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Abstract

The purpose of this dissertation is to study several problems related to high-
dimensional phenomena in analysis, geometry and probability.

The first problem examines the behaviour of probability measures of dila-
tions of sets possessing certain symmetries. We show that for the standard
Gaussian measure on complex vector space, cylinders are optimal in the sense
that, under dilations, the Gaussian measure grows no more rapidly for cylin-
ders than for other domains possessing enough symmetries. We also prove an
analogous result in the real case for Weibull and Gamma distributions. As
a consequence, we derive optimal comparison of moments for these distribu-
tions.

The second problem stems from the study of composite periodic quantum
systems. It asks about the behaviour of certain random matrices when their
size tends to infinity. We show that the spectrum of the tensor product of two
large random unitary matrices is asymptotically Poissonian; what we would
expect for diagonal matrices. The same conclusion is established for the tensor
product of a large number of 2 x 2 random unitary matrices.

The third problem concerns the invertibility of operators on L;. We con-
struct an example of a locally invertible operator with kernel of arbitrarily large
dimension. The construction is combinatorial, relying on expander graphs and
recent results from computer science about the restricted isometry property on
¢1. We also establish some Sobolev-type inequalities and find a certain large

class of convolution operators which are globally invertible on large subspaces.



Preface

This thesis concerns several topics lying at the intersection of analysis and
geometry, each of which has a probabilistic flavour. We are interested in two
types of situation: (A) one wants to find generic properties of objects that
hold in any dimension, and (B) one wants to describe asymptotic properties
of objects if the dimension tends to infinity.

The first problem under consideration examines the behaviour of probabil-
ity measures of dilations of convex sets and falls into paradigm (A). In 1969,
L. Shepp made, and in 1999, R. Latala and K. Oleszkiewicz proved a conjecture
saying that under dilations, a Gaussian measure on a real Banach space grows
no more rapidly for strips than for other symmetric convex sets. This result
has its roots in the study of Gaussian measures on Banach spaces, where one
often needs precise estimates for tails of distributions of norms of Gaussian vec-
tors. How to use the assumption of convexity on Gaussian space is a challenge,
since the intrinsic properties of the standard Gaussian measure, the rotational
invariance as well as the product structure at the same time, do not seem to be
intimately related to convexity. Natural questions that arise are these: what
can be said for Gaussian measures on complex Banach spaces, and what sets
are optimal for other measures? We address both of them, prompted by the
idea that for product measures, it is often possible to reduce the problem to
low dimensions via an inductive sort of argument. In the case of Gaussian
measures on complex space, after linearisation and dimension-reduction, we
conclude the argument by proving a simple, new, entropic functional inequal-
ity. In the real case, for symmetric Weibull and Gamma distributions, our

strategy is the same — first we reduce the problem to a problem in 2 dimen-



sions, and then we show how it can be solved using some inequalities for one
dimensional functionals involving convexity.

Our second problem emerges from composite quantum systems modelled
by the tensor products of the spaces relating to their subsystems. Since in
quantum mechanics, dynamics is governed by unitary operators, for a com-
posite system, the relevant object is a tensor product of unitary matrices. If
the dynamics is generic, we take random unitary matrices to model the evolu-
tion, so we study the spectra of tensor products of random unitary matrices.
We focus on asymptotic properties, as the size of the matrix becomes large
(paradigm (B)). We mainly look at two situations: 1) the tensor product of
two independent random unitary matrices with the size of at least one of them
tending to infinity, and 2) the tensor product of a large number of independent
random unitary matrices of a fixed size. The main goal is to show how the
spectra of such matrices behave asymptotically.

The third problem concerns the geometry of L spaces. A bounded linear
operator T': L ([0, 1]) — Iy ([O, 1]) is said to be e-locally invertible if for every
measurable subset A of [0, 1] of Lebesgue measure at most a half, the restricted
operator T'|1, () is invertible with ||(T'|1,(a))~'|| > €”'. The main question we
are concerned with reads as follows. Suppose that T' is a bounded linear oper-
ator on Ll([O, 1]) which s e-locally invertible. Is T' invertible when restricted
to a subspace of finite codimension? We answer this question in the negative.
Our approach hinges very much on studying related aspects for finite dimen-
sional ¢; spaces. We make use of magical combinatorial properties of expanders
that have recently been discovered in the context of sparse signal recovery. In
a sense, our work draws attention to a beautiful interplay between combi-
natorial properties of finite-dimensional objects and their infinite-dimensional
counterparts, with the emphasis on what happens when the dimension tends
to infinity. This closely follows the spirit of the local theory of Banach spaces,
a branch of geometric functional analysis that has developed rapidly in the
last few decades. Having said that, of course, we should also remark that the

problem discussed here can be seen as of type (B).



This thesis comprises three chapters, each devoted to one of the problems
mentioned above. The chapters are independent and can be regarded as indi-
vidual pieces of work. What binds them together are paradigms (A) and (B)
in the study of high-dimensional phenomena.

Throughout the text we try to use standard notation. Unclear or ambiguous
symbols are explained as they appear. Each chapter finishes with a notes &
comments section which gives the origin of every theorem stated as well as the

author’s contribution.



Chapter 1

Measures of dilations

1.1 Introduction

Let ,, be the standard Gaussian measure on R", i.e. the measure with density
at © = (x1,...,2,) € R" given by ﬁe*‘xpﬂ, where |z| = /2?4 ...+ 22
denotes the Euclidean norm. Take a Borel subset A of R™ and expand it by
dilating, that is consider the set tA = {ta, a € A}, t > 1. We shall ask vaguely:
how fast does the function t — ~,(tA) grow? It is fairly easy to see that one
extreme case is a Euclidean ball. Indeed, let B be the closed Euclidean ball
centred at the origin with radius r chosen so that 7, (B) = 7,(A). In particular,
Ym(A\ B) = 7,(B\ A) and, by simply moving mass to where the density is
bigger, we get that for ¢t > 1,

dx 20,12 dz
Y tH(A\ B / —\x|2/2 _ tn/ €_t lx|2/2 Y -
( (41 )) t(A\B) V2 A\B V2

_(t2—1 ‘x| /Qd'y < tn/ t2 1)T2/2d7n( )

\

A\B A\B
/ —(t2=1)r 2/2d7n <tn/ —(t2=1)|z|? /2d'y( )
B\A B\A
f)/n(t(B \ A )

Therefore,

Y (tA) < 7, (tB), t>1.



A similar argument also shows that
Yn(tA) > Yu(tB), t<1.

These two inequalities show that under dilations, the Gaussian measure grows
no faster for any set than it does for a ball. The natural question that arises is
this: what is the other extreme case? In other words, the Gaussian measure of
which sets grows most slowly. In 1969, in an unpublished preprint, L. Shepp

made the following conjecture.

1.1 Conjecture (Shepp). Let K be a conver symmetric (K = —K ) subset in
R™ and let P = {x € R", |x1| < p} be a strip with width p chosen so that
Yn(P) = v (K); then

Y (tK) > y(tP), t>1,

(1.1)
Y (tK) < 4, (tP), t<1.

It should be remarked here that strips are no longer optimal in the wider
class of symmetric sets — the above inequalities are not true after dropping
the assumption of convexity. For instance, they do not hold for the cross
K =([-1,1] x R) U (R x [—1,1]) in the plane.

In the form stated above, the conjecture was first published in [Sza91] (see
Remark 2.7 therein). V. Zalgaller and V. Sudakov showed that it holds for
n = 3 (see [ZS74]). S. Kwapien and J. Sawa proved the conjecture under the
additional assumption that K is symmetric with respect to every hyperplane
{z; = 0}, 7 = 1,...,n (see [KS93]). Not until 30 years after it had been
stated, was Shepp’s conjecture proved in full generality, by R. Latala and
K. Oleszkiewicz (see [LO99]). Their result is sometimes referred to as the
S-inequality.

There are some natural further directions of research. Shepp’s preprint
was concerned with the existence of strong exponential moments of a Gaussian
measure on a Banach space. Suppose that X is a (centred) Gaussian vector
on a Banach space (F,|| -||) distributed according to a Gaussian measure

on F. One often needs precise estimates on the quantity P (|| X|| > ¢) which is

10



simply 1 — p(tK), where K denotes the unit ball in . Such a ball is a convex
and symmetric set. Now, if F' is a real Banach space, certain approximation
techniques allow one to reduce the situation to the simplest case of the standard
Gaussian measure 7y, on R" and estimates like the S-inequality yield optimal
bounds for P (||X|| > ¢) (for details see, e.g., [KS93]). The same paradigm
applies when F' is a complex Banach space. Hence one of the interesting
questions is to find a version of the S-inequality for the standard Gaussian
distribution on C".

Another natural question is this: are there any other measures for which
the S-inequality holds (strips are optimal)? R. Latala made the following

conjecture (see survey [Lat02])

1.2 Conjecture (Latala). Let v be a rotationally invariant measure on R™,
absolutely continuous with respect to the Lebesque measure with a density of
the form f(|z|) for some nonincreasing function f: [0,00) — [0,00). Then
for any convex symmetric set A in R™ and any symmetric strip P in R™ such

that v(A) = v(P) the inequality v(tA) > v(tP) is satisfied for t > 1.

It was proved that the conjecture holds for n < 3 (see [ZS74]). To the best
of our knowledge, this is the only known result addressing Latala’s conjecture
in its full generality.

The next sections are devoted to the complex counterpart of the S-inequal-
ity as well as its extensions to some other measures in the real case (products
of symmetric Gamma and Weibull distributions). We also present applications

of S-inequalities to the derivation of optimal comparison of moments.

1.2 (zaussian measures on complex space

1.2.1 Preliminaries

We define the standard Gaussian measure v, on the space C" via the formula

Un(A) = von, (T(A)), for any Borel set A C C",

11



where C* — R?" is the bijection given by
(21, .y 2n) = (Rezy, TImzy, ..., Rez,, Tmz,).

We say that a closed subset K of C" supports the complex S-inequality, SC-in-
equality for short, if for every s > 0 the dilation L = sK and every cylinder
C ={ze€C" |z]| < R} satisty

vn(L) =1,(C) = wv,(tL) > v,(tC), fort > 1. (1.2)

A subset K of C" is called circled if e? K = K for every §# € R. A natural
counterpart of the S-inequality, (1.1), in the complex case is the following

conjecture due to A. Pelczynski.

1.3 Conjecture (Pelczynski). All convexr subsets K of C" which are circled
support the SC-inequality.

Following the methods from [LO99], the author in his master’s thesis ob-
tained a partial result saying that all convex circled sets support the SC-in-
equality as long as they are not too big. More precisely, he showed in [Tkol1]
that there exists a universal constant ¢ > 0.64 such that for every convex cir-
cled subset K of C" with v, (K) < ¢, if C' is a cylinder of the same v, measure
as K, then

vn(tK) > v, (tC), for every t € [1,to],

where t( is determined by the condition v, (t K) = c.

Note that a unit ball with respect to a norm on C" is a convex and circled
set. We are interested in the class R of all closed sets in C™ which are Reinhardt
complete, i.e. along with each point (z1,...,2,) such a set contains all points
(wi,...,wy,) for which |wg| < |z|, & = 1,...,n (consult for instance the
textbook [Sha92, 1.1.2, pp. 8-9]). Sets from the class SR are not necessarily
convex (e.g. {(z1,22) € C%, |21|Y2 + |2|"/? < 1}). For us, it is important that
this class contains all unit balls with respect to unconditional norms on C".
Recall that a norm |[|-|| is said to be unconditional if ||(e?1 2y, ..., e 2,)|| = | 2|

for all z € C" and 04, ...,60, € R. Our main result reads

12



1.4 Theorem. FEvery set from the class R supports the SC-inequality.

Now we establish some simple general observations which allow us to reduce
the problem to a one-dimensional entropy inequality. This inequality, which
may be of independent interest, is proved in the next subsection. Then we

prove the main theorem. In the last subsection we discuss its corollaries.

1.5 Proposition. A closed subset K of C™ supports the SC-inequality if and
only if for every s > 0 the dilation L = sK and every cylinder C' satisfy

vn(L) =v,(C) = iyn(sz)

~ (1.3)

d
> =
> dtyn(tC)

t=1 t=1

Proof. We only show the interesting part that (1.3) implies (1.2) following the
proof of [KS93, Lemma 1]. Fix a dilation L of K and a cylinder C' such that
vn(L) = v,(C). Let a function h be given by v, (tL) = v, (h(t)C), t > 1. Then,

by the assumption, we find

h(t)iun(sC) = il/n(sh(t)C) < dil/n(stL)

d
=t—uv,(sL
ds s=h(t) ds s ds (sL)

s=1 s=1 s=t

Differentiating the equation which defines the function A yields 3 Vn(sL)| =

s=t
h(t )—I/n(SC)l Wty
nondecreasing, so 1 = h(1) < h(t)/t for t > 1. O

thus h(t) < th'(t). This means that the function A(t)/t is

For any closed set A the derivative of the function t — v,(tA) is easy to

_ _/ —|2|? 1245 _ d /th —t2|w|? /2 quw
t=1 =1 T dt

= 2nv,(A / |z|2dv,(2)

Moreover, the integral of |z|> over a cylinder C' may be expressed explicitly in

compute. Indeed,

d

A
3 (t4)

t=1

terms of the measure v,(C'). Namely,
/ |22 dv,(2) = 2(1 — v,(O)) In (1 — 1,(C)) + 2nv,(C).
c

Combining these two remarks with the preceding proposition we obtain an

equivalent formulation of the problem.

13



1.6 Proposition. A closed subset K of C" supports the SC-inequality if and
only if for every s > 0 the dilation L = sK satisfies

/L |2|2dv,(2) < 2np 4+ 2(1 — p)In (1 — p), (1.4)

where p = v, (L) is the measure of the dilation L.

1.2.2 A one-dimensional entropy inequality

Observe that the quantity zlnx with z = 1 — p appears in (1.4). It is not
surprising that entropy will play a role in the rest of our proof. Recall that the
entropy of a function f: X — [0, 00) with respect to a probability measure

1 on a measurable space X is defined by

Ent, f — /X F(@)In f(@)du(z)

([ s ) ([ reu).

We adopt the standard convention that 0ln0 = 0.
The following simple one-dimensional entropy inequality is an important

ingredient in the proof of the main theorem, Theorem 1.4.

1.7 Lemma. Let pu be a Borel probability measure on [0,00) and suppose

f:10,00) — [0,00) is a bounded and nondecreasing function. Then

Fnt, f < — /OOO (@) (1 g ((x, oo)))du(x). (1.6)

Proof. Using homogeneity of both sides of (1.6), we can assume without loss of
generality that fooo fdu = 1. Then we may rewrite the assertion of the lemma

as follows

/0 o (f(:v) /( )du(t)>f(x)du(x) <1 (L.7)

Introduce the probability measure v on [0, 00) with the density f with respect
to p. Thanks to the monotonicity of f we can bound the left hand side of the

last inequality by

/Ooo In <1/ ((z,00)) )du(:c) = - /OOO /01 d;ul{uzy((mo))}(u’ 2)dv(x).
14



Define the function
H(y) = inf{t, v ((t,00)) <y},
which is the inverse tail function, and observe that
{(u,2), u=v((z,00))} D {(u,2), H(u) <z},

asu > v ((H(u),00)) > v ((x,00)). This leads to

oo 1 du oo 1 du
—/ / — Luz (@00} (U, 2)dv(2) < —/ — Lau<oy (u, 7)dv(z)
o Jo U 0 u

Since u < v ([H(u),0)), we finally get the desired estimate. O

1.8 Remark. If 1 has a density, say g, the proof can be rewritten as follows.
For t > x the monotonicity of f yields f(x) < f(t), so f(x) f(O,oo) du(t) <
[ f(t)g(t)dt = F(x) and the right-hand side of inequality (1.7) can be
bounded above by

as F(0) = [;° fdu =1 and F vanishes at infinity.

1.2.3 Proof of the main result

We shall need a multidimensional version of Lemma 1.7 for product measures.
To establish it, we shall exploit the product structure. For simplicity, we

formulate this result for the Gaussian measure.
1.9 Lemma. Let g: C" — [0,00) be a bounded function satisfying

1) g((ez,... e 2,)) = g(z) for any z € C" and 0y,...,0, € R,

2) for any w,z € C" the condition |wi| < |zi|, k = 1,...,n implies g(w) <
9(2)-

15



Then
Ent,, g < / g(2) (g - n) dv,(2). (1.8)

Proof. For a fixed vector r = (r1,...,7,) € [0,00)" we denote
B = (ry, . The1, Thgts - Tn) € [0, 00)" 7Y
and then define the functions
ge(x) = g(r, . The1, Ty Tkt 1y -+ o Th),s k=1,...,n.
Notice that for a function h: C — [0, 00) obeying property 1) we get

Lh(&q / / w94ﬂmwwi/fwmmm

where i denotes the probability measure on [0, 00) with the density at ¢ given

by te~t*/2. Therefore,
)dyn = [o . g(r) <—Zk; k —n) du®"(r)

Lo (%
-/ [ [ aw (4 1) e

where u®" = 4 ® ... ® p denotes the product measure. Applying Lemma 1.7

w\

dp®™(r),

for the function g7 and the measure p we obtain the estimate

/n g9(2) <% )dun /[000 ZEnt ())du=" (r)

> Ent,en g = Ent,,, g,

where the last inequality follows from the subadditivity of entropy (see, e.g.,

[Led01, Proposition 5.6]). O
Proof of Theorem 1.4. Fix K € . We want to show (1.4), that is
[ 1P dva(a) < 20p-+ 20 - p) (1 - ).
K

where p = v,(K) is the measure of K. The application of Lemma 1.9 for the
function g(z) =1 — 1x(z) yields
|21
~-p-p < [ Eran) .
K

which is what we want. O

16



1.2.4 Corollaries

Theorem 1.4 immediately implies that the Cartesian products of cylinders
support the SC-inequality. As a consequence, the SC-inequality possesses

a tensorization property.

1.10 Corollary. Let sets Ky C C™, ..., K, C C™ support the SC-inequality.

Then the set K1 X ... X Ky also supports the SC-inequality.

Proof. Choose a cylinder C' with the same measure as the Cartesian product
Ky x ... x K; =[] K; and choose cylinders C; with the same measure as the

sets K; respectively. Then we have that C' and [ C; have the same measure,

1a(C) = vy (H Kz-) = [ v () = [ v (C) = v (H cl-) .

Since we assume that each K; supports the SC-inequality and, as we said, so

does [ C;, we get that for t > 1,

" (t I1 Ki> = [T ve K = T v (tCi) = va (t I1 ci) > 1, (t0),

hence [] K; supports the SC-inequality as well. O

Another consequence of the main theorem is related to the standard sym-

metric exponential measure A\, on R" i.e.
d\,(z) = ie"xhd:zc, xr € R",
2n

where we denote | (21, ..., 2,)|1 = > iy |2i|. It turns out that certain subsets of
R" support the S-inequality for A, with strips as the optimal sets. To state the
result, we need a few definitions. We say that a set K C [0,00)" is a down set
if for every point x € K, the set K contains the cube [0, z1] X ... x[0,z,]. A set
K C R"is called unconditional if (€21, . .., €,2,) € K whenever (z1,...,x,) €
K and €,...,¢, € {—1,1}. By an unconditional down set K in R" we mean
the unconditional set K such that the set K N [0,00)" is a down set. For

instance, any unconditional convex set is also an unconditional down set.

17



1.11 Theorem. For any closed unconditional down set K C R™ and for any

strip P ={x € R", |z;| <p}, p >0, we have

M(K) =M\ (P) = Vt>1MN({tK)>\(tP), (1.9)
and, equivalently,

M(K) =M (P) = Vt<1MN({K) < \(tP). (1.10)

Proof. The equivalence of (1.9) and (1.10) is straightforward. For instance,
assume the latter does not hold. Then, there is ty < 1 such that A, (toK) >
An(toP). We can find sy < 1 for which A, (sotoK) = A\, (toP). Using (1.9) we

get a contradiction

M) > M(50K) = A (% (sotOK)) >\, (% (toP)> = A(P) = M (K.

Consider the mapping F': C* — [0, 00)" given by the formula

F(z1,...y20) = (lz1], -+ -5 |20l

Observe that for a down set A C [0, 00)", the set F~'(A) is Reinhardt complete

and integrating using the polar coordinates we find that

Up, (F’l(A)) = /AH rie’r%/zdrl coodry,.
i=1

Now, let us change the variables according to the mapping G: [0,00)" —

[0, 00)",

We obtain
v (F71(A)) = / e~ Zim Tidg,

Since G(A) is a down set if and only if A is a down set, we infer that for any

unconditional down set K C R"
M(K) =vo(K),  where K:=G 'F'(KN[0,00)").

Moreover, for a strip P = {x € R", |z;| < p}, the set P C C" is a cylinder.
Note also that tK — \/H? . These observations combined with Theorem 1.4

yield the assertion. O

18



In the next section, we will see a generalization of this theorem. Now,
we finish our discussion with a result concerning the optimal comparison of

moments of unconditional norms for the exponential measure.

1.12 Corollary. Let || - || be a norm on R™ which is unconditional, i.e.

H(Elxh cee ,EnSL’n)” = H(xlv T 7xn)H7

for any x; € R and ¢; € {—1,1}. Then forp>q >0

</R ||x||pd)\n(x)>1/p < Cpq </R ||x||qd)\n(x)>1/q, (1.11)

where the constant

(JoloPd@)'™ _ (0(p+ 1)1
(L e ()7 (Cq+ D)7

pq —

18 the best possible.

Proof. 1t is enough to repeat an argument credited to S. Szarek presented in

detail in the proof of Corollary 3 in [LLO99]. We can write

/ lzlPd, (z) = / Pt (K) dt,
n 0

where K; = {z € R", ||z|| < t} is a closed convex unconditional set, hence
an unconditional down set and Theorem 1.11 provides optimal bounds for its
measure. Specifically, we can compare it with the measure of a strip S; = {z €
R™, |x1| < t}. Moreover, note that we have A, (Sf) = \i{z € R, |z| > t}.

The argument starts with choosing a parameter o > 0 so that

/Rn |z|[PdA, () :/R‘x/a’pd)q(x).

Rewriting yields

/Oo PN (KP)dt = /OO PN, (SE,)dt,
0 0
so there is ¢y > 0 such that K, and S,;, have the same measure \,,. Hence we
have A\, (Kf) > A\, (SS,) for t < tg, and A\, (K7) < A\, (SS,) for t > to. It follows
that fort >0 and p>¢q >0

t

( ! )p_l (AlE7) = AalS5)) < (t—)q_l (An(KF) = AnlS0)).

t() 0
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Integrating gives

/ tq_l)\n(Kf)dtz/ t77IN, (S¢S, )dt,
0 0
or

/Rn ]| 9N, () > /R’fﬂ/@|qd)\1(:c),

thus, given the choice of «, we obtain (1.11). O

1.3 The Gamma and Weibull distributions

1.3.1 Preliminaries

The aim of this section is to extend Theorem 1.11 to the measures 7, on R"
with densities

dny(z) = (cp/2)”e_|x|gdx, r e R", (1.12)

where we denote |(21,...,2,)|, = (O |2i|P)/? and ¢, = 1/T(1 + 1/p) is the
appropriate normalization constant.

We begin with a few definitions. In this section, for a Borel measure p
on R its product measure g ® ... ® u = p®" is denoted by u". Recall that
such a product measure p™ on R™ is said to support the S-inequality for a
Borel set L C R™ if for every s > 0 the dilation K = sL and every strip
P ={z € R", |z <p} satisfy

p'(K)=p"(P) = p"(tK)> u"(tP), for t > 1. (1.13)

If we assume that the function ¥(z) = p([—x,x]) is invertible for x > 0, we

can write (1.13) as
WK > \y[tqf—l(u(fc))}, for ¢ > 1. (1.14)

A set K C R" is called a down set if for every point x € K, the set K contains

the cube [—|z1], |z1]] X ... X [—|xn], |2al]-
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1.3.2 Results
Now we can state the main result.

1.13 Theorem. Letp € (0,1]. Then the measure n; defined in (1.12) supports
the S-inequality for all down sets in R™.

As in Theorem 1.11, thanks to a simple coordinate-wise transport of mea-

sure argument, we establish the following corollary.

1.14 Corollary. For p € (0,1] and o > 0 introduce the measure ji,, on R
with density
Aptp.o (1) = acy|z|* e " dz. (1.15)

Then the product measures jui, , supports the S-inequality for all down sets in
R™. In particular, defining for « > 0 and ¢ > 1 on R the symmetric Weibull
measure W, with the parameter o and the symmetric Gamma measure Ay with

the parameter q, given by
1 o
dwe(z) = §a|$|a’1e’|x‘ dz, (1.16)

dA(z)

= z|7 ey, 1.17
s (117

we obtain that the product measures wy, and N support the S-inequality for all

down sets in R".

Recall that Corollary 1.12 says that the S-inequality for the symmetric
exponential measure, (1.9), yields the optimal comparison of moments of un-
conditional norms. The same argument shows that the same holds true for

any product measure.
1.15 Corollary. Let || - || be a norm on R™ which is unconditional, i.e.
ez, - enzn) | = (|21, )

for any x; € R and ¢; € {—1,1}. Suppose that a product Borel probability

measure " = u®" supports the S-inequality for all down sets in R™. Then for

</R Hprdu"(x))l/p < Chy </R ||x||qdu"(x)>1/q, (1.18)
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where the constant

(fy l2fPdpa(z))

1/
(Jp lledp(z)) ™
is the best possible. In particular, we might take p = 1, wWa, Aq, for p € (0,1],

a>0,q>1 (see (1.12), (1.16), (1.17)).

p,q —

In the next subsection we present the proof of the main result. The proofs of
Corollaries 1.14 and 1.15 are essentially identical to those of Theorem 1.11 and
Corollary 1.12 respectively. We omit the latter, but because of some subtleties

we still discuss the proof of the former.

1.3.3 Proofs
Proof of Theorem 1.13

The theorem is trivial in one dimension. For higher dimensions the strategy of
the proof is to reduce the problem to the two dimensional case where everything

can be computed. This is done in the following proposition.

1.16 Proposition. Let p be a Borel probability measure on R. Let u"™ = u®"
be its product measure on R™. If u* supports the S-inequality for all down sets
on R? then for any n > 2 the measure pu" supports the S-inequality for all down

sets on R™.

Proof. We proceed by induction on n. Let us fix n > 2 and assume that p"
supports the S-inequality for all down sets in R™. We would like to show that
"t supports the S-inequality for all down sets in R™™!. To this end consider
a down set K C R*"! and fix t > 1. Thanks to Fubini’s theorem

per) = [

R

(). )dpa(e) = / §P (K ) dpi(a),

R

where A, = {y € R", (y,x) € A} isasection ofaset A C R"™! at alevel z € R.
For a set A let P4 denote a strip with a width w, such that p"(A) = u"(Pa).
Since the section K,/ is a down set in R", by the induction hypothesis we

obtain

ECSEY)

R

" <tPK1-/t> dup(z) = /Ru ([_twKx/t’twKw/t]> du(x).
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For simplicity denote the function z — wg, by f. If we put Gy C R? to be
a down set generated by f, ie. Gy = {(z,y) € R?, |y| < f(x),z € R}, then
its dilation ¢G; is generated by the function x — ¢f(x/t). Therefore

/RM ([—twm/utwm/tD du(z) = 12 (tGy).

However, u?(Gy) = p"(K), so taking the strip P = [—w,w] x R" with the
same measure as K we see that the strip [—w,w] x R has the same mea-
sure as Gy. Now the fact that u* supports the S-inequality implies p?(tGy) >
2 (t([—w, w]|xR)) = p" T (tP). Thus we have shown that p" ™ (tK) > p"+(tP)

and this completes the proof. O]

Thus it suffices to show the theorem when n = 2. Notice that any down
set K C R? can be described by a nonincreasing function f : [0, 00) — [0, 00),

namely
K ={(z,y) € R? |yl < f(Jz])}.

Fix such a function and take a strip P = {|z1| < w} such that n}(K) = n2(P).
To prove that 777% supports the S-inequality for the down set K it is enough to
show that (see Proposition 1.5)

%nﬁ(tK) 2 %ni(tp) .
Let
M) = [ (lal + o) (o, ).
We have
2 G —(jz[P+lyl?) _ % [ 2 r(alr i)
n,(tK) = Z/ e dzdy = Z/ t°e dzdy,
tK K
hence
SRR = () — pM(K).

Therefore we are to prove that M,(K) < M,(P). Define the functions T :
[0,00) = [0,1], S : [0,00) — [0, 1]

T(u) = cp/ e du, S(u) = cp/ e dx
u 0
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and let p; be the probability measure with density c,e™" on [0,00). Note
that

Thus S(oc0) = 1/p. We have

_c/ / (2P + yP)e™™" V" dy dx

—%A a—TU<mdx+%Awﬂﬂwwﬁﬂm
=——AwﬂTU@DMM@%+Amﬂﬂ@%MA@-

To calculate M,(P), it is enough to take f(x) = oo for x < w and f(x) =0

for x > w in the above computations, so we obtain

A@w+wmd%ww=%—(%—ﬂw)+%u—ﬂw>
1 1
=~ +5(w) — ~T(w)

Let ®:[0,1] >R, ®=SoT !and g:[0,00) = [0,1], g =T o f. We would

like to prove

Observe that

np —c/ / e V" dy dx

- [ -1 duetw =1~ [ gdu.

0

Our assumption 72(K) = n2(P) yields [ g dpy = T'(w). Moreover,

() = a(rw) =@ ( [ gau).

Therefore our inequality can be expressed in the following form

/q)(g) dpy — @ (/g du+) < /0009(93) (l‘” - %) dpy ().

Note that g : [0,00) — [0,1] is nondecreasing. Summing up, to establish

Theorem 1.13 it suffices to prove the following lemma.
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P

1.17 Lemma. Let p € (0,1] and let py be a measure with density cpe”
supported on [0,00). Then for all nondecreasing functions g : [0,00) — [0, 1]

we have

Jowan—o([oa)< [Tow (@ -2) duw. @)

In order to prove Lemma 1.17 we shall need a lemma of R. Latala and
K. Oleszkiewicz (see [LO00, Lemma 4] or [Wol07, Theorem 1]). For conve-

nience let us recall their result.

1.18 Lemma (Latala—Oleszkiewicz). Let (2, v) be a probability space and sup-
pose that ® : [0,1] — R has strictly positive second derivative and 1/®" is

concave. For a nonnegative function g : ) — [0, 1] define a functional

Ty(g) = /Q@(g) dv — @ (/Qg dz/) . (1.20)

Then Vg is convex, namely
Up(Af + (1= N)g) < AVs(f) + (1= A)Us(g).

Now we show that our function ® = S o T~! satisfies the assumptions of

Lemma 1.18.

1.19 Lemma. The function ® = SoT! : [0,1] — R satisfies ® > 0 and
(1/@//)// S 0

Proof. Let T~! = F. Note that F' = T,éF) = —éer. We have

P 1 P
' = S'(F)F = c,FPe " (——eF ) = —F?
Cp
and
O = —pFrF = Lprie S g,

Cp

Moreover,

(1/(1)//)/ — % (Fl—pe—Fp)/

P I—
= % (L= p)Fr = pPt P ) e I =1 = P
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and

(1/8") = (1= p) PPt F = L
O

1.20 Remark. The reader might want to notice that the last inequality is the

place where the proof of the theorem does not work for other values of p.

We are ready to give the proof of Lemma 1.17.

Proof of Lemma 1.17. Combining Lemmas 1.18 and 1.19 we see that the left
hand side of (1.19) is a convex functional of g. The right hand side is linear
in g and therefore we see that A\g; + (1 — \)go satisfies (1.19) for every A €
[0, 1] whenever g1, g, satisfy (1.19). By an approximation argument it suffices
to prove our inequality for nondecreasing right-continuous piecewise constant
functions that take finitely many values. Every such a function is a convex
combination of a finite collection of functions of the form g,(x) = 1j,)(2),
where a € [0,00]. Therefore it suffices to check (1.19) for the functions g,.
Since ®(0) = S(o0) = 1/p and ®(1) = 0, we have

/¢@J@w—®(/%®u>=%ﬂ—TW»—ﬂ@

and

/OOO 9a() (xp - }9) dpy (z) = % — S(a) — lT(a),

D
thus we have equality in (1.19). O

The proof of Theorem 1.13 is now complete.

Proof of Corollary 1.14

Recall that the idea is that once a measure supports the S-inequality for all
down sets then so does its image under a properly chosen transformation (cf.
the proof of Theorem 1.11). Fix p € (0,1] and o > 0. Consider the mapping

F:]0,00)" — [0, 00)" given by the formula

F(zy, ... x,) = (af, ..., 20).

rrn
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We will use it to change the variables. So, take a down set K C R", the strip
P C R" such that 5} (K) = n,(P), and compute the measure of the dilation

tK for somet > 1

C

m(tK) = (—p)n/ el dr = CZ/ e~ X dy
27 )i £KN[0,00)"

= (ac)" / ye e v dy.
P Je-1knio.00pm) H

In the first equality we have used the symmetries of down sets, while in the last
one we have changed the variables putting z = F(y). Introducing the measure

Ip.o o0 R with density (1.15) we thus have seen that
77; (tK) = ppa(tK),

where for a down set A in R" the set A denotes a down set such that A N
[0,00)" = F71(AN[0,00)") (note that it makes sense as F' is monotone with
respect to each coordinate). The point is that due to the homogeneity of F' we

have tK = t/°K. Moreover, strips are mapped onto strips. Therefore
Up,a(tl/aK) = ng(tK) > n;(tP) = Np,a(tl/ap)a

which means that p, , supports the S-inequality for the down set K. Since the
down set K is arbitrary, we conclude that s, , supports the S-inequality for all
down sets. To finish the proof notice that we recover the Weibull distribution
putting p = 1, namely w, = ft1,,. To obtain the Gamma distribution set

a=1/p=q, as then \j = f11/44.

1.21 Remark. We might use more general change of variables y; = V(x;) for
some increasing function V': [0, 00) — [0,00), V(0) = 0 and ask whether we
will derive the S-inequality for other measures than p, . exploiting the above
technique. Since we would like to have tK = u(t)[? for a monotone function u,
we check it would imply that V(st) = CV (s)V(t), and C' is a constant. So V

should be a power function but this case has been studied in the above proof.
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1.4 Notes and comments

The results of Section 1.2 come from the publication [NT13]. The change of
variables used in the proof of Theorem 1.11, which establishes the S-inequality
for the symmetric exponential measure, was pointed out by B. Maurey after
a seminar talk by the author. R. Adamczak’s remark regarding Lemma 1.7, the
one-dimensional entropy inequality, led to the general formulation presented
here.

Section 1.3 is based on the authors’ further work on the S-inequality, the
article [NT14b].

P. Nayar and T. Tkocz are both including the results of the two aforemen-
tioned papers into their PhD theses. They worked together and contributed
equally to the results obtained.
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Chapter 2

Tensor products of random

unitary matrices

2.1 Introduction

In quantum mechanics, the time evolution of two noninteracting subsystems
can be described by an operator e @ ¢’ where H and H' are Hamiltonians
of the subsystems (see e.g. chapters 2.2 and 3.1 in [BP02]). In applications, the
unitary operator e’*# which is a priori complicated, is replaced by a random
unitary matrix, to make a model tractable. This powerful idea goes back to
E. Wigner (see e.g. his seminal paper [Wigh5]). Here by an n X n random
unitary matrix we mean a matrix chosen according to the Haar measure on
the unitary group U(n). From this point of view it seems natural to study
asymptotic local properties of spectra of the tensor product U,, ® V,, of two
independent m x m and n X n random unitary matrices.

More generally, consider a quantum system consisting of M noninteracting
subsystems. For simplicity we can assume that each of them is represented
in an n dimensional Hilbert space, so that any local unitary dynamics can be
written as U; ®...®@Uys, where the U; are n X n unitary matrices. If the unitary

dynamics of each subsystem is generic, the matrices U; can be represented by

independent random unitary matrices of size n.
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2.2 Background and notation

Since we shall view a collection of eigenvalues of a random matrix as a point
process, for clarity we need to start off by recalling some definitions and known
facts. A user-friendly and brief introduction to the theory of point processes
can be found in [HKPV09]. The monograph [AGZ10] is a good reference for
some background knowledge on random matrix theory.

A point process I' on R is a random integer-valued positive and o-finite
Borel measure on R. In other words, I': @ — M(R) is a random variable
taking values in the subset of integer-valued positive measures of the set M(R)
of all o-finite Borel measures on R. If for every z € R, I'({z}) < 1 a.s, then ' is
called simple. It is not hard to see that simple point processes on R correspond
to random discrete subsets of R. The latter point of view is particularly useful
for us. Indeed, the eigenvalues \q, ..., \, of, say an n x n Hermitian random
matrix constitute a.s. a discrete random subset {1, ..., \,} of R, which defines

a random counting measure
L(D) =) (D).
=1

The set M(R) is a metric space and the o-algebra of Borel subsets is
generated by the cylinders which are the subsets of the form C((gi))ﬂ: < = {pe
M(R); Vi < k u(D;) € I;}, given Borel subsets Dy, ..., D, C R and intervals
Ii, ..., I;. Thus, to determine the distribution of a point process, it is enough

to specify the probabilities P (F € C((II;Z-)) ; <k). For instance, a Poisson point

process I' on R with intensity A > 0 is characterized by setting

) = ki < n) = [T eNod QDD
P(T(D;) = ki <n) =[] e Y
i=1
for every n > 1, integers ki, ..., k, > 0, and mutually disjoint bounded Borel
subsets D; of R, that is I'(D;) are independent Poisson random variables with
parameters |D;| (Lebesgue measure of D;). The existence of such process is

guaranteed by the Kolmogorov consistency theorem. When A = 1 we call it

the standard Poisson point process and denote it by II.
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Sometimes in practice it is more convenient to describe distributions of
point processes by so-called intensity functions, or in the language of physicists,
correlation functions. Given a simple point process I', its k-th correlation
function (if exists) p(Fk): R* — [0,00) is defined by the fact that for every
mutually disjoint Borel subsets Dy, ..., Dy of R there holds

k
EHF(D,») = / pl(ﬂk)(xl,...,xk)dxl...dmk.
D1><...><Dk

=1

For example, for the standard Poisson process we have

) =1

k
i

because E [, (D;) is the product of Lebesgue measures of the D;. Under

some mild technical assumptions on I', the correlation functions are akin to

densities
() )= i P (T has a point in (z; — €, x; + €) for each it < k)
T1y,...,T = l1m
A 0 (2¢)k )
for every sequence of pairwise distinct points zq, ..., zj.

An important class of point processes are determinantal point processes:

processes for which the correlation functions can be put in the form

det[K(xz, l’])]k

ij=1
for some kernel function K : R? — R. For instance, the sine process ¥ on R
is defined by setting its correlation functions pg ) to be

k
P (@, o) = det[Q e, )],

with the sine kernel Q(x,y) = q(x — y), where ¢ is given by

o(u) = sin(mu) '

U
Obviously, this is a determinantal point process. Let us see why it is important.

Given an n x n random unitary matrix with eigenvalues e®', ..., e*", where
& € 10,2m) are eigenphases, we define the point process =, = {&;,...,&,} (here

and throughout we identify a simple point process with a random discrete
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subset of its atoms). It is well known that this process is determinantal with

the kernel S, (x,y) = s,(z — y), where

1 sin (%)
sp(u) = — 2.1
( 27 sin (%) (2.1)
Since %”sn (%’ru) — q(u), when n becomes large, the process 3-(Z, — ) of

n—o0

the rescaled eigenphases of the n x n random unitary matrix locally behaves
as the sine process X.
By the superposition of two simple point processes W = {uy,...,¥n},

S ={¢1,...,0on}, M, N < 0o, we mean the union

\IJU(I):{¢17~--7¢M7¢17'-'a¢1\/}'

2.3 Results

2.3.1 Two matrices of large sizes

Given two independent m x m and n X n random unitary matrices U and U’
we get two independent point processes of their eigenphases =,,, = {&1,...,&n}
and = = {&,...,£} respectively. We define the point process =, ® =/ of

n

the eigenphases of the matrix U ® U’ as
En®E, ={&+ & mod 2m, i=1,...,m,j=1,...,n}.
Our first main result reads as follows.

2.1 Theorem. Let =, and Z!, be point processes of eigenphases of two in-
dependent m X m and n X n random unitary matrices. Let Xy, ...,%,, be

independent sine processes and let I1 be a Poisson process on R. Then for each

k <mn the k-th correlation function of the process =, @ Z!, exists and
(k) (k)
(a) P (2,08, —m) T o PmSi0. 0mS,

(k) (k)
(b) Pon(z,,@z,-x) 7 P

m,n—0o

uniformly on all compact sets in R¥.
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2.2 Remark (Weak convergence). We say that a sequence of point processes
(1n) converges in distribution to a point process 7 if the law v, of 7,, converges
weakly to that of 7, say v, in the space M;(M(R)) of probability measures on
M(R), ie. [ fdv, — [ fdv for any bounded continuous function on M(R).
Clearly, these integrals can be expressed using correlation functions, so the
theorem implies the convergence in distribution of the point processes in ques-

tion.

2.8 Remark (Heuristic behind (a)). In the simplest case m = 2 we have

Zo @2 ={& + & mod 27, ..., & + &, mod 27}

U{& + €& mod 2m, ..., & + & mod 27}

After shifting and rescaling we end up with two families of rescaled eigenphases
of an n x n random unitary matrix which differ roughly by a large shift 5= (£; —
&) which is independent of the matrix. That makes the families independent

(k) (k)

and in the limit, according to P (Epm) T P they look like sine processes.
=n n—00

2.4 Remark (Superposition of many sine processes becomes a Poisson point

process). Notice that for m independent copies ®q,...,®,, of a point process
® we have
mAk
(k)
p<I>1U U@m(xla"w Z Z HP@ xz ’LET('J)
p=1 re&(k, p)

where S(k,p) is the collection of all partitions of the set {1,...,k} into p
nonempty pairwise disjoint subsets. By this we mean that if 7 is such a par-
tition then 7 = {m,...,m,}, where 7, = {m(q,1),...,7(q,t4m,)} is the g-th
block of the partition 7.

Along with the fact that if we rescale, pg\qz( ) becomes —pr)) (), the

previous observation yields

mAk p
1 : 1
k Z Z ()
pfn%llu UmZm k: ) HpE ! (E(l‘z)zém) . (22)
p=1 7e&(k,p) j=1

When m goes to infinity we thus get

m—00

k

. (1 k

i pl o s, (@) = Tim JT A4 (E(wi)iéﬂj = 1=pj.
j=1
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This retrieves a special case of a high dimensional phenomenon presented in
[CD10]. Namely, the authors say “[...] a Poisson process can be viewed as an
infinite superposition of determinantal or permanental point processes” (see
Theorem 4 therein and the two preceding paragraphs). In view of Theorem
(a) this implies that
Jim lim o e ez, = 1

Note that in the second part of the theorem we establish a stronger statement:
that letting the dimensions of two independent random unitary matrices go to

infinity eliminates all the correlations in their tensor product.

2.3.2 The tensor product of a large number of 2 x 2

matrices

We next consider M independent 2 x 2 random unitary matrices Uy, ..., Ups
and study the asymptotic properties of the phase-spectrum of the matrix U; ®

... ® Upys. Our main result is as follows.

2.5 Theorem. Let 0,67, j = 1,...,M be the eigenphases of independent
2 x 2 random unitary matrices Uy, ..., Uy. Define the point process Ty of the

rescaled eigenphases of the matrix Uy ® ... Q@ Uy as
(D) = Z 1{%(95%...%;94 mod 2r)eD}’ (2:3)
e=(€1,....,enr)E{1,2}M
for any compact set D C [0,00). Then, for each k there exists a continuous
function 6 : [0,00) — [0, 00) with 6,(0) = 0 so that for any mutually disjoint

intervals Iy, ..., I C [0,00)

P(TM(Il) >O,...,TM(Ik) >0)

lim sup < (1 + 6p(max|L])),
M—00 |]1|’]k| J
o Pra(fn) >0, T (f) > 0)

> — 1)) .
l%oréf A > (1 5k(m?><|fg|))

Note that the statement of Theorem 2.5 is weaker than that of Theorem
2.1. This is due to the fact that stronger correlations exist in the point process

Trv, which prevent us from demonstrating the convergence of its intensities
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to those of a Poisson process. The mode of convergence is however strong
enough to deduce interesting information, including the weak convergence of

the processes (cf. the remark following Theorem 2.1).

2.4 Proofs

2.4.1 Proof of Theorem 2.1

For the sake of convenience, let us recall a few basic facts which will be used
frequently in the proof.
Note the following easy estimate (for the definition see (2.1))

2T (@)

- ~1 (2.4)

sup
zeR

Combined with Hadamard’s inequality (see e.g. (3.4.6) in [AGZ10]), this allows

us to bound the correlation functions,

(k) k/2 k Kk /2
sup pz (x) < K?|s,qll5 =

k
. 2.
z€RFK " (zﬂ)kn ( 5)

Proof of Theorem 2.1 (a). Let Oy, = 52*(E, ®Z;, —7). Fix a natural number

k. Since we will let n go to infinity, we may assume that k£ < n. First we show

that there exists functions pg ) L R* — [0,00) so that for any bounded,

m,

measurable function f: R¥ —s R we have

E> flbr,....00) = | f(2)ps) (w)da,

where the summation is over all ordered k-tuples (61, ..., 0;) of distinct points
of ©,,,. This will prove that p(@li)m are the correlation functions of ©,, . Then
we will deal with the limit when n — oo.

Fix f. Since for each s = 1,..., k, 0, = 52(&, + ¢, mod 27 — 7) for some

is €{1,...,m}, js € {1,...,n} we can write

EY f(br,....00)=E > f((%(&ﬁ&}s mod27r—7r)>]::1),
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where the second sum is over k-tuples 4, j such that the pairs (iy, j1), ...,
(ix, ji) are pairwise distinct. This certainly happens when all the j; are distinct.
Call these choices of ¢ and j good and the rest bad. So

IEZf E Y f+E> f

good 14,j bad ,j

First we handle the good sum. Some of the i, may overlap and we will control
them using partitions of the set {1,...,k} into p < k A m nonempty pairwise
disjoint subsets (see Remark 2.4 for the notation) so that is = i, whenever s

and t belong to the same block of a partition. We have

kAm
EDX f=2 2 E > ) f
good 1,5 p=1 €& (k,p) .  distinct distinct

bn(1,1) 550 (p,1) T1oe-sTk
The sums over ¢« and j have been separated. Therefore taking advantage of
independence as well as recalling the definitions of the p-th and k-th correlation
functions of =, and =/ we find

E Y [= Z /0 0,27 /[o,mkf (<%<x“(5) 9, mod2m = W)>ls€:1>

good 1,j
k
2o ()
dl’l R dl'pdyl e dyk,

where we note 7(s) = ¢ <= s € m,. Finally, we need to address the tech-
nicality concerning the addition mod 27. Keeping in mind that we integrate

over [0,27]? and [0, 27]* we consider for n € {0, 1}* the set
U, = {:1:' c [0,27]P,y € [0,27])"; Vs <k Trs) +ys < 2m if n, =0, and

Tr(s) + Ys = 2w if 1y = 1}.

Then on U, we have x,( + y, mod 27 = 2.5 + ys — 277,, thus changing the
variables on U, so that z, = 52 (2(s) + ys — 27y — 7) we get

EY f- / (Zmn /[0,27r}r> 1y, (2)p2) (x) (%)k

good 1,j

pﬁ’?(y(z,x))dx) dz,
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where ys(z,z) = %zs — Tn(s) + 205 + T,
2w 2
Vi=2 €RP; Vs <k —2,+2mn, — T < Xp(e) < ——25 + 21 + 7 ¢,
mn mn
and
W, = {ZGRk; Vs <k zs <mn/2if n, =0, and z; > —mn/2 ifnszl}.

Summarizing, we have just seen that the correlation function pgi)nn(z) takes

the form

21 k
o ()= 1w, (2) /[ RUEE (—) o8 gz 2))
n 0,27|P

+ Bm,n(z)a

where the term B,,,, corresponds to the sum over bad indices E), ., i f. By

the same kind of reasoning we can show that

Bua@=Y% ¥ Tl (%) L A @2 )

P (§(z,2))da,

where the sums are over appropriate partitions and V~Vn, ‘771 are suitable sets
which appear after changing the variables. Now, by (2.5),

2 q/2
pp/qq/ b g

(27r)p+‘1m n?, (2.7)

P2 P9 <

SO

1
Bmm(z) S Ck—,
n

where the constant Cj depends only on k (roughly, it equals the number of
summands times k*). Hence, when taking n — oo we will not have to worry
about B, .

Let us look at (2.6) and compute the limit of the first term when n — oo.
We observe that 1y, — 1 pointwise on R*. Moreover, En 1y, — 1p2x)p», and

1y, — 0 for n such that 1, # 7, but 7(s) = n(t) for some s # t. Thus we
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consider only 7 such that n; = 7, whenever 7(s) = w(¢) and then the following

simple observation

2 2 0, v#0
—Wsn <—7ru + v) — (2.8)
mn mn nsoo | 1 /w
(), v=0
yields that for all these n,
o \" (k) 27 2T g
(%) pEiz (y) = det %Sn %(Zs - Zt) + 27]—(778 - T}t) + :L‘ﬂ(t) - xﬂ(s) -

p
1 —
n—o00 m m P
j=1 S,Lem;
LA |
:ﬁHp ! (E Zi 1675)-
j=1

By estimate (2.5), (%) p(_, (y) is bounded by k*2/mF* so the integrand in

(2.6) can be simply bounded. Thus by Lebesgue’s dominated convergence

theorem

(k) e
P@m,n ?) o Z H ) ( (i 1E7rj) /[ | pgl(:v)dx.
n—00 0,27m]P

(

For any p < m the integral f[o axyp P " (z)dz just equals m!/(m — p)!. Conse-

quently, we finally obtain

p
Pon, (215 -5 2k) I pz; ﬁmﬂpz ’ (E(zi)iewj :

P!
In view of (2.2) this completes the proof. [J

Proof of Theorem 2.1 (b). Fix a point z = (z1,...,2;) € R¥. We let m and n
tend to infinity and want to prove that pg;)m (z) tends to 1. Recall (2.6) and

notice that due to estimate (2.7) all the terms with p < k — 1 are bounded

above by Cy/m, so we can write

® oLyl 1 / 1 2r\"
o) o(m+n)+; ) [ ta (o) s
oS, (y(z,2)) da.
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Using the formulas for the correlation functions and the permutational defini-
tion of the determinant, we can put the integrand in the following form

k

1y () o b o
< : d t | — m\ts — : d t|— n s
mr [ms (@ g““’*)} P a2l

k

1y (z 2 2

— (;”T()k) (1 + | Z | sgnasgnTH %sm(xz — Io‘(i)) . %sn(yi — %(i)));
o#id or T#id i=1

where the second summation runs through permutations o and 7 of k£ indices.

The point is that each term in this sum tends to zero with m and n going

to infinity as we have 2Xs,,(2; — To(;) %) 0 for ¢ such that i # o(i), and

5. (yi — Yrr)) —— 0if i # 7(i) (see (2.8) and bear in mind the fact that
n— oo

actually y depends on m and n). Recall also that 1y, — 1 and }_ 1y, —

Ljg2n):. Moreover, (2.4) yields that the whole sum is bounded by (k!)?/(27)".

Therefore by Lebesgue’s dominated convergence theorem we conclude that

1
k
pg%,l,n(z) m 1[0,2ﬂ)k(x) (27T)k

which finishes the proof. [J

2.4.2 Proof of Theorem 2.5

In the course of the proof we will need three lemmas. Let us start with them.

2.6 Lemma. Fiz a positive integer s and a numbery € (0,1/s). For a positive
integer n define the set L, = {{ = (b1,...,ls), Z > €; >0, Y7 l; = n}.
Then

1 n! 1 n!
——=1- —— —— 0. 2.
Z s /! Z s" f! n—oo 0 ( 9)
€Ly, 35 L /n<y LeLn NG L /n>y
Here we adopt the convention that ¢! = ¢¢!-...- £,

Proof. The first estimate we make is simply the union bound

1 n! 1 n!
2 wust X aw

£,35 £;/n<v £,61/n<~y
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Now we rearrange this sum

Lnl g n! (n—£1)!
2 sl Zs_nzzl!(n—el)! 2. AR

0,01 /n<~y £1=0 Lo+..+Ls<n—l1 s

[yn]

1
= s \n— /4
N k s s ’
k=n—|yn]

Let Xi, Xs,... be i.i.d. Bernoulli random variables such that P (X; =0) =
1/s =1 —-P(X;=1). Denote S, = X; + ...+ X,. Then the last expres-
sion equals P (S, > n — |yn]). The second estimate we make is the following

probabilistic bound

P(SnZn—vn)—P<WE§—v>

< exp ( —2n(1/s — 7)2) — 0,

n—oo

where the inequality follows for instance from Hoeffding’s inequality. m

2.7 Lemma. Let X be a random wvector in R™ with a bounded density. Let
A: R" — R* be a linear mapping of rank r. Then there exists a constant C

such that for any intervals Iy, ..., I C R of finite length we have

where 1 < i1 < ... < 1, < k are indices of those rows of the matriz A which

are linearly independent.

Proof. Let ay,...,ar € R™ be rows of the matrix A. We know there are r
of them, say ag,...,a,, which are linearly independent. Thus there exists an

invertible » x r matrix U such that
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where e; € R" is the i-th vector of the standard basis of R"™. Notice that

PAX el x .. xI;))<P(U'EX €} x...xI)
=P((Xy,....X,) €Uy x ... 1))
<ClUIL % ... x Iy)| = CldetU| - || - ...~ L],

for the vector (Xj,...,X,) also has a bounded density on R". This finishes
the proof. O

2.8 Lemma. Let A be a matrixz of dimension k X j, with entries in {0,1}, and

satisfying the following conditions
(1) no two columns are equal.
(i1) no two rows are equal.
(i1i) no zero row
Then, the rank of A is at least min(k, [logy j| + 1).

Proof. (Due to Dima Gourevitch) Denote r = rankA. The assertion of the
lemma is equivalent to the statement that 2" > j and if 2" = j then r = k.

We may assume without loss of generality that the first r rows of A are
linearly independent and the others are their linear combinations. Under this
assumption, if two columns are identical in the first r coordinates then they
are identical in all coordinates. By condition (i), such columns do not exist.
Therefore the r x 7 submatrix B which consists of the first r rows has distinct
columns. As a result j < 2".

Now suppose j = 2". If k > r, consider the » + 1 row of A. It is a
linear combination of the first » rows. Since the columns of B include the
column ¢; = (0,..,0,1,0,..,0) for all « = 1,...,r, the coefficient of each row
is either 0 or 1. B includes also a column of all 1s, thus there is at most
one nonzero coefficient (if there were more than one, a certain entry would
be greater than 1). Consequently, the coefficient of exactly one row is 1, and

all other coefficients vanish, because if all coefficients were zero, the r + 1 row
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would be zero which contradicts (74i). Thus, the r 4+ 1-th row is identical to

one of the first r rows - in contradiction to condition (7). O

Proof of Theorem 2.5. Fix an integer k£ > 1 and finite intervals Iy,...,I; C
[0,00) which are mutually disjoint. We need to compute the probability
of the event {ry(Z;) > 0,5 = 1,...,k} which means that in each inter-

val I; there is a rescaled eigenphase. Each such eigenphase is of the form

2M — (07 + ... + 03} mod 2r) for some € = (e1,...,€ey) € {1,2}M. Therefore

{u(I;) >0, j=1,....k} = J A,

where
Mo 2T
AG:{ZH; mod27r€2—MIj,j:1,...,k}, (2.10)
i=1 —
Jj

and € runs over the set
E= {[ei]i;ljl\}, e e{1,2}, A forutvuv=1,... ,k} (2.11)

of all k& x M matrices with entries 1,2 which have pairwise distinct rows ¢/ =
(el,....é,) e {1,2}M, j =1,... k (j-th row € describes the j-th eigenphase
and since intervals are disjoint we assume the rows are distinct). Column
vectors are denoted by ¢; = [e}, ..., e¥|T, i=1,..., M.

We say that € is bad if the collection of its column vectors {¢;,7 < M} has

cardinality less than 2. Otherwise € is called good. Obviously,

P(Ua)er(Ua)=r(Ua) e (U)

The strategy is to show that the contribution of bad e vanishes for large M
while good e essentially provide the desired result [];[I;| when M goes to
infinity. So the proof will be divided into several parts.

Good e.

The goal here is to prove

li lim ———— A 2.12
male\IIn|ﬁ0 Mlinoo |Il| |Ik ( U > ( )

good €
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with the required uniformity in the choice of the disjoint intervals I;. By virtue
of the fact that
D OP(A)— ) P(ANA) gIP( U A€> < P (A,)
good € good €, € good €
€£€
it suffices to prove that
lim Y P(A) =[] (2.13)

M—o0
good €

uniformly, and that the correlations between two different good € do not matter

1
limsup limsup —— P(A.NAs) =0. (2.14)
max; [I;| -0 M—o0 H |I]| goge,g
€#€

Let us now prove (2.13). The proof of (2.14) is deferred to the very end as
we will need the ideas developed here as well as in the part devoted to bad e.

Given € € £ and a vector a = [ ... )T € {1,2}* we count how many
column vectors of € equals o and call this number ¢,. Then ) ¢, = M.
Note that € is good iff all ¢, are nonzero. The crucial observation is that the
probability of the event A. does depend only on the vector £ = (£a)acq1 23+ as-
sociated with € as described before. Indeed, the sum Zfil[ef . fo]T mod 27

is identically distributed as the random vector ) 1 (a, £,) mod 2w, where

Dr(a, £) o2 o

U(a, ly) = : = |+...+| ¢ | mod2rm (2.15)
Yr(a, Ly) 05 g;*

g,
is a sum modulo 27 of i.i.d. vectors. Note that the distribution of ¥ («, ¢,)
does not depend on the choice of indices iy,...,7,, but only on o and ¢,.
Consequently, denoting by &, the set of all € such that there are exactly ¢,

indices 1 <4y < ... <14y, < M for which ¢, = ... =¢;, = a, we have that

Lo

the value of P (A,) is the same for all € € &. Clearly $&, = Alf[—!!, whence

Y P(A)= ) ]\Z—'!]P) > (o, le) mod2r € Ty x ... x Ji | . (2.16)

good € good £ ae{l,2}k
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The idea is to identify those terms which will sum up to []|[;| and the
rest which will be neglected in the limit of large M. To do this, set a positive
parameter v < 1/2% and let us call a good ¢ very good (v.g. for short) if
Uy, > yM for every « and quite good (q.g. for short) otherwise. We claim that

P(Zw(a,éa)monWEJl><...><Jk>§C’H|Jj|a for a good ¢ (C1)

and

P (D (e f) mod 27 € Jy X .. x Jy ) = ggﬁ (1 + %)  nl <0

for a very good /,

(C2)

where C'is a constant (from now on in this proof we adopt the convention that
C'is a constant depending only on k& which may differ from line to line).
Let us postpone the proofs and see how to conclude (2.13). Notice that

1(727';?‘ = o 11 [7;]- Thus applying (C1) we obtain

ZP(Zw(@,ea) mod 27 € J; ><...><Jk> gHuj\.CZ%LMAZ—!!.

q.g. ¢ q.g. L

By Lemma 2.6 this vanishes when M — oco. Now we deal with very good ¢
writing with the aid of (C2) that

ZP(Z¢(a,éa) mod 2m € Jy X ... X Jk>

v.g £

1 M! 1 M!
:H|Ij|<z2’€_MW+22’f_MW;—%>'

v.g £ v.g £

The first term in the bracket approaches 1 in the limit M — oo due to Lemma

2.6, while the second one approaches 0 as it is bounded above by C \/LM
Proof of (C1). Let us define the vectors

6j:(27"'>271727"~72)6{1,2}k, ]:1,,k
j—1 k—j
Since /¢ is good, in particular we have that £., > 0, so denoting the random

vector ¢(ej, L) by ¥/ we have

J

S (o le) = (T + .+ T+ YT (e l).
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By independence it is enough to show that the random vector ¥ = Wl + .. . +
U* mod 27 has a bounded density on [0,27)*. Equation (2.15) yields that

where (X, Y;) are independent random vectors on [0, 27)? with the same distri-
butions as the vectors (6} +. . .+9§ej mod 27, 03 +. . .+6§€j mod 27) respectively.
Clearly, the vector (X}, Y;) has a bounded density on [0, 27)? because the vec-
tor (61,6?) has a bounded density. Therefore the vector (X1,Y7,..., X}, Ys)
has a bounded density on [0,27)?*. A certain linear transformation with de-
terminant 1 maps this vector to (¥!+...+U* V] ... Y};) which consequently
also has a bounded density. We project it to the first k coordinates and then
take care of addition modulo 27 obtaining that ¥ has a bounded density, which

finishes the proof. n

Proof of (C2). Given a vector a € {1,2}* let ©% denote the random vector in
[0, 27)" identically distributed as the vector (47", ...,0*). Take independent
copies ©F, O3, ... of ©% such that the family {©F, 0%, .. .},e(1,2+ also consists

of independent random vectors. Then EQ® =[x, ..., 7]

pes =P (Zw(a,éa) mod 27 € J; X ... X Jk)
éa
:]P(ZZ@?monweJlx...xJk)
M—-1
(ZZ@& (Ji+2min) x ... x (J + 2mk)>

07

M

:ZP<;Z \/_ \/_(J1+27r(zl—M/2))

X \/LM(Jk + 2 (i — M/2))>.

To ease the notation we introduce new indices
oy Mo MY MMM g
J=1u 27"'77’16 9 27 9 7"'a2 )
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sets

. 1 .
Kj,M = _(Jl —|—27le) X ... X —(Jk + 27Tjk),

VM

QH

and the vector ,

~ 6 — EO¢
g - Or —BO
R

a =

Now we intend to use the local Central Limit Theorem of [BRR86]. Indeed,
due to independence such a theorem should hopefully yield that Sj; has a
normal distribution for large M. To be more precise, let us consider the matrix
CovSu =), % Cov ©° and its eigenvalues. Since for any z € R*

ga « «
z7(Cov Sy )z = Z M{L'T(COV@ Yo < max | Cov ©%| |z|?,

J/

N
« ~\~

c
it is clear that the largest eigenvalues are uniformly (with respect to M)
bounded by C', which depends only on k. To provide a uniform bound for the

smallest eigenvalues let us observe that (recall that e; = (2,...,2,1,2,...,2))

k k
l.. 2

T > e T e T €; >~ |rl?

" (Cov Sy)x > ;:1 M:z: (CovO©%)x > vz ( E Cov© ):z: > 3 ||,

j=1
where the second inequality holds because ¢ is very good.

It is a matter of a direct computation to see the last inequality since for
k > 2 we have Y_F_ | CovO® = ((k —2)7?/3 = 2)[1...1]7[1...1] + diag(2 +
272/3,...,2+272/3) and for k = 1 the sum equals 7%/3. Therefore, with the

matrix By, given by

B}, = (Cov Sy) ™t

we get that
1
—|z| < |B < Clz|.
Slel < |Bual < Clal

Therefore the assumptions of [BRR86, Corollary 19.4] are satisfied (for the fam-
ily of independent random vectors {OF, ©5, .. .},cq1,23%), 50 the vector By Sy
possesses a density ¢y, and

sup (14 [2]*+?) (qu () -

zCERF

1 —k/2
J—MPM@)M) — o),
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where ¢(z) = ﬁe*‘ﬂz/ 2 is the density of the standard normal distribution in
R* and Py, is a polynomial of degree k — 1 whose coefficients depends on the

cumulants of the vectors By;0%. We may put it differently, i.e.

1 fu ()
qu(z) = ¢(z) + \/—M<PM(SC)¢($) + T4 [ )
o (&)
for some functions fy; uniformly bounded sup,, sup,cpx |fu(z)] = C < 0.

Therefore, denoting L, »r = By K ar,

pear = Y P (Sy € Kjn) =Y P (BySy € BuKju)

iAJ,NIQMZAj,:¢+¢LWZAJ,RhM (2.17)
1

=ay + —bu.
M \/MM

Let us first deal with the error term b,;. Denoting

Al
(2m)*

we are to show that

Ibar| < Ck. (2.18)

To do this we estimate the integrated function

C
|har (@) < |Pur()|d(z) + T e
Therefore we define
W) = [Pu(e)|6(x) + —
L) = M) |px 1+ [a]F+2

and then |by| <37, fL-M h. Introduce the boxes

1 , 1 .
Fij = BM (\/—M([O, 27T) + 2’/Tj1) X ... X \/—M([O,Q’H’) =+ 27T]k))

and observe that

L; 1
/ h = | J’M‘\Fj’M\ / h < k|F; p| sup h < k| F}j | sup h.
Lj v ’FJ,M’ |Lj,n| Ljm 3, M Fj,m
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Since diamF}; < C%E M—> 0, the sets Fj s are pairwise disjoint and
——00

sum up to By[—mvV M, 7V M)*, we can infer that the sum > [Fimlsupg, ,, h
converges to ka h = C' < oo. Hence, this sum is bounded by C' and we get
(2.18).

Now we handle the main term a;. We prove it equals x up to another error

c
H\/—M .
L;ar- Ttequals ByrAj By, where A; y is the linear mapping transforming the

Let Ajn e R¥ — R* be the linear isomorphism mapping F} pr onto

box B;/lle,M onto the box BA_JILj,M, whence |det A; | = k. Thus, changing

the variable we obtain
/ ¢(x)dx = m/ d(Aj px)de.
Ljm Fim
Notice that A; yx is close to x, whenever x € Fj y, for
’Aj’n.f — LIZ’| S diaij,M, T € F}',M-

Consequently, on Fjar, ¢(Ajyz) is close to ¢(x). Strictly, we use the mean

value theorem and get

/ o(z)de = K,/ o(z)dx + K,/ Voy(n,) - (Ajmx — x)de,
L;m Fj m Fj m

for some mean points 7, € [z, A; yz]. This results in

ay = Z/L%M o(z)de = KZ/

F; m
:/{<1—/ ¢+Z/ Vqﬁv(ngc)-(Aj,Mx—x)dx).
N RF\Bjps[—nvV/M,nv/ M)k P - JFu

J

(& J/
-

¢+ K Z Vo) - (Ajmr —x)dz

M das

We are almost done. Clearly cj; converges to 0 faster that 1/v/ M, so || <
C/vM. For dy we use the Cauchy-Schwarz inequality and integrability of
V(1)

'MEDS / V()| Ay — zlde
j Fi m

< diamF a1 / Ve (n.)|dz <
UFjm

This completes the proof of (C2). O

=k
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We have proved claims (C1) and (C2), so the proof of the part concerning

good € is now complete. Let us proceed to tackle bad e.

Bad e.

The goal here is to show that

Jim P ( U AE) =0, (2.19)

bad e

again, with the required uniformity. Obviously it suffices to show that

> P(A) ——0.

M—o0
bad €

Let F; be the set of those bad € for which the cardinality of the set {¢;,i < M}
equals j. Observe that §F; < 7M. With the aid of Lemma 2.8 we will show
that

Ve € Fj P(Al) < € - 27 Mol O (max | [;]) oz ), (2.20)
J

when max; |I;| — 0. This will finish the proof, for

2k —1
Z P (Ae) S C- O(max |IJ|) Z jM . Q—M(l-l-l_logzjj)
J
bad e j=1
21 (2.21)
=C- O(m]ax |I]|) Z 2_M(1+\_log2jj—log2j) MHOO} 0.
7=1

For the proof of (2.20) fix e € F;. We have seen that

P(A) :P<Zw(a,€a) mod 27 € J; X ... X Jk>

and we know that there are exactly j numbers ¢, which are nonzero, say those
which correspond to vectors al,...,a/ € {1,2}*. Denote ¥! = (a,ly),
i =1,...,j and consider the random vector S; = W' + ...+ ¥/ in R*. As
in the proof of Claim (C1) we observe that S; is a linear image of the vector

(X1,Y3,...,X;,Y;). This mapping is given by the matrix A = [a,;] where
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By Lemma 2.7 we obtain

P(S; mod 2w € Jy x ... x Ji) < Cmax (|| ...~ | ])

— - O(GmaxlEly) -2, (2.22)
where r = rankA. The number r does not change if we replace the 2i-th
column of A with the vector e with 1 at each its entry, as the sum of 2i — 1-th
and 2i-th columns is just e. Now taking only the columns 1,2,3,5,...,27 — 1
we get the matrix B which has the same rank as A. It has j + 1 columns and
fulfils the assumptions of Lemma 2.8 (it has no zero row as the second column
consists of all 1s). Thus 7 > min(1+ |log,(1+7)], k) and when j < 2¥ — 1 this
minimum equals 1+ [logy(1+ )] > 1+ |logyj]. If j = 2¥ — 1 in the matrix A
there must be two identical columns, one with even, say 2u, and one with odd,
say 2v — 1 index, which means that the u-th and the v-th column of B add up
to e, so the v-th column may be erased and the rank of B does not change.
Therefore we apply the lemma to the matrix B with erased the v-th column
which is of size k x j and get again r > min(1 + |log, j|, k) = 1 + |log, 7.
This completes the proof of (2.20).

Pairs of good ¢, i.e. the proof of (2.14).

We denote by ©;(¢) the random vector (691, . ,6;5). By the definition of A,

7

we may write

M
O, Ji X oox

AnA=1Y O od2re ™ fU (293
i=1 @Z(E) J1><...><Jk

Since the intervals J, and J, are disjoint for u # v, we may restrict ourselves
to those € and € for which €* # €” whenever u # v, u,v = 1,..., k as otherwise
the event A, N A¢ is impossible. However it might happen that €* = €*. Let
us count for how many w it takes place, i.e. given s € {1,...,k} let P, be the
set of all considered unordered pairs {¢, €} for which there are exactly k — s

indices 1 < u; < ... < up_s < k such that €% =¢€%, j =1,...,k —s. The
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value s = 0 is excluded as € # €. We have

k
ZPAmA :Z Z (AN A7)
s=1 {ee}eP

€#£€

Thus we fix s and prove that

1
limsup limsup m g P(A.NAz) =
J
{e

max; [I;|—-0 M—o0 eP,

There are two cases. A pair {¢, €} € P, can be good which means
t{[a], i=1,..., M} > 2",

or, otherwise we call it bad. We obtain a decomposition P, = Pe°duPPLad. Now
for a good pair, applying the reasoning already used for bad ¢, i.e. combining

lemmas 2.7 and 2.8, we get the estimate

P(A.NA) <C|Jy-...- \Jk\(jiriaxk ;1)

=1,...,

C s
= W(HU |)(m§ix|[j|> :

But f#Peeed < 4P, < (’;) QUM g

limsup limsup
max; |[;| -0 M—o0 H|I]’

> P(ANA)=0.

{G,E}E'P‘ggcmd
For a bad pair {e, €} we know that there are k+ s different rows and at most

2k+s — 1 different columns in the matrix [£]. Hence we repeat the argument

€
of the part concerning bad e. As in that part we use Lemma 2.8 in order to
establish an appropriate inequality in the spirit of (2.20). Then we follow the

estimate of (2.21) and conclude that

Jim > P(ANA)=0.
{ecyephad

This finishes the proof of Theorem 2.5. O]

2.5 Notes and comments

The idea of studying tensor products of random unitary matrices stemmed

from the author’s discussions with the physicists M. Ku$ and K. Zyczkowski.
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The author discussed the related mathematical problems with O. Zeitouni.
Under his supervision, the author proved first Theorem 2.1(b) in the partic-
ular case of m = n. After some time, guided by some key ideas produced by
O. Zeitouni, the author proved Theorem 2.5. K. Zyczkowski’s PhD student at
the time, M. Smaczynski, provided some numerical data which, along with the
main results, Theorem 2.1(b) (m = n) and Theorem 2.5, were published in
article [TSK*12]. Later, working under the supervision of N. O’Connell, the
author proved Theorem 2.1 and published it in [Tkol13]. The asymptotics of
the extreme statistics of spectra of tensor products of random unitary matri-
ces have recently been investigated numerically (see [STKZ13]). For a single
random unitary matrix, such statistics are well understood (see [BAB13]).

Sections 2.3.1 and 2.4.1 are based on [Tkol3], whereas sections 2.3.2 and
2.4.2 are based on [TSK*12].

We would like to end this discussion with a conjecture that generalises our

main results. The conjecture appeared in [TSKT12].

2.9 Conjecture. Let 9]1., e ,QJN, jg=1,..., M be the eigenphases of indepen-
dent random unitary matrices Uy, ..., Uy of size N. Define the point process

TmN of the rescaled eigenphases of the matriz Uy @ ... @ Uy as

T (D) = > T (4114630 moaam)en)) (2.24)

E:(el ..... E]p[)G{l ,,,,, N}]W
for any compact set D C [0,00). Then, for each k there exists a continuous
function 6y : [0,00) — [0,00) with 0;(0) = 0 so that for any mutually disjoint

intervals Iy, ..., Iy C [0, 00)

]P)(TMJV(Il) > O, R ,TM7N(I]€) > O)

lim sup < (1 + dp(max|L;])),
A j
P I I
limn it DN > 0, Ty k) > 0) > (1 — &x(max |I}]))
.. 14| :

with fivred N > 2 and M — oo, or N — oo and fixed M > 2.

52



Chapter 3

Invertibility of L; operators.

3.1 Introduction

In this chapter we will frequently work with the Lebesgue space L,[0, 1] for
p > 1 of measurable functions f: [0,1] — R with finite p-norm which will
be denoted by | fllz, = ||fll, = (fol |f(a:)\pd:v) l/p. We will be interested in
linear operators, which when restricted to functions with small support, are
invertible. By the support of a function f, supp(f) we mean, as usual, the
set of points where the function is not zero-valued. For the present purpose,
whether or not the support is small will be decided by its Lebesgue measure
which we denote | - |.

Given two positive constants € and ¢, let us define the class 7. .(L,) of
linear operators 1" acting on L,[0,1], with values in the same space, with
norm at most one, and having the property that restricted to L,(A) for any
measurable subset A of [0, 1] of Lebesgue measure ¢, they are invertible with

1(T'|L,ca) ]| = €'; in other words, satisfying
Vf e Lpl0,1] [supp(f)| < ¢ = T fllz, = €l fllz,.

G. Schechtman posed the following question (personal communication). In an
equivalent form it was asked by B. Johnson in connection with A. Nasseri’s

question on Mathoverflow [Nas12]).

53



3.1 Problem (Schechtman). Fix €, ¢ > 0. Is it true that there exists a natural
number k& = k(e,c¢) depending only on e and ¢ such that for any operator

T € Tcc(L1) we can find > 0 and k functions gy, ..., gr € Loo[0, 1] such that

TSz, = ollf|z,

for every function f from the subspace {f € L0, 1], fol fg;=0,5 <k}?

Loosely speaking, the question asks whether local invertibility of an oper-
ator on L; implies its global invertibility on a subspace of fixed codimension.
The aim of the first part of this chapter is to explain why the answer to this
question is negative. Our approach will go through the study of the finite
dimensional analogue of Schechtman’s question. We will collect some recent
results from combinatorics discovered in the context of sparse signal recovery
and, based on that, we will build a counter-example in L;. In the second
part of this chapter, we will establish some Sobolev-type inequalities and find
a certain large class of convolution operators which are nicely invertible. This
will hopefully emphasise even more how careful we have to be in choosing the
right operator to answer Schechtman’s question in the negative, since taking
decent convolution operators will not work.

To get some intuition about the main issue, let us look at an example
of a locally invertible operator which is also globally invertible. Consider

T: Ly([0,1]) — Ly([0,1]?) given by the formula

(fle) = fly),  xyel01].

N —

(Tf)(x,y) =

(Since L;([0, 1]?) is isometrically isomorphic to L;([0,1]), this T' can be used to

define an operator from L;([0, 1]) to itself, but for simplicity we will work with

T.) Clearly, [Tfl| =5 [[|f(z)=f(y)| < [1fI = | f]l, and hence |T| < 1. (In
fact, || T|| = 1). If |[supp(f)| < ¢, we get

I Y R

so that T is in the class 7. .(L1) with e = 1 —c. However, if f is in the subspace
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of functions with mean 0, f € V = {f € L]0, 1], fo = 0}, then

1 1
Tl > =
ey

Therefore operator T, begin in the class 7¢.(L1), is moreover globally invertible

| ) = w)as| 4z = 511,

on a l-codimensional subspace.
To finish this introduction, we remark that Schechtman’s question really
touches upon some geometric subtleties of L;. We can ask a similar question

about the L, spaces for p > 1, but the answer is much simpler.

3.2 Problem. Let p > 1 and fix €, ¢ > 0. Is it true that there exists a natural
number k = k(e, ¢, p) such that for any operator T" € T, .(L,) we can find 6 > 0
and k functions g1, ..., gx € L,[0,1], 1/p+1/q = 1, such that

1Tz, = ol fllL,
for every function f from the subspace {f € L,[0, 1]; fo fg; =0, <k}?

The answer is negative. To see this, fix 1 < p < oo and let ¢y, go, . . . be i.i.d.
standard Gaussian random variables (mean 0, variance 1) on some probability
space (2, F,P). Let G be the closed span of {g;, i > 1} in L,((2, F,P)). It is
well known that G is complemented in L,, 1 < p < oo (see first few pages of
Chapter 2 in [Pis89]). So there is a linear projection operator @) from L,, onto
GG which is continuous. Consider T'= I — Q.

First, there is no § > 0 and a subspace V' of the form {X € L,, EXY; =
0, j=1,...,k} for some Y,...,Y, € L,, 1/p+1/q = 1, such that ||TX||, >
§||X||, for all X € V. Indeed, considering X = Y ", a;g; we have TX = 0,
but for any n > k it is possible to find a nonzero sequence (o) ; such that
XeV.

Second, we shall show that 7'/||T|| is in the class T.(L,) for some positive
constant € = €(p). To this end, fix a random variable X € Ly with the L, norm
1 and let A = {X # 0} be the support of X. We assume that P (A) < 1/2 and

we want to show that || 77X, > € as then ‘ XH Notice that

€
>
‘ TN [l 1+|IQH

ITXlp = [[(TX) - Laellp = [(X = QX) - Lacllp = [[(QX) - Laell,
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Because () is a projection on G, the last expression becomes

|QX]|,
g1 L
||91||p g

(we can think of QX as a sum ) a;¢; which has the same distribution as
(3= a?)Y2g;). As this is bounded below by 7, || QX ||, with 7, being a positive

constant,

_ inf 4{||g11 ac

P

p P(A) =1/2}
911l ’

we have

1T Xy = 1| QX ],

so in view of 1 = || X, = |[(Q + T)X ||, < |QX]|l, + || TX]|,, we obtain

17X, > —2—.
1+77p

3.2 A finite dimensional analogue

Here we will work with the space (7 (R™ equipped with the (;-norm |[z|[x» =
|z1| 4+ ...+ |z,|). Informally we will distinguish short vectors z € R™ meaning
that their support, supp(z), which is the set of indices of nonzero coordinates
of =, is small. By # A, we denote the cardinality of A.

By analogy with the L, case, let us consider the class 7.7, of linear operators
T: 07 — (7 acting on ¢}, with norm at most one, and having the property

that T is nicely invertible on the set of short vectors,
Vo € R" #tsupp(x) <cen = || Tz|le > €f|x|en.

Instead of asking about rather subtle invertibility properties of such operators,

to begin with, let us observe that if 7" € 7, for some € > 0 and c € (0, 1) then
dimkerT < (1 —¢)n+1 (3.1)

as for any subspace V' in R” of dimension k there is a choice of k coordinates
such that every vector from V' is determined by these coordinates, hence such

a subspace contains a nonzero vector with at most n—k+1 nonzero coordinates.
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What is the sharp bound for dim ker 77 If the answer to Schechtman’s problem
was positive, we would expect that there would be an integer k = k(€) such
that dimker T < k(e), for every T' € T*. As we shall see in the next section,

the correct estimate is essentially given by the above simple bound.

3.3 Expanders

We say that a bipartite simple graph G = (A, B, E) is an (r,0,€) regular
unbalanced expander if it is left r-regular (every vertex from A has degree r)
and for every subset X in A with #X < 6 - #A the set Neighb(X) of its
neighbours is large, #Neighb(X) > (1 — €)r#X.

Of course, if we took #B = r - # A with all vertices in B of degree 1, then
we would get an (r,1,0) expander. The goal is to make #B,r, e as small as
possible with € being a positive constant (ideally close to 1). In particular, we
are interested in #B of the same order as #A, say #B > %#A (the size of B
cannot be too small as #B > (1 — €)r0#A).

It was first observed by M. Pinsker that expanders exist (see [Pin73]).
Probabilistic constructions of such expanders are mathematical folklore (see,
e.g., [Lub94, Chapter 1.2], or [Vadl2, Theorem 4.4] with a slightly different
counting argument and [HLWO06, Lemma 1.9] where certain expanders are
called magical). We present one of them, following closely the proof of [HLW06,

Lemma 1.9].

3.3 Proposition ([HLWO06]). Let r > 3, ¢ = 2/r and 0 € (0,1), n > 2
such that 1070 < 1, On > 1. Then the probability that a uniformly chosen
random left r-reqular bipartite graph G(A, B, E) with the left set size #A =n
and the right set size #B = |n/2| is not an (r,0,€) expander is less than
(107"~ — 1)~

Proof. To build G, for each vertex from the left set A, independently, we assign
r vertices from the right set B to be its neighbours.

Fix a nonempty subset S in A of cardinality s < #n and then a subset T’
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in B of cardinality t < (1 — €)rs. Define the random variable

1, if all the edges of G from S go to T,
Xsr =

0, otherwise.
Notice that if Y Xgr = 0, where the sum is over all subsets S,T" as above,

then G is an (r,0, €) expander. Therefore,

p=P(G is not an (r,0,¢) expander) < P (Z Xsr > O)

Moreover, it is clear that P (Xgr = 1) [(t)/( )}S < [t/#B]”. By the

r

union bound and then the standard estimate () < (en/k)* we obtain

p<Z]P>XST_1 Ze 167’867“8(%)8(#_8B> |

1<5<0n

Since #B = |n/2] > n/e for n > 2, we get

p< Z (1+r)s ers( >(er Ls '

1<s<6n
The choice er = 2, along with the simple estimate e!*"r? < 10", r > 3, gives
p< Y [1076]° < (10707 — 1)
1<s<6n

]

It was discovered by R. Berinde, R. Gilbert, P. Indyk, H. Karloff and M.
Strauss that the adjacency matrices of bipartite unbalanced expanders (com-
pleted with zeros) are in the class 7. However, clearly they have kernels
of dimension proportional to n because the size of the right vertex set B is
a fraction of the size of the left vertex set A (see [BGIT08]). That is why,
estimate (3.1) is of the the right order and, as we will see in the next section,
the answer to Schechtman’s question is negative.

Fix n,r, 60, € as in Proposition 3.3 so that the probability appearing there is
less than 1. Take, say r = 8, ¢ = 1/4, 0 = 107% n > 10°. Let ® be the adja-
cency matrix of an (r, 0, €) expander G(A, B, E) provided by that proposition
(® is a #B x #A matrix with 1 at the entry (i,7) if (¢,j) € E, 0 otherwise).
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In [BGIT08], it is proved that the expanding property of G guarantees that ®
has good local invertibility properties in ¢; (in fact the authors prove more,
that the converse is true as well). For the reader’s convenience, we now sketch

the proof of their key observation.

3.4 Lemma ([BGIT08]). For every x € R™ with #supp(z) < 6n we have
[z = (1 = 2¢)r{|]],

where || - || denotes the €1 norm.

Proof. (Sketch) Without loss of generality let us assume that |z1| > ... > |z,]
and say |Tgi1| = ... = |x,| = 0, k = #supp(z). We order the edges of G by
going over ® column by column, top to bottom and setting e; = (i, j;) if and
only if ®;,;, =1,t=1,...,rn (so e = (¢,7) implicitly means that e is an edge
from i € A to j € B and (j;,1;) are the entries in ® having ones). We say
that e; = (i, j¢) causes a collision if there is s < t and an edge e; = (is, Jjs)
with j; = j;. Let E’ be the set of edges which do not cause collisions and let

E" = E\ E'. The key observation is that

> Jal < ez (3.2)

(i,j)EE"
To see it, denote by I; be the number of edges among e(;_1y,41, €(i—1)r42; - - - > €ir
which cause collisions, ¢ = 1,...,n. By the expanding property of G we know

that

l1+...li§€'i’l", 2:1,,]{)

Applying summation by parts to 3 ycpr [zi| = Ll2i] + ... + le|ak| proves
(3.2).
To bound ||®z|| we notice that

||| = Z Z‘I)j,ﬂi

J
break the sum », ; »p @; into two bits >, ;e Ti+ D, jyepr Ty and, after

I

JEB |i€A:(i,j)EE

using the triangle inequality, we will get that the first bit gives the major
contribution whereas the second one, by (3.2), is small. This will finish the

proof of the lemma. O
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In order to construct a matrix invertible for short vector but with the kernel
of dimension proportional to n, that is to see why the bound (3.1) is essentially

sharp, we put

which is an n x n block matrix — the [n/2] x n matrix 1@ completed with
n — |n/2| zero rows. Clearly, dimker 4, > n — |n/2] > n/2. Moreover,
|Anllen—en is equal to the maximum of the ¢; norms of the columns of A,
which is 1 (every column of ® has exactly r nonzero entries which are 1).
Finally, for a vector z € R™ with #supp(z) < On we have ||A,z|| = ||1®z| >

(1 — 2¢)||z|| = ||=| by Lemma 3.4. This shows the following result.

3.5 Theorem ([BGI'T08]). For every n > ng = 10° there is an n X n matriz

A, with the properties
D [ Anlleg ey = 1.
2) |Anz|len > Sl|2|len for every vector x € R™ with #supp(z) < 0n, 6 = 107°.

8) dimker A, > %.

3.4 Operators on L,

Now we are ready to show how to construct examples of operators acting on

Ly and prove that the answer to Schechtman’s question is negative.

3.6 Theorem. Let 0,ny and A, for n > ng be provided by Theorem 3.5. Let
the space (L([0,1]")" of the Cartesian product of n copies of L1([0,1]") be

equipped with the norm

1 n
Iy flll = > fillzaomy-
i=1

Define an operator

T: Ly([0,1]) — (L:([0,1]")"
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(THilwr, . wn) =Y Anli ) fi(z),  i=1,....n,
=1
where Ay (i,7) is the (i,j)—entry] of A, and for j=1,...,n
fiO) =G =1D/n+t/n),  teo1]
Then for n > max{ng, 3/0} operator T possesses the following properties

(i) 7] < 1.
(ii) [T > Y| f]| for every function f € Ly((0,1]) with lsupp(f)| < 6/3.

(i1i) If n > 2k, then for every functions gi,...,9x € Loo([0,1]) there is
a nonzero function f € L1([0,1]) such that fol f-9,=0forj=1,..k,
but T'f = 0.

3.7 Remark. The space (L;([0,1]"))" is isometrically isomorphic to L+[0, 1], so

the above construction also yields an operator acting from L]0, 1] to L4[0, 1]

with the same properties (i) — (iii).

Proof. Fix a function f € Ly([0,1]). For = = (z1,...,2,) € [0,1]" we shall
denote the vector (fi(x1),..., fa(x,)) by F(z). Note that

1 — 1
|mmmm=—§mmmmm=—/ | F(2)]erde.
n i1 n [0,1]"

Moreover,

n

ITf|| = %Z 1T F)ill oy = %Z/
=1

i—1 Y01

n

> An(i ) fi(x)

J=1

dx

1
o L
n [0’1}11

Property (i). Using [|A,F(z)||en < ||F ()| we get from the above formulae
that [[T'f]] < [|.f]

Property (ii). Let S = supp(f). We can assume that |S| = 6/3 (if that is not

the case, put € in the places where f is zero). Observe that
S; = supp(fi) = {t € [0,1], (i = 1)/n+t/n € S} = (nS — (i — 1)) N[0, 1]
=nSNii—1,4)—(i—1)
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and

Z]S] Z|n5m [i — 1,4]| = n|S| = nb/3.

Given a subset I C {1,...,n} = [n] by ST we denote the set B; x ... x B,
with B; = S; for i € I and B; = S¢ for i € [n] \ I. Clearly, for z € S!
the support of the vector F(x) has cardinality #1, thus the idea is that by
restricting the integration to the union of S with #I < 6n we will be able to

use the invertibility of A,,. We obtain

EE DY / JALF (@) epd

"y Se<on #I=k

> X 3 [ 1P

W Sh<on #1=k

SIS z/mm

i=1 1<k<0n #I=k

[IL

For a fixed ¢ the integral [, |fi(z;)|dz is 0 if ¢ ¢ I, otherwise it equals

Il {11 1sil ) { 11 1s5)
jelnl\I

Jen\{j}

Suppose for a moment that ¢ = n. Then we can write

OIS FTATLEEND SR S TAR § (71 )

1<k<On #I=k 0<k<6n—1IC[n—1] jel jEM—1\I
#1 k

= full P(Xi 4.+ X <On—1),

where X; are independent random variables with distribution P (X; =1) =

|S;| =1—P(X; =0). Since for n > 3/6
by Chebyshev’s inequality we get

<1/2,
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hence

> D /SI | f () || epdc > %anu,

1<k<On #I=k
Dealing with ¢ < n similarly we finally get

n

1 1 1
1T > 5= > 5l =4Il

i=1

Property (iii). Let V. C R™ be the space of the solutions of the system of

{Z </ gj(t)dt> =0, j=1,...,k
; (i-1)/n

=1

equations

There are n variables and k equations, thus dim V' > n — k. Therefore
dim(VNkerA,) >n—k+n/2—n=n/2—k.

As a result, if n > 2k, there is a nonzero vector x € V Nker A,,. Take

ft) = Z TiL((i=1) /n,i/n) (1), t €[0,1].
i=1

3.5 Convolution operators

Let T = R/Z be the one dimensional torus viewed as a compact group with
addition modulo 1 denoted by x®y, equipped with the Haar measure (inherited
from Lebesgue measure). To begin with, fix 1 < p < oo and consider the
averaging operator Uy acting on L,(T) (with the usual norm || f| = ([, |f|?) e
for p < oo, and || f|| = esssupg|f| for p = o0)

+t

(Utf)(:c>:% [ feesas te@) (3.3)

If ¢ is small, is the operator I — U, invertible, or, in other words, how much does
U, f differ from f?7 Of course, averaging a constant function does not change

it, but excluding such a trivial case, we get a quantitative answer.

63



3.8 Theorem. Lett € (0,1). There exists a positive constant ¢ such that for
every 1 < p < oo and every f € Ly(T) with [, f =0 we have

If = Uefll = et | £, (3:4)
where ||-|| denotes the L, norm.

Note that if p was equal to 2, then, with the aid of Fourier analysis, the
above estimate would be trivial. However to get an estimate for L, that is
independent of p is more subtle.

When p = 1, if we further estimate the left hand side of (3.4) using the

Sobolev inequality, see [GT01], we obtain the following corollary.

3.9 Corollary. There is a positive constant ¢ such that for every function f

from the Sobolev space WH(T) with [, f =0 and every t € (0,1) we have

/ flxat) - flz e —t)

/ J——
(@) .
3.10 Remark. Setting ¢ = 1/2, inequality (3.5) becomes the usual Sobolev

‘ iz > ct? /T f@) de,  (3.5)

inequality, so (3.5) can be viewed as a certain generalization of the Sobolev

inequality.

3.11 Remark. Set f(x) = cos(2mxz). Then ||f — U f|| = || fI| (1 — 55 sin(2nt)) =
t2|| f|l, for small ¢. Therefore, the inequality in Theorem 3.8 is sharp up to an

absolute constant.

In this section we give a proof of a generalization of Theorem 3.8. We say
that a T-valued random variable Z is c-good with some positive constant c
if P(Z € A) > c|A] for all measurable A C T. Equivalently, by Lebesgue’s
decomposition theorem it means that the absolutely continuous part of Z (with
respect to the Lebesgue measure) has a density bounded below by a positive
constant. We say that a real random variable Y is ¢-decent if Y1 + ...+ Y, has
a nontrivial absolutely continuous part, where Y7, Y5, ... are i.i.d. copies of Y.

Our main result reads
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3.12 Theorem. Given t € (0,1) and an (-decent real random variable Y,

consider the operator A; given by

(Aef) () = Ef(z @ 1Y). (3.6)

Then there exists a positive constant ¢ which depends only on the distribution
of the random variable Y such that for every 1 < p < oo and every f € L,(T)
with fo = 0 we have

If = Afll = |1 £

where ||-|| denotes the L, norm.

3.13 Remark. We cannot hope to prove a statement similar to Theorem 3.12
for purely atomic measures. Indeed, just consider the case p = 1 and let Y
be distributed according to the law py = > "7, p;d,,. Then for every ¢ > 0
and every t € (0,1) there exists f € Li(T) such that ||f — A:(f)]| < € and
|f]l = 1. To see this take N such that > °\ . p; < €/4 and let f,(z) =
Zsin(2mnz). Then | f,| = 1. Let ng > 8m/e. Consider a sequence ((wntz;
mod 27, ..., mntxy mod 27?))n forn =0,1,2,...,n) and observe that by the
pigeonhole principle there exist 0 < n; < ny < név such that forall 1 <i < N

we have dist(mtx;(ng — ng),27Z) < i—’; Taking n = ny — n; we obtain

N
T €
_ < = i —q . hd
| fo — Ac(f)| < 5 ;:1 pi ||sin(2mnx) — sin(2rn(z + tz;))|| + 5
N

=7 Zpl| sin(mntw;)| - ||cos(2mnx & wntx;)|| + %
i=1

N
< 2Zpi|sin(7mt:v |+ < —sz—i— <e
i=1
For the proof of Theorem 3.12 we will need two lemmas. The first one
shows why we bother about ¢-decent and c-good random variables (the point
being, of course, that we can apply a local version of the central limit theorem
for ¢-decent random variables). The second lemma explains why convolving

with good random variables gives operators which are strong contractions.
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3.14 Lemma. Suppose Y 1is an {-decent random variable. Let Y1,Ys, ... be
independent copies of Y. Then there exist a positive integer N = N(Y) and
numbers ¢ = ¢(Y) > 0, Cy = Co(Y') > 1 such that for all C > Cy and n > N

the random wvariable
Yi+...4+Y,
X = (O%) mod 1 (3.7)
n
18 c-good.

Proof. We prove the lemma in a few steps considering more and more general
assumptions about Y.

Step I. Suppose that the characteristic function of Y belongs to L,(R)
for some p > 1. In this case, by a certain version of the Local Central Limit
Theorem, e.g. Theorem 19.1 in [BRR&6|, p. 189, we know that the density g,
of (Y1 +...+Y, —nEY)/\/n exists for sufficiently large n, and satisfies

1 —22/902
qn(x) — e /2
2ro

——0, (3.8)

n—oo

sup
zeR

where 0% = Var(Y). Observe that the density gt of X1 equals

e Z an < (r+ k) — \/EIEY) : x € [0,1].

keZ

Using (3.8), for 6 = we can find N = N(Y') such that

\/T

1
qn(x) > 5 e 58, reR, n>N.
o

Therefore, to be close to the maximum of the Gaussian density we sum over
only those k for which z + k € (—2C,2C) + Cy/nEY for all z € [0,1]. Since
there are at least C' and at most 4C' such k, we get that

1 1 2 14 1 2
OD(x) > = e M0 — == 40 = e 2,
9 (@) CV2ro C8 2V 2mo
In particular, this implies that Xr(lc) is c-good with ¢ = ﬁ g2/ . Thus, in

this case, it suffices to set Cy = 1.
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Step II. Suppose that the law of Y is of the form qu + (1 — g)v for some
q € (0,1] and some Borel probability measures p, v on R such that the char-

acteristic function of p belongs to L,(R) for some p > 1. Notice that

N
* * N — * *(N—
Wigotvy = 15N = (qu+ (L= qu)™ =>" (k)qk(l — )Nt xR
k=0

N
E N —k x - *
- (kr)qk(l — )N R = ey v (1 pving)
k=Ng

where

N

1 N ke (N

PN.No = Z (k>qk(1_q>N Byk=No o (N k)
ENNo =Ny

is a probability measure, and

NNy = i (]D ¢"(1—g)™*

k=N
is a normalisation constant. Choosing Ny = |¢gN — C11/q(1 — ¢)N| we can
guarantee that ¢y n, > 1/2 eventually, say for N > N. Denoting by Y, Z the
random variables with the law u, pn n, respectively and by Y; ii.d. copies of

Y, we get

(©) S Yi+... 4+ Yy, ZN,No
IP’(XN EA)_CMNOIP’((C’ i +C\/N mod1le A|.

By Step I, the first bit C(Y; + ... + Yy,)/VN is c-good for some ¢ > 0 and
c> C’ém = supy>x / IV/No . Moreover, note that if U is a c-good T-valued

r.v., then so is U @V for every T-valued r.v. V which is independent of U. As
a result, X](VC) is ¢/2-good.
Step III. Now we consider the general case, i.e. Y is {-decent for some

¢ > 1. For n > ¢ we can write

-Yi_‘_“'—l—Yn:C Ln/ﬁj‘fﬁ—l—...—i—ffm/a Ci

with }7] =Y v +.. . +Yforj=1,... |[n/l], and R= Yineeg1+. .. +Y,.

C

Since the absolutely continuous part of the law u of f/j is nontrivial, then p is
of the form gy + (1 — q)vo with g € (0, 1] and the characteristic function of v,

belonging to some L,. Indeed, p has a bit which is a uniform distribution on
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some measurable set whose characteristic function is in Ly. Therefore, applying
Step II for Y we get that X s e good when C "/6 > Cy (I So we can
set Cy = OH) V20 O

3.15 Lemma. Suppose Z is a T-valued c-good random variable and By is the
operator defined by (Bzf)(z) = Ef(x @ Z). Then for every 1 < p < oo and
every f € L,(T) with [ f =0 we have |Bzf|| < (1 —c)||f]|, where ||-|| is the

L, norm.

Proof. Fix 1 < p < oo. Let p be the law of Z. Define the measure v(A) =
(u(A) — c|A])/(1 — ¢) for measurable A C T. Since p is c-good, v is a Borel
probability measure on T. Take f € L,(T) with mean zero. Then by Jensen’s

I/Uu@@dM@p

/fx@s ) du( )

(1— o) //|fx69s|pdy()

—(1- >|mﬂ4 v(s) = (1— | I

inequality we have

1Bz 1" = dz

(1—c)? dx

Since ¢ does not depend on p we get the same inequality for p = oo by

passing to the limit. O
Now we are ready to give the proof of Theorem 3.12.

Proof of Theorem 3.12. Fix 1 < p < oo. Let Y7, Y5, ... be independent copies
of Y. Observe that

(Arf)(z) =Ef (@Y1 & ... @1Y,))

—Ef (x@ (t\/ﬁ <¥) mod 1)) .

Take n(t) = CZ [1/t*] N, where Cy and N are the numbers given by Lemma
3.14. Therefore, with X deﬁned by (3.7), we can write

(A0 1)(@) =Ef (v X.3).
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where C = t\/n(t) = tCy+/[1/t2] N > Cov/N > C,. Thus XT(ZZ)) is ¢(Y')-good
with some constant ¢(Y') € (0,1). From Lemma 3.15 we have
|47 < a=corp s

for all f satisfying fT f=0.
The operator A; is a contraction, namely [|A:f|| < ||f|| for all f € L(T).

Using this observation and the triangle inequality we obtain
1 - n
If = Acfll = — (If = Auf |+ | Aef = AZF|| + -+ A1 = AR )
1 n
> |l - AL

Taking n = n(t) we arrive at

il =408 2 = gy (- ] = g

To ﬁnlsh the proof, it suffices to take ¢ = ¢(Y')/(2C% - N). O

3.16 Remark. Consider an f-decent random variable Y. As was noted in the
proof of Lemma 3.14 (Step III), the law Y; + ... + Y} has a bit whose charac-
teristic function is in Lo. Conversely, if the law of S,, = Y; + ... +Y,, has the
form qu + (1 — q)v with ¢ € (0, 1] and the characteristic function of y belongs
to L, for some p > 1, then the characteristic function of the bit w721 of the
sum of [p/2] i.i.d. copies of S,, is in Ly. In particular, that bit has a density
function in Ly N Ly. Thus Y is (m [p/2])-decent.

3.17 Remark. The idea to study the operators A; (see (3.6)) stemmed from
Schechtman’s question, Problem 3.1, presented and discussed earlier in the
chapter. Our hope was that an operator T' = I — A;, for some Y, would
provide a negative answer to Schechtman’s question. However, Theorem 3.12
says that if Y is an /-decent random variable, then 7T is nicely invertible on

the subspace of functions f € L; such that [ f-1=0.

3.6 Notes and comments

The question mentioned at the start of the chapter asked by A. Nasseri was

this (see [Nasl2]): does there exist a nonsurjective bounded linear operator on
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U, with dense range? Its main difficulty is captured in Schechtman’s question,
Problem 3.1.

Using more technical arguments involving tools such as ultraproducts, The-
orem 3.6 can be souped up to provide a positive answer to Nasseri’s question
as well as some other related questions. This is done by the author’s collab-
orators in the paper [JNST14]. What is presented in Sections 3.1-3.4 reflects
the author’s contribution to [JNST14].

Section 3.5 is based on the publication [NT14a] joint with P. Nayar. He
and the author equally contributed to the results obtained therein as they
worked together. It should be remarked that the present general statement of
Theorem 3.12 was obtained thanks to useful comments of K. Oleszkiewicz to
whom we are indebted. The remarks about purely atomic measures and the

sharpness of the constant in (3.4) were pointed out by S. Kwapien.
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