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ABSTRACT 

. ''Ie have mentioned that each chapter in this tiles is 

is conceived of as an independent paper, except for 

chrwter 3, which is a collection of results on non-

continuous functions. Consequently each chapter contains 

a clearly marked introductory section, in which its back-

ground and content are explained. In this abstract we 

shall summarize the remarks in these introductory sections. 

In chapter 1 we present an n-arc theorem for Peano 

spaces which is an extension of the theorem in §2 of r32J, 

which Menger called the second n-arc theorem in [17J. 

Hhereas in the second n-arc theorem n disjoint arcs 

are constructed joining two disjoint closed sets A and 

B, in chapter 1 we split the closed set A into n dis-

joint closed subsets Ai' A2 , ••• , ~ and give necessary 

and sufficient conditions for there to be n disjoint 

arcs joining A and B, one meeting each Ai' At the 

end of chapter 1 we present a conjecture, which we have 

been able to verify in special cases. 

In r35J Whyburn proved a theorem concerning the weak 
connected 

separation of two non-degenerate closed sets A and B 

by a quasi-closed set L in a locally cohesive space X. 

In chapter 2 we show that A and B can in fact be 

taken as arbitrary closed sets in this theorem; that is, 
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o~d GOnnected~~ 
','fe reli!()ve Lhe restriction o[ non-degeneracy on A and :3 . .. 

In chapter J we study thn circumstances under which 

n c?nnectivity function is p8ripherally continuous. 

TIle study of the abstract relations between non-

continuous functions was initiated by Stallings in r23 l • 

In this paper he introduced the lpc polyhedron and showed 

that a connectivity function was peripherally continuou~ 

on an lpc polyhedron. Whyburn took up the study of non­

continuous functions in r3Jl, rJ4J and rJ5J .. Ie intro-

duced the locally cohesive space, which 1s more general 

than the Ipc polyhedron, and proved that a connectivity 

function was peripherally continuous on a locally 

cohesive Peano space. 

For technical reasons, the locally cohesive space 

is not permitted to have local cut points. It is obvious, 

however, that on many Peano spaces having local, cut points 

a connectivity function remains peripherally continuous, 

In §2,J of chapter J we formulate a sequence of properties 

Pn(X), which permit the space X to have local cut points, 

and we prove in each case that a connectivity function 

f : X - Y is peripherally continuous when X has pro­

perty Pn(X). Each of these properties is an improvement 

on the last, and the final one, the U-space, satisfactorily 

incorporates the class of Peano spaces with local cut points 

on which we are able to prove that a connectivity function 



viii 

is perlp;lerally continuous. 

An interesting feature 01 §3 of chapter 3 is provided 

by JplTO "weak separation theorems," and more will be found 

about these in the introduction to chapter J. 

In §4 of chapter J we show that a connectivity 

func tion is peripherally continuous on a locally com;)ac t 

k~R. This affirmatively answers a question that Stallings 

raised in r2Jl. 

The V-space that we have introduced in §J of chapter 

3 imposes a "unicoherence condition" in the space X 

(as do all the properties Pn(X) considered in §3, 

chapter J). In §5 of chapter J we generalize the U-space 

to the S-space. This imposes a "multicoherence condition" 

on the space X, and we prove that a connectivity function 

is peripherally continuous on a cyclic S-space. 

We close chapter J by considering the question of 

placing weaker conditions than connectivity on the function 

f I X - Y which will still ensure that f is peri-

pherally continuous. 

It is well known that if X is a unicoherent Peano 

continuum and Ai' A2 , •• 0 is a sequence of disjoint 

closed subsets of X no one of which separates X, then 
IX) 

Un=l ~ does not separate X. In [28J van Est proved 

this theorem for the case where X is a Euclidean space 

of n dimensions. In chapter 4 we give an example which 



S110WS t;w.t this theorem does not hold if X is an 

arbitrary Peano space • 

. In chapter 5 we provide a new angle to Lebesgue's 

covering lemma. We show that if the Lebesgue number 6 

of an open covering U1 , U2 • •••• Un of a compact 

metric space X. p is finite. then it can be defined 

by the formula 6 = min p(E, F), where E and Fare 

any compartments contained in no common Ui • 

In chapter 6 we show that an involution on a cyclic 

?eano space leaves some simple closed curve setwise 

invariant. 

imyburn has given a proof of R. L. r100re' s decom­

position theorem for the 2-sphere in [J1J (a refinement 

of this proof is presented in rJ6]). His proof is 

accomplished by showing that the decomposition space 

satisfies Zippin's characterization theorem for the 

2-sphere. In chapter 6 we present an alternative way 

ix 

of showing that the decomposition space satisfies Zippin's 

characterization theorem. Our ~roof closely follows 

Alexander's proof of the Jordan curve theorem as given 

by Newman in r21]. and so consists of arguments that are 

well-known in another context~ 

In (JO] Whyburn gave a proof of the cyclic connectivity 

theorem. and in all subsequent appearances of this theorem 

in the literature Whyburn's proof has been used. Whyburn 
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divided the proof of the theorem into three parts I lemma 1, 

lemma 2, and the deduction of the theorem from lemmas 1 and 

2. •. In chapter 8 we give an alternative proof of If;,(l'ilB 1. 

Our proof is based on the fact that a cyclic Peano space 

has a base of regions whose closures do not separate the 

space, and it proceeds by an induction on a simple chain 

of these regions. 



AN N-ARC THEORE,,; FOR PEANO SPACES 

1. INTRODUCTION. In this chapter we present a theorem 

and a conjecture that arise from rJ2J. 
i'Je first recall some definitions from rJ2l. Let A, 

B and X be closed subsets of a topological space S. 

We say that X broadll seEarates A and B in S if 

S - X is the union of two disjoint open sets (possibly 

empty) one of which contains A - X and the other of 

which contains B - X. The space S is n-Eoint strongly 

connected between A and B provided no set of less 

than n points broadly separates A and B in S. 

An arc ab joins A and B if ab n A = (a} and 

abnB=(b}. 

The following theorem, in which we have replaced 

"completeness" by "local compactness," appears in [J2J. 

It is called the second n-arc theorem by Menger in r17J. 

THE SECOND N-ARC THEOREM. Let A and B be disjoint 

closed subsets of a locally connected, locally compact 

metric space S. A necessarl and sufficient condition 

that there be n disjoint arcs in S joining A and 

B is that S be n-point strongll connected between 

A and B. 
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In ~ we split the closed set A into n 

dis,joint closed subsets Ai' A2 , •.• , An' The theorem 

t:1er. gives a necessary and sufficient condition for there 

to be n disjoint arcs jOining A and B, one meeting 

each Ai' 

In §J we split A and B into disjoint closed 

subsets A2, ••• , and B2, ... , 
The conjecture then gives a necessary and sufficient 

condition for there to be n disjoint arcs joining 

A and B, one meeting each Ai and one meeting each 

Bi . (I have given a proof of this conjecture for the 

case n = 4, which is the first case that offers dif-

ficulties, but it is not included here.) 

It will be noticed that the space S in the theorem 

and in the conjecture is not actually a Peano space, as 

the title of the chapter states, but it becomes one 

when the property of connectedness is placed on it. 

2. Let Ai, A2' •.• , An and B be disjoint closed 

subsets of a topological space S. We shall say that a 

subset X of S is a lar!3e Eoint of S (with respect to 

Ai' A2, o ••• An) if it is a one-point set or one of 

the sets Ai • We shall say that S is n-Eoint strong-

ly connected between Ai, A2, • .0, An and B- provided 

the union of less than n large points does not broadly 

separate Ai U A2 U ••• U An and B in S. 

( 
I 



-.. ;8 shall say that a syst8m of n disjoint arcs ~n 

Ll .loins Ai A2 , ... , ~ al~(J B if each arc .io 'ellS 

Ai l! A2 U ... U ~ and B and each Ai is joined to 

B by exactly one of the arcs. 

THEOREH. Let Al • A2 , ••• , ~ and B be disjoint 

closed subsets of a locally connected, locally compact 

metric space S. A necessary and sufficient condition 

that there be n disjoint arcs in S joining Al , A2 , 

••• , ~ to B is that S be n-point strongly connect­

ed between Al. A2 , ••• , An and B. 

We need two more definitions for the proof of the 

theorem. Let Al , A2 , ••• , AD be disjoint closed 

sets in a topological space S, and let Sl' S2' •.• , Sm 

be disjoint arcs in S. We shall say that Ai is 

a zero, a single or a multiple with respect to Sl' S2' 

••• , 8m according as to whether it meets zero, one or 

more than one of the arcs 81' 8 2 , ••• , 8m, A subarc 8 

of some 8i is said to be a bridge of 81' 82' ••• , 8m 

spanning Al , A2 , ••• , ~ if 8 joins some Aj to some 

Ak , for j ~ k. Clearly there are only a finite number 

J 

of bridges in 81 , 82' ••• , 8m spanning Al , A2 , ••• , ~. 
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PROOF. Using the terminology and notation of the theorem, 

it is clear that the condition is necessary for the exist­

ence of n disjoint arcs joining Al' A2, "" An to 

B in S. So we turn to proving that it is sufficient. 

By the arcwise connectivity theorem, the condition 

is sufficient for n = 1. So we assume its sufficiency 

for each posi ti ve integer < n and prove its sufficiency 

for n by induction. 

By the second n-arc theorem there are n disjoint 

arcs S 1 ' 82 ' "" ~n in S joining Ai U A2 U • •• U ~ 

and B. Let p be the number of singles of Al, A2, 

••• , An with respect to 81' 82 ' ••• , en' We shall 

suppose that p < n and show how to construct a second 

system of n dis joint arcs joining Ai U A2 U ••• U An 

and B with respect to which the number of singles is 

p + 1. The process can be repeated n - p times to 

obtain the desired system of arcs joining Ai. A2' ••• , 

~ and B. 

Let A2' ••• , be the singles, 

... , the zeros and 

the multiples of ... , with respect to 

8 1 , 82 ' ••• , Sn' Since p < n there is at least one 

zero and at least one multiple here. We shall construct 

a system of n disjoint arcs joining Ai U A2 U .•• U ~ 
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and R with res rec t to which Ai' A2 • ...• /'p+i n.re 

s io)'les. To this end we cons ider the locally connec ted. 

locally compac t space S - Ap+2 U Ap+ 3 u •.. U An' Since 

it is (p + i)-point strongly connected between Ai' A2 • 

••• , Ap+l and Band p + 1 < q ~ n. it follows from 

the inductive hypothesis that it contains p + 1 disjoint 

arcs 0 1 , 02 ' ••. , 0p+l joining ... , 
and B. We suppose, further, that or meets Ar for 

r~p+1. 

We now use an inductive technique that 1s familiar 

from r 32].. We relabel ~1' S2 •••.• ~n so that 

meets Ar for r ~ p, and we start by defining 

for r ~ p + 1 and 
o 

Sr = Sr for r ~ p. 

that we have defined systems of arcs m 
°1' 

) 
m em 

(possibly degenerate and ~1' f-I2 ' ••• , 

Now we suppose 

m ill 
° 2 ' .•• , ° p+l 

em f-Ip such that 

(a) 
m m 

Cl r n Ar C or C Cl r and or does not meet B U 

(c) if 

is degenerate, (d) if L1 em ° r' fJ s 

meet then they meet in a common end point, (e) exactly 

m m 
A2 , 

m 
U Ap+l one of the sets °1 U Al' 02 U ... , °p+l 

fails to meet ~~ U S~ U ... U 
m 

Sp' (f) if bm is the 

number of bridges 
m m Sm that of S l' S2 ' ... , p span 

{Y 1 U Ai' 0'2 U A2 , ... , °p+l U Ap+l' then bm < b
m

_1 for 

m ~ 10 We now show how the induction may be continued 

to the next stage and how it leads, after at most a 
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finite nu~ber of stages, to the construction of n dis-

joint arcs joining Al U A2 U ..• U An to B with 

respect to which A1' A2, ••. , Ap+l are singles. 

We proceed by denoting by crt U At the set, given 

in (d), which does not meet 
m m ill 

81 U 82 U •. , U 8 p' We let 

x be the first point of crt in the direction "t nAt, 

"t n B that belongs to the union of the three sets 
m m m 

81 U 82 U , , , U 8p ' Rp+l U 8p +2 U , , . U Sn and 

B - f\ U R2 U . , . U Sn' We consider separately the three 
m m m 

mutually exclusive cases (1) x E 81 U 82 U ••• U 8 p' 

(2) x E 8p+1 U 8p +2 U , . , U 8n and (3) x E B - 81 U R2 U" lUI 
m 

vie first consider case ( 1 ) and let x E 8u ' We 
m+1 m 

r ~ 
m+l 

define or = ° for t, r :S: p + 1, and at r 

as the subarc of at whose endpoints are °t n At, x. 
m+l m 

s ~ u, 
m+l 

We define 8s = 8s for s :S: p, and Su as 
m 

the subarc of 8u whose endpoints are 8u n B, x, It 

is easily seen that (a) - (d) of the inductive hypotheses 

are preserved, In order to verify that (e) is preserved, 

we notice that it follows from (a) - (d) 
m 

that each 8s 

meets at most one Thus it follows from (e) 

that the relation 
m m 

( or U Ar) n 8s ~ ¢ establishes a 
m m 

1 - 1 correspondence between the collections 81' 82 ' 
m 

, • " S p and 
m 

, • " at_l U 

If we now let 
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m 
be the set that correspond: to au under this relation, 

it is clear that by (d) 
:;1+1 

U ~ does °v not meet 
m+l m+1 m+1 

S 1 . U 82 U U Sp , and that it is the only ;-;ct 
Jil+1 m+1 m+l among 0'1 U Al ' °2 U A2 , , .. , °p+l U Ap+l with 

this property. It is clear that (f) is also preserved, 
m m+1 m 

since (au - au ) U {x} is an arc that jOins 0v U Ay 
m 

and 0t U At, and so it contains at least one bridge of 

Sm 
1 ' 

m m 
82 ' ••• , 8p spanning a 1 U A1 , 02 U A2 , .•. , 

m+l m+1 
that is not contained in 81 U 82 U ••• U 

i. e. , 

Thus in case (1) the inductive hypotheses are 

preserved. We notice that it follows from (f) that 

case (1) can occur for only a finite number of values 

of m, since b O is finite. Thus case (2) or case ()) 

must eventually occur. We complete the proof of the 

theorem by showing that in either of these cases we can 

readily obtain a system of n disjoint arcs joining 

A1 U A2 U ••• U An and B with respect to which 

A1' A2' .•• , ~+1 are singles. 

We shall only deal with case (2), as case ()) is 

practically identical to it. Thus we let x E 8wl 

P + 1 s w S n. We define a as the subarc of °t whose 

endpoints are at n At, x and 8 as the subarc of 8w 

whose endpoints are 8w n B, x. \{e first notice that 
m m 

it follows from (a) - (d) that if or U Ar, 8s meet, 
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then m Sm or U s is an arc jOining B. Since a 1 - 1 

correspondence is established between the collections 

m ill rn m 
01 U Ai' 02 U A2 , ••• , 0t_l U At_i' at+l U At+i' •.. , 

m 
o p-r-i U Ap+i and by the relation 

(o~ U Ar) n S: ~ ¢ it follows that the union of 
m m m m m 

0 1 , °2 ' ••• , °t_l ' °t+i , ••• , °p+i ' 

may be expressed as a union of p disjoint arcs joining 

Ai, A2' ••• , At-i' At+l, ••. , Ap+l and B. Further­

more, by (a), (b) these arcs are disjoint from the arcs 

Sp+l' Sp+2 , . . . , Sw_l , Sw+l , ... , Sn , 0 . , S . Thus 

the of 
m m m m m 

union °1 ' °2 , o •• , °t_l , at+l , ... , °p+i , 
m m m 

S1' S2 , ... , Sp , Sp+l , Sp+2 , ... , Sw-i , Sw+i , ... , 
may be expressed as a union of n disjoint 

arcs joining Ai U A2 U ••. U ~ and B with respect 

to which Ai' A2' ••• , Ap+l are singles. This completes 

the proof of the theorem. 

3. Let Ai' A2 , ••• , ~ and Bl' B2, ••• , Bn be 

disjoint closed subsets of a topological space S. We 

shall say that a subset X of S is a large point of 

S (with respect to Ai' A2' ••• , An and Bi' B2' 

.•• , Bn) if it is a one-point set, a set Ai' or a set 

Bi • We shall say that S is n-noint strongly connected 

between ... , and B2, •••• 
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provided the union of less than n large points does 

not broadly separate Al U A2 U 

•••. u :'='l! in S. 

-.ie shall say that a syste:'J. of n disjoint arcs in 

S joins Al' A2' •••• An a~d Dl' B2 ••••• Br. if 

each arc joins Al U A2 U ••• U Au and Bl U B2 U ••• u :an ' 

and each Ai meets just one arc. and each Bi meets just 

one arc. 

CO:~Ji~C':l'\JRE • Let A2. • ..• and ... , 
be disjoint closed subsets of a locally connected, locally 

cOflpact metric space S. A necessary and sufficient con-

dition that there be n disjoint arcs in S joinin~ 

A A A and B B Bn is ~hat S l' 2' •••• n l' 2' ••. , v 

be n-point strongly connected between Al • A2' ••• , An 
and B1' B2 •••• , En. 

The necessity of the condition is again trivial. so 

it is the sufficiency of the condition that is interesting. 

The conjecture is clearly true if the sets A1' A2 • 

•••• An and Bl , 132' .•.• Bn are compact. For in 

this case the quotient space Q obtained by identifying 

a pair of points if they belong to a common Ai or a 

common Bj is locally compact. locally connected and 

metrizable. If TT is the natural projection from S 

onto Q. it is clear that Q is n-point strongly 
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connected between TT(Al) lJ TT(A2 ) u ••• U TT(~) and 

TT(Bl) U TT(B2 ) U ••• U TT(Bn ). Consequently it follows 

fro~ the second n-arc theorem that there are n disjoint 

arcs in Q joining TT(Al) U TT(A2 ) U ••. U TT(~) and 

TT(Bl) U TT(B2 ) U ••• U TT(Bn ). The TT-inverse of each of 

these arcs contains a connected closed set which meets 

both Ai U A2 U ••• U An and Bl U B2 U •.• U Bn' from 

which it easily follows that there are n-disjoint arcs 

in S joining Ai' A2 , ••• , An and Bl' B2' •.. , Bno 

ioJhen some of the sets Ai' A2 , ••. , An or 

Bl' B2 , •••• Bn fail to be compact, the above argument 

does not suffice as the quotient space Q is not in 

general metrizable. 

There ought to be a combinatorial proof of this 

conjecture along the lines of the proof in §2, which 

would work equally well whether some of the sets 

Ai' A2 , ••• , An or Bl' B2" •• , Bn fail to be 

compact or not. Such a proof has been given for the 

case n = 4, as was remarked earlier. 



CHAPTER 2 

THE SEPARATION THEOREI"l FOR QUASI-CLOSED SETS 

1. INTRODUCTION. In this chapter we complete a sequence of 

arguments concerning quasi-closed sets that appear in r35J. 

In ~J5J Whyburn proves the following theorem. 

THEOREM. Let A and B be disjoint non-de&enerate closed 

and connected sets in a locally cohesive T1-snace X. 

Any quasi-closed set L which weakly separates A and 

B in X contains a closed set K which separates A - K 

and B - K in X. 

In the "Concluding Remarks" of [35J Whyburn shows 

that the requirement that A and B be non-degenerate 

can be deleted. He also mentions that the condition 

that A and B be connected can be replaced by the 

requirement that each of them be of dimension > 0 at 

each point. 

In this chapter we show that A and B can in 

fact be arbitrary closed sets. The theorem to this 

effec t appears in § 2. tve call it the separation theorem 

for quasi-closed sets. 

lowe it to Dr. Whyburn for pointing out, in 

Appendix I of [37J, that the results in the "Concluding 
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Hemarks" of [35J are partial versions of the theorem .in §2. 

2. 'd8 firs t define the necessary terms. We follow C:le de­

finitions in r35J, except for two chanGes. Firstly. our 

defini tion of "unicoherence between two subsets" is v~eaker 

than the definition in §5 of r34J. on which the defin~tion 

of "local cohesiveness" in [35J is based. Secondly. we 

define "local cohesiveness" for arbitrary spaces. This 

means that we usually have to include certain separation 

properties in the statements of our results. 

In all the definitions that follow X is an arbitrary 

topological space unless otherwise stated. 

A set E in a space X is quasi-closed in X if 

each point in X - E has a base of neighbourhoods whose 

frontiers do not meet E. 

Let E and F be two disjoint subsets of a connected 

space X. We say that X is unicoherent between E and F 

if however X is expressed as the union of two connected 

closed sets M and N such that M - Nand N - 1'1 contain 

E and F, respectively. ~ nN is always connected. If p 

is a point of a spaqe X, we say that R is a canonical region 

about p in X if R is a connected neighbourhood of p. the 

frontier Fr R of R is connected, and R is unicoherent 

between {p} and Fr R (or, equivalently, in case X is 

connected. X is unicoherent between {p} and X - R). 
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A space X is locally cohesive if each of its points has 

a base of canonical regions. Notice that a locally 

cohesive space is locally connected. 

Let E, F and L be subsets of a space X. We 

say that L separates E and F in X if X - L is 

the union of two sets M and N which contain E and 

F, respectively, and which are separated in X Or. and 

N are separated in X if (VI n N = ¢ = M n N) • We say 

that L weakl;z seEarates E and F in X if no 

component of X - L meets both E and F. Notice that 

we may have E r F n L /: ¢ in this last definition. 

Before giving the theorem, we state two simple 

lemmas. These can be found as statements in §1 of [35J. 

They are, in any event, easily proved on the basis of our 

definitions. 

2.1. LEMMA. If R is a canonical region about a Eoint 

p in a locall;z cohesive sEace X, and K is a closed 

set in R that seEarates p and Fr R in R, then there 

is a canonical region S about p such that Sc Rand 

Fr S c K. 

2.2. LEMMA. If L is a quasi-closed set in a locall;z 

cohesive regular sEace X, then each Eoint of X - L 

has a base of canonical regions whose frontiers do not 

meet L. 
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2.3. THEOREM. Let A and B be closed sets in a 

locally cohesive re~ular T1-space X. Any guasi-closed 

set L which weakly separates A and B in X contains 

a closed set K which separates A - K andB - K in X. 

PROOF. We notice that we may suppose without loss of 

generality that X is connected, for on the one hand the 

restriction of L to a component of X is quasi-closed, 

and on the other hand the union of a collection of closed 

sets, each contained in a component of X, is closed. [ 

Thus we shall suppose that X is connected. 

We first consider the case of a point pEA - L 

which lies in a non-degenerate component Hp of X - L, 

and we show that there is a region Gp about p which 

does not meet B and for which Fr Gp c If p n L. 

First notice that H - H p P c L; for if x E Hp - L, 

then Hp U [x} is a connected set in X - L and so is 

contained in Hp' Now let V be the union of all the 

components of X - Hp that meet B. Then Fr V n Hp = ¢. 

For let and let R be a canonical region about 

x which neither meets B nor contains Hp (Hp is non­

degenerate and X is a T1-space) and whose boundary Fr R 

does not meet L. Then Hp meets both R and its 

complement and so contains Fr R. However, each component 

of V meets X - R but not Fr R, and so does not meet R. 



Consequently V does not meet R and x ~ Fr V. 

Thus Fr V C Rp - Hp. Thus X - (V U (B n Rp)) is a 

neighbourhood of p which does not meet B and whose 

frontier is contained in Hp n L. If we let Gp be the 

component of X - (V U (B n Hp)) that contains p, then 

Gp is a region about p which does not meet Band 

for which Fr Gp C Hp n L. 
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Now we consider the case of a point PEA - L which 

lies in a degenerate component of X - L. and we show that 

there is a region about p whose closure does not 

meet B and whose boundary is a connected subset of L. 

Let R be a canonical region about p whose 

complement is non-degenerate and contains B and such 

that Fr R n L = ¢. Then L n R is a quasi-closed set, 

and we assert that it weakly separates the closed sets 

{p} and X - R. For let H be the component of 

X - L n R that contains the connected closed set X - R. 

Then H n R is connected, because it is a closed subset 

of H which contains the connected set Fr R. It follows 

that p cannot belong to H, because if it did (p} U 

(H n R) would be a non-degenerate connected subset of 

X - L, contradicting the assumption that p lies in a 

degenerate component of X - L. Since H is non­

degenerate, there is by the second paragraph of this 

proof a region G which contains H and does not meet 
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the closed set {p}, and whose boundary lies in L n R. 

Let Gp be the component of X - G that contains p. 

Then Fr Gp is connected. For X == Gp U (X - Gp ), where 

Gp and X - Gp are two connected closed subsets of 

such that { p} n (X - Gp ) = ¢ and (X - R) n Gp == ¢. 

Therefore, since R is a canonical region about p, 

Fr Gp == Gp n (X - Gp ) n R is connected. That is, Gp 

is a region about p whose closure does not meet B 

and whose boundary is a connected subset of L. 

X 

We shall suppose hereafter that B is non-degenerate, 

for if B is degenerate we can prove the theorem by 

interchanging the letters "A" and "B" in the second 

and fourth paragraphs of the proof when B c X - L, and 

by removing the set B from X when BeL. 

Now we show that Fr U Gp C L, the union being 

taken over all points pEA - L. Suppose that 

x E (Fr U Gp ) - L. Then x ;. A, so there is a canonical 

region R about x such that R n A = ¢, R "jJ B and 

Fr R n L = ¢ • Then Gp meets R for some p E A - L, 

and consequently Fr Gp meets R, because R is 

connected and not contained in Gp • It follows that p 

cannot lie in a degenerate component of X - L, for in 

this case Fr Gp is a connected subset of L and so 

is contained in R. Thus, since X - R is a connected 

set in the complement of Fr Gp which meets B, Fr Gp 



separates not only p and B but also p and X - R. 

fhat is. pER. which is false because RnA = ¢. So 

p lies in a non-degenerate component lip of X - L. 

}<'ur.ther. since Fr Gp c Hp. H p meets both R and its 

complement. and so meets and contains Fr R. However 

x ~ Gp ' so there is a point q E A - L such that Gq 
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meets R - TIp. and as before q lies in a non-degenerate 

component Hq of X - L which contains Fr R. But this 

implies that Hp n Hq ~ ¢, and so Hp = Hq . Consequently 

Gp = Gq • by construction. which is a contradiction. 

Let K = (Fr U Gp ) U (A - U Gp ). the union again 

being taken over all pEA - L. Then K is a subset 

of L which is closed in X. and it separates A - K 

and B - K in X. 

3. In conclusion we wish to point out the relation 

between certain results in [8J and [37J and the theorem 

given above. 

We consider the following three results. which are 

proved in [8JI 

(a) Theorem. p.54 [8J. 

(b) Corollary 1. p.57 [8J. 

(c) Separation Theorem. p.59 [8J 

Referring to [8J. we see that (a) implies (b) and (b) 

easily implies (c). There is also an easy implication 



fro;'} (c) to (a). Thus (a), (b) and (c) are all 

equivalent. Again referrin~ to [~J, we see that the 

conclus ion in each of (a)" (b) and (c) is the same, 

narn,ely that a closed set E can be found in a set T 
.u 

which separates two sets A - Land B - L in a space 

X. Let us replace this conclusion in (a), (b) and (c) 

by, "a closed set E can be found in L which 

separates A - E and B - E in X.tt Then we get three 

propositions (a)l, (b)' and (C)I. It is clear that (a)1 

and (C)I are untrue, and (b)' is simply our theorem 

above. It will be noticed that (b)1 is a better result 

than (b), because (b) can be immediately deduced from 

(b) I, but not conversely. 

In Appendix 1 of [37 J the proof of our theorem is 

broken into three steps: 

(d) Theorem 1, p.58 [37J, 

(e) Theorem 2, p.59 [37J, 

(f) Separation Theorem, p.61 [37J. 

It is shown in [37J that (d) and (e) imply (f), which 

is our theorem of §2. It will be noticed that it also 

follows immediately that (f) implies (d) and (e). 
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ON CONNECTIVITY FUNCTIONS 

BEING PERIPHERALLY CONTINUOUS 

1. INTRODUCTION. We first explain how the study in 

this chapter arose. 

BACKGROUND TO CHAPTER. In 1957 in [12J O.H. Hamilton 

showed that a connectivity function f I 
n n I _ I , where 

In was the closed Euclidean n-cell, had the fixed point 

property. The principal part of his argument involved 

showing that a connectivity function was peripherally 

continuous. He was then able to,prove that a peripherally 

continuous function had the fixed pOint property. 

In 1959 in [23J Stallings initiated the study of 

the relations between different kinds of non-continuous 

functions. He introduced the notion of an almost 

continuous function, and studied the relations between 

connectivity functions, peripherally continuous functions 

and almost continuous functions defined on polyhedral 

spaces. He also considered local connectivity functions 

and polyhedrally almost continuous functions. Stallings 

was aware of the limitation involved in using polyhedral 

objects, rather than purely topological objects, and 

questioned to what extent this limitation could be 
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removed (see §2 of[23J). In §6 of C23], Stallings listed 

a number of interesting questions, several of which have 

subsequently been answered (see [27J. [6J. riO] and r33J). 

In §4 of this chapter another of these questions is 

answered. 

What concerns us here, however, is that Stallings 

noticed that Hamilton's proof that a connectivity function 

f , In _ In was peripherally continuous contained a gap. 

In filling in this gap, Stallings placed the theorem in 

a wider setting. He showed that a (local) connectivity 

function f I X -4 Y was peripherally continuous, where 

X was an lpc polyhedron and Y was a regular T1-space. 

The lpc polyhedron then retains the pertinent properties 

of the n-cell that Hamilton used: namely, it has a base 

of regions CU} whose closures are unicoherent and a. a. 

whose boundaries are connected. Notice that an lpc 

polyhedron is simply a polyhedron with no local cut points. 

In 1966 and 1967 Dr. G.T. Whyburn published a series 

of three papers on non-continuous functions, namely C33J, 

[34J and [35J. In the last two of these he introduced 

the notion of a locally cohesive space, and he used this 

to prove a number of interesting theorems about peripherally 

continuous functions (see also [37J). 

However, what particularly interests us is that 

Whyburn proved that a connectivity function f, X - Y 



was peripherally continuous, where X was a locally 

cohesive Penno space and Y was a regular T1-space. 

Now the locally cohesive ?eano space, like the 

lpc polyhedron, has a base of regions (Uo1a whose 

boundaries are connected. But the "unicoherence 

condition" that is imposed on it is more subtle than 

the requirement that each Ua be unicoherent. It is 

only required that each Uo be unicoherent modulo 

Fr Uo (see theorem (J.1) of this chapter). Thus the 

locally cohesive Peano space is a considerable 

improvement over the lpc polyhedron. Besides being 

a purely topological notion, it also includes some in­

finitely multicoherent spaces within the terms of 

its definition. For example, the space in figure (1.1) 

which is the closure of the set of all points (x, y, z) 

____ p 4··. 
-

,,--- - -.;,,.-------:..:..::.. - ..:;; ... 

fig. (1.1) 
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in Euclidean 3-space such that n+1 2 
(x - (1 - 3/2 )) + 

for some positive integer n, 

is a locally cohesive Peano continuum. 

It will be noticed that the locally cohesive Peano 

space has no local cut pOints. In 1967 I wrote out a 

proof, which closely followed the arguments of Hauilton 

and Stallings, of a theorem concerning a connectivity 

function being peripherally continuous in which the 

domain space was permitted to have local cut pOints. 

In fact, the domain space was a Peano space which had· 

a covering by unicoherent regions. This theorem and its 

original proof appear in §2 of this chapter. 

When Dr. Whyburn was shown this theorem, he 

deduced it as a consequence of his theorem concerning 

a connectivity function being peripherally continuous 

on a locally cohesive Peano space, and it was in this 

form that it appeared in Appendix II of [37J. However, 

it is presented here with its original proof, because 

this proof contains the beginnings of many techniques 

that are used in subsequent sections of the chapter. 

CONTENT OF CHAPTER. \-/e have explained above how the 

work of this chapter ·arose. The purpose of the chapter 

is to further the study of the circumstances under which 



a connectivity function is peripherally continuous. 

We let P(X) stand for a statement which asse~'ts 

that the topological space X has certain properties, 

and we let Th(P(X)) stand for this statement: 

Th(P(X)) = if f x -0 Y is a connectivi ty function 

and p(X)t and Y is a regular T1-space, then f is 

peripherally continuous. 

If we now put 

Pi (X) - X is an lpc polyhedron, 

P
2

(X) - X is a locally cohesive Peano space, 

PJ(X) - X is a Peano space with a covering 

by unicoherent regions, 

then Th(Pn(X)) is a theorem for n = 1,2,J, as we 

have seen. 

It will be noticed that neither P2 (X) nor PJ(X) 

is contained in the other. In §J we first combine ~he 

better features of each, thus obtaining 

P4(X) - X is a Peano space with a covering 

(or base) of regions {Un}n such that 

each Un is unicoherent modulo Fr U"n • 

2J 



P4(X) then contains both P2(X) and P3(X), and 

Th(P4(X)) appears as theoren (3.2). 

After this, we improve the statement P4(X) wi~h 

respect to cut points. We point out in example (3.2) 

and the paragraphs which immediately follow it, that 

while Th(P4(X)) adequately deals with cyclic Peano 

spaces, the statement P4(X) does not adequately cover 

the class of Peano spaces with cut points on which we 

are able to prove that a connectivity function is 

peripherally continuous. 

This consideration leads us to formulate 

Ps(X) - X is aU-space, 

the significance of the "U" being that we still have 

a "unicoherence condition" as a part of PS(X), In 

theorem (3.4) we show that PS(X) contains P4(X), 
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The remainder of §3 is principally concerned with proving 

Th(PS(X)), which appears as theorem (3.6). The U-space, 

then, provides a satisfactory solution to this problem 

of cut pOints. 

That there are significant U-spaces which are not 

covered by P4 (X) is shown by the example in figure (1. 2) 

This space is the closure of the set of all points 
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(x, y) in the Euclidean plane such that 1/2n +2 ~ 

(x -(1 _ )/2n +1 ))2 + y2 / 1/2n +1 
~ for some positive 

integer n. 

The obstacle in proving Th(P5(X)) is the necessity 

of knowing that the quasi-components and components of 

a semi-open set (i.e., the complement of a semi-closed 

set) are identical in a cyclic U-space. This can be 

deduced from either theorem ().5) or theorem ().5a) 

(from theorem ().5) in the text). 

Theorems ().5) and ().5a) constitute an interesting 

feature of the chapter for, besides being the most 

difficult part of §J (notice that, as conceived here, 

the proofs of lemmas (J.12), (J.l)) and (J.14) are parts 

of the proof of theorem (J.5)), they contain a good deal 

more than is required to prove Th(P5 (X)). They are 

"weak separation theorems" of a type that have already 



occurred elsewhere in the literature, In tnis cateGury 

we mention the following: 

(a) theorem 4, r12J, 

(b) theorem 2.1, [35J, 

(c) IISeparation theorem, II chap. IV, r8], 

(d) theorem of 92, chap. II, this thesis, 

(e) lemma I, C7J, 

(f) theorems (3.5), (3.5a), this chapter. 

(a) - (d) all concern the weak separation of two closed 

sets A and B by a quasi-closed set, and they are all 

subsumed under (d). Their principal use has been to 
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prove that the n-cell has the fixed point property under 

peripherally continuous functions D If we rephrase (e) (1), 

we see that it concerns the weak separation of two de-

generate closed sets A and B by a totally disconnected 

semi-closed set. It is the key to proving the principal 

theorem of [7J. (f) concerns the weak separation of two 

closed sets A and B by a semi-closed set, and its 

proof offers considerably more difficulties than that of 

(1) Let L be a subset of a space X. The following two 
statements are then equivalent: (i) the quasi-components 
and components of X - L are identical, (ii) if L 
weakly separates two points p, q in X, then L broadly 
separates p, q in X. 
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(e) (because A and B are not necessarily degenerate). 

(f), with A and B degenerate, is used to prove ~~(?5(X)). 

It would seem that these weak separation theorems are 

Q principal feature of the study of non-continuous functions. 

a fact which does not seem to be properly appreciated yet. 

For example. with A and B non-degenerate, (f) can be 

used to prove that a connectivity function 
n n 

f : I - I 

llas a fixed point, without first showing that f is peri-

pherally continuous (c.f., the proof of the fixed point 

property for peripherally continuous functions in [35J). 

Also'lemma (3.12) has applications in its own right. Using 

it. we can show that a pseudo-continuous (2) function on a 

cyclic U-space (a) preserves connectedness and (b) is peri-

pherally continuous (these results will be published 

separately) • 

In §6 of [23J Stallings raised the question as to what 

extent the theorems of his paper were valid for &~Rts. In 

§4 we answer this question affirmatively for the theorem con-

cerning a connectivity function being peripherally continuous. 

In fact, theorems (4.2) and (4.J) are the propositions 

(2)we shall 
if f- 1 (F) 
is a closed 

call a function f, X - Y 
is a semi-closed subset of 
subset of Y. 

pseudo-continuous 
X whenever F 
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P6(X) - X is a locally contractible Peano space, 

P7(X) - X is a locally compact A~R(~). 

It will be noticed that each proposition Pn(X), n = 

1, 2, ••• , 5, imposes some sort of lIunicoherence conditionll 

on ~(, and it is by virtue of this that Th(Pn(X)) ~s 

proved. The "unicoherence condition" is used in this waYI 

a certain set L is found which separates X, and the 

"unicoherence condition" is used to deduce that a component 

of L separates X. In all cases, however, it would be 

sufficient to know just that a finite number of components 

of L separates X. In all cases, however, it would be 

sufficient to know just that a finite number of components 

of L separates X. This consideration leads us to for-

mulate the definition of an S-space. Putting 

P8(X) - X is a cyclic S-space, 

the statement Th(P8(X)) (J)appears as theorem (5.2). The 

case of the S-space with cut points is not dealt with in 

this chapter, as we have not yet attempted to prove the 

weak separation theorem for cyclic S-spaces that corresponds 

(J)In theorem(5.2) the space Y is only assumed to be regu­
lar, not ~e~ular and Tie This is possible because of lemmas 
(5.4) and (5.5). As these lemmas can be applied in the same 
way to the proofs of each of the preceding theorems Th (P 1.1 (X) ) , 
it is only necessary to demand that Y be regUlar in tnese 
theorems. 



to theorems (J.5) and (J.5a). 

We remark that the S-space is the natural setting 

for. the tl180rem concerning a connec ti vi ty function be inE?; 

peripherally continuous. Not only is it the most general 

space to which the argument applies, but also in it we 

no longer have to concern ourselves with local cut points, 

as these are dealt with implicitly. The S-space is so-

called in this chapter because A. lie stone was the first 

to investigate weakly finitely multicoherent ~paces in 

(26J, and a considerable amount of inspiration has been 

obtained from this paper. 

We close §5 and the chapter by considering the possi-

bility of ascribing weaker properties than connectivity 

to the non-continuous function f: X - Y which will 

ensure that f is peripherally continuous.{ In theorem 

(5.3) we show that if f: X - Y is pseudo-continuou~ 

and connectedness preserving, where X is a cyclic 3-space 

and Y is a regular space, then f is peripherally con­

tinuous. Finally, we remark that there is reason to believe 

that the hypothesis that f is connectedness preserving 

is redundant in this theorem. 



','Ie first present the necessary definitions and state 

a number of lemmas that we shall need in the proof of 

theorem (2.1). 

A Peano space is a locally compact, connected and 
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locally connected metric space. It was shown in r11 that 

a locally separable connected metric space was separable. 

A proof of this may also be found on p.75 of r.21J. From 

this it follows that a Peano space has a countable 

open base. 

If f, X - Y is a function, the graph of f, 

written r(f), is defined to be (x, y) : X E X & Y = 

f(x)} • It is a subset of the Cartesian product X X Y. 

Let X and Y be arbitrary topological spaces. 

A function f, X - Y is called a connectivity function 

if for each connected set C in X the graph r(fl C) 

of the restricted function fl C : C - Y is a connected 

subset of the topological product space X X Y. 

Again let X and Y be any spaces. A function 

f , X - Y is said to be peripherally continuous at a 

point x E X if for each pair of neighbourhoods U and 

V of x and f(x), respectively, there is a nei~hbour-

hood W of x such that W c U and f (Fr i.,r)c V 

(Fr W = W - W). A function f, X - Y is peripherally 

continuous if it is peripherally continuous at each 

point of X. 



Let X be a space with a countable open base. A 

subset S of X is semi-closed in X if for each 

seq~ence K1 , K2 , ••• of components of S which 

converges in X, lim Ki is contained in S or is a 

single point. (The definition of the convergence of a 

sequence of sets may be found in [J1J.) We remark that 

a semi-closed set can be defined in an arbitrary topolo­

gical space by replacing the convergent sequence of 

components in the above definition by a convergent net 

of components, as is done in [22J. However, for our 

purposes the above definition will suffice. 

We make the following observation, which is an 

immediate consequence of the definitions if S is a 

semi-closed set in a T1-space X which has a countable 

open base, then the components of S are closedinX. 

Lastly, we say that a connected space X is 

unicoherent if for each representation of X as the 

union of two connected closed sets M and N, M n N 

is always connected. 

We need the following lemmas in order to prove 

theorem (2.1). 

LEMMA (2.1). If X is a Peano space and p is a point 

)1 



of X, then each region U about p contains a :r-e<'ion 

V about p such that V is compact and contained in 

U ~nd no component of U - p contains more than one 

component of X-V. 

LEMMA (2.2). Let f: X - Y be a connectivity function, 
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where X and Y are arbitrary T1-spaces. Then, foy each 

non-aegenerate connected subset C of X, the graph 

r(f\C) has no isolated points. 

LEMI1A (2.J). Let X be a locally connected Hausdorff 

space with a countable open base and Y a T1-space. 

If f: X - Y is a connectivity function, then for Each 
-1 

closed set F in y, f (F) is semi-closed in X. 

LEI1MA (2.4). Let X be a connected and locally connected 

space. Then the following are eguivalent: 

(i) X is unicoherent, 

(ii) if a closed set F separates two points p, 

q in X, then so does some component of F, 

(iii) if a closed set F separates X, then so does 

some component of F. 

LEMMA (2.5). Let X be a connected, locally connected 
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completely normal space, Then X is unicoherent if and 

only if every set that separates X has a component that 

separates X. 

Lemma (1.1) is a special case of theorem 1, p.188 of 

r141. It may also be easily proved along the lines of 

the theorem of IVhyburn quoted in §2 of chapter 8 of this 

thesis. Lemma (2.2) is proved in [12J, although in r12l 

the spaces X and Yare required to be Hausdorff 

spaces. Lemma (2.3) is proved for compact spaces in 

r 23J and [9] • It is proved as stated here in [37J. It 

is given in its most extended form in r 22J. In [ 29J ' 

r 38J and [24J a number of properties are proved to be 

equivalent to unicoherence, but (iii) of lemma (2.4) is 

not among them. For this reason, and because the proofs 

of lemmas (3.2) and (3.10) will be patterned on the proof 

of lemma (2.4), we prove lemma (2.4) here. Lemma (2.5) 

follows directly from lemma (2.4). 

PROOF OF LEMMA (2.4). Although it is shown in [24J that 

(i) implies (ii), we shall prove it here for convenience. 

Suppose that X is unicoherent. Let C be the 

component of X - F that contains p, and let D be 

the component of X - C that contains q. Then 



x = (x - D) U B is a representation of X as the union 

of two connected closed sets. Thus (X - D) n B = Fr D 

is c,onnected, and it'separates p, q. Thus, since 

Fr D c Fr C c F, it follows that a component of F 

separates p, q. 

That (ii) implies (iii) is trivial. 
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In order to prove that (iii) implies (i) we suppose 

that X is not unicoherent. Then there are two connected 

closed sets M and N such that X = M U Nand H n N = 

P U Q, where P and Q are disjoint non-empty closed 

sets. By the local connectedness of X, there is a 

component C 

Q. Let A = 

union of A 

of X - N such that C meets both P and 

P n Fr C and B = Q n Fr C. Let A' be the 

and all the components of X - C whose 

closures do not meet B, and let B' be the union of 

B and all the components of X - C whose closures do 

not meet A. Then it follows from the local connectedness 

of X that A' and B' are disjoint closed sets, and 

neither of them separates X. There is, however, a 

component D of X - C that has closures points in both 

A and B,for if not N would be contained in A' U B' 

and so would not be connected. Thus D is not in A' UB', 

and so F = A' U B' is a closed set which separates X, 

but no component of F separates X. The contradiction 

shows that (iii) implies (i). 



THEOREM (2.1). Let X be ~ Peano space that has a 

covering by unicoherent regions, and Y a regular 

T1-space. If f s X ~ Y is a connectivity function, 

then f is peripherally continuous. 

PROOF. Let p be an arbitrary point of X. The space 

X has a covering by unicoherent regions Xl' X2 , .... 
and we shall let p E Xi' 
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We wish to prove that f is peripherally continuous 

at p. Since this is clearly so if Xi = t p}, we may 

suppose that Xi ~ tp}. Let U and V be any neighbour­

hoods of p and f(p) such that U c:: Xi and Xi - U /:. ¢>. 

We shall show that there is a neighbourhood W of p 

such that W c:: U and f (Fr W) c:: v. 

By lemma (2.1) there is a neighbourhood Ui of p 

such that Ul is compact and contained in U, and no 

component of U - t p} contains more than one component 

of U - Ui . Since Y is regular, there is a neighbour­

hood Vi of f(p) such that Vi C V. 

Consider the sets which are expressible as the union 

of t p} and a component of U - tp} . which is not separated 

from Xi - U. There are only a finite number of them, and 

we shall denote them by Ql' Q2' ••• , Qn' 

Now let Q be a typical set from the sequence 



Q1' Q2' ••• , Qn· Then Q is a unicoherent Peano space 

and flQ, Q - Y is a connectivity function. From now 

on ~ntil the beginning of the final paragraph we shall 

\'lork in the space Q, and in this period all topological 

terms and operations will refer to the space Q. 

By lemma (2 • J) , 
-1 

(f! Q) (Vi) is a semi-closed set 

in Q. Thus it is easily shown that U1 n (f!Q)-1(V1) 

is semi-closed in Q. Let {F O'J 0'. be the collection of 
-1 

components of U1 n (f\Q) (V 1) • Then the sets Fo. are 

closed. Now notice that Q - U1 is a non-empty connected 

set. For each Fo.' let E~ be the union of Fa and all 

the components of Q - F~ except the one that contains 

Q - U1. Then each Eo. is closed and by definition does 

not disconnect Q. 

The main part of the proof rests on showing that 

p belongs to the interior of some E~. 

He first establish some relations among the sets 

Eo.. For any pair 0., ~ such that 0. 1= ~ we have just 

one of the following three relations holding: 

E n E~ = ¢, 
0'. 

E c E~ - F~, ...... (I) 
0'. 

E 
~ 

c Eo. - Fo.. 

To see this, consider the components of Q - (Fo. U F~), 
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which we will simply call "the components ll in this 

paragraph. If Q - U1 lies in a component whose closure 

mee~s both F 
0: 

and Ff3' then E 0: consists of and 

the components whose closures meet F~ alone (that is, 

whose closures do not meet Fe)' while ~s consists of 

and the components whose closures meet 

and so Eo. n ES = ¢. If, on the other hand, 

Fe alone, 

Q - Ul 

lies in a component whose closure meets Fe alone, then 

-:;' 
"-' rJ, consists of Fo, and the components whose closures 

meet Fo: alone, while ES consists of F rJ ' Fe and 

all the components except the one containing Q - Ul ' 

and so Eo C Ee - FS' Similarly we get the third 

relation when Q - Ul lies in a component whose closure 

meets Fo: alone. 

Now we set up an equivalence relation on (ErJ} a.. 

We write Eo - ES whenever there is a y such that 

Ey ~ Ea.' ES. This relation is reflexive and symmetric. 

It is also transitive, for if Ea. - Ee and Ee - Ey 

then we can find 0, € such that Eo.' ES C Eo and 

:Sa' Ey C E eo This means that Eo n E€ /: ¢. and so by (I) 

ei ther Eo C E € or E € cEo. Hence the relation .is 

transitive. 

We now turn our attention to the properties of an 

equivalence class that contains no maximal element; that is, 
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an equivalence class with no element that contains every 

other element in the equivalence class. Let e be such 

an equivalence class, and let G be the union of all 

the elements in e. We shall prove that G is open 

and has just one boundary point, which of course does not 

belong to Ul n (fIQ)-l(Vl ). 

G is open. For let Ea E e. Since e contains 

no maximal element, there is an element E~ in e such 

that Ea ¢ Ea. By the equivalence relation there is an 

element Ey in e such that Ey ~ Ea , ES. By (I), 

Ea C Zy - Fy • which is an open set. That is, 

G = U {Eo - F 0, : Ea E e}, . . . • .. (I I) 

which is an open set. 

Fr G is a single point. To prove this let Ro, Hi' ••• 

be a countable covering of G by open sets whose closures 

are compact and lie in G. We shall define a sequence of 

elements Eo • Eo ' ... in e such that the sequence 
0 1 

F 0 ' F 0 ' ... converges to Fr G. Select Eo: as any 

0 1 0 

element in e. Suppose now that for k = 0 we have 

selected Eo in this way. and for k > 0 we have selected 
0 

E as an element of e such that E - F ~ 

ok ok o'k 

E - Fa ' Rk _ l • In order to select E we con-
o-k_l k-l °k+l 

sider Rk • By (II) • tEe - Fe 
. ES E e} is . 
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an opening covering of the compact set Rk and as such 

contains a finite subcovering E F E F 
Pi - Sl' S2 - S2' ..• , 

ES - Fe of Rk • Since E
o1

, Eo ' ••• , E , E are 
n ' n f-' f-' 2 Sn ok 

all equivalent to each other, there is an element in e 

which contains all of them. We shall denote this element 

by E • 
O'k+l 

It is then eVident from (I) that the inductive 

hypothesis is preserved. Now we show that Fa ' F 0. , ... 
0 1 

converges to Fr G. Let x E Fr G and let R be a region 

about x. Then R n Rk .:j ¢ for some k, and so 

for each i > k. But R is a 

connected set which meets the complement of 

all i. Thus, for i > k, R meets E -o.i 

E 
°i 

int 

for 

Eo. , 
i 

which is contained in ~, . That is, for i > k, 
'l 

R n Fa" .:j ¢, and so 
1 

Fr G c lim inf Fo , • But if y E 
'l 

then y lies in some Rk , which is contained in 

G 

- F for i > k. Thus lim sup F c Fr Go That 
o.i o.i 

F F • • • converges to Fr G. ive now show that ,.. , ,.. , 
va ""1 1 
is a single point. Since V 1 n (f! Q) - (1~\) is Fr G 

a semi-closed set there are two possibilities: Fr G is 

U1 n (f\ Q) 
-1 

(V 1) contained in or is a single pOint. 

However, the first cannot occur because Fr G is a 

continuum, as the limit of a sequence of continua in the 

compact set U1 , and so it would lie in some component 

Fa, of V1 n (f\ Q)-l (V1 }-. Then G - Fo. (or indeed G, 
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for one can easily see that G n F == ¢) 
0. would be separated 

from Q - U1 by F , and so 
0. G would be contained in 

~n·' But then Eo. would belone to e, and this contradicts 

the assumption that the equivalence class e has no 

maximal element. Thus Fr G is a single point. 

It follows that G does not disconnect Q, since 

G is open and Fr G is a single pointo 

We shall denote by { G 1 
y'Y the collection of all sets 

such as G which are the union of an equivalence class 

with no maximal element. 

Consider now an equivalence class which does have a 

maximal element. We shall discard all of its elements 

except the maximal element. The collection of all maximal 

elements that we get in this way we shall denote by 

We now let L be the union of the collection 

{ITu
S

} s u { Gy} Y of dis'joint sets. Then the components 

of L are the sets Eo. and the sets ey. For from the 
S 

fact that Gy is open and Fr ey n L == ¢ , it follows 

that Gy is a component of L. Thus we have only to 

show that a non-degenerate subcollection of l E} does o.S S 
not have a connected union. Let K be the union. of the 

collection {Eo.S}S' which we shall suppose is non-degenerate. 

It suffices to show that K is not connected, as will be 

apparent from the argument that follows. Since the union 
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For i = 1, 2, let Ki be the union of the elements 

for which F c Fi • Then Kl and 
a,~ 

and, furthermore, they are separated. 

K 2 are disjoint 

For if this is 
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not so we may suppose without loss of generality that 

there is a point x E Kl n K2 • Then x E F
l

, for K1 - Fl 

is an open set which is disjoint from K2 • Let R be a 

region about x which does not meet F
2

• Then R must 

meet some open set Ea. - Fa. for which F 
~ S a.~ 

this is impossible because R does not meet 

separates x and E - F Thus Kl U K2 
a.~ a.~ 

ration of K. This completes the argument, 

that the components of L are the sets E 
a.~ 

sets Gy • 

c F2 • But 

Fa ' Nhich 
'i3 

is a sepa-

and shows 

and the 

It nON follows that p E int Ea.' for some a. To 

see this we consider the set L. Since no component of 

L separates Q, it folloNs from lemma (2.4) that L 

itself does not separate Q, Nhich is unicoherent. Thus 

by lemma (2.2) the connected set Q - L does not contain 

p in its closure, for there is no point q E (Q - L) n Vi 

such that f (q) E Vi. Thus P E int L. Let R ,be a 

connected region about p which is contained in L. Then 

R must be contained in a component of L. That is, 

for some a~, or P E Gy for some y. In 



the latter case it follows from (II) that PEE _? 
a. a. 

for some E 
0', - F 0', C Gy • Thus in either case there i" an 

0' $uch that P E int Eo· 

So we have shown that there is a set T;' 
.wo. such that 

P E int 4' 
~a· The closure of Eo. is of course compac t I 

and (fIQ) (Fr int Ea) C Vi. All this has been in the 

subspace Q. 

To complete the proof we return to the space X. 
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\.Je have 'shown that in each of the subspaces Ql I Q2' •.• I 

~ there is a relatively open subset Wi containin3 p 

such that Fr
Qi (Wi) (the frontier of Wi in the space 

Qi) is compact and (fIQi) (Fr
Qi 

(Wi) ) C Vi· Let 

IV = ( Ui Wi) u ( U - Ui Qi). Then W is a neighbourhood 

of P which is contained in U, and Fr W = Ui FrQi Wi" 

Thus f(Fr \.1) = Ui (f\Ql) FrQi O/i) C V. This completes 

the proof. 



J. We start off this section, the purpose of which has 

been described in §1, by commenting on §5 and §6 of rJ4J. 

At the beginning of §5 of rJ41 the following definition 

is given. I~ connected space or set M is said to be 

unicoherent, or cohesive, between disjoint connected 

subsets (or points) A and B of M provided li
a

. lib 

is connected for every representation M = Ha + lib' ~'lhere 

Ha and Hb are closed and connected and contain A and 

B, respectively, in their interiors relative to N." (~:y 

italics.) The definitions of canonical region and locally 

cohesive space in [J4J are of course based on this 

definition, and so are the subsequent proofs in §5 and §6. 

There is, however, something puzzling in this 

definition of unicoherence between a pair of points or 

subsets. Somewhat later in §5 the following statement 

is made, "Remarkably enough, a cyclic, locally connected 

continuum M is necessarily unicoherent if it is ilicoherent 

between one pair of distinct poi"nts II (my italics) 0 However, 

it may easily be shown that if M is any connected, locally 

connected regular T1-space, and !'1 is unicoherent between 

some pair of distinct points in the sense of the above 

definition, then M is unicoherent (see Appendix). 

We suggest that the definition of unicoherence between 

a pair of points should be altered to the following, and 
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remark that all the proofs of §5 and §6 of rJ4] go through 

without change under this revised definition. 

We shall say that a space X is unicoherent between 

tl'lO subsets (or pOints) A and B if for each represen­

tation X = M U N, where M and N are connected closed 

sets such that A c M - Nand BeN - H, M n N is 

connected. Notice that this definition imposes a lesser 

degree of unicoherence on the space than the definition 

of r J4l • 

In particular, we still have theorem (5.2) of, rJ4] I 

a Peano continuum X is unicoherent between a pair of 

its pOints a and b if and only if the cyclic chain 

C(a,b) is unicoherent. 

Our definition of a canonical region and a locally 

cohesive space are verbally the same as those in CJ4l, 

except they are based on our revision of the definition 

of "unicoherence between two subsets." If p is a point 

of a space X, we say that R is a canonical region 

about (p} in X if R is a connected neighbourhood 

of p, the frontier Fr R of R is connected, and R 

is unicoherent between {p} and Fr R. A space X is 

locally cohesive if each of its points has a base of 

canonical regions. 

We now make the following definition. Let A be 

a subset of a connected space X. We say that X is 
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unicoherent modulo A if for each representation 

X = ]11 U N in which Hand N are connected closed 

subsets of X such that A c M - N, . M n N is connected. 

\·le then have the following theorem. 

THEOREM (J. 1 ). Let X be a Peano sEace. Then X is 

locall~ cohesive if and onl~ if it has a base of re~ions 

( R
i

} such that Fr Ri is connected and Hi is 

unicoherent modulo Fr Ri for each i. 

PROOF. The proof of this theorem is nothing but the 

relevant portion of the proof of theorem (6.2) of r 34J • 

Let R be a canonical region about a point p in 

X such that R is compact. We show that R is 

unicoherent modulo Fr R. 

We form the quotient space R / Fr R on H by 

identifying the pOints in Fr R. Let TT R - R / Fr R 

be the natural projection from R onto Ii / Fr R. It 

follows that Ii / Fr R is a Peano continuum, since it 

cannot fail to be locally connected at just the single 

point TT (Fr R). Since Ii / Fr R is unicoherent between 

TT (p) and TT (Fr R), it follows that the cyclic chain 

C (TT(p), TT(Fr R)) is unicoherent, by theorem (5.2) of 

[34J, which, ,as we remarked, still holds. But since 



the locally cohesive space X has no local cut points, 

it follows that R, ~ and n(~) are cyclic. Hence 

in fact nCR) is unicoherent. Thus suppose that 

R = ~ U N is a representation of ~ as the union of 

two closed connected sets M and N such that ?r R c 

M - N. By the unicoherence of n(~) it follows that 

n(~) n n(N) is connected. Thus M 0 N is connected, 

which proves that R is unicoherent modulo Fr R. 

Since X has a base of canonical regions [Ri} 

with compact closures, it follows that X has a base 

of regions [Ri } such that Fr Ri is connected and 

Ri is unicoherent modulo Fr Ri for each i. As the 

converse 1s trivial, the theorem is proved. 

We remark in passing that if R is a region in a 

space X such that R is unicoherent modulo Fr R, 

then it does not follow that R is unicoherent modulo 

R - int R. This is shown by the following example. 

E~1PLE (3.1). Let X be the subset of the Euclidean 

plane consisting of the points (x, y) such that 

lyl ~ 1 and either lxl ~ 1/2 or IYI ~ 1/2, and let 

R be the set of pOints (x, y) in X such that 

lxl < 1 and Iyl < 1. Then R is unicoherent modulo 

Fr R = (x, y) : lxl= 1 or IYI = 1}, but R is not 
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unicoherent modulo H - int R = t(x, y) six! = 1 and 

Iy' :c;; i}. 

However, we can ask the following question: 
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if X has a covering by regions tRi} such that each 

Hi is unicoherent modulo Fr Ri , does X also have a 

covering by regions {Sj} such that each Sj is 

unicoherent modulo Sj - int Sj? We shall not, however, 

attempt to answer this here. 

LEMMA (J. 1) • If X is a Peano space and p is a. non-

cut point of X, then p has a base of regions whose 

complements are connected. 

PROOF. Let U be a neighbourhood of p with a compact 

closure. Then Fr U has a covering by regions Ui ' U2 ' ••• , 

Urn' the closures of which do not contain p. Since 

X - {p} is connected, there is a simple chain of regions 

= 

such that v .. 
~, J does not contain p. Let V be the 

complementary. component of (X - U) U Ui , j Vi, j that 

contains p. Then V c U and X - V is connected. 



LEj'·;;'·TA 0.2). Let X be a connected, locally connected 

normal space and let Y be a connected subset of X. 

Then the followinG properties are equivalent: 

(1) X is unicoherent modulo Y, 

(ii) if a closed set F l'i"hich is disjoint fro;o 

sel2arates two l201nts p, q in X, then a component 

of F does, 

Y 

(iii) if a closed set F which is disjoint from Y 

sel2arates X, then a component of F does. 

LEMMA (3.3). Let X be a connected, locally connected 

coml21etely normal sl2ace, and A a connected subset of 

X. Then X is unicoherent modulo A if and only if 

each set in X - A that separates X has a component 

that separates X • . 

Lemma (3.3) follows immediately from lemma (3.2). 

So it is only necessary to prove lemma (3.2), the proof 

of which is very similar to that of lemma (204). 

PROOF OF LEMMA (3.2). The proof that (i) implies (ii) 

is identical to the proof that (i) implies (ii) in 
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lemma (2.4), since the connected set Y takes care of 

itself. That (ii) implies (iii) is trivial. So we prove 



that (iii) implies (i). 

He suppose that X is not unicoherent modulo Y. 

T~en there are two connected closed sets I'I and 

such that X = NUN, Y c M - Nand M n N = P U Q, 

where P and Q are disjoint non-empty closed sets. 

Since X is normal, there are neighbourhoods U and 

V of P and Q such that IT 0 V = ¢. Further, we may 

suppose that each component of U meets P and each 

component of V meets Q. There is now a component 

C of X - I1U ITu V which has closure points in both 

IT and V. Then MU Uu V lies in a component D of 

X - C. Let A=Un "C and B = V n C. Let A' be 

the union of A and all the components of X - C whose 

closures do not meet B, and let 3' be the union of 

B and all the components of X - C whose closures do 

not meet A. Then A' and B' are disjoint closed 

sets neither of which separates X. However F = .A! UB' 

is a closed set that has both C and D among its 

complementary components. Thus F is a closed set in 

X - Y which separates X, but no component of F separates 

X. This contradiction proves the lemma. 

LEMMA (3.4) .. Let X be a Peano space and R a region 

in X such that R is unicoherent modulo Fr R. Let 



p be a point in Rand Q a set expressible as t~e 

union of [p} and a comnonent of R _ [p}. ~ Q 

is unicoherent modulo Q 0 Fr R. 

PROOF. If Q r Fr R = ¢, then it follows immediately 

that Q is unicoherentj that is, Q is unicoherent 

modulo Q n Fr R = ¢. 

Thus let Q r Fr R ~ ¢, and suppose Q is not 

unicoherent modulo Q r Fr R. Then there-is a represen-
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tation Q == I1 U N, where I-1 and N are connected closed 

sets such that Q r Fr R c 1-1 - N and M n N = A U B, 

where A a,nd B are non-empty disjoint closed sets. 

Since Q n Fr R == Q - Q, it follows that AU B C Q. 

(1 be an arc, possibly degenerate, from p to AU :3 

in the Peano space Q. ive may suppose without loss of 

generali ty that (1 meets A and is dis joint from B. 

Then R = (M U (1 U R - Q) U N is a representation of 

R as the union of the two connected closed sets 

Let 

N U (J U R - Q and N, and Fr R does not meet N. But 

the intersection of M U (1 U R - Q and N is not· 

connected, for it contains A U B and is contained in 

A U B U (1. Thus R is not unicoherent modulo Fr~, 

which is a contradiction. 

We have the following converse to lemma (J.4). 



LEMj'iA (J. 5) • Let X be a Peano space, p a point in 

X and S a region about p with t~is property: if 

Q is a set expressible as the union of {p} and a 

component of S - {p}, then Q is unicoherent modulo 

51 

Q n Fr S. Then there is a region R such that pER c S 

and R 1s unicoherent modulo Fr R. 

Further, if the closures of the components of S - (p} 

meet only in the point p, then we may take R = S. 

PROOF. There are only a finite number of sets Ql' Q2' .•• , 

~ which are expressible as the union of {p} and a 

component of S - {p} which is not separated from Fr S. 

By lemma (2.1) there is a region Vi about p in the 

subspace Qi such that Vi is compact and Qi - Ui is 

connected. Notice that Vi is unicoherent modulo 

U- n (Qi - Vi ). and that Ui i 
- {p}, Uj - (p} are 

separated for i ~ j • Let R = S - Ui(Qi - Vi)' Then 

Fr R = Ui U
i 

n (Qi-Ui) and it easily follows that a 

is unicoherent modulo Fr R. 

If the closures of the sets Ql' Q2' ..•• Qn meet 

only in (p} then it is immediately clear that we may 

take R = S. 

THEOREM (3.2). Let X be a Peano space "'Thich has R 



covering by re~ions {Ri } s:1J:h that each D ' 'l1 LS 

unicoherent modulo Fr Ri' and y a regular T.-space . 
.I. 

If f: X - Y is ~ connectivity function, then f is 

peripherally continuous. 

PROOF. The proof is the same as the proof of theorem 

(2.1) except for the changes that must be made where the 

unicoherence property is used. Thus ''Ie refer to the 

proof of theorem (2.1) and indicate the changes that 

must be made. 

Instead of being a unicoherent region about p, 

becomes a region about p such that X 
1 

is 

unicoherent modulo Fr Xi. From this it follows that 

U is unicoherent modulo Fr U (see lemma (3.6)). 

Thus from lemma (3.4) it follows that Q is unicoherent 

modulo Q n Fr U. Thus Q is unicoherent modulo the 

connected set Q - U1 , since U1 n Fr U = ¢. 

The only other change that is necessary is in the 

third last paragraph, which begins, "It now follows 

that ••. " The reasoning which enables us to conclude 

in this paragraph that L does not separate Q must 
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be altered slightly. No component of L separates Q 

and L C Q - U
1

• Since Q is unicoherent modulo Q _. U1 , 

it now follows from lemma (3.3) that L does not 



separate Q. 

No other part of the proof of theorem (2.1) needs 

to be altered. 

5) 

We notice from theorem (J.l), that theorem (J.2) 

contains theorem (6.2) of [)4J as a special case. However, 

we also notice that the way in which the unicoherence 

property is used in the proof of theorem ().2), namely 

by means of lemma (J.J), is exactly the same as the way 

in which the unicoherence of the locally cohesive space 

1s used in the proof of theorem (6.2) of [)4J. 

We also point out that although theorem ().2) is 

stated for a Peano space having a covering of regions 

(Ri } such that each Ri is unicoherent modulo Fr Ri , 

it could equally well be stated for a Peano space having 

a base of such regions. This is because of the following 

simple lemma. 

LEMMA (J.6). If R is a region in a locally connected 

space X which is unicoherent modulo Fr R, and S is 

a subregion of R, then S is unicoherent modulo Fr S. 

PROOF. Suppose that S is not unicoherent modulo Fr S. 

Then there are two connected closed sets M and N such 
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that S = M U N, N n Fr S = ¢ and :1 n lIT is not 

connected o Since N n Fr R = ¢, it follows that 

Fr I:1 C R - N. But R - N C (R - S) U M, which is a 

connected set. Therefore Fr R U (R - S) U N is a 

connected set. But this latter set is equal to (} - s) U M. 

Therefore Cli - S) U M and N are two connected closed sub-

sets of R whose union is R and whose intersection is 

M 0 N, which is not connected. But N n Fr R = ¢, which 

is a contradiction. 

EX~~PLE (3.2). Let X be the subset of the plane which 

is the union of I = ((x, y) s 0 ~ x ~ 1 and -1/2 ~ y ~ O} 
n 2 n+2 2 n+2 

and C = ((x, y) s (x - 1/2) + (y - 1/2 ) = 1/2}, 
n 

for n = 0, 1, 2, ... (see figure (3.1). 

fig. (J.l) 

Also let f s X - Y be a connectivity function, where 

Y is an arbitrary regular T1-space. It then follows 

from theorem (3.2) that f is peripherally continuous 
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on X (O,O)}. However, since by theorem (3.2) , 

flI I - Y is peripherally continuous at (0 0) ·t , , 1 

follows that f is also peripherally continuous at (0, 0). 

However, X does not have a covering by regions [Ri} 

such that each Ri is unicoherent modulo Fr R .• 
1 

Example (3.2) shows that when X is not a cyclic 

space, the property ascribed to X in the hypothesis 

of theorem (3.2) does not adequately define the class 

of spaces on which we are able to prove that a connectivity 

function is peripherally continuous, It is to adequately 

deal with the cut points of X that the remainder of this 

section will be concerned. We shall show that if each 

true cyclic element of X has the property ascribed to 

X in theorem (3.2), then each connectivity function 

f s X - Y is peripherally continuous, Y being as usual 

a regular T1-space. 

In the meantime we remark that the statement of 

theorem (3.2) adequately covers the case in which X is 

a cyclic Peano space. The only way in which it can be 

improved for such spaces is by altering the "unicoherence 

condition" to a IImulticoherence condition." Thus we state 

this case as a separate theorem: 



If x is a cyclic Peano space vlhich has 

a covering by regions [Hi} 

unicoherent modulo 

such that each R is li 

then every connectivity function f: X - Y is 

peripherally continuous. 

For the definition of the terms conjugate element, 

cyclic element, and true cyclic element, cut point and 

end point we refer to chap. IV of [31J. In the sequel 

we shall use only the most elementary properties that 

arise from these concepts, and these too can be found 

in chap. IV of [31J. 

We shall say that X is a V-space if X is a 

Peano space and if for each true cyclic element C of 

56 

X there is a collection of regions (Ri} in the subspace 

C which cover C and such that each clC Ri is 

unicoherent modulo FrC Ri (see notation (J. 1)) . 

NOTATION (3.1) When we are working in a subspace A of 

X, as we shall often be doing, we shall denote the 

closure, frontier and interior of a set relative to the 

subspace A by cIA ( ), FrA 
) . 

When no confusion is likely to arise, we shall omit 

the subscript "A". 



The remainder of this section will be concerned 

with establishing theorem (3.6), in which we prove that 

if f, X - Y is a connectivity function, where X is 

a U-space and Y is a regular T1-space, then f is 

peripherally continuous. However, it will first be in 

order to show that theorem (3.2) is subsumed under 

theorem (3.6). This is done in the next theorem. 

THEOREM (3.4). Let X be a Peano space which has a 

covering by regions such that each Hi is 

unicoherent modulo Fr Ri . Then X is aU-space. 

PROOF. We first remark that whenever we use the closure 

operator " - 11 in this proof, it will stand for the 

closure in the space X. 

Let C be a true cyclic element of X and p a 
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point of Co Let R be a region about p in X such 

that R is unicoherent modulo FrX R. Denote the sets 

that are expressible as the union of lp} and a component 

of R - (p} that meets C by o ••• and suppose 

that Qi n FrX R ~ ¢ if and only if i ~ n. 

Suppose first that there is some i > n. By lemma 

(3
0
4), Q

i 
is unicoherent. Since C is a true cyclic 

element o~ Qi' it easily follows that C is unicoherent. 



That is, e is unicoherent modulo Fre e = ¢, and the 

theorem is proved in such a case. 

So we may suppose that each i ~ n. 

By lemma (3.1), there is a region U
i 

about p 

in the subspace Qi such that clQ. U
i 

is compact and 
l 
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Qi - Ui is connected. Notice firstly that clQ. u
i 

= ITi' 
l 

and secondly that Ui - (p} is an open subset of X such 

that FrX (U i - tp}) = (ITi - Ui ) U (p}. NOvT notice that 

ITi and Qi - Ui are two connected closed subsets of 

Qi such that ITi n (Qi n FrX R) = ¢. Since, by lemma 

(3.4), Qi is unicoherent modulo Qi n FrX R, it follows 

that ITi n (Qi - Ui) = ITi - Ui is connected. Similarly 

we deduce from lemma (3.4) that ITi is unicoherent 

modulo ITi - Ui • 

He first show that the connected set ITi " e is I' 

unicoherent modulo (ITi - U.) n e. Let ITi n e = M U N, 
l 

where M and N are connected closed subsets of ITi n e 

such that (U - U ) nee M - N Now let [Ak}k be the i i • 

collection of components of X - e which meet ITi . Then 

Ak n Ui is connected. Further, supposing that (ITi 

e ~ ~, it follows that Ak n (ITi - Ui) is a connected 

set which meets M - N. If (Ui - U.) 
l 

n e = ¢, .then the 

connected set Ui - U
i lies in just one of the components 

Ak , which we may suppose without loss of generality has 



its boundary point in M - N. Define :I" , 
II as the union 

of N and all the Ak n ITi 's which meet lVI, and N' 

as the union of N and all the Ak r ITi 's which do 

not meet M. Then M' and N' are connected closed 

subsets of Ui such that Vi = M' U N' and ITi - Ui 
M' 

, 
M' n N' - N • Thus is connected, and so 11 ("'I N 

is connected. That is, u. n c is unicoherent modulo l 

(Vi - U i) n c. 

Secondly, we notice that Vi - U
i 

C C or 

(U i - Ui ) n 'C = ¢. For suppose that Ui - Ui meets a 

component A of X-C. This implies that Ui meets 

A. Since Ui is a connected set which also meets 

c 

X - A (in the point p), it follows that the single 

point in A - A is in Ui . Thus Ui - Ui is contained 

in A, since it is a connected set which meets A but 

does not meet A-A. That is, Vi - Ui n C =¢. 

In case (ITi - Ui ) n C = ¢, it is now easily seen 

that C is unicoherent. For by hypothesis C n Qi 

contains some other point besides p, and so is a non-
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degenerate connected set. Thus the neighbourhood C n Ui 

of p in the space C n Qi contains some point other 

than p; that is, (C - (p}) n (Ui - (p}) /:¢. Therefore 

C - (p} is a connected set which meets the open subset 

Ui - (p} of X but does not meet FrX (Ui - (p}) = (Ui - Ui)U(P}. 



Thus C - (p} c: Ui - (p} and CeDi' The previously 

proved statement "Ul r C is unicoherent modulo 

(Ui . - Ui ) n C" now implies that C is unicoherent. 

Thus Vie may suppose wi thout loss of generali ty that 

Ui - Ui c: e for each i ~ n. We first show that 

ITi n e c: Ui n C, in order to do which it will suffice 
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to show that Ui - Ui c: U
i 

n C. Thus let 

Then (x} U u. is a connected set and so 
1. 

x EITi - Ui . 

(x} U (U i " C) 

is a connected set which is, furthermore, non-degenerate. 

Thus each neighbourhood of x meets Ui n C. That is, 

x E Ui n C. Now, since ITi n C c: Ui n C and C is 

closed in X, we have the following: 

Fre (Uj U j n C) ::;: Uj U
j 

n C - Uj U j n C 

::;: Uj Uj n C - Uj Uj n C 

::;: Uj Uj n C - Uj U, n C 
J 

::;: Uj (U j - U j) , 

where the index j always runs from 1 to n. Now we 

observe that Uj U j 
n C is a region about p in the 

subspace C. The sets which are expressible as 

of {p} and a component of (Uj U j n C) - (p} 

sets Ui n C, i ~ n. In view of the identities 

cl
C 

(Ui n C) ::;: Ui n C ::;: Vi n Co, we have 

the union 

are the 



clC (V n C) n FrC (Uj u. n C) i J 
= Ui n C n Uj (u. - V .) , 

J J 

= Ui - Vi • 

The previously proved statement flU. n C is unicoherent 1. 

modulo (IT. - V.) n C" 
1. 1. 

is unicoherent modulo 

now implies that clC (U
i 

n C) 

clC (U i n C) n FrC (U j Uj n C). 

Thus by lemma (].5) there is a region S about p in 

the subspace C such that S C Uj Uj n C and clc S 

is unicoher~nt modulo FrC S (a glance at the proof of 

lemma (].5) will show that S can actually be taken to 

be equal to Uj Uj n C). This completes the proof of 

the theorem. 

Before proving theorems (].5) and (].6) we shall 

need some definitions and lemmas. 

Let X be an arbitrary topological space. A de-

comnosition ~ of X is a collection of non-empty 

disjoint closed subsets of X which cover X. 

NOTATION (].2) If A is an arbitrary subset of X 

and ~ is a decomposition of X, we define 

+ 
A~ 

A~ 

= 

== 

U tD E $) 

U {D E $) 

D nA~ ¢}, 

DeAL 
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u. - is not to be 

of A. ) 1fuere no 

and A-. instead 

mistaken for A, 

confusion arises. 
+ 

of ~ and A,.;; • 

which is the closure 
+ 

we si~ply write A 

Let X be an arbitrary space and ~ a decomposition 

of X. We say that ~ is an upper semi-continuous (usc) 

decomposition of X if for each closed subset F of X, 

F; is closed; or, alternatively, if for each open sub­

set G of X, G~ is open. 

The ~ollowing lemma appears as proposition (5.2) on 

p. 132 of [31]. 

L3Hi'IA (3.7). If X is a Peano continuum and L is a 

semi-closed set in X. then the decomposition of X into 

the components of L and the points of X - L is usc. 

If L is a set with closed components' in a T1-space ... 

X. and ~ is the decomposition of X consisting of the 

components of L and the pOints of X - L. then we shall 

call ~ the decomposition of X associated with L. 

NOTATION (3.3) . Under the circumstances of the previous 

paragraph. instead of writing A+ 
~ 

and Ai for an arbi-

trary subset A of X, we write P{. and A~ • If there 

is no confusion, we still of course just write A+ and A- • 



If X is a Peano space and L is a semi-closed 

subset o~ X, then it is not in general true that the 

dec?:nposition of X associated l'lith L is usc. but 

I'I'e CE>.n say something useful about this decomposition, 

which we do in lemma (3.9). 

LEHMA (J. 8) . (A variation of Janiszevlski' s border theorem). 

Let K be a connected closed set in a metric space X 

and G an open subset of X \'lith a compact closure. 

If K meets both G and X - G, then each component 

of K n G meets Fr Go 

Lemma (3.8) can be proved by making only the smallest 

alteration to the proof of Janiszewski's border theorem, 

which can be found on p. 18'-1· of [13]. 

LEm1A (3.9) . Let L be a semi-closed set in a Peano 

space X, and form the decomposition of X associated 

1'1'i th L. If G is an open subset of X with a compact 

closure, then G is oEen. 

PROOF. Except for the use of lemma (3.8), the proof of 

lemma (3.9) is very similar to the proof of lemma (3.7). 

Let F = X-G. We show that F+ is closed. If 
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on the contrary F+ is not closed, then there is a point 

p E G - F+ and a base of neighbourhoods U1 , U2 , about 
p such that Ui c G and Ui n Ki I: ¢, where Ki is a 

component of L which meets F. Thus a component Ci 
of Ki n G meets Ui • By Janiszewski's border theorem, 

Ci n Fr G I: ¢. 

·From (Ci}i we can now pick a convergent subsequence 

Let Then C is a continuum which 

meets Fr G and contains p. Now CM. C KM ' and from 
l i 

Krvr ... 
Ni 

so is 

so is 

we can choose a convergent sequence (KMN.}i • Let 
l 

H. Then H::> C. Thus H is non-degenerate and 

contained i11 L. Thus C is contained in L and 

contained in a component K of L. Thus Kc:: F+ 

and so p E F+. This contradiction establishes the lemma. 

LEMMA (3.10). Let X be a connected, locally connected 

normal space and A a closed connected subset of X 

w-hich does not separate X. Then the following properties 

are eauivalent: 

(i) X is unicoherent modulo A, 

(ii) if F is a closed subset of X w-hich is dis-

joint from A, and F separates p, q in X-A. then 



q component of F separates pg q in X, 

(iii) if F is a closed s;~bset of X Nhich -"I ,...., 

.L '" 

c:isjoint fro~ A and which sCDarates X - A, the~J 3. 

C O:-:lDonen t of F seEarates X. 

LEMMA (3.11). If in the statement of lemma (3.10) we suppose that X 

is in addition completely normal and Tl , and X - A is compact 1 and 

if in (ii) and (iii) we suppose that F is merely a set with closed 

components, then properties (i), (ii) and (iii) are equivalent. 

We shall turn to proving lerrma (3.10), and we .shall omit the proof 

of lemma (3.11). 

PROOF OF LEMMA (J. 10) • We first notice the trivial fact 

that for any set Y C::X - A, clX - A (y) = y n (X - A) • 

In order to prove that (i) implies (ii) , let p 

belong to a component C of (X - A) - 'P, and let q 

belong to a component D of (X - A) - C. Then 

D 0 (X - A) and (X - A) - D are two relatively closed 

connected subsets of the subspace X - A whose union is 

X - A and whose intersection is a non-empty subset of 

F. We assert that one of the two sets D n (X - A), (X - A) - D 

is separated from A. For suppose that this is not the 
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case, Let R he a region about A such that R 0 F == ¢. 

Then R n (X - A) can be expressed as the union of the 

two non-empty disjoint sets TI 0 D n (X - A), 

R 0 ((X - A) - D), which are closed subsets of the space 

X A. Since X A is connected, there is a component 
.,..., 
6 of (X - A) - R which has closure points in both 

R f" D n (X - A) and R n ((X - A) - D) • But now 

X == E U (X E), where E and X - E are two connected 

closed subsets of X such that A n E == ¢ and E r: (X - "5.:) 

is not connected. This contradicts the fact that X is 

unicoherent modulo A. Thus either D n (X - A) or 

(X - A) - D is separated from A, and we may without 

loss of generality suppose it is the latter. Thus 

(X - A) - D is a closed subset of X. Thus A U 15 

and (X - A) - D are two closed connected subsets of X 

whose union is X, and the second of them does not meet 

A. Thus the intersection H of these two sets is 

connected. But H == (D n (X - A)) n ((X - A) - ~, and 

so is contained in a component of F. Further, since 

p ~ A U D and q ~ (X - A) - D, it follows that H 

separates p and q in X. This shows that (i) implies 

(ii). That (ii) implies (iii) is obvious, and with the 

aid of lemma (3.2) we easily show that (iii) implies (i). 

For suppose that X is not unicoherent modulo A. Then 
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by lemma (J.2) there is a closed set F in X such that 
? n A = ¢, F separates X and no component of F 

separates X. It follows now that F must also separate 

X - A, for A is a closed set. But this contradicts (iii) • 

NOTATION (3.4). Let A stand for one of the upper-case 

Latin letters A, B, C, .•. , Z. In subsequent lemmas 

when we consider a point x in a space X, we shall often 

use the symbol "A(x) II to stand for some subset of X 

that contains x, and in this case we shall denote the 

closure A(x) of A(x) in X by the abbreviated 

symbol A(x). 

Let S(x) be a region about a point x in a locally 

connected T1-space X. If Q(x) is a set which is 

express i ble as the union of {x} and a component of 

S (x) - {x} I then we shall call Q(x) an arm of S (x) . 

The following three lemmas may all be looked upon 

as a part of the proof of theorem (J. 5) • 'vJe have isolated 

them in order to make the proof of theorem (3.5) more 

manageable. 

LEMMA (J.12). Let X be a cyclic U-space, L a semi­

closed subset of X no component of which separates X, 

and x a point in X - L. Then there is an arbitrarily 



small re5ion Sex) about x such that for each arm 

Q(x) of Sex) 

( i) Q(x) - L is connected or Q(x) - Q(x) lies 

in a comEonent of L, 

(ii) Q(x) = (Q(x) )-, 

(iii) Q(x) Q(x) is connected, 

(iV) ij(x) is unicoherent modulo ~(x) - Q(x). 

PROOF. By hypothesis there is a region R about x in 

X such that R is unicoherent modulo Fr R. By virtue 

of lemmas (J.1) and (J.6), R may be chosen as an 

arbitrarily small region about x for which R is 

compact. 

Now form the decomposition of X associated with 

L. By lemma (J.9), R is an open set about x. Let 

R' be the component of R which contains x. By 

lemma (J.6), the closure of R' is unicoherent modulo 

Fr R/. Al f e so, 0 cours , 

Since X is a cyclic space, each component of 
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R' - {x} has clos.ure points in Fr R' (which we may 

obviously suppose to be non-empty). Let Q1' Q2'.'" ~ 

be the sets that are expressible as the union of [x} 

and a component of R' - [x} 0 By lemma (J. 4), each Qi 

is unicoherent modulo Qi - Qi. 



By lemma (J.l), there is a region U. about x 
1 

in the subspace Qi such that U. 
1 

is compact and 

contained in Qi' and Qi - Ui is connected. :\"011 

Qi = Qi and L n Qi is a semi-closed set in the 

subspace Qi , Thus Ui is a neighbourhood of x in 

the subspace Further, 

a closed connected set in the subspace Qi' and each 

component of 

the subspace 

has its frontier (with respect to 
+ 

in (Qi - Ui ) . Let Vi be the 

~omponent of Ui - that contains x, Then Q
i 

- Vi 

is 

is a connected closed subset of the subspace Qi , Further, 

Vi n (Qi - Qi) = ¢. From this and the fact that Qi is 

unicoherent modulo Qi - Qi' it easily follows that Qi 

is unicoherent modulo Qi - Vi' Also Vi = Vi -

Suppose in the first case that Vi - L r Vi is 

connected, Then we define Qi (x) = Vi ' 

In the second case we suppose that Vi - L r Vi is 

not connected, Then by lemma (J.ll), some component of 

L n Vi separates Qi , But if a component F of L n Vi 

separates Qi' then Qi - F must have just two components, 

the one containing x and the other containing the 

connected set Qi - Vi' For if this were not the case 

then F, which is a component of L, would separate X, 

which is contrary to hypothesis •. Thus let F be some 
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component of L n Vi which separates Qi , and let Qi(x) 

be the component of Qi - F that contains x. 
n 

We now define Sex) = Ui =l Qi(x). Then the arms 

of Sex) are just the sets Qi(x), i ~ n, and it is 

clear that each Qi(x) has the properties (i) - (iv). 

Let X be a cyclic U-space, L a semi-closed subset 

of X, and x a point of X - L. If Sex) is a reGion 

about x and each arm Q(x) of Sex) has the properties 

(i) - (iv) listed in lemma (3.12), then we shall call 

Sex) a special region about x (in X with respect 

to L). If Q(x) is an arm of a special region sex) 

about x and Q(x) - L is connected, then we shall say 

that Q(x) is an arm of Sex) of type (a)j if Q(x) - L 

is not connected, then we shall say that Q(x) is an arm 

of Sex) of type (b)o (It should be noticed that the 

properties IIQ(X) - L is connected" and IIQ(X) - Q(x) 

lies in a component of L" do not in ge'neral divide the 

arms of Sex) into two mutually exclusive classes, although 

they can be made to do so by suitably "cutting back" the 

arms of Sex) of type (a).) 

NOTATION (3.5). With the notation of the previous paragraph, 

we shall always denote the component of X - L to which x 
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belongs by H(x). 

The special region Sex) about x in 

lemma (J.12) can also be chosen so that X - Sex) is 

connected. This can be done by taking the region 

at the beginning of the proof of lemma (3.12) to have 

the property that X - R is connected (which is possible 

because X is cyclic). With the remainder of the proof 

of lemma (J.12) unchanged, it will follow that X - Sex) 

is connected. 

LEIv1MA(J.13). Let X be a cYclic U-space, L a semi-

closed subset of X no component of which separates X, 

and x a point of X - L. If Sex) is a special region 

about x and H(x) is the co~ponent of X - L in which 

x- lies, then Fr Sex) c H(x) u L. 

PROOF. In order to prove this, it is only necessary to 

show that for each arm Q(x) of Sex) of type (a), 

~(x) - L is connected. 

Let y E (Q(x) - Q(x)) - L. Then in an arbitrarily 

small neighbourhood of y there is an arc uv such that 

uv - {v} C Q(x) and v E Q(x) - Q(x). Since each component 

of L that meets Q(x) is contained in Q(x), it follows 
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that uv - tv} i L. Thus uv - {v} contains some point 

of Q(x) - L. Thus Y E Q(x) - L. That is, (Q(x) - Q(x)) - L 

C . Q(x) - L. Since Q(x) - L is connected, we therefore 

deduce that Q(x) - L is connected. 

rzmlA (J. 14) • Let X be a cyclic U-space and L Co. semi­

closed subset of X no component of which separates Xo 

Let H be the union of a collection of components of 

X - L such that H - H C Lo Let x and y be points 

of H and X - H U L, respectively, and let Sex) and 

R(Y) be special regions about x and y such that Sex) 

is compact, H(Y) n 1i: = ¢ and R(y) i S(x). Then there 

is a special region T(x) abotit x such that T(x) c sex) 

and 

T(x) n H(y) = ¢ 

S (x) n H c T (x) 

........ 

........ 
(I) 

(II) 

PROOF. In order to prove this lemma we examine the arms 

Q(x) of Sex). 

In the first case let Q(x) be an arm of Sex) of 

type (a), so that Q(x) - L is connected. We show that 

Q(x) n H(y) = ¢. For suppose that this is not the case, 

so that Q(x) n H(Y) I: ¢. Since Q(x) i; H(y), there is 



an arc uv lying in R(y) such that uv - {v} C Q(x) and 

v E Q(x) - Q(x). Since Q(x) = (Q(x)) - , it follows that 

uv - {v} does not lie in L; that is, it meets H(x) 

(see notation (3.5)). But this implies that 

R(Y) n H(x) 1= ¢ , which is false because d(x) C H • 

For each arm Q(x) of S(x) of type (a) we define 

QT (x) = Q ( x) , 

Now let Q(x) be an arm of S(x) of type (b), so 

that Q(x) - Q(x) lies in some component of L, and 

suppose that Q(x) n R(Y) 1= ¢. We first show that 

Q(x) - Q(x) C R(y) . 

We have R(Y) n Q(x) 1= ¢ and R(Y) Ii Q(x) . Thus, 

since R(Y) is connected, it follows that Q(x) - Q(x) 

meets R(Y) • But Q(x) - Q(x) lies in a component of 

L and R(Y) = (R(y))-. Thus Q(x) - Q(x) C R(y) • 
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Now we show that Q(x) n R(y) is connected. Suppose 

on the contrary that Q(x) n R(Y) = M U N, where H and 

N are two disjoint, non-empty relatively closed subsets 

of the space Q(x) n R(y). Then M and N are a 

relatively closed subsets of R(y), for Q(x) n R(Y) is 

a relatively closed subset of R(y). On the other hand, 

Q(x) - M U {x} is an open subset of the space X, and 

(Q(x) - M U (x}) n R(Y) = N, because J1 n N = ¢. So 

N is a non-empty relatively open and closed subset of 
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R{Y) and R(Y) - N I ¢. This contradicts the connected­

ness of R(Y). Thus Q(x) n R(Y) is connected. 

Since Fr R(Y) n (Q(x) - int Q(x)) = ¢, it follows 

that Q(x) n R(Y) = Q(x) n R(Y). Thus from the fact that 

Q(x) n R(Y) is connected, we may deduce that Q(x) n R(Y) 

is also connected. 

Now we notice that Q(x) - R(y) is a closed set in 

X, and that Q(x) - R(Y) = (Q(x) - R(Y))+. 

be the collection of all components of L that lie in 

Q(x) - R(Y) and separate Q(x). Since Fa. does not 

separate X and Q(x) - Q(x) is connected, it follows 

that Q(x) - Fn has precisely two components, one of 

which contains x and the other of which contains 

Q(x) - Q(x) • We denote by r Fa] the union of F and 
o. 

the component of Q(x) - Fn that contains x. Since 

Q(x) n R(Y) is a connected set which contains Q(x) - Q(x), 

it follows that [FnJ C Q(x) - R{y). We obtain a total 

ordering on (Fn}n by defining 

Under this ordering 

if and only if 

(F } mayor may not have a maximal 
n o. 

element, and we treat the two cases differently. 

In the first case we suppose that (Fn} n has a 

maximal element, which we denote by F • We assert that 
(JJ 



71 n Q(x) c: rFwJ - F'w • 

In order to prove this we let K be the union of 

rFw.J and all the components of L that lie in 
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(Q(x) - R(y)) - [FwJ. Then the sets whose union has 

just been given are the components of K. Thus no 

component of K separates Q(x). Also K is a semi­

closed subset of the compact space Q(x), and the proof 

of lemma ().7) shows that the decomposition of Q(x) 

associated with K is usc (lemma ().7) cannot be applied 

directly to show this because Q(x) may not be locally 

connected at some points of Q(x) - Q(x); this, however, 

presents no difficulty because K r (Q(x) - Q(x) = ¢) . 

In the remaining paragraphs concerned with proving 

that H n Q(x) c: [FLO J - Fw ' we work in the subspace Q(x), 

and the index operations tI( )~It and It( )1(" are taken 

with respect to the usc decomposition of Q(x) associated 

with K (see notation ().))). 

We have seen that Q(x) n B(y) is'a connected set. 

Thus - - + (Q(x) n R(y))K is a connected closed subset of 

Q(x). Let C be a component of Q(x) - (Q(x) n 'H(y))~ . 

~-Je show that C n :n = ¢ • 

In order to do this we first show that C - K is 

connected. Q(x) - C is a connected closed subset of 

Q(x) , and Q(x) is unicoherent modulo Q(x) - C. We 

notice that C = C~ , so that the components of K r C 



are all components of K. Since no component of K n c 

separates Q(x), we may apply lemma ().11), which tells 

us that K n C does not separate C; i.e., C - K is 

connected. 

Now we let M be the union of all the components 
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of L that lie in ("Q(x) - R(y)) - ([F(,jJ - Fw) and meet 

Fr R (y). From the three inclusions Fr C C (Q(x) n Fr R(Y))~, 

Fr C n rFwJ C F~ and Fr R(Y) C L U H(y) (see lemma ().1))), 

we deduce that Fr C eMU H(y). We wish to show that 

Fr C n :i(y) i ¢ • 

Suppose on the contrary that Fr C n :dey) = ¢ , so 

that Fr C c M • Now C n (Q(x) - Q(x)) = ¢, Q(x) - C 

is connected and Q(x) is unicoherent modulo Q(x) - Q(x). 

This implies that Fr C is connected, and so lies in a 

component F of M. Since C is a component of Q(x) - F 

and C n (Q(x) - Q (x) ) = ¢, it follows that F separates 

Q(x) 0 But a component of M separates Q(x) if and only 

if Fu.) c M. Thus we must have F = Fw • But now C meets 

neither CF,) - F w nor "Q(x) - Q (x) , both of which are 
-I-

contained in (Q(x) n R(y))~. Thus C is a component 

of "Q(x) - .~ which contains neither x nor Q(x) - Q(x). 

This implies that Fw disconnects X, which is contrary 

to hypothesis. The contradiction shows that Fr C n H(y) i ¢ • 

We now show that C - K C H(y). Let z E H(Y) n Fr C. 

In an arbitrarily small neighbourhood of z there is then 
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an arc uv such that uv - (v} c e and v E Fr e. Since 

e = eX' it follows that uv - [v} contains points of 

e - K. This shows that z E e T' 
- l\.. Nm'l C - K c X - L, 

and so (e - K) U (z} is a connected subset of X - L. 

Since z E H(Y) it follows that C - K c H(y). 

Now we can show that H n Q(x) c [F,) • For if 

p E H n Q(x) - r F l .. w' then in fact p ~ R(y) U K, because 

II n R(y) = ¢. Thus p belongs to some component C of 

Q(x) (Q(x) - + - n R(Y))K and in fact p E C - K. But 

we have seen that C - K c H(y), which is disjoint from 

H •. This contradiction shows that H n Q(x) is contained 

in r Fw J , and consequently in [F,,) - F 

In this case in which Q(x) is an arm of S(x) of 

type (b) and { Fa} 0'. has as a maximal element F
uJ

, we 

define QT(x) = [F J w - F • w 

In the second case we suppose that {F aJ 0'. has no 

maximal element. Then Ua. [Fcr. J = U (r F ] - Fa ) , which 
0'. 0'. 

is an open subset of Q(x) . \.Je denote i·t by G. Let 

R
l

, R
2

, ... be a sequence of regions in Q(x) that 

cover G and such that R. 
1. 

is a compact subset of G. 

Then we are easily able to find a sequence Fa ' Fe: ' '1 . '2 
from {F('l}a. such that [ FO'. J - F ::> Rk and F s: Fa • 

k O'.k a'k_l ·k 
It now easily follows that F -O'.k 

Fr G. Thus Fr G is 

either a subcontinuum of L or a single point in the 

complement of L. The former, however, cannot occur, 



for this would imply that the collection [F} has a 
a o. 

maximal element. Thus Fr G is a single pOint in the 

complement of L, and we shall denote it by g. 

We let P(x) = Q(x) - G. Then we show that 

p(x) n H = ¢ in exactly the same way that we showed 

that (Q(x) ([F
IV

] - F )) n H = ¢ in the case when w 
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{F } had 
a a FI.) as a maximal element. The only difference 

is that we work in the space P(x) instead of the space 

Q(x) • 

Now since g ~ H U L, it follows that g £ H. Thus 

H n G = H n G is a compact subset of G. Let U be a 

region in the subspace Q(x) such that H n G cUe U c Go 

Since U does not contain g, we c~n find a set such 

that Fa n U = ¢ • It then follows that 
k 

UC [Fa J - F ; i. e. , H n G c [Fa] - Fa 0 

k a k . k k 
We define QT(x) = [Fa ] - F for this case in which 

k ak 
Q(x) is an arm of S(x) of type (b) and [ Fo}a has no 

maximal element. 

Now we define T(x) = UQT(x) , the union being taken 

over all the arms Q(x) of S(x). Then we notice that 

the arms of T(x) are precisely the sets QT(X) '. each 

one of which satisfies the conditions (i) - (iv) of lemma 

(3.12). Thus T(x) is a special region about x. Further, 

from the relations QT(x) n R(y) = ¢ and Q(x) n He QT(x), 

it follows that T(x) satisfies (I) and (II). This 
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completes the proof of lemma (3.14). 

Let A, B and L be subsets of a space X. 1.'/e 

say that L senarates A and B in X if X - L 1s 

the union of two separated sets, the one containing . 
.h. 

and the other containing B ( tl'fO sets '< .'l and N are 

separated if 11 n N = ¢ = I1 ('I N") • We say that L broadly 

se:earates A and B in X if L separates A - L and 

B - L in X. Finally, we say that L weakly sepa~ates 

A and B in X if no component of X - L meets both 

A and B. The latter two definitions may be found in 

r 321 and r 35J, respectively. 

THEOREM (3.5). Let X be a cyclic U-space and L a se~i-

closed subset of X no component of which se:earates X. 

Let A and B be two closed subsets of X which are 

weakly se:earated by L in X. Then L contains a 

closed subset K of X which broadly separates A and 

B in X. 

PROOF. We let d = U{H(x) : x E A - L}, where H(x) 

is defined in notation (3.5), and we first show that 

H-HCL. 

For let y E X - H ULand let R(Y) be a special 

region about y such that }i(y) n A = ¢ • Then by lemma 
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(J • 13) , Fr R (y ) C H ( Y ) U L, and soH r Fr R (y ) = 1> • 

Thus every component of H meets A c X - R(y), and 

no component of a meets Fr R(Y) . Thus no component 

of H meets R(y), and consequently H does not meet 

R{Y) i.e., y~rl. This shows that II - H c L • 

For each point y E X - H U L, let R(y) be a 

special region about y such that R(y) n H = ¢. Then 

theopeh covering (R(Y) ~ Y E X - H U L} of X - 2 U L. 

has a countable subcovering R(Yl)' R(Y2)' of X - 3 U L. 

Similarly, for each point x E H there is a special 

region S(x) about x such that S(x) is compact and 

dis joint from B. From the covering (S(x) : x E ~ 

of :I, we select a countable subcovering S(x1 ), S(x2 ), ••• 

of H. 

Now we show that there is a special region T(~) 

about xn such that 

( I ) for e ac h i ~ n • T ( xn ) :) R (y i ) b r T ( xn ) n R ( y i) = ¢ , 

( I I ) S (x
n

) n H c T ( ~) c S (Xn ) 

We define T{xn ) as follows. Define TO(Xn ) = S(Xn ) • 

If each of the sets R(Yl)' "0, R(Yn) is contained in 

TO (xn ) , then let T(xn ) = TO (xn ) • If not select one 

set from R(y 1) , ... , R(Y ) which is not contained in 
n 

TO (Xn ) and call it R(YN ) • By lemma (3.14) there is 
1 
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a special region T1 (xn ) about xn such that 

T1 (xn ) r: R(Y
N1

) = ¢ and TO (xn ) n .:{ c:: T1 (x
n

) c:: TO (x
n

) 

If each of the sets R(y1 ), ..• , R R(y) 
Y , l'T +1 ' ••• , 

N 1 -1~ 1 

is contained in T1 (xn ), define T(xn ) = T
1

(x
n

). If not 

select one of these sets which is not contained in T
1

(x
n

) 

and call it R(YN)' 
2 

By using lemma (3.14) again, we find 

a special region T
2

(x
n

) about such that 

T2 (X
n

) n R(Y
N2

) = ¢ and 

Continuing in this way, we arrive at the defini'tion 

T(xn ) = Tm(xn ) for some m ~ n, and it is clear that 

(I) and (II) hold. 
00 

Let G = Un=l T(xn ). By virtue of (II) it follows 

that H c:: G and G n B = ¢. We assert that Fr G c:: Lo 

In order to prove that Fr G c:: L, suppose that there 

is a point y E Fr G - Lo Since y E X - H U L, it 

follows that y E R(Yk)' for some k. Now R(yk ) is not 

contained in any of the sets T(Xk ), T(Xk+1 ), ••• (because 

y i G), and so by (I) each of the sets T(Xk ) , T(xk +1 ), •• 0 

is disjoint from R(Yk)' On the other hand, if n < k 

then Y i T(xn ) and Y i Fr T(xn ), which is contained 
k-l 

in H(Xn ) U L, by lemma (3.13). Therefore R(Yk )' - lh=l T(Xn ) 

is a neighbourhood of y which does not meet G, and so 

y £ Fr G. This contradiction shows that Fr G c:: L. 

Let K = (A - G) U Fr G. Then K is a subset of L 
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which is closed in X, and it broadly separates A and 

B in X. 

Theorem (J.5) is as much as we will need for the 

proof of theorem (J.6). However, by modifying the proofs 

of lemmas (J.12) - (J.14) slightly, we can prove the 

following extension of theorem (J.5). 

THEOREM (J.5a). Let X be a cyclic U-space and L a 

semi-closed subset of X. If A and B are two closed 

subsets of L which are weakly separated by L in X, 

then L contains a closed subset K of X which 

broadly separates A and B in X. 

TAEOREM (J.6) Let X be a U-space and Y a regular 

T1-space. If f: X - Y is a connectivity function, 

then f is peripherally continuous. 

PROOF. Let U be a neighbourhood of a point p of 

X such that IT is compact, and V a neighbourhood of 

f(p). We shall show that there is a neighbourhood W 

of p such that W c U and f(Fr W) c V. 

Let Ai' A2 , ••• , ~ be the sets that are expressible 

as the union of (p} and a component of X - [p} that 

meets Fr U (we may naturally suppose that Fr U ~ ¢), 



and let A be a typical set from this sequence. 

Since p is not a cut pOint of the Peano space A, 

it is either an end point of A, or it belongs to a true 

cyclic element C of A (see (1.1), p.64 of [JO]). We 

deal with the latter case first. 

In the first case let p belong to a true cyclic 

element C of A. Let Ui be a neighbourhood of p 

in the subspace C such that U
i 

cUr C. Then among 

the components of C - A whose closures meet U1 ' only 

For a finite number Fr U. 

suppose on the contrary that C - A has an infinite 

number of such components Bl , B
2

, Select 

8J 

b i E Bi n Fr U. Then the infinite set b i , b 2 , .•• has 

a point of accumulation b E Fr U. It is now clear that 

no neighbourhood of b that is contained in A - Ui can 

be connected, which contradicts the local connectedness 

of A. Since p is not a cut point A, it follows that 
n 

U1 - Ui=l Bi is a neighbourhood of p 'in the subspace C. 

Now consider the connectivity function flC: C - Y. 

Since C is also a true cyclic element of X, it follows 

that C isa cyclic U-space. Thus, by theorem (J.J), 

flC s C .... Y is peripherally continuous; i. e. , there is a 

neighbourhood W' of p in the subspace C such that 
n 

Bi W' c U - Ui =i and f (Frc \.J') c Vi. Let W be the 1 A 

union of W' and all the components of A - C whose 

(' 



closures meet vi' • Then \.r 
'A is a neighbourhood of 
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p 

in the subspace A such that HA C U ('I A. and f (Fr W) C V ~ A A • 

In the second case we suppose that p is an end pOint 

of A. Then in the space A we can find a neighbourhood 

Ui of p such that Ui C U ('I A and Pr
A 

U
i 

is a single 

point q. We let E(p,q) be the set of all pOints in 

Ui that separate p,q in D
i

. 

If there is a point r E {q} U E(p,q) such that 

f(r) E V, then the component W
A 

of U
i 

- (r) is a 

neighbourhood of p in A such that W
A 

C UnA and 

f(prA WA) C V. So we may suppose that this does not 

happen. 

Now let C be a true cyclic element of U1 which 

contains exactly two distinct points r , s E {q} u E(p,q), 

and suppose that f-
i

(V) separates r, s in C. Then 

it follows that f-i(V) contains some closed subset K 

of C such that C - K = M U N I where M and N are 

disjoint open subsets of C that contain r and s , 

respectively. Let P be the component of U1 - C that 

contains p. Then P - P is equal to ( r) or (s) I 

and we may suppose it is the former. Let vIA be the 

union of M and all the components of Ui - C whose 

closures meet M. Then q i M, and so \of 
'A 

is a neighbour-

hood of p such that W
A 

C U n A and f ( Fr A i-l.~) C V 0 

So we shall also suppose that this case does not happenj 



that is, the case in the first sentence of this paragraph. 

Now let V1 be a neighbourhood of f (p) in v .... 

such that V1 c V. 

Let C again be a true cyclic element of U1 which 

contains exactly two distinct points r, s E ( q} U 3(p,q) • 

Let (F~}~ be the collection of components of the semi-

closed subset of C. By supposition, 

does not contain r or s, and does not separate r and 

s in C. Let [F~J be the union of F~ ru1d all the 

components of C - [F~J except the one that contains 

r and s. tve now define [F~J ,.., [F~ ] if and only if 

some [ F J =>[F]U[F], and we easily prove that this y ~ ~-

is an equivalence relation on {[ F~J}~ • Now let e 
an equivalence class of [F~J 's. The assumption that 

e has no maximal element (that is, no element that 

contains every other element in e) leads us to the 

conclusion, as in the proof of theorem (2.1), that 

s [EJ E e} 
~ 

is an open subset of C whose 

boundary in the subspace C is a single pOint. But 

be 

as a cyclic space, C contains no such open sets whose 

complements are non-degenerate. This proves that every 

equivalence class e contains a maximal element. 

He let ([F~~J}~ be the collection of maximal 

([ F~J}~, and define ~ = [F~ J. 
. ~ 

elements of Let 

Then L is a semi-closed subset of C whose 
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components are the sets H~, and none of these components 

separates r, s in C. Since C is a cyclic V-space, 

as a true cyclic element of the U-space X, it now follows 

from theorem (3.5) that L does not weakly separate r 

and s in C. But L contains f- 1 (-V) n C 1 • Thus 

r,s lie in the same component DC of C - f- 1 (Vi) • 

Now we recall that, since p is an end point of 

V1 ' 
the cyclic chain C(p,q) from p to q in the 

Peano continuum Vi is expressible as the union of 

{q} U E(p,q) and all the true cyclic elements of Vi 

that contain just two points in {q} U E(p,q) (see (5.2), 

p.71 of [31J). Further, the true cyclic elements of 

C(p,q) are exactly the same as the true cyclic elements 

of Vi that meet {q} U E(p,q) in just two points. 

Let D = [p,q} U E(p,q) U Uc DC' the union being 

talcen over all true cyclic elements C of C (p, q) . 

We assert that D is connected. 

For suppose that D is not connected. Then D = M U N, 

where M and N" are two non-empty separated subsets of 

C(p,q). Let M' be the union of M and all the true 

cyclic elements of C(p,q) such that C n Dc: M, and let 

N' be the union of N and all the true cyclic elements 

of C(p,q) such that C n Dc: N. Then C(p,q) = ~I' U N'. 

Further, since for each true cyclic element C of C(p,q), 

c .,.. [q} U E(p,q) is an open subset of C, it readily 

( 
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follows that M' and N' are separated in C(p,q). 

This contradicts the connectedness of C(p,q). Thus D 

is connected. 

Now consider the connectivity function flA: A _ Y. 

There is no point of D other than p which this 

function maps into Vi. This contradicts lemma (2.2). 

Returning to the sequence of sets Ai' A
2

, .•. , ~, 

we have now shown that for each i there is a neighbour-

hood Hi of p in the space Ai such that 1{i c U n Ai 

(L~=i vi. ) n 
Ai) • and f (Fr A. Wi) c V. Let . vl = U (X - Ui =i l 

l 

Then \</ is a neighbourhood of p in X such that 

W C U and f(Fr W) C V. This completes the proof. 



4. In this section we answer a question that Stallings 

reaised in [2J J • 
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On p.25J of [2JJ Stallings showed that if f: P _ Y 

is a local connectivity map of the lpc polyhedron Pinto 

a regular Hausdorff space Y, then f is peripherally 

continuous. 

On p.262 of C2JJ he asks whether this theorem remains 

true when the lpc polyhedron P is replaced by an L~R. 

In this section we give an affirmative answer to this 

question. We shall use theorem (J.2) to show that P 

may be replaced by any locally compact ~~R(~). 

We first give the necessary definitions. If X 

and Yare topological spaces, then a function f X - y 

is a local connectivity function if there is an open 

covering {Uo) o. of X such that fl Uo. : Uo. - Y is a 

connectivity function. 

A glance at the proofs of theorems (2.1), (J.2), (J.J) 

and (J.6) will show that in each case the connectivity of 

the function f was only used locally. Thus each of 

these theorems holds if the connectivity function f 

is replaced by a local connectivity function f. 

Following chap. IV of [5J, we shall say that X is 

an absolute neighbourhood retract for metrizable spaces 

(or X is an ~~R(~)) if X is a metrizable space 

and for each homeomorphism h mapping X onto a closed 



subset h(X) of a metrizable space Y, h(X) is a 

neighbourhood retract in Y. 

A topological space X is said to be locally 

contractible provided that for each point x E X and 

each neighbourhood U of x, there is a neighbourhood 

V of x such that V c U and V is contractible to 

a point in U. We notice that a locally contractible 

space is locally connected. 

Let X be an M~R(~). We notice from (J.J), chap. 

IV of [5J, that X is locally contractible. 

Let X be a locally compact ANR(~). Then it 

follows that, when X is metrized, each component of 

X is a Peano space. 

Let X be an arbitrary topological space and Y 

a subset of X. We say that a continuous mapping 

f : X - Sl, where Sl is the circle of complex numbers 

of unit modulus, is exponentially equivalent to 1 on Y 

(written IIf,.., 1 on yII) if there is a continuous 

real-valued function ~ on Y such that f(x) = expCi~(x)J 
for each x E Yo 

The following is a standard lemma on connected spaces 

which are not unicoherent. 

LEMMA (4.1). Let X be a connected normal space which is 

not unicoherent, and M and N two connected closed sub-
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sets of X such that X = M U Nand M n N is not 

connected. Then there is a continuous function f 

such that f - 1 on N, f - 1 on Nand f ~ 1 on X. 

PROOF. Let rI n N = P U Q, where ? and Q are disjoint 

non-empty closed sets. By Urysohn's lemma, there is a 

continuous function q:l1 I M ... [0, TTJ such that q:l1 (p) = 0 

and CPl (Q) = 1, and a continuous function q:l2 : N ... rTT,2TT] 

such that q:l2(Q) = TT and 

be defined by 

f (x) = 

q:l2(P) = 2TT. 

{ 

e xp [ i q:ll (x) J 

exp[iq:l2(x) J 

Let fl , X ... Sl 

for x E M, 

for x EN. 

Then f is well-defined, since exp[i~l(x)J = exp[i~2(x)J 

for x E M n N, and f is continuous, because the 

restricted functions flM and fIN are continuous on 

the closed subsets M and N of X. 

By definition f 1 on M and f - 1 on N. We 

show that f ~ 1 on X by supposing on the contrary 

that f - 1 on X. Then there is a continuous real-

valued function cp on X such that f(x) = exp[iq:l(x) J 

for all x E X. Thus cp(p) C (0, ::2TT, :!:4TT, :t ••• } and 

cp(Q) c (:t'Ti, ::!:JTT, :tS TT, :t .•• }. Let p and q be points 

of cp(F) and cp(Q), respectively, and let r be a 
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point between p and q such that r is not a multiple 

of n. Since ~(M) and ~(N) are connected sets, it 

follows that r E ~(M) rn ~(N). Thus exp[rJ E f(~) n f(N). 

But exp[rJ is not equal to either of the two complex 

numbers +1 or -1, and f(M) n f(N) is precisely the 

set of these two complex numbers. This contradiction shows 

that f t 1 on Xo 

THEOREH (4 0 1). If X is a locally contractible Peano 

space, then X has a covering by regions {Ri}i such 

that each Ri is unicoherent modulo Fr Ri • 

PROOF. Suppose on the contrary that X does not have a 

covering by such regions. Then there is some point p E X 

such that each region R that contains p has the 

property that R is not unicoherent modulo Fr R. 

Let U and V be regions about p such that 

V C U and V is contractible to a point in U. Since 

each subregion of V is also contractible to a point 

in U, we may clearly suppose that V is compact and 

contained in U. 

Since by supposition V is not unicoherent modulo 

Fr V, there are two connected closed sets M and N such 

that V = M ;U N, (V - V) n N = ¢ and M n N is not 

connected. By lemma (4.1), there is a continuous function 



f , V - 8
1

, the latter being the set of complex numbers 

of unit modulus, such that f·~ 1 on M and f ~ 1 

on V. 
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We shall now produce a contradiction. Let ~ be a 

real-valued function on M such that f(x) = exp[im(x)] 

for each x E M. Then ~Iv - V is a real-valued function 

on the compact set V - V, and so by Tietze's extension 

theore~ there is a real-valued function • on V - V 

such that ~Iv - V = ~Iv - V. 

Define 

g(x) = 
[ 

f(x), for 

exp[ i~ (x) J, for 

x E V, 

x E V-V. 

Then g: V - Sl is a well-defined continuous function, 

because f(x) = exp[iW (x)J for xEV - V, and V and 

V - V are relatively closed subsets of V. 

Since V is contractible to a point in V, there 

is a mapping h - l V X [0, 1J - V such that h(x,O) = x 

and h(x,l) = q for all x E V, where q is some point 

in V. The composition gh V >< [0, lJ - S 1 is a 

homotopy between the mapping glV v - Sl and the 

constant mapping from V into Sl. By theorem (6.2), 

chap. XI of [31J, this implies that gl V"" 1 on V. 

H r gl -V f d f / 1 -V Thi, s contradiction oweve , =, an ~ on . 



proves the theorem. 

Let X be a locally contractible ?eano 

space and Y a regular T1-space. If f: X - Y is a 

connectivity function (or local connectivity function) 

then f is peripherally continuous. 

THEOREM (4.3). Let X be a locally compact ANR(~) 

and Y a regular T1-space. If f: X - Y is a 

connectivity function (or local connectivity function) 

then f is peripherally continuous. 
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Theorem (4.2) follows immediately from theorems (4.1) 

and (3.2) (the latter also holds for local connectivity 

functions, as it was remarked earlier in this section). 

Theorem (4.3) is a corollary of theorem (4.2), since each 

component of a locally compact ANR(~) is a locally 

contractible Peano space. 



5. The purpose of this section has been outlined in 01. 

We shall say that a connected space X is wea~ly 

finitely multicoherent if for each pair of connected 

closed subsets iIi, N of X such that X = M \1 N, f1 t\ N 

always has a finite number of components. Such spaces 

were investigated by A.H. Stone in r26J. 

Let A be a subset of a connected space X. \;fe 

shall say that X is weakly finitely multicoherent 

modulo A if for each pair of connected closed subsets 
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1'1, N of X such that X = M U N and AnN = ¢, iI'J ('I N 

is always connected. 

\~e then have the following result, the proof of which 

is simple and is omitted. 

LEMMA (5.1). Let X be a connected, locally connected 

and completely normal space, and let A be a connected 

subset of X such that X is weakly finitely 

multicoherent modulo A. If L is now a subset of 

X - A which separates X, then a finite number of 

components of L separate X. 

The following are also two straightforward lemmas, 

and their proofs are omitted. 

be a sequeYlce of 



connected closed sets in a metric space X. SUD~o~e, 

furthermore, that there is a compact set K such that 
00 

X -.~ c K for all n. Then nn=i ~ is connected. 

LE;'i;'IA (5. J) • ~ C l' C 2' •.. , Cn 

space X such that X ~ C1 U C
2 

U 

be components of a 

U Cn. Then there 

are two non-empty separated subsets M, N of X such 

tha t X = 11 U Nand N ~ C l' C 2' ••• , Cn . 

The above three lemmas are needed for the proof of 

theorem (5.2). Because in this theorem the range space 

is only regular, and not regular and Ti (as it is in 

92,),4 of this chapter and in [23J, [34J, [35J) we also 

need the appropriate modifications of lemmas (2.2) and 

(2.3), and these are given next. 

LEMrIA ( 5 • 4 ). Le t 

where X and Y 

f : X - Y be a connectivity function, 

are both regular spaces. Then.if C 

is a connected subset of X, the graph r(flc) has no 

isolated points. 
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PROOF. Suppose r(flc) has· an isolated point (p, f(p)). 

Let U x V be a basic open set about (p, f(p)) in 

X x Y which does not meet r(flc - (p}). \~e can find 

neighbourhoods Ui,Vi of p, f(p), respectively, such 
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that Vi c U, Vi c V. But now the two disjoir.t open 

sets U1 X Vi' (X x y) - (Vi x Vi) provide a separation 

of ref Ie) , which is a contradiction. 

LErmA (5.5). Let f: X -Y be a connectivity function, 

where X is a locally connec ted, Hausdorff spac e wi tr-l 

a countable basis and Y is a regular space. Then for 

each closed subset F of Y, f- 1 (F) is a semi-closed 

subset of X. 

PROOF. Let F be a closed subset of Y, and let Fo ' 
1 

Fo2 ' . . . be a convergent sequence of components of 

f- 1 (F) whose limit is Lo Let p,q be two distinct 

points of L such that pEL - f- 1 (F). Let U, V be 

disjoint regions containing P.q. respectively. We may 

without loss of generality suppose that V meets all 

the sets Fo:' Fo: ••• 0. 

1 2 

c:c 

Let Q = V U ~=1 Fo' Then 
n 

Q is a connected set, and so Q U (p} is also a 

connected set. However. there is an open subset G of 

Y such that f(p) E G c G c Y - F. and therefore the two 

disjoint open sets U x G, (X x(Y - G)) U'(V x Y). provide 

a separation of r(flQ U (p}) in X x Y. This contradiction 

proves the lemma. 

In the proof of theorem (5.2) we also use the fact that a 
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connecti vi ty function preserves connectedness (thouc:;i1 it is 

not necessary to use this fact), and we state this as a lemma. 

LEi':;·IA (5.5a). Let f: X - Y be a connectivity f'unctio:l, 

where X and Y are arbitrary topological spaces. Then 

for each connected subset C of X, f(C) is a connected 

subset of Yo 

The following two lemmas are used to prove leill~~s 

(5.8) and (5.9), and theorem (5.2). 

LEMMA (5.6). Let A be a connected subset of a connected, 

locally connected and normal space X which is weakly finite­

ly multicoherent modulo A. Let F be a closed and connected 

subset of X-A. Then all but a finite number of components 

of X - F have connected frontiers. 

This result is stated for the case where F is an arbi­

trary subset of X and X is a weakly finitely multicoherent 

space, in the footnote of p.298 of r26J. This argument used 

to prove this footnote may also be used to prove ~emma (5.6). 

This argument is similar to the argument given in the proof 

of theorem 5, §4 of [25J. 

COROLLARY. Let U, V be two conditionally compact(l) 

(l)A set A is conditionally compact if A is compact. 



re,v:ions in a Peano space X such that IT c V, X - V is 

connected and X is weakly finitely multicoherent 

modulo X-V. Let F be a connected closed subset of 

X such that X - U C F. Then all but a finite number 

of components of X - F have connected boundaries. 

PROOF. Because X is locally connected and V is 

compact, it follows from Janiszewski1s border theorem 

(p.184, r13J) that each component of F n V has closure 
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pOints in Fr V. Thus only a finite number of components. 

F
1

, F2 , .•. , Fm of F n V meet U. 
Suppose now that X - F has an infinite number of 

components C
1

, C
2

, ••• with disconnected boundaries. 

Since U is compact, the frontiers of only a finite 

number of the sets C
1

, C2 , •.• can meet more than one 

of the sets 

and a subsequence Cn t Cn ' 
1 2 

Fr Cn is disconnected and 
k 

a connected closed subset of 

f1n1tely multlcoherent modulo 

lemma (5.6) 

Thus there is a set 7. 
l 

. . . , Cn ' ... such that 
k 

Fr Cn 
C Fi • But Fi is 

k 
V and X is weakly 

X - v. Th1s contradicts 

We introduce the following definition. It is 

equivalent to the definition given in §2.2 of [24J and 

§3.3 of [25J. Let A and B be subsets of some space. 
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We say that A is connected relative to B if every 

non-empty relatively open and closed subset of the subspace 

A U B meets B. 

We state the following obvious properties of this 

relation, 

(i) if B cAe B, then A is connected relative 

to B, 

(ii) if each An is connected relative to B, then 

so is Ua An, 
(iii) if A is connected relative to B and B is 

connected, then A U B is connected, 

(iv) if A is connected relative to B and B is 

connected relative to C, then A U B is connected 

relative to C, 

(v) if A is connected relative to B, and B c C, 

then A is connected relative to C. 

Notice that (iii) and (iv) are generalized versions of 

(1) and (2) in §3.3 of r25J, and (v) is stated in §2.2 

of r24J. Finally, in connection with this definition, 

notice that if A is a compact set and B is a closed 

set, then A is connected relative to B if and only 

if each component of A meets B. 

Let A be a subset of a space X. We say that X 



is locally connected modulo A if X i J 11 s __ oca y 

connected modulo A if X is locally connected at 

each point in X-A. 

L2I'L'IA (.5.7). Let X be a continuum (metric) and let 
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A and B be two disjoint closed subsets of X such 

that X is locally connected modulo A U B. Then there 

is an open set U such that U ~ A, U is connected 

relative to A, and U n B = ¢. 

PROOF. Let V be an open set such that V ~A and 

'if n B = ¢ • We show that all the components of V are 

open. 

Since it is clear that any component of V which 

does not meet A is open, we consider a component C 

of V which does meet A. Let x be a point in C 

such that x ~ int C. Then clearly x E A. Also there 

is a sequence of components C1 , C2 , of V, all 

different from C, such that x E lim inf Cmo Let 

C1 ' Cm ' 0" 

2 
be a convergent subsequence of C 2' 0" • Cm ' 

1 
Then lim Cm = lim C = K, which is a continuum.- Since, 

mn n 
by Janiszewski's border theorem (p.184 of (13J; c.f., 

lemma D. 8)) Cm n Fr V 1= ¢ for each mn , we have 
n 

K n Fr V 1= ¢. However, we also have K n A 1= ¢ and 

K n (V - A) = ¢. This shows that K is not connected, 



which is false. Thus each component of V is open. 

To complete the proof, we now define U as the 

union of the finite number of components of V which 

meet A. 

Following [24J, we say that a set E is a simole 

subset of a space X if both E and X - E are 

connected. 
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LEMf1A (5.8). Let U, V be conditionall;x: cOIDEact re~ions 

in a Peano s,Eace X such that U c V, X - V is connected 

and X is weakl;x: finitely multicoherent modulo X - V. 

Let El c E2 c ... cU be a seguence of sim:ele closed 

subsets of X, and suppose that Fr En = Al U A2 U U 

~ U Bn' Bn C int En +1 , where A1 , A2 , ..• , ~, Bn are 

disjoint closed sets. Then (A1 U A2 U •.. U ~+1) n 

Fr(int En+l - En) 1= ¢ for at most a finite number of 

different values of n. 

PROOF. We suppose that the conclusion of the lemma is 

false. Then we may suppose, without loss of generality, 

that (Al U A2 U ••• U ~+1) n Fr(int En+l - En) 1= ¢ for 

every value of n. Again, without loss of generality, 

we may suppose that Al 1= ¢. 

Since X is locally connected, the hypothesis that 



that there is a component en of int En+i _ 

that (Ai U A2 U ••• U ~+1) U en 1= ¢. Let en 

component Dn of En+l - int En. 

E such n 

lie in a 

Notice that Dn n (Ai U A2 U ••• U ~ U Bn) 1= ¢ 
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and Dn n (~+i U Bn +1 ) = ¢. For if Dn n (Ai U A2 U ••• U 

~ U Bn )= ¢ then Dn n En = ¢ and we easily deduce that 

is not connected', and if D n (A U B ) ~ n . -"Yl.+l n+i = '1-1 

then Fr en C Ai U A2 U 

separates X. 

Now we use lemma (5.7). Since Dn is locally 

connected modulo Dn n (Ai U A2 U ••• U ~+i U Bn U Bn +i ), 

it follows from lemma (5.7) that the subspace Dn 

contains two relatively open subsets Un and Vn such 

that Un contains and is connected relative to 

Dn n (Ai U A2 U ••• U ~), Vn contains and is connected 

relative to Dn n ~+i' Un n Vn = ¢ and (Un U Vn ) n 

( Bn U Bn + 1) = ¢ • 

We notice that (Un - Un) U (Vn - Vn ) 1= ¢, for all 

possible choices of Un' Vn • For suppose that this is 

false. Since Dn is connected, it then follows that 

Dn = Un or Dn = Vn • But if Dn = Un' then 

Dn n (An+i U Bn +i ) = ¢, and, if Dn = Vn , then 

Dn n (Ai U A2 U ••• U ~ U Bn) = ¢, both of which conclusions 

are false. 
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Now we define F = ~=1 (X - int En) U Lh=l(U
n 

U V
n

). 

Then F is a closed, connected set which contains X _ u. 
F is closed because the complement of F is equal to 

l.h=l (int En+1 - Lk=l Um U Vm), tV'hich is open. To see 

that F is connected, we observe that X - int,E1 ~ X _ 

int E2 ~ ••• is a decreasing sequence of connected closed 

sets the complements of which are contained in U. 

Therefore, by lemma (5.2), n:=l (X - int En) is 

connected, and it easily follows from this that F is 

connected. 

We notl"ce that the sets (U- - U ) U (-V V) n n n - n' 

n = 1,2, ••• , form a sequence of relatively open and 

closed, disjoint non-empty subsets of the subspace Fr F. 

Further, X is weakly finitely multicoherent modulo 

X-v. Thus, on the one hand, the boundary of a component 

of X - F can meet at most a finite number of the sets 

On the other hand, 

only a finite number of components of X - F can have 

disconnected boundaries, by the corollary to lemma (5.6). 

Thus we can find an integer k with this property: if 

G is a component of X - F and (Fr G) n «(Uk - Uk) U 

(Vk - Vk )) i ¢, then Fr G C (Uk - Uk) U (Vk - Vk ). We 

shall use thi's property to produce a contradiction. 

Firstly, suppose that Dk n (Bk U Bk +1 ) =¢. Then 

Fr Dk C Ai U A2 U ••• U Ak+io Thus Uk i ¢, Vk i ¢ ; 



~or if Uk (or Vk ) were empty, then we could have 

defined Vk (or Uk) to be equal to Dk in the first 

place, and for these choices of Uk' Vk we should 

have had (U}:: - Uk) U (Vk - Vk ) = ¢ , which, as ~Te have 

seen, is false. Since Dk is connected and locally 

connected modulo Uk U Vk , it now follows that ~Te can 

find a component G of ~ - Uk U Vk such that 

(Fr G) n (Uk - Uk) I=¢, (Fr G) n (Vk - V
k

) I=¢. 

But G is also a component of X - F, and, since Fr G 

is not connected, the choice of k is contradicted. 

Secondly, suppose that Dk U (Bk U Bk+l) I=¢ • 

Let H be a component of Dk - Uk U Vk such that 

By Janiszewski's border theorem 
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(see p.184 of [13]; c.f., lemma (J.8)), (Fr H) n «Uk - Uk)U 

(Vk - Vk )) 1= ¢ • Let G be the component of X - F 

that contains H. Then G n (Bk U Bk +1 ) 1= ¢ and, 

because of the choice of k, Fr G C (Uk - Uk) U (Vk - Vk )· 

But, if G n Bk 1= ¢ , then G n E k is a relatively open 

and closed, non-empty proper subset of Ek (proper because 

Ek G:J Ai)' and, if G n Bk+i 1= ¢, then G n (X - Ek +i ) 

is a relatively open and closed, non-empty proper subset 

of X - Ek+i • 

is proved. 

This is a contradiction, and so the lemma 

In corollaries (1) and (2) to lemma (5.8), the 
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notation and hypotheses of the statement of lemma (5.8) 

are assumed. 

COROLLARY (1). Let N be an integer such that 

(Ai U A2 U •.• U An+i)n Fr(int En+i - En) = ¢ for n ~ No 

Then An = ¢ for n > N. 

This follows immediately from the fact that each 

E is connected. n 

COROLLARY (2). lim Bn exists. 
n-co 

PROOF. He have to prove that lim sup Bn C lim inf Bn' 

Thus we suppose that there is a point x E lim sup Bn -

lim inf Bn • Then we can select two subsequences Bm ' 
1 

Bm ' ... and Bn ' Bn ' such that N s mk < n k 
2 1 2 

< 

for each k and x E lim sup Bn - lim sup Bm ' N being 
k k 

the integer in corollary (1). 

Now select xk E Bn so 
k 

that x k ... x, and let Ck 

be the component of int Em - E which contains x. 
k+1 mk 

Then Ck - Ck C Bm U Bm • 
k k+1 

Let R be a region about x such that R n lim sup 

Select the integer k so large that Ck n R = ¢, and 

(Bm U 
Bmk+l 

) n R = ¢. Notice that x ~ Ck' because 
k 

Ck is an open set which meets only Bn among the sets 
k 

mk+l 

Bm 
k 

=r/)o 
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Thus Ck n ~ is a relatively open and closed, 

non-empty proper subset of R, because (C
k 

- C
k

) n ?i = <P. 

This contradiction proves corollary (2). 

LEMi'IA (5.9). Let u, V be conditionally compact ref/ions 

in a Peano space X such that IT ex, X - V is connected 

and X is weakly finitely multicoherent modulo X - V , 

and let Ei c E2 e... c U be a seQuence of simple clos ed 

subsets of X. Let Fr En = Ai U A2 U ••• U ~ U Bn , 

where Bn C int En+1 and Al , A2 , .•. , An' Bn are 

disjoint closed sets. Let the components of En+i - int En' 

n = 1, 2, . • ., be Dn ,m' m = 1, 2, . • ., np' 

is connected for all but a finite number of Dairs (n,~) • 

PROOF. Suppose that the conclusion of the lemma is false. 

Then we can suppose without loss of generality, that for 

each value of n there is a component D 
n,~ 

of 

En+1 - int En such that D n E is not connected. n,mn n 

For convenience we shall write D = Dn' n,mn 
Let N be the integer given in corollary (1) to 

lemma (5.8), so that ~ = ¢ for n > N. For n > N, 

let Cn be a component of Dn - En such that 

Bn n en = Pn U Qn' where Pn and Qn are two disjoint 

non-empty closed sets. Join each component of Bn+1 n Cn 

to Qn by an arc which lies in Cn - Pn , and denote the 
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union of the finite number of arcs so obtained by a.n • 

Now define F = X 

closed set containing X - U, and it is also connected. 

This can be seen by observing, firstly, that EN+1 U 

~=1 (X - En) is connected, by lemma (502), and, 

secondly, that it follows by induction that F ::> B n 
for each n > N • 

Thus F is a connected closed set containing X - U • 

But the components of Cn - Mn , n > N, are components 

of X - F, and at least one component of Cn - Mn has 

a disconnected boundary for each n > N • This contradicts 

the corollary to lemma (5.6). 

In the following two corollaries to lemma (5,9), the 

notation and hypotheses in the statement of lemma (5.9) 

are assumed. 

COROLLARY (1). There is an integer b such that Bn 

has S b components for all n. 

This is a straightforward consequence of lemma (5.9) . 

COROLLARY (2). '11m Bn has only a finite number of 

comnonents • . 



This is an immediate consequence of corollary (2) 

to lemma (5.8) and corollary (1) to lemma (5.9). 

'de sum up the pertinent parts of lemmas (5.8) and 

(5.9) and their corollaries in the following theorem. 

THEOREM (5.1). Let U, V be conditionally compact 

regions in a Peano space X such that IT c V, X - V 

is connected and X is weakly finitely multicoherent 

modulo X - V. Let E1 c E2 c... c U be a seguence 
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of simple closed subsets of X. Let Fr En = A1 U A2 U .0. U 

~ U Bn' Bn c int En +1 , where A1 , A2 , ... , ~, Bn are 

disjoint closed sets. Then 

(i) ~ ~ ¢ for at most a finite number of values of n, 

(ii) lim Bn exists and has only a finite number of 

components. 

In the context in which we shall use this theorem, 

i'le shall not in general have Fr En = A1 U A2 U •.• U ~ U Bn; 

we shall have Fr En c A1 U A2 U... U An U Bn' where 

A
1

, A2 , ••• , An, Bn are disjoint closed subsets of En which 

meet Fr E • \ve remark that lemmas (5.8) and (5.9) and their 
n 

corollaries can all be proved under these circumstances with-

out change, except for the few obvious modifications. Thus 

we have this theorem. 
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THEOREM (5.1) I. If the hypotheses of theorem (5.1) remain 

u~altered, except that it is supposed that Fr En C Ai U 

A2 . U .••• U An U Bn' En C int En+l' where A1 , A2 , ••• , 

~, Bn are disjoint closed subsets of En which :neet Fr En' 

then the conclusions of theorem (5.1) remain unaltered. 

It is obvious that the first conclu~ion of theorem 

(5.1) or theorem (5.1) I may not hold if X fails to be 

weakly finitely multicoherent modulo X-V. The following 

example shows that the second conclusion of these theorems 

may not hold if X fails to be weakly finitely multico-

herent modulo X - V; viz it shows that lim Bn may not exist. 

EXAMPLE (5.1). Let X be the set-theoretic difference bet-

ween (0, 1J Xro, 1J and the set of all points (x, y) such 

that 2m+1 2m 1/2 + 1/22m+1 , 1/2 < x < 1/2 ,1/2 < y < for some 

non-negative integer m, and let V = X. Let A2m be the set 

of all points (x, y) such that 
/ 2m+l 

1 2 :s: x :s: 1/2
2m

, o :s: 

y $: 1/2. The sets AO' A2 , A4 , ••• are shown by the diagonal 

shading in fig. (5. 1 ). Let A2m+l = ¢. Let En be the union 

/ n+2 
of ~ and all the pOints (x, y) E X such that x ~ 32, 

and let En = (Fr En) - ~. The sets BO' Bl' B2 , ... are 

shown in fig. (5.1) by the thick vertical lines. 

Then B2m'" {o})< (1/2, 1J, while lim B2m+1 ... {o}x [0, 1J, 

and so lim Bn does not exist. 
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fig. (5.1) 

We shall say that X is an S-space if X is a Peano 

space and if for each true cyclic element C of X, there 

is a base of regions {uo.) for the subspace C such that 

clC Un is weakly finitely multicoherent modulo FrC Un. 

It is easily shown that we can without loss of generality 

take C - U o to be connected for each Uo in C. 

THEOREM (5.2). If f: X - Y is a connectivity function 

(or local connectivity function), where X is a cyclic 

S-space and Y is a regular space, then f is peri-. 

pherally continuous. 

PROOF. Let p be a point in X, and let U and V be 

neighbourhoods of p and f(p), respectively, where 
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U is a conditionally compact region such that X _ ~ 

is connected and X is weakly finitely multicoherent 

modulo X - U • (In addition select U so small that 

flIT: IT Y is a connectivity function in case f is 

only a local connectivity function). The existence of 

the region U follows from lemma (3.1). It is required 

to show that there is a neighbourhood W of p such 

tha t \>J C U and f (Fr W) C V. 

The sets U1 and V1 . Let V1 be a neighbourhood 

of f(p) such that V 1 c V . Let U ' be a region 

about p such that U'c U and X - U' is connected. 

Such a region exists by lemma (J.1). Then IT' n f- 1 (V1 ) 

is a semi-closed set. Denote by (X U') + the union 

of X - U' and all the components of IT' n f- 1 (V1 ) 

that meet X - U' • By lemma (3.9), (x - U')7 is a 

closed and connected set. Let U1 be the component of 

X - (X - U')+ to which p belongs. Then U1 is a 

region about p such that X - U1 is connected, and a 

component of IT' n f- 1 (V1 ) which meets U1 is wholly 

contained in U1• It is the components of U1 n r- 1 (V1) 

that will interest us • 

. The notation cA. We introduce the following notation. 

For any subset A of U1 we shall denote by cA the 
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union of all the components of Ui n f- i (V1 ) which ~eet 

Fr A = A - in t A. 

The notation rAJ. VIe also introduce this notation. Let 

A be any closed subset of X lying in U l' 1ve shall 

denote by [AJ the union of A and all the components of 

X - A except the one containing the non-empty connected 

set X - Ui 0 Thus rAJ is a closed subset of X which 

is contained in U 1 and does not disconnect x. Further, 

if A and B are any two closed subsets of X which 

lie in Ui , then we have the follOl .. ing simple relations, 

the third of which is a consequence of the first two: 

(a) C[AJJ = rAJ, 
(b) if A c B then rAJ c CBJ, 

(c) erA] U [BJJ = rA U B]. 

The enclosures. For each finite number of components 

f Ul n f-i(yl ), we shall call Fl , F2 , ••• , Fm 0 

rF l U F2 U ••• U Fm] an enclosure if it is connected. 

N01'f let E = [F l U F2 U •.• U Fm] be an enclosure, 

'Vlhere F
l

, F
2

, ... , Fm are components of Ui n f-
1

(yl ) • 

Then Fr E C 0:2 C Fi U F2 U .•. U Fm' Thus E = CoE]. 

In future, when we express an enclosure E as 
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componen ts of U 1 n f- 1 (V 1)' we shall always assume that 

~h' - 'G' U F U o~ - ... 1 2 • •• U Fm. 

~ouivalence relation on the enclosures. We set up an 

equivalence relation on the collection of enclosures as 

follo~·lS. He say that two enclosures El and E2 are 

equivalent, written E1 - E2 , if there is a third 

enclosure EJ such that E1 U E2 C EJ • That this 

relation is reflexive and symmetric is clear. In order 

to prove that it is transitive, let E1 -E2 and E2 -EJ . 

Then there are enclosures E4 and ES such that 

El U E2 c E4 and E2 U EJ C ES' 

It is a connected set and, by (c), 

Consider [E4 U ES] • 

(E4 U ES] = [[oE4] U roES] 

= (oE 4 U oE S] • 

Thus [E4 UES] is an enclosure. But E1 U EJ C rE4 U ES] , 

by (b). Thus E1 - EJ • This completes the proof that 

the relation on the enclosures is an equivalence relation. 

Chains. Let e be an equivalence class of enclosures o 

Let 

H(e) = 

G(e) = 

UtE , E E e} , 

U(E oE , E E e} • 



We shall call H(e) a chain. In the case where ~ 

contains a maximal element with respect to inclusion, 

H(e) will be an enclosure. 
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Properties of an equivalence class with no maximal element 

with respect to inclusion. Let e be an equivalence class 

with no maximal element with respect to inclusion. For 

the purposes of this section, write H= H(e) and G = G(e) • 

Ive first show that H - G has only a fini te number 

of components. Suppose, on the contrary, that from the 

collection of components of H - G we can select an 

infinite sequence of distinct elements FO' Fl , 0 ••• 

We select a sequence of elements EO C El C from e 

as follows. Let EO be any element in e such that 

Suppose now that En has been selected. 

Since G n oE n 
is a union of components of oE n (for 

if F is a component of cEn and F n (H - G) 1= ¢ , 

then F n (E - cE) = ¢ for each E E e· • i. e. , 

F C H - G) we can find a set En+l in e such that 

En ' Fn C En +l , oEn n G C En+l - OEn +l • Now put 

AO :: EO n (H - G) , 

~+l = (En +1 - En) n (H - G), 

Bn = oEn - Al U A2 U ••. U ~. 



Then the hypotheses of theorem (5.1) I are satisfied, 

but for an infinite number of values of n, 

which is false. 

Next ~'fe cons true t a seguence EO C E1 C ••• of 

elements from e such that 

H - G C oEO ' 

G n oEn C En +1 - oEn' 

To do this, let RO' R1 , ... be a sequence of regions 

the union of whose closures is equal to G. Since 

H - G has only a finite number of components, we can 

find an element EO in e such that H - G C oEO • 

So suppose that En has been selected. We select 
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En+l as follows. G n oEn is a union of components of 

oEn' as was pointed out in the preceding paragraph. Thus 

~ U (G n oEn) is a compact subset of G, and so the 

collection of open sets (E - oE : E E e} contains a 

finite subcollection 
m 

••• , E -

whose union covers Rn U (G n oEn ). There is now an 

element in e which contains 
ill 

••• , E , En. 

It is then clear that the sequence EO' E1 , ... has the 

desired properties. 

Let us now wr1te 
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{: 
- G for n = 0, 

~ = 
for n> o , 

Bn = G n oEn • 

Then we have the hypotheses of theorem (5.1) I satisfied. 

Thus, in particular, lim Bn exists and has a finite 

number of components. We shall denote these components 

.Ql L1 , L2 , "" Ls' 

Now we show that, if n is sufficiently lar~e, then 

~ - (En n G) has precisely s components M1 , M2 , "" Ms 

(these components depend on n, of course), where 

and Min Bn f: ¢ , for i = 1,2, ..• , s . Such 

a set En will be called a special set. To show this, 

let Sl' S2' "', Ss be neighbourhoods of Ll' L2 , ... , Ls ' 

respectively, with mutually disjoint closures. Then there 

is an integer m such that Bn C Sl U S2 U ••• U Ss for 

each n > m • Now we notice that for only a finite number 

of values of n > m, say n = ml' m2' .... mr , is there 

a component of (En+1 - Bn +1) - E which meets more than 
n 

one of the sets Sl ' S2' ... , Ss • If we now take 

to·have n ~ m1' m2' ... , mr , then En is easily shown 

the properties reQuired of a special set. 

Now we show that L1 is either a single point in 

-1 -the complement of U1 n f (V1 ), or is a subset of X - U1 0 

In order to do this, we first observe that there are at 
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most a finite number of points x x ~ l' 2" •• , ~ .l.n 

lim Bn - V' n f-
1 

(V 1) . For suppose x is a point in 

lim 'Bn - IT' n f- 1 (V1 ) 'l'hen it is Possible to select 

a component Fn of Bn so that x E lim inf Fn • :gut 

it then follows that {x) = lim Fn , for otherwise some 

convergent subsequence {F } of {F} 
n k k=O, 1 , • • • n n=O, 1 , ••• 

can be chosen which'has a non-degenerate limit, and this 

limit consequently lies in a component of 0" n f- 1 (V1 ) ; 

this, however, contradicts the fact that x ~ V' n f- 1 (Vi) • 

That there can now be only a finite number of points 

xl' x 2 , : •• , Xv in lim Bn - IT' n f-
1 (V1 ) follows from 

the fact, given in corollary (1) to lemma (5.9), that the 

supremum of the number of components of Bn is finite. 

Now we show that each component Li of lim Bn 

which meets U1 n f- 1 (V1 ) is actually contained in 

U1 n f- 1 (V1 ), and so is contained in a component of 

-1 -U1 n f (Vi) 0 For let Li be a component of lim Bn 

which meets U1 n f- 1 (V1 ) and suppose that Xj E Li -

V' n f- 1 (V1 ), for some j ~ v. Let N be a neighbourhood 

such that 

Let C be the component of Li n N to which 

x. belongs. 
J 

By lemma (J.8) , C meets Fr N, and so 

is a non-degenerate connected set. But the only point 

of C whose image under f lies in the open set Y - Vi 

1s x j ' and this contradicts lemma (5.4) (or, alternatively, 



it contradicts lemma (5.5a). because Y is a regular 

space. and so f(C) is not connected) • 

. Suppose now that Li meets a component F of 
-1 -

U1 n f (V1). By the preceding paragraph, Li then 
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lies in F. Also F C H - G. Let E be a special set n 

and let Li lie in a component Mi of C - (En n G) • 

Let Ci be a component of Mi - Li • Since F C oEn' 

it now follows that En separates X. for oC i C oEn 

and C -p X - U1 • This is a contradiction, and it proves 

the assertion that Li is either a single pOint in the 

complement of U1 n f-
1 (V 1) or a subset of X - U1• 

Finally, since IT ("'I U1 = H U U(Li : Li C U11. and 

since Li is a single point in the complement of 

U1 n -1 -
f (V 1) whenever Li C U1 (as we have just shown) , 

we notice that oH = H - G. 

The union of a finite number of chains does not sepa­

rate X. Let el. e2' •••• e r be distinct equivalence 

classes. We shall assume that ek has no maximal element 

with respect to inclusion if and only if k ~ q (q ~ r). 

\oJe write Hk = H (ek ), and it is required to prove that 

X - H1 U H2 U ••• U Hr is connected. 

We suppose that the contrary is the case, so that 

X - Hl U H2 U ••• U Hr = P U Q, 



where P, Q are disjoint non-empty separated sets. 

let Ek,n
k 

be a special set, and denote 

the components of Gk - (Ek,n
k 

n Gk ) by Hk ,l' Mk ,2' 

j';k s (Gk = U(E -oE : E E ek }). For k > q, let , k 

For k ~ q , 

Ek , nk = Hk , which is an enclosure. Let 

P' = 
Q I = 

P U U(Mk , j 

Q U U(Mk , j 

Mk ' n P 1= ~} , , J 

Mk , j n Q 1= ¢} • 
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o •• , 

Then P I, Q' 'I h t b t d are eaSl y s own 0 e separa e sets, but 

the complement of their union is This 

implies that separates x, which is false. 

H(e) - G(e) is disconnected for only a finite number of 

equivalence classes e. Suppose on the contrary that an 

infinite number of equivalence classes eO,e1 , ... , em' 0.' 

can be found such that H(~m) - G(em) is not connected 0 

Em ,0 c Em, 1 c ..• 

~ - Gm C oEm,O 

For a fixed m, let 

be a sequence of enclosures such that 
co 

and Gm = Lh=o (Em,n - oEm,n) (such a 

sequence of enclosures was described previously) 0 

Let 

m+n ~ kJ • 
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Then Ak is connected, because X - U{Em,n m+n s: %} 

is connected. Thus A ~ A ~ A ~ o 1 2 ••• is a contracting 

sequence of connected closed subsets of X. So, by 

lemma ( 5 . 2) , 

CD CD 

nk=O Ak = X - Un=O Gm 

is a connected closed set, and it contains X - U1 • Now 

I~ - Gm is disconnected, and so it follows that there 

is a component em of Gm such that Fr en is dis-

connected. But em is a component of X n;=o Ak ' 

and this contradicts the corollary to lemma (5.6) • 

The set L. Let us now denote the collection of chains 

The components of L are the sets Hao Let tHoS}S 

be a non-degenerate subcollection of {Ha}a' We ·show 

that UQ H is not connected. 
f' as . Let 

':>1:1 = M UN, Ok ,.. ua 

where M, N are non-empty, disjoint separated sets such 

that OR c N whenever oH is disconnected. Such Os ~S 

a separation exists by lemma (5.3). Let 



;1' = 11 1J L.ltHo : oIl c M1 
9 Os 

N' = N U U{Ho oRo. c N} 
e S 

Then it follows easily from the local connectedness of 

the space X that 11', N' are separated sets, and so 

Us H is not connected. 
t"r S 

p E int L. Suppose p ~ int L. Since no finite number 

12:1 

of components of L separates X, it follows from lemma 

(5.1) that L does not separate X. The supposition 

that p tint L implies that p E X - L 0 But then 

(x - L) U {Pj is a connected set whose graph meets 

Ui x Vi in the isolated point (p, f(p)) • 

contradicts lem..'D.a (5.4) • 

This 

f is peripherally continuous at p. Since p E int L 

and X is locally connected, it follows that p E int EN ' 

for some a. • Let H = Ha = H ( eo) , G = G = 0. G (eo) • Let 

E 0 c. Ei c:. ••• be a sequence of enclosures (previously 

described) such that H - G c CEO and G = Lh=o (E -n oEn) • 

Thus, if p E H - G , then p E int EO ' while if p E.G 

then p E int En for some n. 

find an enclosure E n such that 

Thus, in either case we 

P E int En 0 

Then W c. U 1 c U and f (Pr vI) c V 1 c V • Thus f is 

peripherally continuous at p. 

This completes the proof of theorem (5.2) • 



TI;,iAR:( (5.1). It will be noticed that in lemmas (5.8) 

and (5.9) and theorems (5.1) and (5.2) we have a system 

of two regions in the space X, which for the purposes 

of this remark we shall call Ul' U2. These regions 
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have the properties that Ui ~ U2 ' X - ul is connected 

and X is weakly finitely multicoherent modulo X - Ul 

(in theorem (5.2) is also connected, U 2 being 

the "Ul" of that theorem). The reason for the use of 

two regions (instead of one) is that in all these lemmas 

and theorems we have used the corollary to lemma (5.6). 

If we had used lemma (5.6) itself, which we could have 

done, only one region U would have been necessary, with 

the properties that X - U was connected and X was 

weakly finitely multicoherent modulo X - U. 

We conclude this section by making some general 

remarks. 

If we examine the proofs of Th(Pl(X» and 

(see §l of this chapter) as given in r23J 

and r34], respectively, and the proofs of Th(P3 (X» -

Th(P
8

(X») in this chapter, then we see that it is 

purported to have been proved that a connectivity function 

f : X _ Y is peripherally continuous. However, something 

more than this has actually been proved. In all these 

theorems the only two properties of the connectivity 



function f x - Y that have been used are these: 

. (a) for each non-degenerate connected subset C 

of X, the graph r(fIC) has no isolated points, 

(b) for each closed set F in Y, f-
1

(F) is 

semi-closed in X. 

123 

Since (a) implies (b) (if X and Y have the appropriate 

properties), it is seen that what has actually been proved 

in Th(P1 (X)) - Th(P8(X)) is that a function f: X - Y 

which has property (a) is peripherally continuous. Since 

property (a) is hardly interesting in itself, it may be 

wondered whether we cannot assign some more satisfactory 

property (or properties) to f and still draw the con-

clusion that f is peripherally continuous. The follow­

ing considerations, culminating in theorem (5.3), show 

that this can indeed be done. 

LEHHA (5.10). Let G be a region in a connected and 

locally connected space X, and E a component of X-G. 

Then X - E is connected. 

PROOF. Let F be a component of X - G which is different 

from E. Let R be the component of X - E which contains 

F. Then R ~ F, for otherwise X would not be connected. 
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Thus R i x - G, for otherwise F would not be a 

component of X-G. Thus R n G ~ ¢. But this implies 

that F, G are contained in the same component of 

X - E, and this holds for all F. Thus X - E is 

connected. 

LE~MA (5.11). Let U, V be conditionally compact 

simple regions in a Peano space X such that IT c V 

and X is weakly finitely multicoherent modulo X-V. 

Let L be a subset of U such that the components of 

L are closed subsets of X and no finite number of 

components of L separates X. Then U - L has only 

a finite number of components. 

PROOF. Suppose on the contrary that U - L has an 

infinite number of components. Then there are two dis-

2 
of U such that joint open subsets Gl' G 

G2 , (u - L) n G1 ~ (U - L) 
2 

~ ¢ • U - L c Gl U ¢, n G 

We may suppose without loss of generality that G2 

contains more than one component of U - L. Thus there 

are two disjoint open subsets G2' GJ of G2 such that 

(U - L) n G2 c G2 U GJ , (U - L) n G2 ~ ¢ , (U - L) n GJ ~ 

Again we may suppose without loss of generality that GJ 

contains more-than one component of U - L. Thus there 

are two disjoint open subsets GJ , G
4 

of GJ such that 

r/J • 
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= d; • 

Continuing in this way. we define a sequence G G 
l' 2" •• • 

Gn •· ••• of non-empty disjoint open subsets of U, and we 

notice that U n Fr Gn c L • 

Now let G' n be a component of Gn • Then 

U Ii Fr G' c U Ii Fr Gn C L • Also '5' Ii (X - U) f; ¢ for n n 
otherwise L would separate X (which is impossible. 

because no finite number of components of L separate 

Xi see lemma (5. 1)). Let En be the component of 

X - G' n which contains the connected set X- U . Let 

~= X - En • 

By lemma (5.10), ~ is a region in U such that 

U Ii Fr Hn C U n Fr G' n C L. Also ::r 
show that Hn n ~ = ¢ for n ~ TIl • 

the following. G~ is disjoint from 

separated from X - U. Therefore 

that there is some component E of 

Since E 

n r 

To 

G' n 

G' m C 

X -

is 

(X - U) ~ ¢. We 

see this consider 

and is not 

E n • Now ~uppose 

G' m such that 

closed and is not 

separa'Ced from G~, E ('I En f; ¢ • Since ~ is the union 

of G' and the collection of all the components of X - G' n n 

except En' it follows that E ('I G~ f; ¢ • Now E is a 

component of X - G' and so m G' c E • n But E is closed, 

and this implies that E r (X - U) f; ¢ i that is, E = En' 
. 

wnich is false. 

Now we show that U Ii Fr Hn is a closed subset of X. 
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Since both H n and X - tin are connected closed subsets 

of X, and ~ c V and X is weakly finitely multl-

coherent modulo X - V , it follows that Fr tIn = ~ ("\ (X -

has only a finite number of components, which we shall 

denote by C i ' i = 1, 2, ••• , p. Recall that 

U n Fr ~ c L, and let Ci meet U. We prove that 

Suppose that this is not the case, and let Di 

be a component of Ci - (X - U). Then by Janiszewski's 

border theorem, 1\ n (X - U) I: ¢ • But this means that 

Di is not a closed set, and this implies that the component 

of L in which Di is contained is not closed, which is 

false. This shows that U ("\ Fr ~ is equal to the union 

of a finite number of components of Fr ~, and so 1s a 

closed subset of X • 

Now let on be the union of a finite number of arcs 

lying in ~ n U sucn that each component of U n Fr ~ 

is joined to each other component of U n Fr Hn by an arc 

in an • Let En be a relatively open subset of the 

subspace a such that ~ contains H ("\ (X u) and 
n n 

contains no point whose distance from -.:r n (X 0") is "·n 

1/2n , is connected relative to ;: n (X • T ' and ~ ~ ~n 
-' ) , 

~("\ (On U (U ("\ Fr ~) ) = ¢ • Such a set En exists by 

lemma (5.7). Let Mn be the union of Rn and all the 

components of ~- ~ that do not meet an U (u n ?r ~) . 
Let F = (X - u) 

co 

U Un=l Mn • Then it follows that F is 

~) 
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a closed and connected set which contains X - U • But 

each of the sets ~ ~ Fr Rn is a non-empty, relatively 

open and closed proper subset of Fr F, and each component 

of X - F whose frontier meets lin n Fr Rn has a dis­

connected frontier (since En does not separate X). This 

contradicts the corollary to lemma (5.6). 

\ve shall say that a function f: X - Y is pse1,do-

continuous if for each closed subset 
-1 

F of Y, f (?) 

is a semi-closed subset of X (we assume that X has & 

countable open base -- see definition of semi-closed set 

in §2 of this chapter). 

TH30REH (5.3). Let X be a cyclic S-space and Y a 

regular space. Let f: X - Y be a pseudo-continuous 

and connectedness preserving function. Then f is 

peripherally continuous. 

PROOF. In order to prove this theorem, we indicate the 

changes that have to be made to the proof of theorem (5.2). 

Thus we adopt the notation of the proof of theorem (5.2). 
-1 . 

In place of the semi-closed set IT' n f (Vi)' we 

work with the semi-closed set IT' n f-
1

(Fr Vi)' which does 

not contain p, and we form the enclosures using the com-

h U-' n f- i (V-
1

) and ponents of this set. Thus, w erever 
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and its components were used in the proof of theorem (5.2), 

we now use IT' n f-
1

(Fr Vi) and its components. 

. The proof is now identical to the proof of theorem 

(5.2) down to the second last paragraph. The changes that 

then have to be made are these. The components of L 

are not necessarily closed sets. But since X is cyclic, 

and Fr H is disconnected for only a finite number of 

chains, it follows that there are only a finite number 

of chains Hl , H2 , ... , Hr which are not closed. We 
r r 

assume that p '- Ui =i Gi • Let X' = X - Ui =i Gi ' 

U' = X' n Ui and L' = x'n L • Then X' is still ~'lea:~ly 

fini tely mul ticoherent modulo X' - X' n V = X - V, and 

the components of L' are closed subsets of X' no 

fini te number of which disconnec t X I • Thus, by lemma 

( • ), U1 - L' has only a finite number of components 

Ci, C2, •.• , Ct , and we may suppose that p E Cl • Since 

f preserves ~onnectedness,by lemma (5.5a), it follows 

that f(C{) c Vl • In the space X' , let :1 ' be a 

neighbourhood of p such that Wi n (C 2 u ... u Ct ) = ¢ 

and W' c V1. Let (X' - Wi) + be the union of X' - W' 

and all the comp·onents of L' that meet X' - W'. Then 

(X I - W') + is a closed set in X' Let W' I = 

X' - (X' - ') + w • Then FrX I W" c (Ui n -1 ) f (Fr Vi) U 

and so f(FrX ' W") c Vl ' but W I I may not be open in 

Thus let Ei be a special set for the chain Hi ' for 

C1 ' 
X. 
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i=l, 2, ••• , r. If W I I contains a point in ~'L - c" , 
.l. .1. 

add to W I I the component of Ii. - E. 
l l containing that 

poi~t. Denote the set formed in this way by W, which is 

then an open neighbourhood of p in X. Further, 

Fr W c (Ul n f-l(Fr Vi)) U Cl , and so f(Fr W) C Vi C V. 

This proves the theorem. 

The results of §5 can be summed up in the diagram of 

fig. (5.2), where the arrows represent implications. 

/ 
(DMl{(h:d(le~s 

preset"l/I~' r 

corll') e c h {If) 
fur"\ctlOf\ 

psevdo - . 
cOflflnlJOVS f' 

pe('(pheroJS 
co",-t In oj ou sf' 

fig. (5.2) 

r(fle) has no 

Iso/c.:fecl pOlf\. fs 
for C (lOll -,1;«/\., 
con.nedeJ 
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In this diagram, the implications (i) (ii) and (iii) are 

siven by lemmas (5.4), (5.5) (1) and (5.5a), respectively. 

The.implication (iv) is theorem (5.2), and the implication 

(v) is theorem (5.]). What makes (v) interesting is that 

there is evidence to believe that the implication (vi), 

marked by a dotted line, also holds (see the remark on 

pseudo-continuous functions in &1). If this is the case, 

then theorem (5.]) is a considerable improvement over 

theorem (5.2). 

(l)The only property of the connectivity 
that is used in the proof of lemma (5.5) 
non-degenerate connected set C, r(fIC) 
points. 

function f: X - Y 
is that for each 
has no isolated 



1. lNTRODUCTION. In this chapter we give an example of a 

sequence of disjoint closed sets Al' A2 , ... in a ur.i-

coherent Peano space X such that X - An is connected 

for each 00 n, and yet X - Un=l ~ is not connected. 

This example is described in §3, and in §4 it is proved 

that it has the stated properties. In §5 we raise a 

question which arises from this example and the paper of 

van Est [28].,. In §2 we explain the significance of the 

example. 

2. A Peano space is a locally compact, connected and 

locally connected metric space. A Peano continuum is a 

compact Peano space. A connected space is said to be 

unicoherent if however it is expressed as the union of two 

connected closedesubsets A and B, A n B is always 

connected. We then have the following well-known theorem: 

If X is a unicoherent Peano continuum and Ai' A2 , 

is a seauence of disjoint closed subsets of X no one of 
00 

which separates X. then Lh=l ~ does not separate X. 

This theorem has also been proved for certain non-compact 

unicoherent Peano spaces. In 1923 Miss mullikin proved it 
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in [20J for the case in which X is the plane (this proof 

Was considerably simplified in 1924 by Mazurkiewicz in 

r.16J), and in 1952 van Est proved it in [28J for the 

case in which X is a Euclidean space of any (finite)~ 

dimension. Our example shows that the theorem does not 

hold when X is an arbitrary Peano space. 

The proof of the theorem that has been quoted was 

shown to me by Dr. G.T. Whyburn, and runs briefly as 

follows. If on the contrary U~=l ~ separates X, then 

it follows from the unicoherence of X that some subset 
co 

F of Uri=l ~ which is closed and connected in X also 

separates X. But now F is a continuum which can be 

decomposed into the sequence of diSjoint closed sets 

Al n F, A2 n F, .•• , and this contradicts Sierpenski IS 

theorem on continua (see p.ll) of [14J or p.16 of [)lJ ) . 

So in trying to construct our example, we look for 

an example of a-locally compact connected space which can 

be decomposed into a sequence of disjoint closed sets. 

Such space was given by Kuratowski on p.l15 of [14J 0 As 

it is the essential feature in the construction of our 

example, we begin §J by describing this space of Kuratowski. 

J. In the Euclidean plane let An consist of the points 

(x, y) which satisfy one of the following conditions: 



:ijJ 

fig. (1) 

fig. (2) 



( i ) 

(i1) 

( iii) 

(iv) 

n 
-1/2 ~ x ~ 1, y = n 

1/2 , 

x = _1/2n, _1/2n s: y ~ 1/2n , 

_1/2n ~ x s: 1/2n, y = _1/2n , 

x = 1/2n, _1/2n ::. y s: 0 , 

(v) 3/2n +2 
<.. x < 3/2n+l, x s: 1, y = 0 • 

Then the set A U~ A = n=O-11 is the space given by 
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Kuratowski in [14J • It is shown in fig. (1), where the 

crosses indicate the points on the line segment 

o s: x s: 1, Y = ° which are not in A. 

In order to describe the space of our counter example, 

we identify the point (x, y) in the Euclidean plane with 

the point (x, y, 0) in Euclidean 3-space, of which the 

set A therefore becomes a subset. 

Let Bn be the component of (-1, lJ X [-1, lJ X (O} - A 
whose frontier lies in ~-1 U ~, for n = 1, 2, 3, ••.• 

We define a set r by subtracting from the cube 

[-1, 1J X [-1, lJ X CO, -lJ the two sets 

and r. 0, 1 J X {O} X {O} - A. The set Y 

~ n 
Uh=l Bn X ro, -1/2 ) 

is shown in fig. (2). 

Let Z be the reflection of Y in the plane z = 0, 

and let X = Y U Z. The space X is our counter example. 

4. It is clear that X is a Peano space in which AO' Ai' ••. 

is a sequence of disjoint closed sets such that X - ~ is 

t d f h d t X U~ A is not connected. connec e or eac n an ye - n=O.~ 
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Thus it remains only to show that X is unicoherent. 

In order to do this we shall quote three theorems 

whi?h can be found w'i th small changes in chap. XI of [)1 J • 
We first make two definitions. 

He denote by Sl the circle of complex numbers of 
unit modulus. We say that a space X is contractible 

with res:eect to Sl if each mapping f X - Sl is 

homotopic to the constant mapping from X into Sl . He 

say that a space X has :eroperty (b) if for each mapping 

f : X - Sl there is a real-valued mapping ~ on X such 

that f(x) = expei ~ (x)J for each x EX. The first 

of these definitions may be found in [14J; the second 

in [31 J • 

We then have the following three theorems, in which 

it is assumed for convenience that the spaces in question 

are separable and metric. 

THEOREM 1 • A s:eace X is contractible with res:eect 

to S 1 if and only if it has pro:eerty (b) • 

THEORE~1 2. Let Xl and X2 be closed subsets of their 

union X = Xl U X2 such that Xl n X2 is connected. 

Then if Xl and X2 both have proEert;z ~b} ! so does X • 

THEOREM J • A connected space X which has property (b) 
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is unicoherent. 

. Now we show that the Space X of §3 is unicoherent. 

We notice that Y has this property·. l.'f ( ) b x, y, z elongs 

to Y so do all the pOints on the line segment jOining 

(x, y, z) and (x, y, -1). From this it follows that the 

square [-1, lJ x [-1, lJ x {-1} is a deformation retract 

of Y, and so Y is contractible. Therefore Y is con-
1 

tractible with respect to S, and so Z is as well. Thus, 

by theorem 1, both Y and Z have property (b). Since Y 

and Z are closed subsets of X and Y n Z = A, it now 

follows from theorem 2 that X has property (b). Thus, 

by theorem 3, X is unicoherent. 

5. We have seen that the theorem of §2 does not hold for an 

arbitrary Peano space, and yet it does hold for some non-

compact Peano spaces, as has been shown by jl1iss Mullikin and 

van Est in [20J and [28J, respectively. These considerations 

lead us to seek a precise analytical definition of the class 

of unicoherent Peano spaces for which the theorem of §2 holds. 

We notice that the space X of 93 has this property: 

some of its points (namely those of the form x ~ 3/2n+l, 

for n = 1, 2, 3, ••• , y = 0, z = 0) do not lie in 

unicoherent regions with compact closures. Since the 

Euclidean spaces (and likewise the locally Euclidean 
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spaces) do not suffer from this deficiency, we are prompted 

to asks 

~UESTION. Let X be a unicoherent Peano space which has 

a covering by unicoherent resions with compact closures. 

If A1 , A2 ••• is a sequence of disjoint closed sets no 
m 

one of which separates X, is X - Un=l ~ necessarily 

connected? 

If this fails we can try imposing stronger conditions on 

the unicoherent regions that cover X. We can for example 

demand that their closures be unicoherent Peano continua. 



CtIAPTER 5 

A NEW PROOF OF LEBESGUE'S COV6RING LEMMA 

1. INTRODUCTION. Lebesgue's covering lemma states that, 

given an open coverin~ U1 , "" Un of a compact metric 

space X, p, there is a positive number 6 such that if 

p(x, y} < 6 then both x and y belong to some U
i

. 

The purpose of this short note is to enlarge upon this 

conclusion and thereby provide a more interesting proof 

of the lemma than the usual ones. 

We first explain how we arrive at the new result. 

Figure 1 shows a compact metric space covered by two open 

subsets U and V. If 6 is the distance between 

u - V and V - U, then any two points whose distance 

apart is less than 6 both lie in U or V; further, 

no number greater than 6 will ensure this. Figure 2 

shows a compact metric space X, p covered by a finite 

number of open subsets U1 , U2 , 0.', Un and one may 

suspect that the same idea holds. The lines of the figure 

divide the set X up into a number of "compartmentsll 

(those white regions crossed by no lines) and by analogy 

one may suspect that two of these-compartments A and B, 

at a positive distance apart, have the properties 

(i) if p(x, y) < p(A, B) then both x and y 

belong to some U i ' 
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(ii) no number greater than peA, B) has this 

property. 

Except in a trivial case this is so, and it is the 

extension of Lebesgue's lemma that we shall prove. 

.. fig. (1) ,fig. (2) 
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2. We first notice the trivial exception. When each 

pair of pOints is contained in some Ui', no pair of 

compartments satisfies (ii), because every positive 

number satisfies (i). In this case, however, Lebesgue's 

lemma is trivial • 

Now we define a "compartment" (in T15T this is 

called a constituent). Let X be a set covered by a 

fini te number of subsets Xl' X2 , ••• , ~. A compartment 

(of the covering Xl' X2 , ""~) is a non-empty set 



expressible as the intersection of n distinct sets 

consisting of Xi's and complements of Xi's. 
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It follows from the definition that the compartments 

of a finite covering of X form a finite, disjoint 

covering of X. Where no confusion arises, we simply 

speak of compartments, instead of compartments of a 

particular covering. We do this below. 

THEOREM. If U1 , .•. , Un is an open covering of a 

compact metric space X, p, and some pair of pOints is 

contained in no Ui , then there are two compartments 

A and B at a positive distance apart such that 

(i) if p(x, y) < p(A, B), then both x and y 

belong to some U i ' 

(ii) no number greater than p (A, B) has property (i) 0 

PROOF. The two pOints contained in no common Ui belong 

to a pair of compartments contained in no Ui • Thus we 

may define 0 = min p(E, F) , where E and F are any 

compartments contained in no common Ui • Then 0 is 

attained as the distance betl'leen some pair of compartments 

A and B, and it satisfies the requirements of the theorem. 

First, 0 > 0 • For let E and F be compartments 

such that p (E, F) = 0 • Then from E and F we can 



select sequences 

nnd.a subsequence 

{x.l 
1 

and (y.} 
1 

such that 

By compactness, there is a pOint x 

of such that x - x. Ni 
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Since YN - x as well, x 
1 i belongs to both E and F. 

But x belongs to some open meets both 

E and F and so, by the definition of compartment, 

contains both E and Fo 

Also 6 satisfies (i) and (ii). For let p (x, y) < 6 • 

Then x and y belong to compartments l::.. and F. If 

E = F then both x and y necessarily belong to some 

common Ui because each compartment is contained in 

some Ui • If E .j F then p (E, F) < 0 and some Ui 

contains both E and F 0 Thus some Ui contains both 

x and y • On the other hand, if 6 I > 6 then there 

are two compartments E and F, contained in no common 

Ui ' such that p(E, F) < 6 I • In E and F we can 

select points x and y such that p (x, y) <: 6 I • Then 

x and y belong to no common Ui since otherwise Ui 

would contain both E and F • 

3. The above theorem has a simple formulation in .terms 

of Lebesgue numbers. 

Let U U U be a finite open covering of 
l' 2'···' n 

a compact metric space X, p • We shall call 6 > 0 

the Lebesgue number of the covering U1 , U2 , ..• , Un if 



(i) p(X, y) < 6 implies both x and y belong 

to some Ui , 

(ii) no number greater than 6 satisfies (i) . 
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If every positive number satisfies (i) we shall say that 

the Lebesgue number of the covering is infinite. 

It is then a trivial conclusion that the Lebesgue 

number is infinite if and only if each pair of pOints 

lies in some U i • Thus our interest is turned to the 

case where some pair of points lies in no Ui • 

THEOREI1 (alternative form). If U l' U 2' •.• , Un is a 

finite open covering of a compact metric space X, p 

such that some pair of pOints is contained in no Ui , 

then the Lebesgue number 6 of the covering Ui , U2 , .•• , 

Un is given by 6 = min p(E, F), where E and Fare 

any compartments contained in no common Ui • 



CHAPTER 6 

A THEOREH ON INVOLUTIONS ON CYCLIC PEANO SPACES 

. The purpose of this note is to prove that an involution 

f on a cyclic Peano Space S leaves some simple closed 

curve in S setwise invariant. 

~~e shall first define the required terms. A Peano 

space is a locally compact, connected and locally connected 

metric space. A connected space is called cyclic if it 

has no cut point. An involution on a space is a periodic 

mapping whose period is 2; it is necessarily a homeomorpnism. 

A mapping f: X - X is said to leave a subset E of S 

setwise invariant if f(E) = E • 

found, for example, in r Jl] . 

These definitions may be 

~"e shall use the following lemma, which is a variation 

of lemma 1 of r JO] • 

LEMNA. If U, V are disjoint non-empty open sets in a 

cyclic Peano space S, then there are two disjoint arcs 

ab, cd in S such that a, c E A and b, dEB. 

An arc whose end points are a, b will generally 

be denoted by ab 0 If A and B are closed sets, we 

say that ab is an arc from A to B if ab n A = fa} 

and ab n B = (b} • 
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THE 0 REj,l, An involution f on a cyclic Peano space s 
leaves some simple closed c"rve IOn S t 0 - ~ se WIse invariant. 

PROOF. Let f be an involution on a cyclic Peano space 

S . Since f(x) I: x for some point x in S, it follows 

that there is a non-empty region R in S such that 

R ('\ feR) = ~ By the lemma, there are two disjoint arcs 

ab and cd in S such that a, c E R and b, d E f (R) • 

In the first case suppose that one of these arcs is 

disjoint from its image, say ab n f(ab) = ~ • Let pq 

be an arc in R from ab to f (ab) . Then f leaves 

the simple closed curve pq U qf(p) U f(pq) U f(q) P 

setwise invariant, where qf(p) c f(ab) and f(q) p cab. 

In the second case suppose that both of the arcs meet 

their images. First consider ab. Let m be the first 

point on ab in the order a, b such that am n f(am) I: ~ p 

where am c ab • Then am ('\ f(am) contains just the ~. 

points m, f (m) • If m I: f(m) then the subarcs of am 

and f(am) from m to f(m) form a simple closed curve 

which is left setwise invariant under f. So suppose 

that m = f (m) • Also, let n be the first point on cd 

in the order c, d such that cn n f(cn) I: ~, and suppose 

tha t n = f (n) • Then am U f(am) and cn U f(cn) are 

setwise invariant arcs under f. If am n f (cn) = ~, 

then am U f(am) and cn U f(cn) are disjoint, and the 
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construction of an arc pq in R from am to shows, cn 
as in the first case, that there is a simple closed curve 
which is setwise invariant under f . So Suppose tnFl.t 

am n f ( cn) 1= r/J • Let r be the first point on am in 

the order a, m which lies on f(cn). Then r I: m, n 

so that ar U rf(c) and f(a) f(r) U f(r) c are disjoint 

arcs, where ar cam, rf(c) C f(cn), f(a) f(r) C f(am) 

and f (r) c C cn • Further ar U rf(c) and f(a) f(r) U 

f(r) c are images of each other under f, and ar and 

f(r) c both meet R. Thus the construction of an arc 

pq in R from ar to f(r) c again shows that there 

is a simple closed curve which is left setwise inVariant 

by f. 

REMARK. The well-known cyclic connectivity theorem of 

r30] can be used to prove this theorem, in which case the 

region R is replaced by a point and the construction 

of the arc pq in each case becomes unnecessary. But 

use of the cyclic connectivity theorem does not change 

the ideas of the proof, and eliminates only the trivial 

constructions of the arc pq. On the other hand the 

proof of the cyclic connectivity theorem is based upon 

the theory of cyclic elements, non~ of which is required 

in the above proof. Thus in our proof we have avoided 

the cyclic connectivity theorem and used only the lemma 

and in so doing have kept the proof at its most elementary 

level. 



CHAPT2R 7 

ON R. L. MOORE'S DECOMPOSITION THEOREM 

1. INTRODUCTION. The decomposition theorem that R.L. 

I,Ioore proved in r19l states that if ~ is a non-de,o;enerate 

monotone unper semi-continuous decomposition of a 2-sn~8~e 

S ~nd no element of ~ senarates S th th d ·t· • I en e ecomnOSl lon 

space S/~ is also a 2-sphere. The proofs of this theore~ 

that appear in the literature all show that the space S/~ 

has some properties which it is well-known characterize tne 

2-sphere. Thus in R.L. Moore's paper [19] it is shown that 

S/~ satisfies the eight axioms of [18] I which characterize 

the plane (S is a plane in r19JJ. In chap. IX of r14] 

Kuratowski shows that S/~ is a Janiszewski space, which 

it is known is homeomorphic to the 2-sphere. In chap. IX 

of r 31] and chap. XVII of [36] 'whyburn shows that S/~ 

satisfies the hypotheses of Zippin's characterization theorem 

of the 2-sphere (the argument in [31] has been refined in[36]; 

in the former it is shown that no arc separates the decomposi-

tion space; in the latter it is merely shown that no arc that 

lies on a simple closed curve separates the decomposition 

space) • (Zippin's theorem on the characterization of the 

2-sphere may be found as theorem (5.1) in chap. VI ofr31] 

or as theorem (4.2) in chap. IIIofr38].) 

In this note we give a proof that the decomposition 

space S/~ satisfies the hypotheses of Zippin's theorem 
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""ilich is different from those ei ven in r 31l and r 36 J. Our 

proof follows Alexander's proof of the Jordan curve theorem 

as given by NeIman in r 21 J very closely, and thus consists 

of arguments that are already familiar. 

2. We first quote the two results from [21] that we shall 

need. We shall suppose throughout that S is the 2-sphere. 

THEOREH 1. If the common part of two closed subsets A 

and B of S is connected, then two pOints , .. hich are 

separated by neither A nor B in S are not separated 

~ A U B in S. 

T:t1EOREM 2. If the common pn.rt of two connected closed 
ho.s -h.vo co", P 0 n el'\.o 

subsets A and B of S ~~, and neither A 

nor B separates S, then S - A U B has just two 

components. 

Theorem 1 is given as theorem (9.2), p.112 of (21),and is 

an immediate consequence of Alexander's lemma. Theorem 2 

is proved for the case where A and B are arcs in the 

proof of the Jordan curve theorem in [21 ].. But in this 

proof the only property of the arc that is used is that 

it is a continuum which does not separate the plane (or 

sphere) • 



The definition of an upper semi-continuous (usc) 

decomposition is given in chap. VII of[31J. A usc de-

composition is monotone if each of its elements is a 

continuum. 

THEOREH. Let tJ be a non-degenerate monotone usc de 

composition of S no element of which separates S. 

Then the decomposition space s/~ is a Penno continuum 

which satisfies the hypotheses of Zippin's theorem on 

the characterization of the 2-sphere; i.e., sis 

satisfies these three properties: 
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(a) sltJ contains at least one simple closed curve, 

(b) no arc in s/'tJ separates sis, 

(c) every simple closed curve in sl'tJ separates sis 0 

PROOF. Since the decomposition space is a Peano continuum 

with no cut paints, it is clear that (a) is satisfied. 

In order to prove (b) we suppose that there is an 

arc n in sis which does separate sis. l,~e denote by 

TT- 1 (n) TT S S ~ sis the natural projection. Then is a 

closed subset of S which separates S. 

two points in S that are separated by 

Let x, y be 

-1 TT (0). 

We let ~ S [0, 1J ~ n be a homeomorphism and we 

use Alexander's "pinching process." Let ex I = co( rO, 1/2 J) 
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and (Y I I = cp((1/2, 1J) Then -1 
(0. ') -1 (0" ) . TT and TT 

-1 [t rc closed sets Nhose union 1s TT ( Cl) and whose inter-

section is the connected set -1 (Cl I Cl"). TT n Thus, by 

theorem 1, one of the two sets -1 ( 0') 
-1 

(Cl " ) TT ,TT 

separates x, y in 3 We may SUppose that it is the 

former, and ,,.e define 0 1 = Cl' • Applying the same 

argument to 0·1 as we have applied to Cl, we get a 

subarc 02 of Cl 1 which separates x, y in S. 

Continuing in this manner, we get a sequence of arcs 

0 1 => Cl 2 => Cl] => ••• 

in 3 for each n, 

such that TT-
1 (Cln) separates x, y 

and 6 (Cln ) - 0 by construction. 
00 -1 

Let (p 1 = nn=lCln Then ,.,. ( p) is a closed . 
set which does not separate x, y in 3 • From this vle 

obtain a contradiction as follows. Let y be an arc in 

3 -1 (p) whose end points - TT are x, y • Let U be the 

union of all the elements of I) which do not 

It folloNS from the upper semi-continuity of 

TT-l (p) 10n 3. Thus is a neighbourhood of 

meet Y • 

I) that U 

TT(U) is 

a neighbourhood of p in S/I) and so we can find an n 

such that Therefore -1 ) 
TT (On c U, and so 

TT -1 (Cl
n

) does not separate x, y in S. This contra-

diction shows that there is no arc Cl which separates 3/1) • 

In order to prove (c) , let J = a U S be a simple 

closed curve in 3/1) , where 0., S are two arcs such that 

0. n S = ta , b} , where a, b are two points. Then 



TT 

TT 
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-1 (3) -1 (a.) 
-1 

(~) and -1 
(a.) 

-1 
(~) = TT U TT TT n TT = 

-1 (a) -1 (b), which has exactly two U TT components. 

We have Just shown that no arc separates Sit; • From 

this and the fact that TT is monotone, it follows that 

TT-1 (a.) and TT- 1 (0) p are continua which do not separate 

S (see (2.2), p.138 of[31]). Thus by theorem 2, 

S - TT-l (3) t V has exactly two componen s U, • Since 

the decomposition is monotone, TT(U) n TT(V) = ¢. Thus 

(S/~) - 3 = TT(U) U TT(V) is a separation of (S/~) - 3 • 

This shows that the decomposition space satisfies (c). 



C:-:IAPTER 8 

A NOTE ON T~{E CYCLIC CONNECTIVITY THEO::1;:;:;.~ 

1. INTRODUCTION. A locally compact, connected and locally 

connected metric space is called a Peano space. A cut 

point of a Peano space is a point whose complement is not 

connected o In r2J Ayres proved the well-known cyclic 

connectivity theorem, which states that every two points 

of a Peano space X having no cut points lie together 

on a simple closed curve in X 0 Whyburn simplifiea the 

proof of this theorem in r30J , ,using some elementary 

properties of cyclic elements. In this simplification 

he first proved these two lemmas. 

Lc<;~·1r.iA 10 If A and B are non-degenerate, closed and 

disjoint subsets of X, then there are two disjoint arcs 

in X joining A and B. 

L"Si'lj1IA 2. Every point x in X is an interior point of 

s orne arc a x b in X. 

The proofs of these two lemmas constitute the main part of 

the proof in (30J, the fact that each two points lie together 

on a simple closed curve being a simple consequence of the 

two lemmas. 

Since its first appearance in 1931, the proof of the 



152 

cyclic connectivity theorem that Vlhyburn gave in [30J has 

appeared in several places in the literature, namely in 

f31] , f38] and rll]. In this note we shall show that 

lemma 1 can be proved differently from 130]. 

(A second proof of the cyclic connectivity theorem 

has been given by Ayres in r3]. In this paper the 

organization and proof of the theorem are different from 

those in ~30]. Our proof and the proof of the correspond­

ing part of c r J] have in common the use of a "finiteness" 

argument, but our techniques are different.) 

2. We base the proof of lemma 1 on a theorem(l)of Whyburn 

that appeared in 1933, two years after the appearance of 

Hhyburn's proof of the cyc lic connec ti vi ty theorem in [30] • 

This theorem states that 

Each non-cut point of a Peano space S lies in an 
N 

arbitrarily small region U such that U has property 

" Sand S - U is connected. 

(A second method of proving this theorem has been given by 

Bing in the proof of theorem l' of [4]). It follows as 

a corollary of the above theorem that the region U given 

there has a locally connected closure (see p.20 of [31]). 

C "nq S-regions in 
(l)theorem §4 of G T vThybUrn,Oncern1 20 (1933) pp.131-139. 
locaI~y connecteacontlnua, Fund. Math. 
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\.Jhen we speak of an arc in the sequel we permit it 

to be degenerate. We shall say that an arc ab joins a 

closed set A and a closed set B if ab n A = (a} 

and ab n B = (b} • 

NEl-l PROOF OF LEMMA 1 • Let X be a Peano space with no 

cut points and let A and B be non-degenerate, closed 

and dis joint subsets of X. It follows from the theorem 

and its corollary that have been quoted, that for each point 

x E X, there is a region Ux about x such that A i Vx ' 

B t Vx and Ux is a Peano space which does not separate 

X • \.[e shall in addition suppose that Ux = int Ux • 

By the simple chain theorem, the covering {UxJ x of 

X contains a simple chain from A to B, which we shall 

denote by U l' U 2' ••• , Un' 

Supposing that n > 1, we see that V2 t. u1 • For 

if n > 2 this follows from the relations U2 n U3 /:. (/) 

and U1 n U3 = (/) , and if n = 2 it follows from the 

relations U2 n B /:. (/) , U1 n B = f/J and U1 = int U1 • 

Thus in the Peano space X - V1 ' there is an arc a1 that 
-

joins A and U2 • Also, in the Peano space U1 '_ there 

is an arc f31 that joins A and V2 • 

Supposing that n > 2, it follows by the same reasoning 

as before that UJ ¢ U2 • Let V be an arc in the Peano 

space X - U2 that joins A U a1 U $1 and U3 • If V 

meets neither a 1 nor f31' we define a2 = V • If V 
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meets either (11 or (31 ' we may suppose without loss of 
generality that it is the former, and we define CY2 as 
the union of y and the subarc of (11 that joins A 

and y. 1ie let () be an arc in the Peano space U2 
that joins Sl and U3 ' and we define S2 = Sl U () '. 

He continue inductively in this manner. If we put 

B ="Un +1 , then we finish up with two disjoint arcs 

jOining A and B. 

We remark that in the above proof we can get by 

demanding only that the sets U1 , U2 0.', Un do not 

separate X; we do not need the closures of these sets 

to be locally connected. For in this case, after having 

selected the arc (1k in X - Uk in the proof, we can 

select Sk as an arc joining A and Uk +1 in the 

component"of X - ak that contains the connected set 

Sk-l U Uk' 

Finally we remark that it does not seem that the 

~ethod that we have used to prove lemma 1 can be used to 

prove the second n-arc theorem (see §l, chap. 1 of this 

thesis) • This is because if X is a Peano space which 

is not separated by any pair of points, it does not 

necessarily follow that each point x EX lies in an 

arbitrarily small region U of X such that X - U 

is a Peano space with no cut pOints. An example of 

such a space X can easily be given. 



· APPENDIX 

At the beginning of §3, chap. 3 of this thesis, we 

said that, using the definition of unicoherence between 

two subsets as given in §5 of [34] (see also p.44 of this 

thesis) we can easily show that if M is any connected, 

locally connected regular Tl-space, and M is unicoherent 

between some pair of distinct points, then M is unico-

herent. We demonstrate this below. 

Suppose M· is unicoherent between a pair of distinct 

points Pi' P2' but that M is not unicoherent. Thus 

there are two connected closed subsets Ai' A2 such that 

M = Ai U A2 and Ai n A2 = Bl U B2 , where Bl and B2 

are disjoint non-empty closed sets. We may suppose with-

out loss of generality that Pi and P2 both belong to 

A2 • For each point x E M there is a region Ux about 

x such that Ux contains Pi if and only if x = Pi' 

and Ux n Bi 1= r/J ·if and only if x E Bi· From the cover-

ing {Ux = x E M} of Iv! we can select a simple chain 

to the set 

Bl U B
2

• We may without loss 9f generality suppose that 

Pi E U
l 

and Un n Bl 1= ¢. Let V be a region about 

P2 
such that V n . ;n U = ¢ and V n Bl,' 1= ¢ if and Ui=l i 



.' 

Define 

A ' 1 

A ' = 2 

Then A ' n A ' 1 2 1s the union of the three non-empty 

closed sets Bl U ~=l (Ui n A2), B2 and Ai r V. 
As the first two of these sets are disjoint, and the 

third does not meet the first two, it follows that 

A I n A ' 1 2 is not connected. But for i = 1, 2, 

1s a connected closed set and Pi E lnt Al '. This 

is a contradiction. 

A I 

i 
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