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SUMMARY

Evidence is presented in this thesis for the possible involve-

ment of a novel olefinic IT-complex of cobal t(III) in the solvolysis

of f3 -acetoxyalkylcobaloximes. The enzymatic reactions catalysed by

coenzyme B12 are described in the introduction. Evidence obtained

from an extensive study of these reactions, and reported in

literature, is discussed in terms of various mechanisms for coenzyme

B12 action. The similarity between biacetyldioxime complexes of

cobalt and the B12 coenzymes is described and, on the basis of studies

on the former (reported in Chapters II and III), the suggested inter-

mediacy of an olefinic IT-complex of cobalt(III) in some of the

enzymatic reactions can be supported.

The hydrolysis, ethanolysis and deuteromethanolysis of S-

acetoxyalkylcobaloximes are discussed in Chapter II. 'l'heevidence

obtained, and results of studies on cobaloximes reported in literature,

are interpreted in terms of a scheme which requires the involvement

of the intermediate mentioned above. However, two possible

alternatives to this complex are also consideredo The similarity of

these solvolyses with the acid catalysed deoxymercuration reactions

and solvolyses of substituted ferrocenes is pointed out.

Chapter III deals with the solvolyses of chiral and specifically

labelled cobaloximes and also of cobaloximes with different trans-

ligands. The results of these experiments are shown to be in

favour of the IT-complex as the key intermediate in these solvolyses.
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CHAPTER I

The research described in this thesis concerns an aspect of

the chemistry of a -alkylbis (biacetyldioximato) complexes of

cobalt(III). The study of these complexes - hereafter referred to

as 'cobaloximes' - developed from an interest in the chemistry and

biochemistry of vitamin ]12 and its natural congeners.

discussed later, there is considerable evidence that cobaloximes

As will be

simulate many of the reactions of the cobalamins and hence serve as

good models. It will be relevant to begin with a discussion of the

chemistry of cobalamins.

The history of vitamin B12 (see figure I) dates from about
*1926, when it was demonstrated that 'pernicious anaemia' could be

therapeutically controlled by ingestion of whale liver1. This

'anti-pernicious factor', which came to be known as vitamin B12, was

isolated in 19483,4. After significant contributions to its

structural elucidation in the classical style, this problem was

finally resolved beyond doubt in 1955 by X-ray crystallography5.

This structure has now been confirmed by total synthesis6• Vitamin

B12 is biosynthesised almost exclusively by micro-organisms. Com-

mercially, it is made by fermentation of Streptomyces species and

* A macrocyclic anaemia in which the red blood cells become
abnormally large while immature and are few in number; the bone
marrow is megaloblastic2•
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FIGURE I
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FIGURE II
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,.., other micro-organisms, especially the propionibacterium species.

The accepted nomenclature for vitamin B12 is shown in fig.lo

Hence, vitamin B12 may be called cyanocobalamino 'l'hetetra-pyrrole

ring liganded to cobalt is known as the corrin ring and hence

cobalamins are also sometimes referred to as corrinoids. In 1958

a new naturally occurring cobalamin was isolated from several

bacterial sources and animal liver 8,9,10. On the basis of X-ray

crystallographic studies 11, it was shown to be 5'-deoxyadenosyl

cobalamin. This is sometimes referred to as coenzyme B12 because of

its role as a coenzyme in a group of biological reactions to be

discussed. Another cobalamin, also of biochemical importance, is

methyl cobalamin, discovered in 1963 12. This differs from the

cyanocobalamin only in that the cyano group is replaced by a methyl

Usually, cobalamins are hexa-coordinated with the tetra-

coordinating corrin ring in the xy-plane, and the other two lieands

on the z-axis, of the cobalt ion. When one of the axial ligands is

strongly electron-donating, the other axial ligand may be lost to

form a stable five-coordinated cobalt species in solutiono Vitamin

B12, sometimes referred to as B12a, is a cob(III)alamin, since the

oxidation state of the cobalt ion is +3. It can be reduced to two

other oxidation states: Co(II) in B12r (cob(II)alamins), and Co(I)

in B12s (cob(I)alamins). Electron spin resonance studies indicate

that B12r is the only paramagnetic species amongst these (figure II).

11
The discovery of a cobalt-carbon (J -bond in coenzyme B 12

aroused tremendous interest. This provided the first and rare

example of a naturally occurring organometallic molecule, and

inspired new research into the organometallic chemistry of cobalto
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SCHE!,S III contd.

+ M

r
Bz Bz

H-CH +H - M-H+CH43 2
Methane Synthetase

Bz = Benzimidazole, TI{F = Tetrahydrofolate

NADPH = Nicotinamide adenine dinucleotide, reduced form.

/
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"--
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II IIo 0

Synthesis of dimethylarsine from arsenate and methyl cobalamin.
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Furthermore, it has not been possible, so far, to find analogies in

conventional organic chemistry for most of the reactions catalysed by

the cobalamins. These reactions are essentially of two types:-

(a) the 'rearrangement reactions';

(b) the 'synthetic reactions'.

All the reactions in the first category are catalysed by

coenzyme B12• All, but one, can be described by a general scheme

(scheme I) in which a hydrogen atom exchanges with a group attached

to an adjacent carbon atom. Examples of this type of reaction are:-

(R or S)

(S) CH CI{;OSCoAC'oOH methyl~alonyl COA)}I0
2
CCH

2
CH2COSCOA3 ' ep~merase

The exception mentioned above is the ribonucleotide reductase

system. How this reaction differs from the others in this group

will be discussed later. In the synthetic reactions, vitamin B12

activated as methyl cobalamin, functions as the catalyst. These

reactions involve transfer of the cobalt-bound methyl group to other

metal ions, such as lIg(II) 13 and AsCIII) 14, and synthesis of
15 t' 'd 16 d th' , 11methane ,ace lC aCl an me lonlne • These reactions are

summarised in schemes II and III.

The unique feature in all these reactions is the cobalt-carbon

a-bond. Cleavage of this bond is an important step and, hence, the

factors that influence this are also important. 'I'hestrength of
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this bond will be determined by its electronic environment which,

in turn, is influenced by the other ligands attached to the cobalt

ion. Spectroscopic studies have been an invaluable aid to an

understanding of the factors that influence this cobalt-carbon bond.

It was observed that the absorption spectra of all corrins, whether

they are naturally occurring - with or without the metal ion - or

synthetic 18,19, bear a striking resemblance to each othero The

reason for this similarity is that the spectral absorptions arise

mainly from the corrin chromophore 20,21,22 (Fig.lll). Another

important observation was the similarity between corrin spectra and

typical metalloporphyrin spectra230 In the visible region the two

spectra are of equal intensity, whilst in the ultraviolet, the

porphyrin spectra are about ten times more intense than the corrin

spectra.

There are three important bands in the corrin spectra which

provide considerable information about the corrins. Of these, the

a-band (~ 550 nm) is the most important for it is directly related to

the net charge on the meta123• Hence, the position of this band is

determined by both the oxidation state of the cobalt ion and the

nature of the axial ligands. This is well illustrated by the

observed movement of this band from the red for CO(I) to the blue

for Co(II) complexes. The influence of the axial ligands is

demonstrated by its movement from ::! 600 nm for the ligand pair

CH;, CN- to just above 450 nm for the single bond 'base off' system

with the CH; ligand 21bo The positions of the 1r-~ 370 nm) and

~-bands ( ~550 nm) indicate the degree of covalency of the cobalt

bond24,25. As this bond becomes more covalent, the charge on the

corrin nitrogen atoms increases26, and these bands move to longer

wave lengths.
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Important electronic effects, namely the cis- and trans-
21effects ,have been observed in the cobalamins. Transmission of

electronic effects of the axial ligand along the z-axis and into the

plane of the corrin ring, through the cobalt ion, constitute the

trans-effect and the cis-effect respectively.

ff t 'bl 21e ec s are POSSl e :-

Three types of trans-

(a) ground-state effect in which only the bond-lengths and

force constants within the same molecule are affected;

(b) thermodynamic or equilibrium trans-effect, which

affects the equilibrium constant between two complexes;

(c) kinetic trans-effecto

As the electron-donating power of the axial ligand increases, this

tends to increase the stability of the five-coordinated species

with respect to the six-coordinated species. Consequently, an

equilibrium between the two is established and this is responsible

for the observed temperature-dependency of the corrin absorption

spectra21• Increase in the polarisability of one axial ligand

causes an increase in the other trans metal-ligand bond length.

Evidence for this is provided by the changes in the stretching

frequencies of the cyanide ligand. For the free CN- the stretching

frequency has a value of 2019 cui! This value for the CN- in

benzimidazole cyanocobalamin is 2132 em! and falls to 2082 cro'in

I
,21ethyl cyanocoba amln 0 Changes in the stability constants of the

complexes also reflect the influence of the axial ligand. Similar

cis- and trans-effects have also been observed in haemoglobins and
. h' 28lron porp yrlns •
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Proton n.m.r. spectra have provided considerable information

about cobalamins and have permitted the study of changes in molecular

conformation. Alkyl groups attached to cobalt exhibit a high field

chemical shift. This may be due to an increased electron density on

the alkyl group giving it a carbanion-like character29, or to

chromophore anisotropy. The changes in the chemical shifts of the

C-1 methyl protons30, and the C-10 proton of the corrin ring, reflect

conformational changes in the corrin ring. Ring-current from the

benzimidazole group contributes to the shielding of the C-1 methyl

protons. This ring current can be influenced by the nature of the

axial ligand due to the trans-effect and this in turn would affect

the chemical shift of the protons involved. Also, the nature of the

axial ligand affects the net charge on the C-10 carbon atom31,3
2
, via

the cis-effect and, hence, the chemical shift of the proton attached

to it. A linear relationship has been observed between the r -value

of this proton and the position of the y _band31 •

Proton n.m.r. study of the cobalamins, however, has cast

some doubt on the so-called cis-effectso While changes in the

axial ligand seem to influence the TI-TI* transitions24,33 of the corrin

ring, changes in the corrin ring do not seem to influence the

chemical shifts of the axial ligands. The electronic spectrum of

methyl-10-chlorocobalamin is markedly different from that of the

parent methyl cobalamin. The chemical shifts of the methyl groups,

on the other hand, are -0.065 in methyl cobalamin and -0.016 in

methyl-10-chlorocobalamin. Thus, it seems that although the

electronic environment in the corrin ring has been altered by

substitution at C-10, the electron density at the cobalt alkyl has

not been significantly changed. Essentially, the changes that
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occur in the corrin ring could be of three types31:_

(a.) Changes in the popula.tions of different low-lying

vibrational states. These changes cause a movement of intensity

from one vibrational component to another, within the same transition.

(b) Changes in the conformation of the corrin ring.

(c) Electronic changes.

All these changes are closely interrelated and cannot be separated

one from the other. Thus, a conformational change causes a change

in the stretching and bending force constants. These, in turn,

alter the populations of different vibrational states as well as the

electron density and hybridisation at ea.ch atom. Furthermore, these

changes must involve the cobalt ion and its axial ligands. Hence,

it is suggested34 that the so-called cis-effect may actually be due

to changes in the conformation of the corrin ring as the axial ligands

are varied, rather than a transmission of electronic effects through

the metal. Additional evidence for conformational changes caused

by varying the axial ligands is provided by the wide variation in the

circular dichroism of the cobalamins31•

The polarisation of the cobalt-carbon bond, in the B12

coenzymes, will to a large extent determine the manner in which it

could undergo fission. This could occur in four ways:-

(a) Heterolytic scission of the bond with electron-

transfer to the C-5'-deoxyadenosyl moiety to give Co(rII) species.

(b) Heterolytic scission with transfer of electrons to

cobalt to give co(r).
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Cc) Homolytic scission resulting in co(n).

(d) Homolytic scission followed by rapid electron

transfer to give either Co(I) or CoCIII). CSee scheme rv.)

An essential step in all the 'rearrangement reactions' is an

intermolecular hydrogen transfer which can only occur after the

cobalt-carbon bond has cleaved. A very large number of mechanisms

have been proposed for this, centred around one or other of these

different cobalt species. An early mechanism proposed for the

methyl malonyl CoA mutase system invoked CoCIlr) and 5'-deoxyadenosyl

carbanion 35 (scheme V). This scheme had an analoGY in the

chemistry of cyclopropanone derivatives36• The proposed 5'-

deoxyadenosyl carbanion would require the migrating hydrogen species

to be a proton _ which is probably precluded by later results. On

the basis of experiments on model compounds, a revised version of this

scheme has recently been proposed37 (see later). Evidence for a

co(r) intermediate has also been obtained. An e.s.r. signal was

observed in the ribonucleotide reductase. However, the rate of

appearance of this signal was substantially slower than the hydrogen

transfer. Hence, it waS concluded that coCr) WaS the obligatory

intermediate, which waS subsequently oxidised to Co(II) 3
8• N20

is known to react selectively with Co(I) 39, but not with CoCII) or

Co(IrI) chelates. Consequently, when substantial inhibition of

propanediol dehydrase was observed, in the presence of N20, this was

interpreted in terms of a coCr) intermediate40• rt is interesting

to note that a similar inhibition waS not observed in the case of

ribonucleotide reductase. This may corroborate the proposed inter-

mediacy of Co(r) in that reaction. For, if co(r) is oxidised to

coCrr) faster than its reaction with N20, then no inhibition due to
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N20 would be observed. However, considerable other evidence seems to

be in favo~ of a Co(II) species as a key intermediate in general.

Investigation of the coenzyme B12-catalysed dehydration of

propane-1,~-diol has produced some very interesting results. 1~ost

enzJ~ic reactions are stereospecific for a particular stereoisomer

of a sUbstrate41• The diol-dehydrase, however, utilises both R-

and S-propane-1,2-diol with approxi~ately equal ease, although it

does distin~~ish between the two pro-chiral hydrogens at C-1 in the

diol. Label~ng studies on this system have provided a wealth of

information. 'I'he use of R- and S-propane-1, 2-diols, specifically

nono-deuterated at C-1, indicated deuterium transfer to C-2 during

the transformation to propionaldehyde, accompanied by a large kinetic

isotope effect only with the R_isomer42• Inversion of confieuration

at C-2 during this process was demonstrated by the use of R- and S-

rropanediols, dideuterated at C-1.

formed was oxidised to propionic acid, the absolute configuration of

which was established by comparison with a synthetic sample of known

configuration. ',"'hentritiated substrates and coenzymes were used,

evidence was obtained for an intermolecular hydrogen transfer via

the coenzyr:e43• 180-labe11ed propanediols showed that propane-1,1-diol

is ~~ intermediate in the transformation, which is dehydrated
'f' 11 44,45stereospec1 1ca y • A rigorous kinetic study with labeled

substrates and coenzyme has demonstrated the intermediacy of

5'-deoxyadenosine 46 (scheme VI).

46On the basis of all this evidence, a scheme was proposed

which seems to be consistent with all known experimental facts

(scheme VII). This mechanism is iso-energetic and it was pointed
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out that steps 1 and 3, involving alkyl metal transfer, do not

necessarily have to be one-step reactions. It has been observed that

when 5'-deoxyinosyl cobalamin is used in the propanediol dehydrase

system, some 5'-deoxyinosine is released to the solution47• A

similar observation had been reported in the case of ethanolamine

ammonia lyase system48• These observations provide some basis for

the proposed intermediacy of 5'-deoxyadenosine in the diol dehydrase

system. However, there could be another explanation for the

observations made with 5'-deoxyinosyl cobalamin. Cleavage of the

cobalt-carbon bond could yield, say, CoCII) and 5'-deoxyinosyl

radical. If this radical is weakly held by the enzyme, some of it

would be leaked to the solution where it would abstract a hydrogen

radical to form 5'-deoxyinosine.

The observations made in the other rearrangement reactions

are similar to those in the diol dehydrase system. The mechanistic

scheme proposed for the diol-dehydrase, in which 5'-deoxyadenosine
. .ddt b th h d . 46. ··1 t th tlS conSl ere 0 e e y rogen carrler , lS very Slml ar 0 a

proposed earlier for the methyl malonyl CoA mutase system49 (scheme

The essential features of this scheme are hydrogen

scrambling in the intermediate 5'-deoxyadenosine and isomerisation

in the cobalt-bound substrate. These are also the essential

features of the scheme proposed for diol dehydrase. The only

difference is the proposed participation of the lone pair on oxygen

in scheme VIII. A recent mechanism proposed for the glutamate-

mutase system also requires the intermediacy of 5'-deoxyadenosine as

the hydrogen carrier. However, this scheme differs from the other

two in that the isomerisation occurs through a fragmentation, the

different fragments being kept in proximity by the enzyme (scheme IX).
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FIGURE IT

Possible model compounds for coenzyme B12

la) alkylbislbiacetyldioxime)cobaltlIII) complexes
lcobaloximes)

(b) BF2-bridged cobaloximes

(c) cobaltbis(biacetylmonooximeimino)-1,3-propane

ld) cobaltbis(salicylaldehyde)-ethylene diimine

le) cobaltbis(acetylacetone)ethylene diimine

(f) cobalt phthalocyanin

(g) Aetioporphyrine(I)cobalt
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The one exception in these reactions, as mentioned before, is

ribonucleotide reductase. In this reaction, extracts from

Lactobacillus leichmanii convert ribonucleotides to deoxy ribo-

nucleotides. This reaction differs from the other rearrangement

reactions in that exchange with solvent protons, and between free

and bound 5'-deoxyadenosyl cobalamin, occurs rapidly during

catalysis590 Also, retention is observed, in the replacement of a

hydrogen group by a hydrogen atom which occurs at the C-2' position

of the ribose moiety of the substrate ribonucleotide.

The reactivity of the cobalt-carbon bond is the common

denominator in all these reactions. The electronic environment of

this bond, and the factors that influence it, have already been

discussed. However, the sensitivity of coenzyme B12 to light and

chemical reagents, the comp;lexity of its spectra and its cost, limit

the amount of work that can be done with it. Consequently, model

compounds assume considerable importance if a greater understanding

of the cobalamin catalysed reactions is to be achieved. A remark

made by R.H. Abeles is worthy of note:- "An enzymatic reaction is

not meaningfully defined until it can be related to known non-

enzymatic reactions and this cannot yet be done for reactions

involving cobalamins. For these reactions, it may well be that the

relevant non-enzymatic chemistry has not yet been discovered.,,45.

Model compounds can perform this important task of setting up a

relevant non-enzymatic chemistryo Any potential cobalamin model

would have to possess an equatorial ligand system that is similar to

the corrin ring. A number of such model compounds are now known and

they are summarised in Figure IV. The various models have their

respective advantages and disadvantages. However, the most
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extensively studied model system amongst these has been the bis

(biacetyldioximato) complexes of cobalt(III) - 'cobaloximes'. It

was found that the reactions of these complexes, more than those of

most of the other models, very closely resemble various coenzyme B12

reactions. ,The nature of the axial bond involving the cobalt atom

in cobaloximes was demonstrated to be very similar to that in

cobalamins on the basis of extended self-consistent mm calcula-

tions52• Also, these were the only models to exhibit some enzymic
activity. This statement needs to be qualified. Amongst the various

models tried, only methyl cobaloximes were found to substitute for methyl

cobalamin in methane synthesis by II;ethanobacillus omelianskii53•

However, this reaction cannot proceed, when methyl cobaloximes are

used, unless catalytic amounts of vitamin B12r are present. This

indicates that the methyl cobaloximes could be involved in methyl

transfer to the cobalamin rather than in the enzymic reaction itself.

The research reported in this thesis evolved from an original

scheme for the action of coenzyme B12 (scheme X). The postulated

opening of the ribose ring, on protonation, to form the 7T -complex

is supported by the acid catalysed decomposition of 5'-deoxyadenosyl

cobalamin to give free adenine and an unsaturated pentose (see

scheme XI). The most interesting feature of this scheme is the

proposed intermediacy of a IT-olefin complex of Co(III). This

IT-complex has ample analogy in the organometallic chemistry of many

transition metals54• It is known that ~ -acetoxy mercurials undergo

aCid-catalysed decomposition to give ethylenes55• A IT-olefin

complex of Hg(II) for these reactions was proposed as early as 1939560

Incontrovertible evidence for the existence of such species as an

intermediate in these reactions has only recently been obtained57•
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This decomposition has similarities to that of 8 -acetoxyalkyl

cobaloxi~ described in Chapters II and III. It has been

suggested that TI-complexes formed between metallocenium cations and

biological electron donors would be of great use in the study of the

structure and function of nucleic acids and proteins58• The nature

of bonding between oxygen and haemoglobin has long been under

discussion. It is important to note, in the context of this thesis,

that one of the models considered seriously, involved the oxygen

molecule n-complexed to Fe(II) in the haem 59.
60activity of ethylene is quite well established.

The biological

However, its

linkage to various metallo-enzymes is not fully understood. On the

basis of empirical rules proposed for ethylene action, and
#

comparison with stability constants of silver-olefin complexes, it

has been suggested that ethylene must bind to a metallic receptor
·t . t· 61S1 e 1n 1ssue • A n-olefin complex of Co(III) may serve as a

model for this system.

As described in Chapters II and III, experiments were

originally performed with a view towards obtaining evidence in

support of this scheme. However, it has been shown that a carbo-

cyclic analogue of coenzyme B12, in which the ribose ring oxygen

is replaced by a methylene group, has about 40 per cent of the
62activity of the coenzyme • Consequently, the validity of this

scheme became rather doubtful. Although this scheme itself may not

be valid, according to recent proposals, a cobalt-olefin complex

could nevertheless be involved as a key-intermediate. In the schemes

VII and VIII, for dial dehydrase and methyl malonyl CoA mutase

respectively, step 2 involves isomerisation of the cobalt bound

sUbstrate. In the course of this, the cobalt ion migrates from one



carbon atom to an adjacent carbon atom. This isomerisation is
essentially reversible, although the equilibrium favours the product
to a certain extent. Hence, this reaction must involve an inter-

mediate in which the probabilities of migration in either direction,

to give product or substrate, are similar. This could be achieved

by a 1T-complex of Co(III).

/

The evidence to be presented in Chapters II and IIIl rigorously

establishes the intermediacy of 1T-complexes of Co( III) t in the

solvolytic chemistry of cobaloximes. It is quite probable that such

species derived from cobalamins are also capable of existence and

are intermediates in the acid catalysed decomposition of f3 -ethoxy

ethyl cobalamin and 5'-deoxyadenosyl cobalamin63 (scheme XI).
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CHAPT1<:;I{II

Organometallic chemistry provides considerable evidence for

the formation of S -carbonium ions, and 'IT -complexes, in the

reactions of various transition metal-alkyl systems540 The

possible involvement of such species in the solvolyses of S-

acetoxyalkyl biacetyldioximato complexes of Co(III) was investigated.

The rates of solvolyses of various primary toluene-sulphonates are

known, and provide an indication of the stability of the respective

carbonium ions. It was felt that the tosylate of B-hydroxyethyl

cobaloxime (5) would serve a similar purpose. However, all attempts

to synthesise this compound failed. During this work, B -

acetoxyethylcobaloxime (2a, R - -H), the anticipated product of

acetolysis of the elusive tosylate (5), was synthesised by routine

acetylation of B-hydroxyethylcobaloxirne and found to be remarkably

reactive under neutral solvolytic conditions64• B - Acetoxy-n-

propylcobaloxime (2b, R = -CH3) was analogously prepared and found

to be even more reactive than the B -acetoxyethylcobaloxime. The

solvolyses of these cobaloximes were found to be, in general, very

clean reactions with half-lives of a few hours at 25°Co The

solvolytic products, obtained in high yields, have been identified

as alcohols from hydrolyses and ethers from alcoholyses. The

structures of the products have been confirmed by their spectroscopic

properties and in most cases by comparison with samples prepared by

independent syntheses. Equation I in scheme XII summarises the
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Aliquots were withdrawn at regular intervals, evaporated to

dryness and the residue dissolved in CDC13 to record 1H n.m.r. spectra.

The percentage of different products in the reaction at the time of each

aliquot was calculated from the spectra.
100Values of log10 (~ R ) were

I"' em
plotted against t (seconds). A straight line for initial reaction

(1-2 half lives) was obtained and its slope gave the values of k recorded

in the first table. The percentages for des-alkylcobaloximes given in

the second table were measured from 1H n.m.r. spectra after 12 half lives.

Possible errors in k:

(a) evaporation of aliquots took time;
(b) errors in measur-i.ngintegrals for the appropriate peaks (:t 5;,0.

Kinetic data for trityl acetate:-

Hydrolysis· in 8o;~ dioxan-water

*"~E = 23.6 k.cal./mol.

-4k = 2.1 x 10 sec;

Ethanolysis· in absolute ethanol

• C.A. Bunton and A. Konasiewicz: J. Chern. Soc. (1955), 1354 •
C.G. Swain: Jo Amer. Chern. Soc. (1955), 77, 3731 ••
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TABLE I

Solvolyses of S -acetoxyethyl(pyridine)cobaloximes

Solvent T °c -1)k (sec

dioxan:water (65:35) 25 7.8 x 10-5

dioxan:water (1:1) 25 8.13 x 10-5

dioxan:water (1:1) 40 4 -4.73 x 10

CD3OD:CDC13 (2:3) 35.9 8.2- x 10-6

CD3OD:CDC13 (1:1) 35.9 1.3 x 10-5

CD3OD:CDC13 (3:2) 35.9 2.78 x 10-5

% Des-alkylcobaloxime formed under the different conditions

Solvent TOC % des-alkyl

dioxan:water (65:35) 25 13.5

dioxan:water (1:1) 25 25.5

dioxan:water (1:1) 40 30.9

CD3OD:CDC13 (2:3) 35.9 15.1

CD3OD:CDC13 (1:1) 35.9 9.4

CD3OD:CDC13 (3:2) 35.9 9.5
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reactions discussed in this chapter. The solvolyses follow first

order kinetics for disappearance of the acetate (2). Kinetic data
obtained are collected in table I.

The 8-substituted alkyl cobaloximes have very similar infra-
d .. 1 t The 1H tred, ultra-violet an v1s1b e spec rae nom.r. spec ra,

however, are generally first order spectra with well-distinguished

peaks which can easily be assigned to the different protons. The

various products formed during the solvolyses can also be seen in,

and their relative concentrations determined from, these spectra.

The progress of the solvolyses of the cobaloximes was therefore most

f 11 d by 1H tconveniently 0 owe n.m.r. spec roscopy. However, the

errors involved in such a method of assessment are quite large and,

hence, the data presented in table I can only be used for a

qualitative discussion of the solvolyses.

A consideration of the 1H n.m.r. spectra of these cobaloximes

is necessary before a discussion of the solvolyses. The chemical

shifts of the various protons in these compounds are given in

table II. The large singlet at ~7.8T represents the protons in

the four methyl groups attached to the two molecules of

biacetyldioxime. The rapid rotation of the alkyl side-chain about

the Co-C axis renders the magnetic environment, about each of these

methyl groups, equivalent and hence they have the same chemical shift.

'l'he a-CH2 protons appear as a triplet, at 8.3-804T , on account of

coupling with the B-CH2 protons. The latter, for the same reason,
appear as a triplet. This triplet appears further downfield at
6-7 To In the B-acetoxyethylcobaloxime these protons are, as

expected, furthest downfield at 6.22 T. As the acetoxy group is
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successively replaced by ethoxy, methoxy and hydroxy groups, the

chemical shift of the S -CH2 protons increases to 6.96". This

triplet, therefore, provides a very useful means of ascertaining the

extent of solvolysis at any given time. The rate of decrease of the

triplet at 6.22. corresponds to the rate at which the S-

acetoxyethylcobaloxime disappears in the reaction. This is

complemented by the rate of increase of the triplet at 6.87-6.96.

which parallels the rate of appearance of the solvolytic product.

A by-product in the solvolyses is free acetic acid. The

methyl protons in this have a chemical shift of 7.9' 65, whilst the

acetate methyl protons, of the starting material, are at 8.02 ••

'l'hisoffers yet another handle on the reaction and, by comparing the

relative heights of the two peaks, it is possible to estimate the

extent of the reaction.

The chemical shifts of the pyridine protons in S
acetoxyethylcobaloxime, and for free pyridine, are also indicated in

table rr. Comparing these two sets of values, it is apparent that

the a -protons on the pyridine are least affected, the y -protons

more and the S -protons the most. This implies that liganding to

cobalt has the effect of reducing electron density on the S-carbon

atom in the pyridine, far more than on the .a - or y -carbon atoms.

This is similar to the situation in nitro-benzene, where the nitro-

substituent reduces the electron density at the m-position far more

than at the 0- or p-positions. In almost all alkylcobaloximes

the chemical shifts of the pyridine protons are more or less similar

and are not significantly altered when substituents on the trans-

alkyl ligand are changed. However, substitution of the Co-C bond



39

by a Co-O or a Co-X bond (X = halogen) has a profo1md effect on the

pyridine protons and the methyl protons of the biacetyldioxime moiety.

Whilst the S- and the y-protons on the pyridine remain virtually

unaltered, the a-protons move upfield to ~1.7T. In other words,

replacement of the alkyl ligand by a more electro-negative ligand

apparently has the effect of increasing the electron density at the

a -carbon atom of the pyridine. Cobaloximes in which the Co-C bond

is replaced by a Co-O or a Co-X (X = halogen) bond will be referred

to as des-alkylcobaloximes. In these complexes, the methyl protons

of the biacetyldioxime unit are deshielded and appear downfield as a

singlet at ~ 7.5T. This singlet, and the new pyridine doublet at

~ 1.7 T, are a measure of the des-alkylcobaloximes formed during the

solvolyses. The rate at which they are formed can be computed from

the rate of increase of the singlet at ~ 7.5 T. Thus, n.m.r.

spectra recorded during the solvolyses provide the following information

simultaneously:

(a) rate of disappearance of the starting material;

(b) rate of formation of the solvolytic products; and

(c) rate of formation of the des-alkylcobaloximes as by-

products.

Ethanolysis, methanolysis and hydrolysis of S -acetoxyalkyl-

cobaloximes were studied under different conditions. Depending on

these conditions, differing amounts of des-alkylcobaloximes ((4) in

scheme XII) are formed. The hydrolysis of S -acetoxyethylcobaloxime

was carried out in dioxan-water systems in which the proportion of

water was successively increased from 20)0 to 50;b. As the solvent
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polarity (ET for H20 - 63.1; ET for dioxan - 36.0) 66 is increased,

the relative amount of the des-alkylcobaloxime was found to increaseo

Hydrolysis in dioxan containing 35;'~water results in only about 13j:

of the des-alkyl product. On the other hand, if the proportion of

water is increased to 50;~,the yield of des-alkylcobaloxime increases

to about 2~<. oBoth of these solvolyses were performed at 25 c.
Raising the temperature does not seem to have as much effect as

change in solvent polarity. Hydrolysis in dioxan:water (1:1) at

400C gives about 30;S of the by-product as opposed to the 25)j reported

above. In deuteromethanolyses, the proportion of deuteromethanol

in deuterochloroform was increased from 40;[. to 50/~ to 60'fo, but the

amount of des-alkylcobaloxime obtained is only in the region of 10/.

Although these figures are only approximate, they indicate a definite

variation in the product distribution with a change in the solvolyses

condi tions. Any mechanism postulated for these solvolyses must

offer an explanation for this variation.

It has been suggested that the acid-catalysed decomposition

of B -hydroxyethylcobaloxime 67 involves trans attack of the acid

anion on the initially formed oxo-cation (cf. scheme XIII). 'l'hus,

(8) is formed from (7) by base ligand exchange and, according to

reaction III in scheme XIII, it is (8) which undergoes decomposition

to give (9) and an ethylene molecule. This mechanism is based on

the general mechanism for ligand-substitution reactions in octa-

hedral complexes. Such a scheme could be operative in the

solvolyses. Reaction III depends on the equilibrium between (7)

and (8), and the ease with which the latter can be formed. The

formation constants of (8) will therefore be important, and the rate

at which it is formed will more or less be the rate at which the
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cobaloximes will undergo decomposition. Accordingly, it was

reported67 that decomposition of 6-hydroxyethylcobaloxime in the

presence of 0.5M HC104 proceeded at a scarcely perceptible rate. In

direct contradiction of this observation, no appreciable difference

was seen in the rate of decomposition, as judged from manometric

determination of ethylene evolution, whether 0.2M'aqueous HC1 or HC104
was used as a reagent68• Furthermore, if the nucleophilicity of the

acid anion is an important factor in this decomposition, as claimed67,

then no significant reaction should be seen on treatment of 6-

hydroxyethylcobaloxime with trifluoroacetic acid since it has a weakly

nucleophilic counter anion. In fact, when a solution of the former

was treated with 1.1 equivalent of the latter, a rapid reaction was

observed and after a few minutes extensive ethylene evolution had

occurred with formation of a new cobaloxime - trifluoroacetoxy-

cobaloxime, which has been isolated in ~ 95';;yield. It was

identified from its spectral properties - the analysis agreeing with

the proposed structure (14) in scheme XIII). 1The H n.m.r.

spectrum was that of a des-alkylcobaloxime (see discussion at the

beginning of the chapter). In the infra-red spectrum, the carbonyl

absorption was found to be at 1714 cm-1, which is in accord with that

observed for other organometallic trifluoroacetates69• However,

this value is quite different from 1790 cm-1 recorded for various

organic trifluoroacetates70• The low value for the carbonyl

stretching frequency of (14) is perhaps analogous to the stabilisation

of carbonium ions 6 to cobalt, which is under discussion here, since

it is likely that the carbonyl carbon atom of a trifluoroacetoxy

group bears appreciable positive charge.

A further objection to scheme XIII is that it fails utterly
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to explain the survival of the alkyl-cobalt moiety in the solvolytic

reactions described. The acid catalysed decompositions of 8-
/' ethoxyethylcobaloxime (10) and allylcobaloxime (11) have also been

suggested to occur via an analogous pathway to that of scheme XIII67.

It was suggested that (11) is protonated to give a non-classical

carbonium ion (12) which is stabilised by the electron-releasing

alkyl substituent. This then breaks up to give the alkene (13).

These decompositions can be rationalised within the mechanistic

framework of the solvolytic chemistry discussed below.

In the case of the solvolytic reactions it is very significant

that the major product is the solvolytic product for this indicates

that the carbon atom 8 to the cobalt is the reaction centre.

These solvolyses can be either of the SN1 or SN2 types.

pathway is isoenergetic for a new C -0 bond is formed at the same

time as another C -0 bond is being broken. The transition state

could be assisted by the n-system of electrons in the biacetyldioxime

unit. The SN1 pathway involves a slow first step, in which a

carbonium ion intermediate is formed, followed by a rapid second step,

in which this intermediate is captured by the solvent to give the

product. Of the two possibilities, SN1 and SN2, the latter seems

much less likely.

The intermediate in the SN1 pathway is described above as a

simple carbonium ion. There are two other alternatives to this

which are shown in scheme XIV. 'I'hesolvolyses of 8-acetoxyalkyl-

cobaloximes are discussed in terms of this scheme. The intermediate

(15) is formed in the rate-determining step. This is then either

captured by the solvent to give the solvolytic product (3), or
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breaks down to give the des-alkylcobaloxime (4)0

The carbonium ion, species (15a), can be stabilised by

interaction with both the transition metal-ion and the equatorial

1T -system. The stabilisation afforded by the latter could be in

terms of electron donation from the 1T -system of the biacetyldioxime

unit. Interaction with the metal ion could involve overlap of the

filled d-orbitals of cobalt with the formally vacant p-orbital of

the carbonium ion. Stabilisation of a B -carbonium ion, by inter-

action with a transition metal-ion, is known as the B -effect. The

deficient centre. It has been suggested72 that in all such

overlap integrals between a 3d orbital of iron and a 2p orbital of

carbon were calculated as a function of internuclear distance71•

From this it was deduced that direct interaction between the metal

and C-B is possible.

The charged transition state (15c) is stabilised by ~-~

hyperconjugation. This does not require changes in the C-C or

C-metal bonds or migration of the metal ion towards the electron

reactions, where a metal-carbon bond enhances the formation of a B-

carbonium ion, the major driving force is a carbon-metal cr-~

hyperconjugation. This suggestion was made on the basis of a

comparison of the Hammett a + values of certain metallic groups onp

the benzene ring as determined by charge-transfer spectra, with a +
p

values obtained from reactions - both sets of values agreeing quite

closely.

The species (15b) is a novel intermediate olefinic complexo

A large number of such olefin complexes of the elements of Groups
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VI-VIII are now well characterised. The bonding in such complexes

is generally attributed to interactions between TI-electrons in the

olefin and hybrid orbitals of the metal. As shown in figure V, this
involves overlap of the TI-electron density of the olefin with a

a -type acceptor orbital on the metal atom and a 'back bond'

resulting from flow of electron density from filled metal d orxy
other d 1T -p TI hybrid orbitals into anti-bonding orbitals on the

carbon atoms.

The formation of an olefinic 1T -complex of cobalt as an inter-

mediate, in the solvolyses of B -acetoxyalkylcobaloximes involves

a a-1T rearrangement. Such rearrangements have been observed in

several organometallic systems73 and may occur extremely rapidly.

A number of unusual protonation reactions of various a -alkenyl

transition metals are known and are indicated in reaction X in
scheme XV. Hydride abstraction reactions observed for a number of

transition metal-alkyl complexes (alkyl = ethyl, n-propyl or i-propyl)

also involve a a-1T rearrangement74 (cf. reactionsXIandXII).

Reaction XIIis strong evidence that the hydride ion is abstracted

from the S -carbon atom resulting in a carbonium ion, at that carbon

atom, which is necessary for the subsequent a..,.1T rearrangement.

The solvolyses of the acetoxyalkylcobaloximes via an olefinic

1T -complex have their closest analogy in the solvolyses and other

reactions of certain substituted ferrocenes (see later). The

similarity with deoxymercurations has already been mentioned (cf.

Chapter I). However, in the cobaloxime system the loss of ethylene

from the olefinic IT-complex is kinetically slower than its capture

by solvent. The reverse is generally true of deoxymercurations~ •
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Substituted ferrocenes undergo reactions in which carbonium ions in

a S-position with respect to the metal playa significant role.

Some of these reactions are summarised in scheme XVI. The acid

catalysed decomposition of (27) to give (24) is faster than the

solvolysis of trityl acetate79• The reaction sequence XIII and the

solvolyses of (29) and(30) provide substantial evidence for the

intermediacy of a TI-complex. The dehydration of (24) to (25) is

very facile80 and under the same conditions no dehydration is

observed with S -phenyl ethyl al.coho l., (29) and (30) are,

respectively, the endo- and ~-isomers. It was observed that the

~ reacts faster than the endo by a factor of about 2500 and in

both cases the exclusive product is the exo-alcohol (31)81. Thus,

this is evidence that there is a direct interaction of the transition

metal with the reaction centre. It has been suggested82 that the

relative rates of (29) and (30), and the stereospecificity of the

solvolyses, can be interpreted in terms of the intermediate (28) -

an olefinic TI-complex of iron.

The solvolyses discussed in this chapter are shown in scheme

XVII. Comment has already been made on the formation of ethers,

(35), (37) and (42), as the major product of the reaction. This

and the variation in the amounts of des-alkylcobaloxime can be

readily explained by the mechanism set out in scheme XIV. The

stability of the intermediate (15) determines its relative turnovers

in steps (ii) and (iii)o The factors that influence the stability

of (15) will therefore determine the product distribution. Some of

the factors that affect the stability of the intermediate are

temperature, solvent polarity and the nature of the trans-ligand.

The effect of solvent polarity and temperature on the product
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distribution have already been mentioned. As the solvent system
becomes more and more polar, its ability to stabilise ionic species

increases. In scheme XIV, (4a) is a charged intermediate, while in

(15) the positive charge is delocalised at least over three atomso

Consequently, as the solvent polarity increases, (15) may be

destabilised in preference to (4a). This increases the turnover of

the intermediate in step (iii) relative to step (ii) and higher

amounts of the des-alkylcobaloxime are formed. The effect of the
trans-ligand will be discussed later. If k2 and k3 simply
represent the rates at which (3) and (4) are formed, then two

possibilities arise:

(a) k2 > k3 in this case (3) will be the major product;

(b) k3 > k2 - in this case (4) will be the major product.

In both cases the first step, the formation of the intermediate,
is the slow step. Consequently, the first possibility represents a
first order reaction for loss of starting material. This holds for
most of the solvolyses studied. The only exception is that shown in

reaction XVIIIof scheme XVII. Here, the major product is a des-

alkylcobaloxime. Ethanolysis of cobaloxime (39) also results in

formation of des-alkyl product(s) (e.g. (4b)), only traces if any of

the expected solvolytic product being formed. Here k3 > k2 and the
intermediate (15) is destabilised relative to (4a). Perhaps this

is due to the greater ability of triphenyl phosphine to stabilise

the coordinatively unsaturated species (4a).

It is not possible at this stage to make a distinction among

the Possibilities (15a), (15b) or (15c). Anyone of them can
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explain the observed results of solvolyses. In the next chapter
rigorous evidence will be presented for the intermediacy of (15b).

The kinetic data obtained from the ethanolysis of S -acetoxyethyl-

cobaloxime (34) in absolute ethanol at 25°C are: E
a

+ -1 ~ + -1-119.9 - 1.2 k. cal. mole; 81 -18.2 - 4.2 cal. deg. mole ;

k = 4.37 ~ 0.06 x 10-68-1 83• The large negative value for the

=

entropy of activation suggests that there is a restriction of

rotation about the C-C bond in the CH2-CH2 unit of the intermediate,

whether it is (15a), (15b) or (15c). The acid catalysed

decompositions mentioned earlier (cf. scheme XIII) can be better

explained in terms of (15) as an intermediate. Protonation of the

ethoxyethylcobaloxime (10) or the allylcobaloxime (11) would give

rise to intermediates analogous to (15) which then break down to give

the observed products. The acid catalysed decomposition of S-

hydroxyethyl (pyridine) cobaloxime also follows this pathway. In

all these three decompositions the reaction is equilibrium-controlledo

A fragmentation-recombination mechanism would not be

inconsistent with the facts mentioned so far. In this case the
intermediate would be (4a). This could either be captured by the

ethylene and solvent to give the solvolytic product, or it could lose

ethylene completely to give the des-alkylcobaloxime. This implies
that step (iii) in scheme XIV is reversible. To check this

possibili ty the ethanolysis of B -acetoxyethylcobaloxime (32) in ethanol

saturated with propene, and the ethanolysis of B -acetoxy-n-propyl
cobaloxime (41), were studied. If the fragmentation-recombination
mechanism was valid, then in each case crossed products, viz. (42)

and (35), should be obtained. No crossed products were seen and in

each case only the single expected solvolytic product was formed.
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Hence, the fragmentation-recombination mechanism must be ruled out.

A corollary of this is that when the intermediate (15) loses

ethylene, this loss is irreversible.

There is one other possible pathway by which the solvolyses

could occur. This involves the intermediacy of a ($" -vinyl cobaloxime

as shown in scheme XVIII. The solvent adds across the double bond

in (43) to give the solvolytic product. If this is valid, then

deuteromethanolysis of S-acetoxyethylcobaloximeshould give the

product (45). No such product is formed and (37), containing

deuterium only in the methoxy group of the side-chain, is obtained.

Thus, this mechanism too has to be eliminated.

The possibilities of SN1 and SN2 pathways have been mentioned

earlier in the chapter. It was also stated that SN1 was the more

likely of the two. This implies that solvolyses of the acetate (2)

involve alkyl-oxygen fissiono From the hydrolyses alone it is not

possible to deduce whether alkyl-oxygen fission or acyl-oxygen

fission occurso
However, the fact that ethers are formed from the

alcoholyses clearly indicates that acyl-oxygen fission is very

unlikely. Direct experimental evidence for an alkyl-oxygen fission

can be obtained as follows. Hydrolysis of B _acetoxyethylcobaloxime

(32) with H20
18 will give the 180-labe]ed f3 _hydroxyethylcobaloxime

if the hydrolysis has occurred via alkyl-oxygen fission. In the

case of acyl-oxygen fission, however, no 180 will be incorporated.

On treatment with acid, this cobaloxime will undergo decomposition

resulting in a des-alkylcobaloxim~ ethylene and H20
18• This 180_

labeled water can be scavenged by diCycloheXylcarbodiimide84 to
,

give the N,N -dicyclohexyl urea, which can be separated from the
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reaction mixture by chromatography. Analysis of the mass spectrum

of this urea would reveal whether the 180-label was incorporated in

it and to what extent. 18Presence of 0 in the urea would preclude

acyl-oxygen fission in the solvolyses of S -acetoxyalkylcobaloximes.

A preliminary experiment, along these lines, was attempted using

ordinary water for the hydrolysis. A very small amount of a white

crystalline substance was isolated from the reaction mixture after

treatment with dicyclohexylcarbodiimide. The infra-red spectrum of

this was found to be very similar to that of a genuine sample of
,

N,N -dicyclohexyl urea. Thus, after the conditions have been

optimised, this approach should provide evidence in favour of alkyl-

oxygen fission.

The formation of des-alkylcobaloximes as by-'Products in

solvolyses, has been discussed earlier in the chapter. It was

considered necessary to identify at least one of them by comparison

with a sample prepared independently. It was felt that the des-

alkylcobaloxime formed in the hydrolyses of B _acetoxyalkylcobaloximes

could be hydroxocobaloxime resulting from the capture of l4a) by

water. An independent synthesis of this cobaloxime was attempted

according to scheme XIX. As shown, this is an extension of a method
b 1 . 85reported for the preparation of hydroxo-aquoco a OXlme • The

product so obtained had the same chromatographiC and spectroscopic

properties as the hydroxocobaloxime isolated from hydrolysis.

However, the synthetic product did not give a satisfactory analysis.

An attempt was also made to convert the trifluoroacetoxycobaloxime

into the hydroxocobaloxime. The former was treated with a variety

of bases, such as aqueous hydroxide, benzylamine, etc., but

surprisingly, formation of hydroxocobaloxime was not observed. The
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inability of the trifluoroacetoxycobaloxime to react with

benzylamine further emphasises its dissimilarity with organic tri-
fluoroacetates.

In summary, the conclusions reached from a study of

solvolyses of S -acetoxyethylcobaloximes are :

la) the solvolyses involve an alkyl-oxygen fission in the

acetate;

lb) a S-carbonium ion -- a simple, or non-classical or one

stabilised by 0-7T hyperconjugation -- is involved as an intermediate;

lc) the solvolyses are most probably SN1 type of reactions;

ld) there is restriction of rotation about the C-C bond in

the alkyl side-chain of the intermediate;

le) these acetates are of similar reactivity to trityl-
acetates.
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CHAPTER III

The solvolyses of S -acetoxyalkylcobaloximes can be inter-

preted in terms of the intermediates shown in scheme XIV discussed

in Chapter II. In this chapter are described experiments which

establish the validity of this scheme to a high degree of certainty.

This evidence comes from a study of the reactions shown in scheme XX.

Again, as in the case of the solvolyses discussed in the previous
1chapter, these reactions were followed by H n.m.r. spectroscopy.

Additional and equally important evidence for reaction XXVIII came

from circular dichroism spectra and measurement of optical rotations.
1It will be pertinent to begin with a discussion of the H n.m.r.

spectra of the cobaloximes t49) - l58).

The chemical shifts of the various protons in these

cobaloximes are given in the tables (III) and (IV). Assignments of

chemical shifts with the 8-acetoxyethylcobaloximes have already

been discussed in Chapter II. In table (III) are given the chemical

shifts of S-acetoxyethylcobaloximes with different base ligands.

The three pyridines used as ligands are 4-dimethylaminopyridine,

pyridine and 4-cyanopyridine in decreasing order of their electron-

donating power. This variation in electron-donating ability has

almost no effect on the chemical shifts of the methyl protons in the
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SCHEME XX

CH2CD2OAe CH2CD2OCD3 CD2CH2OCD3
I CD3OD:CDC13

I I
(Co) (Co) + (Co) (1:1)
i T t
Py Py Py

49 50 51 XXVII
OAe 0:Hn~:H H3

BzOH(Co) (Co)
r iPy Py
52 53 XXVIII

1H2CH20AC
CD3OD:CDC13

yH2CH2OCD3
(Co) (fa)
l'

0 0\,
I

55 NJfe 56 NMe2 XXIX

CH2CH2OAc CH2CH2OCD3
I CD3OD:CDC13 I(Co) (Co)
T TPy Py
32 37

CH2CH2OAc CH2CH2OCD3I I -
(~o) CD3OD:CDC13 (Co)

'l'-eu Cd5857 CN XXX

CH2CH2OAc OCD3I I
(Co) CD3OD:CDC13 (Co) + CH2 = CH2r l'
PPh3 PPh3 XXXI
39 40
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biacetyldioxime units. However, the values for the chemical shifts

of the a-methylene protons decrease in the order: (4-dimethylamino

pyridine)cobaloxime > (pyridine)cobaloxime > (4-cyanopyridine)
cobaloxime. This is the expected order, for on account of the

trans-effect the electron-density at the a-carbon atom is directly

related to the electron-donating power of the trans-ligand. The

chemical shifts of the a-CH2 protons are also in the same order,

although the variation in the actual values is less. 'l'hisis also

to be expected, as the inductive effect, responsible for the trans-

effect, diminishes rapidly with distance. As noted in the previous

chapter, the chemical shifts of the a-CH2 protons in the product of

an alcoholysis are well distinguished from those in the starting

material.

1The H n.m.r. spectra of the a -substi tuted propylcobaloximes

are not wholly first order. On comparing these spectra with those of
the a-substituted ethylcobaloximes several similarities and dis-

similarities become obvious. Protons in similar environments in the

two types of cobaloximes show similar chemical shifts. Thus the

a , a and y-protons of the pyridine ligand occur in the same

region of the spectrum: between 1.3 and 2.8 T • The methyl

protons of the units of biacetyldioxime also have similar T -values:

Here the similarity ends. Although the pyridine

protons have chemica.l shifts in the same range, their actual values

show small but definite differences. The positions of the a. -protons

decrease in the order (53) > (32) > (54) > (52); the a -protons:

(53) > (32) > (54) > (52); the y-protons: (53) > (32) > (54) > (52).

All the pyridine protons in (54) and (52) are more deshielded than in

Hence it is not only the trans-effect which is
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responsible for the electron-density at the pyridine carbon atoms.

The observed differences may be due to slight deviations from

planarity of the bis (biacetyldioximato) system consequent of the

nature of the o -alkyl group. The biacetyldioxime methyl protons

of the B -substi tuted propyl cobaloximes are not equivalent, for

they are seen as a doublet as opposed to the singlet observed in the

case of the B -substituted ethyl cobaloximes. In the former case

the (d -carbon atom is chiral. As the (J -alkyl group rapidly rotates

about the Co-C bond, over the biacetyldioxime moiety, it differentiates

among the four methyl groups. Figure VI shows a Newman projection

looking down the Co-C bond. Vrhen the alkyl side-chain is orientated

as shown in (A), then the magnetic environment of the methyls (b) and

(c) is clearly non-equivalent. The side-chain rotates through 1800

to give (B). Here too, the magnetic environment of two methyls, in

this case (a) and (d), is different. However, as seen from the

figure, by virtue of this rotation (a) and (c) can experience the same

environment. Similarly, (b) and (d) become identical. This is true

for any position occupied by the alkyl side-chain as it rotates about

the Co-C bond and the C(1)-C(2) bond. Thus, on account of the chiral

B -carbon atom in the side-chain, and rapid rotations of this side-

chain, there are two diastereotopic pairs of diagonal methyl groups

which must give rise to a doublet as observed. For similar reasons,

a doublet for the biacetyldioxime methyls was observed in the case
" 1" d 86of alkyl cobaloximes with chiral phosph~nes as ~gan s •

The 2 a -CH
2

protons of B _substituted propyl cobaloximes are

also diastereotopic and usually exhibit different chemical shifts.

They are coupled in different ways to the adjacent B -H. While Ha 2

couples with HB and with Halt to give a triple,t between 8g4 to 8g8 r
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of the biacetyldioxime methyl protons. These observations indicate

(J = 8Hz), Het 1

In the case of (53) and (54) this doublet coincides with the doublet

couples only with H rJ. 2 and is seen as a doublet.

that the alkyl side-chain prefers a conformation shown in figure VI C

in which the dihedral angles between H et1 and H B ' and Het 2 and H B '

have the values ~ 900 and ~ 1500 respectively. The corresponding

coupling constants calculated using the Karplus equation are J ~ 0

(e = 900) and J ~ 1 (e = 1500), which agree well with the observed

of coupling with S-H. The latter is coupled both to Het 2 and the
values. The C-2 methyl group appears as a simple doublet on account

C-2 methyl and hence appears as approximately a pentuplet between

6-7 T. This interpretation of the 1H n.m.r. spectra is based on

spin-decoupling experiments and a study of spectra recorded at
. 87varlOUS temperatures • Irradiation of the S -H causes the ex-CH2

and (3 -CH
3

peaks to collapse into doublets and a singlet respectively.

The cobaloximes (49), (52), (53), (54), (55) and (57) were

synthesised by the route shown in scheme XXI. Some of the methods

described in literature88,89 for preparing alkylcobaloximes were

utilised for the synthesis of (3 _acetoxyalkylcobaloximes and the

corresponding solvolytic products. These methods did not give the

required products in reasonable yields. One procedure involved

preparation of sodio-cobaloxime, which is then alkylated by an alkyl

halide. This method was tested with benzyl bromide. Low yields

of benzylcobaloxime were obtained and the major isolated product was

the monobenzyl ether of biacetyldioxime which was identified from

its spectroscopic properties90• It was decided to use bromocobaloxime

as an intermediate which could be alkylated to give alkylcobaloximes.

The preparation of the bromocobaloxime has been described else-
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91whe re • The route indicated in the scheme is a modification of an

alkylcobaloxime synthesis described in the literature920 In this

method absolute ethanol was used as a solvent. Since this might

cause alcoholysis of the desired acetoxyalkylcobaloxime, 20/ ethanol

in dioxan was used as a solvent. This solvent system permitted a

balance to be achieved between the need to reduce solvent polarity,

but maintain sufficient solubility of starting material and reagents.

A suspension of the bromococaloxime, in this solvent, was prepared in

a Schler~ tube connected to a vacuum line. This suspension was

deaerated and the reaction carried out under an atmosphere of nitrogen.

The deaeration is important for the presence of any oxygen would

reduce the yield. bIter deaeration, sodium borohydride was added,

followed by the alkylating agent, under nitrogen. At the conclusion

of the reaction the solvent was evaporated off, under high vacuum, at

room temperature. The product was rapidly chromatographed on a small

silica gel col~n ~~d recrystallised to give the pure product.

The synthesis of the alkylating agents are outlined in scheme

XXII. Optically pure (S)-(-)-ethyl lactate (66) was used as the

starting material for the preparation of (S)-1-acetoxy-2-bromopropane

(71), (S)-propylene oxide (72) and (S)-2-benzyloxypropan-1-yl-p-

toluene sulphonate (69). A method of preparing chiral propylene

oxide is described in literature93• 'l'hisinvolved bubbling dry

hydrogen bromide gas through neat propane-1,2-diol available from

enzymic reduction of hydroxyacetone. The resulting bromohydrin was

treated with potassium hydroxide, whereupon the epoxide could be

distilled off. This method was found to be experimentally cumbersome

and gave overall a very low yield of the epoxide. A superior

method was discovered which involved treating propane-1,2-diol with
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hydrogen bromide in glacial acetic acid. In the first experiment,

one equivalent of E.3r/rCAc was added and the reaction mixture was

stirred for 18 hours. Cn working up, the product was identified as

a mixture of mainly 2-acetoxy-1-bromopropane accompanied by small

an-o urrta of 1-acetoxy-2-bromopropane and 1,2-d iacetoxypropane. If

the amOQ~t of HEr is raised to 3 equivalents then almost a quantitative

yield of (71) is obtained. ':.henthe (S)-(+)-propane-1,2-diol,

obtained easily by reduction of (S)-C-)-ethyl lactate with lithium

al.urai.nfum hydride, was used as the substrate, 89/:' of a mixture of

(S)-(-)-2-acetoxy-1-bromopropane (94:6 by n.m.r. analysis) was

obtained. 'I'r-eatr.ent of this mixture with 1 mol equivalent of

potassium amylate in amyl alcohol at 250C immediately gqve pure (S)-

(-)-propylene oxide (72) in 8~:yield. Both steps in the synthesis

IT.usttherefore be stereospecific. The reaction mixture is at all

times homogeneous and the yields of propylene oxide are near

quanti tat ive , Thus, this method provides a very clean and efficient

route for preparinc valuable synthetic intermediates.

The mech~~ism \scheme XXIII) was established by using cis-
94and trans-cyclohexane-1,2-diols as substrates • 'I'he latter gave

trans-1,2-diacetoxycyclohexane, while the former eave trrtns-1-acetoxy-

2-bronocyclohexane. ;;hen the progress of the reaction was followed

by recording 1H n.m.r. spectra at intervals, a signal was seen to

appear at 3.8 ppm downfield from CH3C02II and then to disappear.

This si~lal is consistent95 with that of the methine proton of the

cis-2-methyl-1,3-dioxol~~-2-ylium ion (77). In the presence of

bromide ions this is captured by S~2 attack to give (78). The
.i.'Ii

intermediacy of such a carbonium ion (77) was proposed in the con-

version of vicinal diacetates to halohydrins - among other



13

products - by treatment with hot aqueous hydrohalic acids96•
Further evidence for the formation of such an intermediate comes

from the observation that whilst trans-1,2-diacetoxycyclohexane is

stable to liquid HF, the corresponding cis isomer is converted to

A full discussion of the scope and mechanism of the reaction

of vicinal diols with hydrogen bromide in acetic acid is given in

reference 94. The synthesis of the p-bromo-benzene sUlphonate of

2-benzyloxypropan-1-ol, starting from chiral ethyl lactate, has been

reported98• A similar procedure was used for the synthesis of the

corresponding p-toluene-sulphonate (69).

Although 1-acetoxy-2-bromoethane could be easily prepared by

treating ethylene glycol with HBr/HOAc, this method is obviously not

applicable to the synthesis of a specifically dideuteriated derivative

of this bromoacetate. Consequently an alternative synthesis was

sought. It was soon found that 2-bromoacetyl bromide could be

reduced by lithium aluminium hydride to 2-bromoethanol, which was

easily transformed to 1-acetoxy-2-bromoethane by means of acetic

anhydride in pyridine. Repetition of this procedure, but using

lithium aluminium deuteride, gave 1-acetoxy-2-bromo-1,1-dideuterio-

ethane in 23% overall yield (from 2-bromoacetyl bromide). A reason

for this low yield could be the cyclisation of the initially formed

aluminium alkoxide salt of 2-bromo-1,1-dideuterioethanol to ethylene

oxide, which is subsequently reduced to ethanol.

The solvolyses of S,S -dideuterio-S -acetoxyethyl cobaloxime

(49) (equation XXVII in scheme XX) provide very strong evidence in

favour of the olefinic TI-complex (15b) as key intermediate, or at

least transition state, in the solvolyses. This reaction yields the
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isomeric solvolytic products, (50) and (51), in roughly equal

amounts. Since one of the methylene groups, in (49), (50) or (51),

is dideuteriated, the remaining methylene protons appear as a singleto

However, this is a broad singlet on account of coupling with 2H on

the adjacent methylene group. The a. -CH2 protons in (49) and (50)

have chemical shifts of 8.51 T and 8.43 T respectively. The S -CH2
protons in (51) and (19) have chemical shifts of 6.93 T and 6.29 T

respectively. Thus the presence or absence of these species in the
1reaction mixture can easily be deduced from the H n.m.r. spectra

recorded during the course of the reaction. As mentioned above,

there is a complete scrambling of label during the solvolysis.

There are two possible route$ by which this can occur, as shown in

schemes XXIV and XXV. Route 1 involves the formation of a 2-methyl-

1,3-dioxolan-2-ylium ion, discussed earlier, which can revert to the

starting acetate (49) or (19) by attack either at C-1 or C-2. This

would result in complete scrambling in the starting material followed

by methanolysis to give the product perhaps in a fashion other than

that indicated in scheme XIV (Chapter II) and without scrambling.

If this is the path followed by the reaction, then the following

points hold:

(a) the scrambling is due entirely to the initial

equilibria 5 and 6;

(b) since

equilibria 5 and 6

itself;

(c) (49)

reaction) to give

equal amounts of (50) and (51) are formed,

must be very much faster than the solvolysis

and (19) undergo another reaction (perhaps an SN2

the products, in which only the S -carbon atom is
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affected and there is no migration of the cobalt ion.

The second route involves the intermediacy of an olefinic TI-

complex of Co(III). Step 1 is the slow rate-determining step in

which the TI -complex is formed. The scrambling of the label occurs

in this intermediate as represented by the equilibrium between (50a)

and (5la). This is then rapidly captured by solvent to give the

isomeric products (50) and (51). A further complication in the

interpretation of scrambling comes from the possibility of ion-pair

return which could equilibrate (49) and (19) via (49b) at a rate

competitive with solvent capture of the intermediate.

1A study of the H n.m.r. spectra recorded during the solvolysis

.throws some light on these various possibilities. Assuming that the

solvolysis proceeds entirely via the first pathway, then scrambling

of the label will be complete prior to solvolysis. In this case a

singlet at 6.29 T , for the S -CH2 protons, will appear soon after

start and will rapidly become equal to the singlet at 8.51 T. This

may also be the case for the pathway involving ion-pair return.

Onthe other hand, if scrambling occurs by the second route - as a

direct consequence of solvolysis - then the rate of appearance of

the singlet at 6093 T will parallel the rate of appearance of the

solvolytic producto As a result, the ratio of ex-CH2: S -CH2, after

the first half-life, will be 3:1• As the solvolysis progresses

this ratio will decrease and, at the conclusion of the reaction,

attain a value of 1:1. Finally, if the actual reaction path is a

combination of the pathways discussed above, then no such relationship

will be observed but a significant amount of (19) will be seen

during the reaction. It was found that while a small amount of
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leakage occurs via (49a) or (49b) (less than 10}£ of (79) is seen

throughout the reaction), the major pathway is one that requires the

intermediacy of an olefinic TI -complex like (50b). Even allowing

for the errors involved in measuring the integrals of the appropriate

peaks, the ratio of a -CH2: S -CH2 is very close to 3:1 after the

first half life, and at the end of the reaction has a value of 1:1.

This clearly indicates that scrambling is the result of solvolysis

and that an olefinic TI -complex of Co(III) is a necessary intermediate.

This evidence makes route 1 unlikely as a contributor to the

solvolytic pathway. It should be noted that the results discussed

rule out the occurrence of hydrogen or deuterium 1,2-shifts in the

intermediate (50b) since this would result in a cobaloxime (66.7% on

a statistical basis ignoring isotope effects) in which the alkyl

side-chain becomes -CHDCHDOCD3•

fo-CH protons would appear as doublets and such signals are clearly

In this case both the Cl!- -CH and

absent from n.m.r. spectra (cf. figoXIII). Pertinent to the results

discussed is a recent report concerning methanolysis of S -acetoxy

ethyl pyridinato cobaloxime in which the S -CH2 is labeled with

13C 99. It was observed that in the solvolytic product the label is

equally distributed between the a - and the S -positions. Again,

an intermediate like (50b) must be involvedo However, in this

13C-experiment it is not possible to distinguish among alternative

pathways (and none were considered by the authors) for the scrambling.

Taken together the 2H_ and 13C-Iabeling experiments strongly

implicate (50b) as the key intermediate in these solvolyses.

Prior to the solvolysis of the labeled S -acetoxyethylcobaloximes

an attempt was made to synthesise S -acetoxy- (J -isopropylcobaloxime.

It was felt that the solvolyses of this would yield products identical



79

\J1
J\)

"'1
(-' +:
...... I....,

\
\

o \
::r: ::r:

\.N



80

to those obtained from the solvolyses of S -acetoxy- er-n-propyl

cobaloximes, thus providing evidence for a 1,2-shift by cobalt.

Such evidence would implicate a ~ -complex as an intermediate in the

solvolyses. 2-bromopropan-1-ol was prepared by reduction of

2-bromopropionyl bromide with lithium aluminium hydride and acetylated

in the usual way to give 1-acetoxy-2-bromopropane. This was used

as a starting material for the S -acetoxy-er -isopropyl cobaloxime.

However, these attempts were not successful.

It was mentioned in Chapter II that a high negative value was

obtained for the entropy of activation in the ethanolysis of S -acetoxy

ethylcobaloxime81• This indicates a high barrier to rotation about

the CH2-CH2 unit in the side-chain. Now, in both the acetate and

the solvolytic product, the ethyl ether, there is little restriction

to rotation about this bond. Hence, the large negative value for

the entropy of activation is further evidence for a species like

(50b). In this complex, the C-C bond is perpendicular to the z-axis

of the complex. As the positive charge is delocalised over three

atoms, the two ethylenic carbon atoms and the cobalt, the olefinic

moiety is held so as to prevent a rotation2bout the C-C axis. In

other words, the solvolyses should result in a retention of

configuration. This is borne out by the solvolyses of chiral S -
acetoxy-er -n-propylcobaloxime (52). This, and other chiral

cobaloximes, were prepared as shown in scheme XXI. The starting

materials for these syntheses were prepared according to scheme XXII.

The benzylolysis of (52) in benzyl alcohol was studied. The

solvolytic product was checked by 1H n.m.r. for purity and its

optical rotation measured. For comparison, this product was also

synthesised independently as shown in scheme XXI. It was found that
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the specific rotation of the solvolytic product was almost identical

with -that of the synthetic product. The values for specific

rotations of (52), (53) and (54) are given in table V. Circular

dichroism spectra were recorded for (52) and (54) and are shown in

figure VII. Figure VIII shows the C.D. spectra of solvolytic and

synthetic (53). It is seen that, within experimental error, the two

curves are identical. This is strong evidence that the solvolyses

proceed with retention of configuration although the reaction is of

an SN 1 type. The retention of configuration suggests that bond

breakage must precede bond formation and that the intermediate is

attacked on the same side by the solvent. If a simple f3 -carbonium

ion, or some kind of bimolecular displacement, were involved, then

attack on the other side would be possible leading to a racemic

product in the former case and a probably inverted. product in the

latter. Also, if there was a small amount of leakage via these two

possible routes, a reduction in the specific rotation would be

observed. As the optical activity of both the solvolytic and

synthetic products is almost identical, these possibilities have to

be ruled out. Such a mechanistic scheme,which involves participation

by a neighbouring group and results in retention of configuration,

I th d 'h . . ,100has ana ogy in e propose p enonlum lons • It was found that

acetolysis of optically active erythro-3-phenyl-2-butyl tosylate (SOa)

yielded the optically active erythro-acetate (S2a) with 9~
retention of configuration. Similarly, the optically active threo-

isomer (SOb) yields almost racemic threo-acetate (S2b). In both

cases the product is formed by attack either at the ex- or the s ,

carbon atom of the intermediate (S1a) or (81b). It is important to

note that, conceptually, these intermediates are identical to (15b).

The similarity with ferrocenyl cations has been pointed out in Chapter II.
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The methanolyses of a series of cobaloximes with four

different base ligands were studied. These are summarised in
scheme XX. The extent to which the olefinic TI-complex of cobalt

can be stabilised depends on the extent to which the positive charge

can be delocalised and the extent to which Co(III) can be stabilised

in preference to the TI-complex. Thus it would be expected that as

the electron-donating ability of the ligand is increased the

forma tion of the TI-complex is made easier and its reac tivity

increased. Three pyridines, two of them 4-substituted, were the

ligands in the cobaloximes studied. The Lewis basicity of these

ligands decreases in the order: 4-dimethylaminopyridine > pyridine>

4-cyanopyridine. The behaviour of S -acetoxyethyl( triphenylphosphine)

cobaloxime was also investigated. The rate of 'disappearance of

starting material in the solvolyses of the (pyridine)cobaloximes was

found to decrease as the Lewis basicity of the pyridine ligand

decreased. ~Vhen triphenylphosphine is the ligand, little or no

solvolytic product is formed, as mentioned in Chapter II. The

hypothetical hydrolytic product of the (triphenylphosphine)cobaloxime

has been synthesised and is stable under the conditions of solvolysis.

It must be admitted that the effect of trans-ligands on the

solvolyses is not well understood. However, two possible reasons

for the decomposition - rather than solvolyses - observed with

(triphenylphosphine)cobaloxime are as follows. The Co-P bond being

considerably polarised towards cobalt causes an increase in electron

density at cobalt, which may stabilise Co(III) in the intermediate

(15b) in preference to a TI-complex. In this case, although the

TI-complex may be formed very easily, it loses ethylene very much

faster - relative to its capture by solvent - to give des-

alkylcobaloxime(s) as product(s). In this context it is important
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TABLE VI

Solvolyses of ~-acetoxyethylcobaloximes, with different pyridines
as trans-ligands, in CD30D:CDC13 (2:3).

Ligand -1k sec

4-dimethylamino-pyridine 7.3 x 10-5
-68.2x10·pyridine

4-cyano-pyridine -64.86 x 10
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to consider the solvolyses of chlorocobaloximes with different

trans-ligands. It was found that the rate of aquolysis of

chloro(triphenylphosphine)cobaloxime is about 3.5 times greater than

that of chloro(pyridine)cobaloxime101• Presumably, this reaction

proceeds via a Co(III) intermediate (e.g. (15b)) in which the

positive charge on cobalt is stabilised more by triphenylphosphine

than by pyridine.

A second reason, for the observed decomposition of

(triphenylphosphine)cobaloxime, is that cobalt may form a strong

d 1T-d 11' bond with phosphorous, in which case its filled d-orbi tals

will not be available to form a d 1T-p1T bond with ethylene and this

may be necessary to stabilise the 1T-complex. Hence no 1T-complex

is formed and decomposition occurs in a concerted fashion to give

des-alkylcobaloximes. The decomposition of (triphenylphosphine)

cobaloxime, if explained in terms of a Co-P d 1T-d 1T bond, may be

interpreted in favour of an olefinic 1T-complex as an intermediate in

the solvolyses of the pyridine complexes. If the solvolyses involved

an intermediate carbonium ion stabilised by G-1T hyperconjugation,

then a Co-P d 1T-d 1T bond would not significantly affect the

formation and reactivity of this intermediate and (triphenylphosphine)

cobaloxime would give solvolytic products analogous to those from

solvolyses of (pyridine)cobaloximes. However, it must be noted that

d 1T-d 1T bonds between transition metal ions and phosphorous are not

beyond dispute.

The solvolyses of cobaloximes with different pyridines as ligands

can best be rationalised in terms of an olefinic 1T-complex. In

the cobaloxime with 4-dimethylaminopyridine as a trans-ligand, the
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solvolysis is very rapid with a half-life of about three hours. In

the (pyridine)cobaloxime the rate is even slower and the half-life

of the starting material is about twenty hours. The solvolysis of

the (4-cyanopyridine)cobaloxime is the slowest of the three, with a

half-life of about eighty hours. It is apparent that the rate of

solvolysis increases with the electron-d.onating ability of the trans-

ligand. A stronger electron-donating ligand would cause a higher

electron-density about cobalt. This in turn would promote back-

donation from the d-orbitals of cobalt into the vacant p-orbitals of

the ethylene,leading to a greater stabilisation and hence ease of

formation of the TI-complex. An electron-withdrawing ligan~ on the

other hand, would reduce the back-donation necessary to stabilise the

TI-complex. Thus, the solvolyses of cobaloximes with different

pyridines as ligands are in accord with a scheme involving the

intermediacy of an olefinic-TI-complex as a key intermediate.
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a) Model of (3 -acetoxypropyl(pyridine )cobaloxime

b) 'TT -Complex formed from fa)
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CHAPTER IV

The existence of a solvolytic chemistry of S -acetoxyalkyl-

cobaloximes is of considerable interest, at least from the view-point

of organometallic chemistry. The solvolyses results range from

almost complete solvolysis, as with (pyridine)cobaloximes, to complete

decomposition as in the case of (triphenylphosphine)cobaloxime.

The different kinds of solvolyses studied, and discussed in Chapters

II and III, have made it necessary to invoke a common mechanism for

both decomposition and solvolysis. The most important feature of

this mechanism is the novel olefinic 7f -complex of cobal t(III) which

is the key intermediate. The two possible alternatives to this, a

simple S -carbonfum ion and a carbon.ium ion stabilised by 0'-7T

hyperconjugation, have also been discussed. 'llheexperiments with

specifically labeled S -acetoxyethylcobaloxime seem rigorously to

exclude at least the former of these two possibilities. While the

results discussed in previous chapters have been interpreted in terms

of a 7T-complex (15b), the intermediate stabilised by 0'_7T hyper-

conjugation (15c) cannot be entirely ruled outo Perhaps both

are involved and the cobalt in (15c) migrates from C-1 to C-2 via

(15b) as a transition state.

S-Acetoxymercurials undergo mainly decomposition reactions,

while analogous substituted ferrocenes exhibit mainly solvolytic

reactions - as has been mentioned. A 7T-complex as an intermediate
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in the latter is substantiated by experimental observations and has

been rigorously shown to be involved in the former type of reactions.

S -acetoxyalkylcobaloximes which undergo both decomposition and

solvolysis probably form a good link between deoxymercurations and

solvolyses of substituted ferrocenes.

The cis- and trans-effects observed in the case of cobalamins21

are also observed with cobaloximes. However, while in cobalamins the

observed cis-effect may actually be a manifestation of distortions in

the corrin ring consequent of the alkyl ligand rather than transmission

of electronic effects through the cobalt ion34, the latter may be

true of cobaloximes. 'I'his becomes evident from the 1H n.m.r. spectra

where substitution of the alkyl ligand by an electro-negative group

results in a down-field shift in the biacetyldioxime methyl protons.

The cobalt atom also enhances the reactivity at the 13-carbon a tom,

This is indicated by the rate constants for the solvolyses of 13-

acetoxyalkylcobaloximes which are comparable in reactivity to trityl

acetates. In a recent report, the evidence for cis- and trans-

effect in various organometallic derivatives of cobalt chelates has

b d· d102een lscusse • It was concluded that these two effects could

facilitate Co-C bond fission by increasing the electronic charge on

the cobalt. The abnormally low value for the C=O stretching

frequency (1715 cm-1) in trifluoroacetoxycobaloxime, in which the CO

is 13 to cobalt, has already been commented upon,

The formation of the postulated 'IT-complex depends on the

strength of the d'IT-p'IT bond between cobalt and the ethylenic moiety.

The solvolyses of cobaloximes with different trans ligands are discussed

in Chapter III. This discussion includes a certain amount of
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speculation about the possibility of competition for the d-electrons

of cobalt from the trans ligand. This competition could involve a

d 1T-d 1T bond with phosphorous in the case of triphenylphosphine as a

trans ligand or a d 1T-p 1T bond with the pyridine ligand. Evidence

for at least the d1T-P1T bond comes from ligand exchange studies on

various cobaloximes. It was found103 that methylaquocobaloxime loses

the water ligand approximately eight times faster than the corresponding

phenylcobaloxime in acetone containing 1% water, subsequently

liganding with imidazole. The n-propylaquocobaloxime reacts 200 times

faster. While the alkyl ligands increase the electron-density around

cobalt the phenyl group does the opposite on account of its mesomeric

effect and possibly d1T-p1T bond formation. In the reactions of thiols

with methylaquocobaloxime it was found that neutral thiols reacted

faster than thiolate anions and both of them faster than substituted

pyridines. The reason for this was suggested to be greater 1T-

bonding in the ground state between Co and S atoms104• Thus, the

trans ligand could make strong demands on the d-electrons of cobalt,

thereby affecting the solvolysis in the alkyl side chain.

The similarity between cobaloximes and cobalamins has been

discussed in Chapter I. The object of this research was, initially,

to obtain evidence for a mechanism for the catalytic action of

coenzyme ]12. ~~en it was realised that this scheme was rather

unlikely, it was decided that solvolyses of S -acetoxyalkylcobaloximes

would provide a chemistry relevant to that of cobalamins. The

postulated 1T-complex could a+so be a valid intermediate in the

reactions catalysed by coenzyme ]12. According to a recent proposal
. t· 105 . th . t di t th b t t .for d~ol-dehydrase ac ~on , ~n e ~n erme ~a e e su s ra e ~s

attached to the cobalte It is in this species that the cobalt undergoes
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a 1,2-shift giving rise to the rearranged product. There is very

strong evidence that the first step involves a homolytic fission of

the Co-C bond in coenzyme-B12 and subsequently the substrate attaches

itself to cobalt forming the intermediate.

~ -complex, this is not a charged species.

Consequently, unlike the

However, when the cobalt

undergoes a 1,2-shift to give the product, as proposed, it may do so

via an intermediate or a transition state which is analogous to the

olefinic ~-complex invoked in the solvolyses of cobaloximes.

solvolytic studies of S-acetoxyalkylcobalamins are therefore

Similar

necessary. If analogous results are obtained then it would be

plausible to propose the formation of such intermediates in the

coenzyme-B12 catalysed reactions.
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EXPERIMENTAL

l,_eltingpoints (m.p.) :-

The m.p.s were taken on a Reichert heated microscope stage

and are uncorrected.

Infra-Red Spectra (I.R.) :-

I.R. spectra were recorded with Perkin Elmer 257 and 457

grating machines. Spectra were run in 0.25 m.m. NaCI cells, for

the former, and 0.2 m.m. KBr cells for the latter, using

dichloromethane or chloroform as solvent unless otherwise stated.

The maxima are designated as w (weak), m (medium) or s (strong).

Broad peaks are indicated by tb' before the appropriate designation.

Ultra-Violet Spectra (U.V.) :-

U.V. spectra were recorded with a Unicam SP-800, using quartz

cells and methanolic solutions. They are given as the maximum in

nanometres followed by the molar extinction coefficient.

Nuclear Magnetic Resonance Spectra (N.~jl.R.):-

N.M.R. spectra were recorded with a Perkin Elmer R12

(60 1'iliz). Tetramethylsilane (T.M.S.), L=10, was used as an

internal reference and deuterochloroform solutions were used unless

otherwise stated. The peaks are designated by the chemical shifts

(L) in p.p.m. followed in brackets by the multiplicity: s (singlet),



d (doublet), t (triplet), q (quartet), m (multiplet); and the

integration (H). 100 Mlz spectra were run by the Physico Chemical

IVieasurements Unit (P.C.liI.U.),Harwell, on a Varian HA-100.

Specific Rotations :-

The specific rotations of the chiral cobaloximes were

measured on a Bendix-NFL Automatic Polarimeter using ethanol-free

chloroform as solvent.

Circular Dichroism Spectra (C.D.) :-

The C.D. spectra were recorded by Dr. P.]'!.Scopes at the

Westfield College, Hampstead, London, N.W.3.

Mass Spectra :-

Mass spectra were run by the University of Hull service and

by P.C.M.U. They are designated by the mass peak with its percentage

intensity relative to the base peak, in brackets.

Gas Liquid Chromatography (G.L.C.) :-

G.L.C. were run on a Honeywell F & M. The columns, and

column temperatures, are specified.

Thin Layer Chromatography (T.L.C.) :-

Qualitative T.L.C. were taken using 5 x 20 cm glass plates

coated with silica gel PF 254 (Merck, U.V. sensitive), eluting with

ethyl acetate containing 1% pyridine unless otherwise stated.
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Preparative T.L.C. was carried out using 100 x 20 cm plates

with 0.5 mm silica gel PF 254 and a Burkard SA 100 applicator.

Elemental Analysis :-

This was carried out by Alfred Bernhardt (W. Germany) and

Dr. F.B. Strauss (Oxford) microanalytical services.

Starting Materials :-

Starting materials were used as commercially supplied, with

the following exceptions:

Pyridine was dried by refluxing over KOR, followed by

distillation, and was stored over KOR pellets.

Benzyl alcohol, benzyl bromide, chloroform, dichloromethane,

diethylether, dioxan, ethylacetate, methanol and sodium borohydride

were purified by methods described in literature106•

p-Toluenesulphonylchloride was crystallised according to a

literature description107•

Preparation of Starting Materials :-

Some of the starting materials were not readily available

commercially and were prepared as follows:

1-Acetoxy-2-bromoethane -

3.82 g. of ethylene glycol (0.06M) were added, dropwise and

with stirring, to 39 g. (0.18M, 3.00 eq) of HBr/HOAc (45% w/v HEr

in HOAc, 4.2 m.eq rffir/g.solution by titration for halide ion,
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supplied by Hopkin and Williams). The mixture was stirred for 2 h.
and then quenched with water (200 mls.). It was neutralised by

Na2C03 and the product extracted into CHC13 (50 mle x 3). The
CHC13 extracts were washed with water, dried over Na2S04 and con-
centrated on a rotary evaporator (Buchi). The product was then
purified by trap-to-trap distillation (0.005 mm Hg/bath temperature
40°C) giving 10 g. (98.5%) of material pure by G.L.C. (lit. b.p.

162-30C 108).

N.M.R. 7.91T (s, 3H) -OCOCH3
6.50T (t, 2H) -CH20-
5.63T (t, 2H) Br-CH2-

IR 3000 (m), 1740 (b.s), 1475 (m), 1450 (m),

1425 (s), 1415 (s), 1365 (s), 1290 (b.s),
1150 (very b.s), 1030 (s), 950 (m),
895 (w), 875 (w).

(DMS Index)
-1cm

-1cm

3000 (m), 1742 (b.s), 1473 (m), 1447 (m),
1428 (s), 1415 (s), 1364 (s), 1293 (b.s),
1150 (very b.s), 1032 (s), 949 (m),
895 (w), 872 (w).

IR

Analysis % C H

Found 29.49 4.50

2-Bromo-1,1-dideuteroethanol -

10.1 g. (Oo05M) bromoacetylbromide (B.D.H.) in 250 rol.sdry
diethylether (ether) was added dropwise and with stirring to a cooled

suspension (-5°C) of 1.155 g. (0.028mM)of lithium aluminium deuteride
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(L.A.D. supplied by C.I.B.A.) in 60 ml.s dry ether. The reaction
mixture was stirred at -5°C for 2h. Excess L.A.D. was destroyed
by careful addition of water and the solution was filtered. The
aqueous layer was saturated with Na2S04 and extracted with ether.
The ether extracts were collected, dried over Na2S04 and concentrated
on the Buchi. The crude product was distilled under reduced
pressure (45-46°C/13 mm Hg) giving 3.27 g. (51.5%) of material pure

by G.L.C. B.p. 20o/3mm.

N.M.R. 7.74T (broad s, 1H) -OH

" s, 2H)

I.R. 3622 (m), 3587 (m), 3457 (b.m.), 2965 (m),
2212 (w), 2097 (w), 1427 (m), 1297 (b.s),
1241 (m), 1199 (s), 1137 (m), 1094 (m),
1071 (m), 971 (b.m), 897 (b.w).

M.S. 28 (43.7), 32 (13.2), 43 (100), 47 (13.2),
75 (13.2), 89 (29.1), 108 (13.8),
109 (13.2), 110 (30.05).

Accurate mass

1_Acetoxy-2-bromo-1,1-dideuterioethane -

2.54 g. (0.02M) of BrCH2CD20H were dissolved in 10 mI. of

dry pyridine. 5.7 mI. (0.06M) of acetic anhydride were added drop-
wise and with stirring. The reaction was allowed to go on for 2 h.
and was then quenched with water (25 ml ,}; The product was
extracted into ether (25 mI. x 3), dried over Na2S04 and purified
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by trap-to-trap distillation (0.005 mm Hg; bath temperature 35°C)
giving 2.1g (48;lJ) of the product pure by G.L.C. Bvp , 20°/1.8 mm,

o
N.M.R. 7.89. (s, 3H) -~-CH3

6.49. (broad s, 2H) -CD2-CH -2

I.R. 2941 (m), 2157 (w), 1742 (b.s), 1430 (s),
-1 1374 (a}, 1252 (b.s), 1188 (s), 1165 (s),cm

(CC14) 1146 (s), 1062 (s), 1037 (s), 960 (m).

Analysis % C H

Found 28.43 2.98
C4H5D2Br02 requires 28.53 2.51

(S)-(+)-Propane-1,2-diol --

33g (0.28M) of (S)-(-)-ethyl lactate (Fluka A.G., I« ]~6

-13.9° (neat) in 150 ml dry ether was added to a stirred suspension
of 10.8g (0.284M) lithium aluminium hydride (L.A.H., supplied by
Fisons) in 200 ml ether under nitrogen. The addition was carried
out at a rate necessary to maintain a steady reflux (approximately
over Oo5h). The mixture was stirred at 25°C for 3ho Excess
L.A.H. was destroyed by careful addition of 25 ml water (slight
excess) and stirring for further 1.5ho The mixture was filtered
and the residue was washed with ether and dichloromethane, giving
5g (2;Pfo) product. The solid was dissolved in2N H2S04 and con-
tinuously extracted with dichloromethane giving a combined yield of

17.2g (81%) pure by G.L.C. B.p. 93°/18 mm (lito bop. 96-8oC/ 21 mm).

25 °[ (l ] D -16.28 (neat)
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Highest literature value [a. ] ~6 o-15.9(neat) for lR)-(-)-
isomer obtained from yeast reductase reduction of hydroxyacetone93•

N.M.R. 8.83T (a, 3H) -CH-CH3
8.38T (m, 3H) -CH2-CH
5.11T (s, 2H) -CH-OH

-CH2-OH

I.R. 3500 (very b.s), 2950 (s), 1462 (s), 1421 (b.s),
1888 (s), 1343 (s), 1297 (m), 1231 (m),
1144 (s), 1048 (s), 998 (s), 950 (m), 935 (s),
837 (s), 865 (w).

(S)-(-)-2-Acetoxy-1-bromopropane --

71g. (0.3M) of HBr/HOAc was added rapidly with stirring to
7.6g (O.1M) (S)-(+)-propane-1,2-diol cooled in an ice bath. The
reaction mixture was stirred for O.5h at 250C and then was quenched.
with water.· After neutralising this mixture with solid Na2C03, the
product was extracted into ether. The extracts were dried over
K2C03 and concentrated on the Buchi. This product was found to be
a mixture (94:6 by n.m.r.) of 2-acetoxy-1-bromopropane and
1-acetoxy-2-bromopropane. Distillation gave 16g (89';0)of the
former pure by G.L.C. B.p. 570/11 mm.

[ a. ]~6 -9.46 (neat)

[ a. ]~3 -13055 (CHC13, c 5.8)

N.M.R. 8.67 (a, 3H) -CH-CH3
(neat)

(s, 3H) ~-C-CH3
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6.471" (d, 2H)
4.911" (m, 1H)

Br-CH2-CH -
-CH-

I.R. (film)

-1neat, cm
2994 (m), 1741 (b.s), 1430 (m), 1375 (s),
1245 (b.s), 1133 (m), 1034 (b.s), 958 (m).

(S)-(-)-Propylene oxide --

58.1 ml (0.86M) potassium amylate was added dropwise to
9.05g (0.08M) bromoacetate mixture (crude product from the ether
extract in the previous preparation) in 20 ml amyl alcohol with
stirring at room temperature. Potassium bromide was precipitated
soon after start of the reaction. \Vhen addition was complete, the
mixture was warmed to 1000C and the propylene oxide distilled out,
through a 10 cm vigreux column with efficiently cooled condenser and
receiver, giving 2.47g (857~). 0B.p. 35 C.

[ Cl ] ~2 -8.21 (CHC13, c 5.04)

20 +8.5 (CHCL3' c 5.0)lit. value [ Cl] D
for (R)_(+)_isomer109

I.R.

8.681" (e , 3H) -CH-CH3
7.581" (q, 1H) -CHbHc-
7.281" (t, 1H) -CHbHc-
7.021" (m, 1H) -CH-

3040 (b.s), 2965 (m), 1465 (b.s), 1437 (b.s.),
1429 (b.s.), 1404 (bos), 1276 (s), 1261 (s),
1135 (b.s), 1112 (b.s), 1030 (s), 1017 (s),
962 (s), 947 (s), 836 (very b.s), 770 (s),

757 (s).
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(S)-(+)-2-Benzyloxypropan-1-yl-toluene-p-sulphonate --

(S)-(+)-Benzyloxypropane-1-o1 was prepared as described in
literature98• This consisted in synthesis of (S)-(+)-2-benzyloxy
ethyl lactate, from (S)-(-) ethyl lactate, followed by reduction with
L.A.H. This was used as a starting material in the synthesiso
1.66g (0.01M) of CH3CH(OCH2¢)CH20H was dissolved in 15ml of pyridine.
3.8132g (0.02M) of toluene-p-sulphonylchloride was added to the
solution, which was then left standing overnight at OOC. The mixture
was poured over ice-water and the precipitate thus formed was col-

lected by filtration. The aqueous layer was extracted with ether
(100ml x 2). The extracts were washed with 1N HCl (100ml x 2),
water (100ml x 1), dried over Na2S04 and evaporated to dryness on the
Buchi. This was purified by trap-to-trap distillation (0.02mm Hg,
bath temp~rature 40oC) giving 2.94g (90%) of the product pure by
T.L.C. (silica gel PF 254, 20% ethyl acetate in benzene).

8.83T (d, 3H) CH3-CH

7057T (s , 3II) -Ph-CH3
6.20T (m9 1H) -CH-

6.01T ( d, 2H) -CH-CH2-

5.44T (d, 2H) -OCH2-

2.64T (a, 5H) Ph-

2.68T, 2.18T (d,d, 4H) -Ph-CH-- 3

3089 (m), 3067 (s), 3025 (s), 2977 (s),

2937 (s), 2871 (s), 1922 (w), 1807 (w),

1725 (m), 1600 (m), 1497 (m) , 1455 (s),

1355 (very b.s), 1313 (s), 1277 (s), 1178 (b.s),
1097 (b.s), 1055 (b.s), 967 (b.s), 917 (bos).

N.M.R.

I.R.
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M.S. 17 (40.6), 18 (100), 27 (25.2), 28 (44.8),

38 (18.2), 39 (88.2), 41 (21.0), 48 (15.4),
50 (3708), 51 (63.0), 52 (21.0), 62 (22.4),
63 (61.5), 64 (18.2), 65 (100), 77 (58.7),
78 (18.2), 79 (39.2), 89 (40.6), 90 (21.0),
91 (98.0), 92 (99.5), 105 (16.8), 107 (18.2),
155 (64.4).

Analysis C H
Found 63.2 6.25

Some of the a-substituted alkylcobaloximes were initially
prepared by reported synthetic routes88• One of these, which was used
more than the others, was as followso Cobaltous chloride, two
equivalents of biacetyldioxime (DMG), two equivalents of sodium
hydroxide and one equivalent of pyridine (or any other base to be used..
as the trans-ligand) were mixed together with stirring in methanol

The reaction mixture was cooled to -700C. At this

temperature a quarter equivalent of sodium borohydride was added with
stirring and under nitrogen, followed by one equivalent lor excess as
required in some cases) of the alkylating agent. IJ_'hiswas stirred
at -700C for about 1h and then allowed to warm up to room temperature

over 3h. The reaction mixture was freed of insoluble material by

filtering and washing with methanol. The filtrates were then worked

up to give the alkylcobaloxime. a-Hydroxyethylcobaloxime, prepared

via this methodby using ethylene oxide as the alkylating agent, was
acetylated with acetic anhydride in pyridine to give the a-acetoxy-

ethylcobaloxime. However, it was necessary to evolve different

synthetic routes to the specifically labelled and chiral cobaloximes,
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as the one described above is not suitable for this purpose. These

procedures are described later.

Hydroxobis(biacetyldioximato)pyridinatocobalt(III)

(a) Hydroxoaquocobaloxime required for this synthesis was

prepared as follows92•

biacetyldioxime were mixed in 75ml of water.

added gradually with heating and vigorous stirring. After stirring

for 1h excess conc. HCl was added giving a dark green precipitate.

This was filtered, washed with dilute HCl, alcohol and ether. The

chlorohydrochlorocobaloxime thus obtained was treated with boiling

water and stirred for 1h. The product was filtered and washed with

water, alcohol and ether. The grey-green product (the chloroaquo-

cobaloxime) was treated with 1eq. of cold cone. K2C03 and stirred

vigorously. After 10-15 min. the mixture was filtered and washed

with acetone giving 16.1g (50%) of the brownish-yellow hydroxoaquo-

cobaloximeo

1.25g (0.0387M) of this cobaloxime in 10ml water was treated with

1.93ml (0.0381eq) of 2N }IN03• 3.068g (1eq) of pyridine was added and

the solution stirred for 2h95• This was then evaporated to dryness

giving 133mg (42.~b) of the dark brown nitrate salt of the hydroxocobaloxime.

448mg (1 mM) of this salt were treated with 165mg (1 mM) of K2C03 in

5ml water. The reaction mixture was stirred for 2h and the product

was extracted into dichloromethane (5ml x 2). The extracts were

collected, dried over Na2S04 and evaporated to dryness. The residue

was dissolved in 10ml anhydrous pyridine and some molecular sieves

(type 4A) were ad.ded. The solution was then stirred overnight,
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evaporated to dryness and the product extracted in dichloromethane.
Stirring with pyridine was necessary to replace the pyridine which
might have been substituted by water during the reaction with K2C03•
The product was rapidly chromatographed over a small silica gel column.
CH2CI2, EtOAc and EtOAc:MeOH (1:1) were successively used as eluents
and three fractions were collected. T.L.C. indicated that the first
two fractions were identical. They were combined and recrystallised
from methanol-ethylacetate giving 177mg (46.1%) of the product pure by

N.M.R. and T.L.C. However, as mentioned in Chapter II, the elemental

analysis was not satisfactory.

+-OR NO-
2 3

I.R. ~3000 (very broad), 2124 (b,w), 1750 (b.w),

(nujol) 1636 (m), 1608 (m), 1548 (b,m), 1488 (m),
-1 1242 (m), 1197 (w), 1092 (w), 1038 (w),cm

981 (w), 908 (w), 812 (w), 750 (m), 679 (m).

-OH

-Icm

7.58T (s , 12H) DMG methyls

2.77T (t, 2H) pyridine S-H
2.26T (t, 1R) pyridine Y-H

1.70T (a, 2H) pyridine ct-R

3029 (w), 2913 lw), 1613 (m}, 1570 lb.s),

1500 (w), 1455 (m), 1374 (m), 1239 (s),

1093 (8), 1073 ls), 982 (m), 614 (m), 512 (s),

432 (w), 384 (m).

225 nm/103 x 104

N.M.R.

I.R.

u.v.
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(b) 600 mg (1.32 mN.[) of S-acetoxyethyl(pyridine)cobaloxime

were dissolved in 150 ml of dioxan:water (1:1) and thermostatted in a
-, 0water-bath at 40 C for 3 days. The solution was evaporated to dryness,

re-dissolved in dry CH2Cl2 (5 ml) and rapidly chromatographed on a small

silica gel column (MN - silica gel N supplied by Macherey, Naeel and

Co.). Ethylacetate:methanol (1:1) was used as an eluent. The first

fraction was collected and re-crystallised from dry CH2Cl2 giving

182 mg (19.5,%) of the hydroxocobaloxime.

N.M.R. 7.56T (s, 12H) DMG methyls

2.78T (t, 2H) pyridine S -H

2.25T (t, 1H) pyridine y -H

1.72T (a, 2H) pyridine a -H

-Icm

3030 (b.w), 2912 (b.w), 1611 (m), 1560 lm),

1498 lw), 1452 (m), 1375 (w), 1231 (m),

1090 (b,s), 980 (w), 611 ls), 509 (m), 423 (w).

I.R.

Trifluoroacetoxybis(biacetyldioximato)pyridinatocobalt(III) --

500 mg (1.21 mM) of the S -hydroxyethylcobaloxime was dissolved

102.4 ml (1.33 mM, 1.1 eq) of trifluoroacetic

acid was added with stirring. There was an immediate effervescence

due to ethylene evolution. The reaction mixture was stirred for an

hour and evaporated to dryness. The product was re-crystallised from

dichloromethane-ethylacetate giving 495 mg (95%) •

N.M.R. 7.56T (s, 12H) Dlv~G methyls

2.73T (t, 2H) pyridine S -H

2.22T (t, 1H) pyridine y -H

1.75T (a, 2H) pyridine a -H
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I.R. 3035 (b.w), 2910 (w), 1714 (s), 1610 (s),

1563 (a}, 1495 (m), 1453 (s), 1396 (s},

1368 (m), 1236 (s), 1182 (b.s), 1141 (s),

1091 (s), 1073 (s), 979 (s), 837 (m), 519 (s),

430 (m).

-1cm

u.v. 242 nm/1.65 x 105

Analysis % C H

Found 37.8 4.02

The methods reported in literature for the syntheses of

cobaloximes88 are not suitable for making chiral and specifically

labeled cobaloximes. The use of sodio-cobaloxime was suggested in a

personal communication89• This cobaloxime was prepared by treating

a suspension of chlorocobaloxime in dry and distilled tetrahydrofuran

with sodium and refluxing until all sodium dissolved. Evaporating

this solution to dryness gave the sodiocobaloxime. However, when

this was treated with benzyl bromide (2 eq), the anticipated benzyl-

cobaloxime was obtained in low yields ( 15';0. It was decided to use

lithiocobaloxime (prepared analogously to sodiocobaloxime) as an

intermediate. The preparation was carried out as follows. 1.715 g

(4 mM) of chlorocobaloxime were suspended in 50 ml dry and distilled

tetrahydrofuran. 27.8 mg (4 mM) of Li was added and the solution

was refluxed for 24 hours. 0.95 m1(8mliI)of benzyl bromide was added

and the solution stirred for 2 hours. It was evaporated to dryness

and the product extracted into CH2CI2• This was rapidly chromato-

graphed on a small silica gel column using ethylacetate as an eluento

Three fractions were collected. The first fraction (about 40% of
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the total collected) was a white compound which was purified by

sublimation. It was identified from its m.p. 87°C (lit. value 85-

86°C) and its spectroscopic properties90 --

I.R.

7.74T (s, 6H) DMG methyls

4.57T (s, 2H) -O-CH -Ph2
2.40T (s, 5H) Ph-CH2

3580 (m), 3310 (very b.m), 3000 (m), 2935 (m),

1735 (w), 1673 (w), 1642 (m), 1565 (m),

1498 (w), 1456 (a}, 1370 (b.s), 1222 tm),

1091 tm), 1015 ts), 980 (s), 910 (s), 823 (m).

N.M.R.

Fractions 2 and 3 contained the benzylcobaloxime contaminated with a

large amount of des-alkylcobaloxime(s). After the failure of this

method it was decided to use bromocobaloxime91 as an intermediate in a

modification of a method described in literature92• S-Acetoxy- S , S -

dideuterio-ethyltpyridine)cobaloxime, S -acetoxyethyl(4-dimethyl-

aminopyridine)cobaloxime, S -acetoxyethyl(4-cyanopyridine)cobaloxime,

(8)-(+)- S -acetoxypropyl(pyridine )cobaloxime, (8)-(+)- S -hydroxypropyl-

(pyridine)cobaloxime and (8)-(+)- S -benzyloxypropyl(pyridine)-

cobaloxime were prepared by this method - which is described for the

S-acetoxyethyl(4-cyanopyridine)cobaloxime - using the appropriate

alkylating agents and bromocobaloximes. Bromo(4-cyanopyridine)-

cobaloxime and bromo(4-dimethylaminopyridine)cobaloxime were prepared

by a method analogous to that described for bromo(pyridine)cobaloxime91•

According to this method, cobaltous acetate and 2 eq of DMG were

stirred in hot 95% ethanol, under nitrogen. 2 eq of the appropriate

pyridine was added and the solution cooled down to room temperature.

1 eq NaBr was added and air was bubbled through the reaction mixture
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for about 0.5h. This was then allowed to stand when the cobaloxime

crystallised out. It was filtered, washed anddried. The yields of
the two new bromocobaloximes and their spectroscopic and analytical

data are as follows:

Bromo (4-cyanopyr idine) -

Yield 7%

N.M.R. 7.611: (s, 12H) DMG methyls

2.53T (d, 2H) pyridine C(2)-H

1.50T (d, 2H) pyridine C(3)-H

I.R. 3419 (b.w), 2919 (m), 2229 (w), 1675 (s},
cm-1 1617 (s), 1561 (b;e}, 1505 (m), 1365 (s), 1219 (m),

1078 (b.s), 980 (m), 842 (m).

Analysis ~r, C H
Found 34.5 4.51

C14H18BrCoN604 requires 35.6 3.84
C14H1SBrCoN606.H20 requires 34.69 4.07

Bromo (4-dime.thylaminopyridine)cobaloxime) -

Yield 69%

N.M.R. 7.64T (s, 12H) Dl\'IG methyls

7006T (s, 6H) N(CH3)2
3.72T (a, 2H) pyridine C(3)-H
2.42T (a, 2H) pyridine C(2)-H
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I.R. 2920 (m), 2580 (w), 2365 (b.w), 1785 lb.w),

1625 ls), 1555 lb.s), 1375 lb.m.), 1189 lb.m),

1068 lb.s), 981 lm), 815 lm).

Analysis % C H

FOillld

B15H24BrCoN604 requires

C15H24BrCoN604.H20 requires 5.28

8-Acetoxyethylbis(biacetyldioximato)-4-cyanopyridinato-

cobal tl III) -

A suspension of 473.2 mg l1 mM) of bromol4-cyanopyridine)-

cobaloxime in 10 ml dioxan:water (4:1) was prepared in a Schlenk tube

attached to a vacuum line. This suspension was degassed and flushed

with oxygen-free nitrogen. 114 mg l3ml'II)of NaBH4 were added with

stirring lunde r N2) followed by 501 mg (3ml'vI)of BrCH2CH20Ac also under-

The reaction mixture was stirred illlderN2 for 4h. It was

evaporated to dryness, extracted in CII2C12 and filtered. The filtrate

was concentrated and rapidly chromatographed on silica gel using

ethyl acetate-dichloromethane as follows. A saturated solution of

the cobaloxime was prepared in ethyl acetate using minimum amount of

CH2C12 to increase solubility. The solution was evaporated on the

Buchd , When crystallisation commenced, on accoillltof the evaporation

of CH2C12, the flask was removed from the Buchi, stoppered and
oallowed to stand at 0 C to complete crystallisation. The crystals

were filtered, washed with ethyl acetate and dried at room temperature

under high vacuum giving 150 mg l30.6%) of the product.
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N.M.H. 8.43T (t, 2H) Co-CH2-
0

8.06T 3H) IIls, -C-CH3
7.86T ls, 12H) DMG methyls

6.32T It, 2H) -CH2-OAc

2.45T (d, 2H) pyridine C(2)-H
1.21T (a, 2H) pyridine C(3)-H

I.H. 2907 lb.w), 2232 lW ), 1727 ls}, 1613 lm),
-1 1561 (s), 1502 (w), 1378 (s), 1230 (s), 1089 ls),cm

1069 (s), 1018 ls), 977 lm), 954 lm), 835 (s),
524 lm), 452 lm).

Analysis7~ C H

Found 44.78 5.42

C18H25CoN606 requires 45.50 5.30

The yields for spectroscopic and analytical data for the 8-
acetoxyethyl(4-dimethylaminopyridine)cobaloxime, the correspondingly
deuteromethyl ethers of this and the cobaloxime described above, and
the 8 _benzyloxypropyllpyridine)cobaloxime are as follows:

8 _Acetoxy~thylbis(biacetyldioximato)-4-dimethylamino-

pyridinatocobalt(III) --

Yield 33%

N.M.R. 8.6h (t, 2H) Co-CH2-

7.86T (s, 12H) DMG methyls

7.01T ls, 6H) -N-(CH3)2

6.24T It, 2H) -CH2-OAc-
3.57T ld, 2H) pyridine C(3)-H

1.94T (d, 2H) pyridine C(2)-H
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I.R. 2907 (b.m), 1725 ~s), 1622 (s), 1538 (b.s),
c.ml 1432 (b.m), 1379 (s), 1228 (s), 1089 (s}, 1080 (s),

1016 (s), 952 (s), 816 ~s), 525 (m) , 450 (m)

Analysis % C H
Found 45.79 6.60
C19H31CoN606 requires 45.30 6.34

S_Benzyloxybis(biacetyldioximato)pyridinatocobalt~lll):
(a) synthetic--

Yield 79.5%

N.M.R. 8.67T (t, 2H) Co-CH 2
8.'83T (d, 3H) -CH-CH3
7.99T (d, 13H) DMG methyls

and Co-CH 1

7.0T (m, 1H) -CH-CH3
5.7T (s, 2H) -0-CI-I2-Ph
2.79T (s, SI-I) -Ph
2.7ST (t, 2I-I) pyridine S -H
2.35T (t, 1H) pyridine y -H

1.50T (d, 2H) pyridine Cl. -H

l.R. 3655 (w), 2993 (bos), 2455 (b.w), 1609 (m),
-1 1565 (s), 1497 (m), 1454 (s), 1379 (m),cm

1238 (b.s), 1157 (m), 1125 (m), 1090 (very b.s),
695 (m), 633 (m), 588 (w), 516 (s), 460 (m),
431 (m)0

u.v. 234.5 nm (2.63 x 104)
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[Cl]~2 + 3.72 (CHC13, c 1.938)

C.D. ~E + 0.50 (362 nm)
~E - 0.13 (403 nm)

Analysis ~'; C H
Found 52.78 6.19

C23H32CON505 requires 54.00 6.50
C23H32CoN505.H20 requires 52.10 6.45

(b) from solvolysis --

300 mg (0.64 mM) S -acetoxypropylcobaloxime was dissolved in
5 ml benzyl alcohol and stirred at room temperature for 3 days. The
solution was chromatographed on a smallsilica gel column using ether
as an eluent. The product, seen as a pale oragne band, was isolated
and further purified by preparative T.L.C. (silica gel 0.5 mm; ethyl
acetate). The band was scraped off and extracted in ethyl acetate.
The extracts were evaporated to dryness giving 122.9 mg (37.4/;)of

the product pure by N.M.R.

N.M.R. 8.661 (t, 1H)
8.831 (e , 3H)
7.991 (d,13H)

7.011 (m, 1H)

5.681 (s, 2H)

2.771 (s, 5H)

2.781 (t,2H)

20371 (t, 1H)
1.521 (e , 2H)

Co-CHCl2
-CH-CH-- =:J.
DMG methyls
and Co-C%.1
-CH-

pyridine S-H
pyridine y-H
pyridine Cl-H
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I.R. 3661 (w), 2992 (b.s), 2452 (b.w), 1606 (m),
1562 (s), 1495 (m), 1452 (s), 1311 (m),
1232 (b.s), 1154 (w), 1122 (m), 1062 (very
b.s), 901 (w), 692 (w), 630 (w), 586 (w),
514 (w), 458 (w), 434 (m).

-1cm

u.v. 234.5 nm/2.63 x 104

[a.] ~2 + 3.12 (CHC13, c 1.102)

C.D. ~E + 0.41 (363 nm)
~E - 0.18 (403 nm)

The spectroscopic data for the corresponding chiral acetoxy-
and hydroxy-propylcobaloximes is given below.

(a) (8)-(+)- S_Acetoxypropylbis(biacetyldioximato)pyridinato-

cobalt(III) -

N.M.R. 8.88! (a, 3H) -CH-CH3
8.88! (d, 1H) Co-CHa.1-
8.43! (t, 1H) Co-CHo,2-

1.96! (s, 3H)
0--
II-C-CH_3

1.84! (s, 12H) DMG methyls

1.13! (m, 1H) -CH-CH3
2.63! (t, 2H) pyridine (3 -H

2.22 ! (t, 1H) pyridine Y -H

1.36 r (d, 2H) pyridine 0, -H

U.V. 241.8 (2.195 x 104)
\
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[a ~5 + 2.5 (CHC13, e 3.87)

C.D. t:..E + 0.12 (330 nm)

t:..E + 0.20 (390 nm)
D.€ + 0.12 (448 nm)

(b) (8)-(+)- S-Hydroxypropylbis(biaeetyldioximato )pyridinato-

eobalt(III) -

N.M.R. 8.951: (a, 3H) -CH-CH3
8.821: (t, 1H) Co-CH -a2
7.861: (s, 12H) DMG methyls

7.861: (d, 1H) Co-CH -a1
6.791: (m, 1H) -CH-CH3
2.631: (t, 2H) pyridine S-H

2.211: (t, 1H) pyridine y-H

1.411: (d, 2H) pyridine a-H

u.v. 239.5 (2.09 x 104)

[ a ] ;2 + 8.21 (CHC13, e 1.67)

C.D. t:..E + 2.02 (357 nm)
t:..E - 0.29 (407 nm)

~ Solvolyses of S_aeetoxyalkyleobaloximes

(a) Hydrolysis --

600 mg (1.32 mM) of S_aeetoxyethyl(pyridine)eobaloxime were
dissolved in 150 ml dioxan:water (65:35). The solution was thermo-
statted, in a water bath, at 250C. Aliquots were withdrawn at
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regular intervals and evaporated to dryness on the freeze-drier.

The residue was dissolved in CDCl3 in order to assay the progress of

the reaction by N.M.R. spectroscopy. After 59h from start, 64.(}/6

of S-hydroxyethylcobaloxime, the hydrolytic product, had been

formed. The last reading recorded 420h from start (approximately

after 12 half-lives) indicated 81.556 of the hydrolytic product.

N.M.R. 8 •32T (t, 2H)

7.86T (s,12H)

6996T (t, 2H)

Co-CH2-CH2-

D1V[Gme thyIs

The hydrolysis was repeated using dioxan:water (1:1) at 25°C

The progress of the reaction was assayed

as described above.

(b) Methanolysis-

50 mg (0.11 mlvI) of S-acetoxyethyl(pyridine)cobaloxime were

dissolved in 005 ml CDCI3:CD30D (3:2) in an N.M.R. tube. T.:M.S.

was used as an internal reference. 'I'his was immersed in a bath at .

35.9°C - the temperature of the probe. The reaction was followed

by recording spectra at intervals. According to theN.M.R. spectrum

recorded 60h from start (i.e. nearly after 12 half-lives), 71% of the

deuteromethylether had been formed.

N.M.R. 8.43T (t, 2H) Co-CH2-CH2-

7.86T (s, 12H) DlViGme thyIs

6.93T (t, 2H) -CH2-CH2-OCD3

The methanolysis was repeated using (1:1) and (2:3) CD3OD:CDCI3o An

apparent increase in the rate was observed as the proportion of

deuteromethanol in the solvent increased.
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The deuteromethanolyses of S-acetoxyethyl(pyridine)cobaloxime,

S-acetoxyethyl(triphenylphosphine), S-acetoxyethyl(4-cyanopyridine)-

cobaloxime and S_acetoxyethyl(4-dimethylaminopyridine)cobaloxime

were performed in the manner described above. 0.15 mM of each

cobaloxime were dissolved in 0.5 ml CD30D:CDC13 (2:3) and the

reaction was followed by N.M.R. spectroscopy. This was repeated

using 0.075 mliIof each cobaloxime in 0.5 ml of "thesame solvent

system. No significant difference in rates in the two cases was

found for any of the cobaloximes mentioned above. The products

obtained from tredeuteromethanolysis of S -acetoxyethyll4-cyano-

pyridine)cobaloxime and S -acetoxyethyl(4-dimethylaminopyridine)-

cobaloxime were isolated. This was achieved, in each case, by

evaporating the reaction mixture to dryness, rapidly chromatographing

over silica gel using ethyl acetate as an eluent and recrystallising

from ethyl acetate-dichloromethane. Their spectroscopic and analytical

data are as follows:

S_(2H3)methOXyethYlbis(biacetYldiOximato)-4-cyanOpyridinato-

cobalt(IIl) -

N.M.R. 8.35T It, 2H) Co-CH2-CH2
7.86T (s, 12H) DMG methyls

6.99T (t, 2H) -CH2-CH2-OCD3
2.411" (d, 2H) pyridine C(2)-H

1.20T (a , 2H) pyridine C(3)-H

I.R. 3675 (w) , 2920 (b.w), 2220 (w) , 1612 (w),

-1 1559 (s), 1370 lb.m), 1215 lb.m), 1085lb.s),cm
975 lw), 837 lm)o
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Analysis % C H
Found 45.04 5.16

8_l2H3)methanoxyethYlbiSlbiacetYldioximato)-4-dimethYl-

aminopyridinatocobalt(III) ---

N.IVT.H.. 8.59T It, 2H) Co-CH2-CH2-

7.90T (s, 12H) DEG methyls

7.02T (s, 6H) N-(CH ):2 2
7.02T (t, 2H) -CH2-CII2-OCD3
3.63T (d, 2H) pyridine C(3)-H

2.03T (d, 2H) pyridine C(2)-II

LR. 3665 (m), 3590 lm), 3415 lvery b.m), 2916
lb.s), 2815 \m), 1729 lb.w), 1623 ls),
1535 lvery b.s), 1375 lb.m), 1185 (very b.w),
1075 lb.s), 1010 lw), 975 \w), 955 lw).

-1cm

Analysis ~~ C H
Found 45.69 6.46

Deuteromethanolysis of 8-acetoxy-8 ,8-dideuterioethyl-

\pyridine)cobaloxime --

120 mg \0.263riM)of this cobaloxime were dissolved in 1.1 ml

CD30D:CDC13 \3:2) in an NoM.R. tube and thermostatted at 37.8oC.

Spectra were recorded every hour for the first four hours and then
after Bh and 26h. After 40h the reaction mixture was evaporated to

dryness and the residue was recrystallised from ethyl acetate-
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dichloromethane giving 73.9 mg (655~') of the product pure by N.lE.R.

N.:M.R. 8.41T (broad s , -~2H) Co-CH2-CD2-

7.89T (s, 12H) DMGmethyls

6.94T \ broad s , ~2H) Co-CD2-CH2-

2.68T ( t , 2H) pyridine S -H

2.24T \ t ,1H) pyridine Y-H

1.41T (d ,2H) pyridine a-H
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