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ABSTRACT 
This thesis is a report on experimental investigations of magnetotransport, structural and 

optical properties ofp-type modulation doped (MOD) heterostructures with Sit-xGex channel 
of high Ge content (0.6<x<l) grown on Sit_yGey/Si(OOI) virtual substrate (VS). The active 
layers of MOD heterostructures were grown by solid source molecular beam epitaxy (SS­
MBE). The VSs were grown either by SS-MBE or low-pressure chemical vapour deposition 
(LP-CVD). 

The influence of thermal annealing on magnetotransport, structural and optical 
properties of Sit-xGexlSit-yGey heterostructures was studied by performing the post growth 
furnace thermal annealing (FTA) treatments in the temperature range of 600-900C for 30min 
and rapid thermal annealing (RTA) treatments at temperature 750C for 30sec. 

Structural and optical analysis of p-type MOD Sit-xGex!Si1-yGey heterostructures 
involved the techniques of cross-sectional transmission electron microscopy, ultra low energy 
secondary ion mass spectrometry, photoluminescence spectroscopy, micro-Raman 
spectroscopy and scanning white-light interferometry. From the combinations of experimental 
results obtained by these techniques the Ge composition in the SiGe heteroepilayers, their 
thicknesses, state of strain in the heteroepilayers and dislocations microstructure in VSs were 
obtained. 

After post growth thermal annealing treatments were observed broadening of the 
Si1-xGex channel accompanied with the reduction of Ge content in the channel and smearing 
of Sit-xGex/Sit_yGey interfaces. 

The Sio.7Geo.3 on low-temperature Si butTer VSs with very good structural properties 
were designed and grown by SS-MBE. These include: relatively thin 850nm total thickness of 
VS, 4-6nm Peak-to-Valley values of surface roughness, less than lOscm-2 threading 
dislocations density and more than 95% degree of relaxation in the top layers ofVS. 

The Hall mobility and sheet carrier density of as-grown and annealed p-type MOD 
Sit-xGex/Sil-yGey heterostructures were obtained by a combination of resistivity and Hall 
etTect measurements in the temperature range of 9-300K. The FTA at 600C for 30min was 
seen to have a negligible etTect on the Hall mobility and sheet carrier density. Increasing the 
annealing temperature resulted in pronounced successive increases of Hall mobility 
accompanied by the opposite behaviour of sheet carrier density. Each sample had the 
optimum FTA temperature corresponded to the maximum Hall mobility. After RTA at 750C 
for 30sec the increase of Hall mobility for researched samples was observed as well. The 
highest mobility (at sheet carrier density) of 2DHG measured at 9K was observed for sample 
containing Ge channel grown on thick Sio.4Geo.6 linearly graded VS and corresponds to 
14855cm2.y-I·s-l (2.87. 10 1 2cm-2). The highest Hall mobility (at sheet carrier density) 
measured at 293K was observed for Sio.2Geo.slSio.6sGeo.3s heterostructure after FT A at 750C 
for 30min and corresponds to 1776cm2.y-I·s-t (2.37·1013cm-2). 

To extract the drift mobility and sheet carrier density of 2DHG at temperatures up to 
300K, magnetotransport measurements in magnetic fields up to II T were performed on 
several heterostructures. The data were analyzed by technique of Maximum-Entropy Mobility 
Spectrum Analysis. The highest drift mobility (at sheet carrier density) of2DHG at 290K was 
obtained for the Sio.2Geo.slSio.6sGeo.3s heterostructure after FTA at 750C and corresponds to 
3607 cm2·V-I·s-1 (4.94.1012cm-2). 

Low temperature magnetotransport measurements down to 350 mK and at magnetic 
fields up to 11 T were carried out on several heterostructures. From the temperature 
dependence of the Shubnikov-de Haas oscillations observed at temperatures below 20K were 
extracted followed parameters of 2DHG, - etTective mass, sheet carrier density, transport 
and quantum scattering times, and related parameters. For the Sio.osGeo.9s1Sio.37Geo.63 
heterostructure was obtained the lowest hole etTective mass m*=O.l5·mo and the highest 
transport to quantum scattering times ratio a=2.18. 
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1. Introduction 

1.1 Impact of SiGe on Si microelectronics 

While the first transistor was fabricated using germanium in 1947 [1] and III-V 

semiconductor materials have consistently demonstrated superior high-speed performance, 

it is silicon that completely dominates the present semiconductor market. At present, the 

vast majority of all semiconductor devices produced on production lines are used the Si­

based technologies. One may put forward many subtle and non-subtle reasons for this 

position but there is one that dominates all, - cost. It is clear that the silicon 

complementary metal oxide semiconductor (CMOS) field effect transistors (FETs) have an 

advantageous position compared to III-V-based transistors with costs in 1999 being over 

200 times cheaper than GaAs per square millimeter. The low cost of CMOS may be traced 

to the ability to fabricate billions of transistors all with near identical properties across 

slices of silicon of ever-increasing diameter. The fabrication processes and the device 

performance rely heavily on a number of natural properties of silicon, but the most 

important reason for the unrivaled success of Si devices lies in the combination of an easily 

available semiconductor and an excellent natural oxide, namely Si02, which serves as an 

insulator and as a protecting passivation layer. Si02 have allowed Si to dominate over 

faster materials such as GaAs because for these alternative and more expensive fabrication 

schemes must be used, which cannot reach the phenomenal yields achievable on a CMOS 

line. The increase in density and performance of CMOS has been produced by down­

scaling the transistors and circuits over the years. The gate-lengths of the transistors in 

circuits have followed an exponential scaling law since the first metal oxide semiconductor 

FET (MOSFET) was produced in the early 1960s [2]. The exponential decrease in size has 

been termed Moore's law after Gordon Moore, who first analyzed the effect. While this 

decrease in size has allowed an increase in density and a decrease in cost per transistor, the 

cost of fabrication plants has also been scaling upwards at an exponential rate [3]. At some 
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point, however, this scaling must finish, whether fundamental or economic, will eventually 

appear to prevent smaller transistors or circuits being fabricated. With the amount of 

capital and knowledge presently tied up in both Si production and research, the impetus to 

design and produce devices in Si is enormous. With present production plants costing in 

excess of $100 billion, it is almost impossible to persuade companies to change to 

completely new, untried technologies. CMOS is so cheap and dominant that one must find 

applications where it cannot be used, such as optoelectronics, analogue or high-speed 

markets, if a new technology is to appear on the market place. One compromise is to use a 

new material system that is CMOS compatible, such as SiGe, to allow bandgap-engineered 

devices with higher performance or new functionality [4]. One may suggest that this is 

going back to the roots of the original Ge transistor by adding Ge to the system, but the 

SiGe is strained, which completely changes the material and electronic properties along 

with the physics. Increased integration levels reduce the number of chips in final products 

and hence should lower costs and increase yields. SiGe has the advantage that it may be 

used to modify conventional transistors to give higher speed and lower power. The 

Semiconductor Industry Association roadmap [5] predicts that conventional, CMOS 

transistors cannot operate below gate lengths of order of 70 nm while the use of SiGe in 

conventional FET devices has been predicted to allow smaller dimensions. Coupled to this 

the ability to produce quantum devices on the same chip gives SiGe substantial potential 

for future circuits. 

The Si1-xGex/Si is a very good suited heterosystem, which can be considered as a 

kind of natural choice: the two group-IV elements Si and Ge crystallize in the same 

diamond lattice, and form random Si1-xGex alloys of arbitrary composition. By means of 

these alloys the bandstructure can be tuned within the relatively wide margins given by the 

two elemental semiconductors. In addition, the structural and chemical properties are very 

similar, which simplify epitaxial growth and the application of standard Si technologies, 
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but they differ to a large enough extent to allow selective structuring procedures. These 

obvious advantages of a Si-based all-group-IV heterosystem were recognized at an early 

stage of heterostructure research, with the first report on a Sit-xGe,/Si superlattices 

appearing already back in 1975 [6]. 

One of the main problems in growing Sit-xGex alloy on a Si(OOI) substrate is the 

lattice mismatch, which increases from 0 to 4.2% as x is varied from 0 to 1. The larger x 

becomes, the thinner the Sit-xGex channel has to be grown in order to prevent misfit 

dislocations from relaxing the strain. Hence if Ge is grown on Si then only 4 atomic 

mono layers may be grown before the energy from the strain in the system creates 

dislocations. There is therefore a critical thickness, above which defects in the form of 

dislocations are produced if a strained layer is grown too thick. One of the possibilities to 

obtain Ge compositions x>O.5, while retaining strain in the Sit-xGex layer, is to use relaxed 

Si1-yGey substrate with the bulk lattice constant of the Sit-yGey. This allows strained Si, Ge 

or Sit-xGex to be grown on an underlying Si wafer. Such substrates are termed virtual 

substrates (VSs). 

Nevertheless, progress in material growth and basic understanding of the band 

alignment lagged initially behind similar investigations made in the much more popular, 

lattice-matched GaAs/ AIGaAs heterosystem. With growth techniques, such as molecular 

beam epitaxy (MBE), then still in their infancy, a main reason can be seen in the quite 

significant lattice mismatch between Si and Ge, but also in severe doping problems caused 

by the strong segregation of most dopants then available. Over the years, most of the 

growth and doping problems have been solved, and the understanding of the strain effects 

induced by the lattice mismatch has reached a state that allows their exploitation as a 

further parameter in the field of man-made bandstructures. 

An example for the high level reached in the last years is the Sit-xGex/Si 

heterobipolar transistor [7] (HBT), with demonstrated cut-off frequencies and maximum 
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oscillation frequencies well beyond 100 GHz [8,9]. This is roughly a factor-of-two 

improvement as compared to the best existing Si bipolar junction transistors (BJTs), but, 

what is more important, the Sit-xGex/Si HBT boosts Si-based technologies into an area that 

has so far been a exclusive domain of 111-Y devices. 

At present, the HBT is the most advanced device type in the Sit-xGex/Si 

heterosystem, with products having already been announced, or being expected to be 

available commercially in the very near future [10]. In addition, a variety of other potential 

applications are pursued by the ever-increasing number of research groups working in the 

field of Si-based heterostructures. As an example, optoelectronic functions including 

infrared detectors and waveguides, and even light emitters, are investigated intensely [11]. 

Since the aforementioned Si-MOSFETs are the most widespread of all electronic 

devices, a successful introduction of the Sit-xGex/Si heterostructure into that mainstream 

area is expected to have an enormous impact. Referring to the experiences gained with Ill­

y MODFETs, the advantages a hetero-MOSFET can offer are obvious: at room 

temperature the carrier mobility can be increased by a factor of two to three by employing 

the band offset at the Sit-xGex/Si heterojunction to spatially separate the mobile carriers 

from the ionized dopants on the one side, and from the interface with the Si02 insulator on 

the other side. This will provide the hetero-MOSFET with higher operation frequencies 

without sacrificing its intrinsic very large-scale integration (VLSI) ability. Enhanced 

electron and hole mobilities are not only important for future device applications; they can 

also provide new insights in the transport properties of low-dimensional carrier gases. The 

low-temperature electron mobility in the Si channel of a modulation-doped quantum well 

structure (MODQW) has recently been driven to a value beyond 500,000 cm2.y.l ·s·1 [12], 

which is an improvement of more than a factor of ten as compared to the best MOSFETs 

reported. Such high mobilities, which approach the best values, reached in 111-Y 

heterostructures to within an order of magnitude, correspond to mean free paths of several 
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J.1m. This is large enough to conduct experiments on quantum point contacts and in the 

mesoscopic range, which so far were mainly restricted to high-mobility III-V 

heterostructures. Enhanced hole mobilities are another topic, which will become even more 

exciting, because the recently demonstrated realization of high Ge content Sh-xGex 

channels allows unprecedented high hole mobilities. 
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2. Theoretical concepts and review of previous works 

2.1 Structural and electronic properties of bulk Si and Ge 

2.1.1 Energy band structure 

Silicon and germanium are the only group-IV elements that are completely miscible, 

i.e. they form a continuous series of solid substitutional solutions with gradually varying 

properties over the entire composition range. The elements and the random Si1-xGex alloys 

crystallize in the cubic diamond lattice with a lattice parameter that increases almost 

linearly [1] with x. The maximum mismatch amounts to 4.2% between pure Si and pure 

Ge. The fundamental band gap in both Si and Ge is indirect (Table 2.1), and remains so for 

all compositions in the Sh-xGex alloys. The conduction band minima are six-fold 

degenerate in Si, where they are located along the [100] directions near the X point 

(usually referred to as L\ minima), and eightfold degenerate in Ge, where they are located at 

the Brillouin-zone boundary in the [111] directions (L minima) (Figure 2.1). The crossover 

between these two types of band structure occurs at x=0.85 in unstrained (i.e. cubic) 

Sh-xGex alloys. The indirect bandgap at 300K (4.2K) decreases monotonically from 

1.11 e V (1.17 e V) to 0.66e V (0.7 4e V) as the Ge content x increases from 0 to 1. A distinct 

kink occurs at the crossover point (top curve in Figure 2.2). The most important structural 

parameters [2] are listed in Table 2.1. 

Table 2.1 Selected structural parameters of unstrained bulk silicon and germanium at room 
temperature [2]. 

Silicon (Si) Germanium (Ge) 
Lattice type Diamond Diamond 
Lattice constant, a (A) 5.431 5.657 
Direct bandgap, Ella (e V) 3.40 0.80 
Indirect bandgap, Egi (eV) 1.11(L\) 0.664(L) 
Dielectric constant, e 11.9 16.2 
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Figure 2.1 Energy band structures of Ge and Si, where Eg is the indirect energy bandgap. 
Plus (+) signs indicate holes in the valence bands and minus (-) signs indicate electrons in 
the conduction bands [3]. 
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Figure 2.2 Band gap variation of Sil-xGex alloys against Ge content x. The top curve gives 
the band gap energy for unstrained (cubic) alloys, which show a crossover from the Si-like 
(conduction band minima at ~) to the Ge-like bandstructure (conduction band minima at 
the L point) at x=O.85. The two other curves are for pseudomorphic Sit-xGex layers on a 
cubic Si substrate, which leads to a splitting of the valence band [4]. 
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The bandgap variation is strongly affected by strain in the Sil-xGex crystal, a situation 

that occurs in most of the thin-film applications. To illustrate the span of energy gaps 

accessible, the lower two curves in Figure 2.2 show the bandgap variations of Sh-xGex 

alloys grown pseudomorphically on an Si(lOO) substrate. Under these conditions the in­

plane lattice constant of the substrate is conserved throughout the alloy layer, which leads 

to a tetragonal distortion of the film according to the elastic properties of the lattice. Two 

curves exist because of the strain-induced heavy-hole/light-hole splitting of the valence 

band maximum [4]. Evidently, the main effects of the compressive in-plane strain are a 

significant and monotonic reduction of the indirect bandgap with increasing x, and a 

suppression of the aforementioned crossover from the Si-like to a Ge-like band structure. 

Experimental bandgap data are so far only available for unstrained bulk alloys and for 

pseudomorphic Sh-xGex films on Si substrates. For the latter case, which is technologically 

important (e.g. for the SiiSiGe HBT) the data points agree well with the calculated 

bandgap variations. The more general case of fully strained Sh-xGex layers on a relaxed 

Sit_yGey substrate has been treated theoretically by several authors; however, their results 

differ quite substantially, due to the different methods used in the calculations [5]. 

2.1.2 Carriers effective mass 

A direct consequence of the band structure is the effective transport mass both of 

electrons and holes. Since the areas of constant energy in the conduction band minima 

consist of six (~) and eight (L) ellipsoids of revolution for Si and Ge, respectively, the 

electrons in both materials are completely described by two mass parameters: ml is the 

longitudinal mass along the symmetry axis of the ellipsoid ([ 1 00] directions in Si, [111] 

directions in Ge) and mt is the transversal mass within the plane normal to the symmetry 

axis (Table 2.2). 
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Table 2.2 Experimental band parameters of unstrained, undoped bulk Si and Ge at room 
temperature. mo is the free electron mass. Note that the effective masses are band-edge 
masses, which apply only for low-doped structures at low electric fields. (Data from [2]). 

Silicon Germanium 

Electron mass (mo) mt 0.19 0.08 
ml 0.91 1.59 
A -4.26 -13.27 

Valence band parameters B -0.63 -8.63 
lei 4.93 12.4 
mhh 0.53 0.28 

Band-edge masses of hole (mo) mlh 0.15 0.04 
mso 0.23 0.09 

In both materials the longitudinal mass is significantly larger than the transversal 

mass. Measured electron masses in bulk Si and Ge showed that the conduction band 

minima behave to good approximation parabolic, i.e. the mass parameters are only weakly 

affected by band-filling effects via temperature or doping [6]. No experimental data on the 

electron masses in unstrained Sh-xGex alloys are available. However, theoretical 

investigations suggest that A (Si-like) and L (Ge-like) mass parameters remain almost 

unaffected over the entire range of compositions, and that they are also rather insensitive to 

strain [7]. Thus, the main effect of (uniaxial) strain on the conduction band minima is the 

experimentally verified lifting of the respective degeneracy. 

The situation at the valence band edge is even in the elemental semiconductors more 

complex, because the r -point valence band maximum is made up of three strongly 

interacting bands. In unstrained Si and Ge the heavy-hole (HH) and light-hole (LH) bands 

(rs+ symmetry) are degenerate at the r point, whereas the spin-orbit-split hole (SO) band 

(r7+ symmetry) is separated by ASi=44 meV in Si and Aoe=290 meV in Ge [2]. The rs+ 

bands are warped, i.e. the effective masses depend on the crystal direction. In a first 

approximation the band dispersion is frequently described by the three band parameters A, 

B, and e according to 

(2.1) 
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(2.2) 

where Ev is the r-point energy, mo is the free electron mass, !l. is the spin-orbit splitting, 

and h is Planck's constant. The + and - signs describe the LH and HH bands, which split 

for k* O. The parabolic approximation in (2.1) is only valid next to the r point. The close 

proximity of the bands leads also to a significant non-parabolicity, especially of the HH 

band, even for minor changes of the hole energy. As a result, the effective hole masses 

depend sensitively on external electric fields as well as on doping concentration and 

temperature. Hence the experimental values of the three hole masses for Si and Ge given in 

Table 2.2 apply only to small hole densities and are averaged values over all crystal 

directions. 

Experimental and theoretical works concerning the valence bands in Sit-xGex alloys 

have been performed by several groups. It was found that a linear interpolation of the SO 

splitting between the values of Si and Ge agrees reasonably well with experimental results 

conducted on Sit-xGex bulk alloys [8]. On the other hand, the variation of the band 

parameters with x, and thus of the effective hole masses, is the subject of much more 

controversial discussions. Most of the calculations or interpolation schemes employing the 

band parameters A, B, and C, or other sets of band parameters derived from the different 

matrix representations of the valence band, failed to reproduce all experimental data 

available. At least qualitative agreement of the x dependence has been achieved by the 

non-linear interpolation scheme proposed by Lawaetz [9]. 

Application of strain lifts the degeneracy of the HH and LH bands at the r point [10]. 

In the important case of a pseudomorphic Si1-xGex layer on an Si substrate, or, more 

generally, on an unstrained Si1-yGey substrate with x>y. the HH band is shifted upward. In 

addition, the effective in-plane mass of the HH hole band becomes lighter and warping is 

reduced [11]. High enough strain can even lead to a mass inversion, i.e. the topmost HH 
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band can have a lower mass than the lower-lying LH band. This class of layer sequences 

corresponds to biaxial compressive strain in the (100) plane concomitant with uniaxial 

tensile strain perpendicular to this plane. The strain components are reversed, if a 

pseudomorphic Sh-xGex layer is grown on cubic Sh-yGey with x<y. Accordingly, the LH is 

shifted up while simultaneously its effective mass becomes heavy-hole-like. 

2.1.3 Carriers mobility 

The most important transport parameter of a semiconductor material and device is the 

carrier mobility. The mobility depends very much on the manner in which it is measured 

and it is important to understand the mobility determined by a particular characterization 

method and method's limitations. The carrier mobility, influences the device behavior 

through its frequency response or time response in two ways. First, the carrier velocity is 

proportional to the mobility for low electric fields. Hence higher mobility material is likely 

to have a higher frequency response, because carriers take less time to travel through 

device. Second, the device current depends on the mobility, and higher mobility materials 

have higher current. Higher currents charge capacitances more rapidly, resulting in a 

higher frequency response. There are several mobilities in use [12]: 

• Microscopic mobility is the fundamental mobility calculated from basic concepts. It 

describes the mobility of the carriers in their respective band. 

e 
f.J=_.'C' 

m* 
(2.3) 

where e is the electron charge, 'C' is transport scattering time and m* is the effective 

mass of the respective carrier. Within the limits of the wave-vector-independent 

relaxation time approximation ,-1 is the sum of all reciprocal scattering times 

associated with the various scattering mechanisms (Mathiessen's rule). Thus the 

mobility is limited by the mechanism with the smallest scattering time. 
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• Hall mobility is determined from the combination of conductivity and Hall effect 

measurements. 

(2.4) 

where RH is Hall coefficient for low magnetic fields and Gis conductivity. 

• Drift mobility is the mobility measured when minority carriers drift in an electric field. 

It is device-oriented mobility and therefore very useful. But it is not as easy to measure 

as the Hall mobility, and is not used as extensively for that reason. 

U 
Jld =-

E 
(2.5) 

where u is carrier velocity for low electric fields E (and in the absence of external 

magnetic fields). 

The geometry has a major influence on the mobility in some devices. Surface 

scattering has a major influence in reducing the mobility in MOS field effect transistors. 

The resulting mobility, determined from the device current-voltage characteristic, is termed 

the effective mobility. In addition there are considerations that cause further division 

between majority carrier mobility and minority carrier mobility. Momentum 

considerations show that electron-electron or hole-hole scattering has no first-order effect 

on the mobility. However, electron-hole scattering does reduce the mobility, since 

electrons and holes have opposite average drift velocities. Hence minority carriers 

experience ionized impurity and electron-hole scattering, while majority camers 

experience ionized impurity scattering. 

The Hall mobility (J..lH) and drift mobility ~) are differ by Hall scattering factor (rH) 

and related by [13] 

(2.6) 
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rH usually deviates from unity which can be expressed as the product of factors K and M. 

K is concerned with the energy dependence of the relaxation time in a non-degenerate gas 

which is 

(2.7) 

Any quantity A (r or T for this case) can be averaged according to their energy 

dependence as [14] 

jE.N(E).exp(- k ~T)·A(E)dE 
(A(E») = 0 '" B E 

jE.N(E).exp(--. )dE 
o kB T 

where N(E) is the density of states which has the fonn [15] 

for 3D system 

N(E) = for 2D system 

for ID system 

(2.8) 

(2.9) 

Because (T2) is always greater than (T)2, K is therefore greater than unity. For example, 

for acoustic phonon scattering mechanism K = 1.18, while for the ionized impurity 

scattering mechanism K=1.93. 

M is concerned with the anisotropy of the constant-energy surface (or contour for 2D 

system) and the non-parabolic nature of the energy dispersion E(k). For the valence band, 

the constant energy surface is too complex to yield a simple fonn of M and it is possible 

only give the conclusion that M for the valence band is less than unity [13]. 

The main scattering mechanisms in the elemental (non-polar) semiconductors are 

scattering at acoustic and optical phonons (lattice scattering), and scattering at ionized and 

neutral impurities. In Sit-xGex crystals random alloy scattering contributes as a fourth 

independent mechanism. Strain will affect all scattering mechanisms, because the strain-
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induced changes in the valence and conduction band structure affect the relative 

importance of intra- and inter-valley scattering events [16]. 

Ample experimental and theoretical data exist for bulk Si, and, to some extent, for 

bulk Ge. The available models work best for unstrained n-type bulk material at 

temperatures above lOOK and for rather small doping concentrations below some 

IOI7cm-3. Under these conditions intra- and inter-valley lattice scattering is dominating. 

With the freezing out of phonons at cryogenic temperatures ionized impurity scattering 

becomes the limiting mechanism whereas the influence of neutral impurity scattering 

remains moderate. For higher doping concentrations and/or for lower temperatures 

phenomenological expressions have been derived, which are based on a combination of 

physical models and fits to experimental data. This is especially true for holes, which are, 

due to the aforementioned complexity of the valence band structure, hard to describe by 

physical models for larger variations of doping concentration or temperature. A concise 

phenomenological model description was recently published by Klaassen, who treated both 

electrons and holes in unstrained bulk Si over very wide ranges of doping concentrations 

and temperatures [17]. 

The experimental room-temperature electron and hole mobilities of undoped, 

unstrained bulk Si and Ge are listed in Table 2.3. These values are of special interest, since 

they represent the limiting case of lattice scattering alone, as neither neutral nor ionized 

impurities are present. Hence these are the maximum values achievable at room 

temperature as long as the effective mass of the system is not affected. 

Table 2.3 Room-temperature bulk mobilities of electrons and holes in unstrained, undoped 
Si and Ge (from [2]). 

Silicon Germanium 

Bulk mobility (cm2.y-l.s·l) Electrons 1450 3900 
Holes 505 1800 
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The values in Table 2.3 reveal that both electron and hole mobilities are significantly larger 

in Ge, which is of course related to the smaller effective masses. Especially the hole 

mobility of Ge is worth mentioning, since it is higher than in any of the 111-V compounds, 

and, what will turn out to be an interesting feature of the SiGe material system, matches the 

electron mobility of Si to within 20%. 

While experimental data for the carrier mobilities in Si and Ge are available, and 

satisfactory models exist, the experimental and theoretical situation concerning the 

Sh-xGex alloys is quite rudimentary. It is clear from the above discussion that not only 

alloy scattering has to be added as an additional mechanism but that also the other 

mechanisms are modified by the variations of the band structure and of the phonon spectra. 

The most prominent, and experimentally confirmed example is the transition from the Si­

like to the Ge-like conduction band in unstrained alloys at x=0.85, which leads to a kink in 

the electron mobility-x curve that follows the behaviour of the effective mass [18]. 

Of major interest for the following chapters are the hole mobilities in Sh-xGex alloys. 

In unstrained bulk alloys early experiments (on crystals of certainly debatable quality) 

found a V-shaped behaviour of the mobility, i.e. the lowest values were found at 

intermediate Ge contents [8]. This trend was qualitatively confirmed by recent calculations 

[19], which, on the other hand, predict a strong influence of strain in pseudomorphic 

Sh-xGex layers on Si substrates. 

2.2 The strained Sit-xGex/Sit_yGey heterostructures 

2.2.1 Energy band alignment in heterostructures 

It came as a surprise to the scientific community when in 1985 Jorke and Herzog 

provided experimental evidence for a staggered (type-II) band alignment at the interface of 

a SiiSiGe heterostructure with tetragonal strain distortion in both layers [20]. In analogy to 

the situation in the GaAs/AIGaAs heterostructure, until then a type-I alignment was 
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assumed, which means that the band gap of the narrow-gap material lies entirely within the 

gap of the wide-gap semiconductor. Aided by additional strain measurements on the 

samples of Jorke and Herzog, Abstreiter and coworkers were the first to introduce the 

concept of a strain-induced type-II ordering in the Si/SiGe heterosystem [21]. In this 

eminent publication the splitting of the six-fold degenerate conduction band in a tensilely 

strained Si layer was correctly identified and quantified as a key element of the band 

alignment. 

Strain effects are only one part of a general solution to the problem of band alignment 

at a strained layer heterointerface. The other contribution results from the chemical 

difference between the two heteromaterials being brought into contact. Since the long­

range nature of the Coulomb interaction prevents the definition of an unambiguous, global 

energy scale for an infinite bulk crystal, the "chemical" band alignment cannot be derived 

accurately from band structure calculations of the individual materials. Instead, a "super 

cell" is required, that contains both materials and accounts for the changes in the bonding 

configuration and a concomitant dipole layer at the interface. Several such theoretical 

treatments have been performed for lattice-matched combinations of 111-V compound 

semiconductors. 

By calculating the band offsets at the Si/Ge interface, Van de Walle and Martin [22], 

[23] were the first to explicitly consider both the "chemical" band alignment and strain 

effects. They performed for the interface between pure Si and pure Ge on an unstrained 

(cubic) substrate self-consistent local-density-functional calculations employing ab initio 

pseudopotentials. Since for well-defined offsets the in-plane lattice constant all has to be 

conserved throughout the layer sequence (pseudomorphic boundary condition), the strain 

conditions within the active heterolayers are determined by the lattice constant of the 

substrate. This leads to tetragonal distortions of the unit cells with the associated strain 

components in layer i parallel and perpendicular to the interface: 
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(2.10) 

(2.11) 

where ai denotes the cubic (unstrained) lattice constant of layer i, and 

(2.12) 

is the lattice constant perpendicular to the interface. The elastic properties of the crystal 

link ai.L and all according to equation (2.12). In the following only the (001) interface will 

be considered, since it is the only one compatible with MOS technologies. In this case the 

constant Di depends only on the elastic constants Cll i and Cl2
i of the respective material: 

I 2 (CI2 ) D(OOI) = . -
Cll 

(2.l3) 

With these relations for the strain distribution Van de Walle and Martin calculated in a first 

step the valence band offsets of the Si/Ge heterojunction for substrate compositions of y=0, 

y= I, and y=0.4. An essential result of their computation was that the discontinuity !lEv of 

the weighted average valence band position at r 2S depends only weakly (and in a linear 

fashion) on strain and is largely unaffected (to within ±40 meV) by the crystallographic 

orientation of the interface. Thus !lEv was proposed as a parameter that is characteristic of 

the intrinsic Si/Ge heterointerface, a finding that was subsequently confirmed both 

theoretically [24] and experimentally [25], [26] by other groups. 

The significant computational effort required for a general set of valence band offsets 

and the unique properties of Mv led Vande Walle and Martin to suggest a linear 

interpolation scheme for the average valence band offset, both with respect to strain and 

composition. This linear variation of the valence band offset was subsequently confirmed 

by the experiments of Morar et aI, who employed electron-energy-Ioss spectroscopy on a 
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large quantity of samples with systematically varying Ge content [27]. Rieger and Vogl [7] 

adapted this concept, and, employing the slightly lower !lEv values of [24] that appear to be 

somewhat closer to experimental values [25], derived the following interpolation formula 

for !lEv at the heterointerface between a strained Sh-xGex layer and an unstrained substrate: 

!lEv(x,y) = (0.47 -0.06· y) ·(x- y) (2.14) 

Knowing !lEv(x,y) for arbitrary values of x and y, and exploiting its properties of being 

additive and transitive [23], allows a complete description of the band alignment problem 

in the SiGe heterosystem. This requires a determination of the relative positions of the 

respective band edges in either heterolayer by utilizing the values for the band gaps, the 

spin--<>rbit splittings and the deformation potentials for the respective band. This procedure 

was described in [23]. 

Figure 2.3 shows a complete set of contour plots for the offsets between the topmost 

valence bands (Ev'"OX(X)-Evmax(y» and the lowest conduction bands (Ecmill(x)_Ecmill(y» of a 

strained Sh-xGex layer on an unstrained Si1-yGey substrate based on empirical 

pseudopotential calculations of the valence and conduction bands [7]. 
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Figure 2.3 (a) Conduction-band offsets Ecmill(x)_Ecmill(y) and (b) valence-band offsets 
Evmax(x)-Evmax(y) in eV at interface of a lattice matched (001) strained Si1-xGex alloy and an 
unstrained (cubic) Si1-yGey bulk substrate (after [7]). 
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The values were calculated using the defonnation potentials for the elements, as listed in 

Table 2.4, and linear interpolations for the alloys. Because of the approximations and 

interpolations involved, this approach is estimated to leave an uncertainty of the band 

offsets of about 100 meV. Only a limited number of experimental results conducted under 

well-defined strain conditions are available, mainly for Si/Ge, Si/Sil-xGex and Sh-xGex/Si 

heterostructures [5]. These basically confinn the respective theoretical offsets within the 

error margins mentioned. 

Table 2.4 Defonnation potentials [7], spin-orbit splittings ~ and elastic constants ell and 
el2 for Si and Ge [2]. 

Si Ge 
{~+{1I3)-Eu)L\-a (L\ minimum) 0.29 -1.90 
{~+{l/3)-Eu)L-a (L minimum) -3.65 -5.17 
a (eV) -10.2 -12.4 
b{eV) 2.33 2.08 
Eu L\ (L\ minimum) 9.29 10.20 
~(meV) 44 296 
en (l06 N·cm-2) 16.75 13.15 
el2 (l06 N·cm-2) 6.5 4.94 

There are four general features in Figure 2.3 worth mentioning. (i) The valence band 

maximum occurs always in the layer with the higher Ge content, independently of the 

strain condition. (ii) For x<y the conduction band minimum lies in the (tensilely) strained 

Sh-xGex layer, i.e. the band alignment in this regime is of type II. (iii) In an area defined by 

x>y and y<0.6 the conduction band offset is smaller than ±20 meV, which means a 

basically flat conduction band alignment within the accuracy of the calculations. (iv) For 

Ge-rich strained layers (x>0.8) on Ge-rich substrates (y>0.6) a type-I alignment is 

predicted, i.e. the valence band maximum and the conduction band minimum are both 

located in the strained Sh-xGex layer. This prediction has yet to be confinned 

experimentally. Therefore Figure 2.3 allows predictions for arbitrary SiGe heterojunctions 

with respect to band offsets. 
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2.2.2 Strain adjustment in heterostructures 

It has been shown in the preceding section that the valence and conduction band 

offsets in an Si/SiGe heterojunction depend strongly on the strain distribution throughout 

the layers, making strain as essential a parameter as the layer compositions. As has been 

detailed above, well-defined interface conditions require a conservation of the in-plane 

lattice constant, i.e. pseudomorphic (or coherent) growth of the active layers on a substrate 

whose lattice parameter has been properly adjusted. Hence, in order to exploit "strain 

engineering" for the tailoring of the band structure both the strain-defining substrate and 

the pseudomorphic heterolayers have to be realized. Bulk Sh-xGex can be ruled out as 

substrates, both because of the inherent problems of pulling homogeneous Sit-xGex 

crystals, and because such substrates would jeopardize the main advantage of the Si/SiGe 

heterosystem, namely its compatibility with existing silicon technologies. It is therefore 

mandatory to employ Si substrates and provide strain adjustment by means of a relaxed, 

intermediate Sh-yGey buffer layer with the bulk lattice constant of the Sh-yGey. 

Occasionally, this combination is referred to as a virtual substrate (VS). 

For relaxed buffers as well as for pseudomorphic layers the most relevant material 

parameter is the critical thickness te, an equilibrium parameter which is defined as the film 

thickness at which strain relaxation by the generation of misfit dislocations commences 

[28],[29]. Films thinner than tc cannot relax, because the elastic energy stored in such a 

homogeneously strained layer is lower than the elastic energy associated with the local 

distortion around a misfit dislocation. Above te misfit dislocations become energetically 

favourable, and provide partial strain relaxation of the film, the degree of which increases 

with increasing layer thickness. Under non-equilibrium conditions a metastable thickness 

range between te and an apparent critical thickness te * exists, in which the nucleation and 

propagation of misfit dislocations is kinetically suppressed [30], [31]. tc· depends strongly 

on the growth temperature, hut also on the nucleation sites and mechanisms available in 
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the actual growth environment. Low-temperature epitaxy techniques, such as molecular 

beam epitaxy (MBE) or the different variants of low-temperature chemical vapour 

deposition (CVD) can in this way significantly extend the range of useful layer 

thicknesses. This is shown in Figure 2.4, where for Si1-xGex on Si substrate the equilibrium 

critical thickness te and experimental values of films grown by MBE at 550C are plotted as 

a function of x. Although reasonable film thicknesses appear feasible even at a higher 

lattice mismatch, one has to keep in mind that metastable layers may partly relax upon 

subsequent heat treatments. 

The three phases labeled "stable", "metastable" and "relaxed" in Figure 2.4 mark the 

limitations of strain engineering in the SiGe material system: strain within an active layer 

is always associated with a maximum (critical) thickness of this layer. This usually 

requires compromises concerning the maximum exploitable strain in such a layer, since 

highly strained layers have necessarily to be so thin that quantum size effects finally limit 

the achievable band offsets. On the other hand, relaxed buffer layers for strain adjustment 

become relatively thick, since a high degree of relaxation and low defect densities are 

required, which both rule out buffers deep in the metastable range. 
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Figure 2.4 Critical thickness versus composition for Si1 -xGex on Si. The lowest curve gives 
the theoretical limit in thermal equilibrium [29], whereas the experimental curve is for a 
metastable layer grown at 550C by MBE. 
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Because of their importance for strain engineering, and the problems encountered in 

the initial attempts to realize such buffers, the next section will treat state-of-the-art buffer 

layer growth in some details. 

2.2.3 Strain relaxed Sit_yGeylSi(OOl) buffer layers 

The simplest way of implementing a strain-adjusting buffer layer is the growth of a 

constant-composition SiGe layer with a thickness exceeding te * by a large enough margin 

to allow a reasonably high degree of strain relaxation [31]. However, it was soon 

recognized that such buffer layers are associated with 109 to lOll threading dislocations per 

cm2 penetrating through the buffer, and ending at the respective growth front [32], [33]. A 

major reason for these unacceptably high densities lies in the step-like strain variation at 

the interface between the substrate and a constant composition buffer, which leads to an 

efficient confinement of the misfit dislocations to the (001) interface plane. For this 

orientation two equivalent networks of strain-relaxing misfit dislocations exist, which are 

defined by intersect of the [111] glide planes with the (001) interface plane, resulting in 

line vectors along the [110] and [1 TO] directions. Misfit accumulation in the interface 

plane causes substantial interactions between the two networks that can impede and even 

arrest the propagation of individual misfit dislocations. As a consequence, rather short 

misfit segments develop, which are associated with a high density of threading 

dislocations, because either end of a misfit segment has to be connected to a free surface 

via a threading dislocation. 

The only way to reduce the density of threading dislocations is an extension of the 

misfit segment lengths. In the ideal case, these will run all the way across the substrate, 

until they finally reach a lateral crystal surface at the rim of the wafer, where they can no 

longer affect the active layers to be grown on top of the buffer. In order to approach such a 

situation, three conditions have to be fulfilled. (i) The growth (or annealing) temperatures 
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have to be sufficiently high to allow a fast enough misfit dislocation propagation in relation 

to the growth rate. (ii) The density of pinning centers or arresting misfit interactions has to 

be low enough to promote long misfit segments. (iii) Nucleation and multiplication 

mechanisms for dislocations are required, but the associated activation energies should be 

higher than the activation energy associated with propagation in order to prevent the 

introduction of many short misfit segments. 

Since at Ge contents beyond about 10% none of these conditions can be fulfilled in a 

constant-composition buffer, alternative ways have been proposed to overcome the 

problems associated with misfit pinning by dislocation interaction [34]. The most 

successful approach at present employs a linear Ge gradient throughout an initial buffer 

layer B 1, followed by a second layer B2, throughout which the fmal composition of B 1 is 

kept constant [35], [36], [37]. The advantages of this concept are obvious: the misfit 

dislocations are distributed over the thickness of B 1 rather than being crowded into the 

interface plane. This strongly reduces dislocation interactions, allowing most of the 

dislocations to propagate unaffected with a velocity determined by the growth temperature. 

In the last few years a significant amount of effort has been dedicated to an 

understanding and optimization of graded buffers both with respect to relaxation [37], [38], 

[39], [40] and surface morphology [41], [42]. These two parameters are not independent of 

each other, because both are affected by grading rate, growth temperature, and 

composition, albeit in a different fashion: while high growth temperatures are 

advantageous for dislocation propagation, they also support strain-driven 3D growth, 

which leads to a rough surface morphology that may affect lithographic steps during 

subsequent device processing. However, in contrast to constant-composition buffers, the 

grading rate offers an additional degree of freedom for controlling the strain at the growth 

front: shallow gradients were found both theoretically [43] and experimentally [44], [45] to 

lead to reduced amounts of surface strain, thus allowing higher growth temperatures 
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without sacrificing layer-by-Iayer growth. Consequently, the best buffers grown by MBE 

employed growth temperatures between 750 and 900C and compositional grading on the 

order of 1O%J..lm-1 or less. Under these conditions threading densities in the lOS to 106 cm-2 

ranges were observed on buffers with final Ge concentrations of about 30% [37], [46]. 

Characteristically, the surface morphology of these buffers is dominated by a rather 

regular cross-hatch pattern oriented along the [110] directions, which basically results from 

a local accumulation of the double-atomic surface steps introduced by every misfit 

dislocation [45], [41]. The pile-up of these steps is caused by multiplication mechanisms, 

which release on the order of 10 to 30 dislocations half-loops with identical Burgers vector 

into the same [111] plane [38], [40]. Additional growth phenomena can lead to a strain­

and temperature-dependent enhancement of the dislocation-mediated corrugation height 

[42], but the exact mechanisms behind these observations are still the subject of intense 

research. 

With increasing Ge content the surface mobility of the arriving atoms increases at a 

given substrate temperature, which shifts the onset of strain-driven 3D growth to lower 

temperatures. This trend has to be counteracted by a further reduction of the surface strain, 

or by reducing the growth temperature. Considering the relatively thick buffer layers 

resulting already at conventional grading of around 10%J..lm-1
, a kinetic suppression of 3D 

growth via lower growth temperature is usually preferred [47]. 

While meanwhile most of the successful MBE buffers follow the basic concept 

outlined above, CVD techniques are more severely restricted in the choice of growth 

parameters, because growth rates and temperatures can hardly be selected independently. 

Nevertheless, step-graded buffers were very successfully fabricated by UHV --CVD at 

growth temperatures of just 550C and often with steeper gradients than were found useful 

in high-temperature MBE growth [36]. It is not entirely clear why the significant 

differences in growth conditions lead to quite similar results. A likely reason accounting 

24 



for some of the differences lies in the hydrogen termination of the surface during UHV­

CVD growth, which is known to act as a surfactant that can, to some extent, suppress 3D 

growth. Also, the kinetics of dislocation nucleation and multiplication appear to be 

different in MBE- and UHV-CVD-grown layers [37], again possibly because of the 

presence of the surfactant hydrogen. 

Further improvements of the relaxed buffer layers aiming toward device applications 

are to be expected: very promising results were recently reported of step-graded buffers 

grown by atmospheric pressure (AP) CVD with intermediate in situ annealing steps at high 

temperatures [48], which create equilibrium dislocation densities in each successive 

composition step. Threading dislocations density as low as 100cm-2 was found, which 

basically means that most of the misfit segments actually extended all across the wafer. 

Although the surface morphology of these first layers, which were annealed at 

temperatures well above the melting point of pure Ge, has certainly to be improved, the 

defect densities are already close to device grade specifications. 

Although misfit dislocation lengths approaching the wafer dimensions have 

successfully been demonstrated, it would be much easier if misfit segment lengths of 

several 10J,1m rather than centimeters could satisfy the demands of device-quality substrate 

material. Given the fact that devices in integrated circuits eventually require lateral 

separation, dislocation lengths defined by prepatterning of the substrate via trenches or 

local oxides appears to be a straightforward approach [49]. Strained-layer epi-growth on 

both types of patterned substrates [50], [51], [52], and also on porous Si [53] have been 

performed. Especially selective epitaxy on oxide patterned substrates has turned out to be 

promising, as the oxide strips separating the templates for epitaxial growth act both as 

nucleation sources and as sinks for the misfit dislocations that are to be launched into the 

epilayers. With linear spacings between adjacent Si02 walls on the order of several tens of 

J,1m, misfit segments have just to travel that length in order to find a SilSi02 interface 
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where they can end. This way, it is relatively easy to keep the epi-patches free of threading 

dislocations, most of which are swept out into the oxide strips. The main challenge of such 

a patterning technique lies therefore in the layout of the oxide pattern, which has to be 

compatible with the final device arrangement. Also, the growth parameters for selective 

growth have to be properly adjusted, and especially the boundaries between the epi-patches 

and the amorphous Si02 ridges will have to be characterized more thoroughly with respect 

to long-term stability and spurious parallel conductivity. 

Another interesting idea employs full-size Si-on-insulator (SOl) substrates, which 

might lead to entirely threading-free buffer layers [54]. Consider a very thin «lOrun) back­

etched Si layer on a wafer-bonded or oxygen implanted SOl substrate, with the chemical 

bonds at the Si/Si02 interface being weak enough so that the Si layer can be considered as 

quasi-free-standing. Under these conditions it will be energetically favourable if the silicon 

substrate relaxes upon deposition of a thick enough constant-composition SiGe layer, 

rather than the SiGe layer itself [55], [56]. If this happens, dislocation nucleation and glide 

are confined to the compliant substrate, which means that the threading ends are terminated 

at the weakly bonded Si/Si02 interface that acts as an inner surface in this respect. After a 

first successful demonstration of the soundness of this approach [54] suitable techniques 

remain still to be developed for homogeneously implementing the extremely demanding 

SOl layers with a thickness on the order of 10run on substrates of technically relevant 

diameters. 

Recently, it was reported that a compositionally uniform Si1-yGey layer with a rather 

low threading dislocation density (l04cm-2) can be grown epitaxially on Si (001) substrate 

by introducing a low-temperature (L T) Si buffer layer [57], [58], [59]. Relaxed Si1-yGey 

epilayers grown on L T -Si buffer have been found having lower threading dislocation 

density (10
4
_10scm-2), smaller layer thickness «IJ,1m), and smoother surface in 

comparison with the comparable compositionally graded SiGe buffer layers. Therefore, it 
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may be used as the buffer for the growth of high carrier mobility SiGe heterostructures. 

However, the mechanism of strain relaxation of these structures is still not clear, and is 

under investigation. An appropriate approach should be able to explain the results of 

reduction of threading dislocation density, the inhomogeneous relaxation, and the relative 

small corrugation at the surface. Of course the L T -Si layer played an important role: not 

only provides low energy sites for dislocation nucleation, or point defects for trapping of 

propagating dislocations, but also involves in strain adjustment. 

2.2.4 Layers sequence in modulation doped Sh_xGex/Sh-yGey 

heterostructures 

The first modulation-doped Si/SiGe heterostructures were realized by People, Bean 

and coworkers employing pseudomorphic Sir-xGex quantum wells clad between the Si 

substrate and an unstrained Si cap layer [60]. As has been shown in section 2.2 in this 

situation the bandgap difference is almost exclusively adapted by the valence band offset. 

Consequently, mobility enhancement was found when the Si cladding layers were 

selectively p-type doped, which is consistent with the formation of a 2DHG in the Sit-xGex 

channel. Based on present understanding of the band alignment, it is no longer surprising 

that a second experiment of People, Bean and coworkers where n-type doping was 

employed in an otherwise identical layer sequence, failed to show any indications of a 2D 

electron channel [61]. As mentioned before, Si channels with tensile in-plane strain are 

required for the realization of a useful conduction band offset. These were first 

implemented by Jorke and Herzog [20] employing a strain-symmetrizing virtual Sit-yGey 

substrate. Relaxed SiGe buffers were subsequently also utilized for p-type modulation­

doped structures with Ge-rich or even pure Ge channels, which cannot be deposited 

coherently on a Si substrate because of the large lattice mismatch involved. 
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In all three cases the active layers of a modulation-doped structure are similar and 

consist of an undoped channel for the mobile carriers, an undoped spacer layer that 

separates the ionized dopants from the channel, and a doping layer. The heterointerface is 

located between the channel and the spacer and separates the two regions energetically. 

Often, the doping concentration is reduced toward the surface to avoid Schottky barrier 

lowering, and a thin undoped Si cap layer may be added, to protect against in-depth 

oxidation and to allow for a well-defined Schottky gate. The layer sequences and typical 

thicknesses for the three types of modulation-doped structure are schematically plotted in 

Figure 2.5. 

Si cap Si cap 
Si cap 

Si,oyGey Si,.yGey 

p-doping p-doping n-doping 
Sispacer Si,oyGey spacer Si,oyGey spacer 

Si,oxGex channel Silo.Ge. channel Si channel 

Si Si l.yGey Si,.yGey 
buffer relaxed buffer relaxed buffer 

Si substrate Si substrate Si substrate 
a) b) c) 

Figure 2.5 Layer sequences typically employed for (a) pseudomorphic p-type MODQWs 
with Si1-xGex channel, (b) p-MODQWs with Ge-rich Si1-xGex (or pure Ge) channel on 
relaxed Si1-yGey buffer layer, and (c) n-MODQWs with Si channel on relaxed Si1-yGey 
buffer layer. 

A proper design of a MODQW structure requires a careful adjustment of the layer 

thicknesses, the compositions and strain states, and of the doping levels of the three active 

layers. In addition, the surface potential (often defined by a Schottky gate) and the 

thickness of the Si cap layer affect the electronic properties of the layers. Several 

interrelations between the layer parameters and also boundary conditions have to be met. 

The most basic design rule requires that under operational conditions all dopant atoms 

should be ionized, whereas all free carriers should be restricted to the channel region. This 
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condition defines the integral doping concentration for a given layer sequence and a 

defined surface potential, but still leaves ample design freedom for optimizing an 

MODQW structure for different purposes. High mobilities, for example, require thick 

spacer layers to reduce Coulomb scattering at the ionized impurities of the doping layer. 

Because of the linear potential drop across the (undoped) spacer, charge transfer from the 

supply layer into the channel becomes less and less efficient as the spacer is increased. The 

carrier transfer depends also to some extent on the volume concentration in the doping 

layer, which should be as high as possible for maximum efficiency. 

The interrelation between carrier density and mobility requires compromises, which 

are ruled by the application for the MODQW structure: while transport and 

magnetotransport experiments need mobilities as high as possible, device structures will 

rather be optimized with regard to channel conductivity, i.e. the product of carrier density 

and mobility. 

Layer design usually starts with selecting the compositions of the active layers and of 

the virtual substrate, which define the band offsets. Because of critical thickness limitations 

the range of useful compositions is quite restricted and achievable offsets are usually 

S350meV (see also section 2.2.1). The next input parameters are the surface potential and 

the desired density of free carriers in the channel. The required spacer width and the 

integral doping concentration are then obtained to good approximation by employing 

Boltzmann statistics and solving the Poisson equation for the layer sequence with built-in 

band offsets. This approach does not account correctly for quantum confinement in the 

channel, which requires a self-consistent solution of the Poisson and Schrodinger 

equations. Nevertheless, at higher temperatures, when several subbands are occupied in the 

well, the result of the simple Boltzmann approach agrees quite well with the self-consistent 

solution. 
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Technical reasons or growth-related restrictions can lead to modifications of the 

standard layer sequence discussed so far. Prominent examples are an inverted of the layer 

arrangement with doping on the substrate side and the channel on top, or a symmetric 

configuration with spacer and doping layers on either side of the channel. The inverse 

succession can be advantageous if the quality of the heterointerface depends on the order 

of deposition. This phenomenon occurs in most heterostructures and results either from 

segregation of one component (Ge in this case), or is related to the fact that growth 

morphologies are frozen in at the interface. Since strained SiGe and Ge layers tend to 3D 

growth (or even island growth in extreme cases, such as Ge on Si), a Si to SiGe interface is 

usually much more abrupt and laterally smoother than the inverse sequence. The main 

disadvantage of a sequence reversal is the increased background doping level in the 

channel, which is caused by dopants segregation or diffusion from the low-lying doping 

layer. Invert-doped heterostructures are not well suited for field-effect transistors either 

because of the increased distance between gate and doping layer, and also because of the 

higher demands concerning doping uniformity. 

The implementation of symmetric layer geometry can have two reasons. For one, the 

density of carriers in the channel can be doubled, which is useful for device applications 

that require low channel resistances rather than extremely high mobilities. A second reason 

is the implementation of a symmetric wave-function in an almost rectangular potential 

well, which minimizes wave-function penetration into the heterobarrier. For this purpose, 

the influence of a surface depletion layer has to be ruled out either by employing a thick 

cap layer, or by proper adjustment of the respective doping concentration in the two supply 

layers. 
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2.3 Transport properties of 2DHG formed in the Sit_xGex channel of 

p-type modulation doped heterostructures 

2.3.1 Relaxation time approximation theory of carriers transport 

Essentially all theoretical treatments of electron and hole transport in semiconductors 

are based upon a one-electron transport equation, which usually is the Boltzman transport 

equation. As with most transport equation, this equation determines the distribution 

function under the balanced application of the driving and dissipative forces. In the case of 

low electric fields, the transport is linear; that is, the current is a linear function of the 

electric field, with a constant conductivity independent of the field. The Fermi energy for 

concentration 1012cm-2 is about lOmeV and the thermal energy at room temperature is 

25meV, nearly all carriers are in the HH subband at room temperature and below. 

Therefore, we deal with essentially one subband transport. Linear transport theory assumes 

the energy band is parabolic and isotropic 

(2.15) 

where k is the wave vector and m* is the HH effective mass. 

The solution of the Boltzmann equation for an elastic scattering leads to the 

following expression for the inverse transport relaxation time [62]: 

(2.16) 

Here Ek is the energy of a carrier with wave vector k, q is the wave vector transferred in a 

scattering event, Mq is a scattering matrix element, and ¢ is the angle between k and q. The 

static dielectric function &(O,q) in the integrand in equation (2.16) results from the 

screening of the scattering potential by two-dimensional (2D) gas. The calculation of &(O,q) 

is reduced to the solution of electrostatic equations in the quantum well and substrate. The 
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result is expressed in terms of dimensionless polarization operator fl(O,q) and the 

scattering matrix element H( q) [63] 

E(O,q)=I+ qs .H(q).n(O,q) 
q 

(2.17) 

Here qs=(m*·(l)/(2.n·E'/io· h2
) is the screening parameter, e is the electron charge, and E is 

dielectric constant. The polarization operator describes the response of 2D gas on an 

external perturbation [63], and the screening matrix element is a form factor depending on 

the wave functions and electric-field distribution. For a square infinite quantum well it has 

the form 

The dimensionless polarization operator for zero transferred energy (Le. omitting all 

dynamic effects) [63] can be reduced to 

(2.19) 

Here the chemical potential l; is connected with the concentration ps and Fermi energy 

(2.20) 

Both EF and l; refer to hole energies. Equation (2.19) can be simplified in the case of low 

and high temperatures, 

n(o,q) = 1, (2.21) 

E I dx 
nco, q) = -k -~ T . J-(---E----,,-) ' 

B 0 exp q. (1- x2 ) 

4·kB ·T 

(2.22) 

The integration with respect to tP in equation (2.16) reduces it to a simpler form [64], [65] 
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T 7r .1;3 . k2 

( J2 J 4 k2 2 
o 1+ ~ .H(q).TI(O,q) ._q 

(2.23) 

It is worth noting that equation (2.23) is simplified at sufficiently high temperatures, when 

(qs·EF)/(kB·1)«q, the screening can be neglected. 

The relaxation time T, which determines the mobility of holes, is a combination of 

relaxation times from various physical scattering mechanisms taking place. The relaxation 

times from i scattering mechanisms are combined using Mathiessen' s rule, 

1 1 -=2:-
T j T j 

(2.24) 

which assumes that all the individual scattering mechanisms occur independently. T is then 

used in subsequent mobility calculations. 

The mobility is expressed as 

(2.25) 

In the case of low and high temperature equation (2.25) can be reduced to 

(2.26) 

e ODS E· T(E)dE 

JJ = m *.( k . T) 2 • (E)' 
B 0exp __ 

kB·T 

(2.27) 

2.3.2 Carriers scattering mechanisms 

Scattering does not occur in a perfectly periodic lattice where there are no forms of 

resistance. A carriers scattering happens as the result of a collision that abruptly changes 

the carriers motion after a particle has been, on average, traveling for a time To Each 

scattering mechanism has a certain dependence on the temperature. Below the major 
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scattering mechanisms, which limit the carrier transport properties 10 the SiGe 

heterosystem, are presented. 

2.3.2.1 Background impurity scattering 

Typically a semiconductor contains defects such as impurities and dislocations. The 

presence of ionized impurities in quantum well causes deviations in lattice periodicity. 

Such impurities provide and excess or deficit of local charges donating more electrons or 

holes for conduction effect where more carriers are scattered. 

For uniform background ionized impurity scattering the matrix element is [62] 

(2.28) 

where NB is the concentration of background impurities in the quantum well, L is the 

quantum well width and 

The background impurity scattering limited mobility is 

1 
/-LOI ex:: N .L 

a 

2.3.2.2 Remote impurity scattering 

(2.29) 

(2.30) 

A distinct advantage that may be realised using modulation-doped heterostructures is 

the reduction in the magnitude of ionised impurity scattering. This reduction is due to the 

spatial separation of the confined carrier gas from the ionised dopant impurity atoms. The 

charge associated with ionised impurity atoms result in local fluctuations of the periodic 

lattice potential, which is reducing carrier motion. 
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For remote impurity scattering the matrix element is [66] 

(2.31) 

where, NA is the concentration of impurities and form factor due to the distance Ls between 

the impurity layer and the carrier gas is 

The remote impurity scattering limited mobility is 

3/2 

II oc !!.L- . E 
rR/ N S 

A 

2.3.2.3 Interface-roughness scattering 

(2.32) 

(2.33) 

The interface roughness in quantum well is usually considered as a random 

modulation of the width of the quantum well, which changes the position of the subband 

levels [64]. The roughness is characterized by two parameters, the average height ~ in the 

growth direction and the correlation length A in the plane. Such an approach is justified 

only if ~ is much smaller than the width of the well while A is much larger than the width. 

The scattering matrix element is [62] 

(2.34) 

where mz is the effective mass of HH 1 subband in the z direction. 

In the case of large correlation length A»L, the main contribution to the integral in 

equation (2.23) comes from a region of q so small that the relaxation rate due to the 

interface-roughness scattering can be reduced to a simpler form. In this case H(q)=l, 

Il(O,q)= l-exp( -EFikB·1) and further simplification is possible for low temperatures when q 

in the integrand can be neglected compared to qs which is typically about kF 
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(2.35) 

The physical reason for the resulting dependence of the scattering rate on A and k is 

understandable. With the increase of the product A·k carriers "see" a smoother interface 

and scattering drops. 

Making use of equations (2.35) and (2.26) we can get a simple expression for the 

interface-roughness limited mobility at low temperatures 

(2.36) 

Another simple expression for J1IR can be obtained in the case of high temperatures such 

that A·qs·EF (kB'1)-I«l and the screening can be neglected. Then 

(2.37) 

and equation (2.27) gives 

(2.38) 

2.3.2.4 Alloy scattering 

Alloy scattering results from local fluctuations in the coulomb potential from alloying 

Ge atoms that dope the Si lattice. It is assumed that the Ge atoms are substituted randomly 

on the Si lattice sites. The fluctuations are temperature independent and thus the relaxation 

time is also temperature independent. 

For alloy scattering in a Sh-xGex alloy the matrix element is [62] 

1
M 12 = 3.E;,.aiiGe ·x·(l-x) 

q 4·L 
(2.39) 

where Ea/ is the energy associated with an alloy atom, aSiGe is the lattice constant and x is 

the Ge composition in the Sil_xGex alloy. The alloy scattering limited mobility is [63] 
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I1AL OC 2 2 3 m* ·u ·a. ·x·(l-x) aJ S,Ge 

(2.40) 

Scattering from alloying effect becomes more pronounced as x increases, reaching a 

maximum at x=0.5 in Sh-xGex. 

2.3.2.5 Acoustic-phonon scattering 

Scattering from lattice vibrations (phonons) induced by thermal effects, which limit 

the hole mobility at high temperatures, occurs in two forms - acoustic and optical 

phonons. For acoustic-phonon scattering the matrix element is [62] 

1 1
2 3·a2 ·k·T 

M - B 
q - 3 2 2· p./i ·u, ·L 

(2.41) 

where a is hydrostatic deformation potential, p is the density, u/ is the velocity of the 

longitudinal sound. 

At high temperature, kB . T » EF , where screening can be neglected the integration in 

equation (2.23) can be carried out analytically and for the acoustic-phonon relaxation rate 

we get 

(2.42) 

Equation (2.42) gives the following expression for the acoustic-phonon limited mobility 

2.e. p./i3 ·u2·L 
II - , 

rAP - 3 *2 2 k T ·m ·a· B· 

(2.43) 

The mobility rapidly decreases with increasing temperature. The acoustic-phonon 

scattering dominates other scattering processes at room temperature and above. 
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2.3.2.6 Optical-phonon scattering 

For optical-phonon scattering the relaxation time is [62] 

3 ·d; . m· 1 + H(E -Ii .w}e "7t •. T - = ---:---"----
P ·li2 . OJ • L . a . e"7t··T -1 SIGe 

1 
(2.44) 

where do is the optical deformation potential, Ii·w is the optical-phonon energy and 

H (E -Ii ·w) is the Heavyside step function taking the form of 

H(E-li·(j)} = {
I, 

0, 

2.3.2.7 Threading dislocations scattering 

D. Monroe and coworkers [67] considered the potential effect of additional scattering 

mechanisms. The most interesting ones are related to the relaxed buffer layer, which had 

obviously a dominant effect during the opening stages of SiiSiGe MODQW growth. The 

most evident detrimental influence of such a buffer is related to the density of threading 

dislocations, the reduction of which, as we know, was the major achievement of graded 

buffers. For a first estimate it was assumed that each threading dislocation contains a 

sufficiently high density of traps to pin the Fermi level at around midgap. This will result 

in a cylindrical depletion region in the 2D gas around each threading segment with a radius 

on the order of the 2D Debye length L2D. Treating scattering at the penetrating threading 

elements as classical hard-core scattering on NTD objects of diameter L2D, the contribution 

ofthe threadings alone to the mobility was given as [67] 

(2.45) 

Despite the relatively coarse assumptions the experimentally observed influence of the 

threading density is qualitatively well reproduced: for NTD~109cm-2, which is typically 

observed in constant-composition buffers, the mobility of2DEG was found to be limited to 
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about 20·106cm2;V-1·s-1 [67], whereas this mechanism is entirely negligible at threading 

densities of 106cm-2
, which can easily be achieved in well designed buffers. 

The second effect results from the long-range strain fields associated with the misfit 

dislocation segments located in the graded part of the buffer, or at the interface to the Si 

substrate in the case of a constant-composition buffer. It was assumed that the misfit-free 

buffer thickness LB2, which is basically identical to the width of the constant-composition 

part B2 of a graded buffer, filters out all short-range fluctuations smaller than LB2. Under 

these conditions the influences of inhomogeneous strain fields were found irrelevant for 

LBF 1 J,1m, but, because of the strong influence of the cut-off scattering wave vector, a 

thickness reduction of the dislocation free layer underneath the channel by a factor of ten 

was expected to contribute to the mobility-limiting mechanisms. 

2.3.3 Carriers transport in p-type modulation doped Sit-xGex!Sit-yGey 

heterostructures 

Since the band offset between a pseudomorphic Sit-xGex layer and cubic Si (or 

Sit_yGey) is almost exclusively restricted to the valence band, a layer sequence utilizing a 

Sit_xGex channel is the natural choice for the implementation of a p-type MODQW 

structure. Several groups have exploited this concept, most of them with the doping layer 

located above the channel to avoid background doping in the channel due to dopants 

segregation. Over the years a substantial number of data have been published, focusing on 

the electronic properties as a function of the layer parameters. The low-temperature hole 

mobilities showed a continuous increase, with the best values to date being close to 

20000cm2.y-l·s-l [68]. On first sight, this appears as an enhancement by a factor of six as 

compared to the very first such structures [60]. However, upon closer inspection it turns 

out that a significant part of this improvement is correlated with a recent trend toward a 

reduction of the Ge content to values below 15%, with the highest mobilities occurring at 
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around x=10%. Although these improved mobilities are certainly an important 

achievement with respect to a deeper understanding of the materials properties, it has to be 

mentioned that such layer sequences are not well suited for device applications, because 

the strongly reduced valence band offsets restrict the 2D carrier densities to the low 

101lcm-2 range. 

The failure to fabricate pseudomorphic Sil-xGex MODQWs with reasonable carrier 

densities and enhanced mobilities led several groups to the conclusion that pure Ge 

channels or at least Ge-rich channels with x>60% would be a more promising alternative. 

In either case, critical thickness considerations in connection with quantum confinement 

energies do not allow pseudomorphic growth on Si substrates. For an assessment of the 

ultimate performance some research groups employed Ge substrates [69], [70], but most of 

the investigations are based on virtual substrates with relaxed Sh-yGey buffer layers, 

similar to the ones employed for the n-channel MODQWs. 

In this respect, Ge-rich channels have a distinct advantage, since the final 

composition of the Sh-yGey buffer layer can be kept in the same range as for the n-type Si­

channel structures, i.e. at around 30% [71]. That means a common Sil_yGey buffer can be 

used for both types of MODQW, which greatly simplifies the complementary MODFET 

layer sequence. A disadvantage of this concept is certainly the alloyed channel, but it can 

be expected that the strain-induced mass reduction outweighs alloy scattering at 

compositions beyond the minimum of the (x'(l-x)rl, i.e. for x ~50%. 

For pure Ge channels Sh-yGey buffer layers with final compositions above 60% Ge 

are required. After the pioneering work of Murakami et al [69], who used constant­

composition buffers on a Ge substrate, the well tried linearly graded buffers were adapted 

and, after some frustrating attempts with constant growth temperatures Ts throughout 

buffer deposition, down-ramping of T s with increasing x was introduced, as has been 

mentioned in section 2.2.3. In a first approximation, the melting point of a Sh-xGex alloy at 
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a given composition x is frequently used as a scaling parameter for temperature-driven 

phenomena. Starting at 750C with pure Si, a simple estimate suggests a temperature of 

around 450C for the final deposition of pure Ge. Even lower temperatures are required in 

the case of strained Ge channels, as can be judged from a publication ofXie et al [72], who 

found 3D growth of the Ge channels even though temperature ramping provided layer-by­

layer growth of their relaxed SiGe buffers with final compositions between 60% and 70%. 

This result led the authors to an inverted MODQW design with remote doping located on 

the well-defined substrate side of the channel. Meanwhile, it has been demonstrated that 

3D growth in the Ge layer can ultimately be preserved at growth temperatures Ts as low as 

300C. But reduced crystal quality due to an enhanced nucleation of point defects may 

occur at such low growth temperatures. 

Although the number of publications on Ge or Ge-rich p-type MODQWs is still quite 

limited, the superior mobility behaviour of this concept is beyond any doubt. Despite the 

fact that the Ge-channel MODQWs are not yet optimized with respect to material quality, 

strain level in the channel, and spacer width, low temperature mobilities of 2DHG as high 

as 55000cm2.y-l·s-l have been achieved in Ge channel at 4.2K so far [72]. In the 

heterostructures with Sio.2Geo.8 channel, the highest room temperature mobility equal to 

1050 cm2.y-l·s-1was obtained by Ismail et al [71]. Also, room temperature mobility of 

1300 cm2·V-1·s-1 in the heterostructure with Ge channel have been reported, which has to 

be taken as a lower limit, since no corrections for a parallel channel have been made [47]. 

But even this lower limit approaches the best mobilities of n-channel MODQWs to within 

a factor of two, and means an improvement of at least a factor of five as compared to the 

best pseudomorphic Sh-xGex channel layer sequences on Si substrates. 

Further improvements are to be expected once the problem of fabricating Ge-rich 

virtual substrates has been overcome. These were so far grown by MBE, the inherently low 

growth rates of which make the deposition of a 6-10 J.1m thick relaxed buffer layer tedious. 
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Hence, it will be essential to fabricate high-quality virtual substrates by a high-throughput 

technique, such as CVD. MBE or UHV -CVD might then provide the precision control for 

the active MODQW layers with regard to layer thickness, composition, and doping profile. 

2.3.4 Carriers transport in magnetic field: Classical approach 

Electron motion in magnetic field has been studying for many years. The theory of 

this motion can be divided into two main parts: classical and quantum approaches. This 

separation is not strict. Some quantum effects of electron transport in magnetic fields can 

be good described in frames of the classical model. And, by all means, any quantum model 

use general classical principles and general solutions of electron motion in magnetic field. 

The development of modem electronic devices requires an accurate modelling and 

analysis of transport phenomena in semiconductor materials and low dimensional 

structures. The conventional and most general approach to the investigation and simulation 

of carrier transport in semiconductors used the semiclassical Boltzmann equation. On its 

basis usual transport characteristics of the materials can be calculated via continuum model 

of ensemble averaging or using the Monte Carlo method [73]. The last in particular can 

take into account explicitly both the band structure and the various scattering processes. 

This method permits to compute directly all the quantities relative to transport (such as 

distribution function, density of carriers, velocity, energy etc.), but at a cost of long 

computation times and stochastic noise in data. Therefore these approaches are complex 

and in their framework meaningful comparisons of experimental results with the 

theoretical predictions are difficult, especially for multi carrier systems (compound 

semiconductors, layered and device structures). In the last decades in order to circumvent 

the complexity of conventional approach new methods of transport characterization in 

semiconductor materials and structures was developed. The first approach in this area of 

investigations was the method of mobility spectrum analysis (MSA), which had been 
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proposed by Beck and Anderson [74], and was developed by Dziuba [75], Antoszewski 

[76], Vurgaftman [77] and Kiatgamolchai [78] as a useful technique for analyzing the 

galvanomagnetic phenomena. MSA is the transformation of the electrical conductivity 

tensor versus magnetic field into conductivity density versus mobility spectrum. This 

procedure is a new method of presentation and analyzing of carrier parameters instead of 

the commonly used parameters in the conventional transport approach: concentration, 

average mobility and Hall factor. It is worth to outline that MSA does not require any 

preliminary assumptions about the number of different types of carriers and this aspect is 

very important for transport phenomena analysis in semiconductor device structures. 

2.3.4.1 Mobility spectrum approach 

Mobility spectrum analysis is a multi-carrier characterization tool that employs the 

magnetic field dependent resistivity <Pxx(B» and Hall coefficient (RH(B». It is capable of 

identification of various groups of carriers in multi-layer semiconductor structures 

according to their different average mobilities, and hence different responses to the 

magnetic field. Using a set of experimental data points (B, fJxx{B), Rd..B», the 

magnetoconductivity tensor components O".u and O"xy can be obtained from relations: 

(2.46) 

(2.47) 

These tensor components are related to the mobility dependent conductivity density s(P) 

by the integral transforms: 

(2.48) 

(2.49) 
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which were derived from McClure's expression [79] by Beck and Anderson [74]. In their 

pioneering paper, mathematical procedures have been developed to solve equations (2.48) 

and (2.49), i.e. to obtain s{jJ) for any given measured set of data points which are usually 

discrete in magnetic field. However, because the number of data points are finite, it is 

impossible to determine s{jJ) uniquely. In fact, the proposed procedures can only provide 

an envelope of all possible conductivity density solutions. This envelope can be regarded 

as yielding the maximum conductivity at each mobility that the measured material might 

have. Nevertheless, the s{jJ) peaks in this envelope have been shown to provide good 

approximations to the mobility and carrier concentration of each carriers groups. 

This method of calculation has been applied to a number of different semiconductor 

materials both bulk and thin film, for example bulk-HgTe [80], thin film HgTe [81], 

HgCdTe [82], HgTe-CdTe superlattices [83], AIGaAslGaAs heterostructures [84], Si-o­

doped GaAs [85], InGaAslInP heterostructures [86], Si-o-doped InSb [87], InP on a semi­

insulating substrate [88], and SiGe/Si heterostructures [89]. 

Beck and Anderson argue that if s{jJ) can be solved accurately, rather than merely 

obtaining the envelope, it will provide all the information that can be possibly be extracted 

from the magnetoconductivity, which can be summarized as follows. 

• The conductivities of different carriers groups will be indicated by distinct peaks in 

s{jJ). 

• The broadening of each peak will indicate an energy dependence of the relaxation 

time and non-parabolic variation of energy with crystal momentum. 

• If the constant energy "surfaces" is anisotropic (i.e. nonspherical), the s{jJ) 

spectrum of a given group of carriers will contain several peaks which are 

harmonica of the mobility. 

• Constant energy "surfaces" with both concave and convex segments will result in 

both hole-like and electron-like terms in equation (2.49). 
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Subsequent developments in the mobility spectrum approach over the last 10 years have 

involved mathematical techniques which have gone some way towards meeting the goal of 

obtaining accurate values of s(jJ). 

Dziuba and Gorska [75], [90] have transformed equations (2.48) and (2.49) into the 

discrete forms 

(2.50) 

(2.51) 

where Si is a partial conductivity corresponding to the mobility Pi. N represents the number 

of mobilities which are arbitrarily defined to cover a wide range of likely mobilities of all 

carriers. It should be large enough so that a resultant set of partial conductivities Si is 

virtually quasi-continuous, and is equivalent to the conductivity density s(P). As a result, 

the term "mobility spectrum" usually refers to either a set of partial conductivities Si and 

mobilities Pi or a conductivity density s(P). Taking all data points into account, equations 

(2.50) and (2.51) constitute two systems of equations that are linear in Si. A set of partial 

conductivities Si is deduced by a simple iterative technique [75]. The plot of Si versus Pi 

oscillates around zero partial conductivity with the biggest positive partial conductivity 

occurring at the mobility corresponding to the actual average mobility of majority group of 

carriers in the material. The oscillation means that some of the partial conductivity is 

negative which is unphysical. An additional "smoothing procedure" has been proposed to 

minimize this effect but it was found that the negative partial conductivity couldn't be 

entirely suppressed while maintaining an acceptable fit to data. In this iterative technique, a 

set of mobility points Pi is arbitrarily chosen in the range B min -/ to Bmax -/ where B min and 

Bmax are the minimum and maximum measured magnetic fields. The number of mobility 
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points is then limited by the number of measured magnetic field points and the lowest 

mobility is set by the maximum magnetic field available. 

Antoszewski et al have developed an extended version of the iterative technique, 

which is known as the Quantitative Mobility Spectrum Analysis (QMSA) [76]. In QMSA, 

the Gauss-Seidel successive over relaxation iteration method is employed to give faster 

convergence and the partial conductivities are constrained to be nonnegative at all iteration 

steps. The mobility range has been extended to values of JI less than Bmax -/ by the 

extrapolation of experimental data to higher fields than the maximum measured magnetic 

field [91]. A higher number of mobility points are also obtained by spline interpolation 

between the experimental data points. Even though these procedures seem to overcome 

problems inherent in the iterative technique, the use of interpolation and (or) extrapolation 

of experimental data is questionable because there are several interpolation and 

extrapolation techniques available and the modification of original data prior to calculation 

is subject to investigator bias and error. 

An improved QMSA (I-QMSA) [77] has removed the limitation in the number of 

mobility points by not confining these to values JI,=B; -/. The range of mobilities and the 

number of mobility points are then independent of the range and the number of points of 

measured magnetic field. I-QMSA differs from the iterative technique and QMSA in that it 

minimizes the least square deviation of both the conductivity tensor and its derivative with 

respect to magnetic field. In addition, empirical procedures (two/three-point swapping and 

point elimination) for manipulating the mobility spectrum are introduced and shown 

improve the fits while smoothing the spectrum and making it "more physically 

reasonable". Despite these refinements, it must be said that empirical procedures are likely 

to be case-specific and are dependent on individual bias. 

46 



2.3.4.2 Maximum-entropy mobility spectrum analysis 

Recently Somchai Kiatgamolchai [78] has developed a totally new approach named 

Maximum-entropy mobility spectrum analysis (MEMSA). Unlike I-QMSA, it does not 

contain any empirical procedures and the mobility spectrum obtained by this new 

technique is smoother and more stable without the need for interpolation of experimental 

data. The strategy was to consider the mobility spectrum in a form of probability 

distribution of several events. The probability is proportional to the partial conductivity Si 

and each event is associated with a mobility Pi. From the information theory viewpoint, 

prior to the measurement, there are no measured data and the most probable distribution is 

justifiably an equal distribution among all events. As we start to obtain the first few data 

points, they allow us to adjust the probability distribution in such a way that the modified 

probability distribution produces a good fit to the measured data. However, at this early 

stage, there are not enough data points to produce a unique probability distribution because 

the number of data points is much less than the number of the events. Consequently, there 

are many feasible probability distributions that agree well with all the data points. 

Rationally, one would prefer to choose the probability distribution, which is maximally 

noncommittal with regard to unavailable (unmeasured) data. Examples of unavailable data 

are those between two adjacent measured data points on the magnetic field axis and data at 

higher magnetic fields than are available. Jaynes [92] had shown that the most likely 

probability distribution among feasible distributions could be found by assigning an 

"entropy" to each probability distribution and choosing the one with the highest entropy. 

Therefore, a new approach to mobility spectrum calculations is to continue a minimization 

of deviation of the fit from measured data with entropy maximization. 

By analogy with the entropy defined in information theory, for first time, define the 

entropy (H) of the mobility spectrum as 
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N 

H(s) = - LPi .In(Pi) 
i=1 

s. 
Pi=-' 

U o 

(2.52) 

(2.53) 

where s is a set of partial conductivities Si, Pi is a probability of Si, and 0"0 is the 

conductivity at zero magnetic field. Within this fonnalism, holes and electrons have 

nonnegative partial conductivities and their mobilities are positive and negative, 

respectively. Assuming that the resistivity and Hall coefficient are measured at M different 

magnetic fields, the summations of equations (2.50) and (2.51) can be written in a matrix 

form as 

K.p=O"'OI (2.54) 

(2.55) 

(2.56) 

where P is a set of probabilities Pi, i= 1 . .. N and j= 1 .. . M. The probabilities of mobility 

spectrum having maximum entropy is obtained from the method of Lagrangian multipliers 

[92] which gives 

M 

Pi = exp(-Au - LA /K j ;} (2.57) 
j=1 

where A; is a Lagrangian multiplier. Because L:l Pi = 1, Ao can be presented in tenns of 

other A.; as 

N M 

exp(Au) = Lexp(-LA /Kjj ) (2.58) 
i=1 j=1 

By substitution of equation (2.57) into (2.54) and using (2.58), one arrives at an implicit set 

of M nonlinear equations 
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(2.59) 

which have M unknown Lagrangian multipliers. 

Agmon et al [93] showed that these nonlinear equations could be solved by recasting 

the problem of determining the Lagrangian multipliers as a variational problem. The set of 

Lagrangian multipliers which satisfies equation (2.59) can be obtained indirectly by 

finding a minimum of a concave function 

(2.60) 

Using successive approximation [94], the maximum-entropy mobility spectrum is achieved 

by iteration of equation (2.57) and the following equation: 

A~ew =A~/d -a.(ul~1 -~ K ... P.] 
J J J £"jll 

1-1 

(2.61) 

where a is an adjustable parameter, until the set of probabilities Pi converges. 

The advantages of using the maximum-entropy approach are as follows 

• The partial conductivity is guaranteed to be nonnegative according to equations 

(2.53) and (2.57). 

• The number of mobility points can be higher than the number of magnetic field 

points. 

• A knowledge of the partial conductivity at mobility Pi does not necessitate a 

measurement at a field of B=Pi-1 and the range of mobilities can be extended to 

much higher or lower values than B min- J and Bmox -J respectively. 
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2.3.5 Carriers transport in magnetic field: Quantum approach 

As in studies of 3D carriers, transport measurements under strong magnetic fields (in 

the so-called quantum regime, mc·P>l) provide a vast amount of information about the 

parameters of 2D carrier gas (2DCG). 

2.3.5.1 2D carriers in magnetic field 

In the strong vertical magnetic field Bz the carriers can make complete orbits around 

the magnetic flux lines. The time taken to complete one orbit is [95] 

2·n·m* 
t=---

e·B 

and the angular frequency of the motion is 

2·n e·B 
m=-=-

e t m* 

which is the cyclotron frequency. 

Combining this with equation (2.26) then yields the important relation 

(2.62) 

(2.63) 

(2.64) 

If carriers are scattered in a time short compared with t it makes little sense to talk about 

cyclotron orbits and we adopt as a suitable criterion the condition that the electron sweeps 

out at least one radian before being scattered. From equations (2.62) and (2.63) this can be 

expressed as lVc·T~l and, in practice, it is usual to define a high and low magnetic fields 

conditions according to whether 

me . T = f.J. B » 1 (High magnetic field) (2.65) 

me . T = f.J . B « I (Low magnetic field) (2.66) 

In the high magnetic field limit, where carriers complete many orbits before being 

scattered, the circular motion can be represented as equivalent to two linear harmonic 

oscillators at right angles (1t12 out of phase with one another) both characterized by an 
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angular frequency lVc. In high magnetic fields when Ii· (j) c> k B • T and lVc·t> 1 the motion 

for this becomes quantized into discrete energy levels. These levels are called the Landau 

levels and given by 

E = Ii . (j) • (n +.!.) 
/I c 2 n = 0,1,2, ... (2.67) 

Thus the size of the orbit is also quantized. In the lowest level equation (2.67) gives the 

radial velocity and this allows to find the Larmor radius, more commonly called the 

magnetic length IB, 

(2.68) 

This is the quantized radius of the harmonic oscillator and is the minimum radius, as 

the higher energy states involve a large energy, which converts to a larger radial velocity 

and then to a larger radius. As the magnetic field is raised, the radius of the harmonic 

oscillator orbit is reduced and the radial velocity is increased. In fact we can define the 

cyclotron radius at the Fermi surface as 

2 Ii·k ~ r =k ·r = __ F =1 . 2'n +1 
c FL H B max e· 

(2.69) 

where nrnax is the highest occupied Landau level (that in which the Fermi level resides). 

For a 2DCG structure with magnetic field Hz normal to the interface, carriers are also 

constrained (electrostatically) in the vertical (z) direction and the Landau levels are, 

therefore, fully quantized into discrete levels (rather than magnetic sub-bands). Including 

spin splitting, the energies of these states are given by [95] 

(2.70) 

where s is the spin, g is the Lande g-factor and J.JB is the Bohr magneton. The cyclotron and 

spin energy terms are comparable so the net result is a ladder of somewhat unequally 



spaced states whose energies are proportional to Bz• The density of states associated with 

each level is 

1 e·B 
n2D = =--

2'1!'r£ h 
(2.71) 

From equation (2.71) is follows that the number of levels occupied by carriers is 

(2.72) 

so, as Bz is increased, v decreases and there is a series of values of Bz for which v takes 

integral values and for which the conductivity, therefore, goes to zero. 

2.3.5.2 Shubnikov-de Haas effect 

The Shubnikov-de Haas effect is essentially quantum mechanical phenomenon, 

which occurs at high magnetic fields - i.e. when the valence (or conduction) band states 

are magnetically quantized. It is manifest as a large oscillation in longitudinal 

magnetoresistance, which is periodic in reciprocal magnetic field. Three conditions are 

necessary for its observation 

• The hole (or electron) distribution be degenerate: EF - Ev »kB • T 

• The magnetic field B be large enough for Landau level quantization: p. B » 1 

• The temperature be low enough that thermally induced transitions between Landau 

levels are negligible: Ii· (j)e » kB . T 

These conditions clearly restrict the range of applications, which explains why it has 

not previously been developed as a routine characterization technique; however it is ideally 

suited to measurements on 2DCG samples at low temperatures and is now widely used for 

measuring the sheet carrier density and effective mass. 
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Theory model can fully describe the picture of SdH effect and allows to build 

dependences Pxx(B) and PxY(B) is rather complicated. It was derived in [63] and [96]. The 

more exact expression is [96] 

(2.73) 

where Pxx and PxY are longitudinal and transverse resistivity respectively, CTo is the 

conductivity at zero magnetic field, g is DOS (density of states) and Ilg is oscillatory part 

of DOS (depends on temperature), s is Fourier harmonic index. As can be seen from 

equations (2.73), the result is presented using the sum of Fourier harmonics. Increase the 

number of used harmonics leads to adjusting the shape of peaks what is important for low 

temperatures, where peak has Lorentzian-like shape instead of sin-like shape at high 

temperatures. The amplitude of SdH oscillations and their period are independent of the 

number of the used harmonics. Thus, most of authors used to use one harmonic approach 

[63], [97] 

(2.74) 

The SdH part of the longitudinal resistance can be modeled as a product of 3 units 
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The first term is written as cos in (2.75) gives the oscillations of Ax with period 

proportional to liB. 2DCG concentration comes directly from this period. The second term 

gives exponential growth of the oscillations amplitude with the increase of the magnetic 

field. This growth also depends on the effective mass and relaxation time. The third term in 

(2.75) is very interesting. The hyperbolic sinus has about the same power as exponent in 

the second term. Thus, the second term has big influence on the amplitude of the 

oscillations. The third term depends on three parameters: effective mass, magnetic field 

and temperature. Very important is its temperature dependence. This dependence allows to 

change the value of the third term (the amplitude of SdH oscillations) vary temperature 

only. Note that varying the temperature one does not change anything else (e.g. position of 

peaks). This phenomenon can be used to find the cyclotron effective mass using SdH 

measurements. 

2.3.5.3 Quantum Hall Effect 

The quantum Hall effect was first discovered in silicon metal oxide (MOS) 

semiconductor transistors. [98]. Klaus von Klitzing was awarded the Nobel Prize for this 

discovery. The effect leads to quantized resistance, which can be used to provide a much 

better measurement of fine structure constant used in quantum field theory. When an 

integral number of Landau levels (counting spin splitting levels separately) are filled, the 

Hall resistance Pxy is a plateau and its value is given accurately by 



h 1 
Pxy =--2 =-·258130, 

v·e v 
v = 1,2,3, ... 

(2.76) 

Pxx ~O 

This quantization is universal and independent of all microscopic details such as the 

type of semiconductor material, the purity of the sample, the precise value of the magnetic 

field, and etc. As a result, nowadays the effect is used to maintain the standard of electrical 

resistance by metrology laboratories around the world. 
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3. Experimental methods 

3.1 Solid source molecular beam epitaxy 

Molecular beam epitaxy (MBE) provides a powerful tool for basic research into the 

physics and device potential of modem semiconductor materials. The control capability 

over the growth process particularly allows many considerations of both the material 

system and future devices to be fine tuned and investigated. 

The growth of heterostructures for present research was performed using a VG 

Semicon V90S SS-MBE system at Warwick University (Coventry, UK) and "home-made" 

SS-MBE system at DaimlerChrysler AG Research and Technology (Ulm, Germany). 

Further, the author will describe the VG Semicon V90S system. The system and its 

components are manufactured from either grade 316 stainless steel or from refractory 

metals. Typically, base pressures of 1·1 O-llmbar were achieved after a week long bake out 

at 200C. Background pressures of approximately 1· lO-8mbar were sustained during 

epitaxial growth and residual gas analysis was performed throughout growth using mass 

spectrometry techniques. The MBE system incorporated a load-lock wafer transfer 

chamber, allowing base pressures within the growth chamber to be maintained during 

wafer loading and unloading. Ultra high vacuum (UHV) pumping was achieved using a 

combination of turbo pumps, getter-ion pumps, titanium sublimation pumps and liquid 

nitrogen cryopanels. 

The growth of p-type modulation doped heterostructures was performed on clean 

Si(OOl) substrates or Sil-yGeyfSi(OOI) virtual substrates of 4 inch diameter. Prior to growth 

some of substrates were pre-cleaned using a modified RCA wet chemical clean. Such 

cleans leave a residual surface oxide layer, typically of thickness <1.5nm. The oxide results 

in a passivated Si surface and was evaporated within the growth chamber by briefly 

heating the wafer to 800-860C immediately prior to MBE growth, whereby the surface 

oxide desorbs, leaving a clean Si surface. 
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Substrates were loaded into the V90S system via the load-lock. During the growth. 

substrates were rotated at approximately 20-60rpm so as to ensure temperature and growth 

rate uniformity across the whole wafer. Radiative substrate heating was performed using a 

graphite-heating element and temperature measurements were performed using an optical 

pyrometer operating at an infrared wavelength of 1.1 J,lm. In this manner substrate 

temperatures were determined to within a minimum absolute error of ±2SC. with a 

reproducibility of ±SC. Optical pyrometric thermometry has the distinct advantage of being 

an ex-situ. non-contact method. however at substrate temperatures below approximately 

SOOC the method is deemed unreliable due to the opacity of Si to infrared radiation at such 

temperatures. Growth temperatures below SOOC were achieved by extrapolation of the 

heater power curve and resulted in an absolute substrate temperature error of 

approximately ±40C. 

Si and Ge fluxes were established using separated electron beam evaporation sources 

(e-guns) from solid source Si and Ge charges. Heated tungsten filaments. biased at high 

voltages. were used to produce an electron beam (e-beam) via thermionic emission. The e­

beam was deflected through 270°. using an electromagnetic coil. and directed onto the 

solid source charges. The incident e-beam flux resulted in the heating and subsequent 

evaporation of the Si and Ge charges. Both charges were water cooled and shielded from 

the copper hearths using Si crucibles. In this manner. any possible electron beam 

evaporation of copper contaminants was avoided. At the beginning of every growth series. 

calibration samples (SilSi1-xGex supedattices) were characterized. using double angle x­

ray diffractometry to determine Sh-xGex alloy compositions. 

Boron doping was achieved by the co-evaporation of elemental Boron from a 

resistively heated graphite crucible. High purity graphite was used and crucible 

temperatures in excess of 2200C were obtainable. Using such a method. boron doping of 

1x102ocm-3 were readily attainable. Furthermore, carbon background contamination from 
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the crucible was below the detection limits of secondary ion mass spectrometry (SIMS) 

techniques (approximately IxlO17cm-3
). The Boron flux rate was maintained using a 

constant current source, calibrated against control samples, and allowed doping 

reproducibility of approximately 20%. In all cases, growth rates, epilayer compositions and 

doping interrupts were achieved using PC-computer controlled shutters. 

For a more detailed description of SiGe MBE growth technique and procedure the 

reader is referred to the book of Robert Hull and John C. Bean [I]. 

3.2 Transmission electron microscopy 

Transmission electron microscopy (TEM) is a technique of characterizing materials 

down to the atomic limits. Cross-sectional transmission electron microscopy (XTEM) was 

performed on numerous heterostructures to determine the structural integrity of the 

epilayers and their thicknesses. In particular, the technique was used to determine the 

dislocations microstructure of relaxed epilayers. 

Firstly, cross sectional specimens were prepared from wafer samples by cleaving 

orthogonal <110> directions to an approximate sample area of Ixlcm2. Generally, two 

specimens of each wafer were cleaved and the adjacent epilayers glued together using 

Araldite at a temperature of 80C. The sample was then mounted between two Si support 

blocks (glued to the back of the original Si growth wafer), again using warm Araldite, and 

the sandwiched specimen clamped in a strong vice for approximately 24 hours so as to 

allow the glue to cure completely. The use of two adjacent epilayers increased the 

probability of successfully thinning the region of epilayer of interest. Also, great care was 

taken to ensure that all three glued interfaces were as thin as possible and that no 

particulates were sandwiched within the glue layers of the specimen. 

The specimen was then mounted on a glass slide using melted wax and mechanically 

polished on one side using a successively finer grit size. A smooth, highly polished mirror 
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surface was achieved by polishing the ground sample, firstly using a 6j.tm diamond grit 

suspension followed by a light 1 j.tm final polish. 

3mm copper grids were then carefully glued onto the polished specimen so as to be 

central along region of interest. Again, the glue was allowed to cure for approximately 12-

24 hours. 

The specimen was then carefully removed from the glass slide by dissolving the wax 

in warm xylene. Using an identical method, the polished side of the sample, together with 

the mounted copper grids, was then mounted on a glass slide again using melted wax and 

mechanically thinned to a thickness of approximately 30-50j.tm. Again, a successively finer 

grit size was used so as to ensure a smooth surface was obtained. A smooth mirror finish 

was then obtained by polishing in a 6j.tm, followed by a 1 j.tm, diamond suspension. The 

thinned specimen surrounding the copper disk was then carefully chipped away using a 

sharp scalpel. 

Finally, the thinned specimen, together with the copper grids, was removed from the 

glass slide by dissolving the wax in xylene followed by a warm isopropanol clean. 

In order to produce thinned samples, transparent to a high-energy electron beam, the 

specimens were then milled in an argon ion beam until just perforated. The ion milling was 

performed at a base pressure of approximately lxlO-6 mbar, rising to approximately 6xlO-s 

mbar with the introduction of the argon gas. An accelerating potential of 5ke V and a beam 

current of 4mA were used during thinning. For XTEM specimens ion milling was 

performed simultaneously on both the front and backside of the specimen, with the 

incident ion beams at an angle of approximately 650 to the specimen normal. In addition, in 

order to achieve uniform thinning the samples were rotated at 1 r.p.m. during milling. 

Typically, ion beam thinning times varied from 2 hours to 24 hours, depending on the 

original specimen thickness. 
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Specimens were then characterised using a JEOL JEM-2000fx transmission electron 

microscope, operating at an accelerating voltage of 200ke V. 

For a more detailed description of Transmission Electron Microscopy the reader is 

referred to the book of David B. Williams and C. Barry Carter [2]. 

3.3 Secondary ion mass spectrometry 

The Si and Ge profiles of the heterostructures epilayers, together with Boron remote 

impurity doping, were determined using Secondary Ion Mass Spectrometry (SIMS). The 

SIMS technique employs a primary ion beam with energies in the range of 500eV to 

30KeV to bombard the sample surface under UHV. This causes sputtering of the particles 

from the sample surface as well as incorporation of the incident ions. Some of the sputtered 

particles are in the form of secondary ions, which are extracted into mass spectrometer and 

separated according to their mass to charge ratio. Primary ions raster the sample surface in 

a very controlled way causing a crater the size of which is generally in the range 5x5J,lm2 to 

500x500J,lm2
• The counts of one or more mass peaks as a function of bombardment time 

are monitored. In order to obtain a dopant concentration-depth profile, counts are 

converted into concentration by running standards (usually ion implanted material) and, 

erosion time is converted into depth after measuring the crater with a surface profilemeter 

by assuming a constant erosion rate. 

SIMS measurements were done in the EVA 2000 machine at Warwick University. 

The investigations were carried out using primary beam of O2+ ions, accelerated to 500e V 

and 1000eV, and normal and 20° angels of incidence respectively. The base pressure of the 

samples chamber was typically 1·10-9mbar. 

For a full description of SIMS the reader is referred to the book of A. Beninghoven et 

al [3]. 
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3.4 Photoluminescence spectroscopy 

The photoluminescence (PL) is the technique in which, incident laser radiation, 

which is usually of significantly higher energy than fundamental bandgap Eg, is focused 

onto the sample, exciting carriers high up into the electronic bands. Due to the fact that 

thermalization processes, such as phonon or impurity scattering, occur on a much shorter 

timescale than recombination processes (typically 1O-13
S compared with 10- lOs), these 

carriers rapidly relax to the band edges. At low temperatures, the Coulombic interaction 

between electrons and holes leads to the formation of excitons, and subsequent 

recombination leads to the emission of photons. These are collected and imaged onto the 

entrance slit of a spectrometer, and their spectral energy distribution measured. 

Although PL provides information on the band structure of the sample, results are 

complicated by the short timescale of thermalization processes, which mean that carriers 

always recombine from the lowest point of the bands. Therefore the regions of lower 

carrier confinement produced by fluctuations in the layer widths, or other disorder­

activated effects, dominate the recombination process, even though the density of these 

states may be small. 

Photoluminescence spectroscopy measurements were carried out in Clarendon 

Laboratory, University of Oxford, UK. All samples were cooled down to 5.5K and 

647.1 nm line of a Kr + ion laser was used. The laser light power was 60m W. 

It is necessary to note, the technique is non-destructive and the measurements were 

performed on the same samples (Hall-bars and Van der Pauw cross) used for 

magnetotransport characterization. 

For a more detailed description of photoluminescence spectroscopy the reader is 

referred to the book of Peter Y. Yu and Manuel Cardona [4]. 
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3.S Raman spectroscopy 

Inelastic light scattering by phonons has been used for several decades to obtain 

information about the electronic and vibrational states of semiconductors. The technique is 

performed in similar fashion to PL, with an intense laser source focused onto the sample 

and the scattered light collected and analysed. However, since Raman signals are generally 

very weak, perhaps as small as 20 detected events per second compared with 1014 incident 

photons, the optical system has to be highly efficient. Given that the Raman signal is 

usually within SOO wavenumbers (cm- I
) of the laser, this requires a spectrometer with very 

good stray light rejection, and very high efficiency. 

Raman is an inelastic light scattering process. Incident photons either create (Stockes 

scattering) or annihilate (anti-Stokes) an elementary excitation of the crystal structure. 

These excitations are phonons, though anything capable of producing a fluctuation in the 

dielectric susceptibility of the material can theoretically produce scatter [4]. The process 

conserves both energy and momentum, and so for an incident photon of energy h· wL and 

wavevector kL' a scattered photon of h· Ws and ks, and a phonon of h· n and q, we have 

(3.1) 

(3.2) 

where the - (+) refers to Stokes (anti-Stokes) scattering. Only Stokes scattering (phonon 

creation) is considered in this thesis. The energy of the created phonons can be determined 

through an accurate knowledge of the laser energy, and measurement of the scattered 

photon energy. whereas the phonon wavevector is fixed by the scattering geometry. In 

opaque semiconductors most experiments are performed in backscattering (kL==-ks), which 

results in a phonon wavevector given by 

(3.3) 

6S 



where ,., is the refractive index of the material and AL (-500nm) the incident laser 

wavelength. 

Raman spectroscopy measurements were carried out in Clarendon Laboratory, 

University of Oxford, UK. The 457.9nm, 476.5nm, 488nm, 514.5nm and 528.7nm lines of 

an At ion laser were used to obtain Raman spectra containing information about buried 

layers of heterostructures allocated at various depth from the surface. The laser light power 

was 300mW and the spectral resolution --o.3cm-l. The size of focused spot was varied 

from 3J.1m to 10J.1m. which depended from the quality of the sample surface. The Raman 

measurements were carried out at 293K and 12K in a backscattering configuration. Further 

the Raman spectra measured in optical phonon range were analyzed and information about 

state of strain in the Sil-xGex and Si1-yGey layers was estimated. Also, the Ge composition 

in the Si l-yGey layers was obtained. 

In particular, the technique is non-destructive and the measurements were performed 

on the same samples (Hall-bars and Vander Pauw cross) used for magnetotransport 

characterization. 

For a more detailed description of Raman spectroscopy the reader is referred to the 

book of Peter Y. Yu and Manuel Cardona [4]. 

3.6 Scanning white-light interferometry 

The white-light interferometers allow fast and noncontact semiconductor materials 

surface analysis and surface profiling with high accuracy. The scanning white-light 

interferometry is a traditional technique in which a pattern of bright and dark lines (fringes) 

result from an optical path difference between a reference and a sample beam. The 

mechanism is simple. Incoming light is split inside an interferometer, one beam going to an 

internal reference surface and the other to investigated sample. After reflection, the beams 
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recombine inside the interferometer, undergoing constructive and destructive interference 

and producing the light and dark fringe pattern. 

The surface roughness measurements ofSit-xGex! Sit_yGey heterostructures were done 

using Zygo NewView 5000 scanning white-light interferometry system at Warwick 

University. The system's vertical resolution is O.lnm and lateral resolution is from 0.62 to 

1l.8~ (objective dependent). In the NewView 5000, a precision vertical scanning 

transducer and camera together generate a three-dimensional interferogram of the surface, 

processed by the computer and transformed by frequency domain analysis resulting in a 

quantitative 3-D image. 

For detailed description of scanning white-light interferometry the reader is referred 

to the work ofL. Deck. and P. Degroot [5]. 

3.7 Devices fabrication for magnetotransport measurements 

3.7.1 Van der Pauw device 

The standard techniques for the resistivity and Hall coefficient measurements of 

semiconductor materials at different temperatures were proposed by Van der Pauw [6]. 

The recommended shape was a "clover-leaf' shape where the contact influences are 

minimal. The Greek-cross shape was used in the present work because it was much simpler 

to make and the error in measurements of V.u and Vxy were small «0.5%) for a sample 

width less than half of the length [7]. From the starting wafer, the sample is cleaved by 

diamond-pen into a small square (0.5xO.5cm2
). Nitrogen gas is used to remove any small 

particles on the both sides of the sample. Ohmic contacts to cleaved samples were prepared 

by the sputtering of Aluminium dots through a 1 mm in diameter shadow mask, to a 

thickness of 500nm into an "ION TECH Microvac 350" magnetron sputterer, followed by 

a sinter in furnace at 420C for 10-30 minutes in a flow Nitrogen ambient. The time is 

varied due to the depth of the channel bellow the surface, to achieve ohmic contacts. Black 
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wax is subsequently painted onto the surface in the shape of a cross having an aluminium 

contact at each end. The wax was allowed to dry and the cross defined by etching the 

exposed region with a HN03:HF(50%):C2~02 in the volume ratio 75:8: 17 mixture. An 

etch depth of approximately 1-4J.U11 (depending on the thickness of the heterostructure) was 

used so as to ensure no parasitic electrical measurements were obtained from the 

underlying dislocation network of the VS region. Finally, the black wax was then removed 

by xylene and the sample was rinsed thoroughly in deionised water. 

In addition, the technique is particularly useful in that no lithographic stages are 

required. 

3.7.2 Han bar devices 

The Hall-bar is more favorable than a Van der Pauw device for the magnetic-field 

dependence measurements because its geometry is much simpler to analyze and the latter 

requires the calculation of the f factor. The geometry of Hall bar have to be designed in 

such a way that current flow is uniform within the measuring region and there is minimal 

current passing through the Hall contacts. The design was done in accordance with the 

published ASTM standard [8]. 

The fabrication procedure is quite similar to that for the Van der Pauw device, except 

that the black wax is replaced by a standard photolithography procedure. This requires 

well-designed masks and a mask aligner. 

In this research two types of Hall-bars fabricated at Warwick Universty (Coventry, 

UK) and at DaimlerChrysler AG Research and Technology (Ulm, Germany) were used. 

The first one was fabricated by wet chemical etching, and ohmic contacts were formed by 

sputtering of AI (500nm) followed by alloying at 420C in N2 ambient for 1O-30min. 

Typical sizes of Hall-bars were 1700 Ilm in channel length and 500 J.1ffi in width, with a 

4400 J.1ffi separation between current-source probes. The second type of Hall-bars was 
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fabricated by dry etching in SFt/02 plasma and ohmic contacts were formed by 

evaporation of PtI Au (20nm1200nm) followed by alloying at 290C in N2 ambient for 30s. 

Typical sizes of these Hall-bars were 315J.Lm in channel length and 54J.Lm in width, with a 

535J.Lm separation between current-source probes. 

As soon as Hall-bars were fabricated they were glued into a chip package and sample 

contacts were connected to the gold pads of the chip package by ball-bonding of gold 

wires. 

3.8 Cryostats equipment and operations 

3.8.1 Closed-cycle cryostat system (9-300K) 

The 9-300K temperature dependences of Hall mobility and sheet carrier density of p­

type MOD Sit-xGe,/Sit-yGey heterostructures were obtained by using closed-cycle cryostat 

system. The closed-cycle cryostat was built by "Air Products". After the sample mounted, 

the pressure is reduced to 10's mbar to provide a good thermal shield. The temperature of 

the sample is reduced by means of the Helium compressor to a base temperature of 9K 

before starting the resistivity and Hall measurements. High-pressure helium, supplied by 

the compressor at -31Opsi, entered the expander module where it was cooled to the 

refrigeration temperature. The work done by the high-pressure gas expansion, as it left the 

expander matrix as the much lower pressure of -85psi, caused the gas temperature to drop 

and provided refrigeration. The refrigeration cycle was repeated sixty times per minute 

causing rapid cooling of the copper expander assembly. To increase the temperature, a 

metal film heater is used and the temperature monitored with a Si-diode. The temperature 

was maintained stable within ±O.5K at all temperatures between 9K and 300K by "Lake 

Shore" temperature controller. The data were obtained in the dark beginning at low 

temperature. The "EG&G Instruments, Model 5209" lock-in amplifier acts both as an A.C. 

voltage source and phase sensitive voltage detector. A signal frequency of 7Hz was used to 
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avoid the main power supply frequency of 50 Hz. The current to the sample was limited by 

a series resistor of I-I OMO and the typical current supplied is 0.1-1 J.IA. The higher supply 

current could heat up the sample while the lower one will reduce the Hall voltage, for a 

given magnetic field of0.4-1.2T, to below the measurable level of the lock-in amplifier. 

3.8.2 Cryomagnedc system (O.3S-300K) 

Measurements of the magnetic-field dependence of magnetoresistance and Hall 

resistance were carried out in an Oxford Instruments 3He cryomagnetic system with a base 

temperature of 0.35 K. Magnetic fields up to 11 T were generated by a superconducting 

solenoid submerged in liquid 4He. The magnetic field is generated by passing a D.C. 

current through the superconducting coil, which can be swept, continuously to 11 T by 

supplying a current of 91.96A. At higher currents, the coil will stop being a 

superconductor, consequently Joule heating happens, a process known as "quenching", and 

it will boil of all liquid 4He. 

Three lock-in amplifiers were used to measure the longitudinal voltage (V,u), Hall 

voltage (Vxy), and current voltage simultaneously while the magnetic field is continuously 

swept. The signal from latter lock-in amplifier is used as a reference signal for another two 

lock-in amplifiers and also as the current supply to the sample. The current limited series 

resistance can be changed to provide the supply current between 10-3000nA. Because the 

magnetic field is changed continuously and the lock-in amplifier has a time delay, 

hysteresis of resistivity and Hall resistance can occur which can be removed by averaging 

the up and down sweeping signal. 

O.3S-1.6K temperatures operation 

After the standard preparation of the cryostat and the overnight cooling, the liquid 

4He from the main bath is drawn into the I K pot and pumped continuously to lower the 
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sample temperature down to around 1.3-1.6 K. During this pumping process, the 

temperature of the sorb is also controlled to be around 50-60K by means of resistive coil 

heating and liquid 4He flow through the sorb heat exchanger pipe. Then the 3He gas, which 

is kept in a dump vessel, is allowed into the sample space. Upon reaching the 1K pot 

region, 3He gas starts to condense and its pressure drops. Then, the sorb temperature is 

gradually decreased manually. The sorb contains a charcoal, which acts as a pump when it 

is cooled down below 35 K. As the sorb temperature decreases below this temperature, the 

sorb starts to pump the liquid 3He and this process lowers the temperature of the sample, 

which is now submerged under this liquid, to the lowest temperature of O.35K. The higher 

temperatures can be achieved by increasing the sorb temperature that causes less pumping 

of liquid 3He. The sample temperature was read from a Ge resistance thermometer ("Lake 

Shore Cryotronics"), calibrated in the range O.3-9K, when in a stable condition and in the 

absence of a magnetic field. In Shubnikov-de Haas experiments temperature measurements 

were taken at the start and finish of the run to check the stability and were averaged. 

10-300K temperatures operation 

This cryostat was originally designed for the low-temperature (O.35-70K) 

measurements, which has a very poor heat sink due to the use of a fiber glass insert for the 

sample holder. This means that only the gas inside the sample space will act as a heat 

transfer medium, which is by far less stable than a standard metal medium. To achieve the 

high temperature measurement with sufficient temperature stability, the following work­

around solutions were developed without modifying the cryostat. A heater wire and a 

"Lakeshore" capacitance sensor (CS-500) were installed onto the sample holder. This 

sensor has a very low magnetic-field dependence and high sensitivity especially at 77-

300K. The "Lakeshore" temperature controller (CA-9ICA) was used in conjunction with 

this sensor. To achieve a stable temperature below 30K, the I K pot was pumped with an 
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only slightly opened pumping-valve together with the use of the sample heater. 

Temperature control is more difficult than that at higher temperature because the 

sensitivity of the capacitance sensor is comparatively lower. To obtain stable temperatures 

higher than 30K but less than IS0K, only the sample heater is used. For higher 

temperatures, the sorb temperature is controlled to be around SO-60K so that the 

accumulating heat at the top of the insert can be drawn out effectively. The temperature is 

measured using a silicon diode thermometer (Institute of Cryogenic, Southampton 

University) calibrated in the range l.S-300K with an uncertainty of ±30mK. The optimum 

operation was achieved with the temperature stability of ±O.SK for at least 1 hour at all 

temperatures (1 0-300K). 

3.9 Resistivity and Han measurements 

As discussed earlier, carrier concentration (Ps) and carrier mobility (P) are two key 

parameters, which govern the transport and electrical properties of semiconductor. Both 

parameters are usually determined by using resistivity and Hall effect measurements. 

The Hall effect was discovered by Edwin H. Hall in 1879. When a magnetic field is 

applied at right angle to the direction of current flow, an electric field is set up in a 

direction perpendicular to both the direction of the current and the magnetic field. 

Resistivity and Hall effect measurements consist of the measurements of the 

longitudinal (Vxx) and transverse (Hall) (V.xy) voltages as a function of applied current (I) 

and perpendicular magnetic field (Bz). The measurements and calculations of resistivity 

and Hall coefficient depend on the sample geometry. In this researched were used Hall­

bars and Vander Pauw crosses. 
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3.9.1 Van der Pauw device 

a) b) 

Figure 3.1 Van der Pauw cross sample: a) resistivity measurements b) Hall effect 
measurements. 

For Van der Pauw cross sample geometry the longitudinal voltage was measured in 

four different configurations (Figure 3.1 a). The resistivity can be calculated from: 

1!·d V p=_.--1i..j 
In2 I 

(3.4) 

where VR is an average voltage of V xx, I is the current, and d is the thickness of the 

measured sample. d is usually unknown but conventionally set to unity and the resistivity 

is therefore the sheet resistivity. The correction factor/is geometry-dependent that is found 

to be close to unity due to the symmetry in the cross sample. The Hall voltage was 

measured in four different configurations (Figure 3.1 b); two configurations for each 

magnetic field polarity. The Hall coefficient can then be calculated from: 

(3 .5) 

where V H is an average Hall voltage of V xy and B is the applied magnetic field. Using 

equations (3.4) and (3.5) the sheet carrier density (Ps) and Hall carrier mobility (j.JH) for one 

type of carriers can be obtained from: 
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3.9.2 Hall-bar device 

a) 

[ 1-----

1 
PS=-R 

H· e 

R 
/I - ---1:L 
rH -

p 

b) 

Figure 3.2 Hall-bar sample: a) resistivity measurements b) Hall effect measurements. 

(3.6) 

(3.7) 

For Hall-bar sample geometry (Figure 3.2) the resistivity as a function of magnetic 

field can be calculated as 

Vxx w p = _.-
I I 

(3.8) 

where wll is the width to length ratio of the channel. The Hall coefficient is calculated 

according to equation. 

1 Vxy 
R = -.­

H B I (3.9) 

Using equations (3.8) and (3.9) the sheet carrier density (Ps) and Hall carrier mobility (PH) 

at given temperature for one type of carriers can be obtained according to equations (3.6) 

and (3.7) re pectively. 
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4. Design, growth and annealing procedure of p-type MOD 

Si l-xGex/Si l-yGey heterostructures 

During the research p-type MOD Sil-xGex/Sil-yGey heterostructures were designed 

and grown by SS-MBE on Si(OOl) substrates. To research the effect of thermal influence 

on magnetotransport, structural and optical properties of p-type MOD Sil-xGex/Sil-yGey 

heterostructures the post growth thermal annealing treatments were performed. 

4.1 Design of p-type MOD Sit-xGex/Sit_yGey heterostructures 

As was mentioned in chapter 2.2.4, the active layers of a MOD heterostructure 

consist of an undoped Sil-xGex channel for the mobile carriers (in this case holes), an 

undoped Sh-yGey spacer layer that separates the ionized dopants from the channel, and a 

doping layer (in this case B). The heterointerface is located between the channel and the 

spacer and separates the two regions energetically. Often, the doping concentration is 

reduced toward the surface to avoid Schottky barrier lowering, and a thin undoped Si cap 

layer may be added, to protect against in-depth oxidation and to allow for a well-defined 

Schottky gate. 

A proper design of a MOD heterostructure requires a careful adjustment of the layer 

thicknesses, the compositions and strain states, and of the doping levels of the three active 

layers. In addition, the surface potential (often defined by a Schottky gate) and the 

thickness of the Si cap layer affect the electronic properties of the layers. Several 

interrelations between the layer parameters and also boundary conditions have to be met. 

The most basic design rule requires that under operational conditions all dopant atoms 

should be ionized, whereas all free carriers should be restricted to the channel region. This 

condition defines the integral doping concentration for a given layer sequence and a 

defined surface potential. Because of the linear potential drop across the undoped spacer, 
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charge transfer from the supply layer into the channel becomes less and less efficient as the 

spacer is increased (Figure 4.1). The carrier transfer depends also to some extent on the 

volume concentration in the doping layer, which should be as high as possible for 

maximum efficiency (Figure 4.1). 
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Figure 4.1 Variations of sheet carrier density versus spacer width at B doping 1·1018cm-3, 
2.10 18cm-3

, 4·1018cm-3 and g.1Q18cm-3 for p-type MOD Sio.2Geo.s/Sio.7Geo.3 heterostructure 
calculated using self-consistent solution of ID Poisson-Schrodinger equations. 

Layer design usually starts with selecting the compositions of the active layers and of 

the virtual substrate, which define the band offsets. Because of critical thickness limitations 

the range of useful compositions is quite restricted and achievable valence band offset is 

usually ~350meV (see also section 2.2.1). By increasing the valence band offset the carrier 
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density of 2DHG is increase. The next input parameters are the surface potential and the 

desired density of free carriers in the channel. The required spacer width and the integral 

doping concentration are then obtained to good approximation by self-consistent solution 

of the Poisson and Schrodinger equations (Figure 4.1, Figure 4.2). 
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Figure 4.2 Energy band diagram and carriers distribution at 10K for p-type MOD 
Sio.2Geo.slSio.7Geo.3 heterostructure calculated using self-consistent solution of ID Poisson­
Schrodinger equations. 

Further is necessary to take into account carriers scattering mechanisms, which limit 

the mobility of 2DHG (see also section 2.3.2). The complete optimisation is a complicated 

procedure due to the large number of scattering mechanisms, which limit hole mobility. 

Also these calculations contain the large number of adjustable parameters. The calculations 

of 2DHG mobility versus temperature (see chapters 2.3.1 and 2.3.2) performed for MOD 

SiO.2Geo.slSio.7GeO.3 heterostructure are showed that theoretical mobility of 2DHG formed 
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m the Sio.2Geo.8 channel could be _lOOOOcm2.y-l·s-l at 10K and more than 

2000cm2.y-l·s-l at 293K for a given set of parameters (Figure 4.3). For this case the low 

temperature mobility of 2DHG formed in the Sio.2Geo.8 channel (L=10nm) at sheet carrier 

density ps=1.8·10 12cm-2 and effective mass m*=O.l8·mo is limited by alloy scattering 

(EaFO.3eV) followed by remote impurities scattering (Ls=7nm and NA=2·10 12cm-2
), 

interface roughness scattering (~=lnm and A=5nm) and background impurities scattering 

(NB= 10 16cm- 3). The room temperature mobility is mainly limited by acoustic-phonon 

scattering (a=11.geV) followed by optical-phonon scattering (do=37.8eV, n·w=42.5eV), 

alloy scattering, remote impurities scattering, interface roughness scattering and 

background impurities scattering. 
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Figure 4.3 Temperature dependence of mobility of 2DHG formed in the Sio.2Geo.8 channel 
of p-type MOD Sio.2Geo.8/Sio.7GeoJ heterostructure calculated with relaxation time 
approximation theory of carriers' transport. Also shown the variation of mobility with 
temperature for ea h cattering mechanism taken in isolation. 
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Finally from the complex of performed calculations, assumptions and limitations is 

necessary to find optimum parameters for MOD heterostructure due to the purpose of 

research and application, because the interrelation between carrier density and mobility 

requires compromises. The investigated in this work p-type MOD Sh-xGex/Sil-yGey 

heterostructures were designed to get high 2DHG mobility (>500cm2.V-1·s-1) at high sheet 

carrier density (> 1012cm-2) at room temperature for further applications in FET devices. 

4.2 The p-type MOD Sit_xGex/Sit-yGey heterostructures investigated in 

current research 

The samples investigated in current research were p-type MOD Sh-xGe,JSi1-yGey 

heterostructures grown on Si(OO 1) substrates. The structures consist of active layers of 

MOD heterostructure, containing compressively strained Sh-xGex channel grown on VS 

with top layers relaxed to the bulk lattice constant of Si1-yGey. The Ge composition in the 

Si1-xGex channel and Si1-yGey layers of VS were in the range 0.6~x~1 and 0.3~y~0.63 

respectively. 

Samples #51.33, #52.16, #54.08, #60.45, #60.46, #622.54, #622.55, #622.56, 

#622.83 and #622.83 were grown at Warwick University (Coventry, UK). Samples 

#C1957, #CI987, #C2015f, #C2072, #C2475 and #C2476 were grown at DaimlerChrysler 

AG Research and Technology (Ulm, Germany). 

In the samples #51.33, #52.16 and #54.08 the active layers of MOD heterostructure 

were grown on step graded Sio.7Geo.3 VS by SS-MBE (Figure 4.4). The VS thicknesses for 

samples #51.33, #52.16 and #54.08 are 2200nm, 1150nm and 1350nm respectively. 

The active layers of MOD heterostructure in sample #51.33 consist of lOnm 

thickness B doped (4.101Scm-3
) Sio.sGeo.2 layer followed by 5nm Sio.7Geo.3 spacer, 5nm 

Sio.22Geo.78 channel and 50nm Sio.7Geo.3 cap (Figure 4.4). All layers were grown at 440C. 
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The active layers of MOD heterostructure in sample #52.16 consist of 5nm 

Sio.24GeO.76 channel followed by 10nm Sio.7Geo.3 spacer, 50nm B doped (2.4.1018cm-3) 

SiO.7GeO.3 layer and 3nm Si cap (Figure 4.4). All layers were grown at 450C. 

The active layers of MOD heterostructure in sample #54.08 consist of 6nm Sio.4Geo.6 

channel followed by 15nm Sio.7Geo.3 spacer, 50nm B doped (2.IQI8cm-3) SiO.7GeO.3 layer 

and 3nm Si cap (Figure 4.4). All layers were grown at 450C. 
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Figure 4.4 hematic view of#51.33, #52.16 and #54.08 p-type MOD heterostructures. 
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The samples #60.45 and #60.46 were grown at the same conditions but in the sample 

#6045 after the growth of Sio.65Geo.35 spacer was done interrupt for 30min accompanied 

with annealing of grown layers at 800C (Figure 4.5). In order to grow Sio.2Geo.8 channel, an 

initial l200nm thick linearly graded VS with a Ge content increasing linearly from 0.05 to 

0.35 was grown, which was relaxed to the lattice constant of Sio.65Geo.35. The VS was 

grown by LP CVD to reduce time consumption. After this the wafer was transferred to the 

SS-MBE chamber through air. Epilayers were then successively grown from buffer layer 

to the cap layer. A 300nm thick Sio.65Ge0.35 buffer layer is than grown to complete the 

relaxation of the linearly graded VS. The MOD structure consists of the 4nm Sio.2Geo.8 

channel, 5nm Sio.65Geo.35 spacer, 10nm B doped (2.10 18cm-3) Sio.65Geo.35 layer and 3nm Si 

cap on the surface. The growth of Sio.2Geo.8 channel was perfonned at 350C. 

510C 

350C 

510C 

750C 

750C 

aooc 
#60.45 30min 

Si 3 nm 

Si065Ge035 8 : 2x1 018 em·3 10 nm 
• 

Sio65GeO35 5nm 
SiOZGe08 4nm 

Si065Ge035 300 nm 

Sio 65GeO 35 200 nm 

Si065Ge035 

linearly graded 1000 nm 

Si 

Si(001) n'-type 

#60.46 

510C Si 

Si06SGeO.3S 8: 2x1018 em'3 

SiO.6SGeO.3S 
350C SiO.2GeO.a 

510C SiO.6SGe03S 

750C SiO.6SGe03S 

SiO.6SGeO.3S 

750C linearl} graded 

Si 

Si(001) no-type 

Figure 4.5 Schematic view of#60.45 and #60.46 p-type MOD heterostructures. 

3nm 

10 nm 

5nrn 
4nm 

300 nm 

200 nm 

1000 nm 

The ample #622.54, #622.55 and #622.56 were grown by SS-MBE at the same 

condition but with variou Sio.2GeO.8 channel thicknesses, - 2nm, 4nm and 8nm 

respe tively (Figure 4,6). Initially 300nm Si buffer was grown followed by Sio.2Geo,8 
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channel, 7nm Si spacer, 20nm B doped (2·10 IScm -3) Si layer and 70nm Si cap. The 

Sio.2Geo.8 channel was grown at 300C. 

#622.54 #622.55 

600C Si 70 nm 600C Si 70 nm 

Si B: 2x1 018 cm·J 20 nm Si B: 2x1018 cm'J 20 nm 

Si 7nm Si 7nm 
300C Si02Ge08 2nm 300C Si0 2Ge08 4nm 

aooc Si 300 nm aooc Si 300 nm 

Si(001) n'-type Si(001) n'-type 

#622.56 

600C Si 70 nm 

Si B: 2x1 018 cm'3 20 nm 

Si 7nm 
300C SiO.2GeO.8 8nm 

aooc Si 300 nm 

Si(001) n'-type 

Figure 4,6 Schematic view of#622.54, #622.55 and #622.56 p-type MOD heterostructures. 

The samples #622. 3 and #622.84 were grown by SS-MBE at the same conditions 

but with variou SiO.2GeO.8 channel thicknesses, - lOnm and 14nm respectively (Figure 

4.7). The VS consist of 100nm Si layer followed by 50nm LT-Si layer grown 390C and 

700nm Sio.7GeO.3 relaxed layer. The active layers of MOD heterostructure consist of 

SiO.2GeO.8 channel followed by 7nm Sio.7Geo.3 spacer 10nm B doped (2·1 OI 8cm-3) SiO.7GeoJ, 

40nm Sio.7GeO.3 layer and 5nm Si cap on the surface. The SiO.2GeO.S channel was grown at 

300 . 
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#622.83 #622.84 

540C Si 5nm 540C Si 5nm 

Si07Ge03 40 nm Si07Ge03 40 nm 

Si07Ge03 B: 2x10 18 em'3 10 nm Si07Ge03 B: 2x10 18 em'3 10 nm 

Si07Ge03 7nm SiO.7Ge03 7nm 
300C Si02Ge08 10 nm 300C Si02Ge08 14 nm 

300C Si07Ge03 200 nm 300C SiO.7Ge03 200 nm 
............................................................................ ............................................................................ 

540C Si07Ge03 500 nm 540C Si07Ge03 500 nm 

390C LT-Si 50 nm 390C LT-Si 50 nm 

BOOC Si 100 nm BOOC Si 100 nm 

Si(001) n'-type Si(001) n'-type 

Figure 4.7 Schematic view of#622.83 and #622.84 p-type MOD heterostructures. 

In the samples #C1957, #C1987, #C2015f, #C2072, #C2475 and #C2476 the active 

layer of MOD heterostructure were grown on thick (>2000nrn) linearly graded Sil _yGey 

VS by SS-MBE. 

The sample #C1957 consist of 5250nrn SiO.37GeO.63 VS followed by 11nm SiO.05GeO.95 

channel , IOnrn SiO.37GeO.63 spacer, lOnm B doped (2·10 Iscm-3) SiO.37GeO.63 layer, 20nm 

SiO.37GeO.63 layer and 3.5nm Si cap on the surface (Figure 4.8). 

The sample #C1987 consist of 3600nm SiO,65GeO.35 VS followed by 12.3nrn 

SiO,34GeO.66 channel, lOnm SiO,7GeO.3 spacer, 10nrn B doped (2.4·10 Iscm-3) Sio.7Geo.3 layer, 

20nm SiO.7Geo,3 layer and 3.5nm Si cap (Figure 4.8). 

The sample #C20 15f consist of 4350nm SiO.5GeO.5 VS followed by 12nm SiO.ISGeO.S2 

channel , 10nm Sio.SGeO.5 spacer, 6.5nm B doped (2.4.10Iscm-3) Sio,5Geo.5 layer, 20nm 

Sio.5Geo.5 layer and 3.5nm i cap (Figure 4.8). 

The ample # 2072 consist of3100nm Si0.47GeO.53 VS followed by 12nm Sio. lsGeO.S2 

channel, 10nm i0.47Geo.53 spacer, lOnm B doped (2.4·10 Iscm-3) Sio.47Geo.53 layer, 5nm 

Si0.47 eO.53 layer and 4nm Si cap (Figure 4.8). 
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Figure 4.8 Schematic VIew of #C1957, #C1987, #C20l5f and #C2072 p-type MOD 
heterostructures. 

The sample #C2475 consist of 3950nm SiO.41GeO.59 VS followed by 5nm B doped 

(2·10 18cm-3
) SiO.41GeO.59 layer, 5nm Si0.41GeO.59 spacer, lOnm SiO.02GeO.98 channel, 5nm 

Si0.4I GeO.59 spacer, 5nm B doped (8·10 18cm-3
) SiO.4GeO.59 layer, 6nm SiOAI GeO.59 layer and 

4nm Si cap (Figure 4.9). 
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The sample #C2476 consist of 3950nm Sio.4Geo.6 VS followed by 4nm B doped 

(1·1019cm-3) Sio.4Geo.6 layer, 5nm Sio.4Geo.6 spacer, 9nm Ge channel, 8nm Sio.4Geo.6 layer 

and 3.5nm Si cap (Figure 4.9). 
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SiGe 5-60% 

Si 
SI(001 ) 
p·-type 
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4nm 
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Figure 4.9 Schematic view of#C2475 and #C2476 p-type MOD heterostructures. 

4.3 Post growth thermal annealing treatments on 

p-type MOD il_xGexlSil _yGey heterostructures 

To research the effect of thermal influence on magnetotransport, structural and 

optical propertie of p-type MOD Si l-xGex/Si l-yGey heterostructures the post growth 

thermal annealing treatments were done. Post growth thermal annealing treatments were 

performed on inve tigated heterostructures after growth by two various methods, -

furnace thermal annealing (FTA) and rapid thermal annealing (RTA). 

Furna e thermal annealing treatments were performed in flow N2 ambient at 

temperature 600 700, 750 , 800 and 900C for 30min. PTA treatments were applied 
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to samples #51.33, #52.16, #54.08, #60.45, #60.46, #622.54, #622.55, #622.56, #622.83 

and #622.84. 

Rapid thermal annealing treatments were performed in N2 ambient at temperatures 

750C for 30sec. RTA treatments were applied to samples #C1987, #C2015fand #C20n. 
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5. Results and discussions of structural and optical analysis of 

p-type MOD Sit-xGex/Sit_yGey heterostructures 

5.1 Introduction 

In this chapter the results and discussions of structural and optical analysis of p-type 

MOD Sit-xGex/Sit-yGey heterostructures are presented. The samples were analysed by 

cross-sectional transmission electron microscopy (XTEM), ultra-low energy secondary ion 

mass spectrometry (ULE-SIMS), photoluminescence spectroscopy (PL), micro-Raman 

spectroscopy and scanning white-light interferometry. 

5.2 Transmission electron microscopy analysis of 

p-type MOD Sit-xGex/Sit_yGey heterostructures 

XTEM images of sample #60.46 (see chapter 4.2) are presented in Figure 5.1. The 

bottom image in Figure 5.1 shows the cross-section of the grown structure starting from 

the Si(OOI) substrate and finishing with thin Si cap on the surface. The linearly graded 

Sio.6sGeo.3s VS grown by CVD consists of I J.lm region with graded Ge composition up to 

Sio.6sGeo.3s followed by -200nm Sio.6sGeo.3s layer. The dislocations are clearly observable 

as dark lines in the VS. The massive dislocations network can be seen in the linearly 

graded part of VS. Also the dislocations are visible in the Si substrate. The top Sio.6sGeo.3s 

layer of VS is dislocation free as well as all epitaxial layers grown on top by SS-MBE. 

After VS growth by CVD the wafer was transferred to MBE chamber through the air and 

the growth was continued. Before the growth of active layers of MOD heterostructure the 

300nm Sio.6sGe0.3S buffer layer was grown on top of VS (bottom of Figure 5.1). The thin 

dark line close to the surface corresponds to Sio.2Geo.s channel. 
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Figure 5.1 XTEM images of Sio.2Geo.8 channel region (top) and all grown layers (bottom) 
of as-grown sample #60.46. 

The XTEM image of Sio.2Geo.8 channel region obtained with high magnification is 

presented in the top of Figure 5.1. The Sio.2Geo.8 channel is clearly visible as a stripe of 

dark contra t between Sio.6sGeo.3s layers. This region is dislocation free. The bottom and 

top Sio.2Geo.8/ io.6sGeo.3s interface are abrupt. The average thickness of SiO.2GeO.8 channel 
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is 4.2nm. It is clear to see roughness of the top interface of Sio.2Geo.8 channel characterized 

by average height ~=1.3nm in the growth direction and the correlation length A=43nm in 

the plane. The average distance between Sio.2Geo.8 channel and Si layer on the surface is 

16.5I1m. 

5 iO.6SGeO.3S 

.::: .... $ iO.2GeO.8 

.' 
.: .... ~ .... 5 i 1-x G ex 

Figure 5.2 XTEM images of Sio.2Geo.8 channel region in as-grown (top) and after FTA at 
750C for 30min (bottom) samples #60.46. 

After FTA at 750C for 30min performed on the sample #60.46 were observed 

significant changes in the Sio.2GeO.8 channel region (bottom of Figure 5.2). The broadening 

of Sio.2Geo.8 channel accompanied with smearing of bottom and top Sio.2Geo.8/Sio.65Ge0.35 
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interfaces were observed. The average thickness of Sio.2Geo.s channel increased up to 7nm. 

The average distance between Sio.2Geo.s channel and Si layer on the surface decreased to 

14.9nm. The broadening of Sio.2Geo.s channel was due to Ge diffusion during thermal 

annealing from the region with high Ge concentration (Sio.2Geo.s channel) to the region 

with low Ge concentration (Sio.6sOeo.3s layers). Consequently the Oe composition in the 

Sio.2Geo.s channel after FTA at 750C for 30min decreased. 

XTEM images of sample #622.83 (see chapter 4.2) are presented in Figure 5.3. The 

bottom image in Figure 5.3 shows the cross-section of the grown structure starting from 

the Si(OO I) substrate and finishing with thin Si cap on the surface. The Sio.7Geo.3 VS grown 

by SS-MBE consists of low temperature Si layer grown at 390C followed by 720nm 

Sio.7Geo.3 layer of constant Oe composition. The dislocations are observable as dark lines in 

the VS and Si substrate. The dark band close to the surface corresponds to Sio.2Geo.s 

channel. The dislocations were observed in this Sio.2Geo.s channel region from the both 

sides of the channel. It is clear to see the surface roughness due to not optimum growth 

conditions of VS. Average height varied from 3nm up to 8nm in the growth direction and 

the correlation length varied from 230nm to 300nm in the plane characterizes the surface 

roughness. 

The XTEM image of Sio.20eo.s channel region obtained with high magnification is 

presented in the top of Figure 5.3. The Sio.2Geo.s channel is clearly visible as a stripe of 

dark contrast between Sio.7Geo.3 layers. The bottom and top Sio.2Geo.s/Sio.7Geo.3 interfaces 

are abrupt. The average thickness of Sio.2Geo.s channel is 11.3nm. It is clear to see 

roughness of the top interface of Sio.20eo.s channel characterized by average height /1< 1 nm 

in the growth direction and the correlation length A=47nm in the plane. The average 

distance between Sio.20eo.s channel and Si layer on the surface is 60.5nm. The average 

thickness of Si cap layer is around 5nm 
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Figure 5.3 XTEM images ofSiQ.2GeQ.g channel region (top) and all grown layers (bottom) 
of as-grown sample #622.83. 

The result of XTEM analysis of p-type MOD Sil-xGex/Sil-yGey heterostructures 

were presented at "Condensed Matter and Materials Physics '99 Conference"[l], "10th 

European Hetero tructure Technology Workshop"[2]&[3], "International Conference on 

Solid tate rystal 2000: Materials Science and Applications"[4] and "SiGe (C) 2001 

Work hop"[5]. 
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5.3 Secondary ion mass spectrometry analysis of 

p-type MOD Sit-xGexlSit-yGey heterostructures 

ULE-SIMS profiles of Ge and B in Sio.2Geo.8 channel region of as-grown and after 

FTA at 750C for 30min samples #60.46 are presented in Figure 5.4. For as-grown sample 

(top of Figure 5.4) Si cap on the surface followed by the 15nm region of B doped 

Sio.65Geo.35 layer and Sio.65Geo.35 spacer layer are observed. At 20nm from the surface the 

Ge composition began to increase from 0.35 to form Sio.2Geo.8 layer followed by 

Sio.6sGeo.3s buffer layers. The Ge profile in the Sio.2Geo.8 channel is bell-like. The measured 

at half of maximum full width of Sio.2Geo.8 channel corresponds to 4.9nm. The B profile 

for as-grown sample shows B=2·10 19cm-3 on the surface which decrease to 1·1018cm-3 at 

1.5nm from the surface (bottom of Figure 5.4). From l.5om to 50m the level of B 

increased up to 2.82·1018cm-3 followed by decreasing to 1·1018cm-3 at 14nm. At 200m 

from the surface, where the Sio.2Geo.8 channel begins, the level ofB is less than 1·1017cm-3 

that are the recognition limit of SIMS. 

After FT A at 750C for 30min performed on the sample #60.46 were observed 

significant changes for Ge and B profiles in the Sio.2Geo.8 channel region (Figure 5.4). The 

decrease of Ge concentration in the Sio.2Geo.8 channel accompanied with its broadening 

were observed (top of Figure 5.4). The measured at half of maximum full width ofSi1_xGex 

channel is increased and corresponds to 9.3nm. The Ge composition in the Sio.6sGeo.3s 

layers has not changed. The B profile for annealed sample showed an increase of B 

concentration on the surface up to _1·102ocm-3 on the surface which decreased to 

2·1018cm-3 at 30m from the surface (bottom of Figure 5.4). These values increased due to 

unintentional B doping during furnace thennal annealing. From 3nm to 6nm the level of B 

increased up to 2.76. 10 1 8cm-3 followed by decreasing to 1·1018cm-3 at 15nm. The increase 

of B level was observed in the Sio.6sGeo.3s spacer layer after FT A. 
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ULE-SIMS profiles of Ge and B in SiO.2GeO.8 channel region of as-grown and after 

FTA at 750e for 30min samples #60.46 and sample #60.45 are presented in Figure 5.5. 

The designs of samples #60.45 and #60.46 are similar, exclusive in-situ annealing of 

sample #60.45. Sample #60.45 (see chapter 4.2) was annealed in-situ of SS-MBE chamber 

before the growth of B doped Sio.65Geo.35 layer and Si cap layer. The annealing was 

performed at 800e for 30min in vacuum. Sample #60.46 after FTA at 750e was annealed 

for 30min after growth in nitrogen ambient. It is clear to see from Ge profile for sample 

#60.45 that the Sio.2Geo.8 channel was smeared during in situ annealing at 800e for 30min 

(top of Figure 5.5). The B profiles in the Sio.2Geo.8 channel region are the same for samples 

#60.45 and as-grown #60.46. It is clear because of B doped Sio.65Geo.35 layer for sample 

#60.45 was grown after in-situ annealing at 800C, at the same conditions as for sample 

#60.46. Due to this no B diffusion was observed. 

The results ofULE-SIMS analysis ofp-type MOD Sil-xGex/Sil-yGey heterostructures 

were presented at "10th European Heterostructure Technology Workshop"[3] and "SiGe 

(C) 2001 Workshop" [5]. 
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ULE-SIMS profiles of the samples #60.46 and #60.45 
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Figure 5.5 ULE- IMS profiles of Ge (top) and B (bottom) in Si t-xGex channel region of 
ample # 0.45 and #60.46. 
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5.4 Photoluminescence spectroscopy analysis of 

p-type MOD Sil-xGex!Sil-yGey heterostructures 

Photoluminescence (PL) spectroscopy measurements were performed on p-type 

MOD Sil_xGex/Sil_yGey heterostructures at 5.5K. It is necessary to point, that the technique 

is non-destructive and the measurements were performed on the very same samples (Hall­

bars and Van der Pauw cross) used for magnetotransport characterization. 

PL spectra of as-grown and after FTA at 600C, 700C and 750C for 30min samples 

#60.46 are presented in Figure 5.6. The top PL spectrum in Figure 5.6 was obtained from 

as-grown sample. PL spectrum measured at 0.7-1.2eV energy range consist of strong peak 

at 1.0SOeV, weaker peaks at 1.017eV, 1.091eV, 1.097eV, l.11geV and 1.149 and two 

clearly observed in the low energy region peaks at O.SlOeV and 0.S55eV. The strong peak 

at l.OSOeV and weaker peaks around were originated from Si substrate. The peaks at 

0.81OeV and 0.S55eV were mostly originated from Sio.65Geo.35 linearly graded VS. After 

FT A at 600C, 700C and 750C for 30min no changes in positions of peaks allocated in the 

high-energy range (1-1.15eV) were observed. The changes were observed only in the low­

energy region. The bottom PL spectrum in Figure 5.6 shows the changes observed after 

FTA in the low-energy range (0.72-0.94eV). After FTA at 600C the peaks were observed 

at 0.81OeV and 0.S50eV. After FTA at 700C the peaks were observed at O.S13eV and 

0.852eV. After FTA at 750C the peaks were observed at O.S13eVand 0.854eV. 

PL spectrum of sample #622.54 is presented in Figure 5.7. In this sample the 2 nm 

Sio.2Geo.8 channel was grown directly on Si(OO 1) substrate without intermediate VS. PL 

spectrum measured at 0.7-1.2eV energy range consist of strong peak at l.OSleV, weaker 

peaks at l.017eV, 1.092eV, 1.097eV, 1.121eV and 1.150. The strong peak at 1.0S1eV and 

weaker peaks around were mostly originated from Si substrate. There are no peaks were 

observed in the low-energy range (0.7-0.95eV). 
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PL spectra of as-grown and after FTA at 600C, 750C and 900C for 30min samples 

#622.83 are presented in Figure 5.8. The top PL spectrum in Figure 5.8 was obtained from 

as-grown sample. PL spectrum measured at O.7-1.2eV energy range consist of strong peak 

at 1.0S0eV, weaker peaks at 1.0l7eV, l.091eV, l.096eV, 1.120eV and 1.149 and one 

clearly observed in the low energy region peak at O.807eV. The strong peak at l.080eV 

and weaker peaks around were originated from Si substrate. The peak at O.807eV was 

mostly originated from Sio.7GeoJ VS with low temperature Si buffer. After FT A at 600C, 

750C and 900C for 30min no changes in positions of peaks allocated in the high-energy 

range (1-1.15eV) were observed. The changes were observed only in the low-energy 

region. The bottom PL spectrum in Figure 5.S shows the changes observed after FTA in 

the low-energy range (O.72-0.92eV). After FTA at 600C the peak were observed at 

O.81IeV. After FTA at 750C the peak were observed at O.81IeV. And after FTA at 900C 

the peak were observed at O.S13eV. 

PL spectra of as-grown samples #C1957 and #C1987 are presented in Figure 5.9. PL 

spectrum of sample #C1957 measured at O.7-1.2eV energy range (top of Figure 5.9) 

consist of clearly observed peaks at l.096eV, O.950eV, O.864eV, O.806eV and O.766eV. 

The peaks at O.950eV, O.864eV, O.806eV and O.766eV were mostly originated from 

Sio.37Geo.63 linearly graded VS. PL spectrum of sample #C1987 measured at O.7-1.2eV 

energy range (top of Figure 5.9) consist of clearly observed peaks at 1.097eV, l.082eV, 

O.954eV, O.867eV and O.S07eV. The peaks at O.954eV, O.867eV and O.807eV were mostly 

originated from Sio.6sGeo.3s linearly graded VS. 
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5.5 Raman spectroscopy analysis of 

p-type MOD Sil-xGex/Sh-yGey heterostructures 

The very same as-grown and annealed samples studied by magnetotransport were 

characterized by Raman spectroscopy. The spectra were taken at room temperature and 

excited by the 457.9nm, 476.5nm, 488nm, 514.5nm and 528.7nm lines of an Ar+ ion laser 

in the backscattering configuration. 

Room temperature Raman spectra of as-grown sample #60.46 excited with 488nm 

light are presented in Figure 5.10. The optical phonon range of Raman spectra of SiGe 

structures consist of three main regions, which are corresponds to Ge-Ge, Si-Ge and Si-Si 

atomic vibrations (Figure 5.10). In each region of Raman spectrum of as-grown sample 

#60.46 we can see Ge-Ge (290.2cm-1
), Si-Ge (409.1cm-1

) and Si-Si (499.4cm-1
) modes 

from Sio.65Geo.35 relaxed layers. In addition to phonon modes originated from relaxed 

layers, we clearly observed the Ge-Ge (306.5cm-1
) mode from Sio.2Geo.s strained layer. A 

comparison between this shift and the Ge bulk ones, that is 300cm- l
, shows upward shifts 

of the Ge-Ge peaks, which are due to the presence of compressive strain in the Sio.2Geo.s 

layer. Very weak Si-Si mode from Sio.2Geo.s strained layer was observed at -480cm-1
• The 

intensity of this mode is weak, in comparison with others, due to small amount of Si in the 

Sio.2Geo.s layer and its small thickness (-4nm). In the Si-Si region the peak at 507cm-1 is 

correspond to Si-Si modes originated from tensilely strained Si cap layer on the surface 

grown on Sio.65Geo.35 relaxed layer. The modes at 400-460cm-1 frequency region is 

attributed to a Si-Ge vibrations in SiO.65Ge0.35 relaxed layers, Sio.2Geo.s strained channel 

layer and to Si or Ge vibrations in chemically different local environments in SiGe layers 

with intensity approximately proportional to the relative number of Si-Ge bonds. The Si­

Ge phonon modes seem to have properties that are coming partly from the Ge and Si 

atoms. Another spectrum in Figure 5.10 (Sio.65Geo.35 virtual substrate only) corresponds to 

the spectrum of as-grown sample #60.46 without first -250nm from the surface removed 
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by wet chemical etching and consists of linearly graded Sio.6sGe0.3S VS grown by LP-CVD 

and Sio.6sGeo.3s buffer layers grown by SS-MBE. It was done with the purpose to remove 

from Raman spectrum the peaks originated from Sio.2Geo.8 strained channel layer and 

strained Si cap layer on the surface. It is clear to see from Figure 5.10 that the spectra are 

different by the absence of the Ge-Ge mode at 306.5cm-1 originated from Sio.2Geo.8 

strained layer and Si-Si mode at 507cm-1 from strained Si cap layer on the surface. The 

value of Ge composition in the Sil_yGey relaxed layers extracted from the ratio of 

intensities of Si-Si and Ge-Ge modes originated from these layers [6], [7], [8] corresponds 

to 0.33±0.02. After FTA significant changes in all regions of Raman spectra were 

observed. Raman spectra of as-grown and after FTA at 700C and 750C for 30min samples 

#60.46 excited with 488nm light are presented in Figure 5.11. In the Si-Si region the 

position of Si-Si mode from Sio.6sGeo.3s relaxed layers shifted downward to 499.0cm-l. In 

the Si-Ge region the position of Si-Ge mode from Sio.6sGeo.3s relaxed layers shifted upward 

to 413.0cm-l. In the Ge-Ge region were observed the most significant changes. After FTA 

at 700C the Ge-Ge mode originated from SiO.2GeO.8 layer shifted downward to 301.3cm-l. 

Further downward shift of Ge-Ge mode to 297.9cm-1 after FTA at 750C was observed. 

With increasing of FT A temperature we can see increases of intensity mode from the 

channel and their downward shift, that demonstrating the sensitivity of the phonon spectra 

to Ge out diffusion during annealing which results in decreasing Ge content in the 

Sio.2Geo.8 strained layer or(and) its partial relaxation. 

Room temperature Raman spectra of as-grown sample #622.83 excited with 

457.9nm, 488nm and 514.5nm light are presented in Figure 5.12. The light penetration 

depth in the bulk Si strongly depends from the wavelength, and increases from 280nm (at 

457.9nm), up to 490nm (at 488nm) and 680nm (at 514.5nm). In the bulk Ge the 

penetration depth almost does not depend from the used wavelength and at 457.9,488 and 

514.5nm is close to 16nm. Consequently, the penetration depth of the light at given 
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wavelength have to reduce with increasing the Ge composition in the alloys. Also it is 

necessary to take into account that the investigated structures consist of several SiGe layers 

of various Ge compositions and state of strain, which could take effect on propagation of 

the light. Using 457.9, 488 and 514.5nm wavelength information from various depths in 

the as-grown sample #622.83 was obtained (Figure 5.12). In the Raman spectrum excited 

with 457.9nm wavelength the intensity of Ge-Ge mode originated from the Sio.2Geo.8 

strained channel became just observable and much weaker than Ge-Ge mode from 

Sio.7Geo.3 relaxed layers. At 488nm the intensities of Ge-Ge modes from Sio.2Geo.8 strained 

channel and Sio.7Geo.3 relaxed layers became comparable and increasing the wavelength up 

to 514.5nm results in pronounced increase of Sio.2Geo.8 strained channel Ge-Ge mode. The 

positions of Ge-Ge modes from Sio.7Geo.3 relaxed layers and Sio.2Geo.8 strained layers were 

observed at 289.7cm-1 and 305.9cm-1 respectively. The Si-Ge and Si-Si modes from the 

Sio.7Geo.3 relaxed layers are increase with increasing wavelength. Just in the Raman 

spectrum excited with 514.5nm wavelength we clearly observed peak at 521cm-1 

corresponding to Si-Si mode originated from Si bulk layer. Therefore the light with 

514.5nm wavelength penetrates through full structure to Si layer and Raman spectra 

contains information about all SiGe layers. The positions of Si-Ge and Si-Si modes 

originated from Sio.7Geo.3 relaxed layers were observed at 41O.3cm-1 and 500.2cm-1 

respectively. The value ofGe composition in the Sil_yGey relaxed layers extracted from the 

ratio of intensities of Si-Si and Ge-Ge modes originated from these layers corresponds to 

0,32±O.02. After FT A significant changes in all regions of Raman spectra were observed. 

Raman spectra of as-grown and after FTA at 600C, 700C, 750C, 800C and 900C for 30min 

samples #622.83 excited with 514.5nm light are presented in Figure 5.13. In Raman 

spectra of as-grown and after FT A samples we see that the original Si-Si mode originated 

from Sio.7Geo.3 relaxed layers decreases with increasing annealing temperature and almost 

not shifted after FTA. In Si-Ge region we see the pronounced rise of the Si-Ge modes from 
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Sio.7Geo.3 relaxed layers and an increase of additional ones at 431 cm -I, 455cm -I. The 

intensities of the various modes could change, as long as the intermixing of Si and Ge 

atoms can occur during FT A. In the Ge-Ge region were observed the most significant 

changes (Figure 5.14). With increasing of FTA temperature we can see increases of 

intensity of Ge-Ge mode originated from the Sio.2Geo.s strained layer and their downward 

shift. The Ge-Ge mode originated from Sio.7Geo.3 relaxed layers is almost not shifted after 

FTA. The peak at 521cm-1 corresponding to Si-Si mode from Si bulk layer remained 

unchangeable after FT A. 

Room temperature Raman spectra of as-grown and after RTA at 750C for 30sec 

samples #C2072 excited with 514.5nm light are presented in Figure 5.15. In each region of 

Raman spectrum of as-grown sample #C2072 we can see Ge-Ge (291.4cm- I
), Si-Ge 

(410.0cm-l) and Si-Si (491.9cm-1
) modes from Si0.47GeO.53 relaxed layers. In addition to 

phonon modes originated from relaxed layers, we clearly observed the Ge-Ge (302.0cm-l) 

mode from Sio.lsGeo.s2 strained layer. The peak at 504.3cm-1 corresponds to Si-Si mode 

originated from strained Si cap layer on the surface. The value of Ge composition in the 

Si1_yGey relaxed layers extracted from the ratio of intensities of Si-Si and Ge-Ge modes 

originated from these layers corresponds to 0.49±O.02. After RTA at 750C for 30sec 

significant changes in all regions of Raman spectra were observed (Figure 5.15). The 

downward shift of Ge-Ge (291.0cm- I
), Si-Ge (409.3cm-l) and Si-Si (490Acm-1) modes 

from Si0.47GeO.53 relaxed layers were observed. The Ge-Ge mode originated from 

Sio.lsGeo.s2 strained layer downward shifted to 300.8cm-1. The increase of intensity of Ge­

Ge mode from the channel and their downward shift is due to the Ge out diffusion during 

annealing which results in decreasing Ge content in the Sio.lsGeo.s2 strained layer or(and) 

its partial relaxation. 

The results of Raman spectroscopy analysis of p-type MOD Sh-xGexlSh-yGey 

heterostructures were presented at "Condensed Matter and Materials Physics '99 

106 



Conference"[ 1], " loth European Heterostructure Technology Workshop"[2] and "SiGe (C) 

2001 Workshop"[5]. 
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5.6 Scanning white-light interferometry analysis of 

p-type MOD Sit_xGex/Sit_yGey heterostructures 

Scanning white-light interferometry used to analysis surface profiles of p-type MOD 

Si1-"Ge"/Si1-yGey heterostructures. The data acquired by Zygo New View 5000 

interferometer were analysed by Metro Pro 7.2.2 software. The samples were characterized 

in terms of surface roughness parameters: PV, and rms. PV (Peak-to-Valley) is the distance 

between the highest and lowest points within the sample. When used to quantify 

roughness, PV is the maximum roughness height. Root-Mean-Square or rms is the root­

mean-square deviation from the center line. This is a method of calculating an average by 

squaring each value and then taking the square root of the mean. The rms result is 

calculated as the standard deviation of the height (or depth) of the test surface relative to 

the reference at all data points in the data set. The rms result is an area weighted statistic; 

when used for optical components, it more accurately depicts the optical performance of 

the surface being measured than the PV statistic because it uses all the data in the 

calculation. 

The surface profile is strongly depends from the growth conditions. The investigated 

heterostructures are possible to divide into the groups depending on used type of VS due to 

their dominated effect on the quality of the surface. For all samples the used VS were 

grown by SS-MBE exclusive linearly graded VS used in samples #60.45 and #60.46, 

which were grown by LP-CVD. 

The active layers of MOD heterostructure in samples #51.33, #52.16 and #54.08 

were grown on Sio.7Geo.3 step graded VS. The characteristic feature for this samples are 

crosshatches on the surface due to step graded VS (Figure 5.16). The measured PV for 

samples #51.33, #52.16 and #54.08 are 7.6nm, 5.8nm and 6.4nm respectively. The 

measured rms for samples #51.33, #52.16 and #54.08 are 1.0nm, 0.8nm and 0.9nm 
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respectively. It is clear to see that these values are the same order of magnitude and varied 

mostly due to the growth conditions of Sio.7Geo.3 step graded VS. 

The Sio.6sGeo.3s linearly graded VS used in the samples #6045 and #6046 were grown 

by LPCVD. The characteristic feature for this samples are crosshatches on the surface due 

to linearly graded VS (Figure 5.17). The measured PV and rms for these samples are 42-

I 24nm and 5-15nm respectively. 

In the samples #622.54, #622.55 and #622.56 the Sio.2Geo.8 channel of thickness 

varied from 2 to 8nm was grown directly on Si(OO I) substrate without intermediate VS. No 

crosshatches were observed in these samples (Figure 5.18). The measured PV and rms for 

these samples are less than 2nm and 0.5nm respectively. 

The active layers of MOD heterostructure in samples #622.83 and #622.84 were 

grown on Sio.7Geo.3 VS with low temperature Si buffer. No crosshatches were observed in 

these samples (Figure 5.19). The measured PV for samples #622.83 and #622.84 are 4.5nm 

and 5.5nm respectively. The measured rms for samples #622.83 and #622.84 are 0.5nm 

and 0.7nm respectively. 

Thick (>3J.A.m) Sil_yGey (0.35~y~0.63) linearly graded VS used in the samples 

#C1957, #C1987, #C2015f, #C2072, #C2475 and #C2476 were grown by SS-MBE. The 

characteristic feature for this samples are crosshatches on the surface due to linearly graded 

VS (Figure 5.20, Figure 5.21). The measured PV and rms for these samples are 20-3Onm 

and 3-5nm respectively 
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Figure 5.18 Scanning white-light interferometry surface profiles of sample #622.54 
analysed by Metro Pro software. 
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Figure 5.20 Scanning white-light interferometry surface profiles of sample #C1957 
analysed by Metro Pro software. 

Figure 5.21 anning whit -light interferometry 
analy ed by M tr Pro ofiware. 
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5.7 The effect of post growth furnace and rapid thermal annealing on 

structural and optical properties of p-type MOD Sit-xGex!Sil-yGey 

heterostructures 

The effect of post growth furnace and rapid thermal annealing on structural and 

optical properties of p-type MOD Sil-xGex!Sil-yGey heterostructures was studied by 

XTEM, ULE-SIMS, PL spectroscopy and micro-Raman spectroscopy. 

XTEM analysis showed that after post growth thermal annealing the thickness of 

high Ge content Sil-xGex channel is increased. For sample #60.46 the thickness of Sio.2Geo.8 

channel increased from 4.2nm for as-grown one up to 7nm for sample after FTA at 750C 

for 30min (Figure 5.2). The increasing of Si1-xGex channel is accompanied with smearing 

of bottom and top Sit-xGex/Sil-yGey interfaces (Figure 5.2). The average distance between 

Si1-xGex channel and Si cap layer on the surface is decreased after annealing. 

The analysis of ULE-SIMS profiles of Ge, Si and B showed that during the post 

growth thermal annealing the Ge and B diffusion is occurred. The Ge diffusion from the 

region with high Ge concentration (Sil-xGex channel) to the region with low Ge 

concentration (Si1_yGey layers) and B diffusion from doped Si1_yGey layers to the undoped 

Sil_yGey spacer layers were observed after annealing. For sample #60.46 the broadening of 

Sio.2Geo.8 channel from 4.9nm for as-grown sample to 9.3nm for sample after FTA at 750C 

for 30min was observed (Figure 5.4). The broadening of Si1-xGex channel is accompanied 

with decreasing ofGe composition in the channel (Figure 5.4). 

PL spectra ofp-type MOD Sil-xGex/Sil-yGey heterostructures obtained in the energy 

range 0.7-1.2eV at 5.5K contain information only about Si substrate and Si1-yGey 

(0.3-0.63) relaxed layers. The peak at 1.080eV originated from Si substrate was observed 

in PL spectra of all investigated samples. No changes of its position were observed even 

after post growth thermal annealing at 900C 30min. Small changes in positions of peaks 
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originated from Si1-yGey relaxed layers were observed after annealing up to 900C (Figure 

5.8). 

After post growth thermal annealing significant changes in all regIons of room 

temperature Raman spectra of p-type MOD Sil-xGex/Sil_yGey heterostructures were 

observed (Figure 5.13). The intensities of the various modes change, as long as the 

intermixing of Si and Ge atoms occur during annealing. The most significant changes were 

observed in the Ge-Ge region (Figure 5.14). With increasing of annealing temperature the 

increase of intensity of Ge-Ge mode originated from the Si1-xGex strained channel layers 

and their downward shift is observed. This is demonstrate the sensitivity of the Raman 

spectra to Ge out diffusion during annealing which results in decreasing Ge content in the 

Si1-xGex strained channel or (and) its partial relaxation. The Ge-Ge mode originated from 

Si1_yGey relaxed layers is almost not shifted after annealing. The peak at 521cm-1 

corresponding to Si-Si mode originated from Si substrate remains unchangeable after 

annealing. 

5.8 The effect of Ge composition in the Sit-xGex channel and Sit_yGey 

layers on structural and optical properties of 

p-type MOD Sit-xGex!Sit_yGey heterostructures 

The effect of Ge composition in the Si1-xGex channel and Si1-yGey layers on 

structural and optical properties of p-type MOD Sil-xGex/Sil-yGey heterostructures was 

studied by XTEM, ULE-SIMS, PL spectroscopy, micro-Raman spectroscopy and scanning 

white-light interferometry. 

XTEM was performed on as-grown and annealed samples to determine the structural 

integrity of the layers and also to determine the dislocations microstructure in relaxed VS. 

In particular, the thicknesses of high Ge content Si l-xGex channel layer, the distance 
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between its top interface, Si cap layer on the surface and the thickness of the later were 

obtained (Figure 5.1). Also short-range roughness of Si1-xGex channel layer interfaces 

caused by not optimum growth conditions was studied. The thicknesses of VS were 

obtained as well (Figure 5.1). The characteristic feature of Si1_yGey linearly and step graded 

VS is massive dislocations network in the linearly or step graded part of VS (Figure 5.l). 

The relatively thin VS (850nm) used in samples #622.83 and #622.84 consists of Sio.7Geo.3 

layer grown on low-temperature Si buffer. Such type of VS does not contain massive 

dislocations network (Figure 5.3). Long-range roughness of samples surface cased by 

various types of VS was studied as well. 

ULE-SIMS was performed on as-grown and annealed samples to determine Ge, Si 

and B profiles. In particular, the thicknesses of high Ge content Si1_xGex channel layer, the 

distance between its top interface, Si cap layer on the surface and the thickness of the later 

were obtained from Ge and Si profiles. The Ge profile in the Sh-xGex channel layer is bell­

like (Figure 5.4). The level of B doping in active layers of MOD heterostructures was 

obtained from B profile. 

PL spectra of p-type MOD Sh-xGexlSi1_yGey heterostructures obtained in the energy 

range 0.7-1.2eV at 5.5K contain information only about Si substrate and Si1_yGey (0.3-

0.63) relaxed layers. The peak at 1.080eV originated from Si substrate was observed in PL 

spectra of all investigated samples (Figure 5.8). In the energy range 0.75-leV the peaks 

originated from Si1.yGey relaxed layers were observed (Figure 5.9). 

Raman spectroscopy measurements were performed on as-grown and annealed 

samples to obtain information about state of strain in Si1.xGex, SiJ.yGey and Si layers. The 

Ge composition in Si 1.yGey relaxed layers was obtained as well. The optical phonon range 

of Raman spectra of SiGe structures consist of three main regions, which are corresponds 

to Ge-Ge, Si-Ge and Si-Si atomic vibrations (Figure 5.10). In each region of Raman 

spectrum we can see Ge-Ge (285-295cm-1), Si-Ge (around 41Ocm-1) and Si-Si (480-
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505cm-l) modes from Sil.yGey relaxed layers. In addition to phonon modes originated from 

relaxed layers, were clearly observed the Ge-Ge modes (>300cm-l) from Sil.xGex strained 

channel layers. A comparison between these shifts and the Ge bulk ones, that is 300cm-l, 

shows upward shifts of the Ge-Ge peaks, which are due to the presence of compressive 

strain in the Sil.xGex layers. Very weak Si-Si modes (470-490cm-l) from Sil.xGex strained 

layers were observed. The intensities of these modes were weak, in comparison with 

others, due to small amount of Si in the Sil.xGex layers and their small thicknesses «14nm 

for most of samples). In the Si-Si region the peak at 495-515cm -I are correspond to Si-Si 

modes originated from tensilely strained Si cap layers on the surface grown on Sh.yGey 

relaxed layers. The modes at 400-460cm-1 frequency region are attributed to a Si-Ge 

vibrations in Sil.yGey relaxed layers, Sil.xGex strained channel layer and to Si or Ge 

vibrations in chemically different local environments in SiGe layers with intensity 

approximately proportional to the relative number of Si-Ge bonds. The Si-Ge phonon 

modes seem to have properties that are coming partly from the Ge and Si atoms. In 

particular for sample #622.83, the Sio.2Geo.8 channel layer is fully strained and Sio.7Geo.3 

layers are almost fully relaxed. The value of Ge composition in the Sil.yGey relaxed layers 

of sample #622.83 extracted from the ratio of intensities of Si-Si and Ge-Ge modes 

originated from these layers corresponds to 0.32±0.02. The Sil-xGex channels grown on 

Sil_yGey VS in the as-grown samples #51.33, #52.16, #54.08, #60.46, #622.83, #CI957, 

#CI987, #C2015f, #C20n, #C2475 and #C2476 were fully strained. In the as-grown 

sample #622.84 the 14nm Sio.2Geo.8 channel (grown on Sio.7Geo.3 VS) was partially relaxed 

due to exceeded critical thickness. The calculations of degree of relaxation from positions 

of Ge-Ge and Si-Si modes originated from Sil-xGex and Sil_yGey layers were done using 

anhannonic Keating model for SiGe [6]. 

Scanning white-light interferometry used to analysis surface profiles of p-type MOD 

Sil.xGex/Sil.yGey heterostructures. The surface profile is strongly depends from the growth 

121 



conditions. The investigated heterostructures are possible to divide into the groups 

depending on used type of VS due to their dominated effect on the quality of the surface. 

For all samples the used VS were grown by SS-MBE exclusive linearly graded VS used in 

samples #60.45 and #60.46, which were grown by LP-CVD. The characteristic feature for 

samples contained linearly or step graded VS are crosshatches on the surface due to 

linearly or step graded changes of Ge composition and high density of dislocations in VS 

(Figure 5.20, Figure 5.16). The measured PV and rms (see chapter 5.8) for samples with 

step graded VS (#51.33, #52.16 and #54.08) are 6-8nm and 0.8-1nm respectively (Figure 

5.16). For samples with linearly graded VS grown by LP-CVD (#60.45 and #60.46) the 

measured PV and rms are 42-124nm and 5-15nm respectively (Figure 5.17). For samples 

with thick (>3J.lm) linearly graded VS grown by SS-MBE (#CI957, #CI987, #C2015f, 

#C2072, #C2475 and #C2476) the measured PV and rms are 20-30nm and 3-5nm 

respectively (Figure 5.20). The active layers of MOD heterostructure in samples #622.83 

and #622.84 were grown on Sio.7Geo.3 VS with low temperature Si buffer. No crosshatches 

were observed in these samples (Figure 5.19). The measured PV and rms are 4.5-5.5nm 

and 0.5-0.7nm respectively. 

5.9 Conclusions 

The results and discussions of structural and optical analysis of p-type MOD Sh. 

xGe,/Sh.yGey heterostructures were presented in this chapter. The as-grown and after post 

growth thermal annealing samples were analyzed by XTEM, ULE-SIMS, PL spectroscopy, 

micro-Raman spectroscopy and scanning white-light interferometry. 

The structural integrity of the layers and the dislocations microstructure in relaxed 

VS were determined by XTEM. In particular, the thicknesses of high Ge content Sil.xGex 

channel layer were determined. Also short-range roughness of Sil.xGe" channel layer 

interfaces caused by not optimum growth conditions and long-range roughness cased by 
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various types of VS were studied by XTEM as well. The Ge, Si and B profiles were 

obtained by ULE-SIMS that allowed determine the structural integrity of the layers, Si l_ 

xGex channel layer thickness and level of B doping in the active layers of MOD 

heterostructures. PL spectra of p-type MOD Sil_xGex/Sil_yGey heterostructures obtained in 

the energy range 0.7-1.2eV at 5.5K contain information only about Si substrate and Si l_ 

yGey (0.3-0.63) relaxed layers. State of strain in the Sil_xGex strained and Sil_yGey relaxed 

layers and the Ge composition in the later were obtained from room temperature Raman 

spectra. The Sh-xGex channels grown on Sil_yGey VS in the as-grown samples #51.33, 

#52.16, #54.08, #60.46, #622.83, #C1957, #C1987, #C2015f, #C2072, #C2475 and 

#C2476 (see chapter 4.2) were fully strained. In the as-grown sample #622.84 the 14nm 

Sio.2Geo.8 channel (grown on Sio.7Geo.3 VS) was partially relaxed due to exceeded critical 

thickness. The surface profiles of p-type MOD Sil_xGex/Sil_yGey heterostructures were 

obtained by scanning white-light interferometry. The characteristic feature for samples 

contained linearly or step graded VS are crosshatches on the surface due to linearly or step 

graded changes of Ge composition and high density of dislocations in VS. No crosshatches 

were observed in the samples contained relatively thin (850nm) Sio.7Geo.3 VS with low 

temperature Si buffer (#622.83 and #622.84). The lowest surface roughness was observed 

in these samples. The highest surface roughness was observed in the samples with 

Sio.6sGeo.3s linearly graded VS grown by LP-CVD (#60.45 and #60.46). 

After post growth thermal annealing (FTA and RTA) the Ge diffusion from the 

region with high Ge concentration (Si l-xGex channel) to the region with low Ge 

concentration (Sh_yGey layers) and B diffusion from doped Sil_yGey layers to the undoped 

Sil_yGey spacer layers were observed. The broadening of Sil-xGex channel caused by Ge 

diffusion was accompanied with smearing of bottom and top Sil-xGex/Sil_yGey interfaces. 

After annealing significant changes in all regions of Raman spectra of p-type MOD Si l_ 

xGex/Si l.yGCy heterostructures were observed. The intensities of the various modes 
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changed, as long as the intennixing of Si and Ge atoms occurred during annealing. The 

most significant changes were observed in the Ge-Ge region. With increasing of annealing 

temperature the increase of intensity of Ge-Ge mode originated from the Si1-xGex strained 

channel layers and their downward shift were observed. This is demonstrate the sensitivity 

of Raman spectra to Ge diffusion during annealing which results in decreasing Ge content 

in the Si1-xGex strained channel or (and) its partial relaxation. With increasing annealing 

temperature the Si l-yGey relaxed layers became more relaxed just in the case if they were 

not fully relaxed in as-grown samples. The peak at 521cm-1 corresponding to Si-Si mode 

originated from Si substrate remained unchangeable after annealing up to 900C for 30min. 

It is necessary to point, that micro-Raman spectroscopy, PL spectroscopy and ULE-

SIMS measurements were perfonned on the very same samples (Hall-bars and Van der 

Pauw cross) used for magnetotransport characterization. 
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6. Results and discussions of magnetotransport characterization 

of p-type MOD Sit-xGex/Sit_yGey heterostructures 

The samples were firstly measured in the closed-cycle cryostat system by the 

combination of resistivity and Hall effect techniques at temperature range 9-300K. At low 

temperatures the measured Hall mobility at sheet carrier density is attributed to 2DHG formed 

in the Sit-xGex channel of p-type MOD Sit-xGex/Sit-yGey heterostructures. At high 

temperatures the measured Hall mobility at sheet carrier density is resulted at least from 

2DHG formed in the Sit-xGex channel and carriers in parallel conducted B doped Sit-yGey 

layer. 

To extract the room temperature drift mobility and sheet carrier density of 2DHG the 

magnetic field dependences of magnetoresistance and Hall resistance at the high temperatures 

were measured in cryomagnetic system as the magnetic field was swept continuously up to 

liT, and the technique ofMEMSA (see chapter 2.3.4.2) was applied. 

Low temperature magnetotransport measurements down to 350mK and at magnetic 

fields up to II T were carried out in cryomagnetic system. From the temperature dependence 

of the Shubnikov-de Haas oscillations were extracted followed parameters of 2DHG, -

effective mass, sheet carrier density, transport and quantum scattering times, and related ones. 

6.1 Magnetotransport properties of p-type MOD Sit-xGexlSit-yGey 

heterostructures measured at temperatures 9-300K 

6.1.1 Introduction 

Hall mobility and sheet carrier density of p-type MOD Sit-xGex/Sit-yGey 

heterostructures were obtained from the combination of resistivity and Hall effect techniques 

at temperature range 9-300K. The measurements were performed in the closed-cycle cryostat 
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system (see chapter 3.8.1). The data were obtained in the dark beginning at low temperature. 

The measurements were performed on as-grown and after FTA and RTA samples. 

6.1.2 Results and discussion 

Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after FT A at 600C, 700C, 800C and 900C for 30min samples #51.33 are presented in Figure 

6.1. The as-grown heterostructure consist of 5nm Sio.22Geo.78 channel grown on 2200nm 

Sio.7Geo.3 step graded YS and inverted 4·10 18cm-3 B doped lOnm Sio.8Geo.2 layer (see chapter 

4.2). The Hall mobility of 2DHG (at sheet carrier density) formed in the Sio.22Geo.78 channel 

of as-grown sample measured at 9K is 350cm2
.y-l·s-1 (7.45·1012cm-2

). This value of carrier 

density is higher than expected from design due to unintentional increased B doping level 

during the growth. The sheet carrier density is almost constant at low temperatures and starts 

to rise slowly as the temperature is increased. At high temperatures it increases exponentially 

due to the ionization of the B doped Sio.7Geo.3 layer. The Hall mobility is almost constant at 9-

70K of temperature range followed by decreases with increasing temperatures. The Hall 

mobility (at sheet carrier density) for as-grown sample measured at 293K is 113cm2.y-I·s-1 

(9.82.IO I2cm-2
). The annealing at 600C is seen to have a negligible effect on the Hall mobility 

as well as on carrier sheet density. Increasing the annealing temperature results in pronounced 

successive increases of Hall mobility. The highest Hall mobility at 9K and 293K was 

observed after annealing at 700C for 30min. The values are 670cm2.y-1·s-1 (7·1012cm-2
) and 

180cm2
.y-l·s-1 (9.14·1012cm-2

) at 9K and 293K respectively. Further increasing of annealing 

temperatures up to 800C and 900C results in decreases of Hall mobility. For sheet carrier 

density was observed opposite behaviour. 

Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after FT A at 600C, 700C, 800C and 900C for 30min samples #52.16 are presented in Figure 

6.2. The as-grown heterostructure consist of 5nm SiO.24GeO.76 channel grown on 1150nm 
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SiO.7Geo.3 step graded YS and nonnaI2.4·1018cm-3 B doped 50nm SiO.7GeO.3 layer (see chapter 

4.2). The Hall mobility of 2DHG (at sheet carrier density) formed in the SiO.24GeO.76 channel 

of as-grown sample measured at 9K is 131cm2.y-l ·s-1 (2.08·1013cm-2). This value of carrier 

density is higher than expected from design due to unintentional increased B doping level 

during the growth. The Hall mobility (at sheet carrier density) for as-grown sample measured 

at 293K is 85cm2.y- l ·s-1 (3.23·1013cm-2). The annealing at 600e is seen to have a negligible 

effect on the Hall mobility as well as on carrier sheet density. Increasing the annealing 

temperature results in pronounced successive increases of Hall mobility. The highest Hall 

mobility at 9K and 293K was observed after annealing at 800e for 30min. The values are 

841cm2.y-l ·s-1 (5.29·IO I2cm-2) and 134cm2.y-l ·s-1 (1.82·1013cm-2
) at 9K and 293K 

respectively. Further increasing of annealing temperatures up to 900e results in decreases of 

Hall mobility. For sheet carrier density was observed opposite behaviour. 

Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after FT A at 600e, 700e, 800e and 900e for 30min samples #54.08 are presented in Figure 

6.3. The as-grown heterostructure consist of 6nm Sio.4Geo.6 channel grown on 1350nm 

SiO.7GeO.3 step graded YS and nonnal 2·10 18cm-3 B doped 50nm SiO.7GeOJ layer (see chapter 

4.2). The Hall mobility of 2DHG (at sheet carrier density) fonned in the SiO.4GeO.6 channel of 

as-grown sample measured at 9K is 173cm2.y- l ·s-1 (2.33·1012cm-2). The Hall mobility (at 

sheet carrier density) for as-grown sample measured at 293K is 88cm2.y--I·s-1 

(1.07.1013cm-2). The annealing at 600e is seen to have a negligible effect on the Hall mobility 

as well as on carrier sheet density. Increasing the annealing temperature results in pronounced 

successive increases of Hall mobility. The highest Hall mobility at 9K and 293K was 

observed after annealing at 900e for 30min. The values are 1477cm2.y-l ·s-1 (5.29.101Icm-2) 

and 145cm2.y- l ·s-
1 

(3.9·10
12

cm-2) at 9K and 293K respectively. For sheet carrier density was 

observed opposite behaviour. 
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Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after FT A at 600C, 700C, 750C and 800C for 30min samples #60.46 are presented in Figure 

6.4. The as-grown heterostructure consist of 4nm Sio.2Geo.8 channel grown on 300nm 

Sio.6sGeo.3s buffer on 1200nm Sio.6sGeo.3s linearly graded VS and normaI2·1018cm-3 B doped 

lOnm Sio.7Geo.3 layer (see chapter 4.2). The Hall mobility of 2DHG (at sheet carrier density) 

formed in the Sio.2Geo.8 channel of as-grown sample measured at 9K is 654cm2.y-l·s-1 

(1.43.10 12cm-2). The Hall mobility (at sheet carrier density) for as-grown sample measured at 

293K is 97cm2.y-l·s-l (1.92·1014cm-2). The annealing at 600C is seen to have a negligible 

effect on the Hall mobility as well as on carrier sheet density. Increasing the annealing 

temperature results in pronounced successive increases of Hall mobility. The highest Hall 

mobility of 2DHG measured at 9K was observed after FT A at 700C for 30min which 

correspond to 1955cm2.y-l·s-l (8.62·1O"cm-2). The room temperature Hall mobility for the 

sample after annealing at 700C is 408cm2.y-l·s-l (6.65·1012cm-2). Further increasing of 

annealing temperature up to 750C results in increases of room temperature Hall mobility up to 

1776cm2·V-1·s-1 (2.37.1013cm-2) followed by decreasing down to 993cm2.y-l·s-1 

(2.78·1013cm-2). 

The electronic properties of semiconductors depend strongly on the presence of deep 

electronic states within the energy bandgap of semiconductors. Deep levels are ubiquitous in 

that they are a consequence of unintentional impurities, intrinsic point defects, and variety of 

extended defects such as dislocations, grain boundaries, interfaces and general crystalline 

disorder [I]. Sample #60.46 has the highest density of threading dislocations in comparison 

with others ones, generated during the LP-CVD growth of Sio.6SGe0.35 linearly graded VS. It 

could be that during annealing the conductivity type of background has changed that caused 

compensation of Boron acceptor centres by deep defects levels. Previously P.N. Grillot et al 

[2] observed that strain-relaxed, compositionally graded Sio.7Geo.3/Si VS grown by UHV­

CVD were shown to display a consistent change from p-type to n-type conductivity as a 
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function of RT A temperature in the range 700-850e for 60sec. The self-consistent solution of 

the Poisson and Schrodinger equations (see chapter 4.1) performed for sample #60.46 after 

FTA at 750e in 200K temperature region showed that after introduction ofn-type background 

doping at No-10 17cm-3 it is possible to get dramatic decreasing of2DHG sheet density and to 

see results similar to those obtained experimentally (Figure 6.4). Pronounced decrease of Hall 

mobility and sheet carrier density with activation energy 20meV below 200K could be 

explained by appearing of deep hole and electron traps after annealing at 750e and 800e 

similar to [2]. The exist of these hole traps in SiGe graded layers containing dislocations with 

several activation energies EAI=Ey+240meV, EA2=Ey +380meV, EA3=Ey +420meV, 

EA4=Ey +430meY and two types of electron traps with ETI=Ec-640meV, ETI=Ec-570meY have 

been experimentally demonstrated with the help of DLTS and EBIC techniques by P.N. 

Grillot et al [3]. The possibility to capture free holes from valence band and also carriers from 

the shallow dislocations bands in the Si was experimentally shown with the help of DL TS and 

EBle techniques and theoretically supported by M. Kittler et al [4]. Hole and electron traps 

energy levels are much deeper than estimated activation energy of the Boron (-20meV) in 

Sio.6sGeo.3s and could easily decrease its ability to supply free holes to valence band and 

essential for understanding of "freezing out" of 2DHG if one could suggest the concentration 

of donor-like centres with No-1017cm-3. The proposed scenario is very similar to very well 

known phenomena of dramatic decreasing of free carriers concentration in heavily doped 

semiconductors with increasing degree of impurity compensation K=NA/No>O.9 [5], [6]. 

Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after FTA at 600e, 700e, 750e, 800e and 900e for 30min samples #622.83 are presented in 

Figure 6.5. The as-grown heterostructure consist of 10nm Sio.2Geo.8 channel grown on 850nm 

Sio.7Geo.3 LT-Si VS and normal 2·10
18

cm-3 B doped lOnm Sio.7GeoJ layer (see chapter 4.2). 

The Hall mobility of 2DHG (at sheet carrier density) fonned in the Sio.2Geo.8 channel of as­

grown sample measured at 9K is 624cm2.y-1·s-1 (1.37.1012cm-2). The Hall mobility (at sheet 
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carrier density) for as-grown sample measured at 293K is 170cm2.y-l·s-l (2.6.1012cm-2). The 

annealing at 600e is seen to have a negligible effect on the Hall mobility as well as on carrier 

sheet density. Increasing the annealing temperature results in pronounced successive increases 

of Hall mobility. The highest Hall mobility at 9K and 293K was observed after annealing at 

750e for 30min. The values are 1680cm2.y-1·s-1 (1.27·1012cm-2) and 512cm2.y-I·s-1 

(2.11·1 Ol2cm -2) at 9K and 293K respectively. Further increasing of annealing temperatures up 

to 900e results in decreases of Hall mobility. For sheet carrier density was observed opposite 

behaviour. 

Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after FTA at 600e, 700e, 750e, 800e and 900e for 30min samples #622.84 are presented in 

Figure 6.6. The as-grown heterostructure consist of 14nm Sio.2Geo.8 channel grown on 850nm 

Sio.7Geo.3 LT-Si YS and normal 2·1018cm-3 B doped 10nm Sio.7GeoJ layer (see chapter 4.2). 

The Hall mobility of 2DHG (at sheet carrier density) formed in the Sio.2Geo.8 channel of as­

grown sample measured at 9K is 297cm2.y-l·s-1 (1.4.1012cm-2
). The Hall mobility (at sheet 

carrier density) for as-grown sample measured at 293K is 98cm2.y-1·s-1 (3.28. 10 1 2cm-2). The 

annealing at 600e is seen to have a negligible effect on the Hall mobility as well as on carrier 

sheet density. Increasing the annealing temperature results in pronounced successive increases 

of Hall mobility. The highest Hall mobility at 9K and 293K was observed after annealing at 

750e for 30min. The values are 938cm2.y-1·s-1 (9.86·1O"cm-2) and 153cm2.y-l·s-1 

(3.11.IQI2cm-2) at 9K and 293K respectively. Further increasing of annealing temperatures up 

to 900e results in decreases of Hall mobility. For sheet carrier density was observed opposite 

behaviour. 

Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after RTA at 750e for 30sec samples #e1987 are presented in Figure 6.7. The as-grown 

heterostructure consist of 12.3nm Sio.34Geo.66 channel grown on 3600nm SiO.6SGeO.3S linearly 

graded YS and normaI2.4·10
18

cm-3 B doped lOnm SiO.7GeO.3 layer (see chapter 4.2). The Hall 
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mobility of 2DHG (at sheet carrier density) formed in the Sio.34Geo.66 channel of as-grown 

sample measured at 9K is 3877cm2.y-1·s-1 (7.41·1O"cm-2). The Hall mobility (at sheet carrier 

density) for as-grown sample measured at 293K is 346cm2.y-1·s-1 (1.6·1012cm-2). After RTA 

at 750C was observed an increase of Hall mobility as well as sheet carrier density at 9K and 

293K. The values are 6574cm2.y-1·s-1 (1.1·1012cm-2) and 438cm2.y-1·s-1 (2.14.1012cm-2) at 

9K and 293K respectively. 

Temperature dependences of Hall mobility and sheet carrier density for as-grown and 

after RT A at 750C for 30sec samples #C2072 are presented in Figure 6.8. The as-grown 

heterostructure consist of 12nm SiO.1SGeO.S2 channel grown on 3100nm Sio.47Geo.s3 linearly 

graded YS and normal 2.4·10 18cm-3 B doped 10nm Sio.47Geo.s3 layer (see chapter 4.2). The 

Hall mobility of 2DHG (at sheet carrier density) formed in the SiO.1sGeO.S2 channel of as­

grown sample measured at 9K is 2102cm2.y-1·s-1 (1.28·1012cm-2). The Hall mobility (at sheet 

carrier density) for as-grown sample measured at 293K is 515cm2.y-1·s-1 (1.87. 10 1 2cm-2). 

After RTA at 750C was observed an increase of Hall mobility accompanied with decreases of 

sheet carrier density at 9K and 293K. The values are 5567cm2.y-1·s-1 (l.13·10 12cm-2) and 

564cm2.y-1·s-1 (1.77·10 12cm-2) at 9K and 293K respectively. 

Temperature dependences of Hall mobility and sheet carrier density for as-grown 

sample #C1957 are presented in Figure 6.9. The heterostructure consist of I1nm Sio.osGeo.9s 

channel grown on 5250nm Sio.37Geo.63 linearly graded YS and normal 2·101Scm-3 B doped 

lOnm Sio.37Geo.63 layer (see chapter 4.2). The Hall mobility of2DHG (at sheet carrier density) 

formed in the Sio.osGeo.9s channel at 9K is 930Icm2.y-1·s-1 (1.58·1012cm-2). The Hall mobility 

(at sheet carrier density) measured at 293K is 1161cm2.y-1·s-1 (2.1·1012cm-2). 

Temperature dependences of Hall mobility and sheet carrier density for as-grown 

sample #C2475 are presented in Figure 6.9. The heterostructure consist of lOnm Sio.o2Geo.9s 

channel grown on 3950nm SiO.41 GeO.s9 linearly graded YS and symmetrical 8. 10 1 Scm-3 (top) 

and 2·1OIscm-3 (bottom) 8 doped 5nm and 5nm Sio.41GeO.S9 layers, respectively (see chapter 
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4.2). The Hall mobility of2DHG (at sheet carrier density) formed in the Sio.02Geo.98 channel at 

9K is 9309cm2.y-1·s-1 (2.76·1012cm-2). The Hall mobility (at sheet carrier density) measured 

at 293K is 71Icm2.y-1·s-1 (4.83·1012cm-2). 

Temperature dependences of Hall mobility and sheet carrier density for as-grown 

sample #C2476 are presented in Figure 6.9. The heterostructure consist of 9nm Ge channel 

grown on 3950nm Sio.4Geo.6 linearly graded YS and inverted 1·1019cm-3 B doped 4nm 

Sio.4Geo.6Iayer (see chapter 4.2). The Hall mobility of2DHG (at sheet carrier density) formed 

in the Ge channel at 9K is 14855cm2.y-l·s-1 (2.87.1012cm-2
). The Hall mobility (at sheet 

carrier density) measured at 293K is 1380cm2.y-l·s-1 (3.82.10 12cm-2). 

The results of magnetotransport characterization at temperatures 9-300K of p-type 

MOD Sil-xGex/Sil-yGey heterostructures were presented at "10th European Heterostructure 

Technology Workshop"[7], [8], [9] and "SiGe (C) 2001 Workshop"[lO]. 
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Figure 6.2 Temperature dependences of Hall mobility and sheet carrier density for as-grown 
sample #52. 16 and after FTA at 600C, 700C, 800e and 900e for 30rnin. 
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Figure 6.3 Temperature dependences of Hall mobility and sheet carrier density for as-grown 
sample #54.08 and after FTA at 600e, 700e, 800e and 900e for 30min. 
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Figure 6.4 Temperature dependences of Hall mobility and sheet carrier density for as-grown 
sample #60.46 and after FTA at 600C, 700C, 750C and 800C for 30rrlin. 
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Figure 6.6 Temperature dependences of Hall mobility and sheet carrier density for as-grown 
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Figure 6.7 Temperature dependences of Hall mobility and sheet carrier density for as-grown 
sample # 1987 and after RT A at 750C for 30min. 
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Figure 6.8 Temperature dependences of Hall mobility and sheet carrier density for as-grown 
sample #C20n and after RTA at 750C for 30min. 
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Figure 6.9 Temperature dependences of Hall mobility and sheet carrier densHy for as-grown 
samples #C1957, #C2475 and #C2476. 
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6.1.2.1 The effect of post growth furnace thermal annealing on 

magnetotransport properties of p-type MOD Sit-xGex!Sit_yGey 

heterostructures 

Post growth FT A was perfonned on samples #51.33, #52.16, #54.08, #60.46, #622.83 

and #622.84 (see chapter 4.2) at temperature range 600-900e for 30min in N2 ambient. 

The measured at 9K Hall mobility at sheet carrier density of 2DHG formed in the Silo 

xGex channel of investigated heterostructures as a function of FT A temperature are presented 

in Figure 6.10. For all samples was observed similar effect of FTA on Hall mobility and sheet 

carrier density. The annealing at 600e is seen to have a negligible effect on the Hall mobility 

as well as on sheet carrier density. Increasing the annealing temperature results in pronounced 

successive increases of mobility. Every sample has optimum annealing temperature, which 

corresponds to the highest mobility. Further increasing of annealing temperature results in 

decreasing of mobility. For sheet carrier density was observed opposite behaviour with 

increasing annealing temperature. For samples #51.33, #52.16 #60.46, #622.83 and #622.84 

were observed peaks of Hall mobility after FTA at 700e, 800e, 700e, 750e and 750e 

respectively. For sample #54.08 was not observed peak of Hall mobility even after FTA at 

900e. The spacer width in as-grown samples #51.33, #52.16, #54.08, #60.46, #622.83 and 

#622.84 are 5nm, lOnm, 15nm, 5nm, 7nm and 7nm respectively. After the FTA at optimum 

temperatures for samples #51.33, #52.16, #54.08, #60.46, #622.83 and #622.84 were 

observed 1.9, 6.4, 8.5, 3, 2.7 and 3.1 times increase in mobility of 2DHG compared to 

mobility for as-grown ones, respectively. 

The decrease of sheet carrier density was found to be consistent with the decreased hole 

transfer from B doped region to the Sil-xGex channel due to Ge diffusion in the 

buffer\channel\spacer region during FT A, resulted in decreased Ge concentration in the 

channel and as consequence the valence band offset is decreased. As soon as the Sil_yGey 

spacer width is decreased due to B diffusion from doped Sil-yGey layer and Ge diffusion from 
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the Si1-xGex channel (x>y) the carriers transfer from B doped region is increased. 

Consequently the sheet carrier density is increased. The decreasing of sheet carrier density 

with increasing of FT A temperature observed for investigated heterostructures (Figure 6.10) 

corresponds to the case when the effect of reduction of valence band offset is dominated. The 

minimum in sheet carrier density as a function of FT A temperature corresponds to the case 

when the effect of reduced Si1-yGey spacer width becomes balanced by the effect of reduction 

of valence band offset. Following increasing of sheet carrier density with further increasing of 

FTA temperature corresponds to the case when the effect of reduced Si1-yGey spacer width 

becomes more dominant in comparison with the effect of reduction of valence band offset. 

The low Hall mobility observed in as-grown samples could be explained by effect of 

short-range interface roughness scattering due to not optimum growth conditions, remote 

impurity scattering and point defects that appear at low temperature growth because of 

reduced surface adatom mobility. When growing high Ge content Si1-xGex channels by SS­

MBE it is advantageous to use low growth temperatures to kinetically suppress surface 

segregation, which smears the Ge profile, and also to suppress surface diffusion that can 

produce roughness of the surface to relieve strain energy. As was mentioned before the 

annealing causes Ge diffusion in the buffer\channel\spacer region resulted in decreased Ge 

concentration in the channel and consequently increased Sit-xGex channel width. Also the 

point defects are annihilated during annealing. The increase of Hall mobility after FT A 

observed for investigated heterostructures (Figure 6.10) can be associated with the reduction 

of interface roughness scattering due to smearing of channel/spacer interface and broadening 

of Sit-xGex channel width L due to Ge diffusion because of j.JlRocL
6 (see chapter 2.3.2.3). The 

mobility will increase until the effects of remote impurity scattering and alloy scattering begin 

to dominate. Mobility will be reducing due to the decreasing of spacer thickness Ls {pRJOCLs3, 
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see chapter 2.3.2.2) and decreasing of Ge composition x in the Sil-xGex channel 

L 
(PAL oc , see chapter 2.3.2.4). 

x·(I-x) 

The measured at 293K Hall mobility at sheet carrier density for investigated 

heterostructures as a function of FTA temperature are presented in Figure 6.11. For all 

samples was observed similar effect of FT A on Hall mobility and sheet carrier density as was 

observed at 9K. The annealing at 600C is seen to have a negligible effect on the Hall mobility 

as well as on sheet carrier density. Increasing the annealing temperature results in pronounced 

successive increases of mobility. Every sample has optimum annealing temperature, which 

corresponds to the highest mobility. Further increasing of annealing temperature results in 

decreasing of mobility. For samples #51.33, #52.16 #60.46, #622.83 and #622.84 were 

observed peaks of Hall mobility after FTA at 700C, 800C, 750C, 750C and 750C 

respectively. For sample #54.08 was not observed peak of Hall mobility even after FTA at 

900C. After the FTA at optimum temperatures for samples #51.33, #52.16, #54.08, #60.46, 

#622.83 and #622.84 were observed 1.5, 1.5, 1.6, 18,3 and 1.5 times increase in Hall mobility 

measured at 293K compared to mobility for as-grown ones, respectively. 
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Figure 6.10 FT A effect on Hall mobility and sheet carrier density of 2DHG formed in the 
channel of samples #51.33, #52.16, #54.08, 60.46, #622.83 and #622.84 measured at 9K. 
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Figure 6.11 FTA effect on Hall mobility and sheet carrier density of samples #51.33, #52.16, 
#54.08, 60.46, #622.83 and #622.84 measured at 293K. 
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6.1.2.2 The effect of post growth rapid thermal annealing on 

magnetotransport properties of p-type MOD Sh_xGex/Sh-yGey 

heterostructures 

Post growth RTA was performed on samples #CI987, #C2015f and #C2072 (see 

chapter 4.2) at temperature 750C for 30sec in N2 ambient. 

The measured at 9K Hall mobility at sheet carrier density of 2DHG formed in the 

Sil-xGex channel of investigated as-grown and after RTA heterostructures are presented in 

Table 6.1. For all samples was observed similar effect of RTA on Hall mobility. After the 

RTA at 750C for 30sec for samples #CI987, #C2015fand #C2072 were observed 1.7,3, and 

2.6 times increase in mobility of2DHG compared to mobility for as-grown ones, respectively. 

For sample #C1987 after RTA was observed an increase in carrier sheet density but in 

samples #C2015fand #C20n the carrier sheet density was decreased. 

Table 6.1 Hall mobility and sheet carrier density of 2DHG formed in the Sh-xGex channel of 
as-grown and after RTA at 750C for 30sec samples #CI987, #C2015f, #C2072 measured at 
9K. 

Sample ID 
Channellbuffer J.lHall pHall 

(as-grown) (I 2 V-I -I) (cm-2) cm· ·s 

#C1987 
As-grown SiO.34GeO.661' 3877 7.41.10 11 

RTA at 750C for 30sec Sio.6sGeo.3s 6574 1.10.1012 

#C2015f 
As-grown SiO.ISGeO.S2/ 2525 1.10.1012 

RTA at 750C for 30sec Sio.sGeo.s 7657 1.00.1012 

#C2072 
As-grown SiO.ISGeO.S2/ 2102 1.28.1012 

RTA at 750C for 30 sec SiO.47GeO.S3 5567 1.13.1012 

The decrease of sheet carrier density observed after RTA in samples #C2015f and 

C20n could be because of decreased hole transfer from B doped region to the Sh-xGex 

channel due to Ge diffusion in the buffer\channel\spacer region during RTA, resulted in 

decreased Ge concentration in the channel and as consequence the valence band offset is 

decreased. The increase of sheet carrier density observed after RTA in sample #C1987 could 

148 



be because of the Sil_yGey spacer width is decreased due to B diffusion from doped Sil_yGey 

layer and Ge diffusion from the Sh-xGex channel (x>y) and consequently the carriers transfer 

from B doped region is increased. 

As was mentioned before the annealing causes Ge diffusion in the buffer\channel\spacer 

region resulted in decreased Ge concentration in the channel and consequently increased 

Sil-xGex channel width. The increase of Hall mobility after RTA observed for investigated 

heterostructures (Table 6.1) can be associated with annihilation of point defects caused by low 

temperature growth and the reduction of interface roughness scattering due to smearing of 

channel/spacer interface and broadening of Sh-xGex channel width L due to Ge diffusion 

because of /JIROCL
6 (see chapter 2.3.2.3). 

The measured at 293K Hall mobility at sheet carrier density for investigated as-grown 

and after RTA heterostructures are presented in Table 6.2. For all samples was observed 

similar effect of RTA on Hall mobility and sheet carrier density as was observed at 9K. After 

the RTA at 750C for 30sec for samples #CI987, #C2015fand #C2072 were observed 1.2, 1.3, 

and 1.1 times increase in Hall mobility compared to mobility for as-grown ones, respectively. 

For sample #C 1987 after RT A was observed an increase in carrier sheet density but in 

samples #C20 15f and #C2072 the carrier sheet density was decreased. 

Table 6.2 Hall mobility and sheet carrier density of as-grown and after RT A at 750C for 
30sec samples #CI987, #C2015f, #C2072 measured at 293K. 

Sample ID 
Channellbuffer J.lHall pHall 

(as-grown) (cm2·V- I ·s-l) (cm-2) 

#C1987 
As-grown SiO.34GeO.6d 346 1.60.1012 

RTA at 750C for 30 sec Sio.6SGeO.3S 438 2.14.1012 

#C2015f 
As-grown S io.lsGeo.s2/ 498 2.42.1012 

RT A at 750C for 30sec Sio.sGeo.s 671 1.72.1012 

#C2072 
As-grown SiO.lsGeO.S2/ 515 1.87.1012 

RTA at 750C for 30sec SiO.47GeO.S3 564 1.77.1012 
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6.1.2.3 The effect of Ge composition in the Si1-xGex channel and Sit_yGey 

layers on magnetotransport properties of p-type MOD 

Sit-xGex/Sil-yGey heterostructures 

All investigated samples could be divided into three groups regarding to Ge composition 

in the Si1_"Ge" channel. The first group consists of samples #54.08 and #1987 containing 

Sio.4Geo.6 and Sio.34Geo.66 channels respectively. For the as-grown samples from the first group 

the Ge composition in the Sil-llGe" channel is close to x=0.6. The second group consists of 

samples #52.16, #51.33, #60.46, #622.54, #622.83, #622.84, #C20 15f and #C2072 containing 

Sio.24Geo.16, Sio.22Geo.1s, Sio.2Geo.s, Sio.2Geo.s, Sio.2Geo.s, Sio.2Geo.s, Sio.1sGeO.S2, and SiO.18GeO.82 

channels respectively. For the as-grown samples from the second group the Ge composition in 

the Si1-"Ge" channel is around x=0.8. And the third group consists of samples #CI957, 

#C2475 and #C2476 containing Sio.osGeo.9s, Sio.o2Geo.98 and Ge channels respectively. For the 

samples from the third group the Ge composition in the Si1."Gex channel is close to x=1. 

Hall mobility and sheet carrier density of 2DHG formed in the Si1-xGex channel of as­

grown and after optimum thermal annealing samples #51.33, #52.16, #54.08, #60.46, 

#622.54, #622.83, #622.84, #CI957, #CI987, C2015f, #C2072, #C2475, #C2476 measured at 

9K are presented in Table 6.3. 

For the sample #54.08 containing Sio.4Geo.6 channel grown on Sio.7Geo.3 step graded VS 

the highest mobility (at sheet carrier density) of 2DHG was obtained after FTA at 900C for 

30min and corresponds to 1477cm2.y-l·s-l (5.29. lQl lcm·2). For the sample #1987 containing 

Sio.34Geo.66 channel grown on Sio.6sGe0.3S linearly graded VS the highest mobility (at sheet 

carrier density) of 2DHG was obtained after RTA at 750C for 30sec and corresponds to 

6574cm2·V-1·s-1 (1.10.10 12cm·2). It is clear to see that the sample #C1987 has higher mobility 

of 2DHG measured at 9K. 
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Table 6.3 Hall mobility and sheet carrier density of 2DHG fonned in the Sil-xGex channel of 
as-grown and after optimum thennal annealing samples #51.33, #52.16, #54.08, #60.46, 
#622.54, #622.83, #622.84, #CI957, #CI987, C2015f, #C2072, #C2475, #C2476 measured at 
9K. 

Sample ID 
Channellbuffer /-lHall PHall 

(as-grown) (cm2·VI·s-l) (cm-2) 

#5408 
As-grown Sio.4Geo.d 173 2.33.1012 

FT A at 900C for 30min Sio.7Geo.3 1477 5.29.1011 

#C1987 
As-grown SiO.34GeO.6d 3877 7.41.1011 

RTA at 750C for 30sec SiO.65GeO.35 6574 1.10.1012 

#5216 
As-grown SiO.24GeO.7d 131 2.08.1013 

FT A at 800C for 30min Sio.7Geo.3 841 5.29.1012 

#5133 
As-grown SiO.22GeO.781 350 7.45.1012 

FT A at 700C for 30min SiO.7GeO.3 670 7.00.1012 

#6046 
As-grown SiO.2GeO.81 654 1.43.1012 

FT A at 700C for 30min SiO.7GeO.3 1955 8.62.1011 

#62254 As-grown SiO.2Geo.sI 154 6.73.1011 
Si 

#62283 
As-grown SiO.2GeO.81 624 1.37.1012 

FTA at 750C for 30min SiO.7GeoJ 1680 1.27.1012 

#62284 
As-grown SiO.2GeO.S/ 297 1.40.1012 

FTA at 750C for 30min SiO.7GeoJ 938 9.86.1011 

#C2015f 
As-grown Sio. 18GeO.821 2525 1.10.1012 

RTA at 750C for 30sec Sio.5GeO.5 7657 1.00.1012 

#C2072 
As-grown SiO.18GeO.821 2102 1.28.1012 

RTA at 750C for 30sec Sio.47Geo.53 5567 1.13.1012 

#C1957 As-grown SiO.05GeO.951 
9301 1.58.1012 

Sio.37Geo.63 

#C2475 As-grown Sio.Q2Geo.981 
9309 2.76.1012 

SiO.4IGeO.59 

#C2476 As-grown 
Gel 

14855 2.87.1012 
Sio.4oGeo.6o 

The second group could be divided into series regarding to the type of used VS. 

Samples #51.33 and #52.16 contain Sio.7Geo.3 step graded VS. Sample #60.46 contains 

relatively thin Sio.6sGeo.35 linearly graded VS. The thin Sio.2Geo.8 channel in sample #622.54 

was grown directly on Si, without intennediate VS. Samples #622.83 and #622.84 contain 

SiO.7GeO.3 VS with L T -Si buffer. And samples #C20 15f and #C2072 contain thick Sio.5GeO.5 

and SiO.47GeO.53 linearly graded VS respectively. From the samples with Sil-xGex channel 

grown on SiO.7GeO.3 step graded VS the highest mobility (at sheet carrier density) of 2DHG 
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was obtained for the sample #52.16 after FT A at 800C for 30min and corresponds to 

841cm2.y-l·s-l (5.29·1012cm-2). For the sample #60.46 the highest mobility (at sheet carrier 

density) of 2DHG was obtained after FTA at 700C for 30min and corresponds to 

1955cm2.y- l ·s-1 (8.62·1O"cm-2). For the sample #622.54 the mobility (at sheet carrier 

density) of2DHG measured at 9K is 154cm2.y-1·s-1 (6.73.10"cm-2). From the samples with 

Sio.2Geo.s channel grown on Sio.7Geo.3 YS with LT-Si buffer the highest mobility (at sheet 

carrier density) of2DHG was obtained for the sample #622.83 after FTA at 750C for 30min 

and corresponds to 1680cm2.y-1·s-1 (1.27.10 12cm-2). From the samples with Sio.1sGeO.S2 

channel grown on thick Sio.5GeO.5 linearly graded YS the highest mobility (at sheet carrier 

density) of 2DHG was obtained for the sample #C2015f after RTA at 750C for 30sec and 

corresponds to 7657cm2.y-l·s-l (1.00·1012cm-2). It is clear to see that for samples from second 

group the highest mobility of 2DHG measured at 9K was observed in the sample #C2015f 

containing SiO.lSGeO.S2 channel grown on thick SiO.sGeO.5 linearly graded YS. 

For the samples from the third group with Ge composition in the Sh-xGex channel 

closed to 1 and grown on thick Sio.4Geo.6 linearly graded YS the highest mobility (at sheet 

carrier density) of 2DHG measured at 9K was observed for sample #C2476 and corresponds 

to 14855cm2.y-l·s-l (2.87.1012cm-2). 

Hall mobility and sheet carrier density of as-grown and after optimum thermal annealing 

samples #51.33, #52.16, #54.08, #60.46, #622.54, #622.83, #622.84, #CI957, #CI987, 

C2015f, #C2072, #C2475, #C2476 measured at 293K are presented in Table 6.4. 

From the first group of samples the highest mobility (at sheet carrier density) measured 

at 293K was observed for sample #C1987 after RTA at 750C for 30sec and corresponds to 

438cm2.y-l's-l (2. 14· 1012cm-2). 

From the second group of samples the highest mobility (at sheet carrier density) 

measured at 293K was observed for sample #C60.46 after FTA at 750C for 30min and 

corresponds to 1776cm2.y-1·s-1 (2.37·1013cm-2). 
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And from the third group of samples the highest mobility (at sheet carrier density) 

measured at 293K was observed for sample #C2476 and corresponds to 1380cm2.V-I·s-1 

Table 6.4 Hall mobility and sheet carrier density of as-grown and after optimum thermal 
annealing samples #51.33, #52.16, #54.08, #60.46, #622.54, #622.83, #622.84, #CI957, 
#CI987, C2015f, #C2072, #C2475, #C2476 measured at 293K. 

Sample 10 
Channellbuffer J.lHall PHall 

(as-grown) (cm2.y.l.s'} (cm·2) 

#5408 
As-grown SiO.4GeO.J 88 1.07.1013 

FT A at 900C for 30min Sio.7GeO.3 145 3.90.1012 

#C1987 
As-grown SiO.34GeO.6J 346 1.60.1012 

RTA at 750C for 30sec SiO.6SGeO.3S 438 2.14.1012 

#5216 
As-grown SiO.24GeO.7J 85 3.23.1013 

FT A at 800C for 30min Sio.7GeO.3 134 1.82.1013 

#5133 
As-grown SiO.22GeO.781 113 9.82.1012 

FT A at 700C for 30min Sio.7GeO.3 180 9.14.1012 

#6046 
As-grown SiO.2Geo.gl 97 1.92.1014 

FTA at 750C for 30min SiO.7GeO.3 1776 2.37.1013 

#62254 As-grown Sio.2Geo.gl 128 5.73.1012 
Si 

#62283 
As-grown SiO.2Geo.gl 170 2.60.1012 

FTA at 750C for 30min Sio.7GeO.3 512 2.11.1012 

#62284 
As-grown SiO.2Geo.gl 98 3.28.1012 

FTA at 750C for 30min Sio.7GeO.3 153 3.11.1012 

#C2015f 
As-grown S iO.18GeO.S21 498 2.42.1012 

RT A at 750C for 30sec Sio.sGeo.s 671 1.72.1012 

#C2072 
As-grown Sio.ISGeO.S21 515 1.87.1012 

RTA at 750C for 30sec SiO.47GeO.S3 564 1.77.1012 

#C1957 As-grown Sio.OSGeO.9S1 1161 2.10.1012 
SiO.37GeO.63 

#C2475 As-grown SiO.02GeO.981 711 4.83.1012 
SiO.4IGeO.S9 

#C2476 As-grown Gel 
1380 3.82.1012 

SiO.40GeO.60 

6.1.3 Conclusions 

In this research were investigated p-type MOD Sil-xGex/Sil-yGey heterostructures with 

Ge composition in the Sil-xGex channel varied from 0.6 up to 1 and grown on linearly graded, 

step graded or with LT-Si buffer Sil_yGey VS with 0.3~y~0.63. Hall mobility and sheet carrier 
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density of p-type MOD Sil_xGe,JSil_yGey heterostructures were obtained from the 

combination of resistivity and Hall effect techniques at temperature range 9-300K. The 

measurements were performed on as-grown and after FTA and RTA samples. Post growth 

FTA was performed on samples #51.33, #52.16, #54.08, #60.46, #622.83 and #622.84 (see 

chapter 4.2) at temperature range 600-900C for 30min in N2 ambient. Post growth RT A was 

performed on samples #CI987, #C2015f and #C2072 (see chapter 4.2) at temperature 750C 

for 30sec in N2 ambient. 

For all investigated samples was observed similar effect of FT A on Hall mobility and 

sheet carrier density measured at 9 and 293K. The annealing at 600C is seen to have a 

negligible effect on the Hall mobility as well as on sheet carrier density. Increasing the 

annealing temperature results in pronounced successive increases of mobility. Every sample 

has optimum annealing temperature, which corresponds to the highest mobility. Further 

increasing of annealing temperature results in decreasing of mobility. For sheet carrier density 

was observed opposite behaviour with increasing annealing temperature. The maximum 

increase of Hall mobility measured at 9K was observed in sample #54.08 after FTA at 900C 

and corresponds to 8.5 times. But the maximum increase of Hall mobility measured at 293K 

was observed in sample #60.46 after FTA at 750C and corresponds to 18 times. 

For all investigated samples was observed similar effect of RTA on Hall mobility 

measured at 9 and 293K. After the RTA at 750C for 30sec was observed an increase in 

mobility compared to as-grown ones. The maximum increase of Hall mobility after RTA 

measured at 9 and 293K were observed in sample #C2015f and corresponds to 3.8 and 1.3 

times respectively. 

The highest mobility (at sheet carrier density) of 2DHG measured at 9K was observed 

for sample #C2476 containing Ge channel grown on thick Sio.4Geo.6 linearly graded VS and 

corresponds to 14855cm2
.y-I·s-1 (2.87·1012cm-2). 



The highest Hall mobility (at sheet carrier density) measured at 293K was observed for 

sample #60.46 after FTA at 750C for 30min and corresponds to 1776cm2.y-1·s-1 

(2.37.10 13cm-2
). The as-grown sample #60.46 consists of Sio.2Geo.8 channel grown on 

SiO.65GeO.35 linearly graded YS. This value of Hall mobility (at sheet carrier density) measured 

at room temperature is the highest ever reported for p-type MOD Sil-xGex/Sil_yGey 

heterostructures. 
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6.2 Room temperatures magnetotransport properties of 2DHG formed in 

the Sit_xGex channel of p-type MOD Sh_xGex/Sh-yGey heterostructures: 

Maximum-entropy mobility spectrum analysis 

6.2.1 Introduction 

To extract the room temperature drift mobility and sheet carrier density of 2DHG the 

magnetic field dependences of magnetoresistance and Hall resistance were measured in 

cryomagnetic system as the magnetic field was swept continuously up to liT. The measured 

data were analysed with the help of MEMSA and the values of drift mobility and sheet carrier 

density of 2DHG formed in the Sh-xGex channel of investigated p-type MOD 

Sil_xGex/Sh-yGey heterostructures were obtained. These measurements followed by MEMSA 

were done on samples #60.46 after FTA at 750C for 30min, #C2072 after RTA at 750C for 

30sec and #C1957. 

6.2.2 Results and discussion 

The MEMSA were performed without making the assumption about the number of 

carrier groups. The benefit of MEMSA over other techniques of mobility spectrum analysis 

(see 2.3.4.1) is that MEMSA can use all available data points while, for example, BAMSA 

only uses between 2-6 data points. The number of mobility points used in MEMSA was 

typically around 300 while the number of magnetic field points varies between 50 and 300 in 

order to optimise the calculation time. The trend is that one needs to use more magnetic field 

points as the temperature increases because of the mobility of the sample decreases and hence 

Bmax increases. The calculation time increases proportionally to the square of the product of 

the number of mobility and magnetic field points. The iteration process converges rapidly at 

the beginning. As soon as all the peaks emerge, the convergence continues at slower speed 

with the peaks only getting sharper. The calculations were usually continued until the error 
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does not decrease significantly over a certain number of iterations and all peaks completely 

separated. The typical iterations of 106_109 were tested to yield the correct MEMSA within 

the experimental error. The number of iterations strongly depends from the mobility of 2DHG 

and other carries presented in the heterostructure, and decrease with decrease of temperature. 

At low temperatures the 2DHG peak was dominated. As the temperature increases, the 2DHG 

peak moves toward the B:SiGe peak. At sufficiently high temperatures, these two peaks 

merge and only one peak can be observed that causes to perform more iterations until all 

peaks are observed and completely separated. The O"xx(total) and O"xy(total) correspond to 

measured O"xx and O"xy while O"xx(2DHG) and O"xy(2DHG) correspond to ones calculated using 

extracted from MEMSA values of drift mobility and sheet carrier density by: 

e· p .p 
(j (B)- s 

.IX - 1 + (p . B)2 (6.1) 

(6.2) 

MEMS (top) as the result of CJxx and CJxy fit (bottom) measured at 221K for sample 

#60.46 after FTA at 750C for 30min are presented in Figure 6.12. The number of performed 

iterations is 50.106
. Fitted magnetic field dependences of CJxx and O"xy are in very good 

agreement with measured ones (Figure 6.12). MEMS consist of peaks corresponded to 2DHG 

formed in the Si1-xGex channel, carriers in B doped Sio.6sGeo.3s layer, and electron-like 

carriers. The drift mobility (at sheet carrier density) of2DHG at 221K extracted from MEMS 

is 7669cm2.y-l·s-l (3.57·1012cm-2). 

At 290K were performed 300.106 iterations to completely resolve all peaks in MEMS 

for sample #60.46 after FTA at 750C for 30min (top of Figure 6.13). Fitted magnetic field 

dependences of O"xx and O"xy are in very good agreement with measured ones (bottom of Figure 

6.13). The drift mobility (at sheet carrier density) of 2DHG at 290K extracted from MEMS is 

3607cm2.y-1's-1 (4.94.1012cm-2). 
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Temperature dependences of drift mobility and sheet carrier density of 2DHG formed in 

the Sil-xGex channel obtained with the help of MEMSA, and measured by combination of 

resistivity and Hall effect techniques Hall mobility and sheet carrier density at 290K for 

sample #60.46 after FTA at 750C for 30min are presented in Figure 6.14. At temperature 

range 220-290K the drift mobility of 2DHG increases with the decrease of temperature and 

sheet carrier density decreases with the decrease of temperature. 

MEMS (top) as the result of O'xx and O'xy fit (bottom) measured at 293K for sample 

#C 1957 are presented in Figure 6.15. The number of performed iterations is 300.106. Fitted 

magnetic field dependences of O'xx and O'xy are in very good agreement with measured ones 

(Figure 6.15). MEMS consist of peaks corresponded to 2DHG formed in the Sio.osGeo.9s 

channel, carriers in B doped Sio.37Geo.63 layer, and electron-like carriers. The drift mobility (at 

sheet carrier density) of 2DHG at 293K extracted from MEMS is 1906cm2.y-I·s-1 

Room temperature drift mobility and sheet carrier density of 2DHG formed in the 

Sil-xGex channel obtained by MEMSA and measured by combination of resistivity and Hall 

effect techniques Hall mobility and sheet carrier density for samples #60.46 after FT A at 

750C for 30min, #C2072 after RTA at 750C for 30sec and #C1957 are presented in Table 6.5. 

Table 6.5 Room temperature drift mobility and sheet carrier density of 2DHG formed in the 
Sil-xGex channel obtained by MEMSA and measured by combination of resistivity and Hall 
effect techniques Hall mobility and sheet carrier density for samples #60.46 after FTA at 
750C for 30min, #C2072 after RTA at 750C for 30sec and #CI957. 

Sample ID 
Channellbuffer JJd{2DHG) Ps(2DHG) IIHall PHall 

(as-grown) (cm2.y-l·s-l) (cm-2) (cm2.y-l·s-l) (cm-2) 
#60.46 

Sio.2Geo.s/ (FTA at 750C 3607 4.94.1012 1776 2.37.1013 

for 30min) SiO.6sGeO.35 

#C2072 
Sio.lsGeo.s2/ 

(RTA at 750C 1534 1.86.1011 564 1.77.1012 

for 30sec) Sio.47Geo.s3 

#C1957 Sio.osGeo.9s/ 
1906 3.99.1011 1161 2.10.1012 

Sio.37Geo.63 

158 



For all investigated samples the drift mobility of 2DHG formed in the Sh-xGex channel is 

higher than the measured Hall mobility of heterostructure. The opposite situation is observed 

with sheet carrier density. For sample #C2072 after RTA at 750C for 30sec the drift mobility 

(at sheet carrier density) of 2DHG corresponds to 1534cm2.y-l·s-1 (1.86.1011cm-2
). The as­

grown sample #C2072 consists of Sio.18Geo.82 channel grown on Si0.47GeO.53 linearly graded 

YS. For sample #C1957 the drift mobility (at sheet carrier density) of 2DHG formed in the 

SiO.05GeO.95 channel grown on Sio.37Geo.63 linearly graded YS corresponds to 1906cm2.y-l·s-1 

(3.99·10 1Icm-2
). The highest mobility (at sheet carrier density) of 2DHG was obtained for 

sample #60.46 after FTA at 750C for 30min and corresponds to 3607cm2.y-I·s-l 

(4.94.10 12cm-2
). The as-grown sample #60.46 consists of Sio.2Geo.8 channel grown on 

SiO.65GeO.35 linearly graded YS. 

The results of MEMSA of p-type MOD Sil-xGex/Sh-yGey heterostructures were 

presented at "11 th General Conference of the European Physical Society (EPS-II): Trends in 

Physics"[Il], "loth European Heterostructure Technology Workshop"[I2], "International 

Conference on Solid State Crystals 2000: Materials Science and Applications"[13] and "SiGe 

(C) 2001 Workshop"[lO]. 

6.2.3 Conclusions 

The room temperature magnetotransport properties of 2DHG formed in the Sil-"Ge" 

channel of p-type MOD Sil-xGex/Sh-yGey heterostructures were studied by measuring 

magnetic field dependences of magnetoresistance and Hall resistance followed by applying 

the technique of MEMSA. The investigated samples consist of Sil-xGex channel with 

0.8<x<0.95 and Sh-yGey linearly graded with YS 0.35<y<0.63. The highest drift mobility (at 

sheet carrier density) of 2DHG was obtained for sample #60.46 after FTA at 750C for 30min 

and corresponds to 3607cm2.y-l·s-1 (4.94.1012cm-2). The as-grown sample #60.46 consists of 
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Sio.2Geo.8 channel grown on Sio.6sGe0.3S linearly graded VS. This value of 2DHG mobility (at 

sheet carrier density) measured at room temperature is the highest ever reported for p-type 

MOD Sil_xGe"/Sil_yGey heterostructures. For this sample was obtained the temperature 

dependence of mobility and sheet carrier density of 2DHG without parallel conduction in the 

temperature range 221-290K. It was found that the drift mobility of 2DHG increases with the 

decrease of temperature and sheet carrier density decreases with the decrease of temperature. 

160 



--. 
(f) 

E .......... 
Z" 
> 

+=i 
C,.) 
:::J 
'0 
C 
0 
C,.) 

co 
t 
co 

0... 

--. 
(f) 

E .......... 

I #6046FTA750C (T=221 K) I 
1.60 I I . I I I I I 

8:SiGe 

1.20 I- - Maximum entropy mobility spectrum -
50x10' iterations 

2DHG a=4.39mS 

~.=7669cm" V''S·'. p.=3.57'1 0"cm·' 
. 

0.80 I- 2DHG -

electron-like 
r-

0.40 I- -

0.00 I I I I ~ ..1 .l.J 
-10000 -7500 -5000 -2500 0 2500 5000 7500 10000 

Mobility, Il (cm2.V-1
eg-1) 

30.--.-.-.~~.----.---r-.-rTlII'----' 

10 0' (2DHG) 
xx 

1 

0' (2DHG) 
xy 

0.1 

0.01 
0.2 

o Experimental data 
- Fit o",,(total) and 0xy(total) 

--- - o",,(2DHG) and 0xy(2DHG) 

1 

, , , , , , , , , , 

Magnetic field, B (T) 

, , , , , , , , , , , 

10 

, , , , , , , , 

20 

Figure 6.12 M M (top) a the result of O'xx and O'xy fit (bottom) measured at 221 K for sample 
#60.46 after FTA at 750 for 30min. 

161 



#6046 FTA 750C (T=290K) 

B:SiGe 
~ 

Cf) 

S 0.60 
C 

- M xl mum entropy mobility spectrum 
300 10'11 ration 

2DHG 00:28 mS 
.... 3 07cm'·V' '. P,=4 ,94' 10"cm" 

> +:: 
C,) 
:::J 
-0 
C 

2DHG 

8 0.30 
co 
t 
co 
a.. 

~ 

(/) 

E ......... 
l? 
~ 

]!-
> +:: 
C,) 
:::J 
-0 
C 
o 
() 

electron-like 
o. 00 '-----L-----'L...----L.-----'--"-''''"-'---''-'---''''--_~ __ ___J 

-7500 -5000 -2500 0 2500 5000 7500 
Mobility, J.! (cm2·V-\s-1) 

20 ~~~~-r~TI----'---'-~~lIrrr---~ 

10 a (total) 
xx 

a (2DHG) 
xx --------------------

1 

0.1 
a (2DHG) 

xy 

~;'~----- ~ ~:::-~--
, , 

o Experimental data 

, , , , 

- Fit a (total) and a (total) xx xv 

, 

-- - - - a (2DHG) and a (2DHG) xx xv 

, , , , , , , , , , , 

0.05 '----'--J.--'-....L-L...I-I...L-__ -'----'----'---'"---4.....&....I-..I...I-_----' 

0.2 1 10 20 

Magnetic field, B (T) 

igur .13 M M (top) a the result of O'xx and O'xy fit (bottom) measured at 290K for sample 
# .4 fi r t 750 for 30min. 

162 



#60.46 FTA at 750C for 30min ~ 9000 I I I I • 

f- O~ · 

- 0 ________ 
..-

I 

5000 C() ~. O~G ..-

~ . >. · 
N ° E Measu~.~ u · -::i. .-------->-... .-------
..0 • 
0 
~ 

1000 I I I I I 

4x101 ~oo 
220 240 260 280 300 

-N 
I 

Measured E u • • - 2x1013 • • • • en 
Cl.. 

p 
(/) 

1013 C 
(l) 
-0 
L. 2DHG (l) 
·c 
L. _____ 0 
ro u 0 ____ ° ... 0 
(l) 
(l) 

..r::. 
C/) 

2x1012 
200 220 240 260 280 300 

Temperature (K) 

Figure 6.14 Temperature dependences of drift mobility and sheet carrier density (0) of 2DHG 
formed in the Si l-xGex channel obtained with the help of MEMSA, and measured by 
combination of resistivity and Hall effect techniques Hall mobility and sheet carrier density 
(. ) at 290K for sample #60.46 after FTA at 750C for 30min. 

163 



---'1 ---~ ...... 
'> 
:+:i 
t) 
::J 

"'0 
C 
0 
t) 

ro 
t 
ro 

C1. 

---if) 
:t ---b 

P 
> 

:+:i 
t) 
::J 

"'0 
C 
0 
() 

I #C1957 T=293K I 
20 I I I I 

, 
I I I 

- MaxImum entropy mobility spectrum 
300x10' iteration 

15 

2DHG o-0.12mS 

2DHG ~.-1906 (em'·V' .. ·'). p,-3.99.10" (em") 

I- B:SiGe -

10 I- -
. 

5 electron-Ii ke 
I- -

o . I I J V \ I I 

-5000 -3750 -2500 -1250 0 1250 2500 3750 5000 

600 
0' xx 

0000 

100 

10 
0 

00 

0 
0 

4 
0.2 

Mobility, ~ (cm 2V·1s·1
) 

1 

o Experimental data 
- Fit 0' and 0' xx xy 

Magnetic field, B (T) 

10 20 

Figure 6.15 MEMS (top) as the result of O'xx and O'xy fit (bottom) measured at 293K for sample 
#C 1957. 

164 



6.3 Low temperatures (down to O.35K) magnetotransport properties of 

2DHG formed in the Sit-xGex channel of p-type MOD 

Sil-xGex/Sit_yGey heterostructures: Shubnikov-de Haas and Quantum 

Hall Effects 

6.3.1 Introduction 

Low temperature magnetotransport measurements were carried out at temperatures 25-

O.35K in cryomagnetic system as the magnetic field was swept continuously up to II T. These 

measurements were performed on samples #622.83 as-grown and after FT A at 700C for 

30min, #C2072 after RTA at 750C for 30sec and #CI957. From the temperature dependence 

of observed Shubnikov-de Haas oscillations were extracted followed parameters of 2DHG, -

effective mass, sheet carrier density, transport and quantum life times, and related ones. 

6.3.2 Results and discussion 

Magnetic field dependences of magnetoresistance and Hall resistance measured at 

O.35K on as-grown and after FT A at 700C for 30min samples #622.83 are presented in Figure 

6.16. The as-grown heterostructure consist of SiO.2GeO.8 channel grown on Sio.7Geo.3 L T -Si VS 

and normal 2·1018cm-3 B doped Sio.7Geo.3 layer (see chapter 4.2). The magnetoresistance of 

as-grown sample at magnetic field B=OT corresponds to 29166n/sq and decreases 

monotonically with increases of magnetic field. The Hall resistance increases with increases 

of magnetic field. In the sample after FT A at 700C for 30min were observed significant 

decreases of magnetoresistance accompanied with appearing of SdH oscillations of 

magnetoresistance (top of Figure 6.16). The magnetoresistance at magnetic field B=OT 

decreased from 29166n/sq for as-grown sample down to 3155n/sq for annealed one. Also, 

the annealing caused the increase of the slope of Hall resistance (bottom of Figure 6.16). 
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(bottom) measured at O.35K on as-grown and after FTA at 700C for 30min samples #622.83. 



Magnetic field dependences of magnetoresistance and Hall resistance measured at 

0.346-24.5K temperatures on the sample #622.83 after FTA at 700C for 30min are presented 

in Figure 6.17. The SdH oscillations of magnetoresistance are clearly observed. At 0.346K the 

oscillations appearing from magnetic field B~3.5T and their amplitude increases with 

increases of magnetic field. As soon as the temperature increases the amplitude of SdH 

oscillations decreases accompanied with disappearing of oscillations at low magnetic fields. 

But even at 24.5K were observed the SdH oscillations at high magnetic fields. The plateaus 

observed on Hall resistance at low temperatures disappearing with temperature increasing. 

Magnetic field dependences of magnetoresistance and Hall resistance measured at 

0.348-8.47K temperatures on the sample #C2072 after RTA at 750C for 30min are presented 

in Figure 6.18. The SdH oscillations of magnetoresistance are clearly observed as well as 

plateaus on Hall resistance. At temperature 0.348K the oscillations appearing from magnetic 

field B~1.5T and their amplitude increases with increases of magnetic field. As soon as the 

temperature increases the amplitude of SdH oscillations decreases accompanied with 

disappearing of oscillations at low magnetic fields. Also at temperature 8.47K were observed 

the SdH oscillations. The plateaus observed on Hall resistance at low temperatures 

disappearing with temperature increasing. 

Magnetic field dependences of magnetoresistance and Hall resistance measured at 

0.356-20.71K temperatures on the sample #C1957 are presented in Figure 6.18. The SdH 

oscillations of magnetoresistance are clearly observed. At temperature 0.356K the oscillations 

appearing from magnetic field B~1.3T and their amplitude increases with increases of 

magnetic field. As soon as the temperature increases the amplitude of SdH oscillations 

decreases accompanied with disappearing of oscillations at low magnetic fields. But even at 

temperature 20.71 K were observed the SdH oscillations. The plateaus observed on Hall 

resistance at low temperatures disappearing with temperature increasing. 
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(bottom) measured at O.346-24.5K temperatures on the sample #622.83 after FTA at 700C for 
30min. 
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(bottom) measured at O.348-8.47K temperatures on the sample #C2072 after RTA at 750C for 
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6.3.3 Extraction of sheet carrier density and mobility of 2DHG 

The sheet carrier density and mobility of 2DHG could be extracted from magnetic field 

dependence of Hall resistance. Hall coefficient is 

(6.3) 

where fipxy is the difference between two values in linear region of Hall resistance at low 

magnetic fields. 

Therefore sheet carrier density of 2DHG is 

and Hall mobility of2DHG is 

1 
PHall=-R 

e· H 

where Pxx(O) is the value of magneto resistance at zero magnetic field. 

(6.4) 

(6.5) 

• 
In chapter 2.3.5.2 was shown that the SdH oscillations of the longitudinal resistance Pxx 

can be modeled as a product of 3 units (equation 2.73). The first term in equation (2.69) is 

written as cos and gives the oscillations of pxx with period proportional to inverse magnetic 

field B-1 and sheet carrier density of2DHG ps. 

cos -_.- =cos --. = cos s (
2.rc EFJ (2.rc ps.rc.n?J (2.rc 2 .h. P J 
he We h e·B e·B 

(6.6) 

Therefore from the single frequency of oscillations as a function of B-1
, we can determine the 

sheet carrier density. Well known that SdH oscillations of the magnetoresistance have the 

constant period in inverse perpendicular magnetic field coordinates. This period occurs when 

the argument of the cos term increases up to 2·7t. So, for two adjacent minimum or maxim we 

have: 
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consequently, the sheet carrier density extracted from the SdH oscillations at given 

temperature is 

e 
(6.8) 

where ~(B-l) is a period of SdH oscillations in inverse magnetic field. The accuracy of this 

method is very high. It increases with the increasing of the number of SdH oscillations to be 

plotted. As example, the extraction of carrier sheet density from SdH oscillations measured at 

T=0.356K for sample #C1957 is presented in Figure 6.20 and Figure 6.21. 

Another way to determine carrier concentration from SdH oscillations is to use Fast 

Fourier Transformation (FFT). FFT is the fast algorithm for Fourier spectrum calculation. If 

SdH oscillations have a constant period (frequency) they can be presented by one harmonic of 

the Fourier spectrum Figure 6.21. The frequency found from the Fourier plot can be directly 

used for carrier concentration determined by equation (6.8). The full width of the peak 

measured at half of maximum corresponds to the value of quantum scattePing time (Tq). The 

accuracy of the FFT method depends on the number of SdH oscillations in the investigating 

region of magnetic fields. The simplest methods of FFT spectrum clarifying are: removing of 

the monotonous part of the magnetoresistance, removing exponential growth of the SdH 

amplitude in magnetic fields, using special FFT windows to smooth the edges of the 

investigated region, use of the differential (or the second order deferential) of the original 

magnetoresistance. All these methods can improve the experimental data in order to make the 

original curve be closer to sinus-like function (the best for Fourier transformation). 

The accuracy of these methods is very high. It is much higher then e.g. Hall 

measurements where PHall can be different from the real concentration. For multi-subband 

case pHall, in the best case, can give the sum of subbands concentrations. SdH oscillations 

always show the right concentration. For multi-subband case the result magnetoresistance 

field dependence is the sum of SdH oscillations from different subband. Each type of 
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oscillations has its own period and amplitude, which corresponds to the subband carrier 

concentration and effective mass. 

The Hall mobility and sheet carrier density of 2DHG at 0.35K for samples #622.83 after 

FTA at 700C for 30min, #C20n after RTA at 750C for 30sec and #C1957 were extracted 

from magnetic field dependences of magnetoresistance and Hall resistance by described 

techniques and presented in Table 6.6. 

Table 6.6 Resistivity, Hall mobility and sheet carrier density of 2DHG at 0.35K extracted 
from magnetic field dependences of magnetoresistance and Hall resistance for samples 622.83 
after FTA at 700C for 30min, #C2072 after RTA at 750C for 30sec and #C1957. 

Sample ID Channellbuffer 
pxx(O) PSdH PHall IlHall 

(O/sq) (cm-2) (cm-2) (cm2.y-l·s-l) 

#622.83 29166 - l.09·1012 195 
(as-grown) Sio.2Geo.sl 

#622.83 (FTA at Sio.7Geo.3 3155 l.45·1012 1.35.1012 1460 
700C for 30min) 
#C2072 (RTA at Sio. ISGeO.S21 1479 l.l3·1012 9.54.1011 4427 
750C for 30sec) Sio.47Geo.s3 

#C1957 
Sio.OSGeO.9S1 728 1.68.1012 l.30·1012 6581 
Sio.37Geo.63 

• 
For the sample #622.83 after FTA at 700C for 30min in comparison with as-grown one 

were observed an improvements of magnetotransport characteristic of 2DHG at temperature 

0.35K. The 9.2 times decrease of magnetoresistance at zero magnetic field accompanied with 

an increase of carrier sheet density and 7.4 times an increase of Hall mobility were observed 

after annealing. For sample #C2072 after RTA at 750C for 30sec the magnetoresistance at 

zero magnetic field, sheet carrier density extracted from SdH oscillations of 

magnetoresistance, sheet carrier density and Hall mobility extracted from magnetic field 

dependence of Hall resistance are 14790/sq, l.l3·1012 cm-2
, 9.54.1011 cm-2 and 

4427cm2.y-I'S-1 respectively. For sample #C1957 the magnetoresistance at zero magnetic 

field, sheet carrier density extracted from SdH oscillations of magnetoresistance, sheet carrier 

density and Hall mobility extracted from magnetic field dependence of Hall resistance are 

7280/sq, 1.68.1012 cm-2, 1.30.1012 cm-2 and 6581cm2.y-l ·s-1 respectively. 
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6.3.4 Extraction of effective mass and related parameters of 2DHG 

In chapter 2.3.5.2 was shown that the SdH oscillations of the longitudinal resistance Pxx 

T e·B 
can be modeled as a product of 3 units (equation 2.73). Replacing T = -L (j) = -- and 

q a C m* 

2 '1l'2 • k . T 2 '1l'2 • kB . T· m * 
__ ~B_ = = If m equation (2.73) we can write the equation that 

h·(j) h·e·B 
C 

describes SdH oscillations for the case when one subband is occupied 

(6.9) 

where T/ is the transport (or classical) scattering time, Tq is the quantum (or single particle) 

scattering time, Pxx(O) is magnetoresistance at zero magnetic field for given temperature, 

Ilpxx(B) is the amplitude of SdH oscillations for given temperature. For a 2DCG Fermi energy 

is 

1l' ·h2 
• P 

E - s 
F-

m* 

• 
(6.l 0) 

The unknown parameters in equation (6.9) are the effective mass (m*) and (a). The desired 

value of m* can be found by methods which are well known in the literature. 

The third term in equation (6.9) depends on three parameters: effective mass, magnetic 

field and temperature. The temperature dependence allows to change the value of the third 

term (the amplitude of SdH oscillations) vary temperature only. Varying the temperature one 

does not change anything else (e.g. position of peaks). This phenomenon can be used to find 

the effective mass using SdH measurements. 

The technique used to find the m* and a is as follows [14]. First determine a value for 

a. Assume some value for m*. Take a set of Ilpxx(1) as a function of magnetic field at given 

temperatures ( top Figure 6.22). A plot of 

In(IlPxx (T) . sinh( If(T) )) 
Pxx(O) If(T) 

(6.11) 
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versus 

1 

p·B 

have to be a straight line with a gradient of -Jr. a (top Figure 6.23). 

(6.12) 

For obtained a determine m*. Take a set of !J..pxx(B) as a function of temperature at given 

magnetic fields (bottom Figure 6.22). A plot of 

(6.13) 

versus 

In( '/feB) J-(!!.:!!..J 
sinh ('/f(B)) p. B 

(6.14) 

have to be a straight line with a gradient of unity (bottom Figure 6.23). The only unknown 

(with fixed a) is the effective mass. 

If the gradient is not unity, then the a have to be recalculated using the obtained value of 

, 
m*. A new value of m* have to be calculated with the new value of a. This loop have to be 

repeated until a self-consist pair of values for m* and a is found. 
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The effective mass and transport to quantum scattering times ratio of 2DHG formed in 

the Si1_xGex channel of p-type MOD heterostructures #622.83 after FTA at 700C for 30min, 

#C2072-2 after RTA at 750C for 30sec and #C1957 were extracted from magnetic field 

dependences of magnetoresistance and Hall resistance by described techniques and presented 

in Table 6.7. 

From obtained values were extracted related parameters of 2DHG and presented in 

Table 6.7. The quantum scattering time Tq differs from transport scattering time T/ in that the 

former includes all scattering events while the latter is dominated by large-angle scattering 

events. The transport scattering time is determined from low-field Hall measurements 

m *p, 
T = H 

I (6.15) 
e 

The quantum scattering time is a measure of the collision broadening of the Landau levels and 

is related to the half width of the broadened Landau level through 

f=_ti_ 
2'T q 

and can be obtained from the amplitude of SdH oscillations. 

T 
T=....!.... 

q a 

Also were obtained other parameters of 2DHG such as: 

Fermi energy is 

Fermi temperature 

Fermi wavevector 

Fermi wavelength 

,,·ti2 
• p 

E - s F-
m* 

,,·ti2 
• P 7' _ s 

JF -
m*·k B 
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(6.16) , 

(6.17) 

(6.18) 

(6.19) 

(6.20) 



(6.21) 

Fenni velocity 

n·k 
V 

___ F 
F-

m* 
(6.22) 

Low temperature mean free path 

(6.23) 

Dingle temperature 

(6.24) 

In the Table 6.7 were summarized magnetotransport properties of 2DHG at low 

temperatures extracted from magnetic field dependences of magnetoresistance and Hall 

resistance for samples 622.83 after FTA at 700C for 30min, #C2072 after RTA at 750C for 

30sec and #CI957. Effective mass decreases with increases Ge composition in the Sil-xGex 

• channel and varied from 0.17'1110 for sample #622.83 after FT A at 700C for 30min (Sio.2Geo.8 

as-grown) to 0.15·mo for sample #C 1957 (Sio.osGeo.9s). Ratio of transport scattering time to 

quantum scattering time increases with increases Ge composition in the Sil-xGex channel and 

varied from 1.29 for sample #622.83 after FTA at 700C for 30min (Sio.2Geo.8 as-grown) to 

2.18 for sample #C 1957 (Sio.osGeo.9s), The Fenni energy for samples 622.83 after FT A at 

700C for 30min, #C2072 after RTA at 750C for 30sec and #C1957 are 19.5meV, 16.1meV 

and 25.7meV respectively. The Fenni temperature for samples 622.83 after FTA at 700C for 

30min, #C2072 after RTA at 750C for 30sec and #C1957 are 226K, 186K and 299K 

respectively. Others magnetotransport parameters of 2DHG obtained at low temperature from 

magnetic field dependences of magnetoresistance and Hall resistance for investigated p-type 

MOD Sil_xGex/Sil_yGey heterostructures are listed in Table 6.7. 
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Table 6.7 Magnetotransport properties of 2DHG at low temperatures extracted from magnetic 
field dependences of magnetoresistance and Hall resistance for samples 622.83 after FTA at 
700C for 30min #C2072 after RTA at 750C for 30sec and #CI957. , 

#622.83 #C2072 
Sample ID #C1957 

(FT A at 700C for 30min) (RTA at 750C for 30sec) 

Channell SiO.2GeO.sl Sio.I SGeO.S21 Sio.OSGeO.9S1 

buffer Sio.7Geo.3 SiO.47GeO.53 Sio.37Geo.63 

m* (mo) 0.17 0.16 0.15 

a ('tthq) 1.29 1.44 2.18 

'tt (ps) 0.14 0.42 0.58 

'tq (ps) 0.11 0.29 0.26 

EF {me V) 19.5 16.1 25.7 

TF (K) 226 186 299 

kF (nm- I
) 0.30 0.26 0.32 

AF (nm) 20.81 23.58 19.33 

lJf{.107 cm.s I) 1.96 1.83 2.41 

I (nm) 29 77 140 

To (K) 10.66 4.14 4.55 
• r (meV) 2.88 1.12 1.23 

The results of low temperatures magnetotransport characterization of p-type MOD 

Sil_xGex/Sil_yGey heterostructures were presented at "10th European Heterostructure 

Technology Workshop"[9], "Condensed Matter and Materials Physics 2000 [15] and "SiGe 

(C) 2001 Workshop"[10]. 

6.3.5 Conclusions 

The low temperature magnetotransport properties of 2DHG formed in the Sh-xGex 

channel of p-type MOD Sil-xGex/Sil_yGey heterostructures were studied by measuring 

magnetic field dependences of magnetoresistance and Hall resistance at temperatures 25-

0.34K and in magnetic fields up to liT. The investigated samples consist of Sil-xGex channel 

with 0.8<x<0.95 and Sil_yGey VS 0.3<y<0.63. For the sample #622.83 after FTA at 700C for 
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30min in comparison with as-grown one (Sio.2Geo.8/Sio.7Geo.3) were observed an 

improvements of magnetotransport characteristic of 2DHG at temperature O.35K. The 9.2 

times decrease of magnetoresistance at zero magnetic field accompanied with appearing of 

SdH oscillations of magnetoresistance and an increase of carrier sheet density and 7.4 times 

an increase of Hall mobility were observed after annealing. The magnetoresistance at zero 

magnetic measured at temperature O.35K decreased with increase of Ge composition in the 

Sil-xGex channel and varied from 3155n/sq for sample #622.83 after FTA at 700C for 30min 

(Sio.2Geo.8 as-grown) to 3155n/sq for sample #C1957 (Sio.osGeo.9s), The Hall mobility of 

2DHG extracted from magnetic field dependence of Hall resistance at temperature O.35K 

increased with increase of Ge composition in the Si1-xGex channel and varied from 

1460cm2.y-1·S-1 for sample #622.83 after FTA at 700C for 30min (Sio.2Geo.8 as-grown) to 

6581cm2.y-l·S-J for sample #C1957 (Sio.osGeo.9s), The sheet carrier density of 2DHG was 

obtained by two ways, - from SdH oscillations of magnetoresistance and magnetic field 
• 

dependence of Hall resistance. For all samples the sheet carrier density obtained from SdH 

oscillations of magnetoresistance is higher than from magnetic field dependence of Hall 

resistance. Effective mass decreases with increases Ge composition in the Sit-xGex channel 

and varied from O.l7·mo for sample #622.83 after FTA at 700C for 30min (Sio.2Geo.8 as-

grown) to O.15·mo for sample #C 1957 (Sio.osGeo.9s), Ratio of transport scattering time to 

quant~m scattering time increases with increases Ge composition in the Sit-xGex channel and 

varied from 1.29 for sample #622.83 after FT A at 700C for 30min (Sio.2Geo.8 as-grown) to 

2.18 for sample #C 1957 (Sio.osGeo.9s), The values of effective mass O.15·mo and ratio of 

transport scattering time to quantum scattering time 2.18 obtained for p-type MOD 

SiO.OSGeO.9S/Sio.37GeO.63 heterostructure are the lowest and the highest respectively ever 

published for p-type MOD heterostructures with Si1-xGex channel grown by SS-MBE on 

Si1-yGey YS on Si(OOI) substrate. 
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7. Conclusions and further work 

Magnetotransport, structural and optical properties of p-type MOD heterostructures with 

high Ge content (O.6<x<l) Si1-xGex channel grown on Si1-yGey/Si(OOI) virtual substrate have 

been studied experimentally. The active layers of MOD heterostructures were grown by SS­

MBE and the virtual substrates were grown either by SS-MBE or LP-CVD. 

The influence of thermal annealing on magnetotransport, structural and optical properties 

of Sil_xGex/Sil_yGey heterostructures was studied by performing the post growth furnace thermal 

annealing treatments in the temperature range of 600-900C for 30min and rapid thermal 

annealing treatments at temperature 750C for 30sec. 

Structural and optical analysis of p-type MOD Sh_xGex/Sh-yGey heterostructures were 

done by XTEM, ULE-SIMS, PL spectroscopy, Raman spectroscopy and Scanning White-Light 

Interferometry. From the combinations of experimental results obtained by these techniques the 

Ge composition in the SiGe heteroepilayers, their thicknesses, state of strain in the 

heteroepilayers and dislocations microstructure in VS were obtained. The structura~ integrity of 

the layers and the dislocations microstructure in relaxed VS were determined by XTEM. In 

particular, the thicknesses of high Ge content Si1-xGex channel layers were determined. Also 

short-range roughness of Sh-xGex channel layer interfaces caused by not optimum growth 

conditions and long-range roughness cased by various types of VS were studied by XTEM as 

well. The Ge, Si and B profiles were obtained by ULE-SIMS that allowed determine the 

structural integrity of the layers, Sh-xGex channel layer thickness and level of B doping in the 

active layers of MOD heterostructures. PL spectra of p-type MOD Sil-xGex!Sil-yGey 

heterostructures obtained in the energy range 0.7-1.2eV at 5.5K contain information only about 

Si substrate and Sil-yGey (0.3-0.63) relaxed layers. State of strain in the Sh-xGex strained and 

Si1_yGey relaxed layers and the Ge composition in the later were obtained from room temperature 

Raman spectra. The Sil-xGex channels grown on Si1-yGey VS in the as-grown samples #51.33, 

#52.16, #54.08, #60.46, #622.83, #C1957, #CI987, #C2015f, #C2072, #C2475 and #C2476 were 
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fully strained. In the as-grown sample #622.84 the 14nm Sio.2Geo.8 channel grown on Sio.7Geo.3 

VS was partially relaxed due to exceeded critical thickness. The surface profiles of p-type MOD 

Sil-xGex/Sil-yGey heterostructures were obtained by scanning white-light interferometry. The 

characteristic feature for samples contained linearly or step graded VS are crosshatches on the 

surface due to linearly or step graded changes of Ge composition and high density of dislocations 

in VS. No crosshatches were observed in the samples contained relatively thin (850nm) Sio.7Geo.3 

VS with low temperature Si buffer (#622.83 and #622.84). The lowest surface roughness was 

observed in these samples. The highest surface roughness was observed in the samples with 

Sio.65Ge0.35 linearly graded VS grown by LP-CVD (#60.45 and #60.46). 

After post growth thermal annealing (FTA and RTA) the Ge diffusion from the region with 

high Ge concentration (Sil-xGex channel) to the region with low Ge concentration (Si1-yGey 

layers) and B diffusion from doped Sil_yGey layers to the undoped Sil_yGey spacer layers were 

observed by ULE-SIMS. The broadening of Sil-xGex channel caused by Ge diffusion was 

accompanied with smearing of bottom and top Sil-xGex/Sh-yGey interfaces (XTEM). After 
• 

annealing significant changes in all regions of Raman spectra of p-type MOD Sil-xGex/Sil-yGey 

heterostructures were observed. The intensities of the various modes changed, as long as the 

intermixing of Si and Ge atoms occurred during annealing. The most significant changes were 

observed in the Ge-Ge region. With increasing of annealing temperature the increase of intensity 

of Ge-Ge mode originated from the Sil-xGex strained channel layers and their downward shift 

were observed. These changes demonstrated the sensitivity of Raman spectra to Ge diffusion 

during annealing which results in decreasing Ge content in the Sh-xGex strained channel or (and) 

its partial relaxation. With increasing annealing temperature the Sil_yGey relaxed layers became 

more relaxed just in the case if they were not fully relaxed in as-grown samples. The peak at 

521cm-1 corresponding to Si-Si mode originated from Si substrate remained unchangeable after 

annealing up to 900C for 30min. 

187 



It is necessary to point, that micro-Raman spectroscopy, PL spectroscopy and ULE-SIMS 

measurements were performed on the very same samples (Hall-bars and Van der Pauw cross) 

used for magneto transport characterization. 

In this research were investigated p-type MOD Sil-xGex/Sil-yGey heterostructures with Ge 

composition in the Sil-xGex channel varied from 0.6 up to 1 and grown on linearly graded, step 

graded or with LT-Si buffer Sil_yGey VS with 0.3::;y::;0.63. Hall mobility and sheet carrier 

density of p-type MOD Sh-xGex!Sil-yGey heterostructures were obtained from the combination 

of resistivity and Hall effect techniques at temperature range 9-300K. The measurements were 

performed on as-grown and after FTA and RTA samples. Post growth FTA was performed on 

samples #51.33, #52.16, #54.08, #60.46, #622.83 and #622.84 at temperature range 600-900C 

for 30min in N2 ambient. Post growth RTA was performed on samples #CI987, #C2015f and 

#C2072 at temperature 750C for 30sec in N2 ambient. 

For all investigated samples was observed similar effect of FTA on Hall mobility and sheet 

carrier density measured at 9 and 293K. The annealing at 600C was seen to have a negligible 
• 

effect on the Hall mobility as well as on sheet carrier density. Increasing the annealing 

temperature resulted in pronounced successive increased of mobility. Every sample had optimum 

annealing temperature, which corresponded to the highest mobility. Further increasing of 

annealing temperature resulted in decreasing of mobility. For sheet carrier density was observed 

opposite behaviour with increasing annealing temperature. The maximum increase of Hall 

mobility measured at 9K was observed in sample #54.08 after FT A at 900C and corresponds to 

8.5 times. But the maximum increase of Hall mobility measured at 293K was observed in sample 

#60.46 after FT A at 750C and corresponds to 18 times. 

For all investigated samples was observed similar effect ofRTA on Hall mobility measured 

at 9 and 293K. After RTA at 750C for 30sec was observed an increase in mobility compared to 

as-grown ones. The maximum increase of Hall mobility after RTA measured at 9 and 293K was 

observed in sample #C20 15f and corresponds to 3.8 and 1.3 times respectively. 
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The highest mobility (at sheet carrier density) of 2DHG measured at 9K was observed for 

sample #C2476 containing Ge channel grown on thick Sio.4Geo.6 linearly graded YS and 

corresponds to 14855cm2.y-l·s-l (2.87·1012cm-2). 

The highest Hall mobility (at sheet carrier density) measured at 293K was observed for 

sample #60.46 after FTA at 750C for 30min and corresponds to 1776cm2.y-1·s-1 (2.37·1O i3cm-2). 

The as-grown sample #60.46 consists of Sio.2Geo.8 channel grown on Sio.6sGeo.3s linearly graded 

YS. This value of Hall mobility (at sheet carrier density) measured at room temperature is the 

highest ever reported for p-type MOD Sh-xGex/Sil-yGey heterostructures. 

The room temperature magnetotransport properties of 2DHG fonned in the Si1-xGex 

channel of p-type MOD Sh-xGex/Sil-yGey heterostructures were studied by measuring magnetic 

field dependences of magnetoresistance and Hall resistance followed by applying the technique 

ofMEMSA. The investigated samples consist ofSh-xGex channel with 0.8<x<0.95 and Si1-yGey 

linearly graded YS with 0.35<y<0.63. The highest drift mobility (at sheet carrier density) of 

2DHG was obtained for sample #60.46 after FTA at 750C for 30min and corresponds to 
• 

3607cm2.y-1
·S-

1 (4.94.1012cm-2) at 290K. The as-grown sample #60.46 consists of Sio.2Geo.8 

channel grown on Sio.6sGeo.3s linearly graded YS. This value of 2DHG mobility (at sheet carrier 

density) measured at room temperature is the highest ever reported for p-type MOD 

Sil-xGex/Sil-yGey heterostructures. For this sample was obtained the temperature dependence of 

mobility and sheet carrier density of 2DHG without parallel conduction in the temperature range 

221-290K. It was found that the drift mobility of 2DHG increases with the decrease of 

temperature and sheet carrier density decreases with the decrease of temperature. 

The low temperature magnetotransport properties of2DHG fonned in the Si1-xGex channel 

of p-type MOD Sil-xGex/Sil-yGey heterostructures were studied by measuring magnetic field 

dependences of magneto resistance and Hall resistance at temperatures 25-0.34K and in magnetic 

fields up to lIT. The investigated samples consist of Si1-xGex channel with 0.8<x<0.95 and 

Si1-yGey YS 0.3<y<0.63. For the sample #622.83 after FTA at 700C for 30min in comparison 
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with as-grown one (Sio.2Geo.8/Sio.7Geo.3) were observed an improvements of magnetotransport 

characteristic of 2DHG at temperature 0.35K. The 9.2 times decrease of resistivity accompanied 

with appearing of SdH oscillations of magnetoresistance, an increase of carrier sheet density and 

7.4 times an increase of Hall mobility were observed after annealing. The resistivity measured at 

temperature 0.35K decreased with increase ofGe composition in the Sit-xGex channel and varied 

from 3155n1sq for sample #622.83 after FT A at 700C for 30min (Sio.2Geo.8 as-grown) to 

3155n/sq for sample #C1957 (Sio.osGeo.9s), The Hall mobility of2DHG extracted from magnetic 

field dependence of Hall resistance at temperature 0.35K increased with increase of Ge 

composition in the Sit.xGex channel and varied from 1460cm2.y.t·s·t for sample #622.83 after 

FTA at 700C for 30min (Sio.2Geo.8 as-grown) to 6581cm2.y.t·s·t for sample #C1957 

(Sio.osGeo.9s), The sheet carrier density of 2DHG was obtained by two ways, - from SdH 

oscillations of magnetoresistance and magnetic field dependence of Hall resistance. For all 

samples the sheet carrier density obtained from SdH oscillations of magnetoresistance is higher 

than from magnetic field dependence of Hall resistance. Effective mass decreases witq increases 

Ge composition in the Sit.xGex channel and varied from O.l7·mo for sample #622.83 after FTA at 

700C for 30min (Sio.2Geo.8 as-grown) to 0.15·mo for sample #C1957 (Sio.osGeo.9s), Ratio of 

transport scattering time to quantum scattering time increases with increases Ge composition in 

the Sit.xGex channel and varied from 1.29 for sample #622.83 after FTA at 700C for 30min 

(Sio.2Geo.8 as-grown) to 2.18 for sample #C1957 (Sio.osGeo.9s). The values of effective mass 

0.15·mo and ratio of transport scattering time to quantum scattering time 2.18 obtained for p-type 

MOD Sio.osGeo.9s/Sio.37Geo.63 heterostructure are the lowest and the highest respectively ever 

published for p-type MOD heterostructures with Sit-xGex channel grown by SS-MBE on 

Sit_yGey YS on Si(OOI) substrate. 

The investigation ofp-type MOD heterostructures with high Ge content (0.6<x<l) Sit-xGex 

channel grown on Si t_yGey/Si(OOI) virtual substrate have been studied by the author for first time 

in Advanced Semiconductors Research group at Warwick University. Due to this there are many 
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ways for further research. One of these ways has to be further optimisation of growth conditions 

and designs of active layers of MOD Sh-xGex/Sh-yGeylSi(OOI) heterostructures with respect to 

higher mobility and sheet carrier density of 2DHG at room temperature range. It is also proposed 

to use gated Hall bar structures in order to measure sheet carrier density dependence of mobility 

of 2DHG. This will allow to test the relaxation time approximation theory of carriers transport 

and to define carriers scattering mechanisms, which limit the mobility of2DHG. Another field of 

research is virtual substrates. The work on reduction the thickness of VS and improvement its 

surface quality has to be continued. Further work on optimisation of growth conditions and 

design ofSh-yGey on low temperature Si buffer VS has to be continued as well. 

, 

191 


	WRAP_THESIS_Myronson_2001.pdf

