Supporting information.

C-N bond formation between alcohols and amines using an iron catalyst

Andrew J. Rawlings,^a Louis J. Diorazio^b and Martin Wills^a*

a Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK. b Pharmaceutical Development, AstraZeneca, Silk Road Business Park, Macclesfield, Cheshire, SK10 2NA, UK.

General Procedure for the alkylation of amines with alcohols.

Aniline (0.069 mL, 0.76 mmol), benzyl alcohol (0.157 mL, 1.52 mmol), trimethylamine *N*-oxide dihydrate (5.7mg, 0.076 mmol), **1** (40 mg, 0.076 mmol) were placed in a pressure tube which was flushed with nitrogen. Degassed toluene or xylene (0.40 mL) was added and the pressure tube was sealed and heated at 110 $^{\circ}$ C (in toluene) or 110 $^{\circ}$ C (in xylene) for the time indicated. Once the reaction was complete an additional excess of trimethylamine *N*-oxide dihydrate was added and reacted for a further 0.5 hours after which time the mixture was filtered through celite using 100% EtOAc and the solvent was removed under reduced pressure. Purification is as described below for each product.

N-Benzylaniline 6.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterised.¹ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. ether to give the product as a pale yellow oil (133.7 mg, 0.731 mmol, 95 %). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.30-7.40 (4H, m, Ar*H*), 7.24-7.29 (1H, m, Ar*H*), 7.12-7.20 (2H, m, Ar*H*), 6.68-6.74 (1H, m, Ar*H*), 6.61-6.65 (2H, m, Ar*H*), 4.32 (2H, s, NHC*H*₂), 4.00 (1H, s, N*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 148.20 (C), 139.48 (C), 129.30 (CH), 128.67 (CH), 127.55 (CH), 127.27 (CH), 117.60 (CH), 112.49 (CH), 48.36 (CH₂); *m/z* (ESMS+) [M+H]⁺ 184.1. C₁₃H₁₄N⁺. Conversion was determined by chiral GC analysis: Chrompac cyclodextrin-β-236M-19, 50 m x 0.25 mm x 0.25 µM, T = 140 °C, 10 min, 5 °C /min, P = 15 psi H₂, det = FID 220 °C, inj = 220 °C, aniline 5.8 min, benzyl alcohol 7.9 min, imine 31.2 min, amine 39.9 min.

S3

N-(2-Methoxybenzyl)aniline 9.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterised.² The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. ether to give a pale yellow oil (136.6 mg, 0.641 mmol, 84 %). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.27-7.36 (2H, m, Ar*H*), 7.12-7.20 (2H, m, Ar*H*), 6.84-6.91 (2H, m, Ar*H*), 6.71-6.78 (3H, m, Ar*H*), 5.35-6.17 (1H, br s, N*H*), 4.33 (2H, s, NHC*H*₂), 3.83 (3H, s, OC*H*₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 157.52 (C), 146.61 (C), 129.40 (CH), 129.22 (CH), 128.69 (CH), 126.18 (C), 120.55 (CH), 118.89 (CH), 114.53 (CH), 110.28 (CH), 55.35 (CH₃), 44.48 (CH₂); *m*/*z* (ESMS+) [M+H]⁺ 214.1. C₁₄H₁₆NO⁺.

S4

N-(4-Methoxybenzyl)aniline 10.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterized.¹ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. Ether to give the product as a brown oil (103.5 mg, 0.486 mmol, 64 %). After purification there was still presence of starting material but the characteristic peaks could be identified from 1H NMR. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.16-7.23 (2H, m, Ar*H*), 7.08-7.15 (3H, m, Ar*H*), 6.79-6.84 (2H, m, Ar*H*), 6.70-6.77 (2H, m, Ar*H*), 4.27-4.33 (1H, br s, N*H*), 3.78 (3H, s, OC*H*₃), 3.70 (2H, s, NHC*H*₂); *m*/*z* (ESMS+) [M+H]⁺ 214.1. C₁₃H₁₃ClN⁺.

N-(4-Chlorobenzyl)aniline, 11.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterised.¹ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. Ether to give the product as a pale yellow oil (100.0 mg, 0.461 mmol, 60 %). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.22-7.36 (4H, m, Ar*H*), 7.09-7.19 (2H, m, Ar*H*), 6.67-6.75 (1H, m, Ar*H*), 6.53-6.61 (2H, m, Ar*H*), 4.26 (2H, s, NHC*H*₂), 4.01 (1H, br s, N*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 147.86 (C), 138.05 (C), 132.90 (C), 129.34 (CH), 128.79 (CH), 128.73 (CH), 117.84 (CH), 112.93 (CH), 47.64 (CH₂); *m/z* (ESMS+) [M+H]⁺ 218.1. C₁₃H₁₃ClN⁺.

S7

N-(2-Chlorobenzyl)aniline 12.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterised ² The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. ether to give the product as a light brown oil (93.0 mg, 0.429 mmol, 56 %). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.34-7.42 (2H, m, Ar*H*), 7.11-7.20 (4H, m, Ar*H*), 6.68-6.73 (1H, m, Ar*H*), 6.57-6.62 (2H, m, Ar*H*), 4.41 (2H, s, NHC*H*₂), 4.12 (1H, br s, N*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 147.81 (C), 136.72 (C), 133.28 (C), 129.57 (CH), 129.33 (CH), 129.06 (CH), 128.41 (CH), 126.97 (CH), 117.79 (CH), 112.97 (CH), 45.94 (CH₂); *m*/*z* (ESMS+) [M+H]⁺ 218.1. C₁₃H₁₃ClN⁺.

N-Benzyl-4-methoxyaniline 13.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterized.³ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. ether to give the product as a brown oil (140.6 mg, 0.660 mmol, 87 %). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.31-7.39 (3H, m, Ar*H*), 7.11-7.29 (1H, m, Ar*H*), 6.75-6.80 (2H, m, Ar*H*), 6.57-6.63 (2H, m, Ar*H*), 4.28 (2H, s, NHC*H*₂), 3.74 (3H, s, OC*H*₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 152.22 (C), 142.48 (C), 139.71 (C), 128.62 (CH), 127.57 (CH), 127.19 (CH), 114.94 (CH), 114.13 (CH), 55.84 (CH₃), 49.27 (CH₂); *m/z* (ESMS+)[M+H]⁺ 214.1. C₁₄H₁₆NO⁺.

N-Hexylaniline 14 and di(n-hexyldiamine) 15.

(Xylene, 140 °C):

Experi-	Mol%	Time/	Eq	Eq.	Monoalkyl-	Dialkylated	Comments
ment	catalyst	h	amine	Alcohol	ated 14	15	
088	10	24	1	2	51%	Not deter-	Isolated yield.
						mined	
100	10	24	1	3	72%	13%	Isolated yield.
104	10	24	1	1.1	67%	0%	Isolated yield, no dialk
							seen.
105	10	48	1	3	96	4	Ratio in crude 1H NMR
							only.
134	20	24	1	3	87.5%	12.5%	Ratio in crude 1H NMR
							only.
138	20	48	1	3	72%	28%	Ratio in crude 1H NMR
							only.

This compound has been reported and fully characterised.⁴ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. ether to give the product as a pale yellow oil (110.0 mg, 0.623 mmol, 82 %). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.13-7.19 (2H, m, Ar*H*), 6.65-6.70 (1H, m, Ar*H*), 6.56-6.61 (2H, m, Ar*H*), 3.57 (1H, br s, N*H*), 3.09 (2H, t, *J* 8.0 NHC*H*₂), 1.61 (2H, quin, *J* 8.0 NHCH₂C*H*₂), 1.26-1.44 (6H, m, hex), 0.85-0.94 (3H, m, CH₂C*H*₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 148.58 (C), 129.24 (CH), 117.08 (CH), 112.71 (CH), 44.04 (CH₂), 31.69 (CH₂), 29.59 (CH₂), 26.90 (CH₂), 22.67 (CH₂), 14.08 (CH₃); *m*/z (ESMS+) [M+H]⁺ 178.1. C₁₂H₁₉N⁺.

The dialkylation product **15** was formed in low conversion as a mixture with**14** however sufficient could be isolated to characterize the product by 1H NMR⁵:

 $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.25-7.15 (2H,M,Ar*H*), 6.65-6.55 (3H, m, Ar*H*), 3.22 (4H, t, *J* = 6.5, 2 x NC*H*₂), 1.60-1.50 (4H, m, 2 x CH₂), 1.30-1.20 (12H, m, 6 x CH₂), 0.85 (6H, t, *J* = 6.5, 2 x CH₃).

Fraction containing 16% mono and 11% dialkylated:

N-Cyclohexylaniline 16.

(Xylene, 140 °C, 24h)

This compound has been reported and fully characterised.¹ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. Ether to give the product as a pale yellow oil (102.8 mg, 0.587 mmol, 77 %). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.11-7.18 (2H, m, Ar*H*), 6.62-6.67 (1H, m, Ar*H*), 6.55-6.60 (2H, m, Ar*H*), 3.49 (1H, br s, N*H*), 3.20-3.28 (1H, m, NHC*H*CH₂), 2.01-2.09 (2H, m, *c*-Hex), 1.70-1.80 (2H, m, *c*-Hex), 1.60-1.69 (1H, m, *c*-Hex), 1.29-1.43 (2H, m, *c*-Hex), 1.08-1.28 (3H, m, *c*-Hex); $\delta_{\rm C}$ (100 MHz, CDCl₃) 147.43 (C), 129.28 (CH), 116.84 (CH), 113.16 (CH), 51.71 (CH), 33.54 (CH₂), 25.98 (CH₂), 25.07 (CH₂); *m*/*z* (ESMS+) [M+H]⁺ 176.1. C₁₂H₁₈N⁺.

Examples which worked poorly:

N-Benzyl-2-chloroaniline.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterised.2 The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. ether to give the product as a brown oil (6.60 mg, 0.03 mmol, 4 %). *After purification there was still presence of starting material but most of the characteristic peaks could be identified from 1H NMR*. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.32-7.39 (4H, m, Ar*H*), 7.24-7.31 (2H, m, Ar*H*), 7.06-7.12 (1H, m, Ar*H*), 6.60-6.67 (2H, m, Ar*H*), 4.67-4.81 (1H, br s, N*H*), 4.38-4.43 (2H, s, NHC*H*₂); *m*/*z* (ESMS+) [M+H]⁺ 218.1. C₁₃H₁₃ClN⁺.

N-Benzyl-3-chloroaniline.

(Toluene, 110 °C, 48h)

This compound has been reported and fully characterised.¹ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. Ether to give the product as a brown oil (57.7 mg, 0.266 mmol, 35 %). *After purification there was still presence of starting material but most of the characteristic peaks could be identified from 1H NMR*. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.07-7.12 (2H, m, Ar*H*), 6.50-6.56 (2H, m, Ar*H*), 4.29 ((2H, s, NHC*H*₂), 3.96-4.14 (1H, br s, N*H*); *m/z* (ESMS+) [M+H]⁺ 218.1. C₁₃H₁₃ClN⁺.

Benzyl(2-methoxyphenyl)amine.

This compound has been reported and fully characterised.³ The compound was purified by column chromatography on silica with a gradient elution 0-20% EtOAc in pet. Ether to give the product as a pale brown oil (37.3 mg, 0.175 mmol, 23 %). *After purification there was still presence of starting material but most of the characteristic peaks could be identified from 1H NMR*. $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.64-6.70 (1H, m, Ar*H*), 6.57-6.61 (1H, m, Ar*H*), 4.57-4.69 (1H, br s, N*H*), 4.35 (2H, s, NHCH₂), 3.84 (3H, s, OCH₃); *m/z* (ESMS+) [M+H]⁺ 214.1. C₁₄H₁₆NO⁺.

References

- 1) Bagal, D. B.; Watile, R. A.; Khedkar, M. V.; Dhake, K. P.; Bhanage, B. M. *Catal. Sci. Tech.* **2012**, *2*, 354-358.
- 2) Zhang, M.; Yang, H.; Zhang, Y.; Zhu, C.; Li, W.; Cheng, Y.; Hu, H. *Chem. Commun.*2011, 47, 6605-6607.
- 3) Martinez, R.; Ramon, D. J.; Yus, Y. Org. Biomol. Chem. 2009, 7, 2176-2181.
- 4) Wang, D.; Ding, K. Chem. Commun. 2009, 1891-1893.
- 5) (a) Slotta, K. H.; Franke, W. Ber. 1933, 66, 104-108. (b) Döpp, D. *ARCHIVOC* **2000**, 939-944.