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Abstract

We study terminal 3-fold divisorial extractions σ : (E ⊂ Y ) → (C ⊂ X)

which extract a prime divisor E from a singular curve C centred at a point P in

a smooth 3-fold X. Given a presentation of the equations defining C, we give a

method for calculating the graded ring of Y explicitly by serial unprojection. We

compute some important examples and classify such extractions when the general

hyperplane section SX containing C has a Du Val singularity at (P ∈ SX) of type

A1, A2, D2k, E6, E7 or E8.
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Introduction

0.1 Outline of the thesis

0.1.1 Background

The MMP. The celebrated minimal model program (MMP) provides the natural

framework in which to study the birational geometry of complex algebraic varieties.

The ultimate goal of the MMP is to generalise as much of the Enriques–Kodaira

classification of algebraic surfaces to higher dimensions as possible. For instance the

MMP introduces divisorial contractions and flips as a higher dimensional analogue

of the Castelnuovo contraction theorem for −1-curves on surfaces.

Unlike the case of surfaces, it is not always possible to make a divisorial

contraction (or flip) and remain in the category of smooth varieties, even if Y was

smooth to begin with. Therefore we consider varieties with terminal singularities—

the smallest class of singularities that are preserved under these operations.

A rough outline of the MMP is given in §1.1, including a more detailed

discussion of terminal singularities, divisorial contractions and flips.

The Mori category. Whilst the abstract definitions of terminal singularities,

divisorial contractions, flips etc. have been used very successfully to set up the

general theory of the MMP, an explicit classification of these notions would also be

very desirable. For example Mori and Reid [R1] gave a classification of terminal 3-

fold singularities up to local analytic isomorphism which has been enormously useful

in studying the birational geometry of 3-folds. Unfortunately the Mori category

(roughly speaking, the category of terminal 3-folds) currently looks like the only

setting in which such a classification would be humanly possible, but even in this

case many details are yet to be worked out.

Mori flips. Because of the technical difficulties that arise from the introduction

of flips, these tend to have been studied in more detail than divisorial contractions.
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The two main papers on 3-fold flips are Mori [M1] and Kollár & Mori [KM] although

these contain many results relevant for studying divisorial contractions to curves too.

Reid’s general elephant conjecture for a flipping (or divisorial) contraction

σ : Y → X of terminal 3-folds states that a general elephant SY ∈ |−KY | and

SX = σ(SY ) both have at worst Du Val singularities and that σ : SY → SX is a

partial crepant resolution. One of the important results of [KM] is the proof of this

conjecture when σ is a contraction with an irreducible central fibre. This result

allows us to start classifying flips and divisorial contractions based on the ADE

classification for the Du Val singularities of SX .

Indeed the main result of [KM] is a classification of flips when SX has a type

D or type E Du Val singularity. Much work has also been done by Mori [M2],

Hacking, Tevelev & Urzúa [HTU] and Brown & Reid [BR4] to describe type A flips.

Type A flips are much less restricted than type D or E flips and they exist in large

infinite families.

Mori contractions. The classification of Mori contractions divides naturally into

two cases: we can contract a divisor either to a point or to a curve. The divisor-to-

point case is well understood and has essentially been completely classified through

the work of several people including Corti, Kawakita, Hayakawa and Kawamata.

The divisor-to-curve case behaves much more similarly to flipping contrac-

tions, as the central fibre of such a contraction is 1-dimensional. This case has been

studied by Tziolas [Tz1, Tz2, Tz3, Tz4] when the divisor is contracted to a smooth

curve, but divisorial contractions to singular curves remain largely unstudied.

In this thesis we start the study of these contractions by focussing on the

classification of Mori contractions σ : (E ⊂ Y ) → (C ⊂ X) that contract a prime

divisor E to a singular curve C contained in a smooth 3-fold X. Eventually the

techniques developed here will be able to be applied to the case when X is also

singular.

Further motivation

The Sarkisov program. One of the most successful applications of the classifi-

cation of terminal 3-fold singularities and terminal divisor-to-point contractions has

been in the 3-fold Sarkisov program. The Sarkisov program aims to go one step

further that the MMP by decomposing birational maps between Mori fibre spaces

into ‘elementary’ Sarkisov links, which are birational transformations made up of

flips, flops and divisorial contractions. A classification of divisor-to-curve contrac-

tions would therefore also prove immensely useful in studying the birational rigidity
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of Mori fibre spaces and their admissible Sarkisov links.

Although the MMP is directed and only ever seeks to perform contractions

on a variety Y , in applications of the Sarkisov program it is often useful to view a

Mori contraction σ : (E ⊂ Y ) → (Γ ⊂ X) as the extraction of the divisor E from

X and then to run a relative MMP on Y over X. Therefore it is both natural and

useful to approach this problem as the classification of the subvarieties (Γ ⊂ X)

which admit a Mori extraction.

0.1.2 Statement of the problem

Let X be a smooth quasi-projective 3-fold over C. Our ultimate aim is to classify

all curves (C ⊂ X) which admit a Mori extraction σ : (E ⊂ Y )→ (C ⊂ X).

It follows from Proposition 1.9 that if a Mori extraction from a curve (C ⊂ X)

exists then it is uniquely isomorphic to the blowup of of the symbolic power algebra

of the ideal sheaf IC/X ⊂ OX :

σ : Y ∼= ProjX
⊕
n≥0

I
[n]
C/X → X

If C is smooth or, more generally, a local complete intersection (lci) then this is

the ordinary blowup of C and has already been studied by Mori and Cutkosky

[C]. The interesting case is when C is a curve with a non-lci singularity at a point

(P ∈ C ⊂ X). Since the problem of classifying Mori extractions from C is local

at the point (P ∈ X), up to an analytic change of variables we may assume that

(P ∈ X) ∼= (0 ∈ C3) is affine 3-space.

Now we can classify the curves (C ⊂ X) admitting a Mori extraction by

constructing this variety Y (i.e. by calculating all the generators and relations of the

graded ring
⊕
I

[n]
C/X) and checking explicitly that it has only terminal singularities.

Our method for constructing Y

The general hypersurface section SX . We assume that the general elephant

conjecture holds in full generality, i.e. for Mori extractions with possibly reducible

central fibre. This implies that the general hypersurface section SX containing our

curve (P ∈ C ⊂ SX ⊂ X) has at worst a Du Val singularity at P . We can then study

extractions by dividing into cases according to the type of the Du Val singularity

(P ∈ SX).
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A normal form for (C ⊂ X). Given the type of the Du Val singularity (P ∈ SX),

in Proposition 3.2 we write down a normal form for the equations of the curve

(C ⊂ X), as the minors of a 2× 3 matrix.

Unprojection. We use these equations to write down the ordinary blowup

σ′ : (E′ ⊂ Y ′)→ (C ⊂ X)

of the curve C. Away from the point P the curve C is smooth and this birational

map is exactly the Mori extraction from C \ P . However this cannot be a Mori

extraction from C since the exceptional divisor E′ is reducible with a 2-dimensional

component Π appearing in the fibre above P . We aim to contract Π by using type

I unprojection (Π ⊂ Y ′) 99K (Q ∈ Y ′′) (see §2.2) to give a new variety Y ′′.

We now check the fibre of Y ′′ above P . If this fibre is 1-dimensional then

we have constructed the unique divisorial extraction of Proposition 1.9. We set

Y = Y ′′ and can check to see if Y has terminal singularities by using the equations

explicitly. If not, then the central fibre contains a divisor then we continue by trying

to unproject this divisor. This can lead to sequences of serial unprojections and the

construction of some very large graded rings.

0.1.3 Main results

The main results in this thesis come from applying this method to construct the

divisorial extraction Y from a curve (C ⊂ X) in several cases. In most examples

this approach seems give a useful method for constructing Y . However checking

whether Y has at worst terminal singularities directly from equations is hard.

The division into the ADE cases shows behaviour which, unsurprisingly, is

very similar to Mori flips. The exceptional cases, types D and E, are very restricted.

On the other hand, the type A case leads to many examples of families with com-

plicated but beautiful geometry involving the usual combinatorics from toric geom-

etry, namely Hirzebruch–Jung continued fraction expansions. These constructions

are very similar to diptych varieties [BR1].

Type A1 and A2 cases

In §3 we compute the easiest examples, when (P ∈ SX) is a Du Val singularity of

type A1 or A2. In particular we obtain the following results:
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Theorem 0.1 (See Theorem 3.1 for a more precise statement). Let SX be the general

hypersurface section through (P ∈ C) and consider C̃, the birational transform of C

under the minimal resolution µ : S̃X → SX .

1. If (P ∈ SX) is Du Val of type A1 then C̃ intersects the exceptional locus of

(P ∈ SX) with multiplicity 3.

2. If (P ∈ SX) is Du Val of type E6 then C̃ intersects the exceptional locus of

(P ∈ SX) with the multiplicities:

1 3
or

0 4

This theorem is proved by explicitly calculating the divisorial extraction Y

using the unprojection method explained above. We show that Y is terminal for

the curves described in the statement of the theorem and that, for other curves

(C ⊂ SX), either Y is not terminal or SX is not the most general hypersurface

section through C.

Exceptional cases

In §4 we give a classification of Mori extractions from a non-lci curve

(P ∈ C ⊂ SX ⊂ X)

in the cases where (P ∈ SX) is a Du Val singularity of type D2k, E6 or E7. (The

case E8 is trivially excluded as an E8 Du Val singularity is factorial, so there are no

non-lci curves (P ∈ C ⊂ SX).) In particular we obtain the following results:

Theorem 0.2 (See Theorem 4.1 for a more precise statement). Let SX be the

general hypersurface section through (P ∈ C).

1. If (P ∈ SX) is Du Val of type D2k or E7 then no Mori extraction from C

exists.

2. If (P ∈ SX) is Du Val of type E6 consider C̃, the birational transform of C

under the minimal resolution µ : S̃X → SX . Then C̃ intersects the exceptional

locus of (P ∈ SX) with the multiplicities:

1 2

or

1 1
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Again, this theorem is proved by explicitly calculating the divisorial extrac-

tion Y using the unprojection method explained above. In the first case we can

prove that Y has non-isolated singularities and hence is not terminal. In the second

case we find the two examples but manage to prove that in worse cases Y also has

non-terminal singularities.

Our explicit approach of using unprojection to calculate equations and inves-

tigating the singularities of Y directly could, in theory, be used to settle the D2k+1

case. However these calculations quickly become very complicated. We give a D5

example in §4.3.1 but we do not touch the general case.

The general type A cases

For n ≥ 3, the type An case appears to consist of many infinite families of Mori

extractions and the graded ring defining Y can be very complicated and exist in

arbitrarily large codimension. Therefore it will not be feasible to use our explicit

approach to obtain a complete description, although we can use it to compute very

many interesting examples. We do give a complete treatment in the case of one of

these families.

As explained in §6.1, a type A extraction σ : Y → X can also be described

as the Q-Gorenstein smoothing of a general hyperplane section. In other words, let

HX ∈ |mP | be a general hyperplane through (P ∈ HX) and let HY = σ−1(HX) be

the birational transform of HX on Y . Let Z = σ−1(P )red be the reduced central

fibre. Then we have the diagram:

(Z ⊂ HY ) (E ⊂ Y )

(P ∈ HX) (C ⊂ X)

σ

Q-smoothing

Main construction. We treat the case when Z ∼= P1 is irreducible and HY has

normal rational singularities with only one singularity of index r > 1, (Q ∈ HY )

which is a simple T -singularity. We classify such (Z ⊂ HY ) in Lemma 6.7 to get a

family of neighbourhoods depending on two integers: m ≥ 2 and k ≥ 1. Then in

Lemma 6.9 we determine a family of curves (C ⊂ SX), also depending on the same

m, k, given by the image of the divisorial contraction obtained by the Q-Gorenstein

smoothing of the corresponding (Z ⊂ HY ).

Then our main construction is to show that, for this family of curves (C ⊂
SX), the Mori extraction Y can be constructed explicitly by a sequence of serial

type I unprojections.
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Theorem 0.3. For the family of curves (C ⊂ SX) described in Lemma 6.9 the

divisorial extraction Y = ProjX
⊕
I

[n]
C/X is given by a Gorenstein ring that can be

constructed as a sequence of serial unprojections

(Y1 ⊃ D1) L99 · · · L99 (Yn−1 ⊃ Dn−1) L99 (Yn 3 Q) = Y

starting from the ordinary blowup Y1 = ProjX
⊕
InC/X of (C ⊂ X). At each stage

we can make a type I unprojection of the divisor (Dα ⊂ Yα) to get Yα+1.

The proof of this theorem is contained in §6.3.2 and an outline of the proof

can also be found there.

Cluster algebras. From computing lots of large examples of type A extractions it

is clear that there is a connection to cluster algebras, like that noticed by Hacking,

Tevelev & Urzúa [HTU] for type A flips following Mori [M2]. In §7 we start a

description in these terms. This looks like a promising way of treating the type A

case in general, without having to wade through large and complicated calculations.

These type A extractions should also fit into the more general framework of

Gross, Hacking & Keel’s [GHK] deformation of a cycle of 2-planes.

0.2 Notation

We always work over C, the field of complex numbers.

The usual situation In this thesis the usual situation will refer to the following

divisorial extraction σ : Y → X,

P C

HX

SX X

Z E

HY

SY

Y

σ

where the non-vertical arrows are inclusions of subvarieties and the vertical arrows

are all induced by σ.
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• X, Y are quasiprojective Q-factorial 3-folds over C. Usually X, Y will have at

worst terminal singularities and, unless otherwise stated, X will be smooth.

This is morphism is considered to be local at (P ∈ X).

• E is the exceptional divisor of σ, C = σ(E) is a curve with a singularity at P

and Z = σ−1(P )red is the reduced central fibre.

• SX is a general hypersurface section containing C, SY is the birational trans-

form of SX and SX , SY have at worst Du Val singularities. The restriction

σ : SY → SX is a partial crepant resolution.

• HX ∈ |mP | is a general hyperplane section through P and HY = σ−1(HX) is

the birational transform of HX to Y .

Intersection diagrams At several points we refer to a configuration (C ⊂ S) of

rational curves on a (singular) surface by using a diagram ∆ = ∆(C ⊂ S). This

diagram ∆ is the dual intersection graph of a simple normal crossings resolution

µ : (C̃ ⊂ S̃) → (C ⊂ S). In such a diagram, circles (•, ◦) denote complete rational

curves and diamonds (♦) denote non-complete curves. White nodes (◦,♦) denote

components of C and black nodes (•) denote µ-exceptional curves. A label on a

circle corresponding to a complete curve Γ refers to the negative self-intersection

number −(Γ ·Γ)
S̃

. Curves corresponding to unlabelled black (resp. white) nodes are

assumed to have self-intersection −2 (resp. −1). For example the diagram

3 5

represents a curve with four components, three complete curves and one non-complete

curve, meeting a cyclic quotient singularity 1
36(1, 13) in the prescribed way.

xiv



Chapter 1

The Mori Category

We start with a brief review of the minimal model program (MMP) and then progress

to a more detailed discussion of the Mori category—i.e. the category of normal

quasi-projective 3-dimensional algebraic varieties over C, with at worst terminal

Q-factorial singularities.

1.1 The minimal model program

One of the greatest and most influential mathematical achievements of the late

20th century has been the introduction of the MMP—which was established with

important contributions from Mori, Reid, Shokurov, Kawamata and Kollár amongst

many others. The aim of this far-reaching program is to extend the notion of a

minimal model, from the theory of algebraic surfaces, to higher dimensions. The

MMP is known to hold in a large number of circumstances, although some very

difficult outstanding problems (e.g. the abundance conjecture) remain when the

MMP is stated in its greatest generality.

Minimal models

The first step on the road to formulating the MMP is to make the correct gener-

alisation of a minimal model. A naive definition of a minimal surface is a smooth

projective surface X containing no −1-curves. This statement won’t generalise to

higher dimensions. However, for those surfaces which are not uniruled,1 an equiv-

alent statement is that KX is nef, i.e. that KX · C ≥ 0 for every effective curve

(C ⊂ X). We take this to be our definition of a minimal algebraic variety.

1If X is uniruled then we must consider Mori fibre spaces.
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Singularities

One important realisation, which is completely fundamental to the MMP, is that

minimal models can (indeed often must) be singular. Therefore singular varieties

play a crucial role in higher dimensional birational geometry, although this intro-

duces a number of problems which must be circumvented before we can proceed any

further.

First, in order to be able to talk about singular minimal models we must

be able to define the canonical divisor class KX . If X is a normal quasi-projective

variety then the smooth locus (X0 ⊂ X) has complement of codimension ≥ 2 so

taking the closure of KX0 inside X gives rise to a (Weil) divisor class on X, which

we define to be KX .

Second, we would like to be able to calculate intersection numbers on X,

particularly2 against KX . Therefore we must consider varieties with at worst Q-

factorial singularities.

Definition 1.1. A variety X is called Q-factorial if every Weil divisor (D ⊂ X) is

Q-Cartier, i.e. rD is a Cartier divisor for some r ∈ Z>0.

Third, by contracting KX -negative curves (those against which KX fails to

be nef—the analogue of contracting a −1-curve in this context) we can introduce

singularities, even X is smooth. Therefore we introduce the notion of terminal and

canonical singularities.

Definition 1.2 (Reid). A variety X is said to have terminal (resp. canonical)

singularities if for any (or equivalently, every) resolution of singularities µ : X̃ → X

we have

K
X̃

= µ∗KX +

n∑
i=1

aiE

where the sum runs over all the exceptional divisors of µ and ai ∈ Q>0 (resp.

ai ∈ Q≥0). The coefficient ai is called the discrepancy of the divisor Ei over X.

The importance of this definition is that a variety with at worst terminal

(or canonical) singularities still has at worst terminal or canonical singularities after

contracting a divisor swept out by KX -negative curves.

2One can work with more general cases where KX is not Q-Cartier by considering a “small
adjustment” ∆ such that KX + ∆ is a Q-Cartier divisor class, leading to the log MMP and the
notion of klt, lt, dlt, lc etc. singularities. For our purposes it will not be necessary to consider this.
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The Cone of curves

Mori’s great insight was to define the cone of curves NE(X) inside N1(X)R, the

space of 1-cycles of X. NE(X) is given by the closure of NE(X), the cone spanned

by classes of effective curves on X, and is the dual cone to the nef cone Nef(X) in

the dual vector space N1(X)R.

Through a series of key theorems it is proved that NE(X) is a locally poly-

hedral cone in the half-space {[C] : −KX ·C ≥ 0} ⊂ N1(X)R and genuinely a finite

polyhedral cone away from the boundary plane {[C] : −KX · C = 0}. Moreover

for each face F ⊂ NE(X) which lies strictly inside this half-space there is a unique

contraction morphism φF : X → X ′ such that φF ∗OX = OX′ and a curve (C ⊂ X)

is contracted by φF if and only if [C] ∈ F .

Minimal model program

These results now give the foundation for a potential algorithm to find a minimal

model of X.

1. If KX is nef then X is minimal, so stop. If not then pick a KX -negative

extremal ray ρ ⊂ NE(X).

2. The contraction morphism φρ : X → X ′ leads to a trichotomy:

(a) The curves contracted by φρ span the whole of X, so that dimX >

dimX ′. This is called a fibre contraction and X is called a Mori fibre

space over X ′. We take take this fibration X/X ′ to be our ‘minimal

model’ and stop.

(b) The curves contracted by φρ span a subvariety (Z ⊂ X) of codimension

1, i.e. Z is a divisor. This is called a divisorial contraction. In this case

X ′ has Q-factorial terminal singularities, so we replace X with X ′ and

go back to step 1.

(c) The curves contracted by φρ span a subvariety (Z ⊂ X) of codimension

2 or smaller. This is called a small (or flipping) contraction. In this case

X ′ is no longer Q-factorial and we leave the category we were working in.

We look for a flip f : X 99K X+, such that X+ has Q-factorial, terminal

singularities, the exceptional locus of X+ over X ′ has codimension ≥ 2

and KX+ is relatively ample over X ′. Then we replace X with X+ and

return to step 1.
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The two main difficulties with this ‘algorithm’ lie in step 2(c). The existence of the

flip X+ is not clear and neither is it obvious that this process stops. We can only

have finitely many divisorial contractions (since the Picard rank of X drops under

a divisorial contraction) however termination of flips is still an open problem.3

In this thesis we are primarily interested in 3-folds, in which case the MMP

is known to work. For 3-folds the termination of flips was proved by Shokurov and

the existence of flips was proved by Mori [M1].

1.2 Du Val singularities

The Du Val singularities are a very famous class of surface singularities which turn

out to play an important role in the geometry of terminal 3-folds. They can be

defined in many different equivalent ways, some of which are listed here.

Definition 1.3. Let (P ∈ S) be the germ of a surface singularity. Then (P ∈ S) is

called a Du Val singularity if it is given, up to local analytic isomorphism, by one

of the following equivalent conditions.

1. A hypersurface singularity
(
0 ∈ V (f) ⊂ C3

)
, where f is one of the equations

of Table 1.1, given by an ADE classification.

2. A quotient singularity
(
0 ∈ C2/G = SpecC[u, v]G

)
, where G ⊂ SL(2,C) is a

finite subgroup acting on C2.

3. A rational double point, i.e. the minimal resolution

µ : (E ⊂ S̃)→ (P ∈ S)

has exceptional locus E =
⋃
Ei a tree of −2-curves with intersection graph

given by the corresponding ADE Dynkin diagram.

4. A canonical surface singularity. For a surface singularity this is equivalent to

(P ∈ S) having a crepant resolution, i.e. K
S̃

= µ∗KS .

5. A simple hypersurface singularity, i.e.
(
0 ∈ V (f) ⊂ C3

)
such that there exist

only finitely many ideals I ⊂ OC3 with f ∈ I2.

See for example [R5] for details of the equivalence of conditions (1)-(4) and

[Y] for details of (5).

3Indeed, to prove that the MMP works in higher dimensions it is sufficient to prove that flips
terminate, since Hacon & McKernan have proved that the existence of flips in dimension n + 1
follows from the termination of flips in dimension n.
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Table 1.1: Types of Du Val singularities

Type Group G Equation f Dynkin diagram

An cyclic x2 + y2 + zn+1
•1 •1 · · · •1 •1

(n nodes)

Dn binary dihedral x2 + y2z + zn−1

•1 •2 · · · •2
•1

•1(n nodes)

E6 binary tetrahedral x2 + y3 + z4 •1 •2 • 3 •2 •1
•2

E7 binary octahedral x2 + y3 + yz3 •1 •2 •3 • 4 •3 •2
•2

E8 binary isocahedral x2 + y3 + z5 •2 •3 •4 •5 • 6 •4 •2
•3

The numbers decorating the nodes of the Dynkin diagrams in Table 1.1 have

several interpretations. For example, each node corresponds to the isomorphism

class of a nontrivial irreducible representation of G with dimension equal to the

label. Another way these numbers arise is as the multiplicities of the components

Ei of E in the fundamental cycle4 (Σ ⊂ S̃).

1.3 Terminal 3-fold singularities

One of the most useful lists at our disposal is Mori’s list of 3-fold terminal sin-

gularities (see [R1] for a nice introduction). Terminal singularities always exist

in codimension ≥ 3 so in the case of 3-folds they are all isolated singular points

(P ∈ X). They are classified according to the index of the singularity—the least

r ∈ Z>0 such that rD is Cartier, given any Weil divisor D passing through (P ∈ X).

As shown by Reid, the index 1 (or Gorenstein) terminal singularities are

exactly the compound Du Val (cDV) singularities, i.e. isolated hypersurface singu-

larities of the form

0 ∈
(
f(x, y, z) + tg(x, y, z, t) = 0

)
⊂ C4

x,y,z,t

4That is, the unique minimal effective 1-cycle such that Σ ·Ei ≤ 0 for every component Ei of E.
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where f is the equation of a Du Val singularity.

The other cases are the non-Gorenstein singularities. These can be described

as cyclic quotients of cDV points by a cyclic covering trick described in [R1] §3.6.

For example, a singularity of type cA/r denotes the quotient of a type cA singularity

(
xy + f(zr, t) = 0

)
⊂ C4

x,y,z,t /
1
r (a, r − a, 1, 0)

where 1
r (a, r − a, 1, 0) denotes the µr group action (x, y, z, t) 7→ (εax, εr−ay, εz, t),

for a primitive rth root of unity ε. The general elephant of this singularity is given

by an r-to-1 covering An−1 → Arn−1. A full list can be found in [KM] p. 541.

1.4 Extremal neighbourhoods

We want to study the kind of contraction morphism φρ : Y → X that can arise in

the Mori category from the contraction of an extremal ray ρ ⊂ NE(Y ), as in §1.1.

We choose to study this question locally on X which leads us to the notion of a

3-fold neighbourhood.

There are two landmark papers on 3-fold flipping contractions: Mori [M1]

and Kollár & Mori [KM]. Although the primary focus of both these papers is on

flips, much of the general theory that they establish for 3-fold neighbourhoods is

relevant for divisorial contractions as well.

Definition 1.4. A 3-fold neighbourhood is a proper birational morphism

σ : (Z ⊂ Y )→ (P ∈ X)

such that

1. X and Y are 3-dimensional quasiprojective Q-factorial (analytic or) algebraic

varieties,

2. −KY is a σ-ample Q-Cartier divisor and

3. Z = σ−1(P )red, the reduced central fibre, is either a complete curve (not

necessarily irreducible) or a prime divisor.

Technically speaking we should really consider Y (resp.X) as a formal scheme

along Z (resp. P ), however in practice we simply assume that they are affine, possibly

after an analytic change of variables.5 In particular, as we are primarily interested

5This is justified since, in any of our later calculations of a divisorial extraction σ : Y → X
from a curve (P ∈ C ⊂ X), the equations of Y are completely determined (up to a choice of some
coefficients) by the image of the equations of C in OX/mNP , for large N .
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in this thesis with the case where X is smooth, we often implicitly assume that

(P ∈ X) ∼= (0 ∈ C3).

As in §1.1, if dimY > dimX, then the contraction is a fibre contraction

and Y is a Mori fibre space over X. If dimY = dimX then σ is either a flipping

contraction, if the exceptional locus of σ is 1-dimensional, or a divisorial contraction,

if σ contracts an exceptional divisor. From now on we assume that we are in either

the divisorial or the flipping case.

We write SY for a general member of |−KY | and let SX = σ(SY ) ∈ |−KX |.
Also write HX ∈ |mP | for a general hyperplane passing through (P ∈ X) and

HY = σ−1HX for the birational transform of HX to Y .

Definition 1.5. We call a neighbourhood

1. extremal if all the components of Z lie in the same ray of the Mori cone

ρ ⊆ NE(Y ),

2. irreducible if the central fibre Z is irreducible,

3. normal (resp. non-normal) if HY has normal (resp. non-normal) singularities,

4. non-semistable (resp. semistable) if σ : SY → SX is (resp. is not) an isomor-

phism.

Remark 1.6. Note that there are some differences over the use of these terms in

the literature. For instance, Tziolas’ [Tz3] definition of an ‘extremal’ neighbour-

hood implicitly assumes that the central fibre is irreducible, although examples of

reducible extremal neighbourhoods certainly exist, even when C is a smooth curve,

see e.g. [KM] (4.7.3.2.1), (4.10.2).

For reducible flipping contractions one can factorise σ : Y → X analytically

into irreducible flipping contractions (see [K2] Proposition 8.4). However this is

not always possible for divisorial contractions so we should also study reducible

neighbourhoods. It is my hope that the techniques in this thesis will eventually be

able to describe all (reducible) flipping and divisorial neighbourhoods without the

need to factor analytically.

1.4.1 Divisorial contractions

Spelling out Definition 1.4 in the case of divisorial contractions we have the following.

Definition 1.7. A projective birational morphism σ : Y → X is called a divisorial

contraction if
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1. X and Y are quasiprojective Q-factorial (analytic or) algebraic varieties,

2. there exists a unique prime divisor E on Y such that Γ = σ(E) has codimension

at least 2 in X,

3. σ is an isomorphism outside of E,

4. −KY is σ-ample and the relative Picard number is ρ(Y/X) = 1.

Given (Γ ⊂ X) we will also call any such σ : Y → X a divisorial extraction from Γ.

Moreover, if both X and Y have terminal singularities, so that this is a map in the

Mori category of terminal 3-folds, then we call σ a Mori contraction/extraction.

Known results

For 3-folds, divisorial contractions clearly fall into two cases:

1. Γ = P is a point (equivalently the central fibre Z is a divisor),

2. Γ = (P ∈ C) is a curve (equivalently Z is a curve).

The first case has been studied intensively and is completely classified if

(P ∈ X) is a non-Gorenstein singularity. This follows from the work of a number of

people—Corti, Kawakita, Hayakawa and Kawamata amongst others.

In particular Kawamata [K1] classified the case when the point (P ∈ X)

is a terminal cyclic quotient singularity. In this case, there is a unique divisorial

extraction given by a weighted blowup of the point P . In particular, if there exists a

Mori extraction to a curve (C ⊂ X), then C cannot pass through any cyclic quotient

points on X.

In either case, Mori and Cutkosky classify Mori contractions when Y is

Gorenstein. In particular, Cutkosky’s result for a curve C is the following.

Theorem 1.8 (Cutkosky [C]). Suppose σ : (E ⊂ Y )→ (C ⊂ X) is a Mori contrac-

tion where Y has at worst Gorenstein (i.e. index 1) singularities and C is a curve.

Then

1. C is a reduced, irreducible, local complete intersection curve in X,

2. X is smooth along C,

3. σ is isomorphic to the blowup of the ideal sheaf IC/X ⊂ OX ,

4. Y only has cA type singularities and
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5. a general hypersurface section (C ⊂ SX ⊂ X) is smooth.

In the second case, Tziolas [Tz1, Tz2, Tz3, Tz4] classified irreducible Mori

extractions when C is a smooth curve passing through a cDV point (P ∈ X).

1.5 The general elephant conjecture

A general elephant SY ∈ |−KY | (i.e. a general anticanonical divisor) which is not

too singular automatically has a trivial canonical class by the adjunction formula.

Indeed Reid’s general elephant conjecture states that, given a terminal (divisorial

or flipping) contraction σ : Y → X, the general elephant SY ∈ |−KY | and SX =

σ(SY ) ∈ |−KX | should have at worst Du Val singularities.6 Moreover, the restriction

σ : SY → SX should be a partial crepant resolution.

This is proved by Kollár & Mori [KM] for irreducible extremal neighbour-

hoods (i.e. when the central fibre Z is irreducible). In most of the examples con-

structed in this thesis Z is reducible.

Note that C is contained in SX , although SX may not be the most general

hypersurface section containing C. The fact that (P ∈ SX) is at worst a Du Val

singularity implies that a general hypersurface section also has at worst a Du Val

singularity at P . The construction of the divisorial extraction σ : Y → X (i.e.

the equations and singularities of Y ) depends upon a general hypersurface section

rather than an anticanonical section. Therefore we assume that SX is the general

hypersurface section through C and that SY is the birational transform of SX on

Y . Even though it is an abuse of terminology, we will call this a general elephant.

Through out this thesis we will therefore assume that we are in the setting

of ‘the usual situation’ §0.2, considering an inclusion of varieties

(P ∈ C ⊂ SX ⊂ X)

where (P ∈ C) is a (non-lci) curve singularity, (P ∈ SX) is a general Du Val

hypersurface section and (P ∈ X) ∼= (0 ∈ C3) is smooth.

1.6 Uniqueness of Mori extractions

Let I ⊂ OCn be a prime ideal in a polynomial ring. Recall that the nth symbolic

power I [n] of I is defined to be the I-primary component of In. By a theorem of

Zariski and Nagata,7 if (Z = V (I) ⊂ Cn) then I [n] can be defined by the equivalent

6Note that it is SY that is general. If σ is divisorial then SX is not necessarily general.
7Which holds over any field k, algebraically closed of characteristic zero, not just C.
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statement

I [n] = {f ∈ OCn : ordZ(f) ≥ n}

where ordZ(f) is the order of vanishing of f along Z. The symbolic power algebra

of I is defined to be the graded OCn-algebra
⊕

n≥0 I
[n].

Proposition 1.9 (cf. [KM] Theorem 4.9, [Tz1] Proposition 1.2). Suppose that

σ : Y → X is a divisorial contraction that contracts a divisor E to a curve C, that

X and Y are normal and that X has isolated singularities. Suppose further that

σ is the blowup over the generic point of C in X and that −E is σ-ample. Then

σ : Y → X is uniquely determined and isomorphic to the blowup of the symbolic

power algebra of IC/X :

SymBlC : ProjX
⊕
n≥0

I
[n]
C/X → X

Proof. Pick a relatively ample Cartier divisor class D on Y which must be a rational

multiple of OY (−E). Then

Y = ProjX
⊕
n≥0

H0
(
Y,OY (nD)

)
and, up to truncation, this is the ring

⊕
H0
(
Y,OY (−nE)

)
.

Now the result follows from the claim that σ∗OY (−nE) is the nth symbolic

power of IC/X . This is clear at the generic point of C, since we assume it is just

the blowup there. But σ∗OY = OX is normal and OY (−nE) ⊂ OY is the ideal of

functions vanishing n times on E outside of σ−1(P ). So OX/σ∗OY (−nE) has no

associated primes other than C and this proves the claim.

Remark 1.10. Suppose that σ : Y → X is a terminal divisorial contraction. By

Mori’s result, Y is the blowup over the generic point of C and we are in the setting

of the theorem. Therefore a terminal contraction is unique if it exists, although

there may be many more canonical contractions to the same curve.

Remark 1.11. Of course, given a general curve C in a 3-fold X there is no reason

that we should expect the symbolic power algebra
⊕
I

[n]
C/X to be finitely generated.

Indeed, Goto, Nishida & Watanabe [GNW] prove that the symbolic power algebra

of the monomial curve C(25,29,72) ⊂ C3 parameterised by (t25, t29, t72) is not finitely

generated.

Here the existence of a Du Val general elephant is crucial. Our curve C is

a Q-Cartier divisor in SX , so there is an integer r such that (rC ⊂ SX ⊂ X) is
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lci. Therefore the rth Veronese subring
⊕

n≥0 I
[nr]
C/X is finitely generated. But our

original ring
⊕
I

[n]
C/X is integral over this and, in particular, finitely generated.

From Proposition 1.9, it is easy to see that Cutkosky’s result, Theorem 1.8,

holds for divisorial extractions, as well as contractions.

Lemma 1.12. Suppose that C is a local complete intersection curve in a 3-fold

X and that X is smooth along C. Then a Mori extraction exists iff C is reduced,

irreducible and a general hypersurface section (C ⊂ SX) is smooth.

Proof. By Proposition 1.9, if a Mori extraction σ : Y → X exists then σ is isomorphic

to the symbolic blowup of the ideal IC/X . As C is lci then, locally at a point

(P ∈ C ⊂ X), C is defined by two equations f, g. Hence Y is given by

Y = {fη − gξ = 0} ⊂ X × P1
(η:ξ) → X

If both f, g ∈ m2
P then at any point in the central fibre (Q ∈ Z) the equation defining

Y is contained in m2
Q. Therefore Y is singular along Z and hence not terminal. So

at least one of f, g is the equation of a smooth hypersurface, say f ∈ mP \m2
P . Now

Y is smooth along Z except for a possible cA type singularity at the point Pξ ∈ Y ,

where all variables except ξ vanish.
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Chapter 2

Graded rings

As we have seen, to study Mori Theory explicitly we must construct graded rings—in

our case the graded symbolic power algebra of a curve C in a 3-fold X.

Remark 2.1. We make the following caveats about graded rings:

1. Unlike some authors we do not require a graded ring R =
⊕

i≥0Ri to be gen-

erated over R0 by R1. Instead our graded rings will define varieties embedded

in weighted projective space. The main advantage of this being that the codi-

mension (and hence the number of equations) of the ring remains small.

2. The base of the ring will not necessarily be a field, i.e. we don’t assume that

R0 = C. Usually the rings we will consider are defined over R0 = OX the

coordinate ring of our smooth 3-fold X, i.e. OX = C[x, y, z].

3. Graded rings will Z-graded, but not necessarily always in degrees ≥ 0. See

§2.3 for more discussion of this.

2.1 Gorenstein rings

Gorenstein rings appear as a large number of examples of explicit constructions

coming from Mori theory. For example, if X is a projective Q-Fano 3-fold with at

worst terminal Q-factorial singularities and Picard rank 1, the anticanonical ring⊕
n≥0H

0(X,−nKX) is known to be Gorenstein.

Let I ⊂ O be an ideal in a regular local ring and consider the ring R = O/I.

Recall that R is called Cohen-Macaulay if it has a minimal free resolution

R← R0 ← R1 ← · · · ← Rc−1 ← Rc ← 0
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of length c = codimO I. The module Rc is called a canonical module for R and is

usually denoted ωR. If ωR = O(−k) for some k ∈ Z then we call R Gorenstein. In

particular, there is a pairing on this resolution Ri ∼= R∨c−i(−k) coming from Serre

duality for ωR. Amongst other things, this causes the numerator of the Hilbert

series of R to have palindromic symmetry.

Remark 2.2. For a local Cohen-Macaulay ring R, a canonical module ωR satisfies

the condition that there exists a non-zerodivisor x ∈ R such that ωR/xωR is a

canonical module for R/(x). Therefore another way of defining a Gorenstein ring

is to make the definition inductive, as in [E2] §21.3, i.e. R is Gorenstein if there

exists a non-zerodivisor x ∈ R such that R/(x) is Gorenstein (with the appropriate

definition for rings of dimension 0).

Remark 2.3. Although we have only defined Gorenstein local rings, the definition

follows over to graded rings by the slogan “graded rings are a particular case of local

rings.” See the discussion in [PaR] §2.4.

2.1.1 Gorenstein rings in low codimension

There are nice structure theorems for Gorenstein rings of codimension ≤ 3. Serre

proved that Gorenstein rings in codimension ≤ 2 are complete intersections. In

codimension 3 we have the Buchsbaum–Eisenbud theorem [BE], which states that,

for a Gorenstein ring R = O/I of codimension 3, the equations of R are given by

Pfaffians. In particular, as R is Gorenstein, we have a resolution of the form

R← O ← O2k+1 φ←− O2k+1 ← O ← 0

and φ is given by a skew-symmetric (2k+1)×(2k+1) matrix, by the pairing coming

from Serre duality. Then the ideal I is generated by the 2k × 2k Pfaffians of φ.

In practical cases it is usually always possible to take 5×5 matrices, in which

case the 4× 4 Pfaffians of φ are the five equations given by:

φ =


a12 a13 a14 a15

a23 a24 a25

a34 a35

a45


Pf1(φ) = a23a45 − a24a35 + a25a34

−Pf2(φ) = a13a45 − a14a35 + a15a34

Pf3(φ) = a12a45 − a14a25 + a15a24

−Pf4(φ) = a12a35 − a13a25 + a15a23

Pf5(φ) = a12a34 − a13a24 + a14a23

Here Pfi(φ) is the Pfaffian of the 4× 4 submatrix obtained by deleting the ith row
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and column of φ.1

The structure of Gorenstein rings in codimension 4 and higher is an intriguing

open problem.

2.1.2 The hyperplane section principle

As we have seen in Remark 2.2, Gorenstein rings enjoy good properties under taking

hyperplane sections.

Let R be a Gorenstein (or even just Cohen-Macaulay) Z≥0-graded ring and

h ∈ R a regular homogeneous element of positive degree. We write RH = R/(h) for

the graded ring associated to the hyperplane section H = V (h). Suppose we know

a presentation of RH with generators and relations:

RH = C[x1, . . . , xm]/(f1, . . . , fn)

Then the generators and relations lift to give a presentation of R

R = C[h, x1, . . . , xm]/(f1 + hg1, . . . , fn + hgn)

for some choice of g1, . . . , gn ∈ R. Similarly all the (higher) syzygies also lift. In

particular the generators, relations and syzygies lift to generators, relations and

syzygies in the same degrees.

In Lemma 6.4 we view this result backwards, giving us a guiding principle

to make sure our calculations work correctly.

2.2 Unprojection

It was studying Gorenstein rings in codimension 4 that lead Kustin & Miller to

consider unprojection. Unprojection is, in their words, a method for ‘constructing

big Gorenstein ideals from small ones.’ Later, Papadakis & Reid [PaR] redeveloped

unprojection into a more general theory suitable for algebraic geometry. Whilst

not successful in settling the question of the structure of Gorenstein rings in higher

codimension, unprojection has become an indispensable tool in the construction of

graded rings.

The general philosophy of unprojection is to start working explicitly with

Gorenstein rings in low codimension and successively adjoin new variables with new

1For brevity, we omit the diagonal of zeroes and the antisymmetry of φ and all other antisym-
metric matrices appearing in this thesis.
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equations. For more details on unprojection and Tom & Jerry, see e.g. [PaR, BKR,

R4].

2.2.1 General theory

In the general setting we consider a codimension 1 subscheme (D ⊂ X) defined

by an ideal ID ⊂ OX in a Gorenstein local ring OX . The idea is to write down

rational functions with poles along D and adjoin these functions to OX , along with

the relations that they satisfy.

To do this, consider the long exact sequence that arises from applying the

functor Hom( · , ωX) to the short exact sequence:

0→ ID → OX → OD → 0

From the adjunction formula ωD = Ext1(OD, ωX), so this gives:

0→ ωX → Hom(ID, ωX)→ ωD → 0

As OX is Gorenstein we have an identification OX ∼= ωX and therefore elements of

Hom(ID, ωX) can be viewed as rational functions on X with poles on D. Therefore

we calculate a basis of Hom(ID, ωX) and the relations that these elements satisfy

over OX . Adjoining these to our ring gives the unprojection of (D ⊂ X).

In a simple case, when D is also Gorenstein, we can write down just one

rational function s with a simple pole on D. As described in [PaR], if OX , OD
are both Gorenstein then ωX , ωD are both 1-dimensional and Hom(ID, ωX) is 2-

dimensional. We take s to be the preimage of a basis element spanning ωD.

Definition 2.4. If X = SpecOX is a Gorenstein local scheme and (D ⊂ X) a

codimension 1 Gorenstein subscheme then the unprojection of (D ⊂ X) is the variety

Y = SpecOY given by the graph of s, i.e. OY = OX [s] where s is the element

described above.

In this special case, when D is also Gorenstein, this is called a Type I un-

projection (or Kustin–Miller unprojection). A good thing that happens for type I

unprojection is that this unprojection ring OY = OX [s] is also Gorenstein, as proved

in [PaR] Theorem 1.5.

Theorem 2.5 ([PaR] Theorem 1.5). The element s ∈ OY is a non-zerodivisor and

OY = OX [s] is a Gorenstein ring.
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Although the definition of unprojection has been given for local rings and lo-

cal schemes, this theory immediately applies to graded rings and projective schemes

by Remark 2.3.

Unprojection can be used in much worse cases, for instance when D non-

normal or X is only Cohen-Macaulay, however in this thesis we will only see Type

I unprojections.

2.2.2 Type I unprojection

For a general type I unprojection the relations involving the unprojection variable

s can be calculated systematically, e.g. by using the computer, but in practice we

can usually compute them by ad hoc methods. Indeed, we use the following trick

repeatedly for calculating unprojections throughout this thesis.

Example 2.6 (Cramer’s rule trick). Consider a codimension 1 subscheme (D ⊂ X)

given as the inclusion of a codimension 3 complete intersection inside a codimension

2 complete intersection. The equations of X must be contained in the ideal ID =

(x, y, z) where the three functions x, y, z ∈ OX are the defining equations of D.

Therefore we can write the equations of X as

(
a b c

d e f

) x

−y
z

 = 0

with the minus sign chosen for convenience.

Cramer’s rule, from linear algebra, states that any n× (n+ 1) matrix anni-

hilates the associated vector of its n×n minors. In our case it follows that our 2×3

matrix annihilates both x, y, z and the vector of its own minors. Therefore we can

adjoin a new variable s corresponding to the rational function given by the ratio of

these two vectors. In other words s is the rational function

s =
bf − ce
x

=
af − cd

y
=
ae− bd

z

which has a simple pole on D. This gives a Gorenstein ring in codimension 3 defined

by five equations which, from the Buchsbaum–Eisenbud theorem in §2.1.1, can be
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written as the maximal Pfaffians of the matrix:
s a b c

d e f

z y

x


Tom & Jerry

Suppose that X is given by the maximal Pfaffians of a 5 × 5 skew matrix M . In

particular X is a Gorenstein variety in codimension 3. In a similar vein to Example

2.6, we might ask how to unproject a (reduced) plane divisor (D ⊂ X) given as a

complete intersection ID = (x, y, z, t) of codimension 4. It turns out that there are

now two distinct ways of embedding D in X, called Tom & Jerry, which lead to two

different types of unprojection. As conditions on the matrix M , these are given by:

1. Tomi—all entries of M except the ith row and column belong to ID,

2. Jerij—all entries of M in the ith and jth rows and columns belong to ID.

e.g. Tom1


∗ ∗ ∗ ∗

ID ID ID

ID ID

ID

 and Jer45


∗ ∗ ID ID

∗ ID ID

ID ID

ID


where entries marked ‘ID’ belong to ID and entries marked ‘∗’ are arbitrary.

Remark 2.7. Tom & Jerry are useful for describing unprojection ideals in codimen-

sion 3 Gorenstein rings, however in our examples we need to consider unprojection

divisors which are not necessarily reduced. In more complicated examples than the

ones constructed in this thesis Tom & Jerry won’t always work (see Remark 6.14(3)).

Serial unprojection

In typical cases (D ⊂ X), a type I unprojection divisor in a 3-fold X, passes through

only isolated ordinary nodal singularities—the points at which D fails to be Q-

Cartier. Then the unprojection of D factors as the blowup of the (Weil) divisor D,

making a small resolution of the nodes, followed by contraction of the exceptional

(Cartier) divisor.

If D passes through a line of ordinary nodes then the unprojection

φD : (D ⊂ X) 99K (Q ∈ X ′)
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can extract a whole φ−1
D -exceptional divisor (D′ ⊂ X ′) above this line of nodes.

Now, by Theorem 2.5, OX′ is Gorenstein ring so we can try to unproject (D′ ⊂ X ′).
This can lead to long chains of serial type I unprojections, as in the case of diptych

varieties [BR1]. For examples of serial unprojection in this thesis see Big example 1

§6.3.1 or Big example 2 §6.4.2.

2.3 C∗-covers of Mori contractions

Let R =
⊕

n∈ZRn be a Z-graded ring and let R+ =
⊕

n≥0Rn (resp. R− =
⊕

n≤0Rn)

be the positively (resp. negatively) graded subring of R. We cannot define Proj(R)

in the usual way.2 Instead, the view of [R2] is to take the Proj of the Z-graded ring

R, not as a scheme, but as a diagram.

Y − = ProjX R
− Y + = ProjX R

+

X = SpecR0

In other words, this is a variation of GIT quotients for the action of C∗ on A = SpecR

with respect to the characters −1, 0 and 1.

The idea proposed by Reid [R2] is to study Mori flips and contractions by

writing them in such a way, as the Proj of a Z-graded ring R. Then by a result

from folklore, [R2] Revelation 3.3.2, the cover A = SpecR is an affine Gorenstein

4-fold3 and we should study flips by studying A. The purpose of Brown & Reid’s

diptych varieties [BR1, BR4] are to act as key varieties for some types of Mori flips.

A diptych variety V is a slightly fatter version of A equipped with a large torus

action. Cutting down V by regular sections and taking the quotient with respect

to different characters of this torus we recover whole families of Mori flips and Mori

contractions.

Mori contractions

In our case of a Mori extraction from (C ⊂ X), the relevant Z-graded ring is the

extended symbolic power algebra. This is the ring R given by the ordinary symbolic

power algebra
⊕
I

[n]
C/X in non-negative degrees and by a single generator ι in degree

−1, corresponding to the inclusion ι : IC/X ↪→ OX . Then, since X ∼= ProjX OX [ι],

there is only one nontrivial side to the diagram,

2For instance R+ (the irrelevant ideal of a Z≥0-graded ring) is no longer an ideal.
3Brown proved that A is smooth and quasi-Gorenstein in an appendix to his thesis.
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Y X

X

where Y = ProjX
⊕
I

[n]
C/X as in Proposition 1.9.

Our constructions are Gorenstein rings by Lemma 6.6, and ι appears in R

as a simple Type I Gorenstein (un)projection variable. Therefore, to construct Y

given R, we can project out ι and take the Proj with respect to the obvious grading

on
⊕
I

[n]
C/X .
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Chapter 3

First examples

This chapter contains the first examples of the symbolic blowup ring of Proposition

1.9 in the easiest cases, when (P ∈ SX) is a Du Val singularity of type A1 or A2.

The results of §3.3-3.4 are summed up in the following theorem:

Theorem 3.1. Suppose that we have (P ∈ C ⊂ SX ⊂ X) as in the usual situation

§0.2. In particular SX is the general hypersurface section containing C. Fix a

minimal resolution µ : (E ⊂ S̃X)→ (P ∈ SX) and let C̃ be the birational transform

of C on S̃X .

1. Suppose that SX is of type A1. Then the symbolic blowup of C has a codimen-

sion 3 model:

σ : Y ⊂ X × P(1, 1, 1, 2)→ X

In particular, Y has index 2 and
⊕
I

[n]
C/X is generated in degrees ≤ 2.

Moreover Y has a 1
2(1, 1, 1) quotient singularity and is terminal elsewhere if

and only if C̃ intersects E with multiplicity 3.

2. Suppose that SX is of type A2. Then the symbolic blowup of C has a codimen-

sion 4 model:

σ : Y ⊂ X × P(1, 1, 1, 2, 3)→ X

In particular, Y has index 3 and
⊕
I

[n]
C/X is generated in degrees ≤ 3.

Moreover Y has a 1
3(1, 1, 2) quotient singularity and is terminal elsewhere if

and only if C̃ intersects E = E1 ∪ E2 with multiplicity (3, 1), (1, 3), (4, 0) or

(0, 4).

In each other case of a curve (C ⊂ SX) contained in an A1 or A2 Du Val

singularity, either C is contained in a less singular hypersurface (and hence SX is

not general) or Y has non-terminal singularities.
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In order to prove this we first need Proposition 3.2 which gives a normal

form for the equations of a curve (C ⊂ SX ⊂ X), depending on the type of the Du

Val singularity (P ∈ SX). We then compute the equations of Y using unprojection

and investigate whether Y is terminal by checking the local type of the singularities

explicitly.

3.1 Curves in Du Val singularities

Let C be a reduced and irreducible curve passing through a Du Val singularity

(P ∈ S). Consider S as simultaneously being both a hypersurface singularity(
0 ∈ V (f) ⊂ C3

)
, as in Definition 1.3(1), and a group quotient π : C2 → C2/G,

as in Definition 1.3(2). Write S = Spec OS where

OS = OX/(f) = (OC2)G, OX = C[x, y, z], OC2 = C[u, v].

The aim of this section is to describe the equations of (C ⊂ X) in terms of some

data associated to the equation f and the group G.

A 1-dimensional representation ρ of G

Consider
(
Γ := π−1(C) ⊂ C2

)
, the preimage of C under the quotient map π. Then

Γ is a reduced (but possibly reducible) G-invariant curve, giving a diagram:

Γ C2
u,v

C S

π

P ∈

As such, Γ is defined by a single equation
(
V (γ) ⊂ C2

)
and γ(u, v) is called the

orbifold equation of C. As Γ is G-invariant the equation γ must be G-semi-invariant,

so there is a 1-dimensional representation ρ : G→ C× such that:

gγ(u, v) = ρ(g)γ(u, v), ∀g ∈ G

Moreover, C is a Cartier divisor (and hence lci in X) if and only if ρ is the trivial

representation. Therefore let us restrict attention to nontrivial ρ.

As can be seen from the numbers adorning the Dynkin diagrams in Table

1.1, there are n nontrivial 1-dimensional representations if S is type An, three if

type Dn, two if type E6, one if type E7 and none if type E8. These possibilities are

listed later on in Table 3.1.

21



A matrix factorisation φ of f

Let Irr(G) be the set of irreducible G-representations ρ : G → GL(Vρ). As is well

known from the McKay correspondence, the ring OC2 has a canonical decomposition

as a direct sum of OS-modules

OC2 =
⊕

ρ∈Irr(G)

Mρ

where Mρ = Vρ⊗Hom(Vρ,OC2)G. In particular if dim ρ = 1 then we see that Mρ is

the unique irreducible summand of OC2 of ρ semi-invariants:

Mρ =
{
h(u, v) ∈ OC2 : gh = ρ(g)h

}
This is a rank 1 maximal Cohen-Macaulay OS-module generated by two elements

at P .

As shown by Eisenbud [E1], such a module over the ring of a hypersurface

singularity has a minimal free resolution which is 2-periodic, i.e. there is a resolution

Mρ ← O⊕2
S

φ←− O⊕2
S

ψ←− O⊕2
S

φ←− · · ·

where φ and ψ are matrices over OX satisfying:

φψ = ψφ = f

(
1 0

0 1

)

The pair of matrices (φ, ψ) is called a matrix factorisation of f . In our case φ and

ψ are 2 × 2 matrices. It is easy to see that detφ = detψ = f and that ψ is the

adjugate matrix of φ. Write I(φ) for the ideal of OX generated by the entries of φ

(or equivalently ψ).

Write εk (resp. ω, i) for a primitive kth (resp. 3rd, 4th) root of unity. In

Table 3.1 the possible representations ρ of G and the first matrix φ in a matrix

factorisation of Mρ, for some choice of f , are listed. These can be found (up to some

row and column operations and change of variables) in [KST] §5.

The notation Dl
n refers to the case when ρ is the 1-dimensional representation

corresponding to the leftmost node in the Dn Dynkin diagram (see Table 1.1) and

Dr
n refers to one of the rightmost pair of nodes. Of course there are are actually

two choices of representation we could take for each of the cases Dr
2k,D

r
2k+1 and E6,

however we treat each of them as only one case since there is an obvious symmetry of

S switching the two types of curve. Similarly for Aj
n we may assume that j ≤ n+1

2 .
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Table 3.1: 1-dimensional representations of G

Type Presentation of G ρ(r),
(
ρ(s), ρ(t)

)
φ

Aj
n

〈
r : rn+1 = e

〉
εjn+1

(
x yj

yn+1−j z

)

Dl
n

〈
r, s, t :

rn−2 = s2 = t2 = rst

〉
1,−1,−1

(
x y2 + zn−2

z x

)

Dr
2k −1, 1,−1

(
x yz + zk

y x

)

Dr
2k+1 −1, i,−i

(
x yz
y x+ zk

)

E6

〈
r, s, t :

r2 = s3 = t3 = rst

〉
1, ω, ω2

(
x y2

y x+ z2

)

E7

〈
r, s, t :

r2 = s3 = t4 = rst

〉
−1, 1,−1

(
x y2 + z3

y x

)

3.1.1 A normal form for (C ⊂ X)

Proposition 3.2. Suppose that we are given (P ∈ C ⊂ SX ⊂ X) as in the usual

situation §0.2. Let ρ be the representation of G and φ be the matrix factorisation of

f associated to (C ⊂ SX). Then

1. the equations of (C ⊂ X) are given by the minors of a 2× 3 matrix

2∧(
φ

g

h

)
= 0

for some functions g, h ∈ OX .

2. Suppose furthermore that SX is a general hypersurface section containing C.

Then g, h ∈ I(φ), where I(φ) is the ideal generated by the entries of φ.

Proof. Suppose that ρ is a 1-dimensional representation of G. Note that if (ψ, φ) is

a matrix factorisation for Mρ, the OS-module of ρ semi-invariants, then (φ, ψ) is a

matrix factorisation for Mρ′ , where ρ′ is the representation ρ′(g) = ρ(g)−1.
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The resolution of the OC2-module OΓ = OC2/(γ)

OΓ ← OC2
γ←− OC2 ← 0

decomposes as a resolution over OS to give a resolution of OC :

OC ← OS
γ←− Mρ′ ← 0

Using the resolution of Mρ′ we get

OC ← OS
(ν −ξ)←−−−− O⊕2

S

φ←− O⊕2
S

ψ←− · · ·

where ξ, ν are the two equations defining (C ⊂ SX). Now write γ = gα+ hβ where

α, β are the two generators of Mρ. We can use the resolution of OS as an OX -

module to lift this to a complex over OX and strip off the initial exact part to get

the resolution

OC ← OX
(ν −ξ η)←−−−−− O⊕3

X

(
φ

g h

)
←−−−− O⊕2

X ← 0

(possibly modulo some unimportant minus signs). Therefore the equations of the

curve (C ⊂ X) are given as claimed in (1).

To prove Proposition 3.2(2), recall the characterisation of Du Val singularities

in Definition 1.3(5) as simple surface singularities. Let η = detφ and ξ, ν be the

three equations of C. We have a C2-family of hypersurface sections through C given

by

Hλ,µ =
{
hλ,µ := η + λξ + µν = 0

}
(λ,µ)∈C2

and we are assuming that η is general. As the general member Hλ,µ is Du Val there

are a finite number of ideals I ⊂ mP such that the general hλ,µ ∈ I2. As the general

section η satisfies η ∈ I(φ)2 we have that hλ,µ ∈ I(φ)2 for general λ, µ. Therefore

g, h ∈ I(φ).

Remark 3.3. Whilst the condition g, h ∈ I(φ) in Proposition 3.2(2) is necessary

for a general section of the curve C to be of the same type of Du Val singularity as

SX it is not normally a sufficient condition.
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3.2 A general strategy for constructing Y

We can now describe a general strategy for constructing the divisorial extraction of

Proposition 1.9 from a curve (C ⊂ SX ⊂ X) contained in a Du Val general elephant.

By Proposition 3.2, C is defined by the minors of a 2 × 3 matrix, where all

the entries belong to an ideal I(φ) ⊂ OX . Cramer’s rule tells us that this matrix

annihilates the vector of the equations of C:

(
φ

g

h

) ν

−ξ
η

 = 0

Multiplying out these two matrices gives us two syzygies holding between the equa-

tions of C and these syzygies define a codimension 2 variety:

σ′ : Y ′ ⊂ X × P2
(η:ξ:ν) → X

Y ′ is the blowup of the ordinary power algebra
⊕

n≥0 I
n
C/X for IC/X ⊂ OX , the ideal

of C.

Y ′ cannot be the divisorial extraction of Theorem 1.9 since the fibre above

(P ∈ X) is not 1-dimensional. Indeed Y ′ contains the Weil divisor D = σ′−1(P )red
∼=

P2, possibly with a non-reduced structure, defined by the ideal I(φ). Our aim is to

construct the divisorial extraction by contracting D. In this case we can proceed by

unprojecting I(φ) as in Example 2.6 to get a new variety Y ′′ birational to Y ′.

We can check what components the central fibre of σ′′ : Y ′′ → X has. If it is

small then we set Y = Y ′′ and we have constructed the unique divisorial extraction

of Proposition 3.2. If not then Y ′′ contains a new divisor above P and we can try

to unproject it. We keep repeating this process until the central fibre is small. If

the ring we are trying to construct is finitely generated then eventually we stop.

Whilst this is an effective way of constructing Y explicitly, it is often quite

hard to work out whether Y is terminal. If (C ⊂ X) is allowed to degenerate into

a very singular curve then eventually Y will have non-terminal singularities, as the

next Lemma demonstrates, but working out exactly which curves (C ⊂ X) give a

terminal extraction Y is very hard.

Lemma 3.4. Suppose there exists a Mori extraction σ : (E ⊂ Y )→ (C ⊂ X). Then

at least one of g, h is not in mP · I(φ).

Proof. Suppose that both g, h ∈ mP · I(φ). Then the three equations of C satisfy

η ∈ I(φ)2 and ξ, ν ∈ mP · I(φ)2. On the variety Y there is a point (Q = Qη ∈ Y )
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in the fibre above P where all variables except η vanish. Now x, y, z, ξ, ν are all

linearly independent elements of the Zariski tangent space TQY = (mQ/m
2
Q)∨. This

(Q ∈ Y ) is an index 1 point with dimTQY ≥ 5, so it cannot be a hypersurface

singularity and is therefore not cDV.

This condition gives an upper bound on the multiplicity of C at (P ∈ X).

3.3 The A1 case: Prokhorov & Reid’s example

We run through the easiest case in some detail as an introduction to how this calcu-

lation works. The explicit construction of this divisorial extraction by unprojection

first appeared in [PrR] Theorem 3.3. From the purely geometric point of view this

example was first constructed by Hironaka.

Suppose that a general section (P ∈ C ⊂ SX ⊂ X) is of type A1 (i.e. the

case A1
1 in the notation of Table 3.1). By Proposition 3.2 we are considering a curve

(C ⊂ X) given by the equations

2∧(
x y −g(y, z)

y z h(x, y)

)
= 0

where the minus sign is chosen for convenience and we can use column operations

to eliminate x from g and z from h. Moreover g, h ∈ I(φ) = mP so we can write

g = cy + dz and h = ax+ by for some choice of functions a, b, c, d ∈ OX .

By Lemma 3.4 at least one of a, b, c, d 6∈ mP else the divisorial extraction

is not terminal. This implies that C has multiplicity three at P . If we consider S

as the quotient C2
u,v/Z2, where x, y, z = u2, uv, v2, then C is given by the orbifold

equation

γ(u, v) = au3 + bu2v + cuv2 + dv3

and the tangent directions to the branches of C at P correspond to the three roots

of this equation.

Recall Cramer’s rule from Example 2.6. This gives two syzygies between the

equations of (C ⊂ X)

(
x y −(cy + dz)

y z ax+ by

) ν

−ξ
η

 = 0 (∗)

where η = xz− y2 is the equation of S and ξ, ν are the other two equations defining
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(C ⊂ X). We can use these to write down a codimension 2 variety

σ′ : Y ′ ⊂ X × P2
(ξ:ν:η) → X

where σ′ is the natural map given by substituting the equations of C back in for

ξ, ν, η. Outside of P this map σ′ is isomorphic to the blowup of C, in fact Y ′ is

just the blowup of the ordinary power algebra
⊕
InC/X . However Y ′ cannot be the

unique divisorial extraction described in Theorem 1.9 since the fibre over the point

P is not small. Indeed, Y ′ contains the plane D := σ′−1(P )red
∼= P2.

Now we can rewrite the equations of Y ′ (∗) so that they annihilate the ideal

(x, y, z) defining D (
ν ξ + cη −dη
−aη ν + bη ξ

) x

−y
z

 = 0

and we can use this format to unproject D, in exactly the same manner as Example

2.6.

From Cramer’s rule again, we see that Y ′ has some nodal singularities along

D where x, y, z and the minors of this new 2 × 3 matrix all vanish. If the roots of

γ are distinct then this locus consists of three ordinary nodal singularities along D.

If γ acquires a double (or triple) root then two (or three) of these nodes combine to

give a slightly worse nodal singularity.

We can resolve these nodes by introducing a new variable κ that acts as a

ratio between these two vectors, i.e. κ should be a degree 2 variable satisfying the

three equations:

xκ = ξ(ξ + cη) + d(ν + bη)η

yκ = ξν − adη2

zκ = ν(ν + bη) + a(ξ + cη)η

All this gives a codimension 3 variety σ : Y ⊂ X × P(1, 1, 1, 2)→ X defined by five

equations. As described in §2.1.1, by the Buchsbaum–Eisenbud theorem we can

write these equations neatly as the maximal Pfaffians of the skew-symmetric 5× 5

matrix: 
κ ν ξ + cη −dη
−aη ν + bη ξ

z y

x



27



Now we can check that Y actually is the divisorial extraction from C. Outside

of the central fibre Y is still the blowup of C, since:

(
Y \ σ−1(P )

) ∼= (Y ′ \ σ′−1(P )
)

The plane (D ⊂ Y ′) is contracted to the coordinate point (Qκ ∈ Y ) where all

variables except κ vanish. (Qκ is called the unprojection point of Y since the map

Y 99K Y ′ is projection from Qκ.) The central fibre is the union of (at most) three

lines, all meeting at (Qκ ∈ Y ). Therefore σ is small and, by Proposition 1.9 this is

the unique such divisorial extraction from C.

Terminal singularities

Furthermore we can check that Y is terminal. First consider an open neighbourhood

of the unprojection point (Qκ ∈ Uκ) := {κ = 1}. We can eliminate the variables

x, y, z to see that this open set is isomorphic to the cyclic quotient singularity:

(Qκ ∈ Uκ) ∼=
(
0 ∈ C3

ξ,ν,η

)
/ 1

2(1, 1, 1)

Now, if Z = σ−1(P )red is the central fibre, for each component (L ⊆ Z) we are left

to check the point QL = L ∩ {κ = 0}. Note that each of these points lies in the

affine open set Uη = {η = 1} and recall that at least one of the coefficients a, b, c, d

is a unit. After a possible change of variables, we may assume a /∈ mP is a unit.

We can use the equations involving a above to eliminate x and ξ. After rewriting

κ = aκ′, ν = aν ′, we are left with the equation of a hypersurface

V
(
(y − zν ′)κ′ + aν ′

3
+ bν ′

2
+ cν ′ + d

)
⊂ C4

y,z,ν′,κ′

which is smooth (resp. cA1, cA2) at QL if L is the line over a node corresponding

to a unique (resp. double, triple) root of γ.

The curve C can degenerate from a transverse intersection of three branches

in a number of different ways. Some possible degenerate cases are described in

Figure 3.1, given by drawing the birational transform of (C ⊂ SX) in the minimal

resolution of SX .

If we consider the case where all of a, b, c, d ∈ mP then the central fibre

consists of just one line L = P1
(η:κ) and the point (QL ∈ Y ) is not terminal (the

matrix defining Y has rank 0 at this point, so it cannot be a hyperquotient point)

which agrees with Lemma 3.4.
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γ(u, v) has a double root γ(u, v) has a triple root

x2 = y3 etc.

Figure 3.1: Examples of degenerate cases

Further remarks

Remark 3.5. As we have said, there is a geometric construction of Y , originally

due to Hironaka, when the three branches of C have distinct tangent directions.

This illustrates how the unprojection of D works geometrically.

Consider the variety X ′ obtained by the blowup of (P ∈ X) followed by the

blowup of the birational transform of C. The exceptional locus has two components

DX′ and EX′ dominating P and C respectively. Assuming the tangent directions

of the branches of C at P are distinct then DX′ is a Del Pezzo surface of degree

6. Consider the three −1-curves of DX′ that don’t lie in the intersection (DX′ ∩
EX′). They have normal bundle OX′(−1,−1) so we can flop them. The variety Y ′,

constructed above, is the midpoint of this flop and we end up with the following

diagram:

X

X ′

Y ′

Z

Y

flop

The plane (D ⊂ Y ) is the image of DX′ with the three nodes given by the contracted

curves. After the flop the divisor DX′ becomes a plane DZ
∼= P2 with normal bundle

OZ(−2), so we can contract it to construct Y with a 1
2 -quotient singularity.

If we want to consider curves that have branches with non-distinct tangent

directions then this picture becomes much more complicated.

Remark 3.6. Looking back at the equations of Y ′ (∗) we may ask what happens if

we unproject the ideal (ξ, ν, η) ⊂ OY ′ or, equivalently, the Jer12 ideal (ξ, ν, η, κ) ⊂
OY . Even though this may not appear to make sense geometrically, it is a perfectly
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well-defined operation in algebra. If we do then we introduce the variable ι of weight

−1 that is nothing other than the inclusion ι : IC/X ↪→ OX . The whole picture is a

big Z-graded ring

R := OX(−1, 1, 1, 1, 2)/(codim 4 ideal)

and we can construct the divisorial extraction in the style of §2.3, as the Proj of the

extended symbolic power algebra.

Remark 3.7. The unprojection variable κ corresponds to a generator of
⊕
I

[n]
C/X

that lies in I
[2]
C/X \ I

2
C/X . Either by writing out one of the equations involving κ and

substituting for the values of ξ, ν, η, or by calculating the unprojection equations of

ι, we can give an explicit expression for κ:

ικ = (ax+ by)ξ + (cy + dz)ν + (acx+ ady + bcy + bdz)η

In terms of the orbifold equation γ, the generators ξ, ν, κ are lifts modulo η of the

forms uγ, vγ, γ2 defined on S.

3.4 The A2 cases

Now we consider the next most complicated example. Suppose that the general

section (P ∈ C ⊂ SX ⊂ X) is of type A1
2. By Proposition 3.2, we are considering

the curve given by the equations

2∧(
x y −(dy + ez)

y2 z ax+ by

)
= 0

for some choice of functions a, b, d, e ∈ OX . If a, b, d, e are taken generically then

the general section through C is of type A1 so, for SX to be a general section, we

need to introduce some more conditions on a, b, d, e.

Consider the section Hλ,µ = {hλ,µ := η + λξ + µν = 0}. The quadratic term

of this equation is given by

h
(2)
λ,µ = xz + λx(a0x+ b0y) + µ(a0xy + b0y

2 + d0yz + e0z
2)

where a0 is the constant term of a and similarly for b, d, e. To ensure the general

section is of type A2 it is enough to ask that h
(2)
λ,µ has rank 2 for all λ, µ. After

playing around, completing the square etc., we get two cases according to whether
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x | h(2)
λ,µ or z | h(2)

λ,µ:

a0 = b0 = 0 =⇒ h
(2)
λ,µ = z(x+ µd0y + µe0z)

b0 = d0 = e0 = 0 =⇒ h
(2)
λ,µ = x(z + λa0x+ µa0y)

These two different cases lead to two different Mori extractions.

3.4.1 Case 1: Tom1

Take the first case where a0 = b0 = 0. Then we can rewrite ax+by as ax2+bxy+cy2,

so that the equations of C become:

2∧(
x y − (dy + ez)

y2 z ax2 + bxy + cy2

)
= 0

The symbolic power algebra of C will be a graded ring generated in degrees 1, 1, 1, 2, 3

by generators that we will call η, ν1, ξ1, ξ2, κ3. In particular a subscript will denote

the weight of the corresponding variable.

Claim The following two conditions must hold

1. one of a, b, c, d /∈ mP ,

2. one of d, e /∈ mP ,

and (after possibly changing variables) we can assume that a, e /∈ mP .

Statement (2) follows from Lemma 3.4. The first is also proved in a similar

way. If (1) does not hold then necessarily e /∈ mP by (2). Consider the point

(Qη ∈ Y ) where all variables but η vanish, as in the proof of Lemma 3.4. This is an

index 1 point with local equation

ey2ξ1 − xξ1ν1 + yν2
1 + dyν1 + e(ax2 + bxy + cy2) = 0

and if a, b, c, d ∈ mP then this equation is not cDV, as it has no terms of degree 2,

so it is not terminal.

By considering the minimal resolution S̃ → S, we see that the general C that

satisfies these conditions is the curve
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but we can also allow any degenerate cases of (C̃ ⊂ S̃) which intersect E1 = P1
(x1:x2)

with multiplicity three and E2 = P1
(y1:y2) with multiplicity one, according to the

(nonzero) equations:

C̃ ∩ E1 : a0x
3
1 + b0x

2
1x2 + c0x1x

2
2 + d0x

3
2 = 0

C̃ ∩ E2 : d0y1 + e0y2 = 0

If we mimic Prokhorov & Reid’s example, we can write down a codimension

3 model of the blowup of C as σ′′ : Y ′′ ⊂ X × P(1, 1, 1, 2) → X given by the the

Pfaffians of the matrix:
ξ2 ν1 ξ1 + dη −eη
−(ax+ by)η y(ν1 + cη) ξ1

z y

x


The variety Y ′′ is not the divisorial extraction since σ′′ is not small. A new

unprojection plane appears after the first unprojection. This plane D is defined by

the ideal (x, y, z, ξ1) and we can see that the matrix is in Tom1 format with respect

to this ideal. The central fibre σ′′−1(P ) is given by D together with the line

L1 = (x = y = z = ν1 = ξ1 + dη = 0).

Unprojecting D gives a new variable κ3 of weight three with four additional

equations:

xκ3 = (ξ2 + beη2)(ξ1 + dη) + eν1(ν1 + cη)η

yκ3 = ξ2ν1 − ae(ξ1 + dη)η2

zκ3 = ν2
1(ν1 + cη) + bν1(ξ1 + dη)η + a(ξ1 + dη)2η

ξ1κ3 = ξ2(ξ2 + beη2) + ae2(ν1 + cη)η3

Generically, the central fibre consists of four lines passing through the point

Pκ, the line L1 and the three lines that appear after unprojecting D. The open

neighbourhood (Pκ ∈ Uκ) is isomorphic to a 1
3(1, 1, 2) singularity. As we assume

a, e /∈ m, when η = 1 we can use the equations to eliminate x, z, ξ1, ν1 so that all

the points QL = L ∩ {ζ = 0}, for L ⊆ σ−1(P )red, are smooth.
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3.4.2 Case 2: Jer45

Now consider instead the case where b0 = d0 = e0 = 0. In direct analogy to the

Tom1 case the reader can check that:

• the general curve C that satisfies this condition is the curve:

• after making the first unprojection we get a variety Y ′ containing another

unprojection plane D above P defined by the Jer45 ideal (x, y, z, ν1),

• Y ′ has (at most) four nodes along D corresponding to the roots of the orbifold

equation γ,

• after unprojecting D we get a variety Y with small fibre over P , hence Y is

the divisorial extraction,

• the open neighbourhood of the final unprojection point (Pκ ∈ Uκ) is isomor-

phic to the quotient singularity 1
3(1, 1, 2),

• Y has at worst cA singularities at the points QL according to whether γ has

repeated roots.

The equations for this example can be found in the appendix A.3.

3.5 An A3 example

Suppose that the general section (P ∈ C ⊂ SX ⊂ X) is of type A2
3 and that C is

the curve

Then a terminal extraction from (C ⊂ X) exists.

The calculation is very similar to Prokhorov & Reid’s example, except that

the first unprojection divisor (D ⊂ Y ′) is defined by the ideal I(φ) = (x, y2, z),

so that D is not reduced. After unprojecting D we get an index 2 model for the

divisorial extraction

σ : Y ⊂ X × P(1, 1, 1, 2)→ X
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with equations given by the Pfaffians of
κ ν ξ + cη −dη
−aη ν + bη ξ

z y2

x

 .

D is contracted to a singularity of type cA1/2, given by the hyperquotient singularity

(
(y2 − ξν + adη2 = 0) ⊂ C4

y,ξ,ν,η

)
/1

2(0, 1, 1, 1).

Note that this singularity is isolated, unless both a, d ∈ mP in which case the reduced

central fibre Z contains the line L = P1
(η:κ) and Y is singular along L.
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Chapter 4

Exceptional cases: types D & E

We now turn to the cases when (P ∈ SX) is a Du Val singularity of type D or E.

It turns out to be slightly easier to study Mori extractions in this setting because

they are more restricted. The results of this section are summed up in the following

theorem:

Theorem 4.1. Suppose that we have (P ∈ C ⊂ SX ⊂ X) as in the usual situation

§0.2. In particular SX is the general hypersurface section containing C.

1. Suppose that C is of type Dl
n,D

r
2k or E7. Then the symbolic blowup of C has

a codimension 3 model:

σ : Y ⊂ X × P(1, 1, 1, 2)→ X

In particular, Y has index 2 and
⊕
I

[n]
C/X is generated in degrees ≤ 2.

Moreover, Y has non-isolated singularities along a component of the central

fibre, so there does not exist a Mori extraction from C.

2. Suppose that C is of type E6. We need to consider two cases.

(a) σ is nonsemistable, i.e. σ : SY → SX is an isomorphism. Then the sym-

bolic blowup of C has a codimension 4 model:

σ : Y ⊂ X × P(1, 1, 1, 2, 3)→ X

In particular
⊕
I

[n]
C/X is generated in degrees ≤ 3.

Moreover, if Y is terminal then Y has a cD/3 singularity and (the generic

such) C is the curve:
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(b) σ is semistable, i.e. σ : SY → SX is an not isomorphism. Then the

symbolic blowup of C has a codimension 5 model:

σ : Y ⊂ X × P(1, 1, 1, 2, 3, 4)→ X

In particular
⊕
I

[n]
C/X is generated in degrees ≤ 4.

Moreover, if Y is terminal then Y has a cAx/4 singularity and (the

generic such) C is the curve:

�

In this case, the central fibre is a union of lines meeting at a cAx/4

singularity. The node marked � denotes the curve pulled out of SX by σ.

This is a classification of Mori extractions when (C ⊂ SX) is of type Dl
n,

Dr
2k, E6 or E7 but does not say anything about the case Dr

2k+1.

In the statement of the theorem, when we say that “the (generic such) curve

C” intersects the exceptional locus of a Du Val singularity (E ⊂ S̃X) in the pre-

scribed way, we also allow any degenerations of C which keep the intersection num-

bers with each component of E fixed. For instance (2)(b) includes the curve of

Example 4.3.

The proof of this theorem starts by using Proposition 3.2 to write down a

format for the equations of a curve (C ⊂ SX) contained in the relevant Du Val hy-

persurface singularity. Then we specialise this format until our chosen hypersurface

SX is the general hyperplane section through C (see e.g. Remark 4.2 below). We

calculate the graded ring of Y using the method outlined in §3.2, i.e. starting with

the blowup C we make successive unprojections until the variety we construct has

a small central fibre above (P ∈ C). By Proposition 1.9 this is the (unique) Mori

extraction from C if it exists. Then we check to see whether Y really does have

terminal singularities. In most of the cases ruled out, Y has non-isolated (and hence

non-terminal) singularities.
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Before launching into the proof we make the following useful remark.

Remark 4.2. Suppose the general section of (P ∈ C ⊂ SX ⊂ X) is of type D or

E. Then we can write the equations of C as

2∧(
φ
−g(y, z)

h(y, z)

)
= 0

where g, h ∈ m2
P ∩I(φ), i.e. we can assume that g, h have no linear terms. To see this

consider the forms for φ given in Table 3.1. Firstly, we can use column operations

to cancel any terms involving x from g, h. Then to prove g, h ∈ m2
P consider the

section hλ,µ = η + λξ + µν. The quadratic term of hλ,µ is

h
(2)
λ,µ = x2 + λxh(1) + (µx+ λt)g(1) (where t = y or z)

and we require this to be a square for all λ, µ. This happens only if g(1) = h(1) = 0.

4.1 The Dl
n,D

r
2k and E7 cases

These three calculations are essentially all the same. Since they are so similar we

only spell out the Dl
n case in detail.

The Dl
n case

According to Lemma 3.2 and Remark 4.2, the curve (C ⊂ X) is defined by the

equations
2∧(

x y2 + zn−2 a(y2 + zn−2) + byz + cz2

z x d(y2 + zn−2) + eyz + fz2

)
= 0

for some functions a, b, c, d, e, f ∈ OX . Unprojecting I(φ) gives a variety

σ : Y ⊂ X × P(1, 1, 1, 2)→ X

with equations given by the maximal Pfaffians of the matrix:
κ ν ξ − aη (by + cz)η

−ξ −dη ν + (ey + fz)η

z y2 + zn−2

x
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Now σ is a small map, so Y must be the unique divisorial extraction from C from

Proposition 1.9. Indeed, the central fibre Z = σ−1(P )red consists of two components

meeting at the point Pκ. These are the lines:

L1 = (x = y = z = ξ = ν = 0)

L2 = (x = y = z = ξ − aη = ν = 0)

Looking at the affine patch Uκ := {κ = 1} in Y we see that we can eliminate

the variables x, z and that Uκ is a 1
2 -quotient of the hypersurface singularity

y2 + zn−2 = ν2 + (eν + bξ)yη + (fν + cξ)zη

where z = ξ2 − (aξ + dν)η.

This hypersurface is singular along the line L1 since, as n ≥ 4, this equa-

tion is contained in the square of the ideal (y, ξ, ν). Therefore Y has non-isolated

singularities and cannot be terminal.

The Dr
2k case

The curve (C ⊂ X) is defined by the equations

2∧(
x yz + zk ay2 + byz + c(yz + zk)

y x dy2 + eyz + f(yz + zk)

)
= 0

and equations of Y ⊂ X × P(1, 1, 1, 2) are given by the Pfaffians of the matrix:
κ ν (ay + bz)η ξ + cη

ξ ν + (dy + ez)η fη

yz + zk y

x


In particular the point (Pκ ∈ Y ) is a 1

2 -quotient of the hypersurface

yz + zk = ν(ν + (dy + ez)η)− (ay + bz)ξη

but this has non-isolated singularities along the line (x = y = z = ξ = ν = 0).
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The E7 case

The curve (C ⊂ X) is defined by the equations

2∧(
x y2 + z3 ay2 + byz + c(y2 + z3)

y x dy2 + eyz + f(y2 + z3)

)
= 0

and equations of Y ⊂ X × P(1, 1, 1, 2) are given by the Pfaffians of the matrix:
κ ν (ay + bz)η ξ + cη

ξ ν + (dy + ez)η fη

y2 + z3 y

x


In particular the point (Pκ ∈ Y ) is a 1

2 -quotient of the hypersurface

y2 + z3 = ν(ν + (dy + ez)η)− (ay + bz)ξη

and this also has non-isolated singularities along (x = y = z = ξ = ν = 0).

4.2 The E6 case

Suppose that (C ⊂ X) is of type E6. By Lemma 3.2 the equations of C can be

written in the form
2∧(

x y2 −g(y, z)

y x+ z2 h(y, z)

)
= 0

where g, h ∈ m2
P by Remark 4.2. Now consider the general sectionHλ,µ = η+λξ+µν.

After making the replacement x 7→ x+ 1
2(λh+ µg) the cubic term of Hλ,µ is given

by

x2 − y3 + λyg(2)

where g(2) is the quadratic part of g. For the general Hλ,µ to be of type E6, we

require y(y2 − λg(2)) to be a perfect cube for all values of λ. This happens only if

g(2) is a multiple of y2. Therefore we can take g and h to be

g(y, z) = a(y, z)y2 + b(z)yz2 + c(z)z3

h(y, z) = d(y)y2 + e(y)yz + f(y, z)z2

for some choice of functions a, b, c, d, e, f ∈ OX . Moreover, f 6∈ mP else the extrac-

tion is not terminal by Lemma 3.4.
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By allowing these coefficients to specialise the curve we are considering varies.

After writing down the minimal resolution (C ⊂ SX) explicitly, one can check that

in the cases where the coefficients are chosen generically, or when c ∈ mP , then C

is the curve

Generic coefficients, i.e. a, c 6∈ mP c ∈ mP and a, a+ f, f 6∈ mP

and so on. In the generic case, if a + f ∈ mP then the curve degenerates as in

Example 4.3.

We can make the first unprojection σ′ : Y ′ → X with unprojection variable

ζ of weight 2, defined by the Pfaffians of the matrix:
ζ ν y(ξ + aη) −(by + cz)η

ξ ν + (dy + ez)η ξ − fη
z2 y

x

 (†)

This Y ′ contains a new unprojection divisor defined by an ideal I in Tom2 format. If

the coefficient c is assumed to be chosen generically then I = (x, y, z, ν). However,

if we make the specialisation c ∈ mP , we can take I to be (x, y, z2, ν), defining

a slightly fatter unprojection plane. Unprojecting these two ideals gives two very

different varieties.

4.2.1 The non-semistable E6 case

Since it is easier, consider first the case when c ∈ mP , i.e. we let c(z) = c′(z)z. Un-

projecting (x, y, z2, ξ2) with unprojection variable θ of weight 3 gives a codimension

4 model

σ : Y ⊂ X × P(1, 1, 1, 2, 3)→ X
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defined by the five Pfaffians above (†), plus four additional equations:

xθ = (ξ + aη)(ξ − fη)2 + b(ξ − fη)(ν + (dy + ez)η)η + c′(ν + (dy + ez)η)2η

yθ = ζ(ξ − fη) + c′ξ(ν + (dy + ez)η)η

z2θ = (ζ − bξη)(ν + (dy + ez)η)− ξ(ξ + aη)(ξ − fη)

νθ = ζ(ζ − bξη) + c′ξ2(ξ + aη)η

The central fibre Z is a union of three lines meeting at the unprojection

point Pθ, so that Y is the divisorial extraction of C. These three lines are given by

x = y = z = ν = 0 and:

L1

L2

L3

ξ − fη = ζ2 − bfζη2 + c′f2(a+ f)η4 = 0

ξ + aη = ζ = 0

In the open neighbourhood of the unprojection point (Pθ ∈ Uθ) we can

eliminate x, y, ν by the equations involving θ above. We are left with a 1
3 -quotient

of the hypersurface singularity:

H =
(
z2 = (ζ − bξη)(ν + (dy + ez)η)− ξ(ξ + aη)(ξ − fη)

)
If H is not isolated then Y will have nonisolated singularities and there will

be no terminal extraction from C. This happens if either a ∈ mP or a + f ∈ mP .

If a ∈ mP then H becomes singular along L3. If a + f ∈ mP then one of L1, L2

satisfies ζ − bfη2 = 0 and H becomes singular along this line.

Now we can assume that a, a+ f, f 6∈ mP , and consider the (generic) hyper-

plane section η = 0, to see that (Pθ ∈ Uθ) is a cD4/3 point:

(
z2 − ζ3 + ξ3 + η(· · · ) = 0

)
/ 1

3(0, 2, 1, 1; 0)

4.2.2 The semistable E6 case

Now consider the more general case where c 6∈ mP . In this case there is an element

θ′ in I
[3]
C/SX

which fails to lift to an element of I
[3]
C/X .

We need to make two unprojections in order to construct the divisorial extrac-

tion Y . The first unprojection divisor is defined by the Tom2 ideal (x, y, z, ν) as de-

scribed above. Then a new divisor appears defined by the ideal
(
x, y, z, ν, ξ(ξ+aη)

)
.

We add two new variables θ, κ of degrees 3, 4 to our ring and we end up with a
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variety in codimension 5

σ : Y ⊂ X × P(1, 1, 1, 2, 3, 4)→ X.

The equations of Y are given by the five equations (†) and nine new unprojection

equations: four involving θ and five involving κ. See A.4 for the full list of equations.

The important equation is:

ξ(ξ + aη)κ = ζ(ζ − bξη)2 − θ(θ − cdξη2) + eθ(ζ − bξη)η + dζ(ξ − fη)(ζ − bξη)η

The open set of the unprojection point (Pκ ∈ Uκ) is a hyperquotient point

ξ2 + θ2 − ζ3 + η(· · · ) = 0
)
/ 1

4(1, 2, 3, 1; 2)

which is the equation of a cAx/4 singularity. Moreover, one can check that this

singularity is not isolated if a ∈ mP . Therefore, if Y is terminal then a 6∈ mP and C

is as described in Theorem 4.1.

The central fibre of this extraction consists of (one or) two rational curves.

One of these curves is pulled out in a partial resolution of SX .

Example 4.3. As an example of this type of extraction consider the monomial

curve C = C5,7,11 ⊂ C3 with weights (5, 7, 11). This C is given by the equations

2∧(
x2 y z

y2 z x3

)
= 0

and a general section through this curve has an E6 Du Val singularity. We can check

through an explicit calculation that C is a curve that meets E6 in the following way:

C

This is a degenerate version of Theorem 4.1(2)(b).

The symbolic blowup σ : Y → X has a codimension 4 model:

σ : Y ⊂ X × P(1, 1, 1, 2, 3, 4)→ X

Write ξ1, ξ2, ξ3, ζ, θ, κ for the generators of the ring. Then the full list of equations

of Y are given in A.5.
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The last unprojection point (Pκ ∈ Y ) is the hyperquotient point

(ξ1ξ3 = ζ3 − θ2)/1
4(1, 1, 2, 3; 2)

which is a terminal singularity of type cAx/4. We can check that Y is smooth

elsewhere.

4.3 The Dr
2k+1 case

The Dr
2k+1 cases are certainly the most complicated of the exceptional cases and it

seems that trying to classify Mori extractions through explicit calculations will be

too hard. However some calculations predict the following.

Using the same tricks as before we can take the equations of (C ⊂ X) to be

(
x yz −(ay2 + byz + czk+1)

y x+ zk dy2 + eyz + fzk

) ν

−ξ
η

 = 0

for some coefficients a, b, c, d, e, f ∈ OX . Using this format we can unproject the

ideals (x, y, z2) and then (x, y, z, ν) to get a codimension 4 variety

σ′ : Y ′ ⊂ X × P(1, 1, 1, 2, 3)→ X

whose central fibre is still not small.

If a, b 6∈ mP then we can only unproject the ideal (x, y, z, ν, ξ) to get a

codimension 5 variety Y ′′ ⊂ X × P(1, 1, 1, 2, 3, 5). In this case the central fibre may

or may not be now 1-dimensional so the unprojection game could continue. We have

SY ′′ 6∼= SX so this is a semistable extraction.

If a, b ∈ mP then we can unproject the slightly fatter unprojection plane

(x, y, z, ν, ξ2) to get a variety Y ⊂ X × P(1, 1, 1, 2, 3, 4). The central fibre is 1-

dimensional and so we have constructed the divisorial extraction. In this case SY ∼=
SX so this is a non-semistable extraction. If it is isolated, the last unprojection

point (Q ∈ Y ) is a cAx/4 singularity.

We spell out this second non-semistable case when SX is of type D5.
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4.3.1 A Dr
5 example

Rewrite the equations of (C ⊂ X) as

(
x yz −(ay3 + by2z + cyz2 + dz3)

y x+ zk ey2 + fyz + gz2

) ν

−ξ
η

 = 0

Let ζ, θ, κ be the new generators of degrees 2,3,4 and, in a desperate attempt

to simplify all the equations, write:

ξ = ξ − gη, ν = ν + (ey + fz)η, ζ = ζ + cξη, θ = θ + bξξη − fζη

(In particular ξ ≡ ξ mod η etc.) The full list of equations are given in A.6 for the

readers edification and enjoyment.

Note that at the point (Pκ ∈ Y ) we can eliminate everything but the variables

ξ, η, ζ, θ and the last equation in A.6. This shows that Pκ is a 1
4(1, 1, 2, 3; 2) quotient

of the hypersurface singularity:

ξ2 = θ
(
θ − deξη2

)
−
[
ζζ + bdξ2η2

][
ζ + eηξ

]
+ aξη

(
ξ

2
ζ + dfξξη2 − d2ξ2η2

)
As this equation contains the terms ξ2, θ2 and ζ3, we can use the Weierstrass

preparation theorem to make an analytic change of variables ξ′, η′, ζ ′, θ′ to be left

with the hyperquotient(
ξ′2 = θ′2 + ζ ′3 + F (ζ ′, η′)

)
/ 1

4(1, 3, 2, 1; 2)

for some function F and this is a cAx/4 singularity if it is isolated.
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Chapter 5

Cyclic quotient singularities

Before tackling the main case of type A Mori extractions we collect together some re-

sults that we will need concerning cyclic quotient singularities and the combinatorics

of continued fraction expansions.

It is a well known fact (see e.g. [B]) that the minimal resolution of a surface

singularity germ (P ∈ S) has an exceptional divisor given by a chain of rational

curves E =
⋃k
i=1Ei if and only if (P ∈ S) is analytically isomorphic to a cyclic

quotient singularity 1
r (1, a). The values r and a are computed by the Hirzebruch–

Jung continued fraction expansion r
a = [a1, . . . , ak] where ai = −E2

i for i = 1, . . . , k.

Moreover, if r
r−a = [b1, . . . , bl] is the complementary continued fraction ex-

pansion then (P ∈ S) has an embedding (P ∈ S ⊂ Cl+2
x0,...,xl+1

) where S is cut out

(set-theoretically) by the equations xi−1xi+1 = xbii for i = 1, . . . , l.

5.1 Continued fraction expansions

Definition 5.1. We define the Hirzebruch–Jung continued fraction expansion by

the formal expression

[a1, . . . , ak] = a1 −
1

a2 −
1

. . . −
1

ak−1 −
1

ak

Given two coprime integers r > a > 0 then there is a unique sequence of integers

a1, . . . , ak ∈ Z≥2 such that r
a = [a1, . . . , ak]. This is called the reduced Hirzebruch–

Jung continued fraction expansion of r
a .
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Similarly, we can consider the Hirzebruch–Jung continued fraction associated

to any sequence of non-negative integers a1, . . . , ak ∈ Z≥0, as long as it is well-defined

(i.e. does not involve division by 0).

Unless it is said otherwise, a Hirzebruch–Jung-string, or HJ-string, will al-

ways be a finite-length (not necessarily reduced) Hirzebruch–Jung continued frac-

tion expansion with coefficients ai ∈ Z≥0 for all i, which represents a non-negative

rational number x ∈ Q≥0.

Notation. We write (a)m to mean the sequence a, . . . , a, repeated m times.

Lemma 5.2 (Elementary properties of HJ-strings). Let r > a > 0 be coprime

integers, and consider the HJ-string r
a = [a1, . . . , ak].

1. (Blowdown) If ai = 1 for some 2 ≤ i ≤ k, then1

[a1, · · · , ai−1, 1, ai+1, · · · , ak] = [a1, · · · , ai−1 − 1, ai+1 − 1, · · · , ak]

2. (Inverse) If 1 ≤ b < r is the inverse of a modulo r, i.e. the unique integer such

that ab ≡ 1 mod r, then r
b = [ak, . . . , a1].

3. (Complement) We call r
r−a = [b1, . . . , bl] the complementary HJ-string to r

a .

This satisfies the identity:

[a1, . . . , ak, 1, bl, . . . , b1] = 0

4. (Convergents) The rational numbers pi
qi

:= [a1, . . . , ai−1] 1 ≤ i ≤ k + 1 are

called the convergents of [a1, . . . , ak].
2 These satisfy the relations

aipi = pi−1 + pi+1, aiqi = qi−1 + qi+1 ∀i

5. (Matrix product) The following matrix product holds:(
0 1

−1 a1

)(
0 1

−1 a2

)
· · ·

(
0 1

−1 ak

)
=

(
−qk qk+1

−pk pk+1

)

The proof of all these statements are standard elementary exercises in con-

tinued fractions.

1Warning : If i = 1 then the two HJ-strings obtained by this operation represent different
rational numbers, since if x = [1, a2, . . . , ak] then x

1−x = [a2 − 1, . . . , ak]. However we will still call
this a blowdown.

2To define p1, q1 we use the convention [∅] = 1
0
, even though this is not a well-defined fraction.
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5.1.1 0-strings and 1-strings

We now turn to consider some important classes of HJ-strings.

0-strings

Definition 5.3. Any HJ-string representing 0, i.e. one of the form [a1, . . . , ak] = 0,

is called a 0-string.

These were considered by Christophersen in his study of deformations of

surface cyclic quotient singularities.

Lemma 5.4. A 0-string blows down to [0].

There is a well-known correspondence between 0-strings of length k and

triangulations of an (k + 1)-gon. In particular, the number of 0-strings of length k

is counted by the (k − 1)th Catalan number Ck−1 = 1
k

(
2k−2
k−1

)
.

Specifically, let P be a regular k-gon with vertices x0, x1, . . . , xk ordered

cyclically. Given a triangulation of P let ai be the number of triangles containing

xi. Then, ignoring a0, we have [a1, . . . , ak] = 0, e.g.

(3)

1
25

1

3

1 3
2

[1, 2, 5, 1, 3, 1, 3, 2] = 0

[2, 5, 1, 3, 1, 3, 2, 3] = 0

[5, 1, 3, 1, 3, 2, 3, 1] = 0

[1, 3, 1, 3, 2, 3, 1, 2] = 0 etc.

Given this description, clearly [ak, . . . , a1] and [ai+1, . . . , a1, a0, ak, . . . , ai−1] are also

0-strings for any i.

A blowup of a triangulation of a (k+ 1)-gon P is a triangulation of a (k+ 2)-

gon given by glueing a triangle onto an edge of P . It is easy to see that blowup of

of triangulations corresponds to blowup of HJ-strings.

1

3
2

1

4

1
3

• blowdown

2

2

1

4

1

2
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1-strings

Definition 5.5. Any HJ-string representing 1
m for some m ≥ 1, i.e. one of the form

[a1, . . . , ak] = 1
m , is called a 1-string.

Lemma 5.6. A 1-string blows down to [1, (2)k−1] (or to [1] if we allow blowdowns

at a1).

As an immediate consequence of this Lemma, a chain of rational curves⋃k
i=1Ei on a smooth surface will contract to a smooth point if and only if the

negative self-intersection numbers ai = −E2
i form a 1-string [a1, . . . , ak].

There is an obvious implication

1

m
= [a1, · · · , ak] ⇐⇒ 0 = [m, a1, · · · , ak]

and, by the cyclicity property for 0-strings, there is also a unique m′ ∈ Z≥1 such

that [a1, · · · , ak,m′] = 0. In particular not both of m,m′ = 1.

5.1.2 T -strings

T -strings are a very special class of HJ-strings that have been considered by Brieskorn

and Kollár & Shepherd-Barron [KSB] amongst others. These are the HJ-strings that

correspond to cyclic quotient singularities 1
r (1, a) admitting a Q-Gorenstein smooth-

ing. They have a number of remarkable properties.

Definition 5.7. Let Tr,d,a be the HJ-string given by the continued fraction expan-

sion of r2d
rda−1 , where r, d, a ∈ Z≥1, r > a and hcf(r, a) = 1. We call Tr,d,a a T -string

and Tr,1,a a simple T -string.

Lemma 5.8 ([KSB] Proposition 3.11). Let Tr,d,a = [c1, . . . , cm] be a T -string. Any

T -string can be obtained by starting with one of the forms in (1) and applying steps

(2) and (3) repeatedly.

1. T2,1,1 = [4] and T2,d,1 = [3, (2)d−2, 3] for d ≥ 2

2. Tr,d,r−a = [cm, . . . , c1]

3. Tr+a,d,a = [c1 + 1, c2, . . . , cm, 2]

Proof. We first prove the three statements.

1. An easy calculation.

2. Follows from
(
rda− 1

)(
rd(r − a)− 1

)
≡ 1 mod r2d.
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3. Suppose r2d
rda−1 = [c1, . . . , cm]. Then by (2) it follows that:

[2, cm, . . . , c1] = 2− rd(r − a)− 1

r2d
=
rd(r + a) + 1

r2d

Also we have

Tr+a,d,a =
(r + a)2d

(r + a)da− 1
= 1 +

rd(r + a) + 1

(r + a)da− 1

and since r2d
(
(r + a)da− 1

)
≡ 1 mod rd(r + a) + 1 the result follows.

We now prove the main claim of the Lemma. First suppose that either r = 2

or a = 1
2r. Since r and a are coprime, we must have r = 2, a = 1 and then all

possible Tr,d,a are given in (1).

If r > 2 then either a < 1
2r or r − a < 1

2r. Applying (2) if necessary, we can

assume a < 1
2r and then Tr−a,d,a and Tr,d,a are related as in (3). We can repeat this

process with Tr−a,d,a until we are back in the r = 2 case.

Lemma 5.9. Suppose we have the complementary HJ-strings r
a = [a1, . . . , ak] and

r
r−a = [b1, . . . , bl]. Then

Tr,1,a = r2

ra−1 = [a1, . . . , ak−1, ak + bl, bl−1, . . . , b1]

Tr,d,a = r2d
rda−1 = [a1, . . . , ak−1, ak + 1, (2)d−2, bl + 1, bl−1, . . . , b1] if d ≥ 2

and the complementary fraction to Tr,d,a (for any d) is:

r2d
r2d−rda+1

= [b1, . . . , bl, d+ 1, ak, . . . , a1]

Proof. For the first two identities we can use the inductive process given in the

previous lemma. By inspection it is clearly true when r = 2 and a = 1. It also clear

that it holds after applying (2), so we only need to check (3). This follows from:

r+a
a = [a1 + 1, a2, . . . , ak],

r+a
r = [2, b1, . . . , bl]

The third identity concerns the complementary fraction to Tr,d,a so it is

enough to check that it satisfies the rule given in Lemma 5.2(3). If d ≥ 2, starting

with

[a1, . . . , ak + 1, (2)d−2, bl + 1, . . . , b1, 1, a1, . . . , ak, d+ 1, bl, . . . , b1]
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we see that [bl, . . . , b1] and [a1, . . . , ak] are complementary so this blows down to:

[a1, . . . , ak + 1, (2)d−2, 1, d+ 1, bl, . . . , b1]

Since d
d−1 = [(2)d−1] and d

1 = [d] are complementary this blows down to

[a1, . . . , ak, 1, bl, . . . , b1]

and, as these are complementary, we do indeed get 0. The case d = 1 is similar.

5.2 Deformations of surface cyclic quotient singularities

Let (P ∈ S) be the germ of a T -singularity and consider the minimal resolution

µ : (E ⊂ S̃)→ (P ∈ S). The exceptional divisor E is a chain of rational curves with

negative self-intersection numbers given by the T -string [c1, . . . , cm].

Lemma 5.10. KS is a Q-Cartier divisor of index r. In particular

K
S̃

= µ∗KS −
m∑
i=1

(
1− βi

r

)
Ei

where 1 ≤ β1, . . . , βm < r are integers such that ciβi = βi−1+βi+i for i = 2, . . . ,m−1

and β1 = a, βm = r − a.

Proof. Set β0 := r and βm+1 := r. Then the relation ciβi = βi+1 + βi−i comes from

computing K
S̃
· Ei for i = 1, . . . ,m.

The claim that β1 = a, βm = r−a can be verified using the inductive process

of Lemma 5.8. It is easy to check that βi = 1 for all the exceptional curves for the

T -singularities appearing in (1) so the claim holds. It is also easy to see that the

claim holds under (2). Therefore we only need to check (3).

Suppose the claim holds for Tr,d,a = [c1, . . . , cm], so we must check for

Tr+a,d,a = [c1 + 1, . . . , cm, 2]. We set β0 = βm+2 := r + a and we claim that βi

stays the same for i = 2, . . . ,m + 1 (note βm+1 = r = β1 + βm). By induction

ciβi = βi−1 + βi+1 for i = 2, . . . ,m and, from our choice of β0, βm+2, it is easy to

check that (c1 + 1)β1 = β0 + β2 and 2βm+1 = βm + βm+1.

Example 5.11. For the T -string T11,1,3 = [4, 5, 3, 2, 2] we have:

ci
4 5 3 2 2

βi 3 1 2 5 8
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Since for a T -singularity (P ∈ S) the canonical divisor KS is a Q-Cartier

divisor of index r, we can take the canonical cover to see that (P ∈ S) is the cyclic

quotient of an Ard−1 Du Val singularity:

1
r2d

(1, rda− 1) =
(
V (xz − yrd) ⊂ C3

x,y,z

)
/ 1
r (1, a, r − 1)

Indeed the canonical covering of a cyclic quotient singularity (P ∈ S) is a Du Val

singularity if and only if (P ∈ S) is either Du Val or a T -singularity.

5.2.1 Q-Gorenstein smoothings

Let (P ∈ S0) be a surface cyclic quotient singularity and suppose that

σ : (S0 ⊂ S)→ (0 ∈ Ct)

is a 1-parameter smoothing of (P ∈ S0), i.e. a flat family of surfaces such that the

generic fibre St is smooth.

Definition 5.12. A smoothing σ is called a Q-Gorenstein smoothing if the total

space S is Cohen–Macaulay and KS is a Q-Cartier divisor.

A consequence of this condition is that K2
S0

= K2
St

remains constant for all

t ∈ C. Moreover, by [KSB] Corollary 3.6, the total space S has at worst a terminal

singularity at (P ∈ S).

Conversely suppose (P ∈ S) is a surface cyclic quotient singularity that

admits a 1-parameter smoothing σ : (S0 ⊂ S) → (0 ∈ C) to a 3-fold terminal sin-

gularity (P ∈ S). Then, by [KSB] Proposition 3.10, σ is a Q-Gorenstein smoothing

and (P ∈ S0) is either a Du Val singularity or a T -singularity.

For (P ∈ S), a 1
r (1, a) quotient singularity, Kollár & Shepherd-Barron proved

that the irreducible components of the deformation space Def S of such a singularity

are smooth. Moreover they are in one-to-one correspondence with P -resolutions,

that is partial resolutions µ : S → S such that S has only T -singularities and KS/S

is ample. They showed that a Q-Gorenstein deformation of S blows down to a

deformation of S and that all deformations are obtained in this way.

Stevens [S] and Christophersen actually enumerated P -resolutions (and hence

the different components of Def S). We recall this here as it bears some resemblance

to Conjecture 6.11.

Theorem 5.13 ([KSB] Theorem 3.9, [S] Theorem 4.1, Christophersen). The P -

resolutions of 1
r (1, a) are in one-to-one correspondence with 0-strings dominated
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by the complementary HJ-string r
r−a = [b1, . . . , bl], i.e. HJ-strings of the form

[c1, . . . , cl] = 0 with ci ≤ bi for i = 1, . . . , l.

There is a very nice explanation of this correspondence in [GHKv1] §6.
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Chapter 6

The main case: type A

We now turn to study type A extractions. These comprise of infinite families of

complicated examples and, for the time being, an explicit classification seems very

hard.

Assume that we are in the usual situation of §0.2 and are trying to construct

a divisorial extraction

σ : (Z ⊂ E ⊂ Y )→ (P ∈ C ⊂ X),

or equivalently a presentation of the (extended) symbolic power algebra
⊕

n≥0 I
[n]
C/X .

In particular SX is the general hypersurface section containing C, HY = σ−1(HX)

is the pullback of a general hyperplane section HX ∈ |mP | and Z = σ−1(P )red is the

reduced central fibre. In this chapter we will assume that the general hypersurface

section SX has a type A Du Val singularity at P .

Outline of the main Theorem 0.3

We now explain the main result of this chapter, Theorem 0.3, which provides the

first large case in the study of these extractions.

In §6.1 we see that in this type A case our divisorial extraction σ : Y → X can

be viewed as a 1-parameter Q-Gorenstein smoothing of a natural hyperplane section

(HY ⊂ Y ) and that there are some strong restrictions on the type of singularities

the surface HY can have. We give an explicit description of the divisorial extraction

Y under the assumptions:

1. HY has rational, normal singularities with a unique high index point (Q ∈ HY )

given by a simple T -singularity (see Assumption 6.3),

2. the central fibre Z ∼= P1 is irreducible.
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Lemma 6.7 gives a classification of the possible neighbourhoods (Z ⊂ HY )

satisfying these conditions, which gives a whole family of cases depending on two

integers: m ≥ 2 and k ≥ 1. Lemma 6.9 describes which curve (C ⊂ SX) corresponds

to the Q-Gorenstein smoothing of this neighbourhood.

Then our main result is Theorem 0.3—an explicit description of the divisorial

extraction Y = ProjX
⊕
I

[n]
C/X as a sequence of serial type I unprojections, for this

choice of (C ⊂ SX).

The proof of Theorem 0.3 is given in §6.3.2 and is similar to the proof [BR1]

§5 of the existence of the main case of diptych varieties. An outline of our proof

is given at the beginning of §6.3.2. In brief, we start from an explicit form for the

equations of (C ⊂ X) and write down generators for
⊕

n∈Z I
[n]
C/SX

, the (extended)

symbolic power algebra restricted to SX . Then starting from Y1 the ordinary blowup

of C, a Gorenstein ring in codimension 3, the essential content of the proof is in

proving the existence of a type I unprojection divisor (Dα ⊂ Yα) at each stage.

These divisors Dα are (possibly non-reduced) complete intersection divisors given

explicitly in the course of the proof. Then, by the unprojection theorem 2.5 and

induction, Yα+1 exists as a variety embedded in codimension 1 greater than Yα and

OYα+1 is a Gorenstein ring.

6.1 Two special hypersurface sections

Throughout §6.1 we do not need to assume that X is smooth. We concentrate on

Mori extractions, where (P ∈ X) is a terminal singularity of index 1 (i.e. a cDV

singularity), but almost all of the discussion holds for flipping contractions too.

One effective way of studying an extremal neighbourhood σ : Y → X is to

consider what happens to two special divisors on X after pulling back to Y . The first

divisor, which we have already seen and used, is the general elephant SY ∈ |−KY |.
The second, which hasn’t played much of a role until now, is the general hyperplane

section HY .

As (P ∈ X) is cDV the general hyperplane HX ∈ |mP | passing through P

has at worst a Du Val singularity. Unfortunately HY = σ−1HX , the birational

transform of HX on Y , can have very bad (non-log-canonical) singularities, even

when σ is a Mori extraction, e.g. [Tz4] Theorem 4.1(2)(a). However, in the case that

(P ∈ SX) is at worst a type A Du Val singularity then, by Theorem 6.1, the general

hyperplane HY has at worst semi-log-canonical singularities which necessarily admit

a Q-Gorenstein smoothing.

Now assume that we have any neighbourhood (Z ⊂ HY ) admitting a 1-
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parameter Q-Gorenstein smoothing and a contracting morphism

σ : (Z ⊂ HY )→ (P ∈ HX)

with σ∗OHY = OHX and with rational singularities, i.e. R1σ∗OHY = 0. Then

by [KM] Proposition 11.4 this Q-smoothing extends to a birational morphism of

terminal 3-folds σ : Y → X.

(Z ⊂ HY ) (E ⊂ Y )

(P ∈ HX) (C ⊂ X)

σ

Q-smoothing

If (P ∈ HX) is at worst a Du Val singularity, then σ is necessarily a Mori contraction

(not a flipping contraction) since (P ∈ X) is a cDV singularity.

This is the way that Kollár & Mori [KM] and Tziolas [Tz3] view type A

neighbourhoods. Brown & Reid [BR1] also use these two surfaces to define the

two panels of their diptych varieties, the starting point of their work. In this type

A case, if HY is normal then HY and SY are two toric surfaces glued along their

toric boundary strata. All of the geometry of the neighbourhood comes from the

combinatorics of these two surfaces and the way in which they are glued together.

6.1.1 The general hyperplane HY

For a Mori extraction σ : (E ⊂ Y ) → (C ⊂ X), as (HX ∩ C) = P it follows that

HY contains the central fibre Z and the induced contraction σ : (Z ⊂ HY )→ (P ∈
HX) is otherwise an isomorphism. Moreover −KHY is σ-ample and σ contracts

a configuration Z of complete rational curves to at at worst a Du Val singularity

(P ∈ HX).

As we have already said, there are some strong restrictions on the type of

singularities that HY can have. The following Theorem appears in [Tz3] Lemma 3.1

and Corollary 3.2.

Theorem 6.1. Suppose that σ : (Z ⊂ Y ) → (P ∈ X) is a terminal neighbourhood

with 1-dimensional central fibre Z = σ−1(P )red. Suppose that HX ∈ |mP | is a

general hyperplane section through P and let HY = σ−1HX . Then HY has semi-log-

canonical singularities. Moreover any high index points of HY are semi-log-terminal

and lie on SY ∩HY .

In particular, of such singularities those which are rational and admit a Q-

Gorenstein smoothing are classified in [KSB] §5.2 as follows:
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1. index > 1

(a) (normal) type T singularities 1
r2d

(1, rda− 1),

(b) (non-normal) quotient normal crossing
(
(yz = 0) ⊂ C3

x,y,z

)
/1
r (1, a, r−a),

2. index = 1

(a) (normal) Du Val singularities,

(b) (non-normal)

i. normal crossing
(
(yz = 0) ⊂ C3

x,y,z

)
,

ii. pinch points
(
(xy2 = z2) ⊂ C3

x,y,z

)
,

iii. degenerate cusps.

Remark 6.2. We now have two different ways of viewing the same neighbourhood.

Up until this chapter we had viewed σ as a Mori extraction blowing up a curve in a

3-fold (C ⊂ X). Alternatively, we can now view σ as the Q-Gorenstein smoothing

of a surface contraction σ : (Z ⊂ HY )→ (P ∈ HX).

As Kollár & Mori point out ([KM] §4.10), it is not very easy to work out

which (C ⊂ X) correspond to which (Z ⊂ HY ). In the rest of the chapter we

give some examples and make some speculation, but this remains one of the biggest

difficulties in general. The description of (C ⊂ X) is useful for constructing Y

explicitly using unprojection, whereas (Z ⊂ HY ) provides much better restrictions

on Mori extractions.

6.2 Non-semistable extractions

From now on we assume, once more, that (P ∈ X) is a smooth point. As can be

seen from Proposition 6.1, to study (Z ⊂ HY ) in general there are a large number

of cases to consider depending on the singularities of HY and the configuration of

components of Z. Therefore we choose to restrict attention to a first case that we

can study explicitly.

Assumption 6.3. We assume that σ : Y → X is a normal non-semistable neigh-

bourhood, i.e. that HY is normal with rational singularities and σ : SY ∼= SX . In

particular HY has exactly one high index point (Q ∈ HY ) which is a T -singularity.

Moreover, we assume that this is a simple T -singularity, i.e. a quotient singularity

of the form 1
r2 (1, ra− 1) where gcd(r, a) = 1.

The assumption that σ is non-semistable is useful for two reasons. First,

since SY ∼= SX it follows that (SY ∩HY ) is a point, so this restricts HY to having
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a single high index point. Secondly it gives us more information about generators

and relations of
⊕
I

[n]
C/X .

Lemma 6.4. Let η ∈
⊕
I

[n]
C/X be the generator in degree 1 corresponding to the

equation of SX . Then σ is non-semistable if and only if the generators and relations

of
⊕
I

[n]
C/X are lifts, modulo η, of the generators and relations of

⊕
I

[n]
C/SX

in the

same degrees.

Proof. Indeed, σ lifts
⊕
I

[n]
C/SX

if and only if σ restricts to the blowup of this algebra

over SX . But this is simply the blowup of the Cartier divisor (rC ⊂ SX), where r

is the index of (P ∈ SX). So σ : SY → SX is an isomorphism.

It is easy to calculate
⊕
I

[n]
C/SX

when (P ∈ SX) is a type A Du Val singularity.

We can use this a guide to see what ideals we expect to unproject as we build
⊕
I

[n]
C/X

and as a sanity check to make sure that we get the right final answer.

Remark 6.5. We concentrate on non-semistable extractions purely for the conve-

nience of knowing what generators and relations to expect to lift to our ring. Mori

[M2] Theorem 4.3 and Brown & Reid’s diptych varieties [BR4] §5.3 already contain

examples of semistable divisorial extractions.

We assume that HY has a simple T -singularity as this is the most general

case. The non-simple T -singularities deform to simple ones so, up to a choice of base

change, we could choose to study neighbourhoods with only simple T -singularities

and then treat the more singular cases as degenerations of these.

We can also choose to get rid of any Du Val singularities by the trick of

Remark 6.8.

Local coordinates

We now fix some local coordinates for constructing Mori extractions in this setting.

General elephant Up to a local analytic change of coordinates we may assume

that the general elephant is given by the standard embedding of an Ar−1 Du Val

singularity in C3:

(P ∈ SX ⊂ X) ∼=
(
0 ∈ V (xz − yr) ⊂ C3

x,y,z

)
As usual, (P ∈ SX) is isomorphic to the quotient of C2

u,v by the cyclic group action
1
r (1,−1) and we call u, v orbinates on SX . In particular, we can write x, y, z in

terms of the orbinates as x, y, z = ur, uv, vr.
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A curve (P ∈ C ⊂ SX) can be given by an orbifold equation γ(u, v) as in §3.1.

Here γ(u, v) is a semi-invariant equation of character a, so that γ = uaf + vr−ag

for some invariant functions f(x, y, z), g(x, y, z) ∈ OSX . By Assumption 6.3 r and

a are coprime.

We pass to the extended symbolic power algebra by introducing the inclusion

ι : IC/X ↪→ OX , a variable of weight −1. In particular this introduces the equation

ιη = xz−yr where η is the named equation of SX . In this extended ring SX is given

by the hyperplane section V (η) and we look to construct Y by lifting with respect

to η.

General hyperplane A hyperplane section HX passing through (P ∈ X) which

is general with respect to our chosen elephant SX is given by

(P ∈ HX ⊂ X) ∼= (0 ∈ V (y) ⊂ C3).

After a possible change of coordinates we may assume that this choice of HX is also

general with respect to the curve (C ⊂ X), i.e. that C meets HX transversally.

Note that HX and SX are two toric surfaces meeting along their toric boundary

strata HX ∩ SX = C1
x ∪ C1

z. HY is the hyperplane section V (y) and y is precisely

the parameter that gives the Q-Gorenstein smoothing of (Z ⊂ HY ).

We choose to write the orbifold equation γ(u, v) in longhand as

γ(u, v) = uαm + f1u
αm−1vβ1 + f2u

αm−2vβ2 + · · ·+ fm−1u
α1vβm−1 + vβm (6.1)

where fi ∈ OSX , the αi are strictly decreasing and the βi are strictly increasing,

i.e. the (αi, βi) are points on the boundary of the Newton polytope of γ. As HX is

general with respect to C we see that γ contains nonzero monomials uαm , vβm and,

assuming an analytic change of variables, we can take the coefficients of these terms

to be 1.1

6.2.1 Lifting an elephant

As we have said, this ring
⊕
I

[n]
C/SX

is easily described when (P ∈ SX) is the type

A Du Val singularity 1
r (1,−1). In terms of the orbinates,

⊕
I

[n]
C/SX

is given by the

1We could allow coefficients f0, fm 6= 1, as in the Prohkorov–Reid example §3.3, and then choose
to study degenerate cases when f0 or fm vanish. Since we are concerned with the most general case
we choose not to do this. Including them is harmless but it makes the equations more complicated.
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ring of invariants ⊕
n≥0

I
[n]
C/SX

∼= C[u, v, γ]
1
r (1,−1,a)

with the grading that comes from setting the weight of u, v to be 0 and the weight

of γ to be 1. We can represent the generators of this ring by the monomial ‘triangle’

•y r

•
x

•
ξ1

b1
· · ·

•
ξl−1

bl−1

•
ξl

bl

•
z

•
ν1

a1 · · ·
•

νk−1

ak−1

•
νk

ak

• κ

with corners x, z, κ = ur, vr, γr. Here r
a = [a1, . . . , ak] and r

r−a = [b1, . . . , bl].

The tag b1 on the node corresponding to ξ1 records the ‘tag equation’ xξ2 =

ξb11 and similarly for all the other tags. If we let b ≡ a−1 mod r, then we can write

the following generators in terms of orbinates:

ξ1 = [ur−aγ], ξk = [uγr−b], ν1 = [vaγ], νl = [vγb]

The triangle has no internal points as y = uv is already invariant.

Since it defines a toric variety, this is a Cohen-Macaulay ring and is given by(
k+l+1

2

)
equations. There is a unique equation of the form st = · · · for each internal

diagonal s—t of this (k + l + 4)-gon that avoids y.

Extended symbolic power algebra

The triangle gives the generators and relations of the ordinary symbolic power al-

gebra
⊕

n≥0 I
[n]
C/SX

. We now throw in the generator ι to get the extended power

algebra.

Lemma 6.6. The extended power algebra R =
⊕

n∈Z I
[n]
C/SX

is a Gorenstein ring

given by 1
2(k + l + 1)(k + l + 4) equations.

Proof. By our choice of γ, we can write ι a rational function in the orbinates by

ι =
uaf + vr−ag

γ

which we note is invariant under the 1
r (1, r−1, a) action. Therefore we can multiply
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ι against any invariant monomial of positive degree to get an expression

ι[uUvV γG] = [uU+avV γG−1]f + [uUvV+r−aγG−1]g

which, as G ≥ 1, can be rendered as a polynomial in terms of the other generators.

Thus the inclusion of ι introduces k + l + 1 new equations of the form ιξj = · · · ,
ινj = · · · and ικ = · · · . Since ι is the only generator in negative degree, deg ι = −1

and ι multiplies all positive degree generators these are the only new equations and

we have 1
2(k + l + 1)(k + l + 4) in total.

Now we prove that R is Gorenstein. Take the hyperplane section R = R/(y),

i.e. we set uv = 0. If R is Gorenstein then it will follow that R is Gorenstein by

Remark 2.2.

By (6.1) the orbifold expression for ι ∈ R becomes ι = γ−1(uαm+vβm). Thus

ιξ1 = xb0 where b0 = 1
r (r − a + αm) and ιν1 = za0 where a0 = 1

r (a + βm). All the

equations that cross over two long edges of the triangle become ξiνj = 0, etc. These

are the equations of a reducible toric surface S = S1 ∪ S2 where S1, S2 are glued

along their toric boundary strata C1
ι ∪C1

κ. Since ra0−a
r = [a0, a1, . . . , ak] one of these

surfaces is

S1 = 1
ra0−a(1, ra0 − a− r) ⊂ Ck+3

ι,z,ν1,...,νk,κ

and similarly for S2 ⊂ Cl+3
ι,x,ξ1,...,ξl,κ

.

By a similar proof to [BR1] Lemma 2.3 the ring R is Gorenstein. These two

surfaces are glued in codimension 1 so R is Cohen-Macaulay by [R3] Proposition

2.2. Now write down two 2-forms that generate each of ωS1 and ωS2 (dzz ∧
dι
ι on S2

and dι
ι ∧

dx
x on S2 say) with residues that cancel along each of C1

ι and C1
κ. Thus by

[R3] Corollary 2.8(ii) we can define an invertible dualising sheaf ωS on S, hence S

is Gorenstein.

Our aim is to lift this to a Gorenstein ring by introducing a degree 1 variable

η that acts as the equation of (SX ⊂ X). In other words we want to introduce the

equation ιη = xz − yr and find lifts of all the other generators and relations that

preserve degrees.

Rugby balls

We extend our monomial triangle to include ι and η by adding a ‘cap’ on the LHS.

We call the resulting diagram a rugby ball and we treat it as a convenient picture

that records some information about the generators and relations of our ring.
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•ι(η) 1

•
x

b0

•
ξ1

b1
· · ·

•
ξl−1

bl−1

•
ξl

bl

•
z

a0

•
ν1

a1 · · ·
•

νk−1

ak−1

•
νk

ak

• κ (y)1

There is one equation for each internal diagonal of this (k + l + 4)-gon. In the

language of [BR1], the (y) and (η) appearing at either end of the rugby ball are

annotations, corresponding to the general hyperplane and general elephant of our

Mori extraction respectively. They modify the tag equations at each of those points

by xz ≡ ιη mod y and ξkνl ≡ yκ mod η. The tag b0 records ιξ1 ≡ xb0 mod y and

similarly for a0 and z.2

If we do manage to lift this ring by η then, after projecting out ι and dividing

out by the C∗-action corresponding to our usual grading, we get a variety Y that

contains the coordinate point Q = Pκ. At this point we can use the fact that κ is

invertible to eliminate all variables except y, η, νk, ξl, to be left with a hyperquotient

singularity (
ξlνk = y + ηrd

)
⊂ C4

ξl,νk,η,y
/ 1
r (r − b, b, 1, 0)

for some function d ≥ 1. Thus HY = V (y) naturally has a T -singularity (Q ∈ HY ):(
ξkνl = ηrd

)
⊂ C4

ξl,νk,η
/ 1
r (r − b, b, 1)

6.3 Irreducible central fibre

We now treat our main case of normal non-semistable neighbourhoods with irre-

ducible central fibre Z ∼= P1 and normal general hyperplane section HY satisfying

Assumption 6.3. From §6.1.1 these correspond to Q-Gorenstein smoothings of a

contraction:

σ : (Z ⊂ HY )→ (0 ∈ C2)

Let ∆ = ∆(Z ⊂ HY ) be the dual intersection diagram of (Z ⊂ HY ). Recall we are

assuming that HY has a unique simple T -singularity (Q ∈ HY ) which, by Lemma

5.9, has a resolution of the form:

a1 · · ·
ak−1 ak + bl bl−1 · · ·

b1

2If we had wanted to include coefficients f0, fm 6= 1 at this point we could include annotations
(f0) next to x and (fm) next to z.
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There are two coprime integers r > a such that r
a = [a1, · · · , ak] and r

r−a =

[b1, · · · , bl] are reduced complementary HJ-strings.

Description of (Z ⊂ HY )

Lemma 6.7. If (Z ⊂ HY ) satisfies Assumption 6.3 and Z is irreducible then there

exists m ≥ 2 and k ≥ 1 such that ∆ is given by

m · · · m m+ 1 + bl bl−1 · · ·
b1

· · ·
(m+ 1)× 2

where [b1, . . . , bl] is the complementary continued fraction to [(m)k−1,m+ 1].

Proof. We prove the lemma through the following series of claims:

1. Any blowdown of ∆ has a unique −1-curve which cannot appear at a fork.

Requiring that (Z ⊂ HY ) contracts to (0 ∈ C2) is equivalent to saying that

∆ can be obtained by blowing up (0 ∈ C2) at a sequence of (infinitely near)

points. The final diagram ∆ must have a unique −1-curve, clearly the node

corresponding to Z. We cannot create two or more −1-curves, since any

configuration dominating this one will always have at least two −1-curves. To

create a fork at a curve C we must blow up at least one point on an exceptional

curve, so that C2 ≤ −2.

2. If Z intersects Q at a node of self-intersection −c then Z intersects one end

of a Ac−2 Du Val singularity.

Z must intersect Q, so suppose Z intersects Q at a node labelled c. Z cannot

appear at a fork, so Z intersects at most one other singularity, which must

be a Du Val singularity. Z cannot intersect a Du Val singularity in any way

other than at one end of an Ad singularity for some d, else blowing down will

eventually create a fork at a −1-curve. Around the node corresponding to Z,

∆ looks like

c 2 · · · 2

d× 2

It is clear that d = c−2. If d > c−2 then blowing down creates a fork at a −1-

curve and if d < c−2 then, after blowing down all possible −1-curves, the curve

corresponding to the node labelled c still has self-intersection d+ 1− c ≤ −2.
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3. Z intersects Q at the node labelled ak + bl.

If not then, without loss of generality, Z intersects a node labelled ai for

1 ≤ i ≤ k − 1. After contracting enough times to get rid of the Aai−2 Du Val

singularity coming from the previous claim, we are left with a chain of rational

curves which blows down to a smooth point. Therefore, by Lemma 5.6, these

self-intersection numbers must satisfy

[a1, . . . , ai−1, 1, . . . , ak + bl, bl−1, . . . , b1] =
1

m

for some m ≥ 1. Since ak ≥ 2 a sequence of blowdowns gives

[a1, . . . , aj , 1, bl + 1, bl−1, . . . , b1] =
1

m

for some j ≤ k − 2, so that [m, a1, . . . , aj , 1, bl + 1, bl−1, . . . , b1] = 0. But the

reduced complementary HJ-string to [b1, . . . , bl−1, bl+1] is [a1, . . . , ak, 2] which

has length k + 1 > k − 1. So this cannot happen.

4. a1 = · · · = ak−1 = m and ak = m+ 1 for some m ≥ 2.

We can assume that [a1, . . . , ak−1, 1, bl−1, . . . , b1] = 1
m for some m ≥ 2, so that:

[m, a1, . . . , ak−1, 1, bl−1, . . . , b1] = 0

Therefore the reduced complementary HJ-string to [bl−1, . . . , b1] is given by

[m, a1, . . . , ak−1]. In particular this complement has length k.

Now we either have bl = 2 or ak = 2. If bl = 2 then

[a1, . . . , ak−1, ak, 1, 2, bl−1, . . . , b1] = [a1, . . . , ak−1, ak − 1, 1, bl−1, . . . , b1] = 0

so that [a1, a2, . . . , ak−1, ak−1] = [m, a1, . . . , ak−2, ak−1] and, by the uniqueness

of reduced complements, equating term-by-term gives m = a1 = a2 = · · · =

ak−1 = ak − 1.

The case ak = 2 is impossible since, after blowing down a number of times,

we have [a1, . . . , ai− 1, 1, bl−1, . . . , b1] = 0 which gives a complement of length

i < k, a contradiction.

Given that bl = 2 we necessarily have that m+ 1 + bl = m+ 3 and hence these four

claims imply that ∆ is of the form stated in the lemma.
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Remark 6.8. Note that whenever a component of Z intersects the end of a Am Du

Val singularity we can write down a neighbourhood with no Du Val singularities by

splitting up this component of Z. The two configurations

· · · · · ·

· · ·

c

d× 2

· · · · · ·c

· · ·
(d+ 1)× 1

both contract to the same result. As in Prokhorov & Reid’s example §3.3 we view

the case with Du Val singularities as a degeneration where two or more branches of

(C ⊂ SX) gain some extra tangency.

Therefore, instead of treating strictly irreducible neighbourhoods, from now

on we consider the more general case of Z a reducible curve with m+ 2 components

having the following dual graph:

m · · · m m+ 1 + bl bl−1 · · ·
b1

· · ·
(m+ 2)× 1

(†)

Description of (C ⊂ SX)

We now work out which generic curve downstairs (C ⊂ SX ⊂ X) corresponds to

this neighbourhood upstairs. We know that SX is Ar−1 Du Val singularity, where r

is given by r
a = [(m)k−1,m+ 1].

Consider the sequence of integers defined by the recurrence relation:

Q−1 = −1, Q0 = 0, Q1 = 1, mQk = Qk−1 +Qk+1 ∀k > 1 (6.2)

Then [(m)k] =
Qk+1

Qk
and [m+ 1, (m)k−1] =

Qk+1+Qk
Qk

. As Qk
Qk−1

and
Qk+1

Qk
are conver-

gents to the continued fraction [(m)k] we have, from the usual rules for convergents,

that Q2
k = Qk−1Qk+1 + 1 for all k. It follows that

Qk(Qk +Qk−1) = Qk−1(Qk +Qk+1) + 1 =⇒ Q−1
k ≡ Qk +Qk−1 mod Qk+1 +Qk

and therefore that:
r

a
= [(m)k−1,m+ 1] =

Qk+1 +Qk
Qk +Qk−1

Lemma 6.9. Let (Z ⊂ HY ) be the the neighbourhood given by the configuration

(†) above. Then the Q-Gorenstein smoothing of σ : (Z ⊂ HY ) → (0 ∈ C2) gives a
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divisorial contraction to a curve (C ⊂ SX) where SX has a type AQk+1+Qk−1 Du

Val singularity and the generic C has m+ 2 branches meeting SX as follows:

E1 · · ·
EQk−1 EQk

EQk+1

· · ·
EQk+1+Qk−1

· · ·
m+ 2

Proof. By [Tz3] Lemma 4.2 it follows that the curve (C ⊂ SX) has l branches where:

l = −(KHY Z)2

Z2

Let µ : (F ⊂ H̃Y ) → (Q ∈ HY ) be the minimal resolution of the T -singularitiy Q

and Z̃ be the strict transform of Z. Then Z̃ is a collection of m+2 disjoint −1-curves

on a smooth surface and we can compute:

l = −(KHY Z)2

Z2
= −

(K
H̃Y
Z̃)2

Z̃2
=

(m+ 2)2

m+ 2
= m+ 2

Now (C ⊂ SX) is a curve with m + 2 components and these intersect just

one component Ej of the Ar−1 Du Val singularity SX . Hence j should satisfy:

j(m+ 2) ≡ Qk +Qk−1 mod Qk+1 +Qk

But (m+ 2)Qk = Qk+1 + 2Qk +Qk−1 ≡ Qk +Qk−1 mod Qk+1 +Qk so

j ≡ Qk mod Qk+1 +Qk

(since Qk is coprime to Qk+1 +Qk).

This implies that the orbifold equation of C is given by γ(u, v) = Φ(uQk , vQk+1) ∈
OS(uQk , vQk+1) where Φ is a homogenous equation of degree m+ 2

Φ(X,Y ) = Xm+2 + f1X
m+1Y + · · ·+ fm+1XY

m+1 + Y m+2 (6.3)

with coefficients f1, . . . , fm+1 ∈ OX . For convenience we set f0 = fm+2 = 1 and, for

1 ≤ i ≤ m+ 1, define:

φi(X,Y ) =

i∑
j=0

fjX
i−jY j , ψi(X,Y ) =

m+2∑
j=i

fjX
m+2−jY j−i (6.4)
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The φi are just successive truncations of Φ from the right, i.e.

φm+1(X,Y ) = Xm+1 + f1X
mY + · · ·+ fmXY

m + fm+1Y
m+1

φm(X,Y ) = Xm + f1X
m−1Y + · · ·+ fmY

m

...

φ2(X,Y ) = X2 + f1XY + f2Y
2

φ1(X,Y ) = X + f1Y

and similarly the ψi are truncations of Φ from the left. In particular φi = Xφi−1 +

fiY
i and ψi = fiX

m+2−i + Y ψi+1.

Now we can check that the orbifold equation γ(u, v) can be rewritten in this

notation as

γ(u, v) = φ1(x, yQk+1)uQk+Qk−1 + ψ2(yQk , z)vQk+1−Qk−1

and hence that (C ⊂ SX ⊂ X) is given by the equations:

2∧(
x yQk+Qk−1 ψ2(yQk , z)

yQk+1−Qk−1 z φ1(x, yQk+1)

)
= 0

6.3.1 Big example 1

Before attempting to prove the existence of σ : Y → X in the general case we

calculate the specific example when m = 3, k = 2 in order to get a flavour of this

ring. In this case we set

Q−1, Q0, Q1, Q2, Q3 = −1, 0, 1, 3, 8.

Then the curve (C ⊂ X) is given by the equations:

2∧(
x y4 −(f2y

9 + f3y
6z + f4y

3z2 + z3)

y7 z x+ f1y
8

)
= 0

Thus SX ∼= 1
11(1, 10) is a typeA10 Du Val singularity and, since γ(u, v) ∈ OSX (u4, v7),

cutting down to (C ⊂ SX) the (extended) symbolic power algebra
⊕
I

[n]
C/S is gener-

ated by the usual x, y, z in degree 0, ι in degree −1 and seven more generators in
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degrees 1, 1, 2, 3, 5, 8, 11 which we write as:

ξ1 ξ2 ξ5 ξ8 κ11 ν3 ν1

u7γ u3γ2 u2γ5 uγ8 γ11 vγ3 v4γ

This is a Gorenstein ring whose generators and tags are given by the following rugby

ball. There are 35 equations coming from the 35 interior diagonals.

•ι 1

•
x

2

•
ξ1

2

•
ξ2

3

•
ξ5

2

•
ξ8

2

•
z

4
•
ν1

3
•
ν3

4

• κ111

To start calculating the equations of Y we can start from the codimension 2

complete intersection

xz = ιη + y11, ιν1 = y4(x+ f1y
8) + zψ2(y3, z)

and unproject the ideal (ι, y4, z) to get our first matrix of Pfaffians:
ι y4 −ψ2(y3, z) −x

z x+ f1y
8 −y7

ν1 η

ξ1


As in [BR1] §1.2.7 we can play a projection/unprojection game, starting with the

first group of five variables x, ι, z, ν1, ξ1, to calculate this ring by serial pentagrams.

We systematically drop a variable and add a new unprojection variable until we have

constructed all the generators of our ring. They are depicted in Figure 6.1 along

with the order of projection and unprojection. For instance, the first pentagram

contains the ideal (ι, x, y4, z) in Jer12 format. To move from the first pentagram

to the second we project away from ι and then unproject (x, y4, z) to get the new

variable ξ2 with unprojection equations. At each stage moving down the list, the

projection variable is the (1, 2) entry of the current matrix and the unprojection

variable appears as the (4, 5) entry of the next matrix. This game continues all the

way down until we construct κ11, at which point there are no more unprojection

ideals to unproject from.
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ι y4 −ψ2(y3, z) −x

z x+ f1y
8 −y7

ν1 η
ξ1

 •ι

•
x

•
ξ1

•
ξ2

•
ξ5

•
ξ8

•
z

•
ν1

•
ν3

• κ11


x y4 −ηψ3(y3, z) −ξ1

z ξ1 + f2y
5η −y3φ1(ν1, yη)

ν1 η
ξ2

 •

• • • • •

• • •

•


ξ1 y3 −η2ψ4(y3, z) −ξ2

z y(ξ2 + f3y
2η2) −φ2(ν1, yη)

ν1 η
ν3

 •

• • • • •

• • •

•


z y −φ2(ν1, yη) −ξ2

ν1 η(ξ2 + f3y
2η2) −y2ψ4(η3, ν3)

ν3 η3

ξ5

 •

• • • • •

• • •

•


ξ2 y −η3φ1(ν1, yη) −ξ5

ν1 ξ5 + f2yη
5 −yψ3(η3, ν3)

ν3 η4

ξ8

 •

• • • • •

• • •

•


ξ5 y −η7 −ξ8

ν1 ξ8 + f1η
8 −ψ2(η3, ν3)

ν3 η4

κ11

 •

• • • • •

• • •

•

Figure 6.1: Serial pentagrams for Big example 1
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The Pfaffians in Figure 6.1 give us 20 of the 35 equations that we are expect-

ing to lift. The rest can be worked out by working birationally or computing the

colon of the ideal generated by these 20 equations against a suitable monomial.

We note that along the bottom row of the rugby ball, moving from ι round

to κ11, the tag equations are given by

xz = ηι+ y11

ιν1 = ψ1(y3, z) + y4x

zν3 = φ3(ν1, yη) + yηξ2

ν3κ11 = ψ1(η3, ν3) + η4ξ5

ξ8ν3 = yκ11 + η11

and that all the equations display a left-right symmetry that comes from flipping

the rugby ball from left to right, i.e. we interchange ι↔ κ11, x↔ ξ8, y ↔ η, etc.

The hyperplane section (Z ⊂ HY )

If we project out ι, the variable of weight −1, and take the Proj of the resulting

Z≥0-graded ring we recover the divisorial extraction σ : Y → X that we have been

aiming to construct. We can check to see whether this has the hyperplane section

(Z ⊂ HY ) that we are expecting.

Let (Q ∈ Y ) be the point where all variables but κ11 vanish. At (Q ∈ Y )

we can use κ11 = 1 to eliminate all variables apart from η, ν3, ξ8. In particular y is

eliminated by the equation ξ8ν3 = y+ η11, so that (Q ∈ HY ) is the quotient of a Du

Val singularity: (
ξ8ν3 = η11

)
/ 1

11(1, 3, 8)

Since 1
11(1, 3, 8) = 1

11(4, 1, 10), this is the T -singularity 1
121(1, 43), exactly as we were

expecting.

It also follows, from substituting x = y = z = 0 into the equations that we

have calculated, that the reduced central fibre Z is given by:

x = y = z = ξ1 = ξ2 = ξ5 = ν1 = 0

2∧(
ξ8 ψ2(η3, ν3) −η4

−η7 ξ8 + f1η
8 ν3

)
= 0

Letting ν3 = 0 we see that Z ∩ V (ν3) = Q, so away from Q we can invert ν3 along
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Z. If we do this then one of the equations defining Z becomes:

ξ8η
4 + ψ1(η3, ν3) = 1

ν3
Φ(η3, ν3)

Thus if f1, · · · , f4 are chosen generically then Z ⊂ P(1, 3, 8, 11)η,ν3,ξ8,κ11 is a union

of five lines passing through a 1
11(1, 3, 8) singularity (Q ∈ Y ). These five lines

correspond to the roots of Φ. If Φ has a multiple root then some of these lines

coincide and, in particular, if Φ has a root of multiplicity five then Z becomes

irreducible.

Singularities

On the big open set {κ11 6= 0} Y is isomorphic to a 1
11(1, 3, 8) quotient singularity.

Therefore we need to check for singular points along Z ∩ V (κ11).

Again, away from (Q ∈ Y ) we can invert ν3 along Z. If we do this we

can use the pentagrams to eliminate z, x, ξ1, ξ2, ξ5, ξ8 from OY to be left with the

hypersurface singularity

((
ν1ν3 − yη4

)
κ11 = Φ(η3, ν3)

)
⊂ C4

y,η,ν1,κ11
× C∗ν3

.

Let L be a component of Z that corresponds to a root of Φ of multiplicity m. At the

point L∩V (κ11) this is the equation of a cAm−1 singularity. Therefore in general Y

is smooth away from Q and in the case when Z is irreducible Y has a cA4 singularity.

Redundant generators

Like the diptych varieties of Brown & Reid appearing in [BR3], this ring becomes

much simpler if we include some redundant generators. The right thing in this case

is to consider the two new ‘generators’ ν ′1, ν ′4 of weights 1, 4 given by:

ν ′1 = zν1 − y4η, ν ′4 = ν1ν3 − yη4

These have been chosen in such a way that they can be inserted with tag 1 along

the bottom row of our rugby ball
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•ι 1

•
x

2

•
ξ1

2

•
ξ2

3

•
ξ5

2

•
ξ8

2

•
z

5
•
ν ′1

1
•
ν1

5
•
ν ′4

1
•
ν3

5

• κ111

and so that the tag equations along this bottom row become:

xz = ηι+ y11

ιν ′1 = Φ(y3, z)

zν1 = y4η + ν ′1

ν ′1ν
′
4 = Φ(ν1, yη)

ν1ν3 = ν ′4 + yη4

ν ′4κ11 = Φ(η3, ν3)

ξ8ν3 = η11 + yκ11

(6.5)

Remark 6.10. These relations are exactly analogous to the relations coming from

Mori’s division algorithm [M2] §3. Later on in §7.2.1 we also interpret these as

exchange relations in a generalised rank 2 cluster algebra.

Another way that adding the redundant generators ν ′1, ν ′4 simplifies the equa-

tions, is that they appear as crazy rolling factors variables against some of the other

generators (cf. Dicks’ rolling factors format [R4] Example 10.8). For instance, given

ν ′1 we write down the equations3

ν ′1 · ι = y15 + f1y
12z + f2y

9z2 + f3y
6z3 + f4y

3z4 + z5

ν ′1 · x = y11ν1 + f1y
12η + f2y

9zη + f3y
6z2η + f4y

3z3η + z4η

ν ′1 · ξ1 = y7ν2
1 + f1y

8ην1 + f2y
9η2 + f3y

6zη2 + f4y
3z2η2 + z3η2

ν ′1 · ξ2 = y3ν3
1 + f1y

4ην2
1 + f2y

4η2ν1 + f3y
6η3 + f4y

3zη3 + z2η3

ν ′1 · ν3 = ν4
1 + f1yην

3
1 + f2yη

2ν2
1 + f3y

3η3ν1 + f4y
4η4 + yzη4

ν ′1 · ν ′4 = ν5
1 + f1yην

4
1 + f2y

2η2ν3
1 + f3y

3η3ν2
1 + f4y

4η4ν1 + y5η5

(6.6)

3To see why ν′1 is a rolling factors variable against these variables in particular see §7.2.1 and
Figure 7.2.
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where we ‘roll down’ from the top line by the rows of the matrix,

ν ′1 =
2∧(

y4 z

ν1 η

)

possibly floating some powers of y from top left to bottom right if needed.

6.3.2 Proof of Theorem 0.3

We will use redundant generators to simplify the exposition in the general case.

Unfortunately it is still a large and tedious bookkeeping exercise to make sure all

the right indices match up.

Structure of the proof

We give an overview of the proof of Theorem 0.3, i.e. the proof of the existence of

Y as a sequence of type I serial unprojections

(Y1 ⊃ D1) L99 · · · L99 (Yn−1 ⊃ Dn−1) L99 (Yn 3 Q) = Y,

where we unproject the divisor (Dα ⊂ Yα) to get to Yα+1. In general the full list of

equations that define Yα is very complicated and we can’t write them down explicitly.

In order to make sure our unprojections work at each stage we need another way of

checking that the equations of OYα ⊂ IDα . We use a trick similar to that used in

proof of the main construction of [BR1] §5, arguing on the weight of any monomial

appearing in an equation of Yα under two different gradings.

• Step 1: We start by writing down the rugby ball that we expect to lift.

• Step 2: We construct a sequence of pentagrams that runs through our rugby

ball, introducing some redundant generators to make some simplifications.

These pentagrams give some of the equations of our final variety Y but not

all of them.

• Step 3: We define two gradings on our ring: w1, the usual grading on our

symbolic power algebra, and w2, a grading that comes from the symmetry of

the pentagrams. In particular w1 increases from left to right along the sides

of the rugby ball and w2 decreases.

• Step 4: We go back through our sequence of pentagrams and show that, at

each stage, all of the equations defining Yα are contained in a type I unpro-

jection ideal IDα = (ξi,j , . . . , νi, y
nα). For any monomial m appearing in an
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equation of Yα we use w1 to restrict how many copies of a variable x 6∈ IDα can

appear in m and then use w2 to provide a lower bound on how many copies of

y must appear. We show that ynα | m and therefore that OYα ⊂ IDα . Hence

by Theorem 2.5, the Kustin–Miller unprojection theorem, Yα+1 exists as the

type I unprojection of (Dα ⊂ Yα) and OYα+1 is a Gorenstein ring.

Step 1: The rugby ball

We pick up from just before §6.3.1, continuing with the notation Qi (6.2), Φ (6.3),

φi and ψi (6.4). Recall that our curve (C ⊂ X) is the curve in an AQk+1+Qk−1 Du

Val singularity given by the equations:

2∧(
x yQk+Qk−1 ψ2(yQk , z)

yQk+1−Qk−1 z φ1(x, yQk+1)

)
= 0

We completely overhaul the notation—in particular, we no longer label vari-

ables by their degree. Define

Pi = Qi+1 +Qi,

Ri,j = (m+ 1− j)Qi+1 − (j + 1)Qi,

Si,j = jQi −Qi−1

and take note of the relations Ri,j = Ri,j+1 +Pi and Ri,m−1 = Ri−1,1 = Qi+1−Qi−1.

We let ξ0 := x, ν0 := z and we define νi and ξi,j as renderings of the orbifold

expressions:

νi = [vPk−iγQi ], ξi,j = [uRk−i,jγSi,j ]

Finally, we also define some redundant variables ν ′i ≡ νi−1νi for 1 ≤ i ≤ k. Note

that ξi,m−1 = ξi+1,1 for i = 1, . . . , k. These variables line the outside our our rugby

ball

•1

•
2
•
2
•
2 · · ·

•
2
•
3
•
2 · · ·

•
2
•
3
•
2 · · ·

•
2
•
3
•
2 · · ·

•
2
•
2
•
2

•
m+ 2

•
1

•
m+ 2

•
1

•
m+ 2

•
1

•
m+ 2

•
1

•
m+ 2

• 1

where there are 2k lines appearing in the zigzag and we label the generators:
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· · ·

· · ·

•
ξ0

•
ξ1,1

•
ν0

•ι

•
ξi,1

•
ξi,2 · · ·

•
ξi,m−2

•
ξi,m−1

•
νi−1

•
ν ′i

•
νi

· · ·

· · ·

•
ξk,m−1

•
ξk+1

•
νk

• κ

We can stick these triangles together since ξi,m−1 = ξi+1,1. A triangle will always

refer to one of these upside down triangles.

Step 2: Unprojection sequence

We now describe the sequence of pentagrams that builds this ring. To simplify the

notation we define φ
(i)
α = φα

(
νi, y

Qk−iηQi
)

and ψ
(i)
α = ψα

(
yQk−iηQi , νi

)
.

Starting the game. We start with our usual first pentagram:


ι yPk−1 −ψ(0)

2 −ξ0

ν0 ξ0 + f1y
Qk+1 −yRk−1,1

ν1 η

ξ1,1

 •ι

•
ξ0

•
ξ1,1

•
ξ1,2 · · ·

•
ν0

•
ν ′1

•
ν1

and consider our first redundant generator ν ′1 = ν0ν1−yPk−1η. Projecting out ι and

adding ν ′1 gives the pentagram:
ξ0 yRk−1,1φ

(1)
1 −ηψ(0)

2 −ξ1,1

ν0 yPk−1 −1

ν ′1 η

ν1

 •

• • •

• • •

where the 1 that appears in the matrix could be used to reduce these five Pfaf-

fian equations to a complete intersection of codimension 3 (of which, one equation

eliminates ν ′1).
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Now we note that our indices work out in such a way that:

ν ′1ξ1,1 = yRk−1,1ν1φ
(1)
1 + η2ψ

(0)
2

= yRk−1,1ν1φ
(1)
1 + η2

(
f2y

mQk + ν0ψ
(0)
3

)
= yRk−1,1

(
ν1φ

(1)
1 + f2y

2Qk−1η2
)

+ η2ν0ψ
(0)
3

= yRk−1,1φ
(1)
2 + η2ν0ψ

(0)
3

In particular, sincemQk > Pk−1, our last pentagram contains the ideal (ξ0, ν1, ν
′
1, y

Pk−1)

in Tom5 format. Projecting out ξ0 and unprojecting this ideal gives the next pen-

tagram:
ξ1,1 yRk−1,2φ

(1)
2 −η2ψ

(0)
3 −ξ1,2

ν0 yPk−1 −1

ν ′1 η

ν1

 •

• • •

• • •

Running along a triangle. Suppose i is odd. We define the following matrices

for i = 1, · · · , k and j = 1, . . . ,m− 2:

Mi,j =


ξi,j yRk−i,j+1φ

(i)
j+1 −ηRi−1,m−jψ

(i−1)
j+2 −ξi,j+1

νi−1 yPk−i −1

ν ′i ηPi−1

νi


Note that the matrix constructed in our last pentagram is exactly M1,1. To define

Mi,j for i even we take all the same terms appearing in the definition except that we

swap φ
(i)
j+1 (appearing in the (1, 3)-entry) for ψ

(i)
m+1−j and we swap ψ

(i)
j+2 (appearing

in the (1, 4)-entry) for φ
(i)
m−j . For now we assume that i is odd.

By a similar calculation to the calculation before, we can check that our

indices work out in just the right way so that:4

ν ′iξi,j+1 = yRk−i,j+1νiφ
(i)
j+1 + ηRi−1,m−j−1ψ

(i−1)
j+2

= yRk−i,j+1φ
(i)
j+2 + ηRi−1,m−j−1νi−1ψ

(i−1)
j+3

Moreover if j < m − 2 then Rk−i,j+1 > Pk−i. Therefore Mi,j contains the ideal

(ξi,j , νi−1, ν
′
i, y

Pk−i) in Tom5 format. Projecting out ξi,j and unprojecting this ideal

4cf. the crazy rolling factors equations (6.6).
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gives the matrix
ξi,j+1 yRk−i,j+2φ

(i)
j+2 −ηRi−1,m−j−1ψ

(i−1)
j+3 −ξi,j+2

νi−1 yPk−i −1

ν ′i ηPi−1

νi


which, we note, is exactly Mi,j+1. Thus we move between the following pentagrams:

· · ·
•

ξi,j−1

•
ξi,j

•
ξi,j+1 · · ·

•
νi−1

•
ν ′i

•
νi

• • •

• • •

until we reach Mi,m−2. At this point we have a factor of yRk−i,m−1 appearing in the

(1,3)-entry of Mi,m−2. Now

Rk−i,m−1 = Qk−i+1 −Qk−i−1 < Qk−i+1 +Qk−i = Pk−i

and therefore the power of y that appears in our Tom5 ideal drops. We can only

unproject the ideal (ξi,j , νi−1, ν
′
i, y

Rk−i,m−1).

Jumping between triangles. We unproject from this ideal and project out

ξi,m−2 to get the pentagram:


ξi,m−1 φ

(i)
m −ηRi−1,1ψ

(i−1)
m+1 −νi+1

νi−1 yRk−i,m−1 −1

ν ′i yPk−i−1ηPi−1

νi


• •

ξi,m−1

•

•
νi−1

•
ν ′i

•
νi

•
ν ′i+1

•
νi+1

Now we drop the redundant generator ν ′i = νi−1νi − yPk−iηPi−1 to be left

with the complete intersection

νiξi+1,1 = yRk−i−1,1νi+1 + fm+1y
Qk−i+1ηQi+1 + ηRi−1,1νi−1

νi−1νi+1 = φ(i)
m + yPk−i−1ηPi−1ξi+1,1

where we have relabelled ξi,m−1 by ξi+1,1 using our coincidence between indices. We

can insert our next redundant generator ν ′i+1 = νiνi+1 − yPk−i−1ηPi as follows:

76




ξi+1,1 1 −ηRi−1,1 −νi+1

νi−1 yRk−i−1,1ψ
(i+1)
m+1 −φ(i)

m

νi yPk−i−1ηPi−1

ν ′i+1


• •

ξi+1,1

•

• • • • •

Now we make one last unprojection from the Tom1 ideal (νi−1, νi, ν
′
i+1, y

Pk−i−1),

projecting out νi−1, to get the pentagram:


ξi+1,1 yRk−i−1,2ψ

(i+1)
m −ηRi−1,1φ

(i)
m−1 −ξi+1,2

νi yPk−i−1 −1

ν ′i+1 ηPi

νi+1


• • •

ξi+1,2

• • • • •

This is exactly Mi+1,1 where we note that i+1 is now even, so we interchange φ and

ψ. We can now run along this next triangle in exactly the same fashion as before.

The exchange in roles of φ and ψ is harmless—we simply swap fi with fm+2−i for

i = 1, . . . ,m+ 1.

End game. Assume that k is odd (if not then swap the roles of φ and ψ as above).

The projection/unprojection game takes us all the way up to


ξk,m−1 yφ

(k)
m −ηRk−1,1ψ

(k−1)
m+1 −ξk+1

νk−1 y −1

ν ′k ηPk−1

νk

 • κ

•
ξk+1

•
ξk,m−1

•
· · ·

•
νk−1

•
ν ′k

•
νk

and our last step, unprojecting from the Tom5 ideal (νk−1, ν
′
k, ξk,m−1, y) and drop-

ping the redundant generator ν ′k, gives our final pentagram.
κ ηPk−1 −φ(k)

m −ξk+1

νk ξk+1 + fm+1η
Qk+1 −ηRk−1,1

νk−1 y

ξk,m−1

 •

•••

• • •
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We have not finished proof of the construction. We have only made un-

projections from pentagram to pentagram and not on the level of the whole ring

itself.

To finish the proof we can eliminate all our redundant generators as they

are unnecessary in the description of the final ring (we used them to simplify the

pentagrams only).

Step 3: A new grading

Note that the pentagrams that we have constructed display a symmetry which comes

from flipping the rugby ball from left to right

y ↔ η, ξ0 ↔ ξk+1, ξi,j ↔ ξk−i+1,m−j νi ↔ νk−i, ι↔ κ

(modulo the little problem of swapping ψ and φ if k is odd). In particular we can

take the grading on our ring, which we will call w1, and flip it over to get a new

grading w2. These two gradings give an action of (C∗)2 on our ring so we could even

choose to define a Z2-grading.

y η ξ0 ξk+1 ξi,j νi ι κ

w1 0 1 0 Qk+1 Si,j Qi −1 Pk

w2 1 0 Qk+1 0 Sk−i+1,m−j Qk−i Pk −1

More precisely, we could set new weights of our orbifold terms to be u, v, γ to be
Qk+1

Pk
, QkPk ,−

1
Pk

and set the weights of ι, η to be Pk, 0 and check that this gives the

grading w2.

Step 4: End of the proof

Now we will show that at each stage of the game all of the equations defining our

ring (not just the pentagrams) were contained in our unprojection ideals.

Analysing the steps of the unprojection sequence we have to consider the

three cases of Figure 6.2, depending on the next (and last) unprojection variable to

be adjoined to our ring.

In each case write s1 for the last unprojection variable to be added and s2

for the next one. Write ID for the ideal given in Figure 6.2, where in the first

case ξi,j−1, . . . , νi−1 denotes all the variables running around the left hand side of

the rugby ball from ξi,j−1 around to νi, and similarly for the other cases. This is

the unprojection ideal of s2. (In the first case, if j = m − 2 then we should take
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Next ξi,j+1

Last ξi,j

Ideal
(ξi,j−1, . . . , νi−1, y

Pk−i)

•
ξi,j+1

•
ξi,j

••

•
νi

••

Next νi+1

Last ξi,m−1

Ideal
(ξi,m−2, . . . , νi−1, y

Rk−i,m−1)

•
ξi,m−1

••

•
νi+1

•
νi

••

Next ξi+1,2

Last νi+1

Ideal
(ξi,m−2, . . . , νi, y

Pk−i−1)

•
ξi+1,2

•
ξi+1,1

••

•
νi+1

••

Figure 6.2: Three cases in the unprojection sequence

yRk−i,m−1 ∈ ID instead of yPk−i .)

Now suppose that we have constructed (all of the equations of) our ring up

to and including s1. Our aim is to show that all these equations are contained in ID

and hence that our variety contains the unprojection divisor D. Since the power of

y appearing in ID is weakly decreasing as we adjoin more variables, we can assume

by induction (with our first pentagram as a base case) that all the equations from

the step before are contained in ID. Therefore we only need to check the equations

involving s1. (The equation of the bar straddling s1 is always contained in our

pentagram so we’ve already checked that this is contained in ID.)

First two cases. We have to check that any monomial yaηbνci that appears in an

equation of the form xξi,j = · · · has a ≥ Pk−i (or a ≥ Rk−i,m−1 if j ≥ m − 2). We

do this by finding some bounds on a, b, c that come from comparing the weight of

the two monomials yaηbνci and xξi,j under our two different gradings.

First let x be any variable in the range ξi,1, . . . , νi−1. Then, by checking the
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value of our gradings in this range, we have w1(x) ≤ Qi−1 and w2(x) ≥ Qk−i+1, so:

w1(xξi,j) ≤ Si,j +Qi−1 = jQi = w1(νji ) =⇒ c ≤ j

From this and the fact that w2(yaηbνci ) = a+ cQk−i it follows that:

a ≥ w2(xξi,j)− jQk−i ≥ Sk−i+1,m−j +Qk−i+1 − jQk−i = Rk−i,j

Then either j = m− 1 and a ≥ Rk−i,m−1 in which case we are done, or j ≥ m− 2

and Rk−i,j > Pk−i so we are also done.

Now suppose x = ξi,j′ is any variable in the range ξi,2, . . . , ξi,j−2. Then

w1(xξi,j) = Si,j + Si,j′ = (j + j′)Qi − 2Qi−1 =⇒ c ≤ j + j′ − 1

and it follows that:

a ≥ w2(xξi,j)− (j + j′ − 1)Qk−i

= Sk−i+1,m−j + Sk−i+1,m−j′ − (j + j′ − 1)Qk−i

= (2m− (j + j′))Qk−i+1 − (j + j′ + 1)Qk−i

Since j + j′ ≤ (m− 1) + (m− 3) = 2m− 4

a ≥ 4Qk−i+1 − (2m− 3)Qk−i = 2Qk−i+1 + 3Qk−i − 2Qk−i−1 > Pk−i

so we are also done in this case.

Third case. We have to check that any monomial yaηbξci+1,1 that appears in an

equation xνi+1 = · · · has a ≥ Pk−i−1.

First let x 6= ξi,m−2. Then w1(x) < Si,m−2, so:

w1(xνi+1) < Qi+1 + Si,m−2 = 2Qi+1 − 2Qi = w1(ξ2
i+1,1) =⇒ c ≤ 1

Moreover w2(x) ≥ w2(νi−1) = Qk−i+1 and therefore

a ≥ w2(xνi+1)− Sk−i+1,1 ≥ Qk−i+1 +Qk−i−1 −Qk−i+1 +Qk−i = Pk−i−1

so we are done.

Now let x = ξi,m−2. For a monomial yaηbξci+1,1 with c ≤ 1 the same proof

works and we are done. The only problem is with any monomial that has c = 2.

In this case w1(ξi,m−2νi+1) = w1(ξ2
i+1,1) and, as w1(η) = 1, we must have b = 0.
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Therefore we are considering a monomial of the form yaξ2
i+1,1 which is necessarily

nonzero modulo η. But then:

ξi,m−2νi+1 ≡ [uRk−i,m−2γSi,m−2 ][vPk−i−1γQi+1 ] mod η

≡ yPk−i−1 [uRk−i,m−2−Pk−i−1γSi,m−2+Qi+1 ]

≡ yPk−i−1 [u2Qk−i+1−2Qk−i−1γ2Qi+1−2Qi ]

≡ yPk−i−1ξ2
i+1,1

So this is precisely the monomial yPk−i−1ξ2
i+1,1 and we are done.

Conclusion. This proves the existence of the unprojection divisor (Dα ⊂ Yα)

at each stage in the unprojection sequence of Theorem 0.3. By Theorem 2.5 and

induction this concludes the proof of Theorem 0.3, i.e. that our sequence of type I

unprojections constructing Y exists and that we build the ring OY that we expect

to lift from our rugby ball.

6.4 Conjectures

We move on to discuss some more general cases where the central fibre (Z ⊂ HY ) can

be reducible. Recall that we are interested in neighbourhoods (Z ⊂ HY ) satisfying

Assumption 6.3.

We fix some notation for this section. Consider two coprime integers r > a

and the simple T -string r2

ra−1 = [c1, . . . , cm]. If r ≥ 3 then, without loss of generality,

we assume that a < 1
2r so that c1 > 2 and cm = 2. Now let [a1, . . . , am] be any

1-string dominated by this T -string (i.e. ai ≤ ci for all i) and let bi := ci − ai.
Given such a 1-string, we write down a neighbourhood (Z ⊂ HY ) by the

following recipe:

• blow (0 ∈ C2) up to a chain of rationals curves F =
⋃m
i=1 Fi with self-

intersection F 2
i = −ai,

• blow up bi distinct points along Fi (these will be the components of Z),

• contract the birational transform of F .

Note that HY has a unique simple T -singularity (Q ∈ HY ) and Z is a union of

rational curves all meeting at (Q ∈ HY ). From the construction (Z ⊂ HY ) clearly

has a contraction to a smooth point σ : (Z ⊂ HY )→ (0 ∈ C2).
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As usual, write (P ∈ SX ⊂ X) for the embedding of a Du Val singularity of

type Ar−1 in a smooth 3-fold X. We fix the minimal resolution

µ : (E ⊂ S̃X)→ (P ∈ SX)

where E =
⋃r−1
i=1 Ei is a chain of −2-curves, and for any curve (C ⊂ SX) write C̃

for the birational transform of C on S̃X .

Conjecture 6.11. Given such a neighbourhood (Z ⊂ HY ) then there exist distinct

integers 1 ≤ di < r, for i = 1, . . . ,m, such that
∑m

i=1 bidi ≡ a mod r and, if

(C ⊂ SX) is the generic curve with C̃ · Edi = bi (and C̃ · Ej = 0 if j 6= di for any

i) then there exists σ : Y → X, a Mori extraction from C whose general hyperplane

section is (Z ⊂ HY ). The high index point (Q ∈ Y ) is the quotient singularity
1
r (1, b, r − b), where b ≡ a−1 mod r, and Y is smooth elsewhere.

Moreover, it is my belief that the other, more singular, non-semistable neigh-

bourhoods are obtained by taking all degenerations of such curves C which keep the

intersection numbers C̃ · Ej fixed.

6.4.1 The [(2)m−1, 1] and [1, (2)m−1] cases

We now look at two natural cases of Conjecture 6.11. Since ci ≥ 2 for all i, the

two 1-strings [(2)m−1, 1] and [1, (2)m−1] are always dominated by our T -string. We

write down (C ⊂ SX), a curve in a Ar−1 Du Val singularity, corresponding to the

Q-smoothing of (Z ⊂ HY ) in each of these cases.

Claim 6.12. Recall the definition of the integers βi appearing in Lemma 5.10 that

arise from considering the discrepancies of a T -singularity.

1. Consider the 1-string [(2)m−1, 1]. Then the integers di of Conjecture 6.11 are

given by di = βi for i = 1, . . . ,m, i.e. (C ⊂ SX) is a generic curve with:

C̃ · Ej =


ci − 2 j = βi for some 1 ≤ i ≤ m− 1

1 j = r − a

0 otherwise

2. Consider the 1-string [1, (2)m−1]. Then the integers di of Conjecture 6.11 are
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given by di = r − βi for i = 1, . . . ,m, i.e. (C ⊂ SX) is a generic curve with:

C̃ · Ej =


ci − 2 j = r − βi for some 2 ≤ i ≤ m

c1 − 1 j = r − a

0 otherwise

To illustrate the claim consider the following example.

Example 6.13. Let (r, a) = (11, 3). Then the two cases of Claim 6.12 are given by:

1. The [(2)m−1, 1] case. The neighbourhood (Z ⊂ HY ) and the curve (C ⊂ SX)

are given by

βi 3 1 2 5 8

(Z ⊂ HY )

4 5 3 2 2

(C ⊂ SX)

2. The [1, (2)m−1] case. The neighbourhood (Z ⊂ HY ) and the curve (C ⊂ SX)

are given by

r − βi 8 10 9 6 3

(Z ⊂ HY )

4 5 3 2 2

(C ⊂ SX)

It is clear that the claim is correct from computing enough large examples.

However, to save the reader from having to read another proof like that of §6.3.2,

we will only compute an example.
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6.4.2 Big example 2

Consider the curve (C ⊂ SX) of Example 6.13(1). In particular, SX = C2
u,v/

1
11(1, 10)

and C is given by the orbifold equation

γ(u, v) = u58 + au48v + bu38v2 + cx28v3 + du19v5 + eu11v8 + fu3v11 + v19

= (x5 + ax4y + bx3y2 + cx2y3 + dxy5 + ey8)u3 + (fy3 + z)v8

for a generic choice of coefficients a, . . . , f . (Again, since we are only interested in

the generic curve C we set the first and last coefficient equal to 1.)

Since γ ∈ OSX (u3, v8) the (extended) symbolic ring
⊕
I

[n]
C/SX

is generated,

as usual, by x, y, z in degree 0, ι in degree −1 and seven other generators in degrees

1, 1, 2, 3, 4, 7, 11.

ξ1 ξ2 ξ3 ξ7 κ11 ν4 ν1

u8γ u5γ2 u2γ3 uγ7 γ11 vγ4 v3γ

Therefore our rugby ball is given by:

•ι 1

•
x

6

•
ξ1

2

•
ξ2

2

•
ξ3

3

•
ξ7

2

•
z

2
•
ν1

4
•
ν4

3

• κ111

As usual we use the same names for the forms lifted to
⊕
I

[n]
C/X and η for

degree 1 variable corresponding to the equation of SX , i.e. we have ιη = xz − y11.

To ease notation appearing in the series of pentagrams we let ψ1 = fy3 + z

and define a series of truncations:

φ5 = x5 + ax4y + bx3y2 + cx2y3 + dxy5 + ey8

φ4 = x4 + ax3y + bx2y2 + cxy3 + dy5

φ3 = x3 + ax2y + bxy2 + cy3

φ2 = x2 + axy + by2

φ1 = x+ ay

In particular we have φ5 = φ4x+ ey8, φ4 = φ3x+ dy5 etc., and (C ⊂ X) is defined

by the equations:
2∧(

x y3 −ψ1

y8 z φ5

)
= 0
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It will also be convenient to define the following quantities which we view as defor-

mation parameters and appear naturally in the equations of Y :

ξ1 = ξ1 + fη ν1 = ν1 + eη

ξ2 = ξ2 + dy2η2 N1 = ν1ν1 + dξ1η

ξ3 = ξ3 + cξ1η
2 ν4 = ν4 + bξ

2
1η

2

ξ7 = ξ7 + aξ
2
1N1η

3

As before we can use the equations of C to write down our first pentagram

and begin unprojecting. We get the sequence of serial pentagrams appearing Figure

6.3 which we write down without further comment. The rest of the equations are

implied from the pentagrams by working birationally and they are written down in

the appendix §A.7.

The general hyperplane section (Z ⊂ HY )

To convince the reader that the Y that we have constructed really does have the

claimed hyperplane section (Z ⊂ HY ) we first look at the components of the central

fibre Z.

Since the equations of Y are obtained by projecting out ι and taking Proj

with respect to the appropriate grading, we ignore all the equations involving ι.

These are given by the pentagrams of Figure 6.3 and the equations in the appendix

A.7. Now consider the sequence of Type I unprojections that builds Y

(Y1 ⊃ D1) L99 (Y2 ⊃ D2) L99 (Y3 ⊃ D3) L99 (Y4 ⊃ D4) L99 (Y5 3 Q) = Y

where we start with OY1 ⊂ OX [η, ν1, ξ1, ξ2], given by the second pentagram in Figure

6.3, and successively unproject the divisor Di from Yi by adjoining unprojection

variables, OY2 = OY1 [ξ3], OY3 = OY2 [ν4], etc. We look at how the reduced central

fibre develops as we work through this sequence of unprojections.

Substituting x = y = z = 0 into OY1 we see that the central fibre of Y1 is

given by the (reduced) unprojection plane and a line.

(D1)red = V (x, y, z, ξ1), L1 = V (x, y, z, ξ1, ν1)

Now, as the map Y2 99K Y1 is an isomorphism outside of D1, we only track

what happens to Y2 above D1. Substituting x = y = z = ξ1 = 0 into OY2 we see
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ξ1 ψ1 −φ5 −ν1

x y8 −η
ι y3

z

 •ι

•
x

•
ξ1

•
ξ2

•
ξ3

•
ξ7

•
z

•
ν1

•
ν4

• κ11


ξ1 y5ν1 −φ4η −ξ2

x y3 −η
z ξ1

ν1

 •

• • • • •

• • •

•


ξ2 y2ν1η −ξ1 −ξ3

ξ1 y3 −φ3η
2

x ξ2

ν1

 •

• • • • •

• • •

•


ξ3 N1η −ξ1 −ν4

ξ2 y2 −φ2ξ1η
2

x yξ3

ν1

 •

• • • • •

• • •

•


ξ3 yν4 −φ1ξ

2
1η

2 −ξ7

x y −N1η

ν1 ξ1ξ3

ν4

 •

• • • • •

• • •

•


ξ7 ν4N1η −ξ1ξ3 −κ11

ξ3 y −ξ2
1N1η

3

x ξ7

ν4

 •

• • • • •

• • •

•

Figure 6.3: Serial pentagrams for Big example 2
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that this locus is given by the (reduced) unprojection plane:

(D2)red = V (x, y, z, ξ1, ξ2)

Therefore the central fibre of Y2 is this union of this plane together with the bira-

tional transform of L1, the line found in Y1.

Continuing in a similar fashion, the exceptional locus of Y3 above D2 is a

plane and the pair of lines

(D3)red = V (x, y, z, ξ1, ξ2, ν1), L3 = L3,1 ∪ L3,2 = V (x, y, z, ξ1, ξ2, N1, ξ3)

corresponding to the roots of the term N1 = ν1ν1 + dξ1η, which is a quadratic in

ν1.

The exceptional locus of Y4 above D3 is a plane and a line:

(D4)red = V (x, y, z, ξ1, ξ2, ν1, ξ3), L4 = V (x, y, z, ξ1, ξ2, ν1, ξ3, ν4)

Lastly, the exceptional locus of Y5 above D4 is L5 = L5,1∪L5,2∪L5,3, a union

of three lines given by V (x, y, z, ξ1, ξ2, ν1, ξ3) and:

2∧(
ξ7 ν4N1η −ξ1ξ3

−ξ2
1N1η

3 ξ7 ν4

)
= 0

Therefore the total reduced central fibre is the union of all these 1-dimensional

components Z = L1∪L3∪L4∪L5, a group of rational curves all meeting at the high

index point (Q ∈ Y ). At the point (Q ∈ Y ) the general hyperplane HY is given by

the local equation (
ξ7ν4 = ξ

3
1ξ3N1η

3
)
/ 1

11(1, 4, 7)

where we can eliminate any appearance of ξ1 by the equation κ11ξ1 = · · · and so on.

In particular, if the coefficients are suitably generic then the RHS of this equation

has a nonzero η11 term, so that (Q ∈ HY ) is a T -singularity of type 1
121(1, 32).

By blowing (Q ∈ HY ) and tracking the strict transform of the fibre (Z ⊂ HY )

we can check that this is the neighbourhood of Example 6.13(1).

Concluding remarks

We end with some concluding remarks about some of the features and difficulties in

more general cases.
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Remark 6.14.

1. Note that the pentagrams of Big example 2 proceed in a completely different

order to those of Big example 1. They also display none of the symmetry

that the pentagrams of Big example 1 had and appear to have entries that are

much more complicated.

2. The terms ξ1, N1, etc. defined in Big example 2 appear naturally in the

construction of Y as deformation parameters

xξ2 ≡ ξ1ξ1 mod y, zν4 ≡ ν2
1N1 mod y, etc.

deforming the equations xξ2 = ξ2
1 , zν4 = ν4

1 . These look like they should

have some natural interpretation in terms of homogeneous components of the

orbifold equation γ(u, v).

3. In very general cases we can have some quite hard unprojections to compute.

In particular, as our unprojection planes are not reduced they don’t need to

be embedded in either Tom or Jerry format. For instance, we can have a pen-

tagram with a Tom ideal (x1, . . . , xn, y
a) and a Jerry ideal (x1, . . . , xn, y

b) that

together combine to embed an unprojection plane with ideal (x1, . . . , xn, y
a+b).

At this point we can still unproject the ideal, but we cannot make a Gorenstein

projection from any of the other variables and hence cannot continue writing

down pentagrams.
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Chapter 7

Relationship to cluster algebras

In this chapter we explain the connection between the big examples constructed in

§6 and cluster algebras. In fact these rings are upper cluster algebras of certain rank

2 cluster algebras.

We end with a general discussion of the connections to other works.

7.1 Cluster algebras

Fomin & Zelevinsky [FZ] introduced cluster algebras in their study of canonical bases

of Lie algebras. Since then cluster algebras have become ubiquitous, appearing in

many different seemingly unconnected branches of mathematics. Chekhov & Shapiro

[CS] generalised the notion of the cluster algebra to allow for polynomial exchange

relations between cluster variables (rather than simply trinomial relations). We now

recall the definition of a (generalised) cluster algebra.

A cluster algebra1 of rank n depends on the initial data of a diagonal matrix

D = diag(di : i = 1, . . . , n) ∈ Matn(Z), called the degrees matrix, a coefficient ring

R = Z[A1, . . . , Am] and an initial seed S = (X,Θ, B) consisting of

1. an n-tuple X = (x1, · · · , xn) called the initial cluster, viewed as a collection

of elements of the field of fractions FracR[x1, . . . , xn],

2. a collection of n homogeneous polynomials

Θ = {θi(u, v) ∈ R[u, v] : deg θi = di, ∀i = 1, . . . , n} ,

called the exchange polynomials,

1This is not the original, or the most general, definition of a cluster algebra. More precisely this
should be called a generalised cluster algebra with geometric coefficients.
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3. a matrix B = (Bjk) ∈ Matn(Z) such that the exchange matrix BD is skewsym-

metrisable.

The original definition of a cluster algebra can be recovered by taking D to be the

identity matrix.

The xi are called cluster variables. We now use this initial data to generate

more cluster variables by mutating seeds according to the following combinatorial

rule. The mutation of S at the ith place is the seed µi(S) = (X ′,Θ′, B′) defined by:

1. X ′ = (x′1, . . . , x
′
n) where x′j = xj for j 6= i and x′i is defined by the relation:

xix
′
i = θi(u

+
i , u

−
i ), u±i =

n∏
j=1

x
[±Bij ]+
j

(Here [x]+ := max {0, x}.)

2. Θ′ = {θ′1, . . . , θ′n} where

θ′j(u, v) =


θi(v, u) i = j (note the switched order of u, v)
θ′j,0
θj,0
· θj
(
θ
Bij
i,0 u, v

)
i 6= j, Bij ≥ 0

θ′j,0
θj,0
· θj
(
u, θ

Bij
i,di
v
)

i 6= j, Bij < 0

for θi,0 = θi(1, 0) and θi,di = θi(0, 1). The coefficient θ′j,0 is chosen such that

the coefficients of θ′j are relatively coprime.

3. B′ = (B′jk) where

B′jk =

−Bjk j = i or k = i

Bjk + 1
2

(
|Bji|Bik +Bji|Bik|

)
otherwise.

We call two seeds mutation equivalent if there is a sequence of mutations

taking one seed to the other. Mutation is an involution, so the set of all seeds

mutation equivalent our initial seed is parameterised by an infinite n-regular tree.

We call x ∈ FracR[x1, . . . , xn] a cluster variable if x appears in the cluster of a seed

which is mutation equivalent to our initial seed. The cluster algebra A is the (not

necessarily finitely generated) subring of FracR[x1, . . . , xn] generated by all of the

cluster variables.
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The Laurent phenomenon

The most important feature of cluster algebras is that they satisfy the Laurent

phenomenon, [CS] Theorem 2.5. That is, each cluster variable x ∈ A can be written

as a Laurent polynomial in terms of the initial cluster (x1, . . . , xn). In other words

we have the much stronger inclusion:

A ⊆ R[x±1
1 , . . . , x±1

n ] ⊂ FracR[x1, . . . , xn]

Of course there is nothing particularly special about our choice of initial cluster, so

this also holds for the cluster variables appearing in any mutation equivalent seed.

Remark 7.1. The coefficients A1, . . . , Am are sometimes referred to frozen variables

and, quite often, authors prefer to assume that these are invertible. We stress that we

don’t want to do that. In our description of a Type A Mori extraction as a cluster

algebra the coefficient ring will be C[y, η], i.e. there will be two frozen variables

corresponding to the two special surfaces SY and HY . The interesting geometry of

the extraction (or flip) is the locus where these frozen variables each vanish.

7.1.1 Rank 2 cluster algebras

We are going to be primarily interested in cluster algebras of rank 2 so we spell out

the mutation rule explicitly in this case. We have the 2-valent tree parameterising

clusters

· · · · · ·•
(x−1, x0)

•
(x1, x0)

•
(x1, x2)

•
(x3, x2)

•
(x3, x4)

and, since the clusters are arranged in a chain, we can index the cluster variables

by Z, {xi : i ∈ Z}. The exchange relations take the form of an infinite sequence

...

x−1x1 = a0x
d
0 + b0x

d−1
0 + · · ·+ c0x0 + d0

x0x2 = a1x
e
1 + b1x

e−1
1 + · · ·+ c1x1 + d1

x1x3 = a2x
d
2 + b2x

d−1
2 + · · ·+ c2x2 + d2

x2x4 = a3x
e
3 + b3x

e−1
3 + · · ·+ c3x3 + d3

...

where the degree of the polynomial expression in the RHS is either d or e, repeating

2-periodically. The mutation rule is illustrated in the next example.
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Example 7.2 (G2 cluster algebra). We take a coefficient ring R = C[y, η] and the

following initial data

D =

(
1 0

0 3

)
, B =

(
0 1

−1 0

)

θ1(u, v) = η · u+ y2 · v
θ2(u, v) = a · u3 + by · u2v + cy2 · uv2 + dy3 · v3

where the coefficients of θ1, θ2 have been specially chosen. We can check that

mutating the initial seed gives the following sequence of exchange relations:

x0x2 = ηx1 + y2

x1x3 = ax3
2 + byx2

2 + cy2x2 + dy3

x2x4 = dyη + x3

x3x5 = ad2η3 + bdη2x4 + cηx2
4 + x3

4

x4x6 = yx5 + adη2

x5x7 = x3
6 + bηx2

6 + acη2x6 + a2dη3

x6x8 = ayη + x7

x7x9 = ay3 + by2x8 + cyx2
8 + dx3

8

x8x10 = ηx9 + y2

where the RHS of the ith relation is calculated by the mutation rule of §7.1. In this

case we take di−1 (the constant term of the (i − 1)th line) and substitute di−1

xi
for

xi−2 in the RHS of the (i−2)th line. Then we multiply through to cancel the power

of xi in the denominator and we cancel any common factor from the coefficients (as

elements of R). For instance:

x2x4 =
x3

y2

(
η
dy3

x3
+ y2

)
= dyη + x3

Notice that these exchange relations begin to repeat under xi 7→ xi+8. There-

fore we can set xi = xi+8 for all i. The 8 exchange relations imply another 12

relations, given by xixj = · · · for |i− j| ≥ 2. We view these as the interior diagonals

of an octagon:
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x2

x1
x0

x7

x6

x5
x4

x3

These 20 equations define a Gorenstein ring which cut out an affine variety in codi-

mension 6 (cf. [BR2] §4.2):

W ⊂ ProjR[x0, x1, . . . , x7]

Also note that the third and seventh exchange relations define x3 and x7 in

terms of the other variables. Therefore x3 and x7 are not required as generators and

we may drop them from our ring. Doing this chops two corners off the octagon to

give a hexagon

x2

x1
x0

x6

x5
x4

and the tag equations around the outside of this hexagon become:

x0x2 = ηx1 + y2

x1x4 = ax2
2 + byx2 + cy2 + dyx0

x2x5 = dηx6 + bdη2 + cηx4 + x2
4

x4x6 = yx5 + adη2

x5x0 = x2
6 + bηx6 + acη2 + aηx4

x6x1 = ayx2 + by2 + cyx0 + dx2
0

Now these equations are starting to look very familiar. By replacing

x0, x1, x2, x4, x5, x6 7→ z, ι, x, ξ, κ, ν

respectively we see that these are precisely six of the nine equations defining the

Prokhorov & Reid example §3.3 (compare with the equations in A.1). The other

three equations are the ‘long diagonal’ relations of the hexagon above.

93



The periodicity and finiteness of the number of cluster variables appearing in

this example is a rather special phenomenon related to the fact that BD =
(

0 1
−3 0

)
corresponds to the G2 Dynkin diagram. In general cluster algebras are not finitely

generated.

The upper cluster algebra

Given a cluster algebra A we define the upper cluster algebra of A to be the inter-

section of Laurent rings,

U =
⋂
i∈Z

R[x±1
i , x±1

i+1],

where, again, we choose not to invert the coefficient ring R. Note that, by the

Laurent phenomenon, A ⊆ R[x±1
i , x±1

i+1] for all i and therefore A ⊆ U , but this is

not an equality in general. The inclusion

A ⊆ U ⊂ R[x±1
i , x±1

i+1]

corresponds to the open embedding of a cluster torus

Ti = Spec
(
R[x±1

i , x±1
i+1]
)
↪→ SpecU .

Let X = SpecU and let X0 =
⋃
i Ti be the union of all the cluster tori, glued

together by the exchange relations. Then we have an embedding of a smooth open

manifold X0 ↪→ X and by the definition of U it follows that U = H0(X0,OX0), so

that X is the ‘affinisation’ of X0.

U may not be Noetherian, but if it is then X is a normal Gorenstein affine

variety. Indeed, U is integrally closed since it is the intersection of integrally closed

rings and therefore X is normal. Moreover each cluster torus Ti has a canonical

volume form ωi = dxi
xi
∧ dxi+1

xi+1
and these patch together to give a canonical volume

form ωX0 on X0. Taking the double dual on X we get ωX = (ωX0)∨∨ an invertible

dualising sheaf for X. Hence X is Gorenstein.

Since we only consider cluster algebras with geometric coefficients we have

the following Lemma.

Lemma 7.3 ([BFZ] Corollary 1.7). For any i,

U = R[x±1
i−1, x

±1
i ] ∩R[x±1

i , x±1
i+1] ∩R[x±1

i+1, x
±1
i+2].

Therefore to test membership in U it is enough to test membership inR[x±1
i , x±1

i+1]

for any three consecutive clusters.
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Expanding in terms of a cluster

From the description of U we can choose a cluster, (x0, x1) say, and expand any

element u ∈ U as a Laurent polynomial in terms of these two variables

u =
F (x0, x1)

xa0x
b
1

for some polynomial F with F (0, 0) 6= 0. For instance, we can expand any cluster

variable xi this way and, in particular, x0 = 1
x−1

0

and x1 = 1
x−1

1

.

If the expansion of xi has a denominator given in least terms by xai0 x
bi
1 then

for i 6= 0, 1 we find an easy recurrence relation from the exchange relations:

(ai−1, bi−1) + (ai+1, bi+1) =

d(ai, bi) i even

e(ai, bi) i odd

Plotting the values (ai, bi) ∈ Z2 we obtain an expansion diagram and we see that, if

de > 4, then as i → ±∞ the points (ai, bi) approach two limiting rays of irrational

slope:

λ± =
de±

√
de(de− 4)

2e

These are the two quadratic irrationalities represented by the infinite continued

fraction [d, e, d, e, . . .]. We note that this sequence of points (ai, bi) is convex if

d, e ≥ 2 and zigzags if either d = 1 or e = 1. In our examples we always have d = 1.

See Figure 7.1 for the case (d, e) = (1, 5).

The two irrational rays cut out a triangular region of the plane. Taking the

convex hull of the points inside this region we get a polytope (shaded in Figure 7.1)

whose boundary points have tags given by the complementary HJ-string to the infi-

nite string [. . . , d, e, d, e, . . .]. In the case when d = 1 and e ≥ 5 this complementary

fraction is [. . . , 3, (2)e−5, 3, (2)e−5, . . .].

Remark 7.4. We note that the choice of a cluster (x0, x1) broke some of the sym-

metry in our diagram. For instance the tags in the diagram at the points x0, x1 are

both 0, rather than d, e which we expect from the exchange relations. We can fix

this problem by identifying the two cones 〈(−1, 0), (−d,−1)〉 and 〈(−1,−e), (0,−1)〉
in Z2 to get integral affine manifold B with a singularity at 0.
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Figure 7.1: Expansion diagram for (d, e) = (1, 5)

7.2 Type A extractions revisited

We now interpret Big example 1 §6.3.1 and Big example 2 §6.4.2 as upper cluster

algebras.

7.2.1 Big example 1 as a cluster algebra

We consider the ring constructed in Big example 1 §6.3.1 and assume all of the

notation from that section including the redundant generators ν ′1, ν
′
4. Recall that

our rugby ball was given by:

•ι 1

•
x

2

•
ξ1

2

•
ξ2

3

•
ξ5

2

•
ξ8

2

•
z

5
•
ν ′1

1
•
ν1

5
•
ν ′4

1
•
ν3

5

• κ111
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Cluster variables. We start with the two tag equations at ι and z,

xz = ηι+ y11

ιν ′1 = Φ(y3, z) = y15 + f1y
12z + f2y

9z2 + f3y
6z3 + f4y

3z4 + z5

and we treat these as two exchange relations for mutation between the three follow-

ing clusters:

(x, ι)↔ (ι, z)↔ (z, ν ′1)

Now, starting with the mutation at z ∈ (z, ν ′1), we can write down a sequence of

cluster variables and clusters

(z, ν ′1)↔ (ν ′1, ν1)↔ (ν1, ν
′
4)↔ (ν ′4, ν3)↔ (ν3, κ11)↔ (κ11, ξ8)

and we note that the exchange relations holding between these clusters are exactly

the tag equations (6.5) that run round the bottom of the rugby ball, from ι around

to κ11. This describes all the generators of our ring as cluster variables apart from

ξ1, ξ2, ξ5.

We write A for the cluster algebra generated by all of the cluster variables

and U for the corresponding upper cluster algebra. Of course there are more cluster

variables than the ones that we have written down. However, we claim that the

cluster variables that lie beyond x and ξ8 are not necessary as generators in the final

ring. For instance, mutating one step back past x gives a cluster variable s with

mutation relation ιs = Φ(x, y8). We can check that s can be eliminated using ξ1,

by:

s = x3ξ1 + y7η
(
x2ψ3(y3, z) + xy11ψ4(y3, z) + y22

)
Non-cluster variables. We now show that ξ1 is an element of U . From the

Pfaffians of Figure 6.1 and the equations (6.6) we have the two equations,

zξ1 = y7φ1(ν1, yη) + xη,

ν ′1ξ1 = y7ν1φ1(ν1, yη) + η2ψ2(y3, z).

Therefore zξ1, ν
′
1ξ1 ∈ U and hence ξ1 ∈ R[i±1, z±1] ∩R[z±1, ν ′±1

1 ] ∩R[ν ′±1
1 , ν±1

1 ]. By

Lemma 7.3 it follows that ξ1 ∈ U . Similarly we can also show that ξ2, ξ5 ∈ U .

Expansion diagram. We have established that our ring is contained in U , so we

can expand all of our generators as Laurent polynomials in terms of a chosen cluster.
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If we choose the cluster (ν ′1, ν1) we can expand ξ1 as

ξ1 =
y7ν4

1φ1(ν1, yη) + η2ψ2(y3ν1, ν
′
1 + y4η)

ν ′1ν
3
1

where the constant term of the numerator y12η5 is nonzero. Therefore ξ1 has de-

nominator ν ′1ν
3
1 in least terms with respect to this cluster. Similarly we can show

that the denominator of ξ2 is ν ′1ν
2
1 and the denominator of ξ5 is ν ′21 ν

3
1 .

The homogenous polynomial Φ has degree 5 therefore the expansion diagram

we get has (d, e) = (1, 5), as in Figure 7.1. The generators and their locations

expanded in the cluster (ν ′1, ν1) are given in Figure 7.2. We note that the non-

cluster variables ξ1, ξ2, ξ5 all lie on the boundary of the polytope contained inside

the irrational region.
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×

•
x

•
ι

•
z

•
ν ′1

•
ν1

•

ν ′4

•
ν3

•
κ11

•
ξ8

•
ξ1

•

ξ2

•
ξ5

×

• x

• ι

•
z

•
ν ′1

•
ν1

• ν ′4

• ν3

• ξ1

• ξ2

Figure 7.2: Expansion diagram for Big example 1 in terms of the cluster (ν ′1, ν1)
and rolling factors for ν ′1 against ι, x, ξ1, ξ2, ν3, ν

′
4.

Rolling factors. If we choose the five consecutive cluster variables ι, z, ν ′1, ν1, ν
′
4

and expand in a cluster that includes the middle cluster variable ν ′1 then the two

outside cluster variables ι and ν ′4 lie on a straight line that includes a face of our

polytope. The variables ι, x, ξ1, ξ2, ν3, ν
′
4 lie in order along this line and the way that

ν ′1 multiplies against these functions is given by the crazy rolling factors equations
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(6.6).

The general case

A similar picture holds in the general case §6.3.2. In this case all of the variables

along the bottom row ξ0, ι, ν0, . . . , νk, κ, ξk+1 are cluster variables. Moreover the

polytope inside our irrational region has faces of lattice lengthm−1 and the variables

ξi,1, . . . , ξi,m−1 appear along each face (remember that in our description ξi,m−1 =

ξi+1,1). Expanding in a cluster that includes ν ′i we see that ν ′i appears as a rolling

factors variable against this face.

×

•
νi−2

•
ν ′i−1

•νi−1

•
ν ′i

•
νi

•
ν ′i+1

•
νi+1

•
ξi,m−1· · ·•

ξi,j· · ·•
ξi,1

7.2.2 Big example 2 as a cluster algebra

Now consider Big example 2 §6.4.2. We choose to introduce a redundant generator

ξ′1 = xξ1 − gy8 which is chosen so that we have the two equations:

xz = ιη + y11

ιξ′1 = x7 + ax6y + bx5y2 + cx4y3 + dx3y5 + ex2y8 + fxy11 + gy19

Now these two equations generate a cluster algebra over the coefficient ring C[y, η]

with (d, e) = (1, 7) and initial clusters

(z, ι)↔ (ι, x)↔ (x, ξ′1).

In this case we can check that all of the generators can be expanded as Laurent

polynomials in each of these clusters so that this ring lies inside the upper cluster

algebra. Indeed, expanding in terms of the cluster (ι, x) we get the expansion

diagram of Figure 7.3.

This is very different to the last example. Most of the extra generators

required by the upper cluster algebra lie strictly inside the polytope generated by

the lattice points in our irrational region.
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•

•

•
z

•
ι

•
x

•

•

ξ1
•

ξ′1

•

•

•
ν1

•

ξ2

•

ξ3

•
ν4

•

ξ7

•
κ11

Figure 7.3: Expansion diagram for Big example 2.
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7.3 Conclusions

7.3.1 Connections to other work

This description of our main examples as cluster varieties leads to some interesting

connections to other works. In particular the expansion diagrams of Figures 7.2 and

7.3 should be compared with the ‘scissors’ diagram of [BR1] Figure 4.2, the toric

surface M in [HTU] Proposition 3.19 and the scattering diagrams of [GHK].

Mori’s algorithm

In a k2A flipping neighbourhood (C ⊂ X) the a flipping curve C passes through

two cA/r singularities on X. Starting with such a neighbourhood, Mori [M2] writes

down suitable local coordinate functions x0 and x1 such that div(x0) and div(x1)

generate the local class group of the two cA/r singularities. He then describes a

division algorithm to generate more functions x2, x3, . . . on X. As noted in [HTU],

this algorithm is nothing but mutation of a rank 2 cluster algebra starting with the

initial cluster (x0, x1). Truncating this algorithm at a suitable point gives a ring

R = C[x0, x1, . . . , xk, xk+1]

and Mori then proves that the flip (C+ ⊂ X+) is given by the normalisation of R.

Brown & Reid’s diptych varieties

Brown & Reid take Mori’s algorithm one step further and aim to give a complete

presentation of the graded ring of the flip (C+ ⊂ X+) by introducing some gener-

ators and relations that were missing from R. Starting from the description of the

neighbourhood as a complete intersection of codimension 2 they construct flips by

serial unprojection, similar to our main construction §6.3.2.

Hacking, Tevelev & Urzúa

Hacking, Tevelev & Urzúa [HTU] introduce a toric surface M (only locally of finite

type) and construct families of k1A flips and some special k2A flips (the case d = e

of diptych varieties) over this surface. This surface contains an infinite chain of

rational curves and k1A flips degenerate to k2A flips at branch points along this

divisor.
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Gross, Hacking & Keel’s construction

Gross, Hacking & Keel [GHK] construct a smoothing of Vn, the vertex of degree n,

a cycle of n adjacent 2-planes in Cn

Vn =
n⋃
i=1

C2
xi,xi+1

which is controlled by a mirror Looijenga pair (Y,D). Here Y is a smooth projective

rational surface, D = D1 + · · ·+Dn is a cycle of smooth rational curves and (Y,D)

is a log Calabi-Yau pair, i.e. D ∈ |−KY |.
They work in great level of generality constructing a formal smoothing of Vn

as a mirror family to (Y,D). In a simple case, when D supports an ample divisor,

this smoothing is actually algebraic and contains U = Y \D as a fibre.

In particular, they introduce a integral affine manifold B (the ‘tropicalisation’

of U) containing a set of integer points B(Z). Then they define a basis of canonical

theta functions, θb for each b ∈ B(Z), and the structure of a scattering diagram on

B which encodes a multiplication rule between theta functions. This is defined in

terms of the Gromov–Witten theory of the pair (Y,D). In the algebraic case, the

smoothing of Vn is given by the Spec of this ring.

7.3.2 Further questions

These observations lead to the following questions:

• Is the canonical cover of a type A Mori flip or extraction always given by a

rank 2 cluster algebra with suitable coefficients? If so, then this so-called A-

cluster variety has a canonically defined mirror variety, an X -cluster variety.

What is this?

• By Remark 7.4 we can define an integral affine manifold B such that the

generators of our ring are naturally associated to distinguished integral points

on B. Can we define a scattering diagram on B and interpret our generators

as theta functions, in the sense of [GHK]?

• Can we use this description to construct (arbitrary, reducible) type A Mori

flips and extractions as families over integral affine surfaces with singularities,

as in the style of [HTU]?
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Appendix A

Equations for the main

examples

This appendix collects together equations for some of the examples in this thesis

where they are not all given in the main text.

A.1 Prokhorov & Reid’s example §3.3

Then equations of Y are given by Pfaffians of the following two matrices
ι x y −(cy + dz)

y z ax+ by

η ξ

ν



κ ν ξ + cη −dη
−aη ν + bη ξ

z y

x


plus the ‘long equation’:

ικ = (ax+ by)ξ + (cy + dz)ν + (acx+ ady + bcy + bdz)η

A.2 Tom1 example §3.4.1

We define the following quantities:

ξ1 = ξ1 + dη, ν1 = ν1 + cη, ξ2 = ξ2 + beη2
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Then the equations of Y are given by Pfaffians of the following three matrices
ι x y −(dy + ez)

y2 z ax2 + bxy + cy2

η ξ1

ν1



ξ2 ν1 ξ1 −eη
−(ax+ by)η yν1 ξ1

z y

x



κ3 ξ2 eν1η −ξ1

−aeη2 ξ2 ν1

ξ1 y

x


with the three missing equations:

zκ3 = ν2
1ν1 + bξ1ν1η + aξ

2
1η

ικ3 = (ax+ by)ξ
2
1 + cyξ1ν1 + (dy + ez)ν2

1 + eη
[
(ay2 + bz)ξ1 + (axy + by2 + cz)ν1

]
ιξ2 = (ax2 + bxy + cy2)ξ1 + y(dy + ez)ν1 + ey(axy + by2 + cz)η

A.3 Jer45 example §3.4.2

We define the following quantities:

ν1 = ν1 + bη, N1 = ν1ν1 + acη2, ξ2 = ξ2 + adη2

Then the equations of Y are given by Pfaffians of the following three matrices
ι x y −(cy2 + dyz + ez2)

y2 z ax+ by2

η ξ1

ν1



ξ2 ν1 ξ1 + cyη −(dy + ez)η

−aη yν1 ξ1

z y

x



κ3 ν1 ξ2 −aeη2

−aη N1 ξ2

z y

ξ1
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with the three missing equations:

xκ3 = ξ1ξ2 + cyξ2η + (dy + ez)N1η + aeyν1η
2

ικ3 = axξ2 + a2ey2η2 + (by + cz)ν1ξ1 + ν1(dy + ez)(zν1 + ayη)

ιξ2 = (ax+ by2 + cyz)ξ1 + y(dy + ez)(zν1 + ayη)

A.4 The semistable E6 case §4.2.2

We define the following quantities:

ξ = ξ − fη, ν = ν + (dy + ez)η, ζ = ζ − bξη, θ = θ − cdξη2.

Then the equations of Y are given by Pfaffians of the following three matrices
ζ ν y(ξ + aη) −(by + cz)η

ξ ν ξ

z2 y

x



θ cξη ζ ξ

−zζ ξ(ξ + aη) ν

ν y

z



κ ζξ + ceξη2 θ cξη

cξη ζ ξ

ν y

z


with the three missing equations:

xθ = z(ξ + aη)ξ
2

+ bzξην + cην2

xκ = (ξ + aη)ξ
3

+ bξ
2
ην + cη

[
zξζ − cξνη + dzξ

2
η + eξνη

]
ξ(ξ + aη)κ = ζζ

2 − θθ + dζζξη + eθζη

A.5 Monomial curve example 4.3

The equations of Y are given by Pfaffians of the following three matrices
ζ ξ1 ξ2 ξ3

xξ3 yξ1 ξ2

z −y
x2



θ −ξ2

3 ζ ξ1

xζ ξ1ξ3 −ξ2

ξ2 −y
x



κ ζ2 θ ξ2

3

θ ζ ξ1

ξ1ξ3 −ξ2

x
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with the three missing equations:

zθ = xξ3
1 + ξ2

2ξ3

yκ = ζξ2
1 − ξ4

3

zκ = ξ4
1 + xξ1ξ3ζ + ξ2ξ

3
3

A.6 Dr
5 example §4.3.1

Define the following quantities:

ξ = ξ − gη, ν = ν + (ey + fz)η, ζ = ζ + cξη, θ = θ + bξξη − fζη.

Then the equations of Y are given by Pfaffians of the following three matrices
ζ ξ ν ξ

−dzη zξ + (ay2 + byz + cz2)η ν

x y

z2



θ zζ + ξ2 −(ay + bz)ξη −ν

dξη ζ ξ

ν y

z



κ θ eζη − aξξη −ζ

dξη ζ ξ

ν y

z


with the three missing equations:

xθ = (ay + bz)zηξ
2

+ ξ(ξ + czη)ν + dην2

xκ =
[
ξ
(
ξ + (by + cz)η

)
+ dην

][
ζ + eξη

]
+ aξη

[
zξ

2 − fyξη + dyξη
]

ξ2κ = θ
(
θ − deξη2

)
−
[
ζζ + bdξ2η2

][
ζ + eηξ

]
+ aξη

(
ξ

2
ζ + dfξξη2 − d2ξ2η2

)
A.7 Big example 2 §6.4.2

The equations are given by the pentagrams appearing in Figure 6.3 plus some miss-

ing equations. We use the notation defined in §6.4.2 and also define:

N4 = ν4ν4 + aξ
3
1ξ3η

2

106



There are five missing equations involving ι (which we don’t include as they are not

required for the calculation) and ten others.

Of these ten, there are four involving z

zξ3 = y2ν1N1 + φ3ξ
2
1η

zν4 = ν2
1N1 + yξ

2
1η
[
φ2ξ1 + cν1

]
zξ7 = yν1N1ν4 + ξ

2
1η
[
φ2ξ3ξ1 + cξ3ν1 + φ1y

2ξ1N1η
]

zκ11 = ν1N1N4 + ξ
4
1N1η

2
[
y2ξ3 + aφ2ξ1η

2 − acν1η
2
]

+ ξ
2
1ξ7η

[
φ2ξ1 + cν1

]
three involving ξ1

ξ1ν4 = yξ2ξ3 + φ2y
3ν1ξ1η

3 + ν1η
2 [φ3ν1η + dξ2]

ξ1ξ7 = ξ2ξ3ξ3 + yν4η
2 [φ3ν1η + dξ2] + y4ξ1ν1η

3
[
φ1N1η + bξ3

]
ξ1κ11 = ξ2ξ3ξ7 + y3ξ1ν1η

3
[
N1η(yξ1ξ3 + xν4) + (ax+ by)ξ7

]
+N4η

2 [φ3ν1η + dξ2]

two involving ξ2

ξ2ξ7 = ξ2
3ξ3 + yξ1N1η

3
[
φ1N1η + bξ3

]
ξ2κ11 = ξ3ξ3ξ7 + ξ1N1ν4η

3
[
φ1N1η + bξ3

]
+ yξ

2
1ξ3N

2
1η

4

and one involving ν1:

ν1κ11 = ν4N4 + ξ
4
1ξ

2
3η

2.
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