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Summary

This work contains: - a study of cetain fibrations associated to a finitely
determined map-germ f: (d:n,O) - (CP,O) , 1<p, and its

multiple point schemes,
- relations between target and source invariants, and

- some remarks on the real case f: (IR2,0) - (IR3,0).
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Introduction

This work contains three chapters.

In chapter I we study fibrations associated to certain map-germs f: (€",0) -
(¢P,0), n <p. It is divided into five paragraphs.

In paragraph one we select, among the representatives of a germ of an .-
versal unfolding F : (€'%€4,0) » (€Px€,0), F(xt)=(f; (x),t) of a discrete stable
type map-germ fg: (C",0) » P,0), n<p, what we call a good representative of
F. It is obtained by choosing a representative of F, again denoted by F and
neighbourhoods U, W and Z of the origin in a:"xa:d, P and cd respectively so
that:

(1) F{U) c WxZ

@ F'0nU-={o}

(3) F:U -» WxZ is a finite map, i.e., proper with finite fibres.

Also, if we consider the analytic subset Ipe](F) = {(y,t) e WxZ € CPxCY: the

germ of f; at ft'l (y) nU; is not stable }, where U; = {x eC:(xt)e U}, then ,

for that choice of representative of F, the projection m: WxZ - Z into the

parameter space Z & ¢4 verifies :

(4) the restriction mlIge)(F) is a finite map,

and hence, for any neighbourhood Wy of the origin in cP, with Wlf_: W c ¢P,

there exists a neighbourhood Z1 € Z of the origin in ¢4 such that :
(5) Irel(®) N (WxZ1) € WxZy.

In paragraph two we, loosely speaking, provide the image X of a good

representative F, away from Ir.|(F), with a Whitney stratification. This is done in
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two ways; either we consider the restriction F: U1 » Wx(Z-B) of the good

representative F, where B = & (Irel(F)) c ¢4 is the bifurcation set of F, or we

consider the restriction F: Uy -» (W-W{)xZ. Then the stratification considered is

that by stable types, as defined by Gaffney in [Ga 3] .
The reason for considering these two restrictions of a good representative

will become clear in paragraph three. There we apply the Second Isotopy Lemma

to the sequence of mappings U E WxZ 5 Z where F is a good
representative and & is the projection. In order to do so, we need not only that F
is proper but also that m is proper. Hence, we replace the neighbourhood W by a

closed ball Bg of radius €>0 small and centred at the origin of ¢P. Then, we

make sure that the boundary SgxZq is transverse to the image of the restriction

F:Ujp > (W-—VW)xZ1. Since the image of F:U{ » Wx(Z-B) and the image of

F:Uj » (W-W)xZ{ coincide in. (W-W])x(Z{-B) we obtain that Sgx(Z{-B) is

transverse to the image of the restriction F: Uy » Wx(Z{-B) of the good

representative F and, by the isotopy lemma, we have :

F:Up » X¢c Bg x(Z1-B) is locally trivial over Z1-B~with respect to T.

Consequently we obtain :

- a 'fibration’ of the map F:Uq -» X whose ‘fibres' are the
mappings f;:U; - X; which are topologically independent of the parameter t€
Z1-B, since Z{-B is connected and

- a locally trivial C O-fibration of the image X whose fibres X
are the image of the mappings f;, above.

We call X, the disentanglement of the image of the initial map-germ f: (C",O) - (Cp,O).
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- In paragraph four, with the assumption that fy is of corank 1 at the origin,
we obtain, for a given good representative F:Uq - 'Wx(ZI -B), Milnor fibrations

over Z{-B of the multiple point schemes 13‘((F,‘y(k)) of F (see [M-M], or

cquivalenﬂy chapter IIl of this thesis, for definitions and properties of ﬁk(F,'y(k)))

as a consequence of the Ehresmann Fibration Theorem . The Milnor fibres are the
multiple point schemes ﬂ((ft,'y(k)) of the mapping f; and the critical fibre is the

1CIS DX, y(k).
Thus, in the end of paragraph four we are equipped with many fibrations (over
the same base) associated to a good representative. So, over a parameter t in the

complement of the bifurcation set B © cd we have the follwing diagram :
$ $
~k ~k
D (f,v(k)) = ---- D(fp)
!
{ {
D) - B

{

Since the smooth spaces ﬂ((ft,'y(k)) are Milnor fibres of the ICIS f)‘k(fo,v(k)), we
have that the Euler characteristic of f)k (fi (X)) is related to the Milnor number of
the ICIS D¥(fp,y(k)) as follows: (ﬂ‘(ft,y(k))) = 1+ (-1)° u( DB v(K))), where

s is the complex dimension of ﬁ((fo,y(k)).

So, in the diagram above, all spaces, but X;, have their Euler characteristic
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related to Milnor numbers of ICIS (here we observe that we can take U; small
enough so that it is closed and contractible). | '

Finally, in paragraph five we bring Xt into the scene, i.e., we show how
the disentanglement X; can also have its Euler characteristic related to Milnor
- numbers of ICIS. This relation is obtained by firstly relating ( by combinatorial
methods ) the Euler characteristic of X; and the Euler characteristic of the multiple
point schemes of f; (Theorem (5.12)):

_ -1 Yoy . (w~r
n(xp=1+ 5 3 (e O 2 (B ey )
2Ly

where ¥(r) = (ay, ..., a;) runs through the set of partitions of r, with aj 2 aj41,

p-k@-n+1)+h20 and aj= #{j :aj=1i}. Here we shall understand that if

IADIr(ft ,(Y(r)) is empty then the coefficient of its Euler characteristic in the formula

is zero.

Equivalently, if we replace (ﬁk(ft)), in the expression above, by % ( B((ft)/ Sk),
through the formula (Proposition (5.16)):

x D)/ S )= 2 x ( B ) )

7@ %y
2t
we end up with (theorem (5.18)):

(X =1+ 2 D8y (B s )+
k22

) (1K - (12

k22 vd) 0o
i>t )

+

x (B, vy )

where y(k)=(aq, ..., ah);t(lk) runs through the set of (ordered) partitions of k
with p-k(p-n+1)+h20 and aj= # {j raj= i}.
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Finally , substituting X ( ﬁ‘(ft (YD) ) by u ( ﬁr(fo,(y(r)) ) through the relation :
X (Br(ft,‘Y(k))) =1+ (-I)Su(ﬁr(fo,y(r))), where s is the complex dimension of

D' (£p,y(x)) we obtain (5.20):

x(Xp)= (k)+ Z (- 1)p—k(p—n+1)+1 [ I.l(ﬁk(fo)/ Sk)+

1 +(_1)k+2pci+1

u (D, (v
Y(k) igiai oy 0 )]

i, ¥ (k- (-2t |

where C =1+ 1_5 {(-1) :
0™ 12 y® Iloia,

When (n,p) = (2,3), i.e., fy ((1:2,0) - ((133,0), and the multiple point schemes of f,

~2 ~2 ~3
D (fg)/ Sz, D (fp,(2)) and D7(fp)/ S3 are all non-empty, this formula is of

particular interest :

x (%) = 1 ( B2/ $2) + Cp) + T

where C(fp) and T(fp) is respectively the number of cross-caps and the number
of triple points of f,

In a recent work [Mo 4] , David Mond proves that the disentanglements of
the image éf mappings fy: (C"0) - (¢n+1,0) have the same homotopy type of a
wedge of n - spheres. Hence, when p = n+1, the formula (5.20) gives the number
of n - spheres in that wedge. This result resembles that of J. Milnor ([M1] chap.7)
or H. Hamm ([Ha]).
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In chapter II we deal with simple singularities of corank 1 mapégenns
f:(R2,0) » (R3,0). It is divided in three paragrahs.

In paragraph one we present morsifications for the simple singularities, i.e.
stable deformations for the map-germ f, such that their images in R3 present the
correct number of cross-caps (Whitney umbrellas) and triple points.

Paragraph two is pictorial. In it we present drawings of what could be
called the disentanglement in the real case for the image of simple singularities of
map-germs from R2 into R3.

In paragraph three we calculate the singular homology of the image of

morsifications for the family of singularities Hy.

Chapter III is joint work with David Mond and contains its own
introduction.

There one finds results that are used in the previous chapters, namely :
definition and properties of the multiple point schemes of maps and a
characterisation of stability and finite determinacy of corank 1 map-germs
(Theorem 2.14); a corank 1 map-germ is finitely determined if and only if each
multiple point scheme of dimension at least 1 is an ICIS, and is stable if
moreover each non-empty multiple point scheme is smooth. We end the chapter

with a relation between source and target invariants of finitely A-determined map-

germs £: (€2,0) » (C3,0) (Theorem 3.4) :

u(Dz(f))=6T(f)+C(f)+2u(ﬁz(f)/sz)-l,

where D2(f ) denotes the double point curve of f in ¢

(vi)



Chapter I

- Mapping Fibrations

".. there is often a creative tension between geometry and rigor.
Rigor follows the initial conception with a much greater time
delay in geometry than it does in algebra. Also, when it comes,
true geometers often feel its language misses the essential
geometric ideas. Language is not well adapted to describing
geometry, as the facilities for language and geometry live on
opposite sides of the human brain. This perbaps accounts for
the presence in the current literature on singularities of
expressions like "using the isotopy lemma, it can be shown"
without the forty pages of geometric constructions and
estimates needed to apply the isotopy lemma."

Mark Gorensky & Roberi Macpherson
([GM] p.22)



§1. Good representatives of an unfolding of a finitely determined

map-germ

The main reference for this paragraph is Grauert-Remmert's Theory of Stein

Spaces [G—R] chapter 1.
We start with some properties of finitely X-determined map-germs.

(1.1) Lemma: If h: (Cn,O) - (CP,O) is a finitely %X-determined map-germ then
there exists a neighbourhood U of the origin in €™ such that (hlUnE(h) )-' 0)
= {0}, where )(h) is the set of critical points of h.

Proof : (see [Ga 1] p. 66).

(1.2) Proposition : Let f: X -» Y be a holomorphic map such that xg is an
isolated point of the fibre f"(f(xo)). Then there exist neighbourhoods U and V of
xg in X and f(xg) in Y respectively, with f (U) € V and such that the restriction

flU: U » V is a finite map, ie, a closed map with finite fibres.
Proof : (see [G-R] p.54).

(1.3) Corollary : Let F: (€"%€%,0) » (@Px€9,0) be an unfolding of a finitely %-

determined map-germ fy: (Cn,O) - (d:p,O), given by F(x,t) = (fi(x),t), with n<p.
Then for any representative of F there exist neigbourhoods U and V of the

origin in Cnxd:d and Cpxd:d respectively such that:
F(0)nU = {o},
FUcV
and the restriction FIU:U » V is a finite map.

Proof : Since an unfolding of a finitely %-determined map-germ is a finitely
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K-determined map-germ itself, by lemma (1.1) there exists a ncighbourhood U’ of
c"%cd such that ( FIUN E(F))'1 ) = {0} In our case, n<p, UN X(F) = U".
Now by proposition (1.2), there exist neighbourhoods U and V of the origin in
the source and target of F respectively such that FIU:U -» V is a finite map.

(1.4) Definition : A finite representative of an unfolding F: (CnxCd,O) -
(a:an:d,O), F(x,t) = (fi(x),t ), of a finitely X-determined map-germ fj: (d:n,O) -
(Cp,O), n<p is a triple (FIU,U,V) as in the corollary above. We shall

sometimes denote the restriction F|U simply by F.
Next we state some properties of finite maps.

(1.5) Theorem : (The Direct Image Theorem for Finite Maps )
Let F: X Y be a finite holomorphic map and S be a coherent sheaf of
Ox-modules. Then the direct image F«(S) is a coherent sheaf of Oy- modules.

Proof : (see [G-R}] p. 55)

(1.6) Lemma :If f:X » Y is a closed map and U a neighbourhood of fj’(y)
in X, for some y € Y, then there exists a neighbourhood V of y in Y such that

£ (vycu.

Proof : Just take V=Y -f(X-U).

(1.7 'I'heorexp (The Projection Theorem)
Let S be a coherent analytic sheaf on a neighbourhood V of the origin (0,0)

in €PxCd, Suppose that the origin (0,0) is an isolated point in
supp(S) N (CP x {O}). Then there exist neighbourhoods W and Z of the origin in
cP and ¢4 respectively, with WxZ € V such that the following hold for the
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projection T: WxZ -» Z :
(1) the restriction x| (supp(S) N (WxZ)) is a finite map,
(i) the direct image n*(‘SWxZ) of the restriction of S to WxZ is a coherent

sheaf of Oz-modules.

Proof : (see [G-R] p-53).

dandVg

We now return to our finite representative F: U » V with Ug cxC
€Pxc? as in (1.4).

In V we consider the set Irel F) = {(y,t) € V:the germ of f; at f:(y)r\Ut is not

stable}, where U; = { xeC": xt)eU }

(1.8) Proposition: I..j(F) is an analytic subset of V.

For the sake of completeness we include the proof (cf. [Da] p- 310).
Proof : We are going to define a coherent sheaf Apej(F) of Oy-modules such

that Ire](F) = supp(Are] (F)).
Let us consider

Gn,d(U) the sheaf of analytic vector fields germs "in the €" direction” on U,

Gp,d(V) the sheaf of analytic vector fields germs "in the ¢P direction" on V and

O(F) the sheaf of germs of sections of F*T(Glpxd:d) ("the vector fields along F").
Then, if x{1,..., Xp are coordinates on c" and Y1,...,Yp on d:p,

Oy,4(U) is the free sheaf of Oy-modules on 9/9x{s - » 9/0xp and

Gp,d(V) is the free sheaf of Oy-modules on 9/0Yqs - a/aYp.

Let us define:
tF: 0p g(U) » B(F) by Yo 9/9x; » 2oy Ofy /0x; . Then tF is a sheaf

homomorphism. Thus, R e](F):= coker (tF) is a coherent sheaf of Oy-modules.
Hence by (1.5), the direct image F,Rre}(F) is a coherent sheaf of Oy-modules.

Finally we define :



WF: 0p q(V) » FiRrel(F) by YB; 9/0Y; » the class of Y,(i o F) 9/9Yj in

FyRel(F). Then WF is a sheaf homomorphism. Thus, Ze] (F) := coker (WF) is a
coherent sheaf of Oy-modules.

Now for a given (y,t) € V the germ B;oF is defined as a germ at Fi(y,) " U
and the stalk of Ae] (F) at (y,t) is zero if and only if the germ of ft at

f:(y)r\Ut , (Ut.= {x eC":(xt)eU } ) is infinitesimally stable. Since
infinitesimal stability implies stability, it follows that Le)(F) = supp(Are] (F)).

d

(1.9) Having obtained I (F)c V¢ cPxc® as an analytic set, we noW want to

project it into the parameter space cd and we want the image of Ie}(F) in cd 1o
be an analytic set as well. The Projection Theorem (1.7) will do the job. So, we
need to have the origin (0,0)eV ¢ Cpxd:d as an isolated point in supp(Are](F)) N
(CPx{O} ). But the supposition on the initial map-germ fj: (€,0) - (€P,0), that
it be finitely %-determined, does not imply that hypothesis. Thus we shall restrict
ourselves to a smaller class of map-germs, namely finitely Z-determined map-

germs.

(1.10) Theorem : Let fy: (€",0) » (€P,0) be a finitely X-determined map-germ,
n<p. Then fy:(C",0) » (€P0) is finitely 4-determined if and only if for each

representative f of fy there exists a neighbourhood U of the origin in ¢ such

that if Unf'(y)= {%1... X = S, then the multigerm of £ at S is stable, for all

y # 0, but near 0.

Proof : (cf. [Ga 1] ch. 3)
With the notation of (1.8), we ha =
ith the notation of (1.8) ve A(fg) ﬂrel(F)y®0Cp+d0¢d

is a coherent sheaf with stalk at 0, A(fp),= 0(fg)/ TA(fy). Now, the theorem
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follows from the Nullstellensatz for coherent sheaves. Indeed, dimc A fo )0< o0 if,

and only if 0 is an isolated point in supp (A( fp )).

(1.11) So, if F: U » V is a finite representative of an unfolding F: (CnxCd,O)
- (Cpxd:d,O), F(x,t) = (fy(x),t), of a finitely A-determined map-germ fj: (Cn,O) -
(d:p,O), n<p then by the theorem above, the origin (0,0) € Cpxd:d is an isolated
point in supp ( Ae] (F)) N (CPx{o} ).

Now, applying theorem (1.7) to the projection & : C€PxC c¢d and S= Fre] (F),
noticing that if a2 map g:X -+ Y is a finite then glg (V): g (V) » V is again

d—)

finite, for any open V in Y, we obtain:

(1.12) Proposition: Let F: U - V be a finite representative of an unfolding

F: (€%¢30) » (€Px€d,0), Fx,t) = (f; (x),t), of a finitely A-determined map-
germ fy: (Cn,O) - (Cp,O), n<p and let nchxd:d - d:d be the projection. Then,
there exist neighbourhoods W and Z of the origin of cP and cd respectively

such that :
(i) mi(supp (Ae] (F))N(WxZ)) is a finite map,

d

(ii) ®(Ire] (F) N (WxZ)) is an analytic subset of Z € €~ and

(i) FIUy: Ug » WxZ is a finite map, where Uy = F " (WxZ).

We shall denote the restriction FIUy: Uj» WxZ simply by F: U{ » WxZ .

(1.13) Definition : By a good representative of an unfolding F : (CnxCd,O) -
€Pxcd ), Fixyt) = (fy (X).t), of a finitely A-determined map-germ fy: (C",0) -
(cP,0), n<p we shall understand a triple (F, Ui, WxZ ), as in the proposition
above.

(1.14) Remarks : (i) A good representative F: Uy » WxZ will always come
together with a projection m: WxZ » Z ¢ Cd such that and =l (Ige)(F) N (WxZ))

is a finite map and & (Ire}(F) N (WxZ)) = B is an analytic set in Z¢ Cd. The set

-5-



B is called the bifurcation set of the unfolding F.

(ii) let p = 7wl (Ie](F) N (WxZ) ). Then p is a closed map.
Thus, given a neighbourhood Iej(F) N (WxZ) of p?(0), where Wi s W¢ cP is

a neighbourhood of the origin in €P, with Wyc W, it follows from (1.6) that

there exists a neighbourhood Z{ of the origin in q:d, Z{ € Z such that p( Zq) =

Ire)(F) N (WxZ1) € W1xZ. In particular, Ie](F) N (WxZ{) € WxZ1.

(1.15) Note: In the next paragraph we shall need to restrict our good

representative F: U{ +» WxZ so that its image avoids the analytic set Ire] (F) in

d:pxttd, i.e., the points (y,t) in the image of F such that the germ of ft at f:(y) N

Up is not stable, where U; = {x ec": x,t) e U1}~ This will be done in two

ways :

either we take FlUy: Uy » WxZy with Zy = Z-B and Up = F'(WxZyp),
or we take F|U3: U3 » WoxZy with Wy =W-W, Z{ as in (1.14)(i) and

Uz = F{(W)xZq).



We shall also be considering the closed image X (resp. X') in Wx(Z-B)

(rcsp.(W--W-l)xZ1) of FI-I_J-Q :TJ—QQ Uy 2 WxZp (resp. FITJ-é,: _13:5,9 U3 -
W2xZ1) where —I-J—é (rcsp.-fj—é )is the closure of U= F-’(W'x(Z'-B)) (resp. Ué=
F (W-W)x zi) with W' < €P and Z'< €4 neighbourhoods of the origin such

that W cW and Z'cZ (resp.'—V—V—lg-VV'gW and 'Z_f<_:_Z1).



§2. Stratification of good representatives

Let F: Uy » WxZ be a good representative of an unfolding F: (Cnxd:d,O)
- (CpxCd,O), F(x,t) = (fi(x),t) of a finitely A-determined map-germ fj: (Cn,O) -
(€P0), n<p .

In this paragraph we shall stratify the image of the good representative F ,
away from the ahalytic set Ire](F) N (WxZ) in a:an:d(ie, we are going to
consider any of the restrictions of the good representative F: Uy -» WxZ
mentioned in (1.15)), having' in mind that in the next paragraph we shall apply

Thom's Second Isotopy Lemma to the sequence :

Ulib WxZ X p Z

The main references for this paragraph are [Ga 3], [Mo 3], [JM] and [Gi].
We . begin with some definitions (see [Gi] ).

(2.1) Definition : Let F: U » V be a smooth map. A stratification of F is a
pair ( Ay, 4y ) with 4y and Ay Whitney stratifications of U and V respectively
such that:

(1) F maps stratg to strata

(i) if Aye Ay is mapped by F into Ay € 4y then F: Ay » Ay is

a submersion.

(2.2) Defintition : Let F: U -» V be a smooth map and M, N € U submanifolds
such that FIM and F|N have constant rank. Let x€ M . We say that N is
Thom regular-over M at x relative to F when :

given a scﬁuencc (yp in N, yij » x such that ker Tyi(F IM) » T (in the
appropriate Grassmannian ) then ker Tx(FIN) € T. We say that N is Thom regular

over M relative to F if it is Thom regular over M at every 'point of M.



(2.3) Definition : A Thom stratification of a map F:U -V is a stratification
(Ay, Ay) of F such that for any two strata Ay Au, of Ay we have Ay,

Thom regular over Ay relative to F.

(2.4) Remark : If Ay and Ay are Whitney stratifications of U and V
respectively, F: U -+ V maps stratum into stratum and for each stratum Aye 4y,
FlAy is a local diffeomorphism then ( A4y, A4y ) is a Thom stratification of
F:U-> V.

Indeed, for any stratum Aye€ Ay we have, ker Tx(F |1 Ay) = 0, xeAy. So,
Thom's regularity condition holds. trivially.

(2.5) Let F: Uy » WxZ be a good representative, as in the beginning of this
paragraph. Then away from the analytic set Ipe](F) N (WxZ) c Cpxdid( defined in

(1.8)), F is locally trivial.

In other words, let F: Uy » Wx(Z-B) where B is the bifurcation set of F
defined in (1.14)0). Let (y.t) € (Wx(Z-B)) and F(y,) N Up = {(x1.0,....(xic0)} for
some k. Then the germ of f; at {x1,...,xk is stable.

So F:( Uy, {(x1,t),...,(xk,t)}) > (Wx(Z-B), (,9) is a trivial unfolding of
fy: (Uant, {x1,...,xk}) - (W,y), where U; = {xec“ D(x,t) € Uz}. Hence there
exist diffeomorphisms ¢ and  such that the diagram -

(U ks tiet)]) ——— (WxZ-BLG)

@ v

Uy {x g xie)}) f;xliz'_B). (WxZ-B),(5.0))

»

commutes. So, F is locally trivial over (Z-B) € cd,



(2.6) The same reasoning applies if instead of the neighbourhoods W and (Z-B)

as above, we consider respectively W2 = W —TV_l and Zq as in (1.14)@ii). In this

case F: U3z » WyxZq is also locally trivial over Z{, where U3=F -!(szzl)mUl.

Next we are going to provide the (closed) image X = F(_ITé) in Wx(Z-B) ¢

Pxe? (resp. X' = F(U3) in WoxZ{ < €Px€? ) of FIT}: Ty Uy » Wx(Z-B)

(resp. FI_I-J% r 3 € U3z » WaxZq) (notation as in (1.15)), with a Whitney

stratification.

(2.7) There is a natural partition of the image X of F, away from I i(F), by
stable types that we describe below (cf. [Ga 3], [Mo 3]):

Let (y,t) and (y',t) be points in X.

We say that (y,t) is equivalent to (y',t), and write (y,t) ~ (¥'.t),
if f;: (UaNUy, f:(y)nUt) -+ (W,y) and fy: (UanUy, ftf (y)NUy) » (W,y') are

A-equivalent. This is obviously an equivalence relation.

Since X N1Ipe)(F) = & then f; and fy are stable. So, we can specify each
equivalence class of ~ by the local algebra Q(fy)s of fy at S = £, (y) N Uy (cf.
[Ma 3)).

Let us d}c.notc by QR(F)(y,t) the connected component of the equivalence
class of ~ through (y,t). We shall refer to QR(F)(y,t) as the stable type stratum
of X through (y,t) ( or as the target stratum of F). We denote by SR(F) the set
of all QR(F)(y,t)'

-10-



(2.8) Throughout we are going to assume that SR(F) has only finitely many
strata. Finitely 4-determined map-germs fo: (€0) - (CP,0) for which this is
verified are called by T.Gaffney (in [Ga 3]) discrete stable type map-germs.
Examples of these are corank 1 map-germs or all finitely 4-determined map-

germs with (n,p) in the range of nice dimensions, according to Mather

(cf. [Ma 6] )

(2.9) Proposition : The partition SR(F) is a Whitney stratification of the image X

in Wx(Z-B) € CPxcd of the restriction FiUb:Usc Uy » Wx(Z-B) of the good

representative F: Uy > WxZ.

Proof : (i) SR(F) is locally finite
This follows from (2.8).

i) Each swatum  QR(P), ) is smooth. (cf. [Ma 4])
In fact, QRE) = {7\t e Wx(Z-B): Q(fy)s ~ QEp)st}.
where S = f:(y) N U = {x1,...,xk} and S’ = fti )N Uy = {xl’,...,xk’}.
Since f;: (UzNU;,S) » (W,y) is a stable multigerm, then each map-germ |

ft(l): (UaNUy.xj) » (W,y) is stable. Therefore, there exists a representative of ft(l),

again denoted by ft(l) , defined in a neighbourhood Nj of xj, Nj € (UznUpech,

such that QD(ft(l))Xi = {xjeNje € Q ft(’) ) * QA ft(l) )x,i} is smooth.

® )

Furthermore, since ft maps QD(ft )Xi immersively into W€ Cp, we can take

the neighbourhood N; sufficiently small so that QR(ft(l))y = ft(l)(QD(ft(l) )xi) is

smooth.
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From the stability of f; we have that the tangent spaces Ty( QR(ft(l)) y) are in

k .
general position in qu:P. Thus, QRr(f; )y = if‘i QRr( ft(l))y is smooth.

Finally, by the local triviality of F over Z-B (2.5), we have QR(ft)y" (Z-B) =
QR(F)(y,t)‘ Hence QR(F)(y,t) is smooth.

(iii) Whitncy;s regularity condition (b) is verified for any pair of strata of

SRE). .

In fact, it is immediate from Kuo's ratio test ([Ku]) that each stratum which
has a zero-dimensional stratum in its closure is regular over it. Further, we can
always reduce checking the regularity condition to the case of a pair of strata

where one of them is zero dimensional. Indeed, if QR(ft)y is an r-dimensional

stratum then f:(UpNU;, f:(y) NU;) » (Wy) is equivalent to an r-parameter

unfolding of some stable multigerm fv: Uy, F\f(z)r\Uv) > (W', z) with Uy &

C€"" and W'c €PT, and this equivalence extends to F: Uz -» Wx(Z-B). Since

the strata in CPT are regular over QR('f"v)z , because it is O-dimensional, they are

regular over QR(f; )y in CP and over QR(F)(y ) in d:pxd:d.

(iv) The frontier condition, ie, if Sq and Sy are strata and S1N Sy = &

then Sy c'Sq follows from [JM] proposition (8.7).

Hence, Sp(F) is a Whitney stratification of the image X in Wx(Z-B) € ePxed of

the restriction FIF;'Z :@QUZ -+ Wx(Z-B) of the good representative F:Uq -

WxZ.
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(2.10) In the same way we obtain a Whitney stratificatition S'R(F) ( by stable

types) for the image X' in Wp x Z1 € CP x ¢d of the restriction FiU}: Uj € U3

- WoxZ1 (notation as in (1.15)) of the good representative F: U3 » WoxZ4,

where Wy = W—-W-}.

(2.11) Remark : It is apparent from the proof of (2.9) that the stratification

SR(F) verifies:
for every tp€(Z-B), the, closed image Xto of the mapping fto in Wx{to} is

Whitney stratified by stable type strata QR(ftO)y, for any (y,to)EWx{to} since the
germ of fy, at F"(n”(to))nUto is stable for every tye(Z-B). The same applies to

the initial map-germ fj: (d:n,O) - (CP,O) since for all y(—:d:p-{O}, but near 0, the
multigerm fO:(Cn, fg(y)) - (Cp,y) is stable, by theorem (1.10) above, so the

stable type strata QR(fo)y together with the origin {O} is a Whitney stratification
for the image Xy of the map fj in CP (here we once again use the fact that by

Kuo's ratio test [Ku] any statum that has -a zero-dimensional stratum in its closure

is regular over it ).

In the next paragraph we are going to show that if we take W = Be < CP (the

closed ball of radius € >0, boundary Sg and centre in the origin) with €>0

sufficiently small and if W1 = Bg /2 S cP ( the interior of —1-3_;; /2) then Sg xZ1

intersects the ’stratified closed set X',S'R(F)) transversally in (W-Wl)le and

hence Sg x(Z{-B) intersects the stratified closed set (X,SR(F)) transversally in

Wx(Z;-B).
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(2.12) Corollary : (i) Associated to the target stratification SR(F) of X in Wx(Z-

B) c cPxcd (resp. S'R(F) of X' in (W- Wl)le c ¢Pxcd) we have a source
stratification Spy(F) of Ué (resp. S'D(F) of -U—é) such that the pair (SD(F),SR(F))
(resp. (S'D(F),S'R(F)) is a Thom stratification for the mapping FIU_-é :E-é » X¢

Wx(Z-B) (resp. F1U3:U} » X's (W-W))xZ1).

(ii) The restriction of the projection n: Wx(Z-B) » Z-B (resp.

m: (W-W))xZ1 » Z1) to X € Wx(Z-B) (resp. X' (W-W))xZ1) is a stratified

submersion, i.e., 7\:IQR(F)(y ) is a submersion for each stratum QR(F)(y 9 €

SR .

Proof : (i) For any (y,t) in the image of F we have F -1(y,t) = {(xl,t),...,(xk,t)} for

some k. So, if we take the connected corhponent of F-l(QR(F)(y t)) through (xj,t)

as the stratum QD(F)(x- 1) through (xj,t) in the source of F, then the set of all
is -

QD(F)(Xi ) constitutes a Whitney stratification Sp(F) for the source of F.

Moreover, F | QD(F)(xi,t) - QR(F)(y,t) is a local diffeomorphism. So, by (2.4),

the pair (SD(F),SR(F)) is a Thom stratification of F.

(ii) The local trivia lity of the good representative F implies that each
target stratum QR(F)(y,t) is of the form QR(ft )yx (Z-B) (resp. QR(ft )yxZ1 ).
Hence, the restriction of the projection m to each stratum QR(F)(y ) is a

submersion onto Z-B ¢ €4 (resp. Z1 & cd ).
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§3. Fibration of good representatives

In this paragraph we apply Thom's Second Isotopy Lemma (see below ) to

the sequence U —F—> WxZ it-» Z where F is a good representative of an
Ae-versal unfolding F: (Cnxcd,O) - (Cpxd:d,O) » F(x,t) = (f; (x),t) of a discrete
stable type map-germ fj: (C",O) - (d:p ,0), n<p.

Here the main references are [JM] and [Gi].
f; f;
(3.1) Definition: A sequence of spaces and mappings Aj-> .. » A(>» Ag is

said to be topologically trivial over Y with respect to the mapping ®:Ag » Y if

g; g
there exists a sequence of spaces and mappings Bi—l) .. B 1-& By and

homeomorphisms h;: BjxY - A; such that the following diagram:
Bi xY o .. > leY - BOxY
hil« h1¢ hOJr

Ai T A1 - AO commutes.

f. f

i 1
(3.2) Remark: If the sequence Aj= .. » A{-> A is topologically trivial
over Y with respect to the mapping m: Ag -» Y then each moffo...ofj: Aj » Y

is a trivial fibration.

(3.3) Theorem (The Second Isotopy Lemma) :

Let M i} N 2 P bea sequence of smooth mappings and

manifolds. Let U and V be closed subsets of M and N respectively which admit
Whitney stratifications Ay and Ay respectively. Suppose that :
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(i) The pair (A, Ay ) is a Thom stratification for the restriction GIU:U » V
(ii) The restrictions GIU:U » V and ©IV:V - P are proper maps.
(iii) m is a stratified submersion, ie, the restriction ®l Ay : Ay » P is a

submersion, for each stratum Ay € Ay .
Then the stratified map G: (U, 4y) - (V, Ay) is locally topologically trivial

over P with respect to tlV:V > P.

Proof: (see for e.g [JM] or [Gi] ).

(3.4) Corollary : In the above conditions, if P is connected then the topological
type of the map Gu:UnG"( n"(u)) - VN a'(u) is independent of u € P.

As a consequence of (3.3) we obtain :
(3.5) Proposition : Let F:Uc (€"x€3,0) » WxZ c (€Px¢9,0) be a good

representative of an A.-versal unfolding F: (Cnxd:d,O) - (d:pxcd,O) ,
F(x,t) = (fy (x),t) of a discrete stable type map-germ fo:(C",O) - (€P,0), n<p.
Then there exist an 80>0, and a neighbourhood T € Z of the origin in cd such

that F[U5:Urc Uy - Xn( T3—80x(T-'B)) is locally topologically trivial over T-B

with respect to the projection 7 :_B—eox(T—B) - T-B, where —E}Og W is the closed

ball of radius € centred at the origin of CPand B is the bifurcation set of F.

To prove (3.5) we first let €y>0 be so small that for all € 0<€<§gy, the
sphere of radiﬁs € and centre at the origin in cP, S¢ intersects the (closed)
stratified imaée Xp of fg transversally in CP, as a stratified set in €P (as we
remarked in (2.11), Xo is stratified by stable type strata QR(fo)y for all y#0,

together with the origin); ie, Sg hQR(fg)y . Now, we consider the restriction of

the good representative F: U » WxZ :
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F1U3:U3C Uz » WoxZ{ with Wp=W-Wy and Zy as in (1.14)G).
3€ Uz » WaxZg 2 1 1

Let (X', S'R(F)) be the stratified closed image of F in WyxZq and X' n'(0),
the image of fj in W2x{0} c CP, where n: WyxZy - Z1 is the projection.

(3.6) Proposition: In the above conditions, there exist a neighbourhood T of the
origin in d:d, T < Z1 such that , the set E'= X’n(SeoxT) is a Whitney stratified
subset of €Px€d and the restriction of the projection TIE':E' » T is a stratified

submersion.

(3.7) Lemma : Let M and P be smooth manifolds, let Y € MxP be a Whitney
stratified subset and suppose that the restriction of the projection w: MxP - P to
Y is a stratified submersion. Then, if C is a submanifold of M and p is a point

of P:
(@) (Cxip}) b (Ynn'(p)) in Mxip} iff (Cx{p}) A Y in MxP

(ii) if (Cx{p}) MY in MxP, for all p€ P then (CxP) h Y in MxP and

n:(CxP)NY - P is a stratified submersion.

Proof : (i) Obvious.
(ii) To show that w: (CxP )NY - P is a stratified submersion, we

consider any stratum Yq of Y. Under the hypothesis of the lemma, ( CxP) rh

Yo in MxP. Now let p € TpP and suppose (mp) € Yo N (MxP). As Yq rh
Cxip}, we have T(m,p)Yo: +(Tm C) x {0} = T(m,p) MxP.

So, there,exist elements of T(m,p)Ya and (Tm C) x {O} whose sum is (0,p).
That is, there exist m € Ty, C such that (m, p) € T(m,p)Yoc (thus (m,p)+(-m,0) =
©,p)). Then (m,p) e T(m, p) (CxP) too, so (m,p)e T(m, ) (CxP) N T(m,p)Ya
= Tamp) ((CxP) nYa),and 1:(CxP)Yq, - P is a submersion.
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Proof of (3.6): By (2.12), the restriction of n:W2yxZy » Z{ to the stratified
image of F in WpxZq, (X,S'R(F)) is a stratified submersion. We have :

(seox{o}) h (X'n©) in Wox{o}, ie, for any stratum QRr(F)(yy) € SRE),
(Seox{O}) t (QRE)(y,n O 7'®) in Wox{0}. This is equivalent, by (7)) to
(Seo"{o}) h X' in WyxZ4. In other words, if g t:S{.:Ox{O} -+ WyxZ1 is the map

given by g(s) = (s;t) then goth’ in WoxZ4. But the set

{g € Cw(Sgox{O},szZ1) : grh X'} is an open and dense subset of
Cm(Sng{O},szZ1), since Seo"{O} is compact and S'R(F) is Whitney regular
'(see e.g. [G—M] p.38). In particular, there is a neighbourhood T € Z{ of the

origin in €d such that: for all te T, g, h X', ie, (Sg x{t}) h X' in WoxT, for
t 80 2

all te T. By (3.7)(ii), this is equivalent to (Seo"T) M X' in WoxT. Thus, the set
E' = (Seo"T) N X' is Whitney stratified by &' := S't F n (SerT) . Again by
(3.7)Gi), m: (B, &) » T is a stratified submersion. And this proves (3.6).

Proof of (3.5) : The Whitney stratified (closed) image (X, SR(F)) in Wx(Z-B) of
the restriction FIU2: U3 ¢ Up » Wx(Z-B) of the good representative F : Ucg

€x€%0) » wWxz c (€Pxcd0), verifies : (here TcZc €d is as in (3.6))

- (Sgox(T—B) )NX' and (Seox(T—B) ) N X coincide, hence (Seox(T—B) Yh X

in Wx(T-B)ccPxcd

- The set E = (i'a‘eox(T-B))nx is stratified by ER := sR(F)n("B‘ng(T-B))

and thp boundary of E, JE := (Seox(T—B))mX is stratified by- SR(F)n(Seox(T -B)),
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- the restriction of the projection n:_ﬁ_e 6<(T—B) -» (T-B) to Eis a proper
stratified submersion (since Ta—eois compact) .

Hence : - the map F: (U3, Ep) =2 (E,ER) is a Thom stratified map, where the
Whitney stratification Epy is obtained as the pull-back of ER, as in (2.12)@).

- FIU3 :U3 - E is a proper map, since it is a finite mapping.

- the restriction nt|/E:E » T-B of the projection ﬂ:—ﬁ—eo)((T—B) - (T-B)'

is a proper stratified submersion.

So, the hypothesis of (3.3) are verified, and this proves (3.5).
(3.8) Remark : In the above conditions we have obtained :

- 'Fibration' of the mapping FIU%: (U3, Sp(F)) » (X, SR®F) )s Be 6<(T—B),

where BQQZd is the bifurcation set of F; whose ‘fibre’ over a parameter t €(L-B)

is the mapping f;:U; » X, where U; = {x ec™ (x,t)EﬁQ} and Xt=Xr\(TB—e>6{t} ).
By (3.4), since T-B ¢ cd is connected, the topological type of f; does not vary
with t.

- Locally trivial C°- fibration of E = X A (Be(T-B) ) over T-B, whose

fibre X over t is the image of the mapping f; above. In other words, there is a
stratum preserving homeomorphism h:E N t'(Q) » (n'(t) " E )xQ where Q is a
neighbourhood of t in T-B ¢ d:d. In particular the fibres X; of m are

homeomorphic by a stratum preserving homeomorphism.
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(3.9) Definition : The image X; of the mapping f; above described will be called
the disentanglement of the image of the map-germ fj): (€"0) » (cP0), following
useage of de Jong and Van Straten [J—S].
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§4. The Milnor fibrations of the multiple point schemes.

In this paragraph we obtain Milnor fibrations for the multiple point schemes

ﬁk(F,y(k)) of a good representative of an A.-versal unfolding
F: (C'%€4,0) » (€PxCd,0), F(x,t) = F(x),1), of a finitely Adetermined corank 1

map-germ fg: (€",0) » (CP,0), n<p.
For definitions and properties of the multiple point schemes, see [M-M] or

equivalently see chapter III, below.
Some denotations ( and. connotations ) about Milnor fibrations of an ICIS

used here are borrowed from [Lo] chapter 2.
(4.1) Recall that, in paragraph 3 we have chosen a representative

FlU5:U4sc Uy ->—]§1~0ng CPxCd of the germ of an Ae-versal unfolding
F: (C"%cd,0) » (€Pxcd,0), F(x,t) = (f, (x),1), of fy:(C"0) » (CP,0) with the
following properties:

(i) For all € with 0 <€<Eg, the (closed) image Xq of fp is a Whitney

stratified subset of CP, transverse to Sg = d Be .

(ii) For all te T, the (closed) image X; of f; is Whitney stratified
transverse to Seox{t} in €Px{t} (In particular I(fp) N Sey= g, and we are referring
to the stable type strata, which are the only ones to meet Seo ).

(iii) F is locally stable (this follows from the Ze-versality).

(iv) F is proper.

It follows that for all partitions y(k) = (r1,..., L ), rini +1 of an integer k,

~k . —
D (F,y(k)) is a smooth analytic subset of Uy, (or empty ).
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Let py(k) : ﬁk(F,y(k)) -» T be the projection of I~)k(F,‘y(k)) into the parameter
space T ¢ cd of F.
(4.2) Theorem:Llet B€ TS ¢d be the bifurcation set of F. Then provided

p-k(p-n+1)+m = 0, the restriction py(k) |:]'Sk(F,*y(k)) N p;(k) (T-B) » T-B is a
locally trivial smooth fibration whose fibre, ﬁk(ft,y(k)) is a Milnor fibre of the

1a1s (B 1k, 0).
K
. A
Proof: Define 1 : UK » Rag by R((X1.tDn(Xicti)) = 17k D, Ify: ()1

i=1

Then 1y is a real analytic function on UK; we claim
. . =~k ~k ) y .
@) ric defines 0 in D (fp,y(k)) € D (F,y(k)), ie, Ty ) = {0} and O is
. . . ~k
not an accumulation point of the critical values of rkl D (fo,y(k)) - 0.

(ii) {rk = e} is a smooth subset of Uk, and py(k) : {rk = e} -+ T is a

submersion.

(iii) py(k) : ﬁk(F,y(k)) -» T is proper

The theorem will follow from these three statements. To prove the claim,

G) if ((x1,0),...,(xk,0)) € Py then fo(xp) = fo(xj ), for all i, j.

Denote this point (fo(xi)) by y e CP. Now let Ay(r) be the stable type

stratum through y in Xy, (’Y'(r) is some partition of an integer r, with r2k, and

Y(k) < (@), ie, ﬁr(F,'Y'(r)) projects into or includes in ]3k(F,_y(k)) ) Since Xy is

stratified transverse to S¢ for all € with 0<ex<eg,, AY'(r) is transverse to Sg at
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the point y, where €= |yl, and hence there exists a smooth path o(u) in AY’(T)
with 0(0) =y and o'(0) ¢ TySg. This path has a unique lift to ﬁr(F,Y'(r)), whose
components (. ,...,S‘r) are obtained using the fact that, as fy is stable at each

point x € fg (y), it defines a local diffeomorphism f('; (AY,(r), X) S (Ay'(r)’ y).
If g :(Ayp@)y) = f('; (Ay(r), %i) is a local inverse of fyj, set ('fi(u) = gj o o(u).

Then G (u) = (61(u),...,6'k(u) )€ Uk defines a path in ﬁk(fo,'y(k)), with 6 (0) =
~ (X{,.., Xk ) such that '
k k

dr@'0) = 1/k i; {?u( £ G )1 ) =0 = 1/K 21 gu (fo1) =0 # 0.

1=
It follows that for all points (x{,..., Xk ) in ﬁk(fo,'y(k)) - {O}, the restriction

~k . .
%D (Fo.Y(K)) is a submersion.

. _k '
(ii) This follows by a similar argument since D (F,y(k)) is smooth; in order

; K

to prove the result we must show simply that the map (py(k)’ rk):D Fyk) »
. . _1 . . .

TxR is a submersion along (p'Y(k)' rk) (Tx{e} ). This is equivalent to, the

restriction rj - being a submersion at all points in r (€), and this follows,
Ip'y(k)(t) k

by the same argument as in (i), from the fact that ft(Ut)= Xt is stratified

transverse to SEO.

~k .
(iii) is obvious since D (F,y(k)) is compact
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Now under these circumstances, if C'y(k) is the critical set of pY(k):ﬁk(F,'y(k)) -

~k .
T, and Ay(k) c T is its image, then py(k) : D (Fyk)) - Py'(k)(Ay(k)) > T~ Ay(k)

is a locally trivial smooth fibre bundle (notc that f’k(F,y(k)) = ﬁk(F,y(k)) rk-—<£)

) ~ . o~k
with fibre Dk(ft,y(k)) whose boundary is D (ft,y(k)) Ik=€ - This follows by a

standard argument using the Ehresmann fibration theorem, see e.g. [Wo].

Finally, if f; is stable, then ﬁk(ft',y(k)) is smooth for all y(k) in the dimension

range we are discussing ([M—M] th. 2.14 ), and hence Cy(k)np,;(k)(t) =g It
follows that Cy(k) Qp;(k)(B), so that Ay(k) € B, and hence the map

~k - . . . T
py(k) : D (F,yk)) -p,Y(k)(B) - T -B is a restriction of the Milnor fibration

~k - ~k y
Pry(k) * D (F,y(k)) - Pyl(k)(Ay(k)) + T - Ay(k) to the ICIS D (fo,v(k)) = p‘yi(k) ) .

(4.3) Since the fibres of a Milnor fibration of an n-dimensional ICIS are

connected and homotopy equivalent to a wedge of n-spheres, we have
~k IS
X ( D (fr,y(k))) = 1 + (-1)5 u(D (fo,7(k)))

where s is the complex dimension of the ICIS 15k(f0,'y(k)).
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§5. The Euler characteristic of the disentanglement of the
image of a corank 1 finitely 4-determined map-germ.

In paragraph 3 we obtained fibrations associated to a good representative
F:Ug Cnxd:d > WxZ ¢ cPxcd of an A.-versal unfolding F: (CnxCd,O) -
(cPxcd0), F(x,t)=(f; (x),t) of a finitely A-determined map-germ fy: (C",0) -
(CP,O), 2<n<p with (n,p) in the nice dimensions according to Mather, or on

their boundary, namely :
- 'Fibration’ of the mapping FIU%: (U2,Sp®)) - (X,SpE®) gfgox(T-B),

‘where B C (Dd is the bifurcation set of F and feog €P is the closed ball of

radius € centred at the origin; whose 'fibre’ over a parameter t € (T-B) is the
. n - 5

mapping f;: U; » X, where U= {x €eC:(x,t) eUz} and X=X N ( Beo x{t})
- Fibration of the image X of F in f%x(T—B), whose fibre over t € (Z-B)

is the image X; in _B—eox{t} of the stable mapping f; above; ie X; is the

disentanglement ( definition (3.9)) of X, image of fy: (C™,0) »>(CP,0).
With the assumption that the map-germ fj: (d:n,()) - (CP,O) is of corank 1,
in paragraph 4 we obtained :

~k
- Milnor fibrations of the multiple point schemes D (F,y(k)) of the good

representative F, whose fibre over t € (T-B) is the multiple point scheme

~k '
D (f,y(k)) of f,for all k=2 and all (ordered) partitions y(k) = (ay,..., ap,) of k,
with aj 2 ajy1 and p-k(p-n+1)+h 20.

In this paragraph we shall be interested in relating the Euler characteristic of the
disentanglement X; of the image Xy of the initial finitely A-determined corank 1
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map-germ fj: ((En,O) - ((Dp,O), and the Milnor number u(ﬁk(fo,'y(k))) of the ICIS

ﬁk(fo,y(k)), for all k and all partitions y(k)=(a{,..., ay) of k, such that aj 2 aj;+{ and

p-k(p-n+1)+h 2 0.

(5.1) Thus, over each parameter t€ (T-B) d:d we have the following diagram:

l w0y
B, @y

N(AEED

'

D

1'53(f[, 3) —» f53(ft, 2,1)) —» 53(ft)

'

'

Bie.2n — B, )

~26-
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where U; is a closed contractible subset of C", the spaces on the left hand side

are all smooth (since f; is stable) and the mappings p'y(k): I~)k(ft,'y(k)) - X; and

ft : Uy » X are proper and finite to one , for all k=2, and all partitions 7y(k).

Note that when Y(k) = (1,..., 1), we have ﬁk(ft,y(k)) = ﬁk(ft)_
Moreover, f; is branched over the points of the image of p(12) (and hence

at the points of the image of all mappings in Xy and is branched
d £ Prao ™ 70 2 Py

over the points of the image of all p‘y’(r) with r2k and such that y(k) < v'(r).
The symbol y(k) < ¥(r) means that 13r(ft,y'(r)) c ¢yt projects into or

includes in f)k(ft,y(k)) c ch-leck ; or in other words, ﬁr(ft,'y"(r)) with Y'(r) =

(Y (&), 1, ..., 1) contains D (f,¥(r)).

Also, we recall that since ﬁk(ft,y(k)) is a typical Milnor fibre and
~k g ~k <k
D (fo,y(k)) the critical fibre, we have: % (D (f,y(k))) = 1 + (-1)S u(D (fo,y(k)))

~k
where s is the complex dimension of thc; ICIS D (fp,y(k)).
Thus our initial aim, namely to relate the Euler Charactheristic X(Xt) of the

image X; of f; and the Milnor numbers u(ﬁk(fo,'y(k))) of the multiple point
schemes 13k(f0,'y(k)) of the initial map-germ fj: (Cn,O) - (CP,O) is equivalent to

that of relating x(X,) and x(ﬁk(ft,y(k))), for all k>2 and all partitions y(k) of k.

We shall do this by considering the degrees of the finite mappings f; and

py(k) of the (,iiagram above, i.e., the cardinality of the fibres ft"( f; (x) ), where

x € Uy is generic,’ft"( py(r)(y) ), where y is a generic point of ﬁr(ft,‘y(r) r22 and
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the cardinality of the fibres p;(k) ( p_Y, (r)(y) ), where y is a generfc point of

ﬁr(ft,'Y'(r)) with r2k and y(k) < y(r) ( Recall that if y(r) = (bl,...,bq) then a

generic point of ﬁr(ft,Y'(r)) c €-1x€T is one of the form y= (x, Y reees Ygooeos
yq,...,yq), x e cn-1, y; € c, Yi# Y for i#j and y; repeated b; times, see (2.7)

of [M—M] ) Then we shall find coefficients B, and B‘y(k) such that :

' ~k
(I) 4 (Xt) = BO X (Ut) +kg:2 'Y(zk) ﬁy(k) 4 (D (ft"Y(k)))

We start by triangulating the objects we are going to deal with.

(5.2) Let S’(Xt) denote a triangulation of the image X; of f; , constructed in

the following way:

We first consider all the zero-dimensional multiple point schemes ﬁr(ft,y () of f;

and start triangulating X; by including the image of all mappings py( ): ﬁr(ft,y o)
' T

_ @
- X; among the vertices of S’(Xt). Next we build up the two-skeleton X, of

ﬂ'(Xt) so that the image in X; of each multiple point scheme of complex

. . . @ . . . .
dimension one is a subcomplex of X; . Then we continue in this way until we

1)

Q- . . .
obtain the (2(n-1))-skeleton X, of fr(xt ) which should contain the image

of p 12) as a subcomplex. Finally we complete ﬂ’( X )

(
Since the mappings f; and pY ® are proper and finite to one, then pulling back

?(Xt) we obtain a triangulation for the source U; and the pull-back of the 2r-
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2 .
skeleton X E ) provides triangulations for all multiple point schemes of complex

dimension r.
) ~k
In fact, let My(k) denote the image of D (f,y(k)) by the map
~k . .
Pycy * P (E:Y() > Xy By construction, My(k) is a subcomplex of (X ).
The triangulation ‘J’( ﬁk(ft,'y(k))) of ﬁk(ft,'y(k)) is obtained as follows:

~the vertices of 3’( ﬁk(ft,y(k))) will be all points over the vertices of My(k).

~for all one-simplex o:Al - My(k), we denote the interior of Al by
int A1, Then, by assumption, p‘Y(k) is a trivial covering over o (int Al) | of
degree, say dq. Since int Al is simply connected, o lifts to d{ distinct maps

O'O(i) rintAl 5 ﬁk(ft,y(k)), i=1,.., d{, with disjoint images. Since p’Y(k) is proper

we.can extend co(i) to maps o®: Al -)ﬁk(ft,y(k)) lifting ©.

B, 1)

®
*/ l"vao

|

- do the same for all two-simplex of My and so on. In this way we

end up with a triangulation of ﬁk(ft,y(k)).

Now let

X
C. ' be the number of cells of dimension i in X;,
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. .
Cit be the number of cells of dimension i in U

T

i be the number of cells of dimension .i in ﬁk(ft,'y(k)) (with

respect to these triangulation),

(k) -
where CZ = 0 if i>2dimg Dk(ft,'y(k)).

So, equation (I) of (5.1) can be rewritten as:

iZ(—l)iCiXt= z( 1)1C Ut + z 2 ﬁy(k) Z( 1)1C‘Y(k)

k22 y(k)

Notice that if we find coefficients BO and B’y(k) (for all vy(k)),

independent of i, such that:

y(k)

X, U
= B.Ct 4+ 2 C; ", for all i, 0<i<2n,
Bo & 4 Bya Gi

then these coefficients will solve equation ( I ) of (5.1).

So, let us concentrate on solving :

X U YK
(II) S t = Bo Cot + Z Z By) Co  (where all coefficients By(k)'s
| appear)

We claim that provided we can find the degrees of the finite mappings

fi:Upc € » X, c €P and Py ° ﬁk(ft,'y(k)) - X, for all k>2 and all
partitions (k) of k then we can find the coefficients Py(k) that verify

equation (II'), and hence equation (I).

-At this point, seame examples will probably be helpful .
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(5.3) Example (i): Let fo: (€20) » (€30).

In this case the diagram over a parameter t € (T-B) is:

and the finite mappings f; , P12y p(2) = P(12)°i and P(13) have the
following degrees :

P13) is 6 to 1

Pp)y is1to1

is 6 to 1 over the points of the image of P(13) in X;

P12 |
is 1 to 1 over the points of the image of P2) in X;

and 2 to 1 in general

fy is 3 to 1 over the points of the image of P13 in X
is 1 to 1 over the points of the image of p(z) in X

is 2 to 1 over the points of the image of P2 in X;, but not

in the image of P13y O P(2) in X

is 1 to 1 in general.

We shall group this information in the following table:
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R % 213 )
~2
D (f; ) 2 2 - -

Be,n| 1 1 1 —

~3
Be¢) | 3 6 — 6

We shall refer to this as the fable of degrees of the mappings f; and

Py)s -

Equation (II') in this case is :

U 12 ) 13
= BOC0t+[3(12)q§ )+B(2) G +[3(13)C<§ )

Also, we have triangulated X; so that we can write:

X¢_ (13).

, Where

et e

1) G

-f?oUt is the number of zero-cells of X; but not in the image of P2y

_(12)
CD

is the number of zero-cells of X; in the image of P12 but not in

the image of P(13) OF P2y and

— —(13
Céz) (resp. Cél ) ) is the number of zero-cells of X; in the image of P2)

(resp. P(13) )-
Moreover, the degrees of the mappings f,, p(lz) p(2) and p(13) tell us,

repectlvcly, that:
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— 3
) C(I)Jt = 'COU‘ +2 c512)+q§2)+3 Cél ),

2 2
@ P e, e®

SRR

3
@ @.® o

- and (9 ot

6T

So, if we substitute (1) - _(5) in (II) we obtain:

N P L

—=(1 2 13 —(2 —(13
+Biizy (2G5 )+C(§)+6Cé ) +B) G+ By (6T ).

A solution B s B . B . B for this equation is obtained by solvin
0 (12 72y Y13 d y £
the system of equations:

QB G

2 1
Cé ) (2130+2ﬁ(12))q§ )

-2 —=(2
Cé ). (Bo +[3(12)+[3(2)) Cé )

—(13 —(13
Cé )= (3B0+6B(12)+6ﬁ(13))q§ )

2y _ —
Assuming that EOUt, E‘él ), Céz) and 1)

C0 are all non zero, if on the contrary,

=1(K)

was zero, it would imply that ﬁk(ft,y(k)) was empty and hence we would

Just delete the equation corresponding to fjk(ft,y(k)) and take By(k) = 0, this is

equivalent to solving the system:
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E 1 0 0 o FBO -
1] _[2 2 00 (1%
1 i 1 1 0 B(z)

_1J _3 6 0 6J _B(13)_

So, B =1, [3(12) =-1/2, [3(2) =1/2 and 3(13) = 1/6.

Hence, % (X;) = % (Up-1/2 7 (B°(f) + 172 X (B(£@)) + 1/6 X (B( £y

And when all multiple point schemes in consideration are non-empty we obtain :
~ ~2 ~3
LX) =1-1/2 (1 - (B fo)))+ 1/2 (1 +p (D (fo,(2))))+ 1/6 (1 +u (D (fo)).

This completes the case (n,p)=(2,3).

(5.4) Remark : In general we shall proceed as above, namely, we shall obtain
the table of degrees of the mappings f;, py(k) and then the coefficients By(k)

such that

I Xp) = ﬁkf, k
D xX)= for®o+ X Yé) Bygo 1 B v

will be obtained by solving the system of equations:

ol P

1 B,

1 (1?)

(*) ) 1 =M 6(2)
1 L
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where M is the matrix whose first column is the column of f; in the table of
degrees, the second column of M is the column of P(12) in the table of degrees
(replacing'—' by '0'), and so on. We can assume that M is lower triangular.
Indeed, we can order the rows and columns of the table of degrees using the

ordering on the partitions (discussed in page 27 above).

Example (ii) : fg: (€3,0) » (€*40).
Here the table of degrees is:

oy B 1 by R
U, r - = = -

~2
Be) | 2 2 — — — —
~2
D (f;.(2)) 1 1 { - - -
~3

~3
be,.2m| 2 3 0t 3 1 —

4 —_— —_—
i (ft ) 4 12 - 24 24

So, with the assumption that all the schemes considered are non empty, the

coefficients By(k) such that :

_ 2 ~2 ~3
x (X)= Byx (U )+ B2yt B €I+ By (5t . @M 50 B, )+

~3
By 11 B 1) +B4x (5%,

are: B=t, Biypy= =172, Bpy= 172, B (3= 176, B, ) = -1/2 and B (f=-1/24.
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(As always, if 15k (f;,y(k)) is empty then the coefficient B-Y(k) in equation (I) is

zero). Hence, if all multiple point schemes in consideration are non-empty we
obtain :

% (Xp) = 1 —1/2(1+u(f52(fo))) +1/6(1 -u(133(f0))—1/24(1+u(ﬁ4(fo)))+

+172(1-p BX(fo@M ) - 172 (14 B f.2.10 )

Example (iii): fo: (¢4,O) - (025,0). Here the table of degrees is:

Lok Ry B fen e fuh fey U

U, . = = = = = = = =
D) |2 2 — — — — = = —
D@ | 1 1 i - = = = = -
.53?ft) i 6 - 6 @ — @ —_— = = —
]33(ft,(2,1)) 2 3 1 3 1 —_ — — —
Beoon | 1+ 1t 1 1 t 1 = = -
‘1’54(ft) 4 12 - 24 - - 24 - —
134(ft ety 3 7 1 12 2 — 12 2 —
B%,) 5 20 — 6 — — 120 _— 120

and hence the coefficients [B's such that

X (X0 = B X (UD+B 1y 1 (B2 ) + By x (B2t 20 ) +B 5, x (B0 )+
+B g 1y % ( BE.10 )+ By 1 (B2E.00 )+ By x (BE0 ) +
+Big 12X (B .@120 ) +B 5, 2 (B ) are:
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Bo= 1 Biygy = ~1/2 By = 172, Bysy = 176, By )= -1/2, Bq= 173,
B(14)= -1/24, [3(2’12)= 1/4, B(15)= 1/120.
So, if all multiple point schemes in consideration are non-empty we obtain :
X (X) = 1-172(1 - B CFo) + 172 (1 41 B fo, 0 ) +
+1/6 (1 +1 (B(£9) - 172 (1 - B Fo RN 173 (141 B 0. BM)-

~1724(1-p B* o) + 174 (1+ 1 B X R 2120 ) +

+1/120 (144 B fo)).

The examples suggest the following :
(5.5) Claim : the coefficient B'y(r) of the Euler characteristic of ﬁr e,y (), if it

is non-empty, in

~k
I =
(1) X (X¢) BO x (Up) + kg; 'Y% B'Y(k) X ( D (ft,v(k))

Yo,
- 1)

Y@ .
H(ialai!)
i21

is given by: p

where y(r) = (ay,....ap), aj2aj+1, is a partition of r such that p-r (p-n+1)+h >0

and o= # {j : aj=i}. If ﬁr(ft,y (r)) is empty, we delete the row correspondent to
it and the column correspondent to By(r) in the system of equations (*) of (5.4).

Then we take Py equal to 0.
‘In the remark below we find a relation between the coefficients above and

certain simple characters of symmetric groups.
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(5.6) Remark: Let Y(r) = (aq,..., ay) be a partition of r and let ai'= # {j Paj = i}.
Then r = 1-04+2-02+.... . So, it is easy to see that the set of partions of r is in
one to one correspondence with the conjugacy classes of elements of the
symmetric group Sy, ie, Y(r) corresponds to the conjugacy class Cy(r) of the
permutation with cycle pattern o1,09,... (see [L1] p-25).

Let hc'y(r) be the number of elements in CTy(;) and th(r) be +1 or -1

according to the sign of any element of Cy(r)’ ie, ch(r) is +1 if the number

of transpositions that any element of C'y(r) can be factored into is even and -1

otherwise. 6 is called the alternating character of S; (see |L1| p.134).
Sy r

Then (5.5) can be rephrased as

Pray = -7t By ey
Indeed, just observe that th(r) = (—l)zoc2i = (_1)2(1_1)0‘i = (_1)r'2’°‘i
and that by Cauchy’s Theorem on symmetric groups (see [Ll] p-132),

!
he, oy = o
it 1

Now, recall that to prove claim (5.5) we need to show that the coefficients By(r)
constitute the solution for the system (*) of (5.4). With the notation above, we

show that the claim (5.5) is true for the set of equations of the system (x) of

(5.4) corresponding to the rows of ]31( (fy, (k)), for k=2 and p-k(p-n+1)+120, in
the table of degrees. Since this row is composed entirely of 1s then the equation

corresponding to it is of the form:
k

=By 1+rgz y%f) B1((r) 1

where Y(r) runs through the set of all (ordered) partitions of r, r<k.

Also notice that because f; is generically one to one , the first equation of the
system (x) of (5.4) is 1= Pg.1. Hence Pp=1, always.
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Now considering the unit character 1p Y@) of Sy (which is constant equal to one
for any permutation of S;), we have as a consequence-of the character relations

of the first kind for simple characters (see[LZ] p.51), that

!
» _0, i L Y
1/1! e hcy(r) ecy(r) lcy(r) 0, ie, 1/r! e Hiai o -1 0.
i>1 )

1! Eai

HCnCC, rgz _(_1)r/r! y%') W (—1) = 0, i.e-, rgz ,Y%,) BY(r) =0
i>1 .

which verifies the claim (5.5) for the set of equations of the system (x) of (5.4)

corresponding to the row of fjk(ft, (k)), for any k=2 and p-k(p-n+1)+120, in

the table of degrees.

We now return to the main problem, i.e., to find the matrix M of the system (x)

of (5.4) provided by the table of degrees of the mappings f;: U; S c” 5 Xt cP

and Py’ B¢, y() » X; for all k = 2 and all partitions Y(k) = ({, ..., Tyy) Of
k with p-k(p-n+1)+m=20.
(5.7) Let us start with some trivialities about multiplication of polynomials.
(i) Consider the polynomial (x{+x2) (x{+x2) (x1+x2). To perform the
multiplication, we choose either an x{ or an x from each of the three factors
and multiply our choices together; we do this for all possible choices and add the
results. We represent a particular set of choices by a two-cell partition of the
numbers 1,2,3. In the first cell we put the numbers which correspond to factors
from which we chose an x{. In the second cell we put the numbers which
correspond to factors from which we chose an x). For example, the 2-cell
partition [{1,3,},{2}] corresponds to a choice of x{ fom the first and third factors

and xp from the second. The product so obtained is XXX =x12.x2. Hence the

coefficient of x12.x2 in the expansion of (x1+x2)3 will be the number of

partitions which lead to a choice of two x1's and one xj.
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(ii) More generally, if we consider the polynomial (x1+...+xq) S

(x1+...+xq) (r factors ), the coefficient of x}) 1-.....x3q (Ebi = r) in the expansion

of (x1+..+xq)r is the number of partitions which lead to a choice of bq xl’s, by
X9'Sy wue s bq xq’s.
Going in another direction of generalisation,

2,2 .2 2
(iii) Consider the polynomial (x1+X3)(x1+X2) (x4 +X,).
: 3.2, . 2 22 .
The coefficient of X1 x5 in the expansion of (x{+x3) (X{+x5) is the number of

2 2
partitions which lead to a choice of one X1, one xq and one X, .
Finally,

(iv) In general, if we consider the polynomial (x?1 +m+xg1).m .(x‘i‘h+_..+xgh)

with Y aj =r. Then the coefficient of x}) 1-....-xgq ( Y b= r) in the expansion of

h

H(X?i+...+xgi) is the number of partitions which lead to a choice of : a

i=1

a;
certain number of (powers of x{) xlll, with aj,€ {a1,..., ah} and so that Eai1=b1,

a;
a certain number of (powers of x,) x212, with aj,€ {a1,..., ah} and so that Zaiz =

by and so on.

Now to describe the table of degrees in the general case, i.e., to find the degrees

of the mapping p’Y1 @’ 1'51'(ft,‘y1 (1)) » X; over the points of the image of a



generic point of ﬁs(ft,yz(s)) in Xy, with r £ s and 'yl(r) <72(s) (in other

. . 1 ) =S s
words, the cardinality of the fibre p 'Y1(T)( pyz(s)(y)) where y € D (ft,Yz(s)) is a

generic point ), we have the following :

(5.8) Lemma: Let 'yl(r) = (ay,...,ap) and yz(r) = (bqse-s bq) be ordered partitions

of r and s respectively with yl(r)<72(s). Let y€ 5s(ft,72(s)) c €0~ 1xCS be a

generic point.
- . _ . . . -1 . .
(i) if r = s then the cardinality of the fibre p 71(r)< pyz(s)(y)) is the

h
coefficient of x})l-....-xgq in the polynomial i_l:Il(x?i+...+x3i) .
.o " . . . -1 -
(if) if r<s then the cardinality of the fibre p Y (r)( p,YZ( s)(y))xs the sum of

h
the coefficients of xfi.,,,,.xflq in the polynomial H(x‘i‘i+,,,+x3i) , with
i=1

(01,-..,Cq)€ N(()l ; ¢{<b; and Eci =TI

Proof : Recall that a generic point y€ ﬁs(ft,yz(s)) c €"-1xCS s of the form
= n-1 . f s .
y= (x, Yqores Ygoees Yoo yq), xe Cl 4, A € C, yl#-yJ for i#j and y; repeated

b; times.
. . -4 . _ .
The points of the fibre p vy (r)( pyz(s)(Y)) are the ( generic or non-generic )

points of ]'51'(ft,'{1 (r)) whose coordinates are chosen out of the coordinates of the

generic point’y ( the way to choose is such that the resulting point belongs to

D GEAN)!
. . _1 - -
Thus_the cardinality of the fibre p Y1(r)( pyz(s)(y)) is thé number of all such

possible choices.

-41-



Finally, we consider the following ( one to one ) correspondence between the
generic points y = ( x, Y Yeorens Ygpeoos yq) of ﬁs(ft,yz(s))‘ and the monomials

by b, . .
X1 .....-xqq :namely to the sequence of coordinates y;,...,y; (y; repeated b; times)

we associate xti)l. Now the lemma follows from the discussion in (5.7).

%5(5)

. . . 4
Y@ the cardinality of the fibre p Yy (r)( pyz(s)(y)) ,

(5.9) Let us denote by F
(s)

Y
. . . ~S 2
where y is a generic point of D'(ft,Y,(s)). So, FYl ©

is the number in the

row corresponding to 135(ft,72(s)) and column corresponding to py ) in the
1

table of degrees. Hence, if we fix the partition 'yl(r) and vary the partition

Y,(s), we obtain the column of the table of degrees corresponding to the
2 P
mapping p .

'Yl(r)

3 2
2,
e.g. (21 )= 13 | (351 )= 7
(19) (1)
The column corresponding to the mapping f;: Uy » X; is given by :
1 in the row of U; and q in the row corresponding to ﬁs(ft,'YZ(S)), where q

is the length (i.e., the number of parts) of the partition yz(s).

Thus we have a systematic way to describe the table of degrees, in the

general case,) with which we shall prove the claim (5.5). Before that, we

consider the following :
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(5.10) Lemma: Let ¢® be the rth elementary symmetric function in the variables

e<r)= z X.. e o X

. L < L r
1311 <<l 2q

X5 X

Let v() = (a1,..., ah), aj 2 aj4+1 be a partition of r. Then,
—ZOL
® -3 D I;[l(x o)
LB (1 i) i

i=21

where o= #{j 13 =i} and y(r) runs through the set of all (ordered) partitions ofr.

Proof: (cf. [Mac] p.17)
q

q
Let E(u) denote the generating function of e(r), E() = Z eMyTa H (1+xj u).
I= O j = 1

i1

Let P(u) denote the generating function of p; = Z le , PQ)= Z
j=1

S OY Al S 3 d
So, P(u )= Xiu = —_— = - - log (1-x.u)
i>1j=1 9 ! j=1  1-x:.u j=1 dn g J

I
N g o

d d
21 1+x.u)_ lo H 1+xu log E(u).
dﬁbog( ; o L8 ( ) = 3008 (u)

Thus, P(-u) = | i
i=

Hence, log E(u) = f P(-u)du= f _2;,1 P; (-u )i~1 du = .2;1 (_1)i~1

So,
E(u) =exp(i(_1)i~1 B ui )= H ex ((_l)i-l B ui ) _
i21 i i>1 P i -
4Dy -0
H g ( i- 1. ) _1_‘ H f -1 * pol‘luna
121 a = ol i21 ai=0 lai(X"
i
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_Za
Therefore E(u)= 2, D H(X1+ +X) i u
(o & 21
Y(r) (i i
i21
and this ends the proof of (5.10).

(5.11) Corollary: Let ¥(r) = (a1,..8p), aj2ajpq and Y,(s) = (bq,....bg), bj2Dbjty,

be partitions of r and s respectively. Then
Yo,

1
y 1) . FzZ(S) el [ q\
© Ty 10 TP

i21
where o= #{j 3 =i} and y(r) runs through the set of all (ordered) partitions of r.

, 7 »(8) , ¢ ¢ c. .
Proof : Since Y @ is the sum of the coefficients of X ) -x22— -xqq in the
q
polynormal H(X ot xt ) i for all (Cl’ C )E [Noq such that Zc, =1,¢<bj
i=1

121

r-%.0;

-1 Y,(8)
and o4 =#{j : =i}, then 2 @ .F2" is the sum of the
() 1l o Y(r)
(i "oj!
i21
. . C: C c . .
coefficients of x11.x22- .x @ in the polynomial
- X
_za
1 ; i O,
Z ) .H(X;+~--+X3) 1 for all (cl,...,c ) € Noq such that
Y() H( i1 q
i o)

i21

q
,21ci =1, with ¢; <bj. So, the result follows from (5.10).
1=



Now to prove claim (5.5), i.e., to verify that the coefficicnts-By(r) satisfying

I X;) = B (£,
(I x(Xp) Box(Ut)+r222 Y(%ﬁy(r)x(D(w(r)))

2o,
_ B . _D
are given by : va) - H( o ) ,
1 oj!

i21

where Y(r) = (a{,...,ay), aj = aj4+{, is a partition of r such that p-r (p-n+1)}+h 2 0
and o = # {j: aj = i}, we just have to show that for every fixed partition 72(5)

(i.e. every row of the table of degrees), we have:

'Y (s)
IV 2
(V) ﬂ 1 +r% Yz(r) Y@’ 'Y(r)

But, this is an immediate consequence of (5.11), since BO is (always) equal to

one. Thus we have proved the claim (5.5), and hence we obtain :

(5.12) Theorem: Let X; be the disentanglement of the image of a corank 1
finitely 4-determined map-germ fj: (€",0) » (€P,0). Then,

-1 Yo

~T
x(xp=1+ L 2 Mo 07 x (B o)
iz )

where Y(r) = ('211,..., ap) runs through the set of all (ordered) partitions of r such

that p-k(p-n+1)}+h >0, o = #{j : aj=i} and the multiple point schemes ]'Sr(ft,('y(r))

are nqQn-empty.
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(5.13) Remark : (i) In (5.11) we have considered, for a fixed partition yz(s), all
(ordered) partitions of r (r<s), while in (5.12) we restrict ourselves to the set of
all (ordered) partitions y(r) = (@{,..., ap) of r such that p-k(p-n+1)}+h 2 0. This is
no problem since, if we fix a partition ’YZ(S) = (b1,...,bq) of s, such that

Y,(s)
p-k(p-n+1)+q 20, then a necessary condition for Fyz(r) to be non-zero is that

Y(@) = (a1,..., ap) also verifies p-k(p-n+1)+h 2> 0.

(ii) Recall that we are considering the k- tuple point scheme ﬁk(ft)
embedded in Cn'lxck, where it lies invariant under the action of the symmetric

group Sk, which permutes the coordinates in ck,

Our next step is to replace X (5k (ft)) by x(ﬁk (f, )/ Sk) in the formula of

(5.12), for all k>2.

- For properties of the quotient spaces ﬁk(ft )/ Sk see [M—M] § 3.
Some symmetries

(5.14) We now consider the finite mapping p: ﬁk(ft) - ]~)k (fy)/ Sk .

We can then repeat the procedure described above in order to relate the

Euler characteristic x(ﬁk(ft )/ Sk) of the quotient space 13k(ft )/ Sk and the Euler

characteristic of the multiple point schemes ﬁk(ft,'y(k)) of fi, for all partitions y(k)
of k. In other words, we shall find coeffients Dy(k) such that:

(V) x (B(60)/ sk ) = v%< KU x ( B v ) , where ¥(k) runs

through the set of all (ordered) partitions of k.
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Equivalently, we want to solve the system of equations:

D -

1 v,

1 ) V2,152
(%) = M( )

| 1] L Yo

where the matrix M() is obtained from the table of degrees of the mapping

Py ° BX(6,,v(k)) - B¥(f; )/ Sy obtained by restriction of the mapping P to
B (ft¥(k)), for all (ordered) partitions y(k) of k.

~2 ~2
(5.15) Examples: (i) p:D (f;) » D (f;)/ Sy

Here the table of degrees and the matrix MP) e

2 fo)
~2
D (ft ) 2 — Q) _ 2 0

~2
e, | 1 1

Hence, solving the system of equations () for this case we obtain:

So, x (1”)2(ft )/ Sy ) =1/2% (1“52(ft )) +1/2 % (ﬁz(ft,(2))) .
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-3 3
() p:D() » D)/ S3-

Here the table of degrees and the matrix M(3) are :

W By &
Ble)| 6 — — 6 0 o]
Be.em| 3 1 —  MO=13 1
1“53(ft 3| 1 r 1 11 1]

Hence, solving the system of equations (x*) for this case we obtain :

So, % (133(& )/ $3)=1/6x (133(ft ) +1/2% (133(ft,(2,1 »)+1/3% (133(ft,(3))).

~4 ~4
Gi) p:D(fy) » D (f;)/ S4

Here the table of degrees and the matrix M@ are as follows :

o By B &)
ﬁ“(fu) 2% @ — = =

~4
D(f,212) |12 2 — — —

1“54(ft,(g2)) 6 2 2 — —
Se,.6m |4 2 — 1 —

Bee@ {1 1 1 1 1
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(24 0 0 o0 o]
2 2 0 0 0
M#&-l6 2 2 0 o
4 2 0 t 0
1t 1 1 1 1]

Hence, solving the system of equations (xx) for this case we obtain:

0(14) =1/24 , 9(2,12) = 1/4, 0(3,1) = 1/3, 1)(22) = 1/8 and 1)(4) =1/4 .
4 4 4 -3
So, % (D'tk)/ $4) = 1724 % (B ) + 174 % (D (€02.12)) + 1/8 1 (D 622 J+

+1/3% (]54(ft,(3,1))) +1/4x (134(ft,(4))) .

In general we obtain :

(5.16) Proposition : Let y(k) = (af...., ap), aj = aj+1 be a partition of k, with
o4 = #{j : aj=i}. Then

~k 1 ~k
D)/ S )= Y ———— x| D¢ (&)
(P 5] vl ITiioy (B )
i>

where (k) = (ay,..., a) runs through the set of all (ordered) partitions of k.
Proof: This is analogous to (5.12) and will follow from the lemma below.

(5.17) Lemma : Let hy be the rth complete symmetric function in the variables
XX s i.., hy is the sum of all monomials of degree r in the variables

Pl 1 . . .
X{s».Xq. Then h_= Z H(x‘+...+x‘)a1
ey q. T o '21 1 q
YO ey
i1 o

where Y@ = (ag,e..s ah), aj 2 aj41 runs through the set of all (ordered) partitions

of r and ai=#{j:aj=i}.
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Proof : This is analogous to (5.10). We only observe that if H(u ) is the
generating function of hy then ‘P(u) = H'(u)/ H(u), where P(u) is the generating

q | .

function of p; = Z le , P(u)= ‘21 piul'l (cf. [Mac] p.16). Then the proof
j=1 iz

follows as that of (5.10).

In conclusion, we have

-1 Soe  or
from (5.12) X(X)=1+z Z : 2% (e
t r>2 Y(@) _lli(ll oy ( X( (fy (Y(r)))

and from (5.16) % (B€)/ 8¢ )= X x (B0 )

Y(r) iH 1% oy

21

So, together they provide us with :

(5.1.8) Theorem : Let X; be the disentanglement of the image of a corank 1

finitely A-determined map-germ fy: (€",0) - (€P,0).

Then, X (X)=1 +k§2 15y (B )/ i)+

Kooy
222 SO (K, w0 )
k22 70 Il o

12

where y(k)=(ay, ..., ap) runs through the set of (ordered) partitions of k with

p-k(p-n+1)+h 20 and aj= # { j: aj = i}. ( we observe that if ﬁr(fo,(y(r)) is empty

then the coefﬂ}:ient of x( fjr(ft ,(y(r))) in the formula above is zero).

(5.19) Examples: (Here we assume that all multiple- point schemes in

consideration are non-empty. n and p denote respectively the dimension of the

source and target of the mapping f;)
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() (n,p)=(2,3)

x(Xi)=1-% (1‘52(ft )/ S2)+x (1'53(ft )/ S3 )+ X (1”)2(ft 2») .

(i) (n,p)=(3,4) |
x(X;)=1 —x(ﬁz(ft)/ Sz)+x(f53(ft)/83)-x(134(ft)/84)+

1 (B -2 (B @1).

(iii) (n,p)=(4.5)

X (X0) = 1~ 2 (56 )/ S2)+ % (B ®)/ 83) -2 (B'€)/ 84)+ 2 (B &)/ 85)+

1 (B @) ) - 1 (B ) +/ax (D).

(cf. example (iii) of page 36).

~k ~K :
Now using the fact that D (f;)/ Sk and D (f;) are Milnor fibres, and supposing

that all multiple point schemes in consideration are non-empty, we obtain :
(i) (n,p)=(2,3)
~2 ~3 ~2
x(Xt)=2+1( B (f/ S2 )+ (B €0/ 3 )+ (B €02 ).
(ii') (n,p)=(3,4)
~2 ~3 ~4
x(Xe) = - 1(B €0/ $2) - (B 0/ 53) - (B 0/ S4 ) -

- B (60,2)) ) - 1 Bt 2.1) )
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In general , substituting x{ D)/ Si) = 1+ (1P 7K@ 4 (Do) ) and

A B )=+ 0P T ORI L (e ), with )= Cay, ) = (1)

a partition of r and o= #{j:aj = i}, in (5.18) it becomes :

p
~k(p- ~k
620 % (X)=Cygqr X PV [y (56 5¢)+

1+(_1)k+§.‘ﬁxi+1

——— ~kf ’ k
y® e b (B (v ) ]

k- 1y

p
k+1 R
1

2>1

(5.21) Remark: (i) In the case (n,p)=(2,3) we can write
x(Xt) = 50/ S2 ) +C(fp) + TiEp)

where C(fp) and T(fp) are respectively the number of cross-caps and triple points
of fo

2 ~
In fact, D (fp,(2)) and D3(f0)/ S3 are ICIS (since fy is finitely
A-determined , cf. [M—M] (2.14) ) of dimension zero. Now, the remark follows
from proposition (5.12) of [Lo]
(ii)) When p =n+1, ¥ (X;) is semicontinuous, since
(_1)p~k(p-n+1)+1 is indepent of k.
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(iii) In recent work [Mo 4] , David Mond .proves that the

disentanglements of mappings fg: (C",0) - (Cn+1,0) have the same homotopy type
of a wedge of n - spheres. Hence, when p = n+1, (5.20) above, gives the

number of n - spheres in that wedge. This result resembles that of J. Milnor ([M1]
chap.7 ) or H. Hamm ([Ha] ).

-53-



Chapter 1I

Remarks on the Real Case

"1t is the complex case that is easier to deal with."

"Ah! Bartleby. Ah! Humanity "

Herman Melville (Bartleby)



§1. Morsifications

In [Mo 2] David Mond introduces certain invariants for corank 1 map-germs
f: (Cz, 0 » (C3, 0). Among those we find C(f) and T(f) which measures
respectively the number of cross-caps (Whitney umbrellas) and triple points that
the origin splits into when f is deformed in a generic way.

For real analytic map-germs f: (IR2, 0) » (IR3, 0), the numbers C(f) and T(f)
take the same values as C(f¢) and T(fg ), where fg : (€2, 0) » (C3,0) is the
complexification of f. However the geometric interpretation above is no longer
meaningful; for distinct generic deformations of f may have different numbers of

cross-caps, or triple points.

(1.1) Definition : By a morsification of a map-germ f: (!R2, 0) » (IR3, 0) we
shall understand an arbitrarily small real deformation of f: (IR2, 0 -~ (IR3, 0

exhibiting C(f) cross-caps and T(f) triple points in its image in IR3.

In [Mo 1] we find the list of simple singularities of corank 1 map-germs

f: (IR2, 0) » (IR3, 0), namely:

Name Normal Form Name Normal Form
f(x’ Y)= f(x’ Y)=
Cross-cap (x,yz,xy)
+ -
Sy (x, y2y3+xktly) Sy xy2y3-xktly)
+ .
Bk (x,yz,x 2y+y 2k+1) Bk (x,y2,x 2 y-y 2k+1)
+ -
Ck ’ (x,y2,xy3+xl§) Cy (x,y2,xy3—x]§ ,
Fy xy2 4y +y?)
Hy (xy3x yy3k-1)
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The number of cross-caps and triple points for the simple singularities of
corank 1 map-germs f: ( IRZ,O) - ( IR3,0), as well as the double point curve of
f, Dz(f), i.e. the closure of the set of points x in RZ such that there is an x' €

!Rz, x'# x with f(x) = f(x'), are given below:

Name (6(¢)) T(f) Dz(f)

cross-cap | 1 0 X
S 0 F L ay
Sp | ket 0 y2xkt A
By 2 0 Py (A9
B, | 2 0 -y (Ay_p
Ck+ 2 0 X y2 +X k O " )
Ck— 2 0 xy2—xk (Dk+1)
F, 3 0 xy4  (E)
H 2 k-1 2 +xy3k—?=i-y 6k-4 (Agk-9

In the table below we find morsifications for all simple singularities of

corank one map-germs f : ( R2,0) - ( R3,0 )-
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Name Morsification Restrictions
T(x,y, u )= (u i"mj for 1%, 1in all cases)
k+1
+
Sk xy2y 3y ,Hl(x—u » o -
1=
_ , 5 ki
Sk wyy -y Il 1(x—u ) B
1=
k u.>0if kis odd
+ 2 2 2 i
B (xy x w}l (y=u) u,<0,u;>0if kis even, i>2
- 2 9 k 2 u>0ifkiseven
By (xy"x y—yil;[ , O u< 0, up> 0 if kis odd, i>2
k-1
+
G y2xydxyll (x -u D)) u;<0
i=1
- 2 2 2 i
Ck (X,y ,xy3—XY(X "‘u())H1 (x—u l)) Ui <0, 0<|u0|<mm{|u ll}
1=
Ey (xy 2y +yx(x-u)(x-uy) u;>0
3 2 Up< 0
Hk (x,y +u o’ Xy+y g(x,y, u)) 172
huy | < ~(2/3)ug(-ty /3)

where g(x,y,u ) =q =
y

3 &272

+u0y)i~1(y

k-1)/2
llfl (y3+u oY+uj )(y3+u Nl i) if kis odd

344 NaL B/ 3+u o-up if kiseven

(1.2) Remark: The (k-1) triple points of Hy are the triples of points (0,y1),

0,y2), (0,y3) in IR2 such that g(0,y1.w)=g(0,y2.w)=g(0,y3,u). Notice that the uj’s
have been chosen so that the equations y3+u0y+ui=0 and y3+u0y-ui=0 have three

distinct real roots.

~56-



The two cross-caps of Hy in IR2 are given by:
3y2+u0=0 and x+2y g(x,y, w=0

So, when k is odd
(e-1)/2
@ a2 ] a1 wd-wy | o3
i=1 "
k-1)/2
(-2 (-upr3)1/2 H (-4/27 wB-vp) , - (-u/H/%)

i=1

are the two cross-caps of Hy in IRZ,

when k is even

172

(4/9 ug2 (-4/27 up3-up) , (-up/3)

k-2)/2
)
1

i:
and

k-2)/2

(4/9 ug2 H (-4/27 up3-uy) , - (-ug/3)
i=1 .

1/2
/2,

are the two cross-caps of Hy in R,

Their location in the plane Oxy are respectively:

>
X

A 4

* *

when k=0, 1, 2 and 3 mod 4.
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§2 The image of morsifications of the simple singularities

Let S¢ denote the image in IR3 of a small disc centred at the origin in R

via a morsification of f.
We are going to present some drawings representing the surface S¢ for all

simple singularities of corank 1 map-germs f: (IRZ,O) > (IR3,O).
We shall construct S¢ by firstly finding the image in R3 of the double point

curve D2(—fg) of the morsification }E of f; this will be the self-intersection curve

of the surface S¢. Then by glueing the 2-cells determined by D (_fg) in le, we

complete the drawings of Sf.
The image of D2( f) in R3 is obtained by the involutions determined by the

cross-caps of f (see below). When f is of the form f(x,y) = (x,y2,yp(x, y2)),
the image of D2(f) (which is the curve in IR2 given by (p(x, y2) = 0)) in IR3
is ‘the plane curve given by {(X,Y,Z)E rR3:z- 0, p(X,Y)= 0}.

In the table below we find the double point curves for the morsifications of

the previous table:

- 2 -
Name D2(Ey) Name D (fy)
k+1
k+1 - 2
+ —u
sy y2+_H1(x-ui) Sy y —il;ll(x uj)
1=
k ) K
B’ xZ 11 (y2-u;) B x % _H (y2-uy)
k i=1 i=1
+ k-1 - k-3
2 2
Ck X y2+x [1 (x-u;) Ck Xy -X(xz—u()) 1(X-ui)
i= 1 1=
2 2 2
B | yhxeupi-uy | He | x"xyetyg) ™ g
where g=g(x,y,u )
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To obtain the image of the double point curve of the morsification of Hk in

3

R~ , we proceed as follows:

In IR2, the double point curve of Hy is an A7 singularity.

X f

XX O

The points o and B denote the cross-caps of Hy and the arrows denote the

identifications forced by o and P. One checks easily that the positions of o and

B on D2(f ) as shown, are the only ones possible.

In the target, we know that SH, has one triple point.

™~

The image of o and P cannot lie in only one of those three segments, for

otherwise. the self-intersection curve of SH, would have more then one branch.

Therefore the picture is the following :

-~
Ay

feoy By

@ )

The dotted segments represent the image of the rest of the double point
curve of the morsification of Hy in IR3.

Notice’ that we cannot have knots in the image of the doule point curve of
the morsification of Hj. Indeed, the four discs determined by the double point
curve of the morsification of Hy in IR2 are sent to four discs in IR3 since the
morsification is a homeomorphism outside of the double pbint curve. Similar

argument applies to the other members of the family Hy. So, we obtain :
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Some surfaces Sf
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Steps in the construction of the surface SH3

NN

™

N




§3. The homology of Sf

Following the method presented in [C—F] chapter II, on the singular homology
of a complex with identifications, we calculate the homology of SH2 and SH3.

(3.1) The homology of SHZ'

The picture below (figure 1) represents a small disc B¢ around the origin in R2
(which will be mapped by the morsification of Hy to give rise to SHZ) and the

double point curve Dz(fg) of the morsification fg of Hy (A7 singularity).

figue 1

Figure 2 presents a triangulation of figure 1. The letters A,B,C,D,E,F and G denote
the O-dimensional cells; tj, i=1,...,10 denote the 1-dimensional cells (the two cross
-caps of Hp, denoted by D and E below, force the identifications represented by the

arrows and the repeated letters) and Gj, j=1,..,6 represent the 2-dimensional cells.
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Hence, we obtain (7 cells of dimension zero, 10 of dimension one and 6

of dimension 2) the chain complex

d 0
0 » 26 % 210 275 o,

The boundary operators d1 and d, for the complex with identifications
(figure 2) (cf. [ C—F] p. 72) are obtained by the incidence functions given by the
tables below (+ or - means that the degrees of incidence is +1 or -1; cf. [C—F]

p.32 and 72):

T
11213[4]5]6[7|8]|9]10 5112345678910

A -] +] -

1+ [|-|- -1 -
B - +] -

2 +|+ |+ +| +
C +| - - + -| +

3 -] -
D -

4 +| +
E +

5 H +
F - +| -

6 -1 -
G [+]- +

So, the image of dq is Z6, the kemel of 9y is Z4, the image of dy is
Z4 and the kernel of dy is Z2. Therefore, the homology groups of SH2 are :

Hy(SH,) = 22, H{(SH,) =0 and Hy(SH,) = Z.

(3.2) The homology of SH3.
The picture below (ﬁgure 3) represents a small disc Be aroud the origin in R2

(which will be mapped by the morsification of H3 to give rise to SH3) and the
double point curve Dz(fg) of the morsification fy of H3 (A13 singularity).
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< Dz( f,)
~ u - B
figure 3

Figure 4 presents a triangulation of figure 3. The letters A,B,C,D,E,F,G and
H denote the 0-dimensional cells; tj, i=1,..,13 denote the one-dimensional cells
(note that the 2 cross-caps of H3, denoted by E and G force the identifications
represented by the arrows and repeated letters) and oj, j=1....,9 represent the

two-dimensional cells.

Hence, we obtain (8 cells of dimension zero, 13 of dimension one and 9

of dimension 2) the chain complex

0
0 » 7992 213% 28, o
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The boundary operators dq and d for the complex with identifications
(figure 4) are given by the incidence tables below :

NJ|a|B|c|p|E|F|c|H N 1] 2[3]4]5]6[7]8 |9
1 H - 1

2 - + 2

3 +| - 3 - |+

4 +| - 4 + -

J -1+ 5 |-+ + i

6 -+ 6 |-| + - +
7 - + 71-]+ -
8 tlo]- 8 -
9 + 1 - 9 - +
10} -] + 10| - +

11 - + 1) -| +

12] - + 121 +

131 + - 13 H

So, the image of dq is 27, the kemel of 9y is 26, the image of dy is
26 and the kemel of 0, is Z3. Therefore, Hy(SH3) = 23, H{(SH3) = 0 and

Ho(SHy) = Z.

(3.3) The homology of SHy
We can obtain the homology of SHk in general by a geometrical argument.
. Let us consider the double point curve of the morsiﬁcation of Hy in R
It is a real morsification of an Agk.5 singularity, with 3(k-1) nodes
corresponding to the k-1 triple points. Hence, 3(k-1}+1 discs are determined by
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it in RZ.

Remarks : (i) Each two adjacent triple points in the image give rise to one 2-

sphere by glueing three discs, the images of those determined by the double point

curve in [Rz'

(ii) Each cross-cap near to a triple point give rise to one 2-sphere in the

image by glueing two discs.
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We have seen (remark (1.2)) that the triple points of the morsification of
Hy lie in the y- axis in RO. So, the k-1 triple points of Hy provide (k-2) 2-
spheres in the image SHk (by remark (i) above) and the two cross-caps of Hj
provide two 2-spheres in the image SHk (by remark (ii) above).

The rest of the small disc that is mapped to SHk can be contracted
towards the double point curve in the source, or equivalently towards the self-
intersection curve in the target.

Hence, the homology group H2(SHk) is equal to Zk.

(3.4) Remark: In the examples above, we have that the rank of HZ(SHk) is
CHy) +THE) -1=2+(k-1)-1.

In a recent work [Mo 4], David Mond shows that in the complex case,
the disentanglement ( see definition (3.9) of chapter I ) of the image of a map
fo: (€"0) » (€"*1,0) is homotopy equivalent to a wedge of spheres and that

when n = 2, the number of these spheres is C(f) +T(fp) +u(132(f0)/ S7) -1.

In the real case, the surfaces Sy of paragraph 2 above, image of
morsifications of f, play the role of the disentanglements. In the case of the
family Hi , the image of the morsifications given in paragraph 1, illustrate the
theorem above, i.e. SHk is homotopy equivalent to a wedge of k spheres of

: . ~2
dimension 2 (recall that u(D"(Hy)/ S2) = 0, for any k).
It would be interesting to find morsifications for corank 1 analytic map-

germs f: (R2,0) » (R3,0) such that S¢= \/S2, with
n

M= Clfg) +T(Eg ) +i ﬁz(fc )/ S3) -1 and fg : (€%, 0) > (€3, 0) the

complexification of f.
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Chapter III

Multiple Point Schemes
for Corank 1 maps
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§0. Introduction.

The purpose of this paper is to enlarge on the description of multiple point
schemes for corank 1 map-germs (C",0) -» (CP,0) (that is, germs of analytic
mappings f such that Ker df,, is one-dimensional) given in [Mo 2], and to prove
a characterisation of stability and finite determinacy for such maps, when n<p
(Theorem 2.14): a corank 1 map-germ is stable if and only if each multiple point
scheme is smooth (or empty), and is finitely determined if and only if each

multiple point scheme is an isolated complete intersection singularity (ICIS) or of

dimension 0 or empty.

Section 1 contains a motivational discussion of the notion of double-point
scheme and higher multiple-point schemes, of a map-germ; our main technical
results are proved in Section 2, and in Section 3 we give some further results
and, in particular, describe briefly (and without proofs) how the multiple point
schemes of a suitable class of representatives of a stable perturbation of a finitely
determined corank 1 map-germ f are Milnor fibres for the corresponding multiple

point schemes of f. Further details will appear in [Ma].

Thanks are due to Mark Roberts and to L€ Diing Tring for helpful
conversations. The first author thanks FAPESP (Fundagio de Amparo 3 Pesquisa

do Estado de Sdo Paulo) for financial support.

Notation. Our notation is either standard in singularity theory, or is explained
here. In particular, we use the same notation as [Mo 2], except that in place of

~k
the symbol ng) in [Mo 2] we use D({) . We refer the reader to the

introduction of [Mo 2], and to the references therein, for the definitions and

notation we do not explain here.
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§1. Multiple Point Schemes for Corank 1 Maps.

~2 '
1.1 Double point schemes. By a double point scheme D (f) for a map C" -

CP one would like to understand something like the closure in C? x €® of the

set {(x , x') € €% x € | f(x) = f(x'), x # x’}, with some appropriate analytic

~2
structure. One would also like D (f) to behave well under deformation :
if F:C" x S 5 €P x S is a level preserving family of maps, and one defines
fg: ¢ 5 cP by means of the equation F(x,s) = (f5(x),s), the diagram

~2
D(f;)) —» D(F)

fo

{s} ———» S
should be a fibre square.

This second requirement implies that 152(f) will in general not be reduced, and
indeed that the naive set theoretic desideratum above must be relaxed somewhat;
for example, if F(x,s) = (x2,x3 +xs,5) (s€ €, xe €) then {(xx)e CxC] fo(x)
= fo(x’), x #x} = &, whereas the closure of {(x,5,x';s") € C2x C2 | (x,5) # (x',s),
F(x,s) = F(x',;s")} is the variety defined by the ideal (s-s’, x + x/, s+ x2) in
C{x,s,x',s'}; this has fibre over s=0 equal to {(0,0)}.

~2 .
It is convenient to define D (f) by means of one of the following two sheaves
of ideals: denote the diagonals in C" x €" and cP x €P vy A, Ap respectively,
and denote the sheaves of ideals defining them by I, Ip: then

a) D)
b) L)

Ann@d:2n I/ (Exf)* I

(ExD)* i + F (n/(Ex6)* Ip)
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where we regard In/(fxf)*Ip as an Og2n module, and %, is its Oth Fitting ideal

sheaf.
It's easy to see that away from Ap, both of these coincide with (fxf)*1,, and that

the restriction of Jo(f) to Ap is just the ramification ideal, generated by the
maximal minors of the Jacobian matrix of f. The second is more readily
calculable - indeed, in [Mo 2] it is shown that if o is a pxn matrix with entries
in O¢2n such that f(x) - f(x') = & (x-x') then D) = @Ex* I + Ming(e)

( Minp(o) = ideal generated by the maximal minors of o ). Results of [C-S]
imply that under reasonable hypotheses on f, Jp(f) is a Cohen-Macaulay ideal
(i.e. @¢2n/-’2(f) is a sheaf of Cohen-Macaulay rings), and from this one can
show that for a large class of maps f (containing in particular those maps all of

whose germs are finitely 4-determined), K (f) and Jo(f) coincide.

At this point we shall restrict our attention to germs of maps (d:n,O) - (Cp 0).
For map-germs of corank 1 (i.e. dim Ker dfy = 1) it is possible to prove by
elementary means (c.f. [Mo 2] p. 369) that I(f) and Jp(f) coincide. Writing f
with respect to linearly adapted coordinates as

fxy) = (YD, fp(x.y)) xecnl yec),
then one quickly calculates that

n(f) = x1-x1"-..Xn-1-Xn-1En&Y)-fnx.y))/y-y'...., (fp(x,y)—fp(x,y’))/y-y').

~2
Thus, if dim D(f) = 2n-p (this is the case for finitely determined map germs),

~2 _
D(f) is generated by a regular sequence. Moreover, D (f) embeds in 1y CZ

(simply forget the x' variables).
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. 2 ~2
1.2. Higher multiple point schemes. Consider the projection py: D) - ch,

induced by the projection of c" x C" onto the first factor. In [Kl], Kleiman

~3
(attributing the idea to Salomonsen) defines the triple point scheme D (f) of f to

2 . 2 2 .
be the double point scheme of Py Roughly speaking, pl(x,x')=p1(x",x'") if and

only if x=x" and f(x)=f(x")=f(x""),

~2
so that D(p‘;‘) embeds in € x €" x €", and away from the diagonals consists

of triples of points having the same image.

Nk
Similar reasoning leads to an inductive definition of schemes D (f) for all k;

~k+1 . ~k
D (f) is simply the double-point scheme of the projection pllé_I:D(f) >

~k_ 1

D(f) induced by the projection (CHX - (€?<1

which forgets the last factor.

We have seen, by choosing coordinates appropriately, that when f is of corank 1,

2

~2 _ ‘
D(f) embeds in C" 1 x C”. Let us suppose inductively that for a corank 1

~k
map f, D(f) has been define® and moreover that it embeds in "a:“‘lxa:k, where
its defining sheaf of ideals is generated by, say, h{,...,h;;. We now consider the

double point scheme of py,_1:D(®) -» D(f) . We have pp_(X.y1,-¥g) =

~k
(X,¥15--+¥k~1), sodenoting coordinates in the two copies of D (f) by (X,¥155¥K)
and (xy'{,...y'x), we find, using definition a) of the double point scheme (of

(1.1)), that :

k [} ! ’ !
B@i_1) = (X1-X1s X1 -X'n-1 Y1-Y 1o Y1 Y1)+

+{ g€0rn-1+kxgn-1+k : Pk-Y' K8 €
(hl (x’yl ,---,Yk),---,hm(X,YI v--ayk),h 1 (X,)’l,---,)’k- 1 ,y’k)’---’hl (X,y1 ,"-:yk— 1 ’y,k))}
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~2
Write hj(x,y1,...yk) as hj and hj(x,y1,...yk-1,¥'k) as h’j. Thus, embedding-D (pllé_l)

in ¢n-1xck-1xg2 (using the first set of generators listed above to forget the

x",¥'1,..,¥'k~1 variables ) we find that Iz(pll:_l) becomes simply

{ge Ocn-1,ck-1,¢2 * Ok-Y)8 € (hy,shmph'y,e..s ’m)}-
Now the condition on g is that there exist oy, B; € Ocn-1,ck-1,¢2 Such that

(1) (yk-Y'0g = 2o hi + X By h'j.

Write 0tj(X,y1,..Yk-1.Yk-Yk) = @i and Bi(x,y,...yk-1,Yk:Yk) = Bi- When yg = y'k,
(1) gives 0= Yoy hj + X B h's.
Thus, (1) is equivalent to

(Yk-Y'08 = 20 hi + X By Wi+ X(o-a) hi + X (Bi-By) h'i+X. Bi (h'j-hy) =

= X(o-0) hj + X BBy h'i+X Bi (0'j-hy) .

Since aj-o, Bi-B;i and h'j-h; are divisible by yg-yk, and since yx-y'k is not a
zero divisor, we obtain

g = 2a; hy+ X, by h'j+Xc; (h'i=hy)/(yk-y'k) for some a;, b; and c;.

' ~2
Since h’ie( hj, (W'j-h)/Yk-¥Y'x) ), we conclude that the ideal defining D (pll:_l)

~k+1 {+k+1 - ) .
(and thus D(f) ) in €P-1+X*1 j5 generated by hj, together with additional

generators (h';-h;)/(yk-y'x)» for i =1,..m. Let us call this ideal I(f).
Applying this procedure to f(x,y) = (X.fh(x,y)s..s fp(x,y)) one finds that f(f)

@

Ocn-1+k» is generated by (k-1)(p-n+1) functions r;”, n<j<p, 1 <i<k-1, where

0 . .
;" is a function of XY qreesYia 1

j 1
0033 9y) = {fixyD) £y} and

17Y2

()] ® Q)
Tivt (Y oY) = () oy ¥y Yiag) - T (Y g Vi)

Yir2 Yis1
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~k '
There is a natural Sy action on D(f) (permute the y{,...,yk coordinates) and in
the next section we give an alternative description of I (f), in terms of Sy-

invariant generators, and derive some of its properties.
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§2. Invariant Generators for I (f); Properties of ﬁk(f )

2.1. Definition. Let f: (Cn,O) - (CP,O) have corank 1 (n <p) and let coordinates
be chosen so that f takes the form

£(xy) = (xfa(xy)nfpy) (ere x € €1y e ).
Define the sheaf of ideals I'k(f) in Oq;n-1+k by means of the (p-n+1)(k-1)

generators
i-1 « i+1 -1
lyl...yi fJ(x’yl) Y1 yll(
. - - i—1 hd 1+1 —1
kU G K
hj,i =
-1
1 /A yll(
1y, ...yk1
Yk )’t

for n<j<p, 1<i<k-1.

k k k
Let Hj be the (k-1)-tuple (hj,l’"'hj,k-l)’ and let HK be the (p-n+1)-tuple

co-n+(k-1)

k -
Hp). We shall occasionally regard Hk as a map-germ (Cn 1+k,0) -

n-1+k

2.2. Remark. Let the symmetric group Sy act on € by permutation of the

last k coordinates, and on Ck by permutation of the coordinates. Let
e:" @ eh - fee™ !, 0) 5 € 1 g is Sy-equivariant]

E:k (d:n'1+k) = {g:(d:n'l"'k,O) - C lgis Sk—invariant}.
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Then e:“ (cn-1+k €k) is a finite module over ej“ (cn-1+k), generated by the -

i i
maps gi(X,y1,...Yk) = (yll,...,yk) for 0<i<k-1 (see e.g. [Po] p. 106, 1.4.1).

The map Lj(x,y1,...,yk) = (fj(x,yl),...,fj(x,yk)) is Sy equivariant, so there exist
k-1

invariant functions o j, 0<i<k-1, such that L;= z(; aji gi- When the y; are
1=

pairwise distinct, the equation L = Zaj,igi can be solved for the o by Cramer's
rule, and one sees that i = h_]!(i at such points, for 1 <i<k-1. As points of

this kind are dense in Cn—1+k, o = h}(i everywhere. Moreover it is clear that

at a point (x,y{,...yk) with yg # yp for s # t and f(x,yg) = f(x,y;) for all s;t, we
must have ocj,o(x,y1,...,yk) = fj(x,y1) and ocj,i(x,yl,...,yk) =0 for i21,and for allj.

2.3. Proposition. Let f: (€N,0) - ((Dp ,0) have corank 1. Then the ideal I'|(f)
defined above, coincides with the ideal I(f) defined inductively in §1.

Proof. Writing out in full the equation Lj = Zaj,igi (see the previous remark)
i

we have
B 7 m T " k-1 7
fj (x.yp 1 Y1
(1) : = %’0 : + AR +aj’k_1 .
' | k-1
£ (v 1 Yk
L i L J L N,

" Now subtract the first row from each of the others, and divide the second

row by yp-yi, the third by y3-y{, etc. to obtain (forgetting the first row)
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g B T ] i ] [ k-1 k-1 ]
f; &y - £;(xy) 1 Yty Y2 Y1
Yp-¥y 1 Y2~ ¥y
@ I o
) = %1 T2 [ Ry
£ () - £ (x3) Lyt
yk_y1 yk_y1
! i L L ! ]
. . fJ (X:Y2) _fj (X,yl)
It is now apparent that the two ideals (i 1,....0,j k-1) and ( ,

Y2
0‘j,2v~~’°‘j,k—1) are equal.

Now repeat the procedure used to go from (1) to (2). For reasons of space we
leave it to the reader to write out the equation obtained; from it, it is clear that

( fj(x,y3)—fj(x,y1)_fj(x,yz)—fj(x,yl) o
Y3~¥q Yo=¥yq Y3-Yy

’ aj,3""°‘j,k—1) = (0,210, k-1)-

Continuing in this fashion, one concludes that /i (f) and I'y(f) are equal. O

An alternative proof can be given by noting that the generatorsu of I (f) are the

coefficients of the interpolation polynomials, obtained by the Lagrange method ,
while the generators of I (f) are the coefficients of the interpolation polynomials
for the same problem, obtained by the method of divided differences (Newton's
method). We are grateful to Terry Gaffney for pointing this out to us.

From now on it will generally be more convenient to use the description of I(f)
given in 2.1.

24. Lemma. For any function q € Oy, q = q(x,y), let Ix(q) be the ideal
generated by the coefficients 0.1,...,0_1 in the equation

: k-1
(1) @RIDeGEID) = Dy FOY V) B TV
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2)

, S p-
(where the g; are as in 2.2 and the o are in ’60 (Cn 1"'k)). Then

-1
q

dq __k:_l_) + (Y1-Y2:¥1-YK)
oy

k@ + (1-y2, y1-Y35-¥1-YK) = (59-

(partials calculated at (x,y1)).

Proof As (y{-y2....y1-Yk) is the ideal of functions vanishing on the diagonal
A) in 1, d:k, AK) = {xy150¥0) | yi = Yj Vij}, it is necessary only to
show that the ideal in Op(k) generated by the restrictions of the o, 1<i<k-1,
coincides with the ideal generated by the first k-1 partial derivatives of q with
respect to y.

Write y{ =y, y3 = y+&,...yk = y+(k-1)e, and let qg = s ! 9°q/dy’. Expanding the
left hand side of (1) using Taylor's theorem, and using column vector rather than

row vector notation, we obtain

1 y k-1
[q y

k-1 k-1

qteq +.4€ q +R 1 y+€ (y+€)
1 k-1 1
=(X0 . +0 : +.. +ock_1
q+k-1eq +.H&-1De) g +R He-1) k1
q1 qk—l k-1 _1_ ] Y (y+i-1)e) |

Each remainder term Rj satisfies lir_)l(‘)l R;/ek-1 = 0. Let M be the matrix
€
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[ 1 0 0 1
k-1
1 € £
1 ke . .. &1

Then M divides the matrix of coefficients of the o on the right hand side of

(2), and indeed when € # 0 (and hence M is invertible) we can write

(a1 [o]) [' Y o
q R 0 1 2y - - . 1y
( N Y I 0 1
B M +M } =M
. : 0
|| 9y _&_1” o0 0 - 1 | %a

We claim now that lim M'R = O (where R is the column vector (O,R{,....Rk_
0

Y. This is shown by counting powers of € writing M? = (det M) adj (M),
1

and noting that det M is a multiple of e2k&-1) Ghile each entry in adj (M) has

order (in €) at least 3(k-2)(k-1), we see that each entry in M has order at least

~(k-1); since R; = o(ek-1), the claim follows.
From (3), the continuity of the qj and oy, and the fact that 11_%1 MR = 0, we
&

deduce that when € = 0,

- (3.9159k-1)t = P(@Q,....0k- 1)t
where P is the "Pascal” matrix on the right hand side of (3). Deleting the first

row and column of P gives
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(@1nrk=1t = P00 1
and since P’ is invertible, the lemma is proved. O

2.5. Lemma. With respect to any inclusion Op_q4r = C{x,yil,...,yir} c

C{X,¥1rYi} = Op-14k @<k), we have I(f) < J(D).
By the S; and Sy invariance of the ideals I(f),
1,.., ir = 1, and by downward induction it's enough

Proof. I(f), it's enough to

prove the result when if =
to show that it holds when r = k-1. Write

rf ( )- - 1 7 k-1
j x’yl yl
M . = (Y i) |- +o A0 (XY oY)
k-1
] f:,(xryk)J i 1 ] ] yk )
I ] [ ] [ k-2
) . = Bo(xvylvak_p, . +...+[3k_2(x,y1,...,yk_1)
£ yk—2
L j(x’yk-l) J 1 J | k-1 |
k-1

Then aj = hf for 1Si<k-1, and B = h; for 1Si<k-2. There exist

functions ¥Yg,...,Yk-2 € Esk ten-1+k- 1) such that

k-1 ] [ ] [ 2 |
Y1 1 Y4
3)
=YO . +...+'Yk_2
-1 k-2
_yk_ ] i 1 | L_}'1(_1 ]
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(see Remark 2.2). By uniqueness of the o and Bj, from (1), (2) and (3) we
deduce

Bi = o + Og1Yi » 1Si<k-2
and so I_1(f) < K(f). O

2.6 Definition and Notation
Let y(k) = (r{,....Ty;n) be a partition of k (i.e. ry+..+ry = k). Let I(y(k)) be the

ideal in Ocn-1+k generated by the k-m elements y; -yj+1 for
ri+.toq + 1<SiSry+oang-1, 1<5<m, and let A(y(k)) = V(I(y(k))).

If v1(k), va(k) are two partitions of k, we will say y{(k) <yak) if 1(y1(k)) <
I(y2(k)). We define a generic point of A(y((k)) to be one which does not lie
in A(ya(k)) for any partition yp(k) of k with y1(k) < v2(k).

Define Li(f,y(k)) = I + I(y(k))

~k
D (f,y(k)) = V(I (f,y(k))), equipped with structure sheaf Ocn-1+k/ I y(K)

ok
We discuss the geometric significance of D (f,y(k)) after 2.7 (below).

Given a partition y(k) = (r{,...I'm) of k, define projections wj(y(k)) : cn-1+k
Cn, for

1<i<m, by mOYE) IXY1n¥l) = KYrq.trj_1+1):

Finally, denote the map Cn_1+k-) ck-m defined by the generators of I(y(k)), by
E(y(k)).

2.7 Lemma. Let y(k)= (r1,..,Tm) be a partition of k; at a generic point (x,y)

of A(y(k)) we have '

K(Ey) = 1v00) + ({@%/3y%) e (Y0 1§ = nep, 1S555-1, 1<i<m))
+({fj o My (Y(K) - £ 0 M(Y(Q) | j = ..., ZSiSm})' in Ogn-1+k (5 y)
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Proof. In Lemma 2.4, the statement has already been proved in the special case
v(k) = (k). As Ky(k)) is contained in both of the-ideals whose equality we
want to prove, and is radical, we need only show that the restrictions to A(y(k))

of the generators of I (f) generate the same ideal in OA(y(k)),(x,y) as the
elements listed on the right hand side of the equality in the statement of the

lemma. Now let G = Srl"---"sr -

Then G acts on €1-1 x €K and on €K in the obvious product representation

(Sr; permutes coordinates Yr{#o.ATjo (+ 1o Yrgh. 41p)-
G .
Let & (cn-1+kcky = {g:(cn-1+k,0) 5 €k | g is G-equivariant}
G
B (Cn-1+ky = {g:€n-1+k0) 5 € | g is G-invariant}
G . . G 1+ky. o .
Then &, (Cn-1+k,ck) is a finite module over &, (CR-1+K); since we are dealing
with a product representation, it's easy to see, again by [Po], p. 106, that the k-

' i
vectors gjj (1< i <m, 0< j <rj-1) with y, in the 4th place for r{+..+rj_1+1< 4

<r{+..+rj and O elsewhere generate it.
Let N(G) be the matrix with columhs g1 ,0,.-.8m,r m-1- and let N(Sg) be the

matrix whose columns are the generators gp,....g8x-1 of (en-1+k €ky over

G
e:"(a:n-1+k), as in 2.2. Then since z:"(cn-1+k,ck) c B, (Cn-1+kck), N(G)

divides N(Sg). In fact, if N(Sx) = N(G)Q, the first column of Q consists of
zeros except for a 1 in the first, r{+1'st,..., and rq+..4rp.1 +1'st places.
Moreover, det Q = det N(G)' det N(Sk) does not vanish at (x,y), as (x,y) is a

generic point of A(Y(k)).

Let Lj:(€n-1+k0) » (€k,0) be as in 2.2. Then Lje e:k(a:n-1+k,¢k) c

.
&, (@n-1+k cky and so we can write
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(1) Lj = NGB = NSpa = NG)Qo
for some column vectors P = (BI,O’---,Bl,rl-1’--‘,Bm,0w-,[3m,r 15

' . k .
o = (0,0: 0 k-1)% With o4 = hy ; for 1<i<k-1.

As N(G) is invertible on a dense open subset of any neighbourhood of (x,y), we
can cancel it in (1) to obtain

@ B =Qu
In order to obtain an equation relating the P; j to the generators o 1,...,04 k1 of
Ix(f), we reduce the first column of Q to a 1 in the first place, followed by
zeros in the rest, by subtracting the first row of (2) from the r{+1’st,

r{+rp+1'st,...,, and r{+..4ry_1+1'st rows. Then (2) becomes

(B1,0--B1,r,-1- B2,0-B1,0. B2,15---B2,ry~1+---Bm,0-B1,0, Bm,1,--Bm,r-1D* =

- - -
, o
0 Q'
A 4L %1

By Lemma 2.4, when we restrict to A(y(k)),

the ideal in OA(y(k)), (x,y) generated by Bj 1., Bir-1 is equal to the ideal Jj
generated by (f;/dy) o Ty, @1 fj/3y" 1) e mi(y(). Moreover, by
inspection of the proof of Lemma 2.4 we see that modulo this ideal, Bj 0 is just
fj o m(y(k)). Therefore modulo Ji+Jy, Bi,0-B1,0 is just fjo i (y(k)) - fjo 71 (y(k)).
Since det Q' = det Q, Q' is invertible at (x,y), and the lemma is proved. O

2.8 Notation. For any partition Y(k) of k, denote by D(y(k)) the map defined
by the partial derivatives (@%;/dy®) o mi(y(k)), for j = n,..p, 1Ss<r_y, 1<is
m, and by R(y(k)) the map defined by fjo wi(yk)) - fj o w1(y(k)) for j = n,..pp, i

= 2,..m,
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~k
29 Remark. In view of 2.7, a generic point of D (f,¥(k)) is one of the form
(X,¥ 1s0e0sY 15eesYmoeesYm) (yj iterated rj times, and Yi # Yj if i#j) such that the
local algebra of f at (x,y;) is isomorphic to C[t]/(t ri) and such that f(x,yq) =

.. = f(X,ym)-

~k
We shall now use Lemma 2.7 to relate the structure of the D(f) and

~k
D (f,y(k)) to the stability and finite determinacy of f. We need some preliminary

results, beginning with an elementary lemma:

2.10 Lemma. Let the finite group G act linearly on the vector space V, and let
F:V 5W be a G-invariant mapping. Let H be a subgroup of G, and suppose
that the point xo € V lies in Fix H, the set of x € V left fixed by all h € H.

Then F is a submersion at x, if and only if F | gjx { is a submersion at x.

Proof. We identify the elements of G with the automorphisms of V that they
define, and for h € H we denote by dhxo the automorphism of Ty oV that it

induces. Denote also by fix H the subspace of TxoV consisting of tangent
vectors v left fixed by all automorphisms dhy o for h € H. Let L be the
subspace of TxOV generated by all vectors dhxo(v) -v for h € H and v €
Tx oV' Then L is an H-invariant complement in T,V to fix H. Since F is
G-invariant it is also H-invariant and so for any v € TxoV and h € H,
dFx (v) = dFx 0(dhxo(v)). Hence dFy (L) = 0, and so dFy (Tx, V) = dFy (fix
H). Since fix H = Tx o Fix H, the lemma is proved. O

2.11 Theorem (Gaffney [Ga 1]; see also [Wa), Theorem 2.1). Let £: (€"0) - (€P,0)
be a finitely X-determined map-germ.Then f: (€",0) » (€P,0) is finitely -
determined if and only if for any representative of f there exist neighbourhoods U

of 0 in €N and V of 0 in €P, with f(U) €V, such that for all y=0 in V, the
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multi-germ £: (U.fy) N Xp) = (V.y) is stable.
(Here Ys is the set of critical points of f; if n<p, Y¢ = U): O

2.12 Theorem. (Mather, [Ma 4] Proposition 1.6). Let § = {x{,..xm} € CO,
and suppose f(x{) = - = f(xym) = z. Let Aj be the germ at x; of the set
{x € €M | the germ of f at x is A-equivalent to the germ of f at xj}. Then the

multi-germ f:(C", S) » (CP, 2) is stable if and only if
i) each germ f:(CNx;) » (CPz) is stable, for 1 <i<m
ii)) the map germ fx..xf: (A{x..xAm, (X{,...Xm)) - (d:p)m is transverse to

the set Am,p1 = {(z1,..oZm) € ((I:p)m lzy = z Vij}. O

Note that each A; is smooth if (i) holds, by [Ma 4] 2.1 and [Ma 5] 42. We
shall refer to Aj as the analytic stratum of f at xj.

2.13 Proposition Let f(x,y) = (x,fh(X,y),..., fp(x,y)). Suppose f(x,y1)=...=f(x,yx)
= z, with yj # yj for i #j. Suppose f is of type Zlfi'LO at (x,yj). Let k =
r{+-+ry, and let y(k) = (r{,....-;y). Then if y = (¥{,....¥ 100 s¥Ymoe-¥Ym) (Vi iterated
rj times, for i = 1,..m), and S = {(x,y1),....(x,ym)}, the following are equivalent:
1) f:(€nS) » (CP,z) is stable

~k
2) The map HX defining D (f) is a submersion at (x.y).

~k

3) The map (HKE(y(k))) defining D (f,Y(k)) is a submersion at (x.y).
Proof. (2) & (3). This is just an application of Lemma 2.10. If G =
Spqx-+xSg, then HK is G-invariant so since (xy) € Fix G, HK is a submersion
at (x,y) if and only if Hk[FixG is a submersion at (x,y). . As Fix G = A(y(k)),
and A(y(k)) is defined by the submersion E(y(k)), the conclusion follows.

(1) & (3). By Lemma 2.7, (3) is equivalent to the restriction
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(Dyk)), Ryk)): A(yk) -» C(p'n-"l)(kfl) being a submersion at (x,y).

m
Now D(y00)'®) N Aty = IT Zgri-1 N ax

(where Ay = {(x1,y1)-sZmpYm) € (CHM | x5 = Xj Vi,j}), and so

m
DGO N AxG) N Ra®y'©) = [T Tehiv1 ] Ax N EexD* (B p)
i=

(notation as in 2.12). It follows that
O@K), RYK)) : Ay®) » cPPHDE-1)

is a submersion at (x,y) if and only if Zfl.ri‘l is smooth at (x,y;) for 1 <i<m,

and if the restriction

fxerexf Z}rrl Xeex Z}rm-l - (€PhH™m

is transverse to Am,p- By 2.12, this is equivalent to (1), since Aj = Zgri‘l. o

We can now characterise stability and finite determinancy of germs of corank 1:

2.14 Theorem. Let f:(C",0) » (d:p’ 0) (n<p) be a finite mapping of corank 1.
Then

~k
i) f is stable if and only if D(f) is smooth of dimension p-k(p-n) or
empty for each k = 2.

ii) f is finitely determined if and only if for each k with p-k(p-n) = 0,
-k ’
D (f) is either an ICIS of dimension p-k(p-n) or empty, and if furthermore, for

those k such that p-k(p-n)<0, D (f) consists at most of -the point {0}.
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Proof. () Let k = dimgOn/f*My. Then f is of type L'k-10 at 0, and by
~k
2.13 f is stable if and only if D(f) is smooth of dimension p-k(p-n) at 0.

~ ~f
Now for £ > k, Dz(f) is empty, while for £<k, D(f) is smooth of dimension
p - L(p-n) by 2.5.

(ii) Suppose that f is finitely determined and choose a representative f:U

- V as in 2.11. We will show that for any k satisfying p-k(p-n) 2 0, and at

any point (x,y) # 0 of ﬁk(f) lying in UK, the map HK is a submersion. By
restricting U if necessary, f has only singularities of type >l in U. Suppose,
after a reordering if necessary, that (x,y) is a generic point of Ak(y(k)) for some
partition y(k)= (r{,....;y) of k. Then (x,y) has the form (X, y{,..., Y{s--r» Ymoe-es
Ym)> With yj iterated rj times. Suppose f has type Elti‘l’o at (x,yj). Then t§ 2 1j

and (x,y) = (XsY1se0sY1e-s¥Ymo--Ym) (¥i iterated tj times) lies in ﬁt(f) , where t
= t{+-+ty. Let ()= (t{,...tm). By 2.11, the multi-germ of f at {(x, y1),....(x,
ym)} is stable, so by 2.13, (1) & (3), the restn'ction‘to Fix (Stlx---xStm) of Ht
is a submersion. By 2.7, the restriction to Fix (St1"'""st m) of the map (D(y(1)),
R(Y(t))) is a submersion; since Fix (Syyx-xS ) = cn-1+4m » Fix (SpyxxSp )
and since the components of (D(y(k)), R(y(k))) lie among the components of
(DE®), RyY(®)), we deduce that (D(y(k)), R(y(k))) | Fix (S, 1x---xSrm) is also a

submersion, and hence, again by 2.7, that HK is a submersion at (x,y).
~k
Thus, at every point of D(f) distinct from 0, the (p-n+1)(k-1) functions

~k
generating fi(f), define a submersion, and so D(f) is a complete intersection of

n-1+k

codimension (p-n+1)(k-1) in € , and hence of dimension p-k(p-n), with at

most isolated singularity at 0, if it is not empty. Evidently if (p-n+1)(k-1) > n-
1+k, HK cannot be a submersion anywhere and so there are no points in

~k
D (f) outside O.
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, ~k
The converse assertion, that f is finitely determined if D (f) is either an ICIS of
dimension p-k(p-n), or empty, for each k satisfying (p-n+1)(k-1) <n-1+k, and
contains at most {0} if (p-n+1)(k-1) > n-1+k, is proved by reversing the

previous argument. It is only necessary to choose a representative f:U -» V of

f, such that all of the induced representatives of the germs of the ﬁl((ﬂ are
smooth of the appropriate dimension outside 0, to conclude that all of the multi-
germs f: (U, f*(z)) » (V,z) are stable for

z # 0, by 2.13, and hence that f is finitely determined, by 2.11. O

2.15 Corollary. If f is finitely determined then for each partition y(k) = (rl,..., Tm)
~k
of k satisfying p-k(p-n+1)+m 2 0, the germ of D (f,Y(k)) at O is either an ICIS

~k
of dimension p-k(p-n+1)+m, or is empty. Moreover those D (f,y(k)) for y(k)

not satisfying the inequality, consist at most of the single point 0.

Proof. This follows from 2.14 by 2.13, 2) & (3). O

In [Ga 2], Gaffney defines multiple points schemes (which we denote here by
ﬁk(f)) as follows: if f is a stable map-germ then S)k (f) is the closure in (tlin)k
of the set

{(xq5xp0) 1 %1 # x5, f(xj) = f(x;) for i # j}, with reduced structure. For a
general f, I)k (f) is the fibre over 0 € cd of S)k(F), where F: (Cn x Cd,O) -
(Cp x Cd,O) is a stable unfolding of f.

(We assume here that f has a stable unfolding. Map-germs with this property
are said to be "of finite singularity type".) As a consequence of 2.14 and 2.15

we have



2.16 Proposition. Let f be of finite singularity type, of corank 1.

~k
Then for all k, I)k(f) = D) (as schemes).

Proof. Because

B5*6 — D E)

2.

is always a fibre square (where F is an unfolding of f) it is necessary to prove

~k ~k
only that D (F) = l)k(F) for F stable. Since then D (F) is smooth (or empty)

~k
and hence reduced, it will be enough to show that D (F) and SJk(F) are equal as
sets. Let U = {(xq1,...xK) € (d:n)k I x; # Xj if i # j}. Then it is clear from

the definitions that

~k ' k
DEF) AU = 3@ N U.

X "
Thus it remains only to show that D (F) is equal to the closure of D(F) N U.
~k

But this follows from the fact that D (F) is irreducible (being smooth) and that

~k ~k
for any partition y(k) other than (1,1,..,1), dim (D () ) > dim D (F,y(k)) a.
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§3. Milnor numbers of Multiple Point Schemes

In view of the results of §2, we now have at our disposal rather a large number

of integer A-invariants for finitely determined map-germs of corank 1, namely the

~k
Milnor numbers of the isolated complete intersection singularities D (f,y(k)) for all
Y(k)= (r1,...Tyy) a partition of k = r{+-+ry, satisfying p-k(p-n+1)+m 2 0. It is

convenient also to introduce some further schemes associated to these, namely the
3 ~k . L3 - 3
quotients of the D (f) under their natural Sy action. We now review briefly the

properties of quotient varieties that we need.

Let the finite group G act linearly on €N, and let I € OpN be a G-invariant
ideal. Then G acts also on the germ of%alytic variety V = V() c (CN,0).

‘ G G

Let Oy = ONyp let Oy = He ONIgH =H Vge G} andlet Oy = {h €
Oy | g¢h = h Vg € G} (where the action of G on Oy is defined by g-(H+I) =
g-H+I ). Initially, we define the quotient variety-germs (CN/G, 0) and V/G

abstractly, as Specan OS and Specan 03 respectively. Defining p: ON - OS by

. 1 .
averaging, p(H) = el Z g-H, then p is onto, and moreover passes to the
geG

quotient to give p: Oy - (Dg , also onto. Clearly the projection ON - Oy

gives a hon;omoxphism (OS - O\G, , also onto, since if h = H+l € (’)g then

gH-H € I forall g € G and so h = p(HH4I. Thus, we have an exact

sequence

0->IG—>OS -)08-)0
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and hence an embedding V/G o (€N/g, 0).
Now suppose G acts as a reflection group on CN. Then CN/G = CN (see e.g.
[Ch] or [S—T]), and so V/G is embedded in €N. If furthermore I is generated

. G
by G-invariant functions af,..., amy, then IG is also generated in On by at,..., am.

G
Suppose that G1,...,0N are algebraically independent generators of Oy, so that Oy

= c"((ON), where ¢ is the map with components G4,..,ON. Then there exist
germs a; € Oy, such that

a; = @jo0. Hence, setting 1= d1,..,am) & ON, we have V/g = vl <
@N,0).

It is easy to see that 31,..., 3y is a regular sequence if and only if aq,..,any is,
and thus, that V/@G is a complete intersection if and only if V is. Furthermore,
if V has an isolated singularity at 0, then at each point of V-{0} the map €N -
€M defined by the a; is a submersion, and from this it follows that (d1,..., 3y)
defines a submersion at each point of V/G-{0}. In conclusion, if V & (¢N,0)
is an isolated complete intersection singularity defined by the vanishing of an
ideal generated by G-invariant functigns, where the finite group G acts as a

reflection group on CN, then V/G is also an isolated complete intersection

singularity.

When f: (C1,0) » (CP,0) is a finitely determined map-germ of corank 1, all

~k
of the above applies to the schemes D (f) , for 2 Sksp—r_)-ﬁ. Each is an isolated

complete intersection singularity (if not empty), and each has a finite group action,

that of the symmetric group Sk, which acts as a reflection group on the ambient

p

— ~k
c" 1+k. Hence, for 2<k SF-—n’ the quotient schemes D (f)/ Sk are

space

o : o - : ~k
isolated complete intersection singularities. The Milnor numbers of the D™ (f)/ Sy

~k
can be calculated from those of the D (f,y(k)) (see below).
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31 Lemma. Let f:(€"xCd,0) » (CPxCd,0) be an unfolding of the finitely 4-
determined ecorank 1 germ f. Then

~k ~k .~k ~k

D (fyk)) <o D(FEyk) D () Sk o D (F)/ Sk
d N d I T
0 [N C d 0 S Cd

are both fibre squares, and in each case the projection m is flat, provided y(k) =

(r1,...,Tyy) is a partition of k with p-k(p-n+1)+m 2 0, in the first case, and if k

< L in the second.
p-n

~k ~k
Moreover if F is Ae-versal, then D (F,y(k)) and D (F)/ Sk are both smooth

spaces (under the same hypotheses on y(k) and k).

~k
Proof. The ideal I (F,y(k)) & Op._1+d+k defining D (F,y(k)) is generated by
germs whose restriction to cn-1+k form a regular sequence. Thus I(F,y(k))

itself is generated by a regular sequence and is a complete intersection whose
~k
codimension in €n-1+d+k js equal to that of D (f,y(k)) in €n-14k,
~k
Thus the fibres of 7: D (F,y(k)) » €d have codimension d, and from this and

~k
the fact that D (F,Y(k)) is Cohen-Macaulay (being a complete intersection), it
follows that m is flat. A similar argument applies to the second diagram.

~k ~k
The smoothness of D(F,y(k)) and D (F)/ Sk when F is A.-versal

follows, from the fact that any A.-versal unfolding is a stable mapping in its
own right, by 2.14, 2.15, and the discussion on quotient varieties at the beginning
of this section. O
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Suppose that F is an Ze-versal unfolding of the corank 1 germ
f: (d:n,O) - (CP,O). Write F(x,u) = (fy(x),u). Suppose also that (n,p) are nice
dimensions (as in Mather, [Ma 6]). (This second assumption is not necessary,
since we are dealing with corank 1 germs, but will abbreviate the discussion.)
Then for any representative of F, there is a product neighbourhood Uy x Ujp
0 e U c™h o e Uy © €d) contained in its domain of definition, and a
proper analytic subvariety B of Up (the bifurcation set) such that for u € Uy-B,

the map f;:Uq - CP is stable. By 3.1, 2.14 and 2.15, it follows that upon
restriction to a suitably small neighbourhood of (0,0) in Uy x (Uz-B), the

projections m of 3.1 give rise to Milnor fibrations associated to the isolated
~k ~k

complete intersection singularities D (f,y(k)) and D (f)/ Sk, (c.f. [Lo]) and in
. -k -k L

particular that for u ¢ B, D (f;,y(k)) and D (f;)/ Sk are Milnor fibres of these

singularities.

. . »

The quotient map o:D(F) » D (F)/ Sk induces a map on Milnor fibres,

~k ~k
D(,) » D (fy;)/ Sk, and can be used to relate the Euler characteristics of

~k
these fibres (together with those of the D (f,y(k)) . Moreover, F induces maps

D (f,y(k)) -» €P and D F)/ Sk - cP, and these may be used to calculate the

Euler characteristic of the image X; of a stable deformation of f in terms of the
~k

Milnor numbers of the isolated complete intersection singularities D (f,Y(k)) and

~k

D (f)/ Sk . Details will be given in [Ma]; for now we limit ourselves to stating :

3.2 Proposition. Let f:(C10) -» (C1*+1,0) be of corank 1, and let Xt be the

image of a stable deformation of f. Then
i) n=2

X (o) =2+ (B€E)/ 53 )+ (B€)/ 53 )+ (B7E@) )
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|

X Xp)=-u (ﬁz(f)/ Sz)- u (153(f)/ S3 ) -p (134(f )/ s4)__

-u(B%€@ )1 (B E@m)
(because these formulae are proved by a topological argument and depend upon
the fact that, for a non-empty ICIS Y, of dimension r with Milnor fibre Y;, we
have x(Yp = 1+ (-1)Tu(Yy), they are valid on the assumption that all of the
schemes whose Milnor numbers are listed, are non-empty). The proof will be

given in [Ma].

We now discuss briefly the relation of these invariants to those discussed in
[Mo 2], for germs of maps ((BZ,O) - (C3,O). First, since for an (O-dimensional
complete intersection Y, defined by a map H:(CL,0) -» (€1,0), u(Yy) = dimg
Or/pem, -1 (see [Lo}, 5.12), we have

~2 ~3
u(D (f,(2)))=c-1 and u(D (f)/S3)=T—1
where C and T are, respectively, the number of cross-caps (Whitney umbrellas)

and triple points present in a stable perturbation of f.

Second, it is easy to prove by e.g. the Riemann-Hurwitz formula, the relation
2 2 2 2 |
* p.(D (f))=2p.(D (f)/82)+u(D (f,(2)))=2u(D (f)/Sz)+C-1
~2
when f is a quasi-homogeneous map-germ, then D (f) is also quasi-

~ a2 ~
homogeneous, and so T(D(f))= p,(DZ(f ) , (where T = Tjurina number) (see
[Lo] 9.10).

‘w2
If, further, D (f) is a hypersurface singularity (as is the case for all of the
examples disussed in [Mo 2] with the excepnon of X4 ), it follows that

p.(D (f)) is also equal to the length of the local ring O of thc (zero-dimensional)
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~2
singular subspace of D(f) . Since in [Mo 2] the invariant N was defined to be
the length of the kernel of an epimorphism from O to a ring of length C-1, we

conclude from * that

3.3 Proposition. For quasi-homogeneous map-germs f : (CZ,O) - (¢3,O) of

~2 ~2
corank 1, such that D (f) is a hypersurface, we have N = Zu(D (£)/ Sz ) n]

In consequence, the codimension formula of page 378 of [Mo '2] becomes

~2
cod (%.f) = C—1+T+u(D (f)/Sz)

= (Xt )-1;
this is thus valid (empirically) for all quasi-homogeneous germs in the list on

page 378 of [Mo 2], and in particular for all simple singularities of mappings C

- 423.

To conclude, we relate these invariants (in the case of germs of maps

: 2
£:(€20) » (€3,0) to the Milnor number of the image D(f) of D(f) under

projection into c2.
3.4 Theorem. Let f:(C20) - (C2,0) be finitely 4-determined. Then

2 ~2 ~2
HD®) = KO @)+ 6T = C-1+6T+2p(B7(¢)/ )

Proof. Let F:(C2 x C,0) - (C> x C,0) be a 1-parameter unfolding of f, such

~2
that f; is stable for t # 0. Then D(F) is a normal surface singularity, for it is
Cohen-Macaulay and has an isolated singularity at 0. In the diagram
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/ B(ZF)
.

c

2
D(F)

~2
the map D(F) - D2(F) (projection) is thus the normalisation. Now the fibre
Dz(ft) of D2(F) over t € C-{0}, is a nodal curve with 3T crossings. Thus,

SD()) =3 T.
By Proposition 3.3 of [Te],

~2 ~2
8% = SDE) - 8B (F)y = 8@ - 5B ()

and the theorem follows by Milnor's formula p = 28 -r+1 ( for the number of
| <2
irreducible components of D (f) is the same as the number of irreducible

components of D2(f)). 8]

3.5 Corollary. The map-gem f: (€2, 0) » (C>,0) is finitely A-determined
if and only if p(D>(P) < .

~2
Proof. Finite determinacy holds if and only if T <o and D(f) has isolated
singularity (see [Mo 2]). o

We remark that 3.2(i), 3.4 and 3.5 hold also for map-germs of corank 2, if we
use the Buchweitz-Greuel definition, [B—G], of the Milnor number of a curve

germ with isolated singularity, which is not a complete intersection, and replace M

(1")'3‘(f)/ S3) by T-1.
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~2
Of course, D (f)/ Sy , as the quotient of a Cohen-Macaulay germ by a finite
group action, is itself Cohen-Macaulay, and so 4.2.3. of [B—G] applies to give

N 2
H (B2 €)/S,,2) = 2%, where p = (B7(€)/ 52 )

Generalisation of 3.4 and 3.5 to higher dimensions is not always possible, since

~3
D2(f) is singular along D3(f) ( = projection to C" of D(f) ), and therefore will

have non-isolated singularity if the dimension of 153(f) is greater than 0. Thus,

~2
although one can replace 3.2(i) by a formula involving C,T and pn (D (f) ),

(using 3.4), it is not possible to do the same with 3.2(ii).
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