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Abstract 

In this thesis, Monte Carlo studies of the static critical behaviour of metallic mag­

netic thin-films are presented. The studies make use of a finite size scaling method 

designed for anisotropic shaped structures. This finite size scaling method is based 

on an assumption that a single correlation length is required to describe a thin-film 

close to its critical temperature and has lead to the derivation of formulae from 

which thin-film critical temperatures and exponents can be extracted. Monte Carlo 

simulations for Ising thin-films are carried out in order to verify the validity of the 

assumption and hence the formulae. Various algorithms and seed numbers for a 

random number generator are tested to minimise statistical errors. These studies 

also show the evolution from 2D to 3D-like behaviours as the films' thicknesses 

are increased. Critical temperatures and exponents are investigated for simple cu­

bic (SC), body centred cubic (BCC) and face centred cubic (FCC) thin-films. Our 

Ising 2D and 3D results are also shown to give good agreement with previous Monte 

Carlo work. 

We then move on to study in a more realistic model of a magnetic thin-film in which 

the 'exchange parameters' and anisotropic constants are extracted from 'first prin­

ciples' electronic structure calculations, and used in Monte Carlo simulations of a 

classical Heisenberg model. We model thin-films of Fe grown on a W(OOl) substrate 

which have been subjected to extensive experimental investigation. In line with the 

xiv 



Mermin-Wagner theorem, we find a slow convergence for the magnetisation with the 

system size L in 2D which is consistent with expected absence of finite magneti­

sation in the finite temperatures in the thermodynamic limit. From the thin-film 

results in finite size systems, the magnetisation in the surface layers is weaker than 

those in the inner layers and a similar trend is found for the susceptibility. Slow 

magnetisation convergence with size is also observed for all thin-films (thickness 

varying from 2 to 8 layers). Because of this and the sensitivity to statistical errors, 

only critical temperatures and 'susceptibility critical exponents' can be extracted 

from the susceptibility functions. The results again show a crossover from 2D to­

wards 3D-like behaviour. The critical temperatures are lower than those calculated 

from mean-field approximations and are in good agreement with experimental values 

where available. The differences in results between isotropic and anisotropic sys­

tems in which the anisotropic constants are very small in comparison to 'exchange 

interactions' are not significant. 
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Chapter 1 

Introduction 

Monte Carlo simulation methods are used nowadays to solve a wide range of statis­

tical problems (e.g. finance and risk forecasting [1, 2], traffic flow [3], nuclear reactor 

design [4], VLSI design [5], etc.). The common factor in these Monte Carlo methods 

is the use of series of random numbers to select states with the relevant probability 

density functions for the problems. 

Although they are numerical methods and cannot give exact results as analytic 

methods can, they have been shown to give very accurate results in comparison 

to exact treatments e.g. the 2D Ising model. They have proved themselves to 

be of practical use in applications to statistical physics problems. They can be 

used to study some interesting problems where exact solutions are unknown; for 

example, the nature of magnetic phase transitions in 3D and in reduced dimensions 

(thin-films) which continue to attract much interest from both experimentalists and 

theorists and which are the subject of this thesis. 

The interest in the magnetic phase transitions and their dependence on dimension­

ality has been boosted by the recognition of the technological and fundamental 

importance of magnetic metallic thin-films and multi-layers [6, 7]. At present it 
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seems that metallic magnetism is only quantitatively well explained for bulk and 

2D systems at zero temperature. Magnetic behaviour at finite temperatures (e.g. 

above Tc) especially for layered systems is still not fully understood. Even with sim­

ulation model studies by Monte Carlo methods for example, there is an incomplete 

picture for magnetic thin-films, in particular how the magnetic properties change 

from being 2D-like in the ultra-thin film limit to 3D-like when the films are thick. 

Then, this leads to the purpose of this thesis. We study the magnetic properties of 

metallic thin-films to investigate their behaviour as a function of film thickness by 

means of Monte Carlo simulations especially in the critical region (near the phase 

transition) where less understanding is available. We start with a brief introduction 

of the implementation of Monte Carlo methods to thermal equilibrium statistical 

physics problems in chapter 2. This includes how to relate the fluctuation of the 

magnetisation to the susceptibility, how to calculate the average of observables using 

a small number of terms but with reasonable accuracy using importance sampling, 

how to estimate the equilibration point, how to calculate the statistical error, how 

to calculate the correlation time which affects the statistical error of the calculated 

observable, how to extend the Monte Carlo results to temperatures nearby the sim­

ulated temperature to save computer time (histogram method) and how to analyse 

Monte Carlo results to extract critical temperatures and exponents using finite size 

scaling and fourth order cumulant methods. The chapter also includes the introduc­

tion of a simple magnetic model, the Ising model, which is used for the simulations of 

thin-films described in chapter 3 as a preliminary study for the classical Heisenberg 

model investigation in chapter 5. 

For thin-film simulations, we develop a method to analyse data based on a finite 

size method for anisotropic shaped systems. Ising thin-film simulations (chapter 

3) are firstly undertaken because of the relative ease in applying the algorithms 

including the one computer memory bit requirement to store one spin. For the thin­

film structures (simple cubic SC, body centred cubic BCC, and face centred cubic 
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FCC), we also reduce computation time by using a mapping function to store spins 

from three dimensional space into one dimensional array. We simulate the thin-film 

systems by using the methods described in chapter 2. Monte Carlo algorithms (e.g. 

Metropolis and Wolff algorithms) are tested for 2D square lattices to find an efficient 

algorithm for the study of the Ising model. Next, by using the fourth order cumulant 

and finite size scaling analysis described in chapter 2, the critical temperatures and 

exponents for the thin-films including and compared with those from 2D and bulk 

3D systems are reported. Demonstration of magnetisation and susceptibility scaling 

functions are shown to support our results. 

Traditionally, critical temperatures Tc extracted from Monte Carlo simulations are 

measured in a unit of an 'exchange parameter'. The usual process is done by setting 

all the first nearest neighbour interactions as well as the Boltzmann constant to 

1 and other nearest neighbour interactions to be proportional to that of the first 

nearest neighbour. This may be convenient when we consider simple magnetic 

models. However, for quantitative modelling of real magnetic materials, we need to 

allow the exchange interactions to become more flexible as sometimes the exchange 

interaction is not only a function of distance. For example, in real thin-film systems 

which we aim to model in this thesis, the exchange interaction is also a function of 

layer indices. Moreover, for the purpose of comparison to some experiments, the 

exchange interaction should have a proper energy scale unit. 

Thus, in chapter 4, we give some introduction to the calculation of the exchange 

parameters from a 'first principles' quantum mechanical electronic structure calcula­

tion method. We start with a brief review of the electron density functional method 

and its extension to finite temperatures with the Disordered Local Moment (DLM) 

picture. From this, it is possible to extract the critical temperatures from a mean­

field approximation. Usually, however, the mean-field critical temperatures are too 

high in comparison to experimental values and other more sophisticated methods 
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are needed to improve this. Here we use Monte Carlo methods. The 'exchange 

parameters' for a classical Heisenberg hamiltonian for Monte Carlo simulations are 

extracted from the 'first principles' method. Moreover, because of the proper energy 

scale of the 'exchange parameter', the simulation produces critical temperatures in 

real units (K). At the end of the chapter, we also mention a way to estimate the 

magnetic anisotropic constants from the 'first principles' for the purpose of getting 

more realistic models of layered magnetic materials. 

In chapter 5, with the Monte Carlo techniques for thin-film systems from chapter 3 

and the parameters from chapter 4 (exchange parameters and anisotropic constants), 

we perform simulations for both isotropic and anisotropic classical Heisenberg mod­

els of Fe thin-films grown on W(OOl) substrates. As well as the experimental interest 

in these systems, a reason for choosing this material is that the 'exchange interaction' 

is short ranged. In our simulations, we compare the efficiency of the algorithms for 

the classical Heisenberg model. For the isotropic model, we consider the Metropo­

lis, the bias Metropolis and the Wolff algorithms. For the anisotropic model, we 

compare the Metropolis and the Wolff algorithm in a modified version designed for 

our anisotropic model. We use the most efficient algorithm we have found in our 

simulations. Next, to compare with previous Monte Carlo works and to test our 

calculations, we perform the isotropic simulations for 2D square lattice and for bulk 

BCC structure. For the bulk structure, we find the analysis technique from chapter 2 

works very well. However, for 2D systems, we do not succeed in applying the fourth 

order cumulant method owing to slow convergence with size of the magnetisation 

in finite systems. Instead we calculate the critical temperatures and 'susceptibility 

critical exponents' from susceptibility scaling functions. This technique is also ap­

plied to the analysis of thin-film results because of the slow convergence that also 

exists for such layered structures. The simulation results for both isotropic and and 

anisotropic models are compared and presented as a function of film thickness. 
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Finally, in chapter 6, we summarise the main findings of the thesis and judge the 

merit of the Monte Carlo method we have developed from its results. We also 

mention some further research which can be done to extend the current work of this 

thesis to other areas. 
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Chapter 2 

Monte Carlo Simulations in 

Thermal Equilibrium Statistical 

Physics 

2.1 Introduction 

We begin this chapter with some basic statistical physics. We then explain some 

background for the simulations describing systems in equilibrium. After that, we 

introduce ways to analyse the data. Finally, we close this chapter by giving details 

on finite size scaling theory which tells us how to extract critical temperatures and 

exponents from our simulations. 
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2.2 Basic Statistical Physics 

2.2.1 Partition Function 

The expectation of a quantity Q for a system in equilibrium has the form 

where the partition function 

Z = L e-{3H, 

all states 

(2.1 ) 

(2.2) 

where f3 = (kBT)-l and H is the hamiltonian, is used to achieve various thermody-

namical quantities. For example, the internal energy (the expectation of the energy) 

is 

(2.3) 

giving the specific heat 

(2.4) 

Moreover the free energy has the form 

(2.5) 

From the free energy, the expectation of the magnetisation and the magnetic sus­

ceptibility can be obtained, 

<M> = ..!.-~ M -j3E" __ 1 ~ ~ -j3E" _ ~ 0 log Z _ of 
Z 7 Jje - f3Z 8B 7 e - (3 oR - - oR' (2.6) 

o <M> 02p 
= oR - OB2' x == (2.7) 

where B is an external magnetic field, a conjugate variable to the magnetisation 

(H = -MB). 
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2.2.2 Fluctuations 

In practice, the heat capacity C and magnetic susceptibility X are formed by look­

ing at fluctuations in the observable. For example, the mean square deviation of 

individual measurements of energy away from the average is 

(2.8) 

and 
2 1 '" 2 -(3E 1 8

2 
Z 

< E > = Z L... EIJ-e /J = Z 8/32 . 
IJ-

(2.9) 

Then from eq. (2.3) and eq. (2.8 - 2.9), 

2 2 182Z [18Z]2 82 logZ C 
<E > - <E> = Z 8/32 - Z 8/3 = 8/32 = k

B
/32' (2.10) 

which gives the expression for the specific heat as 

(2.11) 

Similarly, for the magnetic susceptibility, we obtain 

(2.12) 

2.2.3 Phase Transition 

In a magnetic material, the critical temperature Tc is a temperature which separates 

a disordered phase from an ordered phase. Above the critical temperature, the order 

parameter, the magnetisation M, is zero and it becomes finite when the system 

passes into the low temperature ordered phase, i.e. goes through a phase transition. 

At Tc the susceptibility also diverges in thermodynamic limit. 

In studies of phase transitions such as paramagnetic-ferromagnetic transitions, it 

is of fundamental interest to examine the critical exponents (parameters used to 
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describe thermodynamic quantities near the critical temperature) which depend 

only on the symmetry of the order parameter and the dimension of the system. 

Thus, in this thesis, we will focus our studies upon the critical region of magnetic 

systems. We will do this by carrying computer simulations but describing these we 

firstly need to understand how the system changes as it approaches equilibrium. 

2.3 Towards Thermal Equilibrium 

In this section, the evolution of an initial state to a final state is presented. Then, 

the idea of making the average by using only states that play the main contribution 

is described. 

2.3.1 Importance Sampling 

The evolution of a state changing from an initial state J.L to another state v can be 

described by using the Master equation as 

dw " 
d 

p. = L.)wv(t)R(v -+ J.L) - wp.(t)R(J.L -+ v)]. 
t v 

(2.13) 

where respectively wJl. is the probability weight of a system in state J.L at time t, and 

R(J.L -+ v) refers to the transition rate for the transition from state J.L to state v. 

However, in thermal equilibrium, the probability weight wJl.(t) transforms to an 

equilibrium occupation probabilities as 

(2.14) 

Moreover, for a system in thermal equilibrium with a reservoir at temperature T, 

this is equivalent to the Boltzmann distribution at temperature T [8]' 

1 -{3 PJl. = -e EJl. 
Z 

(2.15) 
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Then, we can now define the expectation value of Q by eq. (2.1) but this definition 

is practical only for small systems. For a larger system, we must choose some subset 

of the states to make the average instead. The best estimate of Q is given by 

Q 
L:~=l QJl.p;le-~EI' 

est = ",N -1 -~E/4 ' 
L..Jl.=1 PJl. e 

(2.16) 

where Qest is called the estimator of Q. When N ~ 00, Qe .• t ~ < Q >. Thus the N 

states which we choose from the system need to make the important contribution 

in the sum of the estimator to get good estimate of < Q > with small numbers of 

terms. This technique is called importance sampling. 

In addition, we can also simplify the estimator if the subset of states are chosen 

with the Boltzmann probability (pJl. = Z-1e-~E/4); so 

1 N 

Qest = N LQw 
Jl.=1 

(2.17) 

However, a Markov process is needed. 

2.3.2 Markov processes 

A Markov process is a mechanism which randomly generates a new state from an 

initial state. The probability of generating a new state JL by giving an old state 

1/ is called the transition probability P(p, ~ 1/). This probability depends only on 

the properties of the current state, not on any other states the system has been in. 

Moreover, in Markov processes, the transition probabilities P(p, ~ /I) satisfy the 

constraint L:v P(J.L ~ 1/) = 1. 

In Monte Carlo simulations, a Markov process is used to generate a Markov chain of 

states which appear with probabilities given by the Boltzmann distribution. How­

ever, in order to achieve this, the Markov process has to satisfy 2 conditions which 

are ergodicity and detailed balance. 
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Ergodicity 

This condition is the requirement that it should be possible for the Markov process to 

reach any states of the system from any other states over a suitable time period. This 

is necessary so that the generating states have the correct Boltzmann probabilities. 

With this condition, some of the transition probabilities of the Markov process can 

be zero, but there must be at least one path of non-zero transition probabilities 

between any two states that are chosen. 

Detailed balance 

The condition of detailed balance is the microscopic reversibility which says that 

the probability of the system going from a state J-L to state v is the same as that of 

going from state v to state J-L i.e. 

PJ.LP(J-L -t v) = PvP(v -t J-L). (2.18) 

However, because we want the equilibrium distribution to be the Boltzmann dis­

tribution, PJ.L and Pv are set to be the Boltzmann probabilities. Then, the detailed 

balance eq. (2.18) becomes 

P(J-L -t v) = Pv = e-{3(Ev -EIJ ) 

P(v -t J-L) PJ.L 
(2.19) 

Usually, the probability P(J-L -t v) is written as 

(2.20) 

The quantity g(J-L -t v) is the selection probability, the probability of generating 

a new state v from an old state J-L, and A(J-L -t v) is the acceptance ratio, the 

probability of accepting that new state. Combining eq. (2.18 - 2.20), we get 

P(J-L -t v) = g(J-L -t v)A(J-L -t v) = e-{3(Ev -EIJ
) 

P(v -t J-L) g(v -t J-L)A(v -t J-L) 
(2.21 ) 
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At this point, various algorithms in Monte Carlo simulations can have different 

selective probabilities and acceptance ratios. However, all of them adhere to the 

same concept of detailed balance eq. (2.21). 

2.4 Implementation 

To make a Monte Carlo simulation of a magnetic system, firstly, we set up an 

appropriate spin model and specify a lattice structure for the system (SC, BCC, or 

FCC). Secondly, we choose an algorithm and run the simulation. After that, we 

locate the equilibration point. Then, we start recording the measurements. Finally, 

we analyse the data and calculate the errors. Details of these are given in the 

following. 

2.4.1 The Ising Model 

In this simple model, the spin can be only +1 and -1. The hamiltonian is 

H = - L JijSiSj, 
<iJ> 

(2.22) 

where the notation < ij > refers to the pairs. Jij denotes the exchange parameter 

between site i and j. 

Despite its simplicity and its inability to describe most real magnetic materials 

adequately, it can be solved exactly in one [9] and two dimensions [10]. Then, we 

can test our simulations for these cases. Moreover, because of its simplicity, we can 

also use it to study the development of the dimension crossover in thin-films before 

considering a more realistic model (by using the Heisenberg model discussed in a 

later chapter). 
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2.4.2 Monte Carlo Simulation Algorithms 

There are different algorithms which use different probabilities and have different 

efficiencies. The most commonly used algorithms are the Metropolis algorithm [11 J 

and the Wolff algorithm [12J. 

The Metropolis Algorithm 

This is one of the simplest algorithms in Monte Carlo simulation. The algorithm 

defines that each new state is different from the old state by a single spin. Thus, if 

there are N spins in the system, there can be N different spins we can choose, and 

hence N possible states we can make from the initial state. Because of this, there 

are N selection probabilities and each of them has 

1 
g(f-L -+ 1J) = N' (2.23) 

With these selection probabilities, the condition of detailed balance eq. (2.21) be-

comes 
P(/1- -+ 1J) = A(f-L -+ 1J) = e-!3(Ev -EI") 

P(1J -+ f-L) A(1J -+ /1-) 
(2.24) 

However, to make the algorithm as efficient as possible, the acceptance probabilities 

have to be as large as possible. A way to do this is to give the larger part of the 

two ratios the largest possible value, and adjust the other to satisfy the constraint. 

For instance, if EJ.' < Ev , A(1J -+ f-L) is larger than the other so we set it to be one, 

and A(J.L -+ 1J) is set to be e-!3(Ev -EI") to satisfy eq. (2.24); thus, 

{ 

e-!3(Ev-EI") 

A(/1- -+ 1J) = 
1 

13 

if Ev - EJ.' > 0 

otherwise 
(2.25) 



The Wolff Algorithm 

This algorithm is based on the observation that spins can be grouped together and 

all spins in a group can be flipped at the same time. The main purpose is to reduce 

the correlation time (to be described later) which in turn helps to reduce statistical 

errors. 

To apply this algorithm to the Ising model, a random seed spin (Sd is chosen. Then 

those of the neighbouring spins (Sj) that are pointing in the same direction are 

added with a probability P(Si, Sj) = 1 - e-2/3J;j to form a group. Next, we repeat 

this process for just the added neighbour spins, whilst ignoring the spins that are 

already in the group, until no more new spins are added. Finally, all spins in the 

group (cluster) are flipped, Si -4 -Si. 

In this way, ergodicity is guaranteed because P can be very small so that the cluster 

contains only one site. Then, any configurations can be reached in a suitable time 

scale. Also, for the detailed balance, by choosing the adding probability in this way, 

it gives ~(~:~ = 1 (e.g. see [13]). So the cluster is always flipped. 

The main benefit of using the Wolff algorithm rather than the much simpler Metropo­

lis algorithm is the dramatic reduction in correlation time. The correlation time 

arises from anyone state being created from previous states. So, many states are 

correlated to many other states and this can increase the statistical errors in terms of 

correlation. The Metropolis algorithm updates each spin individually. This makes 

spins in the ferromagnetic phase to have less tendency update because to make one 

spin align differently from its neighbour costs a large energy. Then, the average 

may be calculated from many states which are the same. However, the Wolff algo­

rithm allows more than one spin to flip (and always flip) at the same time. Thus, 

this can push the system to a state which is far more different from the previous 

state than one obtained from the Metropolis algorithm. As a result, it produces less 
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correlation. So, it improves statistical errors (described in a later section). 

2.4.3 Equilibration 

Because we are interested only in static behaviour, we discard any measurements 

taken before the system reaches its equilibrium point. The time to reach this point 

is the equilibration time Teq, and any measurements taken before this time belong 

to dynamic behaviour. One of the simplest ways to find the equilibration time 

is to plot the observables of interest against time and find the point where the 

observables start fluctuating within a narrow range around their mean. Moreover, 

we can also improve the accuracy of finding the equilibration time by introducing 

another simulation starting with different initial configuration. At the equilibrium, 

both of them should give the same mean (average). 

2.4.4 Observables 

When the system is in an equilibrium state, we record the total energy (the hamil­

tonian) 

and the magnetisation per spin 

E = - 2:= JijSiSj 
<iJ> 

(2.26) 

(2.27) 

as a function of time. Then, from the fluctuation in the magnetisation, we calculate 

the susceptibility 

(2.28) 
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2.5 Analysis 

2.5.1 Statistical Errors 

In the Monte Carlo simulation, the main source of the error is from the fluctuation. 

Thus, if we perform the simulation making n measurements of the magnetisation 

m's during a particular run, we calculate the standard deviation by 

a = J ~ [<m2 > - <m>2]. (2.29) 

However, for small N, we need to replace N by N - 1. 

This standard deviation (for a normal distribution) represents how good the expec­

tation is as about 68% of the data lying around the mean in region < m > ± (J. 

In some cases, we can not use this direct way to find the error as some quantities, 

for example the magnetic susceptibility X, are calculated from the fluctuation of the 

mean. We need to use a re-sampling method like the jackknife method (e.g. see 

[14]) to calculate the error. 

In the jackknife method, suppose that there are n data of the magnetisation, we 

take the first magnetisation ml out and calculate Xl' Then, putting ml back, taking 

m2 out, we calculate the X2' After that, we repeat the process for all Xi'S and the 

estimate of the error is 
N 

(J = 2)Xi - X)2, (2.30) 
i=l 

where X is calculated from all N data. 

However, finding the statistical errors in this way, each data in the series has to 

be independent from any other. Nevertheless, the quantities we measure from the 

simulations (for instance, the magnetisation) at a particular state are created from 

previous states. Thus, this creates another kind of statistical error in terms of a 

correlation. 
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2.5.2 Integrated Correlation Time 

As we use the Markov process to update our magnetic system, our results (e.g. m's) 

are not independent. The correlation among them can be described by considering 

the expectation value of the square of the statistical error [15J 

«6m)'> ~ ([~~(mt-<m»n 
= (~2 ~(mt- <m»2) 

+ (~2"t "t(mt- <m»(mt'- <m»). 
t=l t'>t 

(2.31) 

For the second sum from the second term on the right hand side, there are (N - t) 

terms for each t in the first sum. Hence, it is possible to write [15J 

1 2 N 
N«m2> - <m>2) + N2 L:)N - t)[<momt > - <m>2J 

t=l 
1 
N«m2> - <m>2)(1+27), (2.32) 

where 7 = L:f:l (1 - -k) <~!'2;.~::~~§2 is called integrated correlation time and the 

smaller this term, the less dependent among the data in the system. Thus, the 

algorithm used in a simulation should produce as small a 7 as possible. 

However, we may be able to discard 7, from the fact that ¢(t) = <m0'2t >-<m§2 
<m >-<m> 

decays with time, by re-sampling the data with time interval 6.t between two suc-

cessive data at least 27 (e.g. see [13]). Thus, we can now assume that there is no 

correlation in our new data set. 

2.5.3 Extrapolation Technique 

When carrying out a Monte Carlo simulation, to find the location of the critical 

temperature Tc is time consuming as we do not know exactly where the critical 
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point is. So, we need to perform many short simulations at several temperatures to 

guess roughly the Tc at which the variation with temperature of the magnetisation 

is greatest and where the susceptibility shows a peak. After that, we can proceed 

by making a long simulation at the guessed Tc and record a series of data, and use 

an extrapolation technique to achieve data from nearby temperatures to find the 

actual Tc (by using finite size scaling technique e.g. [16]). As a result, we can save 

a lot of computer resource (time). 

Single Histogram 

The single histogram technique [17] uses extrapolation to extract some results from 

the temperatures around the temperature at which we perform the simulation, To. 

Recalling the ordinary estimator eq. (2.16), instead of choosing Pi as its own Boltz­

mann probability, we choose Pi to be the same as the Boltzmann probability from 

the performed temperature To. Thus, 

= 

Ei Qie-(f3-f3o)Ei 

Ei e-((3-(3o)Ei 

EE,Q QN(E, Q) exp( -(f3 - f3o)E) 
EE,Q N(E, Q) exp( -(f3 - f3o)E) , 

(2.33) 

where 130 = l/kB To, and N(E, Q) is the two dimensional histogram for the energy 

E and the observable Q. 

The reason of using the histogram N(E, Q) instead of raw data Qi'S and Ei'S is 

that in the past the media for data recording was expensive. However, although the 

media are much cheaper and large memory is more readily available now, we still 

find some advantages in terms of computer time i.e. we do not have to go through 

every raw data but use the histogram bins instead. Nevertheless, the bin should not 

be too large to bring significant error or too small to use unnecessarily computer 

resource. The optimum size is found by experiment. 
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However, there are two main problems with the histogram method. One is that it 

becomes unfeasible to fit the histogram in the computer memory with the extensive 

variables, E and Q. SO, instead of making two-dimensional histogram (E and Q are 

indices), we follow [16] and use one-dimensional arrays to keep the average of Q as 

a function of E (by performing the sums over Q first) as 

Q ((3) - LE <Q(E» N(E)exp(-((3 - (3o)E) 
est - LEN(E)exp(-({3-{3o)E) , 

(2.34) 

where <Q(E» is the constant energy average of Q. 

The other problem is that when making the summation of the exponential function, 

both numerator and denominator exceed the computer limit whereas the fraction 

does not. The solution to this is to perform the summation in logarithmic terms 

[13]. For example, for two large numbers, Xl and X2, with their logarithms II and 

l2 with h 2: l2 , the logarithmic sum is 

log(elJ + el2 ) = log(el1 (1 + el2 - l1 )) 

II + log(l + el2 - l1 ). (2.35) 

Then, when expressing both numerator and denominator sum in logarithmic forms, 

we can calculate Qest in eq. (2.34) as 

Q _ num. _ e1og(num.)-log(denom.) 
est - - . 

denom. 
(2.36) 

One more thing to be aware of is the range of making the extrapolation. From eq. 

(2.33), the histogram weight 

N(E, Q)e-((3-(3o)E 

W(E, Q) = LE,Q N(E, Q)e-((3-(3o)E (2.37) 

is proportional to N(E, Q) at the temperature {3 = (30 at which the original simula­

tion was performed. As a result, when {l strays too far from (lo, the weight W(E, Q) 

gives Qest incorrectly [13]. 
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One solution to this is to allow the largest 6T = T - To which satisfies the criterion 

[18J 

IU(T) - U(To)1 ~ O"E, (2.38) 

where U == < E > and 0" E is standard deviation of E at To. 

2.5.4 Finite Size Scaling 

Because we can only model the real system by running the simulation for finite 

sizes and times, according to limitations of computer memory and time, we have 

to consider finite size effects which make properties behave differently from those 

in the thermodynamic limit. For this reason, we need finite size scaling theory to 

analyse the data measured from finite size simulations. 

The Finite Size Method: Introduction 

In the vicinity of a phase transition, where the order parameter of the system has 

to move from a symmetric to a broken symmetric state (or vice versus), lots of 

fluctuation occurs bringing about large correlation in this region. Usually, this kind 

of correlation is characterised by the correlation length E which diverges at the 

critical point. 

In a magnetic system, the thermodynamic properties such as the susceptibility X 

and the magnetisation m are also characterised by the correlation length E in the 

critical region and they vary as [19, 20J 

E ex Itl-V, 

m ex Itl i3 , 

X ex Itl--r, 

20 
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where t = TT~c is the reduced temperature used to measure the distance away from 

critical point. Here, the critical exponents " (3, and 1/ depend only on symmetry of 

the order parameter m and the dimension of the system. 

All the equations in eq. (2.39) represent asymptotic expressions and valid only 

when t -t O. Notice m in eq. (2.39), the equation is for a system below the critical 

temperature. 

In any finite size systems, the system's linear dimension length L has the effects on 

the correlation length such that if L » ~, no significant finite size effect should be 

observed. Nevertheless, when L « ~, the system size will cut off the correlation 

length so that a finite size rounding of the critical point is expected. Then, by 

rewriting the susceptibility X and in terms of correlation length ~ in eq. (2.39) (e.g. 

[13],[20]-[23]), we get 

(2.40) 

where xo is a dimensionless function and has the properties 

xo(x) constant for x » 1 

x'Y/V as x -t 0, (2.41) 

which leaves X untouched in thermodynamic limit, but limits X corresponding to 

the system dimension L in critical region. However, Xo is not very useful as it 

still contains the correlation length ~. For this reason, it is more conventional and 

convenient to define a scaling function such that 

(2.42) 

then, we get 

(2.43) 

Notice that the absolute of the reduced temperature t is taken out to allow the 

scaling function below Tc to behave differently from the scaling function above Te. 
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This is in an agreement with the behaviour of X as it is not symmetric on the two 

sides of the phase transition. Similarly, we can write the magnetisation m as 

(2.44) 

but, as has mentioned before, it is valid only in the magnetically ordered phase. 

Now, the next step is to find Tc from finite sizes. One of the ways to do this is to 

look at the scaling functions X's near Te among different sizes because they should 

lie on the same curve if we use correct values of lJ and Te. However, to guess both 

lJ and Te is not practical especially when the data is not perfect (Le. finite system 

size and measurements over finite time). 

Then, the next way is to consider the scaling variable x = L1/Vt, and we can write 

(2.45) 

where Xo = L1/ v (Toi;c) and To is temperature where X in finite size gets its peak. 

So, by plotting To against L and using correct lJ, we can locate Te at the y-intercept. 

Nevertheless, lJ must be known beforehand. 

Fortunately, there is also another way of finding the Te very accurately by using 

the fourth order cumulant [24J as 

U = 1- ~ <m4> 
L 3<m2>' (2.46) 

which for different sizes of L's produce the same UL at the critical point making 

(UU/Ut}T=Tc = 1 where L' = bL. This fourth order cumulant is derived from spin 

probability distribution function in finite size scaling theory [22]. 

However, in finite systems, there seem to be the presence of residual corrections to 

finite size scaling [24]. As a result, to use the cumulant to locate the Tc correctly, 

one actually needs to plot Tc(b) against (In b)-l , and extrapolate the results of the 

method for (In b)-l -t 0 [24]. 
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2.6 Conclusion 

In this chapter, we have presented the statistical physics theoretical background for 

the Monte Carlo simulation. In next chapter, we will move onto describing Monte 

Carlo simulation in Ising thin films to study how thickness of the films relates to 

the properties of the Ising magnet in the critical region. 
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Chapter 3 

Ising Thin-Film Simulations 

3.1 Introduction 

In this chapter, we aim to study magnetic thin-film systems near critical tempera­

tures Te and examine how Te and critical exponents relate to the film thickness. 

Then, we apply finite size scaling method to systems with layered geometries where 

the in-plane and out-of-plane dimensions of the films are different i.e. Lx = Ly = L 

and Lz = l « L (z is treated to be a normal direction to the film surface). 

In the finite size technique, we consider the correlation length E near Te. The two­

dimensionality of the behaviour of the films should start when the correlation length 

along the out-of-plane direction is the same size as the film thickness l. On the other 

hand, along the in-plane direction, the correlation length is still smaller than the 

film size L, and becomes the same size as L when T --+ Te. 

So, we assume that for this thin-film structure (Lx = Ly = Land Lz = l « L), 

close to Te, a single correlation length E = ~x = Ey is enough to describe the 

thin-film systems because we may be able to treat Ez = l as a constant. Then, 
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within this assumption, we study formulae based on the two-point correlation of the 

magnetisation to investigate how the critical exponents scale with film thickness. 

Also, for the critical temperatures Te, we use the fourth order cumulant UL of the 

magnetisation [24] described in chapter 2 as a way to extract Te from the thin-film 

geometries. 

In brief, we use Monte Carlo simulations of Ising thin-films to check the validity 

of our assumption via the hyperscaling relation (the following section). Next, we 

extract Te and critical exponents for each thin-film system. Finally, we close this 

chapter by summarising the simulation results and the conclusion of their behaviour. 

This is preliminary to the studies of the more complicated but realistic system, 

Heisenberg model, which we will describe in the next chapter. 

3.2 Finite Size Scaling in Thin-Films 

In this section, we propose a method used to investigate how magnetic behaviour 

relates to the size of the system in critical region. For example, in thin-films Lx L x l 

where l is the film thickness and fixed, we vary the film size L x L to find how the 

magnetic susceptibility and the magnetisation scale with L at the phase transition. 

3.2.1 Critical Exponents and Temperatures 

With the assumption that only a single correlation length E is required, the hyper­

scaling relation should be satisfied as [25, 26J 

dv 'Y + 2{3 = 2 - a, (3.1) 

(3.2) 

where d is the dimension of the system. Then, by following the idea in [27] (finite 

size scaling in anisotropic shaped structures), we apply this technique to thin-film 
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systems by starting with the connected two-point correlation function (e.g. consider 

[21]) of the magnetisation as 

G~2)(r) _ <m(rl)m(r2)> - <m>2, 

= <m(O)m(r» - <m>2, 

(3.3) 

where r = IFI - r21 and m(rl) is the magnetisation magnitude at rl. However, at 

Tc (reduced temperature t = 0), the asymptotic form for the correlation function 

for isotropic-shape systems is [28] 

1 G(2)(r t = 0) "" "" (x2 + y2 + z2)-(d-2+T/)/2 
c' r d- 2+17 ' 

(3.4) 

where 'fJ is the critical exponent for G~2). Suppose that this correlation function is 

also valid for anisotropic-shape system e.g. thin-films, if we consider the suscepti­

bility 

(3.5) 

and using the periodic boundary condition along xy directions, we get 

1 Lx LIJ L. L. 

kBTX = L 2: 2: 2: L <m(1,1,Zl)m(x,y,Z2» - <m>2. (3.6) 
Z x=1 y=1 zl=1 z2=1 

Then, by changing the index Z2 to ZI + z, we get 

1 Lx LIJ Lz L.-zi 

kBTX=y- L 2:L: L: <m(1,I,zdm (x,y,ZI+ z»-<m>2. (3.7) 
Z x=1 y=1 zl=1 Z=I-Z1 

If Lx and Ly » 1, the sum can be replaced by the integral by choosing the lattice 

spacing as unity, 

kBTX-
_. _1 {Lx dx {LlJ dy ~ L~I (0 0 ) ( ) 2 .- in in ~ ~ <m , ,ZI m x,y,ZI + Z > - <m> . 

Lz 0 0 zl=1 %=1-%1 

(3.8) 
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Next, by changing the variable x -+ Lxx' and y -+ Lyy', and including condition in 

eq. (3.3) and (3.4) that <m(O, 0, zdm(x, y, Zl + z) >Tc ex (x2 + y2 + z2)-(d-2+1/)/2 , 

we rewrite the susceptibility as 

kBTCX(Tc) ::= 
(LxL ) 1-(d-2+1/)/2

1
1 i 1 

~=-...:y~ dx' dy' x 
Lz 0 0 

L. L.-Zl (L '2 L,2 2) -(d-2+T/)/2 
'"""' '"""' x X y Y z ~ ~ -y-+-y-+ L L 

zl=1 Z=1- Z1 Y x X y 

(3.9) 

Nevertheless, in thin-film structure, we set Lx = Ly == Land Lz == l, then 

(3.10) 

As Z E [1 -l, 1 - 1J and we set 1 « L so p « 1. Thus, we may discard the term 

Z2 A 1 ""I ""I-Zl ('2+'2 Z2)"-'l2( 12 '2) S h bl V. sa resu t, ~zl=1 ~Z=1-Z1 X Y + V "-' X + y . 0 t e suscepti i ity 

becomes 

kBTCX(Tc) l(L2)1-d-~+!) 101 
dx' 101 

dy'(x,2 + y,2)-(d-2+1/)/2, 

ex L;+2-dl, (3.11) 

where the scaling relation ,/v = 2 - TJ [26J is used. Notice that for a particular 

thin-film system, I is a constant, the only variable in the scaling is L i.e. 

X(Tc) ex L~+2-d. (3.12) 

We have verified that this formula is also valid in thick thin-film case as long as 

l « L. However, when l approaches L, the formula should be no longer valid as the 

integral part is now L dependent. 

Now turning to the magnetisation < m >, we may assume that < m > is of the same 

order as the root mean square magnetisation < m2 >¥c,2, 

< > < 2 >1/2 m Tc ex m Tc' 
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(3.13) 

where again we use -~ = ~ - ~ [26J. However, one may argue that, by approaching 

Te from above, < m >Tc should be zero. This is correct only in the thermodynamical 

limit and not in a finite size simulation. Also, as can be seen, < m > scales only 

with L in the same way as isotropic shaped systems. 

To find Te, it is possible by considering the fourth order cumulant [24J . At Te, for 

a particular thickness, it is expected that [23, 29J 

UdTe, l) ~ U(l). (3.14) 

In detail, to understand the cumulant in thin-films more clearly, the investigation 

of the four spin correlation function is needed. Nevertheless, if the curves of UL'S 

from various L's cross at the same temperature then this method is valid. 

3.2.2 Scaling Functions 

A way to check how good the critical exponents are is to consider the scaling func­

tion i.e. if using the correct exponents, close to Te, the scaling function for different 

lattice sizes should collapse onto the same curve. Then, we can expand the suscepti­

bility functions eq. (3.11) and the magnetisation eq. (3.13) for nearby temperatures. 

For a thin-film system, as we mentioned before, the film-behaviour should start 

when the correlation length ~ along the out-of-plane direction becomes the same 

size as the thickness (~z = l), whereas along the in-plane direction, the correlation 

length (~x = ~y == ~) should still be smaller than L. However, when ~ - L, there 

will be a cut off behaviour. 

Then, by matching eq. (2.43) with eq. (3.11) and eq. (2.44) with eq. (3.13), we 
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expect 

X(T, l) = Lhlll )' X(L1/Ilt, I), 

<m{T,l» = L-f3/lI iii(L I / lI t,I). 

(3.15) 

(3.16) 

where (,/1/)' == 1/1/ + d - 2 and the thickness 1 is absorbed into the scaling function 

X(L1/llt, l). Nevertheless, in this case, the exponent 1/ must be known before hand. 

Fortunately, from [24], it was shown that the slope of the cumulant at Te, or any­

where in the finite-size scaling region, varies with system size like LIlli. Thus, we 

can use this technique to calculate 1/ and also the scaling functions. 

3.3 Simulation 

3.3.1 Lattice Structure and Implementation in Computer Memory 

For a simple cubic (SC) system, it is straightforward to use a three-dimensional 

array to store the spins. However, the maximum size in each dimension should be 

equal to 2n where n is a positive integer to save computer time [30]. Then, this 

sometimes requires extra memory when the length in each dimension is not equal 

to 2n. So, instead, we use a one-dimensional array and create a mapping function 

to match an array index to the location of a spin in the actual lattice structure. 

For the boundary condition, for our thin-film structure, we use helical periodic 

boundary conditions along the in-plane direction (x and y directions). For the out­

of-plane (z) direction, we set a free boundary. 

In SC films with L lattice points along the in-plane directions (x,y) and 1 points 

(layers) along the out-of-plane directions (z), the nearest neighbour sites to a site i 

are 

1. in-plane directions: i + 1, i-I, i + L, i - L 

29 



2. out-of-plane directions: i + £2, i - £2 

Now, by considering the FCC and BCC structure, the simplest way to create those 

structures is to treat them as sub lattices of the cubic lattices. If we use (h, k, l) as 

indices of a point in a cubic lattice, when h + k + l is even, this site belongs to FCC 

lattice. Nevertheless, if h, k, and l are either all even or all odd, it belongs to BCC 

lattice. However, in this way, respectively half and 3/4 of the space is unused in 

FCC and BCC lattice. Then, again, we use one-dimensional arrays and use mapping 

functions for FCC and BCC structures so that each element in the arrays refers to 

a lattice point. 

For FCC films, we construct the film structure as shown in figure (3.1). 

Figure 3.1: FCC thin-film structure for L = 4 and l = 2. The single circles are 
lattice points in even (bottom) layer and the double circles are for odd (top) layer. 

By this way, we can create FCC films by adding more even and odd layers and so on. 

From the figure, the nearest neighbours to site i are set according to the following 

prescriptions: 
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1. in-plane direction: 

( a) if i mod 2 is even : i - L - 1, i - L + 1, i-I, i + 1 

(b) if i mod 2 is odd: i + L - 1, i + L + 1, i-I, i + 1 

2. out-of-plane : 

(a) if i is in an even layer 

'f . d 2 . . ± £2 . ± £2 l' ± £2 2' ± £2 L 1 i. 1 Z mo IS even : z "2' z "2 - ,Z "2 - ,t "2 - -

'f . d 2' dd . ± £2 . ± £2 l' ± £2 2' ± £2 L ii. 1 Z mo IS 0 : t "2 ' z "2 - , z "2 - , Z "2 + - 1 

(b) if i is in an odd layer 

'f . d 2 . . . ± £2 . ± £2 l' ± L2 2' ± L2 L 
1. 1 Z mo IS even . Z "2' Z "2 + , z "2 + , Z "2 - + 1 

'f . d 2' dd" ± L2 . ± £2 l' ± L2 2' ± £2 L 1 11. 1 't mo IS 0 . t "2' t "2 + , t 2" + , t "2 + - . 

For BCC films, as can be seen figure (3.2), the nearest neighbours are not in the 

same layer but either in the upper and lower layers. The prescription is 

'f .. . I' . ± £2 l' ± £2 . ± £2 £. ± £2 £ 1 1. 1 Z IS lD an even ayer . z "4 - ,Z T' Z "4 - '2' z "4 - '2 - . 

'f .,. dd I . ± £2 + £ . ± £2 £ l' ± £2 . ± £2 1 2. 1 t IS lD an 0 ayer : z "4 '2' Z T + '2 + ,z "4' Z T + 

Notice that we have defined the linear dimension L by looking at the projection of 

points on a particular axis (e.g. x). Then, L equals to number of lattice points on 

that projected axis. Also, because we use free a boundary condition for the surface 

layers, there will be no neighbouring site below the bottommost layer and above the 

topmost layer. 

3.3.2 Random Number Generator 

Random numbers play a vital role in Monte Carlo simulations. As the algorithm 

can only provide the probability to move onto another state, we need a random 
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Figure 3.2: BCC thin-film structure for L = 4 and l = 2 

number [0,1) to accept or reject that moving. However, non-uniform and correlated 

pseudo-random number generators can severely give incorrect results [31]. Then, 

before using a generator, we need to test it first. A good generator should give a 

series of random numbers as an uncorrelated sequence with long period, uniform, 

and use modest computer time in comparison with the whole simulation (e.g. see 

[32]). 

We decided to use the generator drand48 LCG(248
, 5DEECE66D16, 11) which is 

employed by the ANSI C. The reasons are that it gives good results for the spectral 

test (structure analysis) [32, 33]. Moreover, used in a test Monte Carlo simulation 

[34J, it led to results which agreed very well with the exact results for 2D Ising 

model. 
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3.3.3 Ising Hamiltonian 

The hamiltonian of Ising model is defined as 

H - - "" ]··S·S· - ~ tJ t J, (3.17) 
<iJ> 

where < ij > discards any double sums and Si can be only ±1. To compare with 

the exact result for 2D [10J (kBTcl J ~ 2.269), we set Jij = 1 where site i and j 

are nearest neighbour and Jij = 0 otherwise. With this type of hamiltonian, we can 

measure the energy and the magnetisation as 

E - L ]ijSiSj, 
<iJ> 

and the magnetic susceptibility per spin is calculated from 

3.3.4 Simulation Techniques 

(3.18) 

(3.19) 

(3.20) 

To study the critical behaviour in the Ising films, we perform Monte Carlo simu­

lations for SC, BCC, and FCC films with film thicknesses l as 1,2,4,6,8,10,15 and 

20 using Ising hamiltonian with Jij = 1 only for first nearest neighbours and zero 

otherwise. However, in the BCe films, we omit monolayer as the first nearest neigh­

bour is the actual second nearest neighbour in BCe structure. Next, for each film 

thickness, we vary the film size Lx L with L ranging from 48 to 128 (using a step of 

16). In addition, we also perform simulations for bulk systems (L x L x L) with the 

same L's as in thin-film case. However, in bulk systems, we perform 2 runs using 2 

different boundary conditions for the surface layers i.e. free and periodic boundary 

conditions. 
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Equilibration 

As our interest is the static behaviour, during the simulation, before making any 

measurements, we need to ignore some states to allow the system to reach the equi­

librium state. Then, we make some test simulations for both Wolff and Metropolis 

algorithms (discussed in the previous chapter). The magnetisation of the 128 x 128 

Ising model as a function of time (measured in Monte Carlo steps per site) is shown 

in figure (3.3). 

In the Metropolis algorithm, the number of Monte Carlo steps per site (mcs/site) is 

defined in terms of the number of attempts to flip one spin per site. Then, in this 

way, it does not mean that for 1 mcs/site a spin must be flipped. However, for the 

Wolff algorithm, as all spins in a group will be flipped once a group is formed, we 

then define the Monte Carlo step per site in terms of the number of attempts to add 

one spin into a group per site. 

From the figure (3.3), for low and high temperatures, the equilibration time for 

both Wolff and Metropolis algorithms seem to be the same. However, when the 

temperature is close to Tc (for 2D Ising model, Tc ~ 2.269), by using the Wolff 

algorithm, the system reaches the equilibrium state faster. Moreover, if we consider 

the flipping percentage 

number of spins that are successfully flipped 
Flipping Percentage = b f fl" x 100, (3.21) 

num er 0 attempts to lp spms 

where in the Wolff algorithm, the number of attempts to flip spins changes to the 

number of attempts to add spins into groups, we can compare the efficiency of these 

two algorithms as in figure (3.4). Also in the figure, we investigate the real c.p.u. 

time used to successfully update a spin for both algorithms. In the simulations, 

for this Ising model, 90 percent of all operations in flipping are bitwise operations 

(mostly exclusive nor and or) to minimise computer time usage. The processor we 

used is a Pentium III 800 MHz for this comparison. 
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Figure 3.3: The magnetisation per spin (m) of 128 x 128 Ising model using the Wolff 
algorithm (upper figure) and the Metropolis algorithm (lower figure) as a function 
of time. The initial configurations were randomly chosen. The fluctuation is large 
near critical temperature kTc / J ~ 2.269. 
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Figure 3.4: (upper pairs) The time (in nanosecond) used to successfully update one 
spin and (lower pairs) the ratio of flipping a spin (in %) for 128 x 128 Ising model 
between the Wolff and the Metropolis algorithms. Lines are used to guide the eyes. 

From figure (3.4) , we can see that the flipping percentage in the Metropolis algo­

rithm in low temperature phase (T < Tc ) is extremely small. This is because the 

Metropolis tries to update each spin individually. In a ferromagnetic phase, all spins 

tend to align into a same direction. To flip one spin to an opposite direction causes 

large energy move and this is not preferable. However, in the Wolff algorithm, the 

probability of adding spins into group Padd = 1 - exp( -2{3Jij) is very high ; thus, 

many spins with the same direction are grouped and flipped together . This makes 

the flipping percentage very high. On the other hand, for higher temperatures, the 

Metropolis gives a higher percentage because now the thermal energy is high enough 

to compensate any high energy required for the flipping. The Metropolis percentage 

is still lower than that of the Wolff algorithm. 

In addition, in terms of c.p.u. time, it is very clear from the figure that with the 
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higher flipping percentage of the Wolff algorithm, the time used to successfully flip 

a spin is very small in comparison with that from the Metropolis algorithm except 

in very high temperature regions in which it turns out to be of the same size. 

There is also one point to consider carefully for the configuration update. In Monte 

Carlo simulations, the key quantity used to update spin configurations is the energy. 

If two successive configurations have got the same energy but are separated by a 

huge energy barrier (i.e. all spins up and the other is all spins down), there is still a 

tendency to move between those two configurations in one successive update which 

in fact takes ages to occur in the real system. Then, when finding the expectation 

of the magnetisation-per-spin (m), we need to consider magnetisation magnitude 

instead i.e. 
1 tmax 

< m > = -t - L Imt I 
max t=l 

(3.22) 

Integrated Correlation Time 

The correlation time represents correlation among the data arising from dependen­

cies. To choose carefully the algorithm for our simulations, we need to consider the 

(integrated) correlation time given by both the Metropolis and the Wolff algorithm 

Le. in figure (3.5). 

However, as in the Wolff algorithm, a group of spins is flipped together; thus, one 

needs to be careful about the unit of time used in measuring the observables. For 

example, if we define a unit time in the Metropolis algorithm as one attempt to 

flip a spin per site, and we want to compare the correlation time between these two 

algorithms, we need consider them on the same time scale. This can be done as the 

following way. 

In the Metropolis simulation, we record observables when number of attempts to 

flip spins is equal to N (the number of spins in the system). This time is defined as 
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Figure 3.5: The integrated correlation time T for (2D) 128 x 128 Ising spins of the 
Metropolis and the Wolff algorithms after mapping onto the same time scale (see 
text). Lines are used to guide the eyes. For all temperatures, 2000 configurations 
are discarded and use 105 configurations to find T. 

1 mcs/site. However, in the Wolff simulation, we can measure the observables only 

after at least a group of spins is flipped. Moreover, this group can be very small 

to contain only 1 site at a very high temperature, or it can be very big to contain 

all sites at a very low temperature. Then, in the Wolff simulation, we let groups of 

spins to be flipped and measure one observable only after the number of spins in 

the flipped clusters (groups) exceed or are equal to N. In this way the time interval 

between two successive observables (in a unit of 1 site flipping) is approximately 

6 - i x (average cluster size) 
t= N ' (3.23) 

where i is the smallest integer such that i x (average cluster size) 2 N. Next, we 

need to convert this 'successful flipping time' to 'attempt to flip time' by using eq. 

(3.21). By this way, we can convert the Wolff time to Metropolis time. Then, to 

38 



map the Wolff correlation time onto the Metropolis time scale, we multiply T wolff 

by the Wolff time in Metropolis unit. 

By investigating the figure (3.5), we notice that close to the interesting critical region 

where critical slowing down takes place (for instance, kBTC / J ::: 2.269 for 2D Ising 

model), the Wolff algorithm dramatically cuts down the correlation time. One of 

the reasons is that the Wolff algorithm updates many spins at the same time instead 

of the individual updating of the Metropolis algorithm. This is a way to push the 

system far away from the previous state. As a result, this brings less correlation. 

So, by comparing both algorithms in terms of spin updating time and correlation 

time, we use the Wolff algorithm for all our Ising simulations. 

Critical Temperatures and Critical Exponents 

To estimate Tc for each film, firstly, we need to roughly locate the critical regions. 

So, for each system with layer size Lx L and thickness l, we perform series of short 

simulations using 5000 configurations to make the average for temperatures kT / J 

vary from 1.00 to 11.00 with a step of 0.10. In each simulation, 2000 configurations 

are discarded for equilibration. Then, we look for the critical region where the 

susceptibilities have peaks or the magnetisation curves have maximum gradients 

e.g. figure (3.6). 

From the figure, the temperature where the the magnetisation curves have maximum 

gradient increases with increasing number of layers. Also, the peaks of the magnetic 

susceptibilities show the same trend for all our lattice structures (SC, FCC, and 

BCC). 

Next, we define the kBTO(L,l)/J as the temperature at the centre of the critical 

region. In addition to the temperature that the magnetisation curve have maximum 

gradient or the susceptibility shows its peak, we can also roughly locate the critical 
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Figure 3.6: Magnetisation(upper) and magnetic susceptibility (lower) for 48 x 48 x l 
Ising SC thin-films (l == number of layers) and 48 x 48 x 48 SC Ising bulk system as 
a function of temperature (lines are used to guide the eyes). For increasing number 
of layers , kETol J shifts from the 2D value (kBTcl J ~ 2.269 [10]) to the 3D value 
(kETcl J ~ 4.511 [16]). 
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region by considering the fourth order cumulant [24] from eq. (3.14). In the critical 

region, we expect Udl) from different layer sizes (L x L) to give the same U*(l) e.g. 

figure (3.7). 
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Figure 3.7: The fourth order cumulant of the magnetization for bilayer Ising BCC 
films as a function of temperature (lines are used to guide the eyes) . From the figure, 
we can estimate kBTol J ~ 2.269 

After that, for each kBTol J , we perform long simulations by discarding the first 2000 

configurations and record observables from 106 data. Next, we calculate the corre­

lation time T and re-sample the observables with t ime step 2T to create histograms 

according to the histogram method described in chapter 2. 

From this, we extend our results (the average magnetisation m, the magnetic suscep­

tibility x, and the fourth order cumulant UL ) to temperatures nearby kBTo(L, l)1 J 

with temperature step as kBT I J = 10- 5 . As a result, we can locate the critical 

temperature for each film thickness l by again looking at the intersection of U L on 

a very fine scale. 
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At the critical temperature, for a particular film thickness l, the UL(l) curves should 

cross at the same temperature. However, for finite systems, all UL curves may not 

cross at the same point (e.g. [35]). So, we need to plot kBTe / J from each pair of 

UL and Uu against (lnb)-l and extrapolate the results for (In b)-l -+ 0 [24] e.g. 

figure (3.8: lower) where b = L' / L. Here, we choose L to be 48, but L' to be any 

other sizes (64,80,96,112 and 128). As a result, we can estimate kBTe / J at the 

y-intercept. For the estimation of critical exponents, we extract (r / v)' and (f3 / v) 

by making a double logarithmic plot of m(kBTe/J) and x(kBTe/J) versus logL 

and measure the slopes e.g. figure (3.9). 

3.4 Results 

We now estimate the critical temperature kBTe / J for each thin-film. However, for 

the critical exponents, we can extract only f3/v as we have are unable to extract 

,/v from h/v)' because the dimension d of the films is unknown. 

Next, we check if the seed numbers of the random number generator have any effects 

on our results. So, for each system, we run each simulation twice by using different 

seed numbers generated randomly from computer clock, and we have found that the 

seed numbers do not affect the results significantly as the differences are very small 

(less than 1 %). 

Results of critical temperatures and critical exponents are listed in table (3.1) and 

plotted in figure (3.10). The results listed are calculated from the simulations of 

those 2 different seed numbers via formulae 

Q = [(.6.~11)2 + (.6.~22)2] (.6.Q)2, (3.24) 

1 1 1 
(.6.Q)2 = (.6.Qd2 + (~Q2)2' (3.25) 

where Q is the observable we average from Ql (seed 1) and Q2 (seed 2). 
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Figure 3.9: Double logarithmic plot of the magnetisation (upper) and magnetic 
susceptibility (lower) at Tc vs lattice size L for monolayer Ising FCC films. The 
lines are drawn from linear curve fitting using least square method giving f3 / 1/ = 
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II # layers kBTc/J /3/v ('y/v) , 

2D(Exact) ~2.2692 0.1250 1.7500 

1 2.26903 ± 6.3 x 10-5 0.1227 ± 4.0 x 10-4 1.754 ± 1.8 x 10-3 

2 3.20770 ± 1.8 x 10-4 0.1220 ± 1.0 x 10-3 1.742 ± 5.0 x 10- 3 

4 3.87060 ± 1.5 x 10-4 0.1285 ± 9.1 x 10-4 1.734 ± 6.9 x 10- 3 

6 4.11820 ± 1.0 x 10-4 0.1340 ± 5.4 x 10-4 1.730 ± 3.8 x 10- 3 

se 8 4.24070 ± 1.6 x 10-4 0.1350 ± 1.4 x 10-3 1. 710 ± 8.6 x 10-2 

10 4.31180 ± 1.5 x 10-4 0.1500 ± 1.9 x 10-3 1.710 ± 1.1 X 10- 2 

15 4.39947 ± 5.4 x 10-5 0.1580 ± 1.3 x 10- 3 1.680 ± 1.1 X 10- 2 

20 4.43830 ± 1.8 x 10-4 0.1690 ± 1.5 x 10-3 1.640 ± 1.5 x 10- 2 

Bulk" 4.51110 ± 1.4 x 10-4 0.5130 ± 8.3 x 10-3 0.950 ± 1.0 x 10- 2 

Bulk 4.51162 ± 6.0 x 10-5 0.5260 ± 5.4 x 10-3 0.970 ± 4.9 x 10-2 

2 2.26918 ± 4.3 x 10-6 0.1172 ± 4.2 x 10-4 1.755 ± 4.2 x 10-3 

4 4.29450 ± 2.8 x 10-4 0.1230 ± 6.2 X 10-4 1.763 ± 4.4 x 10-3 

6 5.10170±5.1 x 10-4 0.1310 ± 1.2 x 10- 3 1.745 ± 6.0 x 10-3 

8 5.50000 ± 3.6 x 10-4 0.1280 ± 1.3 x 10-3 1.736 ± 7.3 X 10-3 

bee 10 5.72950 ± 2.4 x 10-4 0.1398 ± 8.5 x 10-4 1.743 ± 4.2 X 10- 3 

15 6.00700 ± 5.1 x 10-3 0.1480 ± 2.1 x 10-3 1.700 ± 1.2 x 10-2 

20 6.12950 ± 4.4 x 10-4 0.1590 ± 2.5 x 10-3 1.650 ± 1.7 x 10- 2 

Bulk" 6.35550 ± 1.9 x 10-4 0.5550 ± 6.7 x 10-3 0.916 ± 9.4 x 10-3 

Bulk 6.35530 ± 1.5 x 10-4 0.5110 ± 3.9 x 10-3 0.984 ± 4.6 x 10- 3 

1 2.26910 ± 1.4 x 10-4 0.1243 ± 4.3 x 10-4 1.750 ± 2.4 x 10-3 

2 5.24110 ± 1.8 x 10-4 0.1196 ± 6.2 x 10- 4 1.757 ± 3.9 x 10-3 

4 7.57070 ± 2.8 x 10-4 0.1253 ± 7.6 x 10-4 1.751 ± 2.9 x 10-3 

6 8.44190 ± 4.6 x 10-4 0.1256 ± 1.2 x 10-4 1.745 ± 5.8 x 10- 3 

fee 8 8.86570 ± 4.1 x 10-4 0.1210 ± 1.8 X 10-3 1.710 ± 1.3 x 10-2 

10 9.11170 ± 8.3 x 10-4 0.1410 ± 1.3 x 10- 3 1.720 ± 1.0 x 10- 2 

15 9.40510 ± 3.0 x 10-4 0.1520 ± 1.7 x 10-3 1.690 ± 1.0 x 10-2 

20 9.53700 ± 1.3 x 10-3 0.1790 ± 3.8 x 10-3 1.680 ± 1.9 x 10- 2 

Bulk" 9.77300 ± 2.5 x 10-4 0.5320 ± 5.0 x 10-3 0.946 ± 5.1 x 10-3 

Bulk 9.77350 ± 1.6 x 10-4 0.4890 ± 4.0 x 10-3 0.986 ± 3.6 x 10-3 

Table 3.1: Ising film results. Bulk* refers to the bulk 3D system which has periodic 
boundary conditions along xy directions, but has a free boundary along z direction 
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3.5 Discussion and Conclusion 

For a monolayer system (bilayer in BCC films), our results agree very well with the 

exact Ising 2D results. Then, when we increase the number of layers, the critical 

temperature Tc(l) moves towards the bulk 3D value. This can be explained by 

looking at the lattice structure itself. For example, for the SC structure, in 2D, the 

number of nearest neighbours is 4 whereas it is 6 in 3D. Then, the average exchange 

energy per site is stronger with increasing number of layers. Thus, to change from 

a ferromagnetic phase to a paramagnetic phase, the system needs higher thermal 

energy to compensate the stronger exchange energy. Also, for the same reason, for 

the same number of layers, T~C < T~CC < TECC. Similarly, the bulk 3D Tc's 

from simulations using periodic-boundary surface condition are higher than those 

using the free-boundary surface condition except in the case of bulk Bee results 

where the results seem to agree within their error bars. This may be caused by the 

fact that the number of sites in bulk BCC simulations is L3 14 which is less than 

SC and FCC with the same L making the BCC system more sensitive to statistical 

error. 

For the critical exponent results (,Iv)' and f3 I v, we have found a movement from 2D 

values to 3D values for both of them as the film thicknesses are increased. However, 

since we cannot extract the film dimension d from our results, we cannot extract 

,Iv out of blv),. The way blv), == ,Iv + 2 - d decreases when increasing layers 

means that d increases faster than 'Y Iv which seems to be reasonable as for a 2D to 

a bulk system, d increases from 2 to 3 but, I v increases only a little from 1. 75 to 

1.98. Moreover, if we consider the summation of blv), + 2(f3lv) as 

, !3 
- +2- d+2-
v v 

= 2 -d+d= 2, (3.26) 

where we use the relation ,Iv + 2f3 I v = d [26], we should get value of 2 when 
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Figure 3.10: (upper) Critical temperature Tc as a function of film thickness for Ising 
thin-films.The bottommost line is the Tc in 2D. The straight line above each curve 
is for the bulk values. (lower) Critical exponents h/v)" (3 /v and h/v), + 2((3/1/) 
vs thicknesses for Ising thin-films. The lines are for 2D results. 
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performing (,/1/)' +2(/3/1/) which are extracted from the simulations. Figure (3.10) 

shows (,/1/)' +2(/3/1/) to be equal to 2 (with little deviation). Thus, we can conclude 

that our assumption of one correlation length being enough to describe thin-films 

is valid because all scaling relations that we use are based on this 8..')sumption. In 

addition, from our simulation results, we have found thin-film behaviour developing 

from 2D to 3D with increasing number of layers for all lattice structures. 

Moreover, we can improve our confidence in the critical exponents we just extracted 

by looking at the scaling functions X and iii. By using the correct exponents, the 

scaling functions from various L's should fall onto the same curve in the critical 

region. Nevertheless, 1/ must be known before hand. Fortunately, Binder [24J showed 

that the slope of the cumulant UL at Te or anywhere in the finite size scaling region 

varies with system size L like L1/1/. Then, we expect this to be valid in the thin-film 

case as the thickness l is a constant when we vary L and we have already checked 

that at Te, eq. (3.14) is already valid (because there are intersections of UL'S at 

Te). Then, we calculate the scaling function as a function of temperature and found 

that our critical exponents give good data collapse for the scaling functions (iii and 

X) e.g. figure (3.11). We may notice that when staying away from t = 0 (x = 0) the 

collapse starts to fail as it is now out of the finite size scaling limit (T close to Te). 

However, since the scaling functions originate from the way the susceptibility scales 

with L eq. (3.11) at the limit l « L, so the scaling functions should not collapse 

when L approaches l as shown figure (3.12). 

To summarise, we have developed techniques to use Monte Carlo simulations to 

study magnetic thin-films. We firstly assumed that the film behavior starts when 

the correlation length ~ becomes the same size as the film thickness. Then, we 

used this assumption with the finite size scaling method to derive expressions for 

the extraction of critical temperatures Te and critical exponents. Next, we checked 

our assumption by performing a series of simulations for SC, BCC and FCC films. 

48 



(a) The magnetisation scaling function 
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Figure 3.11: Data collapse of the magnetisation (Upper) and the susceptibility 
(Lower) scaling functions for 8 layers SC Ising-films as a function of scaling vari­
able (x = L1 /vt). In this collapse, we use b/I/)' = 1.713094,,8/1/ = 0.1346 6, and 
Tc = 4.240669 which are extracted from finite size scaling method. 
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(a) The magnetisation scaling function 
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Figure 3.12: Same as figure (3. 11), but include L = 4,8,16 and 32. 
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From our results, we noticed that the critical temperatures increased from 2D to 

3D values. Also, we found the same behaviour for i3/v. However, the value of "(Iv 

in a particular film thickness is still unknown because d for each particular thickness 

is unknown. Finally, we confirmed that our assumption (about a single correlation 

length being required) is valid. 

In the next chapter, we will present some brief details about 'first principles' elec­

tronics structure calculations for the 'exchange parameters' that appear in spin 

models. Then, we use these 'exchange parameters' to study more realistic magnetic 

system using classical Heisenberg model. 
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Chapter 4 

'First Principles' Theory of 

Electronic Structure for 

'Exchange Interaction' 

4.1 Introduction 

We begin this chapter with some brief details about the calculations of the 'ex­

change parameters' of layered metallic materials from the 'first principles' electronic 

structure calculations within a 'local moment' picture (e.g. [36]-[40]). From calcu­

lations in which a mean-field approximation is used, the 'exchange parameters' are 

extracted [39, 40] which we put in a classical Heisenberg model [41] and treat with 

our Monte Carlo simulations. Next, we note that in contradiction to the Mermin­

Wagner theorem [42J, some experiments for ultra-thin films (e.g. [43,44]) reveal the 

presence of long-range ferromagnetic order at low temperatures implying that, phe­

nomenologically, anisotropic effects should be included in models of these systems. 

Then, we close this chapter with an approximation of anisotropic energy extracted 
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from 'first principles' electronic structure calculations (e.g. [45, 46]). 

4.2 Spin Density Functional Theory 

The description of a metallic system is a many body problem involving the inter­

action of many electrons which is unsolvable even numerically. Thus, one needs to 

transform the problem into an effective one-electron problem instead i.e. the energy 

E[n(f)] of an interacting electron system in the presence of an external potential 

/lext(f) needs to be expressed in terms of the charge density of the system n(f). 

This idea was originated from Thomas [47] and Fermi [48], and later was developed 

by Hohenberg and Kohn [49] who proposed that the electron density n(f) is uniquely 

determined by the external potential /lext(f), and the ground state density n(f) in 

the presence of vext (f) gives the ground state energy. Then, Kohn and Sham [50] 

used the variational principle to minimise the ground state energy functional to 

derive single-electron Schrodinger equations 

(4.1 ) 

of noninteracting electrons system moving in an effective potential 

J n(f') 6ExC 

ve!! (f) = vext(f) + e2 dt + --If - f'1 6n(f) , 
(4.2) 

which describes the external, the Hartree and the exchange correlation potential. 

The external term contains both electron-ion and external field potential, EXC is 

usually approximated from the Local Density Approximation (LDA) [50]. 

However, to extend this density functional theory to magnetic systems, we must 

consider systems in magnetic fields B(f) in which the spin index Q of one-electron 

wave function and the spin (magnetisation) density rii(f) become relevant. Then, 

instead of being a single variable, there are now two separate charge density functions 
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for spin up ni (f) and spin down nl (f) electrons which define the total charge density 

(4.3) 

Actually, the Kohn-Sham argument is still valid in this case, but the minimisation 

needs to be with respect to variations in both the charge and spin density subjected 

to the constraint that the number of particles is a constant (e.g. [51J-[53]). Then, 

this leads to the Schrodinger equations 

where 

vel I (f) ext(--) 2 J n(r') d"" 8E
X
C[n, Iii] 

= v r + e If _?I r + 8n(r) (4.5) 

Iiext 1 8EXC[n, Iii] 
= + JLB o Iii (f) , (4.6) 

where (f is the Pauli matrices, I is 2 x 2 identity matrix and the <Pi are two-component 

spinors containing <Pi and ¢l' So, the ground state energy can be written as 

J 
""'. - e

2 J J n(r)n(r') d--d"" E[n, ill = ~ Ct 2 If _ ?I r r 
t 

J oExC (--)d-- J 6ExC -- (-)d- E XC (-) 
- 6n(f) n r r - oill(f)' m r r + r (4.7) 

where the exchange correlation energy gec = J c:XC(n(r) , lill(f)l)n(f)df can be ap­

proximated from Local Density Approximation (e.g. von Barth and Hedin's version 

[51]). 

However, to extend this problem to finite temperatures (pioneered by Mermin [54]), 

the Gibbs grand potential is considered instead of the ground state energy. Then, 

n(r) and Iii(r) are temperature dependent via the Fermi-Dirac distribution f(c:) = 

[1 + exp (3(c: - JL)J-1 as 

n(f) = L f(C:i)¢i(f)<Pi(f), 

rii(f) = ~ f(C:i)¢i(f)(f<Pi(r). 
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Then, at a given temperature T and chemical potential /1-, the equilibrium particle 

density n(f) and magnetisation rii(f) give the minimum of the Gibbs grand potential 

o (e.g. [55]) 

O[n,rii] _(3-1 f: In[l + exp (3(/1- - ci)] - ~e2 J J nl~~~) didt 
i=l 2 r r 

J 50xC (-)d- J 50
xC 

- (-)d- XC[ -] - 5n(i) n r r - 5rii(f) m r r + 0 n, m , (4.10) 

where OXc :::::: E XC is the exchange grand potential. 

Now, it is possible to find the temperature Tgtoner where the magnetisation vanishes. 

However, this Tc is too high, and there is no moment above Tc because it is solved 

from local density approximation with the magnetisation in each unit cell pointing 

in the same direction. Then, a new improved theory is needed which should allow 

moments to vary from unit cell to unit cell. Also, the absence of magnetisation 

above Tc should be caused by the cancellation of moments in disordered pattern, 

not because of the absence of the moments. One successful view to look at this 

problem in finite temperature is the Disordered Local Moments picture [39, 40]. 

4.3 Disordered Local Moments 

The Disordered Local Moment (DLM) [39, 40] is a theory used to describe a mag­

netic behaviour of transition metals at finite temperatures. The theory is based on 

the time differences between electron hopping from atom to atom and spin wave 

time period. Then, for a suitable time scale r, the correlation of the spin orien­

tations caused by the coming and outgoing electrons give nonzero magnetisation 

when averaged over time r. This gives a 'local magnetic moment' to each site with 

a magnitude of 

(4.11) 
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where Vi is the volume at site i and m is the magnetisation density. For this time 

scale T, the average of the magnetisation density e is given by 

A Iv. d3f mT(f) 
ei = 1 I~d3f mT(f) I' (4.12) 

and the probability of finding the orientational configuration {e} is 

(4.13) 

where the partition function Z = Ilj Idej exp(-;3n({ei})) and n is a 'generalised' 

grand potential describing the interacting electron system under the constraint that 

the local moments are oriented along the directions {e} . However, the partition 

function in this form is not useful because n may be too complicated to achieve 

directly. A better way to proceed [39, 40] is to write 

(4.14) 

where Ho( {ei}) is an arbitrary trial hamiltonian. Then, from the Feynman-Peierls' 

inequality [56], an upper bound to any free energy F is 

F ::; FI = Fo+ < n - Ho >0, (4.15) 

with 

(4.16) 

where Zo = Ilj Idejexp(-;3Ho({ei})) and the average < ... >0 is with respect to 

Po( {eJ) = to exp( -;3Ho( {eJ). A flexible form for choosing Ho is to expand the 

trial hamiltonian in a series like 

IT _ '" (1)(A) 1", (2)(A A) no - ~Wi ei + 2 ~Wi,j ei,ej + ... , (4.17) 
1 1~ 

where w;l), W;~), ... are arbitrary functions of their variables. The condition used to 

. (1) (2) [39] determme Wi ,Wi,j'··· are 

(4.18) 
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However, if we take some approximation by keeping only single site terms, Li w~ 1) (ei), 

we can use the mean-field choice for the trial hamiltonian Ho. By considering the 

trial hamiltonian 

(4.19) 

F1 can be determined by evaluating Zo in a local frame of reference where the z axis 

is oriented along hi i.e. 

( 4.20) 

and the free energy Fo becomes 

Fo = _/3-1 ~ln (;~i Sinh/3hi ) , 

l 

(4.21) 

and 

( 4.22) 

where the average magnetic moment mi == < ei > == mJli is now Langevin function 

as 

( 4.23) 

So 

(4.24) 

Then, by minimising F1 with respect to hj (8Fd8hj = 0) , it can be obtained that 

Now, the magnetisation can be written 

8 < n >0 
8m' J 

-MF -ext 
mi = L(/3lh~F + hextl) ~i + ~i 

t t Ih~F + h~xtl' 

(4.25) 

( 4.26) 

where the field hi breaks into mean-field (h~F) and external field (h~xt) parts. Near 

and above the Curie temperature the magnetisation and the fields are small so that 

( 4.27) 
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The susceptibility Xij == omi! ohjxt in paramagnetic state {rod = 0 with zero 

external field is given by 

( 4.28) 

where 

siz) = Ohi = _ (0
2 

< n >0) . 
omk omiomk {mi=O} 

( 4.29) 

In a paramagnetic state, the system is homogeneous; thus, Si~) depends on the dis-

tance between site i and j. However, by taking Fourier Transform, the susceptibility 

becomes 

( 4.30) 

where J-L the magnitude of the local moment is included to fix the units. This is the 

condition to find Tc from mean-field approximation 

S(2)(q, T) 
Tc= . 

3kB 
( 4.31) 

Now, the remaining part is to find S~). Nevertheless, if we assume that the grand 

potential n is the classical Heisenberg model 

Then, in paramagnetic state, 

H = - L Jii~i . ej. 
ij 

< n >0 = < H >0 = - L Jijmimj, 
<ij> 

( 4.32) 

(4.33) 

where m is assumed to be the magnitude of the magnetic moment. As a result, we 

may associate 
s(~) = 8

2 < H >0 
tJ OmiOmj' 

( 4.34) 

with an 'exchange parameter' to use in a classical Heisenberg model for the Monte 

Carlo simulations. sg) can be determined from spin-polarised screened Korringa­

Kohn-Rostoker (KKR) Coherent-Potential Approximation (CPA) calculations. A 

few brief details are given below and more information can be found in references 

[39,40J. 
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4.4 Spin Polarised Screened KKR-CPA 

The KKR method [57J is a tool used to solve the Schrodinger equation via Green's 

functions. Moreover, in the paramagnetic state of the DLM picture, the problem 

can be mapped onto a random binary alloy system AO.5BO.5 [39, 40J with A and B 

represent up spin and down spin for a particular site. Then, it is possible to use 

KKR-CPA method [58J for disordered alloys to find S~). 

In this section, we give a very brief description about KKR-CPA theory which is 

used to extract scattering matrices (for a more details, consult e.g. [59]). Next, by 

moving to layer structures, we make a summary about how to find the 'exchange 

parameter' in thin-film systems. 

4.4.1 KKR 

The KKR calculation starts from an effective potential describing the interaction 

of a single electron with the nuclear Coulomb potential Vo (r) = Z:2 for all r up 

to muffin tin radius plus Hartree and exchange correlation potential. Then, this 

potential is put into the Schrodinger equation and the t-matrix (t) is found from the 

scattering solution. Next the free electron Green's function Go is determined and, 

included with the t-matrix t, the scattering-path operator T (multiple site scattering 

operator) is formed (e.g. [59]). 

Next, T is used to calculate the total Green's function G leading to electron density 

n(f') as one of its observables. After that, n(f') is used to find the new effective 

potential vel I and the whole processes repeated until there is consistency. The 

whole process need to be done for both up and down spins together. 

In a description of the DLM paramagnetic state, an average over different orien­

tational configurations needs to be taken. The Coherent Potential Approximation 
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(CPA) [58] is used to solve this problem of electron propagation through a disordered 

arrays of fields. 

4.4.2 Coherent Potential Approximation (CPA) 

The idea of the CPA is to create an effective medium from the real alloy system (e.g. 

disordered binary alloy AcBl-c) [58,60, 61]. An electron propagating through this 

effective medium should behave similarly to an electron moving through the disor­

dered lattice on the average. Then, to create the effective medium, by considering a 

random lattice where each site is occupied by either v'j! or v1!, the real t-matrices 

to related to the its own potentials v(/ f (a is either type A or B) is replaced by a 

new effective t-matrix for that effective medium through the CPA ansatz 

CXA + (1 - C)XB = 0, (4.35) 

where X is an 'extra' scattering from A(B) site and is given by 

( 4.36) 

which the quantities T ij are the CPA path-operator matrices in the site-representation, 

tA(B) is the scattering matrix for the A(B) type, and t is the scattering matrix for 

the CPA effective medium. 

For a DLM paramagnetic state, a site with the local magnetic moment pointing in 

any e direction in the effective medium has a probability density P(e) = 1/47r and 

it can be shown that the CPA condition becomes [62] 

( 4.37) 

where tiW is spin up(down) scattering matrix in the local coordinate system which 

direction of e is the local z axis. t and T are the scattering matrix and path operator 

calculated from the effective medium. As can be seen, eq. (4.37) and eq. (4.35) are 

equivalent for binary alloy system for C = 0.5 i.e. AO.5BO.5 [39, 40, 62]. 
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From the KKR-CPA [63, 64], an expression for the S~~k 'exchange parameters' for 

both bulk system and thin-films can be written in terms of tT' t 1, t, and T where i, k 

belong to layers P, Q respectively, and for layered systems the paramagnetic spin 

susceptibility after making two dimensional Fourier transformation is given by [65] 

( 4.38) 

where QII is a reciprocal vector along in-plane directions in any layers and mp the 

magnetic moment in layer P and S(2) is a matrix with elements S~b. Then the 

mean-field Curie temperature for the paramagnetic to ferromagnetic transition is 

obtained by solving [65] 

( 4.39) 

where Tc = (Largest positive eigenvalue of S(2)(QII))/3kB. 

4.5 Magneto Crystalline Anisotropic Energy 

In addition to the exchange energy, we now discuss the energy involved in rotating 

the magnetisation from a direction of low energy (easy axis) to a direction of high 

energy (hard axis) i.e. the anisotropic energy. Usually, for transition ferromagnets, 

the energy difference between hard and easy axes is very small compared to the 

exchange energy. 

The anisotropic energy consists of two parts, one from spin-orbit coupling effects on 

the electronic bands and the other from the magnetic dipole interaction. However, 

the dipole interaction is very long ranged so it is very computer-time expensive. 

Thus, at this moment, we consider only the electronic band term. 

For the classical Heisenberg model, we can phenomenologically insert an extra 
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anisotropic part into the Hamiltonian 

H = - LJijei· ej - LKi(ei· n)2, 
ij 

( 4.40) 

which n is a unit vector pointing along the film surface. Notice that in this case, 

some approximations are used i.e. the anisotropic energy is assumed to be described 

by 

Eani ~ L Ki(n· ed2
, 

i 

(4.41 ) 

where Ki is an anisotropic constant extracted from (under the constraint of ferro­

magnetic configuration of moments i.e. ei = e for every site) 

(4.42) 

where ..1 and II refer respectively to the perpendicular and parallel directions to the 

film surface. This energy difference K is due to spin-orbit coupling which breaks the 

rotational invariance with respect to the spin quantization axis. It can be calculated 

by using ab-initio density functional methods extended to include relativistic effects. 

The usual way is to determine the total energy choosing the magnetisation along 

two nonequivalent directions via the using of the 'force theorem' or frozen potential 

approximation (see e.g. [66]). 

For thin-film geometry, where all moments in the same layer are identical but vary 

from layer to layer, two calculations need to be performed. Firstly, all moments 

are forced to point along perpendicular direction to the surface (..1) Then, they are 

forced again, but this time along the in-plane direction (II). Next, the difference of 

the band energy Kpi = Kp == 6Ep in layer P is calculated as [45, 46] 

6E = Eel) - E(II) = L 6Ep. ( 4.43) 
p 

For a layer P, from the CPA, 6E p is defined as 

6Ep = if: nl(f)fdf - if": n~(f)fdf ( 4.44) 

til fll 
= 1-: (nl(f) - nf!(f))fdf -l.LF nl(f)fdf 

F 

( 4.45) 
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where P specifies a certain layer and nf(ID(E) are the layer and component projected 
II 

local densities of states. Since tJ nf(E)EdE is rather very small, K == !::.E is usually 
€p 

termed the 'band energy contribution' to the magnetic anisotropy. 

4.6 Conclusion 

In this chapter, we have presented some information about how to extract 'exchange 

parameter' from 'first principles' electronic structure calculations within the DLM 

picture and adding the magnetic anisotropic terms. In the next chapter, we will use 

these exchange and anisotropic parameters to simulate Fe /W (001) thin-films using 

the classical Heisenberg model. 
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Chapter 5 

Monte Carlo Applications to 

FejW (001) Thin-Films 

5.1 Introduction 

In this chapter, we study a more realistic model that uses the 'exchange parameters' 

extracted from the 'first principles' electronic structure calculations based on the 

Disordered Local Moment (DLM) theory which was discussed in chapter 4. Thus, it 

is now possible to calculate critical temperatures Tc in real units (Kelvin). However, 

unlike the Ising model, the order parameter is now a vector. So, we need to use the 

classical Heisenberg model [41]. 

In the classical isotropic Heisenberg model, it was proved rigorously by Mermin 

and Wagner [42] and Hohenberg [67J that for a 2D infinite system with not too 

long ranged interactions and in the absence of an external field, the magnetisation 

magnitude is always zero for any finite temperatures i.e. 

const 1 -
<mz>N=oo::: 1m - / - ° as Ihl- 0, 

vT IlnlhW 2 
(5.1) 
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where ii is an external field along z direction. This was later supported by Jasnow 

and Fisher [68] who proved the similar theorem without the necessity of introducing 

a symmetry breaking field saying that for T > 0 

(5.2) 

as number of spins N -+ 00. This was later confirmed by Frohlich and Pfister [69]. 

Nevertheless, all proofs do not prohibit other types of the phase transitions such as 

the divergence of the response of the magnetisation to the external magnetic field 

Le. the magnetic susceptibility. These kind of phenomena (the divergence of the 

susceptibility) has been found by using high temperature series expansions [70J-[72]. 

However, in contrast to 2D systems, the 3D Heisenberg systems present the usual 

phase transition where the broken symmetry of the order parameter takes place at 

finite temperatures. So, in this chapter, we use Monte Carlo simulations to study 

the Heisenberg ferromagnetic thin-films. We investigate their transitional behaviour, 

their dependence upon film thickness, and their development from 2D to 3D. In 

addition, we also study a Heisenberg model which possesses a small anisotropic 

component in the Hamiltonian eq. (5.4) and investigate how this affects the results. 

5.2 Theoretical Background 

5.2.1 The Classical Heisenberg Model 

By considering the exchange energy arising from exchanging the electrons among 

the atoms, proposed by Dirac [73], and taking the classical limit, the following 

hamiltonian can be proposed. 

H = - LJijSi' Sj. 
ij 
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This leads to the Heisenberg model of ferromagnetism [41J. In this spin model, Si 
is a unit vector in three dimensional space and denotes the direction of the average 

electron spins in an atom. The magnitude of spin moments are absorbed inside 

the exchange parameter Jij . Phenomenologically, we can include an anisotropic 

energy to produce a more realistic Hamiltonian for an anisotropic shaped system, 

e.g. thin-films, as 

(5.4) 

where Jij and Ki are extracted from the 'first principles' as describe in the previous 

chapter and n is a unit normal vector to the film surface which we choose to be z 

direction. 

5.2.2 Algorithms 

Bias Metropolis Algorithm 

For both Heisenberg and Ising models, the Metropolis algorithm updates each 

spin individually by using the same acceptance probability eq. (2.25) even with 

anisotropic Hamiltonian. This leads to simulations, which are based on this Metropo­

lis, suffering from high correlation times especially when the temperature is very low 

and many spins prefer to align along the same direction. Thus, to make just only 

one spin point into a different direction costs large energy (especially when the spin's 

new direction is very different from its old direction) and the move is likely to be 

rejected. 

Thus, to rectify this lack of movement (bringing about large correlation time), one 

can increase the probability of accepting the new randomly chosen state by making 

a bias function such that the new randomly chosen spins are slightly different from 

the current considered spins. In some pioneering works on the Heisenberg model 
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[74, 75J, the bias random spin was chosen to be 

S' = SiCk + ~(Q 
,0< _ 1/2' 

[La(SiQ + ~(a)2] 
(5.5) 

where a is the Cartesian spin components, (0< is a uniform random number between 

+ 1 and -1, and ~ is a limit for the maximum allowance for the spin components to 

change. However, it was later pointed out that this bias function provides incorrect 

results which are not reliable at low temperatures as the function does not provide 

a homogeneous distribution of the new random spin S~ directions around the old 

spin Si [76J. Thus, a better version of the bias function was given as [76] 

(5.6) 

where Wi is a random unit vector normal to Si, and (}i is the angle between old spin 

Si and the new chosen spin Si which is defined by 

COS(}i = 1 + (i(COSOmax - 1), (5.7) 

where (i is a random number between 0 and 1, and Omax is the maximum allowed 

angle from which the new spin can rotate. 

Wolff Algorithm 

In the Wolff algorithm, for continuous spin models O(n), Wolff [12J proposed a 

transformation function as 

(5.8) 

where r is a unit vector chosen to be a random mirror plane and Si is also a unit 

vector referring to a spin. We can notice that R(Si) = -Si in the Ising model. 

To apply this algorithm to the simulation, we make a group of spins by firstly 

choosing both random mirror plane r and the lattice site i. Then, we mark i and 
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visit all sites connecting to i and add them to form a group with a probability 

(5.9) 

If Sj is successfully added, j is marked and the process is continued iteratively 

until no more new spins are added. Finally, we flip all the spins in the cluster 

(group), Si ---+ R(Si)' In this way, (f· Sj) and (f· Si) must have the same sign 

unless the probability of adding becomes zero. In the algorithm, the ergodicity is 

still guaranteed because P can be very small to flip only one site at a time. So any 

configurations can be reached. However, the cluster is always flipped only in the 

isotropic model eq. (5.3). If we want to apply this Wolff method to the anisotropic 

system eq. (5.4), we need to carefully analyse the acceptance probability in detail 

as in the following. 

By considering detailed balance eq. (2.21), we can start by considering two st.ates 

{Si}, f..t and {S~} , v that differ by a flip R(i:) on a cluster c. Next, by considering 

the selective probability ratio , we get 

where Be contains all links < i,j > with i E e and j ¢ e. Since j ¢ e then Sj = Sj, 

and we know that S~ . f = R(f)Si . r = -Si . f, giving 

= {exp [-2/3l:(S;'i')(Sj'i'»O Jij(Si . f)(Sj . f)] } 

exp [+2/3 E(s .. i')(S .. i')<o Jij(Si . f)(Sj . r)] .. 
, J <~,:J> E Bc 

= exp [-2/3 .. L JiJ,(Si' r)(Sj . f)]. (5.10) 
<t,J> E Bc 

However, if we consider Hamiltonian with only the exchange interaction term eq. 

(5.3), we can find the energy difference between the old and new configuration after 
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flipping a cluster of spins as 

(5.11) 

where Si and Sj belong to the new configuration (after flipping). Now, we can 

analyse this energy difference in several cases as ;-

1. If Si and Sj were not in the flipped cluster; then S~ = Si and Sj = Sj so 

2. If both Si and Sj were in the flipped cluster; then S~ = R(f)Si = Si - 2(Si' r)r 

(and so as 8j), so again 

3. If Si was in the flipped cluster, but Sj was not, then 

-, -, - - - - - -
Si . Sj - Si . Sj - R(Si)' Sj - Si . Sj 

Si . Sj - 2(Si . r)(Sj . r) - Si . Sj 

= -2(Si' f)(Sj . f). 

4. If Si was not in the flipped cluster, but Sj was, this case is discarded as it is 

the double sum of the previous case and we do not include. 

Thus, the detail balance condition becomes 

and by using eq. (5.10), we get the acceptance ratio as 

A(JL -+ v) = 1. 
A(v -+ JL) 
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So we can always flip the cluster after it is formed provided that there is only 

isotropic terms (Jij) in the hamiltonian. 

However, when looking at the anisotropic hamiltonian eq. (5.4), the energy differ­

ence from the anisotropic part is 

(LlE)ani == E~ni - E;ni = - L Ki [(il . SD2 
- (il· Sd2

] , 

i 

(5.14) 

where il is a unit vector normal to film surface (z axis). Similarly, we can notice 

that ;-

1. If Si was not in the cluster, so S~ = Si giving 

( A -')2 (A .... )2 n . Si - n· Si = O. 

2. However, if Si was in the cluster, then 

( A S .... ')2 (A S .... )2 n· i - n· i ([il,Si-2(Si.f)(f.il)r -(il,Sd2) 

= 4(Si' f)(r. il) [(Si . f)(f· il) - (il· Si)] , 

which does not vanish. Nevertheless, the selection ratio from eq. (5.10) cancels only 

the term exp( _,8(LlE)iso), so the acceptance ratio in this anisotropic hamiltonian is 

(5.15) 

and now the cluster of spins will be flipped with this probability. 

As can be seen, the Wolff algorithm for the anisotropic hamiltonian is more compli­

cated than the Metropolis. Nevertheless, the reason for considering the Wolff algo­

rithm is that, usually, the Metropolis algorithm gives very high correlation times for 

simulations at low temperatures and in the critical region which brings about large 

statistical errors. So, we believe that by introducing the Wolff algorithm, the corre­

lation time will be cut down in the same way as for the Ising model. However, for 
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more complicated Hamiltonians (e.g. including dipolar interaction), the Metropoli~ 

may still be a good choice. 

At this stage, we now have 3 algorithm choices; the (original) Metropolis, the bi~ 

Metropolis, and the Wolff algorithms. So, before making any long simulation~, we 

need to perform some tests of result reliability and correlation time to determine 

which is the best. 

5.2.3 Measurements 

The observables we are interested in are the magnetisation magnitude m and the 

magnetic susceptibility x· However, as now the spins are vectors, the magnetisation 

is measured via 
N N 

LSi·LSj. 
i=l j=l 

(5.16) 
1 

m=-
N 

We also need to record the energy of the system to extend our results via the 

histogram method. However, as now the energy become a continuous value, we 

cannot use each histogram bin for each specific energy like in the Ising model. 

Instead, we need to divide the range of the maximum and the minimum energy 

difference (Emax - Emin) for the simulated temperature into many bins. Then, when 

a measured energy has its value within the ith bin (Erax and Erin), we increase 

the number of data in this bin by one. In our simulations, for each temperature, 

we record data for 3 sizes of the histograms which are 1000 , 5000 , and 10000 

bins. Then, by using the histogram method, we can now check how many bins (at 

a particular temperature) the system requires so that the number of histogram bins 

does not affect the results. 
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5.2.4 Critical Temperatures and Critical Exponents 

From previous Monte Carlo work on the 2D classical Heisenberg magnet [77], it 

was pointed out that there exists a nonzero magnetisation for finite temperatures 

when using finite size systems. However, when increasing the system linear size 

L, except at zero temperature, the magnetisation converges very slowly to zero. 

So, this is consistent with Mermin and Wagner's work [42J as the rigorous proof is 

based on N = 00. The slow convergence of the magnetisation was explained in terms 

of short-ranged order which appears to exceed the simulated system sizes making 

fluctuation in the samples and bringing about poor Monte Carlo convergence. This 

behaviour was confirmed in [75J as it was found that the average of the square of 

the magnetisation < m2 > varies as N-x with 0 < x < 1. 

Then, if this slow convergence also appears in our thin-film Monte Carlo work, it 

may not be possible to use the fourth order cumulant eq. (3.14) of the magnetisation 

to find the critical temperature Te· Fortunately, there is an alternative way to avoid 

using the cumulant to find the critical temperature Te. 

By recalling the susceptibility scaling function X from chapter 3 eq. (3.15) 

(5.17) 

it can be pointed out that temperature To associated to the peak of the susceptibility 

X corresponds to the scaling parameter Xo = Ll/vtO at the peak of the scaling 

susceptibility (e.g. figure 3.11). So, for all system size L's, the temperature To's 

corresponding to xo's can be given by 

(5.18) 

Thus, by using nonlinear curve fitting, we may be able to find Te and v separately. 

However, in this case, to estimate both 2 parameters v and Te requires very high 

accuracy data. 
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5.3 Simulations 

For our realistic thin-film simulations, we take Fe/W (001) films as a case study 

because the 'exchange parameters' extend to only the first-nearest neighbour pairs 

and second-nearest neighbour pairs that are in the same layer (figure 5.1). From the 

figure (5.1), the 2nd nearest neighbour interaction (2nn) is the intra-layer interaction 

and the 1st nearest neighbour (Inn) represents the inter-plane interaction. So, this 

means 2nn describes the tendency that spins in a same layer will point along the 

same direction and Inn implies the possibility that magnetisation in that layer will 

point along the same direction with the adjacent layers. 

In the simulations, the BCC structure of the Fe/W films is prepared by using the 

mapping function we described in chapter 2. We perform simulations for both the 

isotropic eq. (5.3) and anisotropic models eq. (5.4) where the anisotropic constants 

are again extracted from the 'first principles' and shown in figure (5.2) which we 

can see that the surface layers have the strongest anisotropic magnitude. However, 

even the strongest anisotropic constant is still about a hundred times smaller than 

the 'exchange interaction'; so it is likely that the anisotropic energy might not alter 

greatly the results from the original isotropic system. We will check this with our 

simulations described in this chapter. 

In our studies, we vary the film thicknesses l from 2 to 8 layers. The reason we 

stop at 8 layered film is that the mean-field critical temperature T~ F for 8 layered 

film is about the same magnitude as in the bulk system [65J. Moreover, one may 

notice that we omit the monolayer film. This is because we are interested only the 

transition from paramagnetic to ferromagnetic phase. However, the 'first principles' 

calculations, for the monolayer film, gives anti-ferromagnetic 'exchange parameter' 

(in agreement with experiment [78, 79]) and indicates non-ferromagnetic behaviour 

in the monolayer case. 
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used to guide the eyes. 

However, it might be interesting if we have some results for the monolay r 0 that w 

can compare with the Mermin and Wagner's theory [42] and previous Mont arlo 

works for 2D isotropic Heisenberg magnet [77] which claime 1 that b cau of t h 

long short-ranged order, finite magnetisation exists at nonzero temperatur s in finit 

size systems . So, we perform simulations for 2 layered film but ignoring S ond 

nearest neighbour interaction. In this case, with only first near st neighbours 0.1' 

taken into account, the system falls into the 2D class. As a result, w can rough ly 

compare our 'monolayer' results with the previous Monte Carlo r suIts [77J . 

In addition, we also want to compare our results to some previous cl assi a l H is ,n­

berg results on BCC bulk which claimed kBTal J to be 2.05612(81) [81] and 2.054.0(6)[ 2J 

from series expansion methods, and 2.0541241(52) [83J from Mont Carlo work. 

Then, we perform simulations for the bulk system with Inn only whi his calculat d 
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from the average of Inn from 8 layered films. 

For simulation processes, we repeat the usual procedure to find the critical regions 

like we did with the Ising model (Le. running a series of short simulations to 

locate the critical regions, making long simulations for the temperatures at the 

middle of the critical regions to create the energy histogram, extrapolating data by 

the histogram method, and conducting analysis by the finite size scaling theory). 

However, firstly, we need an algorithm for the simulations. 

5.3.1 Algorithm Testing 

Isotropic Model 

The algorithms we aim to test are the normal Metropolis (where there is no re­

striction on the random choosing spins), the bias Metropolis (where the randomly 

chosen spins are limit to differ within some angles from the original), and the Wolff 

algorithms. The test is to investigate how well they can cut down the correlation 

time and how reliable are the results they give. So, by taking 2 layered Fe/W films 

as a study case, we perform simulations of 48 x 48 x 2 isotropic Heisenberg magnet 

using all the mentioned algorithms. We omit the first 2000 magnetisation measure­

ments for the equilibration and use up to 50000 data to calculate the correlation 

time T i.e. figure (5.3). 

From the figure, the time unit (mcs/site) is 1 attempt to flip a spin per site or 1 

attempt to add a spin into a cluster for the Wolff algorithm. As can be seen, the bias 

Metropolis has smaller T than the (original) Metropolis in low temperature region. 

However, for high temperatures, as angle (}max in eq. (5.7) is controlled in a way 

that number of flipped spins is always 50% in one lattice sweep [76J when in fact the 

number of flipped spins should be very close to 100% in a high temperature phase; 

thus, the (normal) Metropolis (with no restrictions on the randomly chosen spins) 
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Figure 5.3: The correlation time against temp ratur for the M trap Ii , th hie 
Metropolis, and the Wolff algorithm. The re ults are calculat d from 4 x 4 x 2 
Heisenberg BCC films using 50000 observables with 2000 observabl s di a.r I d for 
equilibration. 

is proved to be more useful in this high temperatur phas . On the oth r hand , til 

Wolff algorithm is the best algorithm as it gives the small st orr lat i n tim f r 

all temperatures we studied. 

We can also compare the efficiencies of the algorithms by looking at th .p .u. 

time used to successfully update one spin as in figure (5.4) . With th am tr nd 

as figure (5.3) , the bias Metropolis algorithm is better than th Metrop Ii at low 

temperatures, but worse at high temperatures. This is because the M trop Ii uff r 

from low acceptance probability in the low temperature phas (very low th rmal 

energy to move to new configurations), and for the high temp ratur phas) th 

higher thermal energy helps the Metropolis to increase the rat of pin flipping to 

be as high as the bias Metropolis, but the bias Metropolis uses more time t g n rat 
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spins. So, the Metropolis beats the bias Metropolis in paramagn tic r i n. 

For the Wolff algorithm, with its consistent spin flipping, it is found to b th fast st 

algorithm to update the spins. However, it takes a longer tim with in r us ing 

temperature because each spin starts to update individually, but it til l n urn s 

less time in comparison to the Metropolis 's. 

Moreover, we can also investigate the results these algorithm giv by I okin :r a t th 

energy distribution (in terms of reliability) as in figure (5.5). 

As we can see from the figure, the Metropolis and the Wolff algorithm r ult agr ­

very well. However , for the bias Metropolis, except from high t mp ratul' (pam.­

magnetic phase), its results deviate from the Metropoli and th W Iff. T his may 
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Figure 5.5: The total energy distribution from the Metropolis, the biased Metropolis, 
and the Wolff algorithm. The results are taken from the same syst min figur (5.3). 

be due to the bias on the randomly chosen spin to always make 50% of th spins 

fl ip in 1 lattice sweep (by increasing and decreasing Bmax) which at som point · th 

system may already be in its equilibrium point. Thus, this lifts up th · quilibrium 

energy state. So, we rule out the use of the bias Metropolis for our simulations. On 

the other hand , the Metropolis produces large correlation times. As a r suIt , for all 

our isotropic simulations, we use the Wolff algorithm. 

A nisotropic M odel 

As have been mentioned, in the anisotropic model, the Wolff algorithm do s n t 

always flip the spins after forming a group, but flips the group with a probability 

that is a function of the energy difference from the anisotropic part. Th n, this an 

increase the correlation time in comparison to t he correlation t im from i otr pi 
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model at the same temperature especially in low temperature phase. The correla­

tion time results are plotted in figure (5.6b) where the figure (5.6a) presents the 

percentage of successful spin flipping after a group of spins is formed. Also, in the 

figure (5.6b), we include the correlation time from the Metropolis for comparison. 

From the figures, it shows that the anisotropic energy affects the correlation time 

only in low temperature regions as shown in figure (5.6b), from the critical region 

to high temperature phase, the flipping percentage is very close to 100%. Also, 

when the flipping percentage is close to 100%, this means that the system flips the 

spins in the same way as the isotropic model. So, we expect that from the critical 

region onwards, both the anisotropic and the isotropic model should give very similar 

results. On the other hand, clearly shown by the low percentage in low temperature 

phase, the increasing of the correlation time is due to that the system spending a 

longer time in some configurations. However, this does not say if the anisotropic 

system should or should not produce deviations from the isotropic system. To check 

this, we need to investigate the magnitude of the magnetisation projected along the 

easy axis. 

In terms of reliability, we check this from the energy distribution (histogram) mea­

sured from both these 2 algorithms for various temperatures and we have found 

that both 2 algorithms produce good agreement at all temperatures we perform as 

in the same as in the isotropic model. So, from the way the Wolff cuts down the 

correlation time from the Metropolis and its reliability, we again use the Wolff to 

simulate our anisotropic simulations. 
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5.3.2 Isotropic Results 

'Bulk' System 

To compare our results with previous studies of 3D BCC Heisenberg magnet [811-

[83], we run simulations on the same lattice structure but using the average of Inn 

from 8 layered Fe/W films as the 'bulk exchange parameter' and calculate the bulk 

critical temperature Tc from both the cumulant method shown in figure (5.7) and 

the nonlinear curve fitting eq. (5.18) shown in figure (5.8). For the critical exponents 

(-y, (3, and 1/) , we extract them from the slopes of their corresponding observables 

(X, m and dU / d{3 respectively) in logarithmic forms plotted against log( L). In 

addition, as the peak of the susceptibility scaling function corresponds to the peak 

of the susceptibilities via the scaling variable Xo = Ll/vtO and the critical exponent 

'Y / 1/ eq. (5.17), this provides another way to calculate 'Y / 1/ from the slope of a linear 

plot of 10g(X(To)) against log(L). 

However, as the works in [811-[83J present critical temperatures Tc in a unit of the 

Inn exchange parameter, we then convert their Tc's into Kelvin unit by using our 

'bulk exchange parameter' and show with critical exponents in table (5.1). 

Cumulant Nonlinear 

Ref. [8lJ Ref. [82J Ref. [83J analysis curve fit 

Tc(K) 1178.6(6) 1177.4(7) 1177.5117(9) 1179.8 ± 5.5 x 10 -1 1170.0 ± 7.8 x 101 

'Y/v 1.9714(4) - 1.9620(7) 2.010 ± 2.9 x 10-2 2.050 ± 2.3 x 10-2 

(3/1/ - - 0.5197(8) 0.494 ± 7.0 x 10-3 -
1/ 0.700(5) - 0.7059(37) 0.800 ± 1.2 x 10-1 0.700 ± 1.2 x 10- 1 

Table 5.1: A comparison of results for 3D BCC Heisenberg magnet obtained from 
cumulant analysis and nonlinear curve fitting. 
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As can be seen, our bulk-BCC Tc's agree very well with the previous works. How­

ever, the exponent v seems to be higher. This may be due to the fact that we 

perform this task by making a quick comparison to previous works in bulk limit. 

Then, we use only 105 configurations (comparing to 106 in [83]) for making the en­

ergy histogram. Nevertheless, at this level of testing, we decide not to go further for 

just improving a few digits. Also, at each simulation, we recorded 3 different sizes of 

histograms which have different number of bins (i.e 1000 bins, 5000 bins, and 10000 

bins) and the results we get from them are not significantly different. So, to save 

computer memory, we use 1000 bins histogram to record the energy distribution for 

all our continuous-energy simulations. 

One may notice that we did not use the non-linear curve fitting method to find Te, 

(3/ v and v from the magnetisation scaling function. This is because the gradient 

of the magnetisation to the temperature is very sensitive to the statistical errors in 

Monte Carlo works. So, we have found that 105 observables for the histogram is not 

enough to overcome the statistical errors that prevent a useful fitting. 

'Monolayer' 

As we do not have 'exchange parameters' for the monolayer FejW(OOI) film, we 

perform simulations of the 2 layered films using only the Inn 'exchange parameter'. 

Now, the system falls into the 2D square lattice class as the coordination number 

is four. The simulations we perform for this 'monolayer' use 105 observables for 

the average, discarding the first 2000 configurations to make a rough investigation 

of the 2D behaviour presented in figure (5.9). The figure shows agreement with 

[77] as the magnetisation magnitude is still finite for finite temperatures in finite 

size systems i.e. figure (5.9a). However, with increasing the film size (L x L), the 

magnetisation curve reduces very slowly and they seem to be converging to zero 

for all nonzero temperatures. It may be because of the slow convergence (shown in 
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figure 5.9c) that the cumulant curves do not cross except at low temperature (see 

figure 5.7a for a comparison). Thus, it is now not possible to use the cumulant 

to find critical temperature. Fortunately, from the figure (5.9b), the temperatures 

at the peaks of the susceptibility seem to convert to nonzero value as have been 

predicted by high temperature series expansion (e.g. [70, 71]). So, we can use eq. 

(5.18) to find the critical temperature of this another kind of the phase transition 

(the magnetic susceptibility diverges at a finite temperature whereas the expectation 

of the magnetisation is zero in the thermodynamic limit). 

Thin-films 

We now start simulations in layered systems for film thicknesses l ranging from 2 

to 8 layers. For each film, since the nonlinear fitting eq. (5.18) requires many data 

points to make the fitting converge, we then vary the films' linear dimension L from 

48 to 128 with a step of 8. For each L, we run series of short simulations (50000 

observables for the average and the first 2000 configurations being discarded) to find 

the regions where the susceptibilities peaks e.g. figure (5.10). 

As can be seen in figure (5.10), we can notice that To (temperature at which the 

magnetisation curve has its maximum gradient or the susceptibility gets it peak) 

move to higher temperature with increasing number of layers. For the cumulant. 

curves, for all our layered systems, they give the same trends as in 'monolayer' 

system where there is no cumulant intersection. So, the only way we can use to find 

critical temperature Tc is from eq. (5.18). 

For the bilayer film, we also compare the results with the 'monolayer' and we find 

the magnetisation curve converges faster as a result of putting 2nn in the bilayer 

film simulations as shown in figure (5.11). 

Next, as the 'exchange parameters' vary from layer to layer, we plot the magnetisa-
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tion and the susceptibility of each layer of the thin-films as a function of temperature 

to investigate how the 'exchange parameters' affect each layer in detail e.g. the bi­

layer film in figure (5.12) and 8 layers film in figure (5.13). For the bilayer film, 

figure (5.12), the 1st and 2nd layers have similar results. This is because of the 

strong Inn 'exchange parameter'. For all other films, e.g. the 8 layer films in figure 

(5.13), the surface layers have smaller magnetisation and susceptibility magnitude 

than layers in the bulk as the 'exchange parameters' at the surfaces are smaller than 

those inside. 

Now, as we have already marked the critical region for each system, we then run a 

reasonably long simulation measuring 105 observables for the histogram to extend 

the results and find more accurate temperatures of the peaks of the susceptibility. 

We analyse our results in a same way as we did for 'bulk' system. For convenience, 

we present the critical temperatures and critical exponents together with those from 

anisotropic model in table (5.2). 

5.3.3 Anisotropic Result 

For the anisotropic systems, we follow the same procedure as for the isotropic model 

to find the critical temperatures and exponents. Since the anisotropic constants are 

very small, we have found that the magnetisation average along the easy axis (z axis) 

m z is very close to zero for all temperature e.g. figure (5.14) and the standard devia­

tion is very large. This means that m z is randomly distributed along the z direction 

(between +1 and -1) which implies that there is no preferred direction because of its 

very small anisotropic constants. Also, when we compare the magnetisation and the 

susceptibility results of both isotropic and anisotropic model, we have found that 

the results are not significantly different e.g. figure (5.15). The critical temperature 

Tc and critical exponents (,Iv), == ,Iv + 2 - d are presented for both isotropic and 

anisotropic models together with Tc from the mean-field calculation in table (5.2) 
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and figure (5 .16) . 

It can be seen that, f3 /1/ is not presented in the table. This is caused by the statisti al 

errors that prevent us to use the fitting method to calculate the exponents. 

5 .4 Discussion and Conclusion 

In this chapter, we have used the Monte Carlo simulation to study the F /W(OOl) 

films. We have found that the films' behaviour is similar to 2D sy t m in a w y 

that the order parameter still exist in finite system and converges v ry slowly wh n 

increasing the system size. This prevent us to using the cumulant analy is to find 

94 



0.9 

I 0.8 

c 0.7 
'0.. 
Cf) 

Ci> 0.6 
Q. 
c 0.5 
o 

'@ 
til 

~ 
C 
OJ 
Cd 
~ 

0.4 

0.3 

0.2 

0.1 

(a) 

2 layers isotropic + 
2 layers anisotropic x 

4 layers isotropic * 
4 layers anisotropic 0 

6 layers isotropic • 
6 layers anisotropic 0 

8 layers isotropic • 
ers anisotropic b. 

o ~ __ ~ ____ -L ____ ~ ____ ~ __ ~ ____ ~ ____ ~ __ ~ 

o 200 400 600 800 1000 1200 1400 1600 

Temperature (K) 

(b) 

250 ~--~-----r----'-----'----''---~-----r--~ 

.6. 200 
Cf) ... 
Q) 
Q. 

g 150 
:0 
li 
Q) 

~ 100 
::J 

Cf) 

U 
:;:: 
Q) 

§, 50 
Cd 
~ 

200 400 600 

2 layers isotropic + 
2 layers anisotropic X 

4 layers isotropic * 
4 layers anisotropic 0 

6 layers isotropic • 
6 layers anisotropic 0 

layers is tropic • 
ers is ropic & 

800 1000 1200 1400 1600 
Temperature (K) 

Figure 5.15: Comparison of the magnetisation (a) and the susceptibility (b) as a 
function of temperature (K) in each layer between isotropic and ani otropi m d I 
for L = 48 FejW(OO l ) films. Lines are used to guid the ey s. 

95 



I number of layers II Isotropic Anisotropic Meanfield I 
2 320 ± 1.9 x 101 350 ± 1.4 x 101 969 
3 500 ± 1.5 x 102 570 ± 5.2 x 101 1363 
4 750 ± 4.1 x 101 710 ± 7.7 x 101 1484 
5 910 ± 2.3 x 101 830 ± 6.3 x 101 1551 

Tc (K) 6 940 ± 4.0 x 101 970 ± 1.6 x 101 1595 
7 1030 ± 1.4 x 101 1030 ± 1.3 x 101 1603 
8 1080 ± 1.3 x 101 1080 ± 1.4 x 101 1642 

Bulk 1174 ± 7.8 x 10° - 1687 
2 1.840 ± 3.9 x 10 -2 1.847 ± 3.8 x 10 -.l -
3 1.818 ± 3.8 x 10-3 1.864 ± 5.6 x 10-3 -
4 1.811 ± 3.0 x 10-3 1.829 ± 3.7 x 10-3 -

(rjv)' 5 1. 796 ± 2.8 x 10-3 1.808 ± 4.2 x 10-3 -
6 1. 797 ± 2.9 x 10-3 1.789 ± 4.2 x 10-3 -
7 1. 779 ± 2.5 x 10-3 1. 796 ± 3.8 x 10-3 -
8 1.780 ± 3.1 x 10-3 1. 782 ± 4.0 x 10-3 -

Bulk 1.050 ± 2.3 x 10-2 - -

Table 5.2: A comparison of results for FejW(OOl) films from 2 to 8 layers obtained 
from nonlinear curve fitting. 

the critical temperatures and exponents. 

However, by investigating the susceptibility, our results are consistent with the high 

temperature series expansion results that the susceptibility at thermodynamic limit 

diverges at nonzero temperatures. Then, by using nonlinear curve fitting based 

on the susceptibility scaling function, we present the critical temperatures of the 

divergence of the susceptibilities as a function of film thickness and we have found 

that the critical temperatures increase and have the same trend as the mean-field 

calculations. 

To make our study more realistic, we have also studied the systems in which 

anisotropic energy is present. However, as the anisotropic constant is very small, we 

have found that it does not have any profound effects on the isotropic systems. Our 

method has been tested at the 2D and 3D limit, we have found that our results agree 

with previous works. To compare with experimental value, it was claimed in [791 
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that , for bilayer film, Tc rv 320K. Also, in [84], it was found that 120 ~ Tc ~ 350 

K for 1.4 ~ l ::; 2.5 ML, and Tc = 220 ± 5 K for bilayer film . This show that 

our results are in level of agreement with experimental values. Thus, our simulation 

methods have therefore been shown to be successful in modelling magn tic criti aJ 

phenomena of thin-films. 
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Chapter 6 

Conclusion and Future Works 

The purpose of this thesis has been to carry out Monte Carlo studies to the statistical 

physics problem that is provided by metallic magnetic thin-films. This problem has 

both technological and fundamental importance. Our studies are based on using 

Markov processes to cause the magnetic systems to reach equilibrium states which 

enable us to observe the interesting static critical behaviour where time is used 

to label the magnetic configurations. After that, the finite size scaling method is 

taken into account for the analysis to extract the magnetic critical temperatures 

and exponents. 

Our studies began with the derivation of formulae for the magnetic susceptibility in 

anisotropic shaped structures (thin-films) and we investigated how both the suscep­

tibility and the magnetisation scale with the linear size of the films L. The critical 

temperatures and exponents can be extracted via scaling functions and the well­

known fourth order cumulant method. The derivation was based on an assumption 

that a single correlation length is required for the study of magnetic critical phenom­

ena in thin-films, and we performed Ising thin-film simulations using cluster flipping 

algorithm (Wolff algorithm) to test this assumption and found it to be valid. Thus, 
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we were able to extract the critical exponents for the Ising thin-films. Since, the 

dimension d of each thin-film is unknown, we have presented the critical exponent 

of the susceptibility in terms of ,/v + 2 - d. To extract the dimension out of this, 

we note that some more sophisticated methods are needed (e.g. the renormalisation 

Monte Carlo method [13]). We also found the development of the critical temper­

atures and exponents as a function of thickness from the 2D to the 3D limit. For 

example, the smooth increasing of Tc and slow decreasing of i3/v and ((Iv)' from 

2D to 3D results. Our 2D and 3D results agree respectively very well with 2D Ising 

exact solutions and previous 3D Monte Carlo works. 

Next, we applied our Method Carlo methods to more realistic models. In order to 

model Fe films on W(OOI) substrates we use 'exchange interactions' and anisotropic 

constants extracted from the 'first principle' electronic structure calculations. These 

were used to set up an anisotropic classical Heisenberg Model which we studied using 

Monte Carlo simulations. We also performed simulations for an isotropic model for 

comparison. 

For our Heisenberg model simulations, we tested various algorithms in terms of their 

correlation times, c.p.u. time used to successfully update spins, and their reliability. 

As a result, we found the Wolff algorithm to be the most useful to study both the 

isotropic and anisotropic models. We again found our 3D results to agree with previ­

ous works, and the magnetisation in 2D systems vanishes with increasing Lx L size 

in agreement with Mermin and Wagner's theorem that the magnetisation is absent 

at finite temperatures in the thermodynamic limit. On the other hand, we found the 

divergence of magnetic susceptibilities at finite temperatures as predicted by high 

temperature series expansions. For thin-films, we found that their behaviours are 

influenced by a 2D character which brings a slow convergence to the magnetisation 

magnitude. This is due to spinwaves with wavelengths longer than the biggest size 

of the thin-film system for which we performed our simulations L = 128. Because 
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of this, the fourth order cumulant failed and left us with only the nonlinear curve 

fitting method (based on the scaling functions) which required data with very high 

accuracy. However, we were still able to calculate the critical temperature at which 

the susceptibility diverges and the 'susceptibility critical exponent'. We again found 

a development of the magnetic critical behaviour from 2D to 3D limits. Also, for the 

critical temperatures, we compared our results with the mean-field critical temper­

atures which are usually significantly higher than experimental value for thin-films 

and we found that our results agree well with experiment (where available). We 

found that including small anisotropic constants in comparison to the 'exchange 

interactions' gave little change to the results. 

To summarise, we have used Monte Carlo methods and finite size scaling techniques 

to study metallic magnetic thin-films in the critical region. We have shown how their 

properties change from being 2D to 3D-like and we have tested the appropriateness 

of using Monte Carlo methods to model metallic magnetic thin-films. We look 

forward to our approach being used to make realistic studies of other systems. There 

are some possibilities to extend and improve our Monte Carlo models. For example, 

the long-ranged dipolar interactions could be included into the studies to investigate 

spin-reorientation transitions. Perhaps, renormalisation Monte Carlo methods could 

be used to examine the possibilities of extracting the dimension d of the thin-films. 

On a separate subject, these same Monte Carlo techniques could be adapted to 

model compositional effects in alloy films. 
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