Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

The microstructure, mechanical properties and surface transformations of a syalon ceramic

Tools
- Tools
+ Tools

Mason, Stephen (1988) The microstructure, mechanical properties and surface transformations of a syalon ceramic. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Mason_1988.pdf - Submitted Version - Requires a PDF viewer.

Download (24Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b1455054~S1

Request Changes to record.

Abstract

The potential application of nitride based ceramics in structural applications is dependent on their performance at elevated temperatures. To meet these demands the microstructure of a syalon ceramic has been refined. Improved processing techniques, by the use of high purity powders and "balanced" compositions, have been shown to improve the degree of inter granular crystallisation. The key aspects are the reduction of impurity levels, particularly calcium, and the use of high nitrogen compositions such that full crystallisation is achieved. The achievement of complete crystallisation results in the elimination of subcritical crack growth during fracture and high temperature creep processes dominated by non-cavitational grain boundary diffusional processes.

The mechanism for oxidation has been identified by determination of the kinetics, surface and sub-surface reactions. A temperature limit of l300 oC has been identified by the reversion of YAG to a eutectic liquid by reaction with the Si02-rich oxidation layer. In this regime oxidation rates are determined by the YAG reversion and cation out-diffusion to the oxide layer. Oxidation effects have been shown to be responsible for the onset of sub-critical crack growth at temperatures above 1300oC, where crack extension results directly from YAG reversion effects.

Enhanced high temperature performance above and beyond l300oC by surface transformation and surface coating was investigated. Surface microstructures based upon BI and Si2N20 have been shown to increase oxidation resistance upto 1375oC but are difficult to form without substantial surface degradation. Si3N4 and SiC coatings deposited by chemical vapour deposition (CVD) were found to have similar effects, increasing oxidation resistance beyond 1300oC.

Item Type: Thesis (PhD)
Subjects: Q Science > QC Physics
Library of Congress Subject Headings (LCSH): Ceramic materials -- Fracture, Ceramic materials -- Mechanical properties, Ceramic materials -- Surfaces, Nitrides
Official Date: 1988
Dates:
DateEvent
1988Submitted
Institution: University of Warwick
Theses Department: Department of Physics
Thesis Type: PhD
Publication Status: Unpublished
Extent: [10], 135, [12] leaves
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us