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Abstract

The purpose of this dissertation is to study several problems related to high-

dimensional phenomena in analysis, geometry and probability.

The first problem examines the behaviour of probability measures of dila-

tions of sets possessing certain symmetries. We show that for the standard

Gaussian measure on complex vector space, cylinders are optimal in the sense

that, under dilations, the Gaussian measure grows no more rapidly for cylin-

ders than for other domains possessing enough symmetries. We also prove an

analogous result in the real case for Weibull and Gamma distributions. As

a consequence, we derive optimal comparison of moments for these distribu-

tions.

The second problem stems from the study of composite periodic quantum

systems. It asks about the behaviour of certain random matrices when their

size tends to infinity. We show that the spectrum of the tensor product of two

large random unitary matrices is asymptotically Poissonian; what we would

expect for diagonal matrices. The same conclusion is established for the tensor

product of a large number of 2× 2 random unitary matrices.

The third problem concerns the invertibility of operators on L1. We con-

struct an example of a locally invertible operator with kernel of arbitrarily large

dimension. The construction is combinatorial, relying on expander graphs and

recent results from computer science about the restricted isometry property on

`1. We also establish some Sobolev-type inequalities and find a certain large

class of convolution operators which are globally invertible on large subspaces.
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Preface

This thesis concerns several topics lying at the intersection of analysis and

geometry, each of which has a probabilistic flavour. We are interested in two

types of situation: (A) one wants to find generic properties of objects that

hold in any dimension, and (B) one wants to describe asymptotic properties

of objects if the dimension tends to infinity.

The first problem under consideration examines the behaviour of probabil-

ity measures of dilations of convex sets and falls into paradigm (A). In 1969,

L. Shepp made, and in 1999, R. Lata la and K. Oleszkiewicz proved a conjecture

saying that under dilations, a Gaussian measure on a real Banach space grows

no more rapidly for strips than for other symmetric convex sets. This result

has its roots in the study of Gaussian measures on Banach spaces, where one

often needs precise estimates for tails of distributions of norms of Gaussian vec-

tors. How to use the assumption of convexity on Gaussian space is a challenge,

since the intrinsic properties of the standard Gaussian measure, the rotational

invariance as well as the product structure at the same time, do not seem to be

intimately related to convexity. Natural questions that arise are these: what

can be said for Gaussian measures on complex Banach spaces, and what sets

are optimal for other measures? We address both of them, prompted by the

idea that for product measures, it is often possible to reduce the problem to

low dimensions via an inductive sort of argument. In the case of Gaussian

measures on complex space, after linearisation and dimension-reduction, we

conclude the argument by proving a simple, new, entropic functional inequal-

ity. In the real case, for symmetric Weibull and Gamma distributions, our

strategy is the same — first we reduce the problem to a problem in 2 dimen-
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sions, and then we show how it can be solved using some inequalities for one

dimensional functionals involving convexity.

Our second problem emerges from composite quantum systems modelled

by the tensor products of the spaces relating to their subsystems. Since in

quantum mechanics, dynamics is governed by unitary operators, for a com-

posite system, the relevant object is a tensor product of unitary matrices. If

the dynamics is generic, we take random unitary matrices to model the evolu-

tion, so we study the spectra of tensor products of random unitary matrices.

We focus on asymptotic properties, as the size of the matrix becomes large

(paradigm (B)). We mainly look at two situations: 1) the tensor product of

two independent random unitary matrices with the size of at least one of them

tending to infinity, and 2) the tensor product of a large number of independent

random unitary matrices of a fixed size. The main goal is to show how the

spectra of such matrices behave asymptotically.

The third problem concerns the geometry of L1 spaces. A bounded linear

operator T : L1

(
[0, 1]

)
−→ L1

(
[0, 1]

)
is said to be ε-locally invertible if for every

measurable subset A of [0, 1] of Lebesgue measure at most a half, the restricted

operator T |L1(A) is invertible with
∥∥(T |L1(A))

−1
∥∥ ≥ ε−1. The main question we

are concerned with reads as follows. Suppose that T is a bounded linear oper-

ator on L1

(
[0, 1]

)
which is ε-locally invertible. Is T invertible when restricted

to a subspace of finite codimension? We answer this question in the negative.

Our approach hinges very much on studying related aspects for finite dimen-

sional `1 spaces. We make use of magical combinatorial properties of expanders

that have recently been discovered in the context of sparse signal recovery. In

a sense, our work draws attention to a beautiful interplay between combi-

natorial properties of finite-dimensional objects and their infinite-dimensional

counterparts, with the emphasis on what happens when the dimension tends

to infinity. This closely follows the spirit of the local theory of Banach spaces,

a branch of geometric functional analysis that has developed rapidly in the

last few decades. Having said that, of course, we should also remark that the

problem discussed here can be seen as of type (B).
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This thesis comprises three chapters, each devoted to one of the problems

mentioned above. The chapters are independent and can be regarded as indi-

vidual pieces of work. What binds them together are paradigms (A) and (B)

in the study of high-dimensional phenomena.

Throughout the text we try to use standard notation. Unclear or ambiguous

symbols are explained as they appear. Each chapter finishes with a notes &

comments section which gives the origin of every theorem stated as well as the

author’s contribution.
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Chapter 1

Measures of dilations

1.1 Introduction

Let γn be the standard Gaussian measure on Rn, i.e. the measure with density

at x = (x1, . . . , xn) ∈ Rn given by 1√
2π
n e−|x|

2/2, where |x| =
√
x2

1 + . . .+ x2
n

denotes the Euclidean norm. Take a Borel subset A of Rn and expand it by

dilating, that is consider the set tA = {ta, a ∈ A}, t ≥ 1. We shall ask vaguely:

how fast does the function t 7→ γn(tA) grow? It is fairly easy to see that one

extreme case is a Euclidean ball. Indeed, let B be the closed Euclidean ball

centred at the origin with radius r chosen so that γn(B) = γn(A). In particular,

γn(A \ B) = γn(B \ A) and, by simply moving mass to where the density is

bigger, we get that for t ≥ 1,

γn
(
t(A \B)

)
=

∫
t(A\B)

e−|x|
2/2 dx√

2π
n = tn

∫
A\B

e−t
2|x|2/2 dx√

2π
n

= tn
∫
A\B

e−(t2−1)|x|2/2dγn(x) ≤ tn
∫
A\B

e−(t2−1)r2/2dγn(x)

= tn
∫
B\A

e−(t2−1)r2/2dγn(x) ≤ tn
∫
B\A

e−(t2−1)|x|2/2dγn(x)

= γn
(
t(B \ A)

)
.

Therefore,

γn(tA) ≤ γn(tB), t ≥ 1.
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A similar argument also shows that

γn(tA) ≥ γn(tB), t ≤ 1.

These two inequalities show that under dilations, the Gaussian measure grows

no faster for any set than it does for a ball. The natural question that arises is

this: what is the other extreme case? In other words, the Gaussian measure of

which sets grows most slowly. In 1969, in an unpublished preprint, L. Shepp

made the following conjecture.

1.1 Conjecture (Shepp). Let K be a convex symmetric (K = −K) subset in

Rn and let P = {x ∈ Rn, |x1| ≤ p} be a strip with width p chosen so that

γn(P ) = γn(K); then

γn(tK) ≥ γn(tP ), t ≥ 1,

γn(tK) ≤ γn(tP ), t ≤ 1.
(1.1)

It should be remarked here that strips are no longer optimal in the wider

class of symmetric sets — the above inequalities are not true after dropping

the assumption of convexity. For instance, they do not hold for the cross

K = ([−1, 1]× R) ∪ (R× [−1, 1]) in the plane.

In the form stated above, the conjecture was first published in [Sza91] (see

Remark 2.7 therein). V. Zalgaller and V. Sudakov showed that it holds for

n = 3 (see [ZS74]). S. Kwapień and J. Sawa proved the conjecture under the

additional assumption that K is symmetric with respect to every hyperplane

{xi = 0}, i = 1, . . . , n (see [KS93]). Not until 30 years after it had been

stated, was Shepp’s conjecture proved in full generality, by R. Lata la and

K. Oleszkiewicz (see [LO99]). Their result is sometimes referred to as the

S-inequality.

There are some natural further directions of research. Shepp’s preprint

was concerned with the existence of strong exponential moments of a Gaussian

measure on a Banach space. Suppose that X is a (centred) Gaussian vector

on a Banach space (F, ‖ · ‖) distributed according to a Gaussian measure µ

on F . One often needs precise estimates on the quantity P (‖X‖ > t) which is
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simply 1−µ(tK), where K denotes the unit ball in F . Such a ball is a convex

and symmetric set. Now, if F is a real Banach space, certain approximation

techniques allow one to reduce the situation to the simplest case of the standard

Gaussian measure γn on Rn and estimates like the S-inequality yield optimal

bounds for P (‖X‖ > t) (for details see, e.g., [KS93]). The same paradigm

applies when F is a complex Banach space. Hence one of the interesting

questions is to find a version of the S-inequality for the standard Gaussian

distribution on Cn.

Another natural question is this: are there any other measures for which

the S-inequality holds (strips are optimal)? R. Lata la made the following

conjecture (see survey [Lat02])

1.2 Conjecture (Lata la). Let ν be a rotationally invariant measure on Rn,

absolutely continuous with respect to the Lebesgue measure with a density of

the form f(|x|) for some nonincreasing function f : [0,∞) −→ [0,∞). Then

for any convex symmetric set A in Rn and any symmetric strip P in Rn such

that ν(A) = ν(P ) the inequality ν(tA) ≥ ν(tP ) is satisfied for t ≥ 1.

It was proved that the conjecture holds for n ≤ 3 (see [ZS74]). To the best

of our knowledge, this is the only known result addressing Lata la’s conjecture

in its full generality.

The next sections are devoted to the complex counterpart of the S-inequal-

ity as well as its extensions to some other measures in the real case (products

of symmetric Gamma and Weibull distributions). We also present applications

of S-inequalities to the derivation of optimal comparison of moments.

1.2 Gaussian measures on complex space

1.2.1 Preliminaries

We define the standard Gaussian measure νn on the space Cn via the formula

νn(A) = γ2n (τ(A)) , for any Borel set A ⊂ Cn,
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where Cn τ−→ R2n is the bijection given by

τ(z1, . . . , zn) = (Rez1, Imz1, . . . ,Rezn, Imzn).

We say that a closed subset K of Cn supports the complex S-inequality, SC-in-

equality for short, if for every s > 0 the dilation L = sK and every cylinder

C = {z ∈ Cn, |z1| ≤ R} satisfy

νn(L) = νn(C) =⇒ νn(tL) ≥ νn(tC), for t ≥ 1. (1.2)

A subset K of Cn is called circled if eiθK = K for every θ ∈ R. A natural

counterpart of the S-inequality, (1.1), in the complex case is the following

conjecture due to A. Pe lczyński.

1.3 Conjecture (Pe lczyński). All convex subsets K of Cn which are circled

support the SC-inequality.

Following the methods from [LO99], the author in his master’s thesis ob-

tained a partial result saying that all convex circled sets support the SC-in-

equality as long as they are not too big. More precisely, he showed in [Tko11]

that there exists a universal constant c > 0.64 such that for every convex cir-

cled subset K of Cn with νn(K) < c, if C is a cylinder of the same νn measure

as K, then

νn(tK) ≥ νn(tC), for every t ∈ [1, t0],

where t0 is determined by the condition νn(t0K) = c.

Note that a unit ball with respect to a norm on Cn is a convex and circled

set. We are interested in the class R of all closed sets in Cn which are Reinhardt

complete, i.e. along with each point (z1, . . . , zn) such a set contains all points

(w1, . . . , wn) for which |wk| ≤ |zk|, k = 1, . . . , n (consult for instance the

textbook [Sha92, I.1.2, pp. 8–9]). Sets from the class R are not necessarily

convex (e.g. {(z1, z2) ∈ C2, |z1|1/2 + |z2|1/2 ≤ 1}). For us, it is important that

this class contains all unit balls with respect to unconditional norms on Cn.

Recall that a norm ‖·‖ is said to be unconditional if ‖(eiθ1z1, . . . , e
iθnzn)‖ = ‖z‖

for all z ∈ Cn and θ1, . . . , θn ∈ R. Our main result reads

12



1.4 Theorem. Every set from the class R supports the SC-inequality.

Now we establish some simple general observations which allow us to reduce

the problem to a one-dimensional entropy inequality. This inequality, which

may be of independent interest, is proved in the next subsection. Then we

prove the main theorem. In the last subsection we discuss its corollaries.

1.5 Proposition. A closed subset K of Cn supports the SC-inequality if and

only if for every s > 0 the dilation L = sK and every cylinder C satisfy

νn(L) = νn(C) =⇒ d

dt
νn(tL)

∣∣∣∣
t=1

≥ d

dt
νn(tC)

∣∣∣∣
t=1

. (1.3)

Proof. We only show the interesting part that (1.3) implies (1.2) following the

proof of [KS93, Lemma 1]. Fix a dilation L of K and a cylinder C such that

νn(L) = νn(C). Let a function h be given by νn(tL) = νn(h(t)C), t ≥ 1. Then,

by the assumption, we find

h(t)
d

ds
νn(sC)

∣∣∣∣
s=h(t)

=
d

ds
νn(sh(t)C)

∣∣∣∣
s=1

≤ d

ds
νn(stL)

∣∣∣∣
s=1

= t
d

ds
νn(sL)

∣∣∣∣
s=t

.

Differentiating the equation which defines the function h yields d
ds
νn(sL)

∣∣
s=t

=

h′(t) d
ds
νn(sC)

∣∣
s=h(t)

, thus h(t) ≤ th′(t). This means that the function h(t)/t is

nondecreasing, so 1 = h(1) ≤ h(t)/t for t ≥ 1.

For any closed set A the derivative of the function t 7→ νn(tA) is easy to

compute. Indeed,

d

dt
νn(tA)

∣∣∣∣
t=1

=
d

dt

∫
tA

e−|z|
2/2dz

∣∣∣∣
t=1

=
d

dt

∫
A

t2ne−t
2|w|2/2dw

∣∣∣∣
t=1

= 2nνn(A)−
∫
A

|z|2dνn(z).

Moreover, the integral of |z|2 over a cylinder C may be expressed explicitly in

terms of the measure νn(C). Namely,∫
C

|z|2dνn(z) = 2(1− νn(C)) ln (1− νn(C)) + 2nνn(C).

Combining these two remarks with the preceding proposition we obtain an

equivalent formulation of the problem.
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1.6 Proposition. A closed subset K of Cn supports the SC-inequality if and

only if for every s > 0 the dilation L = sK satisfies∫
L

|z|2dνn(z) ≤ 2np+ 2(1− p) ln (1− p) , (1.4)

where p = νn(L) is the measure of the dilation L.

1.2.2 A one-dimensional entropy inequality

Observe that the quantity x lnx with x = 1 − p appears in (1.4). It is not

surprising that entropy will play a role in the rest of our proof. Recall that the

entropy of a function f : X −→ [0,∞) with respect to a probability measure

µ on a measurable space X is defined by

Entµ f =

∫
X

f(x) ln f(x)dµ(x)

−
(∫

X

f(x)dµ(x)

)
ln

(∫
X

f(x)dµ(x)

)
.

(1.5)

We adopt the standard convention that 0 ln 0 = 0.

The following simple one-dimensional entropy inequality is an important

ingredient in the proof of the main theorem, Theorem 1.4.

1.7 Lemma. Let µ be a Borel probability measure on [0,∞) and suppose

f : [0,∞) −→ [0,∞) is a bounded and nondecreasing function. Then

Entµ f ≤ −
∫ ∞

0

f(x)

(
1 + lnµ ((x,∞))

)
dµ(x). (1.6)

Proof. Using homogeneity of both sides of (1.6), we can assume without loss of

generality that
∫∞

0
fdµ = 1. Then we may rewrite the assertion of the lemma

as follows ∫ ∞
0

ln

(
f(x)

∫
(x,∞)

dµ(t)

)
f(x)dµ(x) ≤ −1. (1.7)

Introduce the probability measure ν on [0,∞) with the density f with respect

to µ. Thanks to the monotonicity of f we can bound the left hand side of the

last inequality by∫ ∞
0

ln

(
ν ((x,∞))

)
dν(x) = −

∫ ∞
0

∫ 1

0

du

u
1{u≥ν((x,∞))}(u, x)dν(x).

14



Define the function

H(y) = inf {t, ν ((t,∞)) ≤ y} ,

which is the inverse tail function, and observe that

{(u, x), u ≥ ν ((x,∞))} ⊃ {(u, x), H(u) ≤ x},

as u ≥ ν ((H(u),∞)) ≥ ν ((x,∞)). This leads to

−
∫ ∞

0

∫ 1

0

du

u
1{u≥ν((x,∞))}(u, x)dν(x) ≤ −

∫ ∞
0

∫ 1

0

du

u
1{H(u)≤x}(u, x)dν(x)

= −
∫ 1

0

ν ([H(u),∞))
du

u
.

Since u ≤ ν ([H(u),∞)), we finally get the desired estimate.

1.8 Remark. If µ has a density, say g, the proof can be rewritten as follows.

For t ≥ x the monotonicity of f yields f(x) ≤ f(t), so f(x)
∫

(0,∞)
dµ(t) ≤∫∞

x
f(t)g(t)dt = F (x) and the right-hand side of inequality (1.7) can be

bounded above by∫ ∞
0

(
lnF (x)

)(
− F ′(x)

)
dx = −F lnF

∣∣∣∣∞
0

+

∫ ∞
0

F ′(x)

F (x)
F (x)dx

= F
∣∣∞
0

= −1,

as F (0) =
∫∞

0
fdµ = 1 and F vanishes at infinity.

1.2.3 Proof of the main result

We shall need a multidimensional version of Lemma 1.7 for product measures.

To establish it, we shall exploit the product structure. For simplicity, we

formulate this result for the Gaussian measure.

1.9 Lemma. Let g : Cn −→ [0,∞) be a bounded function satisfying

1) g((eiθ1z1, . . . , e
iθnzn)) = g(z) for any z ∈ Cn and θ1, . . . , θn ∈ R,

2) for any w, z ∈ Cn the condition |wk| ≤ |zk|, k = 1, . . . , n implies g(w) ≤

g(z).

15



Then

Entνn g ≤
∫
Cn
g(z)

(
|z|2

2
− n

)
dνn(z). (1.8)

Proof. For a fixed vector r = (r1, . . . , rn) ∈ [0,∞)n we denote

r(k) = (r1, . . . , rk−1, rk+1, . . . , rn) ∈ [0,∞)n−1,

and then define the functions

grk(x) = g(r1, . . . , rk−1, x, rk+1, . . . , rn), k = 1, . . . , n.

Notice that for a function h : C −→ [0,∞) obeying property 1) we get∫
C
h(z)dν1(z) =

1

2π

∫ 2π

0

∫ ∞
0

h(teiθ)e−t
2/2tdtdθ =

∫ ∞
0

h(t)dµ(t),

where µ denotes the probability measure on [0,∞) with the density at t given

by te−t
2/2. Therefore,∫
Cn
g(z)

(
|z|2

2
− n

)
dνn(z) =

∫
[0,∞)n

g(r)

(∑n
k=1 r

2
k

2
− n

)
dµ⊗n(r)

=

∫
[0,∞)n

n∑
k=1

[∫
[0,∞)

grj (x)

(
x2

2
− 1

)
dµ(x)

]
dµ⊗n(r),

where µ⊗n = µ ⊗ . . . ⊗ µ denotes the product measure. Applying Lemma 1.7

for the function grj and the measure µ we obtain the estimate∫
Cn
g(z)

(
|z|2

2
− n

)
dνn(z) ≥

∫
[0,∞)n

n∑
k=1

Entµ(grj )dµ
⊗n(r)

≥ Entµ⊗n g = Entνn g,

where the last inequality follows from the subadditivity of entropy (see, e.g.,

[Led01, Proposition 5.6]).

Proof of Theorem 1.4. Fix K ∈ R. We want to show (1.4), that is∫
K

|z|2dνn(z) ≤ 2np+ 2(1− p) ln (1− p) ,

where p = νn(K) is the measure of K. The application of Lemma 1.9 for the

function g(z) = 1− 1K(z) yields

−(1− p) ln(1− p) ≤ −
∫
K

|z|2

2
dνn(z) + np,

which is what we want.
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1.2.4 Corollaries

Theorem 1.4 immediately implies that the Cartesian products of cylinders

support the SC-inequality. As a consequence, the SC-inequality possesses

a tensorization property.

1.10 Corollary. Let sets K1 ⊂ Cn1 , . . . , K` ⊂ Cn` support the SC-inequality.

Then the set K1 × . . .×K` also supports the SC-inequality.

Proof. Choose a cylinder C with the same measure as the Cartesian product

K1 × . . .×K` =
∏
Ki and choose cylinders Ci with the same measure as the

sets Ki respectively. Then we have that C and
∏
Ci have the same measure,

νn(C) = νn

(∏
Ki

)
=
∏

νni (Ki) =
∏

νni (Ci) = νn

(∏
Ci

)
.

Since we assume that each Ki supports the SC-inequality and, as we said, so

does
∏
Ci, we get that for t ≥ 1,

νn

(
t
∏

Ki

)
=
∏

νni(tKi) ≥
∏

νni(tCi) = νn

(
t
∏

Ci

)
≥ νn(tC),

hence
∏
Ki supports the SC-inequality as well.

Another consequence of the main theorem is related to the standard sym-

metric exponential measure λn on Rn, i.e.

dλn(x) =
1

2n
e−|x|1dx, x ∈ Rn,

where we denote |(x1, . . . , xn)|1 =
∑n

i=1 |xi|. It turns out that certain subsets of

Rn support the S-inequality for λn with strips as the optimal sets. To state the

result, we need a few definitions. We say that a set K ⊂ [0,∞)n is a down set

if for every point x ∈ K, the set K contains the cube [0, x1]× . . .× [0, xn]. A set

K ⊂ Rn is called unconditional if (ε1x1, . . . , εnxn) ∈ K whenever (x1, . . . , xn) ∈

K and ε1, . . . , εn ∈ {−1, 1}. By an unconditional down set K in Rn we mean

the unconditional set K such that the set K ∩ [0,∞)n is a down set. For

instance, any unconditional convex set is also an unconditional down set.
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1.11 Theorem. For any closed unconditional down set K ⊂ Rn and for any

strip P = {x ∈ Rn, |x1| ≤ p}, p ≥ 0, we have

λn(K) = λn(P ) =⇒ ∀t ≥ 1 λn(tK) ≥ λn(tP ), (1.9)

and, equivalently,

λn(K) = λn(P ) =⇒ ∀t ≤ 1 λn(tK) ≤ λn(tP ). (1.10)

Proof. The equivalence of (1.9) and (1.10) is straightforward. For instance,

assume the latter does not hold. Then, there is t0 < 1 such that λn(t0K) >

λn(t0P ). We can find s0 < 1 for which λn(s0t0K) = λn(t0P ). Using (1.9) we

get a contradiction

λn(K) > λn(s0K) = λn

(
1

t0
(s0t0K)

)
≥ λn

(
1

t0
(t0P )

)
= λn(P ) = λn(K).

Consider the mapping F : Cn −→ [0,∞)n given by the formula

F (z1, . . . , zn) = (|z1|, . . . , |zn|).

Observe that for a down set A ⊂ [0,∞)n, the set F−1(A) is Reinhardt complete

and integrating using the polar coordinates we find that

νn
(
F−1(A)

)
=

∫
A

n∏
i=1

rie
−r2i /2dr1 . . . drn.

Now, let us change the variables according to the mapping G : [0,∞)n −→

[0,∞)n,

G(x1, . . . , xn) =
1

2
(x2

1, . . . , x
2
n).

We obtain

νn
(
F−1(A)

)
=

∫
G(A)

e−
∑n
i=1 xidx.

Since G(A) is a down set if and only if A is a down set, we infer that for any

unconditional down set K ⊂ Rn

λn(K) = νn(K̃), where K̃ := G−1F−1 (K ∩ [0,∞)n) .

Moreover, for a strip P = {x ∈ Rn, |x1| ≤ p}, the set P̃ ⊂ Cn is a cylinder.

Note also that t̃K =
√
tK̃. These observations combined with Theorem 1.4

yield the assertion.
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In the next section, we will see a generalization of this theorem. Now,

we finish our discussion with a result concerning the optimal comparison of

moments of unconditional norms for the exponential measure.

1.12 Corollary. Let ‖ · ‖ be a norm on Rn which is unconditional, i.e.

‖(ε1x1, . . . , εnxn)‖ = ‖(x1, . . . , xn)‖,

for any xj ∈ R and εj ∈ {−1, 1}. Then for p ≥ q > 0(∫
Rn
‖x‖pdλn(x)

)1/p

≤ Cp,q

(∫
Rn
‖x‖qdλn(x)

)1/q

, (1.11)

where the constant

Cp,q =

(∫
R |x|

pdλ1(x)
)1/p(∫

R |x|qdλ1(x)
)1/q

=
(Γ(p+ 1))1/p

(Γ(q + 1))1/q

is the best possible.

Proof. It is enough to repeat an argument credited to S. Szarek presented in

detail in the proof of Corollary 3 in [LO99]. We can write∫
Rn
‖x‖pdλn(x) =

∫ ∞
0

ptp−1λn
(
Kc
t

)
dt,

where Kt = {x ∈ Rn, ‖x‖ ≤ t} is a closed convex unconditional set, hence

an unconditional down set and Theorem 1.11 provides optimal bounds for its

measure. Specifically, we can compare it with the measure of a strip St = {x ∈

Rn, |x1| ≤ t}. Moreover, note that we have λn(Sct ) = λ1{x ∈ R, |x| > t}.

The argument starts with choosing a parameter α > 0 so that∫
Rn
‖x‖pdλn(x) =

∫
R
|x/α|pdλ1(x).

Rewriting yields ∫ ∞
0

tp−1λn(Kc
t )dt =

∫ ∞
0

tp−1λn(Scαt)dt,

so there is t0 > 0 such that Kt0 and Sαt0 have the same measure λn. Hence we

have λn(Kc
t ) ≥ λn(Scαt) for t ≤ t0, and λn(Kc

t ) ≤ λn(Scαt) for t ≥ t0. It follows

that for t > 0 and p ≥ q > 0(
t

t0

)p−1 (
λn(Kc

t )− λn(Scαt)
)
≤
(
t

t0

)q−1 (
λn(Kc

t )− λn(Scαt)
)
.
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Integrating gives ∫ ∞
0

tq−1λn(Kc
t )dt ≥

∫ ∞
0

tq−1λn(Scαt)dt,

or ∫
Rn
‖x‖qdλn(x) ≥

∫
R
|x/α|qdλ1(x),

thus, given the choice of α, we obtain (1.11).

1.3 The Gamma and Weibull distributions

1.3.1 Preliminaries

The aim of this section is to extend Theorem 1.11 to the measures ηnp on Rn

with densities

dηnp (x) = (cp/2)ne−|x|
p
pdx, x ∈ Rn, (1.12)

where we denote |(x1, . . . , xn)|p = (
∑
|xi|p)1/p and cp = 1/Γ(1 + 1/p) is the

appropriate normalization constant.

We begin with a few definitions. In this section, for a Borel measure µ

on R its product measure µ ⊗ . . . ⊗ µ = µ⊗n is denoted by µn. Recall that

such a product measure µn on Rn is said to support the S-inequality for a

Borel set L ⊂ Rn if for every s > 0 the dilation K = sL and every strip

P = {x ∈ Rn, |x1| ≤ p} satisfy

µn(K) = µn(P ) =⇒ µn(tK) ≥ µn(tP ), for t ≥ 1. (1.13)

If we assume that the function Ψ(x) = µ ([−x, x]) is invertible for x ≥ 0, we

can write (1.13) as

µn(tK) ≥ Ψ
[
tΨ−1

(
µ(K)

)]
, for t ≥ 1. (1.14)

A set K ⊂ Rn is called a down set if for every point x ∈ K, the set K contains

the cube [−|x1|, |x1|]× . . .× [−|xn|, |xn|].
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1.3.2 Results

Now we can state the main result.

1.13 Theorem. Let p ∈ (0, 1]. Then the measure ηnp defined in (1.12) supports

the S-inequality for all down sets in Rn.

As in Theorem 1.11, thanks to a simple coordinate-wise transport of mea-

sure argument, we establish the following corollary.

1.14 Corollary. For p ∈ (0, 1] and α > 0 introduce the measure µp,α on R

with density

dµp,α(x) = αcp|x|α−1e−|x|
αp

dx. (1.15)

Then the product measures µnp,α supports the S-inequality for all down sets in

Rn. In particular, defining for α > 0 and q ≥ 1 on R the symmetric Weibull

measure ωα with the parameter α and the symmetric Gamma measure λq with

the parameter q, given by

dωα(x) =
1

2
α|x|α−1e−|x|

α

dx, (1.16)

dλq(x) =
1

2Γ(q)
q|x|q−1e−|x|dx. (1.17)

we obtain that the product measures ωnα and λnq support the S-inequality for all

down sets in Rn.

Recall that Corollary 1.12 says that the S-inequality for the symmetric

exponential measure, (1.9), yields the optimal comparison of moments of un-

conditional norms. The same argument shows that the same holds true for

any product measure.

1.15 Corollary. Let ‖ · ‖ be a norm on Rn which is unconditional, i.e.

‖(ε1x1, . . . , εnxn)‖ = ‖(x1, . . . , xn)‖

for any xj ∈ R and εj ∈ {−1, 1}. Suppose that a product Borel probability

measure µn = µ⊗n supports the S-inequality for all down sets in Rn. Then for

p ≥ q > 0 (∫
Rn
‖x‖pdµn(x)

)1/p

≤ Cp,q

(∫
Rn
‖x‖qdµn(x)

)1/q

, (1.18)
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where the constant

Cp,q =

(∫
R |x|

pdµ(x)
)1/p(∫

R |x|qdµ(x)
)1/q

is the best possible. In particular, we might take µ = ηp, ωα, λq, for p ∈ (0, 1],

α > 0, q ≥ 1 (see (1.12), (1.16), (1.17)).

In the next subsection we present the proof of the main result. The proofs of

Corollaries 1.14 and 1.15 are essentially identical to those of Theorem 1.11 and

Corollary 1.12 respectively. We omit the latter, but because of some subtleties

we still discuss the proof of the former.

1.3.3 Proofs

Proof of Theorem 1.13

The theorem is trivial in one dimension. For higher dimensions the strategy of

the proof is to reduce the problem to the two dimensional case where everything

can be computed. This is done in the following proposition.

1.16 Proposition. Let µ be a Borel probability measure on R. Let µn = µ⊗n

be its product measure on Rn. If µ2 supports the S-inequality for all down sets

on R2 then for any n ≥ 2 the measure µn supports the S-inequality for all down

sets on Rn.

Proof. We proceed by induction on n. Let us fix n ≥ 2 and assume that µn

supports the S-inequality for all down sets in Rn. We would like to show that

µn+1 supports the S-inequality for all down sets in Rn+1. To this end consider

a down set K ⊂ Rn+1 and fix t ≥ 1. Thanks to Fubini’s theorem

µn+1(tK) =

∫
R
µn((tK)x)dµ(x) =

∫
R
µn(tKx/t)dµ(x),

where Ax = {y ∈ Rn, (y, x) ∈ A} is a section of a set A ⊂ Rn+1 at a level x ∈ R.

For a set A let PA denote a strip with a width wA such that µn(A) = µn(PA).

Since the section Kx/t is a down set in Rn, by the induction hypothesis we

obtain

µn+1(tK) ≥
∫
R
µn
(
tPKx/t

)
dµ(x) =

∫
R
µ
(

[−twKx/t , twKx/t ]
)

dµ(x).
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For simplicity denote the function x 7→ wKx by f . If we put Gf ⊂ R2 to be

a down set generated by f , i.e. Gf = {(x, y) ∈ R2, |y| ≤ f(x), x ∈ R}, then

its dilation tGf is generated by the function x 7→ tf(x/t). Therefore∫
R
µ
(

[−twKx/t , twKx/t ]
)

dµ(x) = µ2(tGf ).

However, µ2(Gf ) = µn+1(K), so taking the strip P = [−w,w] × Rn with the

same measure as K we see that the strip [−w,w] × R has the same mea-

sure as Gf . Now the fact that µ2 supports the S-inequality implies µ2(tGf ) ≥

µ2(t([−w,w]×R)) = µn+1(tP ). Thus we have shown that µn+1(tK) ≥ µn+1(tP )

and this completes the proof.

Thus it suffices to show the theorem when n = 2. Notice that any down

set K ⊂ R2 can be described by a nonincreasing function f : [0,∞)→ [0,∞),

namely

K =
{

(x, y) ∈ R2, |y| ≤ f(|x|)
}
.

Fix such a function and take a strip P = {|x1| ≤ w} such that η2
p(K) = η2

p(P ).

To prove that η2
p supports the S-inequality for the down set K it is enough to

show that (see Proposition 1.5)

d

dt
η2
p(tK)

∣∣∣
t=1
≥ d

dt
η2
p(tP )

∣∣∣
t=1
.

Let

Mp(K) =

∫
K

(|x|p + |y|p) dη2
p(x, y).

We have

η2
p(tK) =

c2
p

4

∫
tK

e−(|x|p+|y|p) dxdy =
c2
p

4

∫
K

t2e−t
p(|x|p+|y|p) dxdy,

hence
d

dt
η2
p(tK)

∣∣∣
t=1

= 2η2
p(K)− pMp(K).

Therefore we are to prove that Mp(K) ≤ Mp(P ). Define the functions T :

[0,∞)→ [0, 1], S : [0,∞)→ [0, 1]

T (u) = cp

∫ ∞
u

e−x
p

dx, S(u) = cp

∫ u

0

xpe−x
p

dx
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and let µ+ be the probability measure with density cpe
−xp on [0,∞). Note

that

S(u) = cp
1

p

∫ u

0

x(−e−xp)′ dx = −cp
p
ue−u

p

+
1

p
(1− T (u)).

Thus S(∞) = 1/p. We have

Mp(K) = c2
p

∫ ∞
0

∫ f(x)

0

(xp + yp)e−x
p−yp dy dx

= cp

∫ ∞
0

xpe−x
p

(1− T (f(x))) dx+ cp

∫ ∞
0

S(f(x))e−x
p

dx

=
1

p
−
∫ ∞

0

xpT (f(x)) dµ+(x) +

∫ ∞
0

S(f(x)) dµ+(x).

To calculate Mp(P ), it is enough to take f(x) = ∞ for x < w and f(x) = 0

for x ≥ w in the above computations, so we obtain∫
P

(|x|p + |y|p) dη2
p(x, y) =

1

p
−
(

1

p
− S(w)

)
+

1

p
(1− T (w))

=
1

p
+ S(w)− 1

p
T (w).

Let Φ : [0, 1] → R, Φ = S ◦ T−1 and g : [0,∞) → [0, 1], g = T ◦ f . We would

like to prove ∫
Φ(g) dµ+ −

∫ ∞
0

xpg(x) dµ+(x) ≤ S(w)− 1

p
T (w).

Observe that

η2
p(K) = c2

p

∫ ∞
0

∫ f(x)

0

e−y
p−xp dy dx

=

∫ ∞
0

(1− T (f(x))) dµ+(x) = 1−
∫
g dµ+.

Our assumption η2
p(K) = η2

p(P ) yields
∫
g dµ+ = T (w). Moreover,

S(w) = Φ(T (w)) = Φ

(∫
g dµ+

)
.

Therefore our inequality can be expressed in the following form∫
Φ(g) dµ+ − Φ

(∫
g dµ+

)
≤
∫ ∞

0

g(x)

(
xp − 1

p

)
dµ+(x).

Note that g : [0,∞) → [0, 1] is nondecreasing. Summing up, to establish

Theorem 1.13 it suffices to prove the following lemma.
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1.17 Lemma. Let p ∈ (0, 1] and let µ+ be a measure with density cpe
−xp

supported on [0,∞). Then for all nondecreasing functions g : [0,∞) → [0, 1]

we have∫
Φ(g) dµ+ − Φ

(∫
g dµ+

)
≤
∫ ∞

0

g(x)

(
xp − 1

p

)
dµ+(x). (1.19)

In order to prove Lemma 1.17 we shall need a lemma of R. Lata la and

K. Oleszkiewicz (see [LO00, Lemma 4] or [Wol07, Theorem 1]). For conve-

nience let us recall their result.

1.18 Lemma (Lata la–Oleszkiewicz). Let (Ω, ν) be a probability space and sup-

pose that Φ : [0, 1] → R has strictly positive second derivative and 1/Φ′′ is

concave. For a nonnegative function g : Ω→ [0, 1] define a functional

ΨΦ(g) =

∫
Ω

Φ(g) dν − Φ

(∫
Ω

g dν

)
. (1.20)

Then ΨΦ is convex, namely

ΨΦ(λf + (1− λ)g) ≤ λΨΦ(f) + (1− λ)ΨΦ(g).

Now we show that our function Φ = S ◦ T−1 satisfies the assumptions of

Lemma 1.18.

1.19 Lemma. The function Φ = S ◦ T−1 : [0, 1] → R satisfies Φ′′ > 0 and

(1/Φ′′)′′ ≤ 0.

Proof. Let T−1 = F . Note that F ′ = 1
T ′(F )

= − 1
cp
eF

p
. We have

Φ′ = S ′(F )F ′ = cpF
pe−F

p

(
− 1

cp
eF

p

)
= −F p

and

Φ′′ = −pF p−1F ′ =
p

cp
F p−1eF

p

> 0.

Moreover,

(1/Φ′′)′ =
cp
p

(
F 1−pe−F

p)′
=
cp
p

(
(1− p)F−p − pF 1−pF p−1

)
e−F

p

F ′ = 1− 1− p
p

F−p
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and

(1/Φ′′)′′ = (1− p)F−p−1F ′ = −1− p
cp

F−p−1eF
p ≤ 0.

1.20 Remark. The reader might want to notice that the last inequality is the

place where the proof of the theorem does not work for other values of p.

We are ready to give the proof of Lemma 1.17.

Proof of Lemma 1.17. Combining Lemmas 1.18 and 1.19 we see that the left

hand side of (1.19) is a convex functional of g. The right hand side is linear

in g and therefore we see that λg1 + (1 − λ)g2 satisfies (1.19) for every λ ∈

[0, 1] whenever g1, g2 satisfy (1.19). By an approximation argument it suffices

to prove our inequality for nondecreasing right-continuous piecewise constant

functions that take finitely many values. Every such a function is a convex

combination of a finite collection of functions of the form ga(x) = 1[a,∞)(x),

where a ∈ [0,∞]. Therefore it suffices to check (1.19) for the functions ga.

Since Φ(0) = S(∞) = 1/p and Φ(1) = 0, we have∫
Φ(ga) dµ+ − Φ

(∫
ga dµ+

)
=

1

p
(1− T (a))− S(a)

and ∫ ∞
0

ga(x)

(
xp − 1

p

)
dµ+(x) =

1

p
− S(a)− 1

p
T (a),

thus we have equality in (1.19).

The proof of Theorem 1.13 is now complete.

Proof of Corollary 1.14

Recall that the idea is that once a measure supports the S-inequality for all

down sets then so does its image under a properly chosen transformation (cf.

the proof of Theorem 1.11). Fix p ∈ (0, 1] and α > 0. Consider the mapping

F : [0,∞)n −→ [0,∞)n given by the formula

F (x1, . . . , xn) = (xα1 , . . . , x
α
n).

26



We will use it to change the variables. So, take a down set K ⊂ Rn, the strip

P ⊂ Rn such that ηnp (K) = ηnp (P ), and compute the measure of the dilation

tK for some t ≥ 1

ηnp (tK) =
(cp

2

)n ∫
tK

e−|x|
p
pdx = cnp

∫
tK∩[0,∞)n

e−
∑
xpi dx

= (αcp)
n

∫
F−1(tK∩[0,∞)n)

∏
yα−1
i e−y

αp
i dy.

In the first equality we have used the symmetries of down sets, while in the last

one we have changed the variables putting x = F (y). Introducing the measure

µp,α on R with density (1.15) we thus have seen that

ηnp (tK) = µp,α(t̃K),

where for a down set A in Rn the set Ã denotes a down set such that Ã ∩

[0,∞)n = F−1(A ∩ [0,∞)n) (note that it makes sense as F is monotone with

respect to each coordinate). The point is that due to the homogeneity of F we

have t̃K = t1/αK̃. Moreover, strips are mapped onto strips. Therefore

µp,α(t1/αK̃) = ηnp (tK) ≥ ηnp (tP ) = µp,α(t1/αP̃ ),

which means that µp,α supports the S-inequality for the down set K̃. Since the

down set K is arbitrary, we conclude that µp,α supports the S-inequality for all

down sets. To finish the proof notice that we recover the Weibull distribution

putting p = 1, namely ωα = µ1,α. To obtain the Gamma distribution set

α = 1/p = q, as then λq = µ1/q,q.

1.21 Remark. We might use more general change of variables yi = V (xi) for

some increasing function V : [0,∞) −→ [0,∞), V (0) = 0 and ask whether we

will derive the S-inequality for other measures than µp,α exploiting the above

technique. Since we would like to have t̃K = u(t)K̃ for a monotone function u,

we check it would imply that V (st) = CV (s)V (t), and C is a constant. So V

should be a power function but this case has been studied in the above proof.
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1.4 Notes and comments

The results of Section 1.2 come from the publication [NT13]. The change of

variables used in the proof of Theorem 1.11, which establishes the S-inequality

for the symmetric exponential measure, was pointed out by B. Maurey after

a seminar talk by the author. R. Adamczak’s remark regarding Lemma 1.7, the

one-dimensional entropy inequality, led to the general formulation presented

here.

Section 1.3 is based on the authors’ further work on the S-inequality, the

article [NT14b].

P. Nayar and T. Tkocz are both including the results of the two aforemen-

tioned papers into their PhD theses. They worked together and contributed

equally to the results obtained.
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Chapter 2

Tensor products of random

unitary matrices

2.1 Introduction

In quantum mechanics, the time evolution of two noninteracting subsystems

can be described by an operator eitH⊗eitH′ , where H and H ′ are Hamiltonians

of the subsystems (see e.g. chapters 2.2 and 3.1 in [BP02]). In applications, the

unitary operator eitH , which is a priori complicated, is replaced by a random

unitary matrix, to make a model tractable. This powerful idea goes back to

E. Wigner (see e.g. his seminal paper [Wig55]). Here by an n × n random

unitary matrix we mean a matrix chosen according to the Haar measure on

the unitary group U(n). From this point of view it seems natural to study

asymptotic local properties of spectra of the tensor product Um ⊗ Vn of two

independent m×m and n× n random unitary matrices.

More generally, consider a quantum system consisting of M noninteracting

subsystems. For simplicity we can assume that each of them is represented

in an n dimensional Hilbert space, so that any local unitary dynamics can be

written as U1⊗. . .⊗UM , where the Uj are n×n unitary matrices. If the unitary

dynamics of each subsystem is generic, the matrices Uj can be represented by

independent random unitary matrices of size n.
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2.2 Background and notation

Since we shall view a collection of eigenvalues of a random matrix as a point

process, for clarity we need to start off by recalling some definitions and known

facts. A user-friendly and brief introduction to the theory of point processes

can be found in [HKPV09]. The monograph [AGZ10] is a good reference for

some background knowledge on random matrix theory.

A point process Γ on R is a random integer-valued positive and σ-finite

Borel measure on R. In other words, Γ: Ω −→ M(R) is a random variable

taking values in the subset of integer-valued positive measures of the setM(R)

of all σ-finite Borel measures on R. If for every x ∈ R, Γ({x}) ≤ 1 a.s, then Γ is

called simple. It is not hard to see that simple point processes on R correspond

to random discrete subsets of R. The latter point of view is particularly useful

for us. Indeed, the eigenvalues λ1, . . . , λn of, say an n × n Hermitian random

matrix constitute a.s. a discrete random subset {λ1, . . . , λn} of R, which defines

a random counting measure

Γ(D) =
n∑
i=1

δ{λi}(D).

The set M(R) is a metric space and the σ-algebra of Borel subsets is

generated by the cylinders which are the subsets of the form C
(Ii)
(Di),i≤k = {µ ∈

M(R); ∀i ≤ k µ(Di) ∈ Ii}, given Borel subsets D1, . . . , Dk ⊂ R and intervals

I1, . . . , Ik. Thus, to determine the distribution of a point process, it is enough

to specify the probabilities P
(

Γ ∈ C(Ii)
(Di),i≤k

)
. For instance, a Poisson point

process Γ on R with intensity λ > 0 is characterized by setting

P (Γ(Di) = ki, i ≤ n) =
n∏
i=1

e−λ|Di|
(λ|Di|)ki

ki!
,

for every n ≥ 1, integers k1, . . . , kn ≥ 0, and mutually disjoint bounded Borel

subsets Di of R, that is Γ(Di) are independent Poisson random variables with

parameters |Di| (Lebesgue measure of Di). The existence of such process is

guaranteed by the Kolmogorov consistency theorem. When λ = 1 we call it

the standard Poisson point process and denote it by Π.
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Sometimes in practice it is more convenient to describe distributions of

point processes by so-called intensity functions, or in the language of physicists,

correlation functions. Given a simple point process Γ, its k-th correlation

function (if exists) ρ
(k)
Γ : Rk −→ [0,∞) is defined by the fact that for every

mutually disjoint Borel subsets D1, . . . , Dk of R there holds

E
k∏
i=1

Γ(Di) =

∫
D1×...×Dk

ρ
(k)
Γ (x1, . . . , xk)dx1 . . . dxk.

For example, for the standard Poisson process we have

ρ
(k)
Π ≡ 1

because E
∏k

i=1 Γ(Di) is the product of Lebesgue measures of the Di. Under

some mild technical assumptions on Γ, the correlation functions are akin to

densities

ρ
(k)
Γ (x1, . . . , xk) = lim

ε→0

P (Γ has a point in (xi − ε, xi + ε) for each i ≤ k )

(2ε)k
,

for every sequence of pairwise distinct points x1, . . . , xk.

An important class of point processes are determinantal point processes :

processes for which the correlation functions can be put in the form

det[K(xi, xj)]
k
i,j=1

for some kernel function K : R2 −→ R. For instance, the sine process Σ on R

is defined by setting its correlation functions ρ
(k)
Σ to be

ρ
(k)
Γ (x1, . . . , xk) = det[Q(xi, xj)]

k
i,j=1,

with the sine kernel Q(x, y) = q(x− y), where q is given by

q(u) =
sin(πu)

πu
.

Obviously, this is a determinantal point process. Let us see why it is important.

Given an n×n random unitary matrix with eigenvalues eiξ1 , . . . , eiξn , where

ξi ∈ [0, 2π) are eigenphases, we define the point process Ξn = {ξ1, . . . , ξn} (here

and throughout we identify a simple point process with a random discrete
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subset of its atoms). It is well known that this process is determinantal with

the kernel Sn(x, y) = sn(x− y), where

sn(u) =
1

2π

sin
(
nu
2

)
sin
(
u
2

) . (2.1)

Since 2π
n
sn
(

2π
n
u
)
−−−→
n→∞

q(u), when n becomes large, the process n
2π

(Ξn − π) of

the rescaled eigenphases of the n × n random unitary matrix locally behaves

as the sine process Σ.

By the superposition of two simple point processes Ψ = {ψ1, . . . , ψM},

Φ = {φ1, . . . , φN}, M,N ≤ ∞, we mean the union

Ψ ∪ Φ = {ψ1, . . . , ψM , φ1, . . . , φN}.

2.3 Results

2.3.1 Two matrices of large sizes

Given two independent m×m and n× n random unitary matrices U and U ′

we get two independent point processes of their eigenphases Ξm = {ξ1, . . . , ξm}

and Ξ′n = {ξ′1, . . . , ξ′n} respectively. We define the point process Ξm ⊗ Ξ′n of

the eigenphases of the matrix U ⊗ U ′ as

Ξm ⊗ Ξ′n = {ξi + ξ′j mod 2π, i = 1, . . . ,m, j = 1, . . . , n}.

Our first main result reads as follows.

2.1 Theorem. Let Ξm and Ξ′n be point processes of eigenphases of two in-

dependent m × m and n × n random unitary matrices. Let Σ1, . . . ,Σm be

independent sine processes and let Π be a Poisson process on R. Then for each

k ≤ n the k-th correlation function of the process Ξm ⊗ Ξ′n exists and

(a) ρ
(k)
mn
2π

(Ξm⊗Ξ′n−π) −−−→n→∞
ρ

(k)
mΣ1∪...∪mΣm

,

(b) ρ
(k)
mn
2π

(Ξm⊗Ξ′n−π) −−−−→m,n→∞
ρ

(k)
Π ,

uniformly on all compact sets in Rk.
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2.2 Remark (Weak convergence). We say that a sequence of point processes

(τn) converges in distribution to a point process τ if the law νn of τn converges

weakly to that of τ , say ν, in the spaceM1(M(R)) of probability measures on

M(R), i.e.
∫
fdνn →

∫
fdν for any bounded continuous function on M(R).

Clearly, these integrals can be expressed using correlation functions, so the

theorem implies the convergence in distribution of the point processes in ques-

tion.

2.3 Remark (Heuristic behind (a)). In the simplest case m = 2 we have

Ξ2 ⊗ Ξ′n ={ξ1 + ξ′1 mod 2π, . . . , ξ1 + ξ′n mod 2π}

∪ {ξ2 + ξ′1 mod 2π, . . . , ξ2 + ξ′n mod 2π}.

After shifting and rescaling we end up with two families of rescaled eigenphases

of an n×n random unitary matrix which differ roughly by a large shift n
2π

(ξ1−

ξ2) which is independent of the matrix. That makes the families independent

and in the limit, according to ρ
(k)
n
2π

(Ξn−π) −−−→n→∞
ρ

(k)
Σ , they look like sine processes.

2.4 Remark (Superposition of many sine processes becomes a Poisson point

process). Notice that for m independent copies Φ1, . . . ,Φm of a point process

Φ we have

ρ
(k)
Φ1∪...∪Φm

(x1, . . . , xk) =
m∧k∑
p=1

∑
π∈S(k,p)

m!

(m− p)!

p∏
j=1

ρ
(]πj)
Φ ((xi)i∈πj),

where S(k, p) is the collection of all partitions of the set {1, . . . , k} into p

nonempty pairwise disjoint subsets. By this we mean that if π is such a par-

tition then π = {π1, . . . , πp}, where πq = {π(q, 1), . . . , π(q, ]πq)} is the q-th

block of the partition π.

Along with the fact that if we rescale, ρ
(k)
λΦ(x) becomes 1

λk
ρ

(k)
Φ

(
1
λ
x
)
, the

previous observation yields

ρ
(k)
mΣ1∪...∪mΣm

(x) =
m∧k∑
p=1

∑
π∈S(k,p)

1

mk

m!

(m− p)!

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(xi)i∈πj

)
. (2.2)

When m goes to infinity we thus get

lim
m→∞

ρ
(k)
mΣ1∪...∪mΣm

(x) = lim
m→∞

k∏
j=1

ρ
(1)
Σ

(
1

m
(xi)i∈πj

)
= 1 = ρ

(k)
Π .

33



This retrieves a special case of a high dimensional phenomenon presented in

[CD10]. Namely, the authors say “[...] a Poisson process can be viewed as an

infinite superposition of determinantal or permanental point processes” (see

Theorem 4 therein and the two preceding paragraphs). In view of Theorem

(a) this implies that

lim
m→∞

lim
n→∞

ρ
(k)
mn
2π

(Ξm⊗Ξ′n−π) = 1.

Note that in the second part of the theorem we establish a stronger statement:

that letting the dimensions of two independent random unitary matrices go to

infinity eliminates all the correlations in their tensor product.

2.3.2 The tensor product of a large number of 2 × 2

matrices

We next consider M independent 2 × 2 random unitary matrices U1, . . . , UM

and study the asymptotic properties of the phase-spectrum of the matrix U1⊗

. . .⊗ UM . Our main result is as follows.

2.5 Theorem. Let θ1
j , θ

2
j , j = 1, . . . ,M be the eigenphases of independent

2× 2 random unitary matrices U1, . . . , UM . Define the point process τM of the

rescaled eigenphases of the matrix U1 ⊗ . . .⊗ UM as

τM(D) =
∑

ε=(ε1,...,εM )∈{1,2}M
1{

2M

2π (θε11 +...+θ
εM
M mod 2π)∈D

}, (2.3)

for any compact set D ⊂ [0,∞). Then, for each k there exists a continuous

function δk : [0,∞) → [0,∞) with δk(0) = 0 so that for any mutually disjoint

intervals I1, . . . , Ik ⊂ [0,∞)

lim sup
M→∞

P (τM(I1) > 0, . . . , τM(Ik) > 0)

|I1| · . . . · |Ik|
≤ (1 + δk(max

j
|Ij|)) ,

lim inf
M→∞

P (τM(I1) > 0, . . . , τM(Ik) > 0)

|I1| · . . . · |Ik|
≥ (1− δk(max

j
|Ij|)) .

Note that the statement of Theorem 2.5 is weaker than that of Theorem

2.1. This is due to the fact that stronger correlations exist in the point process

τM , which prevent us from demonstrating the convergence of its intensities
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to those of a Poisson process. The mode of convergence is however strong

enough to deduce interesting information, including the weak convergence of

the processes (cf. the remark following Theorem 2.1).

2.4 Proofs

2.4.1 Proof of Theorem 2.1

For the sake of convenience, let us recall a few basic facts which will be used

frequently in the proof.

Note the following easy estimate (for the definition see (2.1))

sup
x∈R

∣∣∣∣2πn sn(x)

∣∣∣∣ = 1. (2.4)

Combined with Hadamard’s inequality (see e.g. (3.4.6) in [AGZ10]), this allows

us to bound the correlation functions,

sup
x∈Rk

ρ
(k)
Ξn

(x) ≤ kk/2‖sn‖k∞ =
kk/2

(2π)k
nk. (2.5)

Proof of Theorem 2.1 (a). Let Θm,n = mn
2π

(Ξm⊗Ξ′n−π). Fix a natural number

k. Since we will let n go to infinity, we may assume that k ≤ n. First we show

that there exists functions ρ
(k)
Θm,n

: Rk −→ [0,∞) so that for any bounded,

measurable function f : Rk −→ R we have

E
∑

f(θ1, . . . , θk) =

∫
Rk
f(x)ρ

(k)
Θm,n

(x)dx,

where the summation is over all ordered k-tuples (θ1, . . . , θk) of distinct points

of Θm,n. This will prove that ρ
(k)
Θm,n

are the correlation functions of Θm,n. Then

we will deal with the limit when n→∞.

Fix f . Since for each s = 1, . . . , k, θs = mn
2π

(ξis + ξ′js mod 2π− π) for some

is ∈ {1, . . . ,m}, js ∈ {1, . . . , n} we can write

E
∑

f(θ1, . . . , θk) = E
∑

i∈{1,...,m}k
j∈{1,...,n}k

f

((mn
2π

(ξis + ξ′js mod 2π − π)
)k
s=1

)
,
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where the second sum is over k-tuples i, j such that the pairs (i1, j1), . . . ,

(ik, jk) are pairwise distinct. This certainly happens when all the js are distinct.

Call these choices of i and j good and the rest bad. So

E
∑
i,j

f = E
∑

good i,j

f + E
∑

bad i,j

f.

First we handle the good sum. Some of the is may overlap and we will control

them using partitions of the set {1, . . . , k} into p ≤ k ∧m nonempty pairwise

disjoint subsets (see Remark 2.4 for the notation) so that is = it whenever s

and t belong to the same block of a partition. We have

E
∑

good i,j

f =
k∧m∑
p=1

∑
π∈S(k,p)

E
∑

distinct
iπ(1,1),...,iπ(p,1)

∑
distinct
j1,...,jk

f.

The sums over i and j have been separated. Therefore taking advantage of

independence as well as recalling the definitions of the p-th and k-th correlation

functions of Ξm and Ξ′n we find

E
∑

good i,j

f =
∑
p,π

∫
[0,2π]p

∫
[0,2π]k

f

((mn
2π

(xπ(s) + ys mod 2π − π)
)k
s=1

)
· ρ(p)

Ξm
(x1, . . . , xp)ρ

(k)
Ξ′n

(y1, . . . , yk)

dx1 . . . dxpdy1 . . . dyk,

where we note π(s) = q ⇐⇒ s ∈ πq. Finally, we need to address the tech-

nicality concerning the addition mod 2π. Keeping in mind that we integrate

over [0, 2π]p and [0, 2π]k we consider for η ∈ {0, 1}k the set

Uη =

{
x ∈ [0, 2π]p, y ∈ [0, 2π]k; ∀s ≤ k xπ(s) + ys < 2π if ηs = 0, and

xπ(s) + ys ≥ 2π if ηs = 1

}
.

Then on Uη we have xπ(s) + ys mod 2π = xπ(s) + ys − 2πηs, thus changing the

variables on Uη so that zs = mn
2π

(xπ(s) + ys − 2πηs − π) we get

E
∑

good i,j

f =

∫
Rk
f(z)

(∑
p,π,η

1Wη(z)

∫
[0,2π]p

1Vη(x)ρ
(p)
Ξm

(x)

(
2π

mn

)k

·ρ(k)
Ξ′n

(y(z, x))dx

)
dz,
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where ys(z, x) = 2π
mn
zs − xπ(s) + 2πηs + π,

Vη =

{
x ∈ Rp; ∀s ≤ k

2π

mn
zs + 2πηs − π ≤ xπ(s) ≤

2π

mn
zs + 2πηs + π

}
,

and

Wη =
{
z ∈ Rk; ∀s ≤ k zs ≤ mn/2 if ηs = 0, and zs ≥ −mn/2 if ηs = 1

}
.

Summarizing, we have just seen that the correlation function ρ
(k)
Θm,n

(z) takes

the form

ρ
(k)
Θm,n

(z) =
∑
p,π,η

1Wη(z)

∫
[0,2π]p

1Vη(x)ρ
(p)
Ξm

(x)

(
2π

mn

)k
ρ

(k)
Ξ′n

(y(z, x))dx

+Bm,n(z),

(2.6)

where the term Bm,n corresponds to the sum over bad indices E
∑

bad i,j f . By

the same kind of reasoning we can show that

Bm,n(z) =
k∑
p=1

k−1∑
q=1

∑
π∈S(k,p)
τ∈S(k,q)

∑
η

1W̃η
(z)

(
2π

mn

)k ∫
[0,2π]p+q−k

1Ṽη(x)ρ
(p)
Ξm

(x̃(z, x))

ρ
(q)
Ξ′n

(ỹ(z, x))dx,

where the sums are over appropriate partitions and W̃η, Ṽη are suitable sets

which appear after changing the variables. Now, by (2.5),

‖ρ(p)
Ξm
· ρ(q)

Ξ′n
‖∞ ≤

pp/2qq/2

(2π)p+q
mpnq, (2.7)

so

Bm,n(z) ≤ Ck
1

n
,

where the constant Ck depends only on k (roughly, it equals the number of

summands times kk). Hence, when taking n → ∞ we will not have to worry

about Bm,n.

Let us look at (2.6) and compute the limit of the first term when n→∞.

We observe that 1Wη → 1 pointwise on Rk. Moreover,
∑

η 1Vη → 1[0,2π)p , and

1Vη → 0 for η such that ηs 6= ηt but π(s) = π(t) for some s 6= t. Thus we
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consider only η such that ηs = ηt whenever π(s) = π(t) and then the following

simple observation

2π

mn
sn

(
2π

mn
u+ v

)
−−−→
n→∞

0, v 6= 0

1
m
q
(
u
m

)
, v = 0

(2.8)

yields that for all these η,(
2π

mn

)k
ρ

(k)
Ξ′n

(y) = det

[
2π

mn
sn

(
2π

mn
(zs − zt) + 2π(ηs − ηt) + xπ(t) − xπ(s)

)]k
s,t=1

−−−→
n→∞

p∏
j=1

det

[
1

m
q

(
zs − zt
m

)]
s,t∈πj

=
1

mk

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(zi)i∈πj

)
.

By estimate (2.5),
(

2π
mn

)k
ρ

(k)
Ξ′n

(y) is bounded by kk/2/mk, so the integrand in

(2.6) can be simply bounded. Thus by Lebesgue’s dominated convergence

theorem

ρ
(k)
Θm,n

(z) −−−→
n→∞

∑
p,π

1

mk

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(zi)i∈πj

)
·
∫

[0,2π]p
ρ

(p)
Ξm

(x)dx.

For any p ≤ m the integral
∫

[0,2π)p
ρ

(p)
Ξm

(x)dx just equals m!/(m − p)!. Conse-

quently, we finally obtain

ρ
(k)
Θm,n

(z1, . . . , zk) −−−→
n→∞

∑
p,π

1

mk

m!

(m− p)!

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(zi)i∈πj

)
.

In view of (2.2) this completes the proof.

Proof of Theorem 2.1 (b). Fix a point z = (z1, . . . , zk) ∈ Rk. We let m and n

tend to infinity and want to prove that ρ
(k)
Θmn

(z) tends to 1. Recall (2.6) and

notice that due to estimate (2.7) all the terms with p ≤ k − 1 are bounded

above by Ck/m, so we can write

ρ
(k)
Θm,n

(z) = O

(
1

m
+

1

n

)
+
∑
η

1Wη(z)

∫
[0,2π]k

1Vη(x)

(
2π

mn

)k
ρ

(k)
Ξm

(x)

ρ
(k)
Ξ′n

(y(z, x)) dx.
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Using the formulas for the correlation functions and the permutational defini-

tion of the determinant, we can put the integrand in the following form

1Vη(x)

(2π)k
· det

[
2π

m
sm(xs − xt)

]k
s,t=1

· det

[
2π

n
sn (ys − yt)

]k
s,t=1

=
1Vη(x)

(2π)k

(
1 +

∑
σ 6=id or τ 6=id

sgnσ sgn τ
k∏
i=1

2π

m
sm(xi − xσ(i)) ·

2π

n
sn(yi − yτ(i))

)
,

where the second summation runs through permutations σ and τ of k indices.

The point is that each term in this sum tends to zero with m and n going

to infinity as we have 2π
m
sm(xi − xσ(i))

a.e.−−−→
m→∞

0 for i such that i 6= σ(i), and

2π
n
sn(yi − yτ(i))

a.e.−−−→
n→∞

0 if i 6= τ(i) (see (2.8) and bear in mind the fact that

actually y depends on m and n). Recall also that 1Wη → 1 and
∑

η 1Vη →

1[0,2π)k . Moreover, (2.4) yields that the whole sum is bounded by (k!)2/(2π)k.

Therefore by Lebesgue’s dominated convergence theorem we conclude that

ρ
(k)
Θm,n

(z) −−−−→
m,n→∞

∫
1[0,2π)k(x)

1

(2π)k
dx = 1,

which finishes the proof.

2.4.2 Proof of Theorem 2.5

In the course of the proof we will need three lemmas. Let us start with them.

2.6 Lemma. Fix a positive integer s and a number γ ∈ (0, 1/s). For a positive

integer n define the set Ln = {` = (`1, . . . , `s), Z 3 `j ≥ 0,
∑s

j=1 `j = n}.

Then ∑
`∈Ln,∃j `j/n≤γ

1

sn
n!

`!
= 1−

∑
`∈Ln,∀j `j/n>γ

1

sn
n!

`!
−−−→
n→∞

0. (2.9)

Here we adopt the convention that `! = `1! · . . . · `s!.

Proof. The first estimate we make is simply the union bound∑
`,∃j `j/n≤γ

1

sn
n!

`!
≤ s

∑
`,`1/n≤γ

1

sn
n!

`!
.
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Now we rearrange this sum

∑
`,`1/n≤γ

1

sn
n!

`!
=

bγnc∑
`1=0

1

sn
n!

`1!(n− `1)!

∑
`2+...+`s≤n−`1

(n− `1)!

`2! · . . . · `s!

=

bγnc∑
`1=0

1

sn

(
n

n− `1

)
(s− 1)n−`1

=
n∑

k=n−bγnc

(
n

k

)(
1− 1

s

)k (
1

s

)n−k
.

Let X1, X2, . . . be i.i.d. Bernoulli random variables such that P (X1 = 0) =

1/s = 1 − P (X1 = 1). Denote Sn = X1 + . . . + Xn. Then the last expres-

sion equals P (Sn ≥ n− bγnc). The second estimate we make is the following

probabilistic bound

P (Sn ≥ n− γn) = P
(
Sn − ESn

n
≥ 1

s
− γ
)

≤ exp
(
− 2n(1/s− γ)2

)
−−−→
n→∞

0,

where the inequality follows for instance from Hoeffding’s inequality.

2.7 Lemma. Let X be a random vector in Rn with a bounded density. Let

A : Rn −→ Rk be a linear mapping of rank r. Then there exists a constant C

such that for any intervals I1, . . . , Ik ⊂ R of finite length we have

P (AX ∈ I1 × . . . Ik) ≤ C|Ii1| · . . . · |Iir |,

where 1 ≤ i1 < . . . < ir ≤ k are indices of those rows of the matrix A which

are linearly independent.

Proof. Let a1, . . . , ak ∈ Rn be rows of the matrix A. We know there are r

of them, say a1, . . . , ar, which are linearly independent. Thus there exists an

invertible r × r matrix U such that

U


a1

...

ar

 =


e1

...

er

 =: E,
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where ei ∈ Rn is the i-th vector of the standard basis of Rn. Notice that

P (AX ∈ I1 × . . .× Ik) ≤ P
(
U−1EX ∈ I1 × . . .× Ir

)
= P ((X1, . . . , Xr) ∈ U(I1 × . . . Ir))

≤ C|U(I1 × . . .× Ik)| = C| detU | · |I1| · . . . · |Ir|,

for the vector (X1, . . . , Xr) also has a bounded density on Rr. This finishes

the proof.

2.8 Lemma. Let A be a matrix of dimension k× j, with entries in {0, 1}, and

satisfying the following conditions

(i) no two columns are equal.

(ii) no two rows are equal.

(iii) no zero row

Then, the rank of A is at least min(k, blog2 jc+ 1).

Proof. (Due to Dima Gourevitch) Denote r = rankA. The assertion of the

lemma is equivalent to the statement that 2r ≥ j and if 2r = j then r = k.

We may assume without loss of generality that the first r rows of A are

linearly independent and the others are their linear combinations. Under this

assumption, if two columns are identical in the first r coordinates then they

are identical in all coordinates. By condition (i), such columns do not exist.

Therefore the r× j submatrix B which consists of the first r rows has distinct

columns. As a result j ≤ 2r.

Now suppose j = 2r. If k > r, consider the r + 1 row of A. It is a

linear combination of the first r rows. Since the columns of B include the

column ei = (0, .., 0, 1, 0, .., 0) for all i = 1, . . . , r, the coefficient of each row

is either 0 or 1. B includes also a column of all 1s, thus there is at most

one nonzero coefficient (if there were more than one, a certain entry would

be greater than 1). Consequently, the coefficient of exactly one row is 1, and

all other coefficients vanish, because if all coefficients were zero, the r + 1 row
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would be zero which contradicts (iii). Thus, the r + 1-th row is identical to

one of the first r rows - in contradiction to condition (ii).

Proof of Theorem 2.5. Fix an integer k ≥ 1 and finite intervals I1, . . . , Ik ⊂

[0,∞) which are mutually disjoint. We need to compute the probability

of the event {τM(Ij) > 0, j = 1, . . . , k} which means that in each inter-

val Ij there is a rescaled eigenphase. Each such eigenphase is of the form

2M

2π
(θε11 + . . .+ θεMM mod 2π) for some ε = (ε1, . . . , εM) ∈ {1, 2}M . Therefore

{τM(Ij) > 0, j = 1, . . . , k} =
⋃
ε

Aε,

where

Aε =

{ M∑
i=1

θ
εji
i mod 2π ∈ 2π

2M
Ij︸ ︷︷ ︸

Jj

, j = 1, . . . , k

}
, (2.10)

and ε runs over the set

E =
{

[εji ]
j=1,...,k
i=1,...,M , ε

j
i ∈ {1, 2}, εu 6= εv, for u 6= v, u, v = 1, . . . , k

}
(2.11)

of all k ×M matrices with entries 1, 2 which have pairwise distinct rows εj =

(εj1, . . . , ε
j
M) ∈ {1, 2}M , j = 1, . . . , k (j-th row εj describes the j-th eigenphase

and since intervals are disjoint we assume the rows are distinct). Column

vectors are denoted by εi = [ε1i , . . . , ε
k
i ]
T , i = 1, . . . ,M .

We say that ε is bad if the collection of its column vectors {εi, i ≤M} has

cardinality less than 2k. Otherwise ε is called good. Obviously,

P

( ⋃
good ε

Aε

)
≤ P

(⋃
ε

Aε

)
≤ P

( ⋃
good ε

Aε

)
+ P

(⋃
bad ε

Aε

)
.

The strategy is to show that the contribution of bad ε vanishes for large M

while good ε essentially provide the desired result
∏

j |Ij| when M goes to

infinity. So the proof will be divided into several parts.

Good ε.

The goal here is to prove

lim
maxj |Ij |→0

lim
M→∞

1

|I1| · . . . · |Ik|
P

( ⋃
good ε

Aε

)
= 1, (2.12)
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with the required uniformity in the choice of the disjoint intervals Ij. By virtue

of the fact that∑
good ε

P (Aε)−
∑

good ε, ε̃
ε6=ε̃

P (Aε ∩ Aε̃) ≤ P

( ⋃
good ε

Aε

)
≤
∑

good ε

P (Aε)

it suffices to prove that

lim
M→∞

∑
good ε

P (Aε) =
∏
|Ij| (2.13)

uniformly, and that the correlations between two different good ε do not matter

lim sup
maxj |Ij |→0

lim sup
M→∞

1∏
|Ij|

∑
good ε, ε̃
ε 6=ε̃

P (Aε ∩ Aε̃) = 0. (2.14)

Let us now prove (2.13). The proof of (2.14) is deferred to the very end as

we will need the ideas developed here as well as in the part devoted to bad ε.

Given ε ∈ E and a vector α = [α1 . . . αk]
T ∈ {1, 2}k we count how many

column vectors of ε equals α and call this number `α. Then
∑

α `α = M .

Note that ε is good iff all `α are nonzero. The crucial observation is that the

probability of the event Aε does depend only on the vector ` = (`α)α∈{1,2}k as-

sociated with ε as described before. Indeed, the sum
∑M

i=1[θ
ε1i
i . . . θ

εki
i ]T mod 2π

is identically distributed as the random vector
∑

α ψ(α, `α) mod 2π, where

ψ(α, `α) =


ψ1(α, `α)

...

ψk(α, `α)

 =


θα1
i1
...

θαki1

+ . . .+


θα1
i`α
...

θαki`α

 mod 2π (2.15)

is a sum modulo 2π of i.i.d. vectors. Note that the distribution of ψ(α, `α)

does not depend on the choice of indices i1, . . . , i`α but only on α and `α.

Consequently, denoting by E` the set of all ε such that there are exactly `α

indices 1 ≤ i1 < . . . < i`α ≤ M for which εi1 = . . . = εi`α = α, we have that

the value of P (Aε) is the same for all ε ∈ E`. Clearly ]E` = M !
`!

, whence

∑
good ε

P (Aε) =
∑

good `

M !

`!
P

 ∑
α∈{1,2}k

ψ(α, `α) mod 2π ∈ J1 × . . .× Jk

 . (2.16)
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The idea is to identify those terms which will sum up to
∏
|Ii| and the

rest which will be neglected in the limit of large M . To do this, set a positive

parameter γ < 1/2k and let us call a good ` very good (v.g. for short) if

`α > γM for every α and quite good (q.g. for short) otherwise. We claim that

P
(∑

ψ(α, `α) mod 2π ∈ J1 × . . .× Jk
)
≤ C

∏
|Jj|, for a good ` (C1)

and

P
(∑

ψ(α, `α) mod 2π ∈ J1 × . . .× Jk
)

=

∏
|Jj|

(2π)k

(
1 +

r`√
M

)
, |r`| ≤ C,

for a very good `,

(C2)

where C is a constant (from now on in this proof we adopt the convention that

C is a constant depending only on k which may differ from line to line).

Let us postpone the proofs and see how to conclude (2.13). Notice that∏
|Jj |

(2π)k
= 1

2kM

∏
|Ij|. Thus applying (C1) we obtain∑

q.g. `

P
(∑

ψ(α, `α) mod 2π ∈ J1 × . . .× Jk
)
≤
∏
|Ij| · C

∑
q.g. `

1

2kM
M !

`!
.

By Lemma 2.6 this vanishes when M → ∞. Now we deal with very good `

writing with the aid of (C2) that∑
v.g. `

P
(∑

ψ(α, `α) mod 2π ∈ J1 × . . .× Jk
)

=
∏
|Ij|

(∑
v.g. `

1

2kM
M !

`!
+
∑
v.g. `

1

2kM
M !

`!

r`√
M

)
.

The first term in the bracket approaches 1 in the limit M →∞ due to Lemma

2.6, while the second one approaches 0 as it is bounded above by C 1√
M

.

Proof of (C1). Let us define the vectors

ej = (2, . . . , 2︸ ︷︷ ︸
j−1

, 1, 2, . . . , 2︸ ︷︷ ︸
k−j

) ∈ {1, 2}k, j = 1, . . . , k.

Since ` is good, in particular we have that `ej > 0, so denoting the random

vector ψ(ej, `ej) by Ψj we have∑
α

ψ(α, `α) = (Ψ1 + . . .+ Ψk) +
∑

α/∈{e1,...,ek}

ψ(α, `α).

44



By independence it is enough to show that the random vector Ψ = Ψ1 + . . .+

Ψk mod 2π has a bounded density on [0, 2π)k. Equation (2.15) yields that

Ψj = (Yj, . . . , Yj︸ ︷︷ ︸
j−1

, Xj, Yj, . . . , Yj︸ ︷︷ ︸
k−j

),

where (Xj, Yj) are independent random vectors on [0, 2π)2 with the same distri-

butions as the vectors (θ1
1+. . .+θ1

`ej
mod 2π, θ2

1+. . .+θ2
`ej

mod 2π) respectively.

Clearly, the vector (Xj, Yj) has a bounded density on [0, 2π)2 because the vec-

tor (θ1
1, θ

2
1) has a bounded density. Therefore the vector (X1, Y1, . . . , Xk, Yk)

has a bounded density on [0, 2π)2k. A certain linear transformation with de-

terminant 1 maps this vector to (Ψ1 + . . .+ Ψk, Y1, . . . , Yk) which consequently

also has a bounded density. We project it to the first k coordinates and then

take care of addition modulo 2π obtaining that Ψ has a bounded density, which

finishes the proof.

Proof of (C2). Given a vector α ∈ {1, 2}k let Θα denote the random vector in

[0, 2π)k identically distributed as the vector (θα1
1 , . . . , θαk1 ). Take independent

copies Θα
1 ,Θ

α
2 , . . . of Θα such that the family {Θα

1 ,Θ
α
2 , . . .}α∈{1,2}k also consists

of independent random vectors. Then EΘα = [π, . . . , π]T , and

p`,M = P

(∑
α

ψ(α, `α) mod 2π ∈ J1 × . . .× Jk

)

= P

(∑
α

`α∑
l=1

Θα
l mod 2π ∈ J1 × . . .× Jk

)

=
M−1∑

i1,...,ik=0

P

(∑
α

`α∑
l=1

Θα
l ∈ (J1 + 2πi1)× . . .× (Jk + 2πik)

)

=
∑
i

P

(∑
α

`α∑
l=1

Θα
l − EΘα

l√
M

∈ 1√
M

(J1 + 2π(i1 −M/2))× . . .

× 1√
M

(Jk + 2π(ik −M/2))

)
.

To ease the notation we introduce new indices

j =

(
i1 −

M

2
, . . . , ik −

M

2

)
∈
{
−M

2
,−M

2
+ 1, . . . ,

M

2
− 1

}k
,
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sets

Kj,M =
1√
M

(J1 + 2πj1)× . . .× 1√
M

(Jk + 2πjk),

and the vector

SM =
∑
α

`α∑
l=1

Θα
l − EΘα

l√
M

.

Now we intend to use the local Central Limit Theorem of [BRR86]. Indeed,

due to independence such a theorem should hopefully yield that SM has a

normal distribution for large M . To be more precise, let us consider the matrix

CovSM =
∑

α
`α
M

Cov Θα and its eigenvalues. Since for any x ∈ Rk

xT (CovSM)x =
∑
α

`α
M
xT (Cov Θα)x ≤ max

α
‖Cov Θα‖︸ ︷︷ ︸
C

|x|2,

it is clear that the largest eigenvalues are uniformly (with respect to M)

bounded by C, which depends only on k. To provide a uniform bound for the

smallest eigenvalues let us observe that (recall that ei = (2, . . . , 2, 1, 2, . . . , 2))

xT (CovSM)x ≥
k∑
j=1

`ej
M
xT (Cov Θej)x > γxT

( k∑
j=1

Cov Θej
)
x ≥ γ · π

2

3
|x|2,

where the second inequality holds because ` is very good.

It is a matter of a direct computation to see the last inequality since for

k ≥ 2 we have
∑k

j=1 Cov Θej =
(
(k − 2)π2/3 − 2

)
[1 . . . 1]T [1 . . . 1] + diag(2 +

2π2/3, . . . , 2 + 2π2/3) and for k = 1 the sum equals π2/3. Therefore, with the

matrix BM given by

B2
M = (Cov SM)−1

we get that
1

C
|x| ≤ |BMx| ≤ C|x|.

Therefore the assumptions of [BRR86, Corollary 19.4] are satisfied (for the fam-

ily of independent random vectors {Θα
1 ,Θ

α
2 , . . .}α∈{1,2}k), so the vector BMSM

possesses a density qM and

sup
x∈Rk

(
1 + |x|k+2

)(
qM(x)− φ(x)− 1√

M
PM(x)φ(x)

)
= O(M−k/2),
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where φ(x) = 1√
2π
k e
−|x|2/2 is the density of the standard normal distribution in

Rk and PM is a polynomial of degree k − 1 whose coefficients depends on the

cumulants of the vectors BMΘα. We may put it differently, i.e.

qM(x) = φ(x) +
1√
M

(
PM(x)φ(x) +

fM(x)

1 + |x|k+2︸ ︷︷ ︸
hM (x)

)
,

for some functions fM uniformly bounded supM supx∈Rk |fM(x)| = C < ∞.

Therefore, denoting Lj,M = BMKj,M ,

p`,M =
∑
j

P (SM ∈ Kj,M) =
∑
j

P (BMSM ∈ BMKj,M)

=
∑
j

∫
Lj,M

qM =
∑
j

∫
Lj,n

φ+
1√
M

∑
j

∫
Lj,n

hM

= aM +
1√
M
bM .

(2.17)

Let us first deal with the error term bM . Denoting

κ =
|J1| · . . . · |Jk|

(2π)k

we are to show that

|bM | ≤ Cκ. (2.18)

To do this we estimate the integrated function

|hM(x)| ≤ |PM(x)|φ(x) +
C

1 + |x|k+2
.

Therefore we define

h(x) = |PM(x)|φ(x) +
C

1 + |x|k+2

and then |bM | ≤
∑

j

∫
Lj,M

h. Introduce the boxes

Fj,M = BM

(
1√
M

([0, 2π) + 2πj1)× . . .× 1√
M

([0, 2π) + 2πjk)

)
and observe that∫

Lj,M

h =
|Lj,M |
|Fj,M |

|Fj,M |
1

|Lj,n|

∫
Lj,M

h ≤ κ|Fj,M | sup
Lj,M

h ≤ κ|Fj,M | sup
Fj,M

h.
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Since diamFj,M ≤ C 2π
√
k√

M
−−−−→
M−→∞

0, the sets Fj,M are pairwise disjoint and

sum up to BM [−π
√
M,π

√
M)k, we can infer that the sum

∑
j |Fj,M | supFj,M h

converges to
∫
Rk h = C < ∞. Hence, this sum is bounded by C and we get

(2.18).

Now we handle the main term aM . We prove it equals κ up to another error

κ C√
M

. Let Aj,M : Rk −→ Rk be the linear isomorphism mapping Fj,M onto

Lj,M . It equalsBM Ãj,MB
−1
M , where Ãj,M is the linear mapping transforming the

box B−1
M Fj,M onto the box B−1

M Lj,M , whence | detAj,M | = κ. Thus, changing

the variable we obtain∫
Lj,M

φ(x)dx = κ

∫
Fj,M

φ(Aj,Mx)dx.

Notice that Aj,Mx is close to x, whenever x ∈ Fj,M , for

|Aj,nx− x| ≤ diamFj,M , x ∈ Fj,M .

Consequently, on Fj,M , φ(Aj,Mx) is close to φ(x). Strictly, we use the mean

value theorem and get∫
Lj,M

φ(x)dx = κ

∫
Fj,M

φ(x)dx+ κ

∫
Fj,M

∇φV (ηx) · (Aj,Mx− x)dx,

for some mean points ηx ∈ [x,Aj,Mx]. This results in

aM =
∑
j

∫
Lj,M

φ(x)dx = κ
∑
j

∫
Fj,M

φ+ κ
∑
j

∫
Fj,M

∇φ(ηx) · (Aj,Mx− x)dx

= κ

(
1−

∫
Rk\BM [−π

√
M,π
√
M)k

φ︸ ︷︷ ︸
cM

+
∑
j

∫
Fj,M

∇φV (ηx) · (Aj,Mx− x)dx︸ ︷︷ ︸
dM

)
.

We are almost done. Clearly cM converges to 0 faster that 1/
√
M , so |cM | ≤

C/
√
M . For dM we use the Cauchy-Schwarz inequality and integrability of

|∇φ(ηx)|

|dM | ≤
∑
j

∫
Fj,M

|∇φ(ηx)||Aj,Mx− x|dx

≤ diamFj,M

∫
⋃
Fj,M

|∇φ(ηx)|dx ≤
C√
M
.

This completes the proof of (C2).
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We have proved claims (C1) and (C2), so the proof of the part concerning

good ε is now complete. Let us proceed to tackle bad ε.

Bad ε.

The goal here is to show that

lim
M→∞

P

(⋃
bad ε

Aε

)
= 0, (2.19)

again, with the required uniformity. Obviously it suffices to show that∑
bad ε

P (Aε) −−−−→
M→∞

0.

Let Fj be the set of those bad ε for which the cardinality of the set {εi, i ≤M}

equals j. Observe that ]Fj ≤ jM . With the aid of Lemma 2.8 we will show

that

∀ε ∈ Fj P (Aε) ≤ C · 2−M(1+blog2 jc) ·O
(
(max

j
|Ij|)1+blog2 jc

)
, (2.20)

when maxj |Ij| −→ 0. This will finish the proof, for

∑
bad ε

P (Aε) ≤ C ·O(max
j
|Ij|)

2k−1∑
j=1

jM · 2−M(1+blog2 jc)

= C ·O(max
j
|Ij|)

2k−1∑
j=1

2−M(1+blog2 jc−log2 j) −−−−→
M→∞

0.

(2.21)

For the proof of (2.20) fix ε ∈ Fj. We have seen that

P (Aε) = P
(∑

ψ(α, `α) mod 2π ∈ J1 × . . .× Jk
)

and we know that there are exactly j numbers `α which are nonzero, say those

which correspond to vectors α1, . . . , αj ∈ {1, 2}k. Denote Ψi = ψ(αi, `αi),

i = 1, . . . , j and consider the random vector Sj = Ψ1 + . . . + Ψj in Rk. As

in the proof of Claim (C1) we observe that Sj is a linear image of the vector

(X1, Y1, . . . , Xj, Yj). This mapping is given by the matrix A = [avi] where

av,2i−1 =

1, αiv = 1

0, αiv = 2

, av,2i =

0, αiv = 1

1, αiv = 2

.
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By Lemma 2.7 we obtain

P (Sj mod 2π ∈ J1 × . . .× Jk) ≤ C max
(
|Ji1| · . . . · |Jir |

)
= C ·O

(
(max

j
|Ij|)r

)
· 2−Mr,

(2.22)

where r = rankA. The number r does not change if we replace the 2i-th

column of A with the vector e with 1 at each its entry, as the sum of 2i− 1-th

and 2i-th columns is just e. Now taking only the columns 1, 2, 3, 5, . . . , 2j − 1

we get the matrix B which has the same rank as A. It has j + 1 columns and

fulfils the assumptions of Lemma 2.8 (it has no zero row as the second column

consists of all 1s). Thus r ≥ min(1 + blog2(1 + j)c, k) and when j < 2k− 1 this

minimum equals 1 + blog2(1 + j)c ≥ 1 + blog2 jc. If j = 2k− 1 in the matrix A

there must be two identical columns, one with even, say 2u, and one with odd,

say 2v− 1 index, which means that the u-th and the v-th column of B add up

to e, so the v-th column may be erased and the rank of B does not change.

Therefore we apply the lemma to the matrix B with erased the v-th column

which is of size k × j and get again r ≥ min(1 + blog2 jc, k) = 1 + blog2 jc.

This completes the proof of (2.20).

Pairs of good ε, i.e. the proof of (2.14).

We denote by Θi(ε) the random vector (θ
ε1i
i , . . . , θ

εki
i ). By the definition of Aε

we may write

Aε ∩ Aε̃ =


M∑
i=1

Θi(ε)

Θi(ε̃)

 mod 2π ∈
J1 × . . .× Jk
J1 × . . .× Jk

 . (2.23)

Since the intervals Ju and Jv are disjoint for u 6= v, we may restrict ourselves

to those ε and ε̃ for which εu 6= ε̃v whenever u 6= v, u, v = 1, . . . , k as otherwise

the event Aε ∩ Aε̃ is impossible. However it might happen that εu = ε̃u. Let

us count for how many u it takes place, i.e. given s ∈ {1, . . . , k} let Ps be the

set of all considered unordered pairs {ε, ε̃} for which there are exactly k − s

indices 1 ≤ u1 < . . . < uk−s ≤ k such that εuj = ε̃uj , j = 1, . . . , k − s. The
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value s = 0 is excluded as ε 6= ε̃. We have∑
ε6=ε̃

P (Aε ∩ Aε̃) =
k∑
s=1

∑
{ε,ε̃}∈Ps

P (Aε ∩ Aε̃) .

Thus we fix s and prove that

lim sup
maxj |Ij |→0

lim sup
M→∞

1∏
|Ij|

∑
{ε,ε̃}∈Ps

P (Aε ∩ Aε̃) = 0.

There are two cases. A pair {ε, ε̃} ∈ Ps can be good which means

]
{[ εi

ε̃i

]
, i = 1, . . . ,M

}
≥ 2k+s,

or, otherwise we call it bad. We obtain a decomposition Ps = Pgood
s ∪Pbad

s . Now

for a good pair, applying the reasoning already used for bad ε, i.e. combining

lemmas 2.7 and 2.8, we get the estimate

P (Aε ∩ Aε̃) ≤ C|J1| · . . . · |Jk|
(

max
j=1,...,k

|Jj|
)s

=
C

2(k+s)M

(∏
|Ij|
)(

max
j
|Ij|
)s
.

But ]Pgood
s ≤ ]Ps ≤

(
k
s

)
· 2(k+s)M , so

lim sup
maxj |Ij |→0

lim sup
M→∞

1∏
|Ij|

∑
{ε,ε̃}∈Pgood

s

P (Aε ∩ Aε̃) = 0.

For a bad pair {ε, ε̃} we know that there are k+s different rows and at most

2k+s − 1 different columns in the matrix [ εε̃ ]. Hence we repeat the argument

of the part concerning bad ε. As in that part we use Lemma 2.8 in order to

establish an appropriate inequality in the spirit of (2.20). Then we follow the

estimate of (2.21) and conclude that

lim
M→∞

∑
{ε,ε̃}∈Pbad

s

P (Aε ∩ Aε̃) = 0.

This finishes the proof of Theorem 2.5.

2.5 Notes and comments

The idea of studying tensor products of random unitary matrices stemmed

from the author’s discussions with the physicists M. Kuś and K. Życzkowski.
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The author discussed the related mathematical problems with O. Zeitouni.

Under his supervision, the author proved first Theorem 2.1(b) in the partic-

ular case of m = n. After some time, guided by some key ideas produced by

O. Zeitouni, the author proved Theorem 2.5. K. Życzkowski’s PhD student at

the time, M. Smaczyński, provided some numerical data which, along with the

main results, Theorem 2.1(b) (m = n) and Theorem 2.5, were published in

article [TSK+12]. Later, working under the supervision of N. O’Connell, the

author proved Theorem 2.1 and published it in [Tko13]. The asymptotics of

the extreme statistics of spectra of tensor products of random unitary matri-

ces have recently been investigated numerically (see [STKZ13]). For a single

random unitary matrix, such statistics are well understood (see [BAB13]).

Sections 2.3.1 and 2.4.1 are based on [Tko13], whereas sections 2.3.2 and

2.4.2 are based on [TSK+12].

We would like to end this discussion with a conjecture that generalises our

main results. The conjecture appeared in [TSK+12].

2.9 Conjecture. Let θ1
j , . . . , θ

N
j , j = 1, . . . ,M be the eigenphases of indepen-

dent random unitary matrices U1, . . . , UM of size N . Define the point process

τM,N of the rescaled eigenphases of the matrix U1 ⊗ . . .⊗ UM as

τM,N(D) :=
∑

ε=(ε1,...,εM )∈{1,...,N}M
1{

NM

2π (θε11 +...+θ
εM
M mod 2π)∈D

}, (2.24)

for any compact set D ⊂ [0,∞). Then, for each k there exists a continuous

function δk : [0,∞) → [0,∞) with δk(0) = 0 so that for any mutually disjoint

intervals I1, . . . , Ik ⊂ [0,∞)

lim sup
P (τM,N(I1) > 0, . . . , τM,N(Ik) > 0)

|I1| · . . . · |Ik|
≤ (1 + δk(max

j
|Ij|)) ,

lim inf
P (τM,N(I1) > 0, . . . , τM,N(Ik) > 0)

|I1| · . . . · |Ik|
≥ (1− δk(max

j
|Ij|))

with fixed N > 2 and M →∞, or N →∞ and fixed M > 2.
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Chapter 3

Invertibility of L1 operators.

3.1 Introduction

In this chapter we will frequently work with the Lebesgue space Lp[0, 1] for

p ≥ 1 of measurable functions f : [0, 1] −→ R with finite p-norm which will

be denoted by ‖f‖Lp = ‖f‖p =
(∫ 1

0
|f(x)|pdx

)1/p

. We will be interested in

linear operators, which when restricted to functions with small support, are

invertible. By the support of a function f , supp(f) we mean, as usual, the

set of points where the function is not zero-valued. For the present purpose,

whether or not the support is small will be decided by its Lebesgue measure

which we denote | · |.

Given two positive constants ε and c, let us define the class Tε,c(Lp) of

linear operators T acting on Lp[0, 1], with values in the same space, with

norm at most one, and having the property that restricted to Lp(A) for any

measurable subset A of [0, 1] of Lebesgue measure c, they are invertible with

‖(T |Lp(A)))
−1‖ ≥ ε−1; in other words, satisfying

∀f ∈ Lp[0, 1] |supp(f)| ≤ c =⇒ ‖Tf‖Lp ≥ ε‖f‖Lp .

G. Schechtman posed the following question (personal communication). In an

equivalent form it was asked by B. Johnson in connection with A. Nasseri’s

question on Mathoverflow [Nas12]).
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3.1 Problem (Schechtman). Fix ε, c > 0. Is it true that there exists a natural

number k = k(ε, c) depending only on ε and c such that for any operator

T ∈ Tε,c(L1) we can find δ > 0 and k functions g1, . . . , gk ∈ L∞[0, 1] such that

‖Tf‖L1 ≥ δ‖f‖L1

for every function f from the subspace {f ∈ L1[0, 1],
∫ 1

0
fgj = 0, j ≤ k}?

Loosely speaking, the question asks whether local invertibility of an oper-

ator on L1 implies its global invertibility on a subspace of fixed codimension.

The aim of the first part of this chapter is to explain why the answer to this

question is negative. Our approach will go through the study of the finite

dimensional analogue of Schechtman’s question. We will collect some recent

results from combinatorics discovered in the context of sparse signal recovery

and, based on that, we will build a counter-example in L1. In the second

part of this chapter, we will establish some Sobolev-type inequalities and find

a certain large class of convolution operators which are nicely invertible. This

will hopefully emphasise even more how careful we have to be in choosing the

right operator to answer Schechtman’s question in the negative, since taking

decent convolution operators will not work.

To get some intuition about the main issue, let us look at an example

of a locally invertible operator which is also globally invertible. Consider

T : L1([0, 1]) −→ L1([0, 1]2) given by the formula

(Tf)(x, y) =
1

2

(
f(x)− f(y)

)
, x, y ∈ [0, 1].

(Since L1([0, 1]2) is isometrically isomorphic to L1([0, 1]), this T can be used to

define an operator from L1([0, 1]) to itself, but for simplicity we will work with

T .) Clearly, ‖Tf‖ = 1
2

∫∫
|f(x)−f(y)| ≤

∫
|f | = ‖f‖, and hence ‖T‖ ≤ 1. (In

fact, ‖T‖ = 1). If |supp(f)| ≤ c, we get

‖Tf‖ ≥
∫

supp(f)

∫
(supp(f))c

|f(x)− f(y)| = (1− c)‖f‖,

so that T is in the class Tε,c(L1) with ε = 1−c. However, if f is in the subspace
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of functions with mean 0, f ∈ V = {f ∈ L1[0, 1],
∫ 1

0
f = 0}, then

‖Tf‖ ≥ 1

2

∫ 1

0

∣∣∣∣∫ 1

0

(
f(x)− f(y)

)
dy

∣∣∣∣ dx =
1

2
‖f‖.

Therefore operator T , begin in the class Tε,c(L1), is moreover globally invertible

on a 1-codimensional subspace.

To finish this introduction, we remark that Schechtman’s question really

touches upon some geometric subtleties of L1. We can ask a similar question

about the Lp spaces for p > 1, but the answer is much simpler.

3.2 Problem. Let p > 1 and fix ε, c > 0. Is it true that there exists a natural

number k = k(ε, c, p) such that for any operator T ∈ Tε,c(Lp) we can find δ > 0

and k functions g1, . . . , gk ∈ Lq[0, 1], 1/p+ 1/q = 1, such that

‖Tf‖Lp ≥ δ‖f‖Lp

for every function f from the subspace {f ∈ Lp[0, 1];
∫ 1

0
fgj = 0, j ≤ k}?

The answer is negative. To see this, fix 1 < p <∞ and let g1, g2, . . . be i.i.d.

standard Gaussian random variables (mean 0, variance 1) on some probability

space (Ω,F ,P). Let G be the closed span of {gi, i ≥ 1} in Lp((Ω,F ,P)). It is

well known that G is complemented in Lp, 1 < p < ∞ (see first few pages of

Chapter 2 in [Pis89]). So there is a linear projection operator Q from Lp onto

G which is continuous. Consider T = I −Q.

First, there is no δ > 0 and a subspace V of the form {X ∈ Lp, EXYj =

0, j = 1, . . . , k} for some Y1, . . . , Yk ∈ Lq, 1/p + 1/q = 1, such that ‖TX‖p ≥

δ‖X‖p for all X ∈ V . Indeed, considering X =
∑n

i=1 αigi we have TX = 0,

but for any n > k it is possible to find a nonzero sequence (αi)
n
i=1 such that

X ∈ V .

Second, we shall show that T/‖T‖ is in the class Tε(Lp) for some positive

constant ε = ε(p). To this end, fix a random variable X ∈ L2 with the Lp norm

1 and let A = {X 6= 0} be the support of X. We assume that P (A) ≤ 1/2 and

we want to show that ‖TX‖p ≥ ε as then
∥∥∥ T
‖T‖X

∥∥∥ ≥ ε
‖T‖ ≥

ε
1+‖Q‖ . Notice that

‖TX‖p ≥ ‖(TX) · 1Ac‖p = ‖(X −QX) · 1Ac‖p = ‖(QX) · 1Ac‖p.
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Because Q is a projection on G, the last expression becomes

‖QX‖p
‖g1‖p

‖g11Ac‖p

(we can think of QX as a sum
∑
αigi which has the same distribution as

(
∑
α2
i )

1/2g1). As this is bounded below by ηp‖QX‖p with ηp being a positive

constant,

ηp =
infA{‖g11Ac‖p, P (A) = 1/2}

‖g1‖p
,

we have

‖TX‖p ≥ ηp‖QX‖p,

so in view of 1 = ‖X‖p = ‖(Q+ T )X‖p ≤ ‖QX‖p + ‖TX‖p, we obtain

‖TX‖p ≥
ηp

1 + ηp
.

3.2 A finite dimensional analogue

Here we will work with the space `n1 (Rn equipped with the `1-norm ‖x‖`n1 =

|x1|+ . . .+ |xn|). Informally we will distinguish short vectors x ∈ Rn meaning

that their support, supp(x), which is the set of indices of nonzero coordinates

of x, is small. By #A, we denote the cardinality of A.

By analogy with the L1 case, let us consider the class T nε,c of linear operators

T : `n1 −→ `n1 acting on `n1 , with norm at most one, and having the property

that T is nicely invertible on the set of short vectors,

∀x ∈ Rn #supp(x) ≤ cn =⇒ ‖Tx‖`n1 ≥ ε‖x‖`n1 .

Instead of asking about rather subtle invertibility properties of such operators,

to begin with, let us observe that if T ∈ T nε,c for some ε > 0 and c ∈ (0, 1) then

dim kerT < (1− c)n+ 1 (3.1)

as for any subspace V in Rn of dimension k there is a choice of k coordinates

such that every vector from V is determined by these coordinates, hence such

a subspace contains a nonzero vector with at most n−k+1 nonzero coordinates.
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What is the sharp bound for dim kerT? If the answer to Schechtman’s problem

was positive, we would expect that there would be an integer k = k(ε) such

that dim kerT ≤ k(ε), for every T ∈ T nε . As we shall see in the next section,

the correct estimate is essentially given by the above simple bound.

3.3 Expanders

We say that a bipartite simple graph G = (A,B,E) is an (r, θ, ε) regular

unbalanced expander if it is left r-regular (every vertex from A has degree r)

and for every subset X in A with #X ≤ θ · #A the set Neighb(X) of its

neighbours is large, #Neighb(X) ≥ (1− ε)r#X.

Of course, if we took #B = r ·#A with all vertices in B of degree 1, then

we would get an (r, 1, 0) expander. The goal is to make #B, r, ε as small as

possible with θ being a positive constant (ideally close to 1). In particular, we

are interested in #B of the same order as #A, say #B ≥ 1
2
#A (the size of B

cannot be too small as #B ≥ (1− ε)rθ#A).

It was first observed by M. Pinsker that expanders exist (see [Pin73]).

Probabilistic constructions of such expanders are mathematical folklore (see,

e.g., [Lub94, Chapter 1.2], or [Vad12, Theorem 4.4] with a slightly different

counting argument and [HLW06, Lemma 1.9] where certain expanders are

called magical). We present one of them, following closely the proof of [HLW06,

Lemma 1.9].

3.3 Proposition ([HLW06]). Let r ≥ 3, ε = 2/r and θ ∈ (0, 1), n ≥ 2

such that 10rθ < 1, θn ≥ 1. Then the probability that a uniformly chosen

random left r-regular bipartite graph G(A,B,E) with the left set size #A = n

and the right set size #B = bn/2c is not an (r, θ, ε) expander is less than

(10−rθ−1 − 1)−1.

Proof. To build G, for each vertex from the left set A, independently, we assign

r vertices from the right set B to be its neighbours.

Fix a nonempty subset S in A of cardinality s ≤ θn and then a subset T
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in B of cardinality t ≤ (1− ε)rs. Define the random variable

XS,T =

1, if all the edges of G from S go to T ,

0, otherwise.

Notice that if
∑
XS,T = 0, where the sum is over all subsets S, T as above,

then G is an (r, θ, ε) expander. Therefore,

p = P (G is not an (r, θ, ε) expander) ≤ P
(∑

XS,T > 0
)
.

Moreover, it is clear that P (XS,T = 1) =
[(
t
r

)
/
(

#B
r

)]s ≤ [t/#B]rs . By the

union bound and then the standard estimate
(
n
k

)
≤ (en/k)k we obtain

p ≤
∑

P (XS,T = 1) <
∑

1≤s≤θn

es+(1−ε)rsrεrs
(n
s

)s( s

#B

)εrs
.

Since #B = bn/2c > n/e for n ≥ 2, we get

p <
∑

1≤s≤θn

e(1+r)srεrs
( s
n

)(εr−1)s

.

The choice εr = 2, along with the simple estimate e1+rr2 < 10r, r ≥ 3, gives

p <
∑

1≤s≤θn

[10rθ]s < (10−rθ−1 − 1)−1.

It was discovered by R. Berinde, R. Gilbert, P. Indyk, H. Karloff and M.

Strauss that the adjacency matrices of bipartite unbalanced expanders (com-

pleted with zeros) are in the class T nε,c. However, clearly they have kernels

of dimension proportional to n because the size of the right vertex set B is

a fraction of the size of the left vertex set A (see [BGI+08]). That is why,

estimate (3.1) is of the the right order and, as we will see in the next section,

the answer to Schechtman’s question is negative.

Fix n, r, θ, ε as in Proposition 3.3 so that the probability appearing there is

less than 1. Take, say r = 8, ε = 1/4, θ = 10−9, n ≥ 109. Let Φ be the adja-

cency matrix of an (r, θ, ε) expander G(A,B,E) provided by that proposition

(Φ is a #B ×#A matrix with 1 at the entry (i, j) if (i, j) ∈ E, 0 otherwise).
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In [BGI+08], it is proved that the expanding property of G guarantees that Φ

has good local invertibility properties in `1 (in fact the authors prove more,

that the converse is true as well). For the reader’s convenience, we now sketch

the proof of their key observation.

3.4 Lemma ([BGI+08]). For every x ∈ Rn with #supp(x) ≤ θn we have

‖Φx‖ ≥ (1− 2ε)r‖x‖,

where ‖ · ‖ denotes the `1 norm.

Proof. (Sketch) Without loss of generality let us assume that |x1| ≥ . . . ≥ |xn|

and say |xk+1| = . . . = |xn| = 0, k = #supp(x). We order the edges of G by

going over Φ column by column, top to bottom and setting et = (it, jt) if and

only if Φjt,it = 1, t = 1, . . . , rn (so e = (i, j) implicitly means that e is an edge

from i ∈ A to j ∈ B and (jt, it) are the entries in Φ having ones). We say

that et = (it, jt) causes a collision if there is s < t and an edge es = (is, js)

with js = jt. Let E ′ be the set of edges which do not cause collisions and let

E ′′ = E \ E ′. The key observation is that∑
(i,j)∈E′′

|xi| ≤ εr‖x‖. (3.2)

To see it, denote by li be the number of edges among e(i−1)r+1, e(i−1)r+2, . . . , eir

which cause collisions, i = 1, . . . , n. By the expanding property of G we know

that

l1 + . . . li ≤ ε · ir, i = 1, . . . , k.

Applying summation by parts to
∑

(i,j)∈E′′ |xi| = l1|x1| + . . . + lk|xk| proves

(3.2).

To bound ‖Φx‖ we notice that

‖Φx‖ =
∑
j

∣∣∣∣∣∑
i

Φj,ixi

∣∣∣∣∣ =
∑
j∈B

∣∣∣∣∣∣
∑

i∈A:(i,j)∈E

xi

∣∣∣∣∣∣ ,
break the sum

∑
i:(i,j)∈E xi into two bits

∑
i:(i,j)∈E′ xi+

∑
i:(i,j)∈E′′ xi, and, after

using the triangle inequality, we will get that the first bit gives the major

contribution whereas the second one, by (3.2), is small. This will finish the

proof of the lemma.
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In order to construct a matrix invertible for short vector but with the kernel

of dimension proportional to n, that is to see why the bound (3.1) is essentially

sharp, we put

An =

 1
r
Φ

0


which is an n × n block matrix — the bn/2c × n matrix 1

r
Φ completed with

n − bn/2c zero rows. Clearly, dim kerAn ≥ n − bn/2c ≥ n/2. Moreover,

‖An‖`n1→`n1 is equal to the maximum of the `1 norms of the columns of An

which is 1 (every column of Φ has exactly r nonzero entries which are 1).

Finally, for a vector x ∈ Rn with #supp(x) ≤ θn we have ‖Anx‖ = ‖1
r
Φx‖ ≥

(1− 2ε)‖x‖ = 1
2
‖x‖ by Lemma 3.4. This shows the following result.

3.5 Theorem ([BGI+08]). For every n ≥ n0 = 109 there is an n × n matrix

An with the properties

1) ‖An‖`n1→`n1 = 1.

2) ‖Anx‖`n1 ≥
1
2
‖x‖`n1 for every vector x ∈ Rn with #supp(x) ≤ θn, θ = 10−9.

3) dim kerAn ≥ n
2
.

3.4 Operators on L1

Now we are ready to show how to construct examples of operators acting on

L1 and prove that the answer to Schechtman’s question is negative.

3.6 Theorem. Let θ, n0 and An for n ≥ n0 be provided by Theorem 3.5. Let

the space
(
L1([0, 1]n

)n
of the Cartesian product of n copies of L1([0, 1]n) be

equipped with the norm

‖(f1, . . . , fn)‖ =
1

n

n∑
i=1

‖fi‖L1([0,1]n).

Define an operator

T : L1([0, 1]) −→
(
L1([0, 1]n)

)n
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by

(Tf)i(x1, . . . , xn) =
n∑
j=1

An(i, j)fj(xj), i = 1, . . . , n,

where An(i, j) is the (i, j)-entry of An and for j = 1, . . . , n

fj(t) = f
(
(j − 1)/n+ t/n

)
, t ∈ [0, 1].

Then for n ≥ max{n0, 3/θ} operator T possesses the following properties

(i) ‖T‖ ≤ 1.

(ii) ‖Tf‖ ≥ 1
4
‖f‖ for every function f ∈ L1([0, 1]) with |supp(f)| ≤ θ/3.

(iii) If n > 2k, then for every functions g1, . . . , gk ∈ L∞([0, 1]) there is

a nonzero function f ∈ L1([0, 1]) such that
∫ 1

0
f · gj = 0 for j = 1, . . . , k,

but Tf = 0.

3.7 Remark. The space
(
L1([0, 1]n)

)n
is isometrically isomorphic to L1[0, 1], so

the above construction also yields an operator acting from L1[0, 1] to L1[0, 1]

with the same properties (i) — (iii).

Proof. Fix a function f ∈ L1([0, 1]). For x = (x1, . . . , xn) ∈ [0, 1]n we shall

denote the vector (f1(x1), . . . , fn(xn)) by F (x). Note that

‖f‖L1([0,1]) =
1

n

n∑
i=1

‖fi‖L1([0,1]) =
1

n

∫
[0,1]n
‖F (x)‖`n1 dx.

Moreover,

‖Tf‖ =
1

n

n∑
i=1

‖(Tf)i‖L1([0,1]n) =
1

n

n∑
i=1

∫
[0,1]n

∣∣∣∣∣
n∑
j=1

An(i, j)fj(xj)

∣∣∣∣∣ dx
=

1

n

∫
[0,1]n
‖AnF (x)‖`n1 dx.

Property (i). Using ‖AnF (x)‖`n1 ≤ ‖F (x)‖`n1 we get from the above formulae

that ‖Tf‖ ≤ ‖f‖.

Property (ii). Let S = supp(f). We can assume that |S| = θ/3 (if that is not

the case, put ε in the places where f is zero). Observe that

Si = supp(fi) = {t ∈ [0, 1], (i− 1)/n+ t/n ∈ S} = (nS − (i− 1)) ∩ [0, 1]

=
(
nS ∩ [i− 1, i]

)
− (i− 1)
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and
n∑
i=1

|Si| =
n∑
i=1

∣∣nS ∩ [i− 1, i]
∣∣ = n|S| = nθ/3.

Given a subset I ⊂ {1, . . . , n} = [n] by SI we denote the set B1 × . . . × Bn

with Bi = Si for i ∈ I and Bi = Sci for i ∈ [n] \ I. Clearly, for x ∈ SI

the support of the vector F (x) has cardinality #I, thus the idea is that by

restricting the integration to the union of SI with #I ≤ θn we will be able to

use the invertibility of An. We obtain

‖Tf‖ ≥ 1

n

∑
1≤k≤θn

∑
#I=k

∫
SI
‖AnF (x)‖`n1 dx

≥ 1

2n

∑
1≤k≤θn

∑
#I=k

∫
SI
‖F (x)‖`n1 dx

=
1

2n

n∑
i=1

∑
1≤k≤θn

∑
#I=k

∫
SI
|fi(xi)|dx.

For a fixed i the integral
∫
SI
|fi(xi)|dx is 0 if i /∈ I, otherwise it equals

‖fi‖

 ∏
j∈I\{j}

|Sj|

 ∏
j∈[n]\I

|Scj |

 .

Suppose for a moment that i = n. Then we can write∑
1≤k≤θn

∑
#I=k

∫
SI
|fi(xi)|dx =

∑
0≤k≤θn−1

∑
I⊂[n−1]
#I=k

‖fn‖ ·
∏
j∈I

|Sj|
∏

j∈[n−1]\I

|Scj |

= ‖fn‖ · P (X1 + . . .+Xn−1 ≤ θn− 1) ,

where Xi are independent random variables with distribution P (Xi = 1) =

|Si| = 1− P (Xi = 0). Since for n ≥ 3/θ

2E(X1 + . . .+Xn−1) ≤ 2(|S1|+ . . .+ |Sn|) = 2nθ/3 ≤ nθ − 1,

by Chebyshev’s inequality we get

P (X1 + . . .+Xn−1 > θn− 1) ≤ P (X1 + . . .+Xn−1 > 2E(X1 + . . .+Xn−1))

≤ 1/2,
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hence ∑
1≤k≤θn

∑
#I=k

∫
SI
‖fn(xn)‖`n1 dx ≥ 1

2
‖fn‖.

Dealing with i < n similarly we finally get

‖Tf‖ ≥ 1

2n

n∑
i=1

1

2
‖fi‖ =

1

4
‖f‖.

Property (iii). Let V ⊂ Rn be the space of the solutions of the system of

equations {
n∑
i=1

(∫ i/n

(i−1)/n

gj(t)dt

)
xi = 0, j = 1, . . . , k.

There are n variables and k equations, thus dimV ≥ n− k. Therefore

dim(V ∩ kerAn) ≥ n− k + n/2− n = n/2− k.

As a result, if n > 2k, there is a nonzero vector x ∈ V ∩ kerAn. Take

f(t) =
n∑
i=1

xi1[(i−1)/n,i/n)(t), t ∈ [0, 1].

3.5 Convolution operators

Let T = R/Z be the one dimensional torus viewed as a compact group with

addition modulo 1 denoted by x⊕y, equipped with the Haar measure (inherited

from Lebesgue measure). To begin with, fix 1 ≤ p ≤ ∞ and consider the

averaging operator Ut acting on Lp(T) (with the usual norm ‖f‖ =
(∫

T |f |
p
)1/p

for p <∞, and ‖f‖ = ess supT|f | for p =∞)

(Utf)(x) =
1

2t

∫ +t

−t
f(x⊕ s) ds, t ∈ (0, 1). (3.3)

If t is small, is the operator I−Ut invertible, or, in other words, how much does

Utf differ from f? Of course, averaging a constant function does not change

it, but excluding such a trivial case, we get a quantitative answer.
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3.8 Theorem. Let t ∈ (0, 1). There exists a positive constant c such that for

every 1 ≤ p ≤ ∞ and every f ∈ Lp(T) with
∫
T f = 0 we have

‖f − Utf‖ ≥ ct2 ‖f‖ , (3.4)

where ‖·‖ denotes the Lp norm.

Note that if p was equal to 2, then, with the aid of Fourier analysis, the

above estimate would be trivial. However to get an estimate for Lp that is

independent of p is more subtle.

When p = 1, if we further estimate the left hand side of (3.4) using the

Sobolev inequality, see [GT01], we obtain the following corollary.

3.9 Corollary. There is a positive constant c such that for every function f

from the Sobolev space W 1,1(T) with
∫
T f = 0 and every t ∈ (0, 1) we have∫

T

∣∣∣∣f ′(x)− f(x⊕ t)− f(x⊕−t)
2t

∣∣∣∣ dx ≥ ct2
∫
T
|f(x)| dx, (3.5)

3.10 Remark. Setting t = 1/2, inequality (3.5) becomes the usual Sobolev

inequality, so (3.5) can be viewed as a certain generalization of the Sobolev

inequality.

3.11 Remark. Set f(x) = cos(2πx). Then ‖f − Utf‖ = ‖f‖
(
1− 1

2πt
sin(2πt)

)
≈

t2 ‖f‖, for small t. Therefore, the inequality in Theorem 3.8 is sharp up to an

absolute constant.

In this section we give a proof of a generalization of Theorem 3.8. We say

that a T-valued random variable Z is c-good with some positive constant c

if P (Z ∈ A) ≥ c|A| for all measurable A ⊂ T. Equivalently, by Lebesgue’s

decomposition theorem it means that the absolutely continuous part of Z (with

respect to the Lebesgue measure) has a density bounded below by a positive

constant. We say that a real random variable Y is `-decent if Y1 + . . .+Y` has

a nontrivial absolutely continuous part, where Y1, Y2, . . . are i.i.d. copies of Y .

Our main result reads
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3.12 Theorem. Given t ∈ (0, 1) and an `-decent real random variable Y ,

consider the operator At given by

(Atf)(x) = Ef(x⊕ tY ). (3.6)

Then there exists a positive constant c which depends only on the distribution

of the random variable Y such that for every 1 ≤ p ≤ ∞ and every f ∈ Lp(T)

with
∫
T f = 0 we have

‖f − Atf‖ ≥ ct2 ‖f‖ ,

where ‖·‖ denotes the Lp norm.

3.13 Remark. We cannot hope to prove a statement similar to Theorem 3.12

for purely atomic measures. Indeed, just consider the case p = 1 and let Y

be distributed according to the law µY =
∑∞

i=1 piδxi . Then for every ε > 0

and every t ∈ (0, 1) there exists f ∈ L1(T) such that ‖f − At(f)‖ < ε and

‖f‖ = 1. To see this take N such that
∑∞

i=N+1 pi < ε/4 and let fn(x) =

π
2

sin(2πnx). Then ‖fn‖ = 1. Let n0 ≥ 8π/ε. Consider a sequence
(
(πntx1

mod 2π, . . . , πntxN mod 2π)
)
n

for n = 0, 1, 2, . . . , nN0 and observe that by the

pigeonhole principle there exist 0 ≤ n1 < n2 ≤ nN0 such that for all 1 ≤ i ≤ N

we have dist(πtxi(n1 − n2), 2πZ) ≤ 2π
n0

. Taking n = n2 − n1 we obtain

‖fn − At(fn)‖ ≤ π

2

N∑
i=1

pi ‖sin(2πnx)− sin(2πn(x+ txi))‖ +
ε

2

= π

N∑
i=1

pi| sin(πntxi)| · ‖cos(2πnx⊕ πntxi)‖ +
ε

2

≤ 2
N∑
i=1

pi| sin(πntxi)|+
ε

2
≤ 4π

n0

N∑
i=1

pi +
ε

2
≤ ε.

For the proof of Theorem 3.12 we will need two lemmas. The first one

shows why we bother about `-decent and c-good random variables (the point

being, of course, that we can apply a local version of the central limit theorem

for `-decent random variables). The second lemma explains why convolving

with good random variables gives operators which are strong contractions.
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3.14 Lemma. Suppose Y is an `-decent random variable. Let Y1, Y2, . . . be

independent copies of Y . Then there exist a positive integer N = N(Y ) and

numbers c = c(Y ) > 0, C0 = C0(Y ) ≥ 1 such that for all C ≥ C0 and n ≥ N

the random variable

X(C)
n =

(
C · Y1 + . . .+ Yn√

n

)
mod 1 (3.7)

is c-good.

Proof. We prove the lemma in a few steps considering more and more general

assumptions about Y .

Step I. Suppose that the characteristic function of Y belongs to Lp(R)

for some p ≥ 1. In this case, by a certain version of the Local Central Limit

Theorem, e.g. Theorem 19.1 in [BRR86], p. 189, we know that the density qn

of (Y1 + . . .+ Yn − nEY )/
√
n exists for sufficiently large n, and satisfies

sup
x∈R

∣∣∣∣qn(x)− 1√
2πσ

e−x
2/2σ2

∣∣∣∣ −−−→n→∞
0, (3.8)

where σ2 = Var(Y ). Observe that the density g
(C)
n of X

(C)
n equals

g(C)
n (x) =

∑
k∈Z

1

C
qn

(
1

C
(x+ k)−

√
nEY

)
, x ∈ [0, 1].

Using (3.8), for δ = e−2/σ2

√
2πσ

we can find N = N(Y ) such that

qn(x) >
1√
2πσ

e−x
2/2σ2 − δ/8, x ∈ R, n ≥ N.

Therefore, to be close to the maximum of the Gaussian density we sum over

only those k for which x + k ∈ (−2C, 2C) + C
√
nEY for all x ∈ [0, 1]. Since

there are at least C and at most 4C such k, we get that

g(C)
n (x) >

1

C

1√
2πσ

e−2/σ2 · C − 1

C

δ

8
· 4C =

1

2
√

2πσ
e−2/σ2

.

In particular, this implies that X
(C)
n is c-good with c = 1

2
√

2πσ
e−2/σ2

. Thus, in

this case, it suffices to set C0 = 1.
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Step II. Suppose that the law of Y is of the form qµ + (1 − q)ν for some

q ∈ (0, 1] and some Borel probability measures µ, ν on R such that the char-

acteristic function of µ belongs to Lp(R) for some p ≥ 1. Notice that

µY1+...+YN = µ?NY = (qµ+ (1− q)ν)?N =
N∑
k=0

(
N

k

)
qk(1− q)N−kµ?k ? ν?(N−k)

≥
N∑

k=N0

(
N

k

)
qk(1− q)N−kµ?k ? ν?(N−k) = cN,N0

(
µ?N0 ? ρN,N0

)
,

where

ρN,N0 =
1

cN,N0

N∑
k=N0

(
N

k

)
qk(1− q)N−kµ?k−N0 ? ν?(N−k)

is a probability measure, and

cN,N0 =
N∑

k=N0

(
N

k

)
qk(1− q)N−k

is a normalisation constant. Choosing N0 = bqN − C1

√
q(1− q)Nc we can

guarantee that cN,N0 ≥ 1/2 eventually, say for N ≥ Ñ . Denoting by Ȳ , Z the

random variables with the law µ, ρN,N0 respectively and by Ȳi i.i.d. copies of

Ȳ , we get

P
(
X

(C)
N ∈ A

)
≥ cN,N0P

((
C
Ȳ1 + . . .+ ȲN0√

N
+ C

ZN,N0√
N

)
mod 1 ∈ A

)
.

By Step I, the first bit C(Ȳ1 + . . . + ȲN0)/
√
N is c-good for some c > 0 and

C ≥ C
(II)
0 = supN≥Ñ

√
N/N0 . Moreover, note that if U is a c-good T-valued

r.v., then so is U ⊕V for every T-valued r.v. V which is independent of U . As

a result, X
(C)
N is c/2-good.

Step III. Now we consider the general case, i.e. Y is `-decent for some

` ≥ 1. For n ≥ ` we can write

C · Y1 + . . .+ Yn√
n

= C

√
bn/`c
n
·
Ỹ1 + . . .+ Ỹbn/`c√

bn/`c
+ C

R̃√
n

with Ỹj = Y(j−1)`+1 + . . .+Yj` for j = 1, . . . , bn/`c, and R̃ = Ybn/`c`+1 + . . .+Yn.

Since the absolutely continuous part of the law µ of Ỹj is nontrivial, then µ is

of the form qν1 + (1− q)ν2 with q ∈ (0, 1] and the characteristic function of ν1

belonging to some Lp. Indeed, µ has a bit which is a uniform distribution on
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some measurable set whose characteristic function is in L2. Therefore, applying

Step II for Ỹj we get that X
(C)
n is c-good when C

√
bn/`c
n
≥ C

(II)
0 . So we can

set C0 = C
(II)
0

√
2`.

3.15 Lemma. Suppose Z is a T-valued c-good random variable and BZ is the

operator defined by (BZf)(x) = Ef(x ⊕ Z). Then for every 1 ≤ p ≤ ∞ and

every f ∈ Lp(T) with
∫
T f = 0 we have ‖BZf‖ ≤ (1− c) ‖f‖, where ‖·‖ is the

Lp norm.

Proof. Fix 1 ≤ p < ∞. Let µ be the law of Z. Define the measure ν(A) =

(µ(A) − c|A|)/(1 − c) for measurable A ⊂ T. Since µ is c-good, ν is a Borel

probability measure on T. Take f ∈ Lp(T) with mean zero. Then by Jensen’s

inequality we have

‖BZf‖p =

∫ 1

0

∣∣∣∣∫ 1

0

f(x⊕ s) dµ(s)

∣∣∣∣p dx

= (1− c)p
∫ 1

0

∣∣∣∣∫ 1

0

f(x⊕ s) dν(s)

∣∣∣∣p dx

≤ (1− c)p
∫ 1

0

∫ 1

0

|f(x⊕ s)|p dν(s) dx

= (1− c)p ‖f‖p
∫ 1

0

dν(s) = (1− c)p ‖f‖p .

Since c does not depend on p we get the same inequality for p = ∞ by

passing to the limit.

Now we are ready to give the proof of Theorem 3.12.

Proof of Theorem 3.12. Fix 1 ≤ p ≤ ∞. Let Y1, Y2, . . . be independent copies

of Y . Observe that

(Ant f)(x) = Ef (x⊕ tY1 ⊕ . . .⊕ tYn))

= Ef
(
x⊕

(
t
√
n

(
Y1 + . . .+ Yn√

n

)
mod 1

))
.

Take n(t) = C2
0 d1/t2eN , where C0 and N are the numbers given by Lemma

3.14. Therefore, with X
(C)
n(t) defined by (3.7), we can write

(A
n(t)
t f)(x) = Ef

(
x⊕X(C)

n(t)

)
,
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where C = t
√
n(t) = tC0

√
d1/t2eN ≥ C0

√
N ≥ C0. Thus X

(C)
n(t) is c(Y )-good

with some constant c(Y ) ∈ (0, 1). From Lemma 3.15 we have∥∥∥An(t)
t f

∥∥∥ ≤ (1− c(Y )) ‖f‖

for all f satisfying
∫
T f = 0.

The operator At is a contraction, namely ‖Atf‖ ≤ ‖f‖ for all f ∈ L1(T).

Using this observation and the triangle inequality we obtain

‖f − Atf‖ ≥
1

n

(
‖f − Atf‖ +

∥∥Atf − A2
tf
∥∥ + . . .+

∥∥An−1
t f − Ant f

∥∥)
≥ 1

n
‖f − Ant f‖ .

Taking n = n(t) we arrive at

1

n(t)

∥∥∥f − An(t)
t f

∥∥∥ ≥ 1

t−2 + 1
· 1

C2
0 ·N

(
‖f‖ −

∥∥∥An(t)
t f

∥∥∥) ≥ c(Y )

2C2
0 ·N

t2 ‖f‖ .

To finish the proof, it suffices to take c = c(Y )/(2C2
0 ·N).

3.16 Remark. Consider an `-decent random variable Y . As was noted in the

proof of Lemma 3.14 (Step III), the law Y1 + . . .+ Y` has a bit whose charac-

teristic function is in L2. Conversely, if the law of Sm = Y1 + . . .+ Ym has the

form qµ+ (1− q)ν with q ∈ (0, 1] and the characteristic function of µ belongs

to Lp for some p ≥ 1, then the characteristic function of the bit µ?dp/2e of the

sum of dp/2e i.i.d. copies of Sm is in L2. In particular, that bit has a density

function in L1 ∩ L2. Thus Y is (m dp/2e)-decent.

3.17 Remark. The idea to study the operators At (see (3.6)) stemmed from

Schechtman’s question, Problem 3.1, presented and discussed earlier in the

chapter. Our hope was that an operator T = I − At, for some Y , would

provide a negative answer to Schechtman’s question. However, Theorem 3.12

says that if Y is an `-decent random variable, then T is nicely invertible on

the subspace of functions f ∈ L1 such that
∫
f · 1 = 0.

3.6 Notes and comments

The question mentioned at the start of the chapter asked by A. Nasseri was

this (see [Nas12]): does there exist a nonsurjective bounded linear operator on
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`∞ with dense range? Its main difficulty is captured in Schechtman’s question,

Problem 3.1.

Using more technical arguments involving tools such as ultraproducts, The-

orem 3.6 can be souped up to provide a positive answer to Nasseri’s question

as well as some other related questions. This is done by the author’s collab-

orators in the paper [JNST14]. What is presented in Sections 3.1-3.4 reflects

the author’s contribution to [JNST14].

Section 3.5 is based on the publication [NT14a] joint with P. Nayar. He

and the author equally contributed to the results obtained therein as they

worked together. It should be remarked that the present general statement of

Theorem 3.12 was obtained thanks to useful comments of K. Oleszkiewicz to

whom we are indebted. The remarks about purely atomic measures and the

sharpness of the constant in (3.4) were pointed out by S. Kwapień.
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Geometric aspects of functional analysis, volume 1745 of Lecture

Notes in Math., pages 147–168. Springer, Berlin, 2000.

[Lub94] A. Lubotzky. Discrete groups, expanding graphs and invariant mea-

sures, volume 125 of Progress in Mathematics. Birkhäuser Verlag,
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