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Abstract

Our aim is to establish the partial metric spaces within the context of Theo-
retical Computer Science. We present a thesis in which the big "idea" is to develop a
more (classically) analytic approach to problems in Computer Science. The partial
metric spaces are the means by which we discuss our ideas. We build directly on
the initial work of Matthews and Wadge in this area. Wadge introduced the notion
of healthy programs corresponding to complete elements in a semantic domain, and
of size being the extent to which a point is complete. To extend these concepts to a
wider context, Matthews placed this work in a generalised metric framework. The
resulting partial metric axioms are the starting point for our own research.

In an original presentation, we show that Ta-metrics are either quasi-metrics,
if we discard symmetry, or partial metrics, if we allow non-zero self-distances. These
self-distances are how we capture Wadge's notion of size (or weight) in an abstract
setting, and Edalat's computational models of metric spaces are examples of partial
metric spaces. Our contributions to the theory of partial metric spaces include ab-
stracting their essential topological characteristics to develop the hierarchical spaces,
investigating their To-topological properties, and developing metric notions such as
completions. We identify a quantitative domain to be a continuous domain with a
To-metric inducing the Scott topology, and introduce the weighted spaces as a special
class of partial metric spaces derived from an auxiliary weight function.

Developing a new area of application, we model deterministic Petri nets as
dynamical systems, which we analyse to prove liveness properties of the nets. Gen-
eralising to the framework of weighted spaces, we can develop model-independent
analytic techniques. To develop a framework in which we can perform the more
difficult analysis required for non-deterministic Petri nets, we identify the measure-
theoretic aspects of partial metric spaces as fundamental, and use valuations as the
link between weight functions and information measures. We are led to develop a
notion of local sobriety, which itself appears to be of interest.
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Notation

,J..x,tx

Max(X)

utA
x«y

.ij.x,ltx

x[n]

I(B)
Int(A)

cl(A)

7rt 7r4-
I

X

IR
BX

'T[f/>]I7"W]

7"[v] I 'T[v·]

Set of elements below (above) x.

Set of maximal elements of a poset X.

Supremum of the directed set A.

x approximates y.

Set of elements approximating (approximated by) x .

n-truncation of x E 800•

Ideal completion of B.

Topological interior of A.

Topological closure of A.

Collection of open upper (lower) sets of a partially ordered space.

Collection of compact upper sets.

Cocompact topology of a To-space (X,7").

Specialisation order of a To-space (X, r}.

Completion of metric space X.

Domain of intervals.

Space of formal balls of a metric space X.

Induced pmetric (metric) topology of a partial metric space.

Weight function of a partial metric space.

Specialisation order of a partial metric space.

Induced pmetric (metric) topology of a weighted space.

Induced pmetric (metric) topology of a valuation space.
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Chapter 1

Introduction

Our aim is to establish the partial metric spaces within the context of Theoretical

Computer Science. We present a thesis in which the big "idea" is to develop a

more (classically) analytic approach to problems in Computer Science. The partial

metric spaces are the means by which we discuss our ideas. Taking the initial work

of Matthews [Mat94, Mat95] and Wadge [WadS1] in this area, we develop some

original mathematics that provides a platform from which to build the theories that

we hint at therein.

Our work falls naturally into three parts. In the first part, chapter 2, we

give some established material from Theoretical Computer Science that will be the

reference points for placing our work into context. It is worth remarking that our

work doesn't necessarily fit into anyone of the areas that we cover, which means

that it can be difficult to characterise, but that it doesn't exist independently of

them either. For the second part, chapters 3 and 4, we build directly on the initial

work of Matthews [Mat94]. In these chapters, we give a firm foundation for the

subject, filling in the obvious gaps in the theory, and establishing the work within

the context of the material in chapter 2. It is in the third part of the thesis, chapters

5 and 6, that we take the subject in some new directions.

In chapter 2 we begin with Scott's theory of domains [AJ94j, which was
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introduced to give a rigorous mathematical theory for the semantics of programming

languages. A less familiar approach, but one which has the same objectives, is that

of de Bakker [dBZ82],in which metrics are used in place of partial orders. We cover

the necessary details on partial orders in the chapter while metric spaces, and the

more abstract topological spaces, are in the appendices. The essential features of

both these approaches for solving domain equations can be abstracted to a unifying

framework. The most significant way of doing this, for our purposes, uses the quasi-

metrics [Smy87],which are a generalised notion of a metric without symmetry.

The fundamental concepts of continuous domains have alternative topolog-

ical descriptions in the form of the Scott topology. This leads us to a study of

the more obscure To-spaces, that are appropriate for the study of partial orders,

rather than the familiar Hausdorff spaces. Aside from denotational semantics, con-

tinuous domains have also found application as computational models for classical

spaces from mathematics, with the classical space embedded as the set of maximal

elements. This has had some interesting consequences. For example, by approxi-

mating measures on a space by simpler valuations, Edalat [Eda95a] has been able to

give a generalisation of Riemann integration that is arguably more faithful than the

Lebesgue generalisation. Of more direct relevance to this thesis, the computational

models of metric spaces provide a useful source of motivating examples and intuition

for the partial metric spaces.

In chapter 3 we turn to the partial metric spaces themselves, and begin with

Wadge's cycle sum test [Wad81], an elegant non-operational test for showing that

many of Kahn's data flow networks are free from deadlock. Wadge uses the test

to motivate the notion of healthy programs corresponding to complete elements in

a semantic domain, where complete elements are defined as those elements that

can' not be further completed. Wadge remarks that these are not the same as the

maximal elements, but goes no further in characterising them. The size of an element

is introduced as the extent to which it is complete, and Wadge remarks that both of
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these concepts should extend to a wider context. This motivated Matthews [Mat94]

to place Wadge's work in a generalised metric framework, and the resulting partial

metric axioms are the starting point for our own research.

With the benefit of hindsight, we present Matthews' axioms from a different

perspective, helping us to place them within the context of some of the material from

chapter 2. We define a To-metric as a "metric" appropriate for To-spaces, and find

that we must either work without symmetry, in which case we have quasi-metrics,

or work with non-zero self-distances, in which case we have the partial metrics. It is

by introducing these non-zero self-distances that we can capture Wadge's notion of

size (or weight) in an abstract setting, from which a notion of a complete element

can be derived. The computational models of metric spaces from chapter 2 are

partial metric spaces, and help shape our intuition. It is familiar that elements in

the model approximate points in the metric space, and if a quasi-metric captures

the Scott topology, then the quasi-metric distance approximates the metric distance.

What partial metrics can give us in addition, is a measure of how vague an element

in the model is; that is we can quantify the degree of approximation of the element,

or how "deep" it is in the domain.

Although our presentation of the partial metric axioms is original, the mate-

rial is basically taken from [Mat94]. For our first original results, we are motivated

to abstract the essential topological characteristics of partial metric spaces. If we

think of a partial metric space as consisting of layers of metric spaces, each of which

consists of points with the same size, then we see how to place a total order on the

collection of open sets, which in turn leads us to what we consider to be the essential

additional structure for the open sets. We call spaces with this structure hierarchi-

cal spaces, and show that they lie between To-spaces and Hausdorff spaces. As well

as helping us to understand the essential features of partial metric spaces, these

spaces give us a framework in which to discuss the notion of a boundedly observable

property, which Smyth [Smy92]uses to motivate the introduction of quasi-metrics

3



on a domain.

We now turn to the basic theory of partial metric spaces, for which Matthews

gives the initial results in [Mat94]. In chapter 4, we significantly extend these re-

sults, investigating the partial metric spaces within the context of To-topological

properties. Our main results include characterising order-consistency and sobriety

of the pmetric topology in terms of the pmetric, and hence showing precisely how

sobriety is a notion of completeness. In domain theory, the Scott topology naturally

captures the basic (qualitative) notions of a domain. We identify a quantitative do-

main to be a continuous domain with some additional structure, such as a To-metric,

that captures the Scott topology as well as adding some quantitative information

to the domain. We then give some conditions for the pmetric topology to be the

Scott topology. We also develop metric notions such as completions, and see that

for the computational models of metric spaces, our partial metric completion agrees

with the ideal completion of domain theory and induces the metric completion on

the metric space.

Partial metrics on a domain induce a weight function. Turning this around,

if we have a notion of weight inherent in a domain, then we can consider when we

induce a partial metric. In this way we again motivate the introduction of metric

ideas to a domain. To capture this situation, we introduce the weighted spaces, which

are derived from an auxiliary weight function over a structured poset, in much the

same way that normed spaces are a special class of metric spaces. These spaces are

a particularly useful class of partial metric spaces, in which the distance between

any two points is a measure of their common information.

Although we have many original results in chapters 3 and 4, it is only in

chapter 5 that we take this work in a new direction, but one that is directly mo-

tivated by Wadge's work on the cycle sum test [Wad81]. What we propose is to

model a deterministic Petri net as a dynamical system, and then to perform some

quantitative and qualitative analysis to prove liveness properties of the net. Working
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initially in a domain-theoretic framework, our quantitative analysis is to establish

the existence of unique fixed points, and our qualitative analysis is to find informa-

tion on this fixed point, without explicitly finding it. Wadge's cycle sum test is the

motivation for this analysis, since a function associated with a data flow network

passes the test only if its unique fixed point is complete, and the network is free

from deadlock. This is essentially the qualitative analysis of some function with a

particularly simple dynamics. When we develop a domain suitable for the analysis

of liveness in deterministic Petri nets, then we find that we have incomplete maximal

elements, which further helps us understand the intuition behind Wadge's work.

We extend these basic ideas to develop more sophisticated analytic tech-

niques, and then generalise to the framework of weighted spaces, abstracting the

essential details. We are therefore developing new areas of application for the par-

tial metric spaces. Furthermore, we demonstrate some ideas on developing model-

independent analytic techniques within this framework, which can be re-applied to

the models for data flow networks and Petri nets. Such a possibility was seen by

Matthews in [Mat95], although we go much further in our scope. The challenge is

to extend these ideas to non-deterministic Petri nets, and it is clear that this will

present significant difficulties. Rather than attempt the details, we discuss some

ideas on how this could be achieved. Notably, we discuss the possibility of a suit-

able dynamical system with many fixed points for modeling a non-deterministic

Petri net. This would clearly require a far more sophisticated analysis than any-

thing we have so far considered, and developing a framework in which to be able to

work is the motivation for our final chapter.

We begin chapter 6 by observing that an initial step in developing such a

framework wouldbe to develop our understanding of how a partial metric can be put

on a function space, which is a difficult problem in its own right. In domain theory,

problems regarding function spaces inevitably lead to a discussion on cartesian closed

categories. The material in chapter 5, however, seems to be leading us towards
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an analytic theory analogous to some of real analysis, where metrics on function

spaces are derived from their constituent metrics. We are therefore led to seek some

combination of the two approaches for partial metric spaces. We take the first step

towards this objective, and identify the measure-theoretic aspects of partial metric

spaces as fundamental, by observing that "well-behaved" partial metrics seem to be

closely related to measures. We cover the necessary details of measure theory in the

appendices.

We observe that valuations provide a link between the weight function of a

weighted space and measures, and so we develop a special class of weighted spaces,

the valuation spaces, whose weight functions are derived from valuations. Taking this

to its logical conclusion, we consider when weight functions for weighted spaces can

be derived from suitable measures, which we call information measures. However,

building cartesian closed categories of such spaces would pose significant problems,

so we consider the problem of inducing information measures from a valuation space.

Building cartesian closed categories of these spaces should be easier.

We find that we can use existing results from the literature on extending

valuations to measures, provided that we have a suitable notion of "local compact-

ness" for our spaces. Somewhat surprisingly, this leads to us weakening the notion

of sobriety, to something that we call local sobriety, where locally sober spaces lie be-

tween locally compact sober spaces and order-consistent topologies. We investigate

such spaces in some detail, and further develop a notion of local coherence, with

the property that locally coherent spaces induce locally compact ordered spaces.

Borel measures on locally coherent spaces are closely related to valuations, and this

provides us with the connection that we seek. Although this material still requires

a great deal more work, we feel that the spaces under consideration are of interest

in their own right, as well as providing a suitable platform for investigating the

problem of partial metrics for function spaces.

Some final comments are appropriate. Our driving motivation is to develop a

6



more (classically) analytic approach to problems in Computer Science. Clearly this

is way beyond the scope of one thesis, but the work that we present is aimed towards

this goal. The material in chapter 5 is really the key, as it motivates our ideas on

the modeling of systems and the analysis of their properties. We present the chapter

informally so that we can discuss our ideas to the full. Clearly formalisation will

have to follow, but it is the basic ideas that are essential.

With regards to the modeling of systems, one feature of what we propose is

that the models themselves should be developed with regard to the problem at hand.

This is one way that we can simplify the analysis, but seems to be at odds with much

of semantics where the objective is to seek a full semantic model. However, it is the

analysis aspect about which we have the most to say. In common with many areas

in Computer Science and Mathematics, what we would like is to develop general

model-independent analytic techniques that can be applied to suitable models. In

this way the more difficult mathematics involved in developing the techniques can

remain hidden in their application. We demonstrate our ideas within the framework

of partial metric spaces, and in doing so establish the work begun by Matthews

within the context of Theoretical Computer Science.

7
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Chapter 2

Domains of Computation

We begin with a review of some of the more established areas in Theoretical Com-

puter Science relative to which we wish to position our work on the partial metric

spaces. We consider the partial order and metric approaches to solving domain

equations (section 2.1), the ordered topological structures such as quasi-metrics and

compact ordered spaces (section 2.2) and Edalat's work on computational models

for classical spaces from mathematics (section 2.3). In each case we dwell on the

details that will enable us to place our work in context, and paint the more general

picture with broader strokes.

2.1 Solving domain equations

To support the correct description and implementation of a programming language,

it is important that we understand the semantics of the language constructs. Two

of the established methodologies for giving a rigorous mathematical theory for the

semantics of programming languages (explained succinctly in [dBZ82]) are the oper-

ational semantics [Hen90], in which operations described by the language constructs

are modelled by computational steps on an abstract machine, and the denotational

semantics [Sto77, Ten94], in which expressions in a programming language denote

9



values in a mathematical domain with an appropriate structure. We consider the

denotational semantics, but only in the context of (1) How to construct a suitable

semantic domain, and (2) How to assign meaning to recursive constructs. We con-

sider the partial order and metric approaches to tackling these problems, and see

how they can be placed in a unifying framework.

2.1.1 Elements of domain theory

Domain theory was first introduced by Dana Scott in 1970 [Sc070,Sc072]when he

gave a mathematical model for the type-free >.-calculus [Bar84]. The constructs

that Scott used have led to a general mathematical foundation for the semantics of

programming languages [Sto77,Ten94]. In this section we consider the basic domain

theoretic ideas of convergence and approximation, and in the next we consider cat-

egories of domains. Our exposition draws heavily on the presentation given in the

excellent [AJ94] (but see also [SLG94]),and we refer to this for details and further

references.

The basic structures in domain theory are the partially ordered sets P which

have a binary relation ~ satisfying,

1. (Reflexive) x ~ x.

2. (Antisymmetric) If X ~ Y and y ~ X then x = y.

3. (Transitive) If x ~ u and y ~ z then x ~ z.

A subset A of a partially ordered set P is directed if it is non-empty, and each

pair of elements of A has an upper bound in A. An w-chain Xl ~ X2 ~ ••• in P is a

simple example of a directed set. If a directed set A has a supremum (least upper

bound), then this is denoted by utA. The suprema of directed sets are the limits

in which we are interested, and Mislove [Mis97]calls this convergence in order. A

partially ordered set D in which every directed subset has a supremum is called

a directed complete partial order (dcpo), and is pointed if D has a least element,

10



denoted by ..lE D. As an example, the collection of finite and infinite sequences

over some set S, denoted by S?", is called the domain of streams, and is a dcpo with

the subsequence ordering.

If D and E are dcpos, then a function f : D -+ E is said to be continuous

if, whenever A is a directed set in D, then f(UtA} = ut f(A}. It is Scott's thesis

that computable functions (those that produce a finite output in a finite time) over

domains are continuous. For this to make sense we obviously need, as well as a

notion of convergence, a notion of approximation in our domains, so that "infinite"

objects can be seen as the coherent limit of their finite approximations.

Suppose x and y are elements of a dcpo D, then we say that x approximates

y (x « y) if, for all directed subsets A of D, y ~ utA implies that x ~ a for some

a E A. This was originally called the "way-below" relation [Sto77], but we follow

[AJ94] and call it the order of approximation. The crucial property of the order of

approximation is that of interpolation,

x «y ==> 3z E D such that x« z « y.

If a point approximates itself, then that point is said to be compact. The idea is that

these correspond to finite pieces of information, and are the computable elements in

a domain. For example, in Soo, the compact elements are the finite sequences, and

x «y if, and only if, x is a finite subsequence of y.

A subset B of a dcpo D is a basis for D if, for every XED, the set Bx = .ij..xnB

(where .ij..xis the set of elements approximating x) is directed with supremum x.

Every basis must contain the set of compact elements, K(D}, of D. A dcpo D is

called a continuous domain if it has a basis, and an algebraic domain if it has a basis

of compact elements. We use the prefix w- if a basis is countable. An equivalent

characterisation of a continuous domain is that x = ut .ij..x,for all xED. For an

algebraic domain K(D)x = .ij..xnK(D} and we have, x = utK(D)x, for all xED.

It is easy to see that S'" is an w-algebraic domain, and that any algebraic

domain is a continuous domain. An example of a non-algebraic but continuous

11



domain is the unit interval [0,1] with the usual ordering, where x « y precisely

when x < y or x = O. A domain in which each pair of elements that are bounded

above have a supremum is called a bounded-complete domain (or be-domain). The

wbc-algebraic domains are usually sufficient for the purposes of semantics, and are

called the Scott domains.

In the continuous or algebraic domains, infinite (or ideal) elements are given

in a coherent way as limits of their finite approximations. A basis approximates the

order relation since x ~ y precisely when Bx ~ By, and a continuous function is

completely determined by its action on a basis. So a domain can really be considered

as the "completion" of a basis.

To make this clearer, we define an abstract basis to be a set B with a transitive

relation ~ such that

M ~ x ==> :Jy E B such that M ~ y ~ x,

for all x E B and M finite subsets of B. Examples are, of course, the actual bases

of continuous domains and also posets. We let I(B) be the set of ideals (directed

lower sets) of B ordered by inclusion. This is the ideal completion of B and is a

continuous domain with basis given by i(B) (where i :B -7 I(B) maps x E B to ,!_x,

the set of elements below x). If D is a continuous domain with basis B and we take

(B, «) as an abstract basis, then I(B) is Isomorphic! to D. Posets are precisely

the bases of compact elements of algebraic domains.

2.1.2 Categories of domains

To find a mathematical model for the type-free A-calculus, Scott found a continuous

domain D such that the terms of the A-calculus could be interpreted as elements in

D, and application in the A-calculus could be interpreted as function application,

effectively solving the "domain equation"

D ~ [D -7 DJ.
1An isomorphism between two posets is a monotone bijection with monotone inverse.
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The following simple result, originally given in [Tar55], lies at the heart of the domain

theoretic approach to solving such equations.

Theorem 2.1.1 Suppose D is a pointed dcpo, and f is a continuous function on

D, then f has a least fixed point given by ut nENfn(1..).
The least fixed point operator, which assigns to a continuous function its

least fixed point, and is itself continuous, is the means by which we give meaning to

recursive constructs. The above result gives us a canonical construction of the least

fixed point.

In general, we work in a category of domains in which we can construct

appropriate domain equations, and associated "continuous" functors, and apply the

theorem at the functorial level to solve these equations. As an example, cartesian

closed categories, which are closed under finite products and function space, are

suitable for modelling the typed A-calculus. We briefly consider the problem of

cartesian closed categories of continuous domains, keeping the category theory to a

minimum and refering to [Mac71, ~oi941 for details.

We denote the category of dcpos and continuous functions by DCPO. When

we consider a subcategory of pointed objects, then we use the subscript 1... The

cartesian product of two dcpos D and E is the usual product of sets with the

coordinatewise ordering, denoted by D x E. This is once again a dcpo with directed

suprema calculated coordinatewise, and is the categorical product.

The function space of two dcpos D and E consists of all continuous functions

ordered pointwise, and is denoted by [D ~ E]. This is also a dcpo with directed

suprema calculated pointwise. To see that the function space is the exponential in

DCPO, we use the apply morphism which sends a function f E [D ~ El and a

point xED to f(x) E E. The category DCPO is therefore cartesian closed.

The order of approximation naturally carries over from dcpos to their fi-

nite product, but not to their function space. The following result then tells us
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that neither the full (containing all continuous functions) subcategories CONT of

continuous domains, or ALG of algebraic domains, of ncpo are cartesian closed.

Theorem 2.1.2 Suppose C is a cartesian closed full subcategory of ncpo, and

D, E are objects of C, then the product of D and E is isomorphic to the cartesian

product D x E, and the exponential of D and E is isomorphic to the function space

[D -+ EJ.

We finish by identifying the maximal full subcategories of CONT.1 which

are closed under cartesian product and function space, and which must therefore be

cartesian closed since the necessary universal properties are inherited from ncpo.
A pointed continuous domain E is an L-domain if each pair of elements in E,

bounded above by e E E, has a supremum in Le. For comparison, a lattice has a

supremum for each pair of elements. As an example, if two sequences in Soo have

a common upper bound then one is a subsequence of the other (they are cofinal),

and so S'" is an L-domain. A pointed continuous domain D is coherent (or stably

locally compact) if the intersection of compact upper sets (with respect to the Scott

topology, which we consider in the next section) are compact. If D and E are

pointed continuous domains and [D -+ EJ is continuous, then either D is a coherent

domain or E is an L-domain.

If f is a function over D, then f is finitely separated from the identity on D,

idD, if there exists a finite set M such that for any xED, there is m E M with

f(x) !: m!: x. We say that D is an FS-domain if we have a directed family {fihel

of continuous functions, each finitely separated from idD, with supremum idD. A

pointed continuous domain D is an FS-domain if, and only if, both D and [D -+ DJ

are coherent. The categories L of L-domains and continuous functions, and FS

of PS-domains and continuous functions, are cartesian closed full subcategories of

CONT.1, and we have the following result.
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Theorem 2.1.3 Every cartesian closed full subcategory of CONT.L is contained in

L or in FS.

2.1.3 Metric domains for denotational semantics

We now consider, at a more elementary level, the metric approach for solving domain

equations. We assume familiarity with metric spaces, but give a summary in the

appendices. In the last section we saw that semantic domains can be constructed as

solutions of suitable domain equations, and that the meaning of a recursive construct

can be defined as the least fixed point of an associated operator over a continuous

domain. One alternative to using dcpos, especially in the presence of concurrency,

is to use complete (bounded) metric spaces. Domain equations were first solved in

a metric setting by de Bakker and Zucker in [dBZ82]. Consider for example, the

domain equation (taken from [dBZ82], but see also [AR89, Wag94])

P ~ {v'}+AxP,

which models deterministic processes that can perform a sequence of events from

A, possibly ending in a termination symbol v' not in A.
To solve this equation, we begin with the singleton set A (0) = {v'} together

with do, the trivial metric. We recursively enrich our space, so that A(n+l) =

{v'} + A x A (n). The metric for a disjoint sum, +, is such that elements in different

components are a distance 1 apart, and elements in the same component inherit

their distance from that component. For the product, x , the distance between two

elements is the distance between their first co-ordinate, if they differ, and half the

distance between their second co-ordinate otherwise. In more detail we have,

dn+l(v', q) = 1, if q E A (n+l) and q =f. v',

dn+l ((aI, PI), (a2,P2}) { 1, if aI =f. a2,
=

dn(Pl,P2)/2, if aI = a2.
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The union, A * = UnEN A {n}, is isometric to the set of finite sequences over A,

and the metric completion, A 00 = A *, is isometric to the set of finite and infinite

sequences over A, with the metric,

d(x,y) 2-[x,yj ,

where [x, y] is the first place at which x and y differ, and we take 2-00 = O. The

solution to our domain equation is (Aoo, d), and the intuition is that the distance

between two processes is inversely proportional to the time needed to distinguish

them.

A second example, also taken from [dBZ82]but see [Wag94], is the domain

equation

p~ hi} +Pc(A x P),

which models non-deterministic processes that either terminate or act as one of a

set of possible continuations, each of which performs an action from A and then

behaves as a process again. The power set operator Pc(') takes closed sets together

with the Hausdorff metric, and the domain equation is solved as before.

The emphasis in [dBZ82]is on developing a canonical way in which to solve

domain equations over metric spaces. The basic ideas are subsequently reformulated

and extended to the (cartesian closed) category ofcomplete bounded metric spaces in

[AR89]. Domain equations over this category are solved as the (unique) fixed point

of a suitable (contracting) functor. The techniques used can be suitably described

as a lifting of Banach's contraction mapping theorem to a categorical setting.

2.1.4 Unifying partial orders and metric spaces

Both partial orders and metric spaces can therefore be used to solve domain equa-

tions, and in each case there is a convenient fixed point theorem for interpreting

recursive definitions. In his thesis [Wag94],Wagner seeks to establish a common

framework unifying the partial order and metric approaches to semantics so as to
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identify the pre-requisites for solving domain equations. He shows how the choice of

a notion of approximation in a domain, leads to a category of domains that supports

that notion and is suitable for solving domain equations.

For example, the notion of approximation for partial orders is a binary one;

an element either approximates another, or it does not. This is not the order of

approximation that we met in section 2.1.1, but rather the information ordering on

a domain. In the metric approach, one element can be thought of as approximating

another to the extent of their mutual distance, and so values are in [0,00) rather

than 2 = {T, ..L}.

Wagner uses the enriched categories in which the hom functor can map into

categories other than SET (which is the case for traditional categories), and so

include partial orders and metric spaces. For example, categories enriched over 2

are precisely the pre-orders (partial orders without anti-symmetry), and categories

enriched over [0,00] are metric spaces in which we allow infinite distances. Two

elements in a pre-order are classifiedby 2, and in a metric space by their distance.

Rules of composition reduce to transitivity {forpre-orders} and the triangle inequal-

ity (for metric spaces). Within this frameworkWagner generalises the partial order

and metric approaches for solving domain equations.

A related, but topological rather than categorical, approach is with the con-

tinuity spaces of Flagg and Kopperman [FK98]. A value quantale V generalises the

order and additive properties of [0,00], and a V-continuity space is a generalised

metric space with the metric taking values in V. To recover partial orders we can

take V = 2.

These two approaches are called quantitative domain theories in [FSW98].

They are essentially "big" unification theories (another example is Rutten's gener-

alised ultrametric domain theory given in [Rut95]) and seek to show the unity of

the partial order and metric approaches to semantics. We will meet another such

approach in section 2.2.3 when we look at quasi-metrics. However, we will also see
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a different approach emerge, in which we seek a common generalisation of partial

orders and metric spaces, securing the advantages of both approaches. That is re-

taining the partial order, while being able to make quantitative distinctions between

elements in a domain.

2.2 Topology and order

We now consider the topological aspects of domain theory, and see that the fun-

damental concepts of continuous domains have alternative topological descriptions.

Our topologies are not Hausdorff, as in classical mathematics (we also give a brief

survey of topology in the appendices), but are appropriate for the study of partial or-

ders. We look at the many guises in which partially ordered topological spaces arise,

and consider how they are related. We refer to (Law87,Law91, Smy92, AJ94, JS96j

as our main references, and to many other papers which we acknowledge in the

subsequent sections.

2.2.1 The Scott topology

For a dcpo D we define the Scott topology to have as closed sets, the lower sets that

are closed under the suprema of directed sets. The Scott topology is not Hausdorff,

but does satisfy the weaker To-separation axiom. These To-spaces are really the

focus of our attention in this section. The key to understanding a To-space, (X, r),

is the specialisation order given by x ~T y if, and only if, every open set containing

x also contains y or, equivalently,

X ~T Y ¢=:::} x E cl {y}.

For a Hausdorff space this order would be discrete, but for the Scott topology on a

dcpo it is the original partial order.

In general, for a given partial order on a set, there is a complete lattice

of topologies with that order as the specialisation order. The finest of these is
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the Alexandroff topology consisting of all the upper sets. The coarsest is the weak

topology with the sets J,.xas a subbasis for the closed sets. We work with the Scott

topology on a dcpo, since it is the finest topology that captures our convergence in

order. To make this precise, we say that a topology on a dcpo is order-consistent if

the specialisation order agrees with the original order, and every closed set is closed

under the suprema of directed sets. The Scott topology is the finest order-consistent

topology, and the weak topology is the coarsest order-consistent topology on a dcpo.

A function between dcpos is continuous, as defined in section 2.1.1, if, and

only if, it is continuous with respect to the Scott topology on each dcpo. For

a continuous domain, the sets itx (of elements approximated by x) form a basis

for the Scott topology. It follows that the Scott topology captures the order of

approximation, since x « y if, and only if, y E Int(tx). The importance of the

Scott topology in domain theory has motivated a more general investigation into

To-spaces, some of which we consider in this section.

2.2.2 Partially ordered spaces

There is a natural duality to a To-space (X, r), since every open set is an upper set,

and every closed set a lowerset, with respect to the specialisation order. We say that

two To-topologies T and T' on X are complementary whenever :51"=2::T'. We define

the cocompact topology Tk to have as a subbasis for the closed sets, the compact

upper sets in (X, r}. This is a complementary topology for T. We call 7r = r V Tk

the patch topology on X and (X, 7r,:51") the patch space. For a continuous domain,

D, with the Scott topology, a, the cocompact topology uk is the weak topology for

2::(1" and the patch topology is called the Lawson topology, denoted by A.

For a topology 7r and a partial order :5 on X, the order is said to be closed

if its graph Gr (:5) = {(x, y) I x ::;y} is closed as a subset of X x X. The topology

7r is then Hausdorff, and (X, 7r,:5) is called a partially ordered space. We let 7rt

denote the collection of open upper sets, and 7r"- the collection of open lower sets, so
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that 1Tt and 1T4. are complementary topologies. A compact ordered space [Nac65]is

a partially ordered space, (X, 1T, :5), with 1T compact. We will see that the compact

ordered spaces can be characterised in terms of To-spaces.

We say that a To-space (X, r) is locally compact if every open neighbourhood

of a point contains a compact neighbourhood, in which case the patch space is a

partially ordered space. In a To-space, distinct points have distinct neighbourhood

filters/, and every neighbourhood filter of a point is completely prime+, so every

completely prime filter over r is the neighbourhood filter of at most one point. A

To-space is sober if every completely prime filter over r is the neighbourhood filter

of precisely one point. Alternatively, every irreducible closed set4 is the closure of a

unique point. Every sober space is, with respect to the specialisation order, a dcpo

with an order-consistent topology.

Theorem 2.2.1 (Hofmann-Mislove Theorem [KP94]) For every sober space

(X,r), there is a bijection between the set of Scott-open filters5 of r , and the collec-

tion, /'i" of compact upper subsets of X, ordered by reverse inclusion.

For a sober space, (X, r}, /'i, is therefore a dcpo. Furthermore, if r is locally

compact then r is a continuous lattice, /'i, is a continuous domain and we have:

K' «K in /'i, <==> 30 E r with K ~ 0 ~ K',

0' «0 in r <==> 3K E /'i, with 0' ~ K ~ O.

So there is a natural duality between the open sets and the compact upper sets of a

locally compact sober space. We define (X, r) to be coherent if it is sober, compact

and locally compact with the intersection of compact upper sets again compact. In

which case the duality is particularly strong, since /'i, is a continuous lattice.

2A filter U is a non-empty upwardly-closed subset such that U, U' e U implies un tr e u.
3A filter :F of T is completely prime if a subset A of open sets with U A e :F implies An:F "# 0.
..A closed set is irreducible if it is non-empty and is not the union of two closed proper subsets.
5A filter:F of T is Scott-open if a directed family A of open sets with U A e :F implies An:F "# 0.
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Theorem 2.2.2 If (X, 11",~) is a compact ordered space, then (X, 11"i) is a coherent

space. Conversely, if (X,r) is a coherent space, then the patch space (X,1I"'~T)'

where 11" = r V rk, is a compact ordered space, r = 11"t, rk = 1I".j., and these construc-

tions are mutual inverses.

For a continuous domain, the Scott-open sets are precisely the Lawson-open

sets, so a pointed continuous domain is coherent (section 2.1.2) precisely when the

Lawson topology is compact. We see that the locally compact sober spaces, gener-

alise the Scott topology for continuous domains and the coherent spaces generalise

the Scott topology for coherent domains.

2.2.3 The logical approach to quasi-metric spaces

We now consider Smyth's work on quasi-metrics [Smy87, Smy91, Smy92] which is

another of the quantitative domain theories (see section 2.1.4) that seeks to unify

the partial order and metric approaches to semantics. A quasi-metric on a set X is

a map d : X x X ~ [0, 00) satisfying

Q1. d(x,x) = 0.

Q2. d(x,y) = d(y,x) = ° => x = y.

Q3. d(x, y) ~ d(x, z) + d(z, y).

A quasi-metric space is clearly a generalisation of a metric space, but we can also

regard it as a generalisation of a poset if we think of d(x, y) as the "truth value" of

the assertion x ~ y, with zero corresponding to true [FSW98]. We recover a poset

P with the discrete quasi-metric, defined by

d(x,y) =
{

0,

1,
if x ~ u.
otherwise.

In the logical approach to quasi-metrics, definitions (for example of Cauchy se-

quences or completeness) should, in the case of the discrete quasi-metric over a
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poset, have natural analogues in domain theory. Of course, we also require that in

the metric case, they agree with the usual definitions.

We begin with Cauchy sequences. The natural definition for a sequence {xn}

to be Cauchy in a quasi-metric space (X, d) seems to be that,

VE > 0, 3R ~ 1 such that Vn, m ~ R, d(xm, xn) < E. (2.1)

However, for the discrete quasi-metric over a poset, Cauchy sequences then corre-

spond to eventually constant sequences, whereas we would like "Cauchy" sequences

to roughly correspond to w-chains and "limits" to correspond to supremum. For

this reason we define a sequence {xn} to be forward Cauchy if

VE > 0, 3R ~ 1 such that Vn ~ m ~ R, d(xm, xn) < E.

For the discrete quasi-metric over a poset, forward Cauchy sequences then corre-

spond to eventually increasing sequences.

We are led to define an element X EX, to be the upper limit of a forward

Cauchy sequence, {xn}, if

d(x,y) = lim d(xn, y),
n-+oo

'VyEX.

This last limit exists since {xn} is forward Cauchy although, in the general theory

[Smy91], it is convenient to admit infinite distances. For the discrete quasi-metric

over a poset, upper limits correspond to supremum, and so complete quasi-metric

spaces, in which every forward Cauchy sequence has an upper limit, correspond to

dcpos, and completion by Cauchy sequences corresponds to the ideal completion of

a poset to an algebraic domain (see section 2.1.1).

. 2.2.4 Topologies induced by quasi-metrics

For a quasi-metric d on a set X, the (standard) topology has basis the e-balls,

B~(x) = {y E X I d(x,y) < E}. The conjugate quasi-metric d-1 is defined by
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d-1 (x, y) = d{y, x), and the associated metric d* is defined by

d*{x,y) = max{d{x,y),d-1{x,y)}.

The definition of a Cauchy sequence, originally given in (2.1), is then lifted from

the metric space (X, d*). Other properties for the quasi-metric space (X, d), such

as completeness and total boundedness, can similarly be lifted from (X, d*).

In the logical approach to quasi-metrics, the limit of a forward Cauchy se-

quence need not be a topological limit (with respect to the standard topology) and,

for the discrete quasi-metric over a dcpo, the standard topology is the Alexandroff

topology. In section 2.2.1, we saw that we require the topology for a dcpo to be

at least order-consistent ("computationally satisfactory" [Smy87]),so Smyth defines

alternative topologies for a quasi-metric which (1) Reduce to order-consistent topolo-

gies for the discrete quasi-metric over a dcpo, (2) Reduce to the usual topology for

metric spaces, and (3) For which upper limits are topological limits.

The problem however, recognised by Smyth in [Smy91], is that we lose the

simplicity of metric spaces, which was one of the advantages we had hoped to se-

cure. To regain this simplicity, Smyth proposes that we restrict our attention to

the totally bounded quasi-metric spaces. We can then avoid the difficulties (and

controversies) of the more general theory, since the forward Cauchy and Cauchy

sequences agree [Smy91],and the upper limit of a (forward) Cauchy sequence is the

greatest topological limit with respect to the standard topology (and specialisation

order). It followsthat for the totally bounded quasi-metric spaces, we can avoid the

alternative topologies of [Smy87]altogether.

2.2.5 The computational significance of topology and metric

We now consider a justification of topologies for domains of computation, and the

introduction of metrical ideas, taken from [Smy92].Consider the domain of streams,

800, and suppose, as in section 2.1.3, that 800 represents a class of simple processes

that can perform a sequence of actions. If we observe a process as it proceeds then,

23



at any given time, we can only see a finite segment of its output. Some properties of

a sequence (that is a process) are finitely observable, if they are present, and others

are infinite in nature. For the condition of finite observability, we require that if

the property holds of some x E Soo, then knowledge of some initial finite segment

(approximation) of x suffices to establish this.

If we understand a property extensionally as a subset of Soo, then the class

of finitely observable properties form a topology. In the context of domain theory,

appropriate for the notions of finiteness and approximation, we require that a finitely

observable property satisfies (1) If a certain amount of information establishes the

success of a test, then so does any further information, and (2) If the limit of a

directed set of better approximations passes a test, then some approximant passes

the test. The finitely observable properties are therefore Scott-open. If x[n] is the

n-truncation of x E S?", then the condition of finite observability for A ~ SOO

becomes, for all x E A, there exists n ~ 1 such that tx[n] ~ A, and the topology of

observable properties is the Scott topology.

With this intuition, the specialisation order of a topology, .,.,clearly becomes

an information ordering, since x :5.,. y implies that any finitely observable property

of x holds of y. Identifying points with the same information content is therefore the

To-separation axiom. Continuity can naturally be seen as a sufficient condition for

computability since, for a function f to be computable, to obtain finite information

about f(x) it suffices to have finite information about x.

We can refine the notion of a finitely observable property to a boundedly

observable property, whose instances can be verified within a number of steps fixed

in advance. Since every finitely observable property is a disjunction of boundedly

observable properties, then the latter form a basis for our topology. We call a

boundedly observable property whose instances can be verified within k steps, a

depth k property, and can define a family of relations of closeness,

x :5~ y ~ Every depth k property of x holds for y,
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which clearly refine the specialisation order. The depth k properties in 800 are the

tx for which the length of the sequence is [z] ~ k. It follows that x[k] !;;;; y[k] if, and

only if, x ~~ y.

It now seems natural to define a quasi-metric on 800, by

d{x,y) = inf{2-nlx~:y},

which is small if, and only if, a "deep" property is required to distinguish x from y.

If x E 800 is a finite sequence and we let 0 < e < 2-lxl, then tx = Be;{x). Conversely,

each BE;(X) is the join of the ty where y E Be;(x) and y is a finite sequence. So the

(standard) topology induced by d is the Scott topology (or topology of observable

properties) on 800
• FUrthermore, the associated metric,

d*(x, y} = inf{2-n I x[n] = y[n]},

is the metric from section 2.1.3.

We have therefore motivated from first principles, a unification of the two

approaches to semantics on 800 by a quasi-metric. We can further motivate the

Lawson topology if wefirst observe that the condition for finite observability is based

on positive information. Suppose a, b E 8 are distinct, and consider the property

A = t(a) \ t(a, b), which is not finitely observable. The problem is that if x E 800
,

and at some given time we have observed (a), then is x E A? Smyth suggests,

in [Smy92], that if in some finite time we can know whether the next output will

not be some given element (that is we introduce some negative information), then

properties such as A become finitely observable. The topology so induced is the

Lawson topology.

2.2.6 Quasi-uniformities

One objection to the approach of the last section, is the arbitrary way in which we

assign distances from the relations of closeness {:s~}. We briefly consider quasi-

uniformities [FL82, Law91],which lie between To-topologies and quasi-metrics, and
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give us a global notion of nearness, allowing us to define Cauchy sequences and

completeness, without the arbitrary distances of quasi-metrics. Furthermore, quasi-

uniformities are central to the study of the interdependence between topologies and

orders.

A quasi-uniformity on a set X is a filter U of X x X such that:

1. Each member of U contains the diagonal {(x, x) I x EX}.

2. If U E U then Vo V = {(x,z) I (x,y),(y,z) E V for some y E X} ~ U for

some V EU.

A quasi-metric d determines a quasi-uniformity Ud by taking as a base (of the filter

Ud) the sets U, = ((x,y) I d(x,y) < cl. For a quasi-uniform space (X,U), we have

the induced pre-order, nU, which we denote by ~u, and the (standard) topology,

which we denote by T(U), the natural analogue to the quasi-metric topology. We

will assume that T(U) is To so that ~u, the specialisation order for T(U), is a partial

order.

For a quasi-uniformity U on X, the conjugate quasi-uniformity U-1 and the

associated uniformity U*, are the natural analogues of the quasi-metric definitions.

As an example, the sets of the form {(x,y) I x-y < cl, for any e > 0, are a basis for

the lower quasi-uniformity, U, on !R. The induced (standard) topology T(U) is the

lower topology on !R, with basic sets of the form (x, 00), and the topology induced

by the associated uniformity U* is the Euclidean topology on !R.

The topologies T(U) and T(U-1) are complementary and (X, T(U*), ~u) is

a partially ordered space. A quasi-uniformity U is compatible with a topology T on

X if T(U) = T. A complemented bitopological space (X, T, T') is determined by a

quasi-uniformity U if T(U) = T and T(U-1) = T', and a partially ordered space

(X, 11",~) is determined by U if T(U*) = 11" and ~u=~·

A quasi-uniform space (X,U) is totally bounded (complete) if the uniform

space (X,U*) is totally bounded (complete). We have seen, in sections 2.2.3 and
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2.2.4, that Smyth advocates the complete totally bounded quasi-uniform (or quasi-

metric) spaces as domains of computation [Smy91]. Totally bounded spaces can

also be justified in the context of section 2.2.5 since, for any given depth of testing,

there is a bound on the number of points that we can distinguish by observation,

and distance is a measure of the difficulty of distinguishing points. An important

connection with section 2.2.2 is that these spaces can alternatively be characterised

[Smy91, Law91] as compact ordered spaces.

Theorem 2.2.3 A compact ordered space (X, 7r, $) is uniquely determined by the

complete totally bounded quasi-uniformity consisting of open neighbourhoods of the

graph Gr($} in X xX. Conversely, if (X,U) is a complete totally bounded quasi-

uniform space, then (X, T(U*), $u) is a compact ordered space.

2.3 Computational models

Aside from denotational semantics, continuous domains have found application as

computational models for classical spaces from mathematics, with the classical space

embedding as the set of maximal elements. We met our first example of such

a model in section 2.1.1, where the. Cantor space with the product topology is

homeomorphic to the maximal elements of the domain of streams, Soo, for a finite

set S, together with the subspace Scott topology. Most of the material in this

section is based on Edalat's recent survey [Eda98], as well as the original papers

[Eda95a, Eda95b, EH98].

2.3.1 The upper space as a computational model

Consider an example from [Law97],where we seek numerical approximations of a

zero for a continuous function / : [0,1] -+ [0,1] with /(0) < 0 and f(1} > O. Using

the bisection method, we divide our interval in two subintervals of equal length, and

choose a subinterval for which / is positive at the right-hand endpoint, and negative
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Figure 2.1: Embedding X into its upper space.

at the left-hand endpoint. In this way we construct a sequence of nested intervals

with a single point intersection which, by continuity, is a zero of our function. Each

interval is a better approximation of the zero. We can use domain theory to identify

the essential mathematical details of such a computational example.

We let I!R denote the collection of closed bounded (and hence compact)

intervals in !Rordered by reverse inclusion. Intuitively, an interval approximates

each of the numbers that it contains. We use reverse inclusion as our information

ordering since, as we saw in our example, smaller intervals give a more precise

approximation. Matthews calls these intervals vague real numbers in [Mat94], and

Lawson calls them approximate reals in [Law97]. This domain of intervals is an

w-continuous domain in which suprema of directed sets are given by the intersection

of the intervals and a « b in I!R if, and only if, b is in the interior of a. The map

s : !R~ I!R defined by s(x} = {x}, for each x E !R, is a homeomorphism from !R

onto the set of maximal elements of I!Rwith the subspace Scott topology. So I!R is a

computational model of !R,and we can study continuous and computable functions

on !Rdomain-theoretically, as originally suggested by Scott in [Sco70].

This domain of intervals is itself an example of a more general construction.

Suppose X is a second countable locally compact Hausdorff space. We define the
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upper space, UX, to be the collection of non-empty compact subsets of X ordered

by reverse inclusion. This is an w-continuous domain with suprema of a directed

set of elements given by the intersection of the elements and a « b in UX if, and

only if, b is in the interior of a. Maximal elements of UX are the singleton subsets

of X, and s : X -+ UX given by s{x) = {x}, for all x E X, is a homeomorphism

from X onto the set of maximal elements of its upper space with the subspace Scott

topology, as illustrated in figure 2.1. So the upper space is a computational model

for a second countable locally compact Hausdorff space.

2.3.2 The space of formal balls

Another important class of spaces in mathematics are the Polish spaces, which are

topologically complete separable metrisable spaces, and include the Banach spaces.

We cannot in general construct the upper space computational model for these

spaces, since they need not have enough compact subsets. However, by choosing a

separable complete metric, we can construct an alternative computational model.

For a metric space (X, d), we define a formal ball to be a pair (x, r), with

x E X and rE [0,00). We define the space of formal balls, BX, to be the collection

of formal balls, ordered by

(x, r) ~ (y, s) <===> d{x, y) ::; r - s.

lfwe let Cg{x) = {y E X I d{x,y)::; E}, with E > 0 and x E X, denote the closed

balls in X, then (x,r) ~ (y,s) implies that Cr{x) ;2 Cs(Y). In general, the converse

does not hold, but for the normed vector spaces (which include the Banach spaces)

BX is isomorphic to the collection of closed balls ordered by reverse inclusion.

One-of the pleasing aspects in this construction is that the order-theoretic

properties of BX are closely related to the metric properties of X. For example,

directed sets in BX have an w-chain with the same upper bounds, and w-chains in

BX correspond to Cauchy sequences in X. Similarly, suprema in BX correspond

to limits in X, so we have that X is complete if, and only if, BX is a dcpo.
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We can extend the "order of approximation" given in section 2.1.1 to ar-

bitrary posets, by replacing "for every directed set" in the definition by "for every

directed set with a supremum". The space of formal balls is then a continuous poset,

with order of approximation given by

(x, r) « (y, s) {:=:::> d(x, y) < r - s.

Bases of BX correspond to dense subsets of X, so we see that BX is w-continuous

if, and only if, X is separable. Maximal elements of BX are of the form (x,O), and

i: X -+ BX given by i(x) = (x,O), for all x E X, is a homeomorphism from X onto

the set of maximal elements of BX with the subspace Scott topology. It follows

that if X is a separable complete metric space then our computational model BX is

an w-continuous domain. In this framework, we can give a domain-theoretic proof

of Banach's contraction mapping theorem.

Finally, we consider the metric and domain-theoretic notions of completion.

Suppose (X, d) is the metric completion of (X, d), then BX is a continuous domain.

On the other hand, if we consider (BX, «) as an abstract basis (see section 2.1.1)

then its ideal completion I(BX) is also a continuous domain. Since X is dense

in X, then BX = X x [0,00) is a basis for BX. The order of approximation of

BX restricts to BX, so BX is isomorphic to the ideal completion of its basis BX,

which is I(BX). In this way the metric completion can be constructed domain-

theoretically, since X can be identified with Max(I(BX)). In chapter 4 we will

consider a natural way to recover the complete metric d, from the ideal completion.

2.3.3 Edalat's generalisation of Riemann integration

We now turn to Edalat's generalisation of Riemann integration [Eda95a]. For a

topological space X, we let MIX denote the collection of probability distributions,

or normalised Borel measures (we give a brief survey of measure theory in the

appendices). We construct a computational model for this space so that we can

approximate a measure in Ml X by some "simpler measures" in our model. To
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find the integral of a function with respect to a measure we then integrate with

respect to these simpler measures, and take the limit. This is essentially the dual to

the Lebesgue approach, where we take the limit of the integrals of approximating

simple functions. The advantage of Edalat's generalisation is that we retain the

computational features of the original and gain new techniques for computing the

integral.

We begin by defining these "simpler measures". Suppose (X,1I") is a topo-

logical space, then a valuation [Bir67, Law82, Jon89] v : 7r -+ [0,00) satisfies

1. v(a) + v(b) = v(a n b) + v(a U b).

2. v(0) = O.

3. a ~ b implies that v(a) ~ v(b).

Clearly a valuation is a measure-like function, but one that is only defined on open

sets, and any measure restricted to the open sets gives a valuation. A continuous

valuation further satisfies

4. If A ~ 11" is a directed set, then v (UUEA U) = SUPUEA v(U).

For any x EX, we define the point valuation, Ox, by

{
I, if x E U,

Ox(U) =
0, if x ~ U.

We then define a simple valuation to be a linear combination of point valuations,

Ef=l riox;, with Xi EX, n E [0,00).

We define the probabilistic power domain, P X, to be the collection of contin-

uous valuations on X bounded bY,I, with the pointwise ordering. The probabilistic

power domain is a dcpo, and suprema of directed sets are computed pointwise.

If X is now a second countable locally compact Hausdorff space, then the upper

space, UX, is an w-continuous domain. An important result from [Jon89] is that

PU X is then an w-continuous domain with a basis consisting of simple valuations.
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As we shall discuss further in the next section, we can extend s : X 4 UX to

a : MI X 4 PUX by a(J.') = J.'0 8-1, for all J.'E MIX, and this is a bijection be-

tween the probability distributions on X and the set of maximal elements of PUX.

If we give MIX the weak topology, then a is a homeomorphism, and PUX is a

computational model for MI X.

For a probability distribution in MIX, we can use this model to find an

approximating w-chain of simple valuations in PUX. For example, suppose>. is the

Lebesgue measure on [0,1] and P is the partition °= Xo < Xl < ... < Xk = 1 with

IIPII = maxI~i~k Xi - Xi-I. We then have

k

v» = ~)Xi - Xi-dO[xi_l,xil E PU[O, 1],
i=1

and vp !; >.. Furthermore, if P' refines P, then vp !; VP' and if {Pn} is a refining

sequence of partitions with IlPn II -+ 0, then the w-chain {vPn} approximates the

Lebesgue measure.

We are now in a position to give a brief account of Edalat's generalisation of

Riemann integration. Suppose X is a compact metric space, f :X 4 !R is bounded

and J.'E MIX is a probability measure. We let plUX denote the subdcpo of the

normalised valuations on UX, which is also an w-continuous domain with a basis

consisting of normalised simple valuations.

For a simple valuation v = LbEBrbob E pIUX, with B ~ UX finite, we

define the lower sum, and upper sum, of f with respect to 11, to be

stu, v) = L rb inf f(b),
bEB

and SUU, v) = L rb sup f(b),
bEB

respectively. If we take v !; 11', then the lower sum increases and the upper sum

decreases, and provided v, v' « IL, then SlU, v) ~ SUU, v'). So we can define the

lower R-integral, and upper R-integral, of f with respect to J.', to be

R!fdIL = sup stu, v),
_ v<t:.~

and R!fdJ.' = inf SUU, v),
v<t:.~

32



respectively. We say that f is R-integrable with respect to J-L,if these are equal, and

denote this value by R J f dJ-L.
A function f is R-integrable with respect to J-Lif, and only if, for any e > 0 we

can find a simple valuation v E pIU X with v « J-Lsuch that SU (f, v) - Se (f, v) < c.

If f is R-integrable, then for any w-chain {vn} in plUX approximating J-L,we have

It is these simple approximating sequences for the integral that are the essential

feature of R-integration.

2.3.4 Extending valuations to measures

Returning to the key result of the last section, the embedding of Ml X onto the

maximal elements of PUX, Edalat [Eda95b] uses some existing results from the

literature, notably from [Pet51, Law82],on extending continuous valuations to Borel

measures. We briefly consider some of these extension results, as they will prove

useful in placing our work in chapter 6 into context.

Our starting point will be the work of Pettis [Pet51] on extending valuations

to measures. In the last section a valuation was defined over the open sets of a

topology. In [PetS1] the definition is more general, and a valuation v : C ""'* [0,00)

can be defined over any lattice C, of subsets of some set X, provided v(0) = 0 if

o E C. If we let H(£) = {A \ B I A,B E C,B ~ A}, then our valuation induces

a map 1/J : H(£) ""'* [0,00), given by 1/J(A \ B) = v(A) - v(B), which Pettis shows

is well-defined and additive. In general we will be extending 1/J to a measure over

S(H(C)), the a-ring generated by H(C), rather than extending v directly. We now

give Pettis' extension result, which we remark can be given in even more general

form.

Theorem 2.3.1 ([PetS1], p.192) Suppose (X,1I') is a Hausdorff space, K. a family

of closed sets and W a lattice of open sets, such that K \ W is compact, for each
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K E K, and W E W. If v : W -7 lR is a valuation such that, for each W E Wand

E > 0, there exists K E K, and W' E W with

W' ~ K ~ Wand v(W) ~ V(W') +c,

then there exists a unique a-finite measure 'IjJ* on S(H(W)) extending'IjJ on H(W).

If 0 E W then 'IjJ* is the unique measure on S(W) extending u on W.

Pettis remarks that his work can be viewed as an abstraction of the method

for deriving the Lebesgue measure on lR. To see this we take lRwith the usual

topology, W = {(a, b) I a ~ b in lR},K, = {[a, bll a ~ b in lR}and v((a, b)) = b - a.

Since 0 E W then 'IjJ* uniquely extends v on Wand is the Lebesgue measure. In

chapter 6 we will consider another way in which we can use this result to derive

the Lebesgue measure. Returning to Edalat's work [Eda95b], Pettis' theorem can

be used to deduce that any continuous valuation on a locally compact Hausdorff

space has a unique extension to a measure, and hence that, for a second-countable

locally compact Hausdorff space, the finite measures and continuous valuations are

in one-to-one correspondence.

Lawson also uses Pettis' theorem in [Law82]to prove a number of extension

results, fromwhichwecan deduce that any continuous valuation over an wbc-domain

extends uniquely to a finite regular Borel measure (with respect to the Lawson

topology). This has recently been generalised, in [AME98],where the authors show

that if a bounded valuation over a dcpo is the directed supremum of a family of

simple valuations, then it has a unique extension to a Borel measure (with respect

to the Scott topology). It follows that every bounded continuous valuation over a

continuous domain can be extended uniquely to a Borel measure.

2.4 Concluding remarks

We finished section 2.1 with some comments on using partial orders and metrics

together so as to be able to make quantitative distinctions between elements in
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a domain. This is something that we will be working towards, and we will seek

to place our work within the context of the material on To-spaces from section 2.2,

particularly the quasi-metrics. The space of formal balls from section 2.3 will also be

useful in establishing context, and the material on extending valuations to measures

will re-surface in chapter 6.
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Chapter 3

Partial Metric Axioms

Having set out the general area in which we wish to work, we now embark on our

study of the partial metric spaces. We begin with Wadge's work on the cycle sum

test (section 3.1), from which we identify the essential motivating ideas that set the

partial metrics apart from the material in chapter 2. We give an original presentation

of the partial metric axioms (section 3.2) with the emphasis on the context in which

to place them, and give some original material in which we consider the essential

topological characteristics of the partial metric spaces (section 3.3).

3.1 Wadge's cycle sum test

The work on partial metrics can be traced directly back to a paper by Bill Wadge

in 1981 [Wad81], in which Wadge discusses Kahn's data flow networks, and gives an

elegant non-operational test for proving that many of them are free from deadlock.

We summarise the details of this paper.

3.1.1 The extensional semantics of data flow

Consider the Kahn data flow network of figure 3.1 (taken from [Wad81], but see

also [Kah74]) which generates the sequence (1,2,3,5, ... ) of Fibonnacci numbers
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G

F

Figure 3.1: Generating the Fibonnacci Numbers

in the followingway. The nodes 1 and 2 produce endless streams of 1's and 2's

respectively. The + node waits for a value on each input arc then returns their sum

down the output arc. The fby (followedby) nodes give as output the first value on

the left input arc, followed by the values on the right input arc. The next node

discards the first value on its input arc, and then passes the rest onto its output arc.

As an extensional (denotational) semantics we assign to each arc a sequence,

recording the tokens which travel along that arc. In a healthy network, this flow

of tokens proceeds indefinitely, and our sequences will be infinite. It is possible

however that this flowmight cease at some point (that is deadlock), so we will also

require finite sequences. For a network with k arcs, we take as our semantic domain

s-, the product of k copies of the domain of streams, SOO, from section 2.1.1, with

S = N, and denote a typical element by x = (Xl, ... ,Xk) E Sk.

The outputs of our nodes are completely determined by their inputs (the

nodes are functional), which means that there is a function describing the corre-

spondence between the inputs and outputs of that node. It follows that to a data

flow network, there corresponds a set of recursive equations, the right-hand side of
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which defines a function over our semantic domain. For example, the equations for

our Fibonnacci network can be written as,

F = 1 fby (2 fby F + G),
(3.1)

G = nextF,

which defines the continuous function, f : S2 -+ S2,

(
f(fEh ) = ( 1 fby (2 fby Xl + X2) ) ,

f(fEh next Xl

Kahn conjectured in [Kah74], and Faustini proved in [Fau82J, that the operational

behaviour of a network is described by the least fixed point of its associated function.

3.1.2 Circularity and deadlock

Deadlock will occur in a network if some node is directly or indirectly consuming

its own output (the network has a cycle), and starves itself of tokens. Consider the

followingsimple examples. The present value of the variable I in

1= Lfby 1+ 1, (3.2)

depends only on the previously computed values of I. The least fixed point of the

associated function is the sequence {I,2, 3, ... }, and the network corresponding to

this equation is free from deadlock. On the other hand, the present values of J and

Kin

J = 1+ J and K = 2 * next K, (3.3)

depend on the present and future values of J and K respectively. The least fixed

point of the associated functions is the empty sequence 0, and the networks corre-

sponding to them deadlock.

To formulate the cycle sum test we associate, to each of the arguments of

an operation, a number which measures the extent to which the output leads the

argument:
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• 0 is associated with each argument of +.

• 0 and 1 are associated respectively to the arguments of tby.

• -1 is associated to the argument of next.

The cycl~ sum of a cycle is the minimum extent to which a variable in that

cycle depends on itself, and is found by summing these numbers as we compose

operations. For example, I has cycle sum +1 in (3.2), and we see that to compute

the first n values of I we require the first n - 1 values of I. On the other hand, J

and K have cycle sums 0 and -1 respectively in (3.3). It seems clear that a positive

cycle sum indicates a healthy dependency. This is the cycle sum test and our claim

is that if every cycle in a network has a positive cycle sum, then that network is free

from deadlock.

3.1.3 Justification of the cycle sum test

A network cannot deadlock if the sequences associated to each of its arcs are infinite.

We say that the size of a sequence x E SOO, is its length, [z], and define the size of

an element x E Sk to be the size of its least component, and denote this by Ixl. The
complete elements in a domain are defined to be those with infinite size. An element

is therefore complete in Sk if, and only if, each of its components is complete in

800• We prove that a network is free from deadlock by showing that the least fixed

point of an associated function is complete. To justify the cycle sum test, we must

therefore show that whenever a set of equations corresponding to a network passes

the test, then the least fixed point of the associated function is complete.

Consider the continuous function, / : Soo -+ 800, associated with (3.2) whose

least fixed point is, by Theorem 2.1.1, the supremum of the chain

0, /(0) = (1), /2(0} = (1,2),

which is complete since the size of the terms in the chain increase by one at each
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step;

If(x)1 = Ixl + 1,

More generally, consider a data flow network with k equations defining k

variables over S?', We form the k x k matrix M with entries in ZU {oo} so that Mij

is the extent to which the ith equation depends on the jth variable, with 00 signifying

no dependency. For example, the Fibonnacci network has, from the equations in

(3.1), the associated matrix

If we use the min/sum product of matrices, then a network passes the cycle sum

test precisely when the diagonal elements of

are positive. For example, the Fibonnacci network has two cycles in (3.1), with cycle

sums +1 and +2, and these are the diagonal elements ofM and M2. It follows that

a network passes the cycle sum test precisely when some power of M has positive

entries. In our example M2 has positive entries.

If we let f : Sk -? Sk be the function associated with our equations, and

define er: Sk -? [O,oo]k by

(.:er(i) =
IXkl

ViE sk,

then M is such that

er(J(i)) = M * er(i),

where * is the min/sum product. Furthermore, for any s ~ 1, we have
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It is clear that if MS has positive entries then the size of the least component of

r(x) is greater than the size of the least component of X, and hence the least fixed

point of f is complete in Sk. This finishes the proof that every network which passes

the cycle sum test is free from deadlock.

3.1.4 Size and completeness

The concepts that Wadge's paper introduces are those of size and completeness,

which Wadge notes "should extend to a much wider context". Complete elements in

a domain are understood, in the vaguest sense, as those elements which cannot be

further completed (which is not the same as maximal), and size is a measure of the
I

extent to which they are complete. Wadge indicated that to understand this more

fully would require an extended notion of a domain that included some quantitative

measure of convergence. To achieve this, within a generalised metric framework, has

been the motivation behind the work of Matthews [Mat94, Mat95] on the partial

metric spaces, which in turn has been the direct precursor to this thesis.

3.2 The partial metric axioms

We are now ready to give the partial metric axioms of Matthews [Mat94]. Our

presentation is original and has been influenced by [BS97,Hec98], with some of the

material already appearing in [ONe97]. We will find that in seeking "metrics" for

To-spaces in general, we are naturally lead to the axioms of Matthews, which allow

us to discuss Wadge's ideas in an abstract setting.

3.2.1 Weakening the metric axioms

Let us consider how the metric axioms can be weakened to a To-topological frame-

work. We define a To-metric to be a "distance function" d: X x X -t [0,00), on

a set X, that "induces" a To-topology on X. More precisely, we require that the
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dCa,a)= 0 = dtb.b)
dtc,c) = 1

dta,c) = dtc,a) = 1
dfb,c) = d(c,b) = 1
d(a,b) = d(b,a) = 2

Figure 3.2: A distance function which is not a To-metric.

c-balls, Be;{x) = {y E X I d(x,y) < s} (for x E X, e > 0), are the basis for a

To-topology, T[d], on X. We let ~d denote the specialisation order of T[d]' Suppose

this is a non-trivial partial order, so that a <d b for some a, b E X. We can then

find e > 0 such that b E Be(b) but a ¢ Be(b), and it follows that e > d(b, b) and

d(b, a) ~ c. We have two cases to consider:

either a E Be(a) ===} bE Be(a) ===} d(a, b) < e ~ d(b, a),

a ¢Be (a) ===} d(a, a) ~ e > d(b, b).or

In the first instance d cannot be symmetric, and in the second d must have non-zero

self-distances. In weakening the metric axioms to induce non-trivial specialisation

orders, we must therefore choose between symmetry and zero self-distances, we

cannot have both.

If we insist on zero self-distances, then the quasi-metric axioms, from section

2.2.3, are appropriate. If we require symmetry then Matthews proposes, in [Mat94],

that the appropriate axioms are,

PI. d(x,y) ~ d(x,x).

P2. d(x, x) = d(x, y) = d(y, y) ===} x = y.

P3. d(x, y) = d(y, x).

P4. d(x, y) ~ d(x, z) + d(z, y) - d(z, z).

To see why we must strengthen the metric triangle inequality, consider the

example space in figure 3.2, in which the distance function satisfies Pl-3 together
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with the metric triangle inequality. Since c E Bt:{c) implies b E Bt:{c), then we

cannot have

and so the distance function is not a To-metric.

The combination Pl-4 are a minimal generalisation of the metric axioms,

retaining symmetry, and are called the partial metric axioms. We will call distance

functions that satisfy the partial metric axioms either partial metrics or pmetrics.

A minimal set of axioms, for which we retain symmetry, are the combination P2-4,

and these are called the weak partial metric axioms. This weaker position is argued

for by Heckmann in [Hec98], who shows that we can deduce a weak PI,

2d(x,y) ~ d(x,x) + d(y,y),

from P4, and that d' : X x X -+ [0,00) defined by

d'(x, y) = max{d(x, y), d(x, x), d(y, y)},

is a partial metric with 'T[d'] = 'T[dj. However, we feel the intuition to be that much

simpler with the PI axiom, since we retain that idea that a point y is at least as far

from x as x is itself.

In the presence of non-zero self-distances we find it convenient to change our

s-ball definition so that

Be{x) = {y E X I d{x,y) < d(x, x) +E}, Vx E X, ve » O.

This induces the same topology, 'T[dJ' on X and is more intuitive, since x E Bt:{x)

for all e > O.

To conclude our discussion on axioms for distance functions, we remark that

the minimal To-metric axioms are the combination P2 and P4, where we have neither

symmetry nor zero self-distances, and that the P4 axiom alone is sufficient for the

s-balls to induce a topology, although this need not be To.

44



3.2.2 Understanding partial metrics

In seeking distance functions for To-topologies, the choice is essentially between the

quasi-metrics and the partial metrics. As we have already seen in section 2.2, the

quasi-metrics have been around for significantly longer than the partial metrics, and

have been extensively studied in their own right. One reason for the emergence of

the quasi-metrics earlier than the partial metrics is the relatively simple intuition

in the presence of non-symmetry, as opposed to non-zero self-distances; colloquially,

suppose metric measures "amount of effort" and think of walking in hilly terrain

[Smy92]. It has proved more difficult to find an entirely satisfactory intuition for

the partial metrics.

We consider examples of partial metric spaces and try to establish some of

the intuition behind them. We begin with the domain of intervals, IR, from section

2.3.1, for which Matthews [Mat94] defines a pmetric by

d([a, b], [e,d)) = sup{lx - yll x, v e [a, b] U rc, d)}
- max{b,d} - min{a,c}.

This pmetric agrees with the usual metric on the set of maximal elements of IR, and

induces the Scott topology on IR. It follows that (IR, d) is a computational model

for !Rtogether with the usual metric. In this model, we can not only approximate

points in !Rby elements in I!R, but we can also approximate distances, since the

distance between any two elements in I!R is the extent to which the points they

approximate can differ in R.

A natural step is to now extend this to the space of formal balls, BX, for a

metric space (X, d). We define a pmetric tS: BX x BX -+ !R by

&((x, r), (Y, s)) = max {2r, r + d(x, y) + s, 2s} ;:::o.

This is an original definition which was also found independently by Heckmann

in [Hec98]. Intuitively we think of (x, r) as the "solid" closed ball Cr(x) in X I
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and define 0 to measure the "diameter" of the formal union of (x,r) and (y, s). Our

pmetric clearly extends d on X and, once we prove that 6 induces the Scott topology

on BX, then (BX,6) will be a computational model for (X,d).

Lemma 3.2.1 The induced partial metric topology on BX is the Scott topology.

Proof. If (y,s) E Be((x,r)), then

r+d(x,y) +s ~ 6((x,r),(y,s)) < 2r+E,

so that d(x,y) < r+c:-s and (x,r+e)« (y,s). Conversely, if (x,r+e/2)« (y,s)

. then (y,s) E Be((x,r)) so we see that

1't(X, r +£/2) ~ Be((x, r)) ~ 1't(x,r + E).

If (y, s) « (x, r) and we take 0 < e < s -r -d(x, y), then (y, s) « (x, r+e) « (x, r).

It easily follows that the partial metric topology and the Scott topology on BX

agree.

QED

We will see in the next section that such computational models can also

be given using quasi-metrics, The partial metrics however have one crucial feature

that makes them more suitable for our purposes; they capture the notion of size that

Wadge was searching for in [Wad81]. Consider the domain of intervals once more,

where d([a, b], [a, b]) = b - a, for any [a, b] E IR. We clearly see that self-distance is

a measure of how vague a point is. We call this self-distance, the size or weight of a

point, and identify the least vague points, those with size zero, as complete points.

It is interesting that we have been lead to an abstract setting in which to discuss

Wadge's ideas simply by trying to develop To-metrics.

For any partial metric space (X, d), we define the weight function ¢d : X ~

[0,00), by cf>d{X) = d(x,x). This allows us to quantify how "deep" a point is in a

domain, or how much information it contains, and is the crucial distinction between
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the partial metrics and the quasi-metrics. The specialisation order of the induced

pmetric topology is naturally captured by the pmetric as follows,

X ~d Y <==> d(x, y) = d(x, x),

and we see that this is an information ordering in a precise sense, since x ~d y

implies that <Pd(X) ~ <Pd(y). Furthermore, if one element is strictly below another,

then it must be strictly more vague, and we have

It is easy to see that complete points must be maximal, although the converse need

not hold. This distinction between complete and maximal points willbecome clearer

in chapter 5 when we give an example of a partial metric space with incomplete

maximal elements.

3.2.3 Weighted quasi-metrics and metrics

We hinted in the last section that partial metrics and quasi-metrics are related, and

that what distinguishes them is the induced weight function of the partial metrics.

We clarify this with a result of Matthews [Mat94].

Lemma 3.2.2 ([Mat94)) Suppose (X,d) is a partial metric space. Then

q(x, y) = d(x, y) - d(x, x), Vx,y E X,

defines a quasi-metric q on X such that T[d] = T[q] and

Vx,y E X. (3.4)

Conversely, iJ q is a quasi-metric on X with a Junction <P : X ~ [0,00) that satisfies

(3.4) with <P in place oj <Pd, then

d(x, y) = q(x, y) + <p(x), Vx,y E X,

defines a pmetric on X such that T[q] = TId]' and <P is the induced weight function.
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The partial metrics are therefore equivalent to the class of quasi-metrics that

can be symmetrised by a weight function. We call these the weightable quasi-metrics,

and say that a pair <q, </» is a weighted quasi-metric. As a corollary we see that

every pmetric has an associated metric, d", given by

d*(x, y) = d(x, y) - min{ d(x, x), d(y, y)}.

This is not the metric that Matthews gives in [Mat94], which comes from symmetris-

ing the induced quasi-metric, q, with q+q-l rather than max{ q, q-l}, but gives the

same topology.

Seeing that the partial metrics are a special class of quasi-metrics, Matthews

then seeks a comparable result for metrics in [Mat94]. By defining a metric d* :

X x X -+ [0,00) to be weightable [Mat94]' if there exists a function </> : X -+ [0, 00)

such that

d*(x,y) ~ </>(x)- </>(y), Vx,y E X,

and calling the pair <d*, </» a weighted metric, Matthews gives the following result.

Lemma 3.2.3 ([Mat94]) Suppose (X, d) is a partial metric space, then

d*(x,y) = 2d(x,y) - d(x,x) - d(y,y), Vx,y E X,

defines a weighted metric <d", </>d>on X. Conversely, if <d*, </» is a weighted

metric on X, then

d(x,y) = (d*(x,y) + </>(x)+ </>(y))/2, Vx,y EX,

defines a pmetric on X.

However, this is much weaker than lemma 3.2.2, since distinct partial metric

spaces can induce the same weighted metric space. For example, suppose X =

{a,b1,b2, ... } and we have two pmetrics d1 and d2 on X such that

dt{a, a) = 1 = d2(a, a),
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"In ~ 1,

Vn,rn ~ l,n::/= rn,

The partial metric spaces (X, dt} and (X, d2) are distinct, since {a} E T[d21 \ T[dd.

However, the induced metrics (from the lemma) are such that

Vn,rn ~ l,n =j:. rn,

which both induce the discrete topology. Since the induced weight functions are the

same, then the induced weighted metric spaces are topologically equivalent.

3.2.4 Conjugate partial metrics

We now consider a slight anomaly in the definition of the partial metrics. If we

observe that for a quasi-metric, the associated metric comes from symmetrising the

quasi-metric, then we are left to wonder where the associated metric for a partial

metric comes from. In more detail, the immediate consequence of non-symmetry for

a quasi-metric q, on a set X, is that we have a natural conjugate quasi-metric q-l

which is used to symmetrise q. Now, as Kiinzi discusses in [KV94], if both q and

«:' are weightable by ¢ and ¢' respectively, then ¢+ ¢' is a constant function on

X. It follows that if a pmetric d induces a weighted quasi-metric <q, ¢d>, and ¢d is

unbounded, then q-l cannot be weightable. It is still the case however, that we have

an inherent duality from our To-topology, and so we should be able to "symmetrise"

the pmetric to recover the associated metric.

An original observation, that we first made in [ONe97], is that we can recover

a natural duality for partial metrics if we admit negative distances. We argue that

positivity in the axioms is superfluous, since d(x, y) ~ 0 has been effectively replaced

by the PI axiom, d(x, y) ~ d(x, x). An immediate difficulty that this introduces is

that it now makes little sense to define a complete element as one with zero size.

49



Our response is to call a point complete if, and only if, it has size inf{ <Pd(X) I x EX},

when this exists. In fact, this helps to clarify that the basic concept is really size,

from which a notion of completeness can be derived.

Another difficulty in adopting negative distances is our intuition, since we

consider <Pd(X) as measuring the vagueness of a point. The problem seems to be

more with the labels "positive", "zero" and "negative" information, than anything

fundamental. If we think in terms of allowing the vagueness of points in a space to

be measured without a lower bound, then the situation becomes more acceptable.

Once we allow d : X x X -+ !R, then the conjugate partial metric, d-1, can be

defined by d-1 (x, y) = d(x, y) - d(x, x) - d(y, y). We immediately see that if q is the

induced quasi-metric of d, then q-l is the induced quasi-metric of d-1, and -<Pd is

a weight function for q-l. So there is a precise sense in which d-1 is conjugate to d.

Furthermore, the metric topology is the join of the pmetric and conjugate pmetric

topologies. To see this, if we let B£{x; d-1) and B£{x; d*) denote the s-balls in

(X, d-1) and (X, d*) respectively, then we show that B£{x) nB£{x; d-1) = B£{xj d*).

Suppose x, y E X and c > 0, then the result immediately follows from,

d(x,y) < d(x,x) + e }
¢:::::} d(x,y) < min{d{x,x),d(y,y)} +E.

d-1{x, y) < d-1(x, x) + e

In this thesis, our partial metrics will take positive and negative values, unless

specifically stated otherwise.

3.2.5 Upper semicontinuity of To-metrics

We finish our presentation of the partial metric axioms with one other potentially

useful property that need not hold for quasi-metrics, For any metric space (X, d),

the metric d : X x X -+ [0,00) is continuous with respect to the product metric

topology on X x X, and the usual topology on [0,00). If (X, d) is a To-metric space,

then the equivalent result is thatd : X x X -+ !R is 'Upper semicontinuous with

respect to the product To-metric topology, T[d), on X x X (that is d-1{-oo,r) is
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open for any r ER). Intuitively, if two points are close together then any two points

sufficiently close to them will also be close together.

Suppose d is a To-metric with a <d b (a, b E X). For all r > d{a, a),

we have (a, a) E d-1 ( -00, r). However, if d were upper semicontinuous, then

(b,a) E d-1(-00,r), which implies that d(b,a) = d{a,a) = d{a,b). So in the

presence of a non-trivial specialisation ordering, which is precisely when we are

interested in the To-metrics, non-zero self-distances are a necessary condition for

upper semicontinuity. That the quasi-metrics need not be upper semicontinuous is

surely well-known, although we have not seen it in the literature. However, both

Bukatin [BS97)and Heckmann [Hec98) point out, in different guises, that the partial

metrics are upper semicontinuous.

Lemma 3.2.4 For any partial metric space (X, d), the function d: X X X -t !R is

upper semicontinuous with respect to the product partial metric topology on X X X.

Proof. Suppose rE Rand d(x, y) < r. We let e = r - d(x, y) > 0, then x E Be/2(x),

y E Be/2{y), and if a E Be/2{x) and b E Be/2{y), then we have

d{a, b) < d{a, x) - d(x, x) + d{x, y) + d{y, b) - d(y, y) < r.

QED

This seems to be a further justification for the partial metrics over the quasi-

metrics (or for symmetry over zero self-distances). Our case is supported by the

following argument of Bukatin [BS97]. Within the context of denotational semantics,

Bukatin considers the space of distances as a datatype, which should be represented

by a continuous domain, and requires that the distance function d : X X X -t D

is computable. In domain theory, continuity can be seen as a sufficient condition

for computability, and if we take D = ([0,00), ~), then continuity with respect

to the Scott topology on D and the product To-topology on X xX, is precisely

upper semicontinuity. Bukatin argues that we can therefore define computationally

meaningful distances between programs.
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3.3 Hierarchical spaces

We now give our first section of original material, in which we abstract the essential

topological characteristics of partial metric spaces. As well as helping to develop our

understanding of the partial metric spaces, these spaces will also give us a framework

in which to discuss the notion of a boundedly observable property from section 2.2.5.

3.3.1 Hierarchies of open sets

We begin by motivating and introducing some of our ideas, and delay until the next

section the precise definitions. Our starting point is the simple observation that, for

a partial metric space (X, d) and r E !R, the set

X; = {x E X I <Pd(X) = r},

together with the induced metric

d;(x,y) = d(x,y) -r,

is a metric space. We can therefore think of a partial metric space as being layers of

(possible empty) metric spaces, indexed by the weight function taking values in the

total order (!R, ~). These layers are a measure of the vagueness of the points in X,

and can be used to compare the vagueness of points unrelated in the information

ordering. This is the essential feature of a partial metric space that we wish to

capture topologically. To do this we must consider the open sets as fundamental,

rather than the points themselves, and see how we can deduce the vagueness of a

point.

Consider the generalised situation given in figure 3.3, where r, sand tare

values in some totally ordered set, which indexes layers of points in a set X, with t

less than r less than s. We again think of these layers as a measure of vagueness, and

observe that points in the open set U are less vague than points in the layer indexed

by s, but that we cannot say anything relative to points in the layer indexed by r.
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Figure 3.3: Motivating hierarchies of open sets

We will say that U is oj depth (of vagueness) r but not of depth s. We immediately

notice, that once U is of depth r then it must be of depth t. We can now divide our

topology into classes of open sets of the same depth, and we call this a hierarchy oj

open sets.

We remark that this is similar to the situation in section 2.2.5, in which open

sets in the domain of streams, 800, were identified as finitely observable properties,

and boundedly observable properties were those whose instances could be verified

within a number of steps given in advance. Such open sets were said to be of depth

indexed by the total order (N, ~).

3.3.2 Defining a hierarchical space

We now make our ideas precise, and define a class of topological spaces which, we

claim, capture the essential topological characteristics of partial metric spaces. For

a To-space, (X,7"), with basis B, we let Bx ~ 7" denote the collection of basic open

sets that contain x EX. We define an index set to be a conditionally complete!

totally ordered set, (R, ::5), which satisfies an interpolation property; for r < s in R

we can find t E R such that r < t < s .

Definition 3.3.1 For a To-space (X,7"), a hierarchy of open sets is a collection

1A poset is conditionally complete if every set bounded above has a supremum.
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of subsets of r, {BrlrER, with index set (R,~), such that UrERBr is a basis for r,

r ~ s in R implies that B, ~ Br, and for each x E X we can find lx, Ux E R such

that Bx ~ Biz but Bx ~ Buz . Each open set in B; is said to be of depth r, and

the collection B; is said to be the class of depth r .

For a To-space, (X, r}, with a hierarchy of open sets, {Br }rER, we can deduce

the vagueness of a point, and hence find layers of points indexed by (R, ~). We define

a weight function ¢ : X -+- R by

¢(x) =sup{r E R Ie.~Br} E R,

which exists since Bx ~ Biz and if Bx S; Br then r < Ux. It is immediate that ex ~

¢(x) ~ ux, and we illustrate this in figure 3.4. Furthermore, for any r < ¢(x) < s we

have Bx ~ B; and Bx ~ Bs. Now, x ~.,. y implies that ¢(y) ~ ¢(x), but we do not

yet have x <.,. y implies that ¢(y) < ¢(x), which we seek since this is an essential

feature of the partial metric spaces. This will require an additional condition on our

open sets.

We recall that in a To-space, (X, r), if x "t.,. y, then we can find an open set

containing x but not y, and in a Hausdorff space we can separate any two points

using disjoint open sets. We suggest that our extra condition should ensure that

the hierarchy of open sets plays an essential role in separating points in our space.
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Figure 3.5: Separating points

This will position our spaces between the To-spaces and the Hausdorff spaces. Ifwe

refer to figure 3.5 for intuition, then our condition is that whenever x 1:.T y, then we

can find open sets containing x and y, and some level of vagueness below ¢(y), such

that any points in the intersection are below this level of vagueness. The precise

definition follows.

Definition 3.3.2 A hierarchical space (X, {Br }rER) is a To-space (X, T), with

a hierarchy of open sets, {Br }rER, such that whenever x 1,T y then we can find

U E BXI V E By and r < ¢(y) in R such that for any z E Un V, B, ~ Br.

Suppose (X, {Br hER) is a hierarchical space and x <T y, then y 1,T X implies

that we can find U E By, V E Bx and r < ¢(x) in R such that for any z E un V,

B, ~ Br. Since y E un V, then ¢(y) ~ r and we have that ¢(y) < ¢(x). Obviously

hierarchical spaces are To-spaces, and it is clear that any Hausdorff space, (X,1I'"), is

trivially a hierarchical space (X, {11'"}). In the next section we see that partial metric

spaces are naturally hierarchical spaces.

3.3.3 Partial metric spaces as hierarchical spaces

Suppose (X, d) is a partial metric space, then for each r E !R, we define

B; = {U E T[d) I 3x E U with <Pd(X) ~ r}.
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It is clear that every non-empty open set is in some B«. If r ~ sand U E Bs, then

we can find X E U such that ¢d(X) 2: s 2: r and so U E Br. For each x E X, we let

lx, Ux E !R be such that t; ~ ¢d(X) < Ux. It is clear that Bx ~ Bi"" and if we let

e = Ux - cjJd(X) > 0, then Y E Bc{x) implies that

and hence Bc{x) ¢ Bu:z:. So we have a natural hierarchy of open sets, {Br }rE~'

indexed by (!R, ~). Now suppose that x <id y, then d(x, y) - ¢d(X) > 0, and we can

find r E !R such that

We let

e = d{x,y) + r - ¢d(X) - ¢d{y) > 0,

and take U = Bc/2{x) and V = Bc/2(Y). For any z E un V, we have

d{x, y) < d(x, z) + d(z, y) - ¢d(Z)

< ¢d(X) + e + ¢d(Y) - ¢d(Z)

d(x, y) + r - ¢d(Z),

and so ¢d{Z) < r and hence Bz ~ Br. It follows that (X, {Br }rE!R) is a hierarchical

space.

We now show that this hierarchical space has the same weight function as

the partial metric space. Ifwe fix x E X, then we immediately see that Bx ~ B¢d(x)·

Suppose Bx ~ Br, for some r E R. Then, for any e > 0, we have Bc{x) E B«, which

implies that, for any y E Bc{x)

and hence r ~ ¢d(X). So we see that cjJd{X) = ¢(x), for all x E X, and our induced

weight functions agree. We have therefore proved the following result.
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Figure 3.6: Upper and lower components of an open set

Theorem 3.3.3 Suppose (X, d) is a partial metric space, then (X, {Br }rE!R) tS a

hierarchical space with the same weight function.

3.3.4 Hierarchical spaces as partially ordered spaces

To help place the hierarchical spaces in context, we now show that every hierarchical

space is naturally a partially ordered space. Suppose (X, {Br hER) is a hierarchical

space with B = UrER Br. For U E Band r E R, we define

U>r = {x E U I r < ¢(x)} and U<r = {x E U I ¢(x) < r},

and illustrate the situation in figure 3.6.

Lemma 3.3.4 Suppose (X, {Br }rER) is a hierarchical space with B = UrER Br, then

the collection {U<r I U E B,r E R} is a basis for T.

Proof. Suppose x E X and U E Bx, then ¢(x) < Ux and x E U<u., ~ U. Since B

is a basis for T, then we are left to show that the U<r are open. Suppose x E U<r

and s E R is such that ¢(x) < s < r, then we can find V E Bx such that V ¢ Bs.

For any y E V it follows that By Sb B8 and hence ¢(y) $ s < r, so we see that

x E UnV ~ U<r.
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QED
It is clear that {U>r I U E B, rE R} and {U<r I U E T, rE R} together form

the basis for a topology, 11", which will be our induced Hausdorff topology.

Lemma 3.3.5 Suppose (X,{Br}rER) is a hierarchical space, then (X,1I",~'T) es a

partially ordered space.

Proof. If X ~'T y, then we can find U E Bx, V E By and r < <p(y) such that, for

any z E Un V, Bz ~ Br. It is clear that (x, y) E U x V>r, and if a ~'T b with

(a, b) E U x V>r then bE un V and r < <p(b) which implies that Bb ~ Bn which is

a contradiction.

QED
We assume that a partial metric space, (X, d), induces the natural hierarchy

of open sets, {Br }rE~' from the last section. We show that the induced Hausdorff

topology, 11", agrees with the induced metric topology, T[d*]'

Lemma 3.3.6 Suppose (X, d) is a partial metric space, inducing the hierarchical

space {X, {Br }rE~)' then 11" = 'ld')'

Proof. Suppose e > 0, x E X and we let U = Be{x) and r = <Pd{X) - c. Then

yE Be(xjd*) implies that

d(x,y) - <Pd{Y) ~ d*(x,y) < E,

and hence r < <Pd(Y). So we have y E U>r' Now suppose that y E U>r, then

d(x,y) < d(x,x) + e = r + 2£ < <Pd(Y) + 2£,

and so d*(x,y) < 2E. It follows that

Bc;(xj d*) ~ o; ~ B2dxj d*),

from which the result follows.

QED
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3.3.5 A framework for boundedly observable properties

We return to the domain of streams, 800
, and observe that x E 800 has length [z I = k

if, and only if, x satisfies some depth k property, but no depth k + 1 properties. It

follows that in this example, the ideas of Smyth [Smy92],on boundedly observable

properties, and Wadge [Wad81], on the size of elements in a domain, are closely

related. We investigate this to see how the hierarchical spaces can be a common

framework for both approaches.

Matthews gives a pmetric on 800 [Mat94], by defining

d(x, y) = inf{2-n I x[n] = y[n], n ~ [z], Iyl},

which is small if, and only if, we require a "deep" property to distinguish x and y.

This is a symmetrised version of the motivation given for the quasi-metric in section

2.2.5, and T[d] is similarly the Scott topology on 800• Furthermore, we also capture

the notion of size since <Pd{X) = 2-lxl. We can immediately deduce that 800 with

the Scott topology is a hierarchical space.

For the boundedly observable properties however, an alternative hierarchical

space is appropriate. Suppose we take (N*,~) as our index set, where N* = N U

{oo}. We recall that for any x E 800 with [z] < 00, then tx is open in the Scott

topology. We define, for each r EN,

B; = {tx Ilxl ~r}.

Furthermore, we define Boo = {tx Ilxl < oo}, so that the collection of Br, r E N*,

is a basis for the Scott topology on 800•

We show that {Br }rEN* is a hierarchy of open sets. It is clear that if m ~ n

in ~ and tx E Bn, then [z] ~ n ~ m and hence tx E Bm, so that Bm ~ Bn. and for

any n E N, Bn ~ Boo· For x E 800
, we let lx = [z] and Ux = [z] - 1 or Ux < 00

if [z] = 00. If y E 800 with IYI < 00 and x E ty, then Iyl ~ [z] = lx, so that

ty E Biz and e; ~ e.; Also, since tx ~ Bu." then we have e, ~ Buz• To see
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that (SOO, {Br }rEN·) is a hierarchical space, we suppose that x g y in Soo, and let

r = Iyl + 1/2. We either have tx n ty = 0, in which case the result is trivial, or

y ~ x but with x =J. y so that Iyl < 00, in which case [z] ~ Iyl + 1 > r, and tx rt. Br.
Finally, it is clear that Bx ~ Blxl, and if Bx ~ B; then Ixl = 00 implies that r = 00,

otherwise Ixl ~ r, and we see that cjJ(x) = [z],

We are now in a position to capture the intuition from section 2.2.5 on finitely

observable and boundedly observable properties in terms of this hierarchy of open

sets. We say that U ~ S'" is finitely observable if

\Ix E U 3n E N 3V E Bn such that x E V ~ U,

and that U ~ Soo is boundedly observable if

3n E N "Ix E U 3V E Bn such that x E V ~ U.

In this case we also say that U is a depth n property. What is important of course,

is the finitary nature of the Bn. It is to be hoped that this will be useful in seeing

how the material from section 2.2.5 can be generalised.

3.4 Concluding remarks

In section 3.1, we gave the last of our background material and motivated the

essential characteristics of a partial metric. Although most of the material in section

3.2 was from [Mat94], the presentation was original, and we established the axioms

in context. Our original material in section 3.3, on the hierarchical spaces, completes

the foundations and we are now in a position to build the general theory.

60



Chapter 4

Partial Metric Space Theory

The theory of partial metric spaces begins with the work of Matthews, who gives

some initial results in [Mat94], to which Heckmann [Hec98]contributes some further

results. We significantly extend the existing work, by considering the partial metric

spaces as To-topological spaces, and seeing how additional conditions on the pmetric

can lead to stronger topological properties (section 4.1). We extend the metric

notions of isometries and completions to partial metric spaces (section 4.2), and

introduce a particularly useful class of partial metric spaces derived from an auxiliary

weight function over a more structured poset (section 4.3).

4.1 Topological properties

We investigate the partial metric spaces within the context of the To-topological

properties from sections 2.2.1 and 2.2.2. We will find natural conditions on the

pmetric for the induced topology to be order-consistent or sober, and consider com-

pleteness, compactness and coherence. We then investigate 'connections with the

Scott topology, and develop a notion of a quantitative domain. Unless stated oth-

erwise, the material in this section is original.
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4.1.1 Order-consistency

From section 3.2.3 we recall that a partial metric space, (X, d), induces a natural

quasi-metric on X and has an associated metric space (X,d*). As with the quasi-

metrics (sections 2.2.3 and 2.2.4), we can lift a notion of Cauchy sequences, and

hence completeness, from (X, d*). In terms of the pmetric, we see that a sequence

{xn} in X is Cauchy [Mat94] if, and only if,

lim d(xn, xm) exists.n,m-4OO

Any w-chain {xn} in X which has {<Pd(Xn) I n ~ I} bounded below in!R, is therefore

a Cauchy sequence. For example, if {xn} has a supremum in X, then {xn} is a

Cauchy sequence.

Suppose {xn} is a sequence in X and a E X. Convergence with respect to

both 'lei] and the metric d* are naturally captured by the pmetric [Mat94]j

¢=::} lim d(xn, a) = d(a, a),
n-4OO

and Xn -+ a in (X, d*) ¢=::} lim d(xn, a) = lim d(xn, xn) = d{a, a).
n-too n-too

We call the latter proper convergence in [ONe97]. A partial metric space is therefore

complete if, and only if, every Cauchy sequence has a proper limit. Matthews states,

but does not prove, the following result in [Mat94].

Lemma 4.1.1 Suppose (X,d) is a partial metric space, then an w-chain {xn} In

X, with proper limit a EX, has a = ut xn.
Proof. Suppose n 2': 1, then for any m 2': n we have

and this has limit d{xn, xn) as m -+ 00, so that Xn $d a. If b E X is such that

Xn $d b for all n 2': 1, then
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which has limit d(a, a) as n -+ 00, so that a S:d b.

QED

The following results are all original, although the first was found indepen-

dently by Heckmann [Hec98] for the (positive) weak partial metrics.

Lemma 4.1.2 Suppose (X, d) is a partial metric space and A ~ X is directed, then

there exists an w-chain in A with the same upper bounds.

Proof. Suppose first that S = {<Pd(a) I a E !R} is bounded below in !R, then for

each n ;:::1, we can find an E A such that d(an,an) < inf S + lin. We inductively

construct our w-chain {xn} so that Xl = al and Xn+1 E A is above Xn,an+1 E A.

Now suppose that Y E X is an upper bound of {xn} and let a E A. For n ;:::1 we let

Yn E A be above Xn, a E A so that an S:d Xn S:d y, Yn and d(Yn' Yn) ;:::inf S. From

axioms PI and P4 we have

d(a, a) S: d(a, y) < d(a, Yn) + d(Yn, an) + d(an, y) - d(Yn, Yn) - d(an, an)

- d(a,a) + d(an,an) - d(Yn,Yn)

< d(a,a) + lin.

Since this holds for all n ;:::1, then a ~d Y as required.

If S is not bounded below, then we can find an E A such that d(an, an) < -n, and
inductively construct an w-chain {xn} as before. Since S is not bounded below then

A has no upper bounds and the result is trivial.

QED

We will say that the pmetric topology is order-consistent if it is order-

consistent with respect to its specialisation order. We can characterise order-

consistency in terms of the pmetric.

Lemma 4.1.3 Suppose (X, d) is a partial metric space, then the pmetric topology is

order-consistent if, and only if, every w-chain with a supremum has a proper limit.
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Proof. We first suppose that the pmetric topology is order-consistent and {xn} is

an w-chain in X with a = Utxn EX. Clearly {xn} converges to a, and

Since the right-hand side converges to d(a,a), then {xn} converges to a properly.

Conversely, by lemma 4.1.2, we can consider w-chains in place of directed sets, when

their suprema exist, and the proper limit of an w-chain is its supremum.

QED

Such a result cannot hold for quasi-metrics since, for example, for the discrete

quasi-metric on a poset, an w-chain converges to its supremum if, and only if, it

attains its supremum. We will say that <Pd : X ~ !Ris continuous if, for every

w-chain {xn} in X with supremum a E X, then ¢d(a) = inf{¢d(xn) I n ~ I}.

Corollary 4.1.4 Suppose (X, d) is a partial metric space, then the pmetric topology

is order-consistent if, and only if, ¢d is continuous.

Since w-chains with supremum are Cauchy sequences, then order-consistency

can be thought of as a weaker notion of completeness for a partial metric space. We

will say that a partial metric space (X, d) is bounded if {d(x, y) I x, Y E X} is

bounded below in !R.

Corollary 4.1.5 If (X, d) is a complete partial metric space, then T[d] ss order-

consistent. Furthermore, if (X, d) is also bounded then (X, :5d) is a dcpo.

We can also use lemma 4.1.3 to further justify our use of negative, or more

precisely unbounded, distances. We consider!R, but with the partial order, ~, rather

than, :5, as this will simplify some further work in section 4.3

Corollary 4.1.6 Any partial metric d on !R for which :5d=~ and d* is the usual

metric, must be unbounded.
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It followsthat we can only pmetrise the partially ordered space (!R, ~), with

the usual topology, if we admit negative distances. Such a pmetric is given by

d(x,y) = max{x,y}, and we will have much more to say about such partial metrics

in section 4.3.

4.1.2 Sobriety and completeness

Sobriety for a To-space (section 2.2.2) is a notion of completeness which is quite

difficult to work with, since we must use either completely prime filters of open sets

or irreducible closed sets. Siinderhauf presents a more intuitive approach in [Slin95]

by defining the notion of an observative net which, together with an appropriate

notion of convergence, characterises sobriety. Before we became aware of this work,

we found our own intuitive understanding of sobriety as a notion of completeness

for partial metric spaces, which we now present.

Sober spaces are, with respect to the specialisation order, dcpos with an

order-consistent topology. We begin by strengthening lemma 4.1.3 so that (X, ~d)

is also a dcpo.

Lemma 4.1. 7 Suppose (X, d) is a partial metric space such that every w-chain has

a proper limit, then (X, ~d) is a dcpo and the pmetric topology is order-consistent.

Proof. Any directed set in X has an w-chain with the same upper bounds, whose

proper limit is the supremum of the directed set. Order-consistency is immediate

from lemma 4.1.3.

QED

Since arbitrary w-chains need not be Cauchy sequences, then we have started

to move away from our usual notion of completeness. The following generalised

notion of an w-chain is an instance of Siinderhauf's observative nets, but notice

that, as with metric spaces, partial metric spaces allow us to work with sequences

rather than nets.
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Definition 4.1.8 Suppose (X, d) is a partial metric space, then a sequence {xn} is

self-convergent ij, [or each k ;:::1, {xn} converges to Xk.

The followingresult is our own, but we now realise that it could be deduced

from Siinderhauf's work.

Theorem 4.1.9 Suppose (X, d) is a partial metric space, then the pmetric topology

is sober ij, and only ij, every selj-convergent sequence has a proper limit.

Proof. We first suppose that the pmetric topology is sober, and let {xn} be a self-

convergent sequence. We let A be the non-empty collection of limit points of {xn}.

If {Yn} is a sequence in A converging to a E X, then it follows from

for m ;:::n, that {xn} converges to a. So a E A, and A is closed. To see that A

is an irreducible closed set, suppose Band G are proper closed subsets of A with

y E B \ C and z E C \ B. Since {xn} converges to both y and z, then {xn} is

eventually in X \ B and X \ C, but this is a contradiction since each Xn E A. We

let a E X be such that A is the closure of a, so that A = ..l.a. It follows that {xn}

converges to a, each Xk :5d a and a is the proper limit of {xn}.

Now suppose that A ~ X is an irreducible closed set. If U, V are open sets such

that UnA and V nA are non-empty, then U nV nA is non-empty since otherwise

A \ U and A \ V are proper closed subsets of A with union A. Suppose a, b E A,

then a simple induction allows us to find, for each n ;:::1,

Clearly {xn} is self-convergent, and converges to a and b. We let c E X be the

proper limit of {xn}, so that a, b :5d c. Since A is closed, then c E A, and A is

a directed set with utA EX. Order-consistency implies that ut A E A, and the

closure of utA is ..l.UtA which is A.
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QED

We will say that a self-convergent sequence {xn} is bounded if {<Pd(Xn) I n ~

I} is bounded below in!R. In the next lemma we see that these are precisely the

Cauchy self-convergent sequences.

Lemma 4.1.10 Suppose (X, d) is a partial metric space, then a self-convergent

sequence is bounded if, and only if, it is Cauchy.

Proof. Suppose first that {xn} is a bounded self-convergent sequence, and let

If we fix e > 0 then we can find k ~ 1 such that l:$ <Pd(Xk) < l + c/3. Since {xn}

is self-convergent, then we can find N ~ 1 such that for all n ~ N,

So, for all n,m ~ N, we have

So we see that limn,m-+oo d(xn,xm) = land {xn} is Cauchy as required.

Now suppose that {xn} is a Cauchy self-convergent sequence, and let

l = lim d(xn, xm) E !R.
n,m-+oo

It is clear that limn-+oo <Pd(Xn) = l, so we are left to show that each <Pd(Xk) ~ l for

{xn} to be bounded. If we suppose that <Pd(Xk) < l for some k ~ 1, then we can

find e > 0 such that <Pd(Xk) < l- c. We can find N ~ 1 such that, for all n ~ N,

We can immediately deduce that l- <Pd(Xk) < e, which is a contradiction.

QED

67



We are now in a position to improve corollary 4.1.5.

Corollary 4.1.11 Suppose (X, d) is a complete bounded partial metric space, then

the pmetric topology is sober.

We conclude this section by comparing the completeness of sober partial

metric spaces, with the complete partial metric spaces in general. We first introduce

the notion of a self-convergent sequence approximating a Cauchy sequence.

Definition 4.1.12 Suppose (X, d) is a partial metric space, then a Cauchy sequence

{xn} is approximated by a self-convergent sequence {Yn}, if

Lemma 4.1.13 Suppose (X, d) is a partial metric space, then the pmetric topology

is sober and every Cauchy sequence is approximated by a self-convergent sequence

if, and only if, (X, d) is complete and every self-convergent sequence is a Cauchy

sequence.

Proof. It is clear that if the pmetric topology is sober, then every self-convergent se-

quence is Cauchy, and if every Cauchy sequence is approximated by a self-convergent

sequence, which has a proper limit, then this is the proper limit of the Cauchy se-

quence, and so (X, d) is complete. Conversely, if every self-convergent sequence is

a Cauchy sequence, then completeness implies that the pmetric topology is sober,

and for every Cauchy sequence {xn} with proper limit a E X, then {a} is a self-

convergent sequence approximating {xn}.

QED

4.1.3 Compactness and the patch topology

We say that a partial metric space (X, d) is compact if the induced metric space

(X,d*) is compact. From section 3.2.3 we know that a pmetric induces a quasi-

metric on X with the same topology. From section 2.2.6 we see that (X, T[do], ~d)
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is a partially ordered space, and hence a compact ordered space. It is clear that

a compact partial metric space is complete, and we will see from the next lemma

that it is also sober, so that both notions of completeness from the last section are

satisfied by compact partial metric spaces.

Lemma 4.1.14 Suppose (X, d) is a compact partial metric space, then (X, T[d]) is

a coherent space .

. Proof. By theorem 2.2.2, and the above comments, we need only show that T[d] =

Twt It is immediate that T[d] ~ T[d'jt, so we suppose, for a contradiction, that

U E T[d"Jt \ T[d]. Then there exists a E U such that, for all n ~ 1, we can find some

Xn E Bl/2n(a) \ U. Compactness implies that the sequence {xn} has a subsequence

{xnk} with proper limit b EX, and it follows from

that a ~d b, and so b E U .. -But {xnlc} converges properly to b, and so is eventually

in U, which is our contradiction.

QED

To see that the converse need not hold, consider the domain of streams, S?",

with S an infinite set, and the pmetric, d, from section 3.3.5. We know that T[d] is

the Scott topology, and it is clear that the patch topology 7r = T[d] VT[djk is compact.

It follows that (Soo, T[d]) is a coherent space. However, (X, d) is not a compact

partial metric space. In particular we see that T[d") is not the patch topology of T[d]'

We know from section 3.2.4, that T[d") = T[d] V T[d-l], so we are lead to compare the

cocompact topology, T[d]k, with the conjugate pmetric topology, T[d-l], for partial

metric spaces in general. We will then see that for compact partial metric spaces,

T(d"] is the patch topology of T[dJ·

Lemma 4.1.15 Suppose (X,d) is a partial metric space, then T[dJk ~ T[d-l].

69



Proof. Suppose V ~ X is a compact upper set in (X, T[d])' Once we show that

X \ V E T[d-I) then we are done. Suppose y E X \ V, then for all x E V we must

have x <id y, and we can define

ex = [d(x, y) - d(x, x)J/2 > O.

Since {BE'" (x) I x E V} is an open cover of V, then there exists a finite sub cover

{BE",JXn) I 1 s n s s.»; E V}. We define e = min{C:xn I 1 :s n :s N} > 0,

and show that BE(Yi d-1) ~ X \ V. Suppose z E V, then z E BE"'n (xn), for some

1 :s n :s N, and we have

< d(xn, z) + d(z, y) - d(z, z) - d(xn, xn) - CXn

< d(z,y)-d(z,z)

= d-1(z, y) - d-1(y, y).

QED

Theorem 4.1.16 Suppose (X, d) is a partial metric space, then (X, d) is compact

if, and only if, (X, T[d]) is a coherent space, and T[d"] is the patch topology of T[d].

Proof. We need only prove that when (X, d) is a compact partial metric space, then

T[d]k = T[d-I], Suppose U E T[d-I], then U E 7'[d"] and so X \ U is 7'[d.rcompact, Any

T[d]-opencover of X \ U is a T(d"tOpen cover and so there exists a finite subcover.

So X \ U is T[d]-compact,and since X \ U is clearly an upper set with respect to :Sd,

then U E T[d]k and so 7'[dJk = T[d-I].

QED
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4.1.4 The Scott topology

We now investigate connections between the pmetric topology of a partial metric

space, (X, d), and the Scott topology on (X, ~d). We begin by returning to domain

theory, and giving some thoughts on what we understand by the term quantitative

domain, as opposed to the quantitative domain theories of sections 2.1.4 and 2.2.3.

We have seen that the Scott topology naturally captures the basic (qualitative)

notions of domain theory, namely limits and approximation. It therefore seems

reasonable to define a quantitative domain to be a continuous domain together with

some additional structure, such as a quasi-metric or partial metric, that captures the

Scott topology, and adds some quantitative information to the domain. This is at

odds with the definition in [FSW98], since the discrete quasi-metric on a continuous

domain need not induce the Scott topology. We will further develop our ideas in

section 4.3, but for now return to the more general setting, and seek a condition for

the pmetric and Scott topologies to agree.

Definition 4.1.17 A sequence {xn} surpasses a sequence {Yn} in X if, for every

n ~ 1, there exists an m ~ 1 such that Yn ~d Xm.

Definition 4.1.18 A partial metric space has convergence in order if every se-

quence {xn} converging to a E X, surpasses an w-chain {Yn} with supremum a.

Lemma 4.1.19 Suppose (X, d) is a partial metric space with order-consistent pmet-

ric topology, then it has convergence in order if, and only if, T[d] is the Scott topology.

Proof. Since the pmetric topology is order-consistent, then we know that T[d] ~ (1.

Suppose T[d) = a, and let {xn} be a sequence converging to a E X. We let A =

U~=l.J..Xn, and A be the Scott-closure of A. Then each Xn E .4, so we must have

a E .4. If a E A, then a $d Xn for some n ~ 1, and we take {a} as our w-chain.

Otherwise, there must exist some directed set, and hence some w-chain {Yn}, in A

with supremum a, and {Yn} ~ A is precisely the condition for {xn} to surpass {Yn}.
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Conversely,we suppose, for a contradiction, that U E a \ T[d]. So there exists some

a E U such that, for all n ~ 1, we can find Xn E B1/2n (a) \ U, and {xn} converges

to a. We let {xn} surpass the w-chain {Yn} with supremum a, then some Yn E U

and hence some Xm E U, which is our contradiction.

QED

A problem with the above result is that convergence in order is not an easy

property to achieve, since it requires the existence of points that even complete

partial metrics need not have. In the section 4.3 we will meet a special class of

partial metric spaces whose additional structure ensures that completeness does

imply convergence in order.

4.2 Isometries and completions

Our next step in developing the general theory, is to extend the basic metric no-

tions of isometry and completion to the partial metric spaces. We can then apply

our notion of completion to the space of formal balls to see that, in this instance,

ideal completion and partial metric completion agree, and we induce the metric

completion on the metric space. The material in this section is original.

4.2.1 Isometries

Given two partial metric spaces (X,d) and (X',d'), Heckmann [Hec98]takes what

appears to be the natural definition for an isometry f :X --t X', and requires that

d'Ux,fY) = d(x,y). We argue that this is a little too simplistic. Consider the

subspaces [0,1] and [1,2] of31, with the pmetric d(x,y) = max{x,y} from section

4.1.1. These should intuitively be isometric, with the map f : [0,1] --t [1,2], given
by f(x) = x + 1, being an isometry. However, for any x,y E [0,1], we have

dUx, fy) = max{x + 1,y + I} = d(x, y) + 1.
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The problem is that if we uniformly adjust the weight function for a partial

metric space, then the underlying metric structure remains unaffected, but Heck-

mann's definition does not reflect this. We therefore define an isometry to be a

bijection f :X ~ X', for which there exists k E !R, such that

d'(fx,fy) = d(x,y) + k, Vx,y EX. (4.1)

We say that (X, d) and (X', d') are isometric, and use the term isometry into for

any map which satisfies (4.1) but need not be a bijection. With this definition, any

bounded partial metric space is isometric to a positive partial metric space, and this

reinforces our interpretation of a complete element in section 3.2.4.

4.2.2 Partial metric completions

We define the completion of a partial metric space (X, d) to be a complete partial

metric space (X, Cl) and a map i :X --t X such that i is an isometry into X and

i(X) is dense in (X, Cl*) . Clearly, the metric space (X, Cl*), together with i, is then a

completion of the metric space (X, d*). We show that every partial metric space has

a unique completion (up to isometry), by generalising the metric case (see [Sut75]

for example).

We begin with the following inequality, which is easily derived from the P4

axiom;

Id(x, y} - d(z, w)1 ~ d*(x, z) + d*(y, w), Vx,y,z,w E X. (4.2)

We let X be the set of equivalence classes of Cauchy sequences, where {xn} '"

{Yn} if, and only if, limn-+ood*(xn,Yn) = O. For any x,y E X, represented by the

Cauchy sequences {xn} and {Yn} respectively, we define

Cl(x, y) = lim d(xn, Yn).n-+oo

To see that this exists, for any n,m ~ 1, we use (4.2) to get
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Since the right-hand side tends to 0 as n,m -t 00, then {d(xn, Yn)} is a Cauchy

sequence in !R, and limn-+ood(xn, Yn) exists. To see that d is well-defined, suppose

the Cauchy sequence {x~} also represents x, and we again use (4.2) to get

The right-hand side tends to 0 as n -t 00, so we must have

and d is well-defined.

Most of the partial metric axioms for d are immediate from those for d and

taking limits. For P2 we see that d(x, x) = d(x,11) = d(y, y) if, and only if,

But this is precisely when limn-+ood*(xn, Yn) = 0, so {xn} '" {Yn} and x = y, and

vice versa. Since

d* (x, y) = lim d* (xn, Yn),
n-+oo

is the usual metric given in constructing the completion of (X, d*) in the literature

(see [Sut75] for example), then (X, d) is complete. We define i :X -t X by i(x) =

{x}, so that

d(i(x), i(y)) = lim d(x, y) = d(x, y),
n-too Vx,y E X,

and i is an isometry into X. Since (X,d*) is the metric completion of (X,d*), it

follows that i(X) is dense in (X,d*) and so (X,d), together with i, is a partial

metric completion of (X, d).

Now suppose that (Y, d) is another partial metric completion of (X, d), with

i: X -t Y an isometry into Y. For any x E Y, there exists {xn} Cauchy in (X,d)

such that x = limn-+ooi(xn) in (Y, d*), so we can define f : Y -t X by f(x) = {xn}.

If {Yn} is another such sequence, then
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so that {xn} '" {Yn} and f is well-defined.

If x, Y E Y and {xn} and {Yn} are Cauchy sequences in (X, d) such that

x = limn-tooi{xn) and y = limn-tooi(Yn) in (Y, d*) then, for some k E !R, we can use

(4.2) to see that

So f is an isometry into X. To see that f is an isometry, suppose {Xn} E X, then

{i{xn)} is Cauchy in (Y,d*) and so has a limit x E Y. We then have f{x) '" {xn},

and we have proved the following result.

Theorem 4.2.1 Every partial metric space (X, d) has a unique completion (up to

isometry).

4.2.3 Completing the space of formal balls

Suppose (X, d) is a metric space, BX is the space of formal balls from section 2.3.2

and 0 is the partial metric on BX from section 3.2.2. We know that i :X -t BX

given by i{x) = (x,O), for all x E X, is a homeomorphism from X onto the set of

maximal elements of BX with the subspace Scott topology, and that T(6) is the Scott

topology on BX. It is now clear that i is an isometry into BX, and that (X,d) is

isometric to (Max(BX),o). Similarly, (X, d) is isometric to (Max(BX),6), where

6 is the pmetric on BX derived from d. We now give an original result, in which

we show that the partial metric completion (BX, 6) is isometric to (BX, J), from
which it followsthat (Max(BX),6) is the metric completion of (X, d), and that we

can either take formal balls first, and then complete, or vica versa.

Lemma 4.2.2 (BX, 6) is isometric to (BX, J).

Proof. We first observe that,

o*{(x, r), (y, s)) = max{d(x, y) + [r - si, 21r - sI},
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and that {(Xn, rn)} is a Cauchy sequence in (BX,6) if, and only if,

which is precisely when {xn} is Cauchy in (X, d) and limn--+oorn exists.

So, if {xn} is a Cauchy sequence in (X,d), and r ~ 0, then {(xn,r)} is a Cauchy

sequence in (BX,6), and we can define f :BX -+ BX by

Once we show that f is an isometry, then we are done. For any ({xn}, r), ( {Yn}, s) E

BX, we have

= max{2r, r + lim d(xn, Yn) + s, 2s}
n--+oo

Ifwe now suppose that {(xn' rn)} E BX, then limn--+oorn = r (say) and {Xn} Cauchy

in (X,d). So ({xn},r) E BX, f({xn},r) = {(xn,r)} and {(xn,rn)} '" {(xn,r)} as

required.

QED

In section 2.3.2 we saw that BX is isomorphic to the ideal completion,

I(BX), of the abstract basis (BX, «). It follows that BX is isomorphic to I(BX)

and that our two processes of completion on BX agree. In a rather ad hoc manner,

Heckmann seeks the same result in [Hec98], by defining a (weak) pmetric, J, on
I(BX), for which (Max(I(BX)), J) is the metric completion of (X, d). Our ap-

proach however is the more natural, and further develops the unity of the metric

and ideal completion processes.
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4.3 Weighted spaces

In section 4.1.4 we suggested that a quantitative domain could be a continuous

domain together with a quasi-metric or partial metric capturing the Scott topology,

and investigated when the pmetric and Scott topologies agree. We saw in chapter 3,

that the important additional feature partial metrics bring to a domain is a weight

function. However,we observe that many of the examples we have considered, such

as DR, Soo and even !R, already have an inherent notion of weight. It therefore seems

reasonable to consider when we can use this to build a pmetric that captures the

Scott topology. The material in this section is original and will lead us to a class of

partial metric spaces that will be particularly useful in chapters 5 and 6.

4.3.1 Defining weighted spaces

A partial metric is a distance function over a set. We now develop the situation

where we have a set with some basic structure, and an auxiliary weight function over

this set, and deduce a natural pmetric. We begin by identifying the basic structure

that we require of our sets. These will be posets for which, using some domain

theoretic intuition, any two points have a point with their common information,

and if two points are not contradictory, then they have a point with their combined

information. We first introduced such structures in [ONe97].

Definition 4.3.1 A consistent semilattice is a poset (P,~) such that

1. \fx,y E P, xny E P.

2. If {x, y} ~ P is consistent (bounded above), then x U yEP.

We recall from section 3.2.2, that for a partial metric space (X, d), the weight

function ¢d : X -+ !R is strictly monotonic decreasing; x ~d y implies ¢d(X) ~ ¢d(y)

and x <d y implies that ¢d(X) > ¢d(y). We say that a weight function is semi-

modular if

(4.3)
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whenever x n y and xU y exist in (X, ::;d)'

Definition 4.3.2 A weighted space (X,!;;;;, ¢) is a consistent semilattice (X,!;;;;)

together with a strictly monotonic decreasing semi-modular function ¢ : X -+ lR,

which we call the weight function.

In [ONe97]we defined a "valuation space" to be a weighted space with a

modular weight function, which requires equality in (4.3). In this thesis however,

we will reserve the term for chapter 6 when we further develop our ideas by using

the valuations from section 2.3.3. In the next lemma we see that the weighted spaces

are a special class of partial metric spaces in much the same way that normed spaces

are a special class of metric spaces.

Lemma 4.3.3 Suppose (X,~, ¢) is a weighted space, then d(x, y} = ¢(xny) defines

a pmetric for which ::;d=!;;;; and ¢d = ¢.

Proof. Axioms PI and P3 are immediate, and P2 follows since d(x, y} = d(x, x) if,

and only if, x !;;;; y. For the P4 axiom we have

d(x, z) + d(y, y) = ¢(x n z) + ¢(y)

s ¢(xnynz}+4>((xny}u(ynz))

< ¢(x n y) + ¢(y n z)

= d(x,y) +d(y,z).

It is immediate that <Pd= <Pand ::;d=!;;;;.

QED

The distance between two points in a weighted space is therefore a measure

of their common information. Whenever we consider a pmetric for a weighted space,

then this will be the induced pmetric from the lemma, and we will write "T[4>l for the

induced pmetric topology and "TWI for the induced metric topology. Many of the
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partial metric spaces that we have already met are weighted spaces. For example, the

pmetric on PR, from section 3.2.2, is induced by the weight function c/>([a, b]) = b - a,

the pmetric on 800, from section 3.3.5, is induced by c/>(x) = 2-lxl, and the pmetric

on (!R, 2::), from section 4.1.1, is induced by c/>{x) = x. We will meet more examples

in section 4.3.3.

4.3.2 Topological properties of weighted spaces

We say that a weighted space is complete (or compact) ifits induced pmetric space is

complete (or compact). We return to the material from section 4.1.4, and show that

complete weighted spaces have convergence in order. We can then emphasis some

of the more desirable To-topological properties of complete and compact weighted

spaces.

Lemma 4.3.4 Every complete weighted space (X,~, c/» has convergence in order.

Proof. Suppose {wn} is a sequence converging to a E X, and {xn} is a subsequence

satisfying Xn E B1/2n (a), for each n 2:: 1. We fix n 2:: 1 and, for each k 2:: 1, we let

Zk = an Xn n··· n Xn+k EX.

So Zk+l = {a n xn+k+d n Zk, and it follows that

We therefore see that

and {Zk} is a Cauchy sequence. We let Yn E X be the proper limit, so that

Yn = a n Xn n Xn+ 1n ....

Clearly {wn} surpasses the w-chain {Yn}, and for each n 2:: 1, we have Yn = (a n

Xn) nYn+1' It follows that
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and we see that

00 00

4>(Yn) - 4>(a) :::;L 4>(an xn+d - 4>(a) :::;L 1/2n+i = 1/2n-1•
i=O i=O

So 4>(a) = infn~l 4>(Yn), and since each Yn ~ a, then a = UtYn' and we are done.

QED

For a complete weighted space (X,~, 4>), the consistent semilattice need not

be a dcpo, which was something we insisted on in [ONe97]. However, any set in X

bounded above has a directed set in X with the same upper bounds, and so (X,~)

is conditionally complete. For a pmetric space (X, d), we will say that (X, :::;d) is a
.

conditional dcpo if every directed set A ~ X which has {<Pd(a) I a E A} bounded

below in !R, has a supremum in X.

Theorem 4.3.5 Suppose (X,~, 4» is a weighted space, then it is complete if, and

only if, (X,~) is a conditional dcpo, T[t/l] is the Scott topology and every Cauchy

sequence surpasses an approximating ea-chain.

Proof. We first suppose that (X,~, 4» is complete. That (X,~) is a conditional

dcpo and T[4>] is order-consistent is immediate, and by lemma 4.3.4 and 4.1.19, 1"[4>] is

the Scott topology. Suppose {xn} is a Cauchy sequence, then it has a proper limit

a E X, and lemma 4.3.4 implies that {xn} surpasses an approximating w-chain {Yn}

with supremum a. Order-consistency implies that {Yn} converges properly to a, and
the result follows.

Conversely, suppose {xn} is a Cauchy sequence, and let {Yn} be the appropriate

approximating w-chain. Since (X,~) is a conditional dcpo, we can let a = UtYn,

and order-consistency implies that liffin-+oo d(Yn, Yn) = dCa, a). It easily follows that

{xn} converges to a properly.

QED
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We immediately see that since the weight function ¢(x) = x on (!R,~) induces

the Euclidean metric, which is complete, then for this example, T[ct>] is the Scott

topology.

Corollary 4.3.6 Suppose (X, ~,¢) is a compact weighted space, then (X,T[4>]) is a

coherent space, 1"[ct>] is the Scott topology and 1"[4>.] is its patch topology.

Proof. Immediate from lemma 4.3.5 and 4.1.16.

QED

4.3.3 Scott-domains as weighted spaces

Kiinzi has shown, in [KV94], that every second-countable To-topology is pmetrisable,

but that there are quasi-metrisable topologies that are not pmetrisable. These

results may be of more interest to topologists, than useful for our purposes, since we

have been more interested in investigating the implications of the weight function.

However, we now give an example of Kiinzi's construction that fits neatly into our

framework of weighted spaces. We recall from section 2.1.1 that Scott-domains are

wbc-algebraic domains, and we will further assume that they have a bottom element.

It is then clear that a Scott-domain is a consistent semilattice. The following results

were found independently of Kiinzi's work.

Lemma 4.3.7 Suppose D is a Scott-domain, K = {k1, k2' ... } is the collection oj

compact elements and we define ¢: D ~ [0, I], by

¢(x) = 1- L 1/2\
knEK.,

then (D, ~, ¢) is a weighted space.

Proof. If x ~ y but x f y, then Kz C Ky, and clearly ¢(x) > ¢(y). Now suppose

that {x, y} ~ D is consistent, then
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= 1- 2: 1/2n + 1- 2: 1/2n

knEK",UKy knEKxnKy

> 1- 2: 1/2n +1- 2: 1/2n

knEKxuy knEKxny

= ¢(xUy) +¢(Xny).

QED

In [ONe97]we gave a similar result for the weighted spaces with modular

weight function, but had to work with the prime-algebraic domains. In chapter 6

we consider how we can give a similar result for w-continuous domains. To finish

this section, we observe that the metric induced on D from the lemma, is given by

We use this to show that our weighted space is compact.

Lemma 4.3.8 Suppose D is a Scott-domain, then the weighted space (D,!;;, ¢) is

compact.

.
Proof. We first show that it is complete. Suppose {xn} is a Cauchy sequence D. we

let Yn = n{xm Im > n}, for all n ~ 1, and X = Ut{Yn I n ~ I}. For any E > 0, we

let J ~ 1 be such that d = 1/2J < E. We can find N ~ 1 such that d*(xn,xm) < d

for n,m ~ N. Clearly, if kj E KXn \ KXm or kj E KXm \ Kxn, then we must have

j > J. So we see that, for all n ~ N,
00

d*(xn,x) s L 1/2j = s < E,

j=J+l

and so {z.,} converges properly to x.

We now show that the metric space (D, d*) is totally bounded, from which it follows

that (D,~, ¢) is compact. For any E > 0, there exists J ~ 1 such that 1/2J < E.

We define

A = {U Q IQ ~ {kj 11 s j s J}, Q consistent} U{.L}·
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Then for any xED, there must exist a E A such that for all 1 ~ j ~J, kj ~ a if,

and only if kj ~ x, so we have

00

d*(a, x) ~ L 1/2i = 1/2J < c.
j=J+1

So A is a finite s-net and (D,d*) is totally bounded.

QED

Corollary 4.3.9 If D is a Scott-domain with weighted space (D, ~,¢), then the

Scott and pmetric topologies agree as do the Lawson and metric topologies.

Proof. Immediate from corollary 4.3.6 and lemma 4.3.8.

QED

4.3.4 The completion of a weighted space

We finally consider the completion of a weighted space to see that this is again a

weighted space, which will prove useful in the next chapter. Suppose (X,~, ¢) is

a weighted space, with induced pmetric d(x,y) = ¢(x n y), and let (X,d) be the

partial metric completion from section 4.2.2. As in section 4.2.2, we will suppose

that our x E X are represented by Cauchy sequences {Xn} in X, and vice versa.

For simplicity, we will denote the specialisation order of d by ~. We will show that

(X,~) is a consistent semilattice, and that ¢:X -7 !R, given by

¢(x) = lim ¢(xn),n~oo VXEX,

defines a weight function that induces d.
We begin with some preliminary results. Suppose x, y E X, and define

Zn = Xn nYn, for each n ~ 1. From section 4.2.2, we know that limn~oo¢(xn nYn)

exists. We will show that limn,m~ood(zn, zm) = limn~oo¢(xn nYn), and hence that
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{ zn} is a Cauchy sequence in X. For any n,m ~ 1, we have

4>(Xn n Yn) :S d(zn, zm) = d{xn n Xm, Yn n Ym)

< d{xn nXm, xm) + d{xm' Ym) + d(Ym, Yn n Ym)

- d(xm, xm) - d(Ym, Ym)

The result follows since {xn} and {Yn} are Cauchy sequences in X.

Now suppose that x, fj E X are such that each {xn, Yn} is consistent in (X, ~),

and define Zn = Xn U Yn, for each n ~ 1. It is clear that limn-+oo4>(xn U Yn) exists.

We will show that limn,m-+ood{zn' zm) = limn-+oo4>{xn U Yn), and hence that {zn}

is a Cauchy sequence in X. For any n,m ~ 1, we have

4>(XnU Yn) :S d(zn' zm) = 4>( (xn U Yn) n (xm U Ym»)

< 4>((xn n xm) U (Yn n Ym))

= 4>(xn n xm) + 4>(Ynn Ym) - 4>(xn n Xm n Yn n Ym)

= d(xn, xm) + d(Yn, Ym) - d(xn n Yn, Xm n Ym),

from which the result follows.

We now show that (X,!;;;) is a consistent semilattice. Suppose x,y E X, and

we define Zn = Xn nYnl for each n ~ 1. We know that {zn} is a Cauchy sequence in

X I and we have

It follows that z !;;; x and similarly for y. Now suppose that w E X is below x and

y, and we define w~ = Wn n Zn, for each n ~ 1. It is clear that, for each n ~ 1,

so we see that

d(w,ut) = d(w',w') < d(w,x) + d(w,y) - d(w,w) = d(w,w),
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and so w = Wi. Since ill' ~ z, then it follows that z = x n y.

Now suppose that {x, y} is consistent in (X, ~). Notice that we cannot.

assume that the {xn,Yn} are consistent in X. Suppose w E X is an upper bound

for x and y, and define

'Vn ~ 1.

We know that {xn nwn} and {Yn nwn} are Cauchy sequences in X, so it follows

that {zn} is a Cauchy sequence in X, and z ~ w. We show that z is an upper bound

for x and y. For each n ~ 1, we have that

It follows that d(x, z) = d(x, x) and hence that x ~ z, and similarly for y. We

observe that

d(z,z) -

d(x, w) + d(y, w) - d(x n y, w)

- d(x,x) +d(y,y) - d(x n y,xn y),

which is independent of w. Now suppose that ill' E X is another upper bound for x
and y, then so is w n ill', and we define,

'Vn ~ 1.

It is clear that d(Z', Z') = d(z, z) and so z = Z'. It follows that z ~ ill', and we have

that z = xU y, and (X,~) is a consistent semilattice.

If we define¢:X -+ !R by ¢(x) = limn-+oo¢(xn), then

'VX,y E X.

Once we show that ¢ is a weight function for (X, ~), then we are done. It is imme-

diate that ¢ is a strictly monotonic decreasing function, and if {x, y} is consistent

in X, then ¢ is semi-modular since

d(xU y,xU y) = d(x,x) + d(y,y) - d(xn y,x n y).
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Theorem 4.3.10 The partial metric completion of a weighted space lS agazn a

weighted space.

4.4 Concluding remarks

This completes our exposition of a basic theory for partial metric spaces. In section

4.1 we established the partial metric spaces within the context of To-properties, and

investigated the notion of partial metric completion in section 4.2. We have discussed

our ideas on quantitative domains, and used these to motivate a particular class of

partial metric spaces, the weighted spaces, in section 4.3. We will use much of this

material in developing a potential area of applications in the next chapter, before

returning to more theoretic developments in chapter 6.
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Chapter 5

Applications in the Modeling

and Analysis of Systems

We consider some new ideas on the modeling of systems and techniques suitable

for the analysis of their properties, motivated by Wadge's work on the data flow

networks from section 3.1. More specifically, we present a new approach to the

modeling and analysis of liveness in deterministic Petri nets (sections 5.1 and 5.2),

and consider the weighted spaces as a framework in which to work (section 5.3).

We will see that to extend our methods to include non-determinism will require

more sophisticated techniques than we have available (section 5.4), and developing

a framework in which to be able to work is the motivation for the next chapter.

Aside from the background material on Petri nets, the material in this chapter is

original.

5.1 A model for the analysis of liveness in Petri nets

Given a system N and a property P, then our general approach can be described

as follows. We seek to model N as the fixed points of some function in such a way

that N satisfies P if, and only if, the fixed points satisfy some property pl. We
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take Petri nets as our systems, and consider the property of liveness. Notice that

we are setting up the model specific to the problem in which we are interested. As

we are trying to get across our general approach, we will proceed with a degree

of informality, refering to specific examples throughout, rather than attempting full

generality in our arguments. Most of our background material on Petri nets is taken

from [BC092], although [Mur89] has a fuller account. The rest of the material is

original.

5.1.1 A primer on Petri nets and liveness

Petri nets are a graphical and mathematical modeling tool particularly well suited

to modeling systems which involve, for example, concurrency or synchronisation.

Consider the Petri net in figure 5.1{a) (taken from [BC092]). The places Pi are

drawn as circles and can be considered to represent conditions. These are satisfied

when a place contains a token (drawn as a dot) such as PI and Ps in our example.

The transitions qi are drawn as bars and represent events, which are said to occur

whenever a transition fires. A transition is enabled when all its input (upstream)

places have at least one token. In figure 5.1{a), qz is enabled but qi and q3 are

not. The firing of an enabled transition removes a token from each input place, and

adds one to each output (downstream) place. More general firing and enabling rules

exist, for example with integer weights on the arcs, which require multiple tokens

in a place to enable a transition, and adding multiple tokens to a downstream place

after a transition fires. We refer to [Mur89, BC092] for details.

The net in figure 5.1(a) is of a particularly simple nature in that each place

has precisely one upstream and one downstream transition. These are called event

graphs in [BC092] and model synchronisation. Slightly more generally we could

allow multiple upstream transitions for a place, such as P3 in figure 5.1{b). A

significant extension is to allow non-determinism, as in figure 5.1{c), where a token

at PI enables both downstream transitions qo and qI, and there are no general rules
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as to which should fire. Such nets can be used to model decisions or choices.

A further extension to the basic model is to introduce a timing aspect, either

as the duration of a firing for transitions, or as how long it takes before a new token

at a place can contribute to enabling downstream transitions. These timings can be

variable or constant. Timed Petri nets are used in analysing performance evaluation

and scheduling problems.

The initial placement of tokens in a net is called the initial marking of the net.

The marking of a net is interpreted as its state, which evolves as its transitions fire.

This is the dynamic behaviour of a Petri net, and we may now analyse behavioural

properties such as which states it is possible to reach in a sequence of firings from a

given state. The particular property in which we are interested is liveness, where a

Petri net is said to be live if, after any finite initial sequence of firings, any transition

can be fired infinitely often. The nets in figures 5.1(a) and 5.1(b) are live, while

the net in figure 5.1(c) is not. A live Petri net guarantees deadlock-free operation

regardless of the firing sequence of its transitions.

In general liveness is an ideal property which is impractical to consider. We

therefore relax the liveness condition, and define the following levels of liveness

(taken from [Mur89]). For a given Petri net, a transition is:

LO-live (dead) if it never fires.

Ll-live (potentially firable) if it can be fired at least once.

L2-live if, for any n ~ 1, the transition can be fired at least n times.

L3-live if it can be fired infinitely often.

L4-live (live) if it can always be fired infinitely often.

For example, consider the Petri net in figure 5.1(c), where the transitions qQ, qt, q2

and qs are dead, L1-live, L2-live and L3-live,.respectively.
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Figure 5.2: Example of a Petri net trajectory

o 2 4 6
Time

5.1.2 A notion of state suitable for analysing liveness

The classical approach to analysing liveness is to look for necessary and sufficient

conditions for the existence of a live marking for a given Petri net structure. We

propose a quite different approach based on the ideas behind Wadge's cycle sum

test. In this approach we consider our Petri nets to have a timed aspect in which

transitions have instantaneous firing times, and places have a holding time of one.

We begin with a new interpretation of the state of a Petri net, suitable for the

analysis of liveness.

At a given time t E lR+, we define the state of a Petri net to be the number

of times that each transition has fired. The trajectory or motion of a Petri net is

then the evolution of state over time. For example, the trajectory of the net in

figure 5.1(a) is given by the three graphs in figure 5.2. This is an example of a

discrete event dynamical system [Ho89], since the state of the system takes values

in a discrete set, and changes at discrete intervals of time, rather than continuously,

so the trajectory is a sequence of piecewise constant segments. The trajectory of a

(deterministic) Petri net with k-transitions is given by a state function f : lR+ -t Nk

where, for each t E lR+, f(t)i is the number of times that transition qi (1 :::;i :::;k) has
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fired at time t. A non-deterministic Petri nets may have many possible trajectories

and therefore many possible state functions.

Suppose S is the collection of state functions for a given Petri net with k-

transitions, then for f E S, we define

llil = sUp{J(t)i It E !R+} EN U {oo},

for each 1 :::;i :::;k, and

If I=min{lfIl,···, Ifkl}·

We can see that our net is live if, and only if, If I= 00 for each f E S. Furthermore,

the transition qi is

LO-live (dead) if llil =° for all f E S.

Ll-live (potentially firable) if there exists f E S such that Ifil ;:::1.

L2-live if, for any n ~ 1, there exists f E S such that Ihl ~ n.

L3-live if there exists f E S such that llil = 00.

L4-live (live) if Ihl = 00 for all f E S.

5.1.3 Network functions for modeling deterministic Petri nets

We seek to model a deterministic Petri net by a function, over a suitably defined

domain, whose fixed point is precisely the state function of the net. Before we can

consider how to define such a function, we must specify our basic domain. We fix

k;::: 1, and let X(k) denote the collection of partial and total upper semicontinuous!

functions, f : !R+ -+ Nk, for which there exists T, E [0,00] such that f is defined

on precisely [0,T,). State functions of Petri nets with k-transitions are clearly total

functions in X(k).

It is clear that there are many functions over X(k) whose fixed point is

precisely the state function of a given deterministic Petri net. For example, suppose

1A function f :R+ -+ N" is upper semicontinuous if, for each n E Nand 1 :5 i :5 k, there exists
T E R+ such that {t E R+ I f(t}i < n} = [O,T}.
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Figure 5.3: Basic Petri net structures

IE X(k) is such a state function, then the constant function that sends everything

to I, would satisfy this criteria. However, such a function pre-supposes knowledge

of the state function, which is exactly the situation that we wish to avoid. Our aim

is to use the structure of the net to describe a suitable function over X(k), which

will then allow us to get information on the fixed point, that is the state function

of the net, without necessarily working it out.

So how can we find such a function? In [HW90],Hubbard and West propose

that whenever you wish to model a system, you should describe the forces involved,

and derive the motions from them, rather than describing the motions directly. In

our situation, we regard the motion of a Petri net to be the evolution of state over

time, in other words, the firing of its transitions. It seems reasonable therefore to

consider the places as being the "forces" from which this motion is derived.

Consider the basic Petri net structures in figure 5.3, together with the fol-

lowing observations:

(a) The number of tokens to have arrived at PI and P2 at time t E !R+, is the

number of firings of ql at time t.

(b) The number of firings of qi at time t ~ 1 is the minimum of the number of

tokens to have arrived at Pt and P2 at time t - 1, and is 0 at time t E [0,1).

(c) The number of tokens to have arrived at Pl at time t E !R+ is one plus the
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number of firings of qi and q2 at time t.

We take the net in figure 5.1(a} as a worked example, and suppose that it

has state function f E X(3). From the above observations we see that f (th, the

number of firings of qi at time t ~ 1, is the minimum of the number of tokens to

have arrived at PI, P2, and P3 at time t -1, which are; one plus the number of firings

of qi at time t -1, f(t -lh + 1, the number of firings of q3 at time t - 1, f(t - 1h,

and the number of firings of q2 at time t - 1, f(t - 1b, respectively. We can easily

deduce the following equations, analogous to the equations we had for a data flow

network in section 3.1,

f(th = min{J(t - 1h + 1, f(t - 1h, f(t -lb},

f(th - f(t - 1)J + 1,

f(th = f(t - 1h,

for each t ~ 1, and f(t} = (0,0, O) at t E [0, I}.

We consider the right-hand side of these equations as defining a (determin-

istic) network function H : X(3) --t X(3) so that, for each 9 E X(3),

(

min{g(t -lh + 1,g(t - 1h, g(t - Ih} 1
H(g)(t} = g(t - 1h + 1 ,

g(t - Ih

"It E [l,Tg + I},

and H(g)(t} = (0,0,0) for all t E [0,1). The state function of our net is clearly a

fixed point of H, and we will show in section 5.2.1 that it is the unique fixed point.

5.1.4 Comparable models and extensions

In [BC092], Baccelli et al have a similar approach to modeling Petri nets, although

their aim is for performance evaluation techniques, rather than analysing liveness.

For the transitions qi in figure 5.1(a} for example, they let Xi(j} (j ~ I) be the time
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of the jth firing of qi, and derive the evolution equations:

Xl(j + 1) = max{xl(j) + l,x2(j + 1) + l,x3(j + 1)+ I},

X2(j + 1) - X3(j) + 1,

X3(j + 1) - X2(j + 1)+ 1,

with an initial condition x2(1) = 1. This is clearly the dual to our approach, and

we can deduce one from the other.

Now suppose that a place has multiple upstream transitions, such as P3 in

the net in figure 5.1(b), then we cannot use evolution equations to find the firing

times, since we cannot tell if the jth firing of q3 is due to a firing of ql or a firing of

Q2. However, we can avoid this problem with our approach, and the deterministic

network function H : X(3) -t X(3) is such that, for all 9 E X(3),

H(g)(t) = ( 9(:~~:):1 1'
g(t - Ih + g(t - Ih

Vt E [1,Tg + 1),

and H(g)(t) = (0,0,0) for all t E [0,1).

One notable difference from our presentation however, is that the presen-

tation given in [BC092] is in complete generality. We conclude this section with

the comment, or perhaps hypothesis, that we can use our approach to model any

deterministic Petri net. Furthermore, we claim that we can extend our methods to

Petri nets with more general timing constraints or with multiple tokens in a place.

Rather than attempt to prove these claims however, we would like to see where our

approach can take us and then, if this work should turn out to be sufficiently useful,

return to the beginning and set up a formal framework.

5.2 An analysis of the deterministic network functions

Our basic approach is to consider a (deterministic) network function as describing

a dynamical system, and then to give some qualitative and quantitative analysis of
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this system. Our qualitative analysis will show that deterministic network functions

have unique fixed points, which must therefore be the state function of the net.

Our quantitative analysis will initially be based on Wadge's cycle sum test for the

data flow networks, and will give us a test for liveness. We will further develop this

analysis so as to gain information on the levels of liveness of the transitions of the

net. What is important is that we get this information from the fixed point of a

deterministic network function without having to find it.

5.2.1 Qualitative analysis: uniqueness of fixed points

Taking a domain theoretic approach, we will easily be able to give a complete de-

scription of the dynamics of a deterministic network function. Suppose k ~ 1 and

X(k) is the space of functions given in section 5.1.3. We begin by showing that X(k)

is a continuous domain.

Lemma 5.2.1 (X(k),~) is a continuous domain, with

I ~9 {::::} Tf s Tg and I = 9 on [0, Tf)·

Proof. It is clear that (X(k),~) is a poset, and that I, 9 ~ h in X(k) implies either

I ~9 or 9 ~ I. SOevery directed set in X(k) is a chain. Suppose {fa}aEA is a chain

in X(k) and let,
T = sup{Tfo I a E A} E [0,00].

Then I : [0,T) -+ Nk, where I = I a on [0,Tfo)' is a well-defined partial (or total)

function from !R+ to Nk with T] = T. For any n E Nand 1 ~ i ~k, we have

{t E !R+ I I(t)i < n} = U {t E!R+ I la(t)i < n},
aEA

so I is upper semicontinuous and is the supremum of the chain in X(k).

Suppose I ~9 in X(k), with Tf < Tg, and {ha}aEA is a chain in X(k) with supremum

h above g. Then Tt ~ Tho' for some a E A, and we have I = 9 = h = ha on [0,Tt)·
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So f !;;; ha and it follows that f «g. Now let f E X(k) and define hn = f on [0,n),

if f is total, or on [0,TI -1/2n) otherwise. So each hn « f and f is the supremum

of the chain hI !;;; h2 ~ .... Since the collection of functions well-below f must be a

chain, then it follows that X(k) is a continuous domain.

QED

It is immediate from the definition of meets that, for any f, g E X(k), f = g

on [0, Tlng). Now, if H : X(k) -+ X(k) is one of the deterministic network functions

from the last section, then we can observe that H f = Hg on [0,Tlng + 1), for all

I,9 E x'». We will assume this property to be true of all deterministic network

functions. We are then in a position to prove that a deterministic network function

has a unique fixed point, which must be the state function of the net, and that it is

an attracting fixed point, to which each sequence, {Hng}, in the domain converges.

Lemma 5.2.2 Every deterministic network function has a unique attracting fixed

point.

Proof. Suppose H : X(k) -+ X(k) is a deterministic network function, then from our

above assumption, we see that for any t.s E X(k) we have THlnHg = Tlng + 1. A

simple induction shows us that H" f = Hng on [0, n), for any n ~ 1. Furthermore,

if n ~ m ~ 1, then Hm(Hn-m(g)) = Hm(g) on [0,m) and hence Hn(g) = Hm(g)

on [0,m). Now suppose that 9 E X(k) is arbitrary, and we define f E X(k) by

on [0,n) \In ~ 1,

which is well-defined by the above discussion. It also follows that since Hn+l(g) =
Hn(g) on [O,n), for any n ~ 1, then we have H(J) = f, which is clearly a unique

fixed point. Finally, if g' E X(k), then for any n ~ 1, we have Hn(g') = f on [0,n),

and it follows that Hn(g') -+ f.

QED
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5.2.2 Quantitative analysis: generalising the cycle sum test

It is clear that Wadge's cycle sum test, from section 3.1, is essentially a quantitative

analysis of the function associated with a data flow network, since success with the

test proves that the fixed point of the function is complete. We generalise this so

that we can perform some quantitative analysis on a deterministic network function,

and get information on its fixed point appropriate to the study of liveness.

We follow Wadge's intuition and identify the complete elements in X(k), as

the state functions associated with a live Petri net. In fact, this example throws into

focus Wadge's thoughts on maximality and completeness in a domain, since although

the state functions are always maximal, we only consider the live state functions as

complete. To make this precise, we recall from section 5.1.2, the definitions of If I
and liil for state functions, and extend these to any f E X(k), so that

Ihl = sUp{j(t)i It E [0,TJ)} EN U {oo},

for each 1~ i ~k, and

If I= min{lhl,···, Ifkl}·

We refer to If I as the size of f, and define the complete elements in X(k) to be those

with If I= 00. We see that a deterministic Petri net is live if, and only if, its state

function is complete.

We make some observations regarding the basic functions used in building

deterministic network functions. For any I, g E X(k), we have that

Imin{j,g}1 = min{lfl, Igl},

If + gl = If I+ Igl,

{
0, tE[O,l),

and if g(t) =
f(t -1), t E [l,Tf + 1),

then Igl = If I·

We now make explicit a simple result that was used in proving the cycle

sum test in section 3.1.3. We let !Rmin denote the set !R U {oo} together with the

operations min and +, and let * denote the matrix multiplication in this algebra.
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Lemma 5.2.3 Suppose M is a k x k matrix such that MS has strictly positive

entries, for some s ~ 1, and v is a k-uector with v ~ M * V, then v = (00, ... ,(0).

Proof. The linear function, v H M *v, defined by M is monotonic, so that v ~ MS *v.
If Vi :I 00, for some 1 ~ i ~k, then we have

So we must have v = (00, ... ,(0) for otherwise, minl$i$k Vi > minl$j$k Vj which is

a contradiction.

QED

In section 3.1.3, the existence of such a matrix M and s ~ 1, was a direct

consequence of the equations corresponding to a network passing the cycle sum test,

and we took v = a(x), for the least fixed point x E Sk of the associated function.

It followed that x was complete, and the network was free from deadlock.

Adopting the notation from section 3.1.3, we define a :X(k) -+ [O,oo]k by

(
I~:dl'a(1)=

I/kl
We say that a(f) E [0,oo]" is the vector of sizes for I. We work once more with the

example net given in figure 5.1(a), which has the network function H : X(3) -+ X(3)

defined in section 5.1.3. If we let

then, from our observations on the basic functions, it is clear that a(H(g)) = M *
a(g), for all 9 E X(3). If IE X(3) is the state function of our net (the fixed point of

H), then a(1) = M * a(1), and since M4 has strictly positive entries then we can

apply the lemma to see that I must be complete, and hence that the net is live.
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If we now take our second worked example, from figure 5.l(b), which has

network function H : X(3) -+ X(3) defined in section 5.1.4, then this is slightly more

complicated since the map is not linear. However, we do have

Vg E X(3),

and if we take

then it is clear that a(H(g)) ;::::M * a(g), for all g E X(3). If J E X(3) is the state

function of our net, then aU) ;::::M * aU) still satisfies the conditions of the lemma,

and since M4 has strictly positive entries, then we can again deduce that our net is

live.

5.2.3 A more sophisticated quantitative analysis

The analysis from the last section is useful as a test for liveness, but clearly goes no

further than that. We now extend this so that we actually find the vector of sizes

for the fixed point of a deterministic network function. Although this requires more

work than before, it is still easier than finding the fixed point itself, and will give

us the levels of liveness of the transitions of the Petri net. We begin with a lemma,

which is simple to prove once we assume that deterministic network functions are

only built from the basic functions that we considered in the last section.

Lemma 5.2.4 Suppose H : X(k) -+ X(k) is a deterministic network Junction, then

for any l,o E X(k) I iJ aU) = a{g) then a{HU)) == a{H{g)).

For such functions we can work with the vector of sizes for functions in X(k),

rather than the functions themselves. We define,

R(X(k») = {it E [O,oo]k I it = aU) for some f E X(k)},
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then for any deterministic network function, H : X(k) -+ X(k), the derived func-

tion, H' : n(x(k») -+ n(x(k»), can be defined as follows. Suppose ii E n(x(k»),

then we can find f E X(k) such that i1= a(l). We define

H'(i1) = a(H(I)).

The next result shows that the least fixed point of H' in [0,oo]" is the vector of sizes

for the fixed point of H, which will give us the levels of liveness for the transitions

of the Petri net.

Theorem 5.2.5 Suppose H : X(k) -+ X(k) is a deterministic network function with

unique fixed point f E X(k), then the derived function, H' : 'R.(X(k») -+ n(x(k»),

has least fixed point a(l) E n(x(k»).

Proof. If we let L ~ n(x(k») be the collection of fixed points of H', then L i= 0

since a(l) E L. We let l = minL (pointwise minimum in [O,oo]k). Suppose, for a

contradiction, that for some 1 ~ i ~k, R.i < llil, then there exists il E L such that

Ui < llil. We let 9 E X(k) be such that i1 = a(g). It follows that Igil< llil so we

can find t E [0,TJ) such that f(t)i > Igil.We let n> 0 be such that t E [0,n), then

we see that

which is a contradiction, and the result follows.

QED

We consider some worked examples. For the nets in figures 5.I(a) and 5.I(b)

respectively, we have the derived functions,

1-- (min{U1+I,U2,U3} 1
H (u) = U3 + 1 ,

U2
(

U3 + 1 1
and H'(i1) = U3 ,

Ul + U2
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for all 11E R(X(3)). Both of these have least fixed point (00,00,00), and we again

deduce that our nets are live. Notice that these functions could be derived directly

from the Petri nets themselves, and that we are still essentially performing a counting

argument.

To consider a non-live example, suppose we take the Petri net in figure 5.1(a)

once more, but remove the initial token from Pl. In this case our network function

is such that, for each 9 E X(3),

(

min{g(t - Ih,g(t -l}J,g(t - Ih} 1
H(g)(t) = g(t - 1}J+ 1 ,

g(t -lh
"It E [l,Tg + 1),

and H(g)(t) = (0,0,0) for all t E [0,1). It follows that the derived function becomes

,- ( min{ul,u2,U3} 1
H (u) = U3 + 1 ,

U2

which has least fixed point (0,00,00). We deduce that transitions qz and q3 are live,

whereas transition qi is dead.

5.3 A partial metric framework for the analysis

Having seen how to extend Wadge's ideas behind the cycle sum test for data flow

networks to an analysis of liveness for (deterministic) Petri nets, we now consider

how we can abstract the essential details. We will see that both our models, Sk and

X(k), are weighted spaces, and that the weighted spaces can be used to develop the

techniques from our analysis in a model-independent framework.

5.3.1 The data flow model

In section 3.1.3 our data flow model was s-, the product of k copies of S'", If we

seek an appropriate partial metric, then this should capture the domain theoretic
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aspects of the space, that is the Scott topology, as well as the complete elements

which were crucial to our analysis. We will also find that the analytic techniques we

develop will require that a suitable partial metric is complete. In section 3.3.5 we

saw that 800 was naturally a partial metric space, and in section 4.3.1, that it was

a weighted space. We begin by considering product spaces in general, from which

we will deduce that 8k is a complete weighted space in which the complete elements

are naturally captured.

Suppose (XI, dd and (X2, d2) are partial metric spaces. A product pmetric

on Xl x X2 is any partial metric whose topology is the product of the pmetric

topologies 'T[dl] and 'T[d2]· For an element x E Xl X X2 we write x = (Xl, X2) with

Xl E Xl and X2 E X2.

Lemma 5.3.1 Suppose (XI,dd and (X2,d2) are partial metric spaces, then

is a product pmetric on Xl x X2 whose associated metric, d*, is Lipschitz equivalent

to the product metric di + d2 on X I X X 2.

Proof. The partial metric axioms are straightforward to verify. Now suppose that

O,cI,c2 > 0, then

and

BE(Xjd) ~ BE1(Xlidt} x BE2(X2jd2), where e = min{cI,c2},

B.s/2(Xli dd x B.s/2(X2; d2) ~ B.s(Xi d).

It follows that 'T[d) = 'T[dd x 'T[d2]' and d is a product pmetric. We now observe that

[di(XI,y!l+d;(x2,Y2)]/2 < max{di(xI,Yl),d2(X2,Y2)}
- max{d1(xl,yt} - d1(xt,xt},d1(Xllyt} - d1(Yl,yt},

d2(X2, Y2) - d2(X2, X2), d2(X2, Y2) - d2(Y2, Y2)}

< max{d(x,Y) - d(x,x),d(x,Y) - d(Y,Y)}

= d*(x, Y).
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Since we also have d*(i,iJ) ~ di(Xl,yd + d2(X2,Y2), then d* is Lipschitz equivalent

to the product metric di + d2 on Xl x X2.

QED

Lemma 5.3.2 Suppose (Xl, !;;;l,¢d and (X2, !;;;2,¢2) are weighted spaces, then the

product (Xl x X2,!;;;) is a consistent semilattice, and ¢ : Xl x X2 -+ !R defined by

is a weight function on (Xl x X2,!;;;) that induces the above product pmetric.

Proof. Straightforward.

QED

From section 4.3.1, we recall that ¢(x) = 2-lxl is a weight function for Soo,

and it follows from the lemma that Sk is a weighted space. We show that SOO is

complete, and then it follows that Sk is a complete weighted space.

Lemma 5.3.3 The weighted space (Soo,!;;;, ¢) is complete.

Proof. Suppose {xn} is a Cauchy sequence in SOO, then limn,m-+ood(xn, xm) = 2-t

for some t E NU {00 }. If t < 00, then we can find N ~ 1 such that for any n,m ~ N,

d(xn, xm) = 2-t• It follows that IXNI = t, and for each n ~ N, XN = Xn, so we

see that X N is the proper limit of the sequence. If t = 00, then we let No = 1 and

inductively find, for each k ~ 1, Nk ~ Nk-l such that for all n,m ~ N»,

00

ak = XNk[k] E SOO, and a = U ak E SOO,
k=l
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and see that lal = 00. Since ¢ is continuous, and for any k ~ 1 and n ~ Nk, we

have Q.k ~ an Xn, then

and a is the proper limit of our sequence.

QED

We already know, but it also followsfrom the lemma and theorem 4.3.5, that

the induced pmetric topology on SOO, and hence s-, is the Scott topology. We are

left to show that our pmetric captures the complete elements that we identified in

section 3.1.3. We see that a point if E Sk is complete if, and only if, ¢(if) = 0, which

is precisely when IXil = 00 for each 1 ::; i ::;k. So we see that our data flow model

fits neatly into a complete weighted space framework. Once we show that the same

is true of the Petri net model, then we will develop some analytic techniques in this

more general setting.

5.3.2 The Petri net model

We therefore seek a complete partial metric on the Petri net model, X(k), from

section 5.1.3, which captures the Scott topology and the appropriate complete ele-

ments. We let X be the collection of partial and total upper semicontinuous func-

tions, f : !R+ -t N, for which there exists Tj E [0,00] such that f is defined on

precisely [0,Tj). For k ~ 1, we let x» be the product of k copies of X, and for

f E x», we let Ii E X, 1 s i ::;k, be defined by

\It E [0,00].

It is clear that X(k) is not the product space x», but that it embeds in Xk as those

functions for which the Tj; are constant for all 1 ::; i ::;k. We choose to work with

the larger space Xk since it is easier to show that Xk is a weighted space, by giving

the result for X, than it is to show directly that X(k) is a weighted space. We begin

by showing that (X,!;;;;) is a consistent semilattice.
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Lemma 5.3.4 (X,!:) is a consistent semilattice.

Proof. For any i.9 E X we define

Tjng = sup{t E [0,min{Tj, Tg}} I f(t} = g(t)},

and (f ng)(t) = f(t} = g(t} on [0,Tjng}, so that f n9 is the meet of f and 9 in X.

Also, if f, 9 are below h in X then either f ~ 9 or 9 ~ f.

QED

One problem we have in defining a weight function on (X, !:) is that functions

in X map from an unbounded domain, lR+, to an unbounded range N. We will

therefore make use of sp : [0,00] -? [0,1], which we define as the bijection c.p(t) = it»,

Lemma 5.3.5 The function 4; : X -+ [0,2], defined by,

4;(f} = cp(lfl)[cp(Tj} + 1], VfEX,

is a weight function on the consistent semilattice (X, ~), whose induced pmetric

topology is the Scott topology.

Proof. It is clear that if f ~ g, then Tj s Tg and If I s Igl, so that 4;(f) ~ 4;(g}.

Suppose further that 4;(f) = 4;(g) > 0, then Tj = Tg and f = g. If ¢(f) = ¢(g) = 0,

then If I = Igl = 00, which implies that T, = Tg and f = 9 once more. Since f, 9 E X

below h in X implies that either f !:9 or 9 !:f, then ¢ is a weight function.

We now show that the induced pmetric topology is the Scott topology. We can

deduce from lemma 5.2.1 that f « 9 in (X,~) if, and only if f ~ 9 and T, < Tg•

Suppose 9 E 11'f and we let f « g' « g, then g' is strictly below 9 which implies

that 19'1 < 00. We let

If u e B£(g'}, then ¢(g' n h) < 4;(g') + s, which implies that

cp(lg' n hI)
CP(Tg/nh)+ 1 $ cp(lg'l) [cp(Tg/nh) + 1] < cp(Tg/) + 1+ cp(T,) - cp(Tg/}.
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It follows that Tf < Tglnh :s: Th and hence I « h and we see that 9 E Bdg') ~ 11/.
So the Scott open sets are open in the induced pmetric topology.

Now suppose that 9 E X, e > ° and h E BE(g). We find I ~9 such that

E
0< <p(T!} - <p(Tg} < c/2 and <p(1/1) - <p(lgl) < -4'E+

We see that T! < Tg and I «g. Furthermore, we have

¢(f ng) = ¢(f) < [<p(lg!) + E: 4] [<p(Tg) + ~+ 1]
- ¢(g) + E<P~91)+ E: 4 [<P(Tg) + ~+ 1]
s ¢(g) + ~+ E: 4 [c:; 4]
= ¢(g) + E.

It follows that IE BE(g) and hence that 9 E itl ~ BE(g), and the result follows.

QED

Having captured the Scott topology, we now turn to the complete elements

in X(k), which we identified in section 5.2.2, and see that ¢(f) = ° if, and only if,

llil = 00 for each 1 :s: i :s: k which implies that III = 00. So it appears that our

partial metric is appropriate for our purposes. The problem however, is that it is

not complete. To see this, consider the decreasing chain Un} in X, defined by

{
0, t E [0,1),

fn(t) =
1, t E [1,1 + lin),

which is a Cauchy sequence since sup{¢(fn) I n ~ I} = 3/4. The infimum of this

chain is given by I(t) = 0 on [0,1), which is not the proper limit since ¢(f) = 3/2.

The difficulty is that the "proper limit" should be

{
0,

get) =
1,

tE[O,l),

t = 1,
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which is not in X. One way around this problem is to work with the completion,

Xk, of x», which we know to be a complete weighted space from section 4.3.4. In

this way the Petri net model also fits into the framework of the weighted spaces,

although we must be careful when we seek to interpret the results of the more

abstract analysis.

5.3.3 The cycle sum test revisited

Having established the framework of complete weighted spaces as suitable, we now

place the analysis of section 5.2.2 in this more general framework. Matthews at-

tempts something similar in [Mat95], but his results are sketchy, and the details

more intricate than necessary. However, his use of contraction maps is still rele-

vant and we pursue this to begin with. We remark that by restricting ourselves to

the weighted spaces, we can simplify the presentation, while leaving it clear how to

extend the results to partial metrics.

We begin with Matthews' definition [Mat94] of a contraction map over a

(positive) partial metric space, and the contraction mapping theorem that he gen-

eralises directly from the metric case. Suppose (X, d) is a complete positive partial

metric space, and f :X -+ X is such that there exists a < 1 with

dUx, fy) :$ ad(x, y), 'Vx,y E X, (5.1)

then we say that f is a contraction on X.

Theorem 5.3.6 (Contraction Mapping Theorem [Mat94]) Suppose (X, d) is

a complete positive partial metric space, and f :X -+ X is a contraction, then f
has a unique attracting fixed point a E X and cPd(a)= O.

For the weighted spaces, we can simplify the contraction condition (5.1) so

that we need only consider points, rather than pairs of points, but require that our

functions are monotonic.
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Lemma 5.3.7 Suppose (X,~, </» is a complete positive weighted space, and f :X --+

X is a monotonic function for which there exists a positive a < 1 sucli that

</>(fx) ~ a</>(x), VXEX,

then f is a contraction on X.

Proof. Monotonicity implies that f(x n y) ~ fx n Iv, for any x, y EX, so we

immediately have

d(fx, fy) = </>(fxn fy) ~ </>(f(xn y)) < a</>(xn y) = ad(x, y).

QED

We recall that in section 5.2.2, we had a deterministic network function,

H : X(k) -+ X(k), and a matrix, M, for which some power had strictly positive

entries, satisfying a(H(g)) ~ M * a(g), for all g E X(k). To place this within

the framework of complete weighted spaces, we first fix g E X(k), so that for any

1 ~ i ~k, we have

IH(g)il ~ l~i!!k Mij + Igjl·
_J_

Taking the definition of ip from the last section, we see that

An important property of deterministic network functions that we make use of is

that <P(TH(g») ~ <p(Tg), and so

Ifwe adapt the notation of section 5.2.2, so that a~ : X(k) -+ !Rk is given by

Vi E X(k) ,
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I

then our inequality becomes,

O"</J(H(g))~ cp(M) * O"cf>(g),

where * nowdenotes matrix multiplication in the algebra !Rmax, which has operations

max and product, and cp(M) is the k x k matrix with each cp(M)ij = cp(Mij).

Abstracting to the product of k copies of an arbitrary complete positive weighted

space, we get a result that combines the uniqueness result of section 5.2.1 together

with the generalised cycle sum test of section 5.2.2.

Theorem 5.3.8 Suppose (X,!;;;, ¢) is a complete weighted space with k ~ 1, and

we have f : Xk -t Xk monotonic, a k x k matrix, M, such that, MS has entries

strictly less than some a < 1, for some s ~ 1, and

then f has a unique attracting fixed point, il E x», and ¢( il) = O.

Proof. We first find t ~ 1 such that at < 11k, and show that rt is a contraction on

x», from which the result follows. We immediately see that

k k k
¢(fstx) = L-¢((fstX)i) s L- max Mtj¢(xj) s L-at¢(x) = kat¢(x).

i=l i=l l~J~k i=l

It follows that rt is a contraction on x» since kat < 1.

QED

We remark that to re-apply this general result to the Petri net model, Xk,

we would still need to know that the state function of a deterministic Petri net is

a fixed point of its network function to ensure that the unique fixed point of the

theorem is in X(k) s;;; Xk.
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5.3.4 Uniform and derived functions

Continuing this process of abstracting to the framework of weighted spaces, we now

look at section 5.2.3, and abstract an essential property of deterministic network

functions. Suppose (X,~, ¢) is a weighted space and k ~ 1, then we define

Definition 5.3.9 We say that a Junction f : Xk ~ x» is uniform iJ, [or any

x, y E x=, then O"¢(x)= O"¢(Y) implies that O"¢(Jx) = O"¢(JY).

As with the deterministic network functions, for any uniform function we can

define the derived function, l' :n( ¢)k ~ n( ¢)k as follows. Suppose i1 E n( ¢)k ,

then we can find x E Xk such that i1= O"¢(x). We define

J'(11) = O"¢(Jx).

To generalise theorem 5.2.5, we also require that our uniform functions have an

attracting fixed point. If we let the vector of sizes now refer to O"tt>(x)E n(¢)k, then

for uniform functions with an attracting fixed point, we can find the vector of sizes

of that fixed point, without finding the point itself. However, to do this we further

require that our weighted space, (X,~, ¢), is bounded above, so that {¢(x) I x E X}

has an upper bound in !R.

Lemma 5.3.10 Suppose (X,~, ¢) is a complete positive weighted space, bounded

above, with k ~ 1, and f : Xk ~ Xk is a monotonic uniform function with an

attracting fixed point a E x», then the derived function l' :n( ¢)k ~ n( ¢)k has a

maximal fixed point 0"¢(i1)E n(¢)k.

Proof. We first observe that for any x E x» and 1 < i < k, we have ¢(ai) <
¢((Jnx nali), and since

k k
lim "'¢((Jnxni1)i) = lim ¢(Jnxna) =¢(i1) = "'¢(ai),
n-too ~ n-too ~

i=l i=l
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then for any 1 ~ i~k, we have

If we let L ~ X:~ be the collection of fixed points of /" then L =1= 0 since O'cp(ii) EL.

We let l = sup L (pointwise supremum in !Rk). Suppose, for a contradiction, that

for some 1 ~ i ~k, f.i > ¢(ai), then there exists 11EL such that Ui > ¢(ai). We let

x E x» be such that 11= O'cp(x). However,

which is our contradiction, and the result follows.

QED

Our final result allows us to deduce that a function has an attracting fixed

point, and will be useful in applying the above lemma. As a shorthand notation, we

write Xn \., x for a sequence {xn} in !R converging to x E !R from above.

Lemma 5.3.11 Suppose (X,~, ¢) is a complete weighted space, f : X -+ X is

continuous and e E !R is such that ¢(x) 2: e, for some x EX, and ¢(x) 2: e implies

that cp(fnx) \., e, then f has an attracting fixed point a E X with ¢(a) = t.

Proof. Suppose x E X with ¢(x) 2: t, then for any m 2: n ~ N, ¢(x n fm-nx) 2:

¢(x) ~ f., and

which converges to f. from above, and so {fnx} is Cauchy. We let a E X be the

proper limit of this sequence, then ¢(a) = t and continuity implies that a is a fixed

point of f. Now suppose that x E X is any point, then for any n ~ 1,

which converges to e from above. It follows that fnx -+. a and we are done.
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QED

These results are an indication of the techniques that we can develop within

the framework of complete weighted spaces, and are effectively the techniques that

we used in our analysis of deadlock in data flow networks and liveness of Petri

nets. There is clearly much scope for improvement as well as for developing further

techniques.

5.4 The problem of non-determinism

We now consider the problem of extending our methods from section 5.1 to non-

deterministic Petri nets. Rather than giving detailed results, this section will be

essentially discursive, and wewill try to motivate our ideas and some possible further

directions for the work.

One way to deal with non-determinism is to introduce an external choice

function, or oracle, knowledge of which would allow us to assign tokens from places

to transitions. Suppose a Petri net has k-transitions and E-places,then we define an

~racle to be a map

'Y: {I, ... , k} x {I, ... ,E} x N -t NU {oo},

such that 'Y(i, i.r) is the number of tokens to have become available from place Pi

to transition qj if there have been r tokens available from Pi, and 00 if there is no

arc from Pi to qj. We use 00, rather than 0, to distinguish the situation where there

is no arc from a place to a transition, from the situation where there are no tokens

available from a place. We write 'Yi~j(r) for 'Y(i, i.r).
Consider the basic structure for non-determinism, given m figure 5.4(a),

where the number of firings of qI and qz at time t ~ 1 is the number of tokens

to have arrived at PI at time t - 1, and is 0 at time t E [0,1). If we consider the

non-deterministic net in figure 5.4(b) as our worked example, then it is clear that
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(a) (b)

Figure 5.4: Non-determinism in Petri nets

any oracle must have 'Yl-+dr) = rand 'Yl-+2{r) = 00, for any r E N. The (non-

deterministic) network function H", : X(2) -+ X(2), which depends on the oracle 1',

is such that, for each 9 E X(2),

H",(g)(t) = ( min{g(t - 1h + 1,1'2-+1 (g(t - 1h + 1)} ) ,
'Y2-+2(g{t - 1h + 1)

Vt E [1, Tg + 1),

and H",{g)(t) = (O,O) for all t E [0,1).

If we know the oracle a priori then our Petri net is essentially deterministic,

and the analysis is as before. For example, suppose the oracle l' sends every token

from P2 to Q2, then I'2-+1{r) = 0, and I'2-+2{r) = r, for any r E N. Suppose as well

that the oracle 1" sends the first token at P2 to Ql, and subsequent tokens to Q2, so

that

, [: r = 0,1'2-+1(r) =
1, r;:::: 1,

, { 0,'Y2-+2(r) =
r -1,

r = 0,

The network functions H"" H"" : X(2) -+ X(2) are such that, for each 9 E X(2),

H..,(g)(t) = ( 0 ) ,
g{t - 1h + 1

H",,(g)(t) = ( 1 ) ,
g(t - 1h

Vt E [1, Tg + 1),
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and HI'(g)(t) = HI" (g)(t) = (0,0) for all t E [0,1). The derived functions H~, H~I :

n(x(2») -7 n(x(2») are then

,_ ( 0 )H-y(u) = ,
U2 + 1

and

which have least fixed points (0,00) and (1,0) respectively. So we see that, for our

non-deterministic Petri net, the transition ql is L1-live and transition q2 is L3-live.

The challenge is to perform the analysis when the oracle is unknown. In

effect, what we are trying to do, is to analyse many deterministic network functions,

indexed by the oracles. We suggest that this is not necessarily the most natural

extension of the deterministic position, and rather moves away from our attempts to

analyse a dynamical system associated with a Petri net. In a more natural extension,

we would expect a (non-deterministic) network function H : X(k) -7 X(k) to have as

fixed points precisely the possible state functions of the net. The dynamics of such

a function will obviously be more complicated, and require a more sophisticated

analysis, but this is part of the natural evolution away from the analysis of systems

with particularly simple dynamics.

A natural question arises. Suppose we have such a network function, what

would it be like? Intuitively we can think of network functions as taking points

in X(k) towards a "nearest" state function. Whenever we are "close" to a state

function in X(k) our network function then behaves like a deterministic network

function. We can think of a non-deterministic network function as being locally like

a deterministic network function.

But how could we find such a function? Of course, if we knew the state

functions of the net, then we could just send each 9 E X(k) to the nearest state

function, but we want to avoid finding the state functions explicitly. Consider

the following approach. Suppose we let I' be the collection of oracles for a non-

deterministic Petri net, then for any map T : X(k) -7 r, which we call selective
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maps, we can define a network function HT : X(k) -t X(k) by

Although this depends on the selective map, it is independent of any particular

oracle. Any fixed point, 9 E X(k), of HT must be the fixed point of Hr(g), and

therefore a state function of the net. To ensure that wecapture all the state functions

we restrict our choice of selective maps.

We can use the induced metric on our space X(k) from the last section, to

define a selective map to be minimal whenever

d*(g,HT(g)(g)) = min{d*(g,H-y(g)) I 'Y Er},

and consider the network functions induced by minimal selective maps. For any state

function of our net, f E X(k), we can find an oracle 'Y Er, such that d* (J, H-y(J)) =

O. It followsthat d*(J, HT(f)(J)) = 0, and HT(J) = f. The fixed points of network

functions induced by minimal selective functions are therefore precisely the state

functions of the net.

Admittedly this approach doesn't seem entirely natural, and we haven't said

anything about the existence of such minimal selective maps, but it does, at least

theoretically, give us a network function whose fixed points are the state functions

of a non-deterministic Petri net, without knowing these in advance. An interesting

point that we wish to make, and this is where we invoke the further theoretical

investigations of the next chapter, is that a distance function on some space of

functions over X(k) would allow us to define a network function as the particular

HT that is closest to the identity, as we range over all minimal selective maps. Such

a network function would have the required properties, and does have a certain

naturality about it.
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Chapter 6

Developing a Partial Metric

Framework for the Analysis

What we would ideally like is some framework in which we can develop the analytic

techniques that wewere building towards in chapter 5. We suggest that an important

initial step is to develop our understanding of how we can put a partial metric on

a function space. In itself this is a very difficult problem, beyond the scope of our

thesis. So we will restrict ourselves to identifying the measure-theoretic aspects of

partial metric spaces as fundamental (section 6.1) with the "well-behaved" partial

metrics closely related to measures. In developing this link (section 6.2) we will be

lead to a detailed investigation of some new properties of To-spaces (sections 6.3 and

6.4), which turn out to be of interest in their own right. What we hope is that this

material will prove sufficient as a platform from which to tackle the more general

problems.

6.1 Motivating a measure-theoretic approach

In a domain-theoretic approach to the problem of function spaces, we would seek

cartesian closed categories of partial metric spaces. We have already made some
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progress in this direction since, in section 4.3.3, we showed that the Scott-domains,

which form a cartesian closed category, are weighted spaces. We observe however,

that the weight functionon a function space is derived from the underlying set, by

enumerating the compact elements, rather than from the constituent weight func-

tions. This is at odds with the following metrics on the space, C[O, 1], of continuous

functions over [0,1];

d1(f,g) = folII(x) - g(x)ldx,

and doo(f,g) = SUPxE[O,ljII(x) - g(x)ldx, VI,g E C[O, 1],

where it is clear that each metric is derived from the Euclidean metric on [0,1]. We

suggest that since the material from chapter 5 seems to be leading us towards an

analytic theory analogous to some -ofreal analysis, then we should want the weight

functions on a function space to be derived from their constituent weight functions.

Consider the problem of finding a partial metric for e[O, 1]. Since we used the

sup approach in section 2.1.3 to give a cartesian closed category of metric domains,

then it may seem the obvious choice here. However, suppose we could find a partial

metric, d, on e[O, 1] such that the induced metric, d", is the sup-metric, and the

specialisation order is such that I ~d 9 if, and only if, I(x) ~ g(x), for all x E [0,1].

Suppose I,g,h: [0,1] 4 [0,1] are the functions I(x) = x2, g(x) = x and h(x) = 1,

for any x E [0,1]. Clearly h ~d 9 ~d I, and we have

from which we see that cf>d(J) = cf>d(g) and hence I = 9 which is a contradiction.

We are therefore naturally lead to the alternative, which is to consider integration

and measures.

Suppose J1. is the Lebesgue measure on [0,1] and recall from section 4.3.1,

the weighted space ([0, 1],~, cf», where cf> : [0,1] 4 [0,1] is given by cf>(x) = x. It is

clear that (e[O, 1],~) is a consistent semilattice, and we can define a weight function
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<I> : C[O, 1] ~ [0,00), by

<I>U)= [ ¢ 0 fdfL = [1 f(x)dx,
J[O,l) Jo

The induced pmetric is dU,g) = J~max{J(x),g(x)}dx, and the induced metric is

vt E C[O, 1].

d1. An example of Schellekens [Sch95], in which he demonstrates the applicability

of the partial metrics to the complexity analysis of programs, is a second example

of how a partial metric on a function space can be derived from a measure.

An abstract complexity measure [DW83]is a binary partial function, C(k, n),

on N2 such that C(k, n), the complexity of a program P with coding k on input

n is defined if, and only if, P converges on input n, and the predicate C(k, n) :s; y

is recursive. An example of a complexity measure would be the running time of a

program. If we suppose that C(k, n) has infinite complexity when it is undefined,

and that the complexity measure is always non-zero, then a program, P, with coding

k has complexity junction Gp E (O,oo]N given by Gp(n) = G(k, n), for all n E N.

Schellekens [Sch95]defines a partial metric on the function space (O,oo]N by

00 1
dU,g) = ~ 2nmin{J(n),g(n)}' vi,s E (O,oo]N,

and defines the complexity distance between two programs P and Q as the distance

between Gp and GQ in (0, oo]N. Schellekensgoes on to give a complexity analysis of

mergesort, showing that divide and conquer algorithms naturally induce contraction

maps over (0, oo]N. However,we are more interested in how this fits into our general

framework, although we hope that it does hint at some future applications.

We can define a counting measure on N by taking the power set as our

a-algebra and defining fL(A) = L:nEA 1/2\ for any A ~ N. For the consistent

semilattice «0,00], :S;), we can define a positive weight function ¢ : (0, 00] ~ [0,(0)

by ¢(x) = 1/x. The function space «O,oo]N,:s;) is a consistent semilattice, and we

can define a positive weight function <I> : (0, oo]N ~ [0,00) by
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The partial metric induced by this weight function is Schellekens' partial metric.

We can abstract the essential details of these examples as follows. Suppose X

is a measure space with positive measure j1., and Y is a weighted space with positive

weight function ¢, then we define, for some collection of measurable functions f :
X -+ Y, the weight function

q,(J) = Ix ¢0 fdj1..

We must be careful to restrict our choice of functions so that the above integral is

always finite, and take care when two functions agree almost everywhere. So that

the weight function for the function space is derived from the weight functions of

both constituent weighted spaces, we seek to replace the measure space (X,j1.) with

a weighted space whose weight function is closely related to the measure j1.. We are

therefore motivated to investigate the connections between measures and the weight

functions of weighted spaces.

6.2 Valuation spaces

We recall from section 4.3.1, that for a weighted space, the weight functions are

strictly monotonic decreasing functions that satisfy a semi-modular inequality. They

are therefore similar to, but weaker than, the valuations from section 2.3.3, which are

themselves measure-like functions. Valuations will provide us with our link between

weight functions and measures, and we will use these to develop special classes of

weighted spaces. The material in this section is original.

6.2.1 Defining valuation spaces

Our first problem is that for a weighted space, (X,~, ¢), the weight function is de-

fined on the underlying consistent semilattice (X, !;;;;), whereas a valuation is defined

on some powerset of X. One way to reconcile this is given by the map x I-t X \ .l.x.

We take :Fx = {X \.J.F I F ~ X finite} to be the smallest lattice containing the
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X \ -!.x, and define our valuation 1/ over F x- The intuition will be that where ¢(x)

is a measure of how vague x E X is, I/(X \ tx) will be a measure of how much

information x has. Our valuations will be able to take negative, but not infinite,

values. Since x !;;;; y if, and only if, X \ -!.y ~ X \ tx, then we have also resolved

the difficulty of a weight function being monotonic decreasing while a valuation is

monotonic increasing. This leaves the problem of strictness, for which we use the

condition that I/(X \ tx n y) = I/(X \ ty) implies that x !;;;; y.

Definition 6.2.1 A valuation space (X,!;;;;, v) is a consistent semilattice (X,!;;;;)

together with a valuation 1/ : F x -+ !R such that

I/(X \ tx n y) = I/(X \ -!.x) ==> x!;;;; y.

In the next lemma we see that the valuation spaces are a special class of

weighted spaces, those that can be derived from a valuation on :Fx.

Lemma 6.2.2 Suppose (X,!;;;;, 1/) is a valuation space, then ¢(x) = I/(X\tx) defines

a weight function for the consistent semilattice (X, !;;;;).

Proof. The result is clear once we show that ¢ is semi-modular. Suppose {x, y} ~ X

is consistent, then

</J(x)+ </J(y) = I/(X \ -!.x) + v(X \ -!.y)

= v(X \ -!.xn ty) + I/(X \ tx u ty)

> v(X\txny)+v(X\txUy)

- </J(xn y) + </J(xU y).

QED

In a more precise sense than for the weighted spaces, the distance between

two points in a valuation space is a measure of their common information. Whenever

we consider a pmetric for a valuation space, this will be the pmetric induced by the
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weight function in the lemma, and wewillwrite T[v) for the induced pmetric topology

and T[v.) for the induced metric topology. As an example of a valuation space, we

have the consistent semilattice (!R,~) for which :F~ = {(-00, a) I a E !R}. The

valuation v : :F~ ~ !R, given by v( -00, a) = a, satisfies the strictness condition

since v( -00, max{a, b}) = v( -00, a) implies that a ~ b, and induces the weight

function cf>(a) = a. We will find examples of more generalised valuation spaces

in the next section, when we extend the results of section 4.3.3 to w-continuous

domains.

6.2.2 Generalised valuation spaces

It is clear that w-continuous domains will only fit into our framework of valuation

spaces if they are consistent semilattices. However, one of the benefits of moving

away from weighted functions to valuations is that we can actually work with posets,

rather than consistent scmilattices, and still recover a partial metric space. In this

case however, we must take :Fx to be the closure of {X \.t..x I x E X} under

finite unions and intersections. We show that w-continuous domains are examples

of these "generalised valuation spaces" which, although these results were found

independently, is another example of Kiinzi's construction [KV94]. We remark that

this will give us a larger cartesian closed category of partial metric spaces, but one

that has the same deficiences as in section 4.3.3.

Lemma 6.2.3 Suppose (X,~) is a poset and v : :Fx -+ !R is a valuation satisfying

v(X \.t..x n .t..y)= v(X \ .t..x) ==? x ~ y,

then d(x, y) = v(X \ .t..xn .t..y), defines a pmetric for which :5d=~ and cf>d(X) =

v(X \ Lz}, We say that (X,~, v) is a generalised valuation space.

Proof. Axiom P3 is immediate, and PI follows since X \.t..x ~ X \.t..x n .t..y. For

P2, we have that d(x, y) = d(x, x) implies v(X \.t..x n .t..y)= v(X \ .t..x) and hence by
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strictness, x ~ y. For the P4 axiom, we have

d(x, z) + d(y, y) = v(X \.t.x n .t.z) + v(X \ .t.y)

< v{X \.t.x n.t.y n .t.z) + v{X \.t.y n (.t.x u .t.z))

= v{X \.t.x n .t.y) + v{X \.t.y n .t.z)

- d(x, y) + d{y, z).

It is immediate that ~d=~ and <Pd{X) = v(X \ .t.x).

QED

Lemma 6.2.4 Suppose D is an w-continuous domain with basis B = {b1,b2, ••• },

and define v : :Fp --t !R to be the restriction of the measure on P D, given by

v{A) = L 1/2\
bnEA

to :FD, then (D,~, v) is a generalised valuation space, and the Scott and pmetric

topologies agree.

Proof. Suppose {xn} is an w-chain with supremum a E D, then Ba = U~=lBXn' It

clearly follows that v is a continuous valuation on :FD. Suppose v{D \.t.x n .t.y) =

v{D \ Lz}, then it follows that Bx nBy = Bx, and hence that x ~ y. So (D,~, v) is

a valuation space, and the induced partial metric is

d(x, y) = 1- v{Bx n By).

Since <Pd is continuous, then 'r(IIJis order-consistent. To show that T[II) is the Scott

topology, we use lemma 4.1.19 and show that every sequence {xn} converging to

a E D surpasses some w-chain with supremum a. By lemma 4.1.2 we can find an

w-chain {bin} in Ba with supremum a. If we fix n 2: 1 and let e = 1/2in > 0, then

we can find some m 2: 1 such that Xm E BE(a). It follows that v(Ba \ BXm) < e,

and hence bin E Ba implies that bin ~ xm. So {xn} surpasses {bin} and'r(lI) is the

Scott topology.
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QED

In the case of w-algebraic domains, the Lawson and induced metric topologies

also agree.

Lemma 6.2.5 If D is an w-algebraic domain then, for the generalised valuation

space (D,~, v), the Scott and pmetric topologies agree as do the Lawson and metric

topologies.

Proo], From lemma 4.1.15, we immediately see that the Lawson topology is con-

tained in the induced metric topology T[v.). We show that B~(xjd*) is Lawson-open,

for any E > 0 and xED. We let N ~ 1 be such that

00

1/2N = L 1/2n < E,
n=N+l

and define ~ = 1/2N and

B' = ibn ¢e; 11 s n s N}.

If we let

U = B6(Xjd) n n D \ tbn,
bnEB'

then we have x E U Lawson-open, since B6(Xj d) is Scott-open. Now suppose that

y E U, and consider

d*(x, y) = max{v(Bx \ By), v(By \ Bx)}.

Now y E B6(Xj d) implies that v(B:z; \ By) < s < E. Furthermore, if bn E By \ e;
then bn ~ y and b« 1:.. x. So bn g x (since D is algebraic) and so n > N, and

00

v(By \ Bx)::; L 1/2n < E.

n=N+l

So we see that d*(x,y) < E and so x E U ~ B~(xjd*).

QED

124



6.2.3 Information measures

In section 6.2.1, we saw that the valuation spaces are a special class of weighted

spaces, namely those that can be derived from a valuation. This was our first step

in establishing a connection between the weighted spaces and measures. The next

logical step is to consider a class of weighted spaces that can be derived from a

measure. For a lattice C of subsets of some set X, we recall from section 2.3.4, that

H(C) = {A \ B I A,B E C,B ~ A}.

Definition 6.2.6 Suppose (X,~) is a consistent semilattice. An information

measure, /L, on X is a Borel measure {with respect to the weak topology} which

is finite on H(:Fx) and satisfies

/LUX \ tx n y) = 0 ~ x ~ y.

Similar to a valuation space, the intuition behind an information measure is

that /L(X \ tx) is a measure of how much information x E X has. Although, each

point may have an infinite amount of information (think of the Lebesgue measure

on OR, ~), where (-00, a) has infinite measure), we can always consider relative

information since our measure is finite on H(:F x). Our strictness condition tells us

that if we have no information on x that we don't have on y, then x must be below

y in the information ordering.

Lemma 6.2.7 Suppose (X,~) is a consistent semilattice with information measure

u, then we can find a continuous valuation v : Fx --t !R such that (X,~, v) is a

valuation space.

Proof. We fix W· E :FX and define

v(W) = /L(W \ W* n W) - I-L(W· \ W· n W) E !R, 'v'W E Fx-

Suppose first that W2 ~ Wl in Fx, then we have
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- ~(W2 \ W* n W2) + ~(W* \ W* n W2)

~(WI \ W* nwd - ~(W2 \ W* nW2)

+~(W· n WI \ W* n W2)

= ~(WI \ W* n W2) - ~(W2 \ W* n W2)

= ~(WI \ W2).

It is immediate that v(Wd 2: V(W2). Furthermore, for any WI, W2 E Fx, we have

and so v is a valuation on :Fx- The strictness condition is satisfied since, if v(X \

.J_xny) = v(X \ .J_x), then J.L{.! ..x \.J_x ny) = 0 and x ~ y. To see that v is continuous,

suppose {Wn} is an w-chain in:Fx with supremum W E Fx, then

00

W \ W* nW = U Wn \ W* nWn,
n=1

00

and w*\w*nw= n w*\w*nWn,
n=1

and it followsthat v(W) = sup{v(Wn) I n ~ I}.

QED

One drawback of the above lemma is that a different W* E :Fx in the proof

induces a different continuous valuation v' : Fx -+ In. However, it is clear that

v - v' will be constant and so the induced partial metric spaces will be isometric. A

more significant problem, is that to build a cartesian closed category of consistent

semilattices with information measures, we must be able to deduce an information

measure for a function space from its constituent information measures. It would

be simpler if we could identify a cartesian closed category of valuation spaces, for

which the valuations induce information measures, which we could then use to build

similar valuations on function spaces. Ultimately we seek a cartesian closed category

of weighted spaces whose weight functions induce information measures appropriate

to build similar weight functions on function spaces.
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As an example, consider the valuation space (R, 2:, 1/) from section 6.2.1,

for which the induced pmetric topology is the Scott topology. We can extend II

to an information measure by using Pettis' theorem from section 2.3.4. We take

W = {(-oc,a) I a ER}, which are open in the Scott topology on (R,2:), and

K. = {(-oc,a] I a ER}, which are closed. Since (-oc,b] \ (-oo,a) = [a,b] or

0, then the compactness criteria is satisfied. The continuity condition follows by

local compactness. The collection H(W) consists of sets of the form [a, b) and

tf; : H(W) ~ [0,00) is given by tf;([a, b)) = b - a. From the theorem we have a

unique measure, tf;*, on a(H(W)) which extends tf; on H(W), and is therefore the

Lebesgue measure, which is an information measure on (!R, 2:).

To extend this to more general valuation spaces requires some condition on

our To-spaces stronger than ·local compactness. An example of such a condition is

coherence, from section 2.2.2, which is our To-characterisation of compact ordered

spaces. However, our motivating example, (!R, 7r, 2:), where 7r is the usual topology

on R, is only a locally compact ordered space, which we define to be a partially

ordered space with a locally compact Hausdorff topology. We therefore seek some

condition weaker than coherence, which includes our example.

6.3 A local notion of sobriety

We recall, from section 2.2.2, that our first step in giving a To-characterisation of

a compact ordered space was to consider the locally compact sober spaces, which

generalise the Scott topology for continuous domains. If we consider the locally

compact ordered space (R, 7r, 2:), where 7r is the usual topology on R, then it is clear

that 7rt, the Scott topology, is locally compact but not sober, since (R,~) is not a

dcpo. Our aim in this section, is to weaken the framework of locally compact sober

spaces to include the Scott topology for (R, ~). This material is original as well as

being our most technical.
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6.3.1 Filtered open sets and local sobriety

We begin with a lemma used in [KP94] to prove the Hofmann-Mislove Theorem (see

section 2.2.2), and from which we abstract a crucial property of open sets of a sober

space.

Lemma 6.3.1 ([KP94], p.302) Suppose (X,7') is a sober space and F is a Scott-

open filter, then every open set U containing n:F is already in :F.

Definition 6.3.2 Suppose (X,7') is a To-space, then an open set W ~ X is filtered

if, whenever:F is a Scott-open filter and n:F ~ W, then W E :F.

Definition 6.3.3 A closed subset of a To-space (X,7') is sober if it is sober as a

subspace of X.

Lemma 6.3.4 Suppose (X,7') is a To-space, then X \ Z is a filtered open set if

Z ~ X is sober.

Proof. We show that any U E 7' with X \ z ~ U is a filtered open set. Suppose:F

is a Scott-open filter in 7' with n:F ~ U. The restriction:Fz of:F to Z is clearly

a Scott-open filter with respect to the subspace topology, and n:F z ~ U n Z. By

lemma 6.3.1, un Z E:Fz and hence U E:F.

QED

We immediately see that the Scott-open sets of (R, ~), with the exception of

the empty set, are filtered. Rather than weaken the framework of locally compact

sober spaces directly, we strengthen the notion of local compactness for a To-space,

and then show that this is satisfied by the locally compact sober spaces. We recall

from section 2.2.2, that for a To-space (X,7'), we denote the collection of compact

upper sets by K.
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Definition 6.3.5 A To-space (X, T) is locally sober iJ, Jar any open neighbourhood

N of x EX, there exists K E '" and Z ~ X sober, such that

XEX\Z~K~N.

We immediately see that the Scott topology for (!R,~) is locally sober, and

that locally sober spaces are locally compact. It follows that not every sober space

is locally sober. However, a locally compact sober space is locally sober, since every

open set in a sober space is filtered. One important property of sober spaces which

we preserve is that locally sober spaces are order consistent, with respect to their

specialisation order.

Lemma 6.3.6 Suppose (X, T) is a locally sober space, then T is order consistent

with respect to the specialisation order.

Proof. Suppose A ~ X is a directed set with x = utA EX, and U E T is an open

neighbourhood of x. We can find a filtered open set W ~ X such that x E W ~ U.

If we let :F be the Scott-open filter of open neighbourhoods of points in A, then

n:F =t x ~ W. So we must have W E:F, and then U is an open neighbourhood of

some point in A.

QED

6.3.2 Local sobriety and partial metric spaces

In section 4.1.2, we saw that sobriety for partial metric spaces could be given a

simple intuition as a notion of pmetric completeness. We can similarly simplify the

intuition for local sobriety, but will see that it is more than a straightforward notion

of completeness.

Lemma 6.3.7 Suppose (X, d) is a partial metric space, then (X, T[d]) is locally sober

if, and only if, T[d] is locally compact and every self-convergent sequence either has

a proper limit or converges to every point in X.
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Proof. Suppose first that (X, r[d)) is locally sober, {Xn} is a self-convergent sequence

and a E X. If {xn} does not converge to a, then we can find U E rId) such that

a E U and some self-convergent subsequence, {xnk}, of {xn} that is not in U. By

local sobriety we can find Z ~ X sober such that x E X \ Z ~ U so that {xnk} ~ Z.

By theorem 4.1.9, {xnk} has a proper limit in Z, and it follows that {xn} has a

proper limit in Z.

For the converse, we suppose that N ~ X is an open neighbourhood of some a EX.

By local compactness, we can find K ~ X compact upper, and U E 'T[d)such that

a E U ~ K ~ N. Suppose {xn} is a self-convergent sequence in X \ U, then {xn}

does not converge to a, so we must have a proper limit for {xn} in X \ u. It follows
that X \ U is sober, and (X, rId)) is locally sober.

QED

We recall from section 4.1.2, that a self-convergent sequence is bounded if,

and only if, it is Cauchy. So for a complete partial metric space, (X, d), we need

only check that 'T[d)is locally compact and that every unbounded self-convergent

sequence converges to every point in X. For a bounded partial metric space, (X, d),

with'T{d)locally sober, we can "complete" (X, rId)) to a locally compact sober space

by introducing a top element. This is not possible if, as with (!R, ~), the space is

unbounded.

6.3.3 Some consequences of local sobriety

From section 2.2.2 we recall that for a locally compact sober space (X, r), r is a

continuous lattice and K. is a continuous domain. We now show that the locally

sober spaces have similar properties. Our first lemma is equivalent to our definition

of local sobriety.

Lemma 6.3.8 Suppose (X, r) is a locally sober space, then r is a continuous lattice

with the filtered open sets as a basis.
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Proof. Since (X, r) is locally compact, then T is a continuous lattice. Suppose

0' « 0 in r. For each X E 0 we can find Kx E K and Wx ~ X filtered open, such

that

So we see that 0' ~ 0 - UxEO Kx = UXEO Wx. Since 0' « 0, we can find

XI,"" Xn EO such that
n n

0' ~ UWXi ~ U KXi ~ 0,
i=l i=l

and we take K = U~=lKx; E K and W = U~l Wx; filtered open. So W «0 and 0

is the directed supremum of such sets.

QED

We now have a sequence of three lemmata, which allow us to show that the

poset of compact upper sets, K, is continuous.

Lemma 6.3.9 The collection of sober sets of a To-space (X, r) is a lattice.

Proof. Suppose Z, Z' ~ X are sober and A ~ Z U Z' is an irreducible closed set,

then A is the union of the two closed sets A n Z and A n Z'. If A g Z then A n Z

is a proper closed subset of A, sOthat A nZ' = A and A is the closure of a unique

point in Z' and hence in Z U Z'. So Z U Z' is sober, and it is trivial that Z n Z' is

sober.

QED

Lemma 6.3.10 Suppose (X,r) is a locally sober space, K E K and x E X\K, then

we can find K' E K and Z ~ X sober such that

x E X \ K' ~ Z ~ X \ K.
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Proo]. For any y E K, we know that y g x, so we can find Uy Er such that yE Uy

but x ¢ Uy. Local sobriety implies that we can find Ky E K. and Wy ~ X filtered

open, such that

In which case we have

K ~ U Wy ~ U Ky ~ U ti;
yEK yEK yEK

Since each Wy ET, then we can find Yl, ... Yn E K such that

where Wx = Uf=l WYi filtered open, tc, = Uf=l KYi E K. and Ux = Uf=l Uyi' Since

x ¢ Ux then, if we let Zx = X \ Wx sober, we can finally conclude that

x E X \ e,~z, ~X \ K.

QED

Lemma 6.3.11 Suppose (X, r) is a locally sober space, then K. is a continuous poset

such that

K' «K in K. 3W ~ X filtered open with K ~ W ~ K'.

Proof. We first suppose that W ~ X is filtered open with K ~ W ~ Kt. If we

let {KihEI be a filtered family in K. with niEI Ki E K. and contained in K, then we

let :F be the union of the collection of open neighbourhoods of each Ki' So:F is a

Scott-open filter with n:F = niEI K, ~ K ~ W, which is a filtered open set. So

WE :F and hence contains some Ks, which is then contained in K'.

Now suppose that K' «K and K t= X since otherwise the result is trivial as X is

a filtered open set. By lemma 6.3.10, for each x E X \ K we can find Kx E K. and

z; ~X sober such that

x E X \ tc, ~ z, ~X \ K.
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It is clear t.hat

x \ K = U X \ tc; = U z.,
xEX\K xEX\K

and hence that K = n{Kx I x E X \ K}. We can therefore find z i , ••. ,Xn EX \ K

such that
n : n

K ~ n X \ z.; ~ n tc; ~ K'.
i=l i=l

Since Ui=l Zx; is sober, then X \ Ui=l Zx; is filtered open and we are done.

QED

To conclude our investigation into the locally sober spaces, we give a result

that will be useful in the next section, which is that the patch space of a second-

countable locally sober space is second-countable.

Lemma 6.3.12 Suppose (X, r) is a second-countable locally sober space, then rk is

second countable, and hence the patch topology 7r = T V rk is second countable.

Proof. Suppose we let B be a countable basis for T, with B* the collection of finite

unions of elements of B. For each B, B' E B*, if B «B', then we can find KB B' E K,

such that B ~ KB,B' ~ B'. We show that

Bk = {X \ KB,B' E rk I B,B' E B*,B «B'}

is a basis for rk. Suppose X E X \ K with K E K, then by interpolation on the

continuous poset K, we can find K', K" E K such that K' «K" «K and X E X\ K' .

So we can find W, W' ~ X filtered open, such that

K ~ W ~ K" ~ W' ~ K'.

Since W, W' Er, then we can find B, B' E B* such that

K ~ B ~ W ~ K" ~ B' ~ W' ~ K'.
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But then B «B' in T, and so we have

K~B~KB,BI ~B'~K',

and

XEX\K'~X\KB,BI ~X\K.

Since 8k is countable, then we are done.

QED

We remark that locally sober spaces seem to be of sufficient interest in their

own right for further study. However, we now return to our investigations regarding

weight functions, valuations and measures, to see where local sobriety fits in.

6.4 Valuation spaces, local coherence and measures

We recall from section 6.2.3 that we would like to identify some conditions on our

valuation spaces so that the valuation naturally induces an information measure,

which we can then use in developing function spaces. We have seen how to extend

the valuation, v, for the valuation space (!R,~, v) to an information measure, and

developed the locally sober spaces as a framework that includes locally compact

sober spaces and the Scott topology on (!R, ~). We now take the next step, which is

to develop a notion of local coherence, and consider how this can be used to achieve

our goal. The material in this section is original.

6.4.1 Local coherence

In section 2.2.2, the coherent spaces strengthened the locally compact sober spaces

to characterise the compact ordered spaces. We similarly define local coherence,

and give some connections with locally compact ordered spaces.

Definition 6.4.1 A locally sober space (X, T) is locally coherent iJ the collection,

K., oj compact upper sets is a lattice.
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It is clear from the definition, that coherent spaces are locally coherent. In

the following lemma, we will see that locally coherent spaces have locally compact.

ordered patch spaces, and so identify a class of To-spaces for which the patch space is

a locally compact ordered space. We have not given a To-characterisation of locally

compact ordered spaces, as the example following the lemma will show.

Lemma 6.4.2 Suppose (X, r) is a locally coherent space, then the patch space

(X, 7r,:$'T)' where 7r = T V Tk, is a locally compact ordered space.

Proof. We need only show that the patch topology is locally compact. Suppose

X E U \ K with U E T and K E K. We can find K',K" E K, W ~ X filtered open

and Z ~ X sober, such that

xE W~K' ~ U,

and X E X \ K" ~ Z ~ X \ K.

So we have

x E W \ K" ~ K' n Z ~ U \ K,

and since W Er, then W \ K" E 7rand K' n Z is a coherent subspace of X and

hence 7r-compact.

QED

Consider the poset (X,!;;) in figure 6.1 together with the Alexandroff topol-

ogy, T, of upper sets. Suppose:F is the Scott-open filter of open neighbourhoods of

the Yn, then n:F = 0 ~ tXl, but tXI ¢:F. So tXI is not a filtered open set. Since

Xl E tXI ET, then (X, T) is not locally sober. If we consider the patch space, then

it is clear that every singleton set is open in the patch topology, 7r= r V Tk, and so

(X, 7r,~) is a locally compact ordered space with T = 7rt.
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Figure 6.1: A locally compact ordered space

6.4.2 Borel measures on locally coherent spaces

We now consider measures and locally coherent spaces. In the following simple

lemma we will see that, for a second-countable locally compact To-space, the Borel

sets generated by the To-topology and the patch topology are the same. This re-

sult is surely well-known, although we haven't seen it in the literature. It follows

that second-countable locally coherent spaces have patch spaces that have proved

particularly useful in measure theory.

Lemma 6.4.3 Suppose (X, 'T) is a second-countable locally compact To-space, then

a(l\:) = a('T) = a(1f-), where 7r = 'TV 'Tk.

Proof. Suppose we let B be a countable base for 'T, with B* the collection of finite

unions of elements of B. Suppose K E I\: is non-empty, otherwise K E 'T, and let

K ~ U E 'T. We can find Bu E B* such that K S; Bu S; U. So we have

K = n{Bu E B* I K S; U E 'T},

which implies that K E a('T) and a(l\:) S; a('T). Now suppose that U E 'T, and let

B, S; B2 S; ... «U in B* and U = U~l Bi. We can then find K, E I\: (i = 1,2, ... )

with B, S; K, S; U, so that U = U~l K, E a(I\:), and a('T) = a(I\:).
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Now suppose that x EVE tt, We can find Ex E Band Kx E r: such that x E

Ex \ tc; ~ V. Using the above notation, we have

Since the set {B \ B* I B E B,B* E B*} is countable, then

V = U{Ex \ tc, I x E V} = U{Bx \ Bu I x E V,Kx ~ U E 'T} E 0"('T).

So 0"( 7r) ~ 0"( 'T) and since the converse is trivial, then we have completed the proof.

QED

Corollary 6.4.4 Suppose (X, 'T) is a second-countable locally coherent space, with

7r = 'T V 'Tk, then (X,7r) is a second-countable locally compact Hausdorff space with

the same Borel sets.

We are now in a position to generalise to the locally coherent spaces, the

extension result from section 6.2.3 for OR,~, v). We will find it useful to call a basis

for a topology, which is also a lattice of open sets, a lattice-basis. We recall the

general results from section 2.3.4 on extending valuations to measures.

Lemma 6.4.5 Suppose (X, 'T) is a second-countable locally coherent space, W is a

lattice-basis of filtered open sets and v :W -+ !R is a continuous valuation, then v

induces a unique regular Borel measure, 1jJ*, on X extending 1jJ on H(W).

Proof. We take the collection of compact upper sets, K" as our family of 1f-closed

sets, where 7r = 'T V 'Tk. For K E K, and W E W, K \ W is rr-compact since X \ W

is sober. Now suppose that WE Wand e > O. Since W is the union of an w-chain

of filtered open sets in Wand v is continuous, then we can find W' «W such that

V(W') ~ v(W) - c. Local compactness implies that we can find K E K, such that

W' ~ K ~ W. We can therefore apply Pettis' theorem to find a unique o-finite

measure, 1jJ*, on S(H(W)) such that

1jJ* (W \ W') = v(W) - v(W') < 00,
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for any W' ~ W in W. Since every open set is the union of an w-chain of filtered

open sets in W, then T ~ S(H(W» which is a a-algebra. So 'I/J* is a Borel measure

on X, and is regular since (X,7r) is a second-countable locally compact Hausdorff

space.

QED

Continuing with the assumptions of the theorem, suppose now that v, 1.1' :

W -+ !R are continuous valuations inducing the same measure, 1/J*, on X. For

W,W' E W, we have

V'ew U W') - v'eW) = ""*(W UW' \ W) = v(W U W') - v(W),

and v'(W) - v'(W nW') = ¢*(W \ W nW') = v(W) - v(W nW').

Since z- and 1.1' are valuations on the lattice W, then we see that

1.1' (W') - 1.1' (W) = V(W') - v(W),

and it follows that 1.1' - v is constant on W. Conversely, if 1.1' - v is constant on W,

then by uniqueness £land 1.1' must induce the same measure on X. We can use the

proof of lemma 6.2.7 from section 6.2.3 to see that a Borel measure, finite on H(W),

gives a continuous valuation on W that induces the measure. We have therefore

proved the following result.

Theorem 6.4.6 Suppose (X,T) is a second-countable locally coherent space and

W is a lattice-basis of filtered open sets, then there is a correspondence between the

continuous valuations on W that differ by a constant, and the regular Borel measures

on X, finite on H (W).

6.4.3 Information measures on valuation spaces

We must take one more step before we can use local coherence to deduce an infor-

mation measure for a valuation space (X,!;, v). Our valuation, v, is defined on Fx,
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and we must extend this to a lattice-basis of filtered open sets. If U ~ X is a proper

upper set, then

U = n{X \.l-F I F ~ X \ U finite}.

We therefore define

Ux .= {U ~ X I U is a proper upper set and v(U) > -oo},

and in the following lemma, see that Ux is a lattice to which the valuation, u,

naturally extends.

Lemma 6.4.7 Suppose (X, !;,v) is a valuation space, then

v(U) = inf{v(X \ .l-F) I F ~ X \ U finite},

defines a valuation on the lattice Ux.

Proof. We first remark that if U, U' ~ X are proper upper sets with x ¢ U and

x' ¢U', then xnx' ¢Unu' and urar.uvtr are proper upper sets. Now suppose

that U ~ U' in u». then whenever F ~ X \ tr is finite we have F c X \ U and we

easily see that v(U) ::; v(U'). Now suppose that U.U' E Ux and fix E:> O. We find

F ~ X \ U and F' ~ X \ U' finite, such that

v(X \ .l-F) < v(U) + s, and v(X \ .l-F') < v(U') + c.

Clearly F UF' ~ X \ Un U' and we let G ~ X \ u UU' be the finite set for which

.l-G = .j.F n iF', We then have

v(U UU') + v(U nU') < v(X \ .l-G) + v(X \ .l-F U F')

- v(X \ iF) + v(X \ iF')

< v(U) + v(U') + 2E:,

Since this holds for all E:> 0, then we have

v(U UU') + v(U nU') ::; v(U) + v(U'),
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We immediately see that if either of v(U UU') or v(U nU') is infinite, then at least

one of v(U) or v(U') is infinite, which is a contradiction. So U U U', Un U' E Ux

and Ux is a lattice. Furthermore, for e> 0 we find F ~ X \ UUU', G ~ X \ UnU'

finite such that

v(X \ iF) < v(U UU') + e and v(X \ iG) < v(U nU') + e.

We let H = GnX\U and H' = GnX\U', then HUF ~ X\U and ll'UF ~ X\U'

are finite and

v(U) + v(U') < v(X \ ill UF) + v(X \ ill' UF)

= v(X \ tG U F) + v(X \ tF U (ill n ill'))

s v(X \ iF UG) + v(X \ iF n iG)

- v(X \ iF) + v(X \ iG)

< v(U u U') + v(U nU') + 2c.

Since this holds for all e > 0, then we have modularity and v is a valuation as

required.

QED

We know that the collection of filtered open sets is a lattice-basis for a 10-
-~

cally coherent space, and that the filtered open sets are upper sets. The problem

however is to ensure that Ux restricted to the filtered open sets is a lattice-basis

for our topology. For our last result, we will have to assume such a property, but

we hypothesis that it should be possible to establish some connection with local

coherence, and hence simplify the lemma.

Lemma 6.4.8 Suppose (X, k;, v) is a valuation space Jor which v : X -+ R is a

continuous valuation, (X, T[v)) is locally coherent and

Wx = {W ~ X IW a proper filtered open set with v(W) > -oo},

is a lattice-basis, then (X, k;) has an information rnea!mre.
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Proof. It followsby lemma 6.4.7 and theorem 6.4.6, that we can find a unique regular

Borel measure ,p. on X such that t/J*(W \ W') = v(W) - V(W'), for all W' ~ W in

Wx. Since

,p*(.l.x \.J_x n y) = t/J*((X \.!-x n y) \ (X \ .!-x»,

then ,p"(.J_x \.!-x n y) = 0 implies that v(X \,J..x n y) = v(X \ .!-x) and hence x ~ y.

So "p. is an information measure on X.

QED

We have therefore given some conditions on a valuation space for the valu-

ation to induce an information measure. There is clearly much scope to improve

this result. The next step is to then use the induced information measure to build

a function space, and finally a cartesian closed category. We hypothesis that these

steps are possible, even though we are not in a position to take this work any further.

Instead we hope that we have given a platform to build on.
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Chapter 7

Conclusions and Further Work

We clarify the position that we have reached. Prior to this thesis, the body of

work related to the partial metrics consisted of Wadge's paper on the cycle sum

test [Wad81],Matthews' initial paper giving the axioms and basic results [Mat94]

and his subsequent paper [Mat95] attempting to generalise the cycle sum test to the

framework of partial metric spaces. What we do, is to present the partial metric

axioms within the context of the more general To-metrics (section 3.2), give a firm

foundation for the theory of partial metric spaces (chapters 3 and 4) and discuss

the foundational issues by introducing the hierarchical spaces (section 3.3). More

specific contributions, are the introduction of the weighted spaces (section 4.3), the

valuation spaces (section 6.2) and the subsequent fundamental connections with

measures (chapter 6). From our development of the theory of partial metric spaces,

we contribute to domain theory (section 4.1.4) by identifying a suitable notion of

a quantitative domain, and the more general area of To-topologies (section 6.3) by

introducing local sobriety. Furthermore, we extend the applications of the partial

metric spaces to Petri nets (chapter 5).

We finish by looking at our last two chapters once more, to consider the

potential for further work. In chapter 5, we demonstrated our ideas on the modeling

and analysis of systems by considering liveness of deterministic Petri nets. As we
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remarked in the chapter, there is a clear need to formalise these results to see if

we really can model any deterministic Petri net in this way. There is also a lot of

scope for extending these results. For example, we can look at Petri nets with more

general timing constraints or multiple tokens, and we can extend to properties other

than liveness, such as performance evaluation techniques relevant to timed Petri

nets. Having considered Petri nets and data flow networks, we could see if these

results extend to more general discrete event systems. In section 5.4 we raised the

issue of extending to non-deterministic Petri nets, and there is clearly much scope

for work here. At the same time, we need to further develop our model-independent

analytic techniques. In this way, we see a more (classically) analytic approach to

problems in Computer Science developing.

Our work in chapter 6 provided a platform to begin developing such tech-

niques, but clearly raises more issues than it settles. We believe the locally compact

ordered spaces to be worthy of further study and would like, if possible, to give a

To-characterisation of such spaces. Local sobriety is our attempt at this, and we

believe it to be of sufficient interest for further study, but question whether some

other approach may be more fruitful? The connections between well-behaved par-

tial metrics and measures are central to the chapter, and are certainly worthy of

further investigation. The information measures seem to be a useful contribution

that require more work, and we would hope that this could lead to a satisfactory

development of function spaces, which in turn could be the framework in which to

develop further analytic techniques.
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Appendix A

Mathematical Background

We give the relevant background material on topological spaces, metric spaces and

measure theory. We give the definitions and state some key results, and refer to

our sources [KeI55,Apo74, Sut75, Coh80, Rud87, Smy92] for the proofs and further

explanations.

A.I Topological spaces

A.I.1 A topology on a set X is a family, 71", of subsets of X such that 0, X E 71"

and 71" is closed under arbitrary unions and finite intersections. The pair (X,7I") is a

topological space. The open sets are those in 71" and an open neighbourhood of x E X

is an open set containing x. The collection of open neighbourhoods of a point is

called its neighbourhood filter. The interior of a set is the largest open set that it

contains.

A.1.2 Suppose 71" and 71"' are topologies on a set X and 7r ~ 7r', then 7r is coarser

(weaker) than 71"', and 71"' is finer than 71". The finest topology on X is the discrete

topology consisting of all subsets of X.

A.I.3 Suppose X is a topological space, then a set is closed if its complement is

open. The closure of a set is the smallest closed set that contains it. A point x E X
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is a limit point of A ~ X if every open neighbourhood of x contains some other

point of A. A set is closed if, and only if, it contains all its limit points.

A.I.4 Suppose (X,7I') is a topological space and Y ~ X. If we let 71'y denote the

collection of subsets of Y of the form un Y for some U E 71', then 71'1' is the induced

topology on Y and (Y, 71'y) is the subspace of (X, 71').

A.I.S Suppose (X,7I') is a topological space, then B is a basis if for each V E 71'

and x E V we can find U E B such that x E U ~ V. The Euclidean topology on lR

has basic open sets of the form (a, b) ~ lR. A topological space is second countable

if it has a countable basis.

A.1.6 Suppose X and Yare topological spaces. A function I :X -t Y is con-

tinuous if l-l(U) is open in X whenever U is open in Y. The function I is a

homeomorphism if it is a bijection and both I and 1-1 are continuous.

A.!, 7 Suppose {(Xa,7I'a)} is an indexed family of topological spaces, and let

TIa Xa be the product of the indexed family of sets {Xa}. The product topology on

TIcr Xa is the weakest topology that makes each of the projections 71'{J : TIa Xa -t X{J

continuous.

A.I.8 Suppose X is a topological space and A ~ X, then A is dense if X is the

closure of A. A space is separable if it has a countable dense subset.

A.1.9 A topological space X is Hausdorff if for each pair of distinct x, y EX,

there are disjoint open sets U, V such that x E U and y E V. A topological space is

a To-space if for each pair of distinct x,y E X, there exists an open set containing

one but not the other.

A.1.lD Suppose X is a topological space and A ~ X. An open cover of A is a

collection of open sets such that A is in their union. A subcouer is a subfamily that

is itself an open cover of A. The set A is compact if every open cover has a finite

subcover.
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A.1.11 A space X is locally compact if for any x E X, every open neighbourhood

of x contains a compact neighbourhood of x. A Hausdorff space is locally compact

if and only if every point has a compact neighbourhood. Every compact Hausdorff

space is locally compact.

A.1.12 From [0,1] we remove the middle third to get Al = [0,1] u [~,1]. We then

remove the middle third of [0,1] and [i, 1] to get A2 S;;; AI. Continuing in this way,

we define A3, A4"'" and let C = n~lAn. This is called the Cantor space, and

x E C if, and only if, x = E~=l an/3n where each an is either 0 or 2.

A.2 Metric spaces

A.2.1 A metric on a set X is a function d :X x X ~ [0,00) such that

1. d(x,y) = 0 if, and only if, x = y.

2. d(x,y)=d(y,x}.

3. d(x, z) ::; d(x, y} + d(y, z}.

The pair (X, d) is a metric space. If x E X and e > 0 then

Be{x) = {y E X I d(x,y) < cl,

is called an open ball. The collection of open balls is the basis for a topology on x.

A.2.2 A topological space (X,11") is metrizable if there is a metric on X such that

11" is the induced topology.

A.2.3 Suppose (X, d) and (X', d') are metric spaces, then a Lipschitz equivalence

f :X ~ X' is an injection for which there exists h, k > 0 such that

hd'(J(x), f(y)) ::; d(x, y) ::; krt(J(x), f(y)), 'Vx,y E X.

An isometry f : X ~ X' is a bijection such that d'(J(x),f(Y)) = d(x,y), for all

x, y EX. If f is not surjective, then we say that it is an isometry into X'.
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A.2.4 Suppose (X, d) is a metric space, then for x E X and B ~ X non-empty

closed, we define d(x, B) = inf{d(x,y) lyE B}. The Hausdorff metric on the

collection of non-empty closed sets is defined by

dH(A, B) = sup{d(x, B), d(A, y) I x E A, yE B}.

A.2.S Suppose (X, d) is a metric space, x E X and {xn} is a sequence in X, then

[z.,} converges to x if limn-HXl d(xn, x) = O. We say that x is the limit of {xn}.

A.2.6 Suppose (X, d) is a metric space, then a sequence {xn} in X is Cauchy if

for every E > 0 there exists N ~ 1 such that d(xn, xm) < e forall n, m ~ N. The

metric space is complete if every Cauchy sequence converges to a point in X.

A.2.7 The completion of a metric space (X,d) is a complete metric space (M,d)

and an isometry into M, i :M -+ M, such that i(M) is dense in M. Every metric

space has a unique completion up to isometry.

A.2.8 Suppose (X, d) is a metric space, then a contraction! : X -+ X is a map

for which there exists 0 ::; k < 1 such that d(f(x), !(y)) ::;kd(x, y), for all x, yE X.

If (X, d) is a complete metric space and f : X -+ X is a contraction, then! has a

unique fixed point.

A.2.9 A metric space (X, d) is totally bounded if for each e > 0 there is a finite

subset S ~ X such that

The following are equivalent:

1. X is compact.

2. X is complete and totally bounded.

3. Every sequence has a subsequence converging to a point in X.
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A.2.10 Given two metric spaces (X, d) and (X', d/) we can define many possible

product metrics on X X X'. For example, if we let X = (Xl, X2) and Y = (YI, Y2) in

X x X', then we can define

d1(x, y) = d(Xl' yd + d'(X2' Y2),

d2(x,y) = [d(Xl,yt}2 + d'(X2,Y2)2P/2,

doo(x, y) = max{d(xl, vd, d(X2, Y2)}.

A.2.11 A complex vector space X is a normed space if for each x E X, there is

IIxllE !R+ called the norm of x such that

1. IIx+yll ~ IIxli+ lIylI, for all x,y EX.

2. lIoxll = lolllxll, for all X E X, 0 a scalar.

3. IIxll= 0 implies that x = o.

The norm induces a metric on X as d(x, y) = IIx- yll. A Banach space is a normed

space complete in the induced metric.

A.3 Measure theory

A.3.1 IfM is a non-empty class of subsets of some set X, then M is a a-ring if

it is closed under differences and countable unions, and a a-algebra if it contains X

and is closed under complements and countable unions and intersections. A a-ring

that contains X is a a-algebra. For any class of subsets M of X, there exists a

smallest a-ring S(M), and a smallest a-algebra a(M) containing M. If M is a

a-algebra then X is a measurable space and the members of M are the measurable

. sets.

A.3.2 For a set X and a-algebra M, a (positive) measure /-I. : M ~ [0,00] has

/-1.(0) = 0 and is countably additive, so that if {Ai} is a disjoint collection of members
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of M, then

A measure space is a measurable space with a positive measure defined on its mea-

surable sets. A normalised measure has J..L{X) = 1.

A.3.3 Suppose X is a topological space and let B be the smallest a-algebra con-

taining every open set. The members of B are called the Borel sets of X. A Borel

measure is a measure defined on the Borel sets.

A.3.4 For a measure space X, a a-finite measure is a measure such that X is the

countable union of a collection of sets with finite measure.

A.3.5 Suppose J..Lis a Borel measure on a topological space X, then J..Lis regular if

J..Lis finite on compact sets, for each A ~ X,

J..L{A) = inf{J..L(U)I A ~ U and U open},

and for each open U ~ X,

J..L{U)= sup{J..L{K) I K ~ U and K compact}.

A.3.6 Suppose (X,1I') is a second-countable locally compact Hausdorff space with

a er-finite Borel measure J..L,then J..Lis regular.

A.3.7 The Lebesgue measure on !R is such that every interval has measure its

length, every Borel set is Lebesgue measurable, it is translation invariant and regular.
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