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Summary 

This work provides the topological background and a preliminary study for the analogue 
of the 2-variable Jones polynomial as an invariant of oriented links in arbitrary 3-
manifolds via normalized traces of appropriate algebras, and it is organized as follows: 

Chapter 1: Motivated by the study of the Jones polynomial, we produce and present 
a new algorithm for turning oriented link diagrams in S3 into braids. Using this 
algorithm we then provide a new, short proof of Markov's theorem and its relative 
versIon. 

Chapter 2: The objective of the first part of Chapter 2 is to state and prove an 
analogue of Markov's theorem for oriented links in arbitrary 3-manifolds. We do this 
by modifying first our algorithm, so as to produce an analogue of Alexander's theorem 
for oriented links in arbitrary 3-manifolds. In the second part we show that the study 
of links (up to isotopy) in a 3-manifold can be restricted to the study of cosets of the 
braid groups Bn,m, which are subgroups of the usual braid groups Bn+m . 

Chapter 3: In this chapter we try to use the above topological set-up in a procedure 
analogous to the way V.F.R. Jones derived his famous link invariant. The analogy 
amounts to the following: We observe that Bn,1 - the braid group related to the 
solid torus and to the lens spaces L(p, 1) - is the Artin group of the Coxeter group 
of En-type. This implies the existence of an epimorphism of eEn,1 onto the Hecke 
algebra of En-type. Then we give an analogue of Ocneanu's trace function for the 
above algebras. This trace, after being properly normalized, yields a HOMFLY-PT­
type isotopy invariant for oriented links inside a solid torus. Finally, by forcing a strong 
condition, we normalize this trace, so as to obtain a link invariant in SI x S2 . 



Chapter 0 

Introduction 

0.1 On chapter 1 

An (oriented) knot is an embedding of the (oriented) circle SI into the 3-sphere 
S3 , and an (oriented) link of n components is an embedding of n (oriented) copies 
of SI into S3. We study knots and links by studying their (regular) projections on 
a plane, which we call diagrams. 
Examples: 

We say that two knots (or links) are isotopic if we can continuously deform one into 
the other without causing self-crossings in the 3-space. Given any two links, the main 
information we want to know is whether they are isotopic or not; so, we would like 
to translate 'isotopy' in terms of diagrams. Reidemeister in [51] and Alexander 
and Briggs in [3] proved that two knots (or links) are isotopic if and only if any two 
diagrams of theirs are related through a finite sequence of planar moves (see Theorem 3 
in 1.2) . 
Knots and links make a subject for study on their own, known as 'knot theory' . On 
the other hand they are closely related to 3-manifold theory, as every 3-manifold can 
be obtained by doing surgery along a framed link in S3. 

Another geometrical object of similar nature is a braid ([26], [4], [7]) . A braid 
on n strings is most commonly described as an object in D2 x [0,1] consisting of n 
strings starting from n specified points inside the top disc D2 x {I} and ending at n 
specified points inside the bottom disc D2 x {O}, the strings in the middle braiding 
arbitrarily, but without being allowed to form local maxima or minima. A picture of a 
braid is given below: 

7 
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Picture: 'j) 
(~ 

8 

If we imagine joining the corresponding top and bottom end-points of the braid strings, 
the result would be an oriented link diagram. Then a question arises naturally: Can 
we obtain all oriented links (up to isotopy) by closing braids? Alexander showed in 
[1] that links and braids are interrelated, as there exists an algorithm for turning any 
oriented link diagram into a braid with isotopic closure; and this answers affirmatively 
the above question 1 • 

The biggest - still practically unsolved - problem in knot theory is to classify knots 
and links up to isotopy2. For this, it seems reasonable to try to work with braids, since 
braids are very structured objects. Even more so, as the set of braids on n strings 
can be given naturally a group structure. The second question that comes now is: how 
can we leave aside knots and work with braids instead? Markov in [48] answered 
successfully this question by announcing that there is a 1-1 correspondence between 
isotopy classes of links and equivalence classes of braids (seen either as geometric objects 
or as elements of the braid groups), the equivalence being given by two algebraically 
formulated moves between braids (see Theorem 2 in 1.1) . 
As Markov did not give a completely satisfactory proof, Joan Birman in [7] gave a 
complete proof of Markov's theorem. According to J. Birman, after Markov, there was 
another brief announcement of an improved version of Markov's theorem by Weinberg 
in 1939 (see [62]) . 

Apart from being appealling on their own, the two theorems received attention 
anew when V.F.R. Jones announced a new polynomial link invariant via the study of 
braids (see [28], [29]) . 

The study of the Jones polynomial was also our motivation for studying knots and 
braids; also for finding a new algorithm for 'opening' oriented link diagrams into 
braids (so as to answer a question posed by my colleague Meinolf Geck). Then, using 
this algorithm, we give another proof of Markov's theorem (following C.P. Rourke's 
suggestion). The above are presented in Chapter 1. 

The idea of our braiding process: Start with an oriented link diagram and mark 
with points the local maxima and minima. This set of points separates naturally the 
diagram into horizontal or downward arcs on one hand, and into 'opposite' arcs (Le. 
arcs that go upwards) on the other hand. We want to eliminate the opposite arcs, as 
they go the 'wrong' way for a braid. We eliminate an opposite arc by cutting it at 

1 H. Brunn ([9]) in 1897 proved that any knot has a projection with a single multiple point; from 
which follows immediately that we can braid any link diagram. 

2As M.B. Thistlethwaite mentions in [57]: 'Astonishingly, there is a uniform method of classifying 
knots, and also knot groups, arising from the Haken theory of irreducible, sufficiently large manifolds 
[20], and a certain missing step supplied by Hermion [21]' 
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some point and by pulling and stretching its two ends both over or under the rest of 
the original diagram, according to whether the opposite arc lies over or under other 
ar"s of the diagram. 

PIcture: 

3 

2 3 

The proof of Markov's theorem follows then easily, since our algorithm has the advan­
tage that one can keep track of each step on the plane. 

A consequence of our proof of Markov's theorem is Corollary 4 in 1.4.2 (relative version 
of Markov's theorem) that says the following: 

'If two isotopic links which are turned into braids contain the same braided part, then 
the two resulting braids differ by conjugation and Markov moves that do not affect the 
already braided part. ' 

0.2 On the Jones polynomial 

A link invariant is a labelling for links, so that isotopic links will be assigned the same 
label. Note that it may happen, that two non-isotopic links will have the same label. 
Classical invariants are for example: the fundamental group of the complementary 
space of a link, the Alexander polynomial etc. 

V.F.R. Jones in [28] and [29], used Markov's theorem so as to work with braids in order 
to find a new link invariant. He applied an inductive process, where we give a label to 
the identity braid and we find the label of a given braid by splitting it repeatedly into 
braids with simpler structure. This indicates that we need to define addition between 
any two braids, and not only multiplication (which is the braid group operation). A 
way to do this, is by taking the braid group algebra over the complex numbers, eRn . 

A simple fact about braids is that if we take a braid on n strings and ignore the 
crossings (positive or negative), the only remaining information is the permutation of 
the end-points. So to each braid in the (infinite) group Rn we assign an element of the 
(finite) symmetric group Sn. In fact Sn is a quotient of Rn and therefore the algebra 
eSn is a quotient of eRn . Furthermore, there exist some algebras called Hecke 
algebras of An-type, 1tn (q) , which are isomorphic to the algebras eSn • V. Jones 
used the above natural epimorphism to send braids to elements of 'Hn(q) for all n 
(see [30]). Then, using a linear trace (Ocneanu's trace) that sends U~I 'Hn(q) to e, 
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he assigned to every braid a complex (Laurent) polynomial3 • In order to obtain then 
a link invariant, he had to normalize this trace properly (using Markov's theorem), so 
that braids with isotopic closures will be given the same polynomial-label (see 3.1 for 
more details). 

0.3 On chapter 2 

As mentioned in the beginning, all the above take place in S3 . The rest of this work 
is an attempt to extend the above theorems and ideas to links in arbitrary closed, 
connected, orientable (c.c.o.) 3-manifolds, and it should be seen as the set-up of a 
machinery for defining the analogue of Jones polynomial in other 3-manifolds following 
V. Jones's ideas. 

What makes the difference with what is said before, is that now we have to take into 
account the nature of the manifold. Qur viewpoint is the following: we represent a 
c.c.o. 3-manifold M by a fixed projection of a surgery link in S3, which, in fact and 
without loss of generality, is the closure B of a pure braid B (as follows from [41]) . 
So we study M and links in it by translating our questions into equivalent ones in S3. 

Therefore, any link L in M can be represented by a mixed link L U jj in S3, 
consisting of a link in S3 together with the fixed surgery part, jj . A link diagram 
is a projection L U B of L U B on the plane of B. 

Example: 

Next, we want to see how isotopy between links in M is reflected in S3: The 
surgery description of M gives rise to an additional move (between mixed links in 
S3) , which we call band move. More precisely, a band move tells what we see in S3 
when a part of a link (a band) approaches very closely a surgery component. Then, 
the Reidemeister's theorem (see 2.2.4), is modified as follows: 

3V. Jones used initially quotients of the Hecke algebras - namely von Neumann algebras called 
'type 111 factors' - to derive the original I-variable Jones polynomial (see [29]); with the use of Hecke 
algebras he re-constructed the HOMFLY-PT polynomial, which is the 2-variable generalization of the 
Jones polynomial, constructed independently by five groups of mathematicians (see [40], [16], [50)). 
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'Two links in M are isotopic if and only if any two corresponding mixed link diagrams 
in 8 3 differ by planar isotopy and a finite sequence of the augmented Reidemeister 
moves (where the surgery link participates too) and the two band moves (that derive 
from the different orientations of the band). ' 

We define a mixed braid in 8 3 to be a braid in 8 3 together with a fixed 
surgery braid B. Then, by modifying slightly our braiding process (mentioned above), 
we prove that any oriented link in M can be represented by a mixed braid in 8 3 

(analogue of Alexander's theorem). 

This proves additionally that M can be represented by the surgery braid B (instead 
of B) , since throughout the process B remains unaltered. 

The last thing for the topological set-up, is an analogue of Markov's theorem .(This 
problem was suggested by Colin Rourke, and the main idea for the formulation as well 
as a part of its proof are due to him): After modifying properly a type of band moves, 
so as to turn them into moves between braids, we state such a theorem (Theorem 5 in 
2.4) and we prove it using the relative version of Markov's theorem and the analogue 
of Alexander's theorem. Theorem 5 says: 

'Two links in M are isotopic if and only if any two mixed braids obtained by two 
corresponding mixed link diagrams in 83 are equivalent under conjugation, the Markov 
moves and the braid band moves. ' 

As a special case of Theorem 5 we obtain the analogue of Markov's theorem for oriented 
links inside a solid torus (Theorem 6 in 2.4.2). 

Next, we want to investigate the existence of algebraic structures in the sets of 
mixed braids, in order to formulate the analogue of Markov's theorem algebraically 
(i.e. looking at mixed braids as algebraic rather than geometrical objects). Indeed, 
in section 2.5 we prove that for every 3-manifold the study of mixed braids up to 
isotopy, can be restricted to the study of some specific mixed braids that form either 
groups, the groups Bn •m (which are subgroups of the usual braid groups Bn+m ) , 

or cosets of the above groups in Bn+m , depending on the nature of the manifold. 
Finally, we conclude Chapter 2 by giving algebraic formulations of the analogue of 
Markov's theorem for the solid torus as well as for some lens spaces (the ones that can 
be described by one surgery string), after having found an appropriate presentation for 
the corresponding braid groups Bn •l • 

0.4 On chapter 3 

So far we have developed a topological theory in analogy to the existing one for the 
8 3-case. 
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As we mentioned in 0.2 , the Hecke algebra of An-type is related to the 'usual' braid 
group Bn. In [30], V. Jones asked whether other Hecke algebras, related to general 
Artin groups, can be used in the same manner as the ones of An-type. Here, we make 
some progress in this direction using the Hecke algebras of Bn-type corresponding to 
the Artin group Bn ,} ,as follows: 

We compare the presentation for Bn ,} , given in section 2.6 , with the standard pre­
sentation of the Coxeter group of Bn-type , Wn , and we observe that there is a natural 
epimorphism of Bn,l onto Wn . This implies immediately the existense of an epi­
morphism of CBn,l onto 'Hn(q,Q) , the Hecke algebra of Bn-type . The above now 
suggest that we look for a trace function from U~l 'Hn(q,Q) to C analogous to 
Ocneanu's trace, so as to attach to each braid in Bn ,} a complex polynomial. Indeed, 
in section 3.3 we give such a trace function theorem, which is joint work with Meinolf 
Geck. After normalizing this trace properly (using our analogue of Markov's theorem), 
we obtain a HOMFLY-PT-type isotopy invariant for oriented links inside a solid torus 
(section 3.4.1) , which we compare (in section 3.4.2) with J. Hoste's and M. Kidwell's 
dichromatic link invariant as presented in [22]. 

0.5 A concluding note 

The natural thing to do next, is to try to normalize the 'Hn(q, Q)-trace properly, so 
as to obtain a link invariant in the lens spaces that can be described by one surgery 
string, i.e. the spaces L(p, 1) . The major obstacle that appears here, is that the band 
move and the Markov move are not algebraically compatible in the sense that: each 
one has to occupy one side of the braid in order to obtain a simple algebraic expression 
of Markov's theorem, so the braid strings may increase from both sides. This leads to 
forcing q = 1 and thus to finding a weak invariant for links in L(O, 1) , instead of the 
analogue of the HOMFLY-PT polynomial that we were hoping for. 

However, if we omit one of the quadratic relations of the Hecke algebra of Bn-type, 
then the above trace is not unique, and the space of all traces is the dual space to the 
third skein module of the solid torus (see [22], [59]; see also [23] for a survey of skein 
modules). So, by considering this more general family of traces, we hope to overcome 
the problem described above. 

This idea is strongly supported - although from a different viewpoint - by the recent 
works of J. Hoste and J. Przytycki, who defined the analogue of the Kauffman bracket 
version of the Jones polynomial (see [31]) for lens spaces using skein module theory, 
and this analogue consists of attaching more than one polynomial-labels to an oriented 
link in the manifold (see [23], [24], [25]) . It also seems related to the recent works 
of W.B.R. Lickorish (see [42]), where he gives a purely combinatorial way for viewing 
Witten's invariants (see [63]). 



Chapter 1 

Alexander's and Markov's 
theorems 

1.1 Introduction 

In this chapter we shall describe a straightforward algorithm for turning any oriented 
link diagram into a braid (diagram), and thus give a new proof of Alexander's theorem. 
Then, using our algorithm, we shall give a short new proof of Markov's theorem. 

Alexander's and Markov's theorems date back to 1923 (see [1]) and 1935 (see [48]) 
respectively. In 1974 J.S. Birman gave the first complete published proof of Markov's 
theorem (see [7]) . The two theorems received attention again, after V.F.R. Jones (in 
[30]) used the braid groups in constructing his polynomial link invariant. Other proofs 
of Alexander's theorem have been given by H.R. Morton ([49], 1986), by S. Yamada 
([64], 1987), by P. Vogel ([60], 1990) and by P. Traczyk ([58], 1992)1 . Other proofs 
of Markov's theorem have been given by Bennequin ([6], 1983), by H.R. Morton ([49], 
1986) and by P. Traczyk ([58], 1992) . 

Theorem 1 (Alexander 1923) Any oriented link is isotopic to the closure of some 
braid (not unique). 

Theorem 2 (Markov, Weinberg) Two oriented link diagrams are isotopic if and 
only if any two corresponding braids are related by a finite sequence of the following 
moves: 

(i) Conjugation: If 0, /3 E Bn then 0 _ /3-1 0/3. 

(ii) Markov move: If 0 E Bn then 0 '" 00'~1 E Bn+l and 0 '" 00';1 E Bn+l' 

where Bn is the braid group on n strings. 

1 In the proofs given in [64], [60] and [58], the number of strings in the resulting braid equals the 
number of Seifert circles of the original link diagram. 

13 
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1.2 Topological definitions et cetera 

Throughout this chapter we shall work in the piecewise-linear (pI.) category (see [54]) , 
but occasionally we shall draw smooth diagrams, for convenience. 

We take D2 X [0, 1] standardly embedded in 8 3 , and we specify rn points inside 
D2 x {I} and n points inside D2 x {o} . (We consider D2 to be (0,1) x (0,1).) 

Definition 1 An (rn, n )-tangle is an embedding of a disjoint, finite union of circles 
and intervals in D2 X [0,1] such that the circles lie inside D2 x (0,1) , the end-points 
of the intervals are the specified rn and n points in the top and bottom disc, and 
such that the intersection of the intervals wi th D2 x {1} and D2 x {O} is precisely 
the m and n specified points. 

Definition 2 A projection p of a tangle on (0,1) x {o} x [0,1] is called regular 
(or tangle diagram) , if: 

(i) end-points are projected to different points, 

(ii) there are only finitely many multiple points Pi, i = 1, ... ,n , and all multiple 
points are double points, that is ,p-l(Pi ) contains two points, 

(iii) no vertex of the tangle is mapped onto a double point (compare with [10], p. 8) . 

I.e., a tangle diagram avoids critical situations as depicted below: 

/ 
\ 

\ 
I 

An example of a tangle diagram is the following: 

.---- m strings 

(m,n) - tangle 

1- (~ 
c::-tf\~l 

........&_'--_.a.---'-.... ....I.-~-,r .......... __ n strings 

Definition 3 A link is a (O,O)-tangle; i.e. an embedding in 8 3 of finitely 
many disjoint circles, called components of the link. A knot is a link with only one 
component. 
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Definition 4 Two links are ambient isotopic if there is a homotopy ht from S3 
to itself that carries one onto the other, such that ha = identity and each hi is a 
homeomorphism (see [53]). 

The following theorem shows how to translate ambient isotopy of pI. links into equiv­
alence of pI. diagrams (see [51], [52] and [10] for detailed expositions). 

Theorem 3 (Reidemeister) Two pi. link diagrams represent ambient isotopic pi. 
links in S3 if and only if they differ by small planar shifts and a finite sequence 
of the following 'Reidemeister' moves (together with all other moves that derive from 
rotations and reflections of these): 

~ 0) Addition or deletion of a vertex. 

~ 1) 

~2) 

~I ) 

All) " 

> 
/ 

~III) 

~\( 
/j, 

Notes 

• By 'small planar shifts' we mean 'small triangle moves that do not interfere with 
any other part of the diagram'. 
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• The last five Reidemeister moves may be seen as special cases of triangle moves. 

• The small planar shifts together with the moves ~1 and ~2 are what Reidemeister 
calls in [52J, page 7, 'deformations of the projection-curve, which do not change the 
"Schema" of the projection'. Alternatively, these moves generate deformations of the 
diagram, which do not create any singularities according to Definition 2. 

• There is also a tangle version of Reidemeister's theorem. 

Remark 1 We can orient a tangle by choosing an orientation for every embedded 
interval and every circle. Then the above theorem also holds for oriented links (where 
in the Reidemeister moves we consider all possible choices of orientation). 

Definition 5 A braid on n strings is a special case of a (n, n )-tangle , such that 
if we take the height function of the embedding, it does not have any local maxima 
or minima or horizontal arcs. I.e. a braid inherits a natural direction (from top to 
bottom). 

A braid on n strings permutes its end-points and so it can be associated naturally 
with an element of the symmetric group Sn. Braids that correspond to the identity 
element of Sn are called pure braids . 

Definition 6 We say that a regular projection of a braid is in general position, if 
no two crossings are on the same horizontal level, and we shall also call 'braid' such 
a braid diagram. 

If we slice up in general position (i.e. without cutting through crossings) a braid, it 
may be seen as a word on the following generators (7j and (7j-l for i = 1, ... , n - 1 . 

i i+l i+l 

'''X "'X'" 
-) 

(Ji 

Ambient isotopy classes of braids are in 1-1 correspondence with equivalence classes 
of braid diagrams, where the equivalence is generated by planar isotopy preserving the 
braid structure and finite sequences of the following moves ( in terms of the generators): 

1) (7j(7j-l = (7i- 1l1; = 1 , for i = 1, ... ,n-l 
2) (7j(7j = (7j(7j , for li - j I > 1 
3) l1jl1i+tl1j = l1j+ll1jl1i+l , for i = 1, ... ,n - 2 

Notice that moves 1) and 3) are special cases of the Reidemeister moves (~I1) and 
(~I1I) (with all arcs oriented downwards), whilst move 2) corresponds to change of 
relative heights of crossings. 



1.2. Topological definitions et cetera 17 

The set of all equivalence classes of braid diagrams on n strings, up to braid planar 
isotopy, forms a group, the braid group Rn , with a presentation: 

(For a detailed account on braids see [5], [7]) . 

The operation in the group is concatenation (we place one braid on top of the other), 
and the identity element is: 

2 n 

The set of pure braids on n strings also forms a group Pn the pure braid group. 
Pn is a normal subgroup of Rn and can also be given a finite group presentation. 
(A detailed algebraic description of Pn is given in 2.6.1). 

Note Equivalently we could define Rn (Pn) as the fundamental group of the config­
uration space of n unordered (ordered) points inside D2 . 

Definition 7 Closure 13 of a braid R (seen as a braid diagram) is the connecting 
of its corresponding top and bottom end-points, such that the resulting oriented link 
diagram is like the following (up to planar isotopy): 

where we consider that the braid is contained in a 'box'. 

Throughout this chapter we shall use the operation illustrated above for closing a braid. 

Note The closure of a pure braid on n strings gives an oriented link diagram of 
precisely n components. 

It follows from the above that, if we take the closure of two braids that correspond 
to the same element of Rn , then the two link diagrams are isotopic. On the other 
hand, if we turn two equivalent (under the Reidemeister moves) oriented link diagrams 
into braids using some algorithm (recall Alexander's theorem), we do not necessarily 
end up with braid words that correspond to the same element of some braid group. 
Actually, nothing even guarantees that we obtain braids with the same number of 
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strings. However, Markov's theorem (recall Theorem 2 in 1.1) says that we can define 
an equivalence relation on U~l Rn so that equivalent braids correspond to (isotopy) 
equivalent link diagrams. U~=l Rn is the direct limit, when the embedding of Rn into 
Bn+l is given by the following picture: 

Picture: 
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1.3 The braiding process (Alexander's theorem) 

1.3.1 The idea of the algorithm 

Take an oriented link diagram without horizontal arcs. Then this diagram consists of a 
finite set of arcs that go downwards and a finite set of arcs that go upwards (which we 
call opposite arcs) , the two sets being separated by a finite number of local maxima 
and minima. 
In order to obtain a braid from that diagram we want 

1) to keep the arcs that go downwards 

2) to eliminate the opposite arcs (because they go the 'wrong' way for a braid) and 
instead to produce braid strings, so that in the end we are left with a braid. 

If we run along an opposite arc we are likely to meet a succession of overcrossings and 
undercrossings. We subdivide (marking with points) every opposite arc into smaller -
if necessary - pieces, each containing crossings of only one type; i.e. we may have: 

or or J "free opposite arcs" 

We call the final pieces little ~ 's (little opposite arcs). We label every little ~ with 
an '0' or a 'u' as follows: If it is the over/under arc of a crossing (or some crossings) 
we label it with an '0 ,/'u'. If it is a free little ~ (and therefore it contains no 
crossings), then we have a free choice whether to label it '0' or 'u'. 

We eliminate an opposite arc by eliminating its little ~ 's one by one as follows: 
Fix one little ~ and cut it at some point. If the little ~ is the overstring/understring 
of a crossing (or some crossings) we pull its two ends over/under the diagram and 
then we stretch them one upwards and the other downwards, but both over/under 
the rest of the original diagram (see picture below). 
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In this way we turned the little ~ into two pieces of corresponding braid strings (ending 
at the end-points of the little ~ ), and the original diagram into a (1, 1 )-tangle. If 
we do the same for all little ~ 's we end up with a braid with as many strings as the 
number of the little) 's. 

Note From now onwards - unless otherwise stated - circles like the ones depicted 
above, will always stand for 'the rest of the diagram' , which we shall also call 
'plegma' . Also, the region inside the circle shall be called 'the magnified region' . 

1.3.2 The braiding process 

In order to make the above rigorous we need to look at two cases with special difficulty. 

Case 1: If we cut the little ~ 's at any arbitrary point, we are in danger to run into 
situations such as the one illustrated and described below. 

In the situation illustrated above Ul and U2 are two under little ~ 's , and suppose 
that - by the algorithm - Ul gets eliminated first. The lower piece of the new pair 
of downward strings - SI say - produced by the elimination of Ul , goes under U2 

and it becomes an obstacle for the elimination of U2 • This happens because SI is a 
'new' string (not a part of the original diagram), resulting in part of U2 becoming an 
overcrossing. But we do not want to mark further with points the original diagram. 
We can avoid the problem encountered here by cutting all little ~ 's at their upmost 
point. 
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Case 2: The difficulty illustrated and described below does not depend on the cut­
points: 

In this situation Ut and U2 are as before, and the elimination of UI is obstructed 
by U2. In practice we can swap the numbers of Ut and U2: 

Picture: 
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In order to get over this problem theoretically, though, we need to impose a condition 
for the little) 's , namely condition (*) below. 

For this we want first to introduce the notion of the smoothening triangle of a little) . 

Definition 8 The smoothening triangle of a little) is a special case of the triangle 
needed to perform a triangle move, described as the region spanned by a right-angled 
triangle with hypotenuse the little) , and the right angle lying below the little) . If 
the little) is vertical, then the smoothening triangle degenerates into the arc itself. 
We say that a smoothening triangle is of type over or under according to the label 
of the arc it is associated with. 

So the elimination of a little ~ is modified as follows: 

We slide the little) through its smoothening triangle, as depicted below, and then we 
replace the vertical part by two corresponding vertical strings, both with label same 
as the label of the little) . 
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Picture: 
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Condition (*): Non-adjacent smoothening triangles are only allowed to meet if they 
are of opposite type. 

Picture: 

but not 

Lemma 1 There exists a set of subdividing points on the opposite arcs, including 
vertices, satisfying condition (*) (for appropriate choices of under/over for free 
little) 's}. 

Proof Let d = minimum distance between any two crossings. Let 0 < r < d/2 
be a number such that any circle of radius r centred at a crossing point does not 
intersect with any other arc of the diagram. Let s be the minimum distance between 
any two points in the diagram further than r away from any crossing point. Now 
let f = ~ min {s,r} and D be a subdivision of the diagram such that the length of 
every little) is less than f. Then condition (*) is satisfied, provided we make the 
right choices (over/under) for smoothening triangles of free little ~ 's near crossings 
(see picture above). 0 

In the picture below we show how to cope theoretically with the difficulty described 
in case 2 above, by applying condition (*) : 
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ttt 
One could easily check that if we eliminated the three little ~ 's in a different order 
(but with the same labelling) , we would still obtain the same braiding. 

Remark 2 If we add more points to a subdividing set sat isfying condition (*), then 
there exists at least one labelling for the new set of arcs obtained, so that condition 
(*) is still satisfied. To see that, take for example the labelling that derives naturally, 
where: when we subdivide further a little) , the new little) 's keep the same labelling 
as the subdivided one. 

Remark 3 The idea of imposing condition (*) was suggested by C.P. Rourke, and it 
is of major importance, because it implies that the eliminat ing moves do not interfere 
with each other, so we can do all of them simultaneously . Therefore, it does not 
matter which way we number the little ) 'so 

Now we can proceed with a rigorous exposition of our braiding process. 

1.3.3 An algoritlllll for turning oriented links into braids 

Definition 9 We say that a link diagram with subdividing points and smoothening 
triangles is in general position , with respect to the height function, if the following 
conditions hold: 

1) there are no horizontal arcs, 

2) no two subdividing points are on the same horizontal level, 

3) there are no vertical arcs, 

4) no two subdividing points are on the same vertical level, 

5) any two non-adjacent smoothening triangles satisfy condition (*) , and if they 
intersect, this should be along a common interior (and not a single point). 

From now on we shaH call 'general diagram' a diagram in general position. 
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Note To achieve the first four conditions we only make small deformations, but to 
achieve condition 5) we may need to add more subdividing points. 

Let L be an oriented link and Z a diagram of L, that does not contain any 
horizontal or vertical arcs. We turn Z into a braid as follows: 

Step 1: We choose a set of subdividing points on I (including the vertices of the di­
agram) satisfying conditions 2) and 4) of Definition 9 , such that each little ~ contains 
crossings of only one type and such that, if the little ~ 's are labelled appropriately, 
condition 5) is also satisfied. We label the little ~ 's so that condition 5) is satis­
fied. Note that we might have to make an arbitrary choice for the labels of some free 
little ~ 'so Now I is in general position (as defined above). 

For each little) , we draw the vertical line that passes through its upmost point, so 
that it passes under or over the plegma, according to the label of the little ~ . Then 
we 'name' ( i.e. we give numbers to) the little ~ 's according to the position of their 
corresponding vertical lines. 

Step 2: Start with the first arc (with number 1) and slide it through its smoothening 
triangle (recall pictures above). Then replace the vertical part by two corresponding 
strings that follow the vertical line of the little ) . The result is a (1,1 )-tangle. 

Repeat Step 2 for the 2nd, 3rd, ... ,nth arc, so as to obtain a braid on n strings. 

Step 3: Isotope slightly, so that the final braid does not contain any horizontal arcs 
or any crossings on the same horizontal level. 

We take now the closure of the obtained braid; each pair of corresponding strings 
ending at the end-points of a little ~ , together with their closing arc, form a stretched 
version of the little ~ (i.e. they are isotopic to the little ~ ). Thus the closure of our 
braid is isotopic to the oriented link we started from. 

The above algorithm gives our new proof of Alexander's theorem. o 

1.3.4 Comments 

• Condition (*) might imply a number of unnecessary subdivisions (and this would 
become really large if we applied the proof of Lemma 1). 

• In the (theoretical) algorithm we imposed condition (*) as it avoids the difficulty of 
describing algorithmically how to deal with a congestion of overlapping smoothening 
triangles (and also to aid in the proof of Markov's theorem that follows). In practice 
we do not need to impose condition (*) as long as we layer and number overlapping 
smoothening triangles carefully. 

• Even when applying it practically, our algorithm cannot guarantee a minimal number 
of strings in the final braid. Although, it is conceptually very simple and it is planar, 
so one can keep track of it, and can easily read the braid word in the end. 
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An example of braiding a link diagram: 

1 2 3 4 S 

Aside We could also apply the braiding process above to 'braid' a general tangle 
diagram. The result would be a generalized notion of a braid. 

1.4 Proof of Markov's theorem 

Before starting to prove the theorem, we make the following remarks: 

Remark 4 Throughout this section we will be assuming that all diagrams are general 
diagrams, unless otherwise stated. Therefore, we may assume that we have done the 
braiding for all little) 's except for the ones that we are interested in every time, and 
these will be lying in the magnified region that we have mentioned earlier. We shall 
place the magnified region inside a rectangle representing the braid. Moreover (from 
Remark 3) we will omit the numbers of the little) 's , and we shall only keep the labels 
'u' and '0'. 

Remark 5 Let f3(jn -1;1 be a braid in Bn+l with a Markov move performed. Using 
conjugation we may place (jn -1;1 (i.e. the last crossing) at any other position in the 
braid word and we shall call this move 'general Markov move' . 

Picture: 
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Definition 10 We say that two braids are M-equivalent if they differ by braid planar 
isotopy, braid relations and a finite sequence of general Markov moves and conjugation. 

1.4.1 Proof using our algorithm 

Two braids that differ by a finite sequence of conjugations and Markov moves obviously 
have isotopic closures: 

[fwe close a braid with a Markov 

move per/ormed, the Markov move 

corresponds to a twist of some com­

ponent of the resulting link diagram. 

To prove the converse we have to show that: 

With closure b-1 can slide around, 

come below b and cancel with it. 

Given any two ambient isotopic links Lt , L2 , any two corresponding general diagrams 
Lt and L2 yield M-equivalent braids. More precisely: 

1) the static aspect: The braid we obtain from a 'potential' general diagram (i.e. a 
diagram satisfying 1), 2), 3) and 4) of Definition 9 ) does not depend - up to 
M-equivalence - on the subdivision and the labelling we choose to make, in order 
to also satisfy rule 5) of Definition 9 . 

2) the moving aspect: An isotopy carrying Lt onto L2 may pass through certain 
critical stages; our task is to show that the corresponding braids before and after 
each of these stages are M-equivalent. Most of the critical stages are listed in 
Reidemeister's theorem; but there are some extra ones that derive from rules 1), 
2), 3) and 4) of the definition of a general diagram. We list all of them later on 
in the proof. 

Note that proof of 1) together with the proof of critical stages that derive from the 
first four rules of Definition 9 , will show independency on any possible choices we make 
in order to bring a diagram to general position. 

The proof relies entirely on Remark 3 about independency of the braiding moves, and 
on the following two lemmas: 

Lemma 2 If we add on a little) , 0 , an extra subdividing point P and label the two 
new little) 's, 0t and 02 , the same as 0 , the corresponding braids are M-equivalent. 
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Proof For definiteness we assume that a is labelled with an '0'. We complete the 
braiding of the original diagram by eliminating a (see picture below). Then, on the 
new horizontal piece of string, we take an arbitrarily small neighbourhood N' around 
pi , the projection of P (see picture below). By general position N' slopes slightly 
downwards. 

Next, using the braid relations, we pull N' (horizontally) over and outside the right 
hand side of the braid. Then we perform a negative general Markov move and, using 
conjugation and the braid relations, we pull the new strings over the braid, back to 
the original position of pi (as illustrated in the pictures below). 

Finally, sliding an appropriate piece of string through the smoothening triangle (braid 
planar isotopy), we obtain the braid that would result from the original diagram with 
the subdividing point P included (see picture below). 

Picture: 
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Lemma 3 When we meet a free little) , which we have the choice of labelling 'u' or 
'0' , the resulting braid does not depend - up to M-equivalence - on this choice. 

Proof First, we shall assume for simplicity that the smoothening triangle of our arc 
does not lie over or under any other arcs of the original diagram. Also, we assume for 
definiteness that the little ~ is originally labelled '0'. We complete the braiding by 
eliminating it. Then, on the new horizontal piece of string, we take an arbitrarily small 
neighbourhood N', which is a projection of a neighbourhood N arbitrarily close to 
the upmost point of the little ~ (as illustrated below). 
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Next, using the braid relations, we pull N' (horizontally) under and outside the 
right-hand side of the braid. Then we perform a general positive Markov move and, 
using conjugation and the braid relations, we pull the new strings under the braid, 
back to the original horizontal position of pI (see pictures below). 

Picture: 
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The fact that the original li ttle ) is free and small enough, implies that only vertical 
strings can pass over or under its smoothening triangle. Therefore - as N is arbitrarily 
small - there is no arc crossing AB so as to force it be an under arc. Then - by braid 
planar isotopy - we shift A slightly higher (see picture below), and applying the 
braid relations and conjugation on the pair of 'over ' strings, we come to the situation 
where we can perform a negative general Markov move. We perform the move and 
pull the new arc over the braid, back to the original place. 

The final braid - up to a small braid planar isotopy - can be seen as the braid that we 
would have obtained from the original diagram, with the free little) labelled with 'u' 
instead of '0' . 
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Notice that, if the original little ~ were an 'u', we would do pulling over and a 
negative general Markov move and so on. 

To complete the proof of the lemma, we assume that the smoothening triangle of our 
little ~ lies over or under other arcs of the original diagram. In this case we subdivide 
it (using Lemma 2) into arcs small enough to ensure that all the smoothening triangles 
are clear; we give all new arcs the labelling of the original one. Then we change the 
labelling of each little ~ using the above, and (using Lemma 2 again) we eliminate all 
the new subdividing points. 0 

Corollary 1 If we have a chain of ove7'lapping smoothening triangles of free little ~ 's, 
so that we have a free choice of labelling f01' the whole chain, then, by Lemmas 2 and 
3, this choice does not affect - up to M-equivalence - the final braid. 

Proof (by following the diagrams) 

o 
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Corollary 2 If, by adding a subdividing point on a little ~ , we have a choice for 
relabelling the resulting new little ~ 's so that condition (*) is still satisfied then, by 
Lemmas 2 and 3, the resulting braids are M-equivalent. 

Corollary 3 Given any two subdivisions, S} and S2 , of a diagram, which will satisfy 
condition (*) with appropriate labellings, the resulting braids are M-equivalent. 

Proof This can be seen easily considering the subdivision S} U S2 and applying the 
lemmas above. 

Corollary 3 proves 1), i.e. independence of subdivision and labelling for 'potential' 
general diagrams. 

For the proof of 2) we have to check M-equivalence of braids when L} and r; 
differ by Reidemeister moves or by general position moves. Below, we list and analyse 
separately each of the two sets of moves. Without loss of generality all basic moves 
shall be placed in a magnified region isolated from the rest of the diagram. 

Reidemeister moves: 

(a) i) ii) 

(b) i) ii) 

(d)i) ii) 

I I 
(c) i) ii) 

t t t t 
Remark 6 While applying the algorithm the downward arcs stay unmoved and there­
fore we do not need to check the following move, which is a consequence of the group 
structure of En . 
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(c) iii) 

~> t t 
'Triple point move' 

(e) i) ii) 

}<-.)1: }(-.>{ 
iii) iv) 

f(-.>{ X-.>{ 
Note As in Remark 6, we do not need to check the following move, which is a 
consequence of the braid relations. 

(e)v) 

Other instances of the above moves are obtained from the ones listed by symmetries 
and rotations. 

We shall only show as typical cases (a)i) , (a)ii) , (d)i) , (c)i) ,(b)ii) and (e)iii). 
All the others follow using very similar arguments. 

(a)i) Let pi be the horizontal projection of P on the original arc (as illustrated 
below). Without loss of generality we may assume that all little ~ 's involved in the 
move, are of the same type. It is clear from the pictures below that the braid we 
obtain after the move, is the same - up to a small braid planar isotopy - as the one 
that we would obtain from the original diagram after adding pi and keeping the same 
labelling. Then the proof follows by Lemma 2. 
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Picture: 

o 

(a)ii) Before the move is performed, we fix points P and pi on the downward arcs, 
so that P lies on a higher level than pi (see picture below). We complete the braiding 
process by eliminating the new little ) , and we use the two pieces of new strings -
but starting from P and end ing at pi - in order to perform a negative general 
Markov move (exactly as in the second series of pictures in the proof of Lemma 3). 
The resulting braid is clearly the same as the one obtained from the original diagram. 

Picture: 

\ 
(d)i) We illustrate below that the braid obtained after the performance of the move 
is equivalent to the one obtained before the move - up to a small braid planar isotopy, 
braid relations, conjugation and a general negative Markov move: 
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(c)i) We complete the braiding of the left-hand side of the move, and we notice that, 
using braid planar isotopy, braid relations and conjugation, we can perform a general 
negative Markov move (see pictures below). After performing the move and using braid 
relations, we obtain the braid that we would obtain from the right-hand side of (c)i) 
with label 'u' for the li ttle t : (compare with the pictures for the proof of (d)i) !) 

, , , uy , , 
uy u'f 
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~"t f 
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(b )ii) (by following the pictures below) 
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Finally, we prove all triple point moves using the following trick (proof of (e)iii) 
below), which al10ws us to change local1y the orientation of one string; and we do this 
using the braid relations, and by applying the moves that we have already checked. 

(e) iii) 

General position moves (that derive from 1),2),3),4) and 5) of Definition 9): 

From 1) An edge of L1 passes through the horizontal position. So, it either was 
a little ) and it now becomes a downward arc, or it was a downward arc and it now 
becomes an opposite arc. 
From Remark 3, the first possibility is clearly a move (a)ii). In the second case we 
may assume that the new opposite arc needs to be subdivided in, at most, two little 
~ 's, say '0' and 'u' ; then we break the move into a sequence of (a)ii) moves by 

choosing points P and pI with P lying higher than pI: 

\ 0 
-) (a)ii) 

< > (a)ii) 
( > 
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(a)ii) 
< > 

(a)ii) 
< > 
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From 3) If an arc goes through the vertical position, it may change the label of some 
free little ~ in the diagram, or cause the need to further subdivide a little ~ : 

Picture: 

\\ 
Then the two diagrams differ by a possible sequence of Reidemeister moves together 
with further subdividing. 

If, in addition, the arc that goes through the vertical position happens to be a lit­
tle ~ , then it may also cause violation of condition (*). We overcome the problem by 
introducing extra subdividing points: 

"kJ fj . 0 

o .. ,:::::: 
. '. 

'. " 

From 2) All cases of horizontal alignment of subdividing points follow easily from the 
nature of our braiding process and they reflect small planar shifts in the braid. To see 
this, we illustrate below the 'worst case scenario', where both points are lower points 
of li t tIe ~ 's: 

, x 
I 

uV 
I 
I 

I 

• 

Notice that, a special case of horizontal alignment of two points, IS the change of 
relative heights of two maxima or minima. 

From 4) The only case that might have some effect on the resulting braid, is when 
the upmost point of a little ) moves through the vertical level of the upmost point of 
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another little ~ . For this, we examine different possibilities: 
If the upmost point that moves through vertical alignment is a local maximum, we 
deal with it using moves (a)i) , (a)ii) and small planar shifts. The equivalence of the 
braids is shown in the pictures below: (We only prove one case of orientation, as the 
other is shown similarly.) 

A a) ii 
~ 

horizl AI 
~ 1:1 alignl 

where the vertical lines indicate the alignement 

a) i 
~ A 

Below, we illustrate the case where the upmost point that moves through vertical 
alignment (point P here) is not a local maximum: 

For definiteness we label the two little ~ 's '0' and 'u' and - after enough subdivisions, 
if necessary - we may assume that RS ca.n be enclosed in a magnified region isolated 
from the rest of the diagram. We introduce on PS a new subdividing point pI that 
is on the other side of the vertical line to P but close enough to P, so that P pI is 
a free little ~ . We label P pi with an '0' and then we delete P. 

Picture: 
s 

From 5) The possibilities for touching of two smoothening triangles are the following: 

, , 

, , , 
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In all instances, if the triangles are of opposite type, then all cases boil down to hori­
zontal or vertical alignment cases, possibly with Reidemeister moves involved (in the 
last four of them, where the touching is more 'essential'). If the triangles are of the 
same type, then: in the first five cases we simply subdivide further, and refer to cases 
of alignment; in the last four cases, we introduce an extra subdividing point, so as to 
create a free little ~ , to which we attach the opposite label; then we refer to the cases 
where we have triangles of opposite type. 

Example: 

1.4.2 COlnpletioll of the proof of Markov's theorelTI 

Let B be the set of braids and .c the set of oriented link diagrams. Any closing 
operation for braids defines a map from B to .c , and we shall call 'J(' the map 
defined by the closure we us~here (as mentioned after Definition 7). We shall also call 
'E' the map from [, to B, that we obtain using our algorithm. 

Up to now we have seen that, if we start with two equivalent braids and apply J(, 

we obtain isotopic link diagrams; and conversely: if we start with two isotopic link 
diagrams and apply E, we obtain equivalent braids. To complete the proof, it remains 
to show invariance under the closur'e we use for braids and under the algorithm we 
use for turning link diagrams into braids. Invariance under closure is easy to see, since, 
if we start with a braid B and apply to it two different closing operations, the results 
will be isotopic by Definition 7. To see that all algorithms are equivalent, it is enough 
to see that any algorithm A is equivalent to E. 

Indeed: Let Bl , B2 be two braids that we obtain from an oriented link diagram L 
after applying E and A respectively. Then ii; = K(B2) is isotopic to Land 
therefore (from our proof) E(B;) is equivalent to Bl . But E(B;) = B2 as it 
follows from our choice of closure and the nature of our algorithm, and so the proof of 
Markov's theorem is completed. 0 

Since the downward arcs of the original diagram remain unaltered during the braid­
ing process, and since they do not participate in the proof of Markov's theorem, we 
have the following: 

Corollary 4 (Relative ve7'sion of Markov's theorem:) Two braids that contain a 
pointwise fixed subbraid have isotopic closures that keep the subbraid fixed if and only 
if the two braids are equivalent under conjugation and Markov moves that do not affect 
the fixed part and braid moves that keep the subbraid fixed, whenever involved. 



Chapter 2 

Generalized Markov's theorem and 
braid groups in 3-manifolds 

2.1 Introduction 

The main results in this chapter are the statement and proof of a geometric ana­
logue of Markov's theorem for oriented links in arbitrary closed, connected, orient able 
3-manifolds, on one hand, and the existence of braid group structures or coset struc­
tures in such 3-manifolds, on the other hand. Before stating the analogue of Markov's 
theorem, we develop the necessary theory: 

(i) by specifying (in 2.2.2, 2.2.3) the context in which we study links and link isotopy 
in a 3-manifold M (recall 0.3), 

(ii) by formulating an analogue of Reidemeister's theorem for links in M (in 2.2.4), 
(iii) by defining what a braid in M is (in 2.3.1), and 
(iv) by constructing and proving an analogue of Alexander's theorem for links in M , 

such that the surgery closed braid that represents M in S3 remains fixed 
throughout the braiding process (Theorem 4 in 2.3.2) . 

The analogue of Alexander's theorem implies that M may be represented by a fixed 
(pure) braid in S3, so we may proceed with the extension of Markov's theorem to 
3-manifolds (Theorem 5, section 2.4). As a corollary of Theorem 5 for M = L(p, 1) 
(a lens space that can be described by one surgery string with framing p), we obtain 
an analogue of Markov's theorem for isotopic links inside a solid torus (Theorem 6 in 
2.4.2). 

Next, having as aim the algebraic formulation of Theorem 5, we look for braid group 
structures in M. Indeed, in section 2.5 we show that: 
If M = L(p, 1) or a solid torus, then the set of all braids on n strings related to M 
forms a group, the group Rn,1 ~ Rn+l . If M is a connected sum of m lens spaces 
of type L(p, 1) , then the set of all braids on n strings related to M also forms a 
group, which we denote as Rn,m ~ Rn+m . Finally, if M is neither of the above, then 
the set of all braids on n strings related to Al forms a coset of B in Bn+m , n,m 
which we denote as en,m. 

37 
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In section 2.5 we also show that these algebraic structures are consistent with link 
isotopy, in the sense that the analogue of Markov's theorem for isotopic links in M 
can be formulated using only the braid groups Rn •m or the cosets en •m . 

Then, in section 2.6 we find a presentation for the group En •l , and this will reveal a 
very interesting relation of En.l with the Hecke algebra of En-type, as we shall see in 
the next chapter. Finally, using this presentation, we find a second one, which allows 
us to express algebraically Theorem 5 for the spaces L(p, 1) (section 2.7). 

2.2 Background section 

By '3-manifold' we will always mean 'closed (i.e. compact without boundary), 
connected, orientable 3-manifold' , which we abbreviate to 'c.c.o.'. 3-manifolds are 
strongly related to knots and links via a technique called surgery. Indeed - as W.B.R. 
Lickorish in [41] and A.D. Wallace in [61] showed - every 3-manifold can be obtained 
from 53 by doing surgery along a framed link in S3. 

To explain the above further, we will need to say first a few things about solid tori and 
framed links. 

2.2.1 On framed links 

Definition 11 A solid torus , V, is a space homeomorphic to 51 x D2. I.e. 
V = h(51 X D2) for some homeomorphism h. The curve h(51 x {O}) is called the 
core of V . 

A meridian of V is a non-contractible, simple, closed curve on av that bounds a 
disc. A longitude of V is a simple closed curve on av that intersects transversally 
some meridian of V in a single point. In other words a longitude runs in parallel (i.e. 
it cobounds an annulus) with the core of V . 

As D. Rolfsen mentions in [53]: 'Meridian' is an intrinsic part of V, whereas 
'longitude' involves a choice. Indeed, any two meridians of V are equivalent by an 
ambient isotopy of V . Any two longitudes of V are equivalent by a homeomorphism 
of V; however, there are infinitely many ambient isotopy classes of longitudes. (One 
can see this by thinking of the number of times a longitude twists around the core.) 

Definition 12 A framed link in S3 is a disjoint collection of n smoothly 
embedded copies of 51 x D2 via homeomorphisms fll"" In . 

We usualy consider framed links up to ambient isotopy. 

In order to picture a framed link in 53 it is enough to draw the images Cb"" Cn 

(via Ii) of the core of 51 x D2, together with the images /1 , .•• , In (via fi) of 
SI xl. For every i, li will be called the specified longitude of Cj • Equivalently, 
it is enough to draw Ct, ••. , Cn and associate with each an integer, its framing. For 
a framed link with no component knotted, framing I\.i for Cj means the algebraic 
number of times li twists around Cj as we follow the orientation of Ci . 
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2.2.2 About Surgery 

Let W = D4 be the 4-ball and D2 X D2(= D4) be a 2-handle. Notice that 

a( D2 x D2) = SI X D2 U D2 X SI 
SI xSl 

i.e. 8(D2 X D2) is the union of two solid tori over a common boundary SI x SI . 
We attach to W n disjoint copies HI. ... , Hn of D2 x D2 (Le n 2-handles) via 
homeomorphisms 

and such that 
Hin W = aHinaW = hi(81 x D2) 

The boundary of hi ( H;) IS 

hi(SI X D2) U (D2 X SI) 
hilsl )(SI 

i.e. the union of two solid tori over their common boundary that is a torus. After 
the attachment we obtain a new 4-manifold W' with boundary M = aw' , a new 
compact, connected, orient able 3-manifold such that 

M = S3 [ \ hi (SI X D2) U (D2 X SI) ]:1 
hd s l xSl 

The above mean that M can be obtained from 8 3 by excavating n homeomorphic 
open images of disjoint solid tori and by gluing back over the common boundaries 
another n solid tori with the factors reversed. So, the specified longitude li = 
hi ( 8 1 xl) of the ith original torus, after the attachment is seen as a meridian and 
bounds a disc in M. 

Note An orientation for W' and M = aw' is determined by extending over W' 
a fixed orientation on D4. 

Example in 8 2 (rather than S3) 
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In the picture above, we attach to S2 = 8(D3 ) a I-handle Dl x D2 (a solid cylinder) 
via the identity map id : So X D2 ---+ S2. Notice that So x SI = 8(SO X D2) = 
8(Dl X SI). 
After the attachment we obtain a new c.c.o. 2-manifold T, which is actually a torus: 

T = 52 \ SO X D2 U Dl X SI 
idlsOxsJ 

Notice also that, if a wanderer (e.g. a piece of string) tries to pass through one of the 
attaching discs, it will end up strolling on the surface of the attached cylinder: 

Back to the 3-dimensional case, we can equivalently express the above by saying 
that M is obtained from S3 by doing surgeryl along the cores of the removed 
solid tori . All these cores form a framed (oriented) link in S3 (which we call the 
surgery link) , the framing of the ith component being determined by hi. So 
we can write M = X(S3, L) , and, as mentioned previously, we can do that for any 
c.c.o. 3-manifold. Moreover, we may always assume that all the components of the 
surgery link L are unknotted and, even more, that L is isotopic to the closure of 
a pure bmid as it follows from W.B.R. Lickorish's proof in [41]. (Another proof has 
been given by C.P. Rourke and is presented in [38])2. Throughout the rest of this work 
we shall only consider framed links with no component knotted, and 3-manifolds with 
integral surgery description. 

Now, if an (oriented) piece of string (i.e. a band) approaches a meridian of an 
attached torus after the surgery, it should be able (by isotopy in M) to slide through 
the disc that the meridian bounds; but this meridian - up to ambient isotopy - was 
the specified longitude of the excavated solid torus. So, what we see in S3 in terms 
of the surgery link, is that the band follows the specified longitude of that particular 
surgery component. 

lSurgery may appear in experimental mathematics too; as a characteristic example, we refer to 
[18], where N. Samardzija and L. Greller show an 'explosive route to chaos through a fractal torus in 
a generalized Lotka-Volterra model' . 

2This observation has also been proved by R. Skora in [55], as mentioned in [44] . 
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Pictures 3 and 4: (with/raming -1) 

or 

according to whether the O1'ientation of the band agrees or not with the orientation of 
the surgery component (and implicilely of its specified longitude). 

The above are examples of 'spatial band moves' . 

R. Kirby in [35] describes two operations on framed links and proves that two 3-
manifolds are homeomorphic if and only if they can be obtained by surgery along links 
in S3 that differ by a finite sequence of these operations (Kirby moves) 3. The above 
mean that for a given M we have a choice for representing M in S3 by a surgery 
link. To avoid this ambiguity we fix an oriented surgery link, L , and to avoid further 
ambiguities we fix a projection L of L. 

Conclusion Now we may say that we can represent M uniquely in S3 by Land 
write M = X(S3, L). This allows us to work in S3 rather than in M in o7'der to 
study M and links in it. 

2.2.3 Links in M: the band llloves 

Let M = X(S3, L) and let L~ be an oriented link in M. Then L~ may be 
represented in S3 by a 'mixed' link Ll U L. SO we can study links in M by 
studying their corresponding 'mixed' links in S3. 

3 A more combinatorial exposition of Kirby's calculus of links is presented by R. Fenn and C .P. 
Rourke in [1 5]. 
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Example of a 'mixed' link: (where kl' k2 E Z are framing numbers) 

Definition 13 A link diagram of a mixed link Ll U L is a regular projection of 
Ll U L on the plane where L lies. 

Definition 14 A spatial band move between two oriented mixed links L1 U L 
and L2 U L in S3, is a move in S3 that reflects ambient isotopy of L~ ,L; in 
M = X(S3, L) . The performance of a spatial hand move from Ll U L to L2 U L can 
be described in two steps: 

Step 1: A hand b - which can he seen as the oriented boundary of a ribbon - starts 
from a component c of Ll . This means that one of the small edges of b is glued 
to a part of c so that the orientation of the band agrees with the orientation of c. 
The other small edge of b, which we shall call 'little band' (in ambiguity with the 
notion of a band), approaches a surgery component of L in an arbitrary way (see 
picture bel~w). So, if L1 is the result of the attachment of b to Ll , the 'mixed' 
links Ll U L and L~ U L are isotopic in S3. 

Step 2: The 'little band' is replaced by a string running in parallel with the specified 
longitude of the surgery component in such a way that the orientation of the string 
agrees with the orientation of b. The resulting link is L2 U L : 
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The second step of a spatial band move takes place in a tubular neighbourhood of the 
component of the surgery link that contains no other part of the mixed link. 

Remarks on the band moves 

• The spatial band move described above is precisely the band connected sum (over 
the band b) of a component c E L1 and the specified longitude of the surgery 
component. 

• Let L~, L~ be ambient isotopic links in M = X(53
, L) ,with Ll U L , L2 U L 

two corresponding mixed links; assume that, when the isotopy is reflected in 53, no 
band move is involved. Then the mixed links L) U Land L2 U L are ambient isotopic 
111 53, under isotopy keeping L fixed, and we will be saying that L~ differs from 
L; by 'usual' isotopy in M or that L) U L differs from L2 U L by 'usual' isotopy 
m 53. 

• Since the first step of a spatial band move only involves usual isotopy, from now on 
whenever we say 'band move' we will always be referring to the realization of the 
second step of a spatial band move. 

• We may omit the word 'spatial' as the band move takes place very close to the 
surgery component and so, the way it looks around the surgery component does not 
depend on the direction of the projection. 
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• As pictures 3 and 4 above indicate, there are two types a, (3 of band moves 
depending on whether, in Step 2, the orientation of the string replacing the little band 
agrees (type a) or disagrees (type (3) with the orientation of the surgery component. 
The two band moves are related in the following sense: 

+2 

type a 
< > 

type P 
< > 

usual 
< > 
isotopy 

Aside If L) U L represents a link L~ in M, we call L~ its corresponding link 
in 53 (with L removed). Obviously, if L~ is isotopic to L~ in M, it does not 
necessarily imply that L~ is isotopic to L~ in 53, and conversely. But if L~ IS 

isotopic to L~ by usual isotopy in M, then L~ is also isotopic to L~ in 53. 

Conclusion Two (ori ented) links L~ , L~ in M = X(53
, L) are ambient isotopic 

if and only if the mixed links L) U Land L2 U L in 53 diffe1' by ambient isotopy in 
53 and a finite sequence of band moves. 

2.2.4 Modified Reidelneister's theoreUl 

Let L; ,L~ be ambient isotopic links in M = X(S3, L) and Ll U L , L2 U L any 
diagrams of two corresponding mixed links in 53. In order to modify Reidemeister's 
theorem for L) U land L2 U L we only need to consider the following additional 
critical cases: 

(i) when arcs of the surgery link participate in the Reidemeister moves (intersection 
on the plane, but not in the 3-space) 

(ii) when a piece of L1 or L2 intersects an arc of L (intersection in the 3-space). 

From (i) we derive the following additional moves (where the surgery strings are 
pointwise fixed): 
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(~ etc. 

with all possible orientations. 

V \/) rA .-. rf\ e~. 
with all possible orientations. 

45 

, etc. 

, 

We shall call the above moves together with the Reidemeister moves for the non-surgery 
components 'augmented Reidemeister moves' . 

Case (ii) !"mounts to the band moves and they depend on the framing of the com­
ponent of L to which the arc belongs. By transversality, the singularities illustrated 
below can appear only finitely many times: 

) (=- ) 
and 

(~ ) 
Conclusion Two links L~ ,L~ in M are ambient isotopic if and only if any 
two diagrams of the mixed links L1 U Land L2 U L differ by planar shifts (with L 
pointwise fix ed) and a finite sequence of the augmented Reidemeister moves together 
with the band moves. 

Aside We Can also make a tangle version of the generalized Reidemeister's theorem. 

Note In [56], P.A. Sundheim has proved an analogue of Reidemeister's theorem for 
3-manifolds, where he uses the fact that 'any c.c.o. 3-manifold contains a link whose 



2.3. Alexander's theorem for lillks ill M 46 

complement fibers over 51 with the fiber being an orientable surface'; so, he uses this 
surface for projecting links in the 3-manifold. 

2.3 Alexander's theorelTI for links in M 

2.3.1 On braids in M 

Let M = x(53
, L) . In the previous section we reduced the study of links in M to 

the study of their corresponding mixed links in 53, which had L underlying. Here, 
likewise, in order to establish the notion of a braid in M and - mainly - to formulate 
the analogue of Markov's theorem, we need to show first that M can be represented 
in 53 by a fixed surgery braid, and then that braids in M correspond to specific 
braids in 53, which have the surgery braid as <:. common pattern. As a first step, we 
notice that without loss of ge'lerality (w.l.o.g.) L can be seen as the closure of a pure 
braid B, so we may write B instead. As mentioned in the completion of the proof 
of Markov's theorem (1.4.2), if we apply our braiding process to jj, the result will be 
the braid B itself. 

Let now L; be any oriented link in M and L1 U jj ~e a projection of the mixed 
link L1 U jj in 53, such that it has the direction of B as a (O,O)-tangle. If we 
apply our braiding process to L1 U jj, B is v~y likely to end up with an increased 
number of strings, as there might be parts of L1 interfering with the closing side of 
13; therefore B does not necessarily remain fixed throughout theJ)l'ai~ing process. 
We show below that after modifying our algorithm, we can braid L1 U B so that, if 
after closure we remove the strings of the link, we are still left with jj; which implies 
immediately that, for all purposes ,M can be represented in 53 by the conjugacy 
class of the braid B , rathe1' than by B (as long as B holds the surgery information). 

Definition 15 In the above context, B shall be called 'the surgery braid' and 
the braid BI U B obtained by Ll U jj shall be called 'mixed braid' , an example 
of which is illustrated below: (where k1 , ••• , k4 E ~ are framing numbers) 

Picture: 

The braid BI shall be called 'permutation braid' . 

It follows from the above that, if B is a bra.id on m strings and BI a braid on n 
strings, then the mix d braid Bl UB is a specific element of the braid Bn+m . 
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The braid relations among mixed braids in Bn+m shall be called 'augmented braid 
relations' j these consist of the usual braid relations for the strings of the permutation 
braid, the augmented Reidemeister moves with all arrows pointing downwards, and 
the braid moves concerning the change of relative heights of two mixed crossings. 

2.3.2 Modified braiding process for mixed links 

For the rest of this chapter we shall be working in the smooth category and we shall 
be making the closure of a braid as illustrated below: 

Picture: 

Theorem 4 Any oriented link L~ in M = X(S3, B) can be 1'ep1'esented in S3 by 
some mixed bmid B) U B (not uniquely), the clOSU1'e of which is isotopic to a mixed 
link diagmm L1 U B (i. e. 13 1'emains unchanged). 

Proof Let L1 U 13 be a projection of the mixed link L1 U B in S3. If there is no 
part of L1 interfering with the closing side of B, we only apply Steps 2, 4 and 6 
below. Otherwise, we turn L) U 13 into a braid as follows: 
Step 1 We draw the vertical line I that passes through all local maxima and minima 
of the surgery (braided) link B (see picture below). W.l.o.g. 1 is a line, and by 
general position it does not pass through any crossings of L1 . 

Picture: 
I I 
I 

- 1\ 
LUB 

Step 2 We apply our algorithm to the part of the mixed link that lies to the left of 
1, considering the points of L) that intersect I as end-points. This will leave B 
unaltered (since all strings of B go already downwards). Then we close this braided 
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part of Lt by applying c/OSU1'e on its left-hand side, and we enclose the 'closure' 
strings of Ll in a tube Tt (see picture below). 

Step 3 Now we apply our algorithm on the right-hand side of I considering the 
orientation to be reversed. This wil.!Jeave the 'closure' strings of 13 unchanged. Then 
we also close this braided part of Ll by applying closure on its right-hand side, and 
we enclose the new 'closure' strings of Ll in a tube T2 (see picture below). 

Picture: 

Picture: 

Step 4 By rotating around the back of the diagram, we bring TJ to the very right of 
the diagram and then T2 to the very left of the diagram, so that the resulting diagram 
goes around a central point P on I. 

Picture: 

Step 5 If we are left with local maxima/minima in the lo we1jupper part of the 
diagram, these will have to be lying on I , as it follows from the braiding process (see 
picture above). To complete the modified algorithm we eliminate these as follows: 
We number with integers the maxima/minima according to their position with respect 
to p (which we label with 0) , and we isolate them in neighbourhoods that contain 
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no other parts of the diagram. Then we stretch the arcs one by one in order (starting 
from the ones with least absolute value) over/under the rest of the diagram and 
above/below P, so that the maxima/minima lie on 1 in inverse order of closeness 
to P. 

Picture: 

Step 6 We open the bra.ided dia.gram by cutting through a half-line starting from 
P , which leaves the 'box' in which B lies untouched. Finally we isotope in D2 X I . 0 

Consequence Since the original surgery braid is still the same, we conclude that 
w.l.o.g. a mixed link interferes only with the front part of B . Therefore, for studying 
mixed braids ,M may be represented in S3 by the fixed surge1'y braid B. 

2.4 Extension of Markov's theorelU to 3-1uanifolds 

The usual Markov's theorem can be expressed either geometrically (using the geomet­
ric definition of a braid), or algebraically (using the fact that the set of all braids on 
n strings forms a group). In the case of mixed braids related to arbitrary 3-manifolds, 
where group structures have not been established yet, we start by extending Markov's 
theorem geometrically, (after making the following observations). 

In 2.3 we showed that every oriented mixed link related to M can be turned into 
a mixed braid with the surgery braid B E Bm underlying; but for equivalence of 
mixed braids that reflects isotopy of mixed links, we have to allow for a mixed braid 
to contain a conjugate of B in Bm underlying. So, whenever we have to compare 
two mixed braids related to M, w.l.o.g. we shall be comparing the braids Bl U B 
and B2 U B' ,where B' E Bm is a conjugate of B . 

Recall now, that neither of the two types of band moves can appear as a move 
between braids; so, in order to state our generalized version of Markov's theorem , 
we modify the band move of type 0' appropriately by twisting the little band before 
performing the move (of type f3 now). As we can see in the picture below, after the 
performance of the move, we remain in the braid category, and we shall call this move 
'braid band move' . 
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Picture: 

k 

where we draw only what lies within a magnified region, and the middle stage is only 
indicative. 

50 

A braid band move can be positive 01' negative, depending on the type of crossing 
we choose for performing it. 

The following theorem is joint work with C.P. Rourke. The author's contribution is 
mainly work on the right formulation of the statement, and the proofs of (i), (ii) 
and 2.4.1 . 

Theorem 5 (g eometric ve1'sion) Let M = X(S\ B) be a 3-manifold with B a 
surgery pure bmid on m st1'ings, Let L1 ,L2 be two 01'iented links in M and B1 U B , 
B2 U B' be mixed bmids in S3 c01'1'esponding to L1 , L2 , with B' a conjugate of 
B. Then L1 is isotopic to L2 in M if and only if B1 U B is equivalent to B2 UB' 
in S3 , unde1' equivalence generated by the augmented braid 1'elations together with the 
following three moves: 

(J) Conjugation in Bn+m , where n is the number of st1'ings of the permutation 
braid. 

(2) Generalized Markov moves for the non-suryenj strings (as illustrated below): 

kl km kl km kl km 
1 ! l 
j 
\ ,,' 

r r I 

(3) Braid band moves (as desc1'ibed above). 

p 'roof Using 2.2.4 we translate the question of ambient isotopy between L1 ,L2 in 
M into ~bient) isotopy moves between any two corresponding mixed link diagrams 
L1 U B , L2 U B in S3. Then, the direction of the proof from braids to projections of 
links by closu1'e is easy to see, as braids that differ by moves (1), (2) and (3) have 
isotopic closures. The converse amounts to proving that: 
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(i) The braid we obtain from a mixed link after applying the modified braiding algo­
rithm, does not depend - up to the above equivalence - on any choice made during the 
process. 

(ii) If the diagrams Ll U 13 and L2 U 13 are isotopic in S3, then Bl U Band B2 U B' 
are equivalent under the augmented braid relations and the moves (1) and (2) . 

(iii) If Ll U Band L2 U B differ by a band move, then Bl U Band Bz UB' 
equivalent under the augmented braid relations and the moves (1), (2) and (3) . 

Indeed: 

are 

(i) The above algorithm (Theorem 4) is another braiding process in S3 ; and since 
Markov's theorem holds independently of the algorithm we are using (recall 1.4.2) , we 
do not have to examine the possible choices made during the braiding process, as - in 
addition - they do not affect the position of the surgery braid (recall Corollary 4 , 
relative version of Markov's theorem). Such choices additional to the ones listed in the 
proof of Markov's theorem are involved in: 

• The size of the isolated neighbourhoods of maxima/minima chosen in Step 5, as well 
as the new positions that we place the maxima/minima . 

• The line that we choose to cut the braid open (which follows immediately by conju-
gation). 

(ii) Next, let LI U 13 and L2 U B be two mixed link diagrams that differ by small 
planar shifts and the augmented Reidemeister moves. If these moves take place in 
either side of the line I , then, from the relative version of Markov's theorem, any 
two corresponding mixed braids differ by moves (1) , (2) and the augmented braid 
relations. 
The only case that remains to be examined is when a piece of (non-surgery) string 
crosses the line I; w.l.o.g. the little arc is a free arc, so we can label it 'u'. As shown 
in the pictures below, the final braid differs from the braid we would have obtained if 
the little arc had not crossed 1, essent ially by two Markov moves: 

I I I I 
I I 

I 
, l, 

/ 

ju 
I I 

~ T T 
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Notice that, if the little arc that moves across I intersects the central point P , then 
- by the algorithm - we would need to stretch both ends, and the proof would be 
same as above. 

Picture: 

Also that, if we had a maximum or a minimum moving across I, the proof would be 
same as above. 

As a simple consequence of the above, we do not need to include in the statement of the 
theorem the braid band moves (positive and negative) where the little band approaches 
a surgery string /1'om the right, since this is a result of usual isotopy and a move (3). 

Neither do we need to include both positive and negative band moves: 

k ~k 

) ~<I ( ) ,-!) ,.' 
./ .,." 

t 
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Proof 

k k tt k It k 

1· (~) 

) M.thm )(Xl (3) 

4f 
M.thm 

I: y-> < .. < .. < >- ..--' , 
t 

(iii) Finally, suppose~ that the mixed link diagrams Ll U 13 and L2 U 13 differ by a 
band move. In Ll U B the little band would be like: 

k k 

or 

depending on the orientation. 

If the little band is an opposite arc, w.l.o.g. we may assume that it satisfies condi­
tion (*) . The algorithm we use ensures that we may as~um~ that Ll U 13 and L2 U 13 
are braided everywhere except for the little band in Ll U B (if it is an opposite arc) 
and its replacement after the performance of the band move. This happens because 
the band move takes place arbitrarily close to the surgery string; so we can produce 
such a zone locally in the braid (and consequently a band move cannot create problems 
with condition (*) ): 

Picture: 

! ! l~b 
i ~ J~~ 
i ! (\' I I 

Moreover, the new string from the band move (as far as other crossings are concerned) 
behaves in the same way as the surgery string itself. So, whenever we meet other 
opposite arcs, we label them in the same way that we would do if the new string were 
missing. 
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( > 

So the different cases of applying a band move to L1 U B amount to the fo llowing 
(with proofs): 

(b) 

tt 
k (~t: k 

( > ,(',) 

~ • t 
P roof We start with the left part of move (b) and we twist the little band (usual 
isotopy) using a negative crossing. Then we perform a move (3) and we end up 
with the right part of move (b): 

k k tf tt 
") 

M.thm (3) ~-) M.thm ~: k (I; k ( > < > ( > (',) 

t )'1 Xf 
• 

't' 
.l\J 

f , 

(c) tt k 

( ) ~: k 

f 
/i'J 

)t 
! 

Proof We start with the right part of move (c) . In the front of the otherwise braided 
link we do a twist of the new string using a negative crossing (see pictures below). 
Then , we consider the litt le twisted arc as a little band and we perform another band 
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move of type (3) around the same surgery string. This second band move takes place 
closer to the surgery string than the first one. Now, the shaded region in the picture 
below is formed by two similar sets of opposite twists of the same string around the 
surgery string. So it bounds a disc (together with the little band that is missing), the 
circumference of which is not linked with the surgery string; but this is isotopic in 
S3 to the left part of move ( c) . I.e. move (c) is a fin i te sequence of moves of type 
(1), (2) and (3) . 

Pictures: 

usual 
~ 
iSOlOPY 

usual 
~ 
iSOLOPY 

(3) 
~ 

Note In the pictures above we have included another string of the mixed braid that 
links with the surgery string. We can see that this does not affect the proof. 

2.4.1 COlTIpletion of the proof of the theorelTI 

Let M = X(S3, B) with B a pure braid on m strings, let MB be the set of mixed 
braids related to M and M.c be the set of oriented mixed link diagrams in S3. 
Any closing operation for mixed braids defines a map from MB to M.c, and we 
shall call 'C' the map defined by the closure we use here. We can also obtain a map 
from M.c to MB using (Steps 2, 4 and 6 of) the braiding process given in 2.3.2, 
and we shall call this map'S' . 

We have seen up to now that, if we start with two equivalent mixed braids and apply 
C , we obtain isotopi c mixed link diagrams; and conversely: if we start with two isotopic 
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link diagrams and apply S, we obtain equivalent mixed braids. As in 1.4.2, in order 
to complete the proof we have to show invariance under the closure we use for mixed 
braids and under the algorithm we use for turning mixed link diagrams into mixed 
braids. Invariance under closure is obvious. To see that all algorithms are equivalent, 
it is enough to show that any algorithm A satisfying Theorem 4 is equivalent to S. 

Indeed: Let BI U B , B2 U B be two mixed braids that we obtain from an oriented 
mixed link diagram 1 U B after applying S and A respectively. Then B; U B = 
C(B2 U Bl is isotopic to 1 U B and therefore S(B; U B) is equivalent to BI U B . 
But S(B2 U B) is a mixed braid B3 U B , say, that differs from B2 U B only by 
conjugation (as it follows from Step 6). SO B2 UB is equivalent to BIUB, and the 
proof of the theorem is now completed. 0 

Notes 

• The proof holds even if the surgery braid is not a pure braid. In this case move 
(3) is modified so that the replacement of the little band links only with one of the 
strings of the same surgery component and runs in parallel to all remaining strings of 
the surgery component. 

Picture: 

( '> 

• The reason we had to allow conjugation that may 'cut through' the surgery braid, 
comes from the usual isotopy of mixed links and the usual Markov's theorem; (recall 
that, from the modified algorithm the surgery braid is always the same). 

Remark 7 In the statement of Theorem 5 we could have used the moves (2/1) and 
(3") depicted below, instead of the moves (2) and (3) : 

(2") 

I 

~I 
~~ 
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(3") 

These are special cases of the moves (2) and (3) that take place at the bottom of the 
braid, and we shall use them later on for algebraic purposes. 

2.4.2 SOlTIe further COlTIIllents 

• Suppose the surgery link consists of only one unknot. If we ignore the surgery 
description, then the surgery component may be seen as a solid torus, V say. Also, 
a mixed link/braid may be seen as a representative in 53 of a link/braid inside the 
complementary solid torus, 53 \ V . Then, the analogue of Reidemeister's theorem 
as well as Theorem 4 can be modified properly; and therefore, if we omit move (3) 
in Theorem 5 , we obtain the following version of Markov's theorem for isotopic links 
inside a solid torus, (which we can equivalently obtain immediately from Corollary 5 
for the fixed subbraid being the identity Id: 

Theorem 6 (geomet7'ic ve7'sion) Let M = 53 \ J be a solid torus with I also a 
solid toruSj let Lt J L2 be two 07'iented links in M and Bt U I , B2 U I be mixed 
braids in 53 C07Tesponding to L1 J L2 . Then L1 is isotopic to L2 in M if and 
only if Bl U I is equivalent to B2 U I in 53 J under equivalence generated by the 
augmented braid r'elations together with the moves (1) and (2) of Theorem 5 . 

Note that we have adopted a fixed orientation for the 'solid torus' component f, the 
complement of which is the space we consider here. 

• As cited in [44] , an analogue of Alexander's as well as of Markov's theorem for 
links in arbitrary c.c.o. 3-manifolds has been proved by R. Skora in [55] , where he 
uses the fact that every 3-manifold contains a fibred link. In the Same paper, using 
R. Skora's results, X-So Lin found a simple version of Markov's theorem for links in 
L(p, 1) , which is essentially the same as our result for links in these spaces. 

• As cited in [37] , K.H. Ko and L. Smolinsky proved in [36] a version of Markov's 
theorem for framed links equivalent uncler the Kirby moves. In this theorem they use 
a braid move to recover the handle sliding, which looks very similar to our braid band 
moves; only, they attach framing numbers to every string of one component. 
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2.5 Group struct ures of Inixed braids 

In this section we look for algebraic structures in the set of mixed braids related to a 
specific 3-manifold (recall 2.1). Having established this, we show that Theorem 5 holds 
even if we restrict ourselves to the braid groups B n •m or the cosets en •m , as this is 
the first step towards an algebraic expression of the analogue of Markov's theorem. 

2.5.1 The group En,l 

We focus our attention to M = L(p, 1) ; then a braid in M is seen as a mixed 
braid with the surgery string fixed at some place by the permutation of the braid. 
Similarly, if M is an (unknotted) solid torus (recall Theorem 6 above), a braid in M 
is represented in S3 by a mixed braid with the complementary 'solid torus string' 
fixed at some place in the braid. 

We call Bn •i the set of all mixed braids on n non-surgery strings, which fix the 
surgery string at the (n + 2 - i)th place; then Bn •i clearly forms a group (a subgroup 
of Bn+1 ) and its elements can be regarded as the elements of Bn+l , the permutation 
of which fix the (n + 2 - i)th string. In this notation, the set of all mixed braids related 

M · h d' . . t . UOO Un +1 B to IS t e ISJom UnIon n=1 i=l n.i· 

We claim that, in order to study isotopy of links in M, it suffices to restrict the set 
of mixed braids to the union U~=l B n •1 , the braid groups that fix the last string. To 
see this, we first add a further step to the modified algorithm of the previous section. 
Namely: 

Step 7 Let a E Bn+l be the mixed braid we obtain after applying the first six steps. 
If the surgery string lies at the ith place, conjugate a to an ... aiaai-1 ... an -1 m 
Bn+1 . Then straighten the surgery string using the augmented braid relations: 

Picture: 

Now we may say that all bmids in M can be represented by braids with the S1.t1"yery 
string fixed at the last place by the bmid permutation. 

We also want to show that a restricted version of Theorem 5 holds for M , where the 
set of mixed braids is U~=l B n•1 • Indeed: 

Theorem 7 Let M = L(p, 1) = X( S3,1) , L 1 , L2 be two oriented links in M 
and B I U I , B2 U I be mixed bmids in U~=l Bn •1 cOT"responding to L1 ,L2 (afte7' 
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Step 7). Then L1 is isotopic to L2 in M if and only if RI U I is equivalent to 
R2 U I in U~=l Rn •1 , under equivalence genemted by the augmented bmid relations 
and the following three moves: 

(1') Conjugation in R n•1 

(!!) Markov moves in U~=I Rn •1 of type (!!') for the non-surgery strings, as depicted 
in Remark 7 above 

(:I) Rmid band move of type (:I'), as depicted in Remark 7 above, 

where we omit move (:J) if M is a solid torus,. 

Proof It is enough to show that, if the braids RI' U I and R2' U I that are obtained 
from LI and L2 after Step 6 differ by moves (1), (2) and (3) (of Theorem 5), 
then the braids RI U I and R2 U I (obtained after Step 7) differ by moves (1'), (2') 
and (3'). 

We shall first check conjugation: Let cx' = RI' U I differ from R 2' U I by move (1), 
i.e. R 2' U I = /30.'/3-1 for some /3 E Rn+l , where a' E Rn+! has the surgery string 
fixed at the ith pla.ce. Let r = Un . .. Ui j then, after Step 7, cl becomes a = ra'r-l. 

Case (i): If conjugation by /3 leaves the surgery string at the ith place, then, after 
Step 7, /30.'/3-1 becomes 

r/3a' /3-l r -1 = r/3r-1u/r-1r/3-l r -1 = (r /3r-1 )a( r/3r-1 fl 

which is conjugate to a in Rn•1 since r/3r-1 E Rn•1 • 

Case (ii): If /3 moves the surgery string from the ith to the jth place. In this case 
it is enough to assume that /3 = u/1 or Ui-1 ±1 . If /3 = Ui_1-1 the proof follows 
immediately from the way Step 7 is performed, since 

/3 '/3-1 -1 , a = Ui-1 a Ui-1 

and a.fter Step 7 this maps to 

( -I' ) -1 -1 , -1 Un ... Ui-I Ui-1 a Ui-1 Ui-1 ... Un = ra r = a. 

The case where /3 = Ui follows similarly. If /3 = Ui-1 then 

/3 '/3-1 '-I a = Ui-1a Ui-l , 

and after Step 7 this maps to 

. . 2 -I , -1 . -2 .-1 -1 _ ( 2 -1) ( 2 -1)-1 Un .. . U.U._I r ra r rU'_1 u, ... Un - rUi_l r a rUi_l r , 

wh.·ch is conJ·ugate to a in Rn •1 , since the pure brat·d"'~ 2.,.-1 E R Th , vi-l ' n.l. e case 
where /3 = Uj-l follows similarly. 
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Let now a' = B}'UI differ from a}' = B 2'UI by a move (2), which we may 
assume - using conjugation - that occurs at the bottom of the left-hand side of the 
braid. In the pictures below we illustrate that after Step 7, a and a' differ by a 
Markov move in Bn ,1 ' (For convenience we draw only the first stage of Step 7) : 

n 

I •.. ... I 

~' 

i+l n+l 
... ! 

Step 7 
~ 

I ... 

Finally, let a ' = B I ' U I differ from aI ' = B2' U I by a band move (3), In 
the following pictures we illustrate that al differs from a by a band move (3'), 
conjugation and braid relations in Bn ,} : 

n-t i+l n 
... ; ... ! ... I 

.1 QD ® 
", 

(3) I~ Step~ ' 11 conj!! ...• 
~ (" . I . ) 

/ InB,. ,! 
. --'} + 

I br, rel 'l' 

a' a' ! a. 

l [I It 1 ~.~ 

conj~ (3') '''"'- !, .. ~ 

-······n~ 
. ) It > 
IOB" ,1 

1/ l' "') 
(11 

which is the result of applying Step 7 and conjugation in B J to ex'. 
11, o 

2.5.2 The groups En,m 

Let M = x (53
, B) be a 3-manifold represented in 53 by B, a surgery pure braid 

on m strings, Then - as already mentioned - a braid in M is represented in 53 by 
a mixed braid, which is a specific element of the (usual) braid group Bn+m , for some 
n . The above also apply if AI is the complement of B in 53. 

Claim For M as above, our braiding process (proof of Theorem 4) can be properly 
modified so that the m surye1'y st7'ings will occupy the last m places of any mixed 
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braid related to M , and if we remove the strings of the permutation braid we shall be 
left with the surgery braid B . 

Proof: By applying Step 7 m times, starting every time from the string closer to 
the right-hand side of the braid. 

As already mentioned, as far as isotopy of mixed links is concerned, a mixed braid may 
have a conjugate of B underlying. So, in the set of mixed braids described in the 
claim above, we shall also include the ones such that: if we remove the strings of the 
permutation braid we shall be left with a conjugate of B, and we shall call all such 
mixed braids 'special' mixed braids. 

Then, it is easy to see - arguing by induction - that a similar version of Theorem 7 
holds for M , namely: 

Theorem 8 Let!l1 = X(S3, B), Ll ,L2 be oriented links in M and BI U B , 
B2 U B' be two special mixed braids cOl'responding to Lt , L2 . Then L1 is isotopic to 
L2 in M if and only if Bl U B is equivalent to B2 U B' in S3 , under equivalence 
gen erated by th e augmented braid 'relations and the following three moves: 

(1') Conjugation inside the set of special mixed braids 

(11) Mal'kov moves for the non-surgel'y st1'ings, that take place at the bottom of the 
left-hand side of the braid 

(9) Braid band move as depicted below, with all possible choices of crossings: 

where we omit move (9) if M = S3 \ 13 . 

We wish next to look for braid group structures inside the set of special mixed braids 
related to M. So, we first need to check whether the addition of two special mixed 
braids is a topologically closed operation, and this leads naturally to distinguishing 
between the following two cases: 

Case 1: M is a 3-manifold with (surgery) description given by lm, the identity 
braid on m strings. In other words, M is the connected sum of m lens spaces 
of type L(p, 1) , or alternatively M = S3 \ ~ . 
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Case 2: M is a 3-manifold with (surgery) description given by a non-identity pure 
braid , or alternatively M = S3 \ B . 

Consider first Case 1 , and let R n •m be the set of all special mixed braids with 
permutation braid on n strings. Rn •m is clearly a group (a subgroup of Rn+m ) and 
its elements can be regarded as the elements of Rn+m , which fix the last m strings. 
From this observation and the theorem above follows that in this case our study of 
isotopic links in M via braids, can be restricted to the study of the braid groups R n•m 

for all n , and the moves (I') , (2') and (3') of Theorem 8 can be written equivalently 
as: 

(1') Conjugation in R n•m for every n . 

(11) Markov moves in U~=l R n •m for the non-surgery strings, that take place at the 
bottom of the left-hand side of the braid. 

(:1) Braid band move as in Theorem 8 . 

Note that for an algebraic expression of the moves (2') and (3') we need first a group 
presentation for Rn •m , and we give one in the next section. 

We consider now Case 2: Let U~=l en •m be the set of all special mixed braids 
related to M . Cn.m is a subset of Rn+m , and an element of Cn.m has the surgery 
braid R, or a conjugate of R , underlying. So, if we add any two elements of Cn•m , 

both having R say underlying, we see that the surgery braid R changes to B2 . So 
Cn •m is not closed under addition and therefore it cannot form a group. 

Conclusion Up to now we may say that the study of isotopic links in M can be 
restricted to the study of the sets Cn•m for all n. 

But we would like to go further than that by showing the folllowing: 

Proposition 1 For R a pure braid, Cn •m is a disjoint union of cosets of Rn •m III 

Rn+m. 

Proof Let A E Cn •m • We shall show that A can be written as a product a· R' , 
where a E Rn.m and R' a proper embedding of a conjugate of R in Rn+m 
(as illustrated below). Indeed, a way to see this, is by using Artin's canonical form 
(presented in 2.6.1) as follows: 
The last m strings of A are purely braided and so is the 'mixed' braiding among the 
first n (thin) and the last m (thick) strings. The first n strings of A , though, do 
not necessarily braid purely. So, we add on top of A a standard braid s such that 
sA is a pure braid, and on top of s we add s-l . Then we apply Artin's canonical 
form for the pure braid sA. This results what we wanted: 
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P icture : (with crossings omitted) 

B' 

j" (' 
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It remains to show that conjugation, the Markov moves and the braid band moves 
respect the coset structures of U~=l Cn,m , the set of a ll special mixed braids related 
to M. 

Indeed: 

Conjugation: Let a· B '" f3aBf3 - 1 in Cn•m • From Theorem 8 , it suffices to assume 
that 13 is O'j±l for i = 1, . . . ,n - 1 or 13 = 0',, 2 (the square of a mixed crossing); 
otherwise the last m strings would not remain fixed. Now, 13- 1 commutes with B 
and so f3aB{3-1 = f3af3-t . B E B n •m . B . For the case where 13 = 0',, 2 , we refer to 
the last part of the proof of the band moves. 

Markov moves: Let a· B '" aBO't ±1 in Cn •m ,where a is same as a but with 
all indices shifted by +1 . Then 0'1 ±1 commutes with B and we have aBO'l ±1 = 
aO'l±l . B E B n+1.m • B . 

Band moves: (By following the pictures below) 

i ! ! 1 I 1 

rl 

.~~ 

~ 'h 
) ,r 
.,/ r; " I

r ! ) 
! 

First, by conjugation in Cn •m we take the banding to the top. The problem to be 
solved is how to separate the new string in the surgery part from the surgery braid: 
For this we conjugate locally (using braid relations), so as to create at the right bottom 
corner a pur braid P on (1 + m) strings (see picture below). 
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p 

> 

If we apply now to P Artin's canonical form (see 2.6.1), the bra iding of the new string 
with the surgery strings will be separated from the surgery braid, leaving the surgery 
braid at the bottom-right part of the mixed braid. 

2.6 A presentation for En ,1 

2.6.1 Pure braid groups 

In the introduction of Chapter 1 we defined the pure braid group on n strings Pn , 

as a normal subgroup of En . Pn can be given a presentation with generators Ars = 
1 -1 -1 2 2 -1 -1-1 

(1r - (1r+1 ., . (1s-2 (1,1-1 (1s-2'" (1r+1(1r = (1,-1(1,-2," (1r+1(1r (1r+l •• • (111-2 (111-1 

1 ~ r < s ~ n (pictured geometrically below) and relations: 

r < s < i < j or 

(For a proof see [5], [7] or [19]) 

Geometric pictures of Ars 

r s n r 

The following theorem shall be used very often (see [5], [7]): 

s 

i<r<s<j 
r<s=i<j 
r=i<s<j 
r<i<s<j 

n 
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Theorem 9 (Artin) Every element, A , of Pn can be written uniquely in the form: 

A = Ut U2 ••• Un - I 

where each Uj is a uniquely determined product of powers of the Aij using only those 
with i < j . 
I.e. the pure braid relations allow us to write any pure braid word canonically, in the 
sense that we can have the pure braiding of the first string with the rest, then keep the 
first string fixed and uncrossed and have the pure braiding of the second string and so 
on. We call this Artin '8 canonical form. The geometric meaning of this canonical 
form is illustrated in the example below (with crossings omitted): 

Picture: 

c: 

c 

-

r 
I 

t::'" 

• • • 

p 
:;) 

I> 

P 
:::> 

::> 
c;;: 

::::> 

2.6.2 A presentation for Bn ,! using the Tt's 

We shall next show how to find a presentation for Rn,1 using braid as well as pure 
braid generators. 

Recall that Rn.m is the subgroup of Rn+m that fixes the last m strings (i.e. if 
we remove the first n strings we are left with the identity braid on m strings). We 
write Pn •m for the subgroup of the pure braid group of Rn•m generated by Ai•n+j 

for i = 1, ... , nand j = 1, ... ,m . Notice that Pn •m does not contain pure braiding 
among the first n strings. 

Lemma 4 Pn•m <l Rn •m 

Proof Rn •m is clearly generated by Aj,n+ j where i = 1, ... , n , j = 1, ... ,m and 
by 0'1, ••• , O'n-I • Hence, to prove the lemma, it is enough to show that if we conjugate 
any Ar,n+.t E Pn•m by any O'j±1 E R n.m for i = 1, ... , n - 1 then the result is an 
element of Pn•m • 

Indeed: 
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Pn,m' o 

Proposition 2 En,I = Pn,I )4 En. 

Proof From previous lemma Pn,I <l En,I . Moreover, Pn,l n En = 1 . Also, every 
element in Bn,l can be written as a product Cl" (3 ,where Cl' E Pn,l and (3 E En . 
This follows from Artin's canonical form for Pn+l , applied starting from the (n + 1 )st 
string rather than the first (see picture below for n = 3) : 

Picture: (also with crossings omitted) 

p 

s 

where p E Pn , s a standard permutation braid and P =ps . o 

Remark 8 With very similar arguments we can prove in general that 

The only extra thing we need, is a presentation for Pn,I : The generators of Pn,l 

are A t ,n+lI"" An,n+I . I.e. an element of Pn,I is a pure braid on n + 1 strings 
such that the last string is doing pure braiding with the others, but all the rest remain 
fixed. Hence, as it follows immediately from the uniqueness of Artin's canonical form, 
Pn,l is a free group. 

We can now apply a result from the theory of group presentations (see [27], p.140), 
that gives a presentation for a group, which can be written as the semid irect product 
of two subgroups with known presentations. 

Setting T' = T~ := AI,n+1! T{ := A2,n+1!"" T~_I An,n+I (pictured below for 
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convenience), we obtain the following presentation4 for Bn.I 

( 

O"t, ... ,O"n-I 

T~,T{, .•. ,T~_1 

ajaj+laj = O"j+1ajaj+l for all i} braid 
ajO"j = O"jaj for li - j I > 1 relations 

(1) ai-lT~_Iai = T,{_t if'\ > i + 1 or .\ < i } 
(?) -IT' - T' T'T' -1 . - 1 1 ~ aj i-I aj - i-I ' j j-I , Z - , ... , n -

(3) aj-lT/ai = T/_1 for i = 1, ... , n - 1 

67 

'mixeli' 
relations 

The last set of the 'mixed' relations imply that we do not need all T/'s for a presen­
tation of Bn.I . We only need T', aI, •.. , an -1 as a set of generators. We use relations 
(3) to obtain the following relations defined by: 

T' T' -1 -1 j = aj ..• a1 0"1 ••. aj o 

Picture: i+1 n n+1 1 n n+1 

, ~I .......... I 
... I) 

rill 
T.' 

I 
T' 

Then we substitute the above expressions for T/ in the first two sets of the 'mixed' 
relations. 

Note In some proofs below, as well as in Chapter 3, we underline the generators that 
participate in each step of the proof. 

From set (1) of the 'mixed' relations we only keep the relations: 

-IT' T" 1 aj O"i = , z > (1) 

and we shall show that the remaining relations of set (1) follow from (I), 0 and 
the braid relations (b.r.). 
Indeed: 
f ' . 1 h ·-IT' . - . -1 T' -1 -1 (b..:,!:.) I A> t + we aye a, A_la, - a, 0",\-1·' ·0"1 0"1 .. . a ,\-1 aj -

-1 T' -1 -1 -1 -1 -1 (b .r. ) 
aA-I' .. aj+2 a i aj+t aj ... at 0") ... aj O"j+l O"jO"i+2 ... a ,\-1 = 

4This presentation appears also in [19]. App. 1; it is proved by L. Gaede, to aid in finding a 
presentation for the pure braid group. Also, as J . Birman mentions in [7], page 22, W .L. Chow in [11] 
found and used the above presentation for the same purpose. 
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T' -1 -1 ~ T' O'A-I • ··0'1 0'1 •• 'O'A-I = A-I' 

If ' . h·-IT' . - .-1 T' -1 -1 (b..;!:.) " < ,we ave 0', A-IO'I - 0', O'A-l'" 0'1 0'1 •• 'O'A-l !!i -

-IT' -1 -I (J),~ T' 
O'A-l •. ·O'IO'i O'iO'l· • 'O'A-I = A-I' 

From set (2) we only keep the relation: 

We shall next show that the remaining relations of set (2) follow from (II), 0 and 
the braid relations. 

Note Using the braid relations repeatedly we have: 

t 

c; = ±1, h = ±1 

First notice that relations (2) can be rewritten as follows: 

T' T' T' T' T' T' - T' T' -1 i_ 10'i i-I = O'i i-I i <==> i_ 10'j i-I - O'i i_10'i i_10'i <==> 

T ' O'·T' 0" - O'·T' O'·T! ,; - 1 n - 1 i-I I i-I I - I i-I '1-1 • - , ... , 

Now, 

( ) ( )T' T'( -I -1) (-1 -1) * O'i-lO'i ••• 0'10'2 0'1 0'2 0'1 ••• O'i O'i-l O'i = 

( ) ( ) T' T' ( -1 -1) (-1 -1) (11) O'i-IO'i ••. 0'10'2 0'1 0'1 0'2 0'1 ••• O'i O'i-l = 

( ) ( ) T' T'( -1 -1) (-1 -1) * O'i-lO'i .• , 0'10'2 0'1 0'1 0'2 0'1 • •• O'j O'i-l = 

( ) ( )T' T'( -1 -1) (-1 -I) (b.r.) O'i O'i-lO'i .,. 0'1~ 0'1 ~ 0'1 ••• O'j O'i-l = 

T' 0' 0' -1 -IT' -1 -1 t,~ O'iO'i-l •• ·0'1 O'i··· 0'2 1 2 .•. O'i 0'1 • • • O'i-l = 

o 
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So, after Tietze transformationsS
, we obtain the following presentation for Rn.I : 

O'jO'j+lO'j = O'i+lO'jO'j+1 for all i 
O'jO'j = O'jO'j for li - j I > 1 
T'O'j = O'iT' for i > 1 
T'O'lT'O'l = O'lT'O'lT' 

) .. 
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Note Using Lemma 4, Proposition 2 and similar but more sophisticated arguments, 
Alastair Leeves found a presentation for Rn ,m , which we give below: 

where A jj as given in 2.6.1 . 

O'jO'i+lO"j = O"i+lUjO"i+1 for all i 
O'jO'j = O'jO'i for li - j I > 1 
O'n_t-

t 
AnjO'n-IAnl = AnIO'n-I-

1 
AnjO'n_1 ) 

for n < I < j < n + m + 1 
AnjO'j = O'jAnj for 0 < i < n - 1 
O'n-lAnjO'n-IAnj = AnjO"n-IAnjO'n-I 

for n < j < n + m + 1 

Remark 9 Having the above presentation for Bn,m , we can express the Markov 
moves of the generalized Markov's theorem as follows: 

a '" 00"1 ±I , a E Rn •m 

where a is same as a but with all indices shifted by + 1 . 

Although, the band move cannot be expressed algebraically in an easy way using the 
TI 's as pure braid generators, even for the simpler case of Bn,1 related to L(p, 1) , 
as we demonstrate below: 

If T: E Bn-I,1 and 01 , 02 E Bn-l,1 are both words in the O'j'S, then 

01TIa2( ERn-I,d'" at (O'j+1-
l 

••• O"n-2 -10'n_1
2
0'n_2'" O"Ht} TIa 2 (T~_dPO"n_l±l E Bn,I 

and 

01 (Tn-I02 '" 01 (Tt}-I (O'j+1-
l 

••• O'n-2 -lO'n_l -20'n_2 ••. O'j+l) 02 (T~_t )PO'n-l ±I E Bn,l 

Using the above and Theorem 7 , we have the following: 

Corollary 5 (algebraic version of Theorem 6) Let M = S3 \ j be a solid torus 
with j also a solid torus; let Ll ,L2 be two oriented links in M and RI U I , 
B2 U I be mixed braids in U~=t Bn,1 corresponding to Ll , L2 • Then Ll is isotopic 
to L2 in M if and only if BI U I is equivalent to B2 U I in U~=1 Bn,1 , under 
equivalence generated by the augmented braid relations together with the following two 
moves: 

(1') Conjugation in R n•1 

(!!) 0 '" 00'1 ±1, where a E B n•1 and a is same word as 0 but with all indices 
shifted by +1 . 

5See [47]. Chapter I part 1.5 or [46], Proposition 2.1 . 
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2.7 Another presentation for E n ,1 

To derive a simple algebraic expression for the band move in the generalized Markov's 
theorem for M = L(p, 1) , we would like to find a presentation for E n •l using the 
pure braid generators 

Ti = (1j ... (11 T(11 ... (1j and T as pictured below: 

1 i+l 00+1 1 00+1 

Uh 
r"'-""'" 
f 

, 
\l I I _ ................... ) 

--1-"'"., . .,.,............... ••• t 

( I 
Note that Tn _ 1-

1 = T~_l' 

Remark 10 We did not consider using Ti 's to find a presentation for En •1 at the 
beginning, because in this case we do not have a normal, free subgroup of En .1 to 
work with. 

The Ti 's are related to the T: 's in the following way: 

-1 -1 T' -1 . ( . -1 -1 - 2 -1 . -1 ) 
(1i+1 ••. (1n -l n-1 (1n-1'" (1,+1 (1,+1 .. • (1n-2 (1n-1 (1n-2 ... (1,+1 ~ 

T. T ,-l( -1 -1 -2 -1 -1) ; = i (1i+1 ... (1n-2 (1n-1 (1n-2 • •• (1;+1 

We now substitute 

( -1 -1 - 2 -1 -1 ) T. - 1 r T' 
(1i+ 1 ••• (1n-2 (1n-1 (1n-2 ••. (1;+1 ; lor i 

in each of the 'mixed' relations of the first presentation for Bn •1 to obtain the following 
for i = 1, .. . ,n - 1 : 

-1( -1 -2 . -1)T.--1 . _ ( .-1 -1 -2 -1 - \fT' -1) 
(Ji (1j+1 ... (1n-1 .•• (J,+1 1 (11 - (1, (1i+1 ... (11\-1 ... (1i+1 . (1i 1. i- I -<==> 

T, - 1 (1 ' - (1 ' - 1 fT'. 1 -1 ..L---->... T,. - (1 ' fT'. (1 ' i ,- 1 1.,- ~ ,- ,1. 1-1 I o 
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Proof of 1. First we need the following 

Note Using the braid relations repeatedly we have: 

-I( -1 -2 -I)T -1. _ (-1 -2 -1)T-1 
(1j (1). .. , (1n-l ••• (1). >'-1 (1. - (1). •• ,(1n-l ' ,,(1). >'-1 

-;- . 1 \ . U ",>1+ ,,,,<Z {:::::::::::} 

(
-1 -2 -1) .-IT -1. _ (-1 -2 -1)T- 1 

(1). ",(1n-l ,,.(1). (1. >'-1 (1. - (1). ",(1n-l ,,,(1). ,\-1 

A>i+l, A<i {::::::} 

P f f 2 -1 T' - T' T'T' -1 roo 0 . (1j j_l(1j - i-I , i-I 

-1( -1 -2 .-I)T.' -1 . _ ( .-1 -2 .-1)T..-1 
(1, (1, ' ., (1n-l •.• (1. .-1 (1. - (1. . , . (1n-l ' , ,(1. .-1 

( 
-1 -2. -1)T..-l[( .-1 -2 .-I)T,. -1]-1 (1j+l ... (1n-I . , . (1.+1 • (1. ' ., (1n-l ' •• (1. .-1 

-I( -1 -2 .-I)T.' -1 .( .-1 -2. -1 .-I)T,. -1_ (1, (1i ' ., (1n-l ". (1. .2=l (1. (1. .., (1n-l ' , ,(1.+1 (1. .-1 -

( 
-1 -2 -1)T. -1( -1 -2 -1)T,-1 (1, ... (1n-l ••• (1j .-i=.!. (1i+1 ' , • (1n-l • , • (1i+1 j 

-I( -1 -2 .-1)(. -1 -2. -I)T,. -1 -IT.. -1_ (1i (1j •• ' (1n-l ••• (1. (1.+1 , .• (1n-l ' • ,(1.+1 .-1 (1, .-1 -

( -1 -2 -1)( -1 -2 -1)T, -1T,-1 (7j ... (1n-l .. ·(7i (7i+1 .. ·(7n-l ... (7j+1 i-I i 

-1( -1 -2. -1)( .-1 -2 -1 -1)T. -1 -IT. -1 (1j (1,+1 ··,(1n-l ·,,(1.+1 (1. ·,,(7n-l , •• (7j+1 (7j i-I (7j i-I = 

( 
-1 -2 .-1)(. -1 -2. -1)T,. -1T,-1 (1j ..• (1n-l ... (1. (1.+1 ... (1n-l ••• (1.+1 ,-1 , 

-1 -1 -IT. -1 - T.. -1T..-1 
(7j ]i-I (1, i-I - .-1 • 

o 
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So, after Tietze transformations, we obtain the following presentation for Bn,l : 

( 
0"1,···,O"n-1 
T, T1' ... ' Tn- l 

O"jO"j+10"j = O'j+1O"jO'j+1 for all i 
O'jO'j = O'jO'j for li - jl > 1 

1. T)._lO"j = O'jT)._l A > i + 1, A < i 
2. 1i-l1i = 1iTj-1 for i = 1, ... , n - 1 
3. Tj = O'jTj_10'j for i = 1, ... , n - 1 

) ,.,. 
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If we eliminate Tb ... , Tn - 1 as before using Tietze transformations, we derive the 
same presentation ( •• ) for En ,l namely: 

O'jO"j+10'j = 0'i+}O'jO"j+1 for all i 
O'jO"j = O'jO'j for li - j I > 1 
TO"i = O'iT for i > 1 
TO"}TO'} = O'l TO'}T 

) .. 
We can now write the algebraic expression of the generalized Markov's theorem for any 
M = L(p,l): 

Theorem 10 Let M = L(p,1) = X(S3,I) , L1 ,L2 be oriented links in M and 
El U I , E2 U I be mixed braids in U~=l Rn,l corresponding to L} , L2 . Then Ll 
is isotopic to L2 in M if and only if El U I is equivalent to E2 U I in U~=l En,l 
, under equivalence generated by the braid group relations, together with the following 
three moves: 

(1') Conjugation in Bn,l 

(f!) a '" O'} ±la, where a E Bn,} and a is same word as a but with all indices 
shifted by + 1 . 

(9) a '" aTnPO'n ±l, where a E En,l is a word in the generators T, O'b ... ,O"n-1 , 
and pE iZ the framing number of I . 

Note The above theorem appears also in [44] (recall the relevant comment in 2.4.2.). 
The only essential difference is that X-So Lin places the surgery string at the beginning 
of the mixed braid; therefore, the band moves take place at the left-hand side of the 
braid, whilst the Markov moves take place at the right-hand side of the mixed braid. 



Chapter 3 

On trace invariants 

3.1 Introduction 

The first written announcement of the Jones polynomial was made in May 1984 in [28], 
whilst the first published announcement appeared in 1985 in [29]. This was immediately 
generalized from different viewpoints by several authors independently, and it is now 
known as the 2-variable Jones or the FLYPMOTH or the HOMFLY-PT polynomial 
(name derived from the initials of the authors; for details see [16], [50], [40]). In [30] 
V. Jones reconstructs the HOMFLY-PT polynomial after Ocneanu as follows: 

He maps the infinite dimensional braid group algebra over e , eBn , onto 'Hn(q) , the 
Hecke algebra of An-type, via the natural epimorphism: Uj 1-+ 9j ,where 91,··. ,9n-l 
are the generators of 'Hn(q) . Then he uses Ocneanu's trace function theorem ([16]), 
which guarantees the existence and uniqueness of a linear function 

00 

tr: U 'Hn(q) ~ C 
n=l 

such that 

1) tr(ab) =tr(ba) for a, bE 'Hn(q) 
2) tr(1) = 1 for every 'Hn(q) 
3) tr(a9n) = ztr(a) for a E 'Hn(q) ,gn E 'Hn+1(q) and z E C. 

(The existence of the trace function relies upon the fact that there exists a canonical 
basis for 'Hn+1(q), such that the higher index generator 9n appears at most once in 
any word in 'Hn+t(q) .) 

V. Jones noticed that rules 1) and 3) resemble Markov's theorem for isotopy equivalence 
of braids in S3; so, by normalizing the trace properly (so that the braids 0, OUn and 
oUn -1 would be assigned the same Laurent polynomial), he obtained the 2-variable 
(with variables q and z) polynomial link invariant. In the same paper it is mentioned 
that there should be analogues of Ocneanu's trace for Hecke algebras other than those 
of type An. 
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In this chapter, we observe first that E ntl - the braid group related to the spaces 
L(p, 1) (and to the un knotted solid torus) - is, in fact, the Artin group of Wn , the 
Coxeter group of En-type. This readily implies that the natural epimorphism of Entl 
onto Wn extends to an epimorphism of CEntl onto CWn , which is isomorphic to 
'Hn(q, Q) , the Hecke algebra of En-type. The above now suggest that, if we follow 
the same approach as in [30], we might be able to find isotopy invariants of links in a 
solid torus or in the lens spaces of type L(p, 1) . 

X-So Lin made the same observation in [44], following a different approach. In the same 
paper he also asks whether we can obtain link invariants in L(p, 1) using this fact and 
some Ocneanu-type trace. Here we attempt to partially answer this question. As a 
first step, we state and prove the existence and uniqueness of a linear trace, analogous 
to Ocneanu's trace, from U~=1 'Hn(q,Q) to c, such that 

1) tr(ab) =tr(ba) for a, bE 'Hn(q, Q) 
2) tr(l) = 1 for every 'Hn(q, Q) 
3) tr(agn) = ztr(a) for a E 'Hn(q,Q) ,gn E 'Hn+1(q,Q) and z E C 
4) tr(at~) = str(a) for a E 'Hn(q,Q) , t~ E 'Hn+1(q,Q) and sEC. 

In section 3.4 we use this trace to construct an analogue of the HOMFLY-PT polyno­
mial for isotopic oriented links inside a solid torus, and we compare with [22] . 

Finally in section 3.5 we construct a weak analogue (a homology invariant) of the 2-
variable Jones polynomial for braids in the lens space L( 0, 1) , using the above trace 
function and our generalized Mal'kov's theorem, as a very first attempt to define the 
generalized Jones polynomial in arbitrary 3-manifolds via the process described above. 

3.2 The groups Bn,l and Wn 

3.2.1 Algebraic definitions et cetera 

Definition 16 A group G with a presentation 

where mjj = 1, i = 1, ... ,n) 

is called a Coxeter group. 

Definition 11 If G is a Coxeter group with a presentation as above, then the corre­
sponding Artin group B is given by 

( I 
T;,rjTj ••• = TjTjTj • • • ) 

B = Tt , ••• , T n h th b f f .. .. . were e num er 0 actors m either Side IS mij 

So, for example, the braid group on n strings, Bn , is the Artin group of the Coxeter 
group of An-type (which is actually the symmetric group Sn), since Bn and Sn 
have the following presentations: 
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and 

Sn = (St, ... ,Sn-t \ Sj2 = 1, (SjSj)2 = 1, for \i - i\ > 1, (sisi+d3 = 1) 

where Sj corresponds to the transposition (i, i + 1) . 
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Definition 18 Let F be a field and qj E F, i = 1, ... , n. Let G be a finite Coxeter 
group with set of standard generators S = {Wb"" wn } • The Hecke algebra of 
G , 1l = 1l( G, qd with parameters qj, is a. vector spa.ce over F with basis 
{Tw : W E G} and an associative multiplication defined on 1l as follows: 

wE G,Wj E S 

w here I: G -+ N 
G , where WjJ E S 
1(1)=0. 

T
w

' . Tw := { Tw;w ~f l(wjw) = l(w) + 1 
• qjTwiw + (qi - l)Tw If l(wjw) = l(w) - 1 

is the length function on G such that: if W = Wjl ••• Wile E 
and j = 1, ... , k ,then l(w) is the smallest such k. We define 

For the dimension, existence and basic properties of arbitrary Hecke algebras corre­
sponding to finite Coxeter groups see [13]. 

Notes 

• If W E G , Wj E S then l( Wjw) = 1( w) ± 1 . If Wj E S , then Wj2 = 1 , hence 
l(wj2) = 0 < l(wi) = 1 and therefore, TWi 2 = TWi . ;Wi = qj . TWil + (qj - 1) . TWi , or 
equivalently TWi 2 = qj . Tt + (qj - 1) . TWi , or TWj = qj . 1 + (qj - 1) . TWj , where 
Tt = 1 is the identity element of the multiplication on 1i. I.e. TWj2 1- TWjl . 

• Associativity and the note above imply that we could have defined the product on 
1l equivalently as follows (see [13] for a detailed exposition): 
If W = Wjl ... Wjt is a reduced expression for w, then 

If Wj is a basic involution then 

T Wj 2 = qj . 1 + (qj - 1) . T Wj . 

For example the Hecke algebra of An-type, 1ln (q) has a presentation: 

(9}, .. ·,9n-t \ 9j9j = 9j9i for \i - i\ > 1, 9i9j+I9j = 9i+19j9i+h 9j2 = (q - 1)9j + q) 

where 9j corresponds to Taj and qj = q for i = 1, ... , n - 1 . 

• An important fact about Hecke algebras is that: if qj = 1 or not a root of unity 
and we choose as field C, then the Hecke algebra is semisimple and isomorphic to 
the group algebra cG, where G is any Coxeter group. The isomorphism was proved 
by Tits in [8], Ex. 27, p. 56 , as cited in [45]. 



3.2. The groups En.1 and Wn 76 

3.2.2 Coxeter groups and Hecke algebras of En-type 

We shall start by giving an intuitive 'pairs of shoes'-description of Wn , the Coxeter 
group of En-type, given in a talk by Professor G.D. James. For a picture we can 
think of n numbered shelves and n numbered and ordered pairs of shoes; put one 
pair on each shelf, not necessarily in the right order pairwise, and not necessarily on 
the right shelves. (Note that, the description can be made rigorous if we consider an 
ordered n-tuple of ordered pairs of objects.) 
We want to place the pairs of shoes correctly, but we are only allowed to swap over 
the shoes of the pair that is placed on the first shelf, and also to swap pairs that lie on 

consecutive shelves. If for example we want to arrange the word (! t) , where wc 

use the notation iI for the pair of shoes with number i, and I is the left shoe, then 
one possible procedure is the following: 

4 4 2 "2 2 "2 2 "2 

(
22) (44) (44) (44) 
3~ - 3~ - 3~ - Tl I 1 I 1 I 1 3 ~ 

4 4 2 "2 2 2 

(
1 I) (1 I) (1 I) 
;j-~j-!i' 
We can see that we have been making use of the symmetric group Sn to swap 

pairs on consecutive shelves, and of the group C2 (a cyclic group with two elements) 
for swapping shoes on the first shelf. Every arrangement is a word of the group C2 

'wreath product' Sn, C2 1 Sn ,where 'l' means: we take 2n 9! C2 X ••• X C2 ( n 
copies) and we make a group using the elements of 2n and Sn. 

As a set, it is the cartesian product Wn = 2n x Sn • Therefore, IWn I = 2n 
• n! . 

As a group Wn is isomorphic to 2n acted upon by Sn; i.e. it is the semi-direct 
product 2n)G Sn . 

The way Sn acts on 2n implies that the following is a presentation for Wn: 

SI, ••• ,Sn-l Si E Sn 

V}, ••• , Vn Vj E 2n 

S.2 = 1, SiSi+lS, = si+l S ,si+l for all i 
SiSj = SjS, for li - jl > 1 
v,2 = 1, ViVj = VjVi for all iJ 
Sj-1ViSj = SjV,Sj = vi"J = V6J (i) 

where sj(i) is the image of i under 
the transposition S j = (j, j + 1) 

Aside In terms of the pairs of shoes, Vi means 'swap the shoes of the ith pair'. 
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If we call now VI = t , then the last relations of the above become: 
VI = t 
V2 = SltS I 

V3 = S2SltSlS2 = S2V2S2 

and this means that for a presentation of Wn we only need t, Sb S2,' •• ,Sn-1 as 
generators and - after having done Tietze transformations - relations given by the 
following Dynkin diagram: 

t s, Srl Sn·, 

Ot:::====-O----o- -0 
where the single bonds of strength mean relations of degree 3 and the double bond a 
relation of degree 4 . Also, if two generators are not connected by a bond, the relation 
between them is of degree 2, i.e. they commute. 
In other words: 

(tsd4 = 1 or tSltSl = SltSlt 

(tSj)2 = 1 or tSj = Sjt for i > 1 
t 2 = Sj2 = 1 for i = 1, ... , n - 1 ) • 
(sjSi+d3 = 1 or SjSi+l Sj = Sj+l,sjSj+l for all i 
(SjSi)2 = 1 or SjSi = SjSj for li - jl > 1 

A presentation for the Hecke algebra of Bn-type, 1in(q, Q) , which corresponds to 
Wn is given below: 

tg1tg1 = gltg1t 

tgj = gjt for i > 1 

1in(q,Q) = ( t,gl>'" ,gn-I 
t2 = (Q - l)t + Q ) 
gj2 = (q _ 1 )gj + q for i = 1, ... , n - 1 • 
gjgj+lgj = gj+lgjgj+1 for all i 
gjgj = gjgj for li - jl > 1 

Note The Dynkin diagram above, indicates that there is a natural inclusion of Wn 
into Wn+1 (by adding an extra node at the end), and this extends to a natural 
inclusion of 1in (q,Q) into 1in+1(q,Q). 

Theorem 11 Bn.l is the Artin group of Wn . 

Proof According to Definition 17, it follows immediately by comparing the first re­
duced presentation of Bn •1 (given in 2.6) with the above presentation ( • ) of Wn • 0 

Corollary 6 So we can find an epimorphism of Bn•1 onto Wn ; indeed, there is 
an obvious one sending Tt 1-+ t, O'j 1-+ Sj • This implies now that there is also an 
epimorphism of CBn •l onto 1in (q, Q) ; indeed, we can send Tt 1-+ t, O'j 1-+ gj • 
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Moreover, if we compare the second reduced presentation of Rn •1 (given in 2.7) wit.h 
the presentation of ?in(q, Q) given above, we can see that there is another epimorphism 
of eRn •l onto ?in(q, Q) (sending T fooooo+ t, cri fooooo+ 9i ) . 

As already mentioned, X-So Lin in [44] made the same observation (Theorem 12), after 
simplifying R. Skora's approach for Markov's theorem in L(p, 1) . 

3.3 A trace function for 1-{n(q, Q) 

In this section we show the existence and uniqueness of a linear trace function from 
Lrn'=l ?in(q,Q) to C which is the analogue of Ocneanu's trace for the Hecke algcbras 
of A-type. This is joint work with Meinolf Geck. 

If we consider the elements ti=9i"'9I t91- l "'9i-l
, i=I, ... ,n-l and t=t' 111 

1ln (q, Q) , then the following basic relations hold in 1ln (q, Q) : 

Lemma 5 

(i) 9i=q9i- l +(q-l).1 i=I, ... ,n-l, t=Qt-1 +(Q-l).1 

9i-1 = ~ 9i + l;q ·1 i = 1, ... , n - 1, t-1 = ~ t + lrl ·1 for q, Q =I- 0 

ti2 = Q·l + (Q -1)ti, ti = Qti-1 + (Q -1)·1, ti-1 = ~ti + Iri'! 
for all i = 1, ... ,n - 1 

(ii) If k5:i then · -1. -1 _ -1 -1 
9,+1 .. ·9k9k+l .. ·9,+1 - 9k .. ·9i 9i+I'" 9k 

and its inverse: · -1. -1 _ -I -I 
9,+1 .. ·9k+19k .. ·9,+1 - 9k .. ·9i+l 9i·. ·9k 

also -1 -1 -1 -I 9i+1 .. ·9k+l 9k· .. 9i+1 = 9k .. ·9i+19i .. ·9k 

and its inverse: · -1 -1 . _ -1-1 
9,+1 .. ·9k 9k+1" . 9.+1 - 9k .. ·9i9i+1 .. ·9k 

for all i = 1, ... , n - 2 

Notice that for k = i the relations we obtain are: 

-1 
9i 9i+19i 

-1 -1 
9i 9i+l 9i 

-1 
9i9i+19i 

-I -I 
9i9i+1 9i 

- 9i+19i9i+1 
-1 

-I -1 
- 9i+19i 9i+1 

-I 
- 9i+1 9i9i+1 

-I -I 
- 9i+1 9i 9i+1 

all of which follow from the basic relation 9i9i+19i = 9i+19i9i+1 . The only other 
h· h' .. . 1 1 1 1 1 consequence of W le IS ItS Inverse, I.e. 9j- 9i+1- 9i- = 9i+1- 9i- 9i+I-1 • 
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I 9it i_l 1 = t 

{ 
, 'f k . 

ti9k = 9kt~ if k < i or k > i + 1 

for all i = 1, ... ,n - 1 

( . ) t t' ( -It -1 -1)t . 1 1 W • i = 9i··· 9291 9192 ... 9i ,t = , ... n -

q-l ( -1 -1)t2 1!::if t2 9i ... 9192 .. ·9i -q q 

(ii) t't (1 ) t( -1 -1 )t = i + -q 91 ···9i 9i-l···91 + 

cl (-1 -1 )t2 ~ t2 91 .. ·9i-l 9i .. ·9t -q q 

Also, in a completely analogous way: 

If k < i and i = 2, ... , n - 1 

cl ( -1 -1)t' 2 ll::.ii t' 2 9i .. ·9k+l9k+2 .. ·9j k - k q q 

(ii) " (1 ) t' ( -1 -1 )t' = titk + - q k 9Hl '" 9i 9i-l'" 9Hl k+ 

cl ( -1 . -1 . )t' 2 !.!.=.if. t' 2 9Ht .. ·91-1 91'" 9k+l k - k q q 

Proof 

(i) follows immediately from the relations in the presentation of 1{n(q, Q) (referred to 
by 'a.r' for the remainder of this proof) : 

• 9i2 = q . 1 + (q -1) 9i <:=} 

9i = q 9i-1 + (q - 1) . 1 {=} 

• t 2 = Q . 1 + (Q - 1) t <=} 

t = Q t- I + (Q - 1) . 1 <===} 
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t'2 - ( . t -1 .-1)(. t -1 .-1) _ • i - 9,···91 91 .. ·9, 9, .. ·91 91 ... 9, -

(9i ... 91 t2 91 -1 ... 9i -1) = (9i ... 91 [ Q + (Q - 1) t ] 91 -1 ... 9i -1) = 

Q(9i···9191-
1
···9i-

1) + (Q -1)(9i···91 t91- 1 ... 9i- 1) ~ 

t~2 = Q·1 + (Q -1) t~ {::::::> 

t~ = Q t~-1 + (Q - 1) . 1 {::::::> 

t~-1 = 1. t~ + !=Q. . 1 r . 1 1 , Q' Q lor z = , ... , n -

(ii) If k < i 

-1 -1 -1 a.r. 
9k .. ·9i-l 9i 9i+19i ... 9k = 

-1 -1 -1 a.r. 
9k .. ·9i-l 9i+19i9i+1 9i-l··· 9k = 

-1 -1 -1 
9i+19k ... 9i-l 9i9i-l'" 9k9i+l = 

-1 -1 -1 
9i+I .. ·9k+29k 9k+19k9k+2 .. ·9i+l = 

-1 -1 
9i+l .. ·9k+19k9k+l .. ·9i+l 

The other relations follow similarly. 

( t -1 -1) ( t -1 -1) (ii) 9i .. ·91 91 .. ·9i 9i+I 9i .. · 91 91 ... gi 9i+l = 

t -1 -It -1 -1 O.r. 9i .. ·91 9i+I .. ·929192 .. ·9i+I 91 .. ·9i 9i+1 = - -- -
( ) ( )t t( -1 -1) ( -1 -1) O.r. 9i9i+1 ... 9192 91 92 91 . .. 9i+1 9i 9i+1 = 

( ) ( )t t ( -19 -1) ( -1 -1) o.r. 9i9i+l ... 9192 91 91 92 1 ... 9i+l 9i = 

. t . -1. -It -1 -1 (ii) 9i+19,·· ·91 9,+1" ·929192 .. ·9'il 91 ... 9i = 
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( t -1 -1) ( t -1 -1) 9i+1 9i .. ·91 91 .. ·9i 9i+l 9i ... 91 91 ... 9i = 

( t -1 -1 ) ( -1) t' 9i 9i-I .. ·91 91 .. ·9i-I 9i 9i = i9i 

.If k<i 

t ' ( t -1 -1) i9k= 9i···9I91 ···9i 9k= 

( t -1 -1 -1 .-1) II.!!. 9i .. ·91 91 .. ·9k+l 9k+2 .. ·9, 9k-

t -1 -1 -1 -1 -1 Q.r. 
9i .. ·91 91 ... 9k 9k+I 9k9k+2 .. ·9i = 

t -1 -19 -1 -1 -1 -1 a.r. 9i ... 9k+I9k .. ·91 91 .. ·91:-1 k+l9k 9k+l 9k+2 ... 9i = 

t -1 -1 a.r. 
9i ... 9k+I9k9k+19k-l .. ·91 91 .. ·9j = 

t -1 -1 a.r. 
9j· .. 9k+291:9k+19k9k-l .. ·91 91 .. ·9j = 

( t -1 -1) t' 9k 9i .. ·91 91 .. ·9i = 9k i 

• Finally if k > i + 1 

, - ( t -1 .-1) Q...:!. tj9k - 9i·· ·91 91 .. ·9, 9k-

( t -1 -1) - t' 9k 9i .. ·91 91 ... 9i - 9k i 

(iv) • We only prove the relations for tti as the rest can be proved analogously: 

tti =t(9i.·.91t9I-l ... 9i-I)~' 

t t -1 -1 Q.r. 
9j .. ·92 91 91 .. ·9i = 

-1 t t -1 . -1 a...:!. 9i ... 9291 91!92 ... 9. -

( -It -1 .-I)t ~ 9i .. ·929.! 9192 .. ·9. -

(9i ... 92 [~ 91 + 7] t [q 91- 1 + (q - 1)] 92 -1 ... 9j-l)t = 

q~ (9i .. ·91 t9I- I ... 9i -I)t + q~I 9i ... 9ti:!12 -1 .. . 9j-1t+ 

!.::.i, t -I.-It + (l-q)(q-l). t -1 -1 q q 9.··· 92!91 .. ·9. q 9 •... 92!.92 ... 9j t = 

, i::.! ( -1 -I)t2+ tit + q 9i· . ·929192 .. ·9i 
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(1 ) t( -1 -1 -1)t ~ t2 - q gi ... g2g1 g2 ... gi -
q o 

The Trace Function 

The proof of the following theorem rests squarely on the proof of Ocneanu's trace 
function as given in [30], pp. 343-344, whilst, its statement was thought of by the 
'pairs of shoes'-description of Wn (recall section 3.2). 

Theorem 12 Given z and s in C, there exists a unique linear function 

00 

tr: 1i:= U 1in(q, Q) --+ C 
n=1 

such that the following hold: 

1) tr(ab) = tr(ba) , a, bE 1i 

3) tr(agn ) = z tr(a) , a E 1in (q, Q) 

4) tr(at~) = s tr(a) , a E 1in (q, Q) 

Proof 

The proof of existence relies on inductive arguments using the following information 
on the structure of 1in(q, Q) as given in [14] : 

The Coxeter group of Bn-type, Wn , is a subgroup of Wn+1 of index 2(n + 1) . In 
[14], Dipper and James show that a complete set of right coset representatives of Wn 
in Wn+1 is given by 

I n+1 := {I, Sn •.• Si I i = 1, ... ,n}U{Sn ... S1S0 S1 ••• Si I i = O,l, ... ,n for So = t} 

I.e. every element w E Wn+1 can be written uniquely in the form 

W E Wn or w = U • x , where U E Wn and x E I n+1 • 

We can rephrase this as follows: 

Every element w E Wn +1 has one of the following forms: 

(a) W E Wn 

(b) W=USnV, U,VEWn 

(c) w=uSn .•. Sltsl ... Sn, uEWn 
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We have also analogous statements in the Hecke algebra 'Hn+l (q, Q) of Wn+1 ; i.e. 
we can say that every element in 'Hn+1(q, Q) can be written as a linear combination 
of elements w, each of precisely one of the following forms 1 : 

(a) w E 'Hn(q, Q) 
(b) w = U9nV, u, v E 'Hn(q, Q) 
(c) w = utn , u E 'Hn(q,Q) ,tn = 9n .. ·91 t91" .9n . 

This canonical form is equivalent to the following: 

(a) w E 'Hn(q, Q) 
(b) w = U9nV' u, v E 'Hn(q, Q) 
(c) w = ut~, u E 'Hn(q,Q) , t~ = 9n .. '91t91-1 .. . 9n -1 • 

We note now that having proved the existence of the trace function, uniqueness will 
follow immediately as, given W E 'Hn{q, Q) , it is clear that the trace of w can be 
computed (inductively) from the above using rules 1), 2), 3), 4) and linearity. 

Define 

given by 
Cn (a EB b EB c 0 d) = a + bt~ + c9n d . 

From the above the map en is surjective. On the other hand 'Hn(q, Q) is free of rank 
2n as an 'Hn _l{q,Q)-module; so we have: 

I.e. 'Hn 01{n-l 'Hn has dimension (2n dim'Hn). So 

Hence en must be injective, so it is an isomorphism of ('Hn , 'Hn)-bimodules. 

Next, we wish to define inductively a trace tr on 'H:= Un?!1 'Hn( q, Q) satisfying: 

1) tr(ab) = tr(ba) , a, bE 'Hn(q, Q) 

2) tr(l) = 1 for all'Hn(q, Q) 

3) tr{xgn) = ztr(x) , x E 'Hn(q,Q) 

4) tr{yt~) = str(y) , yE 'Hn(q,Q) 

where z, sEC are fixed numbers. 

1 An algorithm for writing an arbitrary element 88 a linear combination of elements in the canonical 
basis is described in (17]. 
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The induction step: Suppose tr is defined on 1in (q, Q) ; then we define tr on 
1in+l(q,Q) as follows: Let x E 1in+1(q,Q) be arbitrary; then there exist a,b,c,d E 
1ln(q, Q) such that x = cn(a EB b EB c ® d) . 

Define tr(x):= tr(a) + s tr(b) + z tr(cd) 

Then this trace satisfies (2), (3) and (4). Indeed, this trace also satisfies the 
following stronger version of (3): 

(3') tr(cgnd) = z tr(cd) , c, d E 1in ( q, Q) 

The only remaining problem is to prove that property (1) is satisfied for all a, x E 1i : 

Arguing inductively, we may assume that it holds for a, x E 1in (q, Q) . As V. Jones 
mentions in [30j, it is enough to show property (1) in the case where a E 'Hn+l(q, Q) 
and x is one of the generators of 'Hn+1(q, Q). I.e. it is enough to show 

tr(agd=tr(gja) , aE'Hn+1(q,Q), i=l, ... n 
tr(at) = tr(ta) , a E 'Hn+l(q, Q) 

and - from the above - we only have to consider the cases in which 

a E 1in(q,Q), a = bgnc (b,c E 1in(q,Q», a = bt~ (b E 1in(q,Q» . 

• a E 1in(q,Q) : 

then at and ta are In 'Hn(q, Q) , and tr(at) = tr{ta) holds by induction on n. 

In the same way it holds that tr( agj) = tr(gja) for i < n . 

If i = n, tr( agn) = tr{gna) by property (3') . 

• a = bgnc (b,c E 1in(q,Q»: then tb and et are In 'Hn(q,Q) and 

(3') (by induction) ) (3') 
tr(tbgnc) = z tr(tbc) = z tr(bet = tr(bgnet). 

If i < n then gib, cgj E 'Hn(q, Q) and similarly 

If i = n we have to check that 

(proof to follow). 
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• a = bt~ (b E 1-ln (q, Q)): In this case we have to check the following: 

tr( tbt~) = tr( bt~ t) 
tr(gibt~) = tr(bt~gd , i < n 
tr(gn bt~) = tr( bt~gn) 

(proof also to follow). 
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We proceed with proving (**) : We may assume that each of the elements band c 
is of of one of the f?llowing forms: 

(i) an element of 1-ln - 1(q,Q) 

(ii) xgn-lY (x,y E 1-ln- 1(q,Q) 

(iii) xt~_l (x E 1-ln- 1(q, Q» 

If b, c are both of type (i) or (ii) then the proofs are exactly the same as in [30], but 
for completeness we shall include them here. For the remainder of this proof we shall 
use the abbreviation 'a.r' to denote the use of the relat.ions in the presentation of 
l1n(q, Q) as well as the consequences of these relations listed in Lemma 5 (i)--(iii) . 

• The case where band c are elements of l1n- 1(q, Q) is trivial since gn commutes 

with l1n - 1(q, Q) . 

• If b is of type (i) and c of type (ii) ; 

i.e. bE l1n -l(q, Q) and c is of the form xgn-lY, X, Y E 1-ln-l(q, Q) , then: 

tr(9nbgnx9n-lY) ~ tr(b9n2x9n_lY) ~ tr(b[q + (q -1)9n] Xgn-1Y) = 

(3') 
qztr(bxy) + (q -1)ztr(bx9n_1Y) = 

qztr(bxy) + (q -1)z2tr(bxy) = 

[qz + (q -1)z2]tr(bxy). 

On the other hand we have: 

tr(b9nX9n-lY9n) ~ tr( bX9n9n-19nY)!!':! tr( bX9n-19n9n-1Y) (~) 

(3') 
zqtr(bxy) + z(q -l)tr(bxgn_lY) = 
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zqtr(bxy) + Z2(q - 1) tr(bxy) = [zq + Z2(q - 1)] tr(bxy). 

I.e tr(9nb9nC) = tr(9nb9nC9n) . 

• If now c is of type (i) ,i.e. c E 'Hn-.(q, Q) and b is of type (ii) , 

i.e. b = X9n-lY , x, Y E 'Hn-1(q, Q), then: 

t ( ) B.r t ( ) B.r t ( ) (3') r 9nX9n-lY9nC = r X9n9n-19nYC = r X9n-19n9n-lYC = 

ztr(X9n_12yC) c;r qztr(xyc) + (q -1)ztr(X9n_lYC) (~) 

qz tr(xyc) + (q - 1 )z2 tr(xyc) = [qz + (q - 1 )z2] tr(xyc). 

On the other hand we have: 

(3') 
qztr(xyc) + (q - l)ztr(X9n_lYC) = qztr(xyc) + (q - l)z2 tr(xyc) = 

[qz + (q -1)z2]tr(xyc). 

I.e. tr(9nb9nC) = tr(b9n C9n} . 

• The last 'easy' case is when both band c are of type (ii) , 

. b " I.e. = X9n-lY , C = X 9n-lY , x,y,x',y' E 'Hn-1(q,Q): 

( ") a.r t ( ") a.r tr 9nX9n-lY9nX 9n-lY = r xgn9n-19nYX 9n-lY = 

( ") (3') t ( 2' ') a.r tr X9n-19n9n-lYX 9n-lY = z r xgn-l yx gn-lY = 
(3') 

qz tr(xYX'9n-lY') + (q - l)z tr(X9n-lyx'9n-lY') = 

qz2 tr(xyx'y') + (q -l)ztr(xgn_lyx'gn_lY')· 

Similarly, 

tr(X9n-lY9n X'9n-ly'9n) g tr(X9n-lyx'9n9n-19nY') c;r 

t ( , ') (3') t ( , 2') B.r r X9n-lYX 9n-19n9n-lY = z r X9n-lYX 9n-l Y = 
, ') (3') qz tr(X9n-lYX Y + (q - l)z tr(xgn-lyx'9n_lY') = 
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qz2 tr(xyx'Y') + (q - 1)z tr(X9n-lyx'9n-1Y') . 

• Assume now that b is of type (i) and c of type (iii) , 

i.e. bE 'Hn-l(q,Q) , c = xt~_1 , x E 'Hn- 1(q,Q): 

(3'),(4) 
qtr(bxt~_I) + (q - 1) tr(9nbxt~_I) = 

qstr(bx) + (q -1)zstr(bx) = 

[qs + (q -1)zs ]tr(bx). 

Similarly, 

tr( bxgnt~_1 [q9n -1 + (q - 1)] ) = q td bxt~) + (q - 1) tr( bX9nt~_1) (3'M4) 

qstr(bx) + (q -1)zstr(bx) = 

[qs + (q -1)zs]tr(bx). 

I.e. tr(9nb9nC) = tr(bgnc9n). 
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Before continuing with checking the other cases, we first prove a corollary to Lemma 5 : 

Corollary 7 If x, Y E 'Hn(q, Q) , then 

tr( xt~y) = s . tr( xy) (4') 

Proof of corollary We write Y = YltY2t ... tYk , where each Yj (j = 1, ... ~~) is a 
product of 9i'S i < n . Then we repeatedly apply Lemma 5 (iii) and (iv) (which we 
abbreviate to L.(iii) and L.(iv)) : 

') (' t t ) L.( iii) (' ) L.( it!) tr(xtny = tr xtnYl Y2 ... tYk = tr XYltntY2t ... tYk = 

tr( XYl tt~Y2t ... tYk) - (1 - q) tr(xYl t91-1 ... 9.!!. -1 gn-l .. ·91 tY2t ... tYk)-

9-1 tr(xYI9t-1 
••• 9n-l-19n ... 91 t2Y2 t ... tYk) + .l!..=3.f tr(xYlt2Y2t ... tYk) eg-

9 q 
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q-l t ( -1 -1 t 2 t t) + 1!.=it. t (2 ) (3') r XY191 .. ·9n-l 9n··· 91 Y2 ... Yk r XYlt Y2t ... tYk = q q 

tr(XYltt~Y2t ... tYk) - ¥Z tr(XYlt2Y2t ... tYk) - (17)l tr(XYlt2Y2t ... tYk)+ 

i!.=ilz tr(XYlt2Y2t ... tYk) + 1!.=it. tr(XYlt2Y2t . .. tYk) = q q 

tr( xYl tt~Y2t ... tYk) = ... after k - 1 steps ... = 

• We assume next that b is of type (iii) and c of type (i) , 

i.e. b = xt~_1 , x E 'Hn-l(q, Q), c E 'Hn- 1(q, Q) : 

(3') (4') 
qtr(xt~c) + (q -1)tr(xgnt~_lc) = qtr(xt~c) + (q -1)ztr(xt~_lc) = 

qs tr(xc) + (q - 1 }zs tr(xc) = [qs + (q - 1 )zs] tr(xc). 

On the other hand we have: 

(3') ('I') 
qtr(xt~_lc) + (q - 1) tr(xt~_19nC) = qtr(xt~_lc) + (q - l)z tr(xt~_lc) = 

[qs + (q - l)zs] tr(xc) . 

• Let now b be of type (ii) and c of type (iii) , 

i.e. b= X9n-lY, X,Y E 'Hn - 1(q,Q) and c= x't~_1 , x' E 'H1I-t(q,Q): 

( 't' ) (3') t ( 2 't' ) o.r. tr X9n-19n9n-lYX n-l = Z r X9n-l yx n-l = 

qztr(xyx't~_I) + (q - l)z tr(X9n-1YX't~_1) ~ 

qzstr(xyx') + (q -1)ztr(Xgn_lYX't~_I)' 

On the other hand we have: 
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(b ) t ( 't') ~. t ( ") a.r. tr '9nC'9n = r X'9n-IY'9n X n-19n - r X9n-IYX 9ntn-19n = 

( 't') + ( l)t ( 't') (4),(3') qtr x9n-IYx n q - r x9n-IYX 9n n-l = 

qs tr(X9n_lYX') + (q - l)z tr(X9n_lYX't~_I) (~) 

qsz tr(xyx') + (q - l)z tr(X9n-1YX't~_d. 

I.e. tr(9nb9nC) = tr(b9nC9n) . 

• Assume next that b is of type (iii) and c of type (ii) , 

i.e. b = x't~_l , x' E 'Hn-1(q,Q) and C = X9n-lY , X,Y E 'Hn- 1(q,Q) : 

(b ) t ( 't I ) a.r. t ( 't' ) a.r. tr '9nC9n = r x n-19nX9n-lY9n = r x n-l X9,,9n-19nY = - -

( " ) (3') t ( 't' 2 ) a.r. tr x tn_1x9n-19n9n-1Y = z r x n-lx9n-l Y = 

qztr(x't~_IXY) + (q -1)ztr(x't~_lx9n_1Y) (~) 

qzs tr(x'xy) + (q - l)z tr(x't~_IX9n-lY)' 

On the other hand: 

( b ) t ( 't' ) a.r. t (' t' ) a.r. tr 9n 9nC = r 9nx n-19"x9,,-IY = r x 9n n-lfh:!..x9n-lY = 

( 
I I -1 ) ( 1) t (' t' ) (3') qtr x 9ntn-19n x9n-lY + q - r x 9" n-l x9n-1Y = 

qtr(x't~xgn-1Y) + (q -1)ztr(x't~_lx9n_1Y) (4') 

qs tr(x'X9n-lY) + (q - l)z tr(x't~_lX9n-lY) (~) 

qzs tr(x'xy) + (q - l)z tr(x't~_lX9n_lY)' 

I.e. tr(9nb9nC) = tr(b9"C9n)' 

• Finally assume that both band C are of type (iii) , 

i.e. b = xt~_l and C = yt~_l , X,Y E 'Hn-1(q,Q) : 

( b ) - t (t' t') a..:!' t (t' t') a.r. tr 9n gnc - r 9nX n-19nY n-l - r X9n n-lfb!Y n-l = 
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qtr(xt~yt~_I) + (q -l)ztr(xt~_lyt~_I) (~) 

qstr(xyt~_I) + (q -l)ztr(xt~_lyt~_d ~ 

qs2tr(xy) + (q -l)ztr(xt~_lyt~_I)' 

On the other hand: 

( ' , -1) ( 1) (t' t') (3') q tr xtn_1Y9ntn_19n + q - tr x n-lY9n n-l = 

(4') 
qstr(xt~_IY) + (q -l)ztr(xt~_tyt~_d = 

qs2tr(xy) + (q -l)ztr(xt~_lyt~_l)' 

I.e. tr(9nb9nC) = tr(b9nC9n). 

It remains now to check (* * *) : 

• Let bE 1-ln(q, Q) . We shall show that tr(tbt~) = tr(bt~t) . Indeed: 

tr(tbt~) ~ s tr(tb). 

tr(bt~t) (~) s tr(bt) by jn~ctjon S tr(tb). 

• We shall show next that, for i < n , tr(9jbt~) = tr( bt~9j) . Exactly as before: 

tr(9ibt~) ~ s tr(9jb). 

(b ' .) (~) t (b .) (by in~ctjon) t ( .b) tr tn9, - s r 9, - s r 9, . 

• The final and most tedious case is to show that tr(9n bt~) = tr( bt:
1
9n) : 

Either bE 1-ln- t (q,Q) or b = X9n-lY, X,Y E 'Hn-l(q,Q) 
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or b= xt~_1 , x E 'Hn-1(q,Q). 

H bE "H.n-1(q,Q) : then 9nb = b9n and so 

tr{9nbt~) = tr(b9nt~) = tr(b9n29n_l" .9It91-1 .. . 9n -I)~' 

qtr(b9n-l" .9It91-1 ... 9n -1) + (q -1)tr(bt~)~· 

q~ tr(bt~_19n) + q7 tr(bt~_d + (q - 1) tr(bt~) (3'4:(4) 

) 
(4) 

Z tr(bt~_I) + (1 - q 8 tr(b) + (q -1)8 tr(b) = Z8 tr(b) since b E 'Hn-1(q, Q)). 

On the other hand: 

(b ' ) a.r. t (b t' ) (3'),(4) i (b) tr tn9n = r 9n n-l = Z8 r . 

H b = zgn-1Y, z,y E 'Jtn-1(q,Q) : 

t ( t ' -1) a.r. t ( i' -1) a.r. r X9n9n-19nY n-19n = r X9n-19n9n-1Y n-19n = 

! tr(X9n-19n9n-lyt~_19n) + !::i tr(X9n-19n9n-lyt~_l) = 
q ---- q 

91 

(applying the previous case for b = X9n-1 E 'Hn(q, Q) and c = 9n-Iyt~_1 E 'Hn{q, Q)) 

1 ( , ) !::i t ( t' ) a.r.,(3') - tr 9nX9n-19n9n-lytn_1 + q r X9n-19ngn-1Y n-l = q -

1 ( t' ) +!::i t ( 2 t' ) a.r. q tr X9n9n-19n9n-lY n-l q Z r Xgn-l Y n-I = 

1 ( 2 , ) 1:::1 ( 2 t' ) a.r.,(3') - tr X9n-19n9n-l ytn- 1 + q z tr xgn-l Y n-l = 
q --

[9n_1 3 = (q2 -q+ 1)gn-l + {q -1)q] 

!(q2 _ q + 1)ztr(X9n_lyt~_I) + !(q -l)qztr(xyt~_I)+ 

l;qqztr(xyt~_I) + 7(q -1)ztr(X9n_lyt~_I) = 

[~(q2 _ q + 1) - (q_ql)2 ]z tr(X9n_lyt~_.) = z tr(X9n-Iyt~_I)' 

On the other hand : 

tr(bt~9n) = tr(X9n-lyt~9n) ~. 
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t (( t -1 -1)( t -1 -1)) Q.r. r X9n 9n-l .. ·91 91 ... 9n-l 9n ... 91 91 .• ·9n = 

t ( t -1 -It -1 -1) Q.r. r X9n9n-l .. ·91 9n ... 929192 •.. 9n 91 .. ·9n = 

t (( ) ( )t t( -1 -1) (-1 -1) -1) Q.r. r X9n 9n-19n ... 9192 91 92 91 ... 9n 9n-l 9n = 

t (( ) ( )t t -1 ( -1 -1) (-1 -1)) a.r. r X9n 9n-19n ... 9192 91 91 92 91 ... 9n 9n-l = 

t (( ) ( ) -It t( -1 -1) (-1 -1)) a.r. r X9n 9n-19n ... 9192 91 91 92 91 ... 9n 9n-l = 

t ( -1( ) ( )t t( -1 -1) (-1 -1)) Q.r. r X9n9n 9n-19n··· 9192 91 92 91 ... 9n 9n-l = 

t ( t -1 -It -1 -1) B..:!. r X9n-l .. ·91 9n··· 929192 .. ·9n 91 ... 9n-l -

t ( t -1 -1 t -1 -1( -1 )) r X9n-l .. ·91 91 ... 9n-l 9n .. · 91 91 ... 9n-l 9n 9n = 

92 

o 

Remark 11 If a word a E 'Hn(q, Q) does not contain any Ws, then for calculating 
tr( a) we only need to use rules 1), 2) and 3) of Theorem 13 j and so tr( a) is the 
same as Ocneanu's trace applied on a. 

We conclude the section by giving an example of calculating the trace of a word, in 
which we also demonstrate how to bring the word to the canonical form: 

z+l-q t (t' t' 2t' ) z+l-q t (t' t' 3t' -1 ) r 192 192 291 = r 192 1 °2 192 91 = q - q ~ 

z+!-q (q2 - q + 1) tr( t~92t~92t~92 -1 9d + z+!-q q( q - 1) tr( t~92t~ t~92 -1 9d = 

(z+l-q)(q2_ q
+1) tr(t~9292-1t~92t~9d + (z + 1 - q)(q -1) tr(t~92t~292-19d = 

q -
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(Z+1_q)~q2_q+1) tr(t~ 2g2t~gl)+ 

(z + 1 - q)(q -1)Qtr(t~g2t~g2-1g.) + (z + 1 - q)(q -l)(Q -1)tr(t~g2g2-1g1) = 

(Z+I-q)~q2_q+l) Q tr(t~g2t~gl) + (Z+I-q)~92 -9+1) (Q _ 1) tr(fl!tig.)+ 

3),4) 
(z + 1 - q)(q -l)Qtr(tit~gl) + (z + 1 - q)(q -l)(Q -l)tr(tigd = 

(z + 1 - q)(q - l)Qs tr(tigd + (z + 1 - q)(q - 1)(Q - 1) tr(tig.) = 

(Z+1-q)(q;-q+1)qz tr( t~ 2 g.)+ 

93 

[(Z+1_q)(q2~q+1)(Q-l)Z + (z + 1 - q}(q - 1)Q8 + (z + 1 - q)(q -l)(Q - 1)] tr(tigd = 

(Z+1-q)(q;-q+l)qz Q tr( tig.) + (Z+I-q)(~2 -q+l)qz (Q _ 1) tr(~)+ 

[(Z+1-q)(q2~q+l)(Q-l)Z + (z + 1 - q}(q - 1)Q8 + (z + 1 - q)(q - I)(Q -1)] tr(tig.) ~ 

(z+1-q)(q2_:+1)Qz(Q-l)z + [(Z+I- q)(q:-q+l)Q2 z + (Z+I-q)(q2~q+l)(9-1)% + 

(z + 1 - q)(q -1)Q8 + (z + 1 - q)(q - l)(Q -1)] tr(!i..gd = 
(z+1-q)(q2- 9+1)Q(Q-l)z2 + [(Z+I-q)(92-q+l)92% + (z+l-q)(q2_q+l)(9-1)% + 

q q q 

(z + 1 - q)(q -1)Q8 + (z + 1 - q)(q - l)(Q -1)] tr(9].tg1- 1g.) :!l 

(z+1-q)(q2_ q+1)Q(Q-l)Z2 + [(Z+I-q)(q2_q+1)92% + (%+1-q)(q2_q+l)(9-1)% + 
q q q 

] 
4) 

(z + 1 - q)(q - 1)Q8 + (z + 1 - q)(q - l)(Q - 1) z tr(t) = 

(z+1-q)(q2_ q+1)Q(Q-l)Z2 + [(Z+1-q)(q2_Q+1)Q2z + (z+1-q)(q2-q+l)(Q-l)z + 
q q q 

(z+1-q)(q-l)Q8+(z+1-q)(q-l)(Q-1)]zs. 

3.4 A HOMFLY-PT analogue for links in a solid 
torus 

In 3.1 we presented briefly how V. Jones reconstructed the HOMFLY-PT polynomial. 

Recall now (from 2.4.2 and 2.6) that if we consider the solid torus M = 8 3 \ i , 
then oriented links in M can be represented by mixed braids in the groups Rn,l. 

Moreover, in Corollary 5 (end of section 2.6) we gave the algebraic version of Markov's 
theorem for isotopic links inside M . 
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3.4.1 A trace-invariant for solid-torus-Iinks 

In this section we show how to obtain a HOMFLY-PT-typ (oricnt "d) link invariant , 
for oriented links in M , using the trace function described abov 

We notice first that move (I') in Corollary 5 is analogous to rul 1) of Th !Or m 13 . 

Claim Move (2') can be equivalently formulated by performing the Markov mov s 
(with positive and negative crossing) at the right-hand side of th mix d bra id, in u It 
a way that the extra string is placed under the pure braid gen ra tors T/, s. T. 

(2') Q '" Q(Jn±l E Bn+l,l , where Q E Bn,l is a word in the (Jj'S and T/,s . 

Picture: n n+l 

Proof of claim We only have to show that we do not n d th Markov mov "s with 
the extra string placed over the Tt' s. (These moves would chang T~_ l in tit word 
Q to (JnT~(Jn -1 ). Indeed: 

. .\ . .. ~> conj~ 
. ) 
III BII ,I 

+ 
br. rel~' 

" 

.. J 
, .. ~..,.,J 

conj ~ 
. ) 
III B".I 

+ 
br. reI ~ '-1------,-' 

(2') 
~ 

We can easily observe now that this version of move (2') r sembl s rlll 3) of Tlteor m 

13 . 

We shall also need the natural inclusion of B n,l into Bn+1 ,l as de. rib d 111 th 
following picture, (so that the direct limit U:::O= l Bn ,1 is well-d fin d): 

n+l 

!I, .-
! 

Finally, recall the epimorphism ,7r say, of CBn,l onto 1{n(Q, Q) d fin d by sending 
T' t-+ t = t', O' j t-+ 9i (and therefore Tt 1-+ ti , since Tt = O'j ••• 0'1T'0'1 - 1 ••• O'j - l - M 

illustrated in 2.6.1 - and ti = 9i ... 91 tg l - 1 ... gj - l ). 

o 
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The inclusion of Bn•1 into Bn+1.1 together with the epimorphism 11" and the trace 
function, imply that to every mixed braid in B n •1 we can assign an expression in the 
variables q, Q, z, s . 

So - exactly as in [30] - we reason that, in order to obtain a HOMFLY-PT-type link 
invariant we want 'to normalize the gi's so that both Markov moves affect the trace 
in the same way' . I.e. we want to normalize 9i to ()gj , () E C , so as to obtain 

(The normalization as well as the phrasing is the same as in [30], but for completeness 
we repeat it here adapted to our case). Then, for z #- 0 we have: 

Thus 

02 Z tr(a) = z + 1 - q tr(a) <===} 
q 

02 = z + 1 - q = >. . 
qz 

It follows now that, if we represent Bn.1 by 11",\, where 1I",\(O'j) = .j).9j E 'Hn(q, Q) 
and 1I",\(T') = t E 'Hn(q,Q) , (which implies that 1I"'\(Tf) = ti E 'Hn(q,Q)) , then the 
function of q, >., Q, s given by 

[ 
1 - >.q ] n-l 

.j). tr(1I",\{a)), for a E Bn•1 , 
>.(1 - q) 

depends only on the mixed link 0 (the closure of a) . The epimorphism 11", though, 
has the advantage of only involving the variables q, Q j so we incorporate .j). in the 
'universal' coefficient and we define: 

Definition 19 The 4-variable invariant X Lunq, Q, >., s) of the oriented mixed link 
L U j , that represents an oriented link inside the solid torus M, is the function: 

[ 
1->.q ]n-l 1\ 

Xa = XLUJ{q,Q,>',s) = - Vf.. (v>'ytr{1I"{a)) 
>'(1 - q) 

where 0' E Bn •1 is a word in the O'i'S and (Tt)'s such that Q = L U j ,e is the 
exponent sum of the O'j'S that appear in a, and 11" the representation of Bn •1 in 
'Hn( q, Q) such that T' f--+ t, O'j f--+ 9j . 



3.4. A HOMFLY-PT analogue for links in a solid torus 96 

Note By their definition, the pure braid generators (T') and (TO's do not affect 
the exponent sum e, so we can ignore them when we estimate e. 

Examples 

• As it follows from Remark 11 ,if a does not contain any (Tt), then XO/ is the 
HOMFLY-PT polynomial of the link in S3 obtained by removing from a the 'solid 
torus'string I. So if, for instance, a = 1 E BI,1 ,then Xa = 1 ; and if a = 1 E Bn,l 

(corresponding to the n component unlink) , then 

XO/ = [_ 1 - >.q r- l
. 

v'X(1 - q) 

• If a = T' E BI,1 ,then XOt = S j and if a = T: E Bn,l (corresponding to the n 
component unlink, the (i + 1 )st string of which wraps around I once in a positive 
sense) , then 

XOt = [- ;(~ ~qq)r-l S 

whilst, if a = (Tf}-l E Bn,l (corresponding to the n component unlink, the (i+ l)st 
string of which wraps around I once in a negative sense) , then 

[ 
1 - >.q ] n-l [ 1 1 - Q] XOt= - -S+-- . 

v'X(1 - q) Q Q 

• Similarly, if a = (Tt)2 E Bn ,} (the n component unlink, the (i + 1 )st component 
of which wraps around I twice in a positive sense), then 

[ 
1 - >.q ] n-l 

XOt = - .fi. [( Q - l)s + Ql . 
>'(1 - q) 

• Finally, if a = 0'13(T,)2 E B2,l (a right-handed trefoil that wraps around I twice 
in a positive sense), then 

1 - >.q 1\ 3 3 2 
Xa = - v'X (V>') tr(gl t ), where 

>'(l-q) 

tr(gI3t2
) = (q2 - q + 1) tr(g112) + q(q - 1) tr(12) = 

(q2 _q+ 1)( Q-l) tr(glt)+( q2 -q+ l)Q tr(gl )+q( q-l)( Q -1) tr(t)+q(q -1)Q trO) = 

(q2 _ q + I)(Q -l)t:;qs + (q2 - q + I)QlC";q + q(q - l)(Q -1)s + q(q - l)Q . 

3.4.2 A note on skein relations 

Let L+, L_, Lo be oriented links that have diagrams identical, except in one crossing, 
where they are as depicted below: 
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x x )( 
Lo 

Then, one can find a recursive linear formula in L+, L_, Lo - known as skein rule2 -

for defining the HOMFLY-PT polynomial (see [16] , [50] , [40] for full expositions). 

In [30] is explained a way of finding the skein rule of the 2-variable polynomial that 
derives from Ocneanu's trace function. Here we modify this way, in order to find the 
skein relations of the trace-invariant we defined above: 

We consider a mixed link, which may be assumed to be the closure of a mixed braid, 
and we pick a crossing in it, which is not a mixed one. Using conjugation, this crossing 
appears in the end of the word, and - again by conjugation - we may assume that 
L+ = 0'-;;;2 , L_ = a and Lo = alii , for some a ERn,} . By the defining relations of 
1in (q,Q) we have 

tr(7I'(aol)) -qtr(7I'(O')) = (q -1)tr(7I'(aud). 

Let e be the exponent sum of a with respect to the Ui'S, and multiply the above 
('111)"+1 

equation by T - jq , where 

Then 

T = [_ 1 - >.q r- 1
• 

VX(1 - q) 

IVX T (0..) e+2 tr( 71'( O'Uj2)) - ..;qJ). T (0..)e tr( 71'( a)) 
..;q >. 

1 "eH 
= (Jlj - ..;q)T(v>.) tr(7I'(O'ui)); 

so by the definition of X we obtain the skein relation: 

(The above relation together with the initial condition in 8 3 , X(tmknot) = 1 , define 
uniquely the HOMFLY-PT polynomiaL) In the same manner, but with less difficulty, 
we obtain a second skein rule for the mixed braiding, that derives from the relation 

I-I 1 I 1 - Q 
ti = Q tj + Q.1 

as follows: Let M+, AL, Mo be oriented mixed links that have diagrams identical, 
except in the regions depicted below: 

2 As cited in [22], the skein theory was originally found by J.W. Alexander in [2], and - after being 
neglected for forty years - was re-discovered by J.H. Con way in [12]. 
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n 
M+ Mo 

We consider a mixed link, which - as already mentioned - may be assum d to be the 
closure of a mixed braid, and we pick in it a positive mixed twist (as illust rated above). 
Note that, using conjugation in Bn•l , we can always create such a twist. Thus, by -conjugation we may assume that M+ = ;rt , M_ = a Tt-I and Mo = a , for om 
a E Bn •l . So we obtain: 

and, if we multiply the above equation by T (,;r.)e VQ we have 

Hence, since the Tt's do not change the exponent sum of a, neither the numb - I' of 
its strings, we obtain the following skein rule: 

One can check that the two skein rules together with the initia l conditions 

Xl = 1 ,lE B l •l and X T , = S , Tt E B I •I ••• 

suffice to calculate X inductively for any mixed link; but one would a lso have to pro v 
that X defined th is way is well-defin ed, which is beyond our scope at th mom nt. 

J. Hoste and M. I<idwell defin ed in [22] a 'new chromat ic skein invaria nt for a 
special class of dichromatic links, which may be viewed as an invariant of orient d 
monochromatic links inside a sol id torus; and this as such is the exact analogue of the 
HOMFLY-PT polynomial '. In their set-up, the 'solid torus' string f is perpendicular 
to the plane on which the rest of the link projects, and it is allow d to move by 
isotopy. The theorem they proved in the preliminary version of [22] (Theorem 2.1) i. 
the following, (where, for convenience , we use our notation for expressing the diffe rent 
links): 

Theorem 2.1 Th e1'e exists a unique invariant W i E iE, [v±l, z/l,a, x±l , A±l,h+], j =f 
i , of Type Ii links satisfy ing the following p1'Opert ies: 

1. C1'Ossing Rule: 

2. Clasp Rule: 
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3. Connected Sum Rule: 

4. Initial Data: 

W1 = A , 1 E Bt,t and WT, = h+ , T' E B t ,) 

where the i-coloured unknot cOl,esponds to i, and the j-coloured components con' -
spond to the rest of the mixed link. 

We can observe now that the Crossing Rule is the same as the skein rule • above, 
if we set v = .;qVX and Zj = ..;q - .fi ; whilst the Clasp Rule resembl s the skein 

rule •• above, if we set x = JQ and Q = v'Q - "*' ' but apparent ly th two rul s 
still differ by a sign. As J. Przytycki pointed out, we can show that the two rules are 
essentially the same if we substitute x = iy and Q = -id. This is a well -known 
trick in knot theory and an example of this being used can be found in [43], wh re 
W.B.R. Lickorish shows that the Kauffman polynomial and the Dubrovnik polynomial 
(see [32J, [33], [34]) are equ ivalent. Also, th Initial Data are the same as in ru! ••• 
, if we set A = 1 and h+ = s . 

We can also observe that, in our set-up there does not appear any conne ted-sum rul 
for the component j of two mixed links. The explanation lies in the fact that, in our 
set-up, the component j of a mixed link as well as the string J of a mixed braid 
remain always pointwise fixed. 

Aside If Ll ui, L 2Ui are two mixed links , and Bl uI , B2 U! are two corresl onding 
mixed braids, then, (L l conn.sumL2 ) U I corresponds to (B1conn.s'UmB2) U I , as 
pictured below (compare with [30] , page 351): 

1 m 
! ... 

Note The second rule ('initial data' rule) in the corresponding published v rsion 
of Theorem 2.1 (Theorem 3.1 in [22]) looks somehow different, but related to th 
conditions 2, 3 and 4 of Theorem 2.1 . 

3.5 A concluding discussion 

We concentrate on the lens space SI x S2 = L(p,O) . If we try to apply th abov 
ideas, in order to obtain an oriented link invariant in L(p,O) , we have to additionally 
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normalize our trace function under the band moves; but, as already mentioned in 
Remark 9 , 2.6.2, the band moves cannot be expressed in a simple way in terms of the 
Tt's. So, suppose we take a word in 'Hn(q, Q) written in the second canonical form 
(as given in page 83), we lift it in Bn •1 and we perform a band move in it. If we project 
the result on 'Hn+! (q, Q) , it will not be a word in the canonical form any more, as it 
follows from Remark 9. This means that there does not exist a multiplicative way for 
normalizing the trace under the band move - as there was in 3.4.1 . 

If we specialize, however, q = 0 ,then 9j-l = 9j , which implies that tj = t: , for 
tj = 9j ... 91 t91 ... 9j , and therefore, the band move behaves like a Markov move on 
the algebra level. So, we can obtain a weak polynomial invariant with variables Q, z, s 
by normalizing our trace exactly as in 3.4.1 . More precisely: 

Definition 20 The 3-variable invariant X LUr< Q, z, s) of the oriented mixed link L U 

j , that represents an oriented link inside the space L(p,O) , is the function: 

where Q' E Bn •1 is a word in the o/s and (Tf)'s such that a = L u j ,and 11' the 
representation of Bn.1 in 'Hn(q, Q) such that T'I-+ t, Uj 1-+ 9j . 

This invariant is not particularly interesting, as it only gives information about the 
permutation of the mixed braid and about the first homology group of the complement 
of the link in the given space. 

The above suggest that we would need to find a family of traces (instead of only 
one), and take an appropriate linear combination of them, in order to define a trace­
invariant for oriented links in L(p, 1). A way to obtain a family of traces, is by 
omitting one of the quadratic relations of 'Hn(q, Q) . As mentioned in 0.5, this idea is 
strongly supported by the works of J. Hoste and J. Przytycki, who defined the analogue 
of the Kauffman bracket version of the Jones polynomial (see [31)) for lens spaces, using 
skein module theory (see [23], [24], [25]) j it also seems to be related to the recent works 
of W.B.R. Lickorish (see [42]), where he gives a purely combinatorial way for viewing 
Witten's invariants (see [63]). 
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