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STATEMENT
The work presented in this thesis is original with the exceptions
stated below, and has not been submitted for another degree of this or

any other University. The exceptions are :

(i) Throughout the emphasis has been that of systematically
applying known mathematical theories to sclve the problems at hand.
This is clearly indicatéa_by the work described in chapter 1 where
verious known mathematical results are brought together in procedures
for investigating the stability of a system of linear differential

equations with periodic coefficients.

(ii) The work in chapter 2 is a review of and commentary on the

current state of the theory of stability of linear stochastic systems.

(iii) The actual systems considered in chapters 3-6 have been
discussed previously in the literature cited and it is only their
mathematical analysis that is new. Throughout the analysis results

deduced by other workers are clearly indicated in the references.

(iv) The idea of representing the input, in section 4.5., as

a sequence of impulses was first suggested by Dr. P.C. Parks.

G/;‘ h ;3””‘"/]
D. J. G. JAMES
May 1971



ABSTRACT

In this thesis the theory of both linear differential equations
with periodic coefficients and linear differential equations with
random coefficients is applied to investigate the stability and
accuracy of parameter adaptation of sinusoidal perturbation and mode?
reference adaptivé control systems. Throughout dimensional anaiysis is
applied so that all the results are presented in a non-dimensional form.

The first part of the thesis is devoted to investigating the
stability of such differential equations. In chapter 1 a system of
linear homogeneous differential equations with periodic coefficients is
considered and a numerical procedure, based on Floquet theory and well
suited for use on a digital computer, is presented for obtaining necessary
and sufficient conditions for asymptotic stability of the null solution.
Also considered in this chapter is the so called infinite determinant
method of obtaining the stability boundaries for a restricted class of
linear differential equations with periodic coefficients. Chapter 2 is
devoted to reviewing the current state of the stability theory of linear
differential equations with random coefficients.

In chapter 3 a theoretical analysis of the stability and accuracy
of parameter adaptation of a single input, sinusoidal perturbation,
extremum control system with output lag is considared. Using the
principle of harmonic balance it is shown that various stable harmonic
and sub-harmonic steady state solutions are possible in certain regions
of the parameter space., By examining the domains of attraction,
corresponding to the stable solutions, regions in three dimensional
space are obtained within which initial conditions will lead to a given
steady ctate stable oscillation. It is also shown that the subharmonic
ste-:dy state solutions do not correspond to the optimum solution, so

that, for certain initial conditions and parameter values, it is possible



for the system to rcach a steady state solution which is not the optimum
solution., All the theoretical results are verified by direct analogue
computer simulation of the system.

The remainder of the thesis is devoted to investigating the stability
and accuracy of parameter adaptaticn of model reference adaptive control
systems. In order to davelop a mathematical analysis, and to illustrate
the difficulties involved, a stability analysis of a first order M.I.T.
type system with controllable gain, when the input varies with time in
both a periodic and random manne,, is first carried out. Also considered
are the effects of

(a) random disturbances at the system output
and (b) periodic and random variations, with time, of the controlled

process environmental parameters,
on the stability of the system and the accuracy of its parameter adaptation.

When the input varies sinusoidally with time stability boundaries
are obtained using boih a numerical implementation of Floquet theory and
the infinite determinant method; the relative merits of the two methods
is discussed. The theoretical results are compared with stability
boundaries obtained by analogue computer simulation of the system. It is
shown that the stability boundaries are complex in nature and that some
knowledge of such boundaries is desirable before embarking on an analogue
computer investigation of the system.

When the input varies randomly with time the stability problem reduces
to one of investigating the stability of a system of linear differential
equations with random coefficients. Both the theory of Markov processes,
involving use of the Fokker-Planck equation, and the second method of
Liapunov are used to investigate the pioblem; Timitations ahd difficulty
of applications of the theory is discussed. The theoretical results |
obtained are compared with those obtained by digital simulation of the
system,

If the controlled process environmental parameter is allowed to



become time varying then it is shown that this evfects both the slability
of the system and the accuracy of its parameter adaptation. Theoretical
resuits are cbtained for the coses of tne parameler varying both
sinusoidally and randomly with tima; some of the results are compared
with those obtained by digital simulation of the system. It is also
shown that noise disturbance at the system output has no effect on the
system sigbility but does effect the accuracy of the parameter adaptation.

The doubts concerning the stability and the difficulty of analysis
of the M.I.T.,type system have 1¢d researchers to think about redesigning
the model reference system from the point of view of stability. In
particular we have the Liapunov synthesis method where the resulting
system is guaranteed stable for all possible inputs. Howevar, in
designing such systems the controlled process environmental parameters
are assumed constant and, by considering the Liapuncv redesign scheme
of the first order M.I.T. system previously discussed, it will be shown
that the effect of making such parameters time varying is to introduce
a stability problem.

In chapter 6 the methods daveloped for analysing the first order
system are extended to examine the stability of a higher order M.I.T.
type system. The system considered has a third order process and a
second order model and a stability analysis is presented for both
sinusoidal and random input.. Steady state values of the adapting
parameters ere first obtained and the liﬁearized variational equations,
for small disturbances about such steady states, examined to answer
the stability problem. Theoretical results are compared with those
obtained by direct analogue computer simulation of the system. The
effect, on the mathematical aralysis, of replacing the system multipliers
by diode switching units is also considzsred in this chapter. The
chapter concludes by presenting a method of obtaining a Liapunov

redesign scheme for the system under discussion,
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INTRODUCTION

In the last twenty years or so a great deal of work has been
published on so called adeptive or self-adapiive control systems.
Although many different systems have been described as adaptive there
is still no general agreement on a definition of an adaptive control
system which would embrace them all. However, it is generally accepted
that such systems must be capable of monitoring their own performance
during operation and also possess the ability to adjust their own
parameters, in response to a chainging environment (time variations in
environment may be in the form of input signals, disturbances, changing
performance objectives or a process with changing parameters), in order
to achieve a satisfactory performance. The parameter adjustments are
performed in a closed loop fashion in accordance with some predetermined
index of performance P; this being a mathematical measure of the quality
of a particular system response and is a means by which an engineer may
_impose his definition of optimum operation upon the system. The index
of performance is measured and compared with its optimum or desired
value; the resulting error actuates the parameter adjustment loops which
in turn change the value of P as measured - the adapting loops being so
designed that the measured value of P is forced to agree with its optimum
velue in the steady state, thus achieving the required satisfactory
performance.

A nunber of types of adaptive control systems have been proposed
and the reader is referred to some of the works written on the subject88-92.
In practical applications to devices such as autopilots where rapid
adaption is required, two methods which have been given considerable
attention in the literature are :

(i) extremum control or hill climbing systems

and (i1) model-reference systems.



Extremunm control or hill climbing systems are a well defined

class of adaptive control systems for which a formulation has been
93

r

This method of adeption was first discussed in
63

given elsewhere
a paper by Draper and Li who applied the idea to the control of a
throttle in a gasoline engine. Basically the idea is to give the
particular parameter of the system which is under control a small
disp]acement}or nerturbation and to measure the effect of this
perturbation on the index of performance. The information is then
used to adjust automatically the naramater to the value which optimizes
the index of performance. Since it requires the injection of a signal
from outside in order to perturbe the paramater, this type of system
is often referred to as a parameter perturbation adaptive control system.
In general the index of performance is a function of the system
parameters and input so that if the input signal characteristics change
or if the system exercises disturbances or variations in its parameters
then the index of performance changes, thus causing the optimum values
of the adapting parameters to change. It is therefore desirable that
the index of performance is continuously optimized and this may be
achieved by applying a periodically varying perturbation; for this
reason extremum control systems employing periodic perturbations have
received much attention in the literature. Although it is possible to
use any periodic waveform as a perturbation signal, for example, Douce

uses a square wave 94, it is systems employing sinusoidal perturbations

that have received most popularity 6]"62.

In a model reference adaptive control system all the desired
dynamic characteristics of the controlled system are incorporated into
a model so that the model output is proportional to the desired system
response. The problem then reduces tc one of making the system behave
like the model by minimizina some function cf the error between the

resbonse of the controlled system and that of the model when fed with

the same input signal. Since this error signal is to be zero when the



system is in its optimum state it is used as a demand signal for the
adaptive loops which adjusts the variable parameters in the controlled
system to their desired values.

Various methods of synthesizing the adaptive loops have been

95-96

proposed but the one that has proved most popular is that

75 at the Massachusetts' Institute of

developed by khitaker et al
Technology and referred to as the M.I.T. rule. Here the performance
criterion is taken as the integral of error squared and a heuristical
argument is given for reducing this over an unspecified period of

time. This Teads to the rule that a particular parameter should be

adjusted according to the rule :

Rate of change of parameter = -Gain x error x 3(error
3(paramater)

Although many sinusoidal perturbation and model reference adaptive
control systems have been proposed their design has generally been carried
out by much analogue computer simulation and a detailed mathematical
analysis of the stability and the accuracy of parameter adaptation is
ctill lacking. The reason for this is undoubtedly due to the fact that
the system equations are both nonlinear and nonautonomous and so their
analysis has proven to be very difficult. However, since any successful
system design requires a basic understanding of the influence design
perameters have on the over-all system perfofmance, the development of
such an analysis would be an important asset.

In this thesis a detailed mathematical analysis of both sinusoidal
perturbation and model reference type adaptive control systems will be
carried out and throughout dimensional analysis will be employed in
order that all the results may be presented in a non-dimensional form.

It is appropriate that such systems be considered in a particular project
for, although the structure of an M.I.T. type model reference system

differs widely from that of a sinusoidal perturbation system, some of



4,

the model reference systems proposed in the literature have adaptive
controllers which have been structured using sinusoidal perturbation
signals 96-97
It will be seen that in ali the problems considered the
stability problem reduces to one of investigating the stability of
either a system of linear differential equations with periodic
coefficients or a system of linear differential equations with
random coefficients. The carlier part of the thesis is therefore
devoted to investigating these two problems.

In chapter 3 the stability and accuracy of parameter adaptation
of a‘single input, sinusoidal perturbation adaptive control system with

60-61 is considered. By considering an equivalent circuit

output lag
Eveleigh 62 pas carried out an approximate stability investigation for
such a system but to date no satisfactory stability analysis exists.
Here a detailed analysis will be presented; various harmonic and sub-
harmonic steady-state solutions of the system equations are first
obtained, using the principle of harmonic balance, and then the
stability of each solution is investigated using the theory developed
in chapter 1. The effect of initial coﬁditions on the system behaviour
will be obtaiﬁed by plotting the domains of attraction corresponding

to the stable steady-state solutions. A knowledge of such domains is
essentialjif the system is to be subjected to input disturbance and
measurement noise. All the theoretical results will be verified by
direct analogue computer simulation of the system.

The remainder of the thesis is devoted to model reference
adaptive control systems. Bongiorno 98 obtained necessary conditions
for the stability of a particular type of model reference system when
the input varied sinusoidally with time; the results, however, are
only applicable to systéms which are stable when the time varying
terms are equated to zero and are therefore not applicable to the

£

type of preblem considered in this work. WUhite e investigated the



stebility of an M.1.T. type system, when the input varied sinusoidally
with time, by time averaging the coefficients, of the system equations,
over a period - a method well known to be unreliable. For the case of
randem input Bell 82 carried out an approximate stability investigation,
for an M.I.T. type system, by replacing the set of nonautonomous
differential equations, representing the system, by a set of autonomous
equations and then applying Liapunov's Direct Method.

In order to develop a mathematical analysis, and teo illustrate
the difficulties involved, we shall first carry out a theoretical
stability analysis for a first order M.I.T. type system with controilable
gain wnen the input varies with time in both a sinusoidal and random
manner. Also considered will be the effects of

{a) random disturbances at the system output
and (b) pericdic and random variations, with time, of the controlled

process environmental parameter,
on the systém stability and the accuracy of the parameter adaptation. Al1l
the theoretical results will be compared with results obtained by either
analogue or digital computer simulation of the system.

The doubts concerning the stability and the difficulty of analysis
of the M.I.T. type system have led researchers to think about redesigning
the model-reference system from the point of view of stability. In
particular we have the Liapunov synthesis method 46’76’77; in this
approach a Liapunov function 1s proposed and centrol signals are chosen
such that its time derivative is negative definite. Should this be
possible then the resulting system can be guaranteed stable for all
possible inputs. However, in designing such systems the controlied
process environmental parameters are assumed constant; by considering
the Liapunov redesign scheme of the first order M.I.T. system discussed
earlier it will be shown that the effect of making the environmental

process paramcters time varying is to introduce a stability problem.



The thesis is concluded by extending the analysis developed for
analysing the first order system to investigate the stability of a
higher order M.I.T. type system. The system considered is that developed
by White 12 and has a third order controlled process and a second order
model. As pointed out by Horrocks 86 such a system, where the controlled
process and model are not of the same order, is most 1ikely to be of the
type used in practice. This is due to the fact that the order of the
model is almost exclusively determined by bandwidth requirements whilst
the order of the system is usually determined by the unavoidability of
including components and subsidiary loops to perform specific subsidiary
functions and by these components etc. introducing Tags intrinsic to
their structure.

A stability analysis for both sinusoidal and random inputs will
be presented. Steady-state values of the adapting parameters are first
obtained and then the linearized variational equations, for small
disturbances about such steady-states, examined in order to answer
the stability problem. Also considered will be the effect, on the
mathematical analysis, of replacing the system multipliers by diode
switchiﬁg units. _
| Since the model and controlled process are not of the same
ordeF it is no Tonger possible to have perfect correSpondence between
the two. It follows that for ~uch systems it is not possible to obtain
a Liapunov function that will guarantes asymptotic stability. By
introducing adjustable parameters around the controlled process a
method will be presented of obtaining a Liapunov redesign scheme

for the M.I.T. system under discussion.



LINCAR DIFFERENTIAL EQUATIONS WITH PERIODIC COLFFICIENTS

1.1. Introduction

Linear differential equations with pericdic coefficients form a
rost important sub-class of linear differential equations with variable
coefficients. The equations, which occur frequently in practice, may
arise directly from the equations of motion of a dynamic system, for
example, the flapping of a helicopter rotor blade ], but mora frequently
arise from an examination of the stability of oscillaticns in non-
linear systems.

Surprisingly the problem of investigating the stability of such
a system of equations is one of extreme difficulty and even tue

relatively simple scalar equation

d2x

— * (§ + = cost)x = O,

dt

the undamped Mathieu equation, poses major difficulties and has
essentially a theory of its own. A procedure frequently used by
atithors 2,3 is to time average the coefficients over a period and
replace the system of differential equations with periodic coefficients
by a system of differential eaquations having constant coefficients.
This is a dangerous procedure and gives rise to serious doubts

regarding the validity of the consequent stability analysis. It is

seen to fail for comparatively simple equations such as the equation

2

X 0.2 3% + (4.5- 4 cos 2t)x = O
dt

which is unstable 4.
Various authors have employed Liapunov's second (or direct)

method to obtain sufficient conditions for the stability of linear



differential equations with time varying coefficients whilst Bonginoro
apnlied an extension of the Nyquist-Darkhausen stability criterion to
obtain similar conditions when the coefficients are periodic. These

methods, however, can only be applied to examine systems of the form

x(¢) = Bx(t) + A(t)x(H),

where dot denotes differentiation with respect to time t, x(t) is an
n-colum vector, B is a constant nxn matrix such that the system

i =By is asymptotically stable and A(t) is an axn matrix whose
non-identically zero elements are time-varying. Furthermore, the
results obtained by these methods are usually rather conservative,

In this chapter a rigorous numerical implementation of Floquet
theory, well suited for digital computation, will be presented for
obtaining necessary and sufficient conditions to guarantee the
stability of a system of linear differential equations with periodic
coefficients.

The chapter will be concluded by considering the so called
infinite determinant method of obtaining the stability boundaries in
parameter space for a restricted class of Tinear differential equations

with periodic coefficients.

1.2. Stability theorem

Writing the system of equations as a set of first order
differential equations we have the vector matrix differential

equation

A(t) = At) x (t), (1.2.1.)

where x(t) is an n-vector and A(t) an nxn matrix saticfying the

condition.

A(t+T) = A(t),te[0,)



VO

For a linear system such as that defined in equation (1.2.1.) it

is possible, using Floquet analysis, to prove the following theorem.

Theorem 1.2.1.

For the system of differential equations (1.2.1.) there exists
: .6 .
a constant nxn matrix C, known as the monodromy matrix = of the system,

such that

x (b, +T) = Cx (t)s tye [0, =)

0
and a necessary and sufficient condition for the null solution of
(1.2.1.) to be uniformly asymptotically stable is that all the eigen-
values of the matrix C lie within the unit circle |z|<|. If the
eigenvalues of the monodromy matrix C lie in the circle lz]<], and
‘the eigenvalues on |z] =1 correspond to unidimensicnal Jordan cells,

then the null solution of (1.2.1.) is uniformly stable.

Proof

The solution of system (1.2.1.) may be written 7 as

x(t) = o(t) x (t,) (1.2.2.)
where l(to) is arbitary, g(to) = I the identity matrix, and
o(t) = P(t) exp LR(t-t)) 1, (1.2.3.)

where P(t) is a non-singular periodic matrix with period T and R is an
nxn constant matrix.

From equations (1.2.2.) and (1.2.3.) we have that

x(t,+T) = ¢ (t, + 1) x (t,)
=Pty + T) exp [ R(Eg+ T - 1)} x (k)
=exp { R(T) ¥ x (%)
Since E(to +T) = P(t) = L



Hence,

x(t,+T) = Cox(t) (1.2.4.)
where C is the constant nxn matrix dafined by

C = exp{RT]} (1.2.5.)

Every linear system of differential equations with periodic
coefficients, such as (1.2.1.), is reducible, in the sense of

Liapunov 8, by means of the :iapunov transformation

i

x = P (1) Y,

where P(t) is defined as in equaticn (1.2.3.). This transformaticn

carries equations (1.2.1.) into the form

y = Ry (1.2.6.)

where R is the constant nxn matrix defined in equation (1.2.3.).

An important property of a Liapunov transformation, which
makes it attractive in stability investigations, is that it does
not alter che character of the zero or null solution as regards
stability; so that, the null solution of system f1.2.1.) is uniformly
asymptotically stable (or uniformly stable) if and only if the null
solution of system (1.2.5.) is uniformiy asymptotically stable (or
uniformly stable).

Since C = exp { RT } it follows that the eigenvalues
Ay i (i =1,2, ---, n) of R and C respectively are related by

the formulae

1 - .
Ay ST log wis o= 1,2 ==--, n

From the stability theory of linear differential equations with

6, 0

constant coefficients the results of the theorem follow.



1.

1.3, Evaluation of the monodromy matrix

In order to compute the moncdrony metrix C, of equation (1.2.4.),
the system of equations (1.2.1.) are integrated numarically over a
period T. To do this it is coavenient to employ a numerical procedure
that may be reformulated in such a way as to give C directly. Since
it s completely self centained and requires no pre determination of
a set of starting values the Runge-Kutta methed 10 is given preference
over the various predictor-corrector methods of integration. An
alternative, as pointed out by Davison ]], is the Crank-Nicolson

12

procedure A formulation of C, based on these two procedures,

will now be nresented.

- 1.3.1. Runge-Kutta procedure

In order to compute the monodromy matrix C the fourth order
Runge-Kutta procedure of solving a system of first order linear
differential equations is reformulated as follows :

If

x(t) = At) x (t)s te [0, =) (1.3.1.)

where x(t) is an n-column vector and A(t) an nxn periodic matrix of
period T, then the period is split into a large number of intervals
N, each of duration at (= T/N), and the following finite difference

relationship employed

X+ 1 at) = x (mt) + g (o + 20, + 20y + o) (1.3.2.)

where

ap = At A (mat) x (mat) = Eq X (mat)

= ot A (m+3at) [ x (mt) + 3]

A

= At A(m+3at) [1+13 S ] x (mat), where I is the nxn

identity matrix

= K x (mat)




ag = At A (m+ } 2t) [x(mat) + } o]
=at A (m+ 3 oat) [L+ 3 K1 x{mat)
= Ky x (mat)

g = AL A (m+ 1 at) [x(mat) + as]
= At A (m+ 1 at) [L+ 53} x(mat)
= 54 x(mat)

Substituting in equation (1.3.2.) for oy, o5, ag and oy gives

1,

N

x(ma 1 at) = [Lrek +gk + 3K+ 5k ] x(mt),
that is,

x(m+ 1 4at) = B (mat) x (mat) (1.3.3.)
where

Bimt) = L +4k 3Ktk tgk, (1.3.4.)

By repeated application of (1.3.3.) the sclution at the

end of

a period in terms of that at the beginning of the period becomes

X(N at)

vihere

[

is the required monodromy matrix.

1.3.2. Crank-Nicolson procedure

B (N-1at)B(N-2at) ---- B(o) x(o)

(1.3.5.)

The Crank Nicolson method of numerical integration for system

(].3.].) leads to the following finite difference relationship



13.

x{m+ 1 at) = rr- ot

% A (mat) A(mat) T x{mit)

(1.3.6.)

where 1 is the nxn identity matrix and at as defined in Section

(1.3.1.)
that is,

x(m + 1 at) = B* (mat) x(mat) (1.3.7.)
where

B¢ (mat) = [L-5% A mt) 77N +2EA mt) ] (3.8,

Bv repeated application of relationship (1.3.7.) the solution at
the end of a period in terms of that at the beginning of the period

bacomes -

XT) = x(Nat)

= B* (N - 1at) B* (N -2 at) ------ B* (o) x (o)
N - 1

- | . B* (r at) x (o)
r =20

= Cx (o)
N -1

where c B* (r at) (1.3.9.)

]

is the required monodromy matrix.

As indicetad by Davison 1 this method of determining C is
inherently stable for any choice of N since the eigenvalues of the
matrices

-1

[I-5% A@mat) ], [ I+ %E A (mat) 5 m=0,1, ---, N -1

7 ° ]
are all less than unity in absolute value. Davison found that at
Teast four significant figure accuracy in the calculation of C

was obtained if N was chosen as



No= 30 v max | A, = A(t) I ,
t GO
Where Xdom A(t) is the largest dominant eigenvalue of A(t) which is
nen zero.

Both the Runge-Kutta and Crank-Nicolson procedures have been
employed in the work described in this text and it was found that
although a smaller step lenqgth At had to be used when employing
the Crank-Nicolson procedure the computer running time was usually

less,

1.3.3. Numerical check on the value of the monodromy matrix

A check on the value of the monodromy matrix C may be made

using the following result.

Consider the determinant D(t) of the monodromy matrix at time

t, then

D (t+at) = | L+A(t) st{o(t)

(1 + trace A(t) &t) D(t)
to first order in &t} so -that
D (t) = trace A(t) D(t)

Thus, since Do) = 1, we have tnat

t
D(t) =-exp { f traca A(t) dt } (1.3.10.)

0

Hence, over a period T equation (1.3.10) gives

-
det C = D(T) = exp{ f trace A(t) dt }

0 (1.3.11)

1.4, Eigenvalues of the monodromy matrix

~

Having computed the monodromy matrix C the next step is to

€xamine its eigenvalues. Although the matrix C is itself real

Some of its eigenvalues may occur as complex conjugates and this

14,



sometimes causes difficulties regarding time of convergence when
employving standard numerical methods of evaluating the eiqenvalues.
A gocod discussion of these numerical methods, together with the
difficulties involved when the eigenvalues occur as complex

. . P 13 . 11
conjugates, may be found in the work of Wilkinson 7. Davison

in his paper evaluated the eigenvalues of C using the Q-R procedure 13_

Bearing in mind that in the problem at hand it is not necessary
to know the exact values of the eigenvalues of C, but rather it is
only required to show that their modulii are less than unity, a very
elegant procedure, based on the works of Faddeev 14 and Jury 15, 16’
has been introduced to deal with this problem. This procedure, which
only involves matrix multiplication and the evaluation of determinants
of order twe, has manvy advantages over any of the numerical methods
available for evaluating eigenvalues. It is a comparatively simple
Procedure and requires far fewer arithmetic operations; it is readily
Programmed ®nd the running time is comparatively small. It has the
distinct advantage in that it is not an iterative procedure, so that
the question of convergence does not arise.

In this work therefore the method employed to examine the
eigenvalues of C (except for iratrices of order two where the eigen-
Values were obtained by direct solution of the quadratic) is to
first obtain the characteristic polynomial using the Faddeev algorithm

and then determine whether or not the roots of this polynomial 1ie

inside the unit circle using the determinant mathod of Jury.

1.4.1. The Faddeev algorithm

I[f the characteristic polynomial of an nxn matrix Ais

represented in the form
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then the Faddeev algorithm states that the coefficient pi(i =152, ===, n)

may be computed in the following manner :-

- , - ——
P, = witrace A, r=1,2, > 1
Where A= A when r =1
= AB when r = 2,3, ===, n
——r =]

[, where T is the identity matrix of order n.

rust be the null matrix.

NOTE By the trace of a matrix is meant the sum of the terms in the

leading diagonal; that is,

n
trace A = ] (a;5)
i=

An algol program for this procedure is given in appendix (1.1).

1.4.2. The doterminant method of Jury

This procedure gives necessary and sufficient conditions for the
Polynomial

F(x) = x" +a ]xn "1y 3, an R — ax + a

to have all its roots inside the unit circle. It only requires the
evaluation of second order determinants and can be easily programmed
On a digital computer.

The conditions are obtained by forming table (1.4.1.) (note that
the elements of row 2K + 2 consists of the elements of row 2K + 1 written

M reverse order; K = 0,1,2, ===, n).



TABLE 1.4.1.

A Stability Procedure Table

17.

Row LN UL B I ML S X! X
VLT g e, B-K 2 %
2 a, 3 3, ay -2 | %A
3 [b, | by |b, by "r-2 | Pn-1
4 bn=1| Pn-2 | Pn-3 by-2-k by b
6 “h-2 | n-3 | Cn-4 “h-2-k “
7old, a4 |4, dy
8 1 3| g | dnss -3
1
21~
n-5 so 51 S, 53
2n-
n-4 53 52 s] SO
on-
n-3 ro _ r] ! r2
on-
n-2 r2 r] ro
2 - .
n-1 LO
wh = =
ere by Toak | % by bpopai |» ¢ Ch-2-x
% % bn—] bK n-2 K‘
~~~~~~~~~~~~~~ N tO = rO rz
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Necessary and sufficient cenditions for the nolvnomizl (1.4.7.)
to have all its roots inside the unit circle (that is, stability

conditions) are :

(1) F(1) >0 , (-D"F(-1) =0

(i1) bo > 0, €0 7 0, do > 0y mmmmes 59 7 0, Yo ” 0, to >0

(n-1) constraints

An algol program for this procedure is given in appendix (1.2).

1.5. Infinite determinant method

Since it requires that the form of the solution on the transition
boundary between stable and unstable solutions (henceforth referred to
as the transition boundaries) be known this method is only suitable for
obtaining the stability boundaries in parameter space for a restricted
class of linear, periodic coefficient ordinary homogeneous differential
equations. The method has been used ektensive]y by Bolotin ]7, in
studying problems of elastic stability of structures under parametric
excitation, and in this section we shall restrict ourselves to a brief
discussion.

System (1.2.1.) does not necessarily have periodic non zero
solutions of period T. However, a basic consequence of the work of

18, 9

Floquet is the conclusion that the system has at least one

solution of the form
x:(t) = exp { (Toga,)t/T } p; (t) (1.5.1)

Where gﬁ(t +T) = gj(t) and Ai is an eigenvalue of the monodromy matrix
of the system, Furthermore, if the eigenvalues Ai(i = 1,2,-===, m),
T<m<n, of the corresponding monodromy matrix are all distinct

then there are m independent solutions described by (1.5.1), and if
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m = n these form a fundamantal systen of solutions.

Equation {1.5.7) asy be written in the forn

x;(t) = exp { Toglayp

YT 3 e (3 ergB) T 3 py(t), =T

(1.5.2)

Since, from theorem 1.2.1, there must always be an eigenvalue vith
modulus exceeding unity for instability, and there can be no such
eigenvalue for stability, it follows from the assumad continuous
dependence of stability on parameter values that there must exist an
eigenvalue of modulus unity for parameter values on any boundary
between stable and unstable regions. Thus, on these tiansition

boundaries there must exist an almost periodic solution of the form

ﬁj(t) = exp { J (argki)t/T } Ei(t) (1.5.3)

(Note that in general such solutions may also exist inside stable
and unstable regions but not within regions of uniform asymptotic
stability).

If the monodromy matrix of the system is symplecticT then
its characteristic equation is reciprocal 6 (canonical systems' ' are
examples of ‘such systems). It follows from theorem 1.2.1. that
asymptotic stability is imnossible for such systems since if Ais
a root of the characteristic equaticn of the monodromy matrix, is
in |z[<| then 1/x; (also a root of the characteristic equation) is

in |z]>]. In the case when the eigenvalues are on the unit circle

¥ A matrix A is said to be symplectic if it satisfies the property

01
A* E A = E where E =[ T, I being the identity matrix.
10
++ A differential equation system is termed canonical if it can be
. 2 H
written in the form of Hamiltons canonical equations Py = %é"y
i

. oH

i 5ps
i
the system will be linear.

If H is a quadratic form in the variables p., q, then
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and the normal Jordan form is diagonal all solutions are bounded. (This
is the case in the stable region for the undamped Mathieu equation). The
remainder of this section will be devoted to systems having a symplectic
monodromy matrix.

It follows that if the transition boundary is characterised by
the presence of a real root A then Ay and its reciprocal must each
have the value +1, or the value -1, giving a root of multiplicity two
¢ the boundary. Figure 1.5.1(a) illustrates the locus of points
in the complex plane occupied by the real numbers X5 and 1/Ai as
transition is made in the parameter space from the indicated unstable
region to a stability boundary. However, in general, the transition
buundary may be characterised by complex roots. If A., [x:[>], is a
complex root then, due to the characteristic equation having real
coefficients, there must exist, in addition to the reciprocal Aj of
Ai’ the complex conjugates of both A and Aj (denoted by Ai*, Aj*
respectively). Thus, as illustrated in Fig. 1.5.1(b), the transition
to a stability boundary from a region made unstable by a complex root

of modulus exceeding unit is marked by the presence of two roots of

multiplicity two.

fiIm(A)

(2) , (b)

FIG. 1.5.1. Locus of characteristic rcots in transiticon frem unstable
‘ region to stability houndary.
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If Ay = +1 is substituted into cquation (1.5.3) the result §s a

pericdic solution of period T

x;(t) = p;(t) {1.5.4)
On the other hand substituting A = -1 into equation (1.5.3) gives
5i(t) = exp { jnt/T } Qi(t) (1.5.5)

Winich 1s-a function of period 2T. Thus, if one can be assured a priori
that for a given system all transition boundaries are marked by no more
than one multiple root then such boundaries are characterised by the
existence of a periodic solution of period T or 27 (Note that equation
{1.5.5.) is a restricted class of functions of period 2T, e.g. a constant
does not qualify).

Thus, if it is known a priori that one pair of multiple rcots
marks a transition boundary then the path is clear to search for such
boundaries in the form of a search for solutions of known period.

This information is known for second order systems since then there

are only two eigenvaiues and instability due to complex roots is
impossible. This argument also applies to uncoupled canonical systems
of dimension n = 2N, with N an integer representing the nurbzr of
degrees of freedom of the dynamical system. In other words if equation

(1.2.1) may be written in the form-

I(tf§ + K(t)g = 0,

With the NxN matrices I(t), K(t) diagcnal, then the system is no more
than a collection of independent second order scalar cquations and the
Previous argument applies to each of the scalar equations individually.
The several unstable regions can then be superimposed without ambiguity,
even though it may happen that a stability boundary from one scalar

€quation crosses into a region which is unstable by virtue of another
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“scalar equation. 1t is clear hewever that more work is needad to pevmit

thi

2]

jdentification of those differential egquations (1.2.1) wihich neetl

b

the requirenent of having solutions of period T or 2T on all transition
boundaries znd nowhere else in parameter space.

For systems whose transiticn boundaries are characterised by
periodic solutions of period T or 2T the numerical procedure employed
to find the transition boundaries is as follows. If there exists a

solution of period T, it must be representable by a Fourier ceries of
P

the form
_ - - . Kt . Kat
X = 90 + E A sin ==+ EK oS ——
K=2,4,6 J

where 90, A and EK are real, constant n colum vectors, of values as
yet und;;termined. This series solution is then substituted into the
system equations (1.2.1) and the principle of harmonic balance employed
to obtain an infinite system of simultaneocus, linear, homogeneous
algebraic equations fur the coefficients. For those values of the
parameters which admit the assumed periodic solution the homogeneous
algebraic equations must have a non-trivial solution and this is the
case only if the infinite determinant (Hi11 determinant) of the
coefficients is zerc. In practice the Fourier series is truncated

and the corresponding Hill decerminant, if finite order, solved to

give lines in parameter space (which correspond to zeros of the
determinant). If the truncaticn point of the Fourier series is
extended and the zerus of the corresponding Hill determinants of
increasing order converge to some limit set of lines then the infinite
determinant procedure is said to be convergent; the convergent set of
lines in parameter space being the required transition boundary between

stable and unstable regions. To determine the region of instability
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bounded by the periodic selution, with pericd 2T, we represent the solution

]

by a Fourier series of the form

o)

" ‘ e Kt o Kat 1
X = ) i*K S — + EK cos ~
K=1,3.,5

i

and then proceed in an snalogous menner to that employed for the solution
of period T.

. - e 19
In a recent paper Lindh and Likins

discussed above to completely damped mechanical systems of the form
! i Y

i

I(t)g + G(t)g + D(t)g + X(t)a 0,

where I(t) and D(t) are symmetric, G(t) is skew symmetric and all the
matrices are periodic with pericd T. Their method involved a search
for an almost periodic solution, of the form defined by equation (1.5.3),
which by the nature of the system must exist on all stability boundaries,
and cannot exist within regions of stability. The method was illustrated

by application to an attitude stability problem.
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CHAPTER 2

LINEAR DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

'2.]. Introduction

In recent years the problem of investigating the stability of the
solutions of differential equations with randomly varying coefficients
has been studied by many authors and a recent survey of this work may

20. The most successful of these investiga-

be found in a paper by Kozin
tions made white noise assumptions for the coefficients as then the
methods of the theory of Markov processes may be utilized. Investigation
of the stability under non white excitation has proven to be much more
difficult and for this reason most authors have limited their investiga-
tions to systems of some particular type.

Definitions for various types of stability have been proposed for

systems with stochastic coefficients 20, 2],

Which of these stability
concepts is most useful, or most significant is still undecided and
Kushner 22 has stated that the proner concept of stochastic stability

20, 23, qaintains

remains to be settled as the subject develops. Kozin
the view that when studying real systems that are subjected to random
Vvariations in their parameters, or are operatiné within randomly
Perturbed environmental conditions then one desires stability properties
as close to deterministic stability as possible so that conditions that
Will guarantee almost sure symptotic stability is the goal to aim for.
'In this work we shall be concerned mainly with three types of
Stebility namely : stability in mean, stability in mean square and
almost sure asymptotic stability end we shall investigate such
Stability under two random coefficients variations viz :

(i) Gaussian vhite noise processes

and  (ii) Gaussian non-white processes
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2.2. Mhite and physical white noises

When dealing with white noise one must be careful to distinguish
between two distinctly different types of systems that appear in the
Titerature. ‘

In practice when one is dealing with noise corrupted systems

the state equations representing the system are written

dx(t)
dt

I
Where x(t) is the n-state vector, a an n-vector, B an nxn matrix and
x(t) an n-vector whose elements Xi(i = 1,2, =----, n) are regarded as

Gaussian white noise processes satisfying the conditions

1

= a(x, t) + B(x, t)x(t), te [0, =), (2.2.1)

E(x; ()} = 0 i,j=1,2, ===, n (2.2.2)

Efx;(t) x;(t + 1)) = 20, o(x)

- Where E denotes the mathematical expectation, § denotes the Dirac delta
function, 4D*j is the cross spectral density of Xi(t) and xj(t) and
Wwhen { = j, 4Dii-is the spectral density (self) of Xi(t)'

Formally the integral of Gaussian white noise is the Wiener or

Brownian process 24 so that equation (2.2.1) is apparently identical
With the stochastic differential equation or Ito equation 25
dx(t) = a(x, t)dt + B(x, t)d z(t) , t e [0, = ), (2.2.3)

Where z(t) is an n-vector process whose compenents are assumed to be
Wiener or Brownian processes. However, this is not the case since
White noise is not integrab]e (since it has an infinite mean square
Or power) and a Wiener process is not differentiable so that the
relationship between equations (2.2.1) and (2.2.3) 1is strictly a

Tormal one.
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To analyse the solutions of equation (2.2.1) all that is
required are the ideas of the ordinary calculus but in the case
of equation (2.2.3) the situation is quite different. Equation
(2.2.3) is strictly symbolic and cne cannot divide throughout by
dt to give an equation that makes sense in the ordinary meaning
of a differential equation. This equaticn, however, has been
given a precise definition by Ita 25 who repre;ents it by the

stochastic relation

t t
x(t) = x(t) + jt alx(1).0) dr + [t B(x(v).r)dz(r) o (2.2.4)

"o 0
where the last integral in equation (2.2.4) is the so called stochastie
integral introduced by Ito for studying such systems. It is in the
introduction of this stochastic integral that the difference between
equations (2.2.1) and (2.2.3) begins considered as a normal integral

24 it differs quite

it does not exist and as demonstrated by Doob
often from formal integrals. For a more detailed discussion of the
relationship between equations (2.2.1) and (2.2.3) the reader is
refarred to a paper by Wong and Zakai 26 |

In practice the elements xi(t)’ i=1,2 ----, n, of x(t) are
usually an approximation for Gaussian white noise and sometimes

referred to as physical white noise; that is, they are Gaussian
1

== vhere w is the

Processes with a very small correlation time 1 (1
Cut-off frequency of the process) which is not identically zero as
for a s-correlated process (theoretical white noise). Thus, in
Practice a wideband noise process whose cut off frequency is high
but finite is recarded as physical white noise if o >> %3 where T is
the integrating constant of the physical system (such as a low pass

filter). It follows therefore that in practice the elements dzi(t)

of equation (2.2.3) do not truly represent Wiener processes but
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rather dZ1'(t)/dt are mathematical apprcximations to Gaussian white
noise processes with small correlation times. In this case the
elements zi(t), i=1,2, ----, n, of z(t) are not such that they
require the use of a different concept of integration and for this
reason engineers usually use a formal integral in equation (2.2.4).
However, it should be clearly understood that the representation of
white noise processes by physical white noise processes is enly a
Convenient mathematical abstracrion and should be treated as such;
in the strict mathematical sense the last integral of equation
(2.2.4) should be taken as the stochastic integral and equation
(2.2.3) defined as by Ita. This Tast paragraph serves to illustrate

why the solutions of equations (2.2.1) and (2.2.3) are seen in a

different Tight by mathematicians and engineers,

2.3. Use of the Fokker-Planck equation

The work of this section follows closely that of Ariaratnam
dnd Graeffe 27, 28, 29, 30, Caughey, Dienes and Gray 31, 32 and
Kozin 33.

We shall consider the linear system
dx(t)

—é—-“ﬂ_&(t) +B(t) x(t) = g(t) s te [0, =), (2.3.1)
t .

vhere x(t) is an n-column vector representing the state of the system,
Aan nxn constant matrix, B = (Bij(t))’ i, J = 1,2, =-=-, n, an nxn
Matrix and g = (Bio(t))’ i=1,2, ----, n, an n-colum vector of

Gaussian white noise processes with the following statistical properties

E{Sij(t)} = 0 i, = ],2, === N
0,1,2, ==-=-, n

N

E(;5(t)epg(t + 1)) = 2D, 0 6(x) 4, s

(2.3.2)

“the synbols being defined as in section 2.2.
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It may be shown (Ariaratnam 34, Wang and Ublenbeck 35

) that
the state vector x = | Xps Xgs =777 X ]] of system (2.3.1) is an
example of a continuous n-dimensional Markov process (that is, a
process whose future state depends only on its present state and is
independent of how the process attained its present state). Such

a process is completely described by its transition probability law

which may be cbtained as the fundamontal solution of the Fokker-Planck

equation
n n n .2
37 (B, :p)
ooy ey 3oy U (2.3.3)
i=1 i=13=1 %%

appropriate to the system, where p = p(Xx, t/fo’ to) denotes the
probability that the state point lies in the differential element
(x + dx) of state space at time t given that it was at the point

X, at time t0 and the coafficients A1 and Bij are given by

E{dxi]
Ai = Timit
§t»0 §t
i,j = 1,2, ====, n (2.3.4)
E{6x.8x.}
B.. = limit L
J §t>0 6t

[53221,1 When the thecretical white noise processes of equation (2.2.5)
are replaced by the practical physical white processes then the state
vector x(t) does not truly represent an n-dimensional Markov process,
but if one is only interested in bchaviour that takes place in "macro-
Scopic" time intervals (those larger than the correlation time) then
only the first conditional probability density is needed to describe

X(t) and the process is effectively Markovian 32,



Note 2 The Ita or stochastic differential equation
dx(t) + A x dt + dB(t)x = dg(t),

where dB(t) = (dBij(t)) and da(t) = (ds; (t)) are nxn and nx1 matrices

“io
respectively whose elements are increments of Wiener or Brownian

processes, will give rise to a different Fokker-Planck equation to
that representing system of equations (2.3.1) 30, 32 ]

Various methods have heen presented for evaluating these

28-34

coefficients and for the system of equations (2.3.1) subject

to conditions (2.3.2) the coefficients have been evaluated by

. 9
Ariaratnam and Graeffe 39 as

o
H
~nN
—~—
=

]

iojs X ¥ irjs xrxs) «}

(2.3.6)

The working details of obtaining these results are easily understood by
Studying the proB]ems considered in chapter 4,

The general solution of the Fokker-Planck equation presents
great diff{cu]ties 36 and explicit solutions have been obtained only

for certain linear systems 31,

However, in stability investigations

a knowledge of the moments of the system response is usually sufficient; -
differential equations governing these moments are conveniently obtained
from the Fokker-Planck equation and these then may be solved recursively
for the various moments.

Denote the mixed moments of order N by

’ K K K
My (k], KZ’ —— Kn) = E{x] 1 Xp 2 mm=es Xo n}, N =1,2, etc.

(2.3.7)
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where K], KZ’ ——— Kn are positive integers satisfying
Ky + Ky + ===+ K= N
oy . . K K K
Multiplying equation (2.3.3) throughout by X, 1 X, 2 --~- X, N
and integrating by parts over the entire state-space - » < x < = leads
to the following moment equations 29. ,
d n o n
- - v % - - - ’ -
aTt- mN(K],Kz,-"_,Kn) = Z L a'i\" K_i n]N(!\-I, Py Ki ], » Kr'l"], Kn)
i=1 r=1
n n n o n $ 3]
+ }: z z Z {K (K _]) (1 - J) D'““J'S mN(K'I 37T T K.i'] ’——-,Kj-],---’
i=1 j=1 r=1 s=1 iv K 41,7 K41, K.)
> s b ) ] n

2 1]

n Y].Kj (i +3)
i=1 j=1 s=1

} Dirjo Mu-1{Kysm=ms Kymlam=oKy=T,m--

K (Ki-1) (i = 3)
Kr+1,---, Kn)

n n KK, (i % i)
) { ity | )] ;D30 My-z (Kpam=ms Ky=TmmmiKimlymem )
K, (Ks-1

=1 §=1 (i=3
non
) D1rro Ky Mg (Rysmm=s Kymls ==y KD
i=1!r=]
n n n
ol DL Dy Ky My (Kpammms KymTommmy Ketly =omy )
i=1 r=1 s=]

(2.3.8)

[ Note  Care must be exercised when evaluating the last term in each of

the summations as it may happen that morc than one K with the same subscript
. arises in the argument of m. In these cases, the appropriate power of

the corresponding X, in the expression for the moment should be taken

€qual to K2 plus the algebraic sum of the numbers added to all the KQ



appearing in the moment term. For example, the fourth summation in

(2.3.8) for the case i = J =n which appears as

Kn(Kn’]) Dnono -2 (Kl’ T Kn-]’ T Kn-]’ T Kn)
is to be regarded as
Ky (Kn=1) Drone Mi-2 (Ko =7 Ky=2). ]

From equation (2.3.8) it is seen that the moments of order N are
only related to the moments of order less than N, and for a particular
N there are as many equations as there are mixed moments of that order.
Thus, all the higher moments can be found recursively oncé the first
moments are found.

When using the Fokker Planck equation approach in stability
theory wa are interested in two types of stability, namely stability
in mean and stability in mean square. The system, represented by

equation (2.2.3), will be said to be stable in the mean if

limit E{xi(t)} <Ky K] = constant, (i = 1,2, ===, n)

tro
and stable in thé mean square if

Timit E{xi(t)xj(t)} < KZ’ K2 = constant, (i,j = 1,2, ---, n)

oo .

It follows from equation (2.3.8) that a necessary condition for mean
Square stability is the existence of mean stability.

Necessary and sufficient conditions for stability in the mean
and stability in the mean square are readily obtaired by applying the
Routh-Hurwitz criterion to the sets of differential equations governing
first and second moments respectively.

If the cocfficient variations of the system are Gaussian but

Non-white, then the response of the system no longer forms a Markov
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process35. It is possible however to construct time invariant Tinear

filters which, with Gaussian white noise as input, will have the required
non-white Caussian variations as %g;ut. Introducing the filters nroduces

a system whose response is a Markov process and therefore its correspending
Fokker-Planck equation may be obtained by the procedure described above.
However, as illustrated through an example by Kozin 33 (see also an

example in section (4.6.1) of this text), the additional state variables
iniroduced by the filters enter the system equations in such a way as to
make them non-linear. The differential equations governing the moments

of the response can no longer be solved recursively, since it is found

th moments

that they are interrelated; that is, when solving for the N
ene requires knowledge of moments higher than N. To talk of mean square
stability in this case wou]d'therefore mean neglecting higher order
moments than the second and, in general, no justification can be given
for doing this. It therefore foT]ows that the stability problem, in the
case of Gaussian non-white coefficient variations, using the moments
approach reduces to a problem of examining the eigenvalues of an infinite
matrix,

In conclusion it is noted that another important property of the
Fokker-Planck eqﬁation is that it gives a convenient method of obtaining

the correlation functions and the power spectra of the system response30’31.

2.4. MWork of Samuels

Samuels and Eringen 37 developed specific criteria of determining
the mean squared stability of random systems when a single parameter
varies as a white noise process while the others remain constant. A
general theory of mean squared stability of random linear systems was
developed by Samuels 38 under certain assumptions, but specific results
were only given for systems with a single random parameter.

39 th

In a later paper Samuels considered the n™" order linear system



Ioo(ay o+ oeg(t)) = f(t) (2.4.1)
i=0 dt

where f(t) is a prescribed stationary ergodic random function independent
of the Bi(t)’ (i = 1,2, ---, n), and bounded in the mean square, the
B.(t), (i =1,2, ===, n), assumed to be white noise processes having the
following statistical properties

E{B;(t)} = 0

Es; (t) Bj(t + 1)} = ZD” 6(1)

1, 3 =1,2, ===, n (2.4.2)

the symbols being defined as in section 2.2. Samuels did riot make use
of the fact that the state vector is a Markov process and he avoided

the pathological properties ¢f the white noise processes by considering
the integral equation associated with equation (2.4.1). A solution of
the associated integral equation was obtained by the method of successive
approximations and, by multiplying the solutions at two points t] and t2
and averaging, a set of sufficient conditions were obtained that
guaranteed asymptotic boundedness of the second moment E{xz(t)} and
referred to by Samuels as mean square sfabi]ity (in fact the condition
guarantees that the second moment decays to zero éxponentia]]y) Samuals
applies his theory to obtain sufficient conditions for the mean square
Stabi]itf of an LCR circuit in which the resistance and capacitance

have purely random fluctuations; however, as pointed out by Caughey 40
this part of the paper contains a number of errors which invalidate
many of the results. The results of this paper are rather complicated
and are not readily extended to a system of linear differential equations.

o extended his concept of mean squared

Samuels in a fourth paper
Stability to consider the stability of the linear system (2.4.1) where
the paramater processeslsi(t), (i = 1,2, ---, n), are no loncer white

Noise processes but Gaussian processes having statistical properties



ECe; (1)) = 0

Ep; (t)8;(t + 1)} = oy4(x)

isj = ],29 ===, n (2.4.3)

where pij(T) is the cross correlation function of Bi(t) and Bj(t) and,
when i = j, Py is the autocorrelation function of Bi(t). It is further
assumed that the Gaussian processes are obtained by linear filtering of
white noise, that is,

B () = [ W (t-ox(e)de = 1,2, -, n, (2.4.4)

J
-0

where wi(t)’ i=1,2, ---, n, are known weighing functions and x(t) is
a white noise process which is represenied as a sequence of independent

delta functions as follows:
N
x(t) =} A s(t - ory) , E(AL} =0 (2.4.5)

By considering the integral equation associated with equation
(2.4.1) Samuels obtained a system of linear integral equations for
determining the various second order moments of the system. This
system 6f integral equations were then solved by using a double Fourier
transform to obtain sufficient conditions to guarantee mean square
Stab{]ityf Again the procedure is very complicated and not readily
extended‘to a system of linear differential equations with random

coefficients.

2.5.  Liapunov Concepts of Stability

Since it gives rise to stability conditions without actually
solving the differential equations representing the systen the second

method of Liapunov 42, 43

seems to be a natural tool for the study
of dynamic systems with stochastic coefficients and a large portion

of the Titerature has been devoted to this approach.



Stability is essentially a question of convergence so that when
dealing with systems having stochastic coefficients, where the question
of convergence deals with Timits involving random variables, it is
necessary to speak of convergence in a stochastic sense. In probability
theory there arc three common modes of convergence, namely :

(i)  convergence in probability

(i) convergence in the mean

and (iii) almost sure convergence.

The stochastic versions of Liapunov stability relative to these three
modes of convergence are accomplished by changing the modes of
convergence as they appear in the concepts of Liapunov stability for
deterministic systems. These definitions of stability appear in a

44 (a brief discussion of these is

paper by Bertram and Sarachik
given in appendix 2.1) who appear to be the first in the U.S.A. to
apply the second method of Liapunov to the study of stability of

| Stochastic systems.

In reference (44) the authors consider the stability of the

equilibrium solution x(t) = 0 of the general system

X(t) = fx(t), t, y()) , te [0, ) (2.5.1)

where x(t) is an n-vector describing the state of the system, f is a
continuous n-vector function of the stochastic process y(t), f satisfies

a Lipschitz condition and is such that f(0, t, y(t)) = 0 for all te[0, =).
Although the results of the paper give sufficient conditions for stability
in the mean for the gencral system (2.5.1) no method is given for
obtaining the necessary expectations and the criteria obtained are
effective only in the cases when the solution of the system is a Markov

Process. A particular exanple considered in the paper is

X(t) = A (1) x(t), x(t,) = x, > tet, =), (2.5.2)

where A{t) is an nxn matrix with time varying random elements. In the
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(92}

particular case where A(t) is the diagonal mairix

]:i:j} i,j='l,2,—--—,n
0, ¢

and the parameter variations are stationary Gaussian processes with

[ﬁij(t) 51j] > 845

Gij

il

a;(t) = -by + cy(t) , where Elaj(t)} = - b,

a sufficient condition for global stability in the mean is

d . t t
a1 exp [- by + f ( P..(t - udidu } <0, i=1,2,---, n,

J 11
to to

where Qii(T - u) is the correlation function E{ci(r)ci(u)}. However,

it is only in the case where

P..(t - u) = aiza(f - u) (theoretical white noise)

il
that the condition for global stability in the mean may be written

explicitly as

a.2

b. > -—i-
! 2

s 1 = 1,2, ===, n.

Almost simultaneously Kats and Krasvoskii (who appear to be the
first workers in ‘the U.S.S.R. to apply Liapunov techniques to stochastic
systems) published a paper 45 similar to that of Bertram and Sarachik.
Although the authors in this paper present a more comprehensive study
of the subject they restrict themselves to considering the particular
Case when y(t) is a homogéneous Markov chain with a finite number of
states‘{ll, Yos =77 XK}‘ The probability pij(At) of the change from

state y. to state Y during the time At satisfying the condition

pis(ot) = Bisot + o(at) , 1 =3, 17§=1.2,--- K

Bij ='cqnstant s

Wwhere o(At) dznotes an infinitesimal of higher order than at. In this

particular case they were able to obtain a specific formula for the
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quantity

g»f E(V(x,tsy)} »

where V(x,t,y) is a Liapunov function for the stochastic system (2.5.1),

in the form
n K
TEEVx v, 0 =30+ ] T filstay) © T osg [ty )] -
i=1 2%j
V(x, t, Xj),
(2.5.3)

Where E{V/X, Ys t} denotes the conditional mean of V wfthii(t) = X,y(t) =
yy(t).

It is worth noting that for computing the derivative, just as in
the case of ordinary deterministic systems, it is not necessary to
integrate equation (2.5.1) but it is sufficient to know only the right
hand sides cf the equation and the probability characteristics of the

random process y(t).

Restricting themselves to the linear system

x(t) = A (y) x (2.5.4)

Kats and Krasvoskii established that if the equilibrium solution Xxz0

posses asymptotic stability of the mean, then, for any positive definite

form W(x, y) there exists a unique Liapunov function V for which

%f ECV(x, Y)} = -0 (x, )

Thus by evaluating (2.5.3) for the form

n
2
V(x, lﬂ) = ) b](xJ) X
i=1
rey obtain

n

Tolagq(y)xy + =---- va (vx] 2 (x, y.)

= s1 =31 sn'=j’"n X = AJ

5=]



+ Dby V06 y) - Vs y ] = Uk, vy (2.5.5)
Kt

They are then able to obtain conﬁitions on the coefficients of V by
equating them with the coefficients of the positive definite forn U
via equation (2.5.5).

As will be mentioned in section (5.3) Shackcloth and Butchart 46
applied these results, with little success, to investigating the
stability of a model reference adaptive control system with time

varying environmental parameters.

2.6, Piecewise constant systems

Due to the difficulties involved in obtaining explicit results
for continuous linear systems many of the early researchers turned

their attention to investigating the stability of linear piecewise

constant systems of the form

x(t) = A(t) x(t), (2.6.1)

Where A(t) = Ay, t <t <ty s K=0, 1, ete. (2.6.2)

A, constant matrices.
[N

Using a direct method of solution Bertram and Sarachik 46 obteined the

solution
K

x(t) = Bt = 10 ] [ Byt - ) x(8)s <t < o
i=1

where_&(to) is the initial state and
Pt - ty) = exp [AK(t - t)]

In the case where the BK are statistically independent on successive
intervals a sufficient condition for global stability in the mean of

the system is that
o1
E@ (6= t) (g O+ BR0) B (t - )

be negative definite in each interval for a positive definite Q.
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47 48

Using the Kronecker product of matrices Barachua examined
the stability of the discrete linear system (2.6.1). Although his
results allowed him to treat a wide class of systems it required
explicit integration and is also quite cumbersome due to the introduction

of the Kronecker products.

2.7.  Linear systems of the form X = (A + F(t))x

In order to obtlain results for higher order continuous systems
without being restricted to the class of systems that can be explicitly

49

solved in closed form Kozin considered linear systems of the form

x(t) = [A+F(t) Jx(t) s te [t =) - (2.7.1)

where (i) x(t) is @n n-vector representing the state of the system
(1) A is a constant nxn matrix such that the system y = fiy is
asymptotically stable in the large; that is, y(t) ~ 0 as t + » for al]
z(to). This is guaranteed if all the eigenvalues of A have negative
real parts; that is, A is what is termed a stability matrix.
(ii1) F(t) is an nxn matrix whose nor-identically zero elements

are stochastic processes .

"{fij(t) s te [t =)
satisfying (a) the processes are continuous on [to, ©) with probability
one

(b) the processes are strictly stationary

(c) the processes satisfy an ergodic property guaranteeing
the equality of time averages and process expectations with probability
one.

Tre trivial or stationary solution x(t) z 0 of system (2.7.1) is

said to be almost surely asymptotically stable in the large relative
to a region R if for all solutions x(ts Xg» to), XeRs of (2.7.1) we

have the property that
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<

Timit || x(ts x, t) =0 (2.7.2)
toreo
holds with probability one. (Note that this definition is equivalent
to aimost sure Liapuncv asymptofic stabi]fty, since (2.7.2) coupled
With the continuity of the solutions guarantees the boundedness of the
solutions of (2.7.1), which in turn implies Liapunov stability for
Tinear homogeneous systems, this equivalence however does not hold

for systems in general 25).

-
By applying the Gronwall-Dellmann lemma >0 to the integral
equation equivalence of equation (2.7.1) Kozin showed that a sufficient

condition for system (2.7.1), subject to conditions (i), (ii), (iii),

to be almost surely asymptotic stable in the large is that
-I.
ECIE 1Y < %7 (2.7.3)

where -a is an upper bound on the real parts of the eigenvalues of the
matrix A and b is the upper bound of |h(t)]|, where h(t) is the impulse
response of the deterministic system §_= Ay 5 that is, since A is a

Stability matrix a and b are positive constants such that
[h(t)] < be °%, (2.7.4)
Kozin considered as an example the second order system

X(t) + 26 x(t) + [1+ F()]x(t) = 0 (2.7.5)

which is of great importance in the study of physical systems. His
results however are too conservative and predicts that the standard
deviation of the parameter T(t) should be zero when the system is
Critically damped (& = 1). This peculiar dip in the stability boundary
at £ = 1 is due entirely to Kozin's choice of b. Ari%&nam and Graefe 27

improved on Kozin's stability boundary and eliminated the sharp decrease

o—e

tox]] = Zixil > H.l.\” = ] Iaij[

i=] ij=1
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at ¢ = 1 by introducing three different bounds on the impulse function
for three separate ranges of the damping ccefficient &.

1 obtained

-Using a Liapunov-type approach Caughey and Gray
sharper sufficient conditions, guaranteeing almost surely asymptotic
stability, than those cbtained by Kozin through application of the

Gronwall-Bellnan approximation but not sharper than those obtained in

-reference {27). Since, by condition (i), A is a stability matrix

it follows ¥ 2 that there exists a symmetric, positive definite

matrix P, such that

AP + PA = -C, (2.7.6)
where‘g is a positive definite matrix. Taking C to be identity matrix
and V = x'P x (where P is the corresponding solution of equation (2.7.6))
as a Liapunov function for system (2.7.1) Caughey and Gray, by makiug
use of the Schwarz inequality, obtained the following inequality relating

V and V (the derivative of V along the trajectory of (2.7.1))

A
) < ) Q t ’ od e
T ()| | (2.7 7

1
2

where Q(t) = P 2 F(t)p? + P2 F(t)pE T (2.7.8)

and Az xP is the largest eigenvalue of P. Integrating. (2.7.7) and using

conditions (ii) and (iii) they obtain the sufficient condition

B Q) 1]} < (2.7.9)
Mmax

for system (2.7.1) to be almost surely asympiotically stable in the large.

tt E% and Bf% are unique matrices and given by
! -1 - -1
E; = M }\% ﬂ] , PEan )\]% M]
AN
\A% \)\_%
1\
\ % M %
= An s \Al]
¥rere M is the orthegonal transformaticn such that

mul =1, nlen = [

— — -—
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For the particular case where the matrix F(t) may be written in
the form
R
F(t) = ] f(t)6 » R<N
i=1

2

~~
N
.
~
-t
[sn)

S

where fi(t) are scalar functions of time and G. constant matrices then
a sufficient condition for system (2.7.1) to be almost surely asymptotic-

ally stable in the large is that

R
Il e EUE(D)]D (2.7.11)
i=1
exists and is less than Amle s where [u. | is the numerically
largest eigenvalue of the matrix.
. pi gl 3 -3
B, = P*G,P" + PG PF (2.7.12)

Caughey and Gray applied their results to system (2.7.5) and obtained
sharper results than Kozin and Ari%fnam. However, as indicated by
Mehr and Wang 53, their results do not indicate that E{|f(t)|} goes to
infinity as &»= as seems should happen from the physical standpoint.
The choice of C as the identity matrix obviously restricts the
above results. If V = x'P x, where P is the solution of (2.7.6), is
taken as a Liapunov function for system (2.7.1) then Caughey and Gray's
method would lead to the following sufficient conditions for almost

surely asymptotically stability in the large for system (2.7.1)

| .
ninG
EC o) ]} < A;:ZP (2.7.13)
R .
Ioluglg, EUR(D] < S20C (2.7.14)
= maxP

[These results correspond to (2.7.9) and (2.7.11) respectively and xminC

is the smallest eigenvalue of the matrix (]

An obvious outstanding problem is the choice of C to give optimum



o

results, Unfortunately, even for the second order system (2.7.5),

taking C to be the general quadratic form

C o= el + T > 0 (2.7.15)

leads to such complicated inequalities that optimum values of ay and
Gy (that is, values to maximize E{|f(t)|}) are not easily cbtained. It
can be shown that for this particuiar example the identity meirix is
the optimum diagonal matrix.

Results similar to those of Caughey and Gray may be found in a
paper by Khadminskii 54

Pnother extension on the results for system (2.7.1), subject to
conditions (i)-(iii), is that due to Invante 55, Taking x'B x, where
B is some positive definite matrix, as the Liapunov function for
system (2.7.1) and applying the results of the external properties of

8 he was able to cobteain

the eigenvalues of pencils of quadratic fornm
the following sufficient condition for almost surely asymptotic stability

in the large of system (2.7.1)
EOax [(A1'+__F_]) +B(A+F)B ] &-¢ forsome>0  (2.7.16)

For computational reasons this result was simplified to the form

1 1 -1 1 -1
?E”ﬂ“HHMw(% *BG B )'Mm(% +E&§ )] <

H o~ o

where 91 and fi are defined as in equation (2.7.10).
Taking B as the gencral quadratic form of equation (2.7.15)
Infante applied inequality (2.7.17) to system (2.7.5). He tren chose

optimum values of o and oy in order to maximize E{fz(t)}, to obtain
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the following sufficient condition for a.s.a.s. of the system

E(F2(t)) < 465 -¢e, €>0 (2.7.18)

This is a dramatic extension of the region of stability over previous
work and moreover it answers the conjecture raised by Mehr and lang
mentioned earlier (i.e. the variance of the coefficient process can
approach infinity as the damping coefficient £ approaches infinity).
The results of Infente together with those of the other authors
discussed are shown in Fig. 2.7.1a.

Infante obtained the optimum B by maximizing a functien of two
independent variables oy and G This procedure is very time consuming
and s limited in application to second order systems. Ideally one
would like to bc able to prove a theorem to give optimum B. However,
Infante showed via an example that if the matrix F contains more than
one time varying coefficient then an optimum B does not exist but it
is felt that it should be possible to obtain an cptimum norm for the
case of F having only one time varying element. The problem of
making Infante's results practically applicable to higher order systems
remains an outstanding problem.

The most recent deve]opmeht on the results for system (2.7.1),
56

subject to conditions (i)-(iii), is that due to Man

reducing two quadratic forms to diagonal form Man extends the development

By simultaneously

of Infante to obtain a sharper stability criteria; namely, that a
sufficient condition for the system to be almost surely asymptotically

Sstable in the large is that
. -1
E{x [(F P + PF)Q 11 < 1, (2.7.19)

where P and Q are positive definite constant symmetric matrices satisfying

the Liapunov matrix equation
AP + PA = -0 (2.7.20)

Taking Q to be the identity matrix Man applied criterion (2.7.19)



FIG. 2.7.1. Stability conditicns for equation (2.7.5)
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to equations (2.7.5) to obtain the following sufficient condition for
a.s.a.s. in the large

2 + 1]

Ecf ()} < a2 - 2 4 (2.7.21)

The improvement over condition (2.7.18), obtained by Infante, is
i1lustrated in fig (2.7.1b).

Man obtained condition (2.7.21) by taking Q to be the identity
matrix. One would expect to obtain an even sharper criterion if Q
were taken to be the most gencral symmetric positive definite form C,
defined by equation (2.7.15), and optimum values of oy and an then
obtained in order to maximize E{fz(t)}. Teking Q to be such a matrix
and applying the stability criterion (2.7.19) we have that a sufficient

condition for system (2.7.5) tc be a.s.a.s. in the large is that

ECFA(E)) < 160/ [8c0x% + (1 + X)2 - Aol v (1+ 00T,
(2.7.22)
where X = cx]Z + as.
function of (a]Z + a2) we can take ay = 0 and optimize for X = ay > 0).

(Since the right hand side of (2.7.22) is a

By differentiating with respect to X we have that the right

hand side of criterion (2.7.22) has a stationary value provided

(42 + 1 4 (622 + XP +6X% + (4= 8O)X+ (6 - 4c) =0
(2.7.23)

Since equation (2.7.23) has no positive root when g < 1/v2 it follows
that there is no optimum X for all ¢ but equation (2.7.23) clearly
indicates that‘the identity matrix is not an optimum choice for Q.
A possible method of attack is to solve equation (2.7.23) numerically
for different values of ¢ and then use criterion (2.7.19) to construct
the stability boundary. Clearly the choice of the optimum Q remains
an outstunding problem.

If the matrix F, of equation (2.7.1), contains rore than one
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time varying element then due to computaticnal reasons criterion
(2.7.19) will have to be simplified to the form

R
LECE (D [y, (G2 +2 &) T <, (2.7.28)

i=1

wheregi and fi are defined as in equation (2.7.10).

2.8. Use of differential generator

In this section we shall be concerned with systems of the form
° +
) = m(x, 1) + o (X t) (Y) . (2.8.1)

where x(t) and m(x, t) are n-vectors, o(x, t} an nxn matrix and H(t) an
n-vector with Gaussian white noise components.
As mentioned earlier the soluticn process x(t) is a Markov precess

and furthermore associated with it is the operator

n n

0 y O
I obys(xs t) 3;;5;“ + ] my (%, t) gg? (2.8.2)
= =1

where bij =B = 00], referred to as theAdifferentia1 generator of
process (2.8.1), which is of fundamental importance in the application
of Liapunov's second method to studying process (2.8.1). The salient

~ feature éhat allows the ideas of Liapunov's second method to be applied
to Ito equations is the fact that for twice continuously differentiable
functions V(x, t) the expected value of the derivative of this function
along the trajectory of the process defined by (2.8.1) with initial
condition (x, t) is given via the differential generator (2.8.2) as

LV(x, t) >,

+ This equation is usually written as equation in differentials
dx = m (x, t)dt + g (x, t)dd

where B is a Brownian motion process.
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The first application of these results from Markov process theory
to the stability problem appears to be due to Khas'minskii 57 who
examined the stability in prebability of the equilibrium solution of
process (2.8.1) under the condition that there exists a continuous
function m(x), which is positive when X £ 0, such that for real A; the

inequality

n

Iobishdy 2 m(x)

i,j=1 1

is valid (this guarantees that every component equation of the system
(2.8.1) possesses noise cdefficients).

Further developments may be found in a paper by Nevelson and
Khas'minskii 58; the pattern of this paper follows closely that of
Kats and Krasvoskii 45 except that Ito type equations are being
considered. In particular they prove that for asymptotic stability in
the mean square of a stationary linear stochastic system with Gaussian
white noise coefficients it is necessary and sufficient that for any
positive definite quadratic ferm W(x) ancther positive definite
quadratfc form V(x) may be found for which LV{x) = -¥{x). They show
further that if such a system is asymplotically stable in the mean
Squafe thgn the deterministic system cbtained by setting the noise
terms equal to zero posses an asymptotically stable equilibrium
solution.

In a later paper Nevelson and Khasminskii ) use the results

of reference 58 to obtain necessary and sufficient conditions for

asymptotic stability in the mean square for the linear system defined
by

R R IRENIEY.

where R i=1,2, ----, n, are constants and ”i(t)’ i=1,2, ===, n,
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Gaussian white noise processes with the following statistical properties :

E{n1(t)} =0 L.
i,j=12,----, n (2.8.4)
. At - 1)} = 2D, .8~
E{n1(t)nJ(t t)} )D13 ()
The conditions are that
by > 05 8y > 0y ==mmy B > 0, 4, >4 . (2.8.5)
where A (i = 1,2, ---, n) are the Routh Hurwitz determinants of the
constant coefficients a,(i = 1,2, ===, n) of the determinstic part of

(2.8.3) and A differs from An_on1y in the first row; that is :

(0) (M (2) e (n-1)
nn Ynn %nn 9n
o ] %2 aq TTTTTTTOTTTIS 0 ., (2.8.6)
0 a] a3 """""""""" O
0 0 0  cmemmmmmm———oe- 3,
| vhere the quantities qég) (r =0, 1, ---, n - 1) are expressed through

the correlation ceefficients Dij’ defined in (2.8.4), according to

gk (0T 0 K =01, -

nn .
i+j=2(n-K)
(2.8.7)

Note that when all Dij = 0 then criteria (2.8.5) transfers into the

Routh-Hurwitz criteria for the deterministic system

For the case where the white noise processes n.(t) (i = 1,2,---, n)

are independent, that is

a5 = 0 foritj,i,J=12,---,n,



A assumes the simple form

n+l

D7D Dz mmmmmmmTTTTT (-1)7 Dy
A = 1 8y -mmmmTIT 0
0 a] ———————————— 0

- o = "o T " - A WS e G S S W S S SS A G S S S e e S

(2.8.8)



CHAPTER 3

STABILITY OF A HILL CLIMBiNG SYSTEM

3.1.  Introduction

Althcugh extremum control or Aill-climbing systems are a well
defined class of adaptive control systems the important problem of
analysing their stability has cften been ignored. In this chapter a
theoretical stability analysis for a single input, sinusoidal pertur-
bation, extremal control system with output Tag is presented, the
resulis of which have been verifTied by analcgue computer simulation.

The system equations, which are forced, non-linear and non-
autonomous are first nondinensionalized using dinensional analysis,
and periodic solutions of the resulting equations obtained by the
Principle of harmonic balance. The stability of these equilibrium
States is then investigated by settirg up variational equations,
wWhich, for small disturbances about the equilibrium state, form a
set of linear differential equations with periodic coefficients. It
Will be shown that various stable harmonic and subharmonic steady-
State solutions are possiblea in certain regions of the parameter
Space.

The steady state finally reached depends on the prescribed
initial conditions. By plotting the domains of attraction of
fixed points, which are invariant under a certain mapping, regions
in siate space are obtained within which initial conditions will lead

to a given stable steady etate oscillation.

3.2.  The sinusoidal perturbation adaptive control system

The block diagram of a typical single dimensional, sinusoidal

Perturbation, adaptive control system is shown in fig. 3.2.1. 60, 6].

51.
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The index of performance I.P. 62 is'F[e(t)] = /\[e(t)]2 and the output
lag is represented by a low pass filter with time constant %u

The adaptive controller employed is similar to that previously
63, 64

discussed in the literature Briefly, a sinusoidal perturbation

8 sin(wt + o) is added to the input and by demodulating the corresponding
Perturbation in the output a signal r{t) that varies with the slope

gg of the index of performance is obtained. The signal r(t) is then
Passed through a smoothing integrator, with gain G, to develon a

. . e oF
Correction signal which tends to reduce %E to zero.

3.3.  Dimensional Analysis

In the absence of the disturbances and noise the differcntial
equations representing the system of fig. 3.2.1. are :

48 4 ax = Aa [y - 6 sin (ut + o) 12 (3.3.1)

dy _ .
a5 = Gx sin (wt + a)

The performance of the system depends on the values of the five
Parameters. A, a, 6, w and G which are expressed in three sorts of

units (input units, output units and time) as follows :

A : (output units) (input um'ts.)-2
a (time)-]
§ : (input units)

w (time)_]

G : (input units) (output units)'] (1:1‘me)_1

. 65 . .
By Buckincham's = theorem non-dimensional paramcters can be

defined so as to reduce the number of narameters that need be considered
by the number of units. Thus, in this case the number of non-dimensional

Paramaters that need be considered are two and these are taken as



54,

(3.3.2)

=
—

1]
o
]
O

~
[o3]

If, in addition to (3.3.2), we introduce the dimensicnless variables

2

C] = )‘/(A5 ) _
€2 = _Y/(S (3.3.3)
t = owbtta

then the system equations (2.3.1) may be written in the noa-dimensional

form
£ =--.;I—— £ + '%—— (&2 - sin T)2 (3.3.4a)
] ’12 ] 2 .
S R (3.3.4b)
by Iy &

where dots denote differentiation with respect to t.

3.4. Periodic solutions using the principle of harmonic balance

A distinctive feature of a system of nonlirear differential
equations, such as (3.3.4), is that various types of steady-state
periodic oscillations may exist dapending on the initial values of
the variables. In.this work the method of solution employed, for
obtaining the steady~state solutions, is to assume for £y &
Fourier series davelopments with undetermined coefficients and then
determine these coefficients by the principle of harmonic balance 66,
a method widely used for the analysis of nonlinear control systems.
Periodic solutions whose fundamental frequencies are equal to tiat
of the applied perturbation frequency will be termed harmonic
solutions, whilst solutions whose fundamental frequencies are a
fraction %~(n = 2,3, etc.) of the appiied perturbation frequercy

. ; . . 1
Will be termed suliimwmonic solutions of order et



3.4.1. Harmonic solutions

When the system has reached a seteady~state there will be
no constant or "d.c." component out of the multiplier (that is, €1(T)

~contains no term in sin 1), so that as a first approximation we assume
solutions of the form

g](r) = a, + 2,008t (3.4.7)

n

&2(1) b0 + b]sinT + b,ycost

Substituting equations (3.4.1) in (3.3.4b) gives

T % i
bicost - bsint = T, [a sint + 5= sin2x 1
Since the first approximation contains only the terms of the fundamental

frequency we ignore second harcmonic components and equate coefficients

0f the sint and cost terms to give

II]
by = 0, by = -5 2 (3.4.2)

2

Substituting equations (3.4.1) in (3.3.43) gives

. R
Mpa,sint = [ -ag +b" + > + > ]

+ [ 2b0b2 - 2, Jcost + 2bo(b] - 1)sint

b2 by = 1) »
" [._Eﬁ - -~—7;—~—v]c0521 + (by = 1)b,sin2t

Balancing the coefficients gives, on using results (3.4.2),

Moo, = 2b ) (3.4.3a)
i
.20 2 ]
a, = b+ oz 3, * 3 (3.4.3b)
2
Mpay = -2Mbya, (3.4.3¢)



Since, from equation (3.4.3b), 3, is to be non-negative it

follows from equations (3.4.3a) and (3.4.3c) that

Equation (3.4.3b) then becomes

1l
I (3.4.4)

Equation (3.4.4) has real solucions for n2 > Hl’ when the solutions are

-

—
w
I~
i

e

Where r = nz/n].
Thus, to a first approximation harmonic solutions exist in the
region

> 1 (3.4.6)

and in this region the harmonic solutions
r2 + rﬁz -1

(-r 7 /r? - 1)cost (3.4.7)

il

&

%2
are possible.

These results agree with analogue computer simulation where it
is found that harmonic solutions for 52(1) contains no d.c. compenent,
thus implying that g (r) has no component in cost.

A closer approximation to the harmonic soiutions may be obtained
if more terms of the Fourier series developments for g](r) and gz(T) are
taken into account; however, numerical computation will become too
unwieldy. The methed, employed in this work, of improving the

66

approximation is an extension of the methed due to Hayashi . this



method is particularly useful when the amplitude of each harmonic
component decreases with increasing ordar of the harmonics. An
alternative method, well suited for digital computation, is that
developed by Urabe and Reiter 67 ind based on the Galerkin
procedure 68.
On substituting Fourier series developments for g](r) and
£,(1) in equations (3.3.4) and balancing the coefficients of like
terms it is readily seen that the series representing g](r) will
consist only of odd harmonic terms whilst the series representing
S5(7) consists only of even harmonic terms. Thus, a second
approximation is now assumed in the form

£y = (a0 + eao) + (a3 + ea3)sin21 + (a4 + ea4)COSZT .

)sint + (b2 *t e Jcost + (b3 + gy )sin3t + (b4 ey ) cos 2t

€ = (b, +
2 = ] Eb] 2 3 4

where the terms containing e represent the correction terms. Substituting

developments (3.4.8) in equation (3.3.4b) and balancing the coefficients

of like terms gives

H] ( ) b
€ | J—— a-~ + ¢ -
b] 2Y[2' 3 a3 !

1
o - - H] [ (a,+ ) =7 (ag+ 6.4) 1-b, (3.4.9)
2 0

II] ( ) b
€ = = e (A, + € -
b, 6L, ‘%47 ey 4

Substituting developments (3.4.8) in equation (3.3.4a) and
balancing the coefficients of like terms lead, cn using results (3.4.9)

and neglecting terms of order higher than the first in e, to the
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following set of linear simultaneous algebraic equations in the correction

terms €, 5, €. , €

3% % %

6(n, + H]bz)ea + H](3 + b3 -3 b])sa + H](b4 - 3b2)ea

2 0 3 4
= 1y (32, - Gaghy + 30,2, = agdy = aghy - 3ag) + 3y(1 - 23, - b]2 - b22
b, - b,?).
Gy (b + b = T)ey + (675 = 2mby * ybg)e, ¥ (4 - 12m,? - 4n;by -
3n]b3)sa4

= 75 (3agby = 6aby + 4bya, - 3bsaz - 6ba, + 3a;bg - byas + 6a ) - 4a,)

+ 6H2(2H2a4 -2y - b2b3 + b]b4 - b]bz)

. ) ) ] ﬂ
6n](b2 + b4)gao - (414 - 12n,” - fmiby + 3n]b3)ea3 + (61, - 2mb, - 31, 4)°a4
- 2 2 C - - _ 2 i

- 3b2a4 - 3b3a3 + b]a3 - 3a3 + 6b4a0 - 3b4a4 + bza4 - 33)

(3.4.10)

The system of equations (3.4.10) are now solved, using digital computation,
With initial values ag = ag = by = by = by = 0 and by, a, given by
equations (3.4.2) and (3.4.5) respéctiveiy; corresponding values for the
Correction terms €. (i = 1,2,3,4) are then obtained from equations
(3.4.9). a; + e, }i = 0,3,4) and bi + Ebi (i = 1,2,3,4) are then taken

& the new va1ues‘0f the coefficients a; (i =0,3,4) and by (i = 1,2,3,4)
respectively and equations (3.4.10) and (3.4.9) solved to find the new
Values of the correction terms. This process is repeated until values

Of the coefficients, which give, on solution of (3.4.10) and (3.4.9),
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sufficiently small correction terms, are obtained. Coefficients of

higher order harmonics are then obtained in a similar way.

3.4.2, Subharmonic solutions

To a first approximation we assume solutions
E. = a_ + a:5in — + 8,005 — + @,C0ST
1T~ %o 1 n 2 n 3
(3.4.11)
g, = by + bysin %- + b,cos %- + bgsint + bjcost

On substituion equations (3.4.11) in equations (3.3.4) and
balancing the coefficients of like terms it is seen (see appendix 3.1)
that eight subharmonic solutions, of order 2, are possible in a region

R2 of parameter space defined by the system of inequalities:

- 2 2 2 2.2
N = I," (289 - 105 1,° - 420 1y) + 196 1,° + 308 1,"ny - 588 n,"1," > 0
2 _2 2 2 1 4 1 2
L* = & - - -
RN N YRR RN PN 0
X| = | e (- (17 + 14 m)) | <L (3.4.12)
' 2
FOvy = 7r w3 . ¢ 112 2., ,5_5 3 2 3
(X) TX™ + (= T, + 7 Ty )X° + (70" +50,7 0y + 71, 1, 2 1,")X
+ (-% H26 + g% n24 My - n24 + Z% n12 n22 -2 n22 my +7 H]S) >0

The regions R1 and R2 of param-ter spaée, in which different types of
Steady-state  oscillations are sustained are shown in Fig. 3.4.1.;
the region R, having been plotted using digital computation (see appendix
3.1, for flowchart). Outside region R] there are, to a first approximation,
No periodic solutions so that, for parameter values in this region, the
System will be totally unstable.

An improevement in the accuracy of the subharmonic solutions
(3.4.11) may be obtained using the same procedure as described in section

3.4.1. for harmonic solutions. An important feature of the subharinonic
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FIG. 3.4.1. Regions where different types of oscillations
are sustained.



solutions is that the solution for 52(1) contains a constant or “d.c."

component so that for certain initial conditions the system, with
Parameter values in regicn RZ’ will adapt to an oscillation about an
offset position; this phenomenon has been verified using analogue

computer simulation.

3.5, Stability of steady-state solutions

61.

A periodic solution obtained by the method of harmonic balance

nzrely represents a state of equilibrium; this equilibrium state is
actually realisable only if it is stable so that its actual existence
must be confirmed'by a stability investigation.

Let é(T) = [ g](T), %2(7) ] 1, where prima denotes the

transpose, having period T, represent a particular state of equilibrium

then in order to investigate its stability we consider small variations

Q(T)‘= [ n](T),nz(T) ]] from this equilibrium state; if in the ensuing

Motion n(t) tends to zero then the original undisturbed equilibrium
State is said to be asymptotically stable.

From equations (3.3.4) we set up the variational equations

nq () JORE + (,(7) - sint) ny(1)

(1) = 7, sint nq (1) | (3.5.1)

in n](r) and nz(T). These variational equations form a set of linear

Ordinary homogenebus differential equations with periodic coefficients,

of period T, in 1; that is, they are of the form

it

n(r) P(v)n()

it

With  P(¢) = P(x+T).

The asymptotic stability of the null solution of such equations has
bzen discussed in chapter 1. If the eigenvalues of the monodromy
Matrix are both greater than unity in absolute value the solution

Will be termed completely unstable, whilst it will be termed unstable
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if the monodromy matrix has one eigenvalue greater than, and one less
than, unity in absolute value. If both the eigenvalues of the moncdromy
matrix are less than unity in absolute value the solution will be
termed completely stable.

A stability investigation of the periodic solutions of section
3.4, shows that in region R, we have one stable and one unstable
harmonic solution whilst in region R2 we have, in addition to the
stable and unstable harmonic solutions, four stable and four unstable
Subharmenic solutions of order 2.

3.6. Effect of initial conditions

In the absence of the output 1ag the system will be represented

by the single non-dimensional equation
. . 2 .
g = I (¢ - sint)” sint (3.6.1)

Where I = GAS/w, £ = y/6 and 1 = wt + a.

Equation (3.6.1) may be solved in the ¢ - © plane, for a
Particular value of the parameter I, by the method of isoclines 69.
A graphical solution obtained by this method, for I = 0.2, is shown
in Fig. 3.6.1 and it shows clearly the effect on stability of the
initial condifions in this case. Solutions are shown for the initial
values ¢ = 0 and © = n/2.

‘hen the output lag is included, however, we can no longer
Solve the system equations by the method of isoclines. In order to
examine the relationship between the initial conditions and the
different types of periodic solutions we examine the domains of
attrastion of the stable periodic solutions; a concept employed by
Blair and Loud 70 when examining the solutions of a second order
NonTinear differential equation with a periodic forcing term. A
bricf discussion of the theory of fixed points and domains of

attraction will now be given.



Graphical solution of equation (3.6.1)
for m = 0.2

FIG. 3.6.1.



3.7. Fixed points and domains of attraction

Let us consider the solution of the general system of equations

™
—
!

f (g'ls gz’ T)
(3.7.1)

52 = g (g]; 523 T) ,

where f and g have period T in t. Provided f, g and their partial

derivative with respect to &1 and £, are continuous in £1s &y and T

71

it follows that there exists a mapping

M:g(ry +nT) » 32y +0n+1T),0=0,1,2, etc.
‘ (3.7.2)

where £ = [gi;gZ]], which is & one to cne, continucus and orientation
Preserving mapping of the £ plane into itself (that is, M defines

a homeomorphism in the Ey7Ep plane). If .é(T) = [%1(1), gZ(T)]] is

a8 harmonic solution of equations (3.7.1) then there exists, for each

s 0 < Ty < T, a corresponding point Po(é](r1), £2&1)), in the £17Es
Plane, which is invariant under the mapping M; that is, a fized point

0f the mapping M corresponds to a harmonic solution of equations (3.7.1).

Defining iterates of the mapping M by

ME(P) = M(M(P)) etc.,

it follows that if &(x) = [&;(1)s & (%) 7' is a subharmonic solution,
of order n, of equations (3.7.1), then there exists, for each s
0 < v, <nT, a corresponding point Po(& (1)), Z,(r;)) in the £4-2,
Plane, which is invariant undar the nth iterate M of the wapping M;
that is, a fixed point of the nth iterate of the mapping M corresponds
to a subharmonic solution, of order n, of the system of equations
(3.7.1).

There are ceftain standard types of fixed points, most of

them corresponding closely to standard types of singular points for

: differential equations of order one. e shall now discuss the three



most significant types; for a fuller discussion see the works of

Cartwright 71 and Levinson 72, 73. In the following PO(%](T]),%Z(T1))
is taken as a fixed point, in the £17€p Plane at © = 1y, of the

- mapping M,

(a) stable fixed point

This is a fixed point P0 such that if P be any point in the
neighbourhoed of P0 then Mn(P) > Pyas no e that is, successive

Tirages M(P), MZ

(P}, etc., of the point P approach the fixed point PO.
This point is analagous to a node or focus in the theory of singular
Points, since the definition is true whether the loci of successive
images move towards P radially (tig. 3.7.1a) as in the case of nodes,
Or in a spiral fashion (fig. 3.7.1b) as in the case of foci in the
theory of singular points (remenber that in this case P moves in

Jumps M(P), M

(P), etc., and not along a continuous curve). By
definition, this fixed point corresponds to a stable solution of the
System of equations (3.7.1.)

Note that a stable subharmonic solution, of order n, of

€quations (3.7.1) corresponds to a stable fixed point under the

mapping M",

(b) unstable fixed point

This is a fixed point P0 which is stable under the inverse
Mapping of M and corresponds to a ccmpletely unstable solution of
the system of equations (3.7.1). Such points arc illustrated in

figs, (3.7.2a) and (3.7.2b).

(c) saddle point

This is a fixed point P0 through which there passes two curves
Or directions Y1s Yo» S€C fig. (3.7.32), which are invariant under the
Meoping M. Points on v; approach Py under jterations of the mapping

M, while points on Yo approach P0 under iterations of the inverse
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(a) , (b}

(o) » (5

FIG. 3.7.2. Unstable fixed points.
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FIG. 3.7.3.



Mapping. In this case the loci of successive images is analogous to

that of the intagral curves in the neighbourhood of a saddle point in

- thé theory of singular points. A saddle point corresponds to an

Unstable solution of the system of equations (3.7.1).

Defining E](T, F,](T]), £2(T])), EZ(T,E](T])’ EZ(T])) as a
Solution of the system of equations (2.7.1), for which the initial
Conditions, at t = Ty» are g](r]),gz(r]), we define the domain of
attraction of a stable fixed point Po(%](r]), gz(r])) in the 51'52
Plane, at 7 = T, as the set or points (E](T]), 52(11)) for which
the solution £ (ts87(17)5E5(7])) converges to the asymptotic stable
Periodic solution corresponding to the fixed point Po‘

70, the general question of

As pointed out by Blair and Loud
finding the shape of a domain of attraction is quite difficult and

Studies by Hayashi 7 show that for comparatively simple equations the

-domains of attraction can be highly complicated. In this section we

Shall confine ourselves to discussing the domains of attraction of

o fixed points, one being stable and the other a saddle point; this

b91ng the case that arises for the harmonic solutions of section 3.4.1.

Suppose the two fixed points are represented by P] and P2’

See fig. (3.7.3b); Py being the stable fixed point and P, the saddle

2
Point, As indicated previously, through P, there pass two curves

Y1» Yo which are invariant under the mapping M, with points on Y1
aPpproaching P2 under iterations of the napping whilst points on Yo
approach P2 under iterations of the inverse mapping. Hence the
Successive images of an initial point (£(1)s £5(77)) will tend
Cither tgo P] or to infinity, depending on which side of vy the
Tnitial point is. Thus the invariant curve Yy is of great importance
in any stability investigations for it is the boundary beiween two
Pegions in each of which initial conditions will lead to a particular

type of oscillation; that is, it is the boundary between domains of

67.
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attraction.  (For a more mathematical treatment see the work of Blair

and Loud /0

). In the particuiar case illustrated in fig. (3.7.3b)
the invariant curve 8 is the boundary between the domain of attraction
of the fixed point P] and the domain of attraction of the point at
1'mcirn"cy (that is, initial conditions in this domain will lead to a
SQ]ution that grows indefinitely with time).

If the saddle point P2 corresponds to the unstable periodic
Solution é(r) of the system of ezuations (3.7.1) then the corresponding
Monodromy matrix C in the stability investigation, will have one eigen-
value greater than, and one less than, unity in absolute values, At
the point P2 the curve 6 will be in the direction of the eigenvecter of
L which corresponds to the eigenvaluc that is less than unity in absolute
value; thus the slope o of Y1 at P2 may be found. Theoretically there-
fore the invariant curve Yy may be obtained by starting just on either
Side of the fixed point P, (in the direction o) and integrating equations
(3»7.1) numerically for decreasing t; the curve y, then being the loci

of the successive images of the starting point under iterations- of the

Mapping M (or 1" for a subharmonic solution of order n). In practice

‘hOWever it was found that if the unstable fixed points are not known

dCcurately enough the image points of the numerical integration deviate
from the desired boundary after a few cycles, so that the loci obtained
by the numerical procedure may only be used as a guide and a more

aCcurate boundary must be obtained by analogue computer studies.

3.8, Numerical example

3.8.1. Parameter values in region R;

In the region R1 of parameter space the parameter values
H] = 0,1, P 1 were taken. For the first solution the following
Sequence of results shows the cervergence of the numerical procedure,

for obtaining the steady state solutions, as more and more terms are
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taken in the Fourier series approximations of the system variables £

and gz, .
SOLUTION 1

(1) g, = 273.29 + 88.71 sin 2t + 84.08 cos 2r
4.44 sint - 23.13 cost

(i) £, = 258.39 + 95.92 sin 2t + 70.26 cos 2
gz = 4.80 sint - 22.33 cost - 1.60 sin 3t - 1.17 cos 3t

(ii1) £y = 260.73 + 97.15 sin 2t + 73.00 cos 2t + 9.76 sin 4t - 4.48 cos

= 4.86 sint - 22.42 cost - 1.46 sin 3t - 1.29 cos 31

(iv) &1 = 260.62 + 97.22 sin 2t + 72,90 cos 2t + 9.57 sin 4t - 5,03 cos

£, = 4.86 sint - 22.42 cost - 1.46 sin 3t - 1.30 cos 31

- 0.10 sin 51 - 0.05 cos
(v) £, = 260.63 + 97.24 sin 2t + 72.93 cos 2t + 9.62 sin 4 - 5.06 cos
‘ - 0.66 sin 67 - 0.84 cos
£y = 4.86 sint - 22.42 cost - 1.46 sin 3t - 1.30 cos 3t - 0,10 sin

+ 0.04 cos 5t

The numerical nrocedure was then terminated and (v) teken as a sufficiently
accurate approximation to the first soltuion of equations (3.3.4), for the
Particular parameter values cﬁosen.

Similarly, a sufficiently accurate approximation to the second

solution of equations (3.3.4), for the particular parameter values chosen,

is

SOLUTION 2

E] = 0.512 - 0.192 sin 2t - 0.126 cos 2t + 0.0004 sin 4t + 0.0003 cos 4+
€2 = -0.009 sint - 0.057 cost + 0.004 sin 3t + 0.002 cos 3«

+ 0.0000 sin 5t + 0.0000 cos bt

Using the procedufe described in section 3.5 solution 1 was found to be

unstable while soltuion 2 was found to be stable. Thus, for each 1,

4+

4+

51

41
bt

51
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0 < 1 < 2r, there exists a domain of attraction in the £1750 plane so
that for all initial conditions within the domain the system will be
stable while for initial conditions outside the domain the system will
be unstable. Further in this case, the solution for 2 has no d.c.
component so that in the stable region the system will adapt to an
oscillation about zero error e(t). The stability boundaries, in the
State space, together with their corresponding fixed points, are
Shown in fig. (3.8.1) for various values of v in the range (0, m);
corresponding boundaries for t in tne range (m, 2m) being the mirror
images about the £ axis of those given. These stability boundaries
have been verified using analogue computer simulation and also agree

. . 74
With experimental work carried out by Jacobs and Shering ™",

3.8.2. Parameter values in region R2

In the region R2 of parameter space the parameter values

H] = 0.04, 1, = 0.2r = 0.628 were taken.

2
The two harmonic solutions were obtained as in section 3.8.1

and found to be :

SOLUTION 1

t

£) = 860.6 + 351 sin 2t + 470.7 cos 2t + 87.4 sin 4t - 1.7 cos 4x

n

11.175 sint - 39.81 cost + 2.8 sin 3t - 4.975 cos 3t - C.555 sin bt
! - 0.01 cos 5t

&

S
SoLuTION 11

& = 0.5 - 0.025 sin 2t - 0.25 cos 21

1

&, = -0.005 sint - 0.04 cost + 0.0025 sin 3t - 0.0025 cos 3t

Solution I is found to be unstable whilst solution II is found to be stable.
Solving cubic (A3.1.15) and using X = Mz gives the three values

~3.33, -15.715, 5.11 for z. Hewever, on substituting in equation (A3.1.12),

only the values ~3.33 and 5.11, for z, give real values of r. Using the

Procedure described in eppendix 3.1 eight solutions of the form



g = 2, *t oA sin %- + a, cos
. T s !
£y = bo + b] sino + Dby cos

N

AN

+ a

COSt

+ b4 CcosT

are obtained with the coefficients ai(i = 0,1,2,3) and bj(j = 0,1,2,4)

having values as shown in table (3.8.1).

o —————

Sﬁ&;g;an % 4 %2 23 bo b1 b b4
1 194.5 197.2 |-115.3 |-136 3.4 12.6 7.35 | -12.4
2 194.5 |-197.2 115.3 |-136 3.4 |-12.6 -7.35 | -12.4
3 194.5 |-115.3 197.2 136 -3.4 -7.35 1 12.6 -12.4
4 194.5 115.3 |-187.2 136 -3.4 7.35 |-12.6 -12.4
5 327.1 90 -195.4 {-101.3 3.9 5.72 | 12.5 -20.8
6 327.1 -50 196.4 }-101.3 3.9 -5.72 |-12.5 -20.8
7 327.1  |-196.4 -90 101.3 | -3.9 |-12.5 5.72 | -20.8
h;_? 327.1 196.4 %0 101.3 | -3.9 12.5 -5.72 | -20.8

Table (3.8.1)

Coefficients of subharmonic soluticns for H] = 0.04, H2 = 0.628

Solutions containing higher harmonics are readily obtained using

the procedure described in section (3.4.1).

found to be stable whilst the other four solutions were found to be

Solutions 3,4,7 and 8 were

unstable. The trajectories of the stable subharmonic solutions, that is,

the loci of the point (E](T)-EZ(T)) in the £,-¢, plane, are shown in

figs. (3.8.2) and (3.8.3). The locaticn of the stable fixed points are

also shown in the figures. It is noted that the fixed points corresponding

to the subharmonic solutions 3 and 4 (similarly for solutions 7 and 8)

Tie on the same trajectory and that, under iterations of the mepping M,
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rajectories and fixed points of the stable
subharmonic solutions 3 and 4.
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these fixed points are transferred successively to the points that follow
in the direction of the arrows. By following the procedure described in
Section 3.7 the whole diagram of the domains of attractions leading to
the harmonic and subharmonic response may be plotted. However, such a
diagram would be highly complicated and its computation would require
extensive use of both analogue and digital computers. It is thercfore
felt that, since parameter values in this regions are unsuitable for
Practical purposes, complete computation of the domains of attraction

is unnecessary.

5.9, Analogue computer layout

Due to overloading for certain values of the parameters magnitude
scaling has to be introduced
Writing
mx » X

ny > Y
the system equations (3.3.1) become

2

m

m n

ie. X +axX =,@5% LY - (ns)sin(ut + a) ]
n

and (RL) = G( =) sin(ut +a)

. h .
The swmula? layout then employed is as shown in fig. (3.9.1)

( Ik ) + af ™'Yy = Aa [ Wy -2 %X-) §sin{uwt + a) + 5251n2(wt +a) ]

2
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CHAPTER 4

STABILITY OF A FIRST ORDCP MODLL-REFERENCE

ADAPTIVE COMTROL SYSTEM

4.1.  Introduction

In recent years model reference adaptive control systems have
Proved very popular, particularly for practical applications to devices
such as autopilots where rapid adaptation is required. The basic idea
is shown in fig. (4.1.1). The irput ei(t) to the controlled cystem or
Process is also fed to a reference model, the output of which is
Proportional to the desired response; the outputs of the model and

Process are then differenced to form an error
e(t) = 8,(t) - 8&(t) (4.1.7)

Since this error is to be zero when the process is in its optimum state
it is used as a demand signal for the adaptive loops which adjusts the
vVariable parameters in the process to their desired values.

Various methods of synthesizing the adaptive ioops nave been
p’“ODQS(ed but the one that has proved most popular is that developed by
Whitaker et al 75 at the Massachusetts' Institute of Technology and
referred to as the semsitivity or M.I.T. rule. Here the performance
Criterion is taken as the integral of ervor squared and a heuristical
argument js given for reducing this over an unspecified period of time.

‘This leads to a rule that a particular parameter Ki should be adjusted

SO0 that
K. = -Ge 2%- (4.1.2)

Where G is the constant gain and dot denotes differentiation with respect

to time t.
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75.

The popularity of this method is undoubtedly due to the practical

Conveniepnce with which the §%~ signals are generated by easily realizable
.i

filters.

Although the M.I.T. rule results in practicaily realizable systems
mathematical analysis of the adasptive loops, even for simple inputs, prove
to be very difficult and it is usual in the design process to carry out
much analogue computer simulation. The system equations are nonlinear
and nonautonomous and since the nonlinearity is of the multiplicative
Kind the mass of theory on instantaneous nonlinearities associated with
the names of Luré and Popov, in particular, is not applicable.

In this chapter we shall apply the theory developed in chapters
1 and 2 to examine the stability of a first order M.I.T. type model
reference system with controllable gain when the input varies both
sinusoidally and randomly with time and the process environmental
Parameter assumed constant. In chapter 5 the effect of making the
environmental parameter time varying, on the system stability and
accuracy of its parameter adaptation, will be considered.

The doubts concerning the stability and the difficulty of
analysis of the M.I.T. type system have led researchers to think about
redesigning the model reference éystem from the point of view of
Stability. 1In particular we have the Liapunov synthesis method46’76’77;
in this aéproach a Liapunov function is proposed and control signals
are chosen such that its time derivative is negative definite. Should
this be possible then the resulting systenm can be guaranieed stable
for a1l possible inputs.

4.2, Adaptive control system

In order to develop a mathematical analysis, and to illustrate
the difficultics involved, we shall first consider a first order
System with controllable gain.

Consider the model and controlled system to be governed

Yespectively by the equations



pu

N
4+

[ew]

=

—~

P

N
H

@, (t) (4.2.1)

TO (1) + 8(t) = KKSB (1) (4.2.2)

where a dot denoted differentiation with respect to time t, the time
constant T and the model gain K are constent and known but the process
gain KV is unknown and possibly time varying. The problem here is to
determine a suitable adaptive locp to control K. so that KVKC eventually

equals the model gain K. The M.I.T. rule gives

K = -Ge & G, constant > O
K, = -Ge K ( )
wWhere
de -K,8; (%)
- H
aKc 1+ Ts

S being the Laplacian operator, and is found by differentiating partially
the transfer function
(K - KVK‘)ei(t)
1+ Ts

e =

With respect to Kc' The signal (ae/aKC) is usuaily generated by additional
Circuitry but here the signal v@m(t) js effectively all that is recuired

leading to the scheme shown in fig. (4.2.1), where

k= 4.2.3
K. = Beg (t) \ (4.2.3)

The equations of the system illustrated in fig.(4.2.1) are:

Te + e = (K- K/K.)0;(t)
ke, (t) (4.2.4)
BeH

m

Tem +

]

m
Ke

The Liapunov redesign of the system in fig. (4.2.7) is shown in

fig, (4.2.2) T and is represented by the equations :
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FIG. 4.2.1. First order system-M.I.T. gain adaption
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FIG. 4.2.2. Liapunov redesign of fig. 4.2.1.
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Te + e (K - Kch)gi(t)

(4.2.5)

ke

H

Be@i(t)

4.3. Stability of adantive control system

It is readily shown that for constant K the system illustrated
in fig. (4.2.2) is stable for all inputs ei(t) and for all values of the
System parameters. Writing x; = e and X, = (K - K,K.) equations (4.2.5)

become . . X,
A R e )

- Kva] Ci(t)

e
N

Consider a tentative Liapunov function

. 2 2

Differentiating along the trajectory of (4.3.1) gives

©

dv
dt

0]

1 i .
2%y (-5x T"'XZ) + 20X ( KvBeiX])

- -
If K, is constant then taking A = 1/(BTK,) gives

v _ 2,2

da - TN

Thus, provided Qi(t) £ 0, the scheme illustrated in fig. (4.2.2)
1S guaranteed to be asymptotically stable for all inputs Qi(t) and for
a1l values of the system parameters.

For the M.I.T. system of fig. (4.2.7) the stability analysis is
ot so readily carried out. Using an extension of the Dini-Hukuara
theorem Parks 7 showed that if a step input of megnitude r is applied
at time t = 0, when 6,0 6, are 2ro and KVKC L K, and if subsequently
K, remains constant but K. is adjusted according to equation (4.2.3)

then the system will be asymptotically stable for all values of the



9ain B and, as t > », e + 0 and KXo~ K as required. We shall now
Proceed to carry out a stability analysis, of the system illustrated
_i",fig. (4.2.1), when the input Gi(t) varies both sinusoidally and

randomly with time.

4'4.' Sinusoidal input

If to the system of fig. (4.2.1) a sinusoidal input of magnitude
Rsinut is applied at time t = 0, when Bm, es are zero and Kch £ K, and
if subsequently Kv remains constant but Kc is adjusted according to

quation (4.2.3) then the system equations (4.2.4) become

Té + e = (K= KJK)Rsinut
Tém + 8 = KRsinet (4.4.1)
K. = Beem

Now consider that the adaption is switched on when the model response

' gm(t) has reached its steady state value Gms(t) given by

KR
Gms(t) = ————’2_-'—2— (S'ino.)t - TwCOSwt),
14T w
then equations (4.4.1) become
Te + e = xsinut
-BKK, R (4.4.2)
! X = -——w——f——— (sinwt - Twcoswt)e
1T+ T

Where x = K - KK .
ve
By Buckingham's = theorem the number of non-dimensional
Parameters that need be considered are two and these are taken as
H] = wl

27

I, BKKVR

If, in addition to (4.4.3), we introduce the dimensionless variables
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51 = e/ (KR)
52 = ~-x/K ' (4.4.4)
T = unt

then the system equations (4.4.2) may be written in the non-deminsional

form
yo " r ] - r -
- L - — SN £
d Ej] H] H] T :
_—- = I,
Cde g, ———— (sint - HTCOST) 0 £s
i “ 11+ 1%) | L]

(4.4.5)

Which is a Jinear matrix differential equation of the form_gl = A(1)&,
Where 3 prime denotes differentiation with respect to t and A(r) is
Periodic in t with period 2.

We are intercsted in obtaining the domains of the parameter
SPace for which the null solution of the system of first order differential
€quations (4.4.5) is stable and such a problem was discussed in some detail

n chapter 1,

%41, Floquet theory analysis

Applying the numeriéa] implementation of Floquet theory to the
System of equations (4.4.5) stability boundaries in the parameter space
H]‘Hz are obtained. These stability boundaries are rather complicated
and are shown in fig. (4.4.1).

As was pointed out in chapter 1 the main disadvantage with this
Method is that it requires the assessment of the system stabi]fty at
®ach nodal point of a gridwork in the parameter space. However, in
this case, it is found that for a given value of Ty s whilst the product
X1A2 of the eigenvalucs of the system monodiomy matrix remains constant,

the valye of the eigenvalue Aq, such that IA]I > IAZI, follows a definite
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2

~ 0scillation. A plot of M against m, for the case My = 1 is shown -

in Tig. (4.4.2) (corresponding value of A, are such that AMAy =
constant). This continuous relationship between A and I, enables

US to predict approximate values of Ty for which the system changes

in character from being stable to unstable and vice-versa. Further,
fig, (4.4.2) suggests that it mey be possible to obtain a mathematical

€Xpression for A, but to date no such expression has been found.

1

4.4.2. Analogue computer simulation

In order to provide a check on the accuracy of the above
NUmerical method the results ot:tained are compared to those obtained
from an analogue computer study. Unfortunately analogue computer
Simulation of medel reference systems gives rise to difficult scaling
Problems and continual overloading of the amplifiers often prevents
the Correct solution from being observed. Evans and Underdown 78
Carried out an analogue computer study of the system shown in fig.
(4-2.1) and assumed that persistent overloading of the computer meant
instabi]ity of the system, Their stability boundaries are shown in
Fig, (4.4.3). It is seen that their main stability boundaries
COrrespong closcly to the theoretical resuits but they were unable to
detect the narrow stability regions that exist in the predominantly
Unstabie region of parameter space. An analogue computer study of

tﬁe Liapunoy redesign system of fig. (4.2.2) showed the sysiem to be

"Nconditionally stable for values of m, up to 10,000.

g, - _
4.3. Infinite determinant method

An alternative approach to the stability analysis, of the
SYstem of equations (4.4.5), is the infinite determinant method
Bscusseq i, chapter 1.

Although the system of equations (4.4.5) is not canonical it
Can be shown that the only solutions corresponding to transition

b s . .
SUndaries from stable to unstable regions, and vice-versa, are those



of period T and 2T (2 and 4r in this particular case). From equation

(1.3.]0) the monodromy matrix C of system (4.4.5) is such that

2w
detC = exp { J trace A(t)dr } = exp { ~2n/H] }
0

S0 that if A,», are the eigenvalues of C then

172

: MA, = exp { 2w/l )} = oz(say)' (4.4.6)
[f AAo are complex conjugates then it follows from equation (4.4.6) that
they Tie on a circle of radius p so that complex roots cannot have modulii
Wity since this would imply p = 1 which is only possible if m, is infinite.
Thus on the transitibn boundary there must exist a real root having the
Va]ue +1 or -1 (note that real roots A;,2, are inverse points with
respect to the circle of radius p). It follows from equation (1.5.3)
that the transition boundary is characterized by a solution of period T
or 2T'(1'.e. 21 or 4z in this case).

On substituting a Fourier series, with undetermined coefficients,
5f period 4+ in equations (4.4.5) and balancing like terms it can be
shown, see appendix 4.1, that the corresponding Hill determinants are
Sums of squares and therefore cannot be zero for any value of the
>Darameters. This has been verified by analogue computer simulation
ad by the results of the Floquet theory analysis.

In the case of the harmonic solution, of period 2n, substituting

the Fourier series

gy o= oa, I (acosnt + b sinnt)
n=1
into equations (4.4.5) (the corresponding series for & being obtained
b integrating the second equation of pair (4.4.5) and balancing Tike
terms, see appendix 4.2, leads to two distinct sets of Tinear homo-

%8ncous algebraic equations for the coefficients (a5ps by (350410



b2n+])’ (n =0.7,2, etc.), respectively. By truncating the Fourier
series it is found that the corresponding Hill determinants of order

r, in each case, are polynomiais of order v in 1, having coefficients
which are functions of Iy - For a particular r these polynomials are
solved, using the procedure described in appendix 4.3., for a range

of vaiues of'H2 and the zeros plotted to obtain the transition
boundaries in the parameter space. The value of r is then increased

and the corresponding HiT1 determinants solved until a convergent

set of boundaries is obtained. It is found that for H] > 1.5, where

the enveloping boundary is continuous, considefation of fiftnh order

Hi11 determinants is sufficient but for I, < 1.5, where the enveloping
boundary is discontinuous, the method is not found to be very satisfactory.
Hi11 determinants of order eleven have to be considered before a true
picture begins to emerge and the order has to be increased still further
before an enveloping boundary is obtained to a satisfactory degrec of
accuracy. Plots of the stability boundaries when r is 5 and 9 are shown
in figs. (4.4.4) and (4.4.5) respectively and these illustrate the
difficulty in interpretating the results using this method.

4.5. Random impulsive input

If the input, to system of fig. (4.2.1), is a general random

signal o(t) then the system equations (4.2.4) become

16 (t) + 8,(t) = Ka(t) (4.5.1)
Te(t) + e(t) = xa(t) (4.5.2)
x(t) = -KBe(t)o (t) (4.5.3)

where, as before, x =K - Kch'

Despite the recent progress in stochastic stability theory, as
surveyed in chapter 2, methods of investigating the stability of the
above system of equations, where the system is not asymptotically stable

when the noise terms are equated to zero, are not forthcoming. In order

to have a first look at the problem, we shall assume that o(t) is a
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sequence of randem impulses spaced sufficiently far apart in time
(compared with the system time constant T} that the transient
effects from a particular impulse have died out before the next
impulse arrives; that is,.
N
of(t) = ) AL &(t - ) (4.5.4)
r=0
where « >> T, N is the total number of impulses occuring and Ar (r =
0,1,2, -=-, N) are random variables drawn from an amplitude probability
distribution p(y), say.
During the time interval rv < t < (r + 1)t equations (4.5.1) and

(4.5.2) may be solved to give

KA
8, (t) = —Tﬁ exp {-(t - rv)/T} (4.5.5)
A
and e(t) = Tn-x(rr) exp {-(t - rt)/T} (4.5.6)

Substituting equations (4.5.5) and (4.5.6) in equation (4.5.3) gives

. -KK BAZ x(r1) :
S x(t) = 5 exp {-2(t - rt)/T} (4.5.7)
T :

Integrating equation (4.5.7) and substituting back for the consteni of

integration gives
2

KK BAZ |
' ox(rt) exp {-2(t - rt)/T}

KKVBA

x(t) = x(rt) [ 1 -

]+

2T 2T
(4.5.8)

Since t >> T equation (4.:.8) furnishes the following recurrence

relationship for x(rt)

kKVB/-\2
x(r+ 1 1) = [1-—
27

r

1 x(rr) (4.5.9)

Successive application of relationship (4.5.9) leads to



KK BAZ,
[1-——= ] (4.5.10)
2T

x(r + 1 1) = x(0) I i
s=0

Thus, in order to investigate the stability of the system we

must examine, by letting r -+ », the convergence of the infinite product

TT Cr-a1, (6.5.11)
r=0

KK B
v

where a = > 0. By considering a large number of terms and their

2T
distribution and by considering the logzrithm of the product of these

terms we are led to consider the integral

I - f log|T - ev?] p(¥)ay (4.5.12)
0

If this integral is positive, the infinite product diverges and the
system is unstable; if this integral is negative, the infinite produce

v 79

‘diverges to zero , x(rt) >~ 0 as r + « and the system is stable.

If y has a Gaussian distribution with zero mean and variance
02 the integrand of integral (4.5.12) takes the form sketched in fig.
(4.5.1). It has not been found possible, in this particular case, to
evaluate the integral in closed form so that the integration has to be
carried out numerically. In order to take account of the singularity
at y = 1/Y/a the numerical integration was crosschecked using both the
trapezioidal rule and Simpson's rule and a critical value of aoz
found for which the positive and negative areas in fig. (4.5.1)

balance. This yields the stability criterion

a0l < 2.5 (4.5.13)

For y having a uniform distritution between y = tb, the

integral of equation (4.5.12) can be evaluated in the closed form



log {i - cyzlcxp(-yzl?.cfz)
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FIG. 4.5.1.

Form of integrand for Gaussian distribution.
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I = < { bfa"loglab2 - 1| - 2bva + log b/a _+1 }
bva b/a - 1
Equating I to zero yields the stability criterion
ab® < 6.25
2 (4.5.14)
or ac- < 2.08
since, in this case
a® = b%/3

Results (4.5.13) and (4.5.14) have been confirmed by direct

digital simulation of the infinite product (4.5.11) using appropriate

random-number generation procedures (these are discussed in appendix

(4.4)).

If one attempts to develop the above approach a step further

and allow the effects of the impulses to overlap (that is, the r

th

impulse arrives before the transient effects of the previous impulses

have died out so that we do not make the assumption t >> T), then, by

solving equations (4.5.1) - (4.5.3) during the time interval rt < t <

(r + 1)1 we arrive at the following matrix recurrence relationship.

g

e(r + 11)

X(-Y‘ + ]1‘)

-

-

e"T/T Ar e’T/T
T“—‘
_ K BT KA K, BA KA
M (=fwe (r))(V-e) V- L(—X
2 T T T

+ Gm(rT))](]-a)

by

{4.5.15)

where « = exp {-2(t - tr)/T} and Gm(rr) is given (by solving equation

(4.5.1) by

Bm(rT) =

K .
= Ar-j exp {-(j + 1)t/T}-
0

o~ s

J

‘é(rr)

x({rt)




h . . .
t impulse arrives the transient

)th

If we assume that when the r
effects of all the previous impulses, apart from that of the (r =1
impulse, have died out (that is, neglect terms in exp(-gt/T), B » 2 in
the recurrence relationship (4.5.15)) then the question of stability,
reduces to one of examining the convergence of an infinite product of
matrices and to date no progress has been made with this probiem.

Although it has not been possible to obtain theoretical
stability boundaries for the system of fig. (4.2.1) when the input
is purely random digital simulation of the system for such inputs
suggasts that such boundaries exist. It is clear therefore “hat a'
scarch for theoretical methods of investigating the stability of a
linear system of equations of the form X = A(t)x, where the time
varying elements of A(t) are stochastic processes and the system is
such that it is not asymptotically stable when the stochastic terms
are equated’to zero, is a field for further research. A more detailed
discussion on the digital simulation of the system is given in

section 4.7.

4.6. ~ Step plus random inpLt

In order tc avoid the theoretical difficulties involved when
the input is purely random we shall take the input ei(t) as consisting

of a constant step R together with a random variable o(t); that is

0,(t) = R+ a(t) (4.6.1)

This assures, from section 4.3., that when the random term «(t) is
identically zero the system is asymptotically stable for all values
of the system parameters. It follows that, in this case, the theoretical
results discussed in chapter 2 are applicable to investigating the
system stability.

then ei(t) is defined as in eguation (4.6.1) the system equaticne

(4.2.4) become



Te(t) + e(t) x(t) (R + a(t))

x(t) = -K Be(t)8,(t) (4.6.2)
T8, (t) + 6,(t) = K (R + a{t))

Assuming, as before, that the adaptation is switched on when the model

response em(t) has reached its steady state value 0 _(t) equations

ms(
(4.6.2) become

(4.6.3)

Since the model is linear we have, by the principle of superposition,

that

0 (t) = KR + B(t) (4.6.4)

s (

where KR and g{t) are the steady state response of the model to the
step and random term respectively.

Substituting equation (4.6.4) in equation (4.6.3) gives

i le(t) —%- -$ e(t)] | 0O E%El e(t)
—_ = + (4.6.5)
dt |x(t) [—KVBKR 0 Ix(t) K BB(t) 0 x{t)

Equatioﬁ (4.6.5) is of the form

X(t) = Ax(t) + F(t) x(t) ,

where A is a constant matrix such that the system x(t) = A x(t) is
asymntotically stable for all parameter values and F(t) is a matrix
whose non identically zero elements are stochastic processes. The

stability of such a system was discussed in some detail in chapter 2.

4.6.1. oft) Gaussian white noise

98.

If the input «(t) is tiaken to be a gaussian white noise process,

with statistics



<aft) > = 0

< alt)at + 1) >

then the filtered noise g(t) will be gaussian but no longer white.

follows 3

= ZDS(T)
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(4.6.6)

It

that the process {e(t) x(t)}, defined by equations (4.6.5),

is not a Markov process. If we introduce a third variable x3(t), defined

by x5(t) =
(1) = - xg(t) ¢
iz(t) = -BKK Rx;(t)
k(1) = -3 xglt)

where x,(t) = e(t) and Xo(1) = x{t) = K - KK (t}).

8(t), then the system equations may be written

w2t o)

BKVX1(t) x3(t)

The process

(4.6.7)

{x](t) xz(t) x3(t)}, defined by equations (4.6.7), will now be Markov

(Note that the effect of making the process Markov is to make the

system equations nonlinear) so that its conditional probability function

p satisfies the Fokker-Planck equation.

Using the theory developed in section (2.3) we have that the

Fokker-Planck equation corresponding to the system of equations (4.6.7)

is (see appendix 4.4)

o)p _ 1 3 _
36 T 3% (XP)
Dx22 azp
+ — —
1 ax]

R ap , op
_T_ X2 —-—;i- + (BR}\KVX] + BKVX]X3)'§";§
| 2
20K 22p N kp 2P
12 2 WX {9%y 72 ax32

The first order moment equations are :

S
T ™,0,0

»BRKKV m

]
T Mp,0,1

1,0,0

+

-

(4.6.9a)



and the second order moment equations are :

: . -2 R 2D
m0,0 5 TTM,00 * T M,1,0 T 72 "0,2,0
ﬁ = - 1 m + R m - BRKK m BK, m
1,1,0 T71,1,0 T"70,2,0 v 2,0,0 v 2,0,1
* - - / - 17
mO,Z,O = ZBRKRV m]’],O ZB“V m],]’]
. 2 R 2DK
Mo T TT™M0n Y TR0, F o2 Mot
[} _ - 'l _ ,
mo,10 = TERK Mo T T Mo, 0 By M0,
2
. 2 2K™D
M,0,2 = " T",0,2 T 7 ]

(4.6.9b)
and the general order moment equations may be obtained from the
relationship
i = -‘ﬁm + Rgom - BRKK, K, m

1 2,K3 T K],KZ,K3 T K]-I,K2+],K 2 h]+] K2 -1,K 3
K
3 D
- BK K - + =5 ( -1) My
v 2 h]+] K2 ],K3+1 T k1,K K | T ] ] -2 K2+2 k3
2

DK 20K
+ = Ky(Kym1) m - =5 KKy m _

f? 3\73 1’K2’K3 2 T? 13 K] 1, K2+1, K3 1

(4.6.9c)

fe easily find from the equations for My.0,K that x3(t) is
Gaussian with steady state mean and variance equal to zero and %2
respectively. However, all the remaining moment equations in (4.6.8)
are interrelated; the first order moments depend upon the second; the
second order moments depend upon the first and third order moments;
the third order moments depend upon the first, second and fourth; etc.

Due to the inter-dependence of the moment equations it is

difficult to see how, in this case, it is possible to speak of mean
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square stability since this would imply that only second order moments
are considered in the determination of stability. This could only be
achieved if moments higher than the second are neglected but, unfortunately,
no justification can be given for doing this. It appears that, in this
case one must examine all the moment equations in order to answer the
stability problem; that is, the stability problem can only be answered
by examining the behaviour, regarding stability, of an infinite system
of first order differential equations (i.e. the moment equations of all
order) with constant coefficients 80.

It follows, from the above, that the stability probicm is one
of examining the roots of an infinite determinant. Although some such

4 by the use of recurrence

determinants have been examined successfully
relationships no progress has been made, to date, with examining the

determinant representing the infinite system of equations (4.6.9).

4.6.2. aft) Gaussian

If o(t) is an ergodic Gaussian process then it Toilows that
8(t), which is obtained by passing a(t) through a linear filter, is
also an ergodic Gaussian process. Thus, in this case, we can apply
the theory discussed in section {2.7) to obtain sufficient conditions
for g]mpst sure asymptotic stability of the system defined by equation

(4.6.5) which, for convenience, is rewritten in the form

-

0 01 x](t)
+ 8(t) ‘
BK, OJ xz(t)

d (] |4 2] g 0 -1 rx](t)]

—— = + a(t)
X (t{[
oL

—

(o]
o

dt xz(t) BKK R 0 xz(t)

(4.6.10)
where x](t) = g(t) and xz(t) = K Kc(t) - K.

Introducing the non-dimensional parameters

O, 8]
M, = BRKRET , g = /o and iy = pp s (4.6.11)
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2

where o and 002 ara the variances of o(t) and pg(t) respectively, and

the dimensionless variables
, t
E] = X]/(KR) ’ 5,2 = Xz/l\ s T = /T (4.6.]2)

then equation (4.6.10) may be written in the non-dimensional form

dr|£y(7) mo0 £p(1) 0 O.JL€2(T) Tl

-

d g](T)T ‘-1 -1 Eﬂ'r) ’0 T, E](T) 0 0> El(r)
+0‘,-I(T) +B](T)

[ew)

‘Ez('f)

=Ag (1) + o) G &(r) + 8y(r) G, £(x) (4.6.13)

where g(t) = [ 51(1) gz(r) ]1 and a](r), 81(1) are the normalized form
of a(r) and g{t) revpectively (that is, both a](T) and B](T) have unit
variance).

Equation (4.6.13) is of the form

a type of equation that was discussed in detail in section (2.7). It
can be shown that the stability boundarics obtained using the criteria

55 and Man 56 are much sharper than those obtained

developed by Infante
using the other criteria cited in section (2.7). Thus, we shall confine
orselves to obtaining stability boundaries, for equation (4.6.13), using
only these two criteria. However, before doing so we shall first obtain
a relationship between My and Ty

B(t) is the steady-state response of the model to the random

input o(t). Thus, if Gi(u) and Go(m) are the power spectral densities

of a(t) and 8(t) respectively, then it is well known that

6ofw) = | F(3n) 12 6;(0) | (4.6.14)

where F(s) is the transfer function of the model. Since, in this case,
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it follows from equation (4.6.11) that

G {v) = ——5= G, (w) (4.6.15)
0 1+ mZTZ 1

Since, in the digital simulation of the system, the numerical procedure
commits us to a small step length h we shall assume that Gi(w> is given

bv equation (A4.6.6), namely

o 2
N

ki

h

6; () =

where oN and h are defined as in appendix (4.6). Thus, from equation

(4.6.12)

Since, in our notation, Go(w) is measured in power/radians/sec
and defined for positive frecuencies only, it follows from equation

(A4.6.3) that the variance 002, of the output signal g(t), is given by |

2 r
o = G (w)dw
0 5 O
e o mkf
9y = ' (4.6.1¢)
2T

- L 2 e N . ~ [ . . 1
Aiso, if o; s the variance of the input signal ot) then, from

equation (A4.6.3)
ay (4.6.17)

Introducing the non-dimensional parameters

N

T
}a‘: -
-

and g = $— (4.6.18)

=

Ve have, from equations (4.6.16) and (4.6.17), that
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2 _ 2.2
H3 = 3 HS
: (4.6.19)
2 2 _ 3 2
and Iy = s Melm = 7 Tgls
4.6.2.1 Infante type analysis
In Infante's work, see section (2.7), consider for the
symmetric positive definite matrix B the most general form
’ .
" ta,  ay
B = » 8, > 0 (4.6.20)

g1

1
a

2 2
-3, "+ a,

Taking the matrices‘gl and EZ’ as dafined in cquation (4.6.13),

we have that

; a](a]2“+ a2) -(a]2 + az)2
(1) 6 +86,870 =3
—1]- a
‘ (a Z . a,) -3, (a 2 4 a,)
1 2 1Y 2
giving !
2
2,(a," + a,)
1 -1 1 Ty _ 3V 2
Amax(,@_] + EE] E. ) - Am—in(G] + E_@] .B. ) -
ﬁ%? (4.6.21)
and 2
T -1 Tl [ “ 27 %
(M) & +B2& D =“a"z“t
1 -
giving
20,1
. -1 1, -1, _ 24
Amax(_qz + _B..E‘.Z .B_‘. ) - Amin(_qz v .5_.9 B ) - T

2 = Vay (4.6.22)
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Taking the matrix A, as defined in equation (4.6.13), and

computing the matrix ﬁ] +B A p”!

then further computation yields :

1 1

max(A +BAB

2 .1 p,. 2 2,2

) = -1+ {1 - 220)° + = [ (3 +a2)-H2+a](1—2a1)]}
(4.6.23)

Using results (4.6.21) - (4.6.23) it follows from the stability
criterion (2.7.17) that the system, represented by equation (4.6.13), is

almost surely asymptotically stahble in the large if

2M,(a," + 2,) 2,1 -
el (> 2ty e A <ol e aBT
et Vay ! V2, maxi= ===
2 2
(4.6.24)

wvhere A (A]

=1y 5. .
max &t B AB ") is given by equation (4.6.23).

If y(t) is a Gaussian random signal with variance o° then

dritils =/%

Thus, since a](T) and 8](1) have unit variance, criterion (4.6.24) becones

3 3 ¢ -
T3 ””"'[(a]z tay) 4 Iz H6)?]<] - (1 - Za])z + %E [(312 + ay)

-1, + ay(1 - 2ay) ]2}% (4.6.25)

Optimum values of a4 and a, are now obtained by finding the
condition for Iz, regarded as a function of the two variables ay and

295 to be a maximum. Such values are found to be :

4 T, - 1
a] = '2' s ag = "'*"—'";— (4.6.26)

Using values of 2 and dn given by equations (4.6.26) in (4.6.25) gives

that the system is almost surely asymptotically stable if

2 - 4 Iy = 1
3 8 " _2p TET w2
S 1+ /.750;]




or using equations (4.6.19),

2 3 (41, - 1)
e < S 4.6.27
g 16 [1+ JT?SHG]Z 1,° ( )

4.6.2.2. Man type analysis

In Man's work, see section (2.7), take for Q the identity

matrix I3 solving the Liapunov matrix equation
1 N
AP+ PA = -4 (4.6.28)

where A is given by equation (4.6.13), then gives the matrix P in the

form
(T + 1,) ]
p P 2 1
b 11 12 | T 7
P12 P22 7 2,

Taking the matrices EI and QQ, as defined in equations (4.6.13),

simple computation yields :

1 (O P
(1) g'e + P& = 1
[ Py 2Py
giving
1 Ty :
Amax(~1 P+ PG = 5 -1+ /{'+ (1 + H2)2 1 (4.6.29)
: 22 Pe2 1
and (i) 6,2 + PG, = 1.0,
Pop 0 J
giving
1 I
Mmax(Go L+ P8y = [y *-fégz (24 1,)0 ] (4.6.30)



Using results (4.6.29) and (4.6.30) it follows from the
stability criterion (2.7.24) that the system, vepresented by equation

(4.6.13), is almost surely asymptotically stable if.

I / 3 I
<|a](1)]> . —% [}] + /1 + (1 + Hz){] + <IB](T)|> n% [HZ

4,
+/H2 + (2 + 1) _]<1

(4.6.31)

Again, since a](T) and s](r) are Gaussian with unit variance,

[z
2,

1

<l“](T)|> = <]B](T)}> =
so that criterion (4.6.31) becomes, on using equations (4.6.19),
/3

m. < ‘ (4.6.32)
RRV N (1 + HZ)Z + /C7Sﬁé [n // 2y 2+ nz)2 1

Note that in this analysis the matrix Q was taken to be the
identity matrix. One would expect to cbtain a sharper criterion if Q
were taken to be the most general symmetric positive definite form B,
defined by equation (4.6.20), and then optimum values of 3y and 2,
obtained in oirdey to maximize e However, taking Q to be such a
matrix it is readily shown that no such optimum values exist for 2

and az.

4.7, Digital Simulation

The random variables are provided by a subroutine using a
procedure for generating pseudo random nunbers (see appendix 4.5).
Sequences of numbers gencrated by this numerical procedure arc
assumad to have the same statistical properties as sequences cf

independent random numbers although they are in fact completely
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determined by the first number in the sequence. This means that the
sequence is regenerable which is an essential requirement for program
development and comparison of different numerical methods for solving
the probiem at hand. The occurrence of identical sequences can ve
avoided by taking a different first number for each sequence that is
generated.

The basic numerical procedure generates a sequence of numbers
uniformly distributed over the finite range (0,1). From a table of
vaiues for erf(x) this sequence of numbers is transferred into a
sequence of normally distributed random numbers (0,1) which are then
mapped onto (u, oN). Thus, the complete subroutine produces a
sequence of random numbers which are normally distributed with mean u
and variance oy

By spacing these gaussian distributed numbers at intervals h
and joining them by straight lines, a segmentally linear function is
obtained that approximates white noise; the degree of approximation
being cependent on the spacing h, It can be shown from the auto-
correlation function (see appendix 4.6) that, for small values of wh,

the power spectral density of the function is given approxinately by

2
oNh

2
6lu) = [1- i‘—?—] (4.7.7)

ki
Khite noise is defined as a stationary random signal having ¢ gaussian
probabi}ity amlitude distribution and a spectral density which is
constant for all frequencies. As was pointed out in section (2.2) true
white noise is physically impossible to produce but what is produceable
is 'band-1imited' or physical white noise; that is, a function whose
spectral density is essentially constant over the range of interest
but falls to zero as o -+ «=. Thus, by making h sufficiently small, it
fcllows, from equation (4.7.1), that the function produced by the

numerical procedure outlined ebove approximates white noise a(t) having
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o dh
L and time domain statistical properties

constant spectral density

<a(t)> = 0
(4.7.2)

<a(t)e(t + 7)> = 0N2h6(1)

A sample fuaction of the process o (t) is shown in fig. (4.7.1).
Using the above numerical subroutine to generate the random
variable a(t) the system of equations (4.6.2), representing the M.I.T.

-

system of fig. (4.2.1), are simulated on a digital computer. Two

methods of numerical integration are employed, using in turn

(i)  the Runge-Kutta procedure
and (ii)  the Crank-Nicolson procedure
The Runge-Kutta procedure for solving a system of first order differential
equations is given in section (1.3.1); whilst the Crank Nicolson procedure
may be stated as follows 81

For the system of first order differential equations

4

Xi = f_i(X]g X23 T Xn3 t) = f‘(_)_(_’ t)’ i = ]’2’ L

the following finite difference re]atioﬁship is enployed

Xi( m+ 1 at) = xi(m AL) + K1.
wheré !
’ .10 af, (x,t)
Ky = At[fi(_x_a t) + o ) Ky 55 ] (4.7.3)
j=1 )

In order to obtain the variations of the ensemble moments with
time the system of equations (4.6.2) are solved m times simultaneously,
with each sct having a different o(t). The mean square valuss, over
the m outputs, of both e(t) and K - KVKC(t) are then printed out at
each instant of time and a decision taken as to whether the system is

stable or unstable in the mean square.
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4.7.1.  Step Plus random input

1

With parameter values R=58, K=1, T = 0.25, KV - 0.5,

1

initial K. = 0.5, h = 0.01 and m = 3 the system of equations (4.6.2)
are solved for various values of o For each °N the equations are
solved for a range of values of the gain B until a value is obtained
for which the system is unstable. Regions of stability in the Mg =T,
plane are shown in fig. (4.7.2) for both the Runge-Kutta and Crank-
Nicolson procedures. In both cases the graphs indicate the Towest
value of I, (for each HS) for which the system is unstable. Numerical
results indicate that there are other narrow regions of stabi%ity.
above these boundaries (possibley similar to those shown in fig.
(4.4.1) for sinusoidal input). Detailed calculation of these narrow
regions of stability would require a great deal «f computer time and
since also they are of no practical interest the exercise has not
been carried out.

Of the two numerical procedures it is felt that the Crank-
Nicolson preccedure is more suited, than the Runge-Kutta procedure,
for simulating random processes since it is less effected by the
discontinuous nature of the signal a(t) at each sampling point,

Also shown in fig. (4.7.2) is the theoretical stability
boundary Cepresented by criterion (4.6.27); the boundary represented
by criter%on (4.6.32) is slightly inferior to this one and is there-
fore not included 1in the figure. It is seen that the theoretical
results are very conservative; this however is not totally unexpected
as both criteria (4.6.27) and (4.6.32) are only sufficient, but not
necessary, conditions for almost surely asymptotic stability; further,
they are both obtained using the second method of Liapunov which 1is
known, even for deterministic systems, to give rather conservative

stebility bounderies.
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4.7.2. Rardon input

Although we have been unable to obtain theoretical results
when the input is purely random nevertheless the system was simulated
digitally under such conditions. for parameter values R =0, K =1,

T = 0.25, Kv = 0.5, initial KC = 0.5, h = 0,01 and m = 3 the stability
boundaries, obtained using both the Runge-Kutta and Crank-Nicolson
procedures, in the m,-lg plane, where m, and g are the non-dimensional

parameters

3

2,, 2
g = BKK,T » 1, = op"/K (4.7.4)

8

are shown in fig. (4.7.3). Also plotted in fig (4.7.3) is the
rectangular hyperbola 0y = 175 and approximately this represents
the mean of the two boundaries obtained using the numerical procedures.
Thus a form of stability criteria one would like to obtain theoretically
is

mlg < 175 (4.7.5)
Substituting for n, and g anc using equation (A4.6.6) condition (4.7.5)
suggests, on proceeding to the limit h + 0, that the system is unstable,

for all values of the system parameters, when the input is pure white

noise.
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CHAPTER 5

STABILITY OF A FIRST ORDER MODEL-REFERENCE SYSTEM

WREN ENVIRONMMENTAL PARAMETER TIME VARYING

5.1. Introduction

In chapter 4 the stability of a first order model reference
adaptive control system, for various inputs, was investigated and
throughout the environmantal process parameter was assumed to be
constant. In practice, however, the adapting parameters may e
required to change in response not only to the system input signal
but also to changes in the environmental parameters so that it is
important that the stability of the system under such conditions be
investigated. Very l1ittie thecoretical work has been done on this
problem as most of the literature assumes that the environmental
- process parameters are constant or only varying slowly with time 82,
and then analogue computer studics are made to see how the system
behaviour is affected if these variations become rapid. In this
chapter a theoretical analysis of the stability and accuracy of the
parameter adaptation, for the sysuem illustrated in fig. (4.2.1), is
presentéd for the cases of KV varying both sinusoidally and randomly
with time:

In designing the Liapunov redesign system of fig. (4.2.2.) the
environmental parameter Kv is assumed constant and only under such a
condition will the system be stable for a1l inputs Bi(t) and all
values of the system parameters. If KV is time varying then it will
be shown that the system illustrated in fig. (4.2.2) also gives rise
to stability problens.

The chaptar is concluded by considering the effect, on the
system stability and accuracy of its parameter adoptation, of noise

disturbances at the system output.
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5.2. Ev varying sinusoidally with time

5.2.1. The M.I.T. system

Let the M.I1.T. system of fig. (4.7.1) be subjected to a step
input of magnitude R at time t = 0, when Gm(t) and Qs(t) are zero and

KKe £ K. Subsequently let K, vary with time, according to

K, = Z sinwt , (5.2.1)
and Kc be adjusted according to equation (4.2.3). Considering, as before,
that the adaption is switched on after the model response 8,(t) has

reached its steady state value KR the system equations (4.2.4) become

fl

Te + e (K = K Z sinut)R

(5.2.2)

¢

KC

BKRe

[}

By Buckingham's w theorem the number of non-dimensional parameters

that need be considered are two and these are taken as

o= T, - BKRZTZ (5.2.3)

17, in addition to (5.2.3), we introduce the dimensionless variables
E] = e/(KR) s gz = ZKC/K s T = wt (5.2.4)

then the system equations (5.2.2) may be written in the non-dimensional

form

1 1 1

&g = -ﬁTE] - T sin 1t &, + — (5.2.5a)

1
2 Q]

g, = = & (5.2.5b)

where a primz denotes differentiation with respect to .
Substituting for E1> from equation (5.2.5h), in equation (5.2.5a)
gives

w1 "9 .9 (5.2.6)

£ 2
2 P T
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which is a forced linear differential equation with periodic coefficients.
Equilibrium or steady state solutions of equation (5.2.6) may
be found by the principle of harmonic balance. To a first approximation

it is readily shown that the steady state harmonic solution is

201 + 1,°) | )
£, = _~_~ﬁ§—~—— + 2sint + ﬁ? cost (5.2.7)

(Note. It is readily shown that the only subharmonic solutions possible
ara those of order 2 and that these can only occur on the transition
boundary between stable and unstable regions)

The corresponding solution for & Ts found, from equation (5.2.5b)

to be

- el 2

£, .= —— COST =~ = Sint 5.2.8
Also,

(K= KK = (K- K/Zsinut)

K(1 - gzsinr)

-2(1 + n12) 1
= = Sifnt + T Singt + cos2t
) 1

o

(5.2.9)

[quations (5.2.8) and (5.2.9) show that the stead; state solutions for
both the error and K - KVKC contain no constant or d.c. term; that is,
both e(t) and K - KVKC adapt to oscillations about zero as required;
the amplitude of the osciilations depending on the parameters i and g

Having found the equilibrium solution 21, 52 the next step is
to investigate its stability. Considering small variations n1sNos in
£ and &5 respectively, about the equilibrium state we have, from

equation (5.2.6), that

. n
nzl] + -lliT T]-l] -+ ‘*‘9"2‘ S.inT n] = 0
111

or a matrix form
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& , C(5.2.10)

where Xy =, and Xo = ”2]’

Equaticon (5.2.10) is of the formlg = A(t)x, A(t) = A(t + T) and
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its stability is investigated using the numerical implementetion of Floguet

theory as described inchapter 1. Examining the eigenvalues of the
monodromy matrix at a network of points in parameter space leads to the

stability diagram shown in fig. (5.2.1).

5.2.2. The Liapunov redesign system

Fpplying a step input of magnitude R to the Liapunov redesign
system of fig. (4.2.2) and allowing KV to vary according to equation

(5.2.1) the system equations (4.2.5) become

Te +e = (K- K[Zsinut)R
. (5.2.11)
K. = BRe
o
Introducing the non-dimensional parameters
M, =T , Ny, = TZBR?
1 » Thyg (5.2.12)

and the dimensionless variables 1> &y and 1, as defined in equations

(5.2.4), equaticns (5.2.11) may be written in the non-dimensional form

1 1 1 . 1
£ = = - E. - — SintT &, + —
1 n] 1 n] 2 u]
5.2.13
>2 u] "1

that is, the system equations are the same as for the M.I.T. system,
except that g is replaced by s SO that the stability problem is

identical. This is as expected for the case of a step input since the
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steady state response of the model is given by

8.

, . i
(Op(thgg = KR = ¢~

and the adaptive loop is essentially the same. If both @i and KV are
time varying then the Liapunov recesign system will give rise to a
stability problem but it will not be identical to that of the M.I.T.

system.

57°2.3. Ev = S + Zsinwt

If, instead of regarding KV as being purely sinusoidal, we
take the sinusoidal term as being a disturbance on an initial given
value S (constant); that is,

K (t) =S + Zsinot (5.2.14)

then the M.I.T. system equations become

I

1 1 1 7 1
g,l = - TIT g] + ﬁ'—l- "II‘]*"' 52 ﬁ*{- Sint €2 (5.2.]53)
i
1 9 '
AN (5.2.15b)

where Ty, Mg, &1, &, and t are defined as in equations (5.2.3) and

(5.2.4) and

H]] = Vi (5.2.]6)

) N, T I I
1M 1 i 9711 9 . 9
Byt Lyt = b = sint )52 == (5.2.17)
I i
1 1 1
As before, equilibrium solutions, for equation (5.2.17), may be found
using the principle of harmonic balance but the stability problem may

be solved by considering the unforced differential equation

s ( = sinv)gz =0 (5.2.18)
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Exact stability boundaries, for equation (5.2.18), in parameter space

Ty = Ty, for various values of yqs may be obtained using the numerical

1
procedure empioyed for equation (5.2.10). However, approximate stability
boundaries may be obtained using other techniques.

Writing © = 2t - /2 equation (5.2.18) becones

.y Mgy T
E;Z 4 h.-:l- }:2 + 4 [:—-I;-z'-' - ‘]‘]“? COSZt]iz =0 (5.2.]9)
1 1

which is of the form of the damped Mathieu equation.

%+ 25§ + (a - 2qcos2t)x =0 , (5.2.20)

I_a

. - L2 2
with x = g, ¢ = » @ = 4H9H]]/h] and g = 2H9/H] (5.2.21)

et
—

1
Equation (5.2.20) has been dealt with extensively by various

researciers and we shall confine ourselves here to considering some

of the sharper stability criteria that have been presented. These

criteria are sufficient but not necessary conditions for stability.

(1) By generating a suitable Liapunov function Pm‘tchardg3

obtained the stability criterion
2,1
(1+4:5)% |qf <za (5.2.22)

Substituting for ¢, a and q from equations (5.2.21) the stability

criterion for equation (5.2.19) becomes.

2
2 a
T > 1+ *Z“' » Ty > 0 (5.2.23)
(ii) If in Infante's work, see section (2.7), we take
o 1 0 0 a]Z ta, o
A= » F(t) = f(1) » B = , (5.2.24)
-a -2t -1 0 o 1

where (1) = -Zqcos2t, then condition (2.7.16) for asymptotic stability

becomes:



-t
™~
™o

E0-2e + [4 - ap)® 4 3= (o ¢ o = a - F(8) + 20(c - a) )P T < 0

92
or

ECFP(1)) < wplde? - 4(c = 0)?] - fay + 02 - a4 261(c - )% (5.2.25)

Optimum values of o1 and o s in order to maximize E{fz(t)}, are
found to be

a-l=l;,a2=§2+]

With these values of o and a, caadition (5.2.25) becomes

2
ECFo (1)) = 24 < aar?
2
ie. % < 2atf (5.2.26)

Substituting for g, a and g from equaticus (5.2.21) we have that the

criterion for equation (5.2.19) to be asymptotically stable is that

(i1i) If in Man's work, see section (2.7), we take the matrices
A and F(t) to be defined as in equations (5.2.24) and take the matrix

Q to be the identity matrix the condition (2.7.19) for asymptotic

stability becomes :

2.2
Ecf () = 207 < —p 102% -

8z + (1 + a)2 - 4¢v@g2 + (1 + a)2

ya 8a2g2

or ¢ < I
85+ (1+ a)% - 4p/ac? « (1 + )2

(5.2.28)

Substituting for z, a and q f-om equations (5.2.21) we have that the

criteria for equation (5.2.19) to be asymptotically stable is that

o 2 Z . 7 2 2.2
oIT.] + (H] + 411911-”

2 _ a0 4 . 2 .1 c o
) Ay (Amy™ + (i 4 Mgy g)® ) ® < 32my Tt (5.2.29)

The stability boundaries, in the a-q planc, corresponding to criteria
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(6.2.22), (5.2.26) and {5.2.28) are shown, for three different values of
z, in figs. (5.2.2) - (5.2.4). It is readily seen, from these figures,
that an optimum stability boundary is obtained by using a combination of

all three criteria,

5.3. Kv varying randomly with time

Let the M.I.T. system of fig. (4.2.1) be subjected to a step

i

input of magnitude R at time t = 0 and subsequently let Kv vary with

time according to

i

K, (t) S +a(t) , (5.3.1)
where a(t) may be regarded as a random disturbance on the initial value
S. Considering, as before, that the adaption is switched on when the

model response has ieached its steady state value KR the system equations

(4.2.4) become

1 SRR KR
X R R L T
d
- + , (5.3.2)
dt X, BKR 0 X, 0

where Xq = e(t) and Xo = Kc(t).
. As in the case of KV varying sinusoidally with time the stability
problem for the Liapunov redesign system of fig. (4.2.2), when the input
is a step of magnitude R and K, varies according to equation (5.3.1), will
be the same as that for the svstem of equaticns (5.3.2).
Shackcleth and Butchert fe attempted to obtain stability boundaries
for system (5.3.2) using the theorsms of Kats and Krasvoskii (see section

(2.5)). They introduced the variable
=K - K/
Z LC K,K\

f

and wrote the systom equations in the form



. : k(%)
e(t) = - 1 e(t) - —= Ry

(5.3
2(t) = Be(t)R - L (K/K, (1))

In order to satisfy the requirements of the theoiem Kv(t) must be a
stationary Markov process with a finite number of states; it was
therefore assumed to have the simplest possible form in that it was
only allowed to have two possible values a1 and a, with B1o being the
probability of a transfer from 4y to 2, in time 8t and Boy that from
3, to ay- In the absence of the disturbance term %f (K/KV) the first

theorem of Kats and Krasvoskii may be employed to obtain a sufficient

(2 - 2p)° 8 < [2y3, (20 + /T,

where g is the probability of a change.

From the second theorem of Kats and Krasvoskii the system of
equations (5.3.3) will not be made unstable if the disturbance term
d(K/KV)/dt is a Gaussian process. Unfortunately it is not a Gaussian
Frocess, so that the second theorem is not valid. However, the
disturbance term will become a closer approximation to a Gaussian
process as the number of finite states Kv is allowed to have increases.
Although the methed may be extended to deal with such cases computation

becomes a major problem.

5.3.1. oft) Faussien white noise
If a(t) is taken to be 2 Gaussian white noise process, with
statictics

<a(t)> =0

26.

L
~—

(5.3.4)

<a(t)a(t + 1)> = 2B6(7)
then the process {x1, X, b, defined by equations (5.3.2), forms a Markev
process so that its conditional probability function p satisfies the

Fokiker-Planck cqustion. Using the procedure, as described in appendix
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(4.4), used for the system of equations (4.6.6) the Fokker-Planck

equation corresponding to the system of equations (5.3.2) is obtained

in the form
2,2
EP. = 1..?..__.. (X p) - §R _.a,E,_ ~ BKR x d + R X,z ° azp + §...R_ ..Ei_._._
ot [ 83Xy 1 boaxy 1 axz TZ ax]2 ) ax]
(5.3.5)
Introducing the non-dimensional parameters
- BKRZ
My, = BKR™ST
» (5.3.6)
H]3 = D/(TS%)
and the dimensionless variables
& = x]/(KR) » £y = SXo /K o= /T (5.3.7)
equation (5.3.5) may be written in the non-dimensional from
P oD S op 2 .2
ar “ag (P TR T T g, © Mty LB, o 2p
2 2
(5.3.8)

By multiplying equation (5.3.7) throughout by £; (i =1,2) and

1ntegrat1no over all £1s &y the first order moment equations become :

f.<g.l> F—-'I -1 <g.'> ‘ 1 -

d
dt T dr - + (5.3.9)
'mo,1 <52>J iy 0 <Ep> 0

i L L SLed L

A necessary and sufficicnt condition that <gy> and <€,> converge is
that the eigenvalues of the coefficient matrix have neqative real
parts. Since the eigenvalues of the coefficient matrix are given
by

- 41112

1"

1
-
i+

2X
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it follows that <ty and <€,> converge for all HTZ and H]B; that is,
the system is stable in the mean for all values of the system parameters
Also, for all values of M5 and 13, the asymptotic values, as t - w,

of <ty and <fy> are given by

-<g.l> - <g2> + 1 =<0

Mg <t = 0
that is,
Timit <g,> =0 and Timit <Ey> = 1 -(5.3.10)
T > © T => o

Using relationships (5.3.7) it follows from (5.3.10) that, as t - @, both

e(t) and K - Kv(t)KC( ) tend to zero in the mean, which is as required,
By multipiying equation (5.3.8) throughout by gigj (i, = 1,2)

and integrating over all E1» & the second order moment equations become:

m o2 T 17,27 [,
m2,0 <6y -2 =2 2H13 <> 2<g]>
d _ o d A1 i ) .
@ | M d <€1§2’ e R R,
2
~m0,2J —<€2 >J ..O ZH]Z 0 | <€2 >.. i 0 )
(5.3.11)

Note thét in this case the second order moment equations depend only on
the first and second order moments and do not depend on higher order
moments as in the case of the nonlinecar system (4.6.6). It is therefore
possible, in this case, to speek of stability in the mean square. The
eigenvalues of the coefficient matrix, of equations (5.3.11), are given
by the cubic

3 z, (2

A 4 33 2+ 4H12)k + 4n]2(? - HlZHIS) = 0

I't follews that the system is stable in the mean square if it is stable

in the mean and if

(i) (1 - Holhhg) > 0



—
o
(Va)

and (i1) 3(2 + 4H]2) > 4n]2( 1T - n]2n13)

Since the system is stable in the mean for all H]2 and n]3 and condition
(ii) holds for all ly, and Ty g it follows that the system is stable in

the uean square if

13 ° 1 (5.3.12)

I
T2

When condition (5.3.12) holds the time derivative of the second order

moments will become vanishingly small after a long time, thus making it

possible to obtain the asymptotic solutions of the second moments. Selving
d 2. _ d _d 2.
R Y S P Ll P B
gives :
. 2
T > o 1 - H'IZH]S
limit <EqE> = 0
(4
(5.3.13)
T > o
Timit <€22> = 1
T LRRCPALT

Ancther item of interest is the probability that the system error
exceeds a specific value Y. If the Fokker-Planck equation (5.3.8) can not
be solved for p, then this probability cannot be datermined. However, as

27 /
& we are

pointed out by Ariaratnam “°, by using the Chebyshev inzquality
able to obtain an upper bound on this probability. Chehyshev inequality is

given by :

P{lg] - <{;]>! >,YO'} < W3 .

- LR
where o = {< [ £y - <t |7 > 3¢



Using this end assuming that the first and second order moments of £

1
are bounded we find, from equations (5.3.10) and (5.3.13), that for
sufficiently large 1

(_)‘2 = <€]2> - <€]>2

I
1 - O
and that

I
13 ’

Prlegl < V) ey { =By (5.3.14)

L PO

If the spectral densities and correlation functions of £ and &5
are required then they are readily obtained from the Fokker-Planck equation

using the procedure described by Ariaratnam and Graeffe U,

5.3.2.  «aft) Gaussian

If «(t) is Gaussian but non white then the response'{x] x2} of
the system, represented by equations (5.3.2), no longer forms a Markov
process. Since the effect of making the process Markov, by introducing
a third variable, is to make the system equations non-linear it follows,
using the same argument as in section (4.5.1), that it is not possible
to use the Fokker-Planck equaticon to obtain conditions for stability in
the mean square. Ve shall therefore, in this section, apply the theory
devg]oped in section (2.7) to obtain stability criteria which are
sufficient conditicns for alimost sure asymptotic stability of the system.
As we are concerned only with the question of stability we may restrict

our attention to the unforcec systen
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where o(t) is teken to te an ergodic Gaussian process, with zero mecan
Y
and variance o,

Introducing the non-dimensional parameters

2

M, =BKR'ST , m /= o/S (5.3.76)

12

and the dimensionless variables £1» £p» T, defined by equations (5.3.6),

equation (5.3.15) may be written in the non~dimensional form

0] (o 5, [0 0 o] [ g
f{; - + (1) (5.3.17)
I E](T)J ] -1 -1 N 3 (T)_J __H'M O- I E](T> |

where g(t) is an ergodic, Gaussian process with zero mean and variance
unity.
Equation (5.3.17) is of the form

a type of equation that was discussed in detail in section (2.7). Again
the stability boundaries obtained by using the criteria developed by
Infante 5 and Mzn 56 are much sharper than those obtained using the

other criteria cited in section (2.7). Thus, we shall present a stability

analysis for equation (5.3.17) using only these two criteria.

5.3.2.1. Infante type analysis

In Infante's work, see section (2.7), take the matrix B to be
the most general syimmetric positive definite form, defined as in equation

(4.6.20). Simple computation then yields

-

‘ , 2,
azta1-n]2(a]2-a2)~(1+n]4) a](1+n]4)+(n]2a]-1)(a] +a2) -3,

(5.3.18)



where,

A= and F = (5.3.19)

The maximum eigenvalue of the matrix given in equation (5.3.18) is

conputed as

1. ] =1 2 1 2
Mmax[A + B+ BA+ F)B ] = -1 +{(1 - 2np50) *gslMaley + )%) -

(1+ 148()) + 2,(1 = 21 ,2,)]%)2 (5.3.20)

-

Thus, from criterion (2.7.16), it follows that a sufficient condition for
almost sure asymptotic stability, of the system represented by equation

(5.3.17), is that
EC-1+ [(1 - 2np,80)% + [0, (a, + a7%) = (1 + 1,,6(1))
1271 a2 12V72 1 14

241
tag(l = 21580]9% 1 g - e

Since g(t) has zero mean and variance unity condition (5.3.21) may be

written in the form

2 2
m,t BEP() = P < a1 - (1 - 2nppa)? - [Mplay + 2,%) - 14

~ 2
ar(l - 2M53y)]

(5.3.22)
Optimum values of a; and s in order to maximize H]42, are found

to be

1 T + 4U]2
a,, = -r:—H-—]—-2— s 12 = mﬁ (503023)



Substituting these values of 2y and 2, in (5.3.22) gives the stability

condition as

2 1
I < 5.3.24
14 o ( )
Defining the non-dimensional parameter g as
My = 1,° = o?
157714 77 (5.3.25)

condition (5.3.24), which is a sufficient condition for almost cure

v

asymptotic stability of the system represented by equation (F-3.17),

becomes

< 5 (5.3.26)

5.3.2.2, Man type analysis

In Man's work, see section (2.7), let the matrices A and F be
defined as in eguations (5.3.79) and take Q to be the identity matrix I.

Solving the Liapunov matrix equation (4.6.28) gives the matrix P in the

form . .
2 +.El§ 1
i 2
P o= 12
! 1 1+ HL2~
2
! |
Simple computation then gives
(E'P + pA)Q7Y = nyp(e) | "
= LILIVA S *]4£*([) -1 =1(1 + H]Z)/Z
-(1 + ”12)/2 0

and

] - _-l ' & -
(B2 + EDQT] = = 1 s 14 (14 12

]



Thus, from criterion (2.7.19), it follows that a sufficient condition
for almost sure asymptotic stability, of the system represented by

equation (5.3.17), is that

. 4 1
BTy 2(0) -1+ [(1+ 10220 <2 | (5.3.27)

Since B(t) has zero mean and variance unity condition (5.3.27) may be

written in the form

et < ’ — (5.3.28)
2 + (1 + ”]2)2 - 2¢{~; (1 + n]2)2
or
4
T <
' 2+ (1 + H]Z)2 - 2%4 + (1 + H]Z)2 (6:3.29)

where s is defined as in equation (5,3.25),

5.4, Digital Simulation

Using the same procedure as employed in section 4.7. the system of
equatioqs (5.3.2) are simulated on a digital computer with parameter
values R =5, T=0.25,K=1,S =0,5, h = 0.01, m = 3 and initial
KC = 0.5. Since, in this case, e(t) and K - KVKC do not adapt to zero
in the mean square it is difficult to decide, for certain parameter
values, whether the solution represents a Stable or unstable situation.
A particular solution is taken to represent an unstable situation when
there is no question about it being a possible stable oscillation about
zero. Stability boundaries obtained using both the Runge-Kutta and
Crank-Nicolson procedures are shown in fig. (5.4.1) together with the
theoretical boundary obtained using the Fokker-Planck equation; it is

seen that the theoretical results correspond closely to the simulated

34.
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results. However, the theoretical results obtained using the Liapunov
type analysis are very conservative; stability boundaries corresponding
to criteria (5.3.26) and (5.3.29) are shown in fig. (5.4.2) and in order
to illustrate how weak the criteria are values of H]Z, corresponding to
instability, obtained using the Crank-Nicolson procedure are indicated

in the figure, for certain values of H]S’ alongside the vertical arrows.

5.5. Effect of randem disturbances at system output

Since any disturbance applied at the system output will be directly
superimposed on the error signal e(t), and hence on the adaptive parameter,
its effect must be considered in any stability analysis.

Consider the M.I.T. system of fig. (4.2.1) to be subjected to a step
input of magnitude R at time t = 0, when Gm(t) and Qs(t) are zero and
KVKc £ K. Subsequeutly let K, remain constant and K. be adjusted
according to equation (4.2.3). Considering, as before, that the adaption
is switched on after the model response Qm(t) has reached its steady

state value KR the system equations (4.2.4) become

T e(t) + e(t) (K = K KR
(5.5.1)

k(1)

BKR e(t)

Consider further that the system is subjected to a random disturbance a(t)

at the system output so that equations (5.5.1) become

1 R ) )
d x](t) -1 2 x](t) 0
e = + (5.5.2)
X, (t) -KBRK 0 X, (t) J -BK KR a(t)

where x](t) = e(t) and xz(t) =K - KVKC(t).

If oft) is regarded as Gaussian white noise with statistics as
defined in equations (5.3.3) then, as before, the process x(t) =
{x](t) xz(t)}, defined by equaticns (5.5.2), is a Markov process whose
conditional probability density function p satisfies the Fokker-Planck

equation. Using the procedure described in appendix 4.4 the Fokker-



Planck equation corresponding to the system of equations (5.5.2) is

ap _ 1 9 R op ap 2 32
= = s (XqP) = = X, =— + BKK Rx, - KK 2P
ot T X (X7p) = % ax] vt 9%, + (BRRK) p ax;?
(5.5.3)
Introducing the non dimansional parameters
M, = BKREST , m = —b (5.5.4)
TR™K
and the dimensionless variables
X X
] 2 t
€ = — s & = 7, T = 5.5.5
LT Z x T (5:5.5)
equation (5.5.3) may be written in the non~dimensicnal form
E.E.:.?.._(g)-g.'_‘}.@..+ngap +H2H 32D
R T LU 12%1 3, 12Me 7 (5.5.6)
8&2

By multiplying equation (5.5.6) throught by gi(i = 1,2) and

integrating over all S the first order moment equations become :

; <gq(1)> 1 | ()
- = ! (5.5.7)
<€p(1)> T O [ <tp(1)>

]

Since the eigenvalues of the ceafficient matrix, for system (5.5.7), is

given by

-1+ /1 - any,

A T e e

2

it follows that <g](w)> and <&2(r)> converces for alil Mo ana s that
is, the system is steble in the mean for all values of the svstem
parameters. Further, for ali values of n.. and o.. (T ;

f ’ of 1y, and 16° <g](1)> and

<ty(t)> tend to zero asymptotically as t » = which is as required.
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By multiplying cquation (5.5.6) throughout by gigj (i, J =1,2)
and integrating over all E1s Ly the second order moment equations

become :

r T T 1T T T |
<g]2(1)> -2 2 0 <£]2(T)> 0
d
T | a@atr] =, 1 | e @ns] o | o
2
< 2(x)> J 0 -am, 0| f<e,P(0) 21,1
(5.5.8)

Since the eigenvaluas of the coefficient matrix, for system (5.5.8), is

given by the cubic

2

e 3E w2(en, + 1) Ay, = 0

it follows that the system is stable in the mean square if

(1) 41y, > 0

and (i) 6(2n]2 +1) > Any,

As conditions (i) and (ii) hold for all T2 and g it foliows that the
system is stable in the mean square for all values of the system parameters.

By solving the equations

d A d )
$ 5t = §r (00> = et 2 = 0

the asymptotic solutions, as t » «, of the second momants are found to

be :
limit <¢g 2(T) = I, ,1
o 1 12716
1-)00
1131* <t (1)gy(1)> = n 0y, (5.5.9)

.. 2, | : .
]-”A’”t <€2 (T)> = n]2r‘]:) (] B 1!']2)

T-rc0
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Thus, although noise disturbance at the system output has no effect on
the stability of the system in the mean square it does have an effect

on the accuracy of the parameter adaptation.



CHAPTEER ¢

STABILITY OF A HIGHER ORDER MODEL~REFERENCE SYSTEM

6.1. Introduction

In this chapter the methods developed in the previous two chapters,
for investigating the stability of a first order model reference adaptive
control system, are extended to examine the stahility of a higher order
system. The system considered iz that developed by Uhite 2 and is shown

in fig. (6.1.1). The basic equation of the process is :

3 2 " noo , -
(D™ + A]D + A]AZR]D + A]A2A3K2)US = A1A2A3k281 R (6.1.1)

where D is the differential operator d/dt and A] = 16.78, A2 = 14.88,
A3 = 4,57, K] = K2 = 0.5 (neminal). The reference modal is second order

and has transfer fuaction

40
Y = Y (6.].2)
m % 4 6.305 + 40

where s is the Laplacian operator.
The input signal 8,(t) is common to the process and model and

the adaptive error is
e(t) = 6,(t) - G (t) (6.1.3)

where Qs(t) and Gm(t) are the outputs from the process and model
respectively.

The self-sdaptive perforuwance ciriterion employed to adjust the
paramaters Ki (1 =1,2) is, as before, the M.ILT. rule; that is, the
parameters are veried according o the adaptive control law

aKi g0

—L ae(t) (i =1.)

at oK
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1 75

It was shown by Whitaker et a that his law could be taken in the

form :

aK1 de
LR 'Gie(t) sign — (i =1,2) (6.1.4)

Be
oK,
1

product e(t)(ae/aKi) is correct. The product

where only the sign of is taken to ensure that the sign of the

e(t) sign (S=-) , (i=1,2)
1

is formed by passing the two signals into a diode switching unit (d.s.u.)

the output of which is ze(t) depending on the sign of the signal ae/aKi.

The approximations to %%- and-%%-’are obtained by feeding the signal
2

QF’ given by

(0 + AD? + AJAKD + AAAK )G = AJADE. (6.1.5)

through filters which can be identified as follows :

2y 2
l’\| /\\ AKS
oo O %) g z 9
™ 1 [$7+ Ays® + AJAKs + AAsASK,]
= Y
= o= Ymer (6.].6)

since the model is a good approximation of the system around the correct
value of K3 that is, the signal obtainad by passing 8¢ through a filter
identical with the model is —(ae/aK]) and not (ae/aK]) as indicated by

White, as the latter signal would lead to a negative gain G

1
2 (
e 30, i A]A2A3(s + A]s + A]Azk})s 6
9, T K, T 3 Y Y4 i
2 2 [s7 + Ays® + AphoKys + AJALASK,]
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2
A3 (s™ + A]s + A]AZK]) .
- 3 Z F
(s + A]s + A]AZK]S + AlAZABKZ
Y
L3
. YT eF , (6.1.7)

where Y3 is the transfer function of the system with the parameters
fixed at their normal values and Y] is the transfer function Trom

the system input to the parameter disturbance summation point;

that is,
AAK,
Y] ) 52 + Ass + AJALK
1 1721
giving
2
Ys ) Ag(s™ + Ays + A]AZK])
Y. T 3 2
1 ST+ A]s + A]AZK]s + A]A2A3K2
2

4.57{s“ + 16.76s + 124.8)

s34 16.785% + 124.85 + 570

(6.1.8)

The method of approach in a stability analysis is to first obtain
the steédy~state values of the adapting parameters K] and K2 and then
sat up variational equations for small perturbations about those steady-
state values. The resulting variational equations are linear differential
equations with time varying coefficients and their stability characteristics

are investigated using the theory developed in chapters 1 and 2.

6.2. Sinusoidal input

Consider the adaptive control system to be adepting on a stecady

sinusoidal input ssinwt.

6.2.1. Steady state values of the parameters

Suppese that the K2 paramater is held constant and that the K]



-
+>
(€3]
.

parameter is adapting alone. lhen K] has reached its steady-state value
the output of the switching unit (in the K] adapting loop) must be such
that it contains no d.c. component (otherwise the d.c. term will integrate
up to change the Va]ue of K]). It can be shown 2 that this occurs when
the gﬁ; and e signals are in quadrature. Using this property White
showed that the relationship between the steady—~state values of K] and
the frequency w of the input is

Ky = 0.004 u® + 0.72 K, (6.2.1)

Since K2 is considered fixed at 0.5 the relationship becomes

Ky = 0.004 u® + 0.3 (6.2.2)

A similar procedure for the other Toop gives a relationship between
the steady-state value of K2 and the input frequency w when the parameter

K] is fixed. This relationship was found by White to be

6.32[16.780% + tan@(u® - 250K;6)] - (40 ~uf)[(u? - 250K,) - 1¢.78utang)

K

2 28.5(252.8 - w tanp)
(6.2.3)
Since_KT is fixed at 0.5 the relationship becomss
4';’ 2 { ﬂ'2 AN
(o* - 58.76° + 4990) - w(10.464% + 117)tand
K, =
2 28.5(252.8 - wtand) (6.2.4)

where § is the phase change across the filter Y3/Y7 and is given by :

16.780(570 - 16.78:%) - w(124.8 - 42)2

tanﬁ’) = " ) )

570(124.8 - u°) (6.2.5)
Py solving equations (6.2.1) and (6.2.3) for K] and KZ steady-

state values of the parameters are found for the case when they are

adapting together. These valuss are found to be
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0.004 o& + 0.424

~
—
It

(6.2.6)
0.588

~
i}

The steady~state values of the parameters given by equations (6.2.2),
(6.2.4) and (6.2.6) are all verified in White's paper using analogue

computer simulaticn.

6.2.2. Stability consideration

The basic equaticn of the system is as given by equation (6.1.1).
Consider a small perturbation of the adapting parameters about their
steady-state values; so that, in the perturbed state

K.I > K] + GK] ’ K2 > KZ + GKZ ’ 93 > Gs + 695

Subtracting equation (6.1.1) from the perturbed state equation gives

3 2 ’
(D7 + AD™ + AAJKID + AyAyAgKo)88  + AA,SK DB, = AiAAs6K,e = O

(6.2.7)
where e is the system error Oi - 95.

Since the model is unaffected by pcrturbations in the parameters

we have from equation (6.1.3) that

s = 695

so that the perturbed equation for the error is

3 2 Ch R v o r
(D7 + ADT + AgfgKyD o+ Ay AyAgky)se + AghysKiDB. = Ay A Atk = 0

(6.2.8)

The terms 095 and e, vary periodically with time, but, in his znalysis,
Fhite replaced these time varyirg terms, bv tima averaging over a period
Y 2 1q ) .

with constant terms. He then examincd the resulting Tinearized




147.

differential equations with censtant coefficients using the Routh-Hurwitz
criterion; the disadvantages of this method are discussed in chapter 1.
In this chapter a more rigorous analysis, based on the Floquet analysis
of chapter 1, is presented.

From equation (6.1.4) we have that in the perturbed state :

Ki + 8K, = -6, (e + ao)mgn[gi + 6 -3-%-] » (i=1,2)  (6.2.9)

'

Subtracting equations (6.1.4) and (6.2.9) gives :

NV _ . oe _ . '}e e -’
(6.2.10)
. . ‘ X
the term sesign [ €45 =2~ having been replaced by sesign 2&
i - 8}\_]- ak‘i h BK_i

since we are dealing with the Tinearized equations in the perturbation
terms.

2e/oK, 1s a sine wave and de/aK, + 6(3e/aKi) a perturbed wave,
being approximately sinusoidal as shown in fig. (6.2.1(a)). The

. de de . de '
terms sign [ K + 6 SR;'J and s1gn =~ are represented by the square

i
waves of fig. (6.2.1(b)), and the term

. oe ae . P -
[ sign {EKT + 6 5K~] - sign 3%7' j
R i

by the pulses &f fig. (6.2.1(c)}. The lasi lerm of equation (6.2.10) had

. 85 i s i .
becn omitted by Parks in his discussion on White's paper. The omission
of this term was found to have a considerable effect on the final results.

Using the condition that the e and se/% h signals are in quadrature

when the system has adepted, the term

. ae de 1 . 2e “
St Tt 6 - sign S
€ J: sien { I)K1 N H/ ] S1g“ S l

can be reprasented by the pulses of fig. (6.2.1e). Two of these pulses
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occurring within one period T, at times T1 and T1 + T/2 respectively,

where T] is the time when the %%— signal first changes sign.
i
The integrated values of these pulses is *2|e|AT, where |e| is

the peak amplitude of the error signal and AT the duration of the

pulse and given by

AT

| 6 (%%T\ | /| slope of %§7~signa1 at the points where it changes sign|
3 1

l 6(%%;\ A ;}E—]— | (6.2.11)

vhere Iae/aKi|\is the peak amplitude of the ae/aKi signal and w the
frequency of the input signal.

It was shown earlier that the signal ae/aKi is obtained by passing
the signal 6 through a suitable filter, so that §(de/8K;) is a filtered

version of GGF.

6.2.2.1. 51 adapting alone

When K, is adapting alone ¢K, is zero and equation (6.2.8)

becomezs :

2 / h / Ny
D + AJAKD + ApR,AgKS)se + AR SKIDB. = 0 (6.2.12)

3
. (D7 + A 2K 172

1

From fig. (6.1.1)

1
0. = —— D9
F A3K2 S

so that

o
Since 8, = e + 8., and &0, = 0 we have that

Hence,
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8 ane] = 7%&(; e
where ééF = Yméé or
(0° + 6.32D + 40)ce. = 40ce (6.2.13)
From equation (6.2.10)
s, = -6 ce sion G-+ P01 (6.2.14)

where P](t) are pulses, with integrated values :

2|e|se .
+ F =+ P]](t)éeF s

- FYe)
A3K2 amp-EK?

occurring at times T] and T] + % » 1 being the period and-T] the time

when the %%— signal first changes sign. Care must be taken (by
M

examinaticn of the phase angles) to ensure that the positive and negative

pulses are inserted in the correct order,

Equations (6.2.12), (6.2.13), (6.2.14) lead to the following

system of linear differential equations :

[ se [ 0 1 0 0 0 o |fee
5e 0 0 1 0 0 0 se
”3‘% L N N 0 0 -AA,D0 || Se
e 0 0 0 0 1 0 sep
sep 0 40 0 -40 -6.32 0 sep
oK, -Gsign 3{7 0 N A 0 6K

(6.2.15)

where K, has the fixed value 0.5 and K] is given by equation (6.2.2.).

Equation (6.2.15) is of the form
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X(t) = A(t) x(t) , A(t) = A(t + T)

and the stability of such a system of equations is discussed in detail
in chapter 1. Note that the 6 x 6 matrix of equation (6.2.15) differs

85. The increase in the order

from the 4 x 4 matrix suggested by Parks
of the matrix is due to the fact that Parks had neglected the effect of
the filter Ym and taken 60F as an epproximation for 6(ae/aK]). This
approximation was found to be inadequate and the effect of the filter
ist be taken into account.

The eigenvaiues of the monodromy matrix C of the matrix
differential equation (6.2.15) are examined, using the procedure described
in section 1.4., for various values of the adaptive gain G] and the
critical values of the gain calculated. The results are illustrated
in fig. (6.2.2.) together with the resuits obtained by White using
simulator and analytical studies. Since, in this case, the critical
gain is inversely proportional to the amplitude £ of the input signal
the product of & with critical gain is plotted against the frequency of
the input signal so that the resulting curve is independent of ¢ (In
order to obtain the graph of reference (2) divide the ordinates by

7/50) .

6.2.2.2. K, adanting alone

In this case 6Ky = 0 and equation {6.2.8) becomes :
3 [ \ ?‘ 178 [ o - i v -
(D e A]D + A}!\\Zo\—iD + A-IAZA:\‘SI\Z)(‘@ A]A2A3956l\2 = O (6‘2.',6)

From fig. (6.1.1)

1
% = mrg Do (6.2.17)
372
Mhen the perturbation is imposed this beacomes

/\3(K2 + (\]’\'2)(9f; - 58r) = DDS + ,{(Das)

= D3 + ¢o (6.2.18)
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Subtracting equation (6.2.17) from equation (6.2.18) gives

A3K269F + A3OFGK2 = 8e ,
that is,
80, = -rl—— so - EE §K. = X
F A3K2 K2 2
Hence,
e Y3
8 ( BKZ ) = XF » Where XF = VT (X)
From equation (6.2.10)
'/ . : oe
ékz = GZE se sign EKE + Pz(t)]

where Pz(t) are pulses, with integrated values

(6.2.19)

occurring at times T2 and T2 + %-, T being the period and T2 the time

when the signal %%— first changes sign; care again being taken to

2

ensure that the sign of the pulses are taken in the correct order.

—t

168}
w
.

Equation (6.2.16) and (6.2.19) may be written (see appendix 6.1)

in the form

de 0 1 0 0 0 0

se 0 0 1 0 0 0
Q{ S -A]A2A3K2 —A]AZK1 —A] 0 0 0

Y] = 0 1/K2 0 0 ] 0

Y2 0 0 0 0 0 1

Y3 0 0 0 ~-570 -124.8 -16.78

fom 98 cp !
LéKZ_ --st.gj 3K 0 0 G,P, () 0 0

da

§e
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where Y; = Xp, Y, = Xp = 457 and Yy = X - 4.57X; K, has the fixed
value 0.5 and K2 is given by equaticn {6.2.4).

The eigenvalues of the monodromy matrix, of the system of
equations (6.2.20), are again examined using the procedure described
in section 1.4. Critical values of the gain G, are calculated for
varying input frequencies and the results are i1lustrated in fig.
(6.2.3). The method is readily extended to cover the case when both
K] and Ké are adapting simultancously.

6.3. Random input

6.3.1. Steady-state values of the parameters

In order to simplify the ana1y51s the diode switching units
are rep]aced by multipliers. If the input Oi(t) to the system is a
random variable of time then the cutput of the multiplier MJ (3 =1,2)
will be the product of two random signals e(t) and WELEI = 1,2, which
are both filtered forms of 91( ).

A block diagram showing the output of a typical multiplier
Mj is shown in fig. (6.3.1), where Y](s) and Y (s) are the transfer
functions relating e(t) and igi—l respectively to the input 0. (t)
If h](r) and hz(r) are the 1mpulse response or weighting functions
corresponding to the transfer functions Y](s) and Yz(s) respectively

then e(t) and - .i-l are given, in the time domain, by the convolution

integrals.
e(t) = J () By (- o) dr, (6.3.1)
0
se(t) _ ” :
WJLJ - JO ha(rp) 85 (% = 1) dr, (6.3.2)

so that the output of the multivlier Mj is

de(t) . r : S Jm
X (t) = t) v = h . (t - i - At - 4 -
olt) = e(t) ka o ()85t - ey o ho (7,)0; (¢ T,)dr,

(6.3.3)

(&)

(82}




Taking time averages we have that the time average of the output is

—_— T
. . 1
x (t) = Tlimit == J X (t)dt
o1 = Timit g | k()
o (a7 T
_ Timit 1
= [ h](T] f T 5w 7T J' 91(t - T])e (t -« dt ]
o -T
dTZdT1
(6.3.4)

Thus, provided Gi(t) is a stationary process, equation (6.3.4) becomes

xo(t) = [ () | hateg) by - gy L eas)

where 0(t) is the autocorrelation function of the input signal Gi(t).
If the input signal Gi(t) s regarded as white noise with

constant spectral density K then, by the Wiencr-Khinchine relationship,

0() = Kus(1) ,

so that equation (6.3.5) becomes

Xo(t) = fo h](T]) J hz(rz)ﬂKé(Tz - T]) dTZdT] s (6.3.6)
4]

Since this expression is zero except when Ty = Ty We may write

T=T]=T2

so that equation (6.3.6) becomes

X (t) = K fo hy(t) hy(x) dr (6.3.7)

The value of xo(t) may therefore be obtained by calculating

h](T) and hz(T) and integrating the 1ntegra1‘of cquation (6.3.7) term
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by term. When the system has reached its steady state value xo(t)

will be zero so that equating the value of xo(t) » Obtained from

equation (6.3.7), tu zero gives the steady state value of the parameter
Ki' However, even for the third order system considered here, evaluating
the integral of equation (6.3.7) is a laborious procedure and for this
reason the calculations are transferred to the frequency domain. The
output of the multiplier, instead of being the product of two time
functions, becomss a cohvo]ution of two frequency functions. For white
noise input with spectral density K Horrocks 86 showed that

00

x,(t) =K fo Y5 (@) 1¥p(u) | cos (P - p,) d (6.3.8)

where Y. () = IYi(“)! exp (3 8;), 1 =1,2.

The integral of equation (6.3.8) may be evaluated numerically,

using a digital computer, for various values of the parameter Kj and a

graph of xo(t) against Kj plotted to obtain the steady state value of
KJ'.O '

If, as in the system of fig. (6.1.1), the multiplicrs Mj
(Jj = 1,2) be replaced by a diode switching unit, the output of which

is te(t) depending on the sign of g%#ﬁl » then the way in which this
J -

change will effect the value of X,(t) given by equations (6.3.7)
and (6.3.8) has been calculated by Jackson 86. He showed that, in

this case, the resultant d.c. output will be

)
Xo(t g s | =f% 0 (6.3.9)
°

. 2e
where o is the r.m.s. value of =
O\_i

J
In order to illustrate the theory we shall consider the case of

K] adapting alone. From equations (6.1.1) - (6.1.3) we have that




A1A2A3K2 40

e(s) = | — - } 9 (s)

3 Z 2
ST + A]s + A]AZK]S + A1A2A3K2 ST+ 6.32s5 + 40

where e(s) and Gi(s) denote the Laplace transforms of e(t) and Gi(t)

respectively. Thus

A]A2A3K2 40

Yi(s) =— 7 Y

(6.3..10)

Also, from equations (6.1.5) and (6.1.6),
se(s) _ _
ik = vy (s egls)
. 40 MA
- 2 n 3 2
S” + 6.32s + 40 s¥ + A]s + A]AZK]S + A1A2A3K2
SO that',
4O.A]A2
Yz(s) == )

(s® + 6.325 + 40)(35 + A]s2 + A]AZK]S + A]A ALK,)

2"3%%
(6.3.11)

Substituting s = ju 1n equations (6.3.10) and (6.3.11) and
rationalizing the values of |V, (w)| and Pis 1= 1,2, are readily
obtained. These values ave then substituted into the integral of
equation (6.3.8) and the integral evaluated numerically for a range

of values of K1,and K2 fixed at its nowinal value 0.5. The integral

9] (S) s

is evaluated, using Simpson's rule (and cross checked using the trapezoidal

rule), for 1imitsO to N and the values of N increased until a convergent

value is obtained to required degree of accuracy. The form of the

integrand when K] = 0.5 is shown in fig. (6.3.2) and a plot of Z;YQY,
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e(t)
o~ Y‘(‘s) e
Oift) R —
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Xft)= e de
dKj
> Yls) >
de.
dKj
FIG. 6.3.1.  Output of typical multiplier
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FIG. 6.3.3. Steady-state value of K1
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against K, is shown in fig. (6.3.3). It is seen from fig. (6.3.3) that

xo(t) is zero when

Ky = 0.513 (6.3.12)

this then being the required steady state value of the parametar K]

6.3.2 Stability consideration

Having found the steady state value of the parameter.Kj stability
is examined in a manner analogous to that employed in section (6.2.2) for
the case of the input varying sinusoidally with time. We shal] again
illustrate by considering the case of Ky adapting alone.

As for the case of sinusoidal input the perturbed equation of

the system is as eQuation (6.2.8), namely

(D% 4 AD% + AJAKID + AR, ) s + AJALDO, SKy - AA

17 AAghgeg 8K, = 0

1 2

(6.3.13)
- where, in this case, D8, and e  are random variables of time. Sinée we
are considering K, adapting alone and K, fixed at its nominal value
(i.e. 6K2 = 0) equation (6.3.13) becomés
(03 + A]DZ + AAKID + A AASKS ) 6e + AIADE. 6Ky = 0 (6.3.14)
!Since we are considering the switching units as being replaced

by multipliers the parameter K} is given by the adaptive control law

e 3K](t) BE(t)
Ky(t) = = -Ge(t) - (6.3.15)
ot BK]
In the perturbed state this be‘comes
N o o Tars - de(t de(t) -
Ky(t) + 6K () = -Gy le(t) + se(t)] | ka‘)‘ v s ngwl_[
(6.3.15)

Subtracting equation (6.3.15) from equation (6.3.16) gives
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: se(t de (t |
6Ky (t) = -Gy BTG—]U se(t) - G] e( : ) (6.3.17)

ae(t) . .
Now Eﬁf"l is a filtered form of 8.(t) so that &( - —K“ ) is a
filtered form of GGF(t). From fig. (6.1.1)

1
B = +—— DO
F K3k2 S
so that GGF = ﬂlK" 6(095).

Since GS = e + em and SGm = (U we have that

-l L
66, = se
PR
Hence,
8 ( _3_(_—:“_ ) = - 1 “e
3Ky E3K£ F (6.3.18)

where Sep 1s given by equation (6.2.13).

Substituting equation (6.3.18) in equation (6.3.17) gives

R T TRy e (6.3.19)

. Equations (6.3.14), (6.3.19) and (6.2.13) lead to the following

system of linear differential equations

SR 7 -
se 0 1 0 0 0 0 se
so 0 0 1 0 0 0 se
d ": 3 _ - €
Selee | = [ABAK,  -AAKL -, 0 0 -AADB ()] |
ng 0 0 0 0 1 0 se.
-
sep 0 40 0  -40 -6.32 0 56
. Gie(t)
g, Ge(t) 1
K, 61 3K, 0 om0 0 5K,
_J b - 3 o
(6.3.20)

where KZ has the fixed value 0.5 and K] given by equation (6.3.12).
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Note that the terms D@S(t), e(t) and %%le are all random variazbles of

time and since they are all filtered forms of the input signal @1(t) they

are correlated; further white noise assumptiens for the coefficients of

system (6.3.20) are not justifiable. Equation (6.3.20) is of the form
X(t) = At) x(t) (6.3.21)

where the non constént elements of A(t) are random functions of time.

As was pointed out in section 4.5. methods of investigating the stability

of system (6.3.21), where the system is not asymptotically zero when the

noise terms are equated to zero, are not forthcomfng. Thus, for the

case of Oi(t) being purely random, stability boundaries for the system

of equations (6.3.20) are not readily obtained. However, the effect

on stability, of random disturbances at the system input may be examined

in a manner analogous to that emplcyed in section 4.5. for the first

order system. Since the intention of this section is to illustrate

how the ideas of chapter 4 may be extended to higher order systems

detailed calculations for the stability of the system of equations

(6.3.20), when the input signal consists of a step function plus a

random variable, will not be presented.

6.4. Liapunov redesign system

77 the model and system are

In the paper presented by Parks
of the same order, so that, when equilibrium is achieved the model-
system error and all parameter differences are zero. However, in
this case, the mndel is of the second ordar whilst the system is of
the third order and under such conditions it is no longer possible
to have perfect correspondence between the two. 1t follows therefore
that for such systems it is not possible to obtain a Liapunov function
that will guarantee asymptotic stability.

One way of deaiing with this problem is to use the appreach

87

described by Shackcloth Adjustable paramaters are introduced

around the system (or plant), as shown in fig. (6.4.1), so that the
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equation of the controlled system or plant is

[0+ B(t)A A, 103 4 (Ay + hy(£)AAsAL)D D2 4 ALK (1)D +

(A]A2A3K2(’C) + h3( A A A3)]9 ]A2A3K2( )9 (t)

(6.4.1)
Since control is exercised over each plant parameter some are adjusted
to zero thus enabling the plant toc be made the same order as the mode}
of a Tower order.
Taking the system response Gs(t) and mocel response Qm(t)'to he
given by equations (6.4.1) and (6.71.2) respectively the errur equatien
(6.1.3) may be written in the form

(D% + 6.320 + 40)e(t) = 40 0.(t) - (0% + 6.32 + 40)8(t)

(40 - AJAAK, ()8, (t) + (1 + h]‘(t))o3es(t) - (- - hz‘(t))ozgs(t) §

1
" (632 = MAKY(1))DB(X) = (40 = AAASKS(t) - hy' (1)) (t)
(6.4.2)
where,
1 .
h'l (t) = [\]AZA h. (t) s 1= 13293 ) (6.4.3)
thatvis,;
. :
(DZ + 6.32D + 40)e(t) = x](t)ei(t) + xz(t)DJGS(t) “ x3(t)D205(t)
- x5 (1)DO () - x5 ()0 (t) (6.4.4)

where X; (t), i = 1,2,3,4,5, are the coefficients in eaq wation (6.4.2).
By assuming that any variations of the process pirancters, the

input signal, or the derivatives of the input signal, is continuous and

bounded Liapunov's second may be applied. Follewing Shackcloth we take

as Liapunov function
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(6.4.5)

where X} = {e(t) é(t)} and H is the Hermite matrix of the equation

(0% + 6.32D + 40) e(t) = O (6.4.6)
and B, (i =1,2,3,4,5), are positive constants.
Since, in this case,

Ho=|252.8 0 |

0 6.32

the Liapunov function V, defined by cquation (6.4.5), becomes

2 2 i
2 -2 I Y g
V = 252.8e"(t) +6.32 e"(t) + pt gt gt gt 5
1 2 3 4 5
(6.4.7)

The derivative of V, with respect to time, is

.
N

[ 3 » . e .X];(.I X2 4
V = 2(252.8)ee + 2(6.32)ee + 2 5t g

|

XX X, X Xe X
+ -g—-3— + _gi + ._.5_.5,J
3 4 5

no

(6.4.8)

Substituting for €(t) from equation (6.4.4) equation (6.4.8) becomes

V= 2(6.32)e(t) [x,8; + x,0%0, - x 070, - x,00, - Xg8 - 6.328(t)]

s - + + — . 6.4.9
By By Bs By Bg (6.4.9)
that is,
‘ 27
Vo= -2(6.32)% %2 (t) (6.4.10)

provided



k](t) = -6.328(t)B,0, (1)
%,(t) = -6.326(t)2,0% (1)
X5(t) = 6.32(1)B,0% (1)
X (t) = 6.32é(t)B4D95(t)
Xg(t) = 6.32é(t)8598(t)

167.

(6.4.11)

Substituting for Xi(t)’ i=1,2,3,4,5, from equation (6.4.2) we have

that
Eo(t) = Cé(t) 6, (t)
hy(t) = =C,e(t)D%_(t)
hy(t) = -Cie(t)D%e ()
Q](t) = -C,e(t)Da (t)
éz(t) +hy(t) = ~Coe(t)o(t)

and - C

= 1,2,3,4,5) are positive constants given by

6.32 Bi/(AlAZAB) » 1= 1,2,4,5

t

6.32 B,/(A;A,)

(6.4.12)

Thus, provided that the model is stable, which it is, use of

adaptive loops, defined by cauatiens (6.4.12),

wWwill ensure that the

system (or plant) and model cutputs will eventually become identical.

Using these adaptive Toops the complete Tayout of the model reference

system will be as shown in fig. (6.4.2).

The most sevious chjection

to the form of these adaptive Toops is that differentiators have to

be employed,

difficulties

and consequently, in a practical system, serious noise

could occur.
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CHAPTER 7

CONCLUSTONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis the stability and accuracy of parameter adaptation
of hill-climbing and model reference adaptive control systems has been
considered. The differential equations governing such systems are both
nonlinear and non-autonomous and, depending on whether the parameters
vary with time in a periodic or random manner, the local stability
problem reduced to cne c¢f investigating the stability of a system of
Tinear differential equations with periodic coefficients or 4 system
of linear differential equations with random coefficients. For periodic
variations the accuracy of parameter adaptation was investigated using
the principle of harmonic balance whiist the Fokker-Planck equation was
used for the case of the time varying terms being white noise Gaussian
processes.

When dealing with linear differential equations with periodic
coefficients both a numerical implementation of Flogquet theory and the
infinite determinant method have been empioyed to investigate stability.
The mothbd based on Floquet theory is a rigorous nuinerical mw2ihod, well
suited for use on a digital computer, for obtaining necessary and
sufficient conditions for asymptotic stability. The main disadvantage
with this method is that it reqsires the formation of a gridwork in the
barameter space and then make an assessment of stability for each of the
nodal points of the gridwork; as a consequence the miethod could be
expensive on computer time. However, for the two dimensional problems
considered in this work a plot of the value of the dominant cigenvalue
of the monodromy matrix egainst system paramater followed a definite form,
for example, sec scetien 4.4.1., which sugsesis that it may be possible,
in some cases, to obtain mathematical expressions for the eigenvalues of

the monodromy matrix. Thus a problem reauiring furthep reseavch is that
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of investigating the possibility of obtaining theoretical expressions for
the eigenvalues of the monodromy matrix of, possibly, a restricted class

of Tinear differential equations with periodic coefficients. For higher
order systems the use of the Faddecv algorithm and Jury procedure greatly
reduce computer time over a direct evaluation of the eigenvalues of the
monodromy matrix. However, it should be pointed out that direct evaluation
of the eigenvalues gives more information than simply the existence of a
stability boundary; in particular, it yields usefuyl information concerning
the character of the solutions in the regions away from the stability
boundary.

The infinite determinant method is not as general as the Floguet
analysis and is Timited in epplication to a restricted class of Tinear
differential equations. It is clear that much further work is to be done
to permit the identification of those systems for which the method is
applicable. Even when it is applicable it was not found to be very
satisfactory in the region of parameter space where the stability boundaries
are complex in nature, for example, see fig. (4.4.5) and since, when deaiing
with linear differential equations with periodic coefficients, such
boundaries frequently occur it throws some doubt on the performance of
the method in general. However, cue to its computational simplicity, the
method, wh§n applicable, may be used to obtain pre]iminafy results and then
the F]oque% analysis used to ob*ain an improvement in the accuracy with
Which the stability boundaries are established.

Although a vast amount of Titerature exists on the stability of
Tinear differential equations with random coefficients, it is apparent
from the problems considered in this thesis that a great deal of further
rescarch is to be done before the results are of any significant value in
application to practical problems. Which of the stability concepts
discussed in chapter 2 is wost significant in practice is stil! an open

Guestion although it is becoming more accepted that almost sure asymptotic
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stability is the ultimate aim. However, almost sure properties are not

as immadiately obtainable as are mean properties of the system and the

relationship between the two is somewhat nonintiutive. Caughey 44

mentioned "that mean square stability is a necessary but not sufficient

condition for stability of a system" but in fact, as pointed out by

20, almost exactly the opposite is the case. For linear systems

23

Kozin
whose coefficients vary as white noise processes Kozin showed that
exponential stability of the second moments implies almost sure
asymptotic stability.

If the system is not stable when the random terms are equated to
Zero [ that is, the system is of the formlé = A(t)x, where the non-
constant elaments of A{t) vary randomly with time and.2 = A{o)x does not
represent a stabie system ] then there is, at present, no method available
for investigating its stability. However, digital simulation of the first
order MIT system, when the input was purely random, indicates that
stability boundaries exist for such systems so that obtaining theoretical
results for investigating such systems is an obvious field for future

research.

If the system equations may be written in the form
x=[A+E1)]x,
where the mon-vanishing elements of F(t) are random processes and é.= A x

is a stable system, then iwo different cases have been considered in this

WOrK.

[ta]

(i)  Whco the non-vanishing elemsnts of F(t) are Gaussian white
noisce processes conditions for stability in the mean and stebility in
the mecan square were readily obtained using the Fokker-Planck equation,
The results obtained suggest that stability boundaries obtained using

this method agree fevourably with those chtained by direct simulation of

the system.
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(11) Hhen the non-vanishing elements of F(t) are Gaussian non-
white processes then the differential equations for the moments of a
particular order, deduced from the Fokker-Planck equation, contain terms
involving higher order moments so that it is not possible, in this
case, to speak of mean square stability, since this would mean neglecting
momants of order higher than two. Thus, the stability problem reduces
to one of investigating the stability of an infinite system of linear
differential equations and although some recent published work 100 exists
on this problem its solution remains an open problem for further research.
The stability criteria based on Liapunov's second method, which constitute
sufficient conditions for almost sure asymptotic stability, have proven
to be highly conservative, when compared with results obtainad by
simulation, and an obvious field for further research is that of obtaining
optimum Liapunov functions for the criteria cited in the Titerature or,
as the ultimate aim in a particular problem must be, to obtain criteria
which are necessary and sufficient for almost sure asymptotic stabilqity.
In the author's opinion a serious disadvantage with these criteria sased
on Liapunov's second method is that theyﬂon]y involve the variances of
the random terms and do not utilize the frequency spectrum of such terws.

The work described in chapter 3 emphasizes the importance of the
knowledge 5f periodic solutions 1in the analysis of a sinusoidal perturbation,
extremal control system. It has been shown that for the system considered
the parameter space may be divided into three regions, viz :

(1) Regions where no perijodic solutions exist so that the system
is totally unstable.

(i1) Region Rys where there exists two harmonic solvtions, one
stable and one unstable.

(iii) Region Rys where, dn addition to the two harmonic solutions
of (i1), there exists four stable and four unstable sub-harmenic solutions

of crder 2.



e
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(8]

In the case of the subharmonic solutions the periodic*solution for
the adapting variable contains a d.c. term, so that for certain initial
conditions the system, with parameter values in Rz, will adapt to an
oscillation about.an offset position; that is, the bottom of the hill
is not reached. It is important therefore in any practical application
to employ parameter values in region R], but outside region R2. Thus a
knowledge of the boundaries of the regions R1 and R2 is essential in any
design consideration.

By plotting the domains of attraction, corresponding to the stable
steady state solutions, regions wn three dimensional space were obtained,
for particular parameter values in RZ’ within which initial conditions
will Tead to a stable oscillation. Information about these stability
boundaries in the state-space is also highly relevant in any design
consideration of a practical system; for if a system is subjected to
random disturbances and noise there will be a finite probability of the
system entering any region of its state-space. However, no paramcter
values will make the system stable everywhere, so that, in order that
the probability of the system being driven unstable by the random
disturbances and noise is negligibly small, it is essential that the
normil region of operation of the system is well within the stability
boundary. The theoretical results have been verified by analogue
cormputer simulation of the system.

In order to illustrate the complexity of the problem the stability
of a first order MIT type model reference system was first considered.
For the case of a sinusoidal input stability boundaries were cbtained in
non-dimensional space using both the numerical implementation of Floquet

theory and the infinite determinant method; these stability boundaries

ot

proved to be very complex in nature so that it is desirable that a
designer should have somz knowledce of such boundaries before embarking

on a detailed analeque computer study of the system; this being particularly
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so due to the difficult scaling problems involved with simulating model
reference systems thus making it difficult to decide on a practical
criterion for stability, a difficulty which is more pronounced at low
frequences.

When the input is purely random stability boundaries have beer
obtained by digital simulation of the system-and the results suggest
that the system will be unstable, for all parameter values, when the
input is white noise. However, to date, it has not been possible to
obtain stability boundaries using theoretical methods and this remains
an outstanding problem for future research. In an attempt +o solve
the theoretical problem the input was regarded as consisting of &
sequence of impulses of random magnitude. When the impulses were
assumed to be spaced sufficiently far apart in time, in comparison to
the system time constant, that the transient effects from a particular
impulse have died out before the next impulse arrives the stability
problem reduces to cne of investigating the convergence of an infinite
product for which results have been obtained; however, if the effects
of the impuises are allowed to overlap the stability problem is cne of
examiniﬁg the convergence of an infinite product of matrices, a problem
which, as yet, has not been solvcd. If the input is taken to be a
random variable superimposed on a constant step then theoretical
boundaries have been obtained, using criteria based on Liapunov's second
method, which constitute sufficient conditions for almost sure asymptotic
stability; however, compared to stability boundaries cbtained by digital
simulation, the theoretical results are rather conservative.

Stability boundaries have also been obtained when the process
environmental parameter varies with time in both a periodic and random
manner. For the case of random variations the results obtained using
the Fokker-Planck equation agree very favourably with results obtained

by digital simulation of the system; again the stability boundaries



obtained using criteria based on Liapunov's second method prove %o be
highly conservative. In the case of periodic variations steady state
solutions for the system error and adapting parameter have been obtained
using the principle of harmonic balance whilst in the case of random
variations asymptotic values, with time, for their mean square values
have been deduced from the Fokker-Planck equation. It has also been
shoun that allowing the process environmental parameter to become time
varying in Liapunov redesign model reference systems, which have been
syntﬁesized from the point of view of stability, gives rise to a
stahility problem. Also considered has been the effects of random

disturbances at the system output; it has been shown that such

4]

disturbances have no effect on the system stability whilst they do have
an effect on the accuracy of the parameter adaptation.

In chapter 6 the ideas develcped for analysing the first order
system were extendad to investigate the stability of a higher order
model reference system when the input varied, with time, in both a
sinusoical and random manner. Steady state values of the adapting
parameters were first obtained and then linearized variational equations
set up for small disturbances about such steady state values. These
equations constitute a set of linear differcntial equations with periodic
coefficient or a set of linear differential equations with random
coefficients so that their stability properties may be investigated
using the same methods as used for the €irst order system.

For ihe case of sinuscidail input theoretical boundaries have been
compared with results obtained by White 2 using analogue coinputer
simulation. The theoretical boundaries provides necessary and sufficient
conditions for the asymptotic stability of the linearized equations with
pecriodic coefficients. Tha system, however, is a forced non lincar system
with pericdic ceefficients; by appealing to the stability theorems of

101

Ziubov the asympiobtic stability of the linecarized system certainly,

in the aisence of the forcing term, Teads to asymptotic stability in the



small for the nonlinear system. The effects of the forcing term could
however invalidate the neglect of the nonlinear terms and make the
stable region of the Tinearized system unsteble for the non-linear
system. The forcing term in %h%s case is of the muitiplicative kind
and its actual effect on the stable region is obviously a field for
further research. Instability of the linearized system however gives
sufficient conditions for the instability of the nonlinear system so
that the results of this work suggest that the results obtained by
White using analogue simulation are not very accurate. As was mentioned
earlier it is difficult to decide on a practical criterion foe instability
when simulating model reference systems, a fact that wes reiterated in
discussions with White; in this case the presence of harionics which
are forcing the system further masks the problem. The results of this
work do, however, suggest that the problem at hand may'be studied
satisfactorily by considering the stability of the linearized system.
Also considered in chapter € are the effects, on the mathematical
analysis, of replacing the system multipliers by diode switching units
and the complexity of the problem of obtaining a Liapuov redesign
system for a model reference system having a model whose order is

different to that of the process.
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ALGOL PROGRAM FOR FADDEEV ALGORITHM

URT LATPOLYCA,PO!
) t
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THE CH/DRACTIR T 1(‘ POLYNOMT AL :
RS HEH P S P DN =D ()
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)

('Cﬂ 1) 1s huhqu\A 201

THTEGER

ARRLY B,C
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sl -4 '
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3 "‘,
s RAl
PROCZDURE COPYCX,Y)'
r\r)[\\( y LV |
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THTEGER I,J,u,l-

le =ANDRESSND ! Ks "-‘-I~r »I/.Lx) Je-t
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FonR L=l STEP 1 UNTIL K DO _ ;
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o,

ENDY
END oF copy!
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ARRAY 1\, 5, ct
BEGIH CONMENT THIS PROCEDURE HULTIPLIES ARRAY B BY ARRAY C
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APPENDIX 1.2.

ALGOL PROGRAM FOR JURY PROCEDURE
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IF ,A,Fx 2PCOYY LESS O THEN BEGIN STABILITY: =FALSE
GOTC X!
EHD !
EMD !

YAV
.
Neivs
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LIAPUNOV CONCEPTS OF STABILITY FOR STOCHASTIC SYSTEMS

When dealing with systems of equations with stochastic coefficients
it is necessary to speak of convergence in a stochastic sense since the
question of convergence deals with Timits involving random variables.

In this appendix we shall consider the stochastic analogues of the
concepts of Liapunov stability; these dafinitions are accomplished by
simply changing the modes of cenvergence as they appear in the cencepts
of Liapunov stability for deterministic systems.

For completeness we shall first state the concepts of Liapunov
stability for deterministic systems 12, A3. In this case we will be

concerned with the system characterized by

I

= f(x, t) . (A2.1.1)

where x is an n-vector describing the statc of the system, f is a
continuous vector function satisfying a Lipschitz condition and such
that £ (0, t) = 0 for all t. Thus the null solution x(t) = 0 is an
equilibrium solution of (A2.1.1) and its stability is in question. The
notation x(t; X, to) will be used to denote the solution, of system

=0
(A2.1.1) at time t, having initial state X, at the initial time t_.
- 0

Definition I. Liapunov Stability

The cquitibrium solution x(t) = O of system (A2.7.1) is said to
be stahle, in the sense of Liapunov, if for ecach ¢ > 0, there exists
a s = §{e, t0)> 0 such that for any initial condition whose norm
satisfies || x, [| < &, the norm of the solution satisfies || x(t) ] < ¢

for all t » to; that is

I < (£2.1.2)

sup || x(1s xgs t,)]

t > to
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Definition II. Uniform Ligpunov Stability

If in definition I the & is a function of ¢ only; that is,
(A2.1.2) holds for any to’ then the equilibrium solution is said to

be uniformly stable, (means uniformly in time in this case),

Definition III. Asymptotic Liapunov Stability

The equilibrium solution x(t) = 0 of system (A2.1.1) is said to
be asymptotically stable if it is stable and if there exists a 6](t0)

such that || x || < ! implies that

vimit || x(ts x.s t,) [l =0 (A2.1.3)

o0

If (A2.7.3) holds for all X5 then the equilibrium solution is safd to
be asymptotically stable in the large. |

From a physical point of view definition I states that if the
system is initially perturbed only sTichtly from the steady state the
response remains in the neighbeurhocd of this state. Asymptotic stability,
on the other hend, requires even more, not only must the solution remain
in the neighbourhood of the steady-state solution, but it must approach
the steady state asymptotically as time approaches infinity.

In order to define similar concepts of stability in the case of a
system with randomly time-varying parameters, we consider the system

characterized by

-

X o= f Ix alt), t] (A2.1.4)

which is similar to system (AZ2.1.7) except for a(t) which denotes the
randenly time varying parameter. As before, we assume that {0, o(t), t)
= 0 fer all t so that the null solution x{t) = 0 is the equilibrium
solution whose stebility is to be investicated.
In probabilitly theory the three cormion modes of convergence are
(i) convergence in probebility

(ii) convergence in the wean

<
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and  (iii) almost sure convergence (convergence with probability one),
and we shall now translate thas stability statements for deterministic
systems into stability statements relative to each of these modes of

convergence.,

Definition IV. Liapunov stability in probability

The equilibrium solution of system (A2.1.4) is said to possess

Liapunov stability in probebility if, given e, a]'> 0, there exists

§(e, e], t,) > 0 such that ll_§0 P < 6 implies
: 1
PUsup || x(ts x50 t)) 1l >e ¥ <e (A2.1.5)
tato

Definition V. Liapunov stsbility in the mth mean

The equilibrium solution of system (A2.1.4) is said to possess
. - . b
Liapunov stability in the mth mean if the mtI moments of the solution
vector exists and, given ¢ > 0, there exists &(c, to) > 0 such that

I x. ||™ < & implies that

=0
m
E {sup || x(ts x5 t) |1} <e (A2.1.6)
tzto
' ’ . : . m a I
where E{.} denotes the mathematical expectation and || x || = Yo _]-[
i=]
Definition VI. Alimost sure Lianvnov stability
The equilibrium solution of system {A2.1.4) is said to be almost
surely stable (that is, stable with probability one) if
P { Tlim sup || x (ts xgs t) ] =01 =1 (A2.1.7)

[1x 110 ot

This is scaztimes referved to o5 almost sure samnle Liapunay stahility
since it says thal the cquilibrive solution 35 stable for almost all
sarple systons,

T

In a siwilar fashion we can defire asyaptobic stability relative
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to the three modes of convergence (i) - (iii).

Definition VII. Asymptotic stability in_probability

The equilibrium solution of system (A2.7.4) is said to be

asymptotically stable in probability if it is stable in probability
and, if for ¢ > 0, there exists 6] 1

e

> 0 such that || x || <&

implies that

P {sup || x(t; Xgs ty) [| e }>0as t»e

tet)
that is,
Timit P { sup || x(ts x5 t) |[ >ed =0 (R2.1.8)
t»= t>t,
Definition VIII. Asympiotic stabiliwy in the m mean

The equilibrium solution of system A(2.1.4) 1is said to be

asymptotically stable in the mth mean if it is stable in the mth mean

1

and there exists a & > 0 such that |! X6 I < s! implies that

E{sup || x (t5 x5 t) [T 0as toe

0
[ tO
that is,
- . m
Timit E {sup [] x (5 x, t, [ =0 (A2.1.9)
t>re t 2 to

Definition IX. Almost sure asvimtotic Liapunov stability

The equilibriv solution of system A(2.1.4) is said to be aimost
surely asymptotically steble if it is almost surely stable and there

- 1 b 3l g . . -
exists a ¢ > 0 such thai || *g o< 5! implics that for any e > 0

P { sup || x (t3 X, ) Il >e1>0as t s e

t > to

that is,
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Timit P { sup || x (ts %, t,) [| >} =0 (A2.1.10)

T > t ;‘to

Definitions I - IX, as presented above, are direct analogues of
the concept of Liapunov stability for dynamical systems and are concerned
with sample behaviour on the interval (t,» =). Examples of other concepts

of stability appearing in the Titerature are :

Definition X. Liapunov stahility of the probability

The equilibrium solution of system A(2.1.4) is said to possess-
stability of the probabi]ity if given ¢, e] > 0 there exists &(e, e], t0)> 0

such that || X, [l < & implies that

1

POTEx(ts x5 t) [l e }<e

for all t » to; that is,

1

sup PO ] x (5 x5 t )] >e ) <e (R2.1.11)

t > to

Definition XI. Liapunov stability of the mth naan

The equilibrium solution of system (A2.1.4) is said to possess
stability of the ] mean if, given ¢ > 0, there exists §(e, to) >0
such that || Xo Il <6 implies

E O] x(ts 505 T) 1™ < e

for all t > tG; that is,

sup E 0[] x{ts x5 t) H™ < (A2.1.12)
T o> to

Pefinition XIT, B%XEE§9E1§M§FFEiliﬁY of the probability

The equilibriua soluticon of systen (F2.1.4) is said to possess
asymptotic stability of the prohapility iFf it possosses stability of
S

the probability and if for e > 0 thore exicts sl C such that || x. || < 6]
2

irplies that



—
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sup lim P { || x(t; X50 ) [| >e} =0 (A2.1.13)
t > to t > o
Definition XIII. Asymptotic stability of the mth mean

The cquilibrium solution of system (A2.1.4) is said to possess

th mean if it possesses stability of the

asymptotic stebility of the m
nt mean and if there exists a s! > 0 such that [ X, I < 51 implies
that

sup E 0[] x(t5 % t )" 3> 0as t e (A2.1.14)

The distinction between definitions JV, V, VII, VIII on one hand
and X - XIJI on the other is that in the former the supremum is taken
on the sample and hence is included under the probability statement
and under the expectaticn operator, whereas in the latter the supremum
is taken on the probability function and on the expectation operator. :

Definitions X - XIII are conditions on the first distribution function

-

end its associated moments and therefore cannot be considered as strong

stability conditions as 1V, V, VII, VIIT on the solution process.
Howzver, uhder certain conditions, for example, Tinzar homogencous
systems, these weaker stability criteria do have significant imp1{cations
fcr sample stability. A thorough discussion of the implications that
exist among the stability concepts discussed in this appendix may be

found in references 20 and 21.
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SUBHARMONIC SOLUTIONS OF SYSTEM EQUATIONS (3.3.

I
—

Substituting equations (3.4.11) in equation (3.3.4b) and balancing

like terms it is readily seen that the only possible value for n is 2

and that
II] H] H'l
b_l =..ﬁ.é_a_l’ b2 :--]-I—gaz, b3= O, b4=--ﬁga0 (A3.]..])

Substituting equations (3.4.11) in equation (3.3.4a) and balancing !fke

terms gives, on using results (A3.1.1).

n2 2 b]2 b22 b42 1
-t b, = b C 4 e b e bt o A3.1.2
e N P S (A-3.1.2)
II2 1 2
m Ptz P2 T P T PPt b (A3.1.3)
T H22
- -ﬁ—]- b2 + -Z'IT]* b] = 2b0b2 - b-l + b2b4 (A3.'|.4)
il 1 '
.2 y2_ 2,2 -
0 = -E b] A b2 + 2H2b0b4 _ Zbo + b]b2 (A3.1.5)
b12 b?Z
a3 = =- —‘é‘— + -—?j—' + 2b0b4 (A3.].6)

Equations {A3.1.2) and (A3.1.4) are homogeneous in b, and b, and will have
a nontrivial solution for thesc coefficients (that is, subharmonic solutions

exist) if and only if

(2 4 b, -2 4 1y 2
T, 4 0 (’2'}{']‘ 1) =0 (A3.1.7)
b 1 il 2
'riting L 2
Writing b, - T 2o a1/ Do v 1] =0,
2
2= by ? e n,S and R b,



2 . .
we have that b]b2 = ubz giving

2

Substituting back, equations (A3.1.3), (A3.1.5) and (A3.1.7) become

2
I 2 It
2 2 2 - 2
ZbO + r + (R- ﬁ; ) = ;”g -1) (A3.1.8)
1
(1 + 201, - )2 = a5 (R+ /1) (1 + %) 5
2u/l, = w o )\ H (A3.1.9)
2 2 2 2
(My/My = RS - 4bo + (1m°/(2ny) + 1) = 0 (A3.1.10)
Eliminating bo2 frem (A3.1.8) and (A3.1.10) gives
2 3, 2 _ .2
ooy (R- /)" =00 (A3.1.11)
) 1.2 oy
where 2% = 5 [ —55 - 3 - - ] 5 that is, the loci of the
Z 2 2
I 41 i
1 1 1
modulii of the subharmonics and harmonics are ellipses as shown in
fig. (A3.1.1). 2
. T T
Writing z = R~ ﬁ;- and @ = 5= 4] (A3.1.12)
equation (A3.1.11) becomes
2 . 3.2 _ 2
rtts o= A (A3.1.13)
Eliminating r2 from equations (A3.1.8) and (A3.1.13) gives
” 2 2 - 2
-z = o (A3.1.14)

. . . V4 .
while eliminating r” from equations (A3.1.9) and (A3.1.13), and substituting

for «© from (A2.1.14) gives
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Substituting for A and o and expanding gives

2

2 2 5, ¢
1 + 7n2n1 - 21

5 3
+ 7n1)X + (—4- " + 51,

2

F(X) = 7m,%° 3 X

1
A

6 23 4 4 21 2 2 _ 2 3
I," +=p Ty 1 o™+ =5 My, 2n2 Ty + 7n] ) =0

ool

+

(A3.1.15)
where X = T,z
For a subharmonic solution to exist a real rcot of equation (A3.1.15)
must be such that equation (A3.71.13) gives a real value of r; that is

2 2.2 2 1.4

X <51t - >0 (A3.1.16)

It is readily shown that F(L) > 0 and F(~L) > 0 so that equation
(A3.1.15) cannot have an odd number of roots beiween -L and L. Thus,
equation (A3.1.15) has either no roots or two roots in the interval
-L <X <L,

Since F(X) < 0 for large negative values of X and F(-L) > 0 it
follows that F(X) has at least one root in the region X < -L. Since
2iso F(L) > 0 it follows that F(X) will have lwo roots in thé region
-L < X < L provided F(X) has a staticuery vaiue at X = X] which is a
minimum and such that -L < X] < L and F(X]) < 0.

Provided N > 0, where

. 2 _ . 1.2 2, L2002
(289 - 105 1, 420 u]) + 196 T, + 308 ly"Hy - 588 iyl

4

N = o

(A3.1.17)
F(X) has a staticnary value, which is a minimum, at
X, = e [/ - (iln,
1 4271, Z
2
Thus equation (A3.1.10) will have two roots in Llhe vegion -L < X < L,

that is, subharmonic solutiens esist, provided



c) -L < X] <L
and d F(X]) <0
Equation (A3.1.16) may be written
2 2 2 2
N = n24 (289 - 105 1, ) + 1, (308 - 420 1,")my - (588 P 196)n]2

(A3.1.18)

From equation (A3.1.18) it is readily seen that :

(i) if'nz2 < %%% then N > 0 ail I

(11) i 1oy < M < 308 then N> 09 1, < g where 5> o

and N = (o + H])(e - 1)

v e s . 308 2 289 - - H1aYs)
(iii) if 70 < n2 < THE then N > 0 if H] < o where o < 8
and N = (a + n])(s - )
. . 2 _ 289
(iv) if 0" > gz then N < 0 all 7,

The region R2 in parameter space defined by inequalities (a) - (d),
that is, the region of parameter space where paramzter values give rise
to subharmonic solutions, is then plotted using digital computation; the
flowchart for the computer program being Flowchart (A3.1.1).

For parameter values taken in region RZ equation (A3.71.15) may be
solved numerically to give two real values of X between - and L. For
each value of ¥, |X| <L, eguaticns (A3.1.12), (A3.1.13) and (A3.1.14)
arc sclved to give the corresponding vaiuss of R, r and bo2 respectively,

2 2 2

Solving by = uby » by™ + b7 = %, R = -b, then give the coefficients 255 3

e

ives the corresponding value of a It

3.

is readily seen that there exist eight subharmonic solutions of order

and 2, whilst equation (A3.1.0)

two, each with a d.c. component 1a ;1 and 52, for each point in the

region RZU
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APPENDIX 4.1
HILL DETERMIKANTS FOR HARMONIC SOLUTIONS OF EQUATIONS 4.4.5,
. . 1 T
Writing, for convenience, o = 4=, B = ——————7= equations
1 H](1 + 1 )
(4.4.5) may be written as
‘:]](T> = -« g]("') = o sin t 52(T) (A4.1.1)
] 3 P ] 2 - |
£y (1} = B(sinv - — cos T)E,](T) (A4.1.2)
Assume that E](T) be given by the Fourier series development
g{t) = a, + ) (a, cosnt + b sin nt) (A1.1.3)

n=1

where, as yet, the coefficients ai(i = 0,1,2 etc.), b,

; (1= 1,2, etc)

are undetermined.

Substituting (A4.1.3) in equation (A4.1.2) gives

_ o ] Ny s g
Ezl(T) = gfa, sin © - = cos ]+ 1 [l =) sinn+ 1+
o o
n=1
b —— a a
- (gn + —) sinn-171-~ (bn +—Jeos n+ 1 1+ (bn -1 Jcos n - 1 1]
o o o}

(A1.1.4)
lhen the system has adopted the gz'(r) signal will have no d.c. component

so that
= o
a)p = Uy (A4.1.5)
Integrating equation (A1.1.4), with respect to ©, gives

I N o= A 4 %'rﬁ_~ o5 a1 -~ ___(_)_ S ,’} + 1 © I" ( )y, y 1.
)2(1) = A (,_ d() HENY SN 1! 2 2 L».\a‘ - -»-»-) [ T S

8] - Y
n=i { n+ 1
ny sinn -1 | an\ Sin ;NI“;'( %y sin ;"- 11
+ (an e B (an o) L (bn - ) e
o n -1 o n+ 1 @ n -1

(A.4.1.6)
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where A is a constant, as yet, undetermined.
Substituting equation (A4.1.6) in equation (A4.1.7) and balancing

the coefficients of like terms Teads to the following two distinct sets

of linear homogeneous algebraic equations for the coefficients (aZn’ bZn)
and (a2n ‘1] b2n . 1) respectively.
B 3 aB _
(a-—z—)ao-zaz+——zb2—0
aB B _ B
ARG R LR PR VTR LT
of B8
Fag# (atglag+ (273 )by~ y785 %75 by =0
~of A B . nep R
7——-]—5-,~ a T(2n-TY by o+ (-2n +-——-;, Jas. + (o + SV
4 Zn- 2 2 4\1.'“ Ln 2 (4n __']) (41 2(4"]2-])’ Zn
~of - B 0,n>1
R nR ‘ g nab
—_— a, ot ——— 1+ (o + s )a, + (2n - —— b
4(2n-1)  2"2 0 4(zn-1) 2(4nl-1) o0 (an-1) 20
-8 af .
—— 2 + e T b C, n > 1
s(2nel) M2 aenery 202
(A.4.1.7)
and
a] - (tb] = 0
B . ob B «8
(u-—g)a]+(] 8)b] g ag 8b3‘0

op Y g8 it
-~ Cn.. 1 + Y b - + ( 21’1 + 1 } [' -I o ——em a. o+ I L b
et e(nin) 21 8n(n+1) Ioana



-t
KO
\Xw

o8 -~ —L b = 0, n>0
- dons 2n+3 ?
g(ntl) 23 g(ne)
B aff 8 ‘ _ o8
L3 y 9By + [0+ —=——]a + (2n41) [1 - —2—J b
8n “2n-1 " &n "2n-1 [ 8n(n+1) 2n+] 81 (n+1) 2n+]
B b 2By =0, n >0
- — a V- . 2.+3 3
g(n+1) 23 gmer) "
(A4.1.8)
The value of the constant A is then given by the equation
o8 yar + (@ - B )by - a, - Eb, =0 (A4.1.9)
oh + (-1 + =g lag+ (a-g )by~ =gaz-ghy te e

Thus, two types of harmonic solutions are possible for equations

(4.4,5), namely

(i) gq(x) =3, + } [ep, c0s 2n T + b, sin 2n 1], where the coefficients
n=1

b, ) are given by the homogenecus algebraic equations (A4.1.7).

(A20200n

and

(ii; g](T)'z y [a2n+1 cos(2n+l)t + b2n+1 sin(2n+1)1], where the
n=0
coefficients (a?n+1’ b2n+1) are given by the homogeneous algebraic

equations (A4.1.8).

In each case the corresponding solution for gz(f) is given by equation
(A4.1.6), with A given by equation (A4.1.9).

An harmonic solution of the form (i) or (§i) will exist if the
corresponding set of simuitaneous homogencous algebraic equations have
a non-triviail solution Tor the Fourier coefiicients. 1T is well knoun
that this is the case providad tre daterminent of the coefficients, in

the equations, is zero. Thus, a solution of the form (i) exists if the
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determinant of the coefficients of (a, , b, ) in equations (A4.1.7) -
often referred to as a Hill determinant-vanishes. Similarly a solution
of the form (ii) exists if the determinant of the coefficients of
(a2n+]’ b2n+1) in equations (A4.1.8) vanishes,

If a full Fourier series dovelopment for g](T) is assumed then,
for both solutions (i) and (ii), the Hill determinants will be infinite
determinants. However, in practice, the Fourier series is truncated so
that only finite order Hill determinents are considered. Since, in both
sets of equations (A4.1.7) and (A4.1.8), the coefficicnts are all linear
functions of g it follows that equating an Hill determinant, of order r,
to zero results in a polynonial equation, of order r, in g (or HZ) having
coefficients which are functions of a(or H])° These polynomials are then

solved using the procedure described in appendix (4.3).
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HILL DETERMINANTS FOR SUB-HARMONIC SOLUTIONS OF

EQUATICNS 4.4.5,

2
Hriting, for convenience, o = %- B = ——-E--?* equations (4.4.5)
1 m(1 + 1,7)
1 1
may be written as
£, 1(7) = = w (1) - asin T gy(n) (A4.2,1)
52]("() = g(sint - %— COST)E1 (1) (A4,2.2)

In order to obtain the transiticn boundary, betwecen stable and
unstable regions, we are interested in obtaining the values of o« and 8
for which a solution of period 4w, that is, a subharmenic solution of
order % , exists for equations (Ad,2.1) and (A4.2.2).

Assume that g](r) be given by the Fourier series development

nr . nt
E1(r) = ag + ¥ a, cos = + b sin =) (A4.2.3)
n=1
where, as yet, the coefficients a; (i =0,1, 2, etc.), bi (i=1,2, 3, etc)

are undetermined,

Substituting (Ad.2.3) in equation (A4.2.2) gives

1 % 3 . by n+2
£, (1) = B[aos1n¢ - == cost] + o (a, - ~D)sin ( 5& )«
n=1
b a
...2 ¢
- (o, + "% ) sin ( Dg“')T = (b, ~g)cos ( 2%2)1
a
n -2
+ (b, = =) cos { K%?" )t ]

(A4.2.4)
-

liken the system has edapted the {21(1) signal will have no d.c. component

so that
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8, = bya (R4.2.5)

. . b
Ey(7) = A+ 8 [-a cost - — sint) + -26- nZ] [-( =5 (3, - ,.;l )cos D%_z_ )1
(2 b, n-2 ., 2 4 g2
'i:l':’z;' )(a + Y )COS ( 5 ) ( o )(bn 4 Y )S1n ( T )T
2 4 . n-2 -
+ (=5 )b = —)sin (=— )t ] (A4,2.6)

where A is a constant, as yet, undetermined.

Substituting equation (A4.2.6) in equation (A4.2.1) and balancing
the coefficients of Tike terms leads to three distinct sets of linear
homogeneous algebraic equations for the coefficients (a2n+1,b2n+])’
(a4n, b4n) and (a4nF2, b4n+2)’ n=20,1,2, etc., respectively. The

last two sets of equations give rise to the two harmonic solutions
discussed in appendix (4.1) whilst the first set of equations gives rise

to a subharmonic soluticn of the form

g(1). = L [q cos Enl)e b osin 2021 (A4.2.7)
S 2 n 2

with the Fourier coafficients a;. by (i =1,2.3, etc.) being given by the

]‘

simultancous linear homogeneous algabraic eguations

af B 3.3 2 of R
(S0ay = by + (-5 g eflay + (o + )by - (3g)a, = (yg)by = 0
R nf, , 7 3 3 - V2
(*2')31 - ( (.))b] (CL | i 4)32 r (2 5- L;;«,)bz (*]C)’ 4 (%1})”4 = 0
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[ —22_ 7a PR ""E”""']bn—Z + [- (2n1) (2n~]%u8 ]a
2(2n-3) " 2(2n-3) 2 (2n-1)¢ - 4~ "
plas—2 b - [—E—Ta - [ 5] 0, n > 2
(2n-1)% - 4 2(2n+1) 2(2n+1) M2
———Ji—-’]a , + o8 b o+ [o+ 26 _1a
2(2n-3) " "2 T p(an-3) T E (2n-1)¢ =4 "
2n=1) (2n-1)aB 4 B af -
N R G A UL R er LV —7b_,, =0,
2 nenf -4t Canen) T M2 T 2(2ne) Jorsg "

When n = 1 the corresponding Hill determinant is

]

b=l (gt B+ (-5 ]

(o8]

which cannot be zero for any « and 8.

When n = 2 the corresponding Hill determinant is

by = (L -G -2a0) - G+ B+ Eo ]

2.2 2 2
AR A IV AR EORNCER ICEE DN
which again cannot be zero for any a and 8.
Similarly it can be shown that higner order Hi1l determinants may

be expressed in the form

8, = (u])n (Sum of squares)

but to date the formulation of an inductive proof remains an outstanding

problem,

: PERTER &
Since the it

',,,,;.L; y‘,‘..‘ P DTSR R S i 1e .
ceterminants cannot be zers Tor any parawetcr vajues

it vollews that the system of equations (A4.2.1) - (R4.2.2) do not have a

solution of the form (A4.2.7).
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APPENDIX 4.3,

ALGOL PROGRAM FCR OBTAINING THE ROOTS OF A

HILL DETERIAINANT

A determinantal equation of the form

Hn = , f_iJ(Cis B) l =0, i,j =12, ----,n (A4'3'])

is being considered, where each element fij(a, B) is of the form

(agg + gy * aozaz L e bl bbb b + aOLOa 0)
L
+ (310 tajqe + ag,a F o mmmmemes e + a]L]a )8
B e o e e e e e ot
2 Lz z
+ (azO T a,q0 t 2,07 F mmmmmmmmmee oo + a Lza )

that is, each fij(a’ R) is a polynomial in g having coefficients which
are polynomials in «.

The aim is, for a given value of o, to obtain the values of g
satisfying equation (A4.3.1). Two programs are presented; the object
of the first program is, for a given o, to expand Hn as an algedbraic
polynomial in 8. The roots of the resulting polynomial are then
calculated by using a standard Tibrary progrem for obtaining the
roots of a polynomial; for completeness this is included as the

second program.

PROGRAM 1

EXPANSTON OF A CUTERMINAT AS AN ALGEBRAIC POLYNOVIAL

(i) Presentation of Data

M - deoree of matrix
D - maximum degree of g
KK - {: 0 if degrec g varies

L= D if degree 5 fixed
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Rt - maximum degree of a
K1 - {:= 0 if degree o varies
= RY if degree o fixed

N - nunber of non zero elements

Then print the N non-zero elements as follows :

I J - giving position of element in Hn
M - description type
then
(a) if MM =1

P Q where fij = qu

(b) if MM = 2

P Q where fi' ~f

J Pq
(c) if MM = 3
(i) if KK = 0 then Z, maximum degree of g for this
element followed by

if K1 =0 LO 01 ¢} D aOLO

S T | L,

Lz azO az] ---------------- L
z

or Tf }\] = R1 aOO c‘o] """""""""""""""" aOK‘I
R E S | B 3K

a a e em e . w4 R b % s e .

0 % " 30
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(ii) if KK = D then
ifKi =0 LO aOO ao'l ''''''''''''''' aOLO
by 39 3y T 1L,
]
Ly 2y 2y TTTTTTTTTTTT L
or if KT = Rl g9 81 "7 4K
%o 8y TTTTTTTTTTTTTTT K1
) PP - Number of values of o
Q3s0ps "7 Opp T the PP values of a
XO - first value for 8, could be taken as O
H - step length between two values of B, could be teken as 1.
Ezxamle
OLZ + aB of -R
, A3 = O»B "QZ-GB O
B 0 1+ o + 20
Data tape 1s
M 3
D 1
KK 1
R1 ?
K1 0

N 7
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1 2 2
(1) 3 (5) 2
2 0 0 1 1T 1
1 0 1
12 31
(2) 3 (6) 2
0 0 1 3
1 0 1
1 3 3 3
3 3
(3) 0 0 (7y 2 1 0 1
0 -1 1 0 2
2
(4) 1
12

PP - number of values of «

the PP values of «

¢1» "7 Opp
Xy O
H 1

(i) Interpretation of results

The print out will give the value of «, the degree W of the polynomial

and the Y coafficients Cps Cpy =--y e where

Hoo = Gy Ot Gy 4 mmmmmmames v ot
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Lxamle

For the example discussed in (i) above the algebraic expansion
of H, is
3

i
fy = ~(4a + o)e® - (60 + 398" - (8 v 2ad)p - (84 )

thus, if the given value of o is 1 then print out will be

ALPHA = 1
COEFFICIENTS OF BETA POLYNOMIAL
POLYNOMIAL DEGREE 3

-2

(iii) Method used
An explanation of the process used is given as opposed to flow
diagrams since in this case it is less confusing

Step 1
Data input to matrix Al, where each elemant of Al tokes the form

a Byq TTmTTEmme a
co ‘o1 0L,
1 ey T "L,
!
A0 B T 8y
z

Step 2

Given a value of a A dis Teried frem Al, whevre each element of A i

of the form
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that is, terms in positions O to D and S in position D + 1, and where

b = arO + a

. O+ e —— + arL o (A4'3.2)

This step is done by procedure INPLANT.

Steg 3

The maximum possible degree W of the resulting polynomial in g is
calculated by finding the maximum degree in any row and then summing for

all rows. This step is also done in procedure INPLANT.

Step 4
Produce matrix B where each element of B is of the form

. N s
bo + brb] + Br b2 + + Bn b

and the b's refer to those defined in equation (A4.3.2).

Then using procedure E det(B) = 4 s evaluated; this step being

répeated W+ 1 times for r =0, 1, 2, ---, W, where
Br = 80 + rH s

tO g'iVE Ao, A-I, T s Aw

Step 5.

Now H“, defined in equation (A4.3.1), is a polynomial, of dogree

W at most, in R, say

_ Aot . W
H, = Co * Cy8 + b Cyb
Hence matrix X is such that xij = Bg and
.. -
CO AO




[AS]
—
Lo

so that Cy, c1, ----- , C, are ghteined from Xm]X using procedure E.

(iv) Notes on program

Note 1

The same procedure E (working along Gaussian elimination lines)
is used to evaluate both detB and X1z,

If Hn, defined in equation (A4.3.1),1s of degree Tess than W,

cay P, then the coefficients

> Cpaze 7T Ny

Cp+I p+2’

should come cut negligibie.

Observation of the resutts is usually the best means of checking
this, for if a sequence of values follewed by w-p valuas which are less
than the first p+1 values by a multiplicative factor of about 10"9 then
we would expect these to represcnt zero (most floating point arithmetic

usaed in computers tends to lead to this magnitude of rounding error).

(v) Print out of progran

A print ocut of the program is given on pagas 213-215,

PROGRAM 2

ROOTS OF A POLYRCHIAL EQUATICH

The function of this progrom is 1o deteriine the real and comp'ex
f CAY
roots of a polynomial cquaiion, whether they be equal, close or widely

separated, in the form X + 1Y, fvoem an cquation of the form

n n=1 - ~ i
Rox™ 4 A}x # g oxt An = 0 (A4.3.3)
(1)  Pregentation of data
N Cdegroe of polynomial

followed by the coefiicients
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Ay A

of polyncmial (A4.3.3).

A A

Emamqgg

flx) = &0+ 5xt e 7% - 165 - 98x + 104 = 0

Data :

(i1) Interpretation of results

Print out will be

N

followed by the n roots in order of increasing modulus, that is,

smallest first.
For the example quoted above it is readily shown that
2

f(x) = (x = T){x - 2)(x + 4)(x" + 4x + 13)

so that the print out will be

=2 + 1 %-3
-2 + 1I* 3

-4 + I * 0

(i11) Hathod vsed
An initiel approximation to a root is mede by Bewvnculli's mothod

(to 3 sig. figures) and this is dmproved by the Newton-Rephson iteration

to 8 significant figures.

'I:T‘(‘.d‘ ‘ha T D enatae el €1 18 . .

Trom e anormation and flow disarams
aray

The program was daveiopes

o
21y

: . P P SRR ., el 2t . .
given bJ‘/ berbort S. V1T i the toxt Look atlonotienl beothada Jor Dioiinl
E oas Jor Digiial

ey pA e 21 y B RN S N Yoo o b ovim e et BT . .
CO?:;(;Mch,{.:, Vol. l‘, GO Y A, Ratstion iR .';,f). ‘,IH;" ard pU’.)'hS:";C‘{Q by

h Ee T R T

J. Wiley and Sons, 1000, pp. 232-241,
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(iv)  Notes on program

(a) AO cannot be zero
(b)  There must be N + 1 coefficients declared

(c) Ay must be declared even if it is unity

(v) Print out of program

A print out of the program is given on pages 216-218.
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EXPARSTON OF A PETERIIHANT AS AN ALGEBRAIC POLYNONI A

V1,01, R, 1,0, 1 .r:,u,"-.f,'r‘m.@,s:p,w'

PROCIDURE LCALN,C, DY
ARRAY 4,00

pnThaTny oMt

IQI‘IJJ D'

DEGIN

NG .
IF D=0 TUE Fr=0 ELSE BEGIN Fr=1'D:=1' END'
Fon Js=0 STEP 1 UITIL N DO
SEGHH Ko+ J' .

FOR L:=J+1 STEP 1 UNTIL n no

IF ADSCACL,JYY GR ABSCACK,JD) THEN K:=L!

iF J MOTEQ K THEH

BfGI” FOR Le=J STERP 1 UNTIL M DO
BEGHI Z: =AU, 10!

- ACK I)- =ACd, LD
ACJ, l) =7 1
END!
IF F=0 THEN
DEGIN
7 =CCIY TCCKI: =CCID TCCUd e =7}
END
ELSE De==D"'

END!

IF F=1 THEN D:=D#ACJ, )"

IF ACJ,Jd HOTEO O THEN

FOR Ke=Jd+1 STEP 1 UNTIL N DO

BEGIN Z‘:’x\l.,vjbfi \\. Jot
FOR lL:=Jd+1 ST: T UNTIL H DO
ACK, LDt =aCH, LO=Z #ACT, 1D !
IF F=0 TIEH
ClD:=CCKI=~2sCC D!

END ELSE IF F=0 THEN STOD!

EnD?
1F F=0 THE

LEGIM FOR Je=ll STEP -1 UNTIL O 0O
BEGHL FOR Ke=Js1 STEP 1 UNTIL N DO
CCad e =0CUd=~ACS KDY *0 QD
CCJd: vcckD/Acw,Jv'
- END
FHD
ZHnet
I. n u,n,rx,n?,:i,n'
B SARAY 2T e, e 0, Gt ACT T, 1 D e 1D,
DO, Qr-n !



PROCEDURE THPLANT!

BEGIHT s =(
ror

T UNTIL 14 DO

FO” et GTEPR
BEGIH R =ATC, DT, 00 ] ACI, K, D+ 10 =it
SR R GR T THEND Tr=R!
FoR Le=0 sTEP 1 UNTIL R DO
pEGLil 27:=07
Te=A1CI, ¥, L, n1+10!
Fon pP:= ‘T”P -1 UNTIL 0 DO
72:222’.L”'X‘ATCJ,R,L,PD'
‘ ACI,H LI =22
END?
ElD!
Ve =H+7!
EHDY
ERD!
For j:=1 oTEp 1 UNTIL H DO
Fop J:=1 STEP 1 UNTIHL i DO
FOR Ke=0 sTEp 1 UNHTIL D+1 DO
For L:=0 STEP 1 UNTIL R1+1 DO ATCL,Jd, K, LY =01
Fon L:=1 STrp 1 UNTIL 31 DO

BEGIN READ 1,J,1M!

L
:.-GII‘

rHb EL
BEGIN

LSS 3 THE

READ P,O°
FOR Ke=0 STEP 1 UNTIL D DO
DEGIN FCR 9-*0 STEP -1 UNTIL R1T DO
C AT, LR =320 R ATCR, 0,1, RO
A1C1;J,K,R1 1)?2‘1(P,Q,K,R1+1)'

EHD!
A1CI,J,D+1, 00 =A1CP,Q,D+1,00!
SH

IF ¥iz=0 THEN READ P ELSE P =K'

For R:=0 STEP 1 UNTIL P DO

pEGIH [F E1=0 THEN READ Q FELeh Qr=ft!
: rov 10 =0 STEP 1 UNTIL © DO READ A1CY

CI,J n :»4.1),,.01
END !

1“‘]~1,J,) -1, 00 =p!

214.



' READ PP!

BEGIH

THPL AL

E
ERD
Erp!
Eint

ANRAY ALPHACT:PPY!

FOR Jds=1 STEP 1 UNTIL PP DO READ ALFHACPP)!
nEAD XO0,H! :

Fop JJs=1 §TEP 1 UNTIL PP DO

REGIHH PRINT

FOL2ALEHAT? , SANELINE, ALPHACJJD,

H .

peL?COEFFICIENTS OF BETA POLYMOHIAL?Y

T

REGIN ARRAY YCO:ﬁ),X(O:N,O:u)'
Fop J:=0 STEP 1 UNTIL W DO
BEGIH X(J,00:=1"
XCJ, 12 =x0+J=11"
FOR K:=1 STEP UHTIL
For L:=1 STEP 1 UNTIL
BEGIN BCE=1,L=13:=0"

1 DO
i DO

FOR R:=Ad, ,{)4'1) STEP -1 UNTIL C DO

END!?
YCJYe =11
ECB,H=1,Y,Y(JdD!
END!
FOR J:=2 STEP 1 UiTIL VU DO
FOR K:=0 STEP 1 UNTIHL. W DO
XCI‘:,LJD: :XCK,\J"'ID*‘/\'(;:, 1) !
ECX,U,Y, 001

PRINT £ELE? POLYNONITAL OF DEGREE?, SAREL
FOR R:=0 STEP 1 UNTIL W DO PRINT SCALED

LHD

RCK=1, L1 =DR=1,L=10eXCd, 1D+ACG, LR T

T, Ut
TR0 !



ROOTS OF POLYHGHIAL EQUATION!
BEGIN LITEGER Hyd! '

PROCEDURE ROOTCH, A, RRO!

VALUZ A
INTEGER I

ARRAY A,BR!

BEGIIL INTEGER 1,K,Q,R,

REAL X,V

ARRAY B,D,.0E,
SUITCH S8 =XX

xx11,xx12,xx13,xx1d,xx1

. N ~ - . 7 B
X:’sZIJ s }\)(&::/ ) 1\(.\’2\)’ “\

FOR Ke=1 STep 1 UNTIL I

v

AS

> VAL
.'..7,/\,\(.
1)

P,S,T,U, V"

-

a yvuD
U s It .(-9
()]
(%

DCEY:= ACKD:= ACED/ACOD!

ve= Kt

vx2: DCv+1d: =01

F,GCO: K+ 10,000 N+2D
1,§x2,x§},xx4,xx5,xx Y%7,
55X 10, XX TT, XK 16, XX1G, %X

6,
X

O,
2 gt
’X}\."O’;‘\Xj'] i

IF DCV) NOTEQ O THEM GOTO XXO!
RRCV, 02: =RRCV, 12: =0

Ve =y=-1!
GOTO wyet

xx6: 1F DC1>=0 THEN GOT

IF v=2 THEHN

F v=1 THEN GOTO XXZ9 E

¥x3: Sr= V1!

GOTO X

FOR R:=1 STEP 1 UNTIL S

GOTO X3!

XX4: ACOY: =22D(2D

!

o x¥3"
X201

]
)

SE GOTO xX4'!

DO CCRJ:=R"

nco>:=~CDCi>ﬁn<1>>+Aco>'
IF BCOY>=0 THEN GOTO Xx3?
CcCo2y:= DC12/BCOD!

Us=T+V!

FoR Rs=3 STEP 1 UNTIL U DO DEGIN
ACOD:= R¥DCRI/DCID!
ECOY:= DCR—-10=-AC0>!

T:= p-2!
Sy R=1!

ron I:=1 STEP 1 UNTIL 7T DO DEGIN
ACOD:= C K100 oot .
FCOD: = ACO2+DCS-ED !

ECOY:= FCOD!
END!

cCpd: = =1/£C02!

ErD !

*xG: fa= 127
pe= 07
Gr= 2!
Us= 10"

%X9: ECO2:= O!

C
Fon i 2D eTLD
b FEy o .4 -l
GOTG Solra!
ear 4N - - [A
vyl DR e

1

¥
Cyedde s = 1/ECDT

Tl

(v+12

i

DO CUoe= COI

216.

XX9,%x10, «
X21,KX22,XX25 .
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GOTO Xx9'
Sy A2: 6COd: =CC Y+ 1I=0CV=100/CCV+13 !

n(U) = CCYY-CCv=-10t
GCOd: = GCOX/ACO!
(X1l GOTO et
¥x13: FC0d:= CCV+1d=-CCVD !
FCUo: = ABSCFCOIDY
pC02;: == cey+12/1000°

IF FCOY LESS ALSCC03D THEN GOTO xX15 ELSE
GOTO $5C00!

xx?«. FCOds = GCOO-DCOD!

FCOd:= ALSCECOID!

[C0d: = GCOd/1C00!"

IF FCOY LEGS A SCCOYY THEH GOTO xX161

IF GCGo2= 0 Thxh lUlO XX16 ELSE GOT0 XX10!

w5 we= 1/CCV-

¥X5: 1:= 0!
Ye= OF

QOIO iyl

wx16: X:= GCOd/2!
Y= CCV+10-0C¥D !
ACOD:= CCVI=CCY~ -1
ACOD: = Y/cnc0>*ccx+1>§ccv3>'
Y= v:.-s}\!
Y= ACOD-Y!
Ir Y LESS 0 THEN GOTO %26t
Yi & SORTCY 2!
)\’7 o =0)?
Pe= CHECK ICI O
ys= 214 -
XX16: s:= S+1!
IF S GR 1) EHEN GOTO Xx23+t
/\X‘?O r—/O\,: L((: = :’\1
300 = CCO‘-~ 1‘
FOR h'=1 sTEP 1 UNTIL It DO Bfgl
ACOD: = k FC -1
CCK):‘-" C!\"1>“ /\CO)’H’\’\K>E
ACOD;: = X”B{K~1)'
.BUO: = ACODHCY=CCK=100"

!

ACCo: = )*GC:“I)'

ACOd:= XeECH-12"T

ECK2:= BCO+FACOD CY"‘&;C(("‘ID)‘
END!

GCOd: = GCH=1IrGCn=1!

(0) = “/n"‘l.l .'""-”-1)'
GCOJ = GCO2+ECD!
CQH) )..,\’)r

P et L T S ~
rCU).“‘ HQ:I.’*’I;C:““J'
CCOY: = COCODHECODD/GCOMY
X~-- }(* \,CO)'
CcCOd: SN CUSIPRR
FCG: / 100Ln000T
1F cCO2 Qo ,\'i‘ CEC0Y) T GOTO Xx2a2t
Uess 201
Fopel o TiEnD GUTO PO SaTE
LCOde= o n=iot
CCOdr = LoD B0/t
yre yenc!
CCOYr= A ISP
o, W NNy
t'c\ —): \//{ }4’ ;\.'w\,\)'



[P GCOY GR ARSCICOD THEN n0TO XX18
wy25e 1F 1=0 THEN GOTO KX
nr<?w1,0>.~?4cx 0 =t

RRCV=1, 1D ==Y"

RRCy, i>-~Y'

[F v=2 THED GOTO Xx31 ELSE GOTC
vy 24 nnCY, 00 =]

RRCV, 12:=0"

THEN GOTO XX31!

\.\ til

IF V:"i i
BCoY: =11
Se= v-1!
FOR ¥r= TERp T UNTIL S DO BEGIH

=12 +DCKD

o
o
3
3

.

2¢O = 28!
M= XX
ye= yEY!

K= X!

Fow

pC12:

1
-~

FOR x:;é STEP 1 UNTIL S DO BEGIN
Berds = ACOYI=BC-1D!

GCOD: = van(-22"!
DCY=1de = BCKD:= BCKY- G(OﬁrDCV—1)' END ¢

Ve= ve2!
GOTO XXZ‘
yy26: 0:= 10"
GOTO vy 10!
¥vx30; -¢C02:
3COY:
vx1:s P:= 0
‘“7 0ends= CCOd-nC0d !
xy10: DCOI: - /a2
yy27: COde= cCOd/4!
FECQD: ADSCOCOO !
FCOd: = SORTCECDD!
IF cc0d> LESS O THEN GOTO XX28
Ye=0F
= 0OF
K= YCOD+EC0D Y
GOT( vy 17!
= ncodt

i

HCde DO
43DC2O T

i

ii

il

i

yy20: X:
Ye= mCost
pe= 01
pe= 1!
GGTO w7
N¥20: wr= =DCIDY
.::O'
L] O'

. B R
:.! Pivtivi 4
: - o P T - IR o U S |
HE s i 4"“.(:{»‘:"/,5\\ [ IR P H
2 oo S ARA @y, ey s N Yyrcoar . '
o Jrsie S ST P £ 01 I PO S ALY
votent
IR IR Y
. - ey vy oees
100 \,}:‘. =N U 1 Ui IL i 5o
T N i ¥ Y 'R v - .
}ii{i\t "\‘~J¥,\)$:)/‘uz iis,utl“?’{\\\]‘ 3)'
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APPENDIX 4.4,

.t m— o eam meww e e —

FOXKER-PLANCK EQUATION CORRESPONDING TO SYSTEM OF

EQUATIONS (4.6.6)

Required Fokker-Planck equation is

3 3(A.p) 3 3 3°(B,.p) -
d 1 )
ag = -l ax.1 7 ) ax.a;?“““ (A4.4.1)
i=1 ! i=1 §=1 ' 9 :

vihere the incremental moments Ai’ Bij (i,j = 1,2,3), are defined by

A = Timit <8x;> R.. = Timit <8x.&x.>
1 —_— 1J v 3
st-0 8t 540 5t (A4.4.2)

From equations (4.6.6) we have :

t+ét
] R . 1
8xq = - wa]ﬁt + T’*Zat + o f n](u)xz(u)du (A4.4.3)
t
8%, = -BKKVR xlét - BX, x]x36t (Ad,4.4)
] K t+6t
xy = - gt + J g (u)du (A4.4.5)
t
t+8t t+5t . u
But, f ny (L)X, (u)du = Jt ny(u) (L) + J dx,] du
t
t
t+6t t+st u '
N G,
- XZ( ) n](u)du * J [ n‘(u) U?i dud-~
t t t
(t+5t t+ét
= xz(t) ] n]{u)du + [ J n](u) ["BKKVRKI
t t t

LD
Ukyk}x3 ] dudy
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so that equation (A4.4.3) becomes

8
’ 1 . %o () t+ét 1 (st pu
8% = - x]ét +or x26t + Jt n](u)du + o ft f n](u)
t
- [»BKKVRX] - B}(vx]xs‘]dudr (A4.4.6)

From equations (A4.4.4), (A4.4.5) and (A4.4.6) we have, using

definitions (A4.4.2), that

o

4

. R
A-l = 'X-l'fT'Xz

A2 = - BKKVRX} - BKVx.lx3
L 1
Ay = = T%3
X 2 2D
i
11 -+

2D
Byg = By =72 %2
o 2D
33 % 7

Substituting in ecguation (F4.4.7) gives the Fokker-Planck equation
2

corresponding to the sysicm of cauaticons (4.6.0), as

. ILXD - gl x
ap ) -( lii - R v SRy (BKK Ry, 4 DK ap 1 9(x3p)
b .,[ - ze \2 ey hN \V \A-l DN Xy X,\) e F e im——
al UX-! IXq v©173Y ox T A%
2 3
VAN ? 2
*2 ? ey 21 it
N e S tte oo Moy mmeimmm 1A
7 a 2 . ‘;)/ ax ["\"c{la']
TZ : _l ‘“ l:\ "‘L Z < \1 3\3 ( v )
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Calculation of the moment equations

(i) st order moment equations
Multiplying equation (A4.4.7) throughout by X (i = 1,2,3) and

integrating over all X1 %oXq gives respectively

. e o] ]
Mmoo = YT Kyt <Xp?

] R

==T1% 0,0 * T",1,0
mo,]’0 = <x2> = - BRKKV m],0,0 - BKV m1,0,1

m

’ _ _ ]
My,o,1 T 3T T T T N0,0,1
(ii)  2nd oider moment equations

Multiplying equation (A4.4.7) throughout by Xixj (i, = 1,2,3) and

integrating over all XyX,Xs gives respectively

* o te .2 2R 2D

M0 = 7 77T "2,0,07 7T M,1,0 * 72 "0,2,0

m - =<;x>=-lm +Em - BRYM m ny

1,1,0 .0 2 TM,,0 7T P0,2,0 T 2T 0,0 7 BRy M g9
. - <x,?s = - 2BRKK, m - 2BK_ m

0,2,0 2 v 1,1,0 v 1,1,1

. ’ 2 R 20K

) = <X Xa> = = o I + = b o

1,0,1 173 T7,0,1 7T 0,100 12 M9,1.0

. - <xoxgr = - BREK, m - BK W S

"0,1,1 2”3 v '1,0,1 v ™,0,2 -7 "0,1,1

¢ @ 2

Y SO 2KD
".0,2 ° Xy > =T p g gon +._m¥?
(iii) goneral order moment gauations
Ky K K

bultiplyine equation (#1.4.7) througnout by S ! Xo 2 X3 3 and

jntegrating over all %y %5 %3 gives that the c¢eneral order morent

equations are ohtainsd from
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K K2 K3 K] R

m, = <X X X > = = m , + =K, m
}\],KZ,KB 1 2 3 T K],kz,K3 T ™ K]-], KZH, Ky

K

-BRKK,, K, m e CBK K, my 3
v K2 T, RymTuKg T2 KL TLKE T K LK Ky

# 25 Kq(K=DMy o ¢ 1o K, + o (K.-1)

T 1702t T T RIS mK],Kz,K3-2

ZDKK.‘K3
2

m
Ke-1, Kot1, Ky-1
T LA AR



APPENDIX 4.5.

ALGOL PROGRAM FOR GENERATING RARDOM NUMBERS

The function of the program is to generate a sequence of normally

distributed random numbers with given ween and standard deviation.

(i) Presentation of data

0399
0793

170

followea by
L
M
D

[ T, PR N R T R
numhor of randon aurbors roquired
mean of requived sequence

standard dzviation of required seguence

ro
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(i1)  Interpretation of results

Print cut will be

MEAN = M
STANDARD DEVIATION = D

followed by L numbers of the sequesce.

(iii) Method used
Pseudo random numbers are initially generated by means of the
recurrence relation
X = X ¥ 63419 mod 507359

n+1
N

relative prime forming
complete cyclic group

This suffers from the drawback that & small number is always
generated by a large one and vice-versa, a disadvantage that is overcome
to some extent by taking the last 3 or 4 digits. However, as an improve-
ment over this drawback a scheme is developed to select in a random manner
one of a set of 20 x's and replace the selected x by another generated

cne.

The scheme is to first generate 20 x's, then the next x, say X.,
J
is generated and x\j mod 20 found to give a K in the range (0 - 19) - this
value being then used to select the Kth x from the list of 20; x, 1 is
Jt
. , th . .
then generated and the KU element in the list replaced by it.

By this time, having taken x mod 10000 we have generated 2 sequence
of integers uniformly distributed in the range 0 - 25499 which is convertea
to a cecimal 0 - .9999.

From a table of values of erf(x) the uniformly distributed random

nuiber is transformed into a normally distributed vandem nusber (0, 1),

which is then mepped onto (u, 7).



(iv) Notes_on program

A11 the values of x will be in the range -3.70 < x < 3.70 since
the generation only produces effectively 4 digit fractions and the
relative accuracy of tables only gives this range.

(v) Print out of program

A print out of the progvam is given on page 226.
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Ny
(w3

PANDOI RUMBER GEHFRATCR‘

BEGIN HITEGER vyt O INTEGER ARRAY
BOOLEAN FIRSTY  ARRAY NDCO: 3T
[ITEGER PRCCEDURE RN
BuGil REAL 2,2Z°

27 SENTIERCZ /5073595

7 =777 250735840

XX =7

Rl =UXX~XXX DIV 10000%10000"

~

ERD!

INTEGER PROCEDURE RRY

TR R
BEGQIH IU?YQLu Jt
. IF FIRST THEN STEP 1 UNTIL 19 DO
. . a1 . ) -
FIRsT: =1=0"
J'~J~J DIV 2
RHACJID: =RN*'

OC.

EiD*

REAL lROuEDf24 RANDONCHEAM, SIGHAD !

REAL M

BEG Ih R““L P' 1
Re =RRH/10000
[F B NOTES O THEH
BEGIN REAL P,K!

o~

FOR K:=0,1+1 WHILE P GR ND
Je =kt . HDCJS> DO
P:=J=CHDCII=PD/CIDCII=HD =10 !
Re =SIGHCR)*P
ZHD !
RANDOMH: =NEAN+R2S1GNA/10!
FHD ! 1
Fon xxx:=1 STEP 1 UNTIL 37 DO READ SoeL
NpCod: =01 XYX:“1' f'“{ST?ZlRUE' AD RDAXXXD

BEGIN INTLRGR 1,LY
. REAL II,D!

neAD
i dint L

3 N
BOTIT S AT 2LRANED SANTLINE i,
’ ;:i"il,?."i'i').i‘:‘ D DEVIATIOH=Y 7, SAIEL] x‘“’

TSP 1 WiTIL l, N
E'I‘ :\”IV) \‘yvcl :l) !

Enli !
Ein T
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STATISTICAL PROPERTIES OF THE RANDOM PROCESS

SIMULATED DIGITALLY

The numerical procedure described in appendix 4.5 generates a
sequence of random numbders n; (i = 1,2, etc.) which are normally
distributed with variance 02N° These nunbers are assumed to have the
same statistical properties as sequences of independent randum numbeis
although they are in fact completely determined by the first number in
the sequence. The random variable o(t) is then found by spacing these
gaussian distributed nurnbers at intervals h and joining them'by straight
lines.

We shall take the mean value of the numbers to be zero and procecd

to find the autocorrelation function

T
pr) = limit [ a(t) et + 1)dt  , 1> 0,
Toreo 0

s o

of the random variable «(t). Since all the intervals Ky <t <K + 1 h,
K=0,1, 2, etc., are the same from a statistical point of view we loose

no generality in considering t to lie in the first intervel 0 < t « h,

Two possibilities may arise; these are that
either (i) o(t) and o(t + 1) Tic in the same interval 0 < t < ¢ -
this occurs whon t + v < h, i.e. £t <h - 1.
or (ii) o(t) is in the interval 0 < t < h whilst a(t + 1) is in
the interval h <t < 2h,
Case (1) exists with prebability 1 - %-whi]st case (1) exists with
probability g .

For case (1)

a(t) alt + 1) = [n] 4 of



Taking time averages

. h=-1
Av  [a(t) ot + 1)] = h 1 p J a(t) a(t + t)dr
t 0
=N +~h~—(n2—n])(h~ T)+B~(n2-n])r+ h2
+? (h - T) ]
Averaging over the n; gives
2
2 r2 1 1 -
<a(t) a(t + t)> = oy 1'3— ?% - ?;T?J
1
For case (i1)
_ (n, - n])t (ny, = n,)
o(t) a{t + 1) = [ g+ et ] [y + =3B (s
h h
Averaging over the n; gives
- 2 2ttt ot -
Av [ o(t) a(t + 1) ] = 0y [-I-]--- ;{? - .h_z. ]
"3
Taking time averages gives
O‘N2 h
<a(t) aft + 1)> = — f (2th =t~ - tr)dt
th het
. 2
2 T I
= 0 l T -+ + —
! o gne J
Thus, for 0 <t <h
2 -2 ,
plo) = o) =" L O -p) [5 - E'ﬁ - %-;?-f e [Tt
R ’

"\,?"Z,_.'Ei 1}@}
Wob3 P I
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Case 2, h < t < 2h

Again two possibilities may arise; whilst o(t) must Tie in the
first interval 0 < t < h, a(t + 1) may
either (i) Tie in the second interval h < t < 2h - this will occur
when t + 1 < 2h, i.e. t <2h -1

or (i1) lie in the third interval 2h < t < 3h

Case (i) ‘exists with probability 2h 2 T whilst case (ii) exists with
nrobability 1¥§%ll .
For case (1)
-0y . (ngen
a(t) a(t + 1) =Ln]+—-£—-l—-—-—]—-t] [ n2+—---3h 2 (t+-h)]
i
Averaging over the n; gives
2 r2t tz tr
Av [a(t) ot + 1)] = oy [T]" ;]-2- - };’Z ]
"
Averaging over time gives
2
o 2h-1 2
ca(t) slt + 1)> = = | RARNER SN RT
2h - 1 h h
0
2
22 _ 21 11 -
=oy Ly - 3w '6‘;2'.1
For case (i1)
_ (n, = n )t _ (n, = ny) )
Ol(t) Cg(t + ’[') = [_n] +-«‘/-.-l»’\-.-.__].-..__-] l nB + ...,i..h 3 (t 1oy - n) J

Averaging over the n; gives

Ay [o(t) ot + )] =0

1
i

so that, <o(t) a{t + v)> =0

O



n

Thus, for h < 1t < 2h

B(x) = By(x) =" 5 = §= +

b 2 PR
o

1
Y| —
buo o Y
ol w

Case 3, v > 2h

In this case a(t) and ot + ) will be independent so that

ple) = P5(c) = 0

Hence, the autocorrelation g(<) is defined by

2 .02 2 14
ﬂ(T)=Q](T)TUN {'3" - ;]‘2* + 5 B"g } »0<t<h
2 3
2 , 4 2 1 \
B(1) = Py(r) = o {5 - Ez-i ﬁ?~ - E'ig } . h <1 g2h
B(t) = ¢3(1) =0 » T 22h
(A4.6.1)
A graph of @(1) is shown in fig (A4.6.1)
In particular, we note that
2 2
Plo) = By(0) = 3 oy
so that, the variance 02 of the random variable «(t) is given by
2
o2 Loy (A4.6.2)
82

sing Rendat's notation the spectral density G(o) and autocorrelation

function are relatcd by the Henar-Khinchine velationships

2 T2
Gla) = - f f{t)cos wr dx
0
) = Ciadeos we do (A4.6.3)
‘0

where G(w) 1s wrasursd in woiis/rag/sec, aend dafined for positive

Trequency only.
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From equation (A4.6.3) we have that

202 o, 2 3 o, . 2
G(m): { J (—-"-—-+‘,=-""")COSLUTdT+[ ("“‘—-—-—'i'——-r
n 0 3 h2 ¢ h3 h 3 h hZ
'% ;—:-3— ) cos wt dt }

20N2
= -;:«71 ( 3 - 4 cos(wh) + cos(2wh) ) (A4.6.4)

T w

The form of G(w) for fixed h an< o is shown in fig. (R4.6.2).
Using the Maclaurin expansion for the consine terms equation

(A4.6.4) becomes

20 2 A 6
Glo) = ——r {3-4[1- Leh)” o (wh) (wh) ]
37
h”w 21 4 6
2
+ [ - (2uh) " (th)ll - (210h)6_ 13
2: 4! 6!
ONZh (wh ) 2
i.e. Gw) = (1 - . ] (A4.6.5)

T

Thus, for small wh, the spectral density may be taken as being approximately

constant and given by

[
o h
Glw) = b (M.6.6)
kit
Using the notation of equations (A4.6.3) if f(x) = Ké(x), where K

is a constant, then

L4 s r
6o) = & f Ka(e)cos e 40 = K1 o K
O « i
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Thus, if the random variable «(t) is taken to be approximately
white notse, with spectral density given by equation (A4.6.6) then its

autocorrelation function is

p(x) = o ’h 8(x) (P4.6.7)
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APPENDIX 6.1

— - . — - S

MATRIX EQUATION RELATING OUTPUT TO INPUT FOR FILTER YS/XJ~

If XF

filter Y3/Y], then

2
~_ﬁL.57(s + 16,78s + 124.8) X(s)

and X are the output and input signals respectively to the

Y-(s) =
F o3+ 16.785% + 126,85 + 570
[ ] 1 . 11 .
or XF = -16.78 XF - 124.8 XF - 570 XF + 4,57 X + 4.57 (16.78)X + 4.57(124.8)X
(A6.1.1)
where dots denote differentiation with respect to time
Equation (AG°1°1) may be written in the matrix form
[ Y ] i 0 1 0 11 Y | [ C ]
1 1 1
d _ .
Y3 -570 -124.8 ~16.78 \3 C3
where : Y1 = XF
Y2 = Y] - C]X = XF - C]X
Y, = Y2 - CdX = XF - C]X - CZX
tet "
= -57OXF - 124°8(XF - C]X) - 16.78(XF - C]X - C2X) + C3X
that 1is,
11 u o i
XF = ~16078XF - ZQUBXF - ETUXF + C‘X 4 (C2 1 1607SC])X
+ (124,8-\’3i 4 16078C2 + C3)X (A6.1.3)



Comparing equation (A6.1.3) with equation (A6.T1.1) gives

so that equation (A6.1.2) may be written

Y] 0 1 0 Y] 4,57
d ty | =1o 0 1 Y, | + 0 |X (A6.1.4)
dt 2 2 ot
] Y3 ‘ _~570 -124.8 -16.78 I Y3 | I 0 |
iiere Y = X Yy = Xp - 57X, Yy = Xp - 5,57,
In the case when K2 is adapting alene
° e
§0 F
X 7 g = o 6K
ﬁ3K2 Ko 2
and equation (AG.1.4) becomas
- . B:A
Y 0 1 0 Y 18-t 36
d 1 1 K, K2 2
TE Y, | = 0 0 1 Y2 + 10
Yq ﬁ570 -124.8 -16.78 ¥q 0

since A3 = 4,57,
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* (i) JAMES, D.J.G., Stability analysis of a model-reference
adaptive control system with sinusoidal inputs, Int.
Jour. Control. Vol.9., No.3., 317, 1969.
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In this paper a rigorous method is presented for analysing an M.LT. type model
reference adaptive control system with sinusoidal inputs.  The linearized equations for
the adapting system, formed by using small perturbation analysis, are written in the
matrix form k= A(t)x, where A(f} is periodic. This matrix equation is then integrated
over one period using a Runge-Kutta technique. The transition matrix relating the
value of x at the end of & period to its value at the beginning of the period is examined
to see whether all its eigenvalues are within the unit circle, thus establishing stability,

1. Introduction
White (1966) examined the stability of a Whitaker type model reference

adaptive control system with sinusoidal inputs using a parameter perturbation
technique which resulted in differential equations having periodic coefficients.
These equations were then replaced by equations having time-averaged coeffi-
cients which in turn were examined by means of the Routh-Hurwitz criterion
so that the critical values of the adaptive gains could be calculated. The
replacing of differential equations with periodic coefficients by equations with
time-averaged coefficients is a dangerous procedure and gives rise to scrious
doubts regarding the validity of the method used in the stability analysis.
It is seen to fail even for comparatively simple equations such as the following

equation:
40284 (45— 4cos2f)r=0,

which is unstable (McLachlan 1947).

In this paper an alternative rigorous method is presented for analysing the
stability of such a system and the results obtained compared with both the
Routh-Hurwitz analysis and the analogue computer simulation of White (1966).
This numerical approach was first suggested by Parks (1966) although a detailed
account of the method of procedure was not given. It will be pointed out that
the matrices originally suggested by Parks for representing the system are
erroncous, due to the omission of the effect of the filters and of an important
linear term. The linearized equations are formed, as by White, using small
perturbation analysis, and these are then written in the matrix form : -

x =A(t)x, (1)

where x is an n-column matrix and A(t) and » x n periodic matrix. This matrix

t Communicated by P. C. Parks.
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differential equation is then integrated numerically over a period 7' and the
transition matrix C* obtained such that

x(T)=C*x(0), (2)

where x(0) and x(7') are the values of x at the beginning and end of a period
respectively.

The numerical method described by Parks (1966), based on Euler’s method
(Noble 1964) of solving a linear first-order differential equation, involves replac-
ing a first-order differential equation by a tirst-order difference equation and is
known to give inaccurate results. In this particular problem it was found to
be inadequate even when a large number of sub-intervals was taken and another
method, obtained by reformulating the fourth-order Runge-Kutta method
(Noble 1964) of solving a first-order differential equation, is employed. The
transition matrix C* is then examined to see whether all its eigenvalues are
within the unit circle; this is carried out by first obtaining the characteristic
polynomial of C* using a method due to the Russian mathematician Faddeev
(Faddeeva 1959) and then examining this polynomial using the determinant
method due to Jury (1964, 1965).

2. Description of the system
The adaptive control configuration chosen is the same as that of White (1966),
and is shown in fig. 1. The basic equation of the system is:
(D¥+ A, D*+ A AN D+ A, 4, 43K,0)0, =4, 4,4,K,6,, (3)

where D is the differential operator d/dt and A4,=16-78, 4,=14-88, 4,=4-57,
K,=K,=05 (nominal). The reference model is second order and has transfer
function Y, =40/(s%+ 6:32s + 40), where s is the Laplacian operator.

Fig. 1
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Block diagram of the adaptive control system.

Tl}e input signal 6, is common to the system and model and the adaptive
error is e=0,—0,,, where 6, and 6, are the outputs from the system and model
respectively.
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The self-adaptive performance criterion employed to adjust the parameters
K, is that developed at the MLI.T. by Osburn et al. (1961). In this eriterion the
parameters are varied in such a way as to minimize the integral of error squared,
and the adaptive control law is taken of the form (0K /oty —e(deigh;y). It was
shown by Osburn ¢f al. (1961) that this law could be taken in the form:
K e
Ea—[-i = —(esign —621; , (4)
where only the sign of d¢/dN; is taken to ensure that the sign of e(de/dK;) is
correct. The product esign(de/oK;) is formed by passing the two signals into
a diode switching unit (d.s.u.) the output of whichis +e depending on the sign
of d¢/0k,. The approximations to de/oK, and de/0K, are obtained by feeding
the signal 0, through filters which can be identified as follows:

de @ 424,24, K,s

P gl — I~ — == - 9:— 4 P v .
ok, 81{1(0" bu) =~ [T A+ A, K5 A A Ko Y= =Ty,

gince the model is a good approximation of the system around the correct
value of I}; i.e. the signal obtained by passing 0 through a filter identical with
the model is —(0e/0K,;) and not (0e/0K,) as indicated by White, as the latter

signal would lead to a negative gain .
Oe 00, _ Ay(st+ A+ 4,4,K))
K, 0k, (B+A+ A dK s+, 4,4,K,)

Y
GF-&'}—ra 01-‘1
1

where Y, is the transfer function of the system with the parameters fixed at
their normal values and Y, is the transfer function from the system input to
the parameter disturbance summation point.

The adaptive control system is considered to be adapting on a steady sinu-

soidal input signal Isinwt.

3. Mathematical theory

The small perturbation technique employed in this paper leads to matrix
differential equations of the form in (1). For stability considerations these
equations are integrated over one period and the transition matrix C* defined
in (2) calculated. The result of the following theorem is then used to establish

stability.
Theorem (Malkin 1952)
For the system of linear differential equations

x = P(f)x, (i)

where P(t+7)=P(l), there exists a transition matrix ¢(f,¢+7) such that
x(t+7)=¢x(t). A necessary and sufficient condition for system (i) to be
asymptotically stable is that all the eigenvalues of matrix ¢ lie inside the unit
circle.

In order to evaluate the transition matrix C* defined in (2) it'is convenient
to employ a numerical method that may be reformulated in such a way as to
give C* directly. Since it is completely self-contained and requires no pre-
determination of a set of starting values the Runge-Kutta method is given
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preference over the various predictor-corrector methods of integration. The
fourth-order Runge-Kutta methodt of solving a system of first-order linear
differential equations is reformulated as follows:

If x = A(/)x, where x is an n-column matrix and A(f) an 7 x n periodic matrix
of period T(=2w/w); then the period is split into a large number of intervals N,
each of duration A#(=7/N), and the following finite difference relationship
employed:

x(m+ LA = x(mAl) + 1o, + 205+ 205 + 1), (ii)
where
a; = MA(mAN)x(mAl) =K x(mAt),

o, = AtA(m + FAH[x(mAL) + Lo, J= MA(m + JAH[1+ 1K, Jx(mAl),

where 1 is the unit n x » matrix

’ = K,x(mAt),
oy = AA(m + SAD[x(mAL) + Loy ] = ATA[m + LA [V + 1K, Ix(mAf)
= K x(mAt),
a, = AIA(m + LA [x(mA) +a3] = AtA(m + 1AL [} + K3 Ix(mAt)
=K,x(mAt),

gubstituting in (ii) for a, a,, a3 and e, gives:
x(m+ 1A8) =[1+ 1K; + 3K, + 1K + 1K, Ix(mAt) = B¥(mAf)x(mAt).  (iii)

By repeated application of (iii) the solution at the end of a period in terms of
that at the beginning of the period becomes:

x(T) =x(NAt)= BN = TA)B*(N = 2At) ... B¥(0)x(0)

=T B*(rAx(0) = C*x(0),

r={

where

N-1
Cx= TT B*(rAt).

r=0
The problem was repeated for various values of N to ensure that the
numerical procedure had converged. It was found that the values of NV varied
with the frequency of the input signal. The next step in the analysis is to
examine the eigenvalues of the matrix C*. Although the matrix C* is itself
real some of its eigenvalues may occur as complex conjugates and this sometimes
causes difficulties regarding time of convergence when employing standard
numerical methods for evaluating the eigenvalues. A good discussion of these
numerical methods, together with the difficulties involved when the eigenvalues

occur as complex conjugates, may be found in the work of Wilkinson (1965).

Bearing in mind that in the problem at hand it is not necessary to know the
exact values of the eigenvalues of C*, but rather it is only required to show that

t Since the completion of this work a paper by Davison (1968) uses the Crank-
Nicolson method for obtaining the transition matrix C* followed by a direct evaluation
of the eigenvalues using QR procedure.
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their moduli are less than unity, a very elegant procedure, based on the works
of Faddeev and Jury, has been introduced to deal with the problem. This
procedure, which only involves matrix multiplication and the evaluation of
2% 9 determinants, has many advantages over any of the numerical methods
available for evaluating eigenvalues. It is a comparatively simple procedure
and requires far fewer arithmetie operations; it is readily programmed and the
running time is comparatively small. It also has the distinct advantage in
that it is not an iterative procedure, so that the question of convergence does
not arise.

The method therefore employed to examine the eigenvalues of C* is first
to obtain the characteristic polynomial using the Faddeev algorithm and then
to determine whether the roots of this polynomial lie inside the unit circle using
the determinant method of Jury.

4. Stability consideration

The basic equation of the system is given by (3). Assuming that a small
perturbation is imposed on the adaptive parameters and that, in the perturbed
state, K,—~N,+8K,, K,>K,+8K,, then it can be shown (see White 1966),
that the perturbed equation for the error is:

(D3+ A,D? +d4,4,K,D+ Ay A, A,K)8e + 4, 4,8K, D0, — A1 A, A8 Kq.e,=0, (5)

where e, is the system error.
From eqn. (4) we have that in the perturbed state:

. de de
K +8K = —G(e+38¢)sign (8_K—l + S.é_]:) . (6)
Subtracting (4) and (6) gives:

3 - oe . de de . 0Oe
8K;= —Gde Sl°n8—]_\'_i - Gie[mcn (-57‘_-i +88—1{i) —sign 5_1‘_!], (7

the term 8esign [de/0K +8(0e/dK )] having been replaced by Sesign de/dK;
since we are dealing with the linearized equations.

de/dK, is a sine wave and 0¢/0K;+8(0¢/0K;) a perturbed wave,
being approximately sinusoidal, as shown in fig. 2 (@). The terms sign
[9e/0K ;+8(3¢/0K )] and sign de[dK; are represented by the square waves Cof
fig. 2(b), and the term

. de de Oe
sign | == + 0 == ) —sign —
[ g (61{‘ + aK,) sign aKJ
by the pulses of fig. 2(¢). The last term of eqn. (7) had been omitted by Parks
and its omission was found to have a considerable effect on the final results.

Using the condition that the e and de/dK; signals are in quadrature when the
system has adapted (see White 1966), the term

) oe de Oe
e} sion | —+ +8 < ] —sign ——
[ g (aAl aK,> NN,
can be represented by the pulses of fig. 2(¢). Two of these pulses occurring

within one period T, at times T, and T, + T/2 respectively, where 7', is the time
when the de/0K; signal first changes sign.
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The integrated values of these pulses is # 2|c|AT, where |¢| is the peak
amplitude of the error signal and AT the duration of the pulse and given by

()l |
-G/ [z

AT =

de . . . .
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1

all! ®
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where |3¢/0k ;] is the peak amplitude of the de/dK; signal and w the frequency

of the input signal.
It was shown earlier that the signal de/0K; is obtained by passing the signal

8- through a suitable filter, so that 5(de/dN;) is a filtered version of 80,

4.1, K,adapting alone
When A, is adapting alone &x » is zero and eqn. (5) becomes :

(D3 + A D2+ A ALK D+ A Ay AR )8e + A A, 8K D= 0. (9)
White showed that in this case the relationship between a ‘steady state’ K,
and the frequency w of the input is:

K, =0-004w®+0-36. (10)

From fig. 1, 05 =(1/4,K,)D0,, so that 86, =(1/4;K,)3(D0,). Since f,=e+6,,
and SBm-—O 80p=(1/A;K,)8¢. Hence, 5(de/oN ;)= —(1/4;K,)8¢), where

Sép=T,,8¢ or (D?+6:32D+40)3¢, =404 (11)
From eqn. (7):
1= -G [Se swn-—-— +P (t)] (12)
where P,(t) are pulses, with integrated values :
2|e|dép
= I I d = iPl'(t)aéFv
. e
1131\2ampaT\,i

occurring at times Ty and T + 7'/2, T being the period and T', the time when the
signal de/oK, first changes sign. Care must be taken (by examination of the
: -~phase angles) to ensure that the positive and negative pulses are inserted in the

correct order.
Equations (9), (11) and (12) lead to the following system of linear equations:

[ Se ] ( 0 1 0 0 0 0 Y [ Se )

d 8é -4,4,4,K, -A4,K;, -4, 0 0 —A4,4,D0, 5S¢
¢ 8éy 0 40 0 —-40 —6-32 0 SéF
de F

8K — @, sign = 0 0 —G.P(t
ot 1Sigh e L ONY Y 8K,
o L o
(13)
which is of the form
x =A(f)x.

It will be noted that the 6 x 6 matrix of eqns. (13) differs from the 4x 4
matrix suggested by Parks. The increase in the order of the matrix is due to
the fact that Parks had neglected the effect of the filter ¥, and taken 86,. as an
approximation for §(de, 61\1) This approximation was found to be madiquate
and the effect of the filter must be taken into account.

The eigenvalues of the transition matrix C* of the matrix differential eqn.
(13) are examined, using the method described in §3, for various values of the
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adaptive gain G, and the critical values of the gain calculated. The results
are illustrated in fig. 3 together with the results obtained by White using
simulator and analytical studies. Since, in this case, the critical gainis inversely
proportional to the amplitude ! of the input signal the product of / with eritical
gain is plotted against the frequency of the input signal so that the resulting
curves should be the same for all values of . (In order to obtain the graphs of
White divide the ordinates by 7/30.)
Fig. 3
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Critical adaptive gain with K; loop adapting alone.

4.2. K, adapting alone
Iri this case 8K, =0 and eqn. (5) becomes:
(D*+ A, D*+ A A, K\D+ A A, A, K,)8e — A, 4,4, SK, = 0. (14)
White showed that in this case the relationship between a ‘steady state’
K, and the input frequency is given by:

(w*—58-Tw? + 4990) — w(10-46w? + 117) tan ¢
28-5(252-8 —w3tan ¢) ’

K2=

where ’¢> is the phase change across the filter Y;/Y,; and is given by :

_ 16-78w(570 — 16:780,2) — w(124-8 — w?)?

tan¢
570(1218 — w?) ‘

From fig. 1
1
Op= ix, Dé,. . (15)
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When the perturbation is imposed this becomes :

Ay(K g+ 8K )05+ 80y) = Db,y + 8(D6,) = Dby + 8¢. (16)
Subtracting (13) from (16) gives A K, 80+ A 08K, =8¢, ie.
1 o, O0pop
80p= A3K28e— 7\_—281\2—‘ .
Hence
oe . . D £
5 (57() =X;. where Xp=F(X).
From eqn. (7):
. 0Oe
8K;=— G2[86 sign I, + Pg(t)] , (17)

where P,(t) are pulses, with integrated values

2le]X ,
L AR X

wampm

occurring at times 7', and T,+T/2, T being the period and T'; the time when the
signal de/0K, first changes sign; care again being taken to ensure that the sign

of the pulses are taken in the correct order,
Equations (14) and (17) may be written: <A Ce

[ Se 1 ( 0 1 0 0 0 0 0 [ Se )
8é 0 0 1 0 0 0 0 Sé
8é —A A A K, —4,4,K, -4, 0 Y 0 ¢

1 A0
X 0 = 0 0 1 0 —-a8
X, 0 0 0 0 0 1 0 X,
X, 0 ) 0 0 =570 —-124-8 —16-78 0 X,
L d . . e ?
LSI‘* L_..Gas]gn-a-l-\—_; 0 0 ’_Gzpa (1) 0 0 0 LSK,
(18)

where X1= XF’ X2= XF —4-57X and Xa = XF —4-57X.
The eigenvalues of the transition matrix C* for eqn. (18) are examined and
the critical value of G, calculated. The results are illustrated (fig. 4).

5, Conclusions

A rigorous numerical method, well suited for digital computation, has been
presented for investigating the important problem of examining th(; stability
of a system of linear differential equations with periodic coefﬁ?ients. These
equations, which form a most important subclass of linear differential equations
with variable coefficients, may arise in practice directly from the equations of
motion of a dynamic system, e.g. the flapping of a helvicopter rotor blade, but
more frequently arise from an examination of the stability of oscillatio;ls in
non-linear systems,
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The problem considered in this paper is that of examining the stability of
an M.LT. type reference adaptive control system (m.r.a.c.s.) with sinusoidal
inputsand it displays the difficulties involved and the amount of rigour necessary,
even for the comparatively simple case of sinusoidal inputs, when examining
the stability of a m.r.a.cs. for time varying inputs. A more realistic input
would be a random one and it is hoped to publish the stability analysis for such
an input in a future paper.

The theorem employed in the analysis provides necessary and sufficient
conditions for the asymptotic stability of the linearized equations with periodic
coefficients, The system, however, is a forced non-linear equation with periodic
cocfficients, the forcing term being —Ge sign Je/0K;, where e and de/oK, are
sinusoids at frequency w. By appealing to the stability thcorems of Zubov
(Malkin 1952) the asymptotic stability of the linearized system certainly, in the
absence of the forcing term, leads to asymptotic stability in the small for the
non-linear system. The effect of the forcing term could however invalidate
the neglect of the non-linear terms and make the stable region of the linearized
gystem unstable for the non-linear system. The forcing term in this case is of
the multiplicative kind and its actual cffect on the ‘stable region’ is obviously a
field for further research. Instability of the linearized system however gives
sufficient conditions for the instability of the non-linear svstem and the results
of this paper suggest thatthe analogue computer results of White are not accurate.

After discussion with White it was found that it is very difficult to decide on
a practical criterion for instability when simulating these systems;; this difficulty
being more pronounced at low frequencies, The presence of harmonies which
are forcing the system further masks the problem.

However, the results of this paper suggest that the problem at hand may be
studied satisfactorily by considering the stability of the linearized system. It
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is noted that the theoretical results give a stable system in the region of the
natural frequeney of the model.

This paper also illustrates how the effect of replacing the multipliers in a
m.r.a.c.s. by diode switching units is to introduce an impulse like signal occurring
twice per cycle into the analysis.

The author feels that this paper is a significant contribution to the study of
the stability of m.r.a.c.s. for time varying inputs on which, apart from the work
of Bongiorno (1962, 1963), there is little published work.
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STABILITY OF A
SINUSOIDAL-PERTURBATION
EXTREMAL-CONTROL SYSTEM

A theoretical stability analysis of a single-input sinusoidal-
perturbation extremal-control system  with output lag s
considered. Periodic solutions of the svstem equations are
obtained using the principie of hurmonic bulance. and their
stability properties are investigated. The domatns of attraction
of the stubie solutions are plotted 1o give the stability
boundaries for the system.

In this letter, the author examines the stability of the class of
sinusoidal-perturbation control systems!> = shown in Fig. 1.

ELECTRONICS LETTERS 15th May 1969 Vol. 5 No. 10



The differential equations representing the system are
X+ ax = Aa{y — §sin(wr + a)}z}
Y = Gxsin(wt + «)

8y

Fle)
Ky -y(t) elt)
initial
parametes
offset

2
Fle):-Aé - x(t)

[3

P Nie
Ssinlwtea) ™ sinflwt+a) 'L>?

kit)

———0

Fig. 1 Sinusoidal-perturbation extremal-control system

By Buckingham’s = theorem,? the system may be specified by

the two dimensionless parameters .
7 = GAda )
! } N 7))
7 = wla

If, in addition to eqn. 2, we introduce the dimensionless
variables

€1 = x/(48%)
- ba=y/8 Y )]
T=wl+a .

the system eqns. 1 may be written
€ =~ lfl + ‘l‘(fz — sin 7)2
m m
s my,
=—¥§s
& ™ g sinT

where dots denote differentiation with respect to 7.

A distinctive feature of a nonlincar system, such as eqns. 4,
is that various types of periodic oscillations may exist for
the same system depending on the initial values of the
variables. In this letter, the method of solution employed. is
to assume for £, and ¢, Fourier-series developments with
undetermined coefficients and then fix these coefficients by
the principle of harmonic balance.# Periodic solutions whose
fundamental frequencies are -equal to those of the applied
perturbation will be termed harmonic solutions, whereas
solutions whose fundamental frequencies are a fraction

! (n=2,3,...)of the applied perturbation frequency will
n

be termed subharmonic solutions of order a.-

A periodic solution obtained by this method merely repre-
sents a state of equilibrium; this equilibrium state is actually
realisable only if it is stable, so that its actual existence must
be confirmed by a stability investigation. If £,(7), £s(7),
having period T, represents a particular state of equilibrium,
in order to investigate its stability, we consider small varia-
tions 7, and 7, from this equilibrium state, and from eqn. 4
set up the variational equations:

1 2,2 .
(7)) = — "—1;,(7) + w—z{&(f) — sin 7}7,(1)
2
&)
sy (T
7y(7) = <7Tz sin -r) 7,(7)
These variational equations form a set of linear differential

equations with periodic coeflicients, of period T, in 7; that
is, they are of the form

=P P(®=Pr+T)

The stability of the trivial solution of such equations has
been previously considered by the author’ and by Davison.
The procedure is to obtain a transition matrix C such that
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NWT + 7)) = Cn(r)), and then stability is ensured provided
that the eigenvalues of € lie within the unit circle.

For each period solution 2 == [E,(r).f:(r)]' of eqn. 4, there
exists, for each =, 0 < Ty < 7, a corresponding fixed point
Pol€1(m), £x(7))] in the £,-£, plane which is invariant under
the mapping

M:E(r +nT)>E(r, + n+ 1T), n = 0,1,2,...
where § = [£,£,] (Reference 1).

If Py corresponds to a stable solution, it will have associated
with it a' domain of attraction, so that, if any point
P[¢,(ry), €x(7))] within this domain is taken as the initial

0-40p
0-361
"0-32(
il Nt
™ harmoni¢ and
020 ,Im subharmonic
o016l solutions
C12r )
oosf-
. DA
: TN\

¥ T T T T 1
0 0102 0304 050607 08 09 10 11 12
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Fig. 2 Regions in which different types o}' oscillations are sus-

tained
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Fig. 3 Domains of altraction and corresponding fixed points for
T =0'Tand ns == 1
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‘onditions for eqn. 4, the solution of eqn. 4 will converge
to the‘ stable periodic oscillation E. In terms of the mapping
".' this means that successive images MP, M2P, etc. of the
POINL P will approach the fixed point Po.
) _Pp corresponds to an unstable solution, which has' a
'fﬂnsmon matrix C having one eigenvalue greater than unity
and ong less than unity in magnitude, then through Py will
2;"1;5 acritical curve C which is invariant under the mqpping M
o (hSUCh tha.t all poipts on it will approach Py under iterations
two S.mappmg. Th!s‘curve C wi!l be the b'oundary between
in 3 lﬂ'erex}t. domanng of'attracnons anc} is thus important
will nt))’ stability investigation. At the point Py, the curve C
by ¢ in the direction of that eigenvector of C \}'hlcfh
Tresponds to the eigenvalue that is greater than unity in
?ag“““de (when considering the stability of &) so that the
0pe « of C at Py may be found. Theoretically, therefore,
Oreu:u”e C may be obtained by starting just on either side
ny e_ﬁxed point P, (in direction «) and integrating eqn. 4
Merically for decreasing T, the curve C then being the loci
o tt[}ie Succes§ive images of the starting point .undcr itera(ion_s
the - Mapping M. In practice, however, it is found that, if
© unstable fixed points are not known accurately enough,
dee_lmage points of the numerical procedure dcviatg from. the
Sired boundary after a few cycles, so that the loci obtained
ayn:he numerical procedure may only be used as a guide and
comme accurate boundary may be obtained by analogue-
Puter studies, »
OFOT_ a fuller discussion of the theory of fixed points and
I,n,‘a‘“s of attraction the reader is referred to the works of
4l and Loud? and Hayashi.4 :
cie(z? S}Jbstituting a Fourier series with pndctermin'ed.coeﬂ"l-
ar S for ¢, and ¢, in eqn. 4 and using the principle of
Monic balance, it is found that, in the region

Rl:7r|<772

t . . .
heeﬁfe €Xist two harmonic solutions, whereas in the region R;,
ned by the system of inequalitics

N = 74289 — 1057} — 420m;) + 1967}
+ 30873m, — 588m3mi >0

<L

1
X| = |
| x| ’ 42”2{\/1\ (1173 + 14m)}
F(X) = 3 m_, 2
X) = 7,00 + (5 n3+ Tm ) X
3 ol 2273 X
+(ng+ Smimy + Tmym} — 273

9 23
+ (§w§ + '2‘77'3771 - m

+ —22177%71'5 — 2ndmy + 777?) <0

:tlirhe exist, in addition to the two harmonic splutiqns, eight
i armonic solutions of order 2. These regions, In whlqh
.'érent types of oscillations are sustained, are shown in

thli 2. Outside region R there are no periodic solutions, so

Uner, for 7, and 7, in this region, the system will be totally
Dstable,

haFOF m and m,in R, (not in R,), it is found that one of the

. Monic solutions is stable and one unstable. Thus for each

§, < 7 < 27, there will be a domain of attraction in the
~¢, plane, so that, for all initial conditions within the
Omain, the system will be stable, whereas, for initial con-
ions outside the domain, the system will be unstable.

) Urther, in this case, the solution for £, has no d.c.component,
O that, in the stable region, the system will adapt to an

Ocillation about zero. The stability boundaries, together with
CIr corresponding fixed points, are shown in Fig. 3 for

Various values of r in the range (0, m), (7, = 0-1, 7, = 1);

co'rresponding boundaries for = in the range (, 27) being the

Mirror images about the £, axis of those given. These results
ave been verificd experimentally and also agree with experi-
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mental work carried out by Jacobs and Shering.8

For 7, and 3 in R,, there existone stable harmonic solution
and four stable subharmonic solutions, the other five solutions
being unstable. For the subharmonic oscillations, the
solutions for £, has a d.c. component so that, for certain
initial conditions, the system will adapt to an oscillation
about an oflset position, this having been verified by analogue
simulation. The domains of attraction of the various stable
oscillations in this case are far more complicated and are not
included in this letter, .

The author would like to express his appreciation to P, C.
Parks (University of Warwick) for suggesting this problem
and for his helpful discussions concerning it.

D. 3. G. JAMES 18th April 1969

Department of Mathematics
Rughy College of Engineering Technology
Eastlands, Rugby, War., England
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STABILITY OF MODEL-REFERENCE SYSTEMS
WITH RANDOM IMPULSIVE INPUTS

Indexing terms: Adaptive control, Stability criteria

bility of the gain-adjusting loop of a simple model-
;Fe}t\':r:lt':e a aplive-co%ﬂrol system 18 mw_'c'sugatc_d. Th? input
to system and model is a sequence ot_lmpulses.of mm’iom
magnitude. The resulting behaviour 1s determined by an
infinite product, and_from this a necessary and su‘mcnent
criterion for the stability of the adaptive-loop gain is deduced.

Stability of model-reference adaptive-controls systems with
general time-varying inputs is a difficult theoretical problem,
which so far has not been solved for systems not actually
synthetised from a stability point of view.!

The difficultics are well illustrated by the very simple gain-
adjustment loop depicted in Fig. 1.! The equations may be
written in matrix form:

= T T N ¢))
X" —GKvom(t) 0 X

ELECTRONICS LETTERS 5th March 1970 Vol. 6 No. 5

where e = 0,—0, and x = K—-K,K.. We assume that K
and K, are constant and that K. is required to tend to K/K
so that e and x tend to zero. Despite recent progress in
stochastic-stability theory, the stability of eqn. 1 when r(1)
is a general random signal [and 6, (1) a filtered version of r(1)]
is not an easy problem to solve.

R K o emst)
" 1+Ts " o
rit) e(t) X
K > Ky Y
/c 1+Ts e9m
« Ke « G
s

Fig. 1

As a first look at the problem, we shall assume that r(f)
is a sequence of impulses spaced sufficiently far apart in
time (compared with T) that the transient effects from a
particular impulse have died out before the next impulse
arrives.

We then obtain a recurrence relationship for x;, the value
of x(1), just before the arrival of the kth impulse of magnitude
A,; this is

GKK, A2\ .
Xy = l———zf— Xe o o v o a2 o« (2@

This relation follows from the relations

KA, e uT
T

Xk Ak e VT
T

() = —GKK, A2 e 2T x,/T?

where, for convenience, t = 0 has been taken to be the time
of arrival of the kth impulse.

We are thus concerned with the properties of the infinite
product

e(t) = 0,(t) =

T (1-a&d)
k=1

where a = GKK,/2T > 0, and & is a random variable drawn
from an amplitude probability distribution p(y), say. By
considering a large number of terms and their distribution
and by considering the logarithm of the product of these
terms, we_are led to consider the integral

-]

I= f logll=ay’lp(dy . « « « « « (3

y= -

If this integral is positive, the infinite product diverges and
the system is unstable; if this integral is negative, the infinite
product ‘diverges to zero’,? x; —0 as k -0, and the system
is stable. If y has a Gaussian distribution with zero mean and
variance a2, the integrand of eqn. 3 is of the form sketched
in Fig. 2. The integral of eqn. 3 has been evaluated numeri-
cally (and crosschecked using different methods to take
account of the singularity at y = 1/y-a) to find the critical
value of ao? for which the positive and negative areas in
Fig. 2 balance. This yields the stability criterion

ac?<25 . . . . . . . .0 e s B

For y having a uniform distribution between y = +b, the
integral of eqn. 3 can be evaluated in the closed form

1 , T hyv(a)+1 !
I = R’Z (b\ aloglub®*—~1]-2bv/a+log -——-—————-b\ @=1
131
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I'= 0 yields a stability condition that

ab* < 6.25
or -

ac? < 2.08

Since, in this case,
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These results have been confirmed by direct digital simula-
tion of the infinite product using appropriate random-number-
8eneration procedures.
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Stability and subharmonics in a
sinusoidal perturbation hill-climbing systemt

D. J. G. JAMES

Department of Mathematics, Lanchester Polytechnic, Rugby, England

[Received 2 February 1970]

A theoretical stability analysis of a single input, sinusoidal perturbation. extremal
control system with output lag is being considered. Using the principle of harmonic
balance it is shown that various stable harmonic and sub-harmonic ‘steady-state’
solutions are possible in certain regions of the parameter space. By examining the
domains of attraction, corresponding to the stable solutions, regions in three-
dimensional space are obtained within which initial conditions will lead to a given

‘steady-state’ stable oscillation.

1. Introduction

Although extremum control or ‘hill-climbing’ systems are a well-defined
class of adaptive control systems the important problem of analysing their
stability has often been ignored. In this paper a theoretical stabili‘ty analysis
for a single input, sinusoidal perturbation, extremal control system with output
lag is presented, the results of which have been verified by analogue computer
simulation.

The system equations, which are forced, non-linear and non-autonomous,
are first non-dimensionalized using dimensional analysis, and periodic solutions
of the resulting equations obtained by the principle of harmonic balance. The
stability of these equilibrium states is then investigated by setting up variational
equations, which, for small disturbances about the equilibrium state, form a
set of linear differential equations with periodic coefficients.

Tt will be shown that various stable harmonic and sub-harmonie ‘steady-
state’ solutions are possible in certain regions of the parameter space.

The steady state finally reached depends on the prescribed initial conditions.
By plotting the ‘domains of attraction’ of ‘fixed points’, which are invariant

under the mapping

Et+nT)>E(t+n+1T), n=0,1,2 ¢etc.,

where E(t) is the state vector of the system, regions in three-dimensional space
are obtained within which initial conditions will lead to a given stable ‘steady-
state’ oscillation. ¢

2. The sinusoidal perturbation ‘hill-climbing’ system

The present paper is concerned with the stability of the single dimensional
sinusoidal perturbation, adaptive control system shown in fig. 1 ( ﬁoddjncrtm;
1968, Jacobs and Shering 1968). The index of performance (Eveleigh 196?3) is
Fle(t)] = A[e(t)]* and the output lag is represented by a low passcﬁ]ter with
time constant 1/a.

1 Communicated by Mr. P, C. Parks.
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The adaptive controller employed is similar to that previously discussed in
the literature (Draper and Li 1951, McGrath and Rideout 1961). DBriefly, a
sinusoidal perturbation 8 sin (wt + ) is added to the input and by demodulating
the corresponding perturbation in the output a signal r(f) that varies with the
slope ¢F/ée of the index of performance is obtained. The signal r(t) is then
passed through a smoothing integrator, with gain ¢, to develop a correction

_signal which tends to reduce dF/ce to zero.

Fig. 1
Disturbances Noise
Fle)
Fe)»Ae* a x(8)
tnitial S+a
parameter .
offset
S sin (b + r\/ sin(wt+ed 55

+(t)

®) A
"‘/\ﬂ~ @~

Sinusoidal perturbation, extremal control system.

3. Dimensional analysis

In the absence of the disturbances and noise the differential equations
representing the system of fig. 1 are:

%Mx = Aafy —Ssin (wt+ )],
ay ' n
¥ Gzxsin (wl + «).

The performance of the system depends on the values of the five parameters
A, a, 8, w and @ which are expressed in three sorts of units (input units, output
units and time) as follows:

A: (output units) (input units)=2,

a: (time)™l,

§: (input units),

w: (time)™?,

G: (input units) (output units)~! (time)-1.

By Buckingham’s 7 theorem (Doherty and Keller 1944) non-dimensional
parameters can be defined so as to reduce the number of parameters that need
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be considered by the number of units. Thus, in this case the number of non-
dimensional parameters that need be considered are two and these are taken as:

I1, = GA8/q,
11, = wa. } (2)
If, in addition to (2), we introduce the dimensionless variables:
£, = x/(48%),
€2 =y/o, (3)
7=wlt+a,
then the system eqns. (1) may be written in the non-dimensional form:
. 1 1 .
) é1=‘ﬁ—2§1+‘ﬁ‘;(fz“sm")2, (4 a)
I1 .
. éz= Tl—lflsan, (4 b)

2
where dots denote differentiation with respect to .

4. Periodic solutions using the method of harmonic balance

A distinctive feature of a system of non-linear differential equations, such
as (4), is that various types of ‘steady-state’ periodic oscillations may exist
depending on the initial values of the variables. In this paper the method of
solutions employed, for obtaining the ‘steady-state’ solutions, is to assume for
¢, &, Fourier series developments with undetermined coefficients and then
determine these coefficients by the principle of harmonic balance (Hayashi
1964), a method widely used for the analysis of non-linear control systems.
Periodic solutions whose fundamental frequencies are equal to that of the
applied perturbation frequency will be termed ‘harmonic solutions’, whilst
solutions whose fundamental frequencies are a fraction 1/n (n = 2, 3,ete.) of
the applied perturbation frequency will be termed ‘sub-harmonic solutions of
order 1/n’.

4.1. Hdrmonic solutions

When the system has reached a ‘steady state’ there will be no constant or
‘d.c.’ component out of the multiplier (that is, £,(r) contains no term in sin7),
so that as a first approximation we assume solutions of the form:

(3)

£, =ay+a,cosT,
¢ = by+b,sint+b,cos .

Substituting eqns. (5) in (4 b) gives:

. IT . a
b cosT—b,sint = —IT: a, sin -r+-2—2sm 21-].

Since the first approximation contains only the terms of the fundamental
frequency we ignore second harmonic components and equate coefficients of
the sinr and cos 7 terms to give:




168 D. J. G. James

Substituting eqns. (5) in (4 a) and using results (6) gives, on balancing the
coefficients:

2b )
a, = -I-Iiz’ ,
4 _ 9.03 _r_le_ 2, "
m, = 1, tang® tamy (7
a4 _ o o Iy
Hz - a-bo ao I—I22- }
Equations (7) have a real solution for 1I;>II,, when the solutions are:
0=0a3=0,
ag=r2trr:-1), (8)
where
‘ r = I/,
Thus, to a first approximation harmonic solutions exist in the region:
Rli Hz > Hl (9)

and in this region the harmonic solutions:

& =rier|(r-1),
§:= [—rFJ(r2—1)]cos~ (10)
are possible.

These results agree with analogue computer simulation where it is found
that harmonic solutions for £,(r) contains no d.c. component, thus implying
that £,(r) has no component in cosr.

A closer approximation may be obtained if more terms of the Fourier
geries are taken into account; however, numerical computation will become too
unwieldy. The method, employed in this paper, of improving the approximation
is an extension of a method due to Hayashi (1964); this method is particularly
useful when the amplitude of each harmonic component decreases with
increasing order of the harmonics. An alternative method, well suited for
digital computation, is that based on Galerkin’s procedure (Urabe and Reiter
1966).

A second approximation is now assumed in the form:

€, = (ag+eay) + (ag+eay,) sin 27 + (a, + eay,) cos 27,
g = (by+ebyy) sint+ (by+eby) cos 7+ (by + eby,) sin 27+ (b, + ebyy) cos 27, |
(1)

where the terms containing & represent the correction terms. Substituting
eqns. (11) in (4) and balancing like terms lead, on neglecting terms of order
higher than the first in ¢, to a set of linear simultaneous equations in the
correction terms. These equations are then solved, using digital computation
with initial values a3 = ag = b, = by = b, = 0 and qa,, b, given by (8); a;+¢a,
(t=10,3,4) and b;+¢b;; (1 = 1,2,3,4) are then taken as the new values of the
coefficients a; (¢ = 0,3,4) and b,(i = 1,2,3,4) respectively and the system of
linear equations solved iteratively until values of the coefficients, which give
on solution sufficiently small correction terms, are obtained. Coefficients of
higher-order harmonics are then obtained in a similar way.
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4.2. Sub-harmonic solutions
To a first approximation we assume solutions:

. T T
§‘=ao+alsm; +a2cos; +ascosT,
(12)
.. T T .
& = by+b, sin +b, cos +bgsinr+ bycosr.

On substituting eqns. (12) in (4) and balancing like terms it is seen (see
Appendix) that eight sub-harmonic solutions, of order 2, are possible in a
region R, defined by the system of inequalities:

N = I1,4(289 — 10511,2 — 4201T,) + 19611, + 30811,2 11, — 58811,2 11,2 > 0, \
L2 = 211,212 — 11,4 - 311, 11,2 > 0, ’

. ) .
=l (/N - 1411 L,
[X] 42[1,(‘/\ (11,2 + D <
FX) = 71T, X34 (3112 4 711,) X2+ BT, 4+ 5TL,3 T+ 71, 11,2 - 211,%) X
+ (T8 + 3210 1Ty — Ty + 3T, 2 11,2 - 211, 1 + 711,°) < 0. )

(13)
The region R,, in parameter space, was plotted using digital computation; the
regions R, and R,, in which different types of ‘steady-state’ oscillations are
sustained are shown in fig. 2. Outside region R, there are, to a first approxi-
mation, no periodic solutions so that, for parameter values in this region, the
system will be totally unstable.
An improvement in the accuracy of the sub-harmonic solutions (12) may be
obtained using the same procedure as described in §4.1 for harmonic solutions.

Fig. 2
= Harmonic
.40 solutions
.36 (I = Harmonic and
subharmonic
324 solutions
, .28 4
24 4
+20 -
|6
24
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Ol 02 O3 04 OS5 O6 O7 08 09 1O 11 2
—————
s

Regions in which different types of oscillations are sustained.
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An important feature of the sub-harmonic solutions is that the solution for
&,(r) contains a constant or ‘d.c.” component so that for certain initial conditions
the system. with parameter values in region R,, will adapt to an oscillation
about an offset position; this phenomenon has been verified using analogue
computer simulation.

-

5. Stability of ‘steady-state’ solutions

A periodic solution obtained by the method of harmonic balance merely
represents a state of equilibrium; this equilibrium state is actually realizable
only if it is stable so that its actual existence must be confirmed by a stability
investigation.

Let §(r) = [&,(r) &,(r)]T, having period T, represent a particular state of
equilibrium then in order to investigate its stability we consider small variations
N(r) = [1, () 75(7)]T from this equilibrium state; if in the ensuing motion n(7)
tends to zero then the original undisturbed equilibrium state is said to be
asymptotically stable.

From eqns. (1) we set up the variational equations:

a(r) = = f )+ 1 (Bafe) = i (7)) 7o),
1 1
(14)

, I, .
7o(7) = ﬁ—:sm ™(7)

in 9, and 7,. These variational equations form a set of linear differential
equations with periodic coefficients, of period T, in 7; that is, they are of the

form:
N(7) = P(r)n(7), P(z) =P(=+T).

The asymptotic stability of the trivial solution of such equations has been
previously considered by the author (James 1969) and by Davison (1968). The
procedure is to obtain a transition matrix C such that

0T +1) = Cx(ny) (15)

and then stability is ensured provided the eigenvalues of C lie within the unit
circle. If the eigenvalues of C are both greater than unity in absolute value
the solution will be termed completely unstable, whilst it will be termed
unstable if C has one eigenvalue greater than, and one less than, unity in
absolute value.

A stability investigation of the periodic solutions of § 4 shows that in region
R, we have one stable and one unstable harmonic solution, whilst in region R,
we have, in addition to the stable and unstable harmonic solutions, four stable
and four unstable sub-harmonic solutions of order 2.

6. Effect of initial conditions

In the absence of the output lag the system may be represented by the
single non-dimensional equation:

¢ = T(£ —sin7)2sinT, (16)
where Il = G4d/w, é =y/dand 7 = wt +a.
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Equation (16) may be solved in the {—r plane, for a particular value of
the parameter II, by the method of isoclines (Boddington 1968). A graphical
solution obtained by this method, for IT = 0-2, is shown in fig. 3 and it shows
clearly the effect on stability of the initial conditions in this case. Solutions
are shown for initial values r = 0 and 7 = «/2.

When the output lag is included, however, we can no longer solve the
system equations by the method of isoclines. In order to examine the relation-
ship between the initial conditions and the different types of periodic solutions
we examine the ‘domains of attraction’ of the stable periodic solutions, a
concept employed by Blair and Loud (1960) when examining the solutions of a

7T L=2¥

Sl A« S ARNN

L}
!
i
]
f
]
]
1
Graphical solution of equation (186) for IT = 02,

second-order non-linear differential equation with a periodic forcing term. A
brief discussion of the theory of fixed points and domains of attraction will now
be given.
7. Fixed points and domains of attraction

Let us consider the solution of the general system of equations:

él = f(fl! fz: T)’
€= g(éy, £2,7), } (17)
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where f and ¢ have period T in 7. Provided f, g and their partial derivatives
with respect to ¢, and ¢, are continuous in §;, £, and 7 it follows (Cartwright
1950) that there exists a mapping:

M:E(r+nT)>E(r,+n+1T), n=0,1,2,etc, . (18)

where € = [£, £,]T, which is a one-to-one, continuous and orientation-preserving
mapping of the £,~¢, plane into itself (that is, J/ defines a homeomorphism in
the ¢,-¢, plane). If E(r) = [€,(r) &,(7)]T is a harmonic solution of eqns. (17)
then there exists, for each 7,, 0 <7, <7, a corresponding point Fy(&,(r,), &.(ry)),
in the ¢,~¢, plane, which is invariant under the mapping .M/ ; that is, a ‘fixed
point’ of the mapping M corresponds to a harmonic solution of eqns. (17).

Defining iterates of the mapping by:

M2(P) = MM(P)), ete.,

it follows that if §(r) = [4,(r) ,(r)]T is a subharmonic solution, of order n, of
eqns. (17), then there exists, for each r;, 0 <, <nT, a corresponding point
Py&,(r)), £,(y)) in the & —£, plane, which is invariant under the nth iterate
Mn of the mapping M, that is, a fixed point of the nth iterate of the mapping
M corresponds to a subharmonie solution, of order n, of the system of eqns. (17).

There are certain standard types of fixed points, most of them corresponding
closely to standard types of singular points for differential equations of order
one. We shall now discuss the three most significant types; for a fuller discussion
see the works of Cartwright (1950) and Levinson (1943, 1944). In the following
Py(8,(ry), &a(ry)) is taken as a fixed point, in the £,~£, plane at = = 7, of the
mapping . ‘

(a) Stable fixed point

This is a fixed point I, such that if P be any point in the neighbourhood of
P, then M*(P)—F, as n—>c0; that is, successive images M (P), M*(P), etc., of
the point P approach the fixed point F,. This point is analogous to a node or
focus in the theory of singular points, since the definition is true whether the
loci of successive images move towards P radially or in a spiral fashion
(remember that in this case P moves in jumps J(P), M2(P), etec., and not
along a continuous curve). By definition, this fixed point corresponds to a
stable solution of the system of eqns. (17).

(a) Saddle point

This is a fixed point B, through which there passes two curves or directions
y1, ¥e, see fig. 4 (a), which are invariant under the mapping . Points on y,
approach F, under iterations of the mapping J/, while points on y, approach
P, under iterations of the inverse mapping. In this case the loci of successive
images in analogous to that of the integral curves in the neighbourhood of a
saddle point in the theory of singular points. A saddle point corresponds to an
unstable solution of eqns. (17).

(¢} Unstalle fixed point

This is a fixed point F, which is stable under the inverse mapping of JI and
corresponds to a completely unstable solution of eqns. (17).
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Fig. ¢4

Defining &,(r, £4(my), Ex(m1))s €al7, €u(71), €al7)) as a solution of eqns. (17),
for which the initial conditions, at r = 7, are £,(r,), &,(r,), we define the ‘domain
of attraction’ of a stable fixed point Py(&,(r,), &y(r,)) in the £,-¢, plane, at
T = 7, as the set of points (§,(r,), £5(7;)) for which the solution §(r, £,(7,), £,(1,))
converges to the asymptotic stable periodic solution.

As pointed out by Blair and Loud (1960), the general question of the finding
the shape of a domain of attraction is quite difficult, and studies by Hayashi
(1964) show that for comparatively simple equations the domains of attraction
can be highly complicated. In this section we shall discuss the domains of
attraction of two fixed points, one being stable and the other a saddle point;
this is the case that arises for the harmonic solutions of §4.1.

Suppose the two fixed points are represented by P, and B, see fig. 4 (b),
P, being the stable fixed point and J; the saddle point. As indicated previously,
through P, there pass two curves y;, ¥, which are invariant under the mapping
M, with points on y, approaching F; under iterations of the mapping whilst
points on y, approach P, under iterations of the inverse mapping. Hence the
successive images of an initial point (£,(r,), £,(r;)) will tend either to P, or to
infinity, depending on which side of y, the initial point is. Thus the invariant
curve y, is of great importance in any stability investigations for it is the
boundary between two regions in each of which initial conditions will lead to a
particular type of oscillation, that is, it is the boundary between ‘domains of
attraction’ (for a more mathematical treatment see the works of Blair and
Loud (1960)). In the particular case illustrated in fig. 4 (b) the invariant curve
v, is the boundary between the domain of attraction of the fixed point P, and
the domain of attraction of the point at infinity (that is, initial conditions in
this domain will lead to a solution that grows indefinitely with time).

" If the saddle point P, corresponds to the unstable periodic solution &(r) of
eqns. (17) then the transition matrix C in the stability investigation will have
one eigenvalue greater than, and one less than, unity in absolute value. At
the point P, the curve y, will be in the direction of the eigenvector of € which
corresponds to the eigenvalue that is less than unity in absolute value; thus
the slope « of y; at F, may be found. Theoretically therefore the invariant
curve y, may be obtained by starting just on either side of the fixed point F,
(in the direction a) and integrating eqns. (17) numerically for decreasing ;
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the curve y, then being the loci of the successive images of the starting point
under iterations of the mapping M (or " for a sub-harmonic solution of order
n). In practice, however, it was found that if the unstable fixed points are not
known accurately enough the image points of the numerical integration deviate
from the desired boundary after a few cycles, so that the loci obtained by the
numerical procedure may only be used as a guide and a more accurate boundary
must be obtained by analogue computer studies.

8. Numerical example

For parameter values II, = 0-1,I1, = 1, in region R,, the two harmonic
solutions:

Cas
(i) €& = 260-63+97-24 sin 274 72:93 cos 2r + 9-62sin 47 - 5:06 41
' —0-65sin 67— 0-84 cos 67,

£, =486 sint—22-42cost—1-46sin 3r—1-30cos 37— 0:10sin 57
+0-04 cos 57,

(ii) £ = 0-512—0-192sin 27— 0-126 cos 27 + 0:0004 sin 47 + 0-0008 cos 47,

£, = —0:009sin 7 —0-057 cos r + 0-004 sin 3+ + 0-002 cos 3~
’ +0-0000sin 57 + 0-0000 cos 57

were obtained. Solution (i) was found to be unstable while solution (ii) was
found to be stable.

Thus for each 7, 0 <+ < 2mr, there will be a domain of attraction in the
¢,-£, plane so that for all initial conditions within the domain the system will
be stable while for initial conditions outside the domain the system will be
unstable. Further in this case, the solution for £, has no d.c. component so
that in the stable region the system will adapt to an oscillation about zero
error e(f). The stability boundaries, in the state space, together with their
corresponding fixed points, are shown in fig. 5 for various values of 7 in the
range (0,7) corresponding boundaries for r in the range (=,2r) being the
mirror images about the ¢, axis of those given. These stability boundaries have
beén verified using analogue computer simulation and also agree with experi-
mental work carried out by Jacobs and Shering (1969).

For parameter valucs in region R, the domains of attraction are very
complicated and for certain initial conditions, within the overall stability
boundary in phase-space, the system will adapt to a sub-harmonic oscillation
about an offset position. Parameter values in this region are therefore unsuitable
for practical systems so that a detailed solution in this region is not included
in this paper.

9. Conclusions

This paper emphasizes the importance of the knowledge of periodic solutions
in the stability study of a sinusoidal perturbation, adaptive control system. It
has been shown that for the first-order system considered the parameter space
may be divided into three regions, viz.:

(1) Region where no periodic solution exists so that the system is totally
unstable;
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Fig. 5
1 45
F4O0 400
=0
OO
STABLE STABLE
v ~—oY.
" 20 OX 2 20
s r--200
5

o

. T3
400 [

STABLE
L
ST
N . !
o) o A" 32
r t-200 -20 \
STABLE

i -,

Domains of attraction and corresponding tixed points for I, = 0-1, IT, = 1.
(@, Unstable fixed points, i, stable fixed points.)

(ii) Region R,, where there exists two harmonic solutions, one stable and
one unstable;

(iii) Region R,, where, in addition to the two harmonic solutions of (ii),
there exist four stable and four unstable sub-harmonic solutions of
order 2.

In the case of the sub-harmonic solutions the periodic solution for the
adapting variable £, contains a d.c. term so that for certain initial conditions
the system, with parameter values in R,, will adapt to an oscillation about an
offset position. It is important therefore in any practical application to employ
parameter values in region R}, but outside region R,. Thus a knowledge of the
boundary of the regions R, and R, is essential in any design consideration.

By plotting the domains of attractions of fixed points which are invariant

under the mapping:

E(r+nT)>E(r+n+1T), n=0,1,2¢ete.,
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where E(r) is the state vector of the system, regions in the three-dimensional
space £, £, v were obtained. for particular parameter values in R,, within
which initial conditions will lead to a stable oscillation. Information about
these stability boundaries in the state-space is also highly relevant in any
design consideration of a practical system; for if a system is subjected to
random disturbances and noise there will be a finite probability of the system
entering any region of its state-space. However, no parameter values will make
the system stable everywhere, so that, in order that the probability of the
S)'ste;n being driven unstable by the random disturbances and noise is negligibly
small, it is essential that the normal region of operation of the system is well
within the stability boundary.
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Appendix
Sub-harmonic solutions of the system equations

Substituting eqns. (13) in (4 b) and balancing like terms it is seen that the
only possible value for » is 2 and that
I, I I
Substituting eqns. (13) in (4 a) and balancing like terms gives, on using results
(A1):

b, =

—%fb4=b02+92ﬁ+%3+%2+%, (A2)

?T:b, +2%21-2 by = 2byby— by by— by, (A3)

~ —%—:b2+a%—:bl = 2boby—b,+b,b,, (A 4)
0= —D2b- L0240 001,008, - 25,4 ,, (A 5)

Equations (A 3) and (A 4) are homogeneous in b, and b, and will have a non-
trivial solution for these coefficients (that is, subharmonic solutions exist) if
and only if:
nz 2 . nzz 2
(et =+ (g 1) =0 9
Writing:

b I 1,2
s (3] sros 22

we have that b, b, = ub,? giving

prt
bl ba = 1 +P'2

1—p?
and b2-b,2=— [l +#2] re.
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Substituting back, eqns. (A 3), (A 5) and (A 6) become:

Hq)z 1,2
2 2 ——— = ___~__1 J
e+t (R-gpt) = (1), (A7)
(1+72- 2) 12 = aby (R )1+ (A8)
n2 0 H2 3
n2_ 2_ 0 'n22 )2_ ,
(ﬁl R) 18, +(2n,“, =0 (A 9)
Eliminating b,? from (A 7) and (A 9) gives:
3 IT,\?
43 (R——ﬁf) =X, (A 10)

where

)‘z_l 21'[2?_ _E_Eﬁ
T 2| 2 4112 11,

that is, the loci of the moduli of the sub-harmonics and harmonics are ellipses
as shown in fig. 6. Writing:

- p=p_ M2
z2=1Iv nl and (1——2—1-1*;4'1, (A 11)
eqn. (A 10) becomes:
r4dz =, (A 12)
Fig. 6
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Eliminating 72 from eqns. (A 7) and (A 12) gives:
' 4b2—22 = a2, (A 13)

while eliminating 72 from eqns. (A 8) and (A 12), and substituting for a? from
(A 13) gives:

(—+z) (A2 §22) = 2(a?+2Y) (z+-g~j+ 1)-
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Substituting for X and « and expanding gives:
F(X) = TH, X3+ (A2 + 7IT) X2+ (SIT.5 4 SI13 T, + 711, 1T 2 - 211,3) X

+ (3T1,8 + 22IT,4 T, — T8 + 2T 2 11,2 = 211,211, + 711,3) = 0 (A 14)
where X = I, z.

For a sub-harmonic solution to exist a real root of eqn. (A 14) must be such
that eqn. (A 12) gives a real value of r, that is:
X2< 22— 2— %I, = 3T1,2 10, = L2>0. (A 15)
It can be shown that eqn. (A 14) cannot have an odd number of roots between
—L and L and that it will have two real roots given by:

1

X= 42rl2[\/.\7—(11112%14r11)],
provided:
N = [1,%(289 — 10511,% — 42011,) + 19611,% + 30811, IT, — 58811,2 I1,2> 0
(A 16)
and
F(X)<o. (A 17)

Thus, sub-harmonic solutions exist provided inequalities (A 15), (A 16) and
(A 17) hold. In the region of parameter space where these inequalities hold
eqn. (A 14) may be solved to give two real values of x between —L and L.
Substituting these values in (A 11), (A 12) and (A 13) gives corresponding
values of R, r and by2. Solving b, = ub,, b2+ b,2 = 72, R = —b, then give the
coefficients b,, by and b, whilst eqns. (A 1) give the corresponding coeflicients
ag, @, and a,. It is readily seen that there exist eight sub-harmonic solutions of
order 2, each with a d.c. component in £, and §,, for each point in the region
of parameter space satisfying the necessary inequalities.
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where cosecg is the ratio of d to the difference in the moon and
spaceeraft radii (see Fig. 4).

"Trom Eqs. (6, 7 and 10) it can be shown that contours of
constant ¥V, in a (d, ¢) coordinate system are circles, with
center (u coty/ (V2 — Va?), 0) and radius

([{(F/ = Vb tany} =2 + {2072 = VB Vadsinty) -t 4
{2V siny} -aji/2

Examples of these circles for ¥ = 20°, 40° and 90° are
shown in scale with the moon in Fig. 4. The “dashed” circular
ares intersecting the constant V, circles, are the boundury of
the moon impact region.  Thaus, the regions with V; greater
than a fixed value are crescent-shaped. The shading on the
moon indicates its velocity with respect to the spacecaft. The
moon’s direction is indicated by it being shaded as if it were
traveling away from the sun; and the fraction of disc shaded
gives the speed as a fraction of 2V 4. ~

For the high velocity producing orbits, the spacecraft has to
be directed towards 4 sinall region just behind the moon with
v ~ 40°  For ¥ ~ 20° the escape region (i.e., V, > Vi) be-
comes large; in Fig. 4 it is shown to be a region of over 10,000
km in diameter,

The “head on” conditions when ¥ = 90°, permits good
direction control, but the extent of the eseape region is small.
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Stability of a Model Reference
Control System

D. J. G. James*
Lanchester Polylechnic, Rugby, England

Introduction

F N a recent paper Lindh and Likins! compared the so-called

infinite determinant niethod and a numerical implementa-
tion of Floquet theory for obtaining the regions of the param-
eter space corresponding to stability and instability of the
null solution of u restricted class of linear, periodie cocfficients,
ordinary homogeneous differential equations, 1In this Note
these methods will be applied to examine the stability of a
model reference adaptive control system having sinusoidal
input,

In recent years model reference adaptive control systems
have proved very popular, partieularly for practical applica-
tions to devices such as auto-pilots where rapid adaptation is
required. The basic idea is shown in Fig. 1. The input
6:(f) to the system is also fed to a reference model, the output
of which is proporticnal to the desired response; the outpats
of the model and system are then differenced to form an

crrer

et) = 0.0 — 6,0t)
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Since the error is to be zero when the system is in the optinuun
state it is used as a demand signal for the adaptive loops which
ad{usts the variable parameters in the system to the desired
value. ‘

Various methods of synthesizing the adaptive loops have
been proposed but the one that has proved most popular was
that developed by Whittaker et al.? at the Massachuseits
Institute of Technology and referred to as the “ALLT.” rule.
Here the performance criterion is taken as the integral of
error squared and a heuristic argument is given for reducing
this over an unspecified period of time, This leads to a rule
that a particular parameter K should be adjusted so that

Ki = ~Ge(de/dK)

where @ is the constant gain,

Although the “M.I.T.” rule results in practically realizable
systems, mathematical analysis of the adaptive loops, even
for simple inputs, prove to be very difficult and it is usual in
the design process to carry out much anglogue computer
simulation. The syster equations are nonlinear and nom.
autonomous and since the nonlinearity is of the multiplicative
kind, the mass of theory on instantaneous nonlinearities
associated with the names of Lufe and Popov, in particular,
is not applicable. In order to point out some of the difficul-

(2)

. ties we shall consider a simple first-order system having si-

nusoidal input,

Adaptive Control System

Since the intention, as previously mentioned, is to point
out the difficulties invelved in a stability investigation of a
model reference adaptive control system, a simple first-
order system with controllable gain will be considered.

Consider a model and system to be governed respectively
by. the equations

(3n)

TOu(t) + 0a(t) = K8,())
T4.() + 6.¢t) = K.K.0.(1) (3b)

where a dot denotes differentiation with respect to tinwe t; the
time coustant 7' and model gain K are constant and known,
but thz process gain X, is unknown and possibly time varying.
The problem here is to determine a suitable adaptive loep
to conirol K. so thet K,K. eventually equals the model gain
K. The“M.LT.” rule gives

K. = —Ge(de/d9K) = Beb., 4

. where B = GK,/K, and tkis leads to the scheme of Fig. 2.

If a sinusoidal input of magnitude R sinw! is applied ab
t = 0, when 6..(!), 8.(t) are zero and K.K, » K and if subse-
quently K, remains constant but K, s adjusted according
to . (4), then using Egs. (1, 3 and 4) the system equations
become

Te) -+ e(t) = (K = K,K)R sinwt (52)
R = Be(t)0a(f) (5b)

Now consider that the udaption is switched on when the
model response 8.(f) has reached its steady-state value 8,..(/)
given by

Omi(6) = [KR/(} + T%¥)(sinw! — Tw coswt)

Lu_ 3

Fig. 1 Model reference adaptive control system,
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then Eqs. (5) become
Té(t) + e(t) = x(t) sinwl (6a)
i(t) = —[K.BKR/(1 + T1w? J(sinwt — wT coswie(!) (6b)

where z(t) = K — K.K..

Introducing the dimensionless parameters I, = o, Il. =
TR:KK.B and the dimensionless variables 7 = ot, & =
¢/KR, £, =—z/K, Egs. (6) may be written in the nondimen-
sional form

d El(f) _
:i; [Ez(f)] -
._I_}- —I—% sinr || &(7)
I ‘ ()
L (sinr = I, cosr) 0 £7)

L@ + 1%

which is a linear matrix differential equation of the form
¥ = A(r)E with A(r) periodic in ¢ with period Py’ 4 (a prime
denotes differentiation with respect to 7). X

Stability Theory

We are interested in finding the domains of the parameter
space for which the null solution of the system of first-order
equations

f () = A@x() (®
A+ T) =AW 9

is stable, where x(f) is an n vector and A(t) ann X n matrix
of period 7 in t. This problem was discussed in some detail
in Ref. 1 and we shall confine oursclves here to a brief sum-
mary.

One approach is & numerical implementation of Floquet
theory. From Floquet theory it can be shown that for system
(8), subject to condition (9), there exists a constant n X =
matrix C, known as the monodromy matrix of the system,
such that

x(t + T) = Cx(f) (10)

Using a Liapunov type transformation it then follows that
s necessary and sufficient condition for the null solution of
the system to be uniformly asymptotically stable is that all
the eigenvalues of the monodromy matrix C lie within the
unit circle [z] < 1. If the eigenvalues of the monodromy
rhatrix lie in the circle [¢] < 1 and the eigenvalues on |2| = 1
correspond to unidimensional Jordan cells, then the null solu-
tion is uniformly stable.? ‘

In practice the monodromy matrix C is obtained by in-
tegrating Eqs. (8) numerically over a period.*® [A check
on the value of C may be employed since detC = expf,”
traceA(f)dt.] This is followed by a numerical evaluation
of its eigenvalues thus giving an assessment of stability or in-
stability. However, if one is only interested in the question
of stability, the last step may be dispensed with. Instead the
characteristic polynomial of C may be obtained using the
Faddeeva® algorithm followed by a stability assessment using
the determinant method of Jury.” This procedure has been
used satisfactorily by the authort and since it involves only
matrix multiplication and the evaluation of second-order
determinants it gives a considerable saving in computational
time over direct evaluation of the eigenvalues.

An alternative method of obtaining the transition bound-
" aries, between stable and unstable regions in parameter space,
is the so-called infinite determinant method. This method
is restrictive in its use since it requires the form of the solutions
on the transition boundaries to be known. Assuming the
continuous dependence of stability on parameter values it
follows that on any transition boundary there exists an eigen-
value A; of the monodromy matrix such that its modulus is
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.Fig. 2 First-order sys- &u
tem—M.LT. gain adap-

tion.

K}

unity, Thus on the transition boundaries there must exist®
an almost periodic solution of the form

Xi(l) = eI@re/Tp (1) 1)

~where p,(f) is a periodic n vector with period T (note that in

general such solutions may exist within stable or unstable
regions but not within regions of uniform asymptotie sta-
bility). If the monodromy matrix of the systemn is symplectic
then its characteristic equation is reciproeal, and the form
of the solutions on the transition boundaries for such systems
is discussed in detail in Ref. (1). .

For certain systems (c.g., uncoupled canonical systems) it
can be shown that the transition boundaries are characterized
by the existence of solutions of Period T or a restricted class
of functions of period 2T. The procedure then is to assume
Fourier series developments with undetermined coefficients,
for these solutions; these solutions are then substituted into
the system equations and the principle of harmonic balance
employed to obtain an infinite system of simuliancous, linear,
homogeneous algebraic equations for the coefficients. For
those values of the parameters which admit the assumed
periodic solutions the homogeneous algebraic equations must
have a nontrivial solution and this is the case only if the in-
finite determinant (Hill determinant) of the coefficients is
zero. In practice the Fourier series is truncated and the
corresponding Hill determinant solved to give lines in param-
eter space. If the truncation point of the Fourier serics
is extended and the zcros of the corresponding 1lill deter-
minants of increasing order converge to some limit set of lines
then the infinite determinant procedure is said to be con~
vergent, the convergent set of lines in parameter space being
the required transition boundary between stable and unstable
regions.

Application of Theory to Adaptive Control System

Applying the numerical implementation of Floquet theory
to system (7) stability boundaries in the parameter space
II, — II, were obtained, These stability boundaries are
shown in Fig. 3 and in the main they have been verified by
analogue computer simulation.

- Although system (7) is not canonical it can be shown that
the only solution corresponding to transition boundaries

e!f;o
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: respect to the circle of radius p).

from stable to unstable regions are those of period'T and
2T (27 and 4r in this case). The monodromy matrix C of
. (7) issuch that .

detC = expgj:)‘z‘r traceA(r)dT; = exp{—2#/I}

8o that if Ay, Az are the eigenvalues of C then
M\ = exp{—2x/I;} = p? (say) (12)

1f Ay, Az are complex conjugates then it follows from Eq. (12)
that they lie on a circle of radius p so that complex roots
cannot have modulii unity since this would imply p = 1
which is only possible if I, is infinite. Thus on the transi-
tion boundary there must exist a real root having the value
of -+1 or —1 (note that real roots A, Az are inverse points with
It follows from Eq. (11)
that the transition boundary is characterized by a solution of

. period T or 2T.

On substituting a Fourier series, with undetermined
ceeflicients, of period 4 in Eqs. (7) and balancing like terms,
it can he shown, by induction, that the corresponding IIill

 determinants are sums of squares and therefore cannot be

zero for any values of the parameters, This has been verified
by analogue computer simulation and by the results of the
Floquet theory analysis. '

In the case of the harmonic solution, of period 2w, substi-
tuting the Fourier series

£ =a + Y, (an cosnr + b, sinnr)

naw=l

into Eqs. (7) [the corresponding series for & being obtained
by the second equation of (7)] and balancing the terms leads
to two distinct scts of linear homogeneous algebraic equations
for the coefficients (azn,bz4), (@2041,02441), (0 = 0,1,2, ete.),
respectively. The corresponding I{ill determinants of order
r, in each case, are polynomials of order r in II, having co-
eflicients which are functions of 1Ii.  For a purticular r these
pulynomials are solved for a range of values ¢f I, and the
zeros piotted to obtain the transition boundary in the param-
eter space. The value of r is then increased and the corre-
sponding Iill determinants solved until a convergent set of
boundaries are obtained. It is found that for II; > 1.5,
where the enveloping boundary is continuous, consideration
of filth order Iill determinants is sufficient but for IT; < 1.5
where the enveloping boundary is discontinuous, the method
is rot found to be very satisfactory. Hill determinants of
order eleven have to be considered before a true picture be-
rins to emerge and the order has to be increased still further
hefore an enveloping boundary is obiained to a satisfactory
degree of accuracy. Ior this problem the region I, < 1.5
is important since it is the most likely range of applica-
tion in practice.

Conclusious

I this Note the stability regions in nondimensional space
have been obtained for a first-order controllable gain model
reference adaptive control system, and the results illustrate
the complexity of the question of stability when dealing with
such systems. :

Both a numerical implementation of Floquet analysis and
the infinite determinant method of analyzing linear differ-
patial equations with periodic coefficieuts have been em-
ployved. The infinite determinant approach was not found
1o be very satisfactory in the region of parameter space where
the stability boundaries are complex in nature. Since, when
dealing with linear differential equations with periodic co-
cificients, complex stability boundaries frequently occur, it
throws some doubt on the performance of the method in
general.  Although the Floguet analysis involved investi-
gating 1he eigenvalues of the monadromy matrix at a net-
work of points in parameter space the results obtained were
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far more satisfactory, and for the particular problem con-
sidered the computation time was less. Yor higher order
systems the use of the Faddeev algorithm and the Jury pro-
cedure would further reduce computational time when using
the Floquet approach.
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Some Considerations of a Simplified
Velocity Spectrum Relation for
Isolropic Turbulence

Ricuarp L. ScHAPKER*
Avco Everetl Rescarch Laboratory, Evereit, Mass.

THE “three-dimensional” velocity spectrum function,
& [I(k), defined such that

%a* = fo“ Ek)dk )

(@ = rms velocity fluctuation level, ¥ = wave number), is of
interest in both theoretical and practical studies of turbu-
lence phenomena. A simple form for E(k) was proposed by
von Kdrmdn!

kEE)/ 0%« (k/k)A[L A (k/k)2]-0ie 7]

(k. = energy-containing wave number, as an “interpolatien”
formula joining the range & = 0(£(k) « k%) tc the incrtial
subrange, wherein E(k) « k%3 for k > k,in Eq. (2).

At high-wave numbers, of the order of the Kolmogoroff
wave number kx = Lx~!, where

Lix = (¥/d)s @

the spectrum function is “cut-off”” by viscous effccts. The
inadequacy of Eq. (2) for this wave number range is reflected
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