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Chapter I: Introductio1l 

1.0 Introduction 

The objective of this thesis was to investigate the facility of electrospray ionisation 

Fourier transform ion cyclotron resonance (ESI-FT-ICR) mass spectrometry for the 

analysis of biological molecules. To this end, two different proteins were investigated by 

various mass spectrometric methods designed to study aspects of the individual proteins 

structure, conformation and function. The proteins investigated included calmodulin, a 

Ca2+ mediated protein involved in a variety of cellular processes and papain, a cysteine 

protease. The interactions of these proteins with peptides representing segments of their 

target molecules were successfully studied, and conformational changes of calmodulin 

induced by Ca2+ ions were also determined. These latter studies, involved both gas and 

solution phase hydrogen/deuterium exchange, and metal ion "titration" to investigate 

conformation changes of calmodulin. Conformational changes induced by Ca2+ ions were 

successful1y monitored, with the superior resolution of FT -ICR mass spectrometry lending 

itself to unequivocal assignment of mass spectrometrically observed species. This has 

previously been difficult if not impossible with other types of mass spectrometric 

instrumentation such as electrospray ionisation combined with triple quadrupole 

instrumentation. 

The first mass spectrometric evidence for calmodulin: peptide complexes without Ca2
+ 

ions is also presented, the peptide in question being RS20. It was assumed before these 

experiments that four Ca2
+ ions were necessary to activate calmodulin before any such 

interactions could occur. This evidence casts doubts on the established mechanism of 

calmodulin function, but it may also indicate that a second mechanism for calmodulin 

mediated cellular functions exists. A mechanism that could be much faster than that 

currently recognised. 
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Chapter 1: Introduction 

1.1 The History of Mass Spectrometry 

The foundations of modem mass spectrometry were laid by Joseph John Thomson 

(1856-1940), the physicist who discovered and demonstrated the existence of the electron 

and measured its mass-to-charge ratio (1897). He was also responsible for separating an 

ion beam into its constituent parts, each with their own specific elm ratio. These latter 

experiments can be considered the basis of modern mass spectrometry.[1] 

The experiments consisted of passing a narrow positive ion beam between two parallel 

brass plates. A magnetic and an electric field were applied orthogonal to these plates, thus 

deflecting the ion beam. The beam produced a spot at a particular point on a photographic 

plate, the position of which depended on the charge q and mass m of the particle. 

Thomson showed that if the ions were travelling in the x direction and the ma!:,TIletic and 

electric fields were applied in the y direction, ions would be deflected in the yz plane 

forming a parabola. The shape of this parabola in the yz plane is described by the equation 

(1). 

(1) 

k is a constant depending on the dimensions of the apparatus used and the strengths of the 

fields. The len!:,Jth of the parabola was found to be indicative of the ener!:,'Y spread of the 

ions in the ion beam, with the ions of highest energy hitting the photographic plate closest 

to the origin. 

Thomson also discovered that low pressures were needed, as the penetrative power of 

the positive ion beam was much lower than that for cathode rays. Initial experiments at 

relatively high pressures produced parabolas corresponding to the charged hydrogen and 
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Chapter 1: Introduction 

helium atoms and the hydrogen molecule. Only at significantly lower pressures did the 

heavier atoms become observable. By examining the photographic plates Thomson 

realised (from faint lines joining the parabolas to the origin) that positive ions could be 

converted to neutrals by collision processes and vice versa. The dimensions of the 

parabolas also allowed the assignment of the atomic and/or molecular masses of the 

constituents of the analyte gas. Sensitivity could be improved by increasing the exposure 

time. Thomson realised, therefore, that this technique had distinct advantages over 

existing spectroscopy methodology, especially for the analysis of unknown gaseous 

samples. 

Mass spectrometry as a field of study originated in the 1930' s from work pioneered by 

the likes of Aston, Bainbridge, Dempster and Nier. It was Francis William Aston (1877-

1945), who during this period, developed the forerunner of all modern double focusing-

instruments. His instrument took Thomson's original idea, but put the electric and 

magnetic fields in series (the electric field first). Thus by varying the construction of the 

instrument it was possible to ensure that positive rays with the same elm ratio but different 

velocities could be focused at exactly the same point. With this instrument Aston managed 

to prove conclusively that the stable elements had isotopes; radioactive elements had 

already been established to be isotopically diverseJ2] 

Whereas Aston made use of a discharge bulb for the production of ions, Dempster in 

the Ryerson laboratory at the University of Chicago was using aluminium phosphate on a 

heated thin platinum strip and bombardment by electrons to produce positive ions. He 

accelerated the low-energy ions with an electric field, separated them in a 1800 

homogenous magnetic field and detected them with a quadrant electrometer. With this 

apparatus he identified BNa + and 39K+. An improved electron bombardment ion source 
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Chapter I: Introduction 

f 24 25 26M d 39.-, d 4~, later allowed Dempster to report the abundances 0 Mg, Mg, g an 1\.. an . 1\... 

The elements Pt and Ir were successfully identified by Dempster in 1935. 

A moving particle will have momentum, kinetic energy and velocity. The selection of 

one or more of these properties is the basis of all mass spectrometers. For example, a 

typical energy selector is a radial electric field, and a momentum selector would be a 

homogenous magnetic field. The relationships are expressed in the equations below: 

mv = Bzer 

mv 2 

zeV=--

(2) 

2 (3) 

Magnetic-Sector Equations 

Combining (2) and (3) where z is the number of charges on the ion, m is the mass of the 

ion, V is the accelerating potential, v is the velocity of the ion, B is the magnetic field 

strength and r is the radius of curvature through the magnetic field, gives the standard mass 

spectrometer equation. 

-=--
z 2V (4) 

Equation (4) thus shows that varying either B or V will allow ions of different m1z to be 

separated. In practice the exponential magnet scan is most commonly used, since it has 

the advantage over scanning V that it does not change the focus of the ion beam. 

The equation for the case of the electric sector takes the fonn below: 
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Chapter 1: IlItroduction 

Electric-Sector Equation 

where E is the electrostatic field strength and R is the circular path that the ion takes such 

that the centrifugal force acting on it is balanced by the electrostatic force. 

Dempster made use of the relationship in Eqn. 4 for his instrument. while Bainbridge 

used a velocity selector combined with a 1800 magnetic field in his instrument[31 The 

velocity selector in this case consisted of crossed electric and magnetic fields. Using this 

instrument Bainbridge made one of the first precise measurements of the masses of 

hydrogen and deuterium. Velocity selectors were used by several other workers in the 

field including Smythe and Mattauch at the California Institute of Technology. [2] 

One of the most significant developments in mass spectrometry was the double 

focusing magnetic-sector analyser. In 1929 Bartky and Dempster provided the theory 

behind such an instrument consisting of a 90° and a 1800 electric and ma!:,l'Jletic sector 

respectivelyJ4] A double-focusing mass spectrometer allowed ions of the same mass but 

different translational energy to be focused at the same point. a feat impossible for existing 

instruments of the time and allowed greater resolution than was previously available. In 

the period between 1929 and 1951 a great many developments with this type of instrument 

were achieved. In 1951 Nier and Johnson developed and constructed a double-focusing 

instrument consisting of a 900 electric and a 600 magnetic sector. To this day such an 

instrument is said to be of a Nier-Johnson geometry~ such instruments are still used for 

high-resolution organic mass spectrometry. So called reverse-geometry double focusing 

mass spectrometers are also common since the order of the sectors is not critical. A 

diagram of a Nier-Johnson instrument is shown below: 
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Figure 1 : Schematic ·diagram of a double-focusing sector instrument of Nier-lohnson 

geometry. 

Other instruments were designed and built between 1929 and 1950, which did not rely 

on magnetic and electric sectors. These included the time-of-flight (TOF) analyser, the 

quadrupole and the Omegatron, the basis of the modem Fourier transform ion cyclotron 

resonance mass spectrometer (FT-ICR MS). 

Time-of-flight (TOF) was suggested by Stephens in 1946[5] and an instrument was 

first built by Cameron and Eggers in 1948.[6] The first commercial instrument was 

marketed by the Bendix Corporation and was based on work carried out by Wiley and 

Mc1aren in 1955. The advantages of TOF were the ability to observe alterations of 

reaction rates, and the speed at which spectra could be acquired. 

The quadrupole mass filter was developed by Paul et al in 1958[7] and according to 

Paul had three main uses. These were as a filter for single ions, as a scanning device for 

producing a mass spectrum and as a device for selecting ions. The quadrupole has become 
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Chapter 1: Introduction 

a significant part of mass spectrometric instrumentation. A basic quadrupole mass 

spectrometer is shown below. 

-(U+Vcoswt) 

+(U+vcoswt) 

Figure 1 : A schematic of a quadrupole mass filter. 

The Omegatron built in 1948 by Sommer et al[8, 9] was based on the velocity-selecting 

cyclotron principle. In this instrument the ever expanding orbits of resonant ions passed 

through a slit to an electron multiplier where the ions were detected; the instrument was 

mainly used for the detection of light ions. This apparatus was adapted and improved by 

Smith in his mass synchrometer. This instrument was originally used as a super-velocity 

selector, but became the most precise method for the determination of nuclidic masses due 

to the correlation between the mass of the ion and the precisely known frequency used to 

accelerate them. 

Over the 45 years since this introduction, ICR mass spectrometry has been steadily 

improved until today it is one of the most sensitive and accurate techniques available for 

the determination of ion mass. The modem ICR mass spectrometer as we know it today 

has its roots in work by 1. D. Baldeschwieler in collaboration with Peter Llewellyn in the 
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Chapter I: Introduction 

mid 1960's. This collaboration resulted in the Varian-Stanford ICR instrument that was 

the main scientific tool of this type during the late 1960's and early 1970's. These 

instruments were usually used for the investigation of gas-phase ion chemistry and some 

basic mass analysis. 

It was not until 1974, however, when Fourier transfonn (FT) techniques were first 

applied to ICR[lO-12] that the instrument became a viable analytical tool. FT increased 

speed, gave higher resolution and allowed more effective processing by computers of the 

data generated. During the late 1970's and early 1980's Nicolet and other companies 

started to manufacture the forerunners of todays FT mass spectrometers. 

Throughout the 1980's until the present time FT-ICR instrumentation has been steadily 

developed. Cell design has been improved and virtually all ion sources have been 

successfully mounted outside the magnetic field. Thus source designs, that by necessity 

had to operate at atmospheric pressure, could now be used for FT·ICR with the aid of 

multiple stages of differential pumping. This allowed the electrospray ionisation source 

(ESI), an ion source of great use for the analysis of large fragile molecules such as 

proteins, to be used for the first time with FT·ICR and it is in this field that Fourier 

transform ion cyclotron resonance mass spectrometry (FT-ICR MS) excels. 
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Chapter 1: Introductio1l 

1.2 Fourier Transform Ion Cyclotron Resonance: 

Instrumentation 

The basic Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer can 

be considered to consist of four main parts. These are (i) the ion source (ii) the ion optics 

(iii) the magnet and (iv) the ion trap or cell. Each will be discussed in more detail in later 

sections, but for now a brief description of each part will suffice. 

Magnetic; 
Field, B 

trap plate 
b'ansmitter plate 

Figure 3 : Schematic of a cubic cell. 

tl me -domal n 
signal 

FT 

--I I I I 
mass 
spectrum 

The ion source is, as its name implies, the region of the instrument where ions are 

formed. In mass spectrometry, and FT-JCR especially, ions are often produced in a region 

of higher pressure than that which is used for detection. It is usual for several stages of 

differential pumping to be employed to overcome this problem with cryo-, rotary and 

turbomolecular pumps being used for this purpose. [on sources make use of a variety of 

phenomenon to ionise the sample molecules of interest. These include electrospray (ESI), 
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Chapter I: Introduction 

matrix-assisted laser desorption/ ionisation (MALDI), electron impact (El) and chemical 

ionisation (Cl). These are the most common ion sources for FT-ICR. Other sources have 

been successfully coupled with FT-ICR including fast atom bombardment (FAB) and 

atmospheric pressure chemical ionisation (APCI). 

Ion sources were initially placed within the magnet field ofFT-ICR mass spectrometers. 

However, as already mentioned with the advent of multiple stages of differential pumping 

and improvements in ion optics for the transfer of ions through the "magnetic mirror", ion 

sources were placed outside the magnetic field. This development allowed easier access to 

the ion sources for maintenance and sample introduction and also allowed new ionisation 

methods to be utilised. 

At present the magnet is usually a supercooled superconducting magnet of solenoidal 

geometry and typically 1.0,3.0,4,7, 7.0, or 9.4 Tesla, with 3.0 and 4.7 Tesla instruments 

predominating. The greater is the magnetic field, the superior is the instrument. Within 

the horizontal bore of this magnet is placed the detection device: the ion trap or cell. The 

cell can be of a variety of geometries that have been developed over the last 45 years. 

Each geometry represents an attempt to overcome some flaw or imperfection pertaining to 

the detection of ions. For example, early cells were not ion traps at all but instead ions 

were allowed to drift from one end of the cell to the other as they were detected. Mclver 

introduced the concept of the trapped ion cell for FT-ICR in 1970 [33] and this allowed 

greater detection efficiency and access to new ion-ion and ion-molecule reaction studies. 

As to the geometry of the cell, n~merous shapes exist including cubic, rectangular (or 

elongated), hyperbolic, cylindrical and other trap designs such as shimmed cells (to reduce 

the radial component of the trapping field) and "infinity" cells. These developments will 

be discussed in detail in later sections. The most commonly used cell geometries are the 
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Chapter J: Introduction 

elongated and cylindrical cells since their dimensions (and advantages) are uniquely suited 

to FT-ICR mass spectrometry. 

1.2.1 Cell --

Penning type ion traps used in FT-ICR have been developed from HippIe et aI's 

"Omegatron".l34] An ion trap that makes use of an axial magnetic field and a three 

dimensional (3-D) quadrupolar electrostatic trapping potential is known as a Penning trap, 

although it is now commonly used to refer to a trap using any electric potential in a 

magnetic field. HippIe et aI's ion trap consisted of an arrangement of "guard rings" 

between two opposed plates. Ions within the volume of the trap were "excited" one at a 

time by the addition of a continuously applied uniform alternating electric field. The ions 

that were orbiting at a frequency in resonance with this field were excited to larger orbits, 

detected by a detector attached to one of the plates and measured by an electrometer. Thus 

the rf field was scanned across the entire mass range and the instrument detected a single 

mlz at a time. Modem instruments, with the introduction of Fourier Transform techniques, 

are capable of detecting the entire m/z range at once. This method of ion detection used by 

HippIe et al was however not very reliable, especially at the high pressures the 

"Omegatron" operated at. It thus found most use as a residual gas detector rather than a 

mass spectrometer. 

Even with the obvious disadvantages of the "Omegatron", it still set several features of 

modem FT -ICR. These included the on-resonant excitation of ions to detectable radii, the 

confinement of ions within a magnetic field and 3-D axial quadrupolar electrostatic 

potential wells and the fact that mlz ratios are measured by determining the ICR 

frequencies of the individual ions. 
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Chapter 1: Introduction 

Passing an electron beam through the cell along the magnetic field's central axis carried 

out ionisation in the "Omegatron". This electron beam was a significant problem in that 

its space charge shifted the measured ICR frequency with a resulting decrease in mass 

accuracy. 

During the 1960's and 1970's further advances were made in the field. Most notably 

being Wobschall's introduction of an rf bridge circuit for detection in 1963 [20] • 

Llewellyn's ICR spectrometer with a cell split into three regions (ion source, ion analyser 

and ion collector) and McIver's trapped ion cell in 1970.[33] Llewellyn's design meant 

that the ionising electron beam no longer passed through the detection region and thus a 

greater mass accuracy was achieved, while Mclver's trapped ion cell, as already 

mentioned, allowed ion generation, ion-molecule reactions and ion detection to be 

,-

conducted in a single volume. 

In McIver's design ionisation was attained by using an electron beam parallel to the 

magnetic field lines, but since the beam could be turned off before detection took place 

mass accuracy was retained. These instruments all scanned the magnetic field to measure 

the cyclotron frequency of individual ions; this was a relatively slow procedure. ICR as an 

analytical tool came into its own with the introduction of IT to the technique by 

Comisarow and MarshaIl in 1974.[10] This allowed the entire mass spectrum to be 

acquired within approximately a second, compared to half an hour by scanning the 

magnetic field. It also allowed b~eater magnetic field homogeneity since the magnet could 

now be fixed at a certain magnetic field strength. IeR performance was, therefore, no 

longer curtailed by the homogeneity of the magnet but was now greatly influenced by the 

shape of the electric field within the trap. Thus further developments in trap design have 

focused on creating the perfect field shape for ICR detection. 
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Chapter I: Introduction 

To continue this discussion, it must first be understood that ions in a static magnetic 

field are constrained only in the xy plane (if the magnetic field is taken to lie along the z-

axis). An electric potential must be applied to two trap plates at either end of the cell to 

prevent z-axis ejection of ions from the cell. The electric field <l>(x,y,z) within an empty 

cell must therefore satisfy Laplace's equation. 

(6) 

Thus the desired field must be produced from defined trap boundaries and voltages. 

This is essentially an inversion of the standard Laplace calculation; normally the potential 

generated within specified boundaries and voltages is calculated. This is quite a complex 

calculation but can be simplified if the required 3-D potential is projected onto a desired 2-

D electrode surface. This allows the potential at any point in space to be calculated by 

applying the expected potential values to each point on the 2-D electrode surface. In 

theory calculating the desired electric potential within the cell is therefore relatively 

simple, but in practice producing such a potential is difficult. Two approaches exist for 

attaining the desired potential from a cell: (i) splitting a simple boundary shape into many 

different electrodes, to which a variety of voltages can be applied to produce the desired 

shape and (ii) limiting the number of electrodes and thus the potentials applied! 

constructing electrodes that produce the desired field shape e.g. two hyperboloids of 

revolution can produce the desired potential shape. 

Ce]]s can be constructed in virtually any geometry when constructed of segmented 

electrodes to which potentials are applied. For example a cylindrical trap can be 

constructed from ring electrodes to produce a nearly perfect quadrupolar trapping 
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potential. The ring electrodes can either be all exactly the same size with different 

potentials that vary quadratically from the midplane, or the electrodes size can vary such 

that the potential increment from one electrode to another is constant. In either case the 

potential within the trap will approach a near perfect case as the number of electrodes 

approaches infinity. 

The second approach using more complex electrodes to which a single potential is 

appJied to generate the required potential is given by a cell constructed of a "ring" and two 

"end caps" ofhyperboloid revolution. The finite size of these two electrodes unfortunately 

leads to distortion of the trapping potential. Correction can be obtained by adding 

electrodes for this purpose, increasing the distance between the end caps or by altering the 

angle between the end caps and the ring electrode. 

These traps work perfectly until an azimuthal dipolar excitation field is applied to 

excite the ions to a detectable cyclotron radius and phase coherence. The quadrupolar 

trapping potential then changes shape due to the influence of this field. The combined 

field is now "saddle shaped" for a cubic trap with only the centre of the cell matching the 

pure quadrupolar trapping potential of the previous examples. As ions move from the 

centre of the ce1J/ trap, ion magnetron motion is no longer circular but for large magnetron 

radius approaches a "square" trajectory. The reduced cyclotron frequency (OL) also varies 

with the ion position inside the trap. The quadrupolar trapping potential produces an upper 

mass (or more accurately m/z) limit. It has a radial outward directed component so that 

there is a radially outward-directed force that counteracts the Lorentz force of the magnetic 

field. This causes frequency shifts and allows ions to lose magnetron potential energy by 

ion! neutral collisions etc. which results in radial diffusion from the trap and the 

appearance of the upper mass limit mentioned. 
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Trap development has therefore tried either to increase the homogenous region in the 

centre of the cell or t~ remove the field lines due to the trapping potential from the 

detection area completely. 

It can be shown for a cubic trap that ions of a critical mass-to-charge ratio (m/q) spiral 

outward and cannot be trapped. 

_ tiI" [ ~ (m / q) I ] 
tu+ =2 1+ 1- j(m/q)crlt (7) 

where (8) 

ro+ is the reduced cyclotron frequency and roe is the unperturbed cyclotron frequency. 

This limit is due to the radial component of the trapping potential. Equation 3 shows 

that the upper mass-limit can be enlarged by increasing B and! or I or by lowering Vr (the 

trap voltage) and! or the trap geometric factor a (see table I, section). B is fixed and Vr 

cannot be reduced too far otherwise the axial kinetic energy of the ions would mean they 

would escape from the cell. The only solution is, therefore, to alter the shape and! or 

length of the cell to reduce a. Elongated cubic cells reduce the electric field near the 

centre of the cell by a factor of approximately 106 for a trap aspect of6:1. (A perfect cube 

would have a trap aspect of 1:].)' A greater number of ions can also be trapped for an 

extended dynamic range. -

Another design feature of ion traps that removes the radial component which causes 

ejection, is to remove trapping potential field lines from the main volume of the trap. 

Removing the potential altogether is not an option since the ions need to be constrained 
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within the trap during excitation and detection. Wang and Marshall [35] therefore 

introduced the screened ion trap. This design has grounded screens placed just inside the 

trapping plates that virtually eliminates the field within the trap. The region where ions 

can therefore be detected accurately and without problems associated with the radial 

component of the trapping field is greatly extended and so therefore is the amount of ions 

that the trap can hold at anyone time. Typically a screened tetragonal trap of dimensions 

6.~5 x 5.08 x 5.08 cm3 within a 3 Tesla magnet and with two 50 x 50 tungsten wire meshes 

exhibits a lOO-fold smaller reduced cyclotron frequency 0)+ shift than that of a 5.08 cm3 

cubic trap.£35] Such a screened trap has also been used for trapping both positive and 

negative ions simultaneously. 

Further developments in removing the radially outward directed electric field has 

involved the production of dynamic traps. These involve the use of an alternating voltage 

instead of the d.c. voltage normally' used for trapping. If the alternating voltage is chosen 

carefully it is possible to produce a potential with zero time-average value.£36, 37] This 

can be modelled as a static electric "pseudopotential" and for ion-neutral collisions causes 

ions to be axialised, which therefore reduces radial diffusion. 

Optimisation of the other two electric fields within an ion trap has also been examined. 

These electric fields originate from the dipolar excitation and detection events. In both 

cases shimming with guard rings/ wires or segmenting the relevant electrodes results in a 

more uniform distribution of the field lines in the trap. 

It was noted by Huang et at [38] and Kofel et at [39] that axial motion was increased on 

application of the azimuthal (in a plane perpendicular to the magnetic field Bo) dipolar 

excitation electric field. It was Van der Hart et at [40] who showed that this was due to the 

non-uniformity of this electric field throughout the trap. Ion axial motion was found to be 
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excited by this applied field at frequencies other than 2roz (ooz is the trapping oscillation 

frequency), for example 2roz ± 00. and <0+ ± 2roz. This resulted in z-axis ejection of ions as 

their cyclotron radius was increased. Adding guard rings [41] increased the spatial 

uniformity of the field lines and thus considerably reduced z-axis ejection and improved 

the accuracy and reliability of relative peak heights in FT-ICR mass spectrometry over a 

broader mass range in relation to the un shimmed trap. 

Improving dipolar detection in an ion trap has also been considered, in order to reduce 

side-bands and harmonics and improve signal strength. These are all factors affected by 

non-uniform fields within an ion trap. Problems exist for detection, since in reality only 

the centre of the trap has a spatially uniform electric field, and ions have to be excited to 

higher cyclotron radii for detection and thus away from this uniform region. Other ion 

motions are therefore instigated, which result especially with a large magnetron motion, in 

reduced-image current amplitude and as already mentioned side bands and harmonics. 

Again splitting the detection electrodes into segments allows uniform field lines to be 

obtained throughout more of the trap. Capacitively coupled segments are used in 

. preference to resistively coupled segments to prevent loss of signal. However, capacitively 

coupled segmented electrodes do have drawbacks; they also result in a loss of detected 

signal. This can be overcome by detecting the signal using all six electrodes of the cubic 

ion trap. 

It has been suggested that a so called "hypercube" [19] consisting of electrodes each of 

which is split into a 5 x 5 grid of smaller electrodes could be constructed. This would 

allow the potentials of these smaller electrodes to be adjusted to compensate for the non­

uniformity of the field lines in the trap due to the trapping, detection and excitation electric 

fields. The complexity of such a trap may be too much to handle, since such a trap would 
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consist of 150 electrodes with each being available for individual adjustment. 
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1.2.2 Magnet and Field Strength 

As previously mentioned the magnets used in FT -ICR usually take the form of a 

supercooled superconducting solenoidal geometry magnet and are available in a variety of 

field strengths. A number of factors in FT -ICR are directly dependent on field strength. 

The four performance factors which theoretically vary linearly with field strength, are 

mass resolving power, data acquisition speed, quadrupolar axialisation efficiency and the 

upper mass limit for peak coalescence. Of course other factors preventing a perfect linear 

relationship occuring for these parameters include inhomogenous electric and magnetic 

fields and collisions. Other performance factors which theoretically vary quadratically 

with magnetic field strength include the maximum number of ions that can be trapped 

inside the cell, the duration for which ions can be trapped within the cell, the maximum 

ion kinetic energy and the upper mass-limit arising from the trapping potential. 

The strength of the magnetic field of the instrument therefore dictates the quality of the 

spectra obtained. 
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1.2.3 Sources and Transfer Optics 

Most ionisation sources can be combined with Ff-ICR to provide virtually unlimited 

areas of research. Nowadays electrospray ionisation (ESI) sources are most commonly 

combined with FT-ICR. The mechanism for ion formation by such a source will be 

discussed in a later section. Figure 4 below demonstrates a typical ESI source design. 

Sample molecules as wide ranging as proteins and synthetic polymers can be ionised by 

this method and little or no fragmentation is observed if the conditions are appropriate. 

The significant advantage for FT -ICR is that high-mass sample molecules are multiply 

charged and thus "folded" down to a lower position on the mlz scale. 

Matrix-assisted laser desorption/ ionisation (MALDI) has been coupled to an FT -ICR 

both externally and internally. External sources utilised typically have a time-of-flight 

factor. The transfer optics used to pass the ions through the magnetic field are necessarily 

quite long (> 1 metre), so that sources and pumps can be used outside the influence of 

strong magnetic fields. These long "flight tubes" and the fact that the cell is "gated" to 

allow ions to pass into it mean that timing is critical to achieve a good ion population 

within the cell. With polymer distributions, for example, it is necessary to realise that the 

"gate" time will affect the polymer distribution observed. This is one reason why it is 

usual1y found that MALDI is better suited to take place either within the cell or just 

outside. This internal ionisation presents complications for sample introduction since the 

source is within the confined ma~et bore, but means that more ions are obtained within 

the cell and that there is no "time of flight" factor. 
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Figure 4 : A schematic of an ESI source. 

The transfer of ions through the magnetic field into the cell has been achieved in a 

variety of ways that will be discussed below. Necessary complications that must be taken 

into account when designing such a system is the mirror-like effect of the magnetic field 

on the ions and the fact that the ion beam must be significantly reduced in velocity at the 

cell entrance to be trapped by the analyser cell. The latter factor is in direct contradiction 

to the fact that ions must have a notable axial velocity to pass through the "magnetic 

mirror". 

Initial methods for the introduction of sample molecules through the magnetic field of 

an FT-fCR mass spectrometer used quadrupole rods to pa~s the ions through the "magnetic 

mirror". This was achieved by McIver et al [42] and the Finnigan corporation in the early 

1980's, when they combined a Finnigan quadrupole instrument with a superconducting 

magnet. This allowed multiple stages of differential pumping to be used to reduce the 
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pressure between the source and the analyser. However, the oscillating quadrupolar fields 

within the quadrupole and the large magnetic field gradient combine to cause an 

acceleration of the ions any time a harmonic of the resonance frequency of the ion is 

reached. Thus the pathway of an ion within the quadrupole transfer rods will be extremely 

complex and the fact that a large velocity component perpendicular to the magnetic field is 

created by the rods means that the chance of the ion being reflected by the "magnetic 

mirror" is increased. 

An alternative to the quadrupole ion guides is the use of electrostatic ion [67) and einzel 

lenses [431 If a series of such lenses are used and the ions are confined to a narrow 

pathway along the magnetic axis, the magnet's effect on such a beam is limited to a spiral 

caused by cyclotron motion of the ion. An ion beam can be focused and decelerated in 

time for entrance into the cell, while keeping the ionisation source of choice clear of the 

troublesome magnetic field and the spatial constraints of the magnet bore. Such a system 

of lenses is used on the Bruker BioAPEX 94e FT -ICR mass spectrometer. Other methods 

of ion transfer from an external ion source include octupole ion guides [44] . 
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1.3 Basics Of Fourier Transform Ion Cyclotron Resonance 

Mass Spectrometry 

Fourier transform Ion cyclotron resonance (FT -ICR) mass spectrometry is 

fundamentally different from other mass spectrometry techniques in that all the ions are 

excited and detected together in the detection region (the cell or trap). The ion masses can 

be assigned, due to the fact that each ion has a characteristic cyclotron frequency, which 

can be monitored in the detection region. This can be measured by monitoring the 

alternating electric field generated between a pair of detection plates as the ion first comes 

close to one and then the other. The resulting signal is complex and consists of 

information on the masses of all the ions present in the cell during the detection event. A 

mathematical procedure known as a Fourier transformation is used to "decode" the data 

into its separate parts and the resulting information is translated into the mass spectrum. 

The technique is non-destructive since the ions do not collide with a detector such as an 

electron multiplier, instead the ions, as has already been mentioned, induce an image 

current on a pair of detector plates. 

The detector plates are an integral part of the cell, which is contained within the bore 

ofa superconducting magnet and can be said to consist of three pairs of plates. These are 

the detection plates, the excitation plates and the trapping plates. The axis of the magnetic 

field is typically taken as the z-axis, and any ions entering or being formed in this region 

will automatically start to orbit this axis in the xy plane at a frequency characteristic of the 

ions m/z. It is this cyclotron frequency that is measured by the mass spectrometer since it 

is related to the ions mass by the equations below. 
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(SI Units) (9) 

where (1)", q and m are the cyclotron frequency, the charge and the mass of the ion 

respectively and Bo is the strength of the magnetic field in Tesla. 

The ions are constrained to move in a circular orbit around the z-axis due to the 

Lorentz force caused by the magnetic field. Without the influence of electric fields the ion 

will orbit in a perfectly circular orbit without any perturbations. Ion motion becomes more 

complicated when the influence of the electric fields, from the trapping plates for example, 

are taken into account. However, if for the moment the electric field are ignored, the 

balance of forces between the Lorentz force and the centrifugal force will give the 

following relationships. 

Centrifugal 

Lorentz 

dv 
m-=qvxB 

dt (10) 
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where m, q and v are ionic mass, charge and velocity respectively. The vector cross 

product shows that the Lorentz force acts in a direction perpendicular to the magnetic field 

lines. If we let VX}' = ~v; + v; in the xy plane, and note that angular acceleration is 

I~tl = v-y' then we can simplify equation (lO) to the following expression. 

mv 2 

qV'B=~ 
.l'}' r (11) 

Thus by rearranging and simplifying this equation ( OJ = V Y, ) an expression equating 

the cyclotron frequency of an ion to the inverse mass to charge ratio is obtained. 

qBo 
m =­

C m 

mc 1.535611 x 10' Bo 
Vc = 27r = (m/z) 

(12a) 

(l2b) 

where Vc is in Hz, Bo is in Tesla, m is in Daltons and z is in multiples of elementary charge. 

Below is a graph that illustrates the range of ion cyclotron frequencies that singly charged 

ions of different mlz undergo at diverse magnetic field strengths. 
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Figure 5: A plot of ICR frequency versus mlz ratio. 
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To be noted from equations 12a and 12b is the fact that all ions of the same mass to 

charge ratio have the same cyclotron frequency independent of their initial velocity. 

By rearranging equation 11 an expression for the ion cyclotron orbital radius IS 

attained. 

1.036427 X 10-8 (m / z )v xy 
r = (13) 

mv2 
• . / 

since /12::::: kT , where r is in metres, m is in Daltons, T is in Kelvin and z is in 

multiples of elementary charge. 

The velocity and translational energy of the excited ion can also be calculated by 

rearrangement of the previous equations. 

9.64853 X 101 Bor 
v = xy (m lz) 

(14) 
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Figure 5: A plot of kinetic energy versus ICR orbital radius as a function of magnetic 

field strength. 

The magnetic field only constrains the ions in the xy plane and two plates are placed at 

either end of the z-axis. These trapping plates have a small voltage applied to them, which 

forms a potential well, constraining the ions and preventing z-axis ejection. These 

trapping plates cause the ions to oscillate between them along the z-axis, and the frequency 

of such oscillations can be expressed as below. [06] 

1 
v = ­
: 2" 

2qVtrop a 

ma 2 
(16a) 
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'Jzv"""a v. = 2.21088 x 10 2 
ma 

(16b) 

However, Gauss' law of electrostatics states that an axial1y inward directed electric 

field has a radial outward component. This radial component opposes the magnetic force 

experienced by the ions, and therefore there is an effective reduction in the magnetic field 

strenh'1:h on the ions. 

The reduction in the magnetic field results in a reduced cyclotron frequency 0)+ and the 

introduction of two more modes of ion motion in the cell: magnetron and trapping 

motions. Magnetron motion (00_) is the slow precession of the centre of the cyclotron orbit 

in the xy plane while the trapping frequency as discussed above is represented by OOz. 

These motions are all the result of the radial component of the trapping electric field, and 

numerous methods of reducing these fields within the cel1 area have been attempted, 

including screened cells and the infinity cell, discussed in section 1.7. 

By again balancing the forces produced by the magnetic field, the electric field and 

centrifugal force, expressions can be obtained for 0). and 0)+.. This procedure will also 

assume a quadrupolar trapping potential. Thus; 

., qV"apa 
Force = morr = qBoOJr - 2 r 

a 
(17a) 

or 
2 qBoOJ qV/rtJp a 0 

OJ ---+ ., = 
m ma- (17b) 
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where V trap is the trap voltage along the z-axis (typically 1 Volt). The reduced cyclotron 

frequency (0+ can then be stated as follows: 

oi z 

2 

and the magnetron motion (0_ as 

(~<)' --~-; 

in which the trapping frequency is given by: 

(j) = z 

qBo 
and Wc = - is the unperturbed cyclotron frequency. 

m 

(l8a) 

(18b) 

(18c) 

again V Imp is the trapping voltage, a the length of the cell (cubic or elongated geometry 

assumed) in metres and a is a factor of 1.3869 (see Table 1, section 1.3.3) for a cell of 

cubic geometry. 

The displacement of the ion from the centre of the cell is periodic and is a combination 

of the reduced cyclotron and the magnetron frequencies. 
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tiJ radial = tiJ + - tiJ_ (19) 

Below is a diagram (Figure 6) that represents pictorially the motions that an ion 

undertakes. 

x 

Figure 6: Schematic of ion motion in the FT-ICR ion trap kindly reproduced from 

Marshall et at's excellent primer [66) 

It should be noted that the magnetron and trapping frequencies are usually much 

smaller than the cyclotron frequency of the ion and are generally not detected. Magnetron 

and trapping frequencies, if detected, are usually only seen as small side bands when the 

ion trap is misaligned with the magnet axis and! or ion motional amplitudes approach the 

size of the trap. The diagram above accentuates the ion motion due to these effects for the 

purpose of clarity. 

39 

--- ------------------------



Chapter 1: IlItroductioll 

1.4 Excitation And Detection In Fourier Transform Ion Cyclotron 

Resonance Mass Spectrometry 

1.4.1 Excitation 

A useful signal cannot be obtained from an ion trap in FT -ICR without some fonn of 

excitation of the ions. Excitation not only.excites the ions to a detectable radius, but also 

causes the ions to rotate in a coherent fashion. 

For example, without ~xcitation the ions will orbit at relatively small radii given by 

equation 13. They will rotate with all phases, so that there will be no coherent signal. 

generated at the detection plates. Ions will be orbiting at the same frequency and radius, 

but because they have different phases the total signal will be effectively zero. For every 

ion there will be a corresponding ion orbiting exactly 1800 out of phase. By exciting the 

ion with an on-resonant electric field, the ions orbital radius is increased and they will 

fonn a coherent ion packet. This allows an image current to be fonned at the detection 

plates. 

The excitation field is thus used for four reasons including those above. These are: 

1) to accelerate ions to a higher orbital radius. 

2) to fonn a coherent ion packet where all the ions are in phase. 

3) to increase the ions kinetic energy for collision-induced dissociation and ion-molecule 

reaction experiments. 

4) to eject the ions from the cell. 
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The simplest method of excitation is by making use of an azimuthal (in a plane 

perpendicular to the z-axis) dipolar single-frequency electric field. This field oscillates 

sinusoidally with time according to the vector relationship below. 

(20) 

where (Oe is the unperturbed cyclotron frequency. i, j and k in these equations specify the 

direction of the vectors; since a vector quantity by definition has both magnitude and 

direction. If Eo is supposed to be produced by applying +Vo and -Vo volts to two infinitely 

long parallel plates with a separation of d meters then: 

(21) 

Vp-p is the peak-to-peak voltage difference between the two plates. There are two solutions 

to this equation since the electric field may be split into two components ELCt) and ER(t), 

these are given below. The radio frequency (rf) electric field component rotating in the 

same direction as the ion and with the same frequency causes the ions orbital radius to be 

increased. The other component is so far off resonance that it has no effect on the ion. 

(22a) 

(22b) 
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where E(t) = EL (t) + ER (t). Thus EL and ER represent the components of the rf electric 

field in the two possible directions. 

An ion absorbs power according to the dot product 

A(t) = Force -velocity = qE(t) -v xy 

It can be shown that the radius after excitation by such an rffield is given by (66): 

(23) 

T excite is the period of excitation and r. is the post excitation radius. 

Thus according to this equation, post-excitation ion cyclotron radius is independent of 

mlz. Thus by applying an rf electric field whose magnitude is constant with frequency it is 

possible to excite all ions of a certain miz range to the same radius. An expression can also 

be developed for the kinetic energy of the ion after excitation by simply rearranging and 

substituting equation 11 into equation 23. This gives equation 24 below: 

2V (T )2 
K.E. .. = q p-p eocci/e 

po.~/-eJ:C/lal/On 8d 2 In (24) 

It is therefore relatively straightforward to produce ions of large kinetic enef!:,!), after 

excitation allowing dissociation experiments to be implemented. 
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1.4.1.2 Broadband Excitation 

Excitation discussed previously has consisted of a single-frequency resonant electric 

field. However, the simple procedure of turning such a field "on" or "off' results in other 

excitation at different frequencies. An expression for such a single-frequency excitation[l8) 

that gives the time-domain spectrum E(v) at excitation frequency Wc used for Te:ccitation 

seconds is given below: 

(25) 

Eo is the field strength. 

Thus, even if the excitation field is matched exactly with the frequency of the ion of 

interest, the fact that the excitation field needs to be turned "on" and "off' results in 

excitation of other ions that have nearly identical frequencies. This is effectively a 

broadening of the range of the excitation to a bandwidth that is proportional to the 

reciprocal of Texcilalion. Therefore the longer the time-domain signal duration the narrower 

is the corresponding frequency domain spectral width i.e. the greater the resolution of the 

excitation. 
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1.4.1.3 Ouadrupolar Excitation 

It can be shown [13] that a two-dimensional azimuthal quadrupolar rf potential with a 

frequency equal to the unperturbed cyclotron frequency will convert magnetron motion to 

cyclotron motion. Thus when ions are involved in collisions the ion cyclotron radius will 

decrease rapidly while the magnetron motion increases quite slowly. If the magnetron 

motion is therefore converted to cyclotron motion, the collisions will cause the cyclotron 

motion to rapidly fall to zero and the ions will relax to the centre axis of the cell. This 

technique has become known as quadrupolar axialisation and improves all aspects of FT-

ICR mass spectrometry. It reduces an ion's internal energy, improves ion selection for 

MSIMS, CID efficiency, mass accuracy, mass resolution and ion remeasurement 

efficiency. Quadrupolar axialisation can therefore be used to' improve the signal-to-noise 

ratio ofa spectrum by making use of ion remeasurement experiments [14, 151. The inter-

conversion frequency [16] ofmagnetron to cyclotron frequency is given by 

(26) 

where V quad is the voltage applied to electrodes separated by d meters and 2.66667 is a 

scaling factor. 

1.4.2 Detection 

As previously mentioned, as they at first enter the ion trap, the ions are of random 

phase and their cyclotron radius at room temperature before excitation is very small. The 

signal generated by the ions is therefore undetectable. After excitation the ions are moved 

into a coherent phase and a larger cyclotron radius. If the ions in the ion trap are 
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considered to be a rotating monopole [17] when excited. then at certain points in time the 

ions will be closer to· one detection plate than the other. Thus an alternating current will 

be induced in the detection circuit as the ion is first nearer One plate and then the other. 

The frequency of this alternating current will be proportional to the cyclotron frequency of 

the ions. For two infinitely extended parallel detection plates, the "image" charge (AQ) 

formed on the detection plates for an ion of charge q is given by the equation below: 

2qy 
!1Q=-­

d 
(27) 

d is the distance between the two detection plates and y is the distance of the ion from the 

centre of the cell (where an ion at the centre of the cell would be y=dl2 along the y axis). 

The expressions derived from this equation [17] disclose that the ICR signal is 

independent of Bo. increases linearly with post-excitation ion cyclotron radius and 

increases linearly with ion charge. This linearity is important fot two reasons: 

1) the ICR response at any frequency is proportional to the excitation spectral magnitude 

at that frequency. 

2) simultaneous detection of the ions in a wide mlz range can be achieved, and a Fourier 

transform (FT) of the time domain ICR response gives the same absorption spectrum as 

would be achieved if the power absorption spectrum was measured by scanning 

infinitely slowly across the m/z range. 

These points combine to produce the multichannel or Felgett advantage of FT-ICR 

mass spectrometry. This allows a spectrum of N data points to be acquired in ){, the 
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time that would be required to acquire the data by scanning a channel at a time (as for a 

sector or quadrupole instrument). 

1.4.2.1 Broadband Detection 

A detection limit exists in an FT -ICR cell due to the resistance and capacitance of the 

receiver plates and their connecting wires. Under normal experimental conditions at 

typical ICR frequencies (> 10kHz), using broadband chirp or SWIFT excitation, the signal-

to-noise ratio of an experiment is independent of the cyclotron frequency. However, below 

these frequencies the signal-to-noise ratio varies directly with the frequency and is 

therefore a reflection of the relative current differential produced at the detection plates. 

The detection limit of a cell due to this capacitance and resistance can be calculated from 

the following equation: 

(28) 

Where C is the capacitance of the detection circuit, Vd(P-P) is the peak-to-peak 

amplitude of the detection voltage and AIM is a coefficient that is approximately 

proportional to r and can be determined graphically [181 N is the minimum number (N) of 

ions that can be detected from an undamped signal in a single 1 second scan that can give a 

signal-to-noise ratio of 3: 1. Thus a detection circuit with a capacitance of 60 picoFarads, a 

Vd(P-P) of 3xlO-7 V and an A1(r) of 0.5 has a detection limit of approximately 225 ions at an 

observed signa] to noise ratio of 3: 1. 
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1.4.3 Trap Size and Shape and its Effect on Dipolar and Two­
Dimensional Excitation 

Previous expressions for ion cyclotron radius r and translational energy following 

single-frequency resonant azimuthal dipolar excitation by a spatially uniform rf electric 

field have assumed an infinitely extended array of electrodes. This is obviously not the 

case within a typical FT-JCR instrument where the cell is of a fixed and finite geometry. 

However, equations 23 and 24 remain good approximations if a scaling factor 13 is 

included in the expressions. Thus the equations for a trap of finite size can be written as 

follows. 

r= 

1/ 
PdipolarVp-p l sweeprate 

(29) 

(30) 

Equations 29 and 30 are for single frequency and broadband frequency-sweep dipolar 

excitation respectively. 

1.20607 x ID 7 
f.l2 .,. 2 V 2 (T . ) 2 

K E Pdipol",.~ p-p eJtrlk 

. .!. pmf<>xcilali(ln = 2 
dm 

(31 ) 

(32) 
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Pdipolar values for different geometries are shown below. 

TABLE 1 

Trap End Cap Excitation 
Shape Separatio Electrode y a J3dipolar J3quad 

n Separation 
Ideal NA NA 0.50000 4.00000 1.00000 2.66667 

Cube a d=a 0.2787 2.8404 0.80818 2.77373 

Infinity a d 0.2787 2.8404 -0.900" NAY 

Hyperbolic a d=7.rz 0.44403 4.0905 0.66483 2.6469 

x : Approaches the value of ~dipolar for an infinitely long cylindrical trapl y : Cannot perform traditional 4 plate 
quadrupolar excitation therefore must use 2 plate quadrupo\ar excitation instead 

. Similarly the equation for the inter-conversion of magnetron motion to cyclotron 

motion via quadrupolar excitation can also be expressed with a scaling factor p. 

(33) 

Ideal scaling factors can be produced for all three of these potentials by the 

"hypercube", which consists of a 5 x 5 grid of electrodes on each trap surface giving 150 

individual electrodes which can be controlled separately. Thus a virtually perfect potential 

can be created within this trap that results in a Pdipolar of approximately 1. Problems do 

exist however with such a trap since the large amount of electrodes necessarily mean an 

increase in capacitance and thus a decrease, to extremely low levels, in detection and 

excitation efficiencyJ19] 
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1.5 Ion-Neutral Collisions, Mass Accuracy, Resolution and Resolving 

Power ofFT-ICR MS 

Collisions of the ions in an ICR cell with neutral molecules an important consideration 

when discussing factors that effect mass resolution. The most commonly used model for 

collisions in ion cyclotron resonance is to consider the effect of the collisions as a 

frictional damping force i.e. as represented as below: 

dv 
m-= qE+qv x 8- fr 

dt 
(34) 

Such a theory depends on the rate of ion-molecule collisions. This is calculated by 

assuming[20] : 

(35) 

Vco/lision is the number of ion-molecule collisions per second. This can be calculated by first 

determining the rate constant for ion-molecule collisions. An ion and a neutral can be said 

to interact through an ion-induced dipole potential ("Langevin model") at thermal 

velocityJ21] When the ion is modelled as a point charge then: 

(36) 
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u is the isotropic polarisability of the neutral, e is the ion charge in statcoulombs or esu (e 

= 4.80653xlO-10 statcoulombs) and r is the distance between the two particles. From 

equation 36 and the Langevin model the ion-neutral collision rate constant can be 

calculated: 

(37) 

J.l is the reduced mass of the ion or the molecule and u' is the isotropic polarisability of the 

neutral. This frictional damping model results in an exponential damping of the time-

domain signal. 

The previous model, although it offers a good description for room temperature ions, it 

is not an ideal description for the higher velocities of ions observed during a typical FT-

. [67) [67) 
ICR expenment. It has been suggested that a hard sphere model , whose overall 

equation of motion is given below, would be more appropriate: 

dv 
m-

d 
=qE+qvxB-fo'Z 

t (38) 

Thus instead of exponential damping of the ion velocity with time as for the Langevin 

model the ion velocity is now given by 

v(/)= Vo 

l+v m /Im +m o neJllmi IlImtral Ion N O'harr/sphere t 
(39) 

50 



Chapter 1: Introduction 

N is the neutral ion density, mneutrnl and n'lion are the masses of the neutrals and ions 

respectivley, crhardsphere is the collision cross section of the hard-sphere. This can be 

transformed numerically to give a frequency-domain spectrum. This spectrum is narrow at 

half-maximum peak height but extended at the base. This broadness (due to the fact that 

the time-domain signal is not infinitely long) can be overcome experimentally by making 

use of apodisation to produce better signal-to-noise and removal of the side bands. which 

make up the broad base of the peak. Apodisation can be thought of as a method of 

smoothly reducing the time-domain signal from its maximum to zero at the point of signal 

truncation. It is a method of "weighting" the time-domain function before Fourier 

transformation to remove the unwanted artefacts from either side of the main peak. 

Unfortunately, apodisation on the one hand reduces the intensity of the side bands, but on 

the other broadens the peak resu1ting in poor resolution. 

The relationship between cyclotron frequency and mass resolution can be obtained from 

equation 3a by calculating the first derivative giving: 

(40) 

This demonstrates the relationship between frequency resolving power and mass resolving 

power; apart from a minus sign the two are identical. Thus due to the fact that frequency 

can be measured with an accuracy of up to 9 decimal places, mass accuracy is exceptional 

in FT-ICR MS. Mass spectrometry makes use of the convention of defining mass 

resolution as the peak width at half-maximum peak height i.e . .1mSO%' Thus the resolving 

power is defined as m/ .1msoo. and experimental mass resolution can be expressed as: 
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(41) 

It should be noted that the time-domain signal damps to zero at the high pressure limit but 

is continuous for the low pressure limit. Thus resolving power in the low pressure limit is 

independent of m1z but peaks will be closer together due to ICR frequency varying 

inversely with mlz. This latter reason is why mass resolving power varies inversely with 

m/z. 
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1.6 Upper Limits ofFT-ICR MS 

A variety of factors affect the upper mass and energy limits of a typical ion trap. These 

include space charge effects, non-uniform electric fields, ion potential energy limits and 

the actual physical dimensions of the trap itself For example, ions whose cyclotron radius 

exceeds the trap dimensions (or cell radius) will be lost from the cell due to collisions with 

the cell walls. Thus the upper mass limit for ions at thermal equilibrium can be computed 

from the following equation: 

(42:) 

Thus for a singly charged ion at room temperature in a ce]) of radius 3 cm in a 

magnetic field of 9.4 Tesla the upper mass limit is approximately 14.9 mega Daltons. 

However, this does not take into account the fact that ions must start with a much smaller 

cyclotron radius in order to be excited to a coherent and detectable ion signal. The upper 

mass limit is therefore much reduced. 

Other constraints on the. upper limit of FT -ICR include the loss of ions with a potential 

energy larger than the voltage applied to the trap plates. ion-ion repulsion of like charge 

and mass ions to different regions of the cell. which due to the finite size of the cell will 

necessarily contain regions of different electric potential, resulting in peak broadening. 

Equation 35 above is only valid when there are no electric fields within the trap. It has 

been shown by Ledford et at [22] that the reduced cyclotron and magnetron frequencies 

coalesce to a common value I1\:rit such that when an ion of mlz > I1\:rit is present in the trap 

it becomes unstable and is lost. 
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1.7 Mass Spectrometry/ Mass Spectrometry (MSIMS) 

FT-ICR MS has advantages over other mass spectrometry techniques in this area due to 

its ability to achieve MSn experiments. If desired it is possible to produce MS/ MS spectra 

on a parent from the initial ion population and then an MSIMS spectrum from the previous 

stage. With care this can be extended to multiple stages of dissociation giving detailed 

information on the molecule that is impossible to obtain from other mass spectrometers. 

Several techniques exist in FT-ICR MS for dissociation of molecule ions including 

collision induced dissociation (CID)[23]. surface induced dissociation (SID)[24, 25]. 

blackbody infrared radiative dissociation (BIRD)[26] and infrared multiple photon 

dissociation (IRMPD) [27, 281 Each technique has its own distinct advantages. 

CID can be split into two regions of interest. These are sustained off-resonance 

irradiation (SORI) [29, 30]and on-resonance irradiation. SORI is a "softer" method of 

excitation of molecule ions for dissociation since it deposits less energy into the ion 

population of interest compared with on-resonance excitation. SORI influences the ion 

population of interest by making use of an rf electric field that is applied so that it is just 

out of resonance with the effective cyclotron motion «OelT) of the ion. This causes the ion 

population to fluctuate between being in phase and out of phase with the rf field according 

to a periodicity of 2tr/wo - weJ! where COo is the frequency of the off-resonance rffie1d.166
] 

The ion population is therefore alt~matively excited and de-excited causing a build up of 

energy (after consecutive collisions) in the ions until it reaches its dissociation threshold .. 

SORI overcomes one of the major problems involved in MSIMS in FT -ICR, that of radial 

diffusion of the ions away from the centre of the cell due to collisions with the neutral 

collision gas. This results in a situation where ions are detected at a point removed from 
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the centre of the cell and therefore below maximum efficiency and resolution. SaRI, due 

to the low energy imparted to the parent ions, maintains the ions near the centre of the cell. 

The strength, and the position off-resonance, of the applied field to the parent ion 

frequency can be adjusted so that the desired amount of fragmentation can be observed i.e. 

the amount of energy imparted to the parent ion population can be controlled. Other 

techniques such as very low-energy (VLE)[31] and multiple excitation collisional 

activation (MECA) [32] operate under a similar principle, although SaRI is most 

commonly realised in FT-ICR MS due to its ease of use and simple implementation. 

IRMPD makes use of an IR (10.6 J.l.m) laser to "heat" the ions. MSIMS results in 

similar spectra as those seen by SaRI/CID. However, IRMPD has an advantage over 

collision induced dissociation in that the cell pressure can be maintained at extremely low 

pressures giving ultra high resolution of the daughter ions produced. The necessary gas 

pulse for CID means that the resolution is reduced and experimental duration is increased 

due to an obligatory pump down period. 

A further method for MSIMS takes advantage of the black body radiation produced in a 

heated cell in a vacuum. This technique, known as BIRD, requires the parent ion to be 

confined in the trap for 10-1000 seconds. This allows the ion structures temperature 

dependent features to "interact" with the black body radiation. Since the ion cloud 

assumes a BoItzmann distribution within the cell a known and controllable energy 

distribution, then not only is the fragmentation pattern produced indicative of the ions 

structure but infonnation on the dissociation energetics and mechanisms can be elucidated 

from the temperature dependence of the unimolecular dissociation rate constants. 

Surface induced dissociation provides high enerb'Y deposition in the parent ion and a 

narrow distribution of this energy. The method, however, produces very little new 
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structural infonnation and due to the high energy of the daughter ions, the confinement of 

these ions is extremely difficult. 
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1.8 Ionisation Technigues 

1.S.1 Electron Impact Ionisation and Chemical Ionisation 

Electron impact (El) ionisation is the established ionisation method in organic mass 

spectrometry. In its simplest form, a volatile sample passes through an electron beam. 

The collision of the electron beam with the volatile sample can cause an electron to be 

removed from the sample molecule and thus causes the analyte to be ionised. The El 

source is operated at relatively high pressures to maintain sensitivity and is typically 

relatively gas tight (apart from the small holes for the introduction of the electron beam 

and the exit slit for the ions). El as an ionisation technique is now mainly used for the 

analysis of small organic and inorganic molecules. 

The electron beam in electron impact ionisation is generally formed by heating a 

tungsten or ruthenium filament, the electrons being accelerated away from the filament by 

the application of an acceleration voltage somewhere between 5 and 100 volts. A 

magnetic field of a few hundred gauss is also applied across this region to confine the 

electrons to a tight helical path. Total electron (ionising) beam current can be monitored 

by feedback control from the current reaching the trap plate at the opposite end of the 

electron beam. Ions are created by collisions with the electrons and are thrust into the 

mass spectrometer by an applied repelling field, although only something like 1 in 1000 

molecules attendant in the source are ionised. Ionisation efficiency tends to be at a 

maximum at an electron beam energy between 50 and 100 eV with nowadays almost all 

spectra being acquired at a standard electron energy of 70 eV, due to the sensitivity in this 

region being close to maximum and fragmentation being unaffected by small changes in 

electron energy. (El mass spectral libraries typically consist of spectra obtained at this 
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energy.) El mass spectra typically consist of several fragments and the technique is thus 

quite "harsh". 

In 1966 Munson and Field introduced a new technique for sample ionisation, this was 

chemical ionisation "(CI). [45] In this technique ions are generated by ion-molecule 

reactions rather than collisions with an energetic electron beam. Cl is achieved by 

producing an ionised beam of reagent gas which is reactive with the anatyte of interest. 

The reagent gas (e.g. methane) is maintained at a pressure of about 1 Torr while the 

analyte is typically at a partial pressure 0.001% that of the reagent gas. 

The technique's wide applicability to less robust samples is due to the lower excess 

energy in the sample molecule compared with El (i.e. perhaps 10 eV above ionisation 

energy for El but, depending on the experiment, only 5 eV for Cl) and the higher stability 

of protonated molecules compared with odd-electron ions. 

Take as an example the common reagent gas methane. The predominant reagent ions 

formed under electron impact are CHs + and C2HS +; 

CH+· + C'u ~ CH+ + CH· 4 114 S 3 

Other reactions that are less important include: 
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Subsequent reactions between sample molecules and the reagent ions result in 

protonated molecules. Reactions between sample and reagent ions can be placed into four 

categories: 

Proton transfer 

Charge exchange 

Electrophilic addition 

Anion abstraction 

M + BH+ ~ MH+ + B 

A1 + X+· ~ M+· + X 

M+X+ ~ MX+ 

AB+XT ~ B+ +AX 

The m~in reagent ions formed from methane produce molecules predominantly by 

proton transfer reactions. 

1.8.2 Fast Atom Bombardment (FAD) Ionisation 

F AB was once the method of choice for the analysis of labile molecules such as small 

peptides. The technique makes use of an incident beam of neutral AI or Xe (usually Ar) 

which strikes a probe tip coated with the analyte of interest. This produces a beam of 

analyte ions that can be detected with a mass spectrometer. 

Later workers introduced the idea of an ion beam rather than a neutral beam to cause 

ionisation. [46] This technique, since it now involved the use of an ion beam for ionisation 

became known as liquid secondary ion mass spectrometry (LSIMS). The problem which 

exists with this type of ion generation is that sample is rapidly lost from the area of the 

probe tip struck by the primary beam. This problem can be overcome by making use of a 

liquid matrix, such as glycerol, with which the sample is mixed. The liquid matrix in this 
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technique allows fresh sample to flow into the region that has been depleted. A continuous 

secondary ion beam is thus produced, for a minimum of 20 minutes in some cases, which 

allows better use of scanning instrumentation such as magnetic or electric sectors. An 

upper mass limit of approximately 24, 000 Daltons with a 35 keY caesium ion beam was 

established at the time FAB was widely used.[47] 

Preliminary investigations made use of a neutral primary beam to overcome problems 

stemming from the high voltages required in the source of a magnetic-sector mass 

spectrometer. Extensive investigations subsequently showed that whether the primary 

beam was charged or neutral made little difference to the quality of the spectra obtained, 

although it was noted that increasing the size ofthe particles in the primary beam increases 

the yield of molecule ions in the secondary ion beam.l48] For organic analytes it was also 

noted that there was an increase in secondary ion yield if the primary beam was changed 

from atomic to molecular ions. [49] 

The ionisation mechanism for FAB! LSIMS is complex and incompletely understood. 

The mechanism has been considered to involve desorption of ions pre-formed in the 

sample into the gas phase by the incident primary beam. These ions would then undergo 

ion-molecule reactions in the region of dense gas just above the surface. These pre-formed 

ions have been found to be desorbed in preference to other methods of ionisation, 

however, spectra show that this is not the main process leading to formation of the 

secondary ion beam. A collision cascade is initiated when the primary ion beam strikes 

the surface of the probe tip, which causes extensive ionisation within the matrix. There is 

also a fast transition from the liquid to the gas phase that leaves the sample ions essentially 

matrix free. The resulting spectra are thus a result of all these processes. 
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The extremely fast expansion of the plume that occurs when the primary ion beam 

strikes the sample target offers an explanation on why labile molecules can survive intact 

during this ionisation process. The extremely short period of time during which the ions 

are at a temperature sufficient to cause fragmentation means that only uni-molecular 

dissociations are sufficiently fast to produce fragments. Thus the labile molecules remain 

intact to provide molecule-mass information in the mass spectra. 

I.S.3 Plasma Desorption (PD) 

Prior to the introduction of MALDI and ESI, plasma desorption mass spectrometry was 

applied to the analysis of larger biomolecules, since LSIMS/ FAB was restricted to the 

lower masses. The ability of PDMS to analyse these larger molecules presumably related 

to the fact that the overall ionisation process in PDMS is much more energetic (typically 

100 MeV compared with the keY range of LSIMS/ FAB). This high enerb'Y is due to 

ionisation in PDMS being prompted by the fission products of Cf252 striking the backside 

of an aluminium or aluminised polyester foil plate on which the sample is deposited. 

These fission fragments are able to pass through the foil and cause desorption of the 

sample ions. A so-called fission track is formed on the solid surface as the fission products 

of Cf252 strike the foil. This area of damage is thought to be associated with desorption of 

cations, protons and small molecular ions such as CH3 +. Intact molecular ion species of 

the sample of interest are thought to be desorbed from the edges of this region, with energy 

being transferred as a shock wave or an expansion of the lattice surrounding this fission 

track. This energy is just enough to break the bonds holding the sample to the surface but 

insufficient to break the non-covalent bonds of which the sample is made up. 
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Even though there is an extended mass range in PDMS compared with LSIMS/ F AB, 

the range of PDMS does not extend to extremely large proteins. ESI and MALDI have 

replaced them as the methods of choice for the ionisation of these types of samples. 

1.8.4 Field Desorption 

This was first investigated by Muller [50] in 1951 and made use ofa strong electrostatic 

field to produce ions from a sample substrate under vacuum; it was adapted to mass 

spectrometric analysis by Inghram and Gomed51 ] This allowed molecular ions to be 

formed from involatile and thermally unstable analytes. 

The ionisation process in mass spectrometry occurs from a metallic wire anode coated 

with dendrites of small radius of curvature (- 3 Angstroms). These dendrites act as a 

coating of extremely fine points at whose tip there is an extremely strong electrostatic field 

of between 107 and 108 Vcm- I
• The sample to be ionised is applied to the emitter and the 

sample desorbed by the intense electrostatic field. 

The electric field at the tip of the dendrite is given by the following expression where Cl 

is a shape factor, V is the applied voltage, r is the radius of curvature and d is the distance 

to the counter-electrode. 

(43) 

There are thought to be three main processes involved in the production of ions via field 

desorption. These would be the following. 
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1) Proton or cation attachment. Sample ions may already be present as ions in the solid or 

liquid phase due to the presence of salts or acids or the fact that the sample is an 

electrolyte. Such samples will thus desorb ions at a lower field (106 Vcm-1
) compared 

with other processes involved in the field de sorption of ions. 

2) Electron tunnelling. At the maximum electric field induced in field desorption an 

electron from the sample molecule can tunnel into the metallic emitter leaving a 

molecular ion M+·. These strong electric fields are present only at the dendrite tips. 

3) Thermal mechanisms. Many samples require heating of the emitter, which may cause 

thermal fragmentation of the sample and may lead to ionisation. 

Emitter preparation is complex and takes several hours and usually consists of the 

formation of a carbonaceous dendrite from, for example, benzonitrile on a tungsten wire of 

10 J.l.m diameter. Temperature and current applied to the emitters as they are grown must 

be closely monitored throughout to allow sufficiently large but fine dendritic needles to 

form on the tungsten wire. The process is usually automated to allow accurate control of 

these parameters as the growth is extremely sensitive. The prepared emitters are either 

dipped into the sample molecule or the sample is introduced to the emitter via a microlitre 

syringe. 
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1.S.5 Laser Desorption and Matrix-Assisted Laser Desorption Ionisation 

(MALDIl Mass Spectrometry 

Initial experiments involving lasers to ionise molecules focused on the use of both 

ultraviolet (UV) and infrared (IR) lasers to desorb directly and ionise the sample of 

interest. This so called laser desorption had an upper mass limit of approximately 1000 Da 

above which molecules were susceptible to degradation rather than ionisation. It was not 

until Tanaka et al [52] and Hillenkamp et al [53] demonstrated the advantages of a 

"matrix" in 1987 to allow absorption of the laser energy and thence transfer of this energy 

to the sample molecule of interest, that the use of lasers for ionisation in mass 

spectrometry became commonplace. 

Previously the laser wavelength had to be "tuned" to the sample molecule of interest 

for efficient vaporisation and ionisation. Now, however, the matrix could be selected that 

absorbed the laser energy at a certain fixed wavelength so that a single laser could be used 

to ionise all samples. The laser of choice in most MALDI instruments today is the 

nitrogen UV laser operating at a wavelength of 314 llm. although at the time of writing 

there is great interest in IR lasers for ionisation. 

There are many different types of matrix depending on the sample to be analysed. For 

example, a protein! peptide sample would typically be mixed with matrices such as 2,5-

dihydroxybenzoic acid and cinnamic acid derivatives. Other classes of sample such as 

polymers would make use of other matrices, specific matrices giving better ionisation for 

certain samples. These matrices efficiently absorb the UV laser energy and pass it onto the 

analyte of interest. Typical sample preparations include the analyte at low concentrations 

with the matrix of choice at a molar ratio of 1: 1 000. The analyte embedded in such a 
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sample is shielded from any excess energy that might cause fragmentation and is separated 

by the matrix molecules thus preventing aggregation. 

MALDI is typically combined with time-of-flight due to the pulsed and extremely 

focused nature of ion formation and the fact that the energy distribution of ions formed is 

uniquely suited to this method of analysis. The low cost and ease of use of such 

instruments, as well as the large mass range, mean that the two methods are particularly 

suited for most applications. 

When the laser strikes the sample! matrix mixture at the start of the experiment a 

plume of matrix and analyte leaves the surface of the sample probe. The MALDI 

mechanism of ion formation is not weIl understood and there is some debate over whether 

the ionisation of the sample molecule takes place in this plume or within the solid sample 

deposited on the sample probe. 

Ions are commonly thought to be formed in the plume by protonation! deprotonation or 

cationisation. Typical molecule ion peaks thus consist of [M+Ht or [M+ Xr+ where X is a 

cation and n is the relevant charge~ little or no fragmentation is seen in a typical MALDJ 

experiment. This factor means that MALDI is well suited for the analysis of biomolecules 

and as such MALDI has brought about a large growth in this area of mass spectrometry. 
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1.8.6 Electrospray Ionisation 

Electrospray ionisation [54] in its simplest from, takes a sample in an aqueous 

medium (typical1y a 50:50 mixture of water and a dipolar solvent with a few percent of 

acid), and passes the solution through a fine needle to which a potential of 2-3 kV is 

applied. As the liquid emerges from the needle it breaks up into small charged droplets, 

which will eventually fonn the ions of interest. 

The electrospray process is not fully understood however, due to there being no one 

mechanism for ion fonnation that successfully incorporates all the experimental evidence 

and allows predictions to be made on the outcome of an experiment. Several mechanisms 

have been proposed and these include one mechanism proposed by Dole [55] and another 

by lribame and Thomson [561 Both mechanisms are considered to be an incomplete 

description of the electrospray process. To start, a more detailed explanation of droplet 

fonnation is required. 

The aqueous medium containing the sample of interest, at a concentration of 

between 10-4 and 10.{) Molar, is sprayed through a needle at a potential of approximately 3 

kV. The needle dimensions is typical1y 0.2 mm o.d. and 0.1 mm i.d. and is located 

approximately 1-3 cm from a planar counter electrode through which there is an orifice 

that leads to the mass spectrometer. The electric field at the tip of such a needle is 

extremely high at about 106 Vm- t
• This can be calculated for a needle of radius ro at a 

potential Vc and located a distance d from the planar counter electrode using the equation 

below. 
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E = _--:2;-,v;,,,--::-
c r In(4dl) 

c Ire 
(44) 

Geometrically rc is the most important parameter with Ec being inversely 

proportional to rc. The intense electric field at the needle tip is of immense importance in 

producing charged droplets. The field partially penetrates the liquid surface causing the 

ions within the bulk solution to separate into two layers. The positive ions migrate to the 

surface of the liquid while the negative ions remain in the bulk of the solution (if the 

needle is held at a positive potential); this negates the field produced by the needle within 

the solution. The positive ions at the surface of the liquid are attracted downfield towards 

the counter electrode and this stretches the solution into a Taylor cone. This cone is a 

balance between the surface tension of the solution and the electric field at the needle tip. 

As the electric field at the tip is increased the cone becomes unstable and a liquid filament 

of a few micrometers across is produced. As the voltage is raised further, the cone tip is 

eventually replaced by a multispray condition, where four or more liquid filaments are 

produced from the needles rim. These filaments in turn break up into charged droplets 

some distance downfield, and since the solution is essentially an electric bilayer, with the 

surface enriched with positive ions, the droplets will have a surface that is positively 

charged with few counter ions in the droplet bulk. 

The electrophoretic mechanism described above is favourable on experimental and 

energetic !,Yfounds. Experimental data (mass spectra) of solutions containing known 

electrolytes at concentrations of 10-5 to 10-3 Molar, show only those electrolytes known to 

be in the solution. Also, energetically the electric double layer prevents ionisation by other 

methods such as field ionisation. Deionising the solution results in an intermittent and 
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weak signal, thus providing further evidence for the electrophoretic mechanism of droplet 

fonnation. 

The charge carners m the electrospray mechanism have only recently been 

considered, mainly by mass spectrometrists to whom the nature of these charge carriers are 

of great importance. Pfeiffer et af [57] were the first to propose the electrophoretic 

mechanism. while Hayati et af [58] expanded the theory. 

However, it was left to Smith [59] to consider the mechanism from the position of 

the mass spectrometrist. He provided a useful equation [54] that predicts the electric field 

at which the electrophoretic mechanism would be initiated for different solutions. 

(45) 

r is the surface tension, re is the capillary radius and d is the distance between the capillary 

and the counter electrode. Von is predicted and observed experimentally to increase with 

the surface tension of the solution, so that water, with the highest surface tension, also has 

the highest onset voltage for droplet fonnation. A few hundred volts higher than Von is 

usually required for stable electrospray operation, although, at higher electric fields, 

corona discharge becomes a problem, resulting in protonated solvent clusters such as 

thO+(H20)1I in the positive ion mode, and a drop in the efficiency of the electrospray 

process. Electron scavenging gases such as O2 and SF6 can be used to prevent this 

discharge. It should be noted that air contains enough oxygen to prevent corona discharge 

for all but extremely high electric fields, and since the electrospray ionisation source in 
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mass spectrometry is typically utilised at atmospheric pressure, then for most experiments 

O2 and SF6 do not need to be added. 

It has been observed that the droplets formed by the electrophoretic mechanism 

undergo evaporation of the bulk solvent and coulombic explosions that result in the 

formation of smaller and smaller droplets [54] ; the transition from droplet to ion however, 

cannot be observed, and it is the mechanism of this transition that is still debated. 

The droplets have been found to "explode" at a point wh~n the surface charge 

overcomes the surface tension of the solution. Thus the charge Q overcomes the surface 

tension y at a point known as the Rayleigh limit, according to the equation below. 

(46) 

Eo is the permitivity of vacuum, y is the surface tension and RR is the radius of the droplet. 

The initial charge of the droplet has been found to be approximately 10-14 Coulombs by 

Gomez and Tang [60] which corresponds to only 50 % of the Rayleigh limit for a droplet 

of 1.5 Ilm. Droplets within the micrometer range are known to retain their charge and not 

emit gas phase ions. Such droplets are reduced in size by evaporation until they come 

close to the Rayleigh limit where they fission into smaller droplets. (Experiments carried 

out in the early 1990's showed that fission occurred at approximately 80 % of the Rayleigh 

limit for droplets in the 1 J..lm rangeJ60] It has also been found in studies of the charge-to­

volume ratio that larger droplets come closer to the Rayleigh limit. Droplets will thus 

undergo successive evaporation and fission until the droplets are small enough for ions to 

be produced. 
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The droplets maintain a constant charge Qo while the solvent evaporates, until the 

charge on the droplet surface exceeds the surface tension of the liquid[601 The droplet 

then cleaves into several much smaller daughter droplets and a larger parent, and the 

process starts all over again, with successive fissions producing smaller and smaller 

droplets. 

The droplet itself typically does not cleave into two equally sized daughter droplets, 

but instead it has been observed that the parent droplets vibrate between oblate and prolate 

shapes forming a tail. This breaks up into a larger parent droplet and several (-20) 

daughter droplets. These daughter droplets, which are of uniform size and shape, carry 

away approximately 15 % of the charge and 2 % of the mass of the parent, resulting in 

daughter droplets that are enriched with positive charge. This can be thought of as 

"uneven" fission while a cleavage that results in two evenly sized parent droplets can be 

considered to be an "even" fission. Figure 7 represents the mechanism of "uneven" droplet 

formation. 

The times for the fissions to occur can be calculated by using expressions for the rate 

of solvent evaporation from small droplets given below. [54] 

(47) 

Where v is the average molecular velocity of the solvent gas, pO is the vapour pressure of 

the solvent at the temperature of the droplet, M is the molar mass of the solvent molecules, 

p is the density of the solvent, Rg is the gas constant and T is the temperature of the 

droplet. The condensation coefficient a is -0.04 for both ethanol and water. 
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The results in diagram 4 are calculated from more complex equations and are 

calculated for a methanol droplet of 1.5 J..lm. charge Qo=8xlO-15 Coulombs and at an 

ambient temperature of 35 QC. It is expected that the daughter droplets of radius ~ O.08J..lm 

and approximately N=280 elementary charges will also undergo solvent evaporation and 

successive coulomb explosions until eventually gas phase ions are formed. 
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Figure 7 illustrates the fact that the time scale for this droplet shrinkage to ions is in 

the order of hundreds of microseconds, roughly the amount of time that the droplets are 

present in the source region. Therefore, theory agrees with experiment in this respect. 

A difficulty arises, since the droplets are so small, the type of fission they undergo is 

unobservable. Thus these droplets may undergo the "uneven" fission as described above 

or the "even" fission mechanism. Whether the droplets undergo "uneven" or "even" 
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fission is of interest since it determines the number of excess positive charges on the 

surface compared to the charge-paired ions in the droplet bulk. 

If the mechanism of droplet fission is taken to be even then there will be no net 

increase in charge on the surface compared to the bulk charge-pairs. However, uneven 

fission would lead to an increase if it is assumed that when the daughter droplet is formed 

the surface charge is transferred but the ion pair concentration in the bulk remains the 

same as the parent. This would lead to a factor of seven increase in the excess charge on 

the surface of the droplet, with successive fissions increasing by a factor of seven each 

time. A second generation would therefore have 49 times as much excess positive charge 

on the surface (compared to the bulk) compared to the parent droplet. It could therefore be 

argued that "uneven" fission is an essential process in forming electrospray ions. 

There are two proposed mechanisms of ion formation from these daughter droplets. 

These were mentioned earlier and consist of Iribame and Thomsons ion emission 

mechanism [56] (field desorption mechanism) and Doles single ion in droplet theory 

(SIDT) [55] . 

The latter depends on the formation of extremely small (R~ I11m) droplets 

containing only one ion. Solvent evaporation from such a droplet would leave a bare gas 

phase ion. The former theory predicts ion emission becoming competitive with Rayleigh 

fission at a droplet radius of 811m and with a charge of ~ 10-17 Coulombs. This ion 

emission is maintained by solvent evaporation, allowing R to decrease and thus retaining 

the high charge to droplet bulk ratio needed. Since the ion emission mechanism does not 

require the formation of droplets containing a single ion, ions can be produced in the gas 

phase from droplets that contain other solutes. 
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This difference was initially thought to be sufficient to prove one mechanism over 

the other. For example if a solution is made containing NaCI in various concentrations, 

then at the higher concentrations ifSIDT held (and with the "even" fission mechanism) the 

mass spectra should show not just Na + ions but clusters ofNa +(NaCl)n' This is because at 

higher concentrations some of the small SIDT droplets should contain NaCI charge pairs. 

However, experiments showed a complete absence of these clusters and at the time this 

was taken as evidence for the ion emission mechanism. If "uneven" fission is assumed, 

however, the results then validate the SIDT mechanism since the droplets may be depleted 

ofNaCI ion pairs after several generations. 

1.8.6.1 The Ion Emission (lribarne And Thomson) Theory 

The Iribame or ion emission theory is based on transition state theory. The rate 

constant kI for emission of ions from a droplet is given by the following relationship: 

(48) 

where k is the Boltzmann constant, h is the Planck constant, T is the temperature of the 

droplet and AO# is the free energy of activation. 

The ion emission mechanism has an advantage over the SlOT theory (as stated 

previously) in that it predicts the different gas-phase ion intensities seen for different ions 

at the same concentration in solution. That is it predicts the rate of ion emission 

depending on the ion's chemical properties. (If SlDT takes into account the surface 

activity of the ions as an adapted Iribame and Thomson mechanism does later in this 

section, then this will account for the selectivity of the e)ectrospray mechanism. Since the 
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ions that are enriched on the surface will be those that will preferentially form gas phase 

ions). The transition state is assumed to be a "late" transition state, whereby we mean that 

it has more in common with the products of the reaction than the reactants. The transition 

state for Iribarnes mechanism shows the ion surrounded by a solvation shell outside the 

droplet bulk. The energy of such a transition state can be calculated using classical 

electrostatics and thermodynamics. The barrier in this transition state is due to the 

opposing electrostatic forces. The repulsion of the escaping ion by the other charges in the 

droplet bulk and the attraction between the escaping ion and the droplet because of the 

polarizability of the solvent medium gives rise to this electrostatic barrier. One must 

remember, however, that if the ion with its solvation shell is formed at any other point in 

time then the ion emission mechanism is invalidated. 

The free energy of activation in the previous equation was found to depend on four 

parameters. These were N the number of charges on the droplet, R the radius of the 

droplet, the ion cluster solvation energy and d the distance of the ion charges from the 

surface of the dropled 61] kI increases with N and decreases with R. These parameters 

are identical for any ion formed under the same conditions while the other two parameters 

express individual characteristics of the ions themselves. Ions with a solvation shell are 

emitted from the droplet bulk. They are not emitted as bare ions, therefore the larger the 

solvation energy the higher the rate of emission from the droplet bulk. For example the 

naked Na+ ion needs approxi\tately 98 kcal mort to transfer the ion from solution to the 

gas phase, while the solvated ion Na +(H20)7 requires only about 56 kcal mOri, 

The charges on the droplet cannot be on the droplet surface where their energy 

would be minimised since this would disrupt the solvation shells of the ions~ the ion 

charges must thus reside just within the droplet bulk allowing their solvation shells to 
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remain intact. Thus ions such as Lt which are strongly solvated have a greater d (distance 

of the ion charges from the droplet surface). lribarne and Thomson have provided 

calculations ofkl for most of the alkali cations [61] which show a downward trend in value 

as the group is descended. 

Ion intensities in electrospray ionisation depend on the total concentration of the 

electrolytes present in the solution. In a typical electrospray sample analyte and impurities 

exist together, the impurities originating from the solvents used in sample preparation and 

from sources such as high pressure liquid chromatography (HPLC). The analyte solution is 

therefore never a single electrolyte system. The impurities usually consist of alkali metal 

ions such as Na +, Lt and other ions commonly present in the solvents used such as ~ +. 

These impurities are important because at analyte concentrations below approximately 10.5 

Molar the electrospray process would cease to function without their presence in the 

solution. 

Experimental data continual1y reveals similar relationships between analyte 

concentration and ion intensity. A plot of ion intensity versus concentration for the analyte 

shows a linear section of slope approximately 1 from 10-8 to 10-6 Molar followed by 

"saturation" and a small drop in intensity at concentrations below 10.3 Molar. A similar 

curve for the impurities present in the solution is observed with the minimum at 

approximately 10-3 Molar rising to a maximum at 10-7 molar, while the total ion intensity 

shows a gradual increase as the total concentration of both impurity and analyte increases. 

At low concentrations of analyte the capillary current is carried mainly by the 

impurities which are at a constant concentration~ above an analyte concentration of about 

10.5 Molar the analyte begins to dominate. Since there is an increase in the electrolyte 

concentration in the solution at this concentration of analyte the total capillary current 
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increases. At the same time there is a noticeable drop in the intensity of the current due to 

the impurity. this is because there is a competition between the electrolytes present in the 

solution for the conversion to gas phase ions. There is thus a reduction in the impurity ion 

intensity as the analyte concentration is increased. A simple relationship exists for a two-

electrolyte system such that the ion intensity for the analyte can be calculated. If the 

analyte has a concentration of [Ai and the impurity [Bi with respective ion intensities lA 

and Is the relationship is as follows. 

(49) 

fp is a factor that depends on f the fraction of charges on the droplet that are 

converted to gas-phase ions and p the ion-sampling efficiency. It has been found 

experimentally that the factor fp is constant up to a total concentration of 5 x 10.4 

Molad54] From this relationship it should be apparent that the intensity of the analyte 

ions lA is dependent on the ratio of kA to ks. This ratio is the yield ratio of gas phase ions 

A + and B+ comparable with the solution concentrations. kA and ks are the Iribame rate 

constants for the analyte ions A and B. 

Solutions for the yield ratio were initially determined experimentally by keeping the 

concentration of the electrolytes equal in the analyte solution. [56]This can be considered 

to be a special case in equation 6a and 6b which when applied to lA and In leads to the 

expressions below. 

(50) 
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(51) 

The relationship between lA and la and solution concentrations is thought to be 

indirect. A more useful measurement would be the number NA and NB of charges due to 

analyte and impurity ions at the surface of the droplets and the number nA and nD of 

charge-paired ions. This latest relationship (Equation 50) can be used to provide 

infonnation on the concentrations of analyte and impurity corresponding to the number of 

ions in the droplet by its deviation from, or agreement with, experimental results. 

For a three-electrolyte system, that is two analyte electrolytes and the impurities 

present in the solution, a more complex relationship exists as expected. This is shown 

below: 

(52) 

With this system, experimental results and theory show a reduction in one analyte 

signal as the other is increased. Thus if one analyte electrolyte is taken to be the buffer in 

the system, then as the butTer concentration is increased the analyte signal decreases. The 

loss of ion intensity is proportional to that analytes value of kA' thus for example BU4N+ 

has a higher kA than Cs + [54] and therefore sees less of a decrease in the ion intensity. The 

previous equation also predicts that the loss of intensity of the analyte signal will be 

proportional to kB, the Iribame rate constant for ion formation of the buffer. Thus in 
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practical terms this means that a butTer with a low lribame rate constant would be 

desirable. 

Experiments where the concentration of the analyte pairs remain at [A i=[s+] have 

been carried out with the observation that in general a fit for equations 50 and 51 cannot be 

obtained throughout the total concentration range (10-8 to 10-3 Molar) for a constant yield 

ratio (kA/kB). To explain some of these results the lribame mechanism was extended to 

allow the introduction of surface activity to the theory. Results show that when kA =kB' the 

yield ratio remains the same over the total concentration range. 

The high kAlkB at high concentrations of A + is thought to be due to a higher lribame 

rate constant for A + than for B+ or because of a higher surface activity, The greater 

differential surface energy results in an increase in the ratio of surface charges above that 

expected on the concentration ratios alone. Thus ion emission would be higher for an ion 

with greater surface activity, since ion emission is proportional to the number of surface 

charges, even if the Iribame rate constants were identical. 

The decrease in the yield ratio at low concentrations in these experiments was 

ascribed to the depletion of the ion A + because of its higher evaporation rate. At higher 

concentrations new A + is supplied to the droplet surface from the bulk solution, however, 

at the lower concentrations (where the yield ratio was observed to decrease) there is less 

A + in the droplet bulk and this leads to an overall depletion of this ion. The emission of 

this ion is therefore reduced and the yield ratio therefore decreases at the lower 

concentrations. 

So far only ions formed from the alkali metal ions and other simple analytes have 

been discussed. How do multiply charged macro-ions form in the electrospray 

mechanism? This is one of the most important areas for study by electrospray ionisation. 
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A model has been suggested by Fenn [62] that states that in the initial state the 

polyprotonated macromolecule is situated inside the small charged droplet with all the 

charges neutralised by counterions. Due to Brownian motion a segment of the 

macromolecule can approach the droplets surface, as it does so some of the charge on the 

macro-ion replaces the charge that was already present on the droplets surface. As more of 

the charges on the macro-ion replace the charges on the surface of the droplet the macro­

ion slowly leaves the droplet a charge site at a time. This process may be facilitated by 

thermal activation. Thus repulsion between the charge on the macro-ion and the charge on 

the droplet results in more and more of the macro-ion being introduced to the gas phase. 

This process is similar to the activation step postulated for the alkali metal ions previously. 

Eventually the whole ion will enter the gas phase. 

Alternatively as the droplet shrinks in size due to the fissions mentioned previously 

there will come a point when the droplets diameter is significantly smaller than the length 

of the macro-ion. Eventually the macro-ion will be "wrapped" several times around the 

droplet with some of the charge sites, of necessity, being on the surface of the droplet. As 

the droplet osci1lates then more charge sites from the macro-ion will be introduced to the 

surface of the droplet and eventually the ion may split off from the main droplet bulk as 

virtually a gas phase ion. By this it is meant that only a few molecules of solvent will be 

still attached to the macro-ion and thus after a little more solvent evaporation the macro­

ion will be left as the bare gas phase macro-ion. The distinction between these two models 

for macromolecule ion formation is that the activation is thermal in the former mechanism 

and due to elastic deformation of the solvent making up the droplet in the latter. 

From this discussion it is obvious that there is no compelling reason for one 

mechanism to be preferred over the other. As one mechanism is expanded, the other 
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( 

seems to benefit. For example the "uneven" fission and "even" fission debate and the 

surface activity introduced into the ion emission mechanism gave support in turn to the 

SIDT mechanism of ion formation. More detailed work seems to have been carried out on 

the ion emission mechanism than for SIDT and at the present time this seems to be the 

preferred explanation for the formation of gas phase ions via eiectrospray ionisation. 
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1.9 Non-covalent interactions and investie;ation of biomolecules 

by mass spectrometry 

1.9.1 Protein Structure 

Proteins consist of a polyamino-acid chain (naturally occurring proteins and peptides 

being constructed of 20 natura11y occurring amino acids), which is known as the primary 

structure of the peptide or protein. This chain is in turn folded and contorted into the 

protein's active structure. Thus the so caned secondary structure consists of the folding of 

the protein into e.g. a-helixes and J3-pleated sheets that are held together by hydrogen 

bonds, while the tertiary structure is the folding of the primary and secondary structure 

itself and is dependent on disulfide bonds and non-bonding interactions. Thus a protein 

can be folded into globular or open structures depending on the tertiary structure. 

The final "layer" of structure is the quaternary structure that consists of the 

interactions of two peptide chains together. Non-covalent and covalent interactions of 

proteins fall under this last category. Thus insulin, for example, consists of two chains the 

a and the J3 chains held together by two disulfide bonds and myoglobin consists of four 

identical proteins bound together with a heme structure at the centre. 
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1.9.2 Mass Spectrometry For The Analysis Of Biological Samples 

The relatively new mass spectrometry techniques of MALDI and electrospray (ESI) 

are being used to investigate these non-covalent interactions and protein structure. The 

ability of mass spectrometry to give quick, easy determination of physical constants of a 

protein, such as its molecular mass~ and structural information, is a valuable tool for those 

interested in biological samples and provides a challenge to the mass spectrometrist. 

ESI with its unique ability to form multiply charged ions from solution without 

significant fragmentation is of fundamental importance for the study of biological and 

other large fragile molecules by mass spectrometry. Techniques such as HID exchange 

combined with ESI (which will be discussed in more detail in a later section) and the 

observation of different charge-state distributions in electrospray spectra give important 

information on protein conformations in the gas phase. This is thought to represent the 

conformation of the analyte molecule in the solution and as such allows relatively quick 

and easy investigations of non-covalent interactions and conformational studies of 

protei ns by mass spectrometry. 

MALDI meanwhile is finding a niche for the analysis of complex mixtures, and 

applications in proteolysis and chemical modification schemes designed to obtain 

information on the proteins structure and function. Mass spectrometry is fast providing 

information on protein structure that is complementary to other methods such as circular 

dichroism (CD), nuclear magnetic resonance (NMR), calorimetry and fluorescence 

spcctroscopi es. 

Mass spectrometry in general is useful for the analysis of biological molecules and 

their primary, secondary and tertiary structures due to its sensitivity, speed and specificity. 

Low femto- and atto- molar sample concentrations can be used via nanospray and a typical 

82 
--------_._-------- - - ---- -- - ------



Chapter 1: Introduction 

experiment may take as little as 30 minutes from preparing sample to getting a spectrum. 

Mass spectrometry with MSIMS can also provide infonnation on relative binding 

affinities and the primary structure of the biological molecule of interest. 

The direct measurement of the molecular mass of the complex also gives 

infonnation on the stoichiometry of the complex, which is often important for the 

biological activity of a protein. The mass accuracy of these measurements means that it is 

possible to obtain details about the active biological sample including whether the sample 

is multi-meric, or the number and type of co-factors that are needed for its activity. 

1.9.3 Electrospray Ionisation for the Analysis of Biologicall\folecules 

Proteins and peptides can be ionised from a variety of solvents via electrospray 

including solvents that are known to allow them to retain their natural conformations. 

Such solvents include buffers such as ammonium acetate, ammonium sulfate and 

ammonium citrate and pure water. 

Protein-ligand interactions can therefore be initiated in the solution phase and 

directly analysed in the gas-phase by the mass spectrometer. A more detailed discussion 

of the pros and cons of mass spectrometry for the analysis of these interactions will be 

given in chapter 4. Other mass spectrometric techniques such as MALDI are also useful 

for the analysis ofbiomolecules but the low resolution of such instruments (typically time 

of flight) and the fact that the MALDI process produces predominantly singly charged ions 

means that larger biomolecule-ligand interactions cannot be investigated with much 

accuracy. The multiple charging of the electrospray technique means that even large 

molecules can be observed at high resolution since the mass is effectively "folded" down 

to a region on the m~ scale that has the highest resolution and mass accuracy. 
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Electrospray can therefore take advantage of the high resolution and mass accuracy 

inherent in FT-ICR mass spectrometry. 

Arguments still rage over the validity of results obtained by electrospray on such 

complexes. The fact that solution phase chemistry and gas phase chemistry are involved 

leads to a question on whether solution phase chemistry is mirrored by gas phase 

chemistry i.e. does a gas phase measurement give us information on a solution phase 

problem? 

Published data has characteristically been in direct correlation with results obtained 

by solution phase methodologyJ63-65] Some argue, however, that results that do not 

show expected non-covalent interactions or non-covalent interactions where none are 

expected, are not reported. The nature of this argument means that it is hard to prove, 

while experiments are consistently being published that provide direct correlation with 

results reported from solution phase experiments. Investigations where the ligands are in 

much greater concentration than the protein i.e. competitive conditions, show relative 

abundances of complexes in the mass spectra are consistent with their relative binding 

constants in solution and multi-meric complexes that are known to be biologically active 

are also observed under "natured" conditions. There may be, however, a correlation 

between those interactions that are achieved and the type of non-covalent interaction of 

which the complex makes use. Changing from solution to gaseous phases may cause 

some types to be strengthened while others are weakened. It is still undetermined whether 

such is the case but it is worth considering. 
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2.0 Instrumentation 

A Bruker Daltonics BioAPEX 94e Fourier transform ion cyclotron resonance mass 

spectrometer (Billerica, USA) with a Magnex Scientific (Abingdon, Oxford) 9.4 Tesla 

superconducting, horizontal bore magnet, has been employed in the work reported in this 

thesis. The following section will give details of this instrument. 

The Bruker BioAPEX instrument consists of an ion source, in these experiments 

typically electrospray ionisation, connected to the ion trap via a series of differentially 

pumped electrostatic lenses. As already mentioned the superconducting magnet has a field 

of 9.4 Tesla and is therefore passively shielded to prevent strong magnetic fields 

interfering with apparatus within the laboratory and to allow safer maintenance of the 

instruments components. The ions are trapped within an infinity celV trap of diameter 6 

cm the details and merits of such a design having been discussed in section 1.7.1. Data 

analysis was achieved by making use of a Silicon Graphics Indy workstation running 

Bruker XMASS software for instrument control and data analysis. 
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2.1 Electrospray Ionisation Source 

In the experiments featured within this thesis the ion source utilised was the Analytica 

(Brandford, USA) electrospray ionisation source typically operating at a voltage of 2-3.5 

kV. A schematic of the sample introduction region is shown below: 
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r---------------------------.~ 
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If 
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/' 

Spray Needle ____ ,I 

Figure 1: Schematic of the Analytica electrospray source 
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Figure 1 shows that the ESI sample introduction region is easily moved in the x, y and z 

directions by making use of fine attitude adjustment screws. The sample was pumped 

from a 100 ilL Hamilton gas tight syringe using a Cole-Palmer programmable syringe 

pump at flow rates between 0.5 and 1.5 ilL min-1
• The analyte solution passes through a 

small length (to minimise dead volume) of HPLC PEEK tubing into the narrow stainless 

steel capillary from which the solution is electrosprayed. This initial analyte introduction 

region is earthed for safety reasons, with the positive potential necessary for positive 

electrospray being generated by applying the equivalent negative voltage to the counter-

electrodes (see Figure 2). 

Heated 
Stainless Steel 
Capillary 

Glass Capillary Skimmer 

Sample 
~ 

m 

Guide 
Rod 

Atmospheric 
Pressure 

Nickel 
Coated 

Figure 2: Schematic of the Analytica ESI source in its entirety. 

To ion 
optics 

Hexapole 

The droplets formed in the region between the stainless steel capillary and the 

remainder of the instrument are dried using a counter-current flow of either CO2 or N2 gas 

flowing around the glass capillary and out through the hole in the end cap. This serves two 

purposes: (1) it prevents significant amounts of the liquid phase from entering the main 
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instrument and thus adversely affecting the low pressures needed for mass analysis (2) the 

gas heated to a temperature of between 50 and 150°C heats the initial stages of the glass 

capillary as well as the air within the first stage of the source therefore increasing the 

efficiency of gas phase ion formation. 

Any remaining solvent phase immediately after the glass capillary is removed as the 

ions pass through the skimmer which allows only the analyte ions that are travelling along 

the correct axis to enter the next stage of the source. Ions that are off-axis and any solvent 

that is left in the ion beam are removed by the narrow entrance (- 1 mm) to the skimmer 

cone and its focusing nature. Placed immediately after the skimmer is a small hexapole 

(frequency 5.3 MHz and peak to peak voltage of lOOV) which temporarily traps and 

bunches the ions exiting the source. Due to the pulsed nature of the FT-ICR technique i.e. 

the intermittent opening of the analyser cell for detection, the continuous ion production of 

a normal ESI source would result in a vast majority of the ions produced being wasted as 

they "bounced" off the first trap plate. The ions are therefore delayed by the hexapole for 

anywhere between 0.25 and 6 seconds and during this time the experimental sequence has 

completed a cycle and the newly produced ions can be introduced into the cell. This 

hexapole delay leads to greater efficiency and therefore sensitivity and also allows analyte 

solutions that do not easily produce gas phase ions to be investigated. For example, a 

typical experiment in water/ methanol + 1 % acetic acid would need a hexapole delay of 

0.5 - 2 secs, while a protein in a buffer solution such as ammonium acetate would need 

approximately 3 - 4 times this. This builds up an ion population prior to introduction to 

the cell, in the hexapole. 

Since this region of the electrospray source is at a pressure of approximately 2 x 10 -7 

mbar, it can also be used to increase the amount of fragmentation seen in capillary­

skimmer col1ision induced dissociation experiments. Increasing the hexapole delay gives 
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the molecule ions more chance of colliding with neutrals and other ions, and fragmenting, 

than if the ions were introduced directly into the cell. The ions within the hexapole are 

still relatively energetic, and the fact that the pressure within the hexapole is quite high 

compared with the analyser cell means that there is greater fragmentation information after 

longer delays. The region containing the glass capillary and the hexapole is pumped using 

a combination of an Edwards Rotary pump and a turbo-molecular pump. 

2.2 Ion Transfer Optics 

The diagram below is simplified representation of the electrostatic lenses that are 

required to pass the ions from the ion source into the cell through the "mirror" effect of the 

magnetic field. 

This transfer region is differentially pumped by Edwards cryo-pumps. These hYfadually 

reduce the pressure from atmosphere in the electrospray source to around 2-5 x 10.10 mbar 

in the infinity cell. The cryo-pumps are backed by Edwards mechanical rotary pumps that 

are used to reduce the pressure in the transfer region from atmosphere to around 5 x 10.3 

mbar prior to the cryo-pumps being started. This prevents a build up of impurities from 

the air on the charcoal adsorbers within the cryo-pumps. Pressures in the different regions 

of the instrument are monitored using a variety of Piranni and cold ion gauges. The cold 

ion gauges are used to monitor the lowest pressures, for instance in the cell of the FT-IeR 

mass spectrometer. 
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3.0 Electrospray Ionisation of Papain and Calmodulin 

3. t Introduction 

Electrospray ionisation (ESI) is the most important ionisation method in use today for 

the study of biological non-covalent interactions by mass spectrometry. It is an extremely 

"soft" method of ionisation in that the analysis of large and small biomolecules is possible 

without excessive fragmentation. Non-covalent interactions can thus be observed after 

ionisation and important information on stoichiometry and relative binding constants can 

be evaluated. [1,2] 

Proteins and peptides can be ionised from a variety of solvents via electrospray 

in~luding solvents that are known to allow them to retain their natural conformations. 

Such solvents include buffers such as ammonium acetate, ammonium suI fate and 

ammonium citrate. These solvents do have some disadvantages, inc1uding a reduction in 

sensitivity compated with typical ESI solvent systems such as methanol! water (1: 1) or 

acetonitrile/ water (1: 1). ESI of these buffered systems results in ions with lower charge 

state which has implications for particularly large biomolecules being analysed on limited 

mass-range instruments. Such reductions in charge state have been attributed to the fact 

that the proteins are in a folded "natural" conformation. [3-5lThis means that there are 

fewer accessible sites available for ionisation due to the more compact conformation of 

the protein in its natuTa~ state. 

Denaturing solvent systems such as methanol! water plus 1 % formic acid are useful in 

electrospray ionisation, since they allow a large distribution of charge states to be 

detected: the typical bell shaped distribution of electrospray. From this distribution it is 

possible to calculate an accurate molecular mass for the analyte molecule, due to the 

numerous measurements of the same value obtainable from the charge distribution of the 
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electrospray SpeCtrum. These solvent systems can also be useful, since they can break up 

parts of the tertiary structure of the protein, allowing greater sequence information to be 

acquired from experiments such as collision-induced dissociation (CID) compared with 

similar experiments involving buffer systems. Again this can be explained by the fact that 

organic solvents "open up" the structure of the analyte protein. The table below gives 

physical parameters of the proteins used in this study. 

Papain 
Molecular Weight (Average) 23,421.34 Da 
Molecular Weight (Mono) 23,406.52 Da 
Iso-electric PQint 8.75 
Extinction coefficient (280 nm) 53610 
Sequence IPEYVDWRQKGA VTPVKNQGSCGSCW AFSA VVTlEGIIKIR 

TGNLNEYSEQELLDCDRRSYGCNGGVPWSALQLVAQYGI 
HYRNTYPYEGVQRYCRSREKGPYAAKTDGVRQVQPYNE 
GALL YSIANQPVSVVLEAAGKDFQL YRGGIFVGPCGNKVD 
HA V AA VGYGPNYILIKNSWGTGWGENGYIRIKRGTGNSY 
GVCGL YTSSFYPVKN 

Calmodulin 
Molecular Weight (Average) 16,616.821 Da 
Molecular Weight (Mono) 
Iso-electric point 4 
Extinction coefficient (280 nm) 1280 
Extinction coefficient (276.5 nm) 1560 
Sequence ADQLTDEQlAEFKEAFSLFDKDGDGTITTKELGTVMRSLG 

QNPTEAELQDMlNEVDADGNGTlDFPEFLNLMARKMKDT 
DSEEELKEAFR VFDKDGNGFISAAELRHVMTNLGEKL TDE 
EVDEMIREADVDGDGQVNYEEFVQVMMAK 

3.2 Experimental 

3.2.1 Ca.modulin Synthesis and Purification 

DNA-encoded calmodulin was produced by Dr. Daniel Lafitte et al and purified by 

column chromatography. [6, 7lThe purity of the protein, which was found to be greater 

than 99%, was checked by SDS polyacrylamide gel and high-pressure capillary 
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electrophoresis. ESI FT-ICR mass spectrometry experiments were carried out using ultra­

pure water (Elga system) and plastic laboratory equipment to minimise unwanted salt 

contamination such as sodium and magnesium ions. Before introduction to the instrument 

calmodulin was further purified by desalting the sample using a Phannacia Biotech 

Sephadex (Uppsala, Sweden) PD 10 column. This entailed equilibrating the column using 

the solvent system of choice, in this case ammonium acetate (5mM, pH 5.8) or water, and 

then dissolving 2-3 mg of calmodulin in 2.5 mL ammonium acetate or water. This was 

introduced to the column, the protein "washed" through the column with buffer and 

approximately 10 fractions (l mL each) were collected. The protein content of each of 

these fractions was tested by placing a small aliquot of the fraction into a separate vial and 

then introducing an equivalent aliquot of Bradford Reagent. It was usually found that 

fractions 3-6 contained calmodulin, but to minimise unwanted salt contamination only 

fractions 4 and 5 were used. The concentrations of these aliquots were determined by UV 

absorption on a Jasco V-550 spectrophotometer. The molar extinction coefficient used for 

these experiments was £276nm=1560 M-1cm-1 rl11and the concentrations of the fractions 

were found to be between 20 and 25 /-lM. 

3.2.2 Papain Sample Preparation 

Initially papain was obtained as a Iyopholised powder from Sigma (Poole, UK). This 

presented many problems, especially due to impurities contained in the sample. Primary 

investigations revealed a great difficulty in observing this particularly large protein by 

electrospray ionisation (ESI), even when dissolved in standard (and non-standard) solvent 

systems such as methanol/water + 1-3 % formic acid. These problems were blamed on the 

high concentration of salt in the sample. Methods for dcsaIting the sample were 
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investigated including tri-chloroacetic acid (TCA) precipitations, "mini" HPLC, HPLC 

and other chromatographic methods. Initial experiments with TCA precipitations and 

HPLC were unsuccessful. The ESI signal was intermittent and of very low quality. 

Experiments making use of the Pharmacia Biotech PD 10 Sephadex gel chromatography 

columns were the most successful, with samples made up in solvent systems consisting of 

methanol! water + 3% formic acid (Figures 6a) and ammonium acetate (5mM, pH 4.6-5.8) 

(Figures 6b). This however, still produced low quality spectra. A variety of papain 

samples were then purchased from Sigma (Poole, UK), and all were purified by each of 

the methods mentioned. The best quality spectra were found to be obtained from a sample 

consisting of a papain suspension in sodium acetate + 1 % thymol purified using the 

Pharmacia Biotech PO 10 Sephadex gel chromatography columns. 
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3.2.2.1 Tri-chloroacetic acid precipitations 

This procedure involved precipitating the protein from solution which with the 

judicious use of a centrifuge allowed the impurities to be removed. 

The following steps were followed to clean up the protein sample purchased as a 

Jyopholised powder: 

1) Make up 1 g oftri-chloroacetic acid in 1 ml of water. (Solution 1) 

2) Add approximately 2 mg of protein to 1 mlofwater. (Solution 2) 

3) Add 33 JlI of solution 1 to solution 2 and mix well. 

4) Centrifuge for half a minute. 

S) Discard liquid and retain the pellet at the bottom of the micro-centrifuge tube. 

6) Centrifuge again and discard the remaining liquid. 

7) Add 1 mL of water to the pellet and add 0.1 JlL aliquots of ammonia to the solution 

until the solution turns clear. 

8) Repeat steps three to seven approximately three times. 

9) Reconstitute the solution in the solvent system of choice for electrospray. 

3.2.2.2 "Mini" HPLC 

This method consisted of making use of a small HPLC column (1 x 10 mm), interior 

volume 5 JlI produced by Michrom BioResources. This was held in a holder which was 

connected in line with a small pump and a rhcodyne. The column was initially washed 

with 80% acetonitrile/ 20% water and 0.1 % formic acid. 25 JlI of a sample (concentration 

no greater than 20 Jlg/ 5 J..l1) were injected via the rheodyne and the salt washed away with 

a solution of 98% watcr/2% acetonitrile + O. I % formic acid. The column was then 

98 



Chapter 3:ESI of Papain and Ca/modulin 

reversed in its holder and the sample eluted with 10 J.11 aliquots of a solution made up of 

98% acetonitrile/ 2% water. The resulting aliquots were checked for pure protein using a 

Micromass TOFSpec (a time-of flight instrument) with MALDI source. Both the 

lyopholised powder and the crystallised suspension of papain were purified and analysed 

using this process. 

The matrix chosen for the experiment was 2,4-dihydroxybenzoic acid (DHB) made 

up as 10 mg/mt in acetonitrile/ water (1 : 1). 20 J.11 of this was mixed with a 10 J.11 aliquot of 

the previously purified protein. No signal was observed for papain on the TOFSpec 

instrument after desalting with this method. The method was checked for effectiveness 

using cytochrome C and insulin with positive results for these proteins. 

3.2.2.3 High-Pressure IJquid Chromatography (HPl.lC) 

The HPLC system used for this procedure was the IIewlett Packard 1100 series with a 

Waters Symmetry C18 column (2.1 x 150mm, 5J.1m i.d.). Solvent systems were 0.1% tri· 

tluoroacetic acid (TFA) in HPLC grade water and 0.1% tri-fluoroacetic acid (TFA) in 80% 

HPLC grade acetonitrile/ 20 % HPLC grade water with a flow of 0.2 ml min- I
. (Figure 1) 

1 mg of protein was dissolved in 1 mL of water and 50 J.11 aliquots were injected into 

. the system. The resulting fractions were collected, combined and fast freeze dried using a 

GeneVac SF60 Vac Stop vacuum centrifuge system. The protein purity of the sample after 

this desalting process was again checked using a Micromass TOFSpec with MALDI 

source at Smith-Kline Beechams Laboratories in Harlow, Essex. Matrix and sample 

conditions were the same as those used for the "mini" HPLC purification procedure. The 

TOFSpec spectra obtained contain only low mass fra!,'1l1ents for papain and this is 
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TOFSpec experiments where sample was directly spotted onto the MALDI slide after 

HPLC purification showed some small peaks of very poor quality corresponding to the 

molecule ion (see Figure 3 above). 

The desalted sample was also evaluated using a Micromass Q-Tof instrument, a 

quadrupole-orthogonal time-of-flight (TOF) instrument with Z-sprayTM nano-electrospray 

source. The spectra were acquired in methanol! water + 1 % acetic acid and also in 

ammonium acetate (5mM, pH4.6). Again signal was observed immediately after the 

HPLC desalting process, but not at all after freeze drying (see Figures 4 and 5). It may be 

possible that papain, being a cysteine protease was undergoing auto-digestion during the 

relativley long period of time for the freeze drying process. The spectra of the sample 

immediately after HPLC, still contained many impurities with adducts complicating the 

acquired spectra and making interpretation difficult. 
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3.2.2.4 Electrospray Ionisation Fourier Transform Ion Cyclotron 

Resonance Mass Spectrometry Of Papain 

Papain was obtained as a crystallised suspension in sodium acetate and 1 % Thymol 

from Sigma (Poole, UK). This was desalted prior to electrospray ionisation using the same 

method as for calmodulin (see section 3.2.1), with ammonium acetate buffer (SmM, pH 

4.6) as analyte solvent. This buffer pH was found to be optimum for the observation of 

papain: peptide complexes in e1ectrospray ionisation FT-IeR mass spectrometry. 

3.3 Results 

3.3. t Effect of Solvent on Electrospray Ionisation Mass Spectra 

The difference between the proteins in 5 mM ammonium acetate, and in 

methanoUwater + 3% formic acid was readily apparent (Figures 6 and 9). The number of 

charge states observed for papain in the organic solvent system was much greater than in 

ammonium acetate and was centred around a much higher charge state in comparison with 

spectra acquired in buffer (Figures 6b and 9 b). This is consistent with a more open 

structure/ conformation. The basic amino acids (e.g. Lys, Arg, His), which are those 

thought to take up the protons (the charge carriers in positive electrospray ionisation), in 

the primary sequence of the protein can be considered to become more exposed to the 

solvent. Therefore, the available protons for charging are increased in the denatured form 

of the protein. Thus the dramatic change (Figure 6) in the position of the most abundant 

charge state from [M+18H]IIH in organic solvent and [M+lOH]IO+ in ammonium acetate 

for papain is taken to indicate that the higher order structure was retained in ammonium 

acetate, whilst the organic solvent caused the protein to unfold! become denatured. 
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Similar behaviour (Figure 9) was observed for apo-calmodulin with the most abundant 

charge state shifting from [M+ 14H] 14+ to [M+8HJ8+. This conclusion is consistent with 

ion mobility experiments conducted by Hudgins et a/[8], Shelimov et a/[9] and Valentine 

et a/[ 1 01 These experiments, utilising an electrospray source coupled with an ion 

mobility drift tube, showed that for the lower charge states produced for cytochrome C 

ions by electrospray ionisation in un-acidified aqueous solutions (cf. buffer solution) the 

natural conformation was predominant. 

The ions observed for papain in organic solvent spanned the range from [M+ 11 H] 11+ to 

[M+24H]24+. The molecule ion in each of these charge states corresponded to the oxidised 

form of papain; very small peaks for the unoxidised ion were present (see Figure 7). The 

most abundant ion in each charge state corresponded to the oxidised form of papain plus a 

serine residue (+87 Da). Further peaks corresponded to phosphorylation plus water (+98 

Oa). Phosphorylation is a common modification of the amino acids serine, threonine and 

tyrosine. Figure 7 shows the molecule ions present in ammonium acetate ESI. The 

oxidised form of papain was predominant again, but this time a peak corresponding to the 

addition of water to the primary molecule ion was also observed. The difference between 

Figure 7 and Figure 8 might have been due to the solvent conditions, or the purity of the 

initial papain sample, more likely the latter. Figure 7 was obtained from the crystallised 

suspension, while Figure 8 was from the lyophilised powder. It was known that phosphate 

buffers had been used in the purification of this latter sample and this may explain the 

phosphorylation seen. 

A similar change in charge state distribution was seen for apo-calmodulin, but in this 

case the spectra obtained from the solvent ammonium acetate showed a bimodal 

distribution. The most abundant charge state was still a lot lower than that from the 
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organic solvent system. The presence of the smaller distribution of higher charge states in 

the ammonium acetate spectrum showed that the protein was present in more than one 

conformation in the gas phase. The major conformation however, was the active or 

"natural" dumbbell shape. (see section 4.3) 

Figures 10 and 11 show enlargements of the most abundant charge states in ammonium 

acetate and organic solvent respectively. As can be seen in Figure 10, it was difficult to 

completely remove all calcium from the analyte solution especially when using butTer as 

solvent. However, with great care the calcium adducts could be limited to just one. In 

both Figures 10 and 11 sodium adducts and water loss were observed. 
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Figure 6: Comparison of the spectra acquired for papain in (a) 
ammonium acetate (pH4.6, 5mM) and (b) methanol! water (l: 1) + 
3% formic acid. 
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....,.---[M+ lOH+20]10+ 
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Figure 7: Close up of the 10+ charge state of papain in ammonium acetate 
(5 mM, pH 4.6). 
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Figure 8: A close up of the 19+ charge state of papain in methanol! 
water + 3% fonnic acid. 
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Figure 9: Comparison of the spectra acquired of calmodulin in (a) 
ammonium acetate (pH 5.8, 5mM) and (b) acetonitrile/ water (1 :1) + 1% 
formic acid. 
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Figure 10: Close up of the 8+ charge state of calmodulin in ammonium 
acetate (5mM. pH 5.8). Note the calcium. 
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11gure 11: Close up of the 14+ charge state of calmodulin in methanol! 
water + 2% formic acid. 
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3.3.2 Capillary-Skimmer Collision-Induced Dissociation of Papain 

A preliminary study was made using the FT-ICR, into the effect of solvent on the 

fragmentation pattern obtained by capillary-skimmer CID (see Figure 12). For papain in 

methanol! water (1:1) + 3% formic acid, fragmentation seemed to consist of mainly y 

fragments from Yg2 to Y92 (see tables la and lb). The remaining peaks were assigned as 

either sequential water loss up to a maximum of three, or sequential water addition up to a 

maximum of two, for each of the y fragments. There were also a few peaks that were 

tentatively assigned to particular z and x fragments, however, there were no series of z and 

x fragments. The remaining peaks that were not identified could have been due to a 

variety of internal fragments. The great abundance of information available from this type 

of CID all owed the sequence of the protein from the C-terminus to be matched with some 

accuracy and thus provided a method for checking the protein for modifications. 

By contrast the capillary-skimmer CID mass spectra (see Figure 13) obtained from 

analyte solutions utilising ammonium acetate as the solvent produced far less information 

on the protein (see table 2). Both sets of experiments were conducted at a capillary 

voltage and a skimmer voltage of approximately 160 V and 3 V respectively with an 

ionisation delay (delay applied to the hexapole) of 4 secs. A comparison of the mass 

spectra (Figures 12 and 13) show a dramatic difference in the amount of frabrmentation 

peaks present. This lack of fragmentation could be attributed to the retention of higher 

order structure of the protein in solution when ammonium acetate and other buffers were 

used as analyte solvents. The resulting compact structure, which resulted in lower charge 

states than those produced for an analyte solution made up in polar solvents, means that 

the energy imparted to the parent molecule ion during the CID event was considerably less. 

The fact that the compact structure was retained in solution can be considered to 
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contribute to the fact that less structural information was obtained from the buffered 

analyte solution compared with the polar solvent system. 

The fragments that are produced mainly come from the break up of the proteins C- and 

N-tennini i.e. the very ends of the amino acid sequence. These termini are involved in 

fewer intra-molecular bonding events and are thus easier to break from the bulk of the 

protein than those portions of the amino acid chain that are embedded deep in the centre of 

the protein. 

The nomenclature used in the following tables for the mass spectrometric fragmentation 

of pep tides and proteins is described pictorially below: 

3,,-1 bn-1 
C

n
_
1 

.. ,! ... ~ .. ,! ···t .. ,! 

R : : 0 

: . . 

OH 
~ ~ _____ Peptide'i'l ~ NH 

~NH~ : I? 
: R' : 0: · .. : R" o · .. · .. · .. 

~-l Yn-l ~-l YI 
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Figure 12: Capillary-skimmer CID of papain in methanol! water + 
3% formic acid. 
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Mass Charge Assignment % Error Mass Charge Assignment % Error 

4874.188 5 unassigned 8740.429 7 ly82-2h20 -0.02 

7736.921 5 wlassigned 8760.5 7 Iv82-h20 -0.01 
7756.01 5 unassigned 8777.52 7 ty82 -0.004 

7772.98 5 IV72-2h2o/z72-h2 -0.02 8842.598 7 ly83-2h20 -0.02 

7790.99 5 !y72-h2o/z72 -0.01 8885.55 7 unassigned unassigned 
8886.657 5 unassigned 8904.57 7 x83 unassigned 
8903.67 5 x83 0.02 8920.58 7 y84-3h2o -0.004 
8921.66 5 1v84-3h20 -0.02 8939.64 7 1v84-2h20 -0.02 
8939.69 5 1v84-2h20 -0.02 8956.65 7 ~84-h20 -0.01 
8957.63 5 Iv84-h20 -0.02 8974.67 7 1v84 -0.01 
8574.43 6 z80/v80-h20 9048.63 7 1v85-3h20 -0.00 
8743.54 6 Iv82-2h20 -0.02 9067.69 7 rv85-2h20 -0.02 
8780.51 6 Iv82-2h20 9084.71 7 ~85-h2o -0.004 
8806.53 6 x82 9]20.71 7 unassigned 
8824.59 6 Iv83-3h20 -0.02 ~137.72 7 unassiltned 
8842.8 6 Iv83-2h20 -0.02 ~163.69 7 v86-3h20 -0.01 
8860.58 6 z83/v83-h20 -0.02 9181.71 7 v86-2h20 -0.01 
8895.61 6 unassi~ed 9199.71 7 v86-h20 -0.01 
8903.61 6 x83 9216.72 7 v86 -0.003 
8921.63 6 Iv84-3h20 -0.02 9236.72 7 rv86+h20 -0.02 
8939.65 6 Iv84-2h20 -0.02 9252.73 7 \'86+2h20 -0.003 
8956.67 6 Iv84-h20 -0.01 9270.74 7 1v87-h20 -0.01 
8974.67 6 iv84 -0.005 9287.78 7 vS7 -000 
8997.62 6 !v84+na -0.005 &306.75 7 v87+h20 -0.01 
9013.7 6 unassigned 9344.77 7 unassilmed 
9032.68 6 unassi~ed 9365.83 7 v88-2h20 -0.01 
9049.66 6 v-85-3h20 -0.02 9383.88 7 v88-h2o -0.01 
~067.69 6 !v85-2h20 .. 0.02 9400.88 7 v88 -0.002 
&085.68 6 :v85-h20 -0.02 9416.89 7 rv88+h2o 0.02 
~t02.72 6 y8S -0.004 9435.91 7 lY88+2h20 0.01 

~164.7 6 y86-3h20 -0.03 9451.92 7 unassilmed 
~182.72 6 v86-2h20 -0.03 9597.95 7 unassigned 
~200.73 6 v86-h20 -0.03 ~15.98 7 y90-2h20 -0.01 
~217.71 6 v86 -0.01 ~632.99 7 v90-h20 -0.001 
~235.74 6 v86+h20 -0.01 ~652 7 v90 -0.01 
~252.75 6 v86+2h2o -0.003 f>673.95 7 y90+na -0.01 
~270.78 6 v87-h20 -0.01 f>692.96 7 lmassigned 

~708.93 7 z91-2h20 -0.02 
~729.04 7 z91-h2o -0.0004 

Table la: Fragments obtained by capillary-skimmer CID of papain in methanol/ water + 
3% formic acid. 
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Mass Charge Assignment % Error 

8690.473 8 ly8} 0.004 
8775.507 8 y82 0.03 
9191.754 8 unassigned 
9198.73 8 y86-h2o -0.003 
9218.7 8 y86 -0.02 
9234.66 8 !y86+h20 -0.002 
9250.75 8 y86+2h20 0.02 
~287.8 8 y87 -0.003 
9305.821 8 y87+h20 -0.003 
9598.93 8 unassi@ed 
9615.957 8 ly90-2h20 -0.01 
19633.98 8 Iy9O-h2o -0.01 
9650.998 8 1y90 -0.0001 
9670.99 8 1y90+na 0.02 
9712 8 z91-2h2o 0.17 
9729.04 8 z91-h20 -0.19 
9747.069 8 1y91-h20 -0.01 
9764.067 8 1Y91 -0.00002 
9779.02 8 ~1+h20 JL01 
9786.08 8 ly9l+na -0.009 
9796.02 8 1y91+2h20 
9842.13 8 1y92-2h20 -0.61 
9860.15 8 1~2-h20 -0.01 
9304.797 9 ly87+h20 -0.38 
9487.9 9 1Y89 -0.002 
9555.094 9 unassigned 
9649.956 9 ~O 0.01 
9763.035 9 :y91 0.01 

9860.106 9 iy92-h20 -0.01 
9875.137 9 Iv92 0,02 
9899.115 9 unassigned 
9556.058 10 unassigned 
11217.08 10 unassigned 
13685.62 10 unassigt!ed 

Table J b: Fragments obtained by capillary-skimmer CID of papain in methanol/ water + 
3% formic acid. 
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Figure 13: Capillary-Skimmer CID of papain in ammonium acetate (5mM, pH 5.8) 

MR; ~ ~gmml %Enur MR; ~ 1A"BilJltmll %Emr MR; ~ ~1Jl1lUIl %FmY 

801.sm89 1 y6+7hlo 0.05 1257.662 2 c"9+h20 -0.02 3038.7~ 3 ~wed 
875.50379 1 a7 0..05 1 660. 'X>3 2 xIS -0002 5<Yl2.003 5 x45-2h1o 
940.4<X>5 I y8 -0.04 1855.047 2 cl6-2h20 -0.04 7541.551 9 xm20 
Im.63~ I b'8-th20 -0.03 18(-8.146 2 i17 -0.002 10275.75 JO x<J6 
1210.71204 I ~!Jlai 1'X)1.l~ 2 yl1+h2o o.cxm 
1230.61512 I xlo. 0.1 1985.133 2 i l l8 -0.1 
1552.8198 1 a'13+2h1o lJWEi~ 1997.212 2 y18 0.(0)1 

lOOI.<.m92 1 122-136 ~~ 2038.253 2 il9 0..04 
1675.88505 1 cl4-h20 o.~ 2248.352 2 I y21+2h20 0..004 
1855.01654 I cl6-2h20 -0.04 2284.24 2 Iy2H4h20 0.0.1 
1868.1628 I il7 -0.1 2410.354 2 a22-h2o 0.05 

3021.78 2 mm~ 
3037.747 2 ~~ 

Table 2: Fragments obtained by CapiJIary-skimmer CID of papain in ammonium acetate 
(5mM, pH 5.8). 
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3.4 Conclusion 

The conformations of the proteins in solution have been shown to influence ESI mass 

spectra. Analyte solutions that are specifically formulated to retain the natural 

conformations of the proteins in solution, show an electrospray mass spectrum consisting 

of peaks of lower charge compared to those analyte solutwns where conditions necessitate 

an unfolded! unnatural conformation (see Figures 6 and 9). 

This change in charge distribution between buffered and MeOH/ H20 analyte solutions 

is a result of the basic amino acids involved in charging, becoming more or less open to 

"attack" from the protons responsible for charging in electrospray ionisation. Both Figures 

6 and 9 show that when proteins are present in a solvent system consisting in some part an 

organic solvent, then the resulting spectra typically show a much broader distribution of 

more highly charged peaks than those spectra produced from butTered solutions. The 

organic solvent and the acidic nature of the analyte solution has denatured (or opened) the 

protein in solution, and otherwise hidden basic amino acids now become available for 

protonation by electrospray ionisation. 

This observation has been seen many times with a wide variety of different proteins as 

analytes. For analysis of biological interactions i.e. protein-peptide, protein-metal ion, 

protein-protein etc. by electrosptay ionisation mass spectrometry it should be obvious that 

analyte solution conditions are extremely important when trying to confirm what are 

essentially solution phase interactions, using a gas phase experimental technique such as 

mass spectrometry. The fact that there is a change at all in the mass spectra is a good 

indicator that mass spectrometry linked with electrospray ionisation is a good technique 

for the quick, easy analysis of the interactions of large biological molecules. However, it 
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has still to be proven whether the conformation of the protein is conserved from the 

solution phase to the gas phase. 

The capillary-skimmer dissociation experiments indicate that the fragmentation 

information obtained from CID is also dependent on the analyte solution conditions. This 

is due to the fact that the charge state distribution is altered significantly by the nature of 

the solvent used. That is buffered analyte solutions cause the charge state distribution 

obse~ed in the ESI spectra to become narrower and centred at much lower charge states 

than seen for analyte solutions containing denaturing solvents. (See Figures 6 and 9)The 

energy imparted to the parent molecule ion under investigation would· therefore be 

considerably less with the same source parameters and the corresponding fragmentation 

information would therefore decrease. The conformation of the protein in solution 

therefore influences information obtained from CID spectra. 
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4.0 Non-Covalent Interactions Of Bioloe:ical Molecules 

4.1 Introduction 

Protein-ligand interactions can be initiated in the solution phase and directly 

analysed by the mass spectrometer. Other mass spectrometric techniques such as MALDI 

[1-31are also useful for the analysis of biomolecules but the low resolution of such 

instruments (typically time-of-flight analyser) and the fact that the MALDI process 

produces predominantly singly charged ions means that larger biomolecule-ligand 

interactions cannot be investigated with much accuracy. The multiple charging of the 

electrospray technique means that even large molecules can be observed at high resolution 

by FT -ICR since the mass is effectively "folded" down to a region on the m/z scale that 

has the highest resolution and mass accuracy. Electrospray can therefore take advantage 

of the high resolution and mass accuracy inherent to FT-ICR mass spectrometry. 

Typical ESI mass spectra of non -covalent complexes usually consist of peaks at high 

m/z and therefore low charge. compared to ESI mass spectra of the protein alone.[4] This 

must be due to the fact that there are less sites available for protonation when the ligand is 

bound than there are in the free protein, either because a conformational change has been 

induced by the ligand or that the ligand simply obscures those basic amino acids that 

would normally pick up a proton during the charging process. Similar results are observed 

when disulfide bridges (responsible for some of the tertiary structure of the protein) are 

broken by reduction of the protein. Before reduction there is a smaller charge envelope 

presumably due to the structure of the protein being more open after reduction or 

coulombic constraints that restrict charging of the more compact structure. As already 

mentioned in this section, solvent conditions play an important part in the conformation of 

the protein. With appropriate buffer as the solvent a narrow charge distribution is 
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observed, a consequence thought to be due to the retention of the higher order structure of 

the "natural" protein. The fact that the conformation changes with solvent can be used as 

a useful control experiment in investigations of specific non-covalent interactions. 

Specific interactions between the active site of the protein and the target should only be 

observed when the protein analyte solution is butTered to retain the proteins natural 

conformation. Interactions observed from organic solvent based analyte solutions can be 

thought of as non-specific, since the protein conformation in solution can be considered 

random. A proteins function is intrinsically tied up with its conformation. Thus an 

analyte solution that disrupts the conformation of a protein cannot produce results that 

would be representative of the proteins function in vivo. 

Arguments still rage over the validity of results obtained by electrospray on such 

complexes. The fact that both solution phase chemistry and gas phase chemistry are 

involved leads to the question does a gas phase measurement give us information on a 

solution phase problem?[4] 

Published data has characteristically been in direct correlation with results obtained 

by solution-phase methodology. Some argue, however, that results that do not show 

expected non-covalent interactions, or non-covalent interactions where none are expected, 

are not reported. The nature of this argument means that it is hard to prove; none the less 

experiments are consistently being published that provide direct correlation with results 

reported from solution-phase experiments. Investigations where the ligands are in much 

greater concentration than the protein i.e. competitive conditions, show relative 

abundances of complexes in the mass spectra consistent with their relative binding 

constants in solution [5, 6] and muItimeric complexes that are known to he biologically 

active are also observed under "natured" conditions. 
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There are a variety of non-covalent interactions agreed to be involved in protein 

folding, including ionic interactions, Van der Waals forces, hydrophobic effects and 

hydrogen bonds. Changing from solution to the gas phase may cause some types to be 

strengthened while others are weakened. It is still undetermined whether this is the case 

but it is worth considering. [7] 

Experiments by Lim el af [5]and Loo el af [6], however, have shown the ability of 

electrospray ionisation mass spectrometry to provide quantitative results for binding 

constants between antibiotics and peptides and proteins and peptides respectively. Lim et 

af constructed Scatchard plots for the interactions of vancomycin and ristocetin, at a 

variety of concentrations, with an assortment of cen wall peptide ligands. These plots 

provided binding constants that were in good agreement with those found in solution by 

other techniques. For example ristocetin + AC2KAA had a binding constant (Ka) in 

solution of 5.9 x 105 M compared with 6.25 x 105 M calculated from the Scatchard plots 

in the gas phase. Experiments carried out by Loo el al monitoring the binding of 

phosphopeptides to Src SH2 Domain protein showed a similar correlation. 

These ESI experiments on such non-covalent complexes are necessarily carried out 

using appropriate source conditions and there is a careful balance between the energy 

needed to desolvate the ion and the energy that will dissociate the complex. Protein­

peptide interactions are especially weak and much care is needed in order to be able to 

observe the complexes. Protein-oligonucleotide complexes on the whole are typically 

much stronger due to extensive electrostatic forces between the partners and arc 

consequently more forgiving of harsh ESI conditions. [8]The energy imparted to the ions 

by electrospray ionisation can also be utilised to provide information on the strengths of 

the interactions. For example, if a variety of peptides are allowed to bind to a protein and 
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CID carried out, the relative strengths of the complexes can be ascertained. [9]Similar 

studies using blackbody infrared radiative dissociation with FT-ICR mass spectrometry on 

myoglobin-heme and a-hemoglobin-heme complexes showed a consistency with results 

from solution. [10] 

4.2.1 Papain 

There are 20 families of peptidases with cysteine at the active site, of which, papain is 

the best known. [11]They are found in a wide variety of organisms including baculavirus. 

eubacteria, yeast and probably all protozoa, plants and animals. The activity of papain and 

its family members is dependent on a catalytic dyad of Cys and His. [11 ]The order of 

these amino acids in the linear sequence varies from family to family within this class of 

peptidases with, for example, papain having a Cys/ His sequence and Hepatitus C virus 

endopeptidase 2 Hisl Cys. Other residues are also important within the active site of 

papain including GIn 19 which helps form an "oxyanion hole" [12, 13](so called because 

the two hydrogens from the His and Cys stabilise the carbonyl oxygen of the target), Asn 

175[ 14] which orientates the imidazolium ring of His 159[15] and Ser 205 which lies at 

the bottom of the pocket. [11] 

These peptidases are lysozomal (vacuolar) or secreted proteins and papain itself is 

found extraceJlular in the latex of papaya. The activity of the peptidases within the papain 

family varies !:,Tfeatly from endopeptidases with broad specificity such as papain to those 

with narrow specificity such as glycyl endopeptidase. Others have little or no catalytic 

activity. 

Papain is a non-specific cysteine protease that consists of 212 amino acids (RMM 

approximately 23,425). It consists of two hydrophobic cores each made up of five helical 
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segments and a region of approximately 30 amino acids that forms a distorted ~ pleated 

sheet (see Figure 3). The active site of papain exists within the cleft between these 

hydrophobic cores and contains the amino acids mentioned previously, Cys 25 and His 159 

being on opposite lobes. Papain and its family members catalyse the hydrolysis of peptide, 

amide, ester, thiol ester and thiono ester bonds. [16]The mode of action of papain can be 

considered to be very similar to that of chymotrypsin, a serine protease. [17] It consists of 

the formation of a covalent acyl-enzyme intermediate (Figure 2) which occurs because of 

nucleophilic attack at the carbonyl carbon of the substrates scissile bond by the thiol group 

of the active site. The mechanism is supposed to be similar to chymotrypsin because of 

the resemblance of their active sites. In both, an Asn amino acid is in close proximity to 

the histidine. The oxygen of the asparagine (Asn) side chain is hydrogen bonded to a 

nitrogen in the histidines ring forming a Cys-His-Asn triad that is comparable to the Ser­

His-Asp of chymotrypsin. The Asn is proposed to orientate the imidazole ring of the 

histidine for the different stages of the mechanism. 

As can seen from the schematic of the mechanism (Figure 1) it is incompletely 

understood. Many other intermediates/ transition states are believed to be present along 

the pathway, these are denoted by (tetrahedral intermediates) TTJ) and TTI2 with their 

attendant transition stated 1 6] Figure 2 shows the covalent acyl-enzyme intermediate in 

more detail. 

The substrate carbonyl group sits in the "oxyanion hole" (at the bottom of which lies 

GIn 19) and is therefore brought into the vacinity of the thiolate anion ofCys 25 (Stage A, 

Figure 1). This carbonyl undergoes nucleophilic attack forming the first tetrahedral 

intermediate (TTI), the His 159 then rotates al1o~ing the proton to be donated to the 

amide hydrogen of the substrate. This causes TTI) to break down, expelling a free amine 
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and forming the acyl enzyme intermediate (Stage B, Figure I). The His 159 then removes 

a hydrogen from the water molecule that assails the acyl enzyme intermediate, causing the 

breakdown ofTTI2 which regenerates the enzyme (Stages C and D, Figure 1). 

Michaelis Complex 

R 
I~ R 

[S~ 1.:~+HI] ___ TTI)--+' [S-t=o T,IID] 
Binding/ A I 

Acylation 
B 

[S- +HI] 
Deacylation 

D c 

Figure 1: Schematic diagram of the mode of action of papain. 

Papain is inhibited by a variety of molecules inc1uding reducing agents, heavy 

metal ions, alkylating reagents and some peptides. For example, the tetra-peptide GOYR 

used in this study is known to be an inhibitor of papain. This is due to the specificity of 

papain for cleaving peptide bonds in sequences where an aromatic amino acid is bound to 

a basic amino acid which in turn is bound to any other amino acid. Its speciticity for the 

peptide bond after the basic residue means that a peptide that ends in an aromatic-basic 
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moiety is an effective inhibitor of the enzyme. [18]The other peptide used in this study 

Na,Ne-diacetyl-Lysine-d-Alanine-d-Alanine is known to be an inhibitor of serine proteases. 

[19] 

0 -

CYS25 ______ S T R 

NH - R 

H 

Figure 2 : Covalent acyl enzyme intermediate. 

Inhibition of papain has been studied before by mass spectrometry. Using a pneumatically 

assisted electrospray source coupled with a triple quadrupole mass spectrometer, [20lthe 

interaction of papain with a peptidyl O-acyl hydroxomate was investigated with the 

observation of oxidised papain, and at higher concentrations of inhibitor a significant peak 

corresponding to a papain-inhibitor complex. 

\ 

~ Peptide Inhibitor 

Figure 3: Papain plus peptide inhibitor. Note the two 
hydrophobic cores and the cleft containing the active site. 
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4.2.2 Experimental 

Experiments were conducted using the 9.4 Tesia Fourier transform ion cyclotron 

resonance (FT-ICR) mass spectrometer (see chapter 2). CO2 was used as a drying gas at a 

temperature of approximately 50°C in the source. The analyte was directly infused into 

the source at a flow rate of 1 J.lI min- I making use of a syringe pump. Source parameters 

were carefully controlled during the experiments to minimise unwanted dissociation of the 

analyte and its complexes. Thus the capillary-skimmer voltage bias and heating-gas 

temperature were kept low to prevent capillary-skimmer CID and thermal decomposition 

respectively. 

The best quality spectra were found to be obtained from a sample consisting of a 

papain suspension in sodium acetate + I % thymol purified using the Pharmacia Biotech 

PD 10 Sephadex gel chromatography columns. 

ESI FT -ICR mass spectrometry experiments were carried out in ultra-pure water (Elga 

system) and plastic laboratory equipment to minimise unwanted salt contamination. 

Before introduction to the instrument papain was purified by desalting as per section 

3.2.2.4. 

The peptides used in this study were the tetra-peptides Gly-Gly-Tyr-Arg (GGYR) and 

Gly-Gly-G1y-Gly (GGGG) and the tri-peptide Na.Nc-diacetyl-Lys-d-Ala-d-Ala. All were 

obtained as lyophilised powders from Sigma (Poole. UK) and used as purchased. 
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4.2.3 Results 

Initial investigations into the non-covalent interactions of papain and its peptide 

inhibitors involved ascertaining the solvent and source conditions that would allow the 

observation of non-covalent interactions. Non-covalent interactions were eventually 

observed under specific conditions, which included a solvent pH of around 4.6 in 

ammonium acetate and a source temperature around 50oe. The interactions of papain and 

the peptides were investigated by circular dichroism. (see Figures 4 and 5)Initial 

experiments into the purification of papain, that is, to remove the unwanted salt 

contamination also mage use of two MALDI time-of-flight mass spectrometers, the Kratos 

MALD! IV bench top time-of-flight instrument and the Micromass TOFSpec. 
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Figure 4: CD spectra of papain plus the peptides GGYR and KAA in water. 

Papain:Peptide ratio 1 :5, papain concentration approximately 75 JlM, pathlength 1 cm. 
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Figure 5: CD spectra of papain plus the peptides GGYR and KAA in ammonium acetate 

(5mM, pH 4.6). Papain:Peptide ratio 1 :5, papain concentration approximately 75 IlM, 

pathlcngth 1 cm. 
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Figures 4 and 5 show the CD spectra, the addition of peptides, in this case KAA and 

GGYR, alter the conformation of the protein. This can be observed from the spectra by 

noting the change in the spectra on addition of the peptides. It can be deduced that the 

tri-peptide causes the greatest perturbation of the protein structure in both water and 

ammonium acetate, due to the greater shift in the recorded CD spectra. 

Circular dichroism (CD) is becoming widely used as a tool for the study of biological 

molecules.£4] The technique allows changes in the conformation of the biomolecule to be 

monitored, this can be achieved when the biomolecule is alone in the analyte solution or 

can be used to monitor the effect of small molecules on the conformation of the 

biomolecule of interest. Due to the complexity of the circular dichroism spectra, 

interpretation is usually of a qualitative nature. Thus the examples presented here show 

the overall effect of small peptides binding to papain but make no other attempts to 

interpret the spectra. The ease and rapidity with which CD experiments can be carried out, 

the fact that experiments are carried out in the solution phase and the low concentrations 

of analyte required are all advantages of CD for the acquisition of complementary data for 

these mass spectrometric experiments. 

The technique makes use of right and left-polarised light, with the different absorption 

of left and right handed chiral analyte molecules determining the CD spectra. Biological 

molecules, consisting of predominantly L-amino acids and secondary structures such as the 

a-helix are chiral. Thus the interaction of left- and right-handed photons with the 

biomolecule will be different forming the basis of circular dichroism. [21] 

Spectropolarimeters (circular dichrometers) require a source of monochromatic left­

and right-handed light and a detector capable of detecting the difference in the absorbance 

of left- and right-handed light by the analyte molecule. This is usually achieved using a 

133 
------------- ------- ---------- ----



Chapter 4: Non-<.:ovalent Interactions of Biological Molecules 

polarisation phase-modulation technique. A light source of constant intensity such as a 

photo-elastic modifier with a typical frequency of 50 kHz is utilised and when the light 

passes through the sample of interest the absorption of the left- and right-handed light is 

different. The intensity of the light fluctuates in phase with the photo-elastic modifier and 

this can be monitored by detecting the number of unabsorbed photons striking a photo­

multiplier. The current produced, which is detected by a lock-in amplifier, has a 

magnitude related to the number of incident photons, information on the CD of the analyte 

molecule can be determined from the AC component, which, with the aid of the lock-in 

amplifier can be phase determined. Meanwhile, the DC component of the current gives 

the total absorption of light by the sample. 

CD of proteins is usual1y aimed at investigating the backbone region (the amide 

transitions) from 190 to 240 nm. This gives distinctive CD spectra for the a-helix and p­

pleated sheets present in such molecules, with the overall spectra being a summation of the 

different components present in the analyte molecule. For example, the CD spectrum of 

the a-helix consists of a negative peak with separate maxima at 222 nm and 208 nm. This 

motif is the largest present in CD spectra of proteins and is readily apparent with just a 

cursory examination of a CD spectrum. 

Preliminary mass spectrometry experiments used a high ratio of peptide to papain (of 

the order 25:1). This produced numerous observable non-covalent complexes, with the 

peptides binding to both the oxidised and the phosphorylated-oxidised form of papain (sce 

Figures 6 and 7). It is assumed that only a single peptide actuaJIy binds to the active site 

of papain, while the remaining peptide complexes are formed from non-specific non­

covalent interactions. Thus of the observed papain: GGYR complexes, the most abundant 

was the single GGYR bound to papain. The maximum number of tetra-peptides bound 
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was six(see Figure 6). The most abundant complex was that in which six tri-peptides were 

bound, with a maximum at twelve (see Figure 7). 

The observations would seem to indicate that GGYR has a greater specificity for the 

active site (since the maximum is at one tetra-peptide bound to papain); one tetra-peptide 

binds into the active site predominantly. KAA on the other hand binds to the active site as 

indicated by later experiments, but non-specific non-covalent interactions dominate the 

spectra at high peptide concentrations as indicated by the bell shaped distribution of 

complexes in Figure 7 . 

............. [M+8H+20+P03]8+ 
[M+8H+20]8+ ~ 

\ [M+81!+20+GGYR]" 

I 

2900 3000 3100 3200 

m:: 

3300 

Figure 6: Papain:GGYR (1 :25) in ammonium acetate (5mM. pH) 

At lower ratios of peptide: papam the distribution of non-covalent complexes 

distribution for both peptides looked very similar, with both OGYR and KAA binding 

predominantly a single peptide (see Figures 9a and lOa). In these cases there was 

presumably not enough of each of the peptides to form significant non-specific 

interactions. Thus the interactions observed, are interpreted as relating to a single peptide 
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binding to the active site. Note that in both Figures 9a and lOa the complex corresponding 

to peptide bound to the phosphorylated-oxidised form of papain was absent. This is 

attributable to a purer sample of the peptides or papain, with the removal of the phosphate 

buffer contamination from the analyte and as a result its corresponding peak from the 

spectra. 

Since both peptides bound to the protein, the obvious questions were which showed the 

strongest interaction and whether either peptide was binding to the active site. These 

questions seemed to be most easily answered by a capillary-skimmer CID experiment. 

The results are shown in Figures 9 and 10. In both cases the peptides remained bound up 

to a capillary voltage of 120V meaning that both must be bound quite strongly to the 

o?,idised form of papain since this voltage is very high and would nonnally cause all weak 

bonds to be broken. This is consistent with both peptides being bound to the active site. 

[M+9H+20+SKAA]9+ 

[M+9H+ 20+ KAA ]9+ 

\ 
I 

2700 
I 

2800 
I 

2900 
m/z 

I 
3000 

[M+9H+20+ 12KAA]'H 

I 
3100 

\ 
I 

3200 

Figure 7: Papain: KAA (1 :25)in ammonium acetate (SmM, pH 4.6) 

------.~--.---.--.- --+- ---- -- . 
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The tri-peptide KAA remained bound to papain up to a capillary voltage of 160V (see 

Figure lOd) • compared to 140V for GGYR; Figure 9d. Thus it would seem that in the gas 

phase the tri-peptide was bound more strongly into the active site of papain. This 

conclusion was supported by a complementary experiment where both GGYR and KAA 

(at a concentration ratio of papain: GGYR: KAA (1:8:8» were mixed with the protein. 

Figure 11 shows that the peak corresponding to one KAA bound to papam was 

predominant again suggesting that KAA was bound preferentially to papain. 

Similar experiments to those described above were carried out using GGGG. a peptide 

that was not expected to bind to the active site. No non-covalent complexes were 

observed in the spectra (see Figure 8) 

~ Papain molecule ion 

2330 2350 2370 2390 
m/z 

Figure 8: Electrospray mass spectra of papain: GGGG (1:10) in ammonium acetate 

(SmM, pH 4.6). Note the absence of any papain: GGGG complexes. 
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The lower regions of the ml:: scales for both GGYR and KAA contained peaks due to 

various multimers of the peptides. Figure 12 illustrates this with the easily observed 

trimer ofGGYR. Even lower on the m1z scale dimers and multiply charged pentamers and 

hexamers could also be seen (not shown). It is therefore possible that there may not be 6 

individual non-covalent interactions from the oxidised papain to the tetra- and tri-peptides; 

there may in fact be a single non-covalent interaction between oxidised papain and say a 

hexamer of the peptide in question. Thus each individual peak representing a non-

covalent interaction may involve the oxidised form of papain and the multimer of the 

relevant peptide. This is especially true for the experiments carried out under high 

concentrations of peptide. 

rM+9~ 

I , I , I I , I I I j i i i i i i 

2SOO 2f>50 2600 2650 2700 2750 2800 2500 2550 2600 2650 2700 2750 2800 

(a) 1n/: (b) ml: 

j j j i I I i I i j i i i i 
2500 2550 2800 2650 2700 2750 2800 2500 2550 2800 2650 2100 2750 2600 

m/: /Ill: 
(c) (d) 

Figure 9: Capillary-skimmer CID ofpapain:GGYR (1:8) in ammonium acetate 
(SmM, pH 4.6) (a) capillary voltage 8SV (b) lOOV Cc) 120V and (d) 140V 
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Figure 10: Capillary-skimmer CID of papain: KAA (1 :8) in ammonium acetate 
(5mM, pH 4.6) (a) capillary voltage 85 V (b) 100V (c) 140 V and (d) 160 V. 

[M+9H+ 20+ ]9+ 

~ 
[M+9H+20+KAAf+ 
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Figure 11: Papain: GGYR: KAA (1 :8:8) in ammonium acetate (5mM, pH 4.6). 
Capillary voltage 85V. KAA bound preferentially. 
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Figure 11: Papain: GGYR (1 :25), capillary voltage 96V. Note the trimer 
of the tetra-peptide GGYR. 
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~ Calmodulin 

Calmodulin (CaM) is a relatively smatJ acidic protein of approximately 148 amino acid 

residues and RMM-16,626. [22, 23]1t is found in all eukaryotic cells£24] and is a 

mediator in many cellular processes including muscle contraction, cellular metabolism, 

cellular motility, division and growth of the cell, ion transport and membrane permeability. 

DEPHOSPHORYLATION PHOSPHORYLATION 

Ca .. 
Ca .• ~ , 

CALMODULIN 

.. ~ 
Ca 

CYTOSKELETON 

NUCLEOTIDES METABOLISM 

Figure 13: Calmodulin and its enzyme targets. 

Ca 

CALCIUM 
TRANSPORT 

CaM has a dumbbell-type shape in solution, that is, at the C- and N-terminus there are 

globular domains which contain two so-called EF hands (see Figure 14). [25-29]These EF 

hands consist of a helix-loop-helix motif with the C-terminus sites (III and IV) thought to 

have a higher affinity for Ca2
+ than the N-terminus (I and 11). This is inferred from the 

most satisfactory model for Ca2
+ ion binding to CaM. [30, 31 ]This states that Ca2+ ions 

bind sequentially to the sites on the C-terminus first and then into the sites on the N-

terminus i.e. sites III ~ IV ~ I ~ IT (scc Figure 14). PO-36]This information was deduced 

141 



Chapter 4: Non-covalent Interactions of Biological Molecules 

from data acquired on the macroscopic dissociation constants of each of the binding 

It has been observed that CaM can bind up to four Ca2
+ ions to four primary sites at a 

pH of between six and eight. [35, 36]A further four to six Ca2+ ions can bind to so called 

auxiliary sites. [36]The dissociation constants for these sites are in the milli-molar range 

for Ca2+J37, 38]It has also been shown that Cam binds other cations such as Sr2
+, Zn2

+, 

the primary sites; Zn2+, Mn2
+, Cu2+, Hg2+ to the auxiliary sites only and La3+, Tb3+, Pb2+ 

and Cd2+ could bind to both. [38] 

eo,2+ 
\' 

• 
Ca2+ 

• • • 

Ala~Asp-Gln-Leu-Thr-Asp-Glu-Gln-I1e-Ala-Glu-Phe-Lys-Glu-Ala-Phe-Ser-Leu- Asp-
Lys-Asp-Gly-Asp-Gly-Thr-I1e-Thr-Thr-Lys- -Leu-Gly-Thr-VaI-Met-Arg-Ser-Leu-Gly 
Gln-Asn-Pro-Thr-Glu-Ala-Glu-Leu-Gln-Asp-Met -I1e-Asn-Glu- -A s p-Ala-Asp-G Iy-Asn­
G Iy-Th r-lie-Asp-Phe-Pro-GI .. Phe-Leu-Asn-Leu-Met -Ala-Arg-Lys-Met -Lys-Asp-Thr -Asp­
Ser-Glu-Glu-Glu-Leu-Lys-Glu-Ala-Phe-Arg-VaI- Asp-Lys-Asp-Gly-Asn-Gly-Phe­
Ser-Ala-Ala-Glu-LeuArg-His-V aI-Met-Thr-Asn-Leu-Gly-Glu-Lys-Leu-Thr-Asp-Glu­
VaI-Asp-Glu-Met-lle-Arg-Glu-A1a-Asp-Val-Asp-Gly-Asp-Gly-Gln-Val-Asn-Tyr­
Glu-Phe-Val-Gln-VaI-Met-Met-A1a-Lys 

Figure 14: (a) sequential calcium binding to calmodulin and (b) the amino 
acid sequence of calmodulin with "EF" hands shown in red. 
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Existing literature indicates that calcium binding to calmodulin induces conformational 

changes that expose hydrophobic residues in each globular lobe. These exposed residues 

make up important binding sites for most of the target proteins. (39]Calmodulin is then 

thought to interact with, and regulate selectively, a wide variety of proteins. (These target 

proteins have little sequence homology in the region where calmodulin is known to bind, 

although they do have a propensity for forming basic amphiphilic a-helices. [40])This 

allows the calcium-bound (holo) form of calmodulin to be involved in the regulation of a 

wide range of metabolic processes. [22, 23lThe interactions of calmodulin with target 

proteins have been shown to be arbitrated by both hydrophobic and electrostatic forces 

occurring between the N-terminal of calmodulin and the C-terminal of the target protein, 

and vice versa. [29, 41] 

Figure 15: Molecular model of apo-calmodulin. 

The Ca2
+ mediated conformational change in CaM is believed to involve the loosening 

of the structure of the C-terminus domain (and the N-terminus domain to a more limited 

extent). This "opening/loosening" of the C- and N- terminus domains uncover solvent 

exposed hydrophobic surfaces that engulf aromatic and aliphatic side chains of amino acid 
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residues on the target. [42]These hydrophobic surfaces are approximately 10 x 12.5 

Angstroms, one per globular domain, which are surrounded by a polar rim that contains 

numerous negatively charged residues. [43]The negatively charged residues are currently 

thought to aid in "binding" CaM to the target protein of interest by interacting with the 

positively charged residues present on the target. According to existing theories Ca2+ ion 

binding could be responsible for opening up the hydrophobic cavities and allowing CaM-

target interactions to take place. 

The hydrophobicity of CaM is due in part (slightly less than 50%) to the presence of 

nine methionine residues in the amino acid sequence, four in each of the hydrophobic 

cavities and one in the "Iinker" region. The polarisability and flexibility of methionine 

residues has been postulated as being essential for calmodulin function. 

Assuming the sequential model for calcium binding [39, 44-46]it can be proposed that 

there exists at anyone time a series of calmodulin conformations, analogous to zero, one, 

two, three and four calciums bound. The conformational change induced by just one 

calcium binding to calmodulin may be thought of as enough to favour target peptide! 

protein binding. Alternatively, it may be that calmodulin would bind to its target protein! 

peptide, followed by the sequential addition of the Ca2+ ions resulting in activation of the 

target. The presence of calmodulin: target complexes (without any calcium ions present) 

gives some support to this latter theory. [47]Regardless of the mechanism a series of 

complexes corresponding to various amounts of Ca2
+ ions bound to the free calmodulin 

and the target protein! peptide: calmodulin complex should be observed by mass 

spectrometry . 

Rabbit skeletal-muscle myosm light-chain kinase (MLCK) is well known to be 

calmodulin directed and the peptide used in these studies (RS20) is a synthetic construct 
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based on the binding domain of MLCK. The calmodulin binding domain of MLCK was 

the first to be identified, and peptides derived from this particular amino acid sequence are 

known inhibitors of calmodulin activation (pi co- to low nano-molar binding constants[48-

SOl These peptides are important for the study of calmodulin-target interactions by 

analytical techniques including mass spectrometry. The low masses of the peptides allow 

the complexes' molecular masses to be kept low and within the useful range of mass 

spectrometric measurements. 

Circular dichroism has shown that MLCK peptide analogues affect an a-helical 

conformation upon binding with calmodulin. Investigation of calmodulinl MLCK-peptide 

complexes by proton NMR studies, small angle X-ray and small angle neutron scattering 

experiments indicate a more compact conformation of calmodulin after peptide binding. 

The use of ESI mass spectrometry to study the conformational changes, peptide 

interactions and ion-binding properties of calmodulin has been reported. [33, 34, 51-

54]More recently electrospray ionisation high resolution Fourier transform ion cyclotron 

resonance (FTICR) mass spectrometry has also been reported. [55] 

4.3.1 Computer Modelin2 of the Mg Binding Sites of Calmodulin 

Computer modelling of the magnesium binding sites of calmodulin was accomplished 

in collaboration with Mr Nick Barton under the supervision of Dr Leo Caves from the 

York Structural Biology Laboratory at the University of York. It was hoped that computer 

modeling would help to identify the auxiliary magnesium binding sites present in 

calmodulin when the four primary sites were utilised for Ca2+ binding and give a better 

insight into the interactions of calmodulin with metal ions other than calcium. It was also 

hoped that the computer modelling would finally lead to an understanding of exactly how 
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many auxiliary metal binding sites exist on the calmodulin molecule. To this end the 

protein data bank (pdb) file for CaM + 4 CaH ions was used as the primary data set, 

allowing the exact position of the amino acids to be known. To facilitate the calculation, 

the conformation of calmodulin when binding Ca2+ ions was taken to remain constant on 

binding the extra magnesium ions to the auxiliary sites. The changes that could result 

from Mi+ binding to calmodulin were thought to be impossible to evaluate or predict. It 

should therefore be remembered that the following infonnation is only valid if this 

assumption is correct. 

The first step of the modeling process was to identify the residues that were most likely 

to be involved in Mg2+ binding. Initially this was accomplished by identifying the acidic 

residues that had ~ carbon atoms within a given distance of a ~ carbon on another acidic 

residue. This gave a rough indication of where to start looking for potential Mg2+ binding 

sites. However, this was far from conclusive, the position of these residues relative to onc 

another in space had to be evaluated to provide information on likely pairs that could co­

ordinate to the Mg ion without altering the initial conformation of calmodulin. 

This step narrowed the potential binding sites down to 9 pairs of amino acids, these 

were (6,7) (11,14) (47,50) (78,82) (80,83) (84,87) (119,120) (118,122) and (123,127) 

where the numbers indicate the residue number of the amino acid in the pdb sequence. In 

addition, a further site was found that contained only a single acid side chain but contained 

the necessary geometry i.e. (29,49,45). This latter site seemed almost pre-organised for the 

Mg2+ ion. These areas of interest could then be manually manipulated to allow the side 

chains to take the appropriate orientations to allow them to bind to Mg2+ without 

significantly altering the underlying conformation of calmodulin. The side chains 

produced by this method were considered to look very odd, but minimisation calculations 

could be used to evaluate each side chain. The following diagram represents the solvent 

146 



Chapter 4: Non-co valent Interactions of Biological Molecules 

accessible surface for calmodulin in the absence of magnesium atoms. The atoms were 

added afterwards with a Van der Waals representation to represent their space filling. The 

electro-static potential shows how the atoms are situated in areas of negative charge as 

expected. 

The next step in the modeling, as already mentioned, consisted of energy minimisation 

calculations. These were performed one at a time with the whole protein fixed and only 

the two (or three) residues and the magnesium allowed to alter their positions. The 

positions of the magnesium binding sites can be seen in the following diagrams of the 

electrostatic surface of calmodulin. 

pro,\ackbone 

Mono-dentate 
Bi-dentate 
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The following table provides the relevant information on the magnesium binding sites. 

Site Residues O-Mg Distance (Angstroms) 

1 GIu6 2.097,2.071 (bi-dentate) 

GIu 7 2.101,2.135 (bi-dentate) 

2 Glu 11 2.073,2.172 (bi-dentate) 

Glu14 2.164,2.092 (bi-dentate) 

3 Glu47 2.059,2.10 1 (bi-dentate) 

Asp 50 2.022,3.940 (mono-dentate) 

4 Glu 78 2.141, 2.101 (mono-dentate) 

Asp 82 3.153,5.337 (mono-dentate) 

5 Asp 80 2.178,2.115 (bi-dentate) 

Glu 83 2.143,2.104 (bi-dentate) 

6 GIu 84 2.015,3.843 (mono-dentate) 

GIu 87 2.058,2.067 (bi-dentate) 

7 Glu 119 2.092,2.114 (bi-dentate) 

Glu ]20 2.065,2.061 (bi-dentate) 

8 Asp 118 2.149,2.121 (bi-dentate) 

Asp 122 2.107,2.129 (bi-dentate) 

9 Glu 123 1.597,3.595 (mono-dentate) 

Glu 127 ] .900, 3.615 (mono-dentate) 

10 Thr29 2.177 

Glu 45 2.070,2.585 (bi-dentate) 

GIn 49 2.284 

This simple model has shown that the binding of up to 10 magnesium ions is highly 

feasible using the simple binding motif of two acid residues. There exists one main 

problem, it is generally thought that a magnesium ion is too small to allow bi-dentate 

binding from a protein. Indeed it should be noted that even the larger calcium ion when 

bound to calmodulin is never co-ordinated by more than one bi-dentate acid. A possibility 

is that the solvent waters are involved in the co-ordination of magnesium ions to 
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calmodulin. These, theoretically, could bind at any angle and from any position, which 

would also result in a difficulty in modeling these interactions. It should be noted, 

however, that some of the pockets predicted by this model are so deep that the magnesium 

ions are totally enclosed by the rest of the protein. Site 10, for example, is invisible 

through the surface. Thus, the sites containing only two residues should be more than 

adequate for magnesium binding. 

Further investigations, whereby the protein backbone is allowed to change 

conformation, and the solvent waters are taken into account are needed before any 

complete conclusions can be made from the computer modeling. However, the results so 

far provide a useful aid to thinking about calmodulin-metal ion interactions. 

4.3.2 Experimental 

4.3.2.2 Calmodulin Synthesis and Purification 

DNA encoded calmodulin supplied by Dr. Daniel Lafitte had been produced by 

previously described procedures and purified by column chromatography in the 

laboratories of Jaques Haiech (Laboratoire de Chimie Bacterienne, University of 

Marseille). [56, 57]The purity of the protein, which was found to be greater than 99%, was 

then checked by SDS polyacrylamide gel and high-pressure capillary electrophoresis. ESI 

FT-ICR mass spectrometry experiments were carried out in ultra-pure water (Elga system) 

and plastic laboratory equipment to minimise unwanted salt contamination such as sodium 

and magnesium ions. Before introduction to the instrument calmodulin was further 

purified by desalting the sample using a Pharmacia Biotech Sephadex (Uppsala, Sweden) 

PD 10 column (see section 3.2.1). The concentration of these aliquots was determined by 

UV absorption on a Jasco V-550 spectrophotometer. The molar extinction coefficient 
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used for these experiments was thsonm=1560 M-tcm-t and the concentration of the fractions 

was found to be between 20 and 25 JlM. 

The synthetic peptide analogue used for this study (RS20; sequence 

RRKWQKTGHA VRAIGRLSSS) is derived from the phosphorylation site of myosin light 

chain kinase (a protein known to be regulated by calmodulin) This peptide has been 

shown to inhibit calmodulin-stimulated light chain kinase activity and must therefore be 

interacting with calmodulin in preference to myosin light chain kinase (MLCK). 

4.3.3 Results 

Figure 16 shows the spectrum of calmodulin in ammonium acetate (5mM, pH 5.8) in 

the absence of organic solvents. As can be seen clearly from the spectra at least two 

charge distributions can be seen. This suggests that there are at least two conformations of 

calmodulin present even when electrosprayed from solvent that is supposed to maintain the 

natural conformation of the protein. The higher charge state distribution centered around 

the 12+ is similar to that observed when calmodulin is electrosprayed in organic solvents 

,and as has previously been postulated (see section 3.3.1), this is due to the protein being in 

a more open conformation. [58-61 lThe lower charge state distribution centred around 8+ 

is believed to be representative of calmodulin in its natural or active conformation. In this 

case the experimentally determined monoisotopic mass of calmodulin was 16,616.84±0.02 

Da compared with the theoretical mass calculated from the sequence of ] 6,6] 6.82] Da. 

Also to be noted in this spectrum is the presence of peaks attributed to non-covalent 

calmodulin dimers. [55] 
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Figure 16: Calmodulin in the absence ofCa2+ ions in ammonium acetate (5mM. pH 5.8). 
where C represents the calmodulin molecule. The bimodal distribution is due to the 
presence of both the natural conformation and the denatured form of papain being present 
in the analyte solution. 
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4.3.3. t Interaction Of Calmodulin-RS20 

Previous investigations of calmodulin and calmodulin binding peptides have shown a 

propensity for calmodulin-peptide interactions to occur only in the present of Ca2
+ ions 

[51], although there are cases where Ca2+ ions have been found not to be necessary for 

binding to occur. [471An extensive literature search at the time of completion of this work 

revealed no evidence for RS20 interacting with apo-calmodulin. It is proposed from the 

spectra in Figure 18 that apo-calmodulin binds a single RS20. 

The inset shows a species [C+p]9+ (where C represents calmodulin and P the RS20 

peptide) that has an average mass of 18,922.14 Da. Since calmodulin and RS20 have an 

average mass of 16,627.37 Da and 2,294.65 Da respectively, a complex should have an 

average mass of 18,922.02 Da which is in very good agreement with the experimental 

number. 

[RS20] S+ 

~ 

I 
400 

I 
600 

[RS20] 3+ 

I 
800 

I 
1000 

[RS20] 2+ 

I 
1200 

I 
1400 

Figure 17: Electrospray mass spectrum ofRS20 in ammonium acetate (SmM, pH 5.8). 
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Figure 18: ESI mass spectrum of apo-calmodulin and RS20 (1: 1.5) in ammonium acetate 
(5 mM, pH 5.8). 

In prevIous experiments carried out by other groups on the characterisation of 

calmodulin-peptide interactions by mass spectrometry, this type of interaction may have 

been prevented because use was made of EDT A or EGT A to remove unwanted ea2+ ions 

from the analyte solution. It was observed in this work that both EDTA and EGT A bind to 

calmodulin (see Figure 19, also section 5.3.2). 

Close inspection of Figure 18 suggests that the binding of RS20 to apo-calmodulin has 

caused the charge state of the complex to increase by one. That is to say, RS20 binding to 

the 8+ charge state of apo-calmodulin has caused the charge state to increase by one to 9+. 

Either the peptide is bringing a single positive-charge site with it when it binds to 

calmodulin or the peptide causes apo-calmodulin to form a more open conformation. 
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Figure 19: Calmodulin with EGTA added to remove excess Ca2+ ions in ammonium 
acetate (5mM, pH 5.8). Note the Cam+EGTA complexes. 

Both scenarios would result in an overall increase in charge in the mass spectrum but it is 

not obvious how to distinguish them. 

On increasing the proportion of RS20:caJmoduJin the lower charge states were observed 

to decrease and eventually disappear (see Figure 20). This indicates a loss of the more 

tightly folded or natural conformation of calmodulin due to a disruption by RS20. It can 

also be seen that the numbers of peptides binding to calmodulin increased after the ratio 

exceeds 1:6. From a ratio of 1: 1.5 to 1:6 (calmodulin:RS20) only a stoichiometry of 1: 1 

(calmodulin:RS20) was observed. However, the higher concentrations of RS20 result in 

two RS20's binding at a calmodulin: RS20 ratio of 1: 13 and up to four RS20's bound at a 

ratio of 1: 17. At a ratio of 1: 17, peptide dimers are observed at low n1'Z fonned by peptide 

agbJfegation. This raises the question as to whether [C+4P]14+, for example. is a result of 

four RS20 monomers or two RS20 dimers binding to calmodulin, since the mass increase 

observed for both scenarios would be identical. 
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Figure 20: Calmodulin: RS20 at various ratios in ammonium acetate (5mM, pH 5.8). 
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4.3.3.2 Effect of Calcium on Calmodulin: RS20 Non-covalent Interactions 

A comparison of the spectra shown in figures IS, 21 and 22 shows the effects of 

increasing calcium concentration on the binding of RS20 to calmodulin. Comparing 

figures IS and 21 i.e. changing from a ratio of calmodulin: Ca2+ of 1:0 to one of 1:1.5. 

there is an obvious change in the intensity distribution of the peaks. In the absence of Ca2+ 

ions (Figure 18) the most intense peak for un-complexed calmodulin corresponded to the 

S+ charge state, compared with the similarity in intensity of the S+ and 7+ charge states in 

Figure 21. The charge state distribution "has effectively altered and, as previously stated, a 

shift in the charge distribution of an electrospray spectrum of a protein is indicative of an 

underlying confonnational change of the protein in the sprayed solution, The addition of 

even this small amount of CaH ions to apo-calmodulin can therefore be said to have 

initiated a confonnational change. This can be observed in Figure 21 not only in the 

change of intensities of the peaks corresponding to calmodulin alone, but also in the 

apparent greater affinity of RS20 for holo-calmodulin compared to apo-calmodulin. 

Considering the insets of figures 21 and 22, there are increases in the intensities and thus 

the abundances of the complex ions on increasing Ca2
+ ion concentration while retaining 

the same calmodulin:RS20 ratio. Comparing Figure 18 and Fi!,TUre 22 it is clearly seen that 

there are many more non-covalent complexes between calmodulin and RS20 in the 

presence of a large number of Ca2
+ ions. 

It should be noted, however, ,as evident from figures 18 and 20 that Ca2+ ions were 

not required for calmodulin: peptide interactions to take place. In both figures peaks 

corresponding to [C+P]9+ through to [C+pt+ complexes are present. This is in direct 

contradiction to mass spectrometric investigations in the negative ion mode of calmodulin 

by Gross et at and Veenstra et al [531that showed a calcium dependence of calmodulin 
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when binding to target peptides and proteins. It is believed that this is the first mass 

spectrometric evidence for calmodulin: peptide interactions in the absence of calcium ions. 
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Figure 21: ESJ mass spectrum ofapo-calmodulin and RS20 (1 :1.5) plus 0.01 mM CaCh in 
ammonium acetate (SmM, pH 5.8). Where C represents the protein calmodulin and Ca = 

Ca2+. [CaM:RS20:Ca] is 1: 1.5:0.4. 

Finally it should be noted that in figures 21 and 22 a marked preference exists for 

calmodulin: RS20: Ca2
+ complexes with a ratio of 1: 1 :4. This is especially evident in the 

insets of Figure 22. A complete loss of the higher charge states at 0.1 mM CaCl2 was 

observed meaning that the Ca2
+ ions have induced a complete conformational change of all 

the calmodulin present in the analyte solution i.e. the calmodulin conformation is now 

completely in its "natural" state. 
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Figure 22: ESI mass spectrum of apo-calmodulin and RS20 (1: 1.5) plus 0.1 mM CaCh in 
ammonium acetate (5mM, pH 5.8). [CaM:RS20:Ca] is 1:1.5:4. 

4.3.3.3 Effect of Magnesium on Calmodulin: RS20 Non-covalent 
Interactions 

Experiments involving Mg2+ ions in a 1 :6: 1.5 mixture of calmodulin: magnesium: RS20 

were also carried out.. Magnesium was shown to bind to calmodulin (see Figure 23), with 

up to four bound to the protein. However, unlike calmodulin with CaCI2 there was no 

preference for the stoichiometry 1: 1 :4 
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Figure 23: ESI mass spectrum of apo-calmodulin and RS20 (1: 1.5) plus OJ mM M!,l{:12 in 
ammonium acetate (5mM, pH 5.8). [CaM:RS20:Mg] is 1:1.5:12. 

(calmodulin: RS20: CaH). Stoichiometries of 1:1:1 and 1:1:2 (calmodulin: RS20: Mg2) 

were observed (see insets of Figure 23). Non-covalent complexes between apo-calmodutin 

and RS20 also existed in the MgCJ2 doped analyte solutions. 

It suggests that there was no shift in the charge states, as there was for the CaCl2 loaded 

sample. This suggests that although MgH ions do bind to catmodulin. they do not induce a 

conformational change in the protein. 
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4.4 Conclusion 

Papain has been proven to bind both the tetra-peptide GGYR and the tri-peptide 

KAA, with the tri-peptide binding more strongly to the active site in comparison with 

GGYR. A complimentary study using circular dichroism has confirmed this observation~ 

the conformational change induced on the protein by KAA is greater than that induced by 

GGYR. The strength of the bond between the peptides has also been investigated using 

capillary skimmer collision induced dissociation techniques whereby it was noted that 

KAA was still bound at a voltage of 160 V compared with only 140 V for GGYR. The 

small size of the KAA compared with GGYR probably accounts for the stronger bond 

between peptide and protein, since it will fit deeper into the active site and thus be more 

completely surrounded by the coordinating amino acids of papain. Attempting non­

covalent interactions of papain with tetra-glycine (GGGG) (Figure 8) produced no 

observable protein-peptide complexes, suggesting that peptides are specific for the active 

site. Some non-specific binding of peptides to proteins should be, and indeed are, seen at 

higher ratios of papain: peptide, but lower ratios should provide information on the 

specificity of peptides for proteins. This is confirmed by varying the ratios of protein: 

peptide from 1 :25 to 1:8 for both KAA and GGYR. In both cases at higher ratios more 

than one peptide is observed to bind to papain. due to non-specific non-covalent 

interactions about the protein surface. It is interesting to note that the protein: peptide 

distributions differ between GGYR and KAA bound to papain. The spectra show a bell 

shaped distribution of papain: KAA complexes (Fib'1Jre 7) centred at 1:6 (papain: KAA) 

compared to a distribution for GGYR that has a maximum at a ratio of 1: 1 (Figure 6). This 

can be considered to indicate that either (I) KAA and GGYR bind non-specifically to 

papain in the form of multimers at these higher concentrations of peptide i.e. hexamers of 
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KAA bind to papain, either at the active site or somewhere on the surface of the protein or 

(2) that numerous individual peptides bind to different positions on the protein surface and 

also possibly at the active site. It is more consistent that multimers are binding to the 

protein, since results obtained with the peptides alone and spectra with papain and peptide 

(with an extended lower mass range) show the presence of free multimeric forms of the 

peptides (see Figure 12) at these higher concentrations. 

The results obtained for calmodulin, RS20 and Ca2+ or Mi+ metal ions show the 

first mass spectrometric evidence of apo-calmodulin binding a peptide. As already 

mentioned experiments carried out in the negative mode by Gross et al and Veenstra et al 

[53] indicated that calmodulin peptide complexes were only observed in the presence of 

Ca2+ ions. This may have been due to their use of EGT A or EDT A to remove all the Ca2+ 

ions from solution. It has been noted in the process of these studies (section 5.3.2) that 

EGT A and EDT A bind to calmodulin (see Figure ] 9), this may have prevented the 

observation of the apo-calmodulin: peptide complex in these studies. The fact that the 

apo-calmodulin: RS20 complex is observed does not mean, however, that the peptide has 

been activated. It may be that for activation to occur, the four Ca2
+ ions. as proposed in the 

sequential binding model, would have to present. In this particular case calmodulin may 

be in some intermediate stage of peptide activation i.e. the protein may be weakly bound to 

the target peptide by only a single domain~ the protein may then be "waiting" Ca2
+ to bind 

and cause the full activation. Such a mechanism could involve calmodulin binding to the 

target protein and then being activated by an intra-cellular rise in Ca2+ ion concentration. 

This would be a faster alternative to the currently established mechanism where four Ca2+ 

ions must bind sequentially to calmodulin to activate it, and then calmodulin must diffuse 
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to the site of target interaction. However, it has been successfully proven that for 

calmodulin to bind to the target peptide no Ca2+ ions are required. 

The conformation of calmodulin has been shown to be changed by the addition of 

Ca2
+ ions to the analyte solution as seen by the change in the charge state distribution. 

This is from high charge states (the open conformation) to low charge states (the natural or 

native conformation)~ a gradual change as the Ca2
+ ion concentration is gradually 

increased. Simultaneously with the loss of the more open conformation, auxiliary sites 

present in calmodulin are filled as indicated by the presence of species such as 

[C+P+6Ca]7+ and [C+P+5Ca]7+. It should also be noted that the conformation "tightens" 

even more at the highest levels ofCa2+ ion addition as evidenced by the shift in the relative 

intensities of the peaks in the lower charge states (9+ to 7+) see figures 18 and 21. 

There is a definite preference for calmodulin:RS20:Ca2
+ complexes in the ratio 

t : 1 :4 and an absence of protein: peptide complexes with t,2 and3 Ca2
+ ions bound. This is 

the case even at the lowest concentrations of Ca2+ doping of the analyte solution. Thus the 

co-operativity of the Ca2
+ ion-binding sites are illustrated by these experiments and the 

affinity of calmodulin for calcium ions is obviously greatly increased in the presence of 

RS20. 

Mg2+ ions do not promote a conformational change in calmodulin as seen for Ca2+ ions. 

This is indicated by the retention of the higher charge states in the electrospray spectra 

obtained. The complexes of calmodulin: RS20: Ca2
+ with RS20 are typically in the ratios 

t: 1: t and t: 1 :2. This is un-like calmodulin in the presence of calcium, as the most 

abundant species in the Mg2+ doped analyte solutions seems to be controlled purely by the 

salt concentration. 
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The utility of mass spectrometry for the analysis of non-covalent interactions has been 

demonstrated conclusively in this chapter. The wealth of infonnation available from a 

relatively simple set of experiments has proven that electrospray ionisation coupled with 

the high resolution and sensitivity of FT -ICR mass spectrometry is a valuable technique for 

the analysis of biological molecules and their interactions, 
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5.0 Conformational Study Of Calmodulin 

5.1 Introduction 

Solution and gas-phase HID exchange have been investigated using ESI FT-ICR mass 

spectrometry to measure changes in the mass of calmodulin with a view to probing the 

conformation of this protein. The resolution obtainable from FT-ICR makes it possible to 

assign unequivocally peaks present in the mass spectra to specific adducts. Most 

commonly in this part of the study, these were calcium adducts. 

Conformational changes as a result of calcium ion addition to the analyte solution will 

also be discussed and evaluated. 

5.1.2 Hydrogen-Deuterium Exchange 

The replacement of hydrogens by deuteriums in peptidcs, proteins and other biological 

and non-biological samples has been the basis of a standard probe of molecular 

conformation for a number of years in the· field of mass spectrometry. Significant 

advances in the amount of information obtainable from this technique in solution have 

occurred, which have allowed mass spectrometry to be used to probe the conformations of 

molecules in more and more detail. [] ]For example, deuterium levels at specific peptide 

amide linkages have been determined [2, 3] and by making use of proteolytic 

fragmentation the exchange levels in specific parts of the protein can be ascertained. [4,5] 

Solution hydrogen/deuterium (HID) exchange has usually utilised deuterium oxide 

(D20) as the solvent of choice. The procedure is to incubate the sample in this solution for 

set periods of time and the number of hydrogen for deuteriums exchanged monitored by 

mass spectrometry. From these changes it is possible to build up a profile that reflects in 

some way the protein conformation in solution. The binding of substrates, for example, 
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metal ions or peptides, to a protein will change the conformation of the protein, and will 

thus affect how many hydrogens are accessible to the deuterated solvent. Thus if the 

structure of the protein were to become more open, an increase in the number of 

exchanges would be expected, while a contraction of the structure would be expected to in 

a reduction. Thus, for example, a protein on binding' an inhibitor at the active site might 

become more compact as the protein backbone wrapped around the inhibitor; the 

consequence should be a noticeable reduction in the number of hydrogens exchanged for 

deuterons. 

For proteins and peptides, HID exchange is observed to take place mainly at the peptide 

bonds and at the N terminus. [1 ]The other hydrogens present in the molecule i.e. on the 

functional side-chains of the amino acid back-exchange too rapidly for routine detection 

by mass spectrometry. This is due to the fact that H/D exchange must be quenched after 

the desired period by a reduction in temperature to around olle and the lowering of the 

sample's pH to around 2. []]The sample is then introduced to the mass spectrometer, but 

this delay means that most of the rapidly exchangeable deuteriums from the side chains 

will back exchange before analysis. 

Gas phase HID exchange, on the other hand, does not suffer in the same way from this 

problem of back exchange, since the analyte ions in the gas phase react with a deuterated 

gas such as ND3 or DzO. The hydrogens therefore "remain exchanged" for deuterium 

since there is no time-delay between "quenching" and detection. Such gas phase reactions 

are ideally suited to Fourier transform ion cyclotron resonance mass spectromctry, since 

the deuterated gas can be admitted to the cell where detection occurs. Variable delays are 

also easily implemented due to the temporal rather than spatial nature of detection in FT­

IeR mass spectrometry. Thus delays, during which I VD exchange occurs, of several hours 
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for small molecules and peptides, and proteins have been reported in the gas phase, 

allowing information on gas phase conformations to be obtained. [6-9] 

Further developments of solution-phas~ HID exchange include the use of pepsin, a non­

specific enzyme that breaks up the target protein under the acidic conditions used to 

quench the reaction. [llrhis allows Seh'l11ents of the analyte protein to be monitored and 

the amount of exchange in different areas of the protein to be ascertained. If the amino 

acid sequence of the analyte is known, the fragments can be assigned to specific parts of 

the sequence, with the number of hydrogens exchanged for deuteriums giving information 

on the structure of those parts of the protein in solution. Thus, for example, a segment that 

does not exchange many deuteriums for hydrogens may be buried in the bulk of the 

protein, while a segment that exchanges many hydrogens may be near the surface of the 

protein and thus nearer the solvent. From this sort of data, some general idea of the protein 

folding in solution can be built up. 

In the gas phase the rate and extent ofH/D exchange is determined by both the analyte's 

structure and the properties of the exchange reagents. HID exchange rates of protonated 

sample increase with the basicity of the gas-phase reagent gas, such that 

D20<CD30D<CD3C02D<ND3. [6]Thus for larger-mass samples a reagent gas such as 

ND~ should be used in order to encourage complete exchange. 

Numerous mechanisms have been proposed for the exchange of protons for deuterons 

in solution in HID exchange experiments. These include the onium ion mechanism, the 

relay mechanism, tautomer mechanism, the salt bridge mechanism and the flip-flop 

mechanism. [6lrhe first three of these mechanisms involve the N-Terminus hydrogens, 

while the last two deal with exchange at the C-terminus. These particular mechanisms are 

based on results from an investigation of glycine oligomers and as such may not be 
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representative of mechanisms appropriate for larger protein HID exchange. The results 

are, however, complimented by experiments carried out by other groups on other small 

peptides. [10, 11]For reagent gases with high proton affinity, such as ND3, the onium ion 

mechanism has been proposed in which the ND~, for example, exchanges a hydrogen for a 

deuterium on the N-terminus. This exchange is accompanied by the solvation of the 

reagent base by the peptide. This mechanism is shown below, and it is argued is favoured 

by the low endothermicity of the proton transfer for such a reaction. 

H 

H_N." ~+ ~, H .".,. 0/6 ....... 
0 

.. ' 0 OH 
( 

0.... .....0 
~ 
o 

Onium Ion Methanism 

A relay mechanism (shown below) is proposed for those reagent bases such as D20 with 

low proton affinity. These reagents cannot overcome the endothennicity of the proton 

transfer from the peptide, thus a mechanism where a proton is transferred from the N-

terminus to a carboxyl oxygen in the amide bond, which is a less basic site, is postulated. 

H 
______ ........ H,~ 

Relay Mechanism 

0, + o 
11 

172 



Chapter 5: Conformational StudyofCalmodulin 

The final mechanism that is proposed for the exchange of protons for deuterons 

involving the N-tenninus is the tautomer mechanism. Semi-empirical molecular orbital 

calculations show that the exchange of amide protons is unfavourable compared to 

exchange of protons at the N-tenninus. The tautomer mechanism is a possible explanation 

of the observation of amide hydrogen exchange for deuterium. In this mechanism, a 

proton is transferred from the N-terminus to the carbonyl oxygen in an amide bond. At the 

same time the hydrogen present in the same amide bond is transferred to the reagent gas. 

.... 

H,,/H 
N 

Tautomer Mechanism 

The possible exchange mechanisms for hydrogens at the C-tenninus of glycine 

oJigomers are represented graphically below. The first mechanism, known as the salt-

bridge mechanism is proposed for the more basic reagent gases such as ND3, while the so 

called flip-flop mechanism has been proposed for the less basic reagents. 

o 
I! 11"""'\ n 0 ") / 

O-H N-D 
\ o 

Salt Bridge Mechanism 
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Flip-Flop Mechanism 

McLafferty et at have shown in the gas phase that for different charge states in 

cytcohrome C, myoglobin and ubiquitin spectra there exist different rates of 

exchange.[7]These range from 2 x 10 -13 to 4 X 10-12 cm3 mo]ecu]e-I 
S·I, with the highest 

charge state showing the fastest exchange.[7] It has been postulated that the coulomb 

repulsion among charge sites results in a lower proton affinity for the species [12]~ protein 

samples can therefore interact with weak basic reagents such as D20 for which interaction 

might otherwise be expected to be energetically unfavourable. It has also been proposed 

that each multiply charged protein may contain more than one conformation in the gas 

phase compared to one active conformation in solution. This proposal rests on gas phase 

HID exchange.[7-9] Thus for cytochrome C gas phase ions, i.e. without water present, it 

has been suggested that there exist up to seven individual conformations compared to one 

folded conformation in solution. These different gas phase conformations, can be 

considered to be "intermediates", distinguishable by gas phase hydrogen! deuterium 

exchange. The total exchange alters for each conformation: the conformations in the gas 

phase inter-convert over a period of many hours compared to a few seconds in solution, 

allowing the "intermediate" conformations to be observed in the gas phase by mass 

spectrometry. Thus it follows that these "intennediate" conformations exist for much 

longer in the gas phase due to non-covalent intramolecular stabilisation. In solution, water 
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screens this stabilisation and the conformation is therefore more "fluid" consisting mainly 

of the one active form. [7]Experiments employing an infra-red laser to "heat" the ions in 

the gas phase have shown that one conformation can be transformed into another. [8] 

5.2 Experimental 

5.2. t Gas Phase Hydrogenl Deuterium Exchange 

These experiments were carried out using the 9.4 Tesla Bruker BioAPEX n Fourier 

transform ion cyclotron resonance (FT-I eR) mass spectrometer with an electrospray 

ionisation source (Analytica, Bran ford, USA), as described in a previous section (see 

chapter 2). 

The experiments were conducted in the "infinity" cell of the FT-feR mass spectrometer 

and were thus in the gas phase. The pressure in the ceJl was monitored by Pirani ion 

guages and was adjusted using a leak valve at the liquid-sample inlet, through which the 

deuterated gas of choice passed. This inlet consists of a threaded adapter, positioned close 

to the analyser cell, to which a glass vial containing the liquid analyte of interest would be 

attached. The sample would then be frozen using liquid N2, the remaining atmosphere 

pumped away using the Edwards Rotary pumps and final1y the sample introduced to the 

instrument using a thumb screw leak valve. In these experiments deuterated ammonia 

(ND3) was used and thus a stainless steel transfer line was required. The transfer line was 

attached to the instrument via the same threaded adapter as the glass vial in the previous 

description. The background pressure ofND3 in the ceJl was maintained, by judicious use 

of the leak valve, at a pressure of approximately 2 x to,l( Torr. Deuterated ammonia was 

chosen due to its high basicity as this al10wed rapid exchange of protons for deuterons in 

the analyte of interest. For large molecules with a great number of potential exchangeable 
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sites such as proteins, this characteristic is obviously advantageous. Signal quality was 

found to be hard to maintain, due presumably to collisions of the ions with neutrals in the 

cell (see section 1.4). The rapidity of the exchange with ND3, increased the detail obtained 

from the experiments within a sufficiently short period of time. Thus for calmodulin, 

experiments with delays up to 60 seconds gave specific information on the system of 

interest and spectra with relatively good signal-quality were achievable. Figure 4 shows a 

typical shift in molecule ion peaks brought about by HI D exchange with ND3. 

Os 

5s 

25 s 60 s 

2078 2080 m/z 
2082 2084 

Figure 4: Gaseous HydrogenlDeuterium Exchange of [M+8H]8+ apo-Calmodulin 

Calmodulin was purified by gel chromatography to remove unwanted salts and was 

dissolved in ammonium acetate (5mM, pH 5.8). The gel chromatography column used 

was manufactured by Pharmacia Biotech (Uppsala, Sweden) and was a gravity-fed 

Sephadex PD 10 column. The procedure for desalting this sample has been discussed 

previously in section 3.2.1. The final purified analyte solution was either analysed directly 

from the column, and as such was salt free, or a measured aliquot of CaCl2 (typically 0.1 

mM) was added to allow the Ca2+ binding sites to be filled. In both cases, the calmodulin 

was believed on the basis of the mass spectra to be in its active or natural conformation, 
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due to the fact that the buffered aqueous solution should retain calmodulin's tertiary 

structure. Thus, it was hoped that HID exchange would illustrate any confonnational 

changes that occurred on binding Ca2
+ ions. 

Calmodulin was introduced into the analyser cell of the mass spectrometer via the 

electrospray ionisation source. The typical flow rate was IJ..lI min-) with CO2 (heated to 

about 50°C in the source) as drying gas. The ions were passed through the ion optics into 

the "infinity" ceH, where the ions were trapped for various times from 0 to 60 seconds. 

Successive spectra were acquired and added together, thus building up a detailed spectrum. 

Throughout the course of the experiments new ND3 was introduced to the ceH every 30-45 

minutes to prevent the reagent gas itself from exchanging hydrogens for deuterons since 

the analyser cell and the transfer line could not be completely evacuated. Exchange with 

water, for example, from the atmosphere causes a degradation of the reagent gas and thus a 

reduction in the efficiency of exchange. 

5.2.2 Solution Phase Hydrogenl Deuterium Exchange of Calmodulin 

Solution experiments were undertaken for comparison and evaluation alongside the gas 

phase results. 

The nature of the solution phase experiment means that extremely short delay times, as 

obtained in the FT-ICR mass spectrometry gas phase experiments were very difficult to 

obtain. The experiments therefore focused on longer periods of reaction. 

The protein was purified, as previously described for the gas phase experiments as and 

the protein was incubated at 37()C in a D20 environment. A small aliquot was removed 

from the bulk at a variety of times and the exchange halted by adding a small aliquot of 

acid and freezing. The samples were then analysed using ESI FT-ICR mass spectrometry. 

Precautions were taken to prevent back exchange at all points after the reaction was 
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quenched, including the use of dry CO2 as the drying gas in the electrospray source. The 

entire source was normal1y at atmospheric pressure and th~refore H20 molecules were 

abundant. The heated CO2 drove much of the water out of the source and prevented back 

exchange. The rest of the instrument was differentially pumped to very low pressures and 

as such there were very few molecules if any available for back exchange. 

Solution-phase HID exchange experiments were carried out on a sample of calmodulin 

that was in the presence of smal1 amounts of metal ion impurities such as Na + and Ca2
+. 

and also on a sample where the metal ions were removed using ethylene glycol-bisCP­

aminoethyl ether)-N,N,N' ,N' -tetra acetic acid (abbreviated to EGTA). 
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5.3 Results 

5.3.1 Gas Phase Hydrogenl Deuterium Exchange Of Calmodulin, 
Comparison Of Charge States 

The maximum number of protons exchanged decreased with increasing charge as seen 

in Figures 5 and 6. Figures 5 and 6 represent results taken from two different experiments. 

There was a significant difference between the numbers of protons exchanged for 

deuterons. After 30 seconds, for example, the 8+ charge state (Figure 5) showed an 

exchange of approximately 31 compared to an exchange of approximately 45 (Figure 6). 

This was due to the different pressures of ND3 at which the experiments were conducted. 

The results in Figure 5 were conducted with less ND3 present. Both experiments showed 

the same pattern: a reduction in the number of protons exchanged with increasing charge. 
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Figure 5: Gas phase HID exchange of calmodulin in ammonium acetate (5 mM, pH 5.8), 

pressure in the cell approximately 8.5 x 10-8 Torr. Error bars represent a calculated 1 % 

difference between different experimental runs. 
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Similar trends were discovered for cytochrome C ions by McLafferty et al.[7-9] These 

findings, however, are in apparent contradiction to ion mobility measurements,[13-16] 

Ion mobility measurements (the mobility of an ion is a measure of how rapidly it moves 

through a buffer gas under the influence of an electric field) showed that an increase in 

charge resulted in an increase in the cross section of the protein possibly due to 

electrostatic repulsions between the charge sites. The change in cross-section as the 

charge on the ion changes has also been observed in experiments using triple quadrupole 

mass spectrometers [17-19] and collisions with a surface,[20] In both cases it was noted 

that the cross-section of the protein was different for individual charge states. 
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Figure 6: Gas phase HID exchange of calmodulin in ammonium acetate (5mM, pH 5.8) 

pressure in the cell approximately 8.0 x 10-8 Torr. Error bars represent a calculated 1 % 

difference between different experimental runs. 

Clemmer et at [15]have made an effort to assign the native conformation of cytochrome 

C ions to a particular cross-section and charge state. By assuming hard-sphere interactions 
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and comparing experimentally measured collision cross-sections with collision cross-

sections calculated for plausible geometries, it was concluded that the cytochrome C's 

native conformation collision cross-section was approximately 1090 x 10-10 m2 for the 7+ 

charge state. This corresponded to a drift time of 1100 J.lS in the ion mobility experiment. 

These experiments revealed that no peak existed at the relevant drift time~ on the basis of 

similar calculations for a completely linear (and thus entirely denatured) protein again no 

peak was seen corresponding to the necessary drift time. The conformation of cytochrome 

C ions in the gas phase appeared be somewhere in between these two extremes. 

Calculations on a protein conformation that retains its secondary structure but loses its 

tertiary structure (i.e. the secondary structural features such as the a-helix and p-pleated 

sheets are retained but the geometry of the amino acid chain connecting these features is 

random) predicted an average (taken for several such conformations) drift time of 

approximately 2100 J.lS for the 7+ charge state. This prediction compared well with the 

main feature of the collision cross-section measurements, namely a sharp peak at 

approximately 2000 J.ls. This sharp peak was present within all the charge states selected 

from 7+ to 20+. The only difference among charge states was a gradual increase in the 

cross section with increasing charge. This increase in cross-section was attributed to 

partial unfolding of the a-helices or an attempt to minimise coulombic repulsions among 

the increasing number of charge sites. This will be discussed in more detail towards the 

end of this section. 

It should be remembered that although the native conformation was apparently 

unobservable by ion mobility experiments, the possibility of it existing in the gas phase is 

not excluded. The nature of the ion mobility experiment required that the ions be injected 

into the drift region against a counter-current flow of the buffer gas. To achieve this the 

181 



Chapter 5: Cunformational Study ~f Calmodu/in 

ions were injected, with a high kinetic energy, from the external electrospray source. The 

collisions with the buffer gas experienced by such high-energy ions would cause some of 

the kinetic energy to be converted into internal energy, which could result in 

conformational changes in the gas phase protein. Thus the apparatus used in these 

experiments, provides only partial information on the gas phase ions that are actually 

produced by the electrospray source. 

More recent experiments with a higher-resolution ion mobility instrument (compared to 

that just discussed) have allowed more conformations to be identified. [16lThere still 

exists, however, many more conformations than just the natural (or natured) and 

completely de-natured states. This was evidenced by the broadness of the peaks seen in 

the ion mobility measurements. Compared to Clemmer et als experiments[151 the higher 

resolution measurements produced more detailed features. The desi!:,'ll of the apparatus 

with the electrospray source directly coupled to the drift region allowed the ions to be 

introduced much more gently (by weak electric fields) into the system. The results 

obtained were thus more representative of the gas-phase ions produced directly by the 

electrospray source. This was evident from the results obtained for cytochrome C, in un­

acidified aqueous electrospray conditions (much like those used for the calmodulin IL'D 

exchange experiments in this chapter). The 6+ to 9+ charge states showed peaks 

corresponding to the drift time attributed to the natural conformation. There also existed 

several other protein conformations in the gas phase, represented by broad features in the 

ion mobility measurements. These broad features could either be a result of partially 

folded c}tochrome C in solution or coulombic repulsion among the charge sites in the gas 

phase forming a wide spread of conformations and cross-sections[l51. Coulomb repulsion 

would be more relevant to a protein in vacuo compared to a protein in solution and would, 
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therefore, provide a si!,1Jlificant contribution to the variety of conformations in the gas 

phase. 

These ion mobility experiments depict ions increasing in collision cross-section with 

increasing charge. They do not, however, present a clear explanation for the decrease in 

the number of HID exchanges as charge state increases. If the cross section of the 

calmoduJin ions in the gas phase increases in the same way as for cytochrome e, an 

increase in the number of HID exchanges should occur as more potential sites for 

exchange are exposed to the deuterated environment. 

Valentine et at [21] have tried to answer this question by combining ion-mobility 

measurements with gas-phase HID exchange in a high-resolution ion mobility apparatus 

combined with an electrospray source. Again cytochrome C was studied and it was 

observed that the number of exchangeable hydrogens was independent of charge state 

despite the fact that the cross-section measurements again showed an increase with 

increasing charge. For example the compact confonners observed for the charge states 

between 8+ and 10+ showed a constant (approximately 46) number of exchanges despite 

the fact that the cross-section increased. This was approximately 20 less exchanges than 

found for the more diffuse structures. 

The cross section for the diffuse conformer, selected experimentally by increasing the 

injection voltage, systematically increased by approximately 3% with each consecutive 

increase in charge, such that the ] 8+ charge state was approximately 30% greater than the 

10+ charge state. However, the number of exchangeable hydrogens remained constant 

throughout the range of charge states. The increase in cross-section can be interpreted in a 

variety of ways. If only coulomb repulsion among the charge sites is considered, this 

would cause segments of the protein to be pushed apart causing the overall cross-section to 
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increase. It is also feasible that long-range interactions between the protein and the buffer 

gas, in this case helium, could cause the collision cross-section to increase even if the 

protein's physical cross-section remained constant. This type of interaction, however, 

according to modeling, can only account for an increase in cross-section of a few percent 

even for the highest charges. The overall increase must therefore be due to changes in 

geometry. The question therefore remains, if the cross section increases, why does the 

level of HID exchange not also increase proportionally? 

The increase in charge would not only result in a greater cross section, it would also 

increase the number of exchangeable hydrogens present in the molecule, since the 

charging process in electrospray ionisation brings extra protons to the neutral molecule. 

Thus the greater the charge, the greater should be the number of deuterons exchanged for 

protons. This lack of an increase (or decrease) in exchangeable hydrogens in the ion 

mobility/ hydrogen deuterium exchange measurements, and the decrease in FT-ICR 

experiments, might be explained by charge solvation, causing no net increase in HID 

exchange levels as the protons would be effectively screened from the deuterating agent by 

the solvation shell. 

The increase in cross section of the proteins and the concurrent low exchange levels are, 

however, difficult to explain since a diffuse conformer that nevertheless manages to 

protect so many exchangeable hydrogens seems to be contradictory. A further explanation 

may be that intra-molecular bonding could curb the HID exchange. Significant levels of 

hydrogen bonding can still exist in the gas phase even for diffuse conformations, and there 

is also the possibility of dipole-dipole and dipole-induced dipole interactions that would 

result from the high polarity of the functional groups of which the exchangeable hydrogens 

are a part. These interactions, in the same way as hydrogen bonds, might effectively 

screen the "vulnerable" hydrogens from the deuterated reagent in the gas phase. 
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5.3.1.1 Gas Phase Hydrogen/Deuterium Exchange of Calcium loaded 
Calmodulin 

Figures 7 and 8 illustrate the case of Ca2+-loaded calmodulin (while Figure 9 shows 

some typical mass spectra from which the necessary data was determined, note that at 

longer delay times in ND3 the higher calcium adducts are no longer observable due to the 

reduction in signal to noise). It is easily seen that consecutive additions ofCa2+ ions result 

in a reduction in the total number of deuterons exchanged for protons in these experiments. 

As has previously been discussed. consecutive addition of Ca2+ is thought to have the 

effect of changing the conformation of calmodulin to allow it to activate its target proteins. 

The gas phase HID exchange experiments coupled with the high resolution of FT-ICR 

mass spectrometry might allow the exchange profile of the individual conformers to be 

followed. 

Figure 7 shows four separate HID exchange profiles for calmodulin loaded with Ca2
+ 

ions for the 8+ charge state, while Figure 8 shows data corresponding not just to calcium 

ions bound to the four primary sites but also data for those calcium ions bound to the 

auxiliary sites. These profiles, however, differed by approximately a single Dalton 

throughout the entire range, which is indicative of specific exchangeable hydrogens being 

"protected" or removed by the Ca2+ ions. Two protons are expected to be removed to 

allow charge balance to be retained for each Ca2+ ion that binds to the protein (see chapter 

4). The exchange profiles shown here, however, differ by the mass of a single proton only. 

The Ca2+ ions which are supposed to induce a conformational change in the protein, 

apparently do not cause a significant or noticeable change in calmodulin's conformation in 

the gas phase. Any significant changes in the conformation of calmodulin should he 

apparent throughout the course of H/D exchange experiments, whether it be over the 

course of hours in the case of solution phase HID experiments or over periods of a minute 
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in the gas phase. There should be enough "proton" indicators spread along the lenbJth of 

the biomolecule of varying levels of exchangeability to altow major conformational 

changes to be readily apparent 

The conformational changes in the protein, may be very subtle, perhaps a global 

tightening of each of the cores or alternatively the folding results in a conformation that 

allows the exchangeable protons to still be available to the deuterating reagent i.e. the 

exchangeable protons remain on the surface of the protein where they are readily 

accessible by the ND3. The other possibility is that the conformational change could 

involve regions of the protein that, contain hydrogens characterised by a very low rate of 

exchange. Longer delay times might conceivably allow observation of such exchanges and 

thus the conformational changes of the protein. Longer delay times were not, however, 

readily accessible with the FT-ICR for a biomolecule of this size. 

Increasing the delay times of this experiment would have meant making use of an 

experimental method such as quadrupolar axialisation. This particular experiment would 

involve the introduction of a "buffer" gas to allow the magnetron motion of the ion to be 

converted to cyclotron motion. Such collisions, although they allow re-measurement of 

the ion packet in the cell and allow greater signal strength and resolution for individual 

scans, are known to cause col1isional heating of the ions. In a study where conformations 

are being investigated this obviously poses a problem, since the collisions in the gas phase 

cause the kinetic energy of the ion to be converted to internal energy of the biomolecule 

and potentially change the conformation of the protein. 
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Figure 7: Gas phase HID exchange of calmodulin loaded with 0.1 mM CaC12 in 

ammonium acetate (SmM, pH 4.6). 8+ charge state. 
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Figure 8: Gas phase HID exchange of calmodulin loaded with 0.1 mM CaC12 in 

ammonium acetate (SmM, pH 4.6). Graph shows the HID exchange profile for all the 

Cam+Ca complexes. 8+ charge state. 
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Investigation of the other charge states, as achieved for apo-calmodulin was difficult 

with calcium binding. The peaks representing these other charge states were so small in 

comparison with the 8+ charge state that it was difficult to assign accurately the masses for 

all the adduct peaks present in the spectra. These results, although potentially interesting, 

have been omitted from this chapter due to their poor quality. Further experiments with an 

exceptionally large number of scans, and thus a concurrent increase in experimental time, 

would be needed to elucidate reliably the necessary information from the spectra. 
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Figure 9: Gas phase (ND3) hydrogen! deuterium exchange ofCaCl2 loaded 
calmodulin (8+ charge state). (a) Delay = 0 secs (b) Delay = 60 secs 
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5.3.2 Solution Phase HID Exchange of Calmodulin 

As can be seen from Tables 1 and 2 (below), the exchange was virtually complete after 

the first hoUT. The total number of exchanges varied with the charge state. There was a 

general decrease by one in the number of hydrogens exchanged for deuterons as the charge 

state decreased for the calmodulin molecule ion. There was also a general decrease by one 

for each calcium ion bound to the calmodulin molecule ion, which can be explained either 

by the fact that a hydrogen is replaced by the metal ion or that an exchangeable hydrogen 

ion was obscured! protected by the metal ion. The fonner proposal would seem to agree 

with the results presented in chapter 4 concerning the binding of Ca2
+ ions to calmodulin. 

It should be expected that two hydrogens would be replaced by Ca2
+ ions due to the double 

charge and the general size of the calcium ion. However, a possible explanation for the 

lack of this observation could be that one of the hydrogens that would be expected to bind 

to the Ca2
+ ion was from an amino acid side chain. These hydrogens are known to undergo 

association! disscociation reactions with deuterium that are extremely fast and can 

therefore back-exchange in the time it takes to measure by mass spectrometry the increase 

in mass of the protein. It could therefore be postulated that Ca2
+ ions may replace the 

hydrogen present in part of the amide backbone plus a hydrogen from a more reactive 

amino acid side chain resulting in a net increase in mass of only one Dalton. This is, 

however, difficult to prove due to the inaccuracy in assigning masses to each of the adduct 

peaks present in each charge state. It is necessary to calculate an average mass from the 

isotopomer distribution. This was achieved in these experiments by fitting a Gaussian 

distribution to the data points and taking the peak of this distribution as being indicative of 

the mass of the particular adduct. The quality of the original data set obviously effects this 

and thus a variance of ± 1 Dalton can easily occur. It seems clear. however, that for each 
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adduct ion (be they calcium or sodium ions) bound to calmodulin there is a representative 

drop of one Dalton in the total HiD exchange until the fourth calcium is bound. 

Closer inspection of the table for the 7+ and 8+ charge states (Table 1) show that there 

was a dramatic change in the number of exchanges occurring on binding of the fourth 

calcium. Up to that point there was a regular drop in the exchange level. For each metal 

ion bound to the calmodulin molecule ion there was roughly a drop of a single mass unit 

detected. After the fourth calcium bound to calmodulin. however. the exchange level 

dropped significantly from the expected reduction of four to seven. This may be indicative 

of a significant calcium-induced conformational change in calmodulin following the 

uptake of the fourth CaH ion (in presumably the last free primary binding site available on 

calmodulin). 

Similar work by Nemirovskiy et at [22] utilising a prototype VG ZAB-T four sectOr 

tandem mass spectrometer with a VG electrospray source also suggested that solution 

phase HID exchange experiments coupled with electrospray mass spectrometry could be 

used to monitor protein-metal ion interactions. Nemirovskiy et al concluded that 

calmodulin undergoes a conformational change when titrated with calcium ions. This 

could be detected by the drop in the total level of HID exchange as the concentration of 

calcium ions was increased as discussed here. As calcium concentration was increased in 

their experiments. the total exchange dropped by 24 protons. which was taken to be 

indicative of a tightening of the conformation on interaction with the calcium ions. This 

drop in exchange level ceased after the calcium ion titration reached a levet' sufficient to 

convert 80% of the protein present to a form with four calcium ions bound. 

Experiments using EGT A to remove unwanted Ca2
+ ions from the analyte solution for 

solution phase HID exchange provided an interesting observation. EGT A binds to 
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calmodulin in the absence of Ca2+ ions and only four EGT A molecules were observed to 

bind to calmodulin in total. As previously discussed in section 4.4 this binding might 

prevent peptides binding to calmodulin, and might explain why other groups have not 

reported the observation of apo-calmodulin:peptide complexes. [23]A cursory 

examination of the H'D exchange observed showed that there was approximately an 

increase of four Daltons for each EGT A that bound to calmodulin. This was consistent 

with EGT A bringing exchangeable protons to the complex. 
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! 
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I 
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Figure IO:Calmodulin in ammonium acetate (5mM, pH 5.8) with EOTA present to 
remove the Ca2

+ ions. 
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9+ CaM Na Ca lCa+ 2Ca 2Ca+ 3Ca 
Na Na 

o hrs 16626 16647 16664 16685 16702 16723 16740 
1.5 hrs 16898 16919 ]6935 16956 ]6973 ]6992 17011 
2.5 hrs 16899 16920 16937 16957 16994 170]4 
3.5 hrs 16899 16920 16937 16957 16994 
4.5 hrs 16900 16920 16937 16957 16975 16994 17013 
Diff. 274 273 273 272 273 271 273 

8+ CaM Na Ca lCa+ 2Ca 2Ca+ 3Ca 3Ca+ 4Ca 4Ca+ 5Ca 5Ca+ 6Ca 
Na Na Na Na Na 

o hrs 16626 16647 16664 16685 16702 16723 16740 16761 16778 16799 16816 16837 16854 
1.5 16897 16918 16934 16955 16972 16992 17009 17029 17042 17064 17077 
hrs 
2.5 16899 16919 16936 16956 16974 16993 17010 17029 17043 17064 17082 17102 
hrs 
3.5 16899 16919 16936 16956 16975 16993 17011 17043 17065 
hrs 
4.5 16899 16920 16936 16956 ]6974 16993 17011 17030 17044 17065 17082 17101 17122 
hrs 

Diff. 273 273 272 271 272 270 271 269 266 266 266 264 268 

7+ CaM Na Ca lCa+ 2Ca 2Ca+ 3Ca 3Ca+ 4Ca 4Ca+ 5Ca 5Ca+ 
Na Na Na Na Na 

o hrs 16626 16647 16664 16685 16702 16723 16740 1676] 16778 16799 16816 16837 
1.5 16897 16917 ]6934 16954 16971 16992 17008 17041 17062 17080 17100 
hrs 
2.5 16898 16919 16935 16956 16973 16992 17008 17043 17063 17081 17102 
hrs 
3.5 16898 16919 16936 16956 16972 17042 17064 17083 
hrs 
4.5 ]6898 ]6919 ]6935 ]6956 16972 16992 17012 17043 17064 17081 
hrs 

Diff. 272 272 271 271 270 269 272 265 265 265 

Table 1: Solution phase HID exchange of Ca2+ loaded calmodulin. Tables show the 
change in molecular weight of calmodulin over the reaction period of the experiments. 
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5.3.3 Calcium Induced Conformational Changes of Calmodulin 

As has been previously mentioned. calmodulin on binding Ca2+ ions. is believed to 

exhibit a confonnational change activating the protein to allow it to interact with its target 

molecules. Detailed examination of the spectra acquired by electrospray ionisation FT­

ICR mass spectrometry with its inherent superior resolution allows us to probe the effect 

of Ca2+ and other divalent ions on the confonnation of calmodulin. A study by Hu et af 

[24] making use of a Finigan MAT 900Q double-focusing mass spectrometer. yielded 

similar results to that presented here. However, the limited resolution of this type of 

instrument meant that interpreting the results easily and accurately was complicated. Due 

to the high resolution of the FT-ICR technique, the number and type of metal ions bound to 

calmodulin were easily determined. 

It is apparent from Figure 11 that by varying the concentration of CaCh in the analyte 

solution, it was possible to investigate the different conformations that were formed by 

Ca2+ ions non-covalently binding to calmodulin. At 0.1 mM CaCh. with a calmodulin 

concentration around 25 IlM there are approximately four Ca2+ ions for every calmodulin. 

Examination of Figure l1a suggests conformational differences between calmodulin at 14+ 

and 7+. The distributions of adduct peaks at each charge state were significantly different 

from each other. At 7+, there was a definite splitting of the Cam: Ca2+ adduct distribution, 

with the peak corresponding to [Cam+3Caf+ being small. This observation is consistent 

with the sequential mechanism for calcium binding proposed by Haicch et al [251and 

Klotz et a/[261. In this mechanism as has already been explained, binding of the first two 

Ca2+ ions to calmodulin causes a dramatic conformational change that allows the third and 

then the fourth Ca2+ ion to bind in quick succession. At the higher concentration of CaH 

ions (Figure 11 b). the adduct peak splitting was less pronounced, since there was an excess 
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of Ca2+ ions present in the analyte solution driving the conformational change of 

calmodulin to completion. 

1 4 
(a) 

1 
2 

1 2 

4 
3 t o 

I I i I I i , 

1185 1195 1205 1850 1870 1890 2070 2100 2130 2380 2420 2460 
4 

4 8+ 
(h) 

4 

4 

6 
o 

I lit i 
1 ]851195 1205 ] 850 ] 870 18902070 2100 2130 2380 2420 2460 

m/z 

Figure 1 J: Calmodulin in ammonium acetate (5mM. pH 5.8). Expansions of the relevant 
charge states at CaCI2 concentrations of (a) O. I mM and (b) 1 mM. 

The ]4+ and other higher charge states (not shown) had less structure in the adduct peak 

distribution. This is interpreted as indicative of a more open/ unfolded and therefore 

unnatural conformation compared with the higher charge states 9+ to t·, Comparison of 

Figures 11a and 12a show that Mg2+ ions. although they bound to calmodulin, did not 
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produce this structure in the adduct distribution. and thus it is inferred that Mg2+ induced 

no confonnational change of calmodulin. 
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Figure 12: Calmodulin in ammonium acetate (5mM. pH 5.8). Expansions of the relevant 
charge states at MgCh concentrations of (a) 0.1 mM and (b) 1 mM. 
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5.4 Conclusion 

The objective was to study the conformational changes induced by Ca2+ ions binding to 

calmodulin by various methods, including gas and solution phase HID exchange and the 

addition of limited amounts of Ca2
+ ions to the analyte mixture. While providing some 

interesting results concerning the exchange levels of different charge states for apo­

calmodulin, results for the holo-calmodulin were inconclusive. That is, there seemed to be 

no noticeable calcium-induced conformational change that could be monitored by gas 

phase HID exchange. However, both the solution phase HID exchange studies (section 

5.3.2) and the investigation of the effect of Ca2+ ions on the molecule ion peak 

distributions (section 5.3.3) showed evidence of a conformational change in calmodulin as 

Ca2+ ions were added to the protein. 

The putative calcium-induced conformational changes observed in section 5.3.3 suggest 

that FT-ICR, with its superior resolution compared to other mass spectrometry techniques, 

can be used for the simple analysis of conformational changes induced by metal ions. This 

straightforward experiment provides complimentary and supporting evidence for the 

sequential binding of Ca2
+ ions to calmodulin as postulated by Haiech et al [251and Klotz 

et a/[261 

Solution phase HID exchange with longer reaction times (cr. gas phase IIID exchange) 

suggests a conformational change in calmodulin on binding Ca2+ ions. In these particular 

experiments it was limited to the observation of a change in the conformation on binding 

the fourth and final calcium ion. These experiments differ from those conducted in the gas 

phase in that no change in the conformation of holo-calmodulin was detected. As 

discussed this may be due to the short reaction delays as compared to the solution phase 

experiments cf. a maximum of 60 seconds with hours in the solution phase experiments. 
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Most interesting of all was the conclusion that exchange levels dropped in the gas phase 

as the charge on the molecule ion increased. This agreed with results provided by 

McLafferty et al on gas phase HID exchange of cytochrome C. Both results seem to 

contradict ion mobility measurements that show an increase in protein cross section as 

charge increases. As has been discussed in section 5.3.1 there could be a variety of 

explanations for the fact that the exchange levels drop regardless of the increase in the 

number of exchangeable protons (from the charge itself) with increasing charge, however, 

the fact that a more diffuse conformer shows less exchange is not so easy to explain. It is 

possible that intra-molecular bonds such as hydrogen bonds, dipole-dipole and dipole­

induced dipole interactions' (that result from the high polarity of the functional groups of 

which the exchangeable hydrogens are a part) may screen potential exchange sites and that 

this may cause the apparent drop in exchange even as the cross-section increases. 

Obviously there is an apparent conflict here that is difficult to explain. Campbell et at [6] 

concluded, after studies involving glycine oligomers that "HID exchange processes 

involving even simple model peptides are highly complex processes. As a result, any 

temptation to assign gas-phase structures of biological molecules from HID exchange 

results must be approached with caution." The results presented here show that although 

this type of experiment gives general information on a proteins conformation, there are 

hidden complexities that at the present time are difficult to explain. A more detailed 

understanding of the mechanism of gas-phase HID exchange is nceded before unequivocal 

interpretation of results in terms of conformational changes of proteins is possible. 
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6.0 Conclusion 

It has been shown that the combination of electrospray ionisation with Fourier 

transform ion cyclotron resonance mass spectrometry facilitates the acquisition quickly 

and easily of accurate information on the primary, secondary and even tertiary structure of 

biological molecules. Each chapter has involved a separate examination of some part of a 

proteins structure or function, from the most elementary results involving charge state 

distribution which provides information on the proteins general conformation .to 

examination in more detail of the same feature using gas phase hydrogen! deuterium 

exchange. In an cases the superior resolution and sensitivity ofFT-ICR mass spectromctry 

has proved beyond doubt its exceptional utility for these types of studies. 

The superior resolution has been of specific use in the analysis of metal ion and peptide 

binding to target proteins such as papain and calmodulin. Resolution !,Tfeater than 70,000 

FWHM in broad mass-range spectra was obtainable in most cases presented here. This 

allowed the unequivocal assignment of each individual metal ion peak present in spectra of 

calmodulin and also provided evidence that for every calcium ion binding to calmodulin 

there was a concurrent loss of two hydrogen ions. This was proven simply by the 

difference between the accurate mass of calmodulin alone compared to calcium loaded 

calmodulin, the increa~e in mass was 38.064 instead of the expected 40.08, a ditTerence of 

two hydrogens. 

At the same time the consequences of ligand binding (in this case RS20) to calmodulin 

was evaluated, with the effect of the complex formation on calcium uptake monitored by 

simply varying the ratios of calmodulin to both the calcium ion and the ligand. The 

superior resolution and accuracy of FT -ICR allowed the assignment of the numerous peaks 

present in each of the spectra, something that would be unachievable on an instrument 

with lower resolution. (sce section 4.3.3). From these spectra it was possible to confirm 
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the binding of RS20 to calmodulin in the presence and absence of calcium, (the first mass 

spectrometric evidence of apo-calmodulin binding a peptide (section 4.3.3.1, FigureI8). It 

was also confirmed that calcium loaded calmodulin favours a 1:1:4 calmodulin: RS20: 

calcium stoichiometry and demonstrates a greater affinity for calcium in the presence of 

the peptide. From the same spectra it is possible that there is a conformational change on 

addition of calcium ions to the analyte solution evidenced by the shift in the charge state 

distribution in the ESI mass spectra. This change would be from a more open structure 

(high charge states) to a more compact structure (low charge states), see Figures 18,21 and 

22, chapter 4. At the same time it can be seen that after the four primary binding sites are 

filled the auxiliary sites present in calmodulin are gradually filled, deduced from the 

sudden appearance of species such as [C+P+6Cal'+ in the spectra (section 4.3.3.2, Figures 

21 and 22). 

The addition of Mg2+ ions to the analyte solution and their effect on calmodulin could 

also be evaluated with the result that RS20 did in fact bind to the protein whcn doped with 

magnesium ions but with a different ratio, typically of the order 1:1:1 or 1:1:2 calmodulin: 

RS20: magnesium (section 4.3.3.3, Figure 23). 

Similar results were achieved for the cysteine protease papain and its peptide inhibitors. 

In these cases the expected non-covalent bond bctween protein and inhibitor was seen to 

be retained in the gas phase, and the resolution and accuracy of the FT-IeR technique 

along with the ability to easily implement simple capillary-skimmer collision induced 

dissociation, allowed the evaluation of the relative binding strengths of the different 

inhibitors (section 4.2.2). With the conclusion that the tri-peptide KAA binds more 

strongly to the active site than the tetra-peptide GGYR. Complimentary studies using 

circular dichroism supported confirmed these conclusions. 
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Chapter 6: Conclusions 

As to the conformational studies of calmodulin, FT -ICR mass spectrometry again 

provided more detailed information than other mass spectrometry techniques, especially 

where the calcium ion concentration in the analyte solution was varied to provide 

information on the proposed sequence of calcium binding and thus the activation 

mechanism of calmodulin by Ca2
+ ions. Due to the high resolution obtainable, the splitting 

of the individual charge state distributions was monitored at various CaH and Mi+ ion 

concentrations. This provided valuable evidence for the sequential binding of four Ca2+ 

ions to calmodulin .. A complex of the form [Cam+4Ca2+] predominates, in agreement with 

calcium activated calmodulin and the sequential mechanism of Haiech et al [1 land Klotz 

et al. [21, with [Cam+Caii. [Cam+2Ca2i and [Cam+3Ca2+] molecule ion peaks being 

transitory. Mg2+ ions on the other hand, showed no significant change in the distribution 

of the adducts in each charge state at either high or low concentrations. A comparison of 

Figures 11 and 12 (section 5.3.3) show that the adduct distribution in each of the charge 

states for the MgCh doped analyte solutions showed unchanged "bell" shaped distributions 

compared to the splitting observed in the lower charge states (corresponding to the natural 

conformation of calmodulin) in the CaCh doped solutions. Thus, Ca2
+ ions alone affect 

activation of calmodulin as postulated by Haiech et al [1 land Klotz et al. [2] 

Solution phase HID experiments concerning holo-calmodulin showed a conformational 

change in the protein as Ca2+ ions were added unlike similar results obtained in the gas 

phase. This may be due to the short reaction delay available for calmodulin and the 

reagent in the gas phase compared to that available in solution and maybe the possibility 

that the conformational change is very small. A more discriminant reagent gas(3] such as 

D20 may help in future with this investigation. 
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Chapter 6: Conclusions 

As to the observation of a drop in exchange level as the charge increased on 

calmodulin, a more thorough knowledge of the mechanism of HID exchange in the gas 

phase is needed before a definite conclusion can be made. An increase in cross-section is 

expected with increasing charge. if only due to coulomb repulsion, yet the opposite is 

observed in these and others [4-6]experiments. Possible explanations may include intra­

molecular bonds preventing otherwise exchangeable protons from reacting with the 

deuterating reagent or the fact that charge solvation may obscure exchangeable sites. The 

lack of knowledge concerning the chemistry and conformation of a protein molecule ion in 

the gas phase limits the interpretation ofthese results at the present time. 
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