wand E.

-If WeE) = (Ax.W)(E) ~ [E/xJw, then the result is also
clear.
-Hence, by structural induction, eVE E EXP)A[E].
-Let P (n) :: (S,Rare sub-redexes of E)A (S ¢. R)A eE

=> ({s} 10 fl {R}10 = ¢).

~ n @ > 0)

-Clearly, peO).

-Now, E

=> p(n), Vn ~ I :-
~ n -1 G) ~ 1: ~ __ a;;;.;...:..'1...j;a;....___;(4)_4~~;,a.1: h t::\2

- "7 v . 7" v, were \V =

-Claim: P(n-l)

Q;0·
-By P(n-l),'{S} IQ fl' {R}10 = ¢.

-Take any S~ E {S}/Q and R~ E' {R}/Q. Then, S~ ¢. R~, and
they are sub-redexes of o~.

-so , by A Do~D above,' {s.-} 10 n {R'}10 = ¢.

-:; {S}/0 n{R}/0 = ({S}/Q)/0 n ({R}/0)/0

= u{{S'}/0 n' {R'-}/eDls' E {S}/0,

R' E {R}/Q}

= ¢.
-Thus, by induction, we have (Vn ~ O)P(n).
-Hence, the lemma.

+
6.4.3:DEF:-

Suppose we have a 'd~agram of reduction paths. Let E be on it
and let R be some set of sub-redexes of E. Then, the diagram

E

COMMUTES FOR RE IN E if, for any 0 on the diagram and paths ~
and0such that,

,,' .

262

we have (Vp € Re) ({p}/CD = {p}/0).

6.4.4:NOTATION:-
We write ~ to denote the set of all sub-redexes of e.

If a diagram has a unique source expression, e - i.e. for all
o on the diagram, there is a path from e to 0 - we say that the
diagram COMMUTES if it commutes for ~ in e.
6.4.5 LEMMA:-

Let D be a diagram which commutes for Re in e and let

Then, (Re/Q) = Re/®). Also, if R; c Re' then D commutes for
R; in e.

Proof:-
-Trivial.

6.4.6:EXAMPLES:-

(i) Suppose e 0, where Q) and ® are

complete relative reductions of some Re in e. Then, the diagram
commutes.

(ii) Diagrams with loops tend not to commute - e.g. :-

CDOdAO®,
where CD is one B-reduction and 0 is just a-conversions •..

(iii) The following diagram does not commute for·{~~} in
~ (~~) :- ~®_....:CV_I:....->-3Ioo (~~) (~~) ,

where ® and <D are the contractions of the left and right
redex, ~~, respectively.

263

(iv) The following diagram commutes for {Ix} in (Aa.b)(Ix) :-
(Aa.b)(Ix) G) > (Aa.b)(x)

~ b

Proof:-
(i) -Let P E 0.
-rr P E RE' then {p}/CD = {p}/@ = ¢, since CD and 0' are
complete relative reductions.
-If p I RE' then {p}/CD = {p}/@, by 0.4.13.
(ii) -{~~}/CD = ¢ ;t U~~} = {~~}/@.

. ,"",,, . ~~ ~
(iii) -{~~}/0;@;0) = ¢. ;t{~~} =·{~~}/CD;@·
.(iv) ~{Ix}/<D; @ = ¢ ={Ix}/CD.

6.4.7:REMARK:-
6.4.6(i) is just a restatement of Curry's (strong) property

E (O.4.13).
6.4.6(ii) is due to Hindley. Note that 0)'{~~} but <D .

contracts ~Il.

In 6.4.6 (iii), both CD i@ and Q) i (3); CD contract a
residual of ~~, yet the diagram still does not commute.

In 6.4 e .6 (iv), we see that commutativity does not imply that
a residual of a redex is contracted along one path iff it is
contracted along all paths.
6.4.8:LEMMA:-

<DIf (E~O) commutes forRE in E, then

(3)~(4)~ .> E~O > 0) commutes for Re:~in

e:~,where (RE~I 3) ~ RE.

(E ...

264

Proof:-
-Let y'. € Re:'.
-Then,· {Y'}/@; CD i 0 = «{y"'}/@)/@)/(9

= «{y'}/@)/0)/(9, by 6.4.5, since

= {Y'}/@;@;@.

=f=

6.4.9:COR:-
Consider :-

e Cl)
~ 0

G)
71

®J A <DJ B l®
c " ~ 0'

forq: ~ Y' •
®Then, in e:and commutes forif square A commutes square B

Ro in 15 and Re:I <D C Ro' the whole diagram commutes for Re:in e ,

Proof:-
-Let p € Re:.
-Then, .{p} ICD ; ® ;® = {p} ICD ; CD ; G), by 6.4. 8.

= {p}/@ i ®;(2), by 6.4.8.
~Hence, the result.

+
6•4•10:COR: - \

Consider :-
Cl) 0) (3) Ci8) (n) >10 ~ e:l > 12 > A~ in-1 An in

~ Al A2 ~ A3 •••••••••••• n-l ~ ~
00 ~ 151 ~ 152 > ~ Qn-l ~ On .

Suppose square Ai commutes for Re: in e:i-land (Re: 1(9) ~ R ,, r-i r-; e:i
where 1 ~ i ~ n. Then, the whole diagram commutes for Re: in e:O.

o
Proof:-

-By 6.4.9, square Al;A2 commutes for Re:O in e:0.
-By 6.4.9, square (AliA2);A3 commutes for R in e:O.e:O

265

-Hence, by repeated application of 6.4.9, we get the result.

6.4.l1:COR:-
Consider how "parallel" sequences are constructed as in

corollary

Then, the 'whole ,diagram commutes.
Proof:-

-Each reduction <D is just one a-reduction, say of the redex

0'i-I in Ei-l·,
-The two ways around each square Ai are merely two ways of
carrying out a complete relative reduction of REO/CD;···;;; 0
u {O'i-l}.
-So, by 6.4.6(i), each square Ai commutes •
•-••, by 6.4.10, the whole diagram commutes, since, clearly,
(0/0) 56).

6.4.l2:REMARK:-
We now return to the question of when the construction of'

such parallel sequences preserves inside-outness, as'well as
commutes residuals.
6.4.13:LEMMA:-

Let (00 ~ 01 ~ •••••• ~ om) be inside-out. Then, so
is ([OO/X]E ~ [ol/X]E ~ •••••• ~ [Om/X]E).

Proof:-
-Let ADED = ([oO/X]X(E) ~ •••••• ~ [om/xJX(E» is inside-out.
-Then, the structural induction goes through, very easily.

,
+

266

6.4.14:LEM.MA:-
Let (EO --7 El ~ •••••• ~ En) be inside-out. Then, so

is ([o/xJEo --7 [o/xJEl --7 --7 [o/xJEn).
Proof:-

-This is clear, since merely replacing free x's with o's in the
first sequence has no effect on the reductions.

6.4.15:THEOREM:-
Ci) 6)Let EO) En and 00 ----~~--)~ om' Then, we may

construct the following diagram :-
CS)O:y..EO) (°0) > (AY.En) {om}

J~lo (6).,...6"--_>-31> [vJ~
such that it commutes.

Further" if Q) and @ are inside-out, then so are ®
and, in particular, @.

Finally, if RE and Ro are sets of sub-redexes of EO and 00
respecti vely, such that <D lRE and ®lRo' then ® l'(RE U Ro)
and I in particular, ® i'eRE U Rc}.

Proof:-
-We construct ® := e x0:<D x8.where 8 is the

null-B-reduction sequence - i.e. :-
(AY.EO) (cO) ----),.,.. (Ay.eo) (om) •••••• 8x@

and (AY.Eo) (om) -----)~ (Ay.en) (om) •••••• (!)xe.
-~hen, construct (]),<D and @ in the usual parallel way of
corollary 0.4.14, where R = {{AY.EO) {oo}}.

"-By 6.4.11, the diagram commutes.
-Now, @ = (i);@, where :-

[0 olY JEO -----)311- [0mly JEO ••••••••• CV
and [om/yJEO > [om/yJEn •••••••••®.

267

-So, if CD and @ are inside-out, then so are <D and ®,
by 6.4.13 and 6.4.14.
-But the residuals of all sub-redexes of the redexes contracted
during (2) mst be sub-redexes of the various occurences of om in
[om/yJeo·
-But,no sub-redexes of the occurencesof om in [om/yJeO are ever
contracted during ®.
-Hence, @ is inside-out as well.
-Now, suppose Q)7'Re and @i"Ro• Then, clearly, ®J'(Re U Ro>.
-Consider any reduction step in ®, e.g • @ where :-

(Ay.eO) CoO) CV > u 'IT > \) @ > (Ay.en) (om)

®~ A @1 ® 1@ ~(4)
[oO/yJ<O ~ > p- > v- @ > [om/yJEn"

-We have ® == @; 0 i @ and~ = @; @ ; @ and @ is
just the contraction of the sub-redex, 'IT, in p.

-Define: @ := u{ 01P E: Re}.
-Now, 'IT I (~ U@)/(2), since ® Jf(ReU Ro>.
-By construction, ~ is an inside-out complete relative reduction
of {'IT}/ @ •
'_:,we have {'IT}/ @n {@ U @ > /ev; @ = 91, since otherwise
there would be a redex in '{'IT}/ @ that was the residual of two
distinct sub-redexes of lJ relative to @, namely 'IT and one from
(~ u @) /~) - t to 6.4.2.
-Now, square A commutes, by 6.4.11, and so,

{'IT}/@ n (~ u @>/0i@ ==~.
-Thus, no residual of a sub-redex of {Re U Ro> relative to 0;@
is contracted during '(~~§).
-We can show this at each step of the eonstrttction of the diagram
and s'o0;0 (Re U Rc> - i.e. 07'CRe U Ro>.

+

268

6.4.l6:REMARK:-
So we have found one example of where inside-outness is

preserved. In the next section, we shall use this in chasing
property B.

6.5:Properties C,D and E:-

6.5.0:PROPERTY C:-
(e: 0.,113, ~ ::-..~n) => (e:~ __ ~~~ ';) (,. "')

, o .7 ~ 7n '" n en.
6.5.l:LEMMA:-.. • :"t f; ,' •

Property C <=>'Pl;operty B.
Proof:-

«=) -Trivial, since e: a,S > n.
(=» -Let e: a,S ~ a.

-Now, e:n-l .. ? e:n•
1 where ,.. 1 by-So, e:n-2n -)oe:n, e: s e: , property C.n n

-And, 7e:n
2 where 1 ~ 2 by property C.e:n-3.... , e: e:n ,n

-Hence, the result, by repeated use of property C.

6.5.2:PROPERTY D:-
([a/x] e:_--_"""",-7."n)=> (o· ;>o~) '" (c- ~e:") .

0'; e:~
",{[o~/x]e:"'-. " , ?n~)",{n ~ n"},

6.5.3:LEMMA:-
Property D <-> property C.
Proof:-

«=) -Let [o/x]e:.. ~n € HNF - otherwise trivial (n'"= [d/xh;) .,'
-Then, (Ax.e:)(0) 0.,113> [o/x] s. >n.
. "-..., (Ax.e:)(0)¥--->-')Ioo. n ", where n en", by property C.

269

E" 0"
-:., AX. E -~""""'~7~A~. E", 0~~----~7"')100''and (Ax. 1::") (0") - :; 1'-- -;;>n" ,

by 6.1.9(i). But, (n € HNF) =o- (n' € HNF) -> (n' ~ ,(AX.£') (0'».
E" 0"

-l., [0" Ix] e:'". --? fJ ~ n " •

(=» -L.et A [e:] be such that (VE € EXP)A [e:] - Property C.

-Clearly, A[x] and (A[e:] => AlDx.e:]).

-Claim: A [ll] "A [v] =>A [ll (v)] :-

-Let ll(V)

-Case 1: II = AX.ll" and 0 = [VlxJll'" :-

-Then, [Vlx]ll"'- ;;>n.

-By property D" v - ?>vI IIv,...... 11
and (v ..:./xJll..... . ~ - ~ ~n"''' •

..... ~ , ...711 , n = n

II
..... v

j"I ~ ?n"'.•- •• , 1l--~~----7AX.ll"''' and (Ax.U) (v) ---.~~-P-~
• by 6, .1.9 (i), II (v) -"~~~~"'n"''''.- ..'.I

-Case 2: 0 = u " (v) and II

-Now, u " (v) , ~n.

-By 6.1.9 (i), 1l.....-y----7~1l......, v-------)...v.....and
ll..... v

u....(V) ~ 7>)on.

-But, II

• ~ ~~"- .. , II -----~----. -,"'3I-ll

...n ,
by the weak parallel moves theorem, 6.3.7.

-So, II (v) ~......---~~~it-n"', by 6.1. 9 (L) •

-Case 3: 0 = ll(V"') and v

-Same as case 2, using A [v] instead of AM.

. -Hence, claim is established •
•-~, by structural induction, property C.

+
6.5.4:PROPERTYE;-

Cl) E <5 Cl) e "
([0Ix J Cl) (E) ---.......-']p..~--....--f1J-1...,.·---7.p.j\-?~ n) => (Cl) (E) _.--.,-F~---J:P~-).~p)" (n !: n"')o p

~([o/x]p . 11 ;a ""n"').

270

6.5.5:LEMMA:-

Property E => Property D.

Proof:-

-Let A[€]:: ([o/xJX(E:) ?n) => (0-------)-0 ...)A(X(E:)--->7>€")
0'" €'"

A«(o"'/xJ€" 1'- ~ ·~n")A{n ~ n').

-Clearly, A [y].

-Claim: A [€] => A [AY.€] :-

-Let [O/XJX(Ay.€) >n.

-Choose z· ~ x, not in X and not free in 0, €.

-Then, [O/XJX(Ay.€)· = AZ.[O/XJX[z/yJ€, by 4.1.5(i).
- a.--And , [o/x]X[z/yJ€ - >n, where n ----.;._>~ AZ.n, by 6.1.9 (ii)

-:., by A[€lI, o· ~Q"', X[z/y J€ -~--;>~€", n ~ n'" and
15'" €'"

[0' /x J€.... ~. ~).n".
-So, AZ. [0 '"/x] e

0" € ..

:p ,~ ;? AZ.n "» by 6 .1. 9 (ii) •

-Now, since Z cannot be free in 0"', AZ.[O"'/x]€'" = [O"'/X](AZ.€'

-Also, AZ.X[z/y J€------:>AZ. €"', by 6 .1. 9 (ii), and AZ.X[z/y J€

= X (AY.€) •

~ - '" -,-Finally, n = AZ.n E AZ.n , and so we have AOAy~€O•

.-Claim: A [w]AA [€] => A!D.u(€)] :-

-Let [o/x]x(w(d)~ >n.

-Then, by 6.1.9 (i) , [o/x]X(w) >lJ, [o/xJX(€) >v
u v

and lJ(v), ~ ~ ?ll·
0'" w ...

• >15'" , X(w)- ~>w ..., [0'" /x]w ... l' ? >1l"- ..., 0

1>1 ... b]and u s lJ, Y A IIw •
0 €'". .

- ••, o'1-.-->~o, X(€)----->~€ ..., [o/xJ€"'.~ fl'1' >v'"

and v ~ v ..., by A [d.
"-Now, by the weak Church-Rosser theorem, 6.2.12, we have

o"'~ . >0, where 0"', 0Eo
.. '"-Then, by the weak parallel moves theorem, 6.3.7, lJ E lJ.....,

0 w'" 0 €'"
. v'" E v, [o/x]w ...·. ~ ~ >lJ, [o"/x]€...... ~ l' >v

271

n"', again
by 6.3.7.

-Next, by 6.4.15, [o/xJX(w)-------~~[o""'/xJoo' and
[6/xJX (E)------7-+ [0", /XJE'.

-We have :-
[O/xJX(oo(E»" = ([o/xJX(oo» ([O/xJX(E»

1 1[o"'/XJoo"'(E') = ([o"'/xJoo") ([O....../xJE ..)

f:" (i::")
('
{"
n~.

0"'" 00' e:'"
-In particular, [0'....../x]00'" (E...)~ oil l' 7')on'" ,

by 6.l~9(i).
00'" e:'"• oo"'(e:"')-l' ~

... ~-..', by property E, ,. o , n s n and
0'p

< [0........./xJp" . ,. •]A • ~n"'''' •

X (00 (e:».. 7P, by 6.l.9(i), and n
,. giving-Thence, s n ,

us ADoo(e:)D•
•--,by structural induction, (Ve: E: EXP)A[e:], and so property D.

+
6.5.6:REMARK:-

Note that in the proof of 6.5.5 we used the weak Church-Rosser
theorem. If we had a strong version, we could develop strong

..
versions of properties C,D and E, relating them back to property A,
the strong form of property B. This would be useful because we will
eventually prove ehe strong version of property E.

272

Summing up the situation at present, it is :-
<E ,E> is a a-model of the A-calculus

Cl)

<=> X <=> Z <=> M <~> B <=> C <=> D
1t 1t tY A E

6.6:Strong Parallel Moves:-

6.6.0:NOTATION:-
Let Rand R be sets of sub-redexes of E and a respectively.

Let (AX.E)~a) ~ [a/xJE. Then, we will allow ourselves the
license of writing just RE and Ra for RE/CD and Ro/0, when the
context makes it clear to which expression the sub-redexes belong.
6.6.l:REMARK:-

RE RcLet E ;;:,.E'"and 0 ~---73>oC ", Then, by 6.4.15, we can
build up the diagram :-

(AY.E) (0) CD > [C/XJE

(:;t~t~~.e,wJ~,.
Note that CD: (]) is a complete relative (inside-out)

reduction of RE U Rc U{(AY.E) (c)}.
By the way the diagram was constructed, CD; @ is also a

complete relative reduction of RE U Ro U{{AY.E) (o)}, and so we
can say thatGDis a complete relative (inside-out) reduction of
RE U Rc' sub-redexes of [a/xJE.

Thus, it makes sense to write,
Rc U RE

[0 /x J E - • •)0 [0 '"/x JE

6.6.2:DEF:-
!/,!E,_ ::1J,0 5" REpen) :: (E (a) -~r;""''''''''-~r.,.._-.;~_,___::;;_n_>--:;,.n)", (E -------7+£ "')

Ro",(o~--~------.>~o"')-> (we can construct the diagram :-

273

E
1'0
0 ill s nE(O)' :p >nI

RE UR4 E' 0' teRe U Ro)/@
E" (0") ,. fJ ;>-n'",

such that it commutes).
O..,..E'7' RE

Q (n) :: ([0Ix JE...-,~,_:..,.._.,.._.;-.,..;...........-~--~.--n~_>':i1'n)"(E _-------~;;>E..)
R

" (0 _. __ ,....;.O ._>?> 0 ..) =>
o

~

(we can construct the diagram :-
1>E ill s_ n >n

e " .. teRo U Re>IQ)
~. :>-n",

such that it commutes).
6.6.3:LEMMA;-

(i) P(O) ...Q(O).

(ii) Q{n-l) => Pen), Vn ~ 1.
Proof:-

(i) -Trivial, taking n" = E"(O"), [o"/xJE" respectively.
(ii) -Let (E(O) f>-E..~O ill s n >n),,(E RE ~E"')

R.~
...(0- u '>0").

-If E(O) is not a redex, then <D is trivial - i.e. E(O) _J!_ n ,
I

-and so the construction is trivial as in part (i).
-Suppose E = Ax.E. Consider the diagram :-

(Ax.E) (0) ~ [0 Ix IE __ fJ-.p0__ .+~.......E._(3).....3__ ._~......_~_-_l.~__ y!iJl"n

Re U R~ A tRo U Reo_._ B teR~
(Ax.E") (O')_,(jj [o"/x]E' ':/J ~ CV ""n'•

. -_. R-
_- - (- E >-.. -.. CL ..-We must have (RE = RE)" E _.----.-7t- E)" (Ax.E ~ E).

":Also, CD = (!): CD •
-Construct square A by 6.4.15 and remark 6.6.1.
-Construct square B by Q(n-l).
-But, both squares A and B commute, and so, by 6.4.9, the whole
diagram commutes.

274

-Further, by 6.l.~ (i), @; ® is inside-out.

-Finally, (Ra U Re:)/G) = (Re U R"£)/(DiG), by 6.6.0.

= (Re: U Ro>ICY •

6.6.4:DEF:-

(we can construct :-

0 X(e:) 0[o/xJx(e:) .,. ~. ~ n ~n,
Ro U RX(E)t J~R~ U RX(E)) IG)

0" E..
. [0" Ix JE'" ~ r- -- -) r} ,

such that it commutes).

6.6.5:REMARK:-

As usual, n is fixed in A[E] (along with E), while o,x,X,

Ro,RX(e:} and n are free. We have,

('Ie: E EXP) A [e:D => Q (n) •

6.6.6:LEMMA:-

(i) A [yJJ.

(ii) A [e:] ==> A [AY. e:].

Proof:-

(i) -Trivial, since CV can only be a-conversions, since [o/xJx(y)

is either a variable or cS, whose sub-redexes are protected.

during <V.
(ii) - Let ([0 Ix JX(AY.e:) _--I-7'''':'''o_,,;...;7'! X_(_A_y.._........e__) ~@.;o".8oG.......,_~_n_.....:)oo~n)

Rc RX{AY.E)" (e ;?? e ...) " (X(AY.c) ---..,.....;..::.--=:_.;._....-:?.".e:..} •
...

-Choose z· ;t x , not in X and not free in cS ,e:.
d

-Then, [cS/xJx(Ay.e:) = Az.[o/xJx[z/yJe:.

-Also, X(AY.E) = Az.x[z/yJe:.

-Also, x[z/yJE- .. ~X[z/yJe:)toE"', where E" ~AZ.£'" and RX[z/yJe:

= RX(AY.E)·

275

o x[z/yJ E 0" ~ n
-Also, [o/xJx[z/yJE--~'~~I~--~~~~~--~--~~n, where

Cl -n ~ AZ.n, by 6.1.9(ii}.
-By A [ED, we have :-

s
l

0'
l'

such that it commutes.
-Hence, by prefixing every expression with "AZ.", we get :-

such that it commutes.

+
6.6.7:LEMMA:-

Suppose Pen), where n ~ 1. Then,
A[w]"A[E]·-> A[w(e}lI.

Proof:-
o X (w (E» 9 n

-Let ([0Ix J X (w (e» --.--f.7=--,.p,,--------......;~looooC...---__.iI';>n) A (0
) } ~x (we ~» ~)"ex (W (E----7~ C •

R
o ;>o')

-There are two cases to consider.

-Case 1: x(w(e» I RX(W(E» :-

-We have RX(W(E)} = Rx(w) U RX(E)' where X(w).

RX(E) ~E' '~nd W'(E') = c.X (e)-

-Consider the fallowing diagram :-

276

0 x (ol) x (E) @ ~ n
([a/xJx(Ol» ([a/xJx(e» , J ~ »ll(V)}

(R6 U .1@(R6 U A (Ra U Rx (ol) U RX(E»I @1 @
RX (e)) Rx (E))

0'" ol'" E"
([a...Ix J ol"') ([a...Ix J e ...) 1 ;t: ?-)-ll"(V"'),

©
and

II
1 ~ n

-By 6.1.9 (i), we decompose @ = @; @ .
-Then, by A [0,] ",A [E], we construct two squares in parallel to

make square A.
-Square A commutes for [o/xJx (Ol) U [a/xJx (E) • If

[o/xJx(Ol(€:» is a redex it is contracted neither during QJ; ~
nor ~ ; ~ and it has the ,same unique residual both ways - namelr
ll"(V"). Thus, square A commutes.

-If ll(V) = n, we are finished.
-Otherwise, ll(V} is a redex which gets contracted during ~.
-Then, X(W(E» is not a redex, since ll(v) would be its

residual relative to {Y and {Pi ~ ?{X(Ol(€:»} - I .
- •• , X (e) I AI • EXP •

-Further, X (Ol) e: HEAD, since otherwise X (Ol) € NOH\ AI.NOH which::
implies II € NOH\AI.NOH, by 6.1.11 -.Ito ll(V) is a redex.
"

-Thus, we may conclude that Ol" e: HEAD and so Ol"(e') is not a
redex.

-NoW, construct square B, by P{n).It commutes and so the
combined diagram A:B commutes, by 6.4.9.

-By 6.1.9 (i), 0; 3 is inside-out.

277

-Clearly, ~ ; ~ J{e~,w~,£~}, and so ~ ; ~ J{e~,W~(E~)}.

-Finally, ~ is a complete relative reduction of

«Rc u Rx(w) u Rx(&»/ ~)/ ~. = (Rc u RX(W(E»)/~·
-Thus, we have established Allw(E)0 in this case.

-Case 2: X({J)(E) € Rx(w(E) :-
-This time 00 = AY.; and Rx{w{&» = Rx(w) u RX(E) u {x(w(e»}.
-Now, the external redex, X(w(&», must be the last one

contracted in an inside-out complete relative reduction of RX(W(E»'
-Thus, X (00 (E))................~R_x~{00..,....;...(e....;),..;.)__ ;>~o , must be of the form :..;.

R u R
x(w) x!e) 7W~(E~)(x(W» (x(e»

-Choosing z· ~ x, not in X and not free in 15,;, we can analyse
this further into :-
(xe.X [z/y Jw) (X (e»

R - u Rx[z/yJw x(e) ~(Az.;~) (e') --7 [e~/z];"'r

where Rx[z/y]w = Rx(w) and [e~/z];~ = cr.
-Consider the following diagram :- n

(Az. [e/xJx[z/y]w) ([t5/x]x(e»

II
[o'/xJ[e'/zJw', by O.3.13{xii), since z cannot be free

II in 0'.

[0'/x]crOd

-By 6.1.9(i) and (ii), ~ = ~, since (AZ.p)(v), being a
residual of x(w{e», cannot be contracted.

-square C is constructed by A [00] AA[ill, just the same way as

278

square A in case 1 above - i.e. AZ.W' = 00' and AZ.p~ = ~'. Again,
it commutes.

-Next, construct square D by 6.4.15 - it commutes and so,
by 6.4.9, the whole diagram commutes. Further, @J'{o',;',e:'},
and so, by 6.4.15, ~ J'{o',;;,e:'}. Notice that we are using our
license of 6.6.0 at two levels here.

-According to the construction of 6.4.15, the sequence {Y
. is in two parts: the first being,

0' e:'"
[[o'/x]e:/z][o'/x]w' ~ ,

; ..
p ~ [v'/z][0'" /x]w" ,

and the second being,
. .'~

tV~/~][9"/X];'
v' 0 "00 -: '+

~ ~ .J'l.~ Iv ' /z Jp" •

-In these two parts, it is clear that no residual in
[e'/z]w' - i.e. a - is being contracted and so ~ J'{o',a}.

-By our analysis above, ~; ~ is a complete relative
inside-out reduction of (Rk u R) from [o/x]x(w(e».

v x(w(e»
-But, @ x 0;@ is inside-out, by 6.1.9(i), and it is

a complete re1at1vereduction of (Rk U R)/ ~ from n.
u x(w(e» '<::YI

+
6.6.8:THEOREM:-

(Vn ~ 0) (P (n)"Q (n))•
Proof:-

-pen) =-> (Ve € EXP)A[e], by 6.6.6 and 6.6.7.
=-> Q(n), Vn ~ 1.

-Hence, the theorem, by 6.6.3 and above.

6.6.9:COR:-

Then, we may construct the diagram :-

279

such that it cOmIUutes.
Proof:-

Al A2 A3 A
@-:Let e = eO >- El >- e2) n> en = E~ be •

Bl B2 B3 B
0-Let 0 = 00 > 01 >- O2 >- re:> 0 = o ".be •ID

-Suppose n > m (it does not really matter). Then, by repeated use
of theorem'6.6.8, we may construct :-

e(15) = 8
0

(150) _--"~,,,,",~__O__.7.~~0_0---'·_@""""'-'"__'_7~nO = n

.{AI.BIll l{Al'BIl/ @

el (01) ,/1 ~15l "~ 7nl

. (A2•B2ll }A2'B2lt@})
·•.•
•·

-> (It') ~A~nl"m> --.....".._,~,_:-_--:;.....__~Jnm{A=n}/ln~.5~n
c- o _ t /":/m ® 7'

•·•• ..

-Each individual square commutes, and so the whole diagram
commutes, by 6.4.10.

+
6.6 •10:COlt:-

Let ([tS/x]e: ...
tS €

~" t>.)n) ..(tS a,B) o"}..(e: a,S)e:"'.

Then, we may construct the diagram :-

280

IS e:
[IS Ix] e: ~~...,J~~"'__~,-,,-,,----~~ n

1 5-.- 1
[1S~/xJe:~ __ ~~~_,~~~ ~>n~,

such that it commutes.
Proof:-

-Similar to 6.6.9.

+
6.6.ll:REMARK:-

These results will be very useful in studying inside-out
reductions. Notice that they are "strong" results - i.e. independen

Hof the concept of ~.

6.7:Strong Serial Moves:-

6.7.0:DEF:-
:It e: 5'P (n) :: ([ISIx] e: _~':"'-"""r{.:,.._...".;~~_~;;.._..n__ >~n...

,,(CD:@,NIS,e:}) -> (we can construct :-

CD s n Rn @
[ISIx] e:-~...."._p.~~---...,.".?> n -. -~""""'--"""'>l@

fi ...,

such that it commutes).
6".7.1:LEMMA:-

P(O).

Proof:-
-Take fi'" = fi and ® = @.
-Then, ®/'{IS,e:} becauseQ) I = CD; ®, ~ IS,el,

+

281

6.7.2:DEF:-
o xed t;;\

A[E] s ([O/XJX(E) J fl \?/ ~ n)on.

,..(® ;® i'{ 0, X(e) }) => (we can construct :-

such that it commutes).

6.7.3:REMARK:-

Again, as in 6.6.5, A[E] should really be written A[E,n].

We have,

('YE € EXP)A[E:] =e- P(n).

6.7.4:LEMMA:-

(i) A!Iy].

(ii) A[EJ) =e- A[Ay. E].

Proof:-

(i) -Similar to 6.7.1, since ® is a trivial sequence.
o X (AY·E) f9\ s n Rn ~

. (ii) -Let [o/x]X{Ay. E) fJ 7' ~ , ~n -. ~ ?>1\.

-Then, choosing z· = x, not in X and not free in 0, E, we have,

[o/xJX[Z/yJE' ~o ~X[Z/Y]E @ ~ n)on Rn @
where n ~ AZ.n, 1\ ~ AZ.~ and R = R-, by 4.l.5(i) and 6.l.9(ii),n n
• by A[€], we construct :--..,

X[z/y] e .@ s n R- @ ,..
[o/x]X[z /y] e --_.-p.-+.,,'---------~--------~?.;;;.n"..._.n---,,!"""--~ 10

,..
n",

such that it commutes. Prefixing with ").Z." I we get ArrAy.e:Jl.

+

282

6.7.5:LEMMA:-
Suppose P(n-l), for some n ~ 1. Then,

A [00] AA [cl] =e- A [00 (E)] •

Proof:-
0 x(oo(e:)}

~
R @-Let ([o/x]x (00«» " '" s; n ;;:>n. n

~1l)J

and (@ ; 0 J{ 0 ,X (00 (e:)) }) •
-By lemma 6.1.9 (i), sequence

X~)
is of the form :-

0 X (E) s; n u v s; n([0Ix] X (00» ([0Ix] X (e)) f. ~ 1'-' @
~lJ(v) t fJ

.@
~n.J

-Case 1: (lJ(v)' ;tn) ---
-Consider diagram X below_
-We will construct the sequences in numerical order.
-We must have lJ = AY.lJ* and ~ = ~ ; ~ •
-Thus, @ = 0 i ~ ; @ -
-Note that x(oo(e:» cannot be a redex, since otherwise

(AY.lJ*) (v) would be its residual and ~ ~{X(oo(E)}} - i .
-We partition R into two disjoint sets :-n

R n
where R + = {p € R ·1 pn n
. and R = R \R +.n n n

-Let R * =' { piplJ
~~} and R =' { pip isv

= R + U R -,n n
has an ancestor sub-redex of v or lJ*}

is a sub-redex of lJ* and' {p}1 @ i @ n Rn+
a sub-redex of v and' {p}/ ~ ; @ n Rn+ ~ ~}.,

-Then, Rn+ ~ (Rv U RlJ*)I 4J ;@·
-Now, 0 is a complete relative reduction of Rn' and so we

may do a complete reduction of Rn first, ~, and then the rest,
by 0.4.13. Further, triangle G commutes, by 6.4.6(i).

-But, ~; €Y ~V,lJ*} and so, by P(n-l}, we construct ~
and ~ so that tra;ezium E commutes.

-Next, we construct ~ and ~, by 6.4.11, so that
trapezium ~ commutes.

-By 6.l.9(i), @; ~ is inside-out and ~; ~ ~AY.lJ*,V}.

283

So, by the strong parallel moves theorem 6.6.8, we may construct
@ '. @ and @, again so that trapezium C commutes.

-Now, ~ is a complete relative reduction of :-
(R~* u Rv)/ ~ ; ~ = (R~* U Rv)/ QJ i ~ ; ~ ; ~ ,

since E commutes and by 6.4.8.
-But, ~ is a complete relative reduction of :-

Rn+/ ~ ; ~ ~ (R~* U Rv)/ ~ ; ~ ; ~ ; Qj ,by above.
-Hence, we may construct Q9 so that triangle D commutes,

by 6.4.6 (i) • (See remark 6.7.6.)

i'{o,x{w),x(€)}.
and @ so that
• ..,square A

-Next, if there were a residual of a sub-:redex.of X(w) or <5 in
.. ' ... , 1\."'1 ~.. l.:if' i'fJ,P r.: "1'.;r '#.,1' 'I ,R~*, then there would bea residual of a su}:),.eoexof x(w) or 0 in

R + ~ R -~, since ~; ~ J{o,x(w)}. So, R * contains non n ~ '<:.9' ~
residual sub-redexes of x(w) or 0 and, similarly, R contains nov

residual sub-redexes of x(€) or 0 - i.e.
-Thus, by A [w] ",A [e:], we construct

square A commutes for U

commutes, since if [o/xJx(w(e» is a redex, its residual relative
to @ or @; @ ; @ is (Ay.jl"'*)(v"') both ways.

-Finally, by the strong parallel moves corollary 6.6.9, we
construct @ and @ so that square B commutes.

-We just have to check that the whole diagram commutes. Let
p be a sub-redex of [o/xJx{w{e». Then,

{p}/@; @ i © ;
; @ ;

::'{p}/ @
_' {p}/ @

@;
@;

;,@ ;
; @ ;

; ~ i

; @ ;
; @ ;

;@_'{p}/@

=' {p}/ @ ;
="{p}/ © ;
_'{p}/ © i

@
@
@

_' {p}/~.; @

@
@
@;

o
; @ i

; @ ;
; ® ;

@
;@
;@

using 6.4.8, since each sub-diagram commutes. :, diagram X commutes.~

r-I,
s::

«VI ®
::s.

«::s.,....,_

~
:>

L..J

t®
-:>......-«::s.
•

~-
s::
VI ©-w->:<

-w-

284

u

•
x

-w-co,....,_---~£~.----=~._----~ R. '"7
co
L..J---s- -a-

PAGES
MISSING-

IN
ORIGINAL

..

287

6.7.8:REMARK:-
We shall use the following corollary of the above theorem

to establish the "strong" property E. It combines the ideas of
both serial and parallel moves, thus enabling us to move in an
inside-out manner over "two dimensions".
6.7.9:COR:-

Let ([v/y]11*

(Strong Serial and Parallel Moves)
v 11* ~ R ~

J? 'S;t;;.. n) and (n __;n~_U.looooC-_/7' ~) •

Then, there exist sets of sub-redexes R * and R of 11* and v
11 v

respectively, so that we may construct the following diagram :-

(R *11o
[v/y]~* C~

et:.
i--~--~--------~~~1~~~-------------

..)

EFG
Rn

such that it commutes.
Proof:-

-Look at diagram X from the proof of 6.7.5.
-Define R * and R as done there and construct the sub-diagram EFG

11 v
similarly,· using the full theorem 6.7.7 instead of P(n-l).
";Also, construct the parallelogramc'" as dOI),ein 6.'.5, except
that we use the~n) part of 6.6.8 instead of the pen). Thus, €2J
is the sequence par~llel to ~ te~ative to the contraction of
the external red~~, 0i8 the "tail" of @ after the first
head reduction, whil.e® is the same as in 6.7.5.
-Commutativity is est.ablished as in 6.7.5.

288

6.8:Strong Property E:-

6.8.0:THEOREM:-
a 00 e: 00 e:

Let ([o/x]w(e:) I J ,_ 7n) • Then, (00 (e:) J'. J 7 p)

and we may construct the following diagram .-.
a 00 e:

(Ax. 00 (e) (a) -7 [a/x]w(e:) l' 1\ ,. ~n}

r 1 a p
(AX.p) (a) ~ [a/x]p .. l' !' ~n~ ,,

such that it commutes.

Proof:-

-If w(e:) is not a redex, then the result is trivial with p := w(e:)

and n ~ := n ,

-Suppose 00 = AY.;.

-Let ([a/x](Ay.;) (e:)

-Then, for some z : ~ x and not free in a,; :-

(AZ. [<S/x] [z/y]w) (I <S/x] e:)~

-By lemma 6.l.9(i} and (ii), we have :-

a [z/y]w _®[a/x] [z/y];. ,__ l' 7P,
a e: ill[a/x] e: f- ·r ~v

lJ v (4)and (AZ •p) (v) _. ~ ,., 7n......

'"
-If @) is sequence @ prefixed by "Az.", we have <D = ®; <!),
where ® := @)xG): Note that @7'{<s,(Ay.w)(e:)}.

-Suppose sequence @ is of the form :-

p
n....,,,_ Ut rA\4 .--~7~ Tn = n •••••••• ~

289

-Let ~O .- (AY. w) (E) •.-
-Let P{i) (there exist ~i,'Yi~ EXP and pat,hs(7),@,0, @ and-
@ such that ~O ~ #- :rE ®, >- ~i and we can construct .-.

t:"::\ s ~0 '5'
\LV > [a/x] to --_iP.1'-fJ!........:---___:\?I~--~'1'0

cS

such that it commutes and where @ = @ xe and square A
is constructed as in 6.4.15).
-In the rest. of this proof we will WriteC!) for Q) xA .
-Clearly, we have P(O), since we already have ® and @.
-Claim: pel) :-

-By 6.7.9, construct <V, ® and® so that square B
commutes.

-In this case, Rrt =' {'YO} =' {PI}' R).I*=' {~o}and Rv = cp (see
notation of 6.7.9).

-Then, (j) is just the contraction of the residual of the
redex to relative to Qj.

-Clearly, we can construct @) and @ by 6.4.15 so·that
square A commutes. Hence, by 6.4.9, the whole diagram commutes.
-Claim: P(i) => P(i+l), V 1 ~ i < n :-

-Consider diagram Y.
-By P(i), construct

sub-diagram AB commutes.
0) ,® ,(!) ,@ and © so that the i

-NoW, {) is just the contraction of the redex Pi+l·
-So, by 6.4.11, we may construct G and' @ so that square

290

C commutes.

-But, Pi+l I (CV u © u CV) I@ ;@, since ®; @; tU
is an initial part of Q) and G) j'{ IS, w, e l ,

-:.,' {Pi+l}/@ n <0 u © u 0)/@;@;@ = ¢, since

otherwise there would be a redex in'{Pi+l}/@ with two distinct

ancestors in If i' namely Pi+l and one from (0 u © u CV)I® i @ ,.
which contradicts 6!4.2 - ~.

-Since AB commutes, we have, using 6.6.0,

'{Pi+l}/@ n(® u ® u 0>/0;(2) =¢.

-Next, construct @' © ,@ and @ , by 6. 7.9, so that
. ,"'~.

square D commutes.

-In this case , Rv = ¢, since' {Pi+l}1® contains no residuals

r <

of IS. Also, R * contains no residuals of ~ny sub-redexes of ro or e,
Jl

since otherwise so would' {Pi+l}1'@-}l. Thu~, @; @ j'\{ro,e}.
-Construct ~ and we have, by 6.4.15, that square E commutes.

-Now, sequence ~ is of the form :-

and <§; OJ l{ro, e I.
•.•, by 6. 7.7, we may construct :-

such that it commutes.

-Then, letting @ == ~;<1b]) and constructing @and

~ , we have that segment F commutes.

-Again, by 6~4.l5, construct ~ and ~ so that square G

.'commutes.

291

-Also, by 6.4.15, construct ~ so that the sub-diagram
consisting of @, @ , 0 and @ commutes.

-Finally, by the strong parallel moves corallary 6.6.10, we
construct ~ and €) so that square H commutes.

-Now, we have constructed the sequences required for P(i+l) ,

namely .-.
1.1) e @(\liO ~ ~ >\lii+l)

and @) 0 \liO @(Ax. /Po) (0) [o/x JIpO :J P ~'l'o
0 0

® B'
€

-Square A is constructed by 6.4.15, so all that remains is
to check commutativity~

-Let 'It' be a sub-redex of (AX.\liO)(0). Then,
"{'It'll @ ; @ J 0 ={'It'l/@; ~ ; @

="{'It'l/@;®;®;~;@

={'It'}/@;@;@;@;@

= {'It'}/@ ; @ ; @ ; @ 1 €)
="{'It'}/Q) ;(2); ~; @; @
= {'It'}1Q) ;(2); @ ; @ ; @

"~, = {'It'l/@ ;(2)10); @ ; @; @
="{'It'l/@ ;@;@;@; @; @; @
= {'It'}/ @ ;® i ®; @ ; 0 ;@ ; @ ,

using 6.4.8, since each sub-diagram commutes.
-Hence, diagram Y commutes and we havep(i+l).

292

......
r-I
+e-I
a. +

0-I >~....~ - Cl)- ~

~

~ 1~o

~
.....,+

'....-I , ·ri
~ >~e

lGl>
<,...........
+
....-I
a. ' @' r-I

r.',. ,+ +6." .1'","1 ... } , .r-! >~~- 0\
w......-Is
•

>-. ©~- A
:>I.

r-I
+
'ri ::E;.0&

~
p:;.
t!)

~
H

A
-Ie

Is 5.. w~ >0&....-1
p:;;:J.

, ·ri
• >oe-,--, e ,....,

~

,...,
~ X

~<,
to co co co

I....J I....J I....J I....J

(g) 1~
-<0- - - ,...,

CO, co co- ff - -Ie -- - p:;;:J. -0 co w-I , ·ri0& lC..: '-< ,> 0& >0&• • @) •
X X X
~ ~ to<:- - -rz..

@

293

•_, by ordinary induction, we have pen). But, this is the theorem
with p := ~ and q' ~= ",n n since ~O = WeE) and 'n = q.

6.8.1:COR:-
Properties E,D,C,B,M,X,Z and <E ,E> = <E ,V> is a normal

00 00

solveable S-model of the A-K-S-calculus.
Proof:-

-Property E, by 6.8.0, since a,S > =~ ~_,by 4 4 9, . . .

6.8.2:COR:-
(i) If an expression has a normal form, then it can be reached

by an inside-out reduction.
(ii) If an expression has a normal form, then it is an i'th

reduction for a suitably large i.
(iii) If E E SOL, then E -""'---""i'"5' E HNF.

(iv) If £: E SOL, then i< E>' € HNF, for a suitably large L,
Proof:-

(i) -Let e a, a > 5' E NF.

.-Then, by the weak completeness of inside-out reductions,
£:-------->~o' and 5 ~ 5'.

-But, since normal forms are maximal under ~ (4.8.6),0' a > 5.

(ii) -Same as part (i), using the weak completeness of i'th
reductions.

a ,e > 5 E HNF.

-Again, by property B, £:---·~--->~5' and 0 ~ 5' •..

(iii) -Let £: E SOL. Then, e

-But, by the characterisation of HNF in 4.5.2(ii), 5' € HNF•
.,(iv) -Same as part (iii), using property M.

+

294

6.8.'3':COR:-
<EXP/§,[§]> ~ <E~,E> ~ <EXP/~,[~]>.
Proof:-'

-<EXP/cnvyINSOL,[cnvyINSOL]> ~ <E~,E>, by 4.6.12 and since <E~,E>

is a model by 6.8.1.
-Hence,the first inequality, since <E~,E> is substitutive.
-Let £ not(~y~) o.
-Either £ has a normal form and 0 does not (or vice-versa) : in

-Or e and 0

" c - o , then
0 !3 :> £'

-.., <Eeo,E>

this case, £ '1 0, since <Eeo'.E>is normal by 6.8.1 and 4.8.9.
both have nor~a1 form, but £ c~v 0 : in this case, if
£ - (3 > €. # f: Nr and,by 6. a .1, L '" ~:: <3. Tl,us,by (,.8.8,

- i.e. £ cnv 0 - X. Hence, £ '1 o.- .
~ <EXP/cnvy~,[£uyy~]>, and so we get the second inequal-

ity, since, again, <Eeo,E>is substitutive.

+
6.8.4:COR:-

(i) (€ € INSOL) ==> (Vo € EXP) (€'« 0), (see 0.7.9 (vii»
(ii) (€ € INSOt) A (cf>€ has normal form)

==> (4) is a "constant" function). (see Barendregt[78])
Proof:-

(i) -We use the notation of 0.7.9 in this proof.
-Let C[e] (3 > V € NF.

-Then, v :: C[€] ~ C[O], since <E IE> is a substitutive model.
00,

-Hence, C[0] e > v, by 4.8.8.
•-.., C[sI p C[0 J, for all contexts C[], and, so, £ « O.

(ii) -By part (i),~ « 0, for all 0 € EXP.
•-.. , 4>£ P $0, for a110 E EXP.
• 4>0 reaches the same normal form as 4>& for all 0 E EXP.-..,

295 I
I

t>•
6.9:Alternative Proof:-

Whilst preparing this thesis, a proof of the strong complete-
ness of inside-out reductions has come to my attention. The proof

Briefly, his proof is as follows. He describes a version of
is due to J.J.L~vy - [66].

Wadsworth's typed A-calculus - [67] -, the difference being that
you are not allowed to contract 6-redexes of degree zero. Thus,
typed e-normal forms are typed expressions whose only redexes have

!degree zero. Any innermost sequence of typed B-reductions leads to ·f
a typed normal form and this sequence is clearly (typed) inside-out ..i
Further, the typed A-calculus has a Church-Rosser property and so
the typed normal form is unique up to typed a-conversions. So, if I
E .--__;)3Ji.. D is a typed reduction I then there is a typed expression, ...
D', which is the typed normal form of both E and D, such that :-

(*)

!I!; Now, any ordinary reduction sequence can be simulated by a
I·typed reduction - i.e. if E >0 then there are typed express-

ions E and D such that typed)D and det(E) IE = E and det (D) = f

expressions that removes the type assignments~
0, where det is just the function from typed expressions to ordinary

I

r
!
t

typed> D then det{E) ~ det (D) !

Further, any typed reduction has a corresponding "isomorphic"
ordinary reduction - i.e. if E

So, if E --~>~.s , then E _ __..,.t....y.,.p..;..e..;..d_>~..D where det(E) = £ and

.and properties of the d reduction like "-->-.,." or ";t{ 'Y} II are
preserved.

det(D} = o. Then, we get the diagram (*) above together with the

296

corresponding type-free diagram :-

where 0""= 'det(D"").Hence, property A - inside-out reductions are
strongly complete.

297

7:EPILOGUE.

7.0:Reviewof <E.o'E>:-
IE is the inverse-limit of a sequence of countable finite-dept..

lattices, <Ei>;=O. It is therefore a complete continuous lattice
Iwhich is countably based by the direct-limit, u.. (E.). There isi=O 1.,... 1.

another inverse-limit structure, A , constructed in parallel with
00

...

E , so that the following decompositions hold :-..
{
E !'.!:: AI.E + A }00' eo ... •••••• (2.2.20).
A !!: I + A (E)

eo eo ..

Notice how this decomposition matches the context-free •••,zip
description of A-expressions in e-normal form :-

{
NF ::=. AI.NF I HO}

•••• (0.4.3).
HO :: = I I HO (NF) .

Indeed, each Ei ,contains finitely .long syntactic objects which
Clclosely resemble A-expressions in e-normal form, modulo ~, except

that they allow the symbols T and ~ as well as ordinary variables.
For this reason, we call E..a syntactic lattice.

Using the rules of e-conversion as a guide, we define an
.application, Ap e; [E x E + E J, as the limit of i'th coordinateeo eo eo

applications. This turns out to be continuous.
Then, using the decompositions of 2.2.20 to handle the variablE

and abstraction cases and Ap to handle the combinations, we find it
very~natural to define a semantic function, E, from A-expressions
to E • This definition is constructive in the sense that, given anyeo

,A-expression, we do not need to know anything about A-calculus to
compute its value in E •

eo

We can visualise the situation as follows. Let "Ap" be a black
box with two input lines and one output. On each input line, it

298

receives an infinite increasing sequence of approximate information
about its arguments and it outputs a similar sequence of informationo
about its answer :-

Ap

We also have various trivial boxes with labels like "Aa" that

-.. .

have the following behaviour :-

Then, for example, to evaluate E[{Ay.Aa.x(I(Kyc») (a)l, we set
up the network :-
x 1

I 2, Ap
K 3

Ap4 13
Ap Ap

c 5

a 6

Aa

We break up the expression into its normal-form sub-expression~
input line for each chunk. The rest of the connectionsand give one

'"
are dictated
we would push

line 1

line 2

line 3

by the syntax of the expression. In the above example,
the following sequences into the input lines :-
carries <x,x,x,x, •••••••••••••••••• >,

carries <J..,.,Ac.c.,Ac.c,•••••••••••••• >,

299

line 4 carries <y,y,y,y, •••••••••••••••••• >,

line 5 carries <c,c,c,c, •••••••••••••••••• > '

and line 6 carries <a,a,a,a, •••••••••••••••••• >~

The system then causes :-
line 7 to have <..L , 1. , .1" Aq •y .'Aq •y , •> I

line 8 to have <.L ,.1 I J. , .i ,Y I Y I Y, y, > j.

line 9 to have < 1. , .1 , .1. , .1 , .1 IY IY , y , ••••••••••••••••••••••••••• > ~

line 10 to have <L , L I Xl.,Xl.,Xl., Xl.,xy ,xy ,••••••••••••••••••••• > I

line 11 to have <l.'l.'l.'Aa.xl.'Aa.xl.'Aa.xl.'Aa.xl.'Aa.xy,••••••• >,. . . .

line 12 to have <l.,l.,l.,l.,Ay.Aa.xl.,Ay·Aa.xl.,Ay·Aa.xl.,
Ay.Aa.xl..,Ay.Aa.xy, •••••••••••• >

and line 13 to have <l.,l.,l.,l.,l.,Ab.xl.,Ab.xl.,Ab.xl.,Ab.xl.,Ab.xa,•••>
We see that the final output line, 13, starts by producing

undefined symbols, but then gives increasing amounts of information
and finally settles on the normal form of the input expression.

But, does <E ,E> always model a-conversion? Computing several-
examples encourages this speculation (4.0.3), and, in particular,
we have I(d ::E and K(E) (0) :: E (4.2.4). However, we soon see that
the reverse is not true, since expressions in INSOL - e.g. 66 and
666 - seem to be all mapped to l.;but 66 C!V 666. Thus, the semantic
given by <E ,E> agrees with our intuition which lumps expressions-like 66 and 666 together as "equally bad" in that "no useful inf-
ormation" can be extracted from them, no roatter how much they are
reduced.

7.l:The Y Combinatorf-
The fixed-point co~inators, '{Yili ~ O}, form another counter-

example to ::-> cnv. We know that YOC!V Yl and yet they are all
equivalent under:: (4.0.5).

Let us examine Y, = YO' further. In any decent semantics, it

300

should have something to do with fixed-point operators. We may
continuously map E into its continuous function space by "Currying"_
the application function - i.e. :-

ApC (e) (0) : = Ap (e , 0) •

Thus, for any e E Eeo' APC (£) is a continuous function in
[E. ~ E_J. As such, it has a minimal fixed point VAPc(e:),which we
shall write as just ~£, and it is given by :-

eo
VI: := vAPC(e:)= W (APc(£»iC.l.), by 0.6.5(iv).

~=O
•

= UAp(£, Ap(£, •••••. ,Ap(£,.l.)•••••• »
i=O
•

= W ~i+l eooAPi(£i,APi-l (£i-l'••••••,API (£l'.l.).••••• » ,
~=O '

by similar reasoning to 5.2.5.
On the other hand, if e:= EDEn, we also have :-

2EDY(E) 0 = Ap«.l.,.l.,.l.,Af.f(.l.),Af.f(.l.),•••••• >,e:),by 4.0.3.

suitable juggling of the indices.
so, we have the following theorem relating Y and V :-

or, alternati vely, the (Curry) <E .. , E>-semantics of Y is the same as
the minimal fixed-point operator :-

,.,
7.2 :Review of E and V:-

By using just the decompositions of 2.2.20, we define an
tV ."approximate" semantic function E, s E. (In fact, we first defined

301

Nan approximate application on E , Ap, which used these decomposit-
eo

ions.)
An alternative method to have defined r, and one that is more

in common with other approaches - see Wadsworth [68J and L~vy [69J ,

is to define first of all a A-O-calculus as is described in 0.7.17.
Briefly, the symbol 0 is added to the list of variables, but it is
not allowed to be bound. This ° stands for the "undefined" symbol
and so we naturally invent the w-rules :-

'\ rv W '> r-.AX. u "7 u

wand O(0) -~ 0,

to agree with our intuition of "undefinedness". Then, E is extended
to a semantic function E~ on the A-O-calculus by extending the
definition in 4.0.1 with :-

(SO ~) E~[O] = .l.

It had better be true that <E_,E~> models the w-ru1es and this
is trivial to check. Next, we should define an approximation map,
~ : EXP ~ ~-EXP, by :-

"'"x := x,--Ax.e:= Ax.£
r-and e(0) := {o, if e ' E". AI.EXP}•..

€(t), if not
Then, we define our approximate semantics as <E." E"'o~>. We

claim, however, that this is the same as <E ..., E>. Note that if e E"

~NOH, then e: w~ 0, by a trivial induction on the formation of
NOH. Recall the following characterisations of NOH,HNF and HEAD by

"

,.,
e E: NOH <==> E lIe:D = .L

E"HEAD

•.••••(4.5.2)
,.,

e E: HNF -c=o- E [e] ~.L

Now, do a structural induction on A[e:]
....

_ (E[e:D = E'" I1t~. The

302

cases AITx] and (A[E] =o A[AY. E]) are trivial. Claim: (A[w]"A[e] =>

-wee) € NOH -> E[w (e)] =
-w (e) I NOH -> W € HEAD

N-> E[w (6)] =
=

A [w (e)]) :-

,.,
=o 'IT 0 E IIw II ~ l.

2
_'" NAp (EITw], E [6])

,., ..,
Ap(EITw],E[6]), by 4.3.3(xii).

N ,.,

= Ap(E"'[w],E"'[o]),by A[w]"A[6].

Thus, we have our claim that the two ways of defining approximate
semantics are the same.

From' 'S, we derive the substitutive relations ~ and ~. The'
relation ~ is of considerable use later and we give a purely syn-
tactic characterisation (4.8.4). We see that a> -> g (4.4.9) and
deduce, using the Church-Rosser theorem, that the set of a-reduct-
ions of an expression form a directed set under ~.

Next, we define our alternative semantic function, V, as the
(directed) limit of the approximate semantics of the a-reductions.
By the equivalence .described above, this is the same as Wadsworth's
notion of the limit of the extended semantics of the approximated
a-reductions - see Wadsworth [70 J. We have :-

V[E] : == U{ E 1T61] I E a, a)0 <5}

== U{ E" [6] I E a, a) <5}.

NOw,· V is not constructive in the way that E is. We need to
know about A-calculus in order to compute vrnt]. Given the semantics
of two",expressions under V, we do not know how to combine them in
E so as to remain consistent with V. Of course, the answer is to.,
use Ap, but it is not easy to prove :-

V[E (0)]' == Ap (Vffi;], V[o]) •

For the same reason, we cannot easily deduce that the semantic
equivalence induced by V is substi tutive. However, it is easy to

303

show that <E ,V> is a solvable (4.6.2) model (4.6.1) in which :-...
£ E SOL -c=o- V[E] ;f .L.

Further, we show that E ~ V (4.6.11) and, so, we can deduce that if
£ E INSOL, then E[£] = .L, which is a bonus for the <E.."E>-semantics.

Clearly, we want to show that E = V, so t~ t the (then coinc-
ident) semantics has both sets of properties. Initially, we can at
least observe that they are the same on elements in normal form

(4.7.4).
We investigate the relation ~ in EWe call elements in the

direct limit finite. We find that if E s 0 and e: is finite, then
E < 0 (4.7.9). If we remain in the image of E, then.the converse
also is true (4.7.17). Also, finite and isolated are synonymous
(4.7.14). Moreover, the <E "",E >-semantics of normal forms are
isolated and this suggests that the semantics are normal. Anyway,
we see that the <E .. ,V>-semantics are normal (4.8.9).

7.3 :Review o·f I I th and Inside-Out Reductions:-

The motivation for introducing these reduction rules is to
prove that the semantic functions E and V are the same. However,
it is possible that inside-out reductions, in particular, will
have applications elsewhere as a tool for analysing reductions in
general (see 0.5.14).

11th reductions define constructively a sequence of expressions
which form a chain under et,8> (5.3.3). They were derived by
examining the way in which E works and, so, it is not surprising

'"
that, ..,

E[E Il= U E[i <E>]•••.•• ~.••• ~(5.3.10).
i=l

Now, i'th reductions are not strongly complete (5.3.l2 and 14),
but weak completeness is all that is needed to prove E = V (5.3.13).
The proof of weak completeness was still elusive and so i I th .

304

reductions were generalised to the non-constructive rule of inside-
outness (6.2.1). Now, ilth reductions are not strongly complete
with respect to inside-out reductions (6.1.4), but they do turn out
to be weakly equivalent (6.2.6). Thus, the proof of E = V now rests
upon the weak completeness of inside-out reductions (property B) ,
to which the rest of the chapter is devoted and where it is finally
proved (6.8.1). In fact, L4vy has since proved that inside-out
reductions are strongly complete (see section 6.9 and [7lJ). It is
interesting to note that, therefore, inside-out reductions have the
same completeness properties as standard ones : they are both
strongly complete (5.3.14) and their "normal" versions - i.e. where
we are not allowed to skip any redexes - are not even weakly
complete, by 5.3.14 again and the fact that :-

,o,x.y)(1111) > y
"normal"but (AX.y) (l1A)-......--.-----;,.-iI> (AX.y) (1111) only

and y ~ (AX.y) (1111)"

The weak completeness of inside-out reductions has an inter-
pretation in ordinary programming terms. This is because of the
following very nice property of inside-out reductions :

(C[e:J_"--->?o. n) <-> (e:---->.,e: ..)" {C[e:"J'

This is a simple generalisation of 6.1.9 and it is self-evident
(simple induction on the complexity of contexts : (a) prove true
for the trivial context [] and, then, (b) assuming true for C[],
prove true for,AX.C[], 6 (C[J) and (C[]) (o), using 6.1.9). Really.
it is just a restatement of the idea of inside-outness, namely that

'"
sub-expressions are evaluated first (though not neccessarily fully)
and then their values are passed to the rest of the expression -
i.e. no further computation on them is permitted. The weak complete"
ness theorem, saying that we can always compute like this and get
all the answers possible by any other mechanism, lets us instantly

305

deduce the following (stronger) theorem of Wadsworth - [72] :-
(l,e CD >"if C[e;]
C [t!:]

(l,e
n , then we can construct :-'
CD > n

c .. 0'
C [e: ..] --i.p.2 _ _..;~...3"--_>70n..tI •

Of course, if n were in normal form, then n = n" (6.8.2) and if n
..

€ SOL, then so is n ". We interpret n s n " as It n " tells us more, but
consistent, information than nil. We note that since we have now got
strong completeness (property A), then <D can be replaced with an

(l, f3 > : however, if all we are looking for is the "information
content" of the reduced expressions, then ~ is a perfectly good
measure.

7.4 :Embedding of E in P (w) :-

7.4.0:'REMARK:-
Since E is a complete continuous countably-based lattice, it•

is embedded as a retraction in pew) - see section 0.7.25. It would
be interesting to see whether the p(w)-semantics obtained from this
embeddinq was equivalent to the Plotkin/Scott p(w)-model described
in the sarnesection,i.e. whether <E.,E> :: <[ENV ...P(w'J,P>. We are
inclined to think not, simply because of the very different images
of, A-expressions in P (w) ; for instance, finite. A-expressions (e.g.
I) are represented by finite subsets in our interpretation (7.5.7),
but by infinite subsets in theirs (0.7.26(vii».

In this section , we give the embedding of E ..into the set of
subsets of the countable basis, the direct limit. This can be trans-
fered, trivially, to P (w) by some ennumeration of that basis.

306

7.4.1:DEF:-

---->+ P(CJ~. (E.»i=O a,.. a

..<Ei>i=O It--->~u emb. (ci) •i=O ~

.7.4.2:LEMM:A:- ..
(i) emb (J.) =' { ~O, eo (J.E)}and emb (T) = u ~. (E.)•o i=O ~,eo ~

(ii) emb. and emb are continuous.a
•(iii) If <ci>i=O € E.." then embi(ci) £ embi+l(ci+l).

(iv) embi(ci) £ embi(oi) -> ci ~ 0i.
(v) emb(c) £ emb(o) -> C ~ 0.
(vi) embi and emb are injective.
(vii) E and emb (E) are homeomorphic •.·.. . eo

. 'Pro'o'f:-

(i) -Clear.

(ii) -If ci ~ 0i' then, clearly, embi(ci) £ emhi(oi).
-Hence, embi is monotonic.
-Hence, embi is continuous, since Ei has finite depth.
-Hence, emb is continuous, since it is the limit of the continuous
maps,

..(iii) -Let <C.>. 0~ ~=

emb = u emb i° , • i.'
i=O '

€ E.. _

C ••~
•-h, 'i,i+l(Ei) ~ ~i,i+ljEi) ~ ci+l•
•-h, +i+l,eoo+i,i+l(ci> € embi+l(Ei+l).

-i.e. 'i,- (Ei) € embi+l (Ei+l)·
..-:., embi (ci) £ embi+l (ci+l) •
(iv) -Let embi(ci) £ embi(oi).

307

-Now,. '~i,eo(ei) € embi{ei)·
• ~ . (e .) = ~ (0...) h 0; s 0i.-~., ~ ,....~ i,eo i' were ...
•• , ~ ..; 0 ~i (Ei) = ~ ; 0 ~i (0;)•eo,...,_ _,_ ,eo ...
-.., It...· C 0ei = ui - a ;e , Ei - i-
(v) -Let emb(c) ~ emb(o). Consider E ••

~

- 00 ,

~. (E .) = ~. (0~), for some j and where 0J~ !: oJ' •~,eo ~ J," J
~ • 0 ~. (Ei) = ~ i 0 ~. - (0) •
-,~ ~,- -,],- J

Ei=~' .(0;").J,~ J

•
- 00 ,

-But, ~.. (0;") s ~.. (0.) !: 0i.J,~ J J,~ J
-So, for all i ~ 0, Ei !: 0i - i.e. e: !: 0.

<-> E. E 0., by parts (ii) and (Lv) ,
~ ~

_., ernbi(E.) = emb. (0i)
00 ~ ~

-Similarly, emb (e) So emb (0) e Ii: 0- , by parts (ii) and (v).
-:., emb (e:) = emb (o) <-> e = o•

• embi and emb are injective.-.. ,
(vii) -By parts (ii),(v) and (vi), emb is continuous and injective
and emb-l exists on emb(E) and is monotonic •...
-Let X be directed in emb(E).

10

-Then, emb-l(x) is directed in E .and, so,--But,Llemb-l(X) = emb-loemb(Uemb-l(X»
= emb-l(Ueroboemb-l(x» = emb-l(ux).

-1-Hence, emb is continuous and emb is a lattice homeomorphismo

7.4.3:REMARK:-
Thus, we have an isomorphic image of E in pew) by ~emb,..

.where y is any ennumeration of the direct limit. To show that it
is a retraction, we quote the following theorem of Scott - [73].
We also use it to generalise the application function on E to an-
application over the whole of P(~o

308

7.4.4 :THEOHEM:- (Scott)
If D is a complete continuous lattice and e : X ."Y is some

subspace embedding, then for each f E [X + DJ, there is an extension
f E [Y + DJ so that the' triangle,

X

\
D

commutes. Furthermore, the maximal extension in the partially
ordered set [Y + DJ is given by :-

fey) = U{n{f(x) le(x) E ui]u is open and y E U}.

Proof:--
-See Scott [73]0

, 7'. '4 •'S feOR: -

E is a retraction of pew).
eo

'Proof:-
-We have yoemb : E --;>,.. P (w) is a subspace embedding, by 7.4.2.·...
•., by 7.4.4, we can construct the continuous map IIIso that the

following triangle commutes :-
E e_rnb_' _->~P (w)...

identitY~

E
to

-Hence, E is a retraction of P{w)o
'" ..

7 .4.6:'COR:-

We can define a continuous application function, Apw, on P(~
so that it is well-behaved with respect to the A-calculus model"
<P (w) , yoemb 0E>, in the sense. that :-

309

Prooi':-
-Clearly, (yoemb x yoemb) e: [E.. x E_ -+ p(W) x pew)] isa subspace
embedding.
-:.,by 7.4.4, we may construct Apw so that the following diagram
commutes :-

\yoembx yoemb) > P (00) x P (00)

pew)
-••, Apw (yoemboE[EJ],yoemb0E[o]) = yoemboAp (E[e:J] ,E[o])

= yoemb 0E ll,c (0)] •

7.5:Pruning the Lattice':-

'7. '5•0: 'REMARK: -

In this section, we remove the top half of the lattice E.,
giving ourselves a directedly complete continuous and countably
based sub-semi-lattice, Low(E ..), which still contains the image of
the semantic function E. The need for the top half of the lattice
is, therefore, debatable since it plays no part in the modelling
of the, A-calculus (A-calculus throws up no "inconsistencies" which
would requireT elements for their representation).

, '7 .S'.'l:DEF:-

Low (II: = I ""{T I,

Low (Ei+l) r= {~. '11x E I and t.i. e: Low =,»
U {(XiI(Xi E Low (Ai)}•

Low (Ai+l) := LoweI"') U {(Xi(£i+l) I(Xi E Low (Ai)
and €i+l E: Low (Ei+l)}0

310

7.5.2:LEMMA:-
(i) Let P(i) = (Low(E.) and LoW(A.) are well-defined subsets~ ~

of Ei and Ai rexpectively)
& (€i € LOW(Ei) ""'> [x/y] €i € Low (Ei»
& (ai € Low (A.) -> [x/Y]ai € Low (Ai»a
& (1 € Low (E.) and Low (Ai»~

& (T I Low (Ei) or LOW(Ai».
Then, (Vi:?!O)P(i).

(ii) Let P (L) - (€i € Low (Ei))"(e i s

& (ai' € Low (A.))"(a~ s~ ~

c .)a
a.)>
~

Then, (Vi ~ O)P(i).
(iii) (Vi:?!0) (Low (Ei) and LOW(Ai) are sub-semi-lattices of

Ei and Ai respectively).
(i v) Let P (i) _ c=e- ({€i'€i !:

({a"la" !:i i

e .)
~

is finite)

Then, (Vi :?!0) P (i)•
(v) Let P(i) = (€i € LOW(Ei»,,(€i+1 !: ~i,i+l(€i»

....> (€i+l = ~i,i+l(~i»
. & (ai € Low (Ai)),.(ai+1 s e i,i+1(a;))

-> (a i+1 = e i ,i+1(a i))·
Then, (Vi:?!O)p (i)•

(vi) Let p(i) = (LOW(Ei) ~ LOW(Ei+l»'& (LOW(Ai) 4LOW(Ai+1».
Then, (Vi:?!O)p (i).

(vii) Let P (i) - (APi e:

Let S (L) - (Ei € LOW(Ei» ->

Let Q (i) - (€~ € LOW(Ei)) ->
~

Let R (i) - (£i € LOW(Ei» >

Then, (Vi:?!O)S (i) and (Vi ~

[LOW(Ei) x LOW(Ei)LOW(Ei+l)]).•
([c iIxJI € [Low (I) - Low (Ei)])•
([e iIx] E € [Low (Ei-1)Low (Ei)])•

i-I
([€i/x]A

i-2
1) (p (i) "Q (i))

€ [Low (Ai_2) Low (Ei)])•
and (Vi:?!2)R (i)•

Proof:-
(i) -Straightforward but tedious : what we are after here is the

311

wel1-definedness.

(ii) -Trivial induction.

(iii) -Consequence of part (ii), by 0.6.29(i).

(iv), (v), (vi) and (vii) -Trivial.

7.5.3:COR:-

(i) (Vi ~ O){ £i E Low(Ei» <-> (ernbi (£i) is a finite subset).

(ii) (Vi ~ 0) (£i E LOW{Ei» =;. (ernbi+1 °4>i,i+1 (£i) = embi (£i»·

P'ro'of:-

(i) -By 7.5.2(iv), since ~i,- is injective~

(ii) -By 7.4.2 (iii), ernbi (Ei) Eo ernbi+1 04>i,i+1 (Ei).

-Let Ei E Low(Ei) •

E embi+1 04>i,i+1 (Ei)

!: 'i,i+1 (si)

~ E1+1= 'i,i+1(Ei), by 7.5.2(v).

~ 4>i+1,.. (E1+1) = 'i, .. (Ei)·

-But, El = 'i+1,i(E1+1), by notation.

!: 'i+1,io'i,i+1(£i) = Ei•. ... ,
- ,', i +1 , to (Ei +1) E ernbi (Ei) •
•

- , ernbi+1°'i,i+1(£i) Eo ernbi(Ei) and, so, they are equal.

+
7.5.4·:THEOREM:-

E E u,. (LoW(Ei» <-> ernb(E) is a finite subset.
i=O a , ".

Proof:-

(-» ~Let £ = 'k, .. (Ek), where £k E LOW(Ek).

-Then, emb Lc) = ernbk(Ek), by 7.4.2(iii) and 7.5.3(ii).
d

-Thence, by 7.5.3(i), ernb(E) is finite •..
«-) -Let E E E \ U 'i ..(E.) •

.. i=O ' ~
-.Then, {'i, .. (Ei) Ii ~ O} is an infinite subset of emb(E)•

-Thus, ernb(E) is an infinite set.

312
.. ..

-Now, let e E: U f' (E,) \ U f' (Low(E ,)) •
i=O 1,.. 1 i=O 1,.. 1

-Then, e: = ~k, .. (e:k) and Ek E: Ek\LOW(Ek}.

-But, embk(Ek) is infinite, by 7.5.3(i), and, s~e embk(e:k) C

emb(E), we have that emb(e:) is infinite.

+
7.5.5:LEMMA:-

eo

(i) Let A[e:] :: (E[e:] E: v «, (LOW(Ei»). Then,(Ve: E: EXP)A[E:].
i=O 1,"

'"(ii) Let p(i) :: (E, € Low(E,) =e- ~ (E) = E[S:], some E € EXP)
1 1 i,e i

Then, (Vi ~ O)p(i).

Proof:- .

(i) and (ii) -Both inductions are straightforward.

7.5.6:COR:-,.,
{E[e:] lEE: EXP} =

..
U ~i ..,(LOW(Ei»·

i=O '
Proof:-

-By 7.5.5.

7.5~7:THEOREM:-

e is a finite. A-expression <-> emb oE[E] is a finite subset.

P'r'oof:-

-Claim: e is a finite. A-expression <-> E[e:] = E[E "'], some e:'" :-
«_' -Clear, by 4.7.3.

(-» -E[E] ~ LkE[e: '] I e: a, f3:> e:...}.

,,- :., E [s:] -<U{~[s:'Jl Ie a, f3 > e -i, by 4. 7 •9 •. ,.
•• , E[s:] ~ E[£ 11.

" d-But, E[e:'] IE E'[e: '] = E[e:], since <E _,E > is a model.

-Hence, E[e:] = E[S:] and the claim is established •

••, we have the result, by 7.5.6 and 7.5.4.

313

7.5.8: DE F :-
LO~l (E)

eo

,
:= Inverse limit of <Low(E) ~ >-i ' i+1,i i=O
= {£ EEl c , E Low (E,) ,Vi ~ O}.

10 ~ ~

:= Inverse limit of <Low(A,) ,e, 1 ,>~~ ~+,~ ~::;;:O

= {Cl EA.) Cli E Low (Ai) ,Vi ~ O}.

Low(A)..
7 •5 .9 :LE}1MA:-

(i) ~ E Low(E ..) and Low(A~).
(ii) T I LO~ (E,.,>or Low (A•..> •
(iii r(E E Low (E »" (£" !:: c) -> (E" E Low (E ».

10 10

(iv) (Cl E Low (A » A (Cl" "! Cl) => (Cl ... E Low (A ».
10 10

Proof:-
-Trivial, by 7.5.2(i) and (ii).

7.5.10 :THEOREM:-
(i) Low(E_) .and Low(A.,) are sub-semi-lattices of EIO and A"",

(ii) Low(EM) and Low(A~) are ~irectedly complete.
(iii) Low (EIO) and Low(A_) are continuous.
(iv) Let a ,0 E Lew (E ..). Then,· (e :-< 0 in Low (E..,» <-> (t -< 0

in·E ..). Same for Low (A..)•
Proof:-

(i) -By 7.5.9(iii) and (iv) and 0.6.29(i}.
(ii) -Let D be directed in Low(E_).
-Then, D is directed in E •

10

-Taking the least upper bound in EM' we £"et :-
.., .UD = <UD,.>. 0' where Di = 11>. _ ,(D), by 0.6.22(ii).~ a= -,~

-But, since Ei has finite depth,LlDi E Di •
.,

.-:.•UDi = 0i' for some 15 E D c Low (E..,)•
-:., UOi E LOW(Ei), for all i ~ 0, and, so, UD E Low(E_).
-Similarly, Low (A_) is directedly complete.
(iii) and (iv) -By 0.6.29(iv) and (vi) respectively.

t

314 t

f
I
I
I

fr
I
I

7.S'.11:LEMMA:-
(i) e:/e:'"e:Low(E) -> Ap(e:/e:"')e:Low(E).... ...
(ii) e:,e:'" e: Low (E) -> [e:'"Ix] e: e:Low (E).

eo ...

(iii) e:'" e:Low (E) and (l e:Low (A) ==> [e:'"Ix] (l e:Low (E).
~ ~ eo

Proof:-
-By 7.5.2(vii) and 7.5.10(ii).

proof:-

7•5•12 :COR:-
(Ve € EXP) (E[e] € Low(E » •...

-Trivial structural induction, using 7.5.11(i).

...7. S'.l'3':COR:-

U 'i (Low (Ei)) c {E[e:] te € EXP} c Low (E..)•i=O ,"
Proof:-

-By a trivial structural induction on :-
A [c] :: (there exists e " € EXP) (~[c] = E[e: "']) ,

we get' {E [e] le' € EXP} E {E [e] le' e: EXP}.
-Hence, the inequalities, by 7.5.6 and 7.5.12.
-They are strict because, for instance, there does not exist an e

",
e: EXP such that E[e] = EIlY]. Also, Low(E) contains elements with..

e.g. <~'~/XO{~) ,xO(xl (.I.») ,xO(xl (x2{.I.») I· ••••• > •.

'f

infinitely many free variables, as remarked upon in 2.2.9 :-

10

Thus, we see that tve semi-lattice Low(E) contains that part-
of E that models A-expressions. Theorem 7.5.4 sh~ws that it would...
have been sensible to define only the elements of the (semi-)dire'ct
limit, U '1 (LOW(Ei» I as finite. Also, w~ have in Low(E) that1=0 ,- -

315

(e ~ o) <-> (e E 0) ~(e is finite) and we see that it is better
behaved than E in this respect (see 4.7.12 and 4.7.17). Also,..
while 4.7.17 shows that the <E ,E>-derived notions of~, ~ and

eo

finiteness on A-expressions have our intuitive relationship,

Another good thing about Low(E) is its economy: for 7.5.13...

theorem 7.5.7 shows that finiteness makes sense as well.

shows that the direct limit, which forms its countable basis and
of which it is the directed completion, is wholly, A-definable.
Incidentally, since it is a trivial induction to show that Low(E.)
and Low(A) form countable bases for E and A , the (semi-)direct. .. .

... eo

limits, u ~i (LOW(Ei» and u e. (Low(A.», form countable bases
i=O ,. i=O ~,.. ~

for E and A , by 0.6.2S(ii). In particular, E is countably based
• ... eo

J.by the "approximate normal forms" (:= the image of E), by 7.5.6.
Further, since they consist entirely of elements that are isolated
in E , by ".'7.3and 4.7.10, we see that E is an algebraic lattice

• eo -

- see Scott [74].
!Maybe it would have been better to have defined initially only I'

Ithe Low(E) system. If we want, we can always make it into a latticei
eo I

Iby adjoining a T, by 0.6.28{i). Alternatjvely, we could have exten-
ded the relation I\; on Ai x Ei+1 (1.1.20) to :-

(a., e) I\; (a. "', e "') iff (a. = T' = a.') v (e = T = e ")

(a.=.L= o") «a.= a'''') (e = e1).v v A

Then, making a corresponding extension to 5 on Ai(Ei+l), carry on
defining E as before •..

Anyway, this is just a question of the aesthetics of the actual:..
model used. As far as the semantics of the, A-calculus is concerned, l'

ff i

it does not matter whether we have E ..or Low (E.) as the target of E.I
In fact,

-<Low(E.),E> - <E., E >.

316

7'.6':ContinuousSemantics:-

7.o.0:REMARK:-
In 0.7.0, we defined an 6rderingon arbitrary semantics of the

A-calculus by inclusion of the induced equivalence relations. Since
E is so syntactic in nature (i.e. closely related to EXP)there•
ought to be some sense in which <E ,E> provides a minimal semantics.'•
It is certainly not normality, substitutivityor modelship since
these all apply to the trivial term model, <EXP!cnv,[£!!!]>,from
which <E_,E> is derivable. However, we have'discussed many reasons
why this trivial model should be rejected and for which <E ,E> is

, ..
acceptible - e.g. unsolv able expressions and fixed-point combinat-
ors.

What else is there that makes a semantic function good?
Scott's theory uses lattices whose partial orderings reflect the
information content of the data being modelled : it is, then, quite
natural to justify the belief that computable functions over the
data are continuous (0.6.6). Similarly, we maintain that the sem-
antic function itself should be "continuous".

£ refiects precisely our intuitive notion of the information
available from just looking at the syntax of an expression - i.e.
it ignores unevaluated redexes and considers only those sub-parts
that are fully worked out. Let us call this the syntactical inform-
'ation of an expression and write t of e (c.f.'7.2). Clearly, any
decent semantics, <L,P>, when restricted so as only to look at the

",syntactical information, <L,P>, should be monotone with respect to
If
!!.

Further, the intuitive meaning of an expression is the union
of the syntactic, information held in all the expressions reducible
from it. 'Now, any "decent semantics should reflect this intuition :-

--: :-: - -«,

317

a, e) s "},

and this implies a "continuity" of the semantic function from our
intuition, for we can then write :-

a,S>e"'} •.

This justifies the terminology of the following definition. We
claim that <E_,E> is the minimal continuous semantics and, so ,.is
coincident with our intuition.
7.6.1:DEF:-

Let <L,F> be some semantics of the A-calculus where L is a..directedly complete semi-lattice. Then, <L,F> is a WELL-BEHAVED
APPROXIMATE semantics to <L,F> if :-

(i) F is monotone with respect to ~
and (ii) F[e] =UF[e"']le a,s) e"'}.

We say that <L,F> is a CONTINUOUS semantics if it has a we11-
behaved approximate.
7.6.2 :LE:t-'T..MA:-

(i) <E_,E> is continuous.
(ii) <[ENV ~ D_J,D> is continuous.
(iii) <[ENV*~D*],D*> is continuous._

Proof:-
(i) -By definition, E is monotone with respect to ~.
. ".., since E = V, E is well-behaved.

" ... "(ii) -Let D[e] := D [e], where D'" and 'II are as defined in 0.7.17.
-Then, using 4.8.4, it is a trivial structural induction to show

~ "that D is monotonic with respect to 5.

'"-Thus, the good-behaviour of D is just the crucial theorem Wadswortt
proved (0.7.19).
(iii) -Same as part (ii), defining D* [e] := D* "'[:], using the defin-
itions of 0.7.22 and its part (xxvi)o

a, B) .~'}.

318

7 • 6 • 3: LEHr.1A : -

Let <L/F> be a continuous semantics with,a well-behaved approx-
~imate <L/F>. Then,

N

(L) F E F,

(ii) {F[~"]I e a,B> c "} is a directed subset of L,
/III

(iii)F[e] = U{F[~"']I e ~e:' ...}

::;U{F[.i< e:>] IL ~ l},

where the sets are also directed,
(iy) <L,F> is a moqel,
(v. '(E,a ~ INSOL)Afye EXP) -> (FDeO= F060 • FOyO),
(vi) <M,G> isctsly. derivable from' <L,F> ->' <M,G> is cts

Proof:-

-Then,' e .a, e) w,6 and so, by the Church-Rosser theorem, we have
a,B~. IIIw , 0 7' O. .. , W I 0 Eo.

-Hence, the set is directed.
I~.
l,
I

(iii)-The sets are directe(1 by a similar proof to that of part (ii)
using 6.2.l2and 5.3.3 instead of the C-R theorem.
-Theirlimit$ equal F[E] because of the weak completeness of inSide-I
out and ilth reductions and part (i) of definition 7.6.1.
(iv) -Simple C-R corollary, analogous to 4.6.1.

,.,., ~
(v) -Clearly, E,O e:NOH ==> F[E] = F[o], since c == 0, by 4.8.4.

-Hence, e e:INSOL ->

-Also (I:: e: INSOL) (y, .A

"F[E] ::;F[EJl.Hence, the result.
e: EXP) -> (FOeD = FgeD E 'OyD 5

'. . .
FOyO).

.~. '

(vi),-There exists an f e:,[L-i- M] such that G ::; foF.
,.., ,., H~Let G := fof. Claim: G is well-behaved :-

,.,
o => F[e]

~ .~ ~
E F[o] -> G[e] E G[o], by the monotonicity of f.

f(UC1[e"]le a,e >e:"})-G[~] = foF[e] =

= Llte of[e:'11 I E: a,e > e"'},since the set is directed.

319

a,S> E"'} •

.. , G is a well-behaved approximate to G•

•.., <M,G> is continuous.

t
7.6.4 :'REMARK:-

We have said before that Ee is syntactic in nature - i.e.
"close" to EXP. We make use of this, now, by defining a way back
from part of E_ to EXP.
7.6.5:DEF:-

synI : Low{I"') --->~EXP

t}

Let P(i) = (synE and synA are well-defined up to'~)
i i

·& {synE ([x/yJEi) ~ [x/yJsynE (Ei»
i i

·& {synA ([x/yJai) ~ [x/yJsynA (ail)
i i

& (y~is not free in £i ~ Y is not free in
& .(y is not free in ai =e- y is not free in

· & «ei s Ei) -> (synEi (e:~) ~ synEi (~i1))
& (Cai s ai) ~ (synAi(ai) ~ synAi (ai»)
& (synE (Ei) ~ synE (~i '+1 (E .i»i i+1,1 1
& {synA {ai' ~ synA te . '+l(ai»)i i+1 1,1

320

. & Csyn
Ei

(.lEi) ,syn
Ai

(.lA
i
)

Then, (Vi <:: O) pC L) •

E: NOH}_

Proof:-

t
-Straightforward and trivial induction.

7.6.7:NOTATION:-

We will just write syn. for syn •
~ Ei

7.6.8:COR:-

<E:i>~=O E. LoW(E..)-t1 {syni (si) Ii <:: O} is a chain under ~.

H ~

-If C(or E NOH, then syn.o~ .oE[£(6}] =) ..,)
by 7.6.6, and so is ~ £(o), by 4.8.4.

-If £(0)· E: HEAD, then let k be the maxtmum of the its in A[c]

syn. (.lE). E: NOH,
) j

Proof:- .

-syni(E:i) ~ syni+lo~i,i+I(E:i)' by 7.6.6.

~ syni+l CE:i+I), by 7.6.6.

+
7.6.9:LEMMA:-

Let A [e:] == (there exists i <:: 0) (Vj <:: L) (syn. 0~ . 0.8'[e:] ~ e:).
) ",J

Then, (V£ E: EXP)A [£].

Proof:-

-Clearly, ArriD, with i = o.
-Claim: A[e:]1 ->A[AX.C] :-

-Let i be that which is in A[e:].

-Then, for all j<:: i,
,.,

syn '+lo~ .. '+loE[Ay. E]) , J
"= syn. 10~ . l(AY.E[~)J+ ",J+.

. N

= syn'I(AY.~ .oE[EJI)J+. .. J
'",

= Ay.syn,o~ ... 0E[E;]
J ,J

~ AY.«, by A [£lI •

-Claim: A[s] ...A[o] -> A[c;(o)] :-

and A [.0] plus 1.

321

-Then, for all j ~k,
,.,

syn.o.J.. .oE[e:(o)]
J "...,J

" III= syn. «~ ... 10E[e:]) (~.. . loE[o]»J ,J- ,J-
f'I= (syn. 1°~ . 10E[e:])J- ",J-

,J
(syn. 1°~ ; 10E[0])J- ...,]-

~ e (0), by A [e:]AA [0] •

-Hence, by structural induction, (Ve: € EXP)A [e:] •

+
7.6.10:DEF:-

Let <L,F,~> be a continuous semantics. Extend L to a complete

lattice by adjoining a T (see 0.6.28). Then, we define :-

and

F • E -----'0+ L U {T}• ... 7'"

< e i>~=o t-f ---~~ (JFi (e:i) •
~=O

7.6.ll:LEMMA:-

(i) Fi is well-defined, monotonic and, so, continuous.

(ii) {Fi(e:i)1 i ~ O} is a chain in L, where <e .>.. € E •~ i=O ..
(iii) F is continuous.

Proof:-

(i) -Fi is well-defined since syni is well-defined up to ~ and P
does not detect such differences.

-If €:"i!:: e ~ and e:i e: Low(Ei), then so is €:i' by 7.5.2 (ii) •
II

-Thus, syni (e:i) s syni (£ i)' by 7.6.6.

- .. , Fosyni(e:i)!: ,¢osyni(E:i), since F is monotonic w.r.t.g.

-If ell Low(Ei), then Fi (e:i) !: T = Fi (e:i) ·
~:.,F i is monotonic 'and, so, continuous, since Ei has finite depth.

(ii) -If < e i :=0 e: Low(E..) , then {Fi (e:i}1 i ~ O} = 'Ff. syni (e:i>1 i ~ o}

322

oJwhich is a chain by 7.6.8 and since F is rronotone w.r.t. g.
-Otherwise, there exists i ;a: 0 such that for allj Si, e:. € Low (E.)

J J
-Then, as above, {P.(e:.) Ij ~ i} forms a chain while the rest of the

J J
set consists of just the T element.
(iii) -F is continuous since it is the limit of continuous maps,
Fio~~,i' by part (i).

+
7.6.12:THEOREM:-

(i)

-(ii) FoE = F.

Proof:-
(i) - ,."-FoE[e:] = UO\o~ ..,io~[e:]li ;a: O}

= lJeposyn.o(l .o1[e:]li~ OJ" by 7.5.6.~ ..,~
,."

= F[€], by 7.6.9 and 7.6.ll(ii).
= F (Ue E [e:1I1 e a,S> e:..}), by G. 8•1.
=UrFoE[e:]Ie: a,e >e:"}, by 7.6.ll(iii).
= UC'[e:]Ie: a,S> e:"'},by part (i).

= F[e:],' since ~ is well-behaved w.r'.t. F •

(ii) -FoE[e:]

..7.6.13:COR:-
<L,F> is a continuous semantics if and only if it is continu-

ously derivable from <E ,E> •..
Proof:-

-:By7.6.2(i), 7.6.3(vi), 7.6.1l(iii) and 7.6.12(11).

<E.."E>is the minimal continuous semantics.
Proof:-

7.6.l4:COR:-

-:By7.6.13 andO.7.l(vii).

323

7.6.1S:COR:-
(i) Well-behaved approximates are unique.
(f.L) Let <L,F> be a continuous 'semantics. Then, the fixed-point

comhinators, {Yili ~ O}, are all equivalenced. Further,

F[lj!'(c:)]1= OF[Sn(t.A)].
n=O

(iii) Let. <L,F> be a continuous scott-model (see O.7.~7). Th~n"
FO'i(e:)O (p',. = pFOeO (p).

N a(i) -Let F and F both be well-behaved approximates to F.

-Then, define, as in 7.6.10, functions F'and F •
•-_, by 7.6.12(ii), FoE = F = FoE.

-So, F and Fare identical·on the image of EXP under E •. ,.-But, the image of EXP under E is contained in this, by 7.5.13
and7.S.6~

",,"" =,.,-Hence, roE = FoE..., "."-~, by 7.6.12(i), F

(ii) -Yi = Yj, for all i,j ~ 0, by 4.0.5.
-Bence, Yi =<L,F> Yj, for all i,j ~O, by 7.6.14.
-Further,' F[y(e)]1= FoE[Y (e:)]= F(PE[e:]), by section 7.1.

= F(L]EIre:n(t.t.)ll),by definition of u ,
ncO

= ,"IFoE[en (t.A)],by7.6.11 (iii)•
~

= L.:JF[e:n(AA)],by 7.6.12 (ii)•
ncO

(iii)-Let L = [ENV + DJ /'where ENV = (I + D) •
-We define pFOeO(p), as in section 7.1, by Currying the applic-
ation function.
-One property of such Scott-models is that the value of a

324

combinator (i.e. a cl.oaed A-expression) is independent of the
environment used.
-In particular, FOAAO{p) = FOAAO(p~}, for all p,p~ E: ENV.
-Since the semantics is continuous, FOAAO ~ FOxO, by 7.6.3(v).
-Choose p E: ENV such that pOxO = .L E: D.
-Then, FOAAO{p) ~ FOxO(p) = .L.

-:, FOAAO{p) = .L andi so, FOAAO = .L E: L, by the above remarks.
-Incidentally, th"ismeans that all unsolvable elements are .1 in
a continuous Scott-model and, so, the (Park-perturbed-Scott)
model (see 0'.7.24) cannot be continuous.
-Now, rOY (d 0 (p) .= (!lpo.n (11.1)O)(p), by part (H) above.

= LJ (Ap(FOeO (p»)n{FOAAO (p»
n=o "

= l1FOeO(p).

+
7.6 .16:RE·MARK:-

The degenerate maximal semantics, <{*},const>, is clearly
continuous and, so, continuity 'does not imply properties like
normality, solvability or extensional equivalence (i.e. semantic
equivalence implies III of 0.7.11). Neither does it imply substit-

"utivity :-
-Claim: <EXP/cnv ~,tcnv ~J> is not substitutive :-

-/\ -/\

-But, in particular, Y cnv '"66.
-/\

-Well, for one thing, if it were, there would have been
no need to define Morris' <EXP/IlI,[IlIJ>.

)2,5

~Claim: <EXP/cnv '",[cnv "']> is continuous :-
----1\ -It.

-EXP/cnvl\'"becomes a directedly complete semi-lattice by'
defining [e:] !: [0] if e does not have a normal form or re] = [oJ.

-Define: f . EXP > EXP/cnv '".
-It.eAAJ• if c , NF}

c , >
[e] I if e: € NF

-Then, it is trivial to check that .. is a well-behaved
approximate to [c~'Y~~].'

However, continuity is quite good at ruling out some "bad"
semantics - e.g. the proof of 7.6.15(iii), where, in so doing,

./it provides the answer to a question of'D.Park [75]. Also,
continuity does imply a number of good points - e.g. 7.6.3(iii},
(iv) ~d (v) and 7.6.15(i) and (ii). Further, by the proof of

.
part (iii) of 7.6.15 again, we 'see that, in continuous Scott~
'models, unsolvable elements are'J. and the Y combinators mimic
the minimal fixed-point operator p. Finally, continuous semantics
must.respect all the equivalences and orderings made by its,
minimal formulation,' <E ,E>1 and so, since this also has all the

00

nice properties of normality, solvability, extensional equivalence
and substitutivity -not to mention continuity, what it ddes to
the fixed-point combinators (4.0.5 and section 7.1) an~ the fact
that it is a good (4.8.8) model - we feel that its further
investigation may be worthwhile.

326

8:REFERENCES.

R.O:Explanation:-
References are indicated in the text of this thesis by positive

numbers in square brackets, sometimes with an author's name -e.g.
Wadsworth [30J. We proceed by a method of "indirect addressing".
Look up the number in section 8.1 to get the particular part of the
work being cited - in our case, item 3.3.8 of <P>. Finally, search
alphabetically in section 8.2 for the key letter enclosed in the
angle brackets.

8.I:Numeric:-
[00] § 3A of <0>.
[OlJ <C> and <E>.
[02J Appendix II of <A>.
[03J Page VIII of <0>.
[04] Page 17 of <P>.
[05] §3E of <0>.
[06] Chapter 4 of <0>.
[07] §4A4 and §4Bl, definition 1 of <0>.
[08] §4A4(E), §4A5{O), §4B3 and §4C2 of <0>.
[09] §4A3, theorem 4 of <0>.
[10] §40l of <0>.
[11] §402 of <0>.
[12] §403 of <0>.
[13] §4E1 of <0>.
'"
[14] 1.3.16 of <A>.
[15] 3•1 0f <P>•
[16] 3.2.1 of <A>.
[17] Same as [16].
[18] <N>, <M>, <K> and <L>.

327

[19J <J>.
[20J <P>.
[21J Page 10 of <J>.
[22J <K>.
[23J 2.2 and 2.7 of <K>; exercises 7 and 8 of <0>.
[24J 2.6 and 3.3 of <K>.
[25J 4.1 of <K>.
[26J Pages 139 - 141 of <J>~
[27J Theorems 11 and 14 and exercise 18a of <J>.
[28J §3E3 of <D>.
[29J <G>.
[30J 3.3.8 of <P>.
[31J .
[32J 2.4.4 of <P>.
[33J 4.4 of <K>.
[34J 2.2 of <P>.
[35J 2.3.8 and remark following 2.4.1 of <P>.
[36] 2.5.1 and 2.5.8 of <P>.
[37] <H>.
[38] 2.6.1 of <P>.
[39] §4E2, corollary 2.1 of <D>.
[40] 4.1 0f <L>.
[41] <Q>.
[42J 2.7 of <P>.
{43] 2.7.3, 2.7.4, 2.7.5, 2.7.11 and 2.7.12 of <P>.
[44] ~.7.6 of <P>.
[45] 2.7.9 of <P>.
[46] Remark after "Question 1" in section 3.1 (page 94) of <P>
[47] <H>.
[48] 1.6 of <L>.

328

[49] <I>.
[50J Sections 1 and 2 of <L>•.
[51] 1.2 of <L>.
[52J Definition just before 1.2 of <L>.
[53] <N>.
[54] Remark following 3.13 of <K>.
[55J Note (2) on page 133 of <J>.
[56J Chapter II, sections 1,2 and 3 of <1'>.
[57] Page 97 of <P>.
[58J Question 1 (page 94) and question 2 (page 103) of <P>.

.' [59] <Q>.
.[60J 3.2.6 of <P>•
[61] <R>.
[62] Example 4.4.1 and note on page 187 of <P>.
[63J §4A4(E) of <0>.
[64J §4C3 of <D>.
[65] §4C2 of <D>.
[66] II.5 of <1'>.

•
'[67] <0>•
[68J Page 92 of <P>.
[69] I.l.l of <1'>.
[70J Question 2 (page 103) of <P>.
[71] II.5.G.l of <1'>.
[72J 3.3.6 of <P>.
(73] 3.8 of <K>.
[74] Remark at top of page 43 of section 5 of <L>.
[75] Page 2, line 4 : "one looks •••••• n of <H.>.

\. [76] Lemma 13.lof §llE8 of <S>.
[77] 1111'8of <8>.
[78] 3.2.3 of <A>.

329

8.2:AIEhabetic:-
<A> Barendregt,H.P. "Some Extensional Term Models for

Combinaotry Logics and A-Calculi" :
- Ph.D. Thesis, University of Utrecht (1971).

 Bchrr,C. : "Alcune Propri.l;.!tadella Forme e-n-Normali
del A-K-Calcolo" :

- Instituto per Ie Applicazioni del Calcolo, no 696,
Consiglio Nazionale delle Richerche, Roma (1968).

<C> Church,A. : "A Set of Postulates for the Foundation of Logic" :
- Annals of Mathematics (2) 33 : 346-366 (1932) and

"" " "34 : 839-864 (1933).
<D> Curry,H.B. & Feys,R. : "Combinatory Logic - Volume 1" :

- North-Holland, Amsterdam (1958).
<E> Kleene,S.C •

. & Rosser,J.B.
: "The Inconsistency of Certain Formal Logics" :

~ Annals of Mathematics (2) 36 : 630-636 (1935).
<F> L~vy,J-J. : "R~ductions Sures dans Ie Lambda-Calcul" :

- Diplome de Docteur de 3e Cycle,
Universite Paris VII (1974)•.

<G> Morris,J.H. : "Lambda-Calculus Models of Programming
Languages" :

- Ph.D. Thesis, MIT (1968).
<H> Park,D.M.R. : "The Y-Combinator in Scott's Lambda-Calculus

Models" :
- Unpublished notes, University of Warwick (1970).

<I> Plotkin, G.D. : "A Set-Theoretic Definition of Application" :
- Memorandum MIP-R-95, School of Artificial Intelligence

University of Edinburgh (1972).

330

<J> Reynolds,J.C. : "Notes on a Lattice-Theoretic Approach
to the Theory of Computation" :

- Systems and Information Science,
Syracuse University (1972).

<K> Scott,D. : "Continuous L~ttices" :
- Technical Monograph PRG-7,

Oxford University Computing Laboratory,
Programming Research Group (1970).

<L> Scott,D. : "Data Types as Lattices" :
- Unpublished Lecture Notes, Oxford,(1973) •

...," "'<M>'s·~;tt;D. : "Outline of a Mathematical Theory of Computation" :
- Technical Monograph PRG-2 (1970).

<N> Scott,D. : "The Lattice of Flow Diagrams" :
- Technical Monograph PRG~3· (1970).

<0> Scott,D. :"Twenty-One Exercises on Continuous Lattices" :
- Unpublished Lecture Notes, Princeton (1970).

<P> Wadsworth,C.P. : "Semantics and Pragmatics of the
Lambda-Calculus" :

- Ph.D. Thesis, Oxford University (1971).
<Q> Wads't'7orth,C.P.: "Typed "-Expressions" :

- Unpublished Notes, PRG (see <K> above) (1972).
<R> Vui11emin,J. : "Proof Techniques for Recursive Programs" :

- Note de Travail, Institute de Recherche d'Inf6rmatique
et d'Autornatique (I.R.I.A. - Laboria),

78-Rocquencourt, France (1973).
<S> Curry,H.B., Hindley,J.R. : "Combinatory Logic - Volume 2" :

.& Seldin,J.P.
- North-Holland, Amsterdam (1972).

