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REGULARITY CONDITIONS AND BERNOULLI PROPERTIES
OF EQUILIBRIUM STATES AND g-MEASURES

PETER WALTERS

Abstract

When T : X −→X is a one-sided topologically mixing subshift of finite type and ϕ : X −→R is a
continuous function, one can define the Ruelle operator Lϕ : C(X)−→C(X) on the space C(X)
of real-valued continuous functions on X. The dual operator L∗

ϕ always has a probability measure
ν as an eigenvector corresponding to a positive eigenvalue (L∗

ϕν = λν with λ > 0). Necessary and
sufficient conditions on such an eigenmeasure ν are obtained for ϕ to belong to two important
spaces of functions, W (X, T ) and Bow(X, T ). For example, ϕ∈Bow(X, T ) if and only if ν is a
measure with a certain approximate product structure. This is used to apply results of Bradley to
show that the natural extension of the unique equilibrium state µϕ of ϕ∈Bow(X, T ) has the weak
Bernoulli property and hence is measure-theoretically isomorphic to a Bernoulli shift. It is also
shown that the unique equilibrium state of a two-sided Bowen function has the weak Bernoulli
property. The characterizations mentioned above are used in the case of g-measures to obtain
results on the ‘reverse’ of a g-measure.

Introduction

We consider subshifts of finite type with a finite number of symbols. Let k � 2, and
let Γ = {1, 2, . . . , k} be the set of symbols. Let A = (aij) be a k× k matrix with each
entry aij ∈{0, 1} and with no zero row and no zero column.

Let

XA =

{
x = (xn)∞n=0 ∈

∞∏
0

Γ | axn xn+1 = 1 ∀n � 0

}

and

X̂A =

{
x = (xn)∞n=−∞ ∈

∞∏
−∞

Γ | axn xn+1 = 1 ∀n ∈ Z

}
.

Both are compact sets under the product topologies on
∏∞

0 Γ and
∏∞

−∞ Γ when Γ is
equipped with the discrete topology. The one-sided subshift of finite type deter-
mined by A is the continuous surjection T : XA−→XA defined by T ((x0, x1, . . .))=
(x1, x2, . . .). The two-sided subshift of finite type determined by A is the homeo-
morphism S : X̂A −→ X̂A defined by

S((. . . x−1
*x0x1 . . .)) = (. . . x−1x0

*x1x2 . . .),

where the symbol ∗ is over the 0th position. Both shifts are called topologically
mixing if there exists M � 1 with the product matrix AM > 0, that is, every
entry of AM is non-zero. We use M for such a number throughout the paper.
This is equivalent to T being topologically mixing (that is, for all non-empty
open sets U, V , there exists M � 1 with U ∩T−nV �= ∅ for all n� M), and to
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S being topologically mixing. If p � q and bp, . . . , bq ∈Γ, then p[bp, . . . , bq] =
p[bp, . . . , bq]q = [bp, . . . , bq]q = {x∈XA |xi = bi for p � i� q} when 0� p, and also
p[bp, . . , bq]=p[bp, . . , bq]q =[bp, . . . , bq]q ={x∈X̂A |xi=bi for p�i�q} when p∈Z. For
n, p � 1, we have T p(0[x0, . . . , xp+n−1])= 0[xp, . . . , xp+n−1] if 0[x0, . . . , xp+n−1] �= ∅,
and T−p(0[x0, . . . , xn−1])= p[x0, . . . , xn−1]. An allowable block in XA or X̂A is a
string b0, . . . , bn−1 of symbols with ab0b1ab1b2 . . . abn−2bn−1 = 1. If b0, . . . , bn−1 is an
allowable block, then we call p[b0, . . . , bn−1] an allowable cylinder. If b, c∈Γ and
p, q ∈N , then bpcq denotes the block b0, . . . , bp+q−1, where bi = b for 0� i� p− 1
and bi = c for p � i� p + q− 1. If x0, . . . , xn−1 is an allowable block in XA and
z = (z0, z1, . . .)∈XA with axn−1z0 = 1, then (x0, . . . , xn−1, z) denotes the member
y = (yi) of XA with yi =xi for 0� i� n− 1 and yi+n = zi for i� 0.

We often write X and X̂ for XA and X̂A. Consider a subshift of finite
type (SFT) T : X −→X. We use C(X) to denote the space of all real-valued
continuous functions on X, equipped with the supremum norm. We let M(X)
denote the space of all probability measures on the Borel subsets of X, equipped
with the weak∗-topology, and let M(X,T ) denote the non-empty subset of T -
invariant members of M(X). We say that τ ∈M(X) has support X if τ(U)> 0
for every non-empty open set U . If ϕ∈C(X), we let P (T, ϕ) denote the
pressure of T at ϕ [13], and let Tnϕ be the function

∑n−1
i=0 ϕ ◦T i. Similar

notation applies to S : X̂ −→ X̂. When T is a one-sided subshift of finite type,
the Ruelle operator of ϕ∈C(X) is denoted by Lϕ : C(X)−→C(X), so that
(Lϕf)(x)=

∑
eϕ(y)f(y), where the sum is over all y ∈T−1x. The dual operator

L∗
ϕ always has an eigenmeasure in M(X), that is, there exists ν ∈M(X) and λ > 0

with L∗
ϕν =λν. For ϕ∈C(X) and T a one-sided subshift of finite type, we define

vn(ϕ), for n� 1, as vn(ϕ)= sup{ϕ(x)−ϕ(x′) |x, x′ ∈X and xi =x′
i, 0� i� n− 1}.

We define the space Bow(X,T ) to be {ϕ∈C(X) | supn�1 vn(Tnϕ)<∞} and the
space W (X,T ) to be {ϕ∈C(X) | supn�1 vn+p(Tnϕ)→ 0 as p→∞} [14, 15]. We
have W (X,T )⊂Bow(X,T ), because ϕ∈Bow(X,T ) if and only if there is some
p � 0 with supn�1 vn+p(Tnϕ)<∞. If ϕ∈C(X) has summable variations (that is,∑∞

n=1 vn(ϕ)<∞) [11], then ϕ∈W (X,T ).
In [12], the author showed that for a topologically mixing subshift of finite type

(TMSFT), if ϕ∈W (X,T ), then the Ruelle operator theorem holds (that is, there
exists λ > 0, ν ∈M(X), and h∈C(X) with h > 0 and

∫
h dν = 1 such that Lϕh = λh,

L∗
ϕν = λν and for all f ∈ C(X),

(
Ln

ϕf
)
(x)

λn
⇒ h(x)

∫
f dν,

where ⇒ denotes uniform convergence on X), ϕ has a unique equilibrium state
µϕ and (T, µϕ) has a Bernoulli natural extension. Here µϕ = hν, and µϕ is the
unique g-measure for the g-function g(x)= eϕ(x)h(x)/λh(Tx). In [14], the author
considered these questions for ϕ∈Bow(X,T ) and proved a weakened version of the
Ruelle operator theorem. Each ϕ∈Bow(X,T ) has a unique equilibrium state µϕ.
We show in this paper that (T, µϕ) has a Bernoulli natural extension. We obtain
necessary and sufficient conditions on an eigenmeasure ν for ϕ∈C(X) to ensure
that ϕ∈Bow(X,T ) and to ensure that ϕ∈W (X,T ). These give characterizations
of when ϕ∈Bow(X,T ) in terms of µϕ. When this is applied to the cases ϕ = log g
and g is a g-function (see Section 3), we obtain results about the ‘reverse’ of a
g-measure.
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For a two-sided topologically mixing subshift of finite type, S : X̂ −→ X̂ and
ϕ̂∈C(X̂), we let varn(ϕ̂), for n� 1, denote varn(ϕ̂)= sup{ϕ̂(x)− ϕ̂(x′) |x, x′ ∈ X̂
and xi =x′

i for −(n − 1)� i� n− 1)}. Then let Bow(X̂A, S)= {ϕ̂∈C(X̂) |
supn�1 varn(Snϕ̂)<∞}, where Snϕ̂ =

∑n−1
i=0 ϕ̂ ◦Si. Bowen showed that each ϕ̂∈

Bow(X̂A, S) has a unique equilibrium state µ̂ϕ̂ [2]. We show that (S, µ̂ϕ) is
isomorphic to a Bernoulli shift.

1. Eigenmeasures of the Ruelle operator

Lemma 1.1. Let T : X −→X be a one-sided topologically mixing subshift of
finite type, let ϕ∈C(X), and let ν ∈M(X) and λ > 0 satisfy L∗

ϕν =λν. Then for
all n� 1, p � 1 and x∈X, we have

ν(0[x0, . . . , xn+p−1]) =
1
λp

∫

z∈0[xp ,..., xn+p−1]

e(Tp ϕ)(x0,..., xp−1, z) dν(z).

Proof.

ν(0[x0, . . . , xn+p−1]) =
1
λp

∫

X

Lp
ϕχ0[x0,..., xn+p−1](z) dν(z)

=
1
λp

∫

0[xp ,..., xn+p−1]

e(Tp ϕ)(x0,..., xp−1, z) dν(z).

In part (i) of the next result, the number k is the number of symbols in the
topologically mixing subshift of finite type and M is a natural number for which
the Mth power AM of the transition matrix A has every entry non-zero.

Theorem 1.2. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let ϕ∈C(X). Let ν ∈M(X) and λ > 0 satisfy L∗

ϕν =λν. Then

λ = eP (T,ϕ), ν is a supported measure, and we have the following.

(i) For all p � 1 and for all x∈X,

(
evp (Tp ϕ)λMeM‖ϕ‖)−1 � ν(0[x0, . . . , xp−1])λp

e(Tp ϕ)(x)
� kMevp (Tp ϕ) eM‖ϕ‖

λM
.

(ii) For all n� 1, p � 1 and for all x∈X,

e−vn+p (Tp ϕ) � ν(0[x0, . . . , xn+p−1])
ν(0[xp, . . . , xn+p−1])

λp

e(Tp ϕ)(x)
� evn+p (Tp ϕ).

(iii) The measures ν and ν ◦T−p are equivalent and

dν ◦T−p

dν
=

Lp
ϕ1
λp

.

(iv) For each symbol i∈{1, 2, . . . , k}, T |0[i] is injective, so ν ◦T |0[i] is a measure
on 0[i] and

d
(
ν ◦T |0[i]

)
d
(
ν |0[i ]

) = λe−ϕ

on 0[i].
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(v) For all n� 1, p � 1 and for all w∈X,

e−vn (logLp
ϕ 1) � ν(p[w0, . . . , wn−1])

ν(0[w0, . . . , wn−1])
λp(

Lp
ϕ1

)
(w)

� evn (log Lp
ϕ 1).

Proof. (i)

ν(0[x0, . . . , xp−1]) =
∫

X

χ0[x0,...,xp−1](z) dν(z)

=
1

λp+M

∫

X

Lp+M
ϕ χ0[x0,..., xp−1](z) dν(z).

Now

Lp+M
ϕ χ0[x0,..., xp−1](z) =

∑
e(Tp+M ϕ)(x0,..., xp−1,b0,..., bM −1, z),

where the sum is over all b0, . . . , bM−1 with the product axp−1b0ab0b1 . . . abM −1z0 > 0.
For any xp−1, z0, such (b0, . . . , bM−1) exist by topological mixing, and there
are at most kM choices. For each such admissable (b0, . . . , bM−1), we have
|(Tp+Mϕ)(x0, . . . , xp−1, b0, . . . , bM−1, z)− (Tpϕ)(x)|� vp(Tpϕ)+ M‖ϕ‖, so we get
the inequalities in (i).

The left-hand inequality in (i) shows that ν is supported. To see that λ = eP (T,ϕ),
we use the fact that (1/p) log(Lp

ϕ1)(x)⇒ P (T, ϕ) [14, Theorem 1.3]. If ε > 0, then
there exists Nε with epP (T,ϕ)−pε � (Lp

ϕ1)(x)� epP (T,ϕ)+pε for all x∈X and for all
p � Nε. Integrating with respect to ν gives ep(P (T,ϕ)−ε) �λp � ep(P (T,ϕ)+ε) for all
p � Nε. Hence eP (T,ϕ)−ε �λ � eP (T,ϕ)+ε, and since this holds for every ε> 0, we
have λ = eP (T,ϕ).

(ii) Statement (ii) follows from Lemma 1.1 and the inequality |(Tpϕ)(x0, . . . ,
xp−1z)− (Tpϕ)(x)|� vn+p(Tpϕ), when z ∈ 0[xp, . . . , xn+p−1].

(iii) Fix a cylinder 0[w0, . . . , wp−1] in X. Then

T−p(0[w0, . . . , wn−1]) =
⋃

0[y0, . . . , yp−1, w0, . . . , wn−1],

where the union is over all (y0, . . . , yp−1) with ay0y1 . . . ayp−1w0 = 1, and this
is a disjoint union. Apply Lemma 1.1 to each such admissable 0[y0, . . . , yp−1,
w0, . . . , wn−1] to get

ν(0[y0, . . . , yp−1, w0, . . . , wn−1]) =
1
λp

∫

z∈0[w0, . . . , w n−1]

e(Tp ϕ)(y0,..., yp−1, z) dν(z).

Now sum over all (y0, . . . , yp−1) to get

(ν ◦T−p)(0[w0, . . . , wn−1]) =
∫

z∈0[w0,...,wn−1]

(
Lp

ϕ1
)
(z)

λp
dv(z).

(iv) We have to show that for each cylinder 0[i, i1, . . . , ip−1], we have

ν(T 0[i, i1, . . . , ip−1]) = λ

∫

x∈0[i,i1,...,ip−1]

e−ϕ(x) dν(x).
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We have

λ

∫

0[i,i1,...,ip−1]

e−ϕ(x) dν(x) = λ

∫

X

e−ϕχ0[i,i1,...,ip−1] dν

=
∫

X

Lϕ

(
e−ϕχ0[i,i1,...,ip−1]

)
dν

=
∫

X

χ0[i,i1,...,ip−1](iz) dν(z)

= ν(T0[i, i1, . . . , ip−1]).

(v) By (iii),

ν(p[w0, . . . , wn−1]) =
∫

z∈0[w0,...,wn−1]

Lp
ϕ1
λp

(z) dν(z).

If w∈X and z ∈ 0[w0, . . . , wn−1], then

e−vn (logLp
ϕ 1) �

(
Lp

ϕ1
)
(z)

(Lp
ϕ1) (w)

� evn (logLp
ϕ 1)

so (v) holds.

Recall that we use the symbol ⇒ to denote uniform convergence on X.

Corollary 1.3. Let T : X −→X be a one-sided topologically mixing subshift
of finite type, and let ϕ∈C(X). Let ν ∈M(X) and let λ > 0 satisfy L∗

ϕν =λν. For
each fixed p � 1,

ν(0[x0, . . . , xn+p−1])
ν(0[xp, . . . , xn+p−1])

⇒ e(Tp ϕ)(x)

λp
as n → ∞,

and

ν(p[w0, . . . , wn−1])
ν(0[w0, . . . , wn−1])

⇒
(
Lp

ϕ1
)
(w)

λp
as n → ∞.

Proof. The first statement is by Theorem 1.2(ii), since, for p fixed,
vn+p(Tpϕ)→ 0 as n→∞, and the second statement is by Theorem 1.2(v), since,
for fixed p, vn(logLp

ϕ1)→ 0 as n→∞.

In fact, the case p = 1 in the first statement of Corollary 1.3 gives

ν(0[x0, . . . , xn])
ν(0[x1, . . . , xn])

⇒ eϕ(x)

λ
as n → ∞,

and the case of general p follows from this, as does the second conclusion of the
corollary.

Note that we can write the first conclusion of Corollary 1.3 as

ν(0[x0, . . . , xn+p−1])
ν(T p

0[x0, . . . , xn+p−1])
⇒ e(Tp ϕ)(x)

λp
as n → ∞,



384 peter walters

and the second conclusion as

ν(T−p
0[w0, . . . , wn−1])

ν(0[w0, . . . , wn−1])
⇒

(
Lp

ϕ1
)
(w)

λp
as n → ∞.

The following result gives a condition for a probability measure to be an eigen-
measure of a Ruelle operator.

Corollary 1.4. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let ν ∈M(X). Then L∗

ϕν = λν for some ϕ∈C(X) and some λ > 0 if
and only if ν is supported and ν(0[x0, . . . , xn])/ν(0[x1, . . . , xn]) converges uniformly
on X to a function f : X −→ (0,∞).

Proof. If L∗
ϕν = λν for some ν ∈M(X) and some λ > 0, then

ν(0[x0, . . . , xn])
ν(0[x1, . . . , xn])

⇒ eϕ(x)

λ

by Corollary 1.3.
If ν(0[x0, . . . , xn])/ν(0[x1, . . . , xn]) converges uniformly on X to a positive

function, then denote the limit by eϕ(x). We show that L∗
ϕν = ν. For any cylinder

0[b0, . . . , bt−1],

(L∗
ϕν)(0[b0, . . . , bt−1])

=
∫
Lϕχ0[b0,...,bt−1] dν =

∫

x∈0[b1,...,bt−1]

eϕ(b0x) dν(x)

= lim
n→∞

∫

x∈0[b1,...,bt−1]

ν(0[b0, b1, . . . , bt−1, xt−1, xt, . . . , xt+n])
ν(0[b1, . . . , bt−1, xt−1, . . . , xt+n])

dν(x)

= lim
n→∞

∑
xt−1,...,xt+n

ν(0[b0, b1, . . . , bt−1, xt−1, . . . , xt+n])

= ν(0[b0, . . . , bt−1]).

With Corollary 1.3 in mind, we can characterize when ϕ∈C(X) is a member
of W (X,T ) in terms of an eigenmeasure ν. If N is the set of natural numbers,
then BC(N×X) denotes the space of bounded continuous real-valued functions on
N×X, equipped with the supremum norm.

Theorem 1.5. Let T : X −→X be a one-sided topologically mixing subshift of
finite type and let ϕ∈C(X). Let λ = eP (T,ϕ). The following statements are pairwise
equivalent.

(i) ϕ∈W (X,T ).
(ii) There exists τ ∈ M(X) with support X satisfying

τ(0[x0, . . . , xp+n−1])
τ(0[xp, . . . , xp+n−1])

λp

e(Tp ϕ)(x)
⇒ 1 as n → ∞,

where the convergence is uniform in both x∈X and p∈N.
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(iii) There exists ν ∈M(X) with L∗
ϕν =λν such that in BC(N×X), the sequence

(ψn), given by

ψn(p, x) = log
(

ν(0[x0, . . . , xp+n−1])
ν(0[xp, . . . , xp+n−1])

)
,

is convergent.
(iv) There exists µ∈M(X,T ) with support X and �∈C(X) satisfying

log
(

µ([x0, . . . , xn+p−1])
µ([xp, . . . , xn+p−1])

)
⇒ (Tpϕ)(x) + �(x) − �(T px) − p log λ as n → ∞,

where the convergence is uniform in both x∈X and p � 1.

Proof. The implication (i)⇒ (ii) follows immediately from Theorem 1.2(ii). To
show that (ii)⇒ (i), suppose that τ ∈M(X) satisfies (ii). Then for all ε > 0, there
exists Nε such that n� Nε implies that

τ(0[x0, . . . , xn+p−1])
τ(0[xp, . . . , xn+p−1])

λpe−ε < e(Tp ϕ)(x) <
τ(0[x0, . . . , xp+n−1])
τ(0[xp, . . . , xp+n−1])

λpeε ∀ p � 1, ∀x∈X.

If x, z ∈X have xi = zi for 0� i� p + n− 1, then when n� Nε, e−2ε <
e(Tp ϕ)(x)−(Tp ϕ)(z) <e2ε. Hence n�Nε⇒ supp�1 νp+n(Tpϕ)�2ε. Hence ϕ∈W (X,T ).

The implication that (i)⇒ (iii) follows from Theorem 1.2(ii). If (iii) holds, then
the limit is (Tpϕ)(n)− p log λ by Corollary 1.3, so (ii) holds.

We now show that (i)⇒ (iv). When ϕ∈W (X,T ), the unique ν ∈M(X) with
L∗

ϕν = λν satisfies (ii), as we saw above. By [11], there exists h∈C(X), h > 0, with
Lϕh = λh and

∫
h dν = 1. The measure µ= hν ∈M(X,T ), and

e−vt (log h) � µ([x0, . . . , xt−1])
ν(0[x0, . . . , xt−1])h(x)

� evt (log h) ∀ t � 1, x ∈ X.

Hence
µ([x0, . . . , xn+p−1])
µ([xp, . . . , xn+p−1])

λp

e(Tp ϕ)(x)

h(T px)
h(x)

⇒ 1 as n → ∞

uniformly in p � 1 and x∈X. Statement (iv) follows with �= log h.
If (iv) holds, then, for ε > 0, there exists Nε such that n� Nε implies that

e−ε <
µ([x0, . . . , xn+p−1])
µ([xp, . . . , xn+p−1])

λp

e(Tp ϕ)(x)

h(T px)
h(x)

< eε ∀ p � 1, ∀x ∈ X,

where h = e�. If (x0, . . . , xn+p−1) = (z0, . . . , zn+p−1), then, for n� Nε,

h(T px)
h(T pz)

h(z)
h(x)

e−2ε < e(Tp ϕ)(x)−(Tp ϕ)(z) <
h(T px)
h(T pz)

h(z)
h(x)

e2ε,

so

vn+p(Tpϕ) � vn(log h) + vn+p(log h) + 2ε � 2vn(log h) + 2ε ∀ p � 1, ∀n � 1.

Hence ϕ∈W (X,T ).

Note that when ϕ∈W (X,T ), then the eigenmeasure ν has the property given in
(ii). The property in (ii) can be written as

log
(

τ(0[x0, . . . , xn+p−1])
τ(0[xp, . . . , xn+p−1])

)
⇒ (Tpϕ)(x) − p log λ as n → ∞,

where the convergence is uniform in both x∈X and p � 1.
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We now characterize, in terms of eigenmeasure, those ϕ∈C(X) which belong to
Bow(X,T ).

Definition 1.6. Let X be a one-sided topologically mixing subshift of finite
type. Let τ ∈M(X). We say that τ is approximately multiplicative at coordinate
zero if it has support X and there exists C > 1 with

C−1 � τ(0[x0, . . . , xn+p−1])
τ(0[x0, . . . , xp−1])τ(0[xp, . . . , xn+p−1])

� C ∀n � 1, p � 1, x ∈ X.

If we let f (n)(x)= ν(0[x0, . . . , xn−1]), then the condition becomes

C−1 � f (p+n)(x)
f (p)(x)f (n)(T px)

� C.

Theorem 1.7. Let T : X −→X be a one-sided topologically mixing subshift of
finite type and let ϕ∈C(X). Let λ = eP (T,ϕ). The following statements are pairwise
equivalent.

(i) ϕ∈Bow(X,T ).
(ii) There exists τ ∈M(X) with support X and there exists D > 1 with

D−1 � τ(0[x0, . . . , xp−1])
λp

e(Tp ϕ)(x)
� D ∀ p � 1, ∀x ∈ X.

(iii) There exists ν ∈M(X) with L∗
ϕν =λν, and ν is approximately multiplicative

at coordinate zero.

Proof. The implication (i)⇒ (ii) follows from Theorem 1.2(i). If (ii) holds and
(x0, . . . , xp−1) = (z0, . . . , zp−1), then

D−2 � e(Tp ϕ)(x)−(Tp ϕ)(z) � D2,

so

vp(Tpϕ) � 2 log D and ϕ ∈ Bow (X,T ).

To show (i)⇒ (iii), we use Theorem 1.2(i) and (ii) to get

λM

λMeM‖ϕ‖evn+p (Tp ϕ)+vp (Tp ϕ)
� ν(0[x0, . . . , xn+p−1])

ν(0[x0, . . . , xp−1])ν(0[xp, . . . , xn+p−1])

� λMeM‖ϕ‖evn+p (Tp ϕ)+vp (Tp ϕ).

Since vp+n(Tpϕ)� varp(Tpϕ), we have (i)⇒ (iii). To see that (iii)⇒ (ii), if C is the
constant in the definition of ν being approximately multiplicative at coordinate
zero, then from Theorem 1.2(ii) we have

C−1e−vp+n (Tp ϕ) � ν(0[x0, . . . , xp−1])
λp

e(Tp ϕ)(x)
� Cevp+n (Tp ϕ) for all n � 1.

Let n→∞ to give (ii).

The equivalence of (i) and (ii) is well known. Other equivalent conditions for
ϕ∈Bow(X,T ) can be found in [14].

As we shall see in Section 3, Theorem 1.7 gives a nice characterization of which
g-measures correspond to a g with log g ∈Bow(X,T ).
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Corollary 1.8. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let ϕ∈Bow(X,T ). The unique equilibrium state µϕ of ϕ is
approximately multiplicative at coordinate zero.

Proof. When ϕ∈Bow(X,T ), there is a unique ν ∈M(X) with L∗
ϕν =λν [14],

and ν is approximately multiplicative at coordinate zero by Theorem 1.7. Also,
µϕ = hν for some measurable h : X −→ [a, b] with 0< a < b, and Lϕh =λh and∫

h dν = 1 [14]. Hence
aν(p[x0, . . . , xn−1]) � µϕ(p[x0, . . . , xn−1]) � bν(p[x0, . . . , xn−1])

∀ p � 1, n � 1, x ∈ X,

so that µϕ is approximately multiplicative at coordinate zero.

Since µϕ is T -invariant, we can write the approximately multiplicative at
coordinate zero condition for µϕ as follows. There exists D > 1 with

D−1 � µϕ[0(x0, . . . , xn+p−1)]
µϕ(0[x0, . . . , xp−1])µϕ(p[xp, . . . , xn+p−1])

� D ∀ p � 1, n � 1, x ∈ X.

We use this condition in the next definition.

Definition 1.9. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let τ ∈M(X). We say that τ has approximate product structure
if it has support X and if there exists C > 1 with

C−1 � τ(0[x0, . . . , xn+p−1])
τ(0[x0, . . . , xp−1])τ(p[xp, . . . , xn+p−1])

� C ∀n � 1, p � 1, x ∈ X.

If τ ∈M(X,T ), then clearly τ is approximately multplicative at coordinate zero
if and only if τ has approximate product structure. To investigate the relationship
between the two conditions when τ is an eigenmeasure ν for Lϕ, we can use the
following deduction from Theorem 1.2(iii).

Proposition 1.10. Let T : X −→X be a one-sided topologically mixing sub-
shift of finite type and let ϕ∈C(X). Let ν ∈M(X) satisfy L∗

ϕν = λν with

λ = eP (T,ϕ). Let D � 1, and let p∈N. Then

D−1 �
(
Lp

ϕ1(x)
)

λp
� D ∀x ∈ X

if and only if

D−1 � ν(p[z0, . . . , zn−1])
ν(0[z0, . . . , zn−1])

� D ∀n � 1, z ∈ X.

Proof. By Theorem 1.2(iii),

ν(p[z0, . . . , zn−1]) =
∫

w∈0[z0,...,zn−1]

(
Lp

ϕ1
)

λp
(w) dν(w). (∗)

Clearly the first statement of the proposition implies the second statement. Now
suppose that the second statement holds and let

U =

{
x ∈ X|

(
Lp

ϕ1
)
(x)

λp
(x) > D

}
.
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Then U is open. Suppose that U �= ∅. For z ∈U , choose some n with
0[z0, . . . , zn−1]⊂U . Then, by (∗), ν(p[z0, . . . , zn−1])> Dν(0([z0, . . . , zn−1]), which
contradicts the assumption. Hence U = ∅, so (Lp

ϕ1)(x)/λp �D for all x∈X.
Similarly, we get D−1 � (Lp

ϕ1)(x)/λp for all x∈X.

Corollary 1.11. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let ϕ∈C(X). Let ν ∈M(X) satisfy L∗

ϕν = λν with λ = eP (T,ϕ).
Suppose that there exists D � 1 with

D−1 �
(
Lp

ϕ1
)
(x)

λp
� D ∀ p � 1, ∀x ∈ X.

Then ν is approximately multiplicative at coordinate zero if and only if ν has
approximate product structure.

Corollary 1.12. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let ϕ∈C(X). Let λ = eP (T,ϕ). Then ϕ∈Bow(X,T ) if and only if
both of the following statements hold.

(i) There exists B > 1 with B−1 � (Lp
ϕ1)(x)/λp � B for all p � 1, x∈X.

(ii) There exists ν ∈M(X) with L∗
ϕν = λν and ν has approximate product

structure.

Proof. If ϕ∈Bow(X,T ), then (i) holds by [14, p. 337], and (ii) holds by
Theorem 1.7 and Corollary 1.11. If (i) and (ii) hold, then, by Corollary 1.11, ν
is approximately multiplicative at coordinate zero and hence ϕ∈Bow(X,T ) by
Theorem 1.7.

The following lemma is well known.

Lemma 1.13. Let T : X −→X be a one-sided topologically mixing subshift of
finite type and let ϕ∈C(X) and λ = eP (T,ϕ). Suppose that ν ∈M(X) satisfies
L∗

ϕν = λν, and suppose that there is a measurable h : X −→ [a, b] with 0< a� b
and Lϕh = λh. Suppose that h is normalized so that

∫
h dν = 1. Then µ= hν is an

equilibrium state for ϕ.

Proof. We have µ∈M(X,T ) since, for f ∈C(X),∫
f ◦T dµ =

∫
f ◦Th dν = λ−1

∫
Lϕ( f◦Th) dν = λ−1

∫
fLϕ(h) dν =

∫
fh dν =

∫
f dµ.

To see that µ is an equilibrium state, we use Theorem 1.2(i) to get

−1
p

log(λMeM‖ϕ‖) − vp(Tpϕ)
p

� −1
p

log ν(0[x0, . . . , xp−1]) +
1
p
(Tpϕ)(x) − log λ

� 1
p

log
(

kMeM‖ϕ‖

λM

)
+

vp(Tpϕ)
p

.

Since aν(0[x0, . . . , xp−1])� µ(0[x0, . . . , xp−1])� bν(0[x0, . . . , xp−1]) and

vp(Tpϕ) �
p∑

i=1

vi(ϕ),
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we have

−1
p

log µ(0[x0, . . . , xp−1]) +
1
p
(Tpϕ)(x) ⇒ log λ = P (T, ϕ).

Integrating via µ gives

1
p
H

(
p−1∨
i=0

T−iξ

)
+

∫
ϕ dµ −→ P (T, ϕ),

where ξ is the partition into states at coordinate zero. Since ξ is a one-sided
generator, we have hµ(T )+

∫
ϕ dµ = P (T, ϕ).

There is another characterization of ϕ∈Bow(X,T ).

Theorem 1.14. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let ϕ∈C(X) and λ = eP (T,ϕ). Then ϕ∈Bow(X,T ) if and only if
all of the following three statements hold.

(i) ϕ has a unique equilibrium state µϕ.
(ii) µϕ has approximate product structure.
(iii) There exists B > 1 with B−1 � (Lp

ϕ1)(x)/λp �B for all p � 1, x∈X.

Proof. If ϕ∈Bow(X,T ), (i) and (iii) hold by [14], and (ii) holds by Corollary
1.8. Now assume that the three conditions hold. Let ν ∈M(X) satisfy L∗

ϕν = λν. By
(iii), there is a measurable h : X −→ [a, b] with 0< a < b,

∫
h dν = 1, and Lϕh =λh

[14, p. 341]. Then, by Lemma 1.13, µ= hν is T -invariant and is an equilibrium state
for ϕ. By (i), µϕ =hν. By (ii), µϕ is approximately multiplicative at coordinate zero,
so ν is also. Hence ϕ∈Bow(X,T ) by Theorem 1.7.

2. The weak Bernoulli property

In this section, we show that if ϕ∈Bow(X,T ), then the natural extension of T
with respect to the unique equilibrium state µϕ of ϕ is a Bernoulli shift. We shall
also show that when S : X̂ −→ X̂ is a two-sided topologically mixing subshift of
finite type and ϕ̂∈Bow(X̂, S), then (S, µ̂ϕ̂) is isomorphic to a Bernoulli shift where
µ̂ϕ̂ is the unique equilibrium state of ϕ̂.

When ϕ̂∈Bow(X̂, S), then Bowen [2] showed that there exists C > 1 with

C−1 � µ̂ϕ̂([x0, . . . , xn−1])
e(Sn ϕ̂)(x)−nP (S,ϕ̂)

� C ∀x ∈ X̂, ∀n � 1.

It readily follows that µ̂ϕ̂ has approximate product structure (or rather that µ̂ ◦π−1

does, where π : X̂ −→X is the natural projection). The definition of approximate
product structure also makes sense for a measure on the two-sided shift space X̂.

Whereas every ϕ̂∈W (X̂, S) is cohomologous in C(X̂) to some ϕ ◦π with
ϕ∈W (X,T ) [1], there are examples of ϕ̂∈Bow(X̂, S) which are not cohomologous
in C(X̂) to a one-sided function [10].

For every µ∈M(X,T ), there is a unique µ̂∈M(X̂, S) with µ̂ ◦π−1 =µ. We have
µ̂(p[b0, . . . , bn−1])= µ(q[b0, . . . , bn−1]), for all p∈Z, q � 0. This gives a bijection
between M(X,T ) and M(X̂, S).
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Theorem 2.1. Let T : X −→T be a one-sided topologically mixing subshift of
finite type with transition matrix A. Let µ∈M(X,T ) have approximate product
structure. If AM > 0, then there exists D > 1 such that for all n� 2M , all p, q � 1,
and all allowable cylinders 0[x0, . . . , xp−1], 0[y0, . . . , yq−1], we have

D−1 � µ(0[x0, . . . , xp−1]∩T−(p+n)
0[y0, . . . , yq−1])

µ([x0, . . . , xp−1])µ([y0, . . . , yq−1])
� D.

Proof. Let C be the constant in the approximate product structure condition
for µ. Let [x0, . . . , xp−1] and [y0, . . . , yq−1] be given. Let n� 2M . Since AM > 0,
there is a point w∈X of the form w = (x0, . . . , xp−1, wp, . . . , wp+n−1, y0, y1, . . .).
Moreover, for any allowable choice of the cylinder [wp+M−1, . . . , wp+n−M ], there is
such a point. Since

C
−4 �

µ[x0, . . . , xp−1, wp , . . . , wp+n−1, y0, . . . , yq−1]

µ[x0, . . . , xp−1]µ[wp , . . . , wp+M−2]µ[wp+M−1, . . . , wp+n−M ]µ[wp+n−M +1, . . . , wp+n−1]µ[y0, . . . , yq−1]

� C
4
,

we have

C−4d2 �
µ

(
0[x0, . . . , xp−1]∩T−(p+n)

0[y0, . . . , yq−1]
)

µ(0[x0, . . . , xp−1])µ(0[y0, . . . , yq−1])
� C4,

where d is the minimal µ-measure of a cylinder of length M − 1.
Therefore, put D = C4d−2.

If we consider the corresponding two-sided measure µ̂, then the conclusion of
Theorem 2.1 can be written as

D−1 � µ̂(−p[x−p, . . . , x−1]∩S−n
0[y0, . . . , yq−1])

µ̂([x−p, . . . , x−1])µ̂([y0, . . . , yq−1])
� D

for all n� 2M and all cylinders −p[x−p, . . . , x−1], 0[y0, . . . , yq−1] with p, q � 1.
By the usual approximation arguments, one can readily get

D−1 � µ̂(B1 ∩ S−nB2)
µ̂(B1)µ̂(B2)

� D (†)

whenever n� 2M , B1 ∈B−1
−∞, B2 ∈B∞

0 and µ̂(B1)µ̂(B2)> 0. Here B−1
−∞ is the

σ-algebra generated by all cylinders −p[x−p, . . . , x−1]−1 with p � 1, and B∞
0 is the

σ-algebra generated by all cylinders 0[y0, . . . , yq−1]q−1 with q � 1.
We shall use the following result.

Corollary 2.2. Let S : X̂ −→ X̂ be a one-sided topologically mixing subshift
of finite type and let µ̂∈M(X̂, S) be of approximate product type. Then S is
strongly mixing with respect to µ̂.

Proof. This follows from a result of Ornstein [9] if we can show that Si is ergodic
for each i� 1 and there is a constant d with

lim sup
n→∞

µ̂(B1 ∩S−nB2) � dµ̂(B1)µ̂(B2) ∀B1, B2 ∈B.

From (†), we get
lim sup

n→∞
µ̂(B1 ∩S−nB2) � Dµ̂(B1)µ̂(B2)
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whenever B1 ∈B�
−∞ and B2 ∈B∞

−j , �, j > 0, so an approximation argument gives the
same inequality whenever B1, B2 ∈B.

Similarly,
lim inf
n→∞

µ̂(B1 ∩S−nB2) � D−1µ̂(B1)µ̂(B2)

whenever B1, B2 ∈B. This latter inequality gives the total ergodicity required for
Ornstein’s result, since, if SiB2 = B2, then

0= µ̂((X̂ \ B2)∩B2)�D−1µ̂(X̂ \ B2)µ̂(B2),

so either µ̂(B2) or µ̂(X̂ \ B2) is 0.

We now use results of Bradley to show that having approximate product structure
implies the weak Bernoulli property.

Theorem 2.3. Let S : X̂ −→ X̂ be a two-sided topologically mixing subshift of
finite type, and let µ̂∈M(X̂, S) have approximate product structure. Then for all
ε > 0, there exists N so that n� N implies that

e−εµ̂(B1)µ̂(B2) � µ̂(B1 ∩S−nB2) � eεµ̂(B1)µ̂(B2)

whenever B1 ∈B−1
−∞ and B2 ∈B∞

0 . Hence the natural partition into states at
coordinate zero is a weak Bernoulli partition for S, so (S, µ̂) is isomorphic to a
Bernoulli shift.

Proof. From Theorem 2.1, the inequalities (†) hold. Since, by Corollary 2.2,
(S, µ̂) is strongly mixing, then, by a result of Bradley [3], if

ψ∗
n = sup

{
µ̂(B1 ∩ S−nB2)

µ̂(B1)µ̂(B2)

∣∣∣∣B1 ∈B−1
−∞, B2 ∈B∞

0 , µ̂(B1)µ̂(B2) > 0
}

ψ′
n = inf

{
µ̂(B1 ∩ S−nB2)

µ̂(B1)µ̂(B2)

∣∣∣∣B1 ∈B−1
−∞, B2 ∈B∞

0 , µ̂(B1)µ̂(B2) > 0
}

,

then (i) either ψ∗
n → 1 as n→∞ or ψ∗

n =∞ for all n, (ii) either ψ′
n → 1 as n→∞

or ψ′
n = 0 for all n. Since inequalities (†) hold, we have ψ∗

n � D and D−1 �ψ′
n, so

ψ∗
n → 1 and ψ′

n → 1. This gives the condition in the statement of the theorem. The
isomorphism result is due to Friedman and Ornstein [5].

We state the following results.

Theorem 2.4. Let T : X −→X be a one-sided, and let S : X̂ −→ X̂ be the
corresponding two-sided topologically mixing subshift of finite type.

(i) If ϕ∈Bow(X,T ) and µϕ is its unique equlibrium state, then the natural
extension of (T, µϕ) is isomorphic to a Bernoulli shift.

(ii) If ϕ̂∈Bow(X̂, S) and µ̂ϕ̂ is its unique equilibrium state, then (S, µ̂ϕ) is
isomorphic to a Bernoulli shift.

Proof. (i) By Corollary 1.8, µϕ has approximate product structure, so µ̂ϕ has
approximate product structure. Now Theorem 2.3 gives the result.

(ii) Bowen [2] showed that µ̂ϕ̂ has the property that there exists C > 1 with

C−1 � µ̂ϕ̂[x0, . . . , xn−1])ϕ
e(Sn ϕ̂)(x)−nP (S,ϕ̂)

� C ∀n � 1, x ∈ X̂.
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Hence µ̂ϕ̂ has approximate product structure, so the result follows by Theorem 2.3.

3. g-measures

We interpret the results in Sections 1 and 2 for the case of g-measures. If
T : X −→X is a one-sided topologically mixing subshift of finite type, let G(X,T ),
or G, denote the set{

g ∈ C(X)|g(x) > 0 ∀x ∈ X and
∑

y ∈T−1x

g(y) = 1 ∀x ∈ X

}
.

If g ∈G, we can consider Llog g, and µ∈M(X) is called a g-measure if L∗
log gµ= µ

[7]. Such a measure always belongs to M(X,T ). The condition can be formu-
lated in several ways. For example, one can show that µ∈M(X,T ) is a g-
measure if and only if µ is an equilibrium state of log g ([8], see also [11]).
Since P (T, log g) = 0 for g ∈G, this condition becomes hµ(T )+

∫
log g dµ = 0. Let

M(X,T )= {µ∈M(X,T ) |µ is a g-measure for some g ∈G(X,T )}.
The following results are special cases of the results in Sections 1 and 2, obtained

by considering ϕ of the form log g with g ∈G(X,T ). Again, k is the number of
symbols used for the subshift of finite type, and M is a natural number with AM > 0.

Theorem 3.1. Let T : X −→X be a one-sided topologically mixing subshift of
finite type and let g ∈G. Let µ be a g-measure. Then µ has support X and each of
the following holds.

(i) For all p � 1, x∈X,

(inf g)Me−vp (Tp log g) � µ[x0, . . . , xp−1]
g(x)g(Tx) . . . g(T p−1x)

� kMevp (Tp log g).

(ii) For all n, p � 1, x ∈ X,

e−vn+p (Tp log g) � µ([x0, . . . , xp+n−1])
µ([xp, . . . , xp+n])g(x)g(Tx) . . . g(T p−1x)

� evn+p (Tp log g).

Corollary 3.2. For T : X −→X, g ∈G and µ∈M(X,T ) as in Theorem 3.1,
we have for each fixed p � 1,

µ([x0, . . . , xp+n−1])
µ([xp, . . . , xp+n−1])

⇒ g(x)g(Tx) . . . g(T p−1x) as n → ∞.

Corollary 3.3. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let µ∈M(X,T ). Then µ is a g-measure for some g ∈G if and only
if µ has support X and µ([x0, . . . , xn−1])/µ([x1, . . . , xn−1]) converges uniformly on
X as n→∞ to a function f : X −→ (0,∞).

With Corollary 3.2 in mind, we can characterize those g with log g ∈W (X,T ) as
follows.

Theorem 3.4. Let T : X −→X be a one-sided topologically mixing subshift of
finite type and let g ∈G. The following statements are pairwise equivalent.

(i) log g ∈W (X,T ).
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(ii) There exists µ∈M(X,T ), with support X, satisfying

log
(

µ([x0, . . . , xp+n−1])
µ([xp, . . . , xp+n−1])

)
⇒ (Tp(log g))(x) as n → ∞,

where the convergence is uniform in both x∈X and p � 1.
(iii) There exists a g-measure µ such that in BC(N×X), the sequence (ψn),

given by

ψn(p, x) = log
(

µ([x0, . . . , xp+n−1])
µ([xp, . . . , xp+n−1])

)
,

is convergent.

Note that the unique g-measure µ, when log g ∈W (X,T ), satisfies the condition
in (ii).

We shall use Theorem 3.4 later in an application. The following result
characterizes those g with log g ∈Bow(X,T ).

Theorem 3.5. Let T : X −→X be a one-sided topologically mixing subshift
of finite type and let g ∈G(X,T ). Then log g ∈Bow(X,T ) if and only if there is a
g-measure which has approximate product structure. When log g ∈B(X,T ), there
is a unique g-measure µ and the coordinate zero partition is weak Bernoulli for µ
so that the natural extension of (T, µ) is isomorphic to a Bernoulli shift.

Proof. Since a g-measure is exactly an eigenmeasure for L∗
log g and is T -invariant,

the first statement follows from Theorem 1.7. Let log g ∈Bow(X,T ). By [14,
Theorem 3.2], there is a unique g-measure, and the Bernoulli properties follow
from Theorem 2.4.

Notice that when µ is g-measure, then µ has approximate product structure if
and only if log g ∈Bow(X,T ).

We now consider the question of whether the ‘reverse’ of a g-measure is
also a g-measure. Let T : X −→X, where X =XA, be a one-sided topologically
mixing subshift of finite type, and let S : X̂ −→ X̂ be the corresponding two-
sided topologically mixing subshift of finite type. Let π : X̂ −→X be the natural
projection given by π{xn}∞−∞ = {xn}∞0 . Then πS = Tπ, and there is a natural
bijection M(X̂, S)−→M(X,T ) given by µ̂−→ µ̂ ◦π−1. We denote µ̂ ◦π−1 by µ̂+.

The other one-sided space X− = {{xn}0
−∞|∃xi for i� 1 with {xn}∞−∞ ∈ X̂} to-

gether with the shift T− : X− −→X−, given by T−((. . . , x−2, x−1, x0))= (. . . , x−2,
x−1), can be considered as the one-sided shift on the space XAt , where At is the
transpose of the matrix A. Let π : X̂ −→X− be given by π−{xn}∞−∞ = {xn}0

−∞
and then πS−1 =T−π−. Since M(X̂, S−1)= M(X̂, S), we have a natural bijection
M(X̂, S)−→M(X−, T−) given by µ̂−→ µ̂ ◦π−1

− ≡ µ̂−, so that µ̂+ −→ µ̂− gives
a natural bijection M(X,T )−→M(X−, T−), For an allowed cylinder [i1, . . . , ir]
in X̂, we have µ̂+(s[i1, . . . , ir])= µ−([i1, . . . , ir]t) for all s� 0, t � 0. Clearly µ̂+

has support X if and only if µ̂− has support X−. We can define what it
means for µ̂− to have approximate product structure by considering the natural
conjugacy X− −→XAt , given by (. . . , x−2, x−1, x0)−→ (x0, x−1, x−2, . . .), of T− to
the topologically mixing subshift of finite type on XAt . Then µ̂− has approximate
product structure if and only if µ̂+ has approximate product structure if and only
if µ̂ has approximate product structure.
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Let G+ denote G(X,T ), the space of all positive g-functions for T , and let G−
denote G(X−, T−), the space of all positive g-functions for T−. Hence

G− =

{
g ∈ C(X−)|g(z) > 0 ∀ z ∈ X− and

∑
w∈T−1

− z

g(w) = 1 ∀ z ∈ X−

}
.

If M+ denotes M(X,T ) and M− denotes M(X−, T−), then the map µ̂+ −→ µ̂−
need not map M+ into M−. Kalikow constructed examples to show this when X is
the full shift space on two symbols [6]. One can construct a family of such examples,
inspired by Kalikow, as follows.

Let X =
∏∞

0 {0, 1} be the space of all sequences (x0, x1, . . .) with each xn ∈{0, 1}.
Let {dn}∞n=0 be such that dn ∈ [0, 1) for all n� 0, dn → 0 as n→∞, and∑∞

n=0(dn/(1 + dn))=∞. Such a sequence is given by dn = 1/(n + 1). Define
g : X −→ (0, 1) as follows. For k � 0, �� 0, put

g(000k1�101 . . .) = 1
2 (1 − dk+�),

g(100k1�101 . . .) = 1
2 (1 + dk+�),

g(000k1�100 . . .) = 1
2 (1 + dk+�),

g(100k1�100 . . .) = 1
2 (1 − dk+�),

and g(x)= 1
2 at all other points. The value of g depends on the first occurrence of

cylinder [10] in (x2, x3, . . .) and on whether this occurrence of [10] is followed by
a 0 or a 1. Then g ∈G+. Suppose that µ̂+ is a g-measure and let µ̂− correspond
to it under the natural bijection M(X,T )−→M(X−, T−). Here X− is the space∏0

−∞{0, 1}. One can easily show that µ̂+([1m00])/µ̂+([1m0]) does not depends on
m for m � 2 so has a constant value c∈ (0, 1). Hence

µ̂−([1m00])
µ̂−([1m0])

=
µ̂+([1m00])
µ̂+([1m0])

= c.

Suppose that µ̂− is a g−-measure for some g− ∈G−. Then g−(1∞00)= µ̂−[1m00]/
µ̂−[1m0] for all m � 2, so g−(1∞00)= c. However, one can use the properties
of {dn} to show that, for each fixed m � 1, µ̂+([0n1m0])/µ̂+([0n1m00])→ 0 as
n→∞. Hence µ̂−([0n1m00])/µ̂−([0n1m0])→ 1 as n→∞, so g−(0∞1m00)= 1 for all
m � 1. Therefore g− cannot be continuous, because limm→∞ g−(0∞1m00)= 1 �= c=
gm(1∞00).

We now show that if g+ ∈G+ and log g+ ∈W (X,T ) and µ̂+ is the unique
g+-measure, then µ̂− is the unique g−-measure for some g− ∈G− with log g− ∈
W (X−, T−).

Theorem 3.6. Let S : X̂ −→ X̂ be a two-sided topologically mixing subshift
of finite type and let T : X −→X, T− : X− −→X− be the corresponding one-sided
topologically mixing subshifts of finite type. Let µ̂+ −→ µ̂− be the natural bijection
from M(X,T ) to M(X−, T−) described above. Let g+ ∈G+ and let µ̂+ be a g+-
measure. If log g+ ∈W (X,T ), then µ̂− is a g−-measure for some g− ∈G− and
log g− ∈W (X−, T−). We have∣∣∣∣log

(
µ̂−([x−n, . . . , x0])
µ̂−([x−n, . . . , x−1])

)
− log g−(x)

∣∣∣∣� 2 lim inf
j→∞

vn+j(Tj log g+) ∀n� 1, x∈X−.

The functions log g+ ◦π and log g− ◦π− are cohomologous in C(X̂).
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Proof. For n� 1, define bn : X− −→ (0, 1) by

bn(x) =
µ̂−([x−n, . . . , x0])
µ̂−([x−n, . . . , x−1])

=
µ̂+([x−n, . . . , x0])
µ̂+([x−n, . . . , x−1])

.

We show that (log bn) is a Cauchy sequence in (C,X−). Since

bn(x)
bn+j(x)

=
µ̂+([x−n, . . . , x0])

µ̂+([x−n−j , . . . , x0])
µ̂+([x−n−j , . . . , x−1])
µ̂+([x−n, . . . , x−1])

,

we can use Theorem 3.1 to get

e−vn+j+1(Tj log g+)−vn+j (Tj log g+) � bn(x)
bn+j(x)

� evn+j+1(Tj log g+)+vn+j (Tj log g+).

Therefore |log bn(x)− log bn+j(x)|� 2vn+j(Tj log g+), and since log g+ ∈W (X,T ),
we have (log bn) is a Cauchy sequence in C(X−). Hence log bn(x)⇒ ψ(x) for some
ψ ∈C(X−). Since

∑
z∈T−1

− (x) bn(z)= 1 for all n� 1, we have
∑

z∈T−1
− x eψ(z) = 1. Let

g− = eψ. Then g− is a g-function for T− : X− −→X− and µ̂− is a g−-measure by
Corollories 3.2 and 3.3.

We get
| log bn(x) − log g−(x)| � 2 lim inf

j→∞
vn+j(Tj log g+).

To see that log g− ∈W (X−, T−), we use Theorem 3.4. Since log g+ ∈W (X,T ),
we have that

(p, x) −→ log
(

µ̂+([x0, . . . , xp+n−1])
µ̂+([xp, . . . , xp+n−1])

)
is a Cauchy sequence in BC(N×X). This is the equivalent to

(p, z) −→ log
(

µ̂−([z−(n+p−1), . . . , z0])
µ̂−([z−(n+p−1), . . . , z−p])

)

being a Cauchy sequence in BC(N×X−), and hence log g− ∈W (X−, T−).
We use [15, Theorem 1.4] to see that log g+ ◦π is cohomologous to log g− ◦π−

in C(X̂). Since log g+ ∈W (X,T ), log g+ ◦π is cohomologous in C(X̂) to ϕ− ◦π−
for some ϕ− ∈C(X−). By of [15, Lemma 13], ϕ− ∈W (X−, T−). Hence ϕ− is
cohomologous in C(X−) to log g1 for some g-function g1 : X− −→ (0, 1) [12]. Since
µ− is a g-measure for g1 and g−, we have g1 = g−. Hence log g+ ◦π is cohomologous
to log g− ◦π− in C(X̂).

We do not know if the corresponding result holds when W (X,T ) is replaced by
Bow(X,T ), but we do have the following.

Theorem 3.7. Let S : X̂ −→ X̂ be a two-sided topologically mixing subshift
of finite type, and let T : X −→X, T : X− −→X− be the corresponding one-sided
topologically mixing subshifts of finite type. Let µ̂+ −→ µ̂− be the natural bijection
from M(X,T ) to M(X−, T−) described above. Let µ̂+ be a g+-measure and µ̂− be
a g−-measure for some g+ ∈G+ and some g− ∈G−. Then log g+ ∈Bow(X,T ) if and
only if log g− ∈Bow(X−, T−).

Proof. From Theorem 3.5, we know that log g+ ∈Bow(X,T ) if and only if µ̂+

has approximate product structure, and log g− ∈Bow(X−, T−) if and only if µ̂− has
approximate product structure.
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