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The Optimal Extent of Discovery ∗

Frances Z. Xu Lee† Dan Bernhardt‡
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Abstract

We characterize how the process of publicly-gathering information via discovery affects

strategic interactions between litigants. It allows privately-informed defendants to signal through

the timing of settlement offers, with weaker ones attempting to settle pre-discovery. Discovery

reduces the probability of trial. Properly designed limited discovery reduces expected litiga-

tion costs. Stronger defendants gain more (lose less) from a given amount of discovery. We

find that the court should grant more discovery when defendants are believed to be stronger

and should grant discovery on more efficient sources of information, leaving less efficient ones

to trial.
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1 Introduction

Legal discovery has been part of the civil litigation process in the United States since the adop-

tion of the 1938 Federal Rules of Civil Procedure. The motivation was that “full access to the

evidence would end trial by ambush and surprise. Open discovery would promote settlements;

with both sides obliged to turn over all their important cards, secrets would disappear and realistic

negotiations would occur” (Rosenberg 1989). The rules of procedure provide judges substantial

discretion in exercising judicial control over discovery. For example, Rule 26(b)1 says that “For

good cause, the court may order discovery of any matter relevant to the subject matter involved...”,

while Rule 26(b)2 advises judges to evaluate the benefits and costs “the court must limit the extent

of discovery ... if it determines that ...the expense of the proposed discovery outweighs its likely

benefit..."

The law and economics literature typically compresses the civil litigation process—the infor-

mation gathering, litigation costs and legal outcome—into a single trial stage, possibly combined

with a pre-trial settlement offer stage. In practice, litigants have many opportunities to try to settle

throughout the litigation process, and a large portion of litigation expenses—gathering and review-

ing case materials, preparing motions, hiring experts, pre-trial depositions, etc.—is incurred in the

process of discovery, rather than in the trial itself.1

Despite discovery’s prominent role, there has been little analysis of how its design affects

decision-making by litigants or the litigation costs that they incur. In this article, we endogenize

the timing of settlement offers relative to the discovery, analyzing the costs and benefits of greater

discovery when the asymmetrically-informed litigants are strategic in their settlement decisions,

and settlement amounts and timing can signal information. Given the ability of a court to control

the extent of discovery, we characterize the optimal level of discovery, and show how it depends

1Glaser (1968) reported that in antitrust cases discovery represented 65% of plaintiffs’ costs and 63% of defendants’
costs, and in patent cases discovery accounted for 21% of plaintiffs’ costs and 54% of defendants’ costs. Discovery
constitutes about 43% of the litigation time for heavy discovery cases, and 25-31% for the average case.
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on both the likely underlying strength of the case and the cost structure of discovery. We demon-

strate that shifting a limited amount of information gathering from the trial to discovery can benefit

litigants. This is not simply because earlier revelation of information can guide future decisions,

which is the rationale underlying bifurcated trials.2 Rather, it is because discovery allows the tim-

ing of settlement offers to signal a defendant’s private information. Weak defendants strategically

make settlement offers prior to discovery, whereas strong ones wait until after discovery to do so.

We show that the court should grant more discovery when a defendant is expected to be stronger,

and that the court should focus discovery on sources of information that are less costly to obtain,

leaving more costly ones for a trial.

At the outset of many litigations, a plaintiff and defendant are often very asymmetrically in-

formed about their prospects in a trial. We focus on settings in which the defendant alone has

private information. Our model of discovery builds on Reinganum and Wilde (1986). In their

model, the informed party, the plaintiff,3 makes a pre-trial, take-it-or-leave-it settlement offer that

reflects its private information. If the settlement offer is rejected, they proceed to a costly trial

that determines whether the defendant is liable. They show that equilibrium offers are separating,

and, to induce the informed party to truthfully reveal its private information via its settlement offer

amount, the uninformed party must be more likely to reject less generous offers.

In Reinganum and Wilde (1986), exogenous information revelation only occurs at trial. With

public discovery, both the extent of information revelation and its costs are spread out over time. In

our model, discovery is characterized by (a) the probability that a defendant’s private information

is uncovered publicly, and (b) the costs that the defendant and plaintiff incur in that discovery.

More extensive discovery that is more likely to uncover a defendant’s information incurs a greater

share of the total litigation costs. Before discovery, a defendant can make a settlement offer; if the

2Civil cases can be bifurcated into separate liability and damages proceedings. It can avoid costly litigation over
the amount of damage if the defendant is not found liable. See Landes (1993) and White (2006) for economics analysis
of bifurcated trials and their unintended consequences.

3We consider an informed defendant, rather than an informed plaintiff, but this difference is cosmetic.
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plaintiff rejects it, the parties go on to discovery; and post-discovery, offers can again be made that

reflect both the information revealed by earlier settlement offers and by any information uncovered

in discovery. After discovery, absent a settlement, a trial determines whether a defendant is liable.

We first take the design of discovery—the probabilities that discovery uncovers a defendant’s

information, and the cost of discovery—as given, and solve for how it affects the timing of when

different defendant types make their first offers, and the sizes of these offers. When the extent of

discovery is not too high, defendant types partition themselves. The weakest defendants—those

facing plaintiffs who are likely to win—make their first offers prior to discovery. The sizes of

settlement offers by defendant types who make offers at the same time fully separate their types,

eliminating all information asymmetries. As a result, defendant types that make pre-discovery of-

fers either settle immediately, or they settle just after discovery on terms that reflect the information

revealed by their offers. Stronger defendant types wait until after discovery to make offers.

Thus, the process of publicly gathering information in discovery also allows defendants to

signal via the timing of their initial settlement offers. Moreover, discovery sometimes uncovers

a defendant’s private information, obviating the need to engage in costly signaling via settlement

offers that incur an equilibrium risk of rejection and thus further litigation costs. Of course, the

process of discovery is itself costly, so that it is not clear how more extensive discovery affects

expected litigation costs. Indeed, perfectly exhaustive discovery that uncovers all information is

akin to shifting the timing of a trial forward, delivering exactly the same expected litigation costs

as a legal system with no discovery process, where litigants go directly to trial if they fail to settle.

This leads us to derive how discovery affects the payoffs of the plaintiff and different defendant

types. Greater discovery reduces the likelihood that a pre-discovery settlement offer is rejected,

but it also raises the discovery costs incurred when offers are rejected. When information costs are

proportional to the extent of discovery, these two effects exactly cancel out for weak defendants

that make their first offers prior to discovery: expected total litigation costs incurred with weak de-
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fendants do not vary with the extent of discovery. We then highlight the role of a judge in directing

discovery: if discovery can selectively targets lower marginal cost sources of information, limited

discovery reduces expected litigation costs for weak defendants; but if discovery targets higher

marginal cost sources of information, expected litigation costs are higher for weak defendants.

In contrast, as long as discovery is not too inefficiently targeted toward higher marginal cost

sources of information, it always facilitates signaling by strong defendant types who wait until

after discovery to make their first offers, reducing their expected litigation costs. To signal via

settlement offers, better types must face higher rejection probabilities in order to deter mimicking

by worse types. This rejection probability must rise concavely for better types, reflecting how less

generous offers lose more by being rejected. For strong defendants who wait until after discovery to

settle, relative to no discovery, successful discovery eliminates the need to signal, but unsuccessful

discovery makes subsequent signaling harder because remaining trial costs are less. However,

the inherent concavity in the rejection probability in signaling by settlement offers means that

discovery reduces the expected rejection probability and thus expected litigation costs.

When information costs are proportional to the extent of discovery, sufficiently limited discov-

ery always reduces expected total litigation costs, and the informed defendant extracts all of the

gains. We characterize the extent of discovery that minimizes expected litigation costs, which, in

turn, maximizes a defendant’s ex-ante payoffs. With greater discovery, more defendant types make

offers pre-discovery to avoid incurring discovery costs. We establish that among those defendants

who wait until after discovery to make offers, the stronger is a defendant, the more it gains from a

given increase in discovery. Thus, greater discovery is optimal when the distribution of defendant

types is better/stronger in the conditional first order stochastic dominance sense.

The value of limited discovery is reinforced when the limited discovery is divided into more

rounds: it facilitates signaling, reducing the expected litigation costs incurred. Intuitively, “shrink-

ing the distance” from the worst type to be separated from in a given round reduces the distortion
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required in settlement offers. Interestingly, further dividing discovery, allowing more rounds of set-

tlement, induces more defendant types to “play tough”: with more rounds, more defendant types

wait until after all discovery ends, making their first offers just before a trial if discovery fails to

reveal their private information.

We assume that successful discovery does not affect subsequent trial costs. If successful dis-

covery, in fact, reduces trial costs, it facilitates separation of weak defendants by raising the costs

of mimicking a stronger type’s offer. Defendants may now be hurt by discovery, despite its social

benefit, because successful discovery reduces the trial costs that defendants use to threaten plain-

tiffs in post-discovery settlements. Indeed, plaintiffs now want excessive discovery, providing a

rationale for why a court should deny some of a plaintiff’s discovery requests.

We conclude by analyzing discovery in a screening setting where an uninformed plaintiff makes

settlement offers to an informed defendant. Because plaintiffs now hold the bargaining power,

discovery harms defendants by reducing their information advantage. Discovery reduces total liti-

gation costs with strong defendants because it can prevent a trial. However, it raises total litigation

costs with intermediate defendant types that would settle immediately absent discovery, but now

wait until after discovery to settle. The social value of discovery hinges on the relative likelihoods

of these two groups: with enough intermediate types, zero discovery may be optimal; with enough

strong types, the optimal level of discovery exceeds its level in a signaling setting. Even so, the

optimal extent of discovery remains sharply limited; and plaintiffs always seek socially excessive

discovery.

Broader interpretations of “discovery”. Discovery is, in essence, a costly way to publicly reveal

information that is indicative of what will happen in a trial, when the parties can settle before or

after the information revelation. Our analysis applies to other settings with this structure.

Summary Jury Trial. Summary jury trials were first proposed by federal district judge Thomas

Lambros. See Lambros (1985). Under this procedure, attorneys present summaries of their cases
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to a mock jury arranged by the court. Summary trials are designed to show litigants how a trial jury

might evaluate a case. The jury’s “verdict” is generally non-binding.4 If the parties do not settle

after a summary jury trial, they go to a real trial with a new jury. A summary trial corresponds

to “discovery”, where a judge can decide on how abbreviated the summary jury trial is, i.e., on

the level of “discovery”. Each attorney has a specific amount of time (e.g., an hour) in which to

present a case summary.5 Lambros (1993) reports that “over 82 percent of the summary jury trial

cases were resolved more quickly than the average of comparable cases that were not assigned to

summary jury trial. On average, assigning a case to summary jury trial reduced the time a case

remained pending by 337 days, or about 11 months”. Like discovery, summary jury trials shift

information acquisition forward at a cost. Unlike discovery, summary jury trials may impose costs

on third parties—the time of judges and juries. We discuss how this affects results in Section 8.

Court-Annexed Arbitration. Court-Annexed Arbitration is similar to a summary jury trial except

that the mock trial is in front of a panel of attorneys/arbitrators, not a jury. Studies find that the

design promotes settlement pre and post arbitration. Lind and Shapard (1983) report in a Federal

Judicial Center analysis that “court-annexed arbitration can serve as an effective deadline for case

preparation, substituting for trial not as a forum for case resolution but as a stimulus to settlement.”

Tax Audits. The benefits of shifting some information revelation and information expenses forward

extend to other contexts. For example, the IRS can pre-commit to the extent of an audit. The IRS

publishes a transfer pricing audit road map on its website, detailing the steps and estimated time of

each step. After an audit, a tax payer can try to settle with IRS by making an “offer in compromise”.

Our article suggests that it may make sense to allow for settlement offers prior to an audit. The

IRS can send a warning letter about a future audit, giving a tax payer time to formulate an offer.6

4In contrast to the original version of the summary jury trials in the federal court program in the Northern District
of Ohio, some later versions in New York, Nevada, South Carolina and California stipulate that the outcomes are
binding and that parties cannot appeal the decisions. See Hannaford-Agor (2012).

5See Posner (1986) or Webber (1989) for more details. By 2011, six state courts had implemented some form of
summary jury trial according to a study by National Center for State Courts reported in Hannaford-Agor (2012).

6The economics literature typically assumes that tax audits always reveal a tax payer’s private information (e.g.,
Border and Sobel (1987), Reinganum and Wilde (1985) and Mookherjee and Png (1989)). In practice, audits may be
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Settle-able disputes. Our finding that the optimal level of discovery is positive but limited extends

to any dispute in which the parties can settle. It implies that it is optimal to commit to “pauses”

in the investigation stage to allow the parties to consider settling and eliminating the remaining

investigation. For example, if an employee complains that a supervisor didn’t give an appropri-

ate promotion, instead of committing to getting to the bottom of the matter, an organization can

facilitate a mid-investigation meeting between the parties, allowing them to “settle”, perhaps with

an offer of a promotion or bonus, which, if accepted, would close the case. We argue that the

parties should have a chance to settle both prior to the investigation, as well as at stages during the

investigation. That is, breaking the investigation into stages facilitates settlement, reducing costs.

Discovery Literature. Hay (1994) assumes that greater discovery raises a plaintiff’s chance of

winning against a defendant, so that more discovery always hurts defendants. He studies how this

affects a defendant’s ex-ante incentive to take precautions. In Sobel (1989) both the plaintiff and

defendant have private information, but discovery only reveals the defendant’s private information.

A key difference from our model is that Sobel assumes that a defendant can only make an offer

prior to discovery, whereas post-discovery the plaintiff can make an offer. This exogenous structure

precludes signaling via an offer’s timing, which is key in our model. Sobel shows that discovery

in this form of mandatory disclosure hurts the defendant. Shavell (1989) considers a setting where

an offer can only be made by an uninformed defendant after discovery. As a result, mandatory

discovery hurts the informed plaintiff.

We model discovery as an inevitable step in the litigation process unless the litigants settle and

the extent of the discovery is pre-determined by the court. Schrag (1999) lets each litigant choose

their discovery effort, where the return from discovery effort is higher when an opponent is weaker.

Each litigant has incentive to play tough in the pre-trial settlement to discourage the opponent’s

discovery effort. Schrag shows that if the court exogenously limits the extent of discovery, it can

raise the chances of a pre-discovery settlement. Schwartz and Wickelgren (2009) model discovery

less than fully revealing.

7



as a conscious choice by the uninformed party. In their screening model, an uninformed defendant

makes settlement offers pre- and post-discovery. A defendant’s low pre-discovery offer keeps the

threat of discovery credible in case its offer is rejected. Farmer and Pecorino (2005) incorporate

mandatory disclosure as a conscious choice of the uninformed party in the Reinganum and Wilde

(1986)’s signaling model. They allow the informed party to voluntarily disclose information, but

do not allow for pre-discovery settlement. They find that discovery is not used if the informed

party makes take-it-or-leave-it offers.

Cooter and Rubinfeld (1994) study discovery in a model where the settlement outcome solves

a Nash bargaining problem—there is no signaling or screening via explicit settlement offers. Dis-

covery changes the distributions from which the litigating parties’ subjective beliefs are drawn.

They show that if discovery narrows the gap between the means of the two parties’ distributions or

reduces the variances of the distributions, then trials become less likely. However, discovery can

also increase the gap in the means of the two parties’ distributions by uncovering information that

makes at least one party more pessimistic about trial outcomes, raising the likelihood of a trial.

An implicit premise in our model is that a defendant cannot costlessly disclose its private

information—if a defendant had evidence that was known to encapsulate its private information

that it could just hand over, then private information would unravel. The strongest type would

want to immediately reveal the strength of its case, and then progressively weaker types would

follow suit (Hay 1994). But, in many settings, a defendant may not be able to convey its private

information.7 For example, a defendant may know whether there is damaging evidence against it

in a class of documents. A defendant that knows this evidence does not exist would like to convey

that non-existence, but it has no way to directly do so: a defendant with damaging evidence can

conceal it and mimic the non-existence of evidence. In this circumstance, discovery that lets an

uninformed plaintiff examine a subset of documents that is not chosen by the defendant is one way

7So, too, private information may not unravel if the act of disclosing is itself costly (see Sobel 1989). Shavell
(1989) offers other reasons.

8



to (stochastically) and credibly uncover the existence or non-existence of damaging evidence. The

possible sanction that a court can impose for refusing to turn over documents or other evidence in

discovery is key because it makes the absence of incriminating evidence informative. Alternatively,

a defendant can indirectly convey its private information by signaling via its settlement offer.

Mediation has been studied as a way to facilitate information revelation in the litigation process.

In Doornik (2014), mediation reduces information costs, not by producing private information di-

rectly as with discovery, but rather by reducing the downside of voluntary disclosure of verifiable

information. The idea is that if a litigant directly discloses information to an opponent, the oppo-

nent can form better trial strategies; but an opponent cannot exploit disclosure to a mediator.

The article’s outline is as follows. Section 2 sets out the model. Section 3 characterizes equi-

librium outcomes for a given level of discovery. Section 4 analyzes how the extent of discovery

affects total litigation costs. Section 5 shows how the optimal extent of discovery varies with the

parameters describing the legal environment. Section 6 studies impact from discovery’s cost struc-

tures, which can be determined by the court’s decision on what information sources to target in

discovery. Section 7 contrasts outcomes in our strategic game with a single decision-maker’s prob-

lem of dividing information acquisition into two stages. Section 8 considers extentions such as

more rounds of discovery, fixed procedural trial costs, trial cost savings from successful discovery

and costs of trial incurred by the court. Section 9 explores discovery in a screening setting. Section

10 concludes. Most proofs are in an Appendix.

2 The model

We model pre-trial discovery, and its impact on the likelihood of ex ante and interim settlement in

negotiations between a defendant and plaintiff, where the defendant has private information about

the probability it will be found liable by the court in a trial for damages it may have imposed on
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the plaintiff. The level of potential damage liability is public information and normalized to 1. The

defendant has private information about the probability that it would be found not liable at a trial.

Conditional on this private information, the probability the defendant is found not liable at a trial

is θ ∈ [θ, θ̄] ⊂ (0, 1) where θ ∼ F (·). That is, the defendant privately observes a signal of the

strength of the evidence against itself and the higher is θ, the stronger is the defendant.

All parties are risk neutral. Thus, a defendant seeks to minimize the sum of its expected pay-

ment to the plaintiff plus its own legal costs, and a plaintiff seeks to maximize the expected payment

from the defendant less its own legal costs.

Our base model features one round of discovery. A defendant has two opportunities, pre- and

post-discovery, to make settlement offers to the plaintiff. At t = 1, prior to discovery, a defendant

can make a take-it-or-leave-it settlement offer. If the plaintiff accepts, then they settle and the

suit is withdrawn. If the offer is rejected, then the legal process moves on to discovery, where

a defendant’s private information is publicly revealed with probability π ∈ [0, 1]. We say that

discovery succeeds if a defendant’s private information is revealed; otherwise discovery is said

to fail. At t = 2, post-discovery, a defendant can again make a settlement offer. If the plaintiff

accepts, then they settle and the suit is withdrawn. If the offer is rejected, then the case proceeds

to trial, where a court determines whether the defendant is liable and must pay damages to the

plaintiff.

The defendant and plaintiff incur investigation costs as they proceed through the judicial pro-

cess. We initially assume that all legal costs are informational in nature, dealing solely with the

gathering and assessing of information about whether a defendant is liable. If a case proceeds all

the way to trial, the plaintiff would incur a total investigation cost of cp > 0, and the defendant

would incur cd > 0. We assume that 1− θ̄ > cp so that the plaintiff always has a case with a posi-

tive expected value from trial.8 Investigation costs are incurred both in discovery and at trial. The

8Effectively, these are cases that have survived motions to dismiss.
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extent of discovery is characterized by the probability π that discovery uncovers the defendant’s

private information, θ. More extensive discovery costs more: the proportion of the maximum in-

vestigation costs incurred in discovery, ρ(π) ∈ [0, 1], is a strictly increasing, twice differentiable

function of π, with ρ(0) = 0 and ρ(1) = 1. Thus, after discovery, if the two parties do not settle,

the plaintiff would incur additional costs of (1 − ρ(π))cp at trial, and the defendant would incur

(1−ρ(π))cd.9 We first analyze a linear cost structure where the proportion of investigation costs in-

curred in discovery rises one-for-one with the extent of discovery, i.e., ρ(π) = π. A strictly convex

discovery cost structure captures the possibility that discovery focuses on less costly (per unit of

information) sources of information, leaving more costly sources to a trial; a strictly concave cost

structure captures the possibility that discovery focuses on more costly sources of information. We

first take the level of discovery—the probability π that discovery succeeds—and the cost structure

of discovery as given, and solve for how they affect the timing of when different defendant types

make their first offers, and the sizes of these offers. We then characterize the discovery level that

minimizes the expected total litigation costs of both litigants. It helps to define c ≡ cp + cd.

Let d denote the discovery outcome: d = θ if discovery uncovers θ, and d = ∅ otherwise.

The defendant’s strategy consists of a pair of settlement offer strategies x1 and x2, where, x1 :

θ 7→ R+

⋃
{N} gives the pre-discovery settlement offer (with N denoting no offer) and x2 :

(θ, d, x1) 7→ R+

⋃
{N} gives the post-discovery settlement offer when there is no pre-discovery

settlement.

The plaintiff’s strategy consists of two rejection probability functions, p1 and p2. Here p1 :

x1 7→ [0, 1] (with p1(N) = 1) gives the probability that the plaintiff rejects a pre-discovery set-

tlement offer x1, and p2 : (x1, d, x2) 7→ [0, 1] (with p2(·, ·, N) = 1) gives the probability that the

plaintiff rejects a post-discovery settlement offer x2.

9In our base model, discovery outcomes do not affect the level of investigation costs that would be incurred at trial.
This approximates a setting where the total amount of information (private or non-private) to be uncovered does not
depend on whether discovery succeeds. We later study the case when successful discovery reduces trial costs.
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We let b1(x1) represent a plaintiff’s beliefs about a defendant’s private information after seeing

x1; and b2(x1, d, x2) represents his beliefs after seeing x1, x2 and the discovery outcome d. Abusing

notation slightly, we let b1(x1) and b2(x1, d, x2) denote point beliefs when beliefs are degenerate.

Definition: A profile (x∗1, x
∗
2, p
∗
1, p
∗
2, b
∗
1, b
∗
2) forms an equilibrium if and only if (1) given beliefs

(b∗1, b
∗
2), the strategy (x∗1, x

∗
2) maximizes the defendant’s expected future payoff at any point in

time, (2) given (x∗1, x
∗
2, b
∗
1, b
∗
2), the strategy p∗1, p

∗
2 maximizes the plaintiff’s expected future payoff

at any point in time, and (3) the plaintiff’s beliefs (b∗1, b
∗
2) obey Bayes’ Rule whenever possible.

In our dynamic model, “full separation” does not mean that all types separate at the very be-

ginning of the game; but rather that separation occurs before the trial. Thus, the equilibrium is

fully separating if the plaintiff’s beliefs about the defendant’s type become degenerate for each θ

prior to the trial. We next characterize a fully-separating equilibrium, establishing the existence

and essential uniqueness of a “universally divine equilibrium” using the refinements in Banks and

Sobel (1987). We say “essentially” unique, because there is latitude in specifying off-equilibrium

beliefs, as well as latitude in specifying offers that are always rejected along the equilibrium path.

Preliminaries: In any equilibrium, with take-it-or-leave-it offers, a defendant’s settlement offer

at t = 2 extracts all surplus when discovery uncovers θ, leaving the plaintiff indifferent between

accepting the offer and going to trial, i.e., x2(θ, θ, x1) = 1 − θ − (1 − ρ(π))cp, and the plaintiff

always accepts this offer. Thus, p2(x1, θ, x2) = 1 for x2 ≥ 1−θ−(1−ρ(π))cp and p2(x1, θ, x2) = 0

otherwise. To reduce notation, we abuse notation slightly, and let p2(x2) = p2(N, ∅, x2) denote

the rejection probability when discovery fails and no offer was made prior to discovery. We first

derive a basic property of the cost function ρ(π):

Lemma 1. If ρ(π) is strictly convex, then (a) π > ρ(π), and (b) ρ(π)
π

is strictly increasing in π. If

ρ(π) is strictly concave, then (a) π < ρ(π), and (b) ρ(π)
π

is strictly decreasing in π.

Proof: See the Appendix. 2
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3 Separation via offer amount and timing

A separating equilibrium is described by a cutoff type θ̂ ∈ [θ, θ̄] such that prior to discovery, any

weaker defendant θ < θ̂ makes an offer and settles with positive probability at t = 1, whereas

any stronger defendant θ > θ̂ waits until after discovery to make its first (acceptable) offer. Thus,

defendant types partition themselves into groups of weak and strong defendants, [θ, θ̂] and (θ̂, θ̄].

If discovery uncovers θ, then a strong defendant makes an (accepted) offer that extracts all surplus.

Otherwise, within each group, types separate further via their proposed settlement amounts, with

weaker types proposing more generous settlements. These offers leave a plaintiff indifferent be-

tween accepting and rejecting each offer (given separating beliefs), and the plaintiff’s probability

of rejection declines with the size of the settlement offer in a way that makes it incentive compat-

ible for defendants to reveal their types via their settlement offers. This further separation within

the populations of weak and strong defendants is in the spirit of Reinganum and Wilde (1986),

who analyze settlement offers by a privately-informed plaintiff when there is no discovery. We

prove the existence and uniqueness of a universally divine equilibrium (Banks and Sobel 1987) in

the Appendix; the proof builds on that in Reinganum and Wilde. We recursively solve the game,

first analyzing the post-discovery stage and then the pre-discovery stage.

Post-discovery settlement offers. First consider a type that did not make a pre-discovery offer

(x1 = N ). Absent a post-discovery settlement at t = 2, the parties will go to trial, incurring

additional trial costs of (1− ρ)cp and (1− ρ)cd, where we omit the dependence of ρ on π where it

does not cause confusion. If discovery uncovers θ, then the defendant makes the (accepted) offer

x2(θ, θ, x1) = (1− θ)− (1− ρ)cp, extracting all surplus given that information from the plaintiff.

Now suppose discovery does not reveal θ. If the defendant’s offer of x2 is accepted, its payoff

is −x2. If its offer is rejected, the two parties go to trial. At trial the defendant expects to pay 1− θ

to the plaintiff and incur trial costs (1− ρ)cd. Thus, a type θ defendant’s expected payoff when the
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plaintiff rejects its post-discovery settlement offer x2 with probability p2(x2) = p2(N, ∅, x2) is:

(1− p2(x2))[−x2] + p2(x2)[−(1− θ)− (1− ρ)cd].

A type θ defendant’s settlement offer x2 maximizes this payoff. The associated first-order condition

is:

p′2(x2)[−(1− θ)− (1− ρ)cd + x2]− 1 + p2(x2) = 0.

The defendant’s equilibrium settlement offer leaves the plaintiff indifferent between accepting

and rejecting given separating beliefs. Therefore, the defendant’s payoff must be maximized by

x2(θ, ∅, N) = (1− θ)− (1− ρ)cp. Substituting this offer into the first-order condition yields

−p′2(x2)(1− ρ)c− 1 + p2(x2) = 0, (1)

where we recall that c ≡ cd + cp. The weakest type that did not make an offer prior to discovery is

θ̂. The boundary condition reflects that the separating equilibrium is efficient, and hence θ̂’s offer

must be rejected with probability 0, i.e., p2((1 − θ̂) − (1 − ρ)cp) = 0. Solving the differential

equation (1) for the probability with which the plaintiff rejects the defendant’s offer yields

p2(x2) = 1− exp
(x2 − ((1− θ̂)− (1− ρ)cp)

(1− ρ)c

)
.

Substituting for x2(θ, ∅, N) = (1 − θ) − (1 − ρ)cp yields the equilibrium probability that a type

θ ∈ [θ̂, θ̄] has its offer rejected when discovery fails to reveal its private information. Using r2(θ)

to denote this equilibrium probability of rejection for θ ∈ [θ̂, θ̄], we have

r2(θ) = 1− exp
(
− θ − θ̂

(1− ρ)c

)
. (2)

This probability of rejection rises with θ, reflecting that stronger defendant types make less gen-
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erous offers, and to make it unattractive for weaker defendant types to mimic those less generous

offers, they must face a higher probability of rejection.

Strong defendants are always better off when discovery reveals their private information be-

cause settlement offers are unaffected by the discovery outcome; but when discovery fails, a plain-

tiff must sometimes reject offers, in order to make it incentive compatible for a defendant’s offer

to reveal the true strength of its case. As we discussed earlier, if a defendant’s private informa-

tion concerns the nonexistence of evidence against itself, then even though a stronger defendant

wants to reveal this lack of evidence in order to avoid having its settlement offers rejected, it has

no incentive compatible way to do so directly. This is because a weaker defendant always has

an incentive to under-report/conceal unfavorable evidence, mimicking a stronger defendant. As a

result, a defendant can only credibly convey its private information indirectly via the timing and

size of its settlement offer; and to provide the correct truth-telling incentives, a plaintiff must be

more likely to reject less generous offers, causing the parties to inefficiently incur trial costs.

Now consider a weak defendant type, θ < θ̂, whose pre-discovery offer was rejected, when

discovery failed to uncover its private information. On the equilibrium path, its pre-discovery offer

reveals its type. As a result, on the equilibrium path, its post-discovery offer is x2(θ, ∅, x∗1) =

1 − θ − (1 − ρ)cp. Off-equilibrium path beliefs are not uniquely pinned down. For convenience,

we assume that when discovery fails, the plaintiff’s belief after a t = 2 offer is unchanged from

that after the t = 1 offer. Then at t = 2 the defendant will make a take-it-or-leave-it offer that

leaves the plaintiff indifferent between accepting and rejecting given the belief based on the first

offer alone; or go to trial if it was a strong-enough type that, off-the-equilibrium path, mistakenly

made an excessively generous pre-discovery offer x1, associated with a weak type θ̌, where

x1 = (1− θ̌)− (1− ρ)cp < (1− θ)− (1− ρ)cd ⇔ θ − θ̌ > (1− ρ)(cd + cp).

Pre-discovery settlement offers. On the equilibrium path, strong defendant types θ > θ̂ do not
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make offers prior to discovery, so consider the settlement offers of weaker types θ < θ̂. If a pre-

discovery offer x1 is rejected and discovery reveals θ, then the defendant’s post-discovery offer will

be x2(θ, θ, x1) = (1− θ)− (1− ρ)cp. If discovery fails to uncover θ, the plaintiff’s belief (on the

equilibrium path) is the same as that based only on the first offer. Because pre-discovery offers fully

separate those types that make offers, x1 leads to degenerate beliefs. Thus, on the equilibrium path,

b∗1(x1(θ)) = θ, so the defendant’s post-discovery offer of 1−b∗1(x1)−(1−ρ)cp when discovery fails

is the same as that when discovery uncovers θ. It follows that the separating pre-discovery offer that

leaves the plaintiff indifferent between accepting and rejecting it is x1(θ) = (1−θ)−cp. Therefore,

b∗1(x1) = 1− x1 − cp. Then, given a pre-discovery offer x1 (potentially off-the-equilibrium path),

the post-discovery offer would be x2(θ, ∅, x1) = (1− b∗1(x1))− (1− ρ)cp = x1 + ρcp (as long as

x1 was not mistakenly so generous that the defendant prefers to go to trial).

Thus, along the equilibrium path, a type θ defendant’s expected payoff when the plaintiff rejects

its pre-discovery settlement offer x1 with probability p1(x1) is:

(1− p1(x1))[−x1] + p1(x1)[π(−(1− θ) + (1− ρ)cp) + (1− π)(−x1 − ρcp)− ρcd].

That is, the plaintiff accepts x1 with probability 1−p1(x1), and with probability p1(x1) the plaintiff

rejects it and the case proceeds to discovery. After discovery, if θ is not revealed, the defendant

offers x1 + ρcp, which is accepted. A weak defendant’s optimal pre-discovery settlement offer x1

maximizes its expected payoff, solving the first-order condition:

p′1(x1)[π(−(1− θ) + (1− ρ)cp) + (1− π)(−x1 − ρcp)− ρcd + x1]− 1 + p1(x1)π = 0.

Substituting in the equilibrium pre-discovery offer x1(θ) = (1− θ)− cp, yields

−p′1(x1)ρ(cp + cd)− 1 + p1(x1)π = 0.
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The boundary condition reflects that the pre-discovery settlement offer of the weakest type θ is

always accepted. Solving this differential equation yields the probability that the plaintiff rejects

pre-discovery settlement offer x1:

p1(x1) =
1

π
[1− exp

(x1 − (1− θ − cp)
ρ
π
c

)
].

Substituting for x1(θ) = (1−θ)−cp yields the equilibrium probability r1(θ) that a weak defendant

type θ < θ̂’s pre-discovery offer is rejected. For ρ > 0, we have

r1(θ) =
1

π
[1− exp

(
−θ − θρ

π
c

)
]. (3)

The pre-discovery probability of rejection r1(θ) differs from its post-discovery counterpart r2(θ)

in two ways. First, the pre-discovery probability of rejection r1(θ) is scaled up by 1
π

. This is

because the discovery signal is weaker than the trial “signal”: it reveals θ with probability π, rather

than with probability 1. A stronger future signal makes separation easier by reducing a weaker

defendant types gains from mimicking a stronger type, thereby reducing the required probability

of rejection. Second, the denominator in the exp term for pre-discovery is ρ
π
c, whereas that for

post-discovery is (1− ρ)c. These terms represent the cost per unit of revelation probability of the

next signal. The “discovery signal” costs ρc and reveals θ with probability π, so the per unit cost

of information revelation is ρc/π. Following failed discovery, the cost of discovery is sunk, so the

“trial signal” costs (1 − ρ)c and it reveals the private information with probability one, so the per

unit cost of the trial signal is (1 − ρ)c. The higher is the cost per unit of information of the next

“signal”, the greater is the cost of rejection to a defendant, making it easier to separate types, and

thus lowering the probability of rejection required to induce incentive compatible signaling. The

sum of the investigation costs to both the defendant and the plaintiff enter because the defendant

indirectly bears the plaintiff’s discovery costs whenever a settlement fails: the defendant can no

longer use these sunk investigation costs to threaten a plaintiff when making a post-discovery offer.
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Cutoff type, θ̂(π). Defendant type θ̂ is indifferent between making a pre-discovery offer that

reveals its type and waiting until after discovery to make its first offer, where, as it is the weakest

type that waits, its offer is always accepted. θ̂’s payoff from its equilibrium pre-discovery offer is:

r1(θ̂)[−(1− θ̂) + (1− ρ)cp− ρcd] + (1− r1(θ̂))[−(1− θ̂) + cp] = −(1− θ̂) + cp− ρ(cp + cd)r1(θ̂).

That is, if θ̂ makes a pre-discovery settlement offer then it incurs discovery costs ρcd and it fails to

extract the plaintiff’s discovery costs ρcp only when its offer is rejected. If, instead, θ̂ waits until

after discovery to make its first offer, then θ̂ receives

−ρcd − (1− θ̂) + (1− ρ)cp = −(1− θ̂) + cp − ρ(cp + cd).

That is, if θ̂ delays making an offer until after discovery, it always incurs discovery costs ρcd and

it always fails to extract ρcp. For θ̂ to be indifferent between making a pre-discovery offer and

waiting until after discovery to make a first offer, its pre-discovery offer must always be rejected:

r1(θ̂) = 1. If the extent of discovery π satisfies π < 1− exp
(
− θ̄−θ

ρ(π)
π
c

)
, then θ̂ solves r1(θ̂) = 1:

1

π
[1− exp

(
− θ̂ − θ

ρ(π)
π
c

)
] = 1.

Writing the rejection probability and cutoff type as functions of π to emphasize their dependence on

π we now show that more discovery reduces the probability that pre-discovery offers are rejected:

Lemma 2. The rejection probability r1(θ, π) is strictly decreasing in π for any θ > θ.

Proof: See the Appendix. 2

Inspection of r1(θ, π) = 1
π
[1 − exp

(
− θ−θ

ρ(π)
π
c

)
] reveals that greater discovery affects the pre-

discovery probability of rejection r1(θ, π) in two ways. First, a higher probability of uncovering

θ in discovery directly reduces a weaker defendant’s gain from mimicking a stronger defendant,
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which reduces the rejection probability needed to induce separation, reflected in the term 1
π

. Sec-

ond, if the fraction of total investigation costs incurred in discovery is strictly convex in the extent of

discovery, increases in π raise the per-unit information cost of discovery, ρ(π)
π

(Lemma 1), harshen-

ing the consequences of having offers rejected. In turn, this further reduces the pre-discovery

rejection probabilities needed to induce separation. If, instead, the fraction of total investigation

costs incurred in discovery is strictly concave in the extent of discovery, the effect through ρ
π

raises

the required rejection probability. However, this effect is dominated by the direct effect through 1
π

.

Let π̄ be the solution to r1(θ, π) = 1. Lemma 2 implies that for any π ≥ π̄, r1(θ, π) ≤ 1.

Notice that r1(θ, π) strictly increases in θ. Thus, for any π ≥ π̄ and any θ ∈ (θ, θ), r1(θ, π) < 1.

This implies all defendant types prefer to make the first acceptable offer prior to discovery, i.e.

θ̂ = θ̄ for any π ≥ π. Also, because r1(θ, 1) < 1, we have π̄ < 1. Thus, the cutoff type is given by,

θ̂(π) ≡

 θ − ln(1− π)ρ(π)
π
c, if π ∈ [0, π̄),

θ̄, if π ≥ π̄,

Proposition 1. For a fixed π, define x̄1 ≡ (1− θ)− cp, x1 ≡ (1− θ̂(π))− cp, x̄2 ≡ (1− θ̂(π))−

(1− ρ)cp, x2 ≡ (1− θ̄)− (1− ρ)cp.

The equilibrium values of (x∗1, x
∗
2, p
∗
1, p
∗
2) are uniquely determined. Equilibrium settlement offers

are given by

x∗1(θ) = (1− θ)− cp, if θ ∈ [θ, θ̂(π)]; x∗1(θ) = N, if θ > θ̂(π)

x∗2(θ, ∅, x1) = (1− θ)− (1− ρ)cp, if θ ∈ [θ, θ̄].
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The equilibrium rejection probabilities with which the plaintiff rejects a defendant’s offers are:

p∗1(x1) =
1

π
[1− exp

(x1 − (1− θ − cp)
ρ
π
c

)
], x1 ∈ [x1, x̄1]

p∗2(x2) = p∗2(N, ∅, x2) = 1− exp
(x2 − (1− θ̂(π)− (1− ρ)cp)

(1− ρ)c

)
, x2 ∈ [x2, x̄2]

p∗i (xi) = 1, xi < xi; p∗i (xi) = 0, xi > x̄i, i = 1, 2.

Proof: See the Appendix. 2

The separating equilibrium uniquely pins down the sizes of accepted offers and their probabil-

ities of acceptance, as well as the beliefs following those offers:

b∗1(x1) = 1− x1 − cp, if x1 ∈ [x1, x̄1]; b∗1(N) = F (θ|θ > θ̂(π)),

b∗2(N, ∅, x2) = 1− x2 − (1− ρ)cp, if x2 ∈ [x2, x̄2]; b∗2(x1, ∅, x2) = b∗1(x1), if x1 6= N.

There is, however, some freedom in specifying the sizes of offers that are always rejected, and in

specifying a plaintiff’s beliefs following offers that are not made on the equilibrium path (xi > x̄i

or xi < xi). In the Appendix, we show that any “universally divine” equilibrium must be fully

separating. Figure 1 illustrates the equilibrium when π ∈ (0, π̄).

When discovery is more informative (π is higher), more types make pre-discovery offers—the

equilibrium cutoff θ̂(π) is higher. With enough discovery, i.e., if π ≥ π̄, then θ̂ = θ̄: all types make

pre-discovery offers, immediately revealing their types. When π = 0, then θ̂ = θ: all types wait

until after discovery to make offers—this case essentially reduces to the equilibrium in Reinganum

and Wilde (1986), save that there are two pre-trial dates and no defendant makes a pre-discovery

offer, supported by the belief that any defendant that does so is the weakest type.

Recall that cutoff type θ̂(π)’s pre-discovery offer is always rejected: r1(θ̂(π), π) = 1. The

rejection probability rises with θ and falls with the extent of discovery, π. Therefore, θ̂(π) must
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rise with the extent of discovery in order to keep the rejection probability equal to one:

Corollary 1. The cutoff type θ̂(π) is strictly increasing in π for π < π̄.

Collectively, Lemma 2, Proposition 1 and Corollary 1 have significant empirical content. They

imply that: (1) cases settle early with positive probability, with weaker cases being more likely

to settle (with more generous settlement terms for the plaintiff); (2) cases that are rejected pre-

discovery are weak and will settle before trial; (3) defendants who hold off making a first offer until

after discovery, make less generous offers, and may end up being rejected, in which case there is a

trial; and (4) greater discovery induces more defendants to make pre-discovery settlement offers,

raises the probability that any given pre-settlement offer is accepted, and reduces the number of

cases that go to trial. Our analysis also highlights selection issues that affect inference. Because

stronger defendants are more likely to go to trial, one must be careful not to infer from a high

defendant success rate that most plaintiff cases were weak.

4 The impact of discovery on expected litigation costs

In this section we derive how the level of discovery affects the total investigation costs that the two

parties expect to incur in equilibrium given an arbitrary defendant type θ. We also determine how

discovery affects the likelihood that a case proceeds all the way to trial.

We begin with the observation that no discovery and full discovery lead to the same effective

outcome: all information is revealed at once, either at the trial (with no discovery), or at discovery

(with full discovery). That is, fully exhaustive discovery that uncovers all information is akin to

shifting the timing of a trial forward, and hence delivers the same expected litigation costs as a legal

system with no discovery, where litigants go directly to trial if they fail to settle. Consequently,

Lemma 3. Total litigation costs are the same with no discovery as with full discovery.
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Proof: See the Appendix. 2

For any θ, define π̂(θ) as the solution of θ̂(π) = θ. Thus, given discovery π, a defendant

type θ is weak, i.e., θ ≤ θ̂(π), if and only if the extent of discovery π ≥ π̂(θ). In other words,

when discovery is extensive relative to a type, it induces the defendant to make an acceptable

pre-discovery settlement offer.

From Lemma 1, we have,

Corollary 2. The cutoff π̂(θ) strictly increases in θ and π̂(θ̄) = π̄.

In the remainder of this section, we suppose that ρ(π) = π, i.e., discovery costs rise one-for-

one with the extent of discovery. We defer analysis with more general (i.e., non-linear) discovery

cost functions to Section 6.

We begin by decomposing the impact of discovery according to whether the defendant type θ

makes offer pre- or post-discovery.

Weak defendants. When discovery is extensive relative to θ, i.e., when π ≥ π̂(θ), type θ is a weak

defendant type that always settles prior to a trial. Litigants incur costs of ρ(π)(cp + cd) = ρ(π)c

only if a pre-discovery offer is rejected, and the probability of rejection is r1(θ, π). Thus, expected

total litigation costs incurred with a type θ weak defendant are:

Cw(θ, π) ≡ r1(θ, π)ρ(π)c =
ρ(π)

π
(1− exp

(
−θ − θ

ρ(π)
π
c

)
)c.

Substituting ρ(π) = π into Cw(θ, π) reveals that Cw(θ, π) depends only on the type, and not on

the particular extent of discovery:

Proposition 2. (Weak defendants with linear discovery) When ρ(π) = π, the extent of discovery

does not affect expected total litigation costs for a given type θ if π ≥ π̂(θ).

A weak defendant’s pre-discovery settlement offer reveals its type. As a result, post-discovery,
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its settlement offer is always accepted, so the case never goes to trial and at most only discovery

costs are incurred. However, because discovery with π < 1 is less costly and less revealing than

a trial in the absence of discovery, the plaintiff must also be more likely to reject a pre-discovery

settlement offer than a pre-trial offer with no discovery. These two opposing effects cancel out for

weak types when ρ(π) = π.10

Strong defendants. If discovery is limited relative to a defendant’s type θ, i.e., if π < π̂(θ), then

θ is a strong defendant type, who does not make acceptable settlement offers until after discovery.

With strong defendants, litigants always incur discovery costs ρ(π)c. If discovery uncovers θ, no

more legal costs are incurred as they settle after discovery. So, too, if discovery fails but a defen-

dant’s settlement offer is accepted, no additional legal costs are incurred. However, if discovery

fails and a defendant’s post-discovery offer is rejected, they go to trial, incurring additional costs

of (1− ρ(π))c. Thus, expected total litigation costs with discovery for a strong defendant θ are:

Cs(θ, π) = [ρ(π) + (1− π)r2(θ, π)(1− ρ(π))]c.

Unlike with weak defendants, limited discovery reduces expected litigation costs with strong de-

fendants even when ρ(π) = π:

Proposition 3. (Strong defendants with linear discovery) When ρ(π) = π, expected total litigation

costs with a type θ defendant are strictly lower with limited discovery, i.e., π ∈ (0, π̂(θ)), than with

no discovery, π = 0, or extensive discovery, π ≥ π̂(θ).

To see why, we rewrite expected litigation costs with and without discovery in a way that is

10Our analysis in Section 6 reveals that these two effects do not typically cancel: convex discovery costs raise the
cost savings of limited discovery relative to full or no discovery, whereas concave costs reduce the cost savings.
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more comparable to the expected litigation costs with discovery:

With discovery:
1

c
Cs(θ, π) =ρ(π) + (1− ρ(π))

(
1− exp

(
−θ − θ̂(π)

(1− π)c

))
(1− π). (4)

Without discovery:
1

c
Cs(θ, 0) =1− exp

(
−θ − θ

c

)
=1− exp

(
−θ − θ̂(π)

c

)
exp
(
− θ̂(π)− θ

c

)
for any π

=ρ(π) + (1− ρ(π))
(

1− exp
(
−θ − θ̂(π)

c

))
. for any π (5)

Equality (5) follows from substituting for exp
(
− θ̂(π)−θ

c

)
using r1(θ̂, π) = 1, adding and subtracting

ρ(π) and re-arranging. We can isolate two common components in litigation costs with or without

discovery as above. As a result, comparisons of expected litigation costs with and without discov-

ery ((4) and (5)) revolve around comparisons of 1−exp
(
− θ−θ̂(π)

c

)
with

(
1−exp

(
− θ−θ̂(π)

(1−π)c

))
(1−π).

To understand these terms, define

R(s) ≡ 1− exp
(
−s
c

)

as the probability a settlement offer must be rejected to obtain incentive compatible revelation of

θ when the ‘distance’ between θ and the lowest type from which it must separate is s and the trial

cost is c. The solid curve in Figure 2 shows that this rejection probability rises concavely with the

separation distance s.

The construction of
(
1 − exp

(
− θ−θ̂(π)

(1−π)c

))
(1 − π) in (4) reflects that when discovery succeeds,

there is no longer a need to signal information, eliminating all distortion in rejection probabilities.

But discovery fails with probability 1− π, in which case the subsequent settlement rejection prob-

ability, 1 − exp
(
− θ−θ̂

(1−π)c

)
, must be higher than if there were no discovery because the remaining

trial cost is lower, so having an offer rejected is not as costly—it is as if the distance to separate is
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inflated by a factor of 1
1−π > 1. To see how these two effects play out observe that, given θ,

1− exp
(
−θ − θ̂

c

)
= R(θ − θ̂)

and

(
1− exp

(
− θ − θ̂

(1− π)c

))
(1− π) = (1− π)R

( θ − θ̂
1− π

)
= (1− π)R

( θ − θ̂
1− π

)
+ πR(0),

because R(0) = 0. A strong type’s separation distance with no discovery, θ − θ̂, is a linear

combination of those with (linear) discovery, 0 and θ−θ̂
1−π . That is,

θ − θ̂ = π × 0 + (1− π)× θ − θ̂
1− π

.

Concavity of R(·) then means that expected distortion costs with no discovery exceed those with

discovery, i.e.,

R(θ − θ̂) > πR(0) + (1− π)R
( θ − θ̂

1− π

)
.

This is reflected in Figure 2. The vertical difference between the concave function and the linear

function over θ− θ̂ shows the benefit of discovery to a strong type. The intuition is that separation

via discovery is linear, affecting all types in exactly the same way, but endogenous separation via

the size of a settlement offer is only concave, embodied in the concavity of 1 − exp(·), which is

everywhere pointwise above the linear separation via discovery.

The value of discovery. With linear discovery, litigants do not benefit when discovery is extensive

relative to θ (Proposition 2), but they do benefit when discovery is limited (Proposition 3). Thus,

Corollary 3. (Value of discovery) Suppose ρ(π) = π. Then with a type θ defendant, discovery
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benefits litigants (relative to no discovery) if and only if it is limited relative to θ, i.e., π ∈ (0, π̂(θ)).

We now establish that not only are strong defendants the only ones to gain from discovery, but

that among strong defendants, it is the stronger ones who benefit more from discovery. Denoting

the benefit of discovery for strong defendant types by ∆s(θ, π) ≡ Cs(θ, 0)− Cs(θ, π), we have:

Proposition 4. (Stronger types gain more from linear discovery.) When ρ(π) = π, the reduction

in expected litigation costs, ∆s(θ, π), rises with θ ≥ θ̂(π).

Proof:
1

c
∆s(θ, π) = (1− π)[R(θ − θ̂)− (1− π)R

( θ − θ̂
1− π

)
].

Differentiating with respect to θ yields:

1

c
∆s
θ(θ, π) = (1− π)[R′(θ − θ̂)−R′

( θ − θ̂
1− π

)
] > 0,

where the inequality follows from the concavity of R(·). 2

The concavity of the rejection probability R(s) means that when the separation distance s is

greater, a marginal increase in s leads to a smaller marginal increase in rejection rates. In other

words, a stronger type is less hurt by an inflation of the separation distance. As a result, a stronger

type (among the strong ones) gains more from linear discovery. We show in Section 6, that this

comparative static result carries over to general cost structures.

Discovery outcomes do not affect a plaintiff’s payoffs—a plaintiff is always indifferent between

settling early and having the litigation go to trial. The plaintiff’s indifference reflects a defendant’s

ability to make take-it-or-leave-it offers. Thus, all gains from reductions in litigation costs due to

discovery accrue to the defendant. There is an important caveat to this result: Section 8 shows

that if successful discovery reduces trial costs, then a plaintiff gains from discovery because it

strengthens her bargaining position even when the defendant makes offers. In fact, a plaintiff can

26



gain so much that discovery can harm a defendant even with linear discovery costs, ρ(π) = π.

Discovery reduces the likelihood that the litigants go to trial. With discovery, weak defendants

never go to trial—even if their pre-discovery offers are rejected, their post-discovery offers are

always accepted. In contrast, absent discovery, any θ > θ faces a strictly positive probability that

its offer is rejected, in which case it goes to trial. If discovery succeeds, strong defendant types

do not go to trial either. What is more interesting is that, even conditional on discovery failing

to reveal θ, discovery reduces the probability of trial for at least some strong types. In particular,

when discovery fails, the rejection probability needed for a strong type θ = θ̂+ ε, ε > 0, but small,

to separate from θ̂ is close to zero; but, absent discovery, separating from worse types (e.g., θ = θ)

demands a higher probability of rejection, and hence trial. Summarizing, we have:

Corollary 4. Even conditional on discovery failing to reveal θ, positive discovery reduces the

probability of a trial for all weak defendants and at least some (weaker) strong defendants.

5 The optimal extent of discovery

To measure social welfare, we use the total expected payoffs of the defendant and plaintiff.11 The

optimal extent of discovery maximizes these expected total payoffs. Note that, due to the fully

separating nature of the equilibrium given any level of discovery, the expected damage paid by a

defendant, whether awarded in a trial or settlement, perfectly reflects his private information. Thus,

maximizing the litigants’ joint payoff does not conflict with a broader social purpose of serving

justice.

Because damages paid by a defendant to the plaintiff represent a transfer, maximizing total

payoffs is equivalent to minimizing the ex ante expected total litigation costs of the two litigants.

Because a social planner/judge does not know the defendant’s private type, she must integrate over
11The court (and society at large) may also incur discovery and trial costs in which case the social welfare should

consider these costs as well. See Section 8.
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the defendant’s possible types. Before we investigate this ex ante optimal level of discovery, we

first identify the optimal extent of discovery given an arbitrary defendant type θ.

Optimal π given θ. Denote the discovery level that minimizes expected total litigation costs given

a type θ defendant by π∗(θ). Corollary 3 shows that when ρ(π) = π, π∗(θ) is strictly positive, but

does not exceed π̂(θ). But how does π∗(θ) vary with θ?

We now establish that in the neighborhood of the optimal level of discovery, stronger (strong)

types benefit more from greater discovery. Using subscripts to denote partial derivatives, we have:

Lemma 4. (Stronger types gain more from more discovery) When ρ(π) = π, ∆s
π,θ(θ, π

∗(θ)) > 0.

Proof: See the Appendix. 2

Proposition 5 then follows directly:

Proposition 5. When ρ(π) = π, the optimal extent of discovery given a type π∗(θ) increases in θ.

Proof: Because π∗(θ) is interior, we haveCs
π,π(θ, π∗(θ)) > 0. From Lemma 4,Cs

π,θ(θ, π
∗(θ)) < 0.

From the implicit function theorem, π∗θ(θ) > 0. 2

Were a strong type θ’s post-discovery settlement offer always accepted, then it would be best

to have no discovery. Were its post-discovery settlement offer always rejected, so that trial costs

(1− π)c are incurred whenever discovery fails, then it would be best to break information acquisi-

tion into two equal steps, because argmax{π+(1−π)(1−π)} = 1
2
. In equilibrium, post-discovery

settlement offers are sometimes, but not always, rejected. Therefore, the optimal extent of discov-

ery is between 0 and 1
2
. A stronger type’s settlement offer gets rejected more often. This calls for

greater discovery, i.e., discovery that is closer to 1
2
. This effect on π∗(θ) dominates the counter-

vailing effect that, with stronger types, greater discovery reduces by more the probability that its

settlement offer is rejected, which calls for less discovery.

Optimal π ex ante. The optimal extent of discovery π∗ minimizes ex ante expected total investi-
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gation costs (integrating over the distribution F of defendant types θ). Thus, π∗ solves

min
π∈[0,1]

C(π) ≡
∫ θ̂(π)

θ

Cw(θ, π)dF (θ) +

∫ θ̄

θ̂(π)

Cs(θ, π)dF (θ).

The following properties of the optimal extent of discovery, π∗, follow from the properties of π∗(θ):

Corollary 5. When ρ(π) = π, the optimal extent of discovery satisfies 0 < π∗ < π̄, and π∗ < 1
2
.

The policy implication is that a judge should have positive, but sharply limited, discovery. That

is, absent other considerations, with no settlement, most information acquisition should occur at

trial. We next derive how the distribution of defendant types affects the optimal extent of discov-

ery. We address: when a defendant is expected to be stronger ex ante, is it better to have more

discovery or less? To do this, we compare distributions of defendant types that are ordered ac-

cording to conditional first-order stochastic dominance, so there is a well-defined notion of a better

distribution of defendant types. Distribution F2 �CFOSD F1 if F1(θ|θ > µ) ≥ F2(θ|θ > µ) for all

µ in the support of F1, strict for all µ ∈ (θ, θ̄).12 Let x∗j be the optimal extent of discovery given

distribution Fj for j = 1, 2. Lemma 4 shows that increased discovery benefits stronger types by

more. Therefore,

Proposition 6. (Better defendants make more discovery optimal) When ρ(π) = π, and distribu-

tions F1 and F2 of defendant types are ordered by F2 �CFOSD F1, then the optimal extent of

discovery is higher when defendants are more likely to be stronger, i.e., π∗2 > π∗1 .

Proof: See the Appendix. 2

Our characterization of the optimal extent of discovery presumes that the social planner/judge

cares equally about the litigation costs incurred by each type of defendant. If, instead, the social

planner weighs costs incurred by “good” (i.e., higher θ) defendants by more, then our analysis

12F2 �CFOSD F1 if and only if the hazards are ordered, f2(µ)
1−F2(µ)

≤ f1(µ)
1−F1(µ)

.
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indicates that greater discovery is optimal. So, too, if the social planner is concerned about the care

taken by defendants to avoid imposing harm on a party (and greater care is associated stochastically

with stronger defendant types), then our analysis reveals that even greater discovery is optimal. 13

Extending this insight that limited discovery is optimal to a broader setting, it suggests that for

any disputes that involve investigations, total costs would be reduced if the parties were given a

chance to settle prior to the investigation being concluded.

6 General discovery cost structures

We now consider more general cost structures, exploring how the curvature of discovery (convex or

concave) affects expected litigation costs and the optimal design of discovery. The discovery cost

structure may be nonlinear for many reasons. For example, for a plaintiff who does not have strong

evidence that the defendant is guilty, any discovery would be a “fishing expedition”. The return to

searching may rise over time as earlier discovery then helps direct attention to more fruitful areas.

This would deliver a concave discovery cost structure: the marginal cost of uncovering information

falls as more discovery takes place. The law on the matter, starting from the 1978 decision of the

Court of Appeal in Dufault v. Stevens, 6 B.C.L.R. 199 (C.A.) is that a party applying for an

order for the production of documents must satisfy the court that the application is not a “fishing

expedition”. In the words of Madam Justice Southin: “Perhaps it is not too fanciful to say that a

litigant cannot have a licence to fish in his opponent’s private swimming pool unless he can provide

some evidence from which it can be inferred that there may be fish in that pool. If there is no such

evidence, the defendant need not let him in to see if there is a fish.” This section will address

whether the court should allow fishing expeditions.

13This analysis presumes that the distribution of defendant types does not affect the discovery cost structure. Cases
with extreme distributions may lead to non-linear discovery cost structures. We show in the next section that this can
create a countervailing force for the optimal level of discovery.
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In practice, judges have extensive discretion over which sources of information to target in dis-

covery. On a case by case basis, a judge usually has significant qualitative signals at his disposal

about which directions for discovery are more or less promising to uncover information on a per

unit cost basis, and he can make decisions on that basis. Some discovery requests—like document

review—tend to be expensive and often fail to generate relevant information; but other discovery

requests—like taking deposition of key personnel— can be much more informative. Concretely,

one can imagine two classes of documents, Class A and Class B, where Class A is more relevant

than Class B. Ordering discovery to start with Class A and leaving Class B for a potential trial

would imply that ρ(π) is convex: the marginal cost of obtaining more information rises with the

amount of information. Ordering discovery in the opposite way would imply that ρ(π) is concave.

The question becomes—when taking into account the strategic behavior of the plaintiff and defen-

dant, should the court first direct discovery toward lower or higher cost sources of information?

We first consider a convex cost structures:

Proposition 7. (Strictly convex ρ(π)) Expected total litigation costs are strictly lower with any

limited discovery π than with no discovery. For any given θ, the optimal extent of discovery, π∗(θ),

is less than π̂(θ). That is, for any θ, its expected litigation costs are minimized when the extent of

discovery makes it want to wait until after discovery to make its first acceptable settlement offer.

Stronger types benefit more from any given amount of discovery.

Proof: See the Appendix. 2

Our qualitative findings that limited discovery will benefit with linear discovery are reinforced

if discovery first targets less costly sources of information. Convex costs bring two benefits to

strong defendants who make their first offers post-discovery: (a) their costs incurred in discovery

are lower, and (b) trial costs are raised, increasing the incentive compatible probabilities with which

their post-discovery offers are accepted. Convex costs also benefit weak defendants who make

their first offers pre-discovery because the efficiency of early discovery allows them to avoid trial
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costs without sacrificing as much of the signaling power of a pre-discovery settlement offer. Thus,

relative to linear costs, convex costs reduce litigation costs of both weak and strong defendants.

If, instead, discovery first focuses on higher marginal cost sources of information, we have:

Proposition 8. (Strictly concave ρ(π)) There exists a θ̃(π) > θ̂(π) such that all types θ < θ̃(π)

are worse off with discovery π than with no discovery. If any defendant types benefit from concave

discovery, then it is the stronger types that benefit by more.

No discovery may be optimal: given any strictly concave discovery cost function ρ(·), for

any limited level of discovery π ∈ (0, 1), there exists an absolutely continuous density g(θ) over

defendant types such that expected total litigation costs are higher with discovery than without.

Proof: See the Appendix. 2

Concave discovery costs have the opposite impact of convex costs, hurting all weak defen-

dants, and at least some strong defendants—expected litigation costs are higher with discovery

than without for these types. Indeed, with concave discovery costs, all defendant types may be

harmed by discovery. Thus, if discovery targets high marginal cost sources of information, it may

be optimal to forgo limited discovery—expected litigation costs may be lower with no discovery

or full discovery.

To gain further insights, we parameterize the degree of concavity/convexity:

Proposition 9. (Convexity of costs) If ρ(π) = πz with z > 0, then increases in the convexity

parameter, z, reduce expected total litigation costs.

Proof: See the Appendix. 2

Figure 3 illustrates how expected litigation costs vary with the extent of discovery π and the

convexity z of the discovery cost function. It reveals that the more concave (less convex) are

discovery costs, the more likely defendants are to settle: shifting information acquisition costs
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forward by focusing on expensive sources of information that are unlikely to bear fruit induces

more defendant types to make pre-discovery settlement offers and raises the probability that those

offers are accepted. One might therefore think that a judge should grant such discovery requests.

In fact, our analysis indicates that the opposite is optimal. The results reveal that a judge

should direct discovery toward cost-effective sources and discourage “fishing expeditions”, i.e.,

discovery sought on suspicion, surmise or vague guesses, even if such discovery may create leads

for more effective sources of information.14 When the cost structure seems concave, for example,

with a security litigation case alleging a company concealed information without any basis, a judge

should simply deny discovery. This is exactly what the Private Securities Litigation Reform Act

(PSLRA), passed in 1995, tries to achieve. Prior to the PSLRA, a plaintiff could start a case with

minimal evidence and use pre-trial discovery to search for more. After PSLRA, plaintiffs must

present evidence of fraud before any pretrial discovery takes place.15

We pose our model in the context of discovery. However, as our introduction suggests, one

can more generally interpret discovery as an activity that breaks information gathering into stages,

where the relevant private information can be uncovered at any stage. Our analysis then suggests

that earlier stages should have a selective focus on the evidence considered; and that the proper

design can reduce information acquisiton expenses. Many of our insights extend to characterize

the evolution of trials, where information gradually becomes public as a trial takes its course,

and there are multiple opportunities to settle. However, trials give judges less ability to control

which sources of information get revealed first than does discovery. Importantly, our analysis

indicates that the ability of a judge to determine the sequencing of which sources of information

are considered first is a crucial determinent of its welfare properties.

14The definition of “fishing expedition” is taken from West’s Encyclopedia of American Law, edition 2.
15See “Madoff Victims Face Grim Prospects in Court”, Jane Bryant Quinn, BLOOMBERG.COM.
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7 A related problem of acquiring information in steps

A judge seeking to minimize litigation costs must account for the fact that litigants are strategic

when setting discovery: defendants internalize the level of discovery when deciding whether to

make settlement offers, and the level of discovery affects the probability a plaintiff accepts an

offer. We just saw that whether any discovery was optimal depended on the curvature of discovery

costs.

One can glean insights from contrasting this problem with that of a single non-strategic agent

who can divide information acquisition into two stages, stopping after the first stage if he succeeds,

and only continuing if he fails. The agent chooses a probability y of learning the state at stage 1

at an information cost of ρ(y), where ρ(·) has the same structure as the discovery cost function. If

he fails, which happens with probability 1− y, he proceeds to stage 2, where he incurs additional

information costs of 1 − ρ(y) to learn the state. Thus, stage 1 search corresponds to discovery,

and stage 2 corresponds to a trial. The agent chooses y to minimize expected search costs K(y) ≡

ρ(y)+(1−y)(1−ρ(y)) = 1−y+yρ(y). Let ∆(y) = K(0)−K(y) denote the benefit of breaking

up the information acquisition, and let y∗ denote the optimal level of y.

Lemma 5. (Nonstrategic search benchmark). A single searcher always benefits from breaking up

information acquisition into steps: ∆(y) > 0 for any y ∈ (0, 1) and any ρ(·). If ρ(y) = y, y∗ = 1
2
.

Proof: See the Appendix. 2.

Regardless of the curvature of search costs, a decision maker always benefits from breaking

up information acquisition into steps: if the first step succeeds, it saves future effort. Thus, there

is a stark difference between this outcome and that with concave discovery costs, where positive

discovery can raise litigation expenses for every defendant type. The difference reflects that given

discovery π, the probability that a plaintiff accepts a defendant’s offer must make it incentive

compatible for the defendant to make an offer that reveals his type. Relative to linear or convex
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costs, concave costs raise the cost of a given level of discovery and reduce the cost of trial. Thus,

weak defendants pay more discovery costs when their pre-discovery offers are rejected and save

less on trial costs. Even though pre-discovery offers are less likely to be rejected than with linear

or convex costs, the net effect of discovery with concave costs is to hurt weak defendants. Concave

costs hurt strong defendants who make their first offers post-discovery in two ways: (a) costs

incurred in discovery are higher and (b) lower trial costs raise the likelihoods with which their

post-discovery offers must be rejected to preserve incentive compatibility. Thus, concave costs can

increase the litigation costs of both weak and strong defendants to the point that no discovery can

become optimal.

Our model differs from this non-strategic benchmark in other important ways. First, the re-

maining trial costs are unaffected by whether discovery succeeds or fails (an assumption that we

revisit). Instead, successful discovery provides incentives to settle immediately, in which case the

litigants avoid a trial and its costs. Second, litigants may not incur discovery costs; but a searcher

necessarily incurs some search costs. This difference reflects that the litigants may settle pre-

discovery. Third, even after a failed discovery, litigants may avoid trial costs by settling. For these

reasons, even though in the benchmark, interior levels of search y ∈ (0, 1) always yield positive

benefits ∆(y) > 0, extensive discovery π > π̂(θ) provides no benefits when ρ(π) = π.

A non-strategic searcher minimizes ρ(y)+(1−y)(1−ρ(y)). A social planner/judge minimizes∫
θ<θ̂

ρ(π)r1(θ, π)F (dθ)+
∫
θ>θ̂

ρ(π)+(1−π)r2(θ, π)(1−ρ(π))F (dθ). Even in a hypothetical setting

where the judge “knows” θ, but must uncover it, he will choose the limited discovery (π < π̂(θ)),

that minimizes ρ(π)+(1−π)(1−ρ(π))r2(θ, π). There is some chance that remaining trial costs can

be avoided, which provides an incentive to reduce discovery relative to the search benchmark. Re-

duced discovery makes a trial more costly, which raises the probability a post-discovery settlement

offer is accepted, thereby avoiding the trial costs. However, greater discovery raises the critical

cutoff type, reducing the separation distance in the signaling game, which increases the probability

that a pre-trial settlement offer is accepted. Even in this hypothetical situation with fixed θ, the net
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effect is that it is optimal to have less discovery than in the two-step search benchmark.

Proposition 10. (Optimal discovery vs. optimal search) With linear information costs ρ(π) = π,

for any distribution over θ, it is always optimal to have less discovery than search: π∗ < y∗.

Proof: See the Appendix. 2.

More generally, regardless of the curvature of information acquisition costs, a single searcher

always wants to break information acquisition into steps (Lemma 5). In contrast, as Section 6

shows, with concave discovery costs, the optimal level of discovery can be 0 or 1. Thus,

Corollary 6. (Benefits of discovery vs. search) Expected information costs of a single agent searcher

are always lower for y ∈ (0, 1) than for y = 0. In contrast, if discovery costs ρ(π) are strictly

concave then for any level of positive discovery π ∈ (0, π̄), there exist uniformly continuous dis-

tributions of defendant types for which expected litigation costs are higher with discovery than

without.

Even though discovery provides benefits vis à vis the no discovery benchmark, Proposition

10 and Corollary 6 can be interpreted as being anti-discovery vis à vis the benchmark of a single

agent’s non-strategic search. The strategic and signaling considerations imply that earlier informa-

tion revelation should be suppressed relative to what is optimal for a single information acquirer.

8 Additional real world features

In this section, we describe how integrating additional real world features qualitatively affects

results. The detailed formal analysis is available online.16

Reduced trial costs due to successful discovery. We have supposed that the success or failure

of discovery does not affect the level of costs incurred at trial. This is consistent with a scenario
16http://www2.warwick.ac.uk/fac/soc/economics/staff/mdbernhardt/online_appendix.pdf
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in which the total information to be uncovered in the legal process—both the defendant’s private

information and the information that neither party knows—does not depend on the timing of when

each type of information is uncovered. However, it may be that successful discovery that uncovers

a defendant’s private information reduces the information costs that must be incurred in a trial.

To highlight the qualitative consequences, suppose that successful discovery eliminates all

trial costs. In our base model, there is never a trial following successful discovery, so one might

conjecture that if successful discovery eliminates trial costs, this just results in a transfer from the

defendant to a plaintiff via a higher settlement, and does not affect litigation costs. This reasoning

about the transfer is correct, but incomplete. The reduction in trial costs due to successful discovery

reduces the surplus a defendant can extract. This raises the cost of mimicking a better type’s pre-

discovery offer because such mimicking raises the chance that the offer is rejected, raising the

chance of successful discovery. This makes pre-discovery separation of types easier—the rejection

probability required to induce incentive compatible pre-discovery separation is reduced. Moreover,

because more defendant types make pre-discovery offers, it eases the separation of stronger types.

As a result, positive, but limited, discovery reduces expected total legal costs incurred with any

defendant type θ relative to when successful discovery does not affect trial costs.

This does not imply that defendants benefit when successful discovery reduces trial costs.

When successful discovery reduces trial costs, plaintiffs gain from a defendant’s reduced ability to

extract lower settlements via a threat to go to trial. Even though total surplus is raised when suc-

cessful discovery eliminates trial costs, defendants may be hurt. In particular, with linear discovery

costs, only the stronger of strong defendant types ever benefit from the improved separation that

discovery facilitates, and it can be that all defendant types would prefer no discovery to a discovery

that removes the threat of trial costs used to extract surplus from plaintiffs.

Indeed, our online appendix shows that because plaintiffs now gain from successful discovery,

a plaintiff prefers to have more discovery than is socially optimal—if a plaintiff could, she would
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request socially excessive levels of discovery. This means that a judge may serve an important role

in filtering a plaintiff’s discovery requests, and possibly denying some of them.

Fixed procedural trial costs. In our base model, trial costs only reflect information discovery. In

practice, trials have fixed procedural costs that are unrelated to the presentation of evidence. Our

online appendix shows that such costs serve only to raise the optimal extent of discovery: positive

fixed trial costs favor greater discovery because it encourages defendants to settle prior to trial.

Court incurs costs at trial. The court (and society at large) also incur costs with a trial that are not

internalized by the litigants. These include the opportunity costs of a jury’s time, and of the judge’s

and clerks’ time that can be allocated to other cases. The socially optimal level of discovery should

reflect these costs. Our online appendix shows that the optimal level of discovery is increased as

a result. The intuition is simple: discovery reduces the probability of a trial and the likelihood

that these court costs are incurred. Still, we caution that sometimes discovery itself can be costly

for the court, for example in the form of a Summary Jury Trial or Court-Annexed Arbitration that

we discuss in the introduction. Such forms of “discovery” are essentially abbreviated trials. If the

share of costs incurred by the court and the litigants is the same for a summary jury trial and a full

trial, then the optimal extent of discovery is the same as when the court incurs no costs.

Multiple rounds of discovery. Our base model features one round of discovery. In practice, dis-

covery itself is a process, and litigants have multiple chances within discovery to settle. Our online

appendix shows that the cost savings due to discovery are enhanced when the discovery process is

further divided into more rounds. Such division better facilitates separation via the timing of set-

tlement offers, reducing the inefficiencies associated with the higher rates with which settlement

offers must be rejected in order to induce incentive compatible revelation of a defendant’s type.

How dividing discovery into more rounds affects equilibrium outcomes is somewhat subtle:

with more rounds of discovery, more defendant types are prepared to wait until after the end of

all discovery to make their first offers (unless discovery succeeds). Intuitively, conditional on
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one round of discovery failing, the next round becomes more cost effective, revealing θ with a

higher conditional probability per unit cost of discovery, and this less costly signal makes sepa-

ration harder, reducing the number of defendant types that make pre-trial settlement offers (when

discovery fails). Nonetheless, expected total litigation costs are reduced when discovery is divided

into more rounds for all strong defendant types, whereas those of weak types who make offers

immediately are unchanged, as their incentives are unaffected by what stronger types later do.

The intuition for why multiple rounds of discovery reduce expected investigation costs with

stronger defendants, is similar to that for why one round of partial discovery is better than none.

Discovery costs are linear in π, whereas endogenous separation via settlement offers requires re-

jection probabilities to rise concavely with θ, i.e., faster than linearly in order to induce weaker

types not to mimic stronger types. The inefficiency in endogenous separation via higher rejec-

tion probabilities shrinks in the “distance” from the weakest type separating in a given round of

settlement offering, making division into more rounds of discovery optimal.

Allowing for pre-discovery settlement. One can interpret discovery more generally as a stage of

an investigation of a dispute, followed by an opportunity to settle, with the investigation continuing

absent a settlement, where there is uncertainty about who is at fault, and one side has private

information that the investigation may uncover. Our analysis indicates that the parties should have

a chance to settle both prior to the investigation, as well as at stages during the investigation.

For example, a tax audit is an investigation into a dispute between a tax payer and the IRS.

Unlike in our discovery setting, however, a “defendant” (the tax payer) cannot “settle” prior to an

audit. The moment that a tax payer learns of a dispute is when he or she receives notice of an audit.

The tax payer can try to settle after the audit, but absent a settlement, he or she goes to the tax court

with the IRS. One can place a tax audit in our setting, by assuming that a defendant cannot make

offers prior to discovery, but can make offers after some discovery occurs. Total litigation costs

in this setting exceed those in our benchmark model for any positive level of discovery for all
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defendant types. To see this, observe that types that would have settled post-discovery must now

separate from worse types than before because no type can signal via a pre-discovery offer. This

raises the probability of rejection for post-discovery settlement offers needed to induce truthful

revelation, raising litigation costs for these types. In addition, weaker types that would have settled

pre-discovery, if given the chance, now incur higher costs to settle post-discovery.

This logic suggests that the IRS should give a tax payer a chance to settle before starting an

audit. This insight applies to other disputes outside the court, such as those within an organization.

9 Plaintiff makes settlement offers

Our analysis has focused on the impact of discovery in settings where an informed defendant sig-

nals his type by choosing the timing and size of settlement offers to make to an uninformed plain-

tiff. The design of discovery also matters in screening settings, where an uninformed plaintiff tries

to separate defendant types by making take-it-or-leave-it settlement offers pre- and post-discovery.

We now characterize the optimal design of discovery in such screening settings.

To ease presentation, we assume that (a) discovery costs are linear, ρ(π) = π; and (b) a defen-

dant’s type is drawn from a uniform distribution on [θ, θ̄] with c < θ − θ. Our model builds on

Bebchuk (1984). For π ∈ (0, 1), a plaintiff makes screening offers both pre- and post-discovery:

Proposition 11. (Screening with discovery) Suppose ρ(π) = π and θ ∼ U [θ, θ̄]. A plaintiff’s pre-

discovery offer is x∗1 = 1 − θ − πc + cd − (1 − π)2c. Defendant types θ ∈ [θ, θ + πc] accept the

offer. Stronger types reject it and go on to discovery. If discovery succeeds, the parties settle post-

discovery at the full information settlement offer. If discovery fails, the plaintiff’s post-discovery

offer is x∗2 = 1− θ− πc− (1− π)cp. Defendant types θ ∈ [θ+ πc, θ+ c] accept the offer, whereas

stronger defendant types reject it and go to trial.

Proof: See the Appendix. 2
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The solution only relies on the uniform distribution of weaker types, θ ∈ [θ, θ + c] (assuming

that the first-order conditions continue to describe the solution, for which log-concavity of F suf-

fices). In the special case of no discovery, i.e., π = 0, the plaintiff’s settlement offer reduces to

x∗ = 1− θ− cp. With no discovery, all defendant types θ < θ∗ ≡ θ+ c accept the offer and settle;

and all θ > θ∗ reject the offer and go to trial. Total expected litigation costs in this case are θ−θ−c
θ−θ c.

Discovery has two effects on expected litigation costs relative to no discovery:

1. Discovery sometimes succeeds for strong types θ ∈ [θ + c, θ̄] that would go to trial absent

discovery, who comprise fraction θ̄−(θ+c)

θ̄−θ of defendants. Discovery succeeds with probability

π, and when it does, a plaintiff’s post-discovery settlement offer is accepted, saving trial costs

of (1− π)c. Hence, the expected savings are

θ̄ − (θ + c)

θ̄ − θ
π(1− π)c =

θ̄ − θ − c
θ̄ − θ

π(1− π)c.

2. Discovery causes some defendant types to strategically delay settlement until after discovery.

Intermediate types θ ∈ [θ + πc, θ + c] would settle immediately absent discovery, but with

discovery they reject the initial offer, incur discovery costs πc and then settle. The probability

of these types is (θ+c)−(θ+πc)

θ̄−θ = (1−π)c

θ̄−θ , so discovery raises costs for these types by

(1− π)c

θ̄ − θ
πc =

c

θ̄ − θ
π(1− π)c.

Subtracting yields the expected net gain or loss from discovery π vis à vis no discovery:

θ̄ − θ − c
θ̄ − θ

π(1− π)c− c

θ̄ − θ
π(1− π)c =

θ̄ − θ − 2c

θ̄ − θ
π(1− π)c.

Thus, the net gain or cost of discovery vis à vis no (or full) discovery is proportional to π(1− π)c.

When θ̄−θ−2c > 0, expected litigation costs are minimized by π = 1
2
, which maximizes π(1−π);

and when θ̄ − θ − 2c < 0, no discovery is optimal, as it minimizes π(1− π). To summarize:
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Proposition 12. (Value of discovery with screening) When ρ(π) = π and θ ∼ U [θ, θ̄], discovery

reduces total expected litigation costs if and only if θ̄− θ− 2c > 0. In that case, the optimal extent

of discovery is π∗ = 1
2
.

The condition θ̄ − θ − 2c > 0 is equivalent to (1− θ)− θ+θ
2
> c. This says that the difference

between the liability of the worst type and the average type exceeds the cost of information acquisi-

tion about types. The happens when the cost is low enough relative to the uncertainty about types,

which is natural for cases where the defendant has significant private information. This condition

may fail for cases where most private information was resolved before the onset of the settlement

negotiation, for example in previous cases involving the same defendant.

Corollary 7. When ρ(π) = π and θ ∼ U [θ, θ̄], stronger defendant types are less harmed by

discovery: strong defendants θ > θ + c are unaffected, types θ ∈ [θ + πc, θ + c] expect to pay an

additional π(θ+ c− θ) relative to no discovery and weak defendant types θ ∈ [θ, θ+ πc] expect to

pay an additional (1− π)πc. Plaintiffs prefer greater discovery than is socially efficient.

Proof: See the Appendix. 2

Very strong defendant types are indifferent to the extent of discovery: they will go to trial

without discovery and will either go to trial or settle under full information with discovery with the

plaintiff extracting all surplus. Again, if successful discovery reduces trial costs, they would gain

at the plaintiff’s expense.

For intermediate defendant types, discovery means that they face less harsh settlement demands

when discovery fails because the remaining trial costs are lower; but they also face harsher settle-

ment demands when discovery succeeds because their private information is eliminated. Taking

into account the extra cost of discovery, in expectation, their payoffs fall. Weaker defendants are

also hurt by discovery: the prospect of losing their private information when discovery succeeds

makes them willing to accept a lower settlement offer. Thus, a defendant always loses from discov-
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ery. It follows that when discovery reduces total litigation costs, the plaintiff gains by more than

the reduction in litigation costs. In fact, the plaintiff always strictly prefers more discovery than is

socially optimal. This implies that the court should grant less discovery than a plaintiff requests.

To show how changes in the prior distribution of defendant types affect the merits of discovery,

we consider a simple class of distributions: with small probability q, the defendant is of type θ and

with probability 1 − q, the type ∼ U [θ, θ̄]. Proposition 11 extends due to the uniform bottom tail

of the distribution. The total benefit of discovery for strong defendants θ ∈ [θ + c, θ] becomes

[
(1− q) θ̄ − θ − c

θ̄ − θ
+ q

]
π(1− π)c.

The total loss from discovery for intermediate defendants θ ∈ [θ + πc, θ + c] is

(1− q) c

θ̄ − θ
π(1− π)c.

Therefore, a stronger pool of defendants, i.e., a higher q, raises the social value of discovery.

If the plaintiff is not allowed to make a settlement offer prior to the discovery at level π > 0,

then a segment of types, [θ, θ+πc], would have to delay their settlement after the discovery, causing

additional total litigation costs of πc with probability πc
θ̄−θ . This shows that the parties should be

allowed to settlement prior to the discovery.

We have assumed that the sole criterion for optimal discovery is to minimize expected litigation

costs. In fact, accuracy also matters—the court wants an award to reflect a defendant’s true liability.

With signaling, a defendant’s settlement offer always reflects its true liability damage. However,

with screening, offers only perfectly reflect a defendant’s private information if discovery succeeds;

and settlements before the discovery or after a failed discovery lump defendant types together.

Comparing screening and signaling. The settings share key features. In both settings, limited

discovery is always optimal, and when realistic features are introduced, the uninformed plaintiff
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wants more discovery than is socially optimal. The consequences for settlement are also similar:

weak defendants settle prior to discovery, stronger types settle after discovery, and the strongest

ones go to trial, unless discovery succeeds, in which case they settle. In both settings, discovery

reduces the probabilty of trial and raises settlement rates. Finally, the distributional effects on

defendant payoffs are similar: stronger defendants gain more from discovery, or are hurt less.

There are also important differences. First, in screening settings, with limited uncertainty about

defendant types relative to the potential costs of litigation, discovery is not socially optimal even

when discovery costs rise one-for-one with the probability of uncovering private information. This

reflects that in screening settings, defendant types that settle after incurring discovery costs are not

more likely to settle relative to no discovery, so the social benefits of discovery come solely from

strong defendant types that would go to trial absent discovery, but settle when discovery succeeds.

In contrast, in signaling settings, defendant types that settle after discovery do not need to separate

away from weaker types that settled pre-discovery, so the social benefits of discovery come from

more than just breaking the information acquisition into steps. Second, in both settings, properly-

designed discovery helps the party that makes offers when successful discovery does not reduce

trial costs; and it can help the party receiving offers when successful discovery reduces trial costs.

However, who makes offers differs.17 Third, in a signaling setting, the settlement offers of all

types reflect their true private information either via an offer that reveals the private information or

through discovery or trial that directly reveals the information; but in a screening setting, there is a

“loss of accuracy” because the uninformed’s offers lump (similar) types together. However, even

then, there is improved accuracy when discovery succeeds; and when it fails, on average, offers

are better targetted at a defendant’s true type because of the increased separation.

Collective policy implications include that discovery should be sharply limited, a judge should

limit requests by uninformed parties for discovery (because they may have incentives to seek ex-

17That discovery can hurt a defendant in screening settings is also seen in Sobel (1989) and Schwartz and Wickelgren
(2009).
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cessive discovery), discovery should be directed toward low marginal cost sources of information

and parties should be allowed to settle prior to discovery.

10 Conclusion

In this article, we characterize how the process of publicly-gathering information via discovery that

may reveal a defendant’s private information affects strategic interactions in litigation between a

plaintiff and a defendant. We endogenize the timing and size of settlement offers made by a

privately-informed defendant throughout the litigation process, and the equilibrium probabilities

with which a plaintiff accepts these offers.

We show how the discovery process provides defendants an additional channel with which to

signal—the timing of their initial settlement offers. With limited discovery, weaker defendants

make offers prior to discovery, but stronger defendants wait to make offers until after discovery.

Limited discovery facilitates separation of defendant types, reducing the inefficiently high rates

with which plaintiffs must reject settlement offers in order to induce truthful revelation of a de-

fendant’s private information. As a result, the privately-informed defendants gain from properly-

designed limited discovery, with stronger defendants gaining more.

We derive how the optimal extent of discovery hinges on the distribution of defendant types—

more discovery is optimal when the privately-informed defendants tend to have stronger cases and

when discovery can be directed to specific fruitful areas of search.

In practice, considerations other than the ones we analyze may also affect the optimal extent of

discovery. For example, discovery may create new costs, rather than simply moving information

acquisition costs earlier from the trial. For example, shareholder litigation against a merger or an

acquisition may delay the merger or acquisition. More discovery will increase these delay costs

for the defendant. This would call for less discovery.
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Our analysis starts after a defendant has disclosed all verifiable good news. A defendant wants

to reveal any verifiable good news at the outset. Thus, one can view the distribution over the

defendant’s type in our model as being given by the posterior distribution after the defendant has

chosen the verifiable information to disclose at the outset. However, some private information

remains because some information (e.g., the absence of bad news) cannot be credibly revealed

absent a thorough discovery.

Our analysis implicitly assumes that the court commits to the legal process and its design of

discovery. In particular, the court does not impose settlements based on any information revealed

by the settlement offers themselves: settlement offers must sometimes be rejected and the threats

of discovery and trial must be real to preserve a defendant’s incentive to reveal information in

settlement offers. In practice, the court often does not observe settlement offers. More philosoph-

ically, the court has dual roles of (1) structuring incentives for litigants to settle; and, (2) should

the parties fail to settle, to deliver “justice” by uncovering the relevant information, both private

information, and information that neither party initially has. This latter consideration precludes

using the information in settlement terms to shortcut the legal process.

Our model of discovery can be interpreted more broadly. We decompose the uncovering of a

defendant’s information into stages of costly information acquisition. The stages are distinguished

by the abilities of litigants to make and accept settlement offers prior to each stage, where litigants

incur costs if they fail to settle prior to a stage. Our analysis describes other settings with this

structure, including summary jury trials and court-annexed arbitration. One can even view a trial

itself as a process similar to the discovery-and-then-trial process that we model in that private

information becomes public as a trial takes its course, and there are multiple opportunities to settle

during a trial. However, there is a key distinction: in a trial, a judge has less ability to control which

sources of information get revealed first. Importantly, our analysis shows that a judge’s ability to

determine the sequencing of different information sources is crucial to its welfare properties.
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11 Appendix

Proof of Lemma 1: Strict convexity implies (1 − π)ρ(0) + πρ(1) > ρ(π) for any π ∈ (0, 1).

That is, π > ρ(π). Strict convexity and differentiability of ρ imply that ρ′′(π) > 0 for π ∈ (0, 1),

so, πρ′′(π) + ρ′(π) > ρ′(π), i.e., the derivative of ρ′(π)π exceeds that of ρ(π). Further, because

ρ′(0)0 = ρ(0), we have ρ′(π)π > ρ(π). Therefore,
(
ρ(π)
π

)′
= ρ′(π)π−ρ(π)

π2 > 0 for π ∈ (0, 1). The

case for strictly concave ρ(π) follows with the inequalities reversed. 2

Proof of Lemma 2: Let (exp) denote exp
(
− θ−θ

ρ(π)
π
c

)
. The derivative of r1 with respect to π is:

∂

∂π
r1(θ, π) = − 1

π2
(1− (exp))− 1

π
(exp)

θ − θ
ρ
π
c

( ρ
π
)′

ρ
π

.

Case 1. strictly convex or linear costs. Then ( ρ
π
)′ ≥ 0 directly implies ∂

∂π
r1(θ, π) < 0. We are

done.

Case 2. strictly concave costs. Then ( ρ
π
)′ < 0. First, we claim−(1−(exp))−(exp)

(
− θ−θ

ρ(π)
π
c

)
> 0

for any θ > θ. To see that, define within this proof f(x) ≡ −(1 − exp(x)) − exp(x)x. Then

f ′(x) = − exp(x)x < 0, which means f
(
− θ−θ

ρ(π)
π
c

)
> f(0) = 0. Second, we have,

− 1

π2
− 1

π

( ρ
π
)′

ρ
π

= − 1

π2

ρ′

ρ
π < 0.

That is, 1
π2 > − 1

π

( ρ
π

)′
ρ
π

. Then, for any θ > θ, because 1− (exp) > 0, we have,

∂

∂π
r1(θ, π) =

1

π2
(−(1− (exp)))−

(
− 1

π

( ρ
π
)′

ρ
π

)
(exp)

(
−θ − θρ

π
c

)
< − 1

π

( ρ
π
)′

ρ
π

[
−(1− (exp))− (exp)

(
−θ − θρ

π
c

)]
< 0. 2

Proof of Proposition 1. Existence: To complete the description of the equilibrium we specify
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off-equilibrium beliefs:

b∗1(x1) = 1− x1 − cp, if x1 ∈ [x1, x̄1]; b∗1(N) = F (θ|θ > θ̂),

b∗2(N, ∅, x2) = 1− x2 − (1− ρ)cp, if x2 ∈ [x2, x̄2]; b∗2(x1, ∅, x2) = b∗1(x1), if x1 6= N.

(i) Plaintiff’s perspective. For any x1 ∈ [x1, x̄1], given the belief, the plaintiff will be offered

x1−ρ(π)cp at t = 2. The plaintiff is indifferent between accepting and rejecting the offer, so p∗1(x1)

is optimal for the plaintiff. For x1 > x̄1, b∗1(x1) = θ. Because the plaintiff is indifferent between

accepting and rejecting if the belief is θ and the offer is x̄1, she must strictly prefer accepting an

offer x1 > x̄1, so p∗1(x1) = 0 is optimal. For x1 < x1, b∗1(x1) = θ̂. Because the plaintiff is

indifferent between accepting and rejecting if the belief is θ̂ and the offer is x1, she must strictly

prefer rejecting offers x1 < x1, so p∗1(x1) = 1 is optimal. This shows the optimality of p∗1.

Similarly, p∗2 is optimal.

(ii) Defendant’s perspective. First consider θ ≤ θ̂. Offer x1 > x̄1 is dominated by offer x̄1,

because both are accepted with probability one. For x1 ∈ [x1, x̄1], p∗1(x1) is twice differentiable.

Its construction gives the first-order condition for maximizing type θ’s payoff among offers x1 ∈
[x1, x̄1]. The second-order condition is

p′′1(x1)[π(−(1− θ) + cp) + πx1 − ρ(cp + cd)] + p′1(x1)2π.

Because

p′′1(x1) = − 1

π
exp
(x1 − (1− θ − cp)

ρ
π
c

) 1

c2
=
p′1(x1)

c
,

the second-order derivative evaluated at x∗1(θ) = (1−θ)−cp is p′1(x1)[2π−ρ(π)] < 0 as ρ(π) ≤ π

and p′1(x1) < 0. That is, x∗1(θ) is a local strict maximizer. Because it is the only one satisfying the

first-order condition over [x1, x̄1] for type θ, it must be the maximizer over [x1, x̄1]. Offers x1 < x1

are always rejected and thus are dominated by offering x1. If type θ does not make an offer, then

at t = 2, offering x2 > x̄2 is dominated by offering x̄2. The probability p∗2 is constructed so that

for type θ, the payoff rises in x2. Thus, offering x̄2 is optimal should θ < θ̂ not make an offer at

t = 1. This gives a payoff that is the same as making offer x1 at t = 1. Thus, not making an offer

at t = 1 is suboptimal for θ < θ̂.

Now consider θ > θ̂. Given that the defendant does not make an offer at t = 1, x∗2 is optimal
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for the same reason that x∗1 is optimal for θ ≤ θ̂. Now consider the incentives of θ > θ̂ at t = 1.

The construction of p∗1 implies that if θ > θ̂ makes an offer at t = 1, then the best offer is x1, which

is always rejected and if discovery fails, he will receive the second round equilibrium payoff of

type θ̂. If he does not make an offer at t = 1, he always receives the equilibrium payoff of type

θ > θ̂. Thus, not making an offer at t = 1 is optimal for θ > θ̂.

(iii) It is clear that the beliefs are consistent with the strategies.

Uniqueness: Suppose π < 1. First, whenever discovery reveals θ, all types remaining at t = 2 will

make offers that leave the plaintiff indifferent and the offers will be accepted with probability one.

Second, using the “universally-divine” equilibrium refinement, it cannot be that in equilibrium

a positive measure of types make the same offer at t = 1 or t = 2 and that offer is accepted with

positive probability. This is because the highest θ among those types will deviate to a lower (more

defendant-favorable) offer. Semi-pooling is similarly ruled out (see Reinganum and Wilde (1986)

for details). Therefore, if a positive measure of types make offers at t = 1 and their offers are

accepted with positive probability, then these offers must be fully separating among these types.

Case 1. A positive measure of types makes offers that are accepted with positive probability at

t = 1, but not all types.

Consider the subgame following failed discovery for θs whose pre-discovery offers do not re-

veal their types. Then by Reingannum and Wilde (1986), these types must separate in the subgame.

Let Xt denote the set of offers made at t = 1, 2, let xt ∈ Xt be an offer, and let pt(xt) be the

associated rejection probability. Let Θx1 denote the set of types θx1 whose offers are accepted with

positive probability at t = 1. Let Θx2 denote the set of types θx2 who wait until t = 2 to make

offers that are accepted with positive probability.

Step 1. Let ẋ1 = inf{x1 : x1 ∈ X1}, ẍ1 = sup{x1 : x1 ∈ X1}, and ẋ2 = inf{x2 : x2 ∈ X2},
ẍ2 = sup{x2 : x2 ∈ X2}. Then p1(x1) = 0 for x1 < ẋ1 and p2(x2) = 0 for x2 < ẋ2. pt(·) is an

increasing function over Xt (see Reinganum and Wilde 1986 for details).

Step 2. There do not exist θx1 , θx2 such that θx2 < θx1 . Suppose there is. Then type θx2 has a strict

incentive to mimic type θx1 because that offer improves beliefs, which will last to t = 2 as well

and the t = 1 offer is accepted with positive probability. This is a contradiction. Therefore, such

θx1 , θx2 do not exist: X1, X2 are connected sets and ẍ1 ≤ ẋ2.
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Step 3. pt(xt) is differentiable on the interior of Xt (Reinganum and Wilde 1986).

Then by the optimality of the offer for each type, p1(x1) and p2(x2) must satisfy the differential

equations with the boundary conditions detailed in the main text.

Case 2. No positive measure of types make acceptable offers at t = 1. Then the t = 2 analysis

mirrors that in Reinganum and Wilde (1986).

Case 3. All types make offers that are accepted with positive probability at t = 1. Then the t = 1

analysis mirrors that in Reinganum and Wilde (1986).

Proof of Lemma 3: With no discovery, all types are strong, so total litigation costs are r2(θ, 0)c.

With full discovery, all types are weak, so total litigation costs are r1(θ, 1)c:

r1(θ, 1) = 1− exp

(
−θ − θ

c

)
= 1− exp

(
−θ − θ̂(0)

c

)
= r2(θ, 0). 2

Proof of Lemma 4: Let (exp) ≡ exp
(
− θ−θ̂

(1−ρ)c

)
. Let expθ denote the derivative of (exp) with

respect to θ. When ρ(π) = π, incorporating θ̂′(π) = c
1−π ,

Cs
π = 1− 2(1− π)(1− (exp))− (exp)(−θ − θ̂

c
+ 1).

Cs
π,θ = 2(1− π) expθ− expθ(−

θ − θ̂
c

+ 1) +
(exp)

c

We have expθ = (exp)(− 1
(1−ρ)c

) < 0. That is, (exp) = −(1− π)c(exp). Therefore,

Cs
π,θ = 2(1− π) expθ− expθ(−

θ − θ̂
c

+ 1)− (1− π)(expθ) = expθ[
θ − θ̂
c
− π]

Because expθ < 0, showing Cs
π,θ(θ, π

∗(θ)) < 0 is equivalent to showing π∗(θ) < θ−θ̂(π∗(θ))
c

.

Because π∗(θ) is interior and it minimizes Cs, by the first order condition we have

(2π∗(θ)− 1)(1− (exp)) = −θ − θ̂(π
∗(θ))

c
(exp)⇒ 1− 2π∗(θ) =

θ − θ̂(π∗(θ))
c

(exp)

1− (exp)
.
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We prove the result by contradiction. Suppose not. That is, suppose that π∗(θ) ≥ θ−θ̂(π∗(θ))
c

.

Because the right-hand-side is decreasing in θ−θ̂(π∗(θ))
c

, we have

1− 2π∗(θ) ≥ π∗(θ)
exp(− π∗(θ)

1−π∗(θ))

1− exp(− π∗(θ)
1−π∗(θ))

Within this proof, define f(π) ≡ (1− 2π)−π exp(− π
1−π )

1−exp(− π
1−π )

. Function f(π) is strictly decreasing for

π ∈ (0, 1). Therefore, f(π) < limπ→0 f(π) = 0. This forms a contradiction. 2

Proof of Proposition 6: Suppose ρ(π) = π. Because minimizing litigation costs maximizes

discovery benefits, Proposition 2 implies that π∗j solves:

∂

∂π

∫ θ̄

θ̂(π)

∆s(θ, π)dFj(θ) = 0.

Because ∆s(θ̂(π), π) = 0, π∗j solves:

∫ θ̄

θ̂(π)

∆s
π(θ, π)dFj(θ) = 0⇔

∫ θ̄

θ̂(π)

∆s
π(θ, π)

1− Fj(θ̂(π))
dFj(θ) = 0.

From Lemma 4, ∆s
π(θ, π) is increasing in θ. Therefore, because F2 �CFOSD F1, for any given θ̂,

F2 places relatively more probability mass on higher values of θ. The result follows. 2

Proof of Proposition 7: (1) Claim: Cw(θ, π) < Cw(θ, 1). Let ζ ≡ ρ(π)
π

. Define h(ζ) ≡ ζ
(
1 −

exp
(
− θ−θ

ζc

))
c = Cw(θ, π) for ζ < 1. Note that as ρ(1) = 1, Cw(θ, π) < Cw(θ, 1) is equivalent

to h(ζ) < h(1). With convex ρ, because ζ is strictly increasing in π for strictly convex ρ(π) by

Lemma 1, to prove Cw(θ, π) < Cw(θ, 1) (h(ζ) < h(1)) for convex ρ(π), it suffices to show that

h(ζ) is strictly increasing in ζ . We have, h′(ζ) = c(1 − exp(−δ)(1 + δ)) ≡ l(δ), where δ = θ−θ
ζc

.

Note that l(0) = 0, and l(δ) increases in δ. Because δ > 0 for θ > θ, l(δ) > 0. That is, h′(ζ) > 0.

(2) Claim: Cs(θ, π) < Cs(θ, 0) for π ∈ (0, π̂(θ)). If ρ(π) is strictly convex in the extent of

discovery, the reduction in investigation costs associated with discovery is reinforced. To see this,
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observe that because ρ(π)
π
< 1, the convexity of exp(·) implies that for π ∈ (0, π̄),

ρ(π)

π
exp
(
− θ̂(π)− θ

ρ(π)
π
c

)
+ (1− ρ(π)

π
) exp(0) > exp

(
− θ̂(π)− θ

c
+ 0
)

= exp
(
− θ̂(π)− θ

c

)
. (6)

Substituting the implicit solution for θ̂,

1− π = exp
(
− θ̂(π)− θ

ρ(π)
π
c

)
,

into the left-hand side of inequality (6) reveals that it simplifies to 1− ρ(π). Therefore,

1− ρ(π) > exp
(
− θ̂(π)− θ

c

)
.

Therefore,

1

c
Cs(θ, 0) > ρ(π) + (1− ρ(π))R(θ − θ̂)

1

c
Cs(θ, π) = ρ(π) + (1− ρ(π))[πR(0) + (1− π)R

(θ − θ̂(π)

1− ρ(π)

)
].

πR(0) + (1− π)R
(θ − θ̂(π)

1− ρ(π)

)
< ρ(π)R(0) + (1− ρ(π))R

(θ − θ̂(π)

1− ρ(π)

)
< R

(
ρ(π)0 + (1− ρ(π))

θ − θ̂(π)

1− ρ(π)

)
= R(θ − θ̂).

The first inequality follows from 1−ρ(π) > 1−π, and the second follows from concavity of R(·).

Therefore, Cs(θ, π) < Cs(θ, 0).
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(3) π∗(θ) < π̂(θ). First, Cw strictly increases in π. Second, we show Cs
π(θ, π̂(θ)) > 0:

Cs
π(θ, π) =

d

dπ
[ρ+ (1− π)(1− ρ)]− d

dπ
[(1− π)(1− ρ)] exp

(
− θ − θ̂

(1− ρ)c

)

+ (1− π)(1− ρ) exp

(
− θ − θ̂

(1− ρ)c

)[
θ − θ̂

(1− ρ)2c
ρ′ − θ̂′

(1− ρ)c

]
.

When π = π̂(θ), we have θ̂(π̂(θ)) = θ. This implies that when π = π̂(θ), we have exp
(
− θ−θ̂

(1−ρ)c

)
=

1. Therefore, the left derivative evaluated at π̂(θ) is:

Cs
π(θ, π̂(θ)) = ρ′(π̂)− ρ(π̂)

π̂
> 0.

(4) Claim: the reduction in litigation costs rises in θ for θ < θ̂. Strict convexity implies ρ(π)/π < 1.

∆w(θ, π) = r1(θ, 1)c− r1(θ, π)ρ(π)c

= (1− exp
(
−θ − θ

c

)
)c− ρ(π)

π
(1− exp

(
−θ − θ

ρ(π)
π
c

)
)c.⇒

∆w
θ = exp

(
−θ − θ

c

)
− exp

(
−θ − θ

ρ(π)
π
c

)
> 0. 2

The following lemma is used in the proof of Proposition 8.

Lemma 6. ∆s
θ > 0 if costs are convex. If costs are concave and ∆s(

ˆ̂
θ, π) > 0 for some ˆ̂

θ, then

∆s(θ, π) > ∆s(
ˆ̂
θ, π) ∀θ > ˆ̂

θ: if any type gains from discovery, then stronger types gain even more.

Proof:

1

c
∆s =

(
1− exp

(
−θ − θ

c

))
− ρ(π)− (1− ρ(π))(1− π)

(
1− exp

(
− θ − θ̂

(1− ρ(π))c

))

∆s
θ = exp

(
−θ − θ

c

)
− (1− π) exp

(
− θ − θ̂

(1− ρ(π))c

)
c∆s

θ,θ =
1− π

1− ρ(π)
exp
(
− θ − θ̂

(1− ρ(π))c

)
− exp

(
−θ − θ

c

)
.
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Let ˜̃θ solve ∆s
θ(

˜̃θ, π) = 0. Then,

c∆θ,θ(
˜̃θ, π) = (1− π)

(
1

1− ρ(π)
− 1

)
exp
(
− θ − θ̂

(1− ρ(π))c

)
> 0.

Then ˜̃θ is at most unique among θ > θ̂. If ˜̃θ exists, then let ˆ̂
θ ≡ max{ ˜̃θ, θ̂}. Then for all θ > ˆ̂

θ,

∆θ(θ, π) > 0.

Note that for strictly convex costs of discovery, for all θ > θ̂,

∆s
θ(θ̂, π) = exp

(
−θ − θ

c

)
−(1−π) exp

(
− θ − θ̂

(1− ρ(π))c

)
= exp

(
−θ − θ

c

)
−exp

(
−θ − θ

ρ(π)
π
c

)
> 0.

Proof of Proposition 8: (1) Claim: Cw(θ, π) > Cw(θ, 1). Let ζ ≡ ρ(π)
π

. Define h(ζ) ≡ ζ
(
1 −

exp
(
− θ−θ

ζc

))
c = Cw(θ, π) for ζ < 1. Note that because ρ(1) = 1, Cw(θ, π) < Cw(θ, 1) is

equivalent to h(ζ) < h(1). Because ζ is strictly decreasing in π for strictly concave ρ(π) by

Lemma 1, to prove h(ζ) > h(1), it suffices to show that h′(ζ) > 0. This was done in step 1 of the

proof of Proposition 7.

(2) Cw is strictly decreasing over π > π̂(θ). Also,

Cs
π(θ, π̂(θ)) = ρ′(π̂)− ρ(π̂)

π̂
< 0

Therefore, there are two cases regarding the minimizer π∗(θ) : either π∗(θ) is either 0 or 1 (because

Cs(θ, 0) = Cw(θ, 1)), or π∗(θ) ∈ (0, π̂(θ)). In the former case, all types are hurt by discovery.

That is ∆(θ, π) < 0 for any π ∈ (0, 1). Set θ̃(π) = θ in this case. In the latter case, ∆(θ, π) > 0

for some θ > θ̂(π) and ∆(θ, π) < 0 for θ < θ̂(π). By Lemma 6, there exists a cutoff θ̃(π) > θ̂(π)

such that ∆(θ̃(π), π) = 0. The rest follows from Lemma 6.

(3) If π ∈ (0, π̄), then θ̂(π) ∈ (θ, θ̄). With concave costs, weak types have expected litigation

costs that exceed those when π ∈ {0, 1} by an amount that we can bound from below by some

γ > 0, and the strongest type θ = θ̄ benefits (if at all) by less than 1. Thus, any density g(θ) that

places cumulative probability of at least 1
1+γ

on θ ∈ [θ, θ̂(π)] has higher costs with discovery π

than without. 2
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Proof of Proposition 9: For π ∈ (0, 1) and θ > θ,

∂

∂z
Cw(θ, π)/c = πz−1(− ln π)[exp

(
− θ − θ
πz−1c

)
(
θ − θ
πz−1c

+ 1)− 1] < 0.

Let δ ≡ θ−θ
πz−1c

. The inequality is because f(δ) ≡ exp(−δ)(δ+ 1)− 1 decreases in δ and f(0) = 0.

When ρ(π) = πz, we have,

1

c
Cs(θ, π) = πz + (1− π)(1− πz) exp

(
− θ − θ̂

(1− πz)c

)

Let λ = θ−θ̂
(1−πz)c

, incorporating d
dz
θ̂ = (− lnπ)πz ln(1−π)

π
,

1

c
Cs
z(θ, π) = (− lnπ)πz[−1 + (1− π) exp(−λ)(1 + λ+

ln(1− π)

π
)]

Note that exp(−λ)(1 + λ+ a) is strictly decreasing in λ for any a ≥ 0. Therefore,

−1 + (1− π) exp(−λ)(1 + λ+
ln(1− π)

π
) < −1 + (1− π) exp(−0)(1 + 0 +

ln(1− π)

π
) < 0.

This implies Cs
z(θ, π) < 0. 2

Proof of Lemma 5: First note that because ρ(y) ∈ [0, 1] and y ∈ [0, 1], ρ(y)+(1−y)(1−ρ(y)) ≤ 1

for any y ∈ [0, 1]. There are only two solutions to ρ(y) + (1− y)(1− ρ(y)) = 1: y = 0 or y = 1.

This implies that for all y ∈ (0, 1), ρ(y) + (1 − y)(1 − ρ(y)) < 1. That is, ∆(y) > 0. When

ρ(y) = y, K ′(y) = 2y − 1 and K ′′(y) = 2 > 0, so the minimizer of K(y) solves K ′(y) = 0. 2

Proof of Proposition 10: Differentiating Cs with respect to π yields:

Cs
π(θ, π) =

d

dπ
[ρ+ (1− π)(1− ρ)]− d

dπ
[(1− π)(1− ρ)] exp

(
− θ − θ̂

(1− ρ)c

)

+ (1− π)(1− ρ) exp

(
− θ − θ̂

(1− ρ)c

)[
θ − θ̂

(1− ρ)2c
ρ′ − θ̂′

(1− ρ)c

]
.

Evaluate this derivative at the benchmark level π = y∗. Because d
dπ

[ρ+ (1− π)(1− ρ)]|π=y∗ = 0,
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we have d
dπ

[(1− π)(1− ρ)]|π=y∗ = −ρ′(y∗). Coupled with θ̂′ = ρc
π(1−π)

, we have:

Cs
π(θ, y∗) = [ρ′(y∗) +

1− y∗

1− ρ(y∗)

θ − θ̂(y∗)
c

ρ′(y∗)− ρ(y∗)

y∗
] exp

(
− θ − θ̂(y∗)

(1− ρ(y∗))c

)
.

With linear discovery, ρ(π) = π, we have

Cs
π(θ, y∗) =

θ − θ̂(y∗)
c

exp

(
− θ − θ̂(y

∗)

(1− y∗))c

)
> 0.

By definition of y∗, if π > y∗, then ρ′ + d
dπ

[(1− π)(1− ρ)] > 0. Let (exp) ≡ exp
(
− θ−θ̂

(1−ρ)c

)
≤ 1.

Cs
π(θ, π) = [ρ′ − ρ

π
](exp) + [ρ′ +

d

dπ
[(1− π)(1− ρ)]](1− (exp)) +

1− π
1− ρ

θ − θ̂
c

ρ′(exp).

With linear discovery, ρ′− ρ
π

= 0, so Cs
π(θ, π) > 0. This implies that for any π > y∗, the litigation

cost is increasing. Therefore, the litigation cost must be minimized at π∗(θ) < y∗. Because it holds

for any θ, the optimal given any distribution of θ must have the same property. 2

Proof of Proposition 11: Given discovery π, denote the pre-discovery offer by x1 and, when

discovery fails, denote the post-discovery offer by x2. Let θ1 denote the cutoff type below which

the defendant accepts x1, and θ2 denote the cutoff above which the defandant rejects x2. It is

equivalent to think of the plaintiff choosing cutoffs θ1 and θ2, with x1 and x2 uniquely determined

by θ1 and θ2.

Post-discovery asymmetric information. Because θ2 is indifferent between accepting the offer x2

and going to trial with the additional cost of (1 − π)cd, x2 = 1 − θ2 + (1 − π)cd. Let Fθ1 denote

the truncated distribution over [θ1, θ]. Given θ1, the plaintiff chooses θ2 to maximize:

x2Fθ1(θ2)− (1− Fθ1(θ2))(1− π)cp +

∫ θ

θ2

(1− θ)dFθ1(θ).

Solving the associated first-order condition,

Fθ1(θ2) = fθ1(θ2)(1− π)c⇒ F (θ2)− F (θ1)

f(θ2)
= (1− π)c.
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When the bottom tail of f is uniform on [θ, θ + c], this simplifies to θ2 = θ1 + (1− π)c.

Post-discovery full information. Suppose that discovery succeeds in revealing the defendant’s type.

Then, the plaintiff’s offer of 1− θ + (1− π)cd extracts all surplus from the defendant.

Pre-discovery. If cutoff type θ1 accepts the offer, her payoff is −x1. If θ1 rejects the offer, her

payoff is −πcd − π(1− θ + (1− π)cd)− (1− π)x2. This expression reflects that if x1 is rejected,

the defendant must pay the discovery cost; if discovery then succeeds the defendant pays the

full information offer; and if discovery fails the defendant pays the post-discovery offer under

asymmetric information. This implies x1 = π(1− θ1) + (1− π)(1− θ2) + cd.18

The plaintiff’s optimal pre-discovery cutoff, θ1, maximizes:

− cp + π[F (θ1)(1− θ1) + F (θ1)c+

∫ θ

θ1

(1− θ)dF (θ) + (1− F (θ1))(1− π)c]+

(1− π)[F (θ2)(1− θ2) + F (θ1)c+

∫ θ

θ2

(1− θ)dF (θ) + (F (θ2)− F (θ1))(1− π)c]

The term (1−F (θ1))(1− π)c at the end of the first line reflects that when discovery succeeds, the

plaintiff extracts the remaining trial costs from defendant types θ ∈ [θ1, θ̄] and saves on his own

remaining trial costs, gaining a total of (1− π)c. The final term (F (θ2)− F (θ1))(1− π)c reflects

that even when discovery fails, intermediate types θ ∈ [θ1, θ2] still settle allowing the plaintiff to

again extract the remaining trial costs of the defendant and save his own remaining trial costs,

gaining a total of (1− π)c. The objective can be rewritten as:

− cp + π[F (θ1)(1− θ1 + c) +

∫ θ

θ1

(1− θ)dF (θ)]+

(1− π)[F (θ2)(1− θ2 + c) +

∫ θ

θ2

(1− θ)dF (θ)] + π(1− π)(1− F (θ2))c.

Note that θ2 is implicitly a function of θ1. Plugging in F (θ2) = F (θ1) + (1 − π)f(θ2)c, the

18If successful discovery eliminates the remaining trial cost, then x1 would be lower by π(1 − π)cd, reflecting
that there is less trial costs to be extracted from the defendant. As a result, the plaintiff’s payoff will be reduced by
π(1 − π)(1 − F (θ1))cd. This would give the plaintiff an incentive to increase the cutoff θ1 to reduce the chance that
it cannot extract the remaining trial costs. When cp is relatively small, the defendant may gain from discovery.
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derivative with respect to θ1 is:

π(−F (θ1) + f(θ1)c)− (1− π)F (θ1)θ′2(θ1) = 0

When the bottom tail [θ, θ+ c] is uniformly distributed, θ′2(θ1) = 1, so the first order condition

becomes F (θ1) = f(θ1)πc. Therefore, θ∗1 = θ + πc and θ∗2 = θ + c. This implies x∗1 = 1 − θ −
πc+ cd − (1− π)2c and x∗2 = 1− θ − πc− (1− π)cp.

Proof of Corollary 7: First, we consider the defendant’s payoff.

Strong defendant types θ > θ + c reject pre-discovery offers, incurring discovery cost πcd. If

discovery succeeds they pay the full information settlement offer 1− θ + (1− π)cd and if it fails,

they incur trial cost (1−π)cd and pay out 1−θ at trial. In both cases, the total payment is cd+1−θ,

regardless of π. Therefore, discovery does not affect their payoffs.

Defendants types θ ∈ [θ + πc, θ + c] also incur discovery cost πcd. If discovery succeeds, they

settle at 1−θ+(1−π)cd. If discovery fails, they pay the post-discovery offer of 1−(θ+c)+(1−π)cd.

Thus, they expect to pay π(1− θ+ cd) + (1−π)(1− (θ+ c) + cd) = 1−πθ− (1−π)(θ+ c) + cd.

Without discovery, they settle, paying (1− (θ + c) + cd). Thus, a type θ defendant expects to pay

an additional π(θ + c− θ) relative to when there is no discovery.

Lastly, the pre-discovery offer to defendants θ < θ+πc is 1−θ−πc+ cd− (1−π)2c. Without

discovery, the settlement offer will be 1− θ − cp. Therefore, each type pays π(1− π)c more with

discovery.

Now consider the payoff for the plaintiff. We have established that the expected reduction in

total litigation costs associated with any strong type θ > θ + c is π(1 − π)c, and the benefits of

this reduction all accrue to the plaintiff who extracts them in his settlement offer; and the increased

settlement by any type θ < θ + πc is also π(1− π)c. For the remaining types θ ∈ [θ + πc, θ + c],

relative to no discovery, the defendant pays an additional π(θ + c − θ) − πcd (which may not be

positive) and the plaintiff incurs a cost of πcp. Therefore, for this intermiediate type, the plaintiff

incurs a cost of π(θ − θ). The benefits for the plaintiff from the weak and the strong segments

of types intergrate to π(1 − π)c θ−θ−(1−π)c

θ−θ . The costs from the intermediate segment intergrate

to π(1 − π)c (1+π)c

2(θ−θ) . Therefore, the net gain for the plaintiff is π(1 − π)c
θ−θ−2c+ 3

2
(1+π)c

θ−θ . When

c ∈ ( θ−θ
2
, θ−θ

2− 3
2

(1+π)
), the total litigation costs increase but the plaintiff’s payoff increases under
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discovery. The payoff of the plaintiff benefits an additional π(1− π)c
3
2

(1+π)c

θ−θ from discovery than

the sum of the payoffs of the plaintiff and the defendant. The first order derivative of this term has

the same sign as (1− 2π)(1 + π) + π(1− π). (1) When θ − θ > 2c, the socially optimal level of

discovery is 1
2
. At π = 1

2
, the first order derivative of π(1 − π)(1 + π) is 1

4
, i.e. positive, so the

payoff of the plaintiff is maximized at π > 1
2
. (2) When θ − θ ≤ 2c, the first order derivative of

π(1− π)(1 + π) is 1, i.e. positive, so the payoff of the plaintiff is maximized at π > 0.

Trial t = 2 t = 1 

θ̂

θ

θ̂

θ

If rejected 

If rejected 

Highest offer 

Lowest offer 

With probability 
1-π, private info 
remains 

Some 
probability 
of trial 

Figure 1: Separating by offer amount and timing under limited discovery π ∈ (0, π̄).

R(s)c

Under no 
discovery

s0 s

Figure 2: Discovery reduces post-discovery signaling distortions for strong defendants if ρ(π) = π.
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Figure 3: Total expected litigation costs with different discovery cost functions. The convex cost
function is ρ(π) = π

3
2 , the “strong concave” cost function is ρ(π) = π

1
2 and the “weak concave”

cost function is ρ(π) = π0.9. Parameters: θ = 0, θ = 0.8, c = 1.
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