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ABSTRACT

vJe have mentioned that eacn chapter in this thcsis
is concelved of as an independent paper, except for
chanter 3, which is a collection of results on non-
continuous functions. Consegquently each chapter contains
a clearly marked introductory section, in which its back-
ground and content are explained. In this abstract we
shall summarize the remarks in these introductory sections.

In chapter 1 we present an n-arc theorem for Peano
spaces which 1s an extension of the theorem in §2 of [32],

which Menger called the second n-arc theorem in [17].

Wnereas in the second n-arc theorem n disjoint arcs
are constructed joining two disjoint closed sets A and
B, in chapter 1 we split the closed set A 1into n dis-
joint closed subsets Al' AZ' ceny An and give necessary
and sufficlent conditions for there to be n' disjoint
arcs joining A and B, one meeting each A;. At the
end of chapter 1 we present a conjecture, which we have
been able to verify in special cases,

In F35] Whyburn proved a theorem concerning the weak

connected '

separation of two non-degenerate closed sets A and B
by a gquasi-closed set L 1in a locally cohesive space X,

In cnhapter 2 we show that A and B can in fact be

taken as arbitrary closed sets in this theorem; that 1is,
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we remove Llic restriction of non-degeneracy on A and 5.
A

In chapter 3 we study the clrcumstances under waich
n connectivity functlon is peripherally continuous.,

The study of the abstract relations between non-
continuous functions was initiated by Stallings in 237,
In this paper he introduced the lpc polyhedron and snowed
that a connectivity function was peripherally continuous
on an 1lpc polyhedron, Whyburn took up the study of non-
continuous functions in 337, 347 and 735), .le intro-
duced the locally cohesive space, which is more general
than the lpc polyhedron, and proved that a connectivity
function was peripherally continuous on a locally
cohesive Peano space.

For technical reasons, the locally cohesive space
is not permitted to have local cut points. It is obvious,
nowever, that on many Peano spaces having local cut points
a connectivity function remains peripnerally continuous,
‘In §2,3 of chapter 3 we formulate a sequence of properties
Pn(X), which permit the space X to have local cut points,
and‘we prove in each case that a connectivity function
f + X - Y 1is peripherally continuous when X has pro-
perty Pn(X). Each of these properties is an improvement
on the last, and the final one, the U-space, satisfactorily
incorporates the class of Peano spaces with local cut points

on wnich we are able to prove that a connectivity function
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is peripherally continuous,

An interesting feature ol &3 of chapter 3 is provided
by two '"weak separation theorems," and mofe will be found
about these in the introduction to chapter 3.

In §4 of chapter 3 we show that a connectivity
function 1is peripherally continuous on a locally compact
ANR. This affirmatively answers a questlon that Stallings
raised in 237.

The U-space that we have introduced in §3 of chapter
3 imposes a 'unicoherence condition" in the space X
(as do all the properties Pn(X) considered in §3,
chapter 3), In §5 of chapter 3 we generalize the U-space
to the S-space., This imposes a "multicoherence condition"
on the space X, and we prove.that a connectivity function
is peripherally continuous on a cyclic S-space,

We close chapter 3 by considering the question of
placing weaker conditions than connectivity on the function
f ¢+ X - Y which will still ensure that f 1is peri-
pnerally continuous,

It is well known that if X 1is a unicoherent Peano
continuum and Al' A2. «so 1S a sequence of disjoint
closed subsets of X no one of which separates X, then
U:=1 A, does not separate X. 1In [28] van BEst proved
this theorem for the case where X 1s a Euclldean space

of n dimensions., In chapter 4 we give an example which
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snows tiiat this theorem does not hold if X 1is an
arbitrary Peano space,

In chapter 5 we provide a new angle to Lebesgue's
covering lemma, We show that if the Lebesgue number §
of an open covering Ul' U2. veey Uy of a compact
metric space X, p 1is finite, then it can be defined
by the formula 6 = min p(Z, F), where E and F are
any compartments contained in no common Uy,

In chapter 6 we show that an involution on a cyclic
Peano space leaves some simple closed curve setwise
invariant,

Whyburn has given a proof of R, L. Moore's decom-
position theorem for the 2-sphere in [31] (a refinement
of this proof is presented in 361), His proof is
accomplished by showing that the decomposition space
satisfies Zippin's characterization theorem for the
2-sphere, In chapter 6 we present an alternative way
of showing that the decomposition Space satisfies Zippin's
characterization theorem, Our proof closely follows
Alexander's proof of the Jordan curve theorem as given
by Newman in 217, and so consists of arguments that are
well-known in another context,

In [30] wWhyburn gave a proof of the cyclic connectivity
theorem, and in all subsequent appearances of this theorem

in the literature Whyburn's proof has been used, Whyburn



divided the proof of the theorem into three parts: lemma 1,
lemma 2, and the deduction of the theorem from lemmas 1 and
2. . In chapter 8 we give an alternative proof of leama 1,
Our proof is based on the fact that a cyclic Peano space
has a base of regions whose closures do not separate the
space, and it proceeds by an induction on a simple chain

of these regions,



CHAPTYR 1

AN N-ARC THEOREM FOR PEANO SPACES

1. _INTRODUCTION. In this chapter we present a theorem
and a conjecture that arise from [32].

Wwe first recall some definitions from 321, Let A4,
B and X ©be closed subsets of a topological space S,

We say that X Dbroadly separates A and B 1in S if

S - X 1s the union of two disjoint open sets (possibly
empty) one of which contains A - X and the other of

which contains B - X. The space S 1is n-point strongly

connected between A and B provided no set of less

than n points broadly separates A and B in S,
An arc ab joins A and B if ab N A = {a} and
ab N B = {b}.

The following theorem, in which we have replaced
"completeness" by '""local compactness," appears in [32],

It is called the second n-arc theorem by Menger in 177,

THE SECOND N-ARC THEOREM. Let A and B be disjoint

closed subsets of a locally connected, locally compact

metric space S. A necessary and sufficient condition

that there be n disjoint arcs in S Jjoining A and

B 1s that S8 be n-point strongly connected between

A and B,



In §2 we split the closed set A into n
disjoint closed subsets Aq, 4Ap, ..., A,. The theoren
then gives a necessary and sufficient condition for there
to be n disjoint arcs Jjoining A and B, one meeting
each Aj.

In §3 we split A and B 1into disjoint closed
subsets Aq, A2, ..., An and By, B2, ..., By .

The conjecture then gives a necessary and sufficient
condition for there to be n disjoint arcs joining

A and B, one meeting each A3 and one meeting each
B; . (I have given a proof of this conjecture for the
case n = 4, which is the first case that offers dif-
ficulties, but it is not included here,)

It will be noticed that the space S 1in the theorem
and in the conjecture is not actually a Peano space, as

the title of the chapter states, but it becomes one

wnen the property of connectedness is placed on 1it.

2. Let A4, Aoy seey Ay and B be disjoint closed
subsets of a topological space 8. We shall say that a

subset X of S 1is a large point of S (with respect to

Ay, A2, ..., Ay) 1if it is a one-point set or one of

the sets A; . We shall say that S 1s n-point strong-

ly connected between A1, 42, ..o An and B provided

the union of less than n large points does not broadly

separate Ay y Ao y ... y A, and B 1in S.



We shall say that a system of n disjoint arcs in
5 joins A1 A2, o s e An and B 1f each arc joias
A Y A2 U...UA and B and each A; 1is Joined to

B Dby exactly one of the arcs,

THEOREM. Let Aq, Ay, +..ey A, and B De disjoint

closed subsets of a locally connected, locally compact

metric space S. A necessary and sufficlent condition

that there be n disjoint arcs in S Joining A4, AZ'

veey A, to B 1is that S be n-point strongly connect-

ed between Al, A2| s e 0y An and B.

We need two more definitions for the proof of the
theorem. Let Aq, Apy ..., An be disjoint closed
sets in a topological space S, and let 81, 82, . ooy Bm
be disjoint arcs in S, We shall say that A; 1is

a zero, a single or a multiple with respect to B84, By,

ceey Bm according as to whether it meets zero, one or

more than one of the arcs 61, 82, ooy Bm. A subarc B

of some Bi is said to be a bridge of 81, B2y eses Bp
spanning Al' A2, . s ay An if B8 Jjoins some Aj to some
Ay, for j # k. Clearly there are only a finite number

of bridges in 81' Bor eeey B spanning Al’ A2’ o An.



PROOF. Using the terminology and notation of the theorem,
it is clear that the condition is necessary for the exist-

ence of n disjoint arcs joining A1, A2, ..., A

n to

B 1iIn S. So we turn to proving that it is sufficient.

By the arcwise connectivity theorem, the condition
is sufficient for n = 1. BSo we assume its sufficiency
for each positive integer <«<n and prove its sufficiency
for n Dby induction.

By the second n-arc theorem there are n disjoint
arcs Bl ' 82 y eeey Bn in S Jjoining Aq U AZLJ... U An
and B. Let p Dbe the number of singles of A3, Ao,
+ves Ap with respect to B8,, Bo s eeesr By o We shall
suppose that p < n and show how to construct a second
system of n disjoint arcs joining A1 U A U ...U 4p
and B with respect to which the number of singles is

p + 1. The process can be repeated n - p times to

obtain the desired system of arcs Joining A1, Ao, ...,

A, and B.

Let A9, Az oo, Ap be the singles, Ap+1.
Api2r  eevy Aq the zeros and Aji1, Aq+2, eeesr Ap
the multiples of A1, Ap, ... Ap with respect to
Bis By s vee, By Since p < n there is at least one

zero and at least one multiple here. We shall construct

a system of n disjoint arcs joining A1 U A2 U eoe U An



and R with respect to which Ay, A,, ..., byl nre
sinrles. To this end we consider the locally connected,
locally compact space S - Ap+2 U Ap+3 u . ..U Ay Since

it is (p + 1)-point strongly connected between A, Ap,
ey Ap+1 and B and p + 1 <q £ n, it follows from
the inductive hypothesis that it contains p + 1 disjoint

8rcs 04, Op 4 «eey O joining Al. Aoy .., A

p+l p+1

and B. We suppose, further, that 0, meets A, for

r <p + 1,
We now use an inductive technique that is familiar

from (32, We relabel B1s B2y «vvy By so that B,

0
meets Ar for r < p, and we start by defining o_ = oa,. 0 A

r I

0
for r < p + 1 and Br =B for r < p. Now we suppose

T

that we have defined systems of arcs aT, 0% ) eeey 0g+1
m m m

(possibly degenerate) and B4, B, , ..., Bp such that

m
(a) a,. NA. Co,.Ca and o0° does not meet B U

r r r
m .
c
I
Apn, a: meet then a? is degenerate, (d4d) if O s 82
meet then they meet in a common end point, (e) exactly
m m
one of the sets a) U4y, o, U Aps wevy 053 U hpy
m
fails to meet B8) U By U ... U B, (f) if by 1is the
m
number of bridges of BT. Bg v ee e Bp that span

m 21, We now show how the induction may be continued

to the next stage and how it leads, after at most a



finite number of stages, to the construction of n dis-
Joint arcs joining A4 U A U ... UA, to B with
rqspect to which Ay, A2, ..., Ap+1 are singles,
We proceed by denoting by ag U At the set, given
) m m m
in (d), which does not meet By UByUiu U By We let
X ©be the first point of oy in the direction oL N Ag,
o N B that belongs to the union of the three sets
m m m
B - 81 U 82 U ... U Bn. We consider separately the three
m m m
mutually exclusive cases (1) x € 84 U B2 U,.. U Bp,

m
We first consider case (1) and let x € Bu' We

m+1 m m+1
define o0, = a,_ for T £Zt, r<p+1, and oy
as the subarc of ay whose endpoints are oL N At, b
m+1 m m+1
We define B, = Bg for s Zu, s £ p, and By as

m
the subarc of Bu whose endpoints are Bu nag, x. It
is easily seen that (a) - (d) of the inductive hypotheses

are preserved. In order to verify that (e) 1s preserved,
m

we notice that it follows from (a) - (d) that each Bs

meets at most one a? U A.. Thus it follows from (e)
that the relation (02 U Ar) n 82 # ¢ establishes a
1 - 1 correspondence between the collections BT. 82 )
coor By and o7 U G U Ape eees 053 U Agg

m m m



m
be the set that correspond: to B; under this relation,

. . n+1
it is clear that by (d4) o tF U A, does not meet

v
m+1 m+1 m+1
By . U Bp U.oo U ep , and that it is the only set

41 m+1 m+1
this property. It is clear that (f) 1is also preserved,
m m+1 m
since (B, - B, ) U {x} 1is an arc that joins o, U A,
m
and 0y U A, and so it contains at least one bridge of

moo_m o .
81' 82 ’ s 00y Bp Spannlng al U Aly 02 U AZ, "0 0y

U . m+1 m+1
ap+1 Ap+1 that is not contained in 81 U 82 U ... U

m+1
Bp ;

i.e., by, < by,

Thus in case (1) the inductive hypotheses are
preserved. We notice that it follows from (f) that
case (1) can occur for only a finite number of values
of m, since bo is finite. Thus case (2) or case (3)
must eventually occur. We complete the proof of the
theorem by showing that in either of these cases we can
readily obtain a system of n disjoint arcs Jjoining
Al UA, U ... UA and B with respect to which
Ay, Ap, ...y Ap+1 are singles.

We shall only deal with case (2), as case (3) is
practically identical to it., Thus we let x € B,
P +1<w<n, Wedefine a as the subarc of a. whose
endpoints are oy n At' x and B as the subarc of B

whose endpoints are B, N B, x. We first notice that

m m
it follows from (a) - (d) that if a,. U A, Bs meet,



\ m m o, .
then oL U BS ls an arc jJjoining A,, B. Sincea 1 -1

correspondence 1is established between the collections

m m m ) m
01 U A1| 02 U A2| ) Ot_l U At-l’ at+1 U At+1' e v ey
m

w m m
np_’_lu Ap+1 and 81' 82 ’ * e ey Bp

m m
(rp U AL) N By # @ 1t follows that the union of

m m m m m m m m
1 GZ, e s 0y Gt_l. ct+1' s ey 0p+1, Bl, 82, ooy Bp

by the relation

o
may be expressed as a union of p disjoint arcs Joining
A1, Apy veey Apl1s Ap4ls eee, Ap+1 and B. Purther-
more, by (a), (b) these arcs are disjoint from the arcs

Bp+1! Bp+2 1 ey BW—l ’ BW+1 Y ey Bn y 0, B . Thus

the union of o}, ap : b i
€ union oi 01' G2 » o0 e ey Ot_l N Gt+1 ) e 0 ey ”p+1 ’

m m m
Bl! 82 [ LI I I ] Bp ? Bp+1 ’ Bp+2 ] " e ey Bw_l N BW+1 'y e e 0y

Bn' a, B may be expressed as a unionof n disjoint
arcs joining A4 U A U ... U A, and B with respect
to which Aq, A2, e,y Ap+1 are singles. This completes

the proof of the theorem.

3‘ Let Al, A2, * e ey A’Xl and Bl. B2| o0 0y Bn be
disjoint closed subsets of a topological space S. We

shall say that a subset X of S 1is a large point of

++sy By) if it is a one-point set, a set Ay, or a set

B:

j» We shall say that S 1s n-point strongly connected

between Al ’ Az. e 00y An and. Bl $ BZ' s e 0y Bn



provided the union of less than n large points does
not broadly separate A1 U Ap U ... U A, and By U By U
eve U 5y In S,

wWe shall say that a system of n disjoint arcs in
S Joins Ag, A2y «ev, Ap and B, B2, ..., 3B, Iif
each arc joins A3 UA2 U... UA; and By UBp U... UB,,
and each Ai meets just one arc, and each B; meets just

one arc,

CO:JJ;SCTUBE- Let Al y Az, v ey An and. Bl y BZ. * 0 0y Bn

be disjoint closed subsets of a locally connected, locally

compact metric space S. A necessary and sufficient con-

dition that there be n disjoint arcs in S Jjoining

A1, Ao, veey A and B«, Boy, .., B is that S
1 2 n 244 D4 2 n ==_¥iat

be n-point strongly connected between Aq, A2, ...y Ay

and Bl, B2| s 0 0y Bno

The necessity of the condition is again trivial, so
it is the sufficiency of the condition that is interesting.

The conjecture is clearly true if the sets Ay, Aj,
eeer 4, and Bl' By ..., Bp are compact. For in
this case the quotient space Q obtalined by identifying
a pair of points if they belong to a common Ay oOT a
common Bj is locally compact, locally connected and
metrizable, If w 1is the natural projection from S

onto Q, it is clear that Q 1is n-point strongly
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connected between w(A1) U m(4p) U ... U n(A,) and

m(By1) U n(Bz) U ... Un(By). Consequently it follows
fron the second n-arc theorem that there are n disjoint
arcs in Q Joining w(Aq) U m(A5) U ... U m(4,) and
m(B1) U m(By) U ... U m(By). The m-inverse of each of
these arcs contains a connected closed set which meets

both A1 U A U ... U An and B{ UB, U ... U Bn' from

2
which it easily follows that there are n-disjoint arcs

in S ,jOining A1, AZ, e 0 0y An and Bl N BZ' * 00 Bno
When some of the sets A, A2, ceey A or
B4, BZ' oo Bn fail to be compact, the above argument

does not suffice as the quotient space @Q 1s not in
general metrizable,

There ought to be a combinatorial proof of this
conjecture along the lines of the proof in 82, which
would work equally well whether some of the sets
Ay, Apy ...y Ay OT By, By, ...y By fail to be
compact or not. Such a proof has been given for the

case n = 4, as was remarked earlier.



CHAPTER 2
THE SEPARATION THEOREM FOR QUASI-CLOSED SETS

1. INTRODUCTION. In this chapter we complete a sequence of
arguments concerning quasi-closed sets that appear in r357j.

In [ 35]) Whyburn proves the following theorem.

THEOREM. Let A and B be disjoint non-degenerate closed

and connected sets_in a locally cohesive Tq-space X.

Any guasi-closed set L which weakly separates A and

B in X contains a closed set K which separates A4 - K

and B - K in X.

In the "Concluding Remarks" of [ 35] Whyburn shows
that the requirement that A and B be non-degenerate
can be deleted. He also mentions that the condition
that A and B be connected can be replaced by the
requirement that each of them be of dimension >0 at
each point.

In this chapter we show that A and B can in
fact be arbitrary closed sets. The theorem to this

effect appears in §2. We call it the separation theorem

for quasi-closed sets,

I owe it to Dr. Whyburn for pointing out, in
Appendix I of [37], that the results in the "Concluding
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Remarks" of [35] are partial versions of the theorem in §2,

2. We first define the necessary terms. We follow the de-
finitions in [35], except for two changes, Firstly, our
definition of '"unicoherence between two subsets" is weaker
than the definition in §5 of 347, on which the definition
of "local cohesiveness" in [35] is based. Secondly, we
define "local cohesiveness" for arbitrary spaces., This
means that we usually have to include certain separation
properties in the statements of our results.

In all the definitions that follow X 1is an arbitrary
topological space unless otherwise stated.

A set E 1in a space X 1s quasi-closed in X if

each point in X - E has a base of neighbourhoods whose

frontiers do not meet E.

Let E and F Dbe two disjoint subsets of a connected

o

space X. We say that X 1is uniconerent between E and F

if however X 1s expressed as the union of two connected
closed sets M and N such that M - N and N - i contain
E and F, respectively, M NN 1is always connected, If p

is a point of a spage X, we say that R 1s a canonical rezion

about p in X 1if R 1s a connected neighbourhood of p, the
frontier Fr R of R 1is connected, and R 1s unicoherent
between {p} and Fr R (or, equivalently, in case X is

connected, X 1is unicoherent between {p} and X - R).
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A space X 1is locally cohesive if each of its points has

a base of canonical reglons. Notice that a locally
cohesive space 1is locally connected.

Let E, F and L ©be subsets of a space X. We
say that L separates E and F in X if X - L 1is
the union of two sets M and N which contain E and
F, respectively, and which are separated in X (¥ and
N are separated in X if ¥ n N=¢g =M N). We say

that L weakly separates E and F 1in X 1if no

component of X - L meets both L and F. Notice that
we may have E N FN L #¢ 1in this last definition.
Before giving the theorem, we state two simple
lemmas. These can be found as statements in §1 of [35],
They are, in any event, easlilly proved on the basis of our

definitions,

2,1. LEMMA. If R 1s a canonical region about a point

p 1in a locally cohesive space X, and K 1is a closed

set in R that separates p and Fr R in R, then there

is a canonical region S about p such that S c R and

Fr SC K,

2.2. LEMMA, If L 1is a guasi-closed set in a locally

cohesive regular space X, then each point of X - L

has a base of canonical regions whose frontiers do not

meet L.
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2.3. THEOREM. Let A and B be closed sets in a

locally cohesive repgular T4q-space X. Any quasi-closed

se L which weakly separates A and B in X contains

a closed set K which separates A - K and B - X 1in X,

PROOF. We notice that we may suppose without loss of
generality that X 1is connected, for on the one hand the
restriction of L to a component of X 1s quasi-closed,
and on the other hand the union of a collection of closed
sets, each contained in a component of X, is closed. °
Thus we shall suppose that X 1s connected.

We first consider the case of a point p € A - L
which lies in a non-degenerate component Hp of X - L,
and we show that there is a region G, about p which
does not meet B and for which Fr Gy © g n L.

b

First notice that ﬁp - Hp c L; for if x € ﬁp - L,
then Hp U {x} 1s a connected set in X - L and so is
contained in Hp. Now let V ©be the union of all the

component; of X - Hp that meet B. Then Fr V. N Hp = ¢.
For let x € Hp and let R Dbe a canonical region about

x which neither meets B nor contains Ky (Hp is non-
degenerate and X 1is a Tl-space) and whose boundary Fr R
does not meet L. Then Hp meets both R and its

complement and so contains Fr R. However, each component

of V meets X - R but not Fr R, and so does not meet R,



15
Consequently V does not meet R and x g Fr V,
Thus Fr V c ﬁp - Hy. Thus X - (Vuy (B n i{'p)) is a
neighbourhood of p which does not meet B and whose
frontier is contained in ﬁp n L. If we let G, be the
component of X - (Vy (B n ﬁp)) that contains p, then
Gp is a region abopt p which does not meet B and
for which Fr G_c H. n L.

p p

Now we conslder the case of a point p ¢ A - L which
lies in a degenerate component of X - L, and we show that
there is a region Gp about p whose closure does not
meet B and whose boundary is a connected subset of L.

Let R be a canonical region about p whose
complement is non-degenerate and contains B and such
that Fr Rn L =¢. Then LN R 1is a quasi-closed set,
and we assert that it weakly separates the closed sets
{p} and X - R. For let H be the component of
X -L N R that contains the connected closed set X - R.
Then H N R 1is connected, because it is a closed subset
of H which contains the connected set Fr R. It follows
that p éannot belong to H, because if it did {p} v
(HNn BR) would be a non-degenerate connected subset of
X - L, contradicting the assumption that p 1lies in a
degenerate component of X - L. Since H 1is non-
degenerate, there 1s by the second paragraph of this

proof a region G which contains H and does not meet
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the closed set {p}, and whose boundary lies in L n R.

Let G_ Dbe the component of X - G that contains p.

p
Then Fr Gp is connected. For X = §p U (X - Gp), Wwhere
Ep and X - Gp are two connected closed subsets of X

such that {p} n (X - Gp) = ¢ and (X - BR) n ap = ¢.
Therefore, since R 1is a canonical region about p,
'r G

p = 65 n (x - Gp) N R 1is connected. That is, G

is a region about p whose closure does not meet B

b

and whose boundary is a connected subset of L.

We shall suppose hereafter that B 1is non-degenerate,
for if B 1s degenerate we can prove the theorem by
Iinterchanging the letters "A" and "B" 1in the second
and fourth paragraphs of the proof when B < X - L, and
by removing the set B from X when B c L.

Now we show that Fr U G, © L, the union being
taken over all points p € A - L. Suppose that
x € (Fr U Gp) - L. Then x £ A, so there is a canonical
region R about x such that RN A=¢, RPB and
Fr RN L =¢, Then Gp meets R for some p € A - L,
and conseéuently Fr Gp meets R, because R 1is

connected and not contained in G It follows that p

p'
cannot lie in a degenerate component of X - L, for in

this case Fr Gp is a connected subset of L and so

is contained in R. Thus, since X - R 1s a connected

set in the complement of Fr Gp which meets B, Fr Gp
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separates not only p and B Dbut also p and X - R,

That is, p € R, which is false because R n A = ¢. So

p 1lies in a non-degenerate component Hp of X - L.

Further, since Fr Gp c ﬁp, Hp meets both R and its

complement, and so meets and contains Fr R. However
X £ Ep, so there is a point q € A - L such that Gg
meets R - Gp, and as before g lies in a non-degenerate

component H of X - L which contains Fr R. But this

q
implies that Hy N Hq £ ¢, and so Hp = Hq. Consequently
Gp = Gq, by construction, which is a contradiction.

Let K = (Fr U Gp) u (A - U Gp), the union again
being taken over all p € A - L, Then K 1s a subset
of L which is closed in X, and it separates A - X

and B - K in X.

3., In conclusion we wish to point out the relation
between certain results in [8)] and [37] and the theorem
given above,

We consider the following three results, which are
proved in [8):

(a) Theorem, P.54% [87.

(b) Corollary 1, p.57 [81],

(c) Separation Theorem, p.59 [8]
Referring to [8), we see that (a) implies (b) and (b)

easily implies (c). There is also an easy implication



from (c) to (a). Thus (a), (b) and (¢) are all
equivalent. Again referring to [8], we see that the
conclusion in each of (a), (b) and (c) is the same,
namely that a closed set E can be found in a set L
whlch separates two sets A - L and B - L 1in a space
X. Let us replace this conclusion in (a), (b) and (c)
by, "a closed set E can be found in L which
separates A - E and B - E in X." Then we get three
propositions (a)', (b)' and (c)'. It is clear that (a)'
and (c)' are untrue, and (b)' is simply our theorem
above. It will be noticed that (b)' is a better result
than (b), because (b) can be immediately deduced from
(b)', but not conversely.

In Appendix 1 of [ 37 ] the proof of our theorem is
brbken into three stepsi

(d) Theorem 1, p.58 [37],

(e) Theorem 2, p.59 [37],

(f) Separation Theorem, p.61 [37].
It is shown in [37) that (d) and (e) imply (f), which
is our theorem of §2. It will be noticed that it also

follows immediately that (f) implies (d) and (e).
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CHAYTER 3
ON CONNECTIVITY FUNCTIONS

BEING PERIPHERALLY CONTINUOQUS

1. INTRODUCTION. We first explain how the study in

thls chapter arose,

BACKGROUND TO CHAPTER. In 1957 in [12] O.H., Hamilton
showed that a connectivity function f : I . I®, where

In

was the closed Euclidean n-cell, had the fixed point
property. The principal part of his argument involved
showing that a connectivity function was peripherally
continuous., He was then able to prove that a peripherally
continuous function had the fixed point property.

In 1959 in [ 23] Stallings initiated the study of
the relations between different kinds of non-continuous
functions, He Introduced the notion of an almost
continuous function, and studied the relations between
connectivity functions, peripherally continuous functions
end almost continuous functions defined on polyhedral
spaces. He also considered local connectivity functions
and polyhedrally almost continuous functions. Stallings
was aware of the limitation involved in using polyhedral
objects, rather than purely topological objects, and

questioned to what extent this limitation could be
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removed (see §2 of [23]). 1In 86 of 23], Stallings listed
a numnber of interesting guestions, several of which have
~ subsequently been answered (see [273, [67, r10] and r3371).
in §4 of this chapter another of these questions is
answered.

What concerns us here, however, is that Stallings
noticed that Hamilton's proof that a connectivity function
f In - I was peripherally continuous contained a gap.
In filling in this gap, Stallings placed the theorem in
a wider setting. He showed that a (local) connectivity
function f i X - Y was peripherally continuous, where
X was an lpc polyhedron and Y was a regular Tl—Space.

The 1lpc polyhedron then retains the pertinent properties

of the n-cell that Hamilton used: namely, it has a base

of regions {Ua}OL whose closures are unicoherent and
whose boundaries are connected., Notice that an lpc
polyhedron is simply a polyhedron with no local cut points.

In 1966 and 1967 Dr. G.T., Whyburn published a series
of three papers on non-continuous functions, namely 331,
[34] and [35]. 1In the last two of these he introduced
the notion of a locally cohesive space, and he used this
to prove a number of interesting theorems about peripherally
continuous functions (see also [37]).

dowever, what particularly interests us is that

Whyburn proved that a connectivity function f ¢ X = Y
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was peripherally continuous, where X -was a locally
coheslve Peano space and Y was a regular T,-space,
Now the locally cohesive Peano space, like the
lpc polyhedron, has a base of regions {U,}, whose
boundaries are connected. But the '"unicoherence
condition" that is imposed on it is more subtle than
the requirement that each U, be unicoherent. It is
only required that each Uc be unicoherent modulo
Fr U, (see theorem (3.1) of this chapter). Thus the
locally cohesive Peano space 1s a considerable
improvement over the lpc polyhedron. Besides belng
a purely topological notion, it also includes some in-
finitely multicoherent spaces within the terms of
its definition. For example, the space in figure (1.1)

which is the closure of the set of all points (x, y, 2)

G < o o

fig., (1.1)
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n+1))2 .

ye = 1/2 and O <z <1 for some positive integer n,

in Euclidean 3-space such that (x - (1 - 3/2

is a locally cohesive Peano continuum,

It will be noticed that the locally cohesive Peano
Space has no local cut points. In 1967 I wrote out a
proof, which closely followed the arguments of Hamilton
and Stallings, of a theorem concerning a connectivity
function being peripherally continuous in which the
domain space was permitted to have local cut points.

Iﬁ fact, the domaln space was a Peano space which had
a covering by unicoherent regions. This theorem and its
original proof appear in §2 of this chapter.

When Dr. Whyburn was shown this theorem, he
deduced it as a consequence of his theorem concerning
a connectivity function being peripherally continuous
on a locally cohesive Peano space, and it was in this
form that it appeared in Appendix II of [37]. However,
it is presented here with its original proof, because
this proof contains the beginnings of many technlques

that are used in subsequent sections of the chapter.

CONTENT OF CHAPTER. We have explained above how the
work of this chapter -arose. The purpose of the chapter

is to further the study of the circumstances under which



a connectivity function is peripherally continuous.,
We let P(X) stand for a statement which asserisg
that the topological space X has certain properties,

and we let Th(P(X)) stand for this statement:

Th(P(X)) = if f s+ X=Y 1is a connectivity function

and P(X)} and Y 1is a regular T,-space, then f 1is

peripherally continuous.

If we now put

Pl(X) = X 1is an lpc polyhedron,
P2(X) = X 1is a locally cohesive Peano space,
PB(X) = X 1is a Peano space with a covering

by unicoherent regions,

then Th(Pn(X)) is a theorem for n = 1,2,3, as we
have seen,

It will be noticed that neither PZ(X) nor P3(X)
is contained in the other., In §3 we first combine the

better features of each, thus obtaining

X 1s a Peano space with a covering

Pu(x)
(or base) of regions {U }, 'such that

each ﬁa is unicoherent modulo Fr U
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PQ(X) then contains both P,(X) and PB(X)' and
Th(P, (X)) appears as theorem (3.2).

After this, we improve the statement Py(X) wizh
respect to cut points. We point out in examnple (3.2)
and the paragraphs which immediately follow 1it, that
while Th(Py(X)) adequately deals with cyclic Peano
spaces, the statement Pu(X) does not adequately cover
the class of Peano spaces with cut points on which we
are able to prove that a connectivity function is
péripherally continuous.,

This consideration leads us to formulate
P5(X) = X is a U-space,

the signifiicance of the '"U" ©belng that we still have
a "unicoherence condition" as a part of P5(X). In
theorem (3.4) we show that PS(X) contains Py (X).
The remainder of §3 is principally concerned with proving
Th(Ps(X)), which appears as theorem (3.6). The U-space,
then, provides a satisfactory solution to this problem
of cut points.

That there are significant U-spaces which are not
covered by P, (X) 1is shown by the example in figure (1.2)

This space is the closure of the set of all points
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(x, y) 1in the Euclidean plane such that 1/20%2 _

n+l,,2 2 n+l1
NT +y < 1/2 for some positive

(x -(1 - 3/2

integer n.

N

/ <~ AN

i r\ Voo "\/ \/} o
TN

fig. (1.2)

The obstacle in proving Th(P5(X)) is the necessity
of knowing that the quasi-components and components of
a semi-open set (i.e., the complement of a semi-closed
set) are identical in a cyclic U-space. This can be
deduced from either theorem (3.5) or theorem (3.5a)
(from theorem (3.5) in the text).

Theorems (3.5) and (3.5a) constitute an interesting
feature of the chapter for, besides being the most
difficult part of §3 (notice that, as conceived here,
the proofs of lemmas (3.12), (3.13) and (3.14) are parts
of the proof of theorem (3.5)), they contain a good deal
more than is required to prove Th(PS(X)). They are

"weak separation theorems" of a type that have already
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occurred elsewhere in the literature, In tnis category

we mention the following:

(a) theorem 4, [12],

(b) theorem 2.1, [357],

(¢c) "Separation theorem," chap.IV, 8],
(d) theorem of §2, chap.II, this thesis,
(e} lemma I, 7],

(f) theorems (3.5), (3.5a), this chapter.

(a) - (d) all concern the weak separation of two closed
sets A and B Dby a quasi-closed set, and they are all
subsumed under (d). Their principal use has been to

prove that the n-cell has the fixed point property under
peripherally continuous functions, If we rephrase (e)(l),
we see that 1t concerns the weak separation of two de-
generate closed sets A and B by a totally disconnected
semi-closed set, It 1s the key to proving the principal
theorem of [7]. (f) concerns the weak separation of two
closed sets A and B by a semi-closed set, and its

proof offers considerably more difficulties than that of

(1)Let L be a subset of a space X. The following two
statements are then equivalent: (i) the quasi-components
and components of X - L are identical, (ii1) if L
weakly separates two points p, q in X, then L Dbroadly

separates p, ¢ 1in X,
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(e) (because A and B are not necessarily degenerate).
(f), with A and B degenerate, is used to prove Tn(PS(X)),

It would seem that these weak separation theorems are
a principal feature of the study of non-continuous functions,
a fact which does not seem to be properly appreciated yet,
For example, with A and B non-degenerate, (f) can be
used to prove that a connectivity function f In - In
nas a fixed point, without first showing that f 1is peri-
pherally continuous (c.f., the proof of the fixed point
pfoperty for peripherally continuous functions in [35]).

Also lemma (3,12) has applications in its own right. Using
it, we can show that a pseudo-continuous(z)function on a
cyclic U-space (a) preserves connectedness and (b) is peri-
pherally continuous (these results will be published
separately).

In §6 of [23] Stallings raised the question as to what
extent the theorems of his paper were valid for ANR's, In
§4 we answer this question affirmatively for the theorem con-
cerning a connectivity function being peripherally continuous,

In fact, theorems‘(b.z) and (4.3) are the propositions

Th(rg (X)) and Th(P7(X)), where

(Z)We shall call a function f 3 X - Y pseudo-continuous
if f-l(F) is a semi-closed subset of X whenever F
is a closed subset of Y,
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n

X 1s a locally contractible Peano space,

P6(X)
97(K) = X 1is a locally compact ANR(Rm).
It will be noticed that each proposition Pn(x), n =

1, 2, veey 5, 1mposes some sort of "unicoherence condition"
on X, and it 1s by virtue of this that Th(Pn(X)) LS
proved. The "unicoherence condition" is used in this way:
a certain set L 1is found which separates X, and the
"unicoherence condition" is used to deduce that a component
of L separates X. In all cases,'however, it would be
sufficient to know just that a finite number of components
of L separates X. In all cases, however, i1t would be
sufficient to know just that a finite number of components
of L separates X. This consideration leads us to for-

mulate the definition of an S-space, Putting
P8(X) = X 1is a cyclic S-space,

the statement Th(P8(X))(3)appears as theorem (5.,2). The
case of the S-space with cut points is not dealt with in
this chapter, as we have not yet attempted to prove the

weak separation theorem for cyclic S-spaces that corresponds

(3)In theorem(5,2) the space Y 1is only assumed to ?e regu-
lar, not xegular and T,. This is possible becausg oz‘lemmas
(5.4) and (5.5). As these lemmas can be applied in the same
way to the proofs of each of the preceding theorems ?h(P (X)),
it is only necessary to demand that Y be regular in these

theorems.



to theorems (3.5) and (3,5a),

We remark that the S-space is the natural settiing
for.the theorem concerning a connectivity function bveing
peripherally continuous, ©Not only is it the most general
space to which the argument applies, but also in it we
no longer have to concern ourselves with local cut points,
as these are dealt with implicitly. The S-space 1is so-
called in this chapter because A, i, Stone was the first
to investigate weakly finitely multicoherent spaces in
[26], and a considerable amount of inspiration has been
obtained from this paper.

We close §5 and the chapter by considering the possi-
bility of ascribing weaker properties than connectivity
to the non-continuous function f : X = Y which will
ensure that f 1s peripherally continuous.( In theorem
(5.3) we show that if f : X - ¥ 1is pseudo-continuous
and connectedness preserving, where X 1s a cyclic 3-space
and Y 1is a regular space, then f 1s peripherally con-
tinuous. Finally, we remark that there is reason to believe

that the hypothesis that f 1is connectedness preserving

is redundant in this theorem,
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2. Ve first present the necessary definitions and state
a number of lemmas that we shall need in the proof of
theorem (2.1).

A Peano_space is a locally compact, connected and

locally connected metric space. It was shown in 1] that
a locally separable connected metric space was separabdle.
A proof of this may also be found on p.75 of 211, From

this it follows that a Peano space has a countable

open base.
If £ : X-Y 1s a function, the graph of f,

written T (f), is defined to be {(x, y) : x € X & y =
f(x)}. It is a subset of the Cartesian product X X Y.
Let X and Y Dbe arbitrary topological spaces.

A function f :+ X = Y 1is called a connectivity function

if for each connected set C in X the graph T (f|C)
of the restricted function f|C : C = Y 1is a connected
subset of the topological product space X X Y,

Again let X and Y be any spaces, A function

f ¢+ X= Y 1is said to be peripherally continuous at a

point x € X if for each pailr of neighbourhoods U and
V of x and f(x), respectively, there is a neighbour-
hood W of x such that Wc U and f(Fr W)c V

(Fr W = W - W). A function f : X= Y 1is peripherally

continuous if it 1is peripherally continuous at each

point of X.



Let X Dbe a space with a countable open base., A

subset S of X 1s semi-closed in X if for each

sequence Xy, K2, +«. Of components of S which
converges in X, 1lim K5 1is contained in S or is =
single point. (The definition of the convergence of a
sequence of sets may be found in r31],) We remark that
a semi-closed set can be defined in an arbitrary topolo-
gical space by replacing the convergent sequence of
components in the above definition by a convergent net
of components, as is done in [22]. However, for our
purposes the above definition will suffice.

We make the following observation, which is an
lmmediate consequence of the definitions if S 1is a
semi-closed set in a Tl-space X which has a countable
open base, then the components of S are closednX,

Lastly, we say that a connected space X 1is

unicoherent if for each representation of X as the

union of two connected closed sets M and N, MO N

is always connected.

We need the following lemmas in order to prove

theorem (2.1).

LEMMA (2.1). If X 1is a Peano space and p 1is a point
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of X, then each region U about p contains a re-—ion

V about p such that T is compact and contained in

U and no component of U - p contains more than one

component of X - V,

LEMMA (2.2). Let £ : X =Y Dbe a connectivity function,

where X and Y are arbitrary Tl-spaces. Then, for each

non-degenerate connected subset C of X, the graph

T'(f|C) has no isolated points.,

LEMMA (2.3). Let X Dbe a locally connected Hausdorff

space with a countable open base and Y a Tq-space.

If £ s XY 1is a connectivity function, then for each

-1
closed set F in Y, f (F) 1is semi-closed in X.

LEMMA (2.4). Let X Dbe a connected and locally connected

space. Then the following are equivalent:

(i) X 1is unicoherent,

(11) if a closed set F separates two points p,

q in X, then so does some component of F,

(111) if a closed set F separates X, then so does

some component of F.

LEMMA (2.5). Let X be a connected, locally connected
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completely normal space. Then X 1is unicoherent if and

only if every set that separates X has a component that

separates X,

Lemma (1.1) 1is a special case of theorem 1, p.188 of
T147, It may also be easily proved along the lines of
the theorem of Whyburn quoted in §2 of chapter 8 of this
thesis. Lemma (2.2) is proved in 12], although in r12)
the spaces X and Y are required to be Hausdorff
spaces., Lemma (2.3) is proved for compact spaces in
T23) and [9). It is proved as stated here in [37]. It
is given in its most extended form in [22]. 1In 29,
['38] and [ 24] a number of properties are proved to be
equivalent to unicoherence, but (iii) of lemma (2.4) is
not among them. For this reason, and because the proofs
of lemmas (3.2) and (3.10) will be patterned on the proof
of lemma (2.4), we prove lemma (2.4) here. Lemma (2.5)

follows directly from lemma (2.4).

PROOF OF LEMMA (2.4). Although it is shown in [24] that
(1) implies (ii), we shall prove it here for convenience.
Suppose that X 1is unicoherent. Let C ©Dbe the

component of X - F that contains p, and let D be

the component of X - C that contains q. Then
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X =(X~-D) yD 1is a representation of X as the union
of two connected closed sets. Taus (X - D) A D = Fr D
is connected, and it separates p, q. Thus, since

Fr Dc Fr C ¢ F, it follows that a component of F
separates p, q.

That (ii) implies (iii) is trivial.

In order to prove that (iii) implies (i) we suppose
that X 1s not unicoherent. Then there are two connected
closed sets M and N such that X =My N and M N N =
Py Q where P and Q are disjoint non-empty closed
sets., By the local connectedness of X, there is a
component C of X - N such that C meets both P and
Qs Let A=PnNFrC and B =Qn Fr C. Let A’ be the
union of A and all the components of X - C whose
closures do not meet B, and let B’ be the union of
B and all the components of X - C whose closures do
not meet A, Then it follows from the local connectedness
of X that A’ and B’ are disjoint closed sets, and
neither of them separates X. There is, however, a
component D of X - C that has closures points in both
A and B,for if not N would be contained in A’ U B’
and so would not be connected. Thus D is not in A’ U B',
and so F = A’ UB’ is a closed set which separates X,
but no component of F separates X. The contradiction

shows that (iii) implies (1).
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THEOREM (2.1), Let X be =a Peano space that has a

covering by unicoherent regions, and Y a regular

Tl-snace. If £ s X -Y is a connectivity function,

then f 1is peripherally continuous.

PROOF. Let p be an arbitrary point of X. The space
X has a covering by unicoherent regions Xl' Xov eeey
and we shall let ©p € Xy

We wish to prove that f is peripherally continuous
at p. Since this is clearly so if X; ={p}, we may
suppose that X; # {p}. Let U and V be any neighbour-
hoods of p and f(p) such that Uc X; and Xy - U £4.
We shall show that there is a neighbourhood W of »p
such that Wc U and f (Fr W) c V.

By lemma (2.1) there is a neighbourhood U; of p
such that U; 1is compact and contained in U, and no
component of U - {p} contains more than one component
of U - ﬁl' Since Y 1is regular, there is a neighbour-
hood V; of f(p) such that Vyc V.

Consider the sets which are expressible as the union
of {p} and a component of U - {p} which is not separated
from X3 - U. There are only a finite number of them, and
we shall denote them by Ql' Qoyr eeen Qn'

Now let Q Dbe a typical set from the sequence



Ql' Q2, eeer Qpe Then Q 1s a unicoherent Peano space
and {]Q s+ Q@ =Y 1is a connectivity function. From now
on until the beginning of the final paragraph we shall
work in the space Q, and in this period all topological
terms and operations will refer to the space Q.

-1 _
By lemma (2.3), (f|Q) (Vl) is a semi-closed set

in Q. Thus it is easily shown that ﬁl n (1"|Q)_1

(V1)

is semi-closed in Q. Let {Fa}a be the collection of
components of ﬁl n (fIQ)-l(Vl). Then the sets F, are
closed. Now notice that Q - U; 1is a non-empty connected
set. For each Fq, let Eg be the union of F, and all
the components of Q - Fqy except the one that contains

Q - ﬁl' Then each Ea is closed and by definition does

not disconnect Q.
The main part of the proof rests on showing that
p belongs to the interior of some Eg.
We first establish some relations among the sets
E . For any pair o, B such that a # B we have just

a
one of the following three relations holding:

Ea n EB = ¢,
EQCEB-FB’ e v st o (I)

To see this, consider the components of Q - (F, U FB)'
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which we will simply call "the components" in this
paragraph. If Q - ﬁl lies in a component whose closure
meets both F, and FB' then E, consists of F, and
the components whose closures meet F& alone (that is,
whose closures do not meet FB)' while Zg consists of
FB and the components whose closures meet FB alone,
and so Eq N Eg = ¢. If, on the other hand, Q - U,

lies in a component whose closure meets FB alone, then
Ea consists of Foq and the components whose closures
meet Fa alone, while EB consists of Fa’ FB and
all the components except the one containing Q - ﬁl'
and so Ea c EB - FB' Similarly we get the third

relation when @ - ﬁl lies in a component whose closure

meets Fa alone,

Now we set up an equivalence relation on {Ea}a'
We write E4 ~ EB whenever there 1s a vy such that
EY ) Ea' EB' This relation is reflexive and symmetric.
It is also transitive, for if Ea ~ EB and EB ~ By
then we can find §, e¢ such that E,, Eg ©Es and
Zg) Ey € Ec. This means that Eg NE. # ¢, and so by (I)
either Ey cE. or E; € Eg. Hence the relation 1is
transitive,

We now turn our attention to the properties of an

equivalence class that contains no maximal element; that is,



an equivalence class with no element that contains every
other element in the equivalence class. Let & be such
an equivalence class, and let G be the union of all
the elements in €. We shall prove that G is open

and has Just one boundary point, which of course does not
belong to ﬁl N (le)_l(vl).

G 1s open. For let Eq € &, Since & contains
no maximal element, there is an element EB in & such
that EB ¢ Ea' By the equivalence relation there is an

element E, in & such that E, o E;, Eg. By (1),

—

Ea c EY - Fy, which is an open set. That is,

G = U {Ea - Fy ¢ By € e}, ceeeee (II)

which is an open set,

Fr G 1is a single point. To prove this let Ry, Rl' e
be a countable covering of G Dby open sets whose closures
are compact and lie in G. We shall defline a sequence of

elements E. , E in € such that the sequence

o. o ] LN )

0 1 ,
Fao, Fal. ... converges to Fr G. Select EGO as any
element in &. Suppose now that for k = 0 we have

selected Ec in this way, and for k > 0 we have selected
0

E as an element of ¢ such that E - F =

% % Ox

B - F , R . In order to select E Wwe con-
Ox-1 Op-1 k-1 Oy i1

sider ZRyx. By (II), {EB - Fg Eg € e} 1is
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an opening covering of the compact set ﬁk and as such

contains a finite subcovering E -F , E - Fo , e
B1 By B2 B2 '
E, - F of RB,. Since E, , E, 6, ..., E , E are
Bn Bn K Bl 82 Bn Gk

all equivalent to each other, there is an element in e
which contains all of them, We shall denote this element

by E”k L It is then evident from (I) that the inductive
“k+

hypothesis is preserved. Now we show that Fc , FOL v e
0 1
converges to Fr G, Let x € Fr G and let R be a region

about x. Then RN Ry #¢ for some k, and so

RN (E, - F, ) #¢ for each i > k. But R 1is a

o,
connectzd setiwhich meets the complement of Ecﬁ for
all i, Thus, for 1> kX, R meets Eai - intLEai,
which 1s contained in F&i. That is, for 1i > k,

RN Fcli;é(b,and so Fr Gc lim inf Fy . But if y € G

then y 1lies in some Rk' which is contained in

Y,

B - F for i > k. Thus 1lim sup F c Fr G. That
is, FB ’ F& , «es converges to Fr G. We now show that
Fr G 1is a single point. Since Uy N (f|Q) (V) 1is
a semi-closed set there are two possibilities: Fr G 1is
— -1 _

contained in Uy N (£l Q) (V,) or is a single point.
However, the first cannot occur because Fr G 1is a
continuum, as the limit of a sequence of continua in the

compact set ﬁl’ and so it would lie in some component

—_ -1 ,—
F, of Uy N (£1Q)7" (V). Then G - F, (or indeed G,
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for one can easily see that G n Fa = ¢) would be separated
from Q - 51 by F, s, and so G would be contained in

Ea'~ But then Ea would belong to g, and this contradicts
the assumption that the equivalence ciass ¢ has no
maximal element. Thus Fr G 1is a single point,

It follows that G does not disconnect Q, Ssince
G 1s open and Fr G 1is a single point.,

We shall denote by {G-Y}Y the collection of all sets
such as G which are the union of an equivalence class
with no maximal element.

Consider now an equivalence class which does have a
maximal element. We shall discard all of its elements
except the maximal element., The collection of all maximal
elements that we get in this way we shall denote by {EEB}B'

We now let L ©be the union of the collection
{EhB}B U {GV}Y of disjoint sets. Then the components
of L are the sets E&B and the sets QY. For from the
fact that Q{ is open and Fr C\( N L=¢, it follows

that G is a component of L. Thus we have only to

Y
show that a non-degenerate subcollection of {%1 }B does
not have a connected union. Let K be the union of the
collection {EOL }B, which we shall suppose 1is non-degenerate.
It suffices to zhow that K 1s not connected, as will be

apparent from the argument that follows. Since the union
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of {F 1 i1s not connected, it has a separation FiU7p.

%g
For i =

‘8

1, 2, let Ki be the union of the elements E
ol

for which Fa c Fi' Then K1 and K2 are disjoint

and, furthermore, they are separated. For if this 1is

not so we may suppose without loss of generality that

there is a point x € K1 N K2' Then x € Fl’ for K, - Fq

1s an open set which is disjoint from Ko, Let R De a

region about x which does not meet FZ' Then R must

meet some open set E - FCL for which Fa c F2. But

a
B
this is impossible because R does not meet Fo , Which
e
separates x and Ea - Fa . Thus Kq U K2 is a sepa-

ration of K. This completes the argument, and shows
that the components of L are the sets Ea and the

B
sets G_ .

Y
It now follows that p € int Ea' for some q. To

see this we consider the set L. Since no component of

L separates @, it follows from lemma (2.4) that L

itself does not separate Q, which is unicoherent. Thus

by lemma (2.2) the connected set @ - L does not contain

p in 1ts closure, for there is no point q € (Q - L) N U,

such that f (q) € Vy. Thus p € int L. Let R .be a

connected region about p which is contained in L., Then

R must be contained in a component ofv L. That is,

p € int E forusome o

, OT p € G for some y. In
8 B Y
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the latter case it follows from (II) that p ¢ EOL -7

a
for some Ec - F0 c GY' Thus in either case there is an
o such that p € int Ec'

So we have shown that there is a set =& such that

Q.

p € int Ea' The closure of Ea is of course compact,
and (f{Q) (Fr int E ) < V;. All this has been in the
subspace Q.

To complete the proof we return to the space X.
We have shown that in each of the subspaces Qer Qpy ooy
Qn there 1s a relatively open subset W; containing p
such that FrQi (Wi) (the frontier of W; 1in the space
Qi) is compact and (f|Q;) (FrQi (Wy)) c Vl. Let
W = (L%_ wi) U(U=-U; Q). Then W 1is a neighbourhood
of p which is contained in U, and Fr W = Ui FrQi Wi

Thus f(Fr W) = Uy (£1Qy) FrQi (wi) c V. This completes

the proof.
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3. We start off this section, the purpose of which nas
been described in §1, by commenting on §5 and §6 of 347,

At the beginning of §5 of 347 the folibwing definition
is given. '"A connected space or set M 1is said to be
unicoherent, or cohesive, between disjoint connected
subsets (or points) A and B of M provided Hy « Hy
1s connected for every representation N = Hy, + Hy, where
H

a and Hb are closed and connected and contain A and

B, respectively, in thelr interiors relative to 1I." (iy

italics.) The definitions of canonical region and locally
cohesive space in [347 are of course based on this
definition, and so are the subsequent proofs in §5 and §6.
There is, however, something puzzling in this
definition of unicoherence between a pair of points or
subsets., Somewhat later in §5 the following statement

is made, "“Remarkably enough, a cyclic, locally connected

continuum M 1is necessarily unicoherent if it 1s uaicoherent
between one pair of distinct points" (my italics). However,
it may easily be shown that if M 1s any connected, locally
connected regular Tl-space, and M 1is unicoherent between
some palr of distinct points in the sense of the above
definition, then M 1is unicoherent (see Appendix).

We suggest that the definition of unicoherence between

a pair of points should be altered to the following, and
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remark that all the proofs of §5 and §6 of 347 go through
without change under this revised definition.

. We shall say that a space X 1is unicoherent between

two subsets (or points) A and B if for each represen-

tation X = MU N, where M and N are connected closed
sets such that Ac M - N and Bc N -1, M NN is
connected, Notice that this definition imposes a lesser
degree of unicoherence on the space than the definition
of [ 347,

. In particular, we still have theorem (5.2) oq rjk]:

a Peano continuum X 1is unicoherent between a pair of

its points a and b if and only if thevcyclic chain

C(a,b) 1is unicoherent.

Qur definition of a canonical region and a locally
cohesive space are verbally the same as those in [ 347,
except they are based on our revision of the definition
of '"unicoherence between two subsets." If p 1s a point

of a space X, we say that R 1s a canonical region

about {p} in X if R 1is a connected neighbourhood
of p, the frontier Fr R of R 1is connected, and R
is unicoherent between {p} and Fr R. A space X 1is

locally cohesive if each of its points has a base of

canonical reglons,
We now make the following definition. Let A be

a subset of a connected space X. We say that X 1s
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unicoherent modulo A 1f for each representation

X =MUDN 1in which M and N are connected closed
subsets of X such that Ac M - N, NN is connected,

We then have the following theorem.

THEOREM (3.1). Let X be a Peano space. Then X is

locally cohesive if and only if it has a base of regions

{Ri} such that Fr B, 1is connected and Ry is

unicoherent modulo Fr Ri for each 1.

PROOF. The proof of this theorem is nothing but the
relevant portion of the proof of theorem (6.2) of [ 341,

Let R Dbe a canonical region about a point p in
X such that R 1s compact. We show that R is
unicoherent modulo Fr R.

We form the quotient space R/ Fr R on R by
identifying the points in Fr R. Let n : K - R/ FrR
be the natural projection from R onto R / Fr R. It
follows that R / Fr R is a Peano continuum, since it
cannot fail to be locally connected at Jjust the single
point m (Fr R). Since R / Fr R 1s unicoherent between
7 (p) and w (Fr R), it follows that the cyclic chain
¢ (m(p), m(Fr R)) is unicoherent, by theorem (5.2) of

[34), wnich,,as we remarked, still holds. But since
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the locally cohesive space X has no local cut points,
it follows that R, R and m(E) are cyclic. Hence
in fact ™(R) is unicoherent. Thus suppose that
R =1 UN 1is a representation of R’ as the union of
two closed connected sets M and N such that 7r R c
M - N. ' By the unicoherence of n(R) it follows that
7(M) N m(N) is connected. Thus M N N is connected,
which proves that R is unicoherent modulo Fr R2.
Since X has a base of canonical regions {R}}
With compact closures, it follows that X has a base
of regions {Ri} such that Fr R, 1is connected and
ﬁi is unicoherent modulo Fr R; for each 1. As the

converse 1s trivial, the theorem is proved.

We remark in passing that if R 1s a region in a
space X such that R is unicoherent modulo Fr R,
then it does not follow that R 1is unicoherent modulo

R ~ int R. This is shown by the following example.

EXAMPLE (3.1). Let X be the subset of the Euclidean
plane consisting of the points (x, y) such that

lyl] = 1 and either |x| =2 1/2 or |y| 2 1/2, and let
R be the set of points (x, y) in X such that

|x] < 1 and |y]<1. Then R 1is unicoherent modulo

Fr R={(x, ¥y) : |x| =1 or |y| =13, but R 1is not
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unicoherent module R - int R = {(x, y) x| = 1 and

ly| < 13.

However, we can ask the following question;

if X has a covering by regions {Ri} such that each

Ri is unicoherent modulo Fr Ri' does X also have a

covering by regions {Sj} such that each §j is
unicoherent modulo §j - int Sj ? We shall not, however,
attempt to answer this here,

LEMMA (3.1). If X 1is a Peano space and p 1is a non-

cut point of X, then ©p has a base of reglions whose

complements are connected.

PROOF. Let U be a neighbourhood of p with a compact
closure., Then Fr U has a covering by regions Ul' U2, 00w

U the closures of which do not contain p. Since

m’
X - {p} 1is connected, there is a simple chain of regions

Ul = Vi,l' Vi'2. ¢ o oy Vi,ni = U.l

such that Vj does not contain p. Let V Ybe the

' J
complementary component of (X - U) U Ui, 5 vi,j that

contains p. Then Vc U and X - V 1s connected.



LEMMA (3.2). Let X Dbe a connected, locally connected

normal space and let Y Dbe a connected subset of X,

Then the following properties are equivalent:

(i) X 4is unicoherent modulo Y,

(1i) 1if a closed set F which is disjoint from Y

separates two points ©p, g in X, then a component

of F does,

(11i) 1if a closed set F which is disjoint from Y

separates X, then a component of F does.,

LEMMA (3.3). Let X be a connected, locally connected

completely normal space, and A a connected subset of

X. Then X 1is unicoherent modulo A if and only if

each set in X - A that separates X has a component

that separates X.

Lemma (3.3) follows immediately from lemma (3.2).
So it is only necessary to prove lemma (3.2), the proof

of which is very similar to that of lemma (2.4).

PROOF OF LEMMA (3.2). The proof that (1) implies (ii)
is identical to the proof that (1) implies (ii) in

lemma (2.4), since the connected set Y takes care of

Lg

1tself. That (ii) implies (iii) is trivial. So we prove
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that (1ii) implies (i).

We suppose that X 1s not unicoherent modulo Y,
Then there are two connected closed sets ¥ and XN
such that X = MU N, Y ¥ - N and K NN=PyQ,
where P and Q are disjoint non-empty closed sets.
Since X 1is normal, there are nelghbourhocods U and
V of P and Q such that Un 7V = ¢, Further, we may
suppose that each component of U meets P and each
component of V meets Q. There is now a component
C of X-HMUTU V which has closure points in both
U and V. Then MU Uy V 1lies in a component D of
X-C. Let A=UNT and B=Vn C. Let A be
the union of A and all the components of X - C whose
closures do not meet B, and let B’ be the union of
B and all the components of X - C whose closures do
not meet A, Then A" and B are disjoint closed
sets neithe? of which separates X, However F = A U B’
is a closed set that has both C and D among its
complementary components, Thus F 1s a closed set in
X - Y which separates X, but no component of F separates

X. This contradiction proves the lemma.

LEMMA (3.4). -Let X be a Peano space and R a _region

in X such that R is unicoherent modulo Fr R. Let
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p be a point in R and Q a set expressible as tre

union of {p} and a comvonent of R - {p}. Then 3

is unicoherent modulo Q N Fr R.

PROOF, If QN Fr R =0, then it follows immediately
that Q 1is unicoherent; that is, § is unicoherent
modulo Q N Fr R = ¢,

Thus let Q M Pr R # ¢, and suppose §Q is not
unicoherent modulo Q M Fr R. Then there-is a represen-
tation Q = MU N, where 1 and N are connected closed
sets such that QM Fr RC M - N and MN N = AU B,
where A gnd B are non-empty disjoint closed sets.
Si}’ice QNFrR=Q - Q, it follows that AU B C Q. Let
a be an arc, possibly degenerate, from p to AU B
in the Peano space Q. We may suppose without loss of
generality that o meets A and is disjoint from B,
Then R = (MU aUTR - Q) UN is a representation of
R as the union of the two connected closed sets
MUoUR-Q and N, and Fr R does not meet N, But
the intersection of MU a UR - Q and N 1is not
connected, for it contains AU B and is contained in
AU BUa, Thus R 1is not unicoherent modulo Fr 7,

which 1s a contradiction.

We have the following converse to lemma (3.4).
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LEMMA (3.5). Let X be a Peano space, p a point in

X and S a region about p with this property: if

Q 1s a set expressible as the union of {p} 2and a

component of S - {p}, then Q 1is unicoherent modulo

Q N Fr S. Then there is a region R such that p € R ¢ S

and B 1is unicoherent modulo Fr R.

Further, if the closures of the components of S - {p}

meet only in the point ©p, then we may take R = S,

PROOF. There are only a finite number of sets Qi, QZ' se e
Qn which are expressible as the union of {p} and a
component of S - {p} which is not separated from Fr S.
By lemma (2.1) there is a region U, about p in the

subspace Qi such that Ui is compact and Qi - U1 is
connected. Notice that ﬁi is unicoherent modulo
ﬁi N (Qi - Ui)' and that U; - {p}, ﬁj - {p} are
separaﬁed for 1 # j. let R=3S8 - Ui(Qi - Ui)' Then
Fr R = U; ﬁi n (Q.l—U.l) and it easily follows that R
is unicoherent modulo Fr R,

If the closures of the sets Ql' Q2, . ens Qn meet
only in {p} then it is immediately clear that we may

take R = S.

THEOREM (3.2). Let X Dbe a Peano space which has a
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covering by recrions {Ri} such that each ﬁi is

unicoherent modulo Fr R;, and Y a regular T.-space,

If f: X =Y is a counectivity function, then f 1is

periovherally continuous,

PROOF. The proof 1s the same as the proof of theorem
(2.1) except for the changes that must be made where the
unicoherence property is used. Thus we refer to the
proof of theorem (2.1) and indicate the changes that
must be made,

Instead of being a unicoherent region about p,
Xi becomes a region about p such that 71 is
unicoherent modulo Fr Xi' From this it follows that
T is unicoherent modulo Fr U (see lemma (3.6)).
Thus from lemma (3.4) it follows that Q 1s unicoherent
modulo Q N Fr U. Thus Q 1is unicoherent modulo the
connected set Q - 51' since ﬁl N FrU=2¢.

The only other change that is necessary is in the
third last paragraph, which begins, "It now follows
that ..." The reasoning which enables us to conclude
in this paragraph that L does not separate Q must
be altered slightly. No component of IL separates @Q

and LCE Q - 51. Since Q 1is unicoherent modulo Q -7y,

it now follows from lemma (3.3) that L does not
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separate Q.
No other part of the proof of theorem (2,1) needs

to be altered.

We notice from theorem (3.1), that theoren (3.2)
contains theorem (6.2) of [34] as a special case. However,
we also notice that the way in which the unicoherence
property is used in the proof of theorenm (3.2), namely
by means of lemma (3.3), is exactly the same as the way
in which the unicoherence of the locally cohesive space
1s used in the proof of theorem (6.2) of [34].

We also point out that although theorem (3.2) is
stated for a Peano space having a covering of regions
{Ri} such that each R; 1is unicoherent modulo Fr Ry
it could equally well be stated for a Peano space having
a base of such regions. This is because of the following

simple lemma,

LEMMA (3.6). If R 1is a region in a locally connected

space X which is unicoherent modulo Fr R, and S 1is

a subregion of R, then S 1is unicoherent modulo Fr S.

PROOF. Suppose that § 1is not unicoherent modulo Fr S.

Then there are two connected closed sets M and N such
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that S =MUN, NNFrS=¢ and X NN is not
connected., Since N N Fr R = ¢, it follows that
FrRSR-N., But R-Nc (R -3) UM, which is a
connected set. Therefore Fr RU (R-S) y ¥ is a
connected set, But this latter set is equal to (2 - S) y M.
Therefore (R - S) UM and N are two connected closed sub-
sets of R whose union ié R and whose intersection is

M N N, which is not connected., But N n Fr R = ¢, which

is a contradiction.

EXAMPLE (3.2). Let X ©be the subset of the plane which

is the union of I = {(x, y) s+ 0 <xs<1 and =-1/2 <y < 0}

2 n+2 2 n+2
and C_={(x,y) + (x-1/2) +(-1/2 ) =1z 1,
for n=0, 1, 2, ... (see figure (3.1).
///\\\\
QOO ,Q \‘-"/
A o
2z // /J

fig., (3.1)

Also let f s X = Y be a connectivity function, where
Y 4is an arbitrary regular Tl-space. It then follows

from theorem (3.2) that f 1s peripherally continuous
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on X - {(0, 0)}. However, since by theorem (3.2),
fIT : I =Y 1is peripherally continuous at (0, 0), it
follows that £ is also veripherally continuous at (0, 0).
Jowever, X does not have a covering by regions {Ri}

such that each ﬁi is unicoherent modulo Fr Ri‘

Example (3.2) shows that when X 1is not a cyclic
space, the property ascribed to X 1in the hypothesis
of theorem (3.2) does not adequately define the class
of spaces on which we are able to prove that a connectivity
function is peripherally continuous, It is to adequately |
deal with the cut points of X that the remainder of this
section will be concerned. We shall show that if each
true cyclic element of X has the property ascribed to
X in theorem (3.2), then each connectivity function
f + X - Y 1is peripherally continuous, Y being as usual
a regular Tl—space.

In the meantime we remark that the statement of
theorem (3.2) adequately covers the case in which X 1is
a cyclic Peano space, The only way in wnich it can be
improved for such spaces is by altering the '"unicoherence
condition" to a '"multicoherence condition." Thus we state

this case as a separate theorem:
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THEOREN (3.3), If X 1is a cyclic Peano space which nhas

a covering by regions {Ri} such that each ﬁi is

uniconerent modulo Fr Ri' and Y 1is a regular Tl—soace,

then every connectivity function f : X - Y 1is

peripherally continuous.

For the definition of the terms conjugate element,

cyclic element, and true cyclic element, cut point and

end point we refer to chap. IV of [31]. 1In the sequel
we shall use only the most elementary properties that
arise from these concepts, and these too can be found
in chap. IV of [31].
We shall say that X 1is a U-space if X 1is a
Peano space and if for each true cyclic element C of
X there is a collection of regions {Ri} in the subspace
C which cover C and such that each c¢ls Ry 1s

unicoherent modulo Frg Ry (see notation (3.1)).

NOTATION (3.1) When we are working in a subspace A of
X, as we shall often be doing, we shall denote the
closure, frontier and interior of a set relative to the
subspace A by cl ( ), Fr, ( ) and int, ( ).
when no confusion is likely to arise, we shall omit

the subscript "A",



The remainder of this section will be concerned
with establishing theorem (3.6), in which we prove that
if £ : X~ Y 1s a connectivity function, where X is
a U-space and Y 1is a regular Tl-space, then £ is
peripherally continuous. However, it will first be in
order to show that theorem (3.2) is subsumed under

theorem (3.6). This is done in the next theoren.

THEOREM (3.4). ILet X be a Peano space which has a

covering by regions Ry such that each ﬁi is

unicoherent modulo Fr Ri' Then X 1is a U-space,

PROOF. We first remark that whenever we use the closure
operator "~ " in this proof, it will stand for the
closure in the space X,

ILet C be a true cyclic element of X and p =a
point of C. Let R be a region about p 1in X such

that TR 1is unicoherent modulo FrX R. Denote the sets
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that are expressible as the union of {p} and a component

of R - {p} that meets C by Q;, Qp» ..., and suppose
that Q N Fry R # ¢ 1if and only if 1 < n.
Suppose first that there is some 1 > n., By lemma

(3.4%), Qi 1s unicoherent. Since C 1is a true cyclic

element of Qy, it easily follows that C 1is unicoherent.
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That is, C 1s unicoherent modulo Fro C = ¢, and the
theorem is proved in such = case,

So we may suppose that each i < n,

By lemma (3.1), there is a region Ui about p

in the subspace Qi such that cl U

1 is compact and

Qs
i

Q; - U; 1s connected. Notice firstly that cly Uy = Uy,
i

and secondly that Ui - {P} 1is an open subset of X such
that Fry (Ui - {p}) = (ﬁi - Ui) U {r}. Now notice that

ﬁi and @i - U, are two connected closed subsets of

.

Q; such that ﬁi n (61 N Fry R) = ¢. Since, by lenua
(3.4), 51 is unicoherent modulo Q; n Fry R, it follows
that ﬁi n (51 -Uy) =05 - U; 1is connected. Similarly
we deduce from lemma (3.4) that ﬁi is unicoherent
modulo U, - Uj.

We first show that the connected set T; n C is
unicoherent modulo (ﬁi - Ui) n Cc. Let Ui nec=MuN,
where M and N are connected closed subsets of 51 n c
such that (U; - U;) N Cc ¥ - N. Now let {A.}y be the
collection of components of X - C which meet ﬁi' Then
Kk n 51 is connected. Further, supposing that (T, - U;) N
C #£ 9, it follows that & N (U; - U;) 1is a connected
set which meets M - N. If (U; - U;) N C =¢, then the

connected set ﬁi - U; 1lies in just one of the components

Ak' which we may suppose without loss of generality has
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1ts boundary point in M - N, Define }’ as the union
of M and all the A_ N T; ‘'s which meet i, and X°
as the union of N and all the Kk N ﬁi 's which do
not meet M. Then M’ and N’ are connected closed
subsets of U; such that Ui = MU N’ and U, - Uy ©
M = N'. Thus M’ N N’ is connected, and soc ¥ N XN

is connected. That is, ﬁi N C 1is unicoherent modulo
(U, - Uu3) nec.

Secondly, we notice that U, - U € C or
Ty - Uis) NC =¢. For suppose that ﬁi - U; meets a
component A of X - C. This implies that U; meets
A. Since U; 1s a connected set which also meets
X - A (in the point p), it follows that the single
point in A - A is in U;. Thus U, - U, 1is contained
in A, since it is a connected set which meets A but
does not meet A - A. That is, U; - U, n C=9g.

In case (U; - Ui) N C=¢, it is now easily seen
that C 1is unicoherent., For by hypothesis Cn Qi
contains some other point besides p, and so is a non-
degenerate connected set. Thus the neighbourhood Cn Uy
of p 1in the space CAN Qi contains some point other
than p; that is, (C -{p)n (U; - {p}) #¢. Therefore

c - {p} is a connected set which meets the open subset

u; - {p}] of X but does not meet Fry (U; - {P}) = (Ty - Uy du{p}.
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Thus C - {p} c Ui - {P} and c c Y;. The previously
proved statement "U; M C is unicoherent modulo
(T; - U;) NC" now implies that ¢ 1is unicoherent,

Thus we may Suppose without loss of generality that
ﬁi - Uy ©€C for each 1 =n, We first show that
U, ncCcc U; NC, in order to do which it will suffice
to show that U, - U, ¢ U, N C. Thus let x € . - u..

i 1 i i i

Then {x} U Ui 1s a connected set and so {x} U (Ui n C)
is a connected set which is, furthermore, non-degenerate.
Thus each neighbourhood of x meets U; N C. That is,
x €U; NC. Now, since ﬁi ncc ﬁi NC and C 1is

closed in X, we have the following:

3 2 = 2 - : .ﬂ »
FrC(UJUJnC) UJUOC UJU C

J J
=Ujﬁ_j—n—'<':'-Ujanc ,
= Uy ﬁjnc-UJanc '
= Uj ('U'J.-UJ.).

where the index j always runs from 1 to n. Now we
observe that L% Uj N C 1is a region about p 1in the
subspace C., The sets which are expressible as the union
of {p} and a component of (LG Uj nc) - {p} are the
sets U1 NC, 1 <n, In view of the identities

clc (Uy N C) = Ui NC =70, NC, we have
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cl, (Uiﬂ c)y n Fre, (Uj Ujﬂ c)
u.ncnuy, (T, -U.),
i UJ ( J UJ)

]

I
=

;= Ui‘
The previously proved statement "ﬁi N C 1is unicoherent

modulo (U.l - Uy

) N C" now implies that cl, (Ui n c)
is unicoherent modulo clg (U.l nceyn Frg (Uj Uy n c).
Thus by lemma (3.5) there is a region S about P in
the subspace C such that S c Uj Uj N C and olc 3
is unicohergnt modulo Frc S (a glance at the proof of
lemma (3.5) will show that S can actually bve taken to
be equal to Uj UJ N C). This completes the proof of

the theorem.

Before proving theorems (3.5) and (3.6) we shall
need some definitions and lemmas.
et X Dbe an arbitrary topological space. A de-

composition ® of X 1is a collection of non-empty

disjoint closed subsets of ‘X which cover X,

NOTATION (3.2) If A 1is an arbitrary subset of X

and 8 is a decomposition of X, we define

= UD €8 : D NAZ ¢},
= Uf{D €8 : D cal.

>
BB +
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(A is not to be mistaken for I, wWhich is the closure
: +
of A.,) Where no confusion arises, we sinply write A

~ +
and, A7, instead of Ay and Ag .

Let X Dbe an arbitrary space and ® a decomposition

of X. We say that ® is an upper semi-continuous (usc)

decomposition of X if for each closed subset F of X,

-+ ,
Fﬂ is closed; or, alternatively, if for each open sub-
set G of X, G; is open.,

The following lemma appears as proposition (5.2) on

p. 132 of [31].

LEMMA (3.7). If X 1is a Peano continuum and L is a

semi-closed set in X, then the decomposition of X into

the components of L and the points of X - L 1is usc.

If L 1is a set with closed components  in a T,-space
X, and #§ 1is the decomposition of X consisting of the

components of L and the points of X - L, then we shall

call 8 the decomposition of X associated with L.

NOTATION (3.3). Under the circumstances of the previous

paragraph, instead of writing Ag and Ag for en arbi-

trary subset A of X, we write A;: end A7 . If there

is no confusion, we still of course Jjust write AT and A”.
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If X 1s a Peano space and L is a semi-closed
subset of X, then 1t 1is not in general true that the
decomposition of X associated with L 1is usc. But
we can say something useful about this decomposition,

which we do in lemma (3,9).

LEMMA (3.8). (A variation of Janiszewski's border theorem).

ILet K Dbe a connected closed set in a metric space X

and G an open subset of X with a compact closure,

If K meets both G and X - G, then each component

of KNG meets Fr G.
Lemma (3.8) can be proved by making only the smallest
alteration to the proof of Janiszewski's border theorenm,

which can be found on p. 184 of l13].

LEMMA (3.9). Let L Dbe a semi-closed set in a Peano

space X, and form the decomposition of X associated

with L. If G 1s an open subset of X with a compact

closure, then G is open.

PROOF. Except for the use of lemma (3.8), the proof of
lemma (3.9) is very similar to the proof of lemma (3.7).

et F =X - G. We show that F" 1is closed. If
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on the contrary- rt 1s not closed, then there is a point
P €G- F" and a base of neighbourhoods Ul' U2, «.. about
D §uch that U; ¢ G and U; NK; # ¢, where K; 1s a
component of L which meets F. Thus a component Cy
of ¥; N G meets Ui+ By Janiszewski's border theorem,
C, N Fr G £ ¢,

‘From {Ci}i we can now pick a convergent subsequence

{CMi}i' Let CMi - C. Then C 1s a continuum which

meets Fr G and contains p. Now CM. c K and from
i

My

{KM_} we can choose a convergent sequence {KMN }i . Let

KM = H. Then HD C. Thus H 1is non-degenerate and
N,
i

So 1is contained in L. Thus C 1is contained in L and

so is contained in a component XK of L. Thus Kc pt

and so p € F*. This contradiction establishes the lemnma.

LEMMA (3.10). Let X be a connected, locally connected

normal space and A a closed connected subset of X

which does not separate X. Then the following properties

are equivalent:

(i) X 4is unicoherent modulo A4,

(11) if F 1is a closed subset of X which is dis-

joint from A, and F separates p, g in X - A, then

[
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2_component of F separates p, q in X,

LD

(111) if F 1is a closed subset of X whieh is

c¢isjoint from A and which separates X - A, thern a

comoonent of F Separates X.

LEMMA (3.11). If in the statement of lemma (3.10) we suppose that X

is in addition completely normal and T

12 and X - A is compact, and

if in (11) and (iii) we suppose that F 1is merely a set with closed

components, then properties (1), (ii) and (iii) are equivalent.

We shall turn to proving lemma (3.10), and we shall omit the proof

of lemma (3.11).

PROOF OF LEMMA (3.10). We first notice the trivial fact
that for any set Y C€X - A, cly - 5 (¥Y) =Y N (X - 4).
In order to prove that (i) implies (ii), let p
belong to a component C of (X - A) - F, and let g
belong to a component D of (X - &) - C. Then
Dn(X-4) and (X -.A) - D are two relatively closed
connected subsets of the subspace X - A whose upion is
X - A and whose intersection is a non-empty subset of
F. We assert that one of the two sets D N (X - A), (X - A) - D

is separated from A, For suppose that this is not the



case. Let R be a region about A such that B n P = b,
Then RE N (X - A) can be expressed as the union of the
two non-empty disjoint sets T n D n (X - ),

RN ((X - A) - D), which are closed subsets of the space
X

- A, Since X - A is connected, there is a component

3

of (X - A) - §' which has closure points in both
RNDN (X-4) and En ((X - 4) - D). But now

X=EU (X-E), where § and X - E are two connected
closed subsets of X such that AN E=¢ and T n (X - =)
1s not connected. This contradicts the fact that X is
unicoherent modulo A. Thus either D n (X - A) or

(X = A) - D 1is separated from A, and we may without

loss of generality suppose it is the latter. Thus

(X = A) - D 1is a closed subset of X. Thus AU D

ahd (X - A) - D are two closed connected subsets of X
whose union 1s X, and the second of them does not meet

A, Thus the intersection H of these two sets is
connected, But H = (DN (X - A)) n ((X - 4) - D), and

so 1s contained in a component of F. Further, since

pf AU D and qé (X - A) - D, it follows that H
separates p and q in X. This shows that (i) implies
(1ii). That (ii) implies (i1ii) is obvious, and with the
aid of lemma (3.2) we easily show that (iii) implies (1).

For suppose that X 1is not unicoherent modulo A. Then

A,
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by lemma (3.2) there is a closed set P in X such that
FOA=¢, F separates X and no component of F
separates X. It follows now that F 1mus<t also separate

X - A, for A 1is a closed set. But tais contradicts (111),

NOTATION (3.4). Let A stand for one of the upper-case
Latin letters A, B, C, ..., Z. 1In subsequent lemmas

when we consider a point x in a space X, we shall often
use the symbol "A(x)" to stand for some subset of X
that contains x, and in this case we shall denote the
closure A(x) of A(x) in X by the abbreviated

symbol A(x).

Let S(x) Dbe a region about a point x 1in a locally

connected T,~-space X. If Q(x) is a set which is

1
expressible as the union of {x} and a component of
S(x) - {x}, then we shall call Q(x) an arm of S(x).
The following three lemmas may all be looked upon
as a part of the proof of theorem (3.5). We have isolated

them in order to make the proof of theorem (3.5) more

manageable,

LEMMA (3.12)., Let X be a cyclic U-space, L a semi-

closed subset of X no component of which separates X,

and x &a point in X - L, Then there is an arbitrarily
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small region S(x) about x such that for easch arm

Q(x) of S(x)

(1) Q(x) - L is connected or @Q(x) - Q(x) 1lies

in a component of L,
(11)  Q(x) = (Q(x))7,

(111) Q(x) - Q(x) is connected,

(iv) Q(x) 1is unicoherent modulo Q(x) - Q(x).

PROOF. By hypothesis there is a region R about x in
X such that R 1is unicoherent modulo Fr R. By virtue
of lemmas (3.1) and (3.6), R may be chosen as an
arbitrarily small region about x for which R is
compact.

Now form the decomposition of X associated with
L. By lemma (3.9), R 1is an open set about x. Let

’ be the component of R~ which contains x. By

R
lemma (3.6), the closure of R’ 1is unicoherent modulo
Fr R'. Also, of course, R’ = (R')".

Since X 1s a cyclic space, each component of
R’ - {x} has closeure points in Fr R’ (which we may
obviously suppose to be non-empty). Let Qq, Qor eoer Q
be the sets that are expressible as the union of ({x}

and a component of R’ - {x}. By lemma (3.4), each 51

is unicoherent modulo Qi - Q.
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By lemma (3.1), there is a region Ui about X
in the subspace Q; such that ﬁi. is compact and
contained in Qi' and Qi - U.l is connected. Now
Q = Qi— and L " Q, 1is a semi-closed set in the
subspace Qi' Thus U; is a neighbourhood of x in
the subspace Q;. Further, Q - Ui_ = (Q - Ui)+ is
& closed connected set in the subspace Qi’ and each
component of U;  has its frontier (with respect to
the subspace Qi) in (Qi - Ui)+' Let V; Dbe the

component of Ui— that contains x. Then Q,

- Vi
is a connected closed subset of the subspace Qi' Further,
V.l N (Q; - Q) = ¢. From this and the fact that Q, 1is
unicoherent modulo Q; - Q;» it easily follows that Q;
is unicoherent modulo @Q; - V;. Also v, = Vi—.
Suppose in the first case that V.l - Ln Vi is
connected. Then we define Q; (x) = vy .
In the second case we suppose that V.l -Ln V.l is
not connected. Then by lemma (3.11), some component of
Ln V.l separates Qi' But if a component F of L n Vi
separates Qs then Qi - P mnmust have Jjust two components,
the one containing x and the other containing the
connected set Qi - Vi‘ For if this were not the case

then ©F, which is a component of L, would separate X,

which is contréry to hypothesis,. Thus let F Dbe some
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component of L N V; which separates Q;» and let Q4 (x)
be the component of Qi -~ F that éontains X,

. We now define S(x) = Ui:? Qi (x). Then the arms
of S(x) are just the sets Qi(x), 1 £ n, and it is

clear that each Qi(x) has the properties (1) - (iv),

Let X Dbe a cyclic U-space, L a semi-closed subset
of X, and x a point of X - L. If S(x) is a region
about x and each arm Q(x) of S(x) has the properties
(i) - (iv) listed in lemma (3.12), then we shall call

S(x) a special region about x (in X with respect

to L). If Q(x) 4is an arm of a special region S(x)

about x and Q(x) - L 1is connected, then we shall say
that Q(x) 1is an arm of S(x) of type (a); if Q(x) - L

is not connected, then we shall say that Q(x) is an arm
of S(x) of type (b), (It should be noticed thét the
properties "Q(x) - L 1is connected" and "Q(x) - Q(x)

lies in a component of L" do not in general divide the
arms of 8(x) into two mutually exclusive classes, although
they can be made to do so by suitably "cutting back" the

arms of S(x) of type (a).)

NOTATION (3.5). With the notation of the previous paragraph,

we shall always denote the component of X - L to which x
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belongs by H(x).

REHARK (3.1). The special region S(x) about x in
lemma (3.12) can also be chosen so that X - S(x) is
connected, This can be done by taking the region 2

at the beginning of the proof of lemma (3.12) to have

the property that X - R 1is connected (which is possible
because X 1is cyclic). With the remainder of the proof
of lemma (3.12) unchanged, it will follow that X - S(x)

is connected.

LEMMA(3.13)., ILet X be a cyclic U-space, L a semi-

closed subset of X no component of which separates X,

and X a point of X - L., If S(x) 1is a special region

about x and H(x) is the component of X - L 1in which

x- lies, then Fr S(x) < H(x) u L.

PROOF. In order to prove this, it is only necessary to
show that for each arm Q{(x) of S(x) of type (a),
Q(x) - L 1is connected.
Let y € (Q(x) - Q(x)) - L. Then in an arbitrarily
small neighbourhood of y there is an arc uv such that
uv - (v} € Q(x) and v € Q(x) - Q(x). Since each component

of I that meets Q(x) 1is contained in Q(x), it follows
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that uv - {v} ¢ L. Thus uv - {v} contains some point
of Q(x) - L. Thus y € Q{x) - L. That is, (Q(x) - Q(x)) -L
c .Q(x) - L. Since Q(x) - L 1is connected, we therefore

deduce that Q(x) - L 1is connected.

LEMMA (3.14). Let X be a cyclic U-space and L =& semi-

closed subset of X no component of which separates X.

ILet H be the union of a collection of domponents of

X - L such that H- Hc L, Let x and y be points

of H and X - HU L, respectively, and let S(x) and

R(y) ©be special regions about x and y such that S(x)

is compact, R(y) N H =¢ and R(y) & S(x). Then there

is a special region T(x) about x such that T(x) < S(x)

and

T(x) N B(Y) =@  covesese (1)
S(x) N HES T(X) veeoenes (II)

PROOF. In order to prove this lemma we examine the arms
Q(x) of S(x).

In the first case let Q(x) be an arm of S{x) of
type (a), so that Q(x) - L is connected. We show that
Q(x) N R(y) = ¢ . For suppose that this is not the case,

so that Q(x) n R(y) #¢ . Since Q(x) ? R(y), there is
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an arc uv lying in R(y) such that uv - {#} c Q(x) and
v € Q(x) - Q(x) . Since Q(x) = (Q(x))”, it follows that
uv - {v} does not lie in L; that is, it meets H(x)
(see notation (3.5)). But this implies that

R(y) N H(x) # ¢, which is false because iH(x) € H.

For each arm Q(x) of S(x) of type (a) we define
Qp(x) = Q(x),

Now let Q(x) be an arm of 3(x) of type (b), so
that Q(x) - Q(x) 1lies in some component of L, and
suppose that Q(x) N R(y) # ¢. We first show that
Qx) - Q(x) € R(y) .

We have R(y) N Q(x) # ¢ and R(y) € Q(x). Thus,
since R(y) 1is connected, it follows that Q(x) - Q(x)
meets R(y). But Q(x) - Q(x) 1lies in a component of
L and R(y) = (B(y)) . Thus Q(x) - Q(x) € R(y).

Now we show that Q(x) N R(y) is connected. Suppose
on the contrary that Q(x) N R(y) = M U N, where M and
N are two disjoint, non-empty relativeiy closed subsets
of the space Q(x) N R(y). Then M and N are a
relatively closed subsets of R(y), for Q(x) N R(y) 1is
a relatively closed subset of R(y). On the other hand,
Q(x) - M U {x} 1is an open subset of the space X, and
(Q(x) - MU {x}) NR(y) = N, because 4 NN =06. So

N 1is a non-empty relatively open and closed subset of
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R(y) and R(y) - N # #. This contradicts the connected-
ness of R(y). Thus Q(x) n R(y) is connected,

Since Fr R(y) N (Q(x) - int Q(x)) = ¢, it follows

that Q(x) n R(y) = Q(x) n R(y). Thus from the fact that
Q(x) N R(y) 1is connected, we may deduce that Q(x) n R(y)
1s also connected,

Now we notice that Q(x) - R(y) 1is a closed set in
X, and that Qx) - R(Y) = (A=) - BN, Let (£
be the collection of all components of I that lie in

Q(x) - BR(y) and separate Q(x). Since F. does not

a
separate X and Q(x) - Q(x) 1is connected, it follows

that Q(x) - F, has precisely two components, one of

which contains x and the other of which contains

Q(x) - Q(x). We denote by FF,] the union of F and
the component of Q(x) - Fy that contains x. Since

Q(x) N R(y) 1is a connected set which contains Q(x) - Q(x),
it follows that [F ] c Q(x) - R(y) . We obtain a total

ordering on {Fa}a by defining

. crE.
S Fb if and only if [F&] r BJ
Under this ordering {E&}c may or may not have a maximal
element, and we treat the two cases differently.

In the first case we suppose that {Fa}OL has a

maximal element, which we denote by Fw. We assert that
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1n0Qlx) elFJ-F .

In order to prove this we let X ©be the union of
erJ and all the components of L that lie in
(Q(x) - R(y)) - [Fw]. Then the sets whose union has
Just been given are the components of X. Thus no
component of K separates Q(x). Also XK 1is a semi-
closed subset of the compact space Q(x), and the proof
of lemma (3.7) shows that the decomposition of Q(x)
associated with K 1is usc (lemma (3.7) cannot be applied
directly to show this because Q(x) may not be locally
connected at some points of Q(x) - Q(x); this, however,
presents no difficulty because XK N (Q(x) - Q(x) = o) .

In the remaining paragraphs concerned with proving
that H N Q(x) © [FA] ~ F, , we work in the subspace Q(x) ,
and the index operations "( )%" and "( )E" are taken
with respect to the usc decomposition of Q(x) associated
with K (see notation (3.3)).

We have seen that Q(x) N R(y) is'a connected set,
Thus (Q(x) N ﬁ(y))g is a connected closed subset of
Q(x) . Let C Dbe a component of Q(x) - (Q(x) N ﬁ(y));.
We show that C N 3 = ¢ .

In order to do this we first show that C - K 1is
connected. Q(x) - C 1is a connected closed subset of
Q(x) , and Q(x) 1is unicoherent modulo Q{(x) - C. We

notice that C = ci , so that the components of K n C
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are all components of K. Since no component of X ne
separates Q(x), we may apply lemma (3.11), which tells
us that X N C does not separate C; i.e., C - K is

connected,
Now we let M Dbe the union of all the components

of L that lie in (Q(x) - R(y)) - ([F,] - E,) and meet
Fr R (y) . From the three inclusions Fr C c (Q(x) n Fr R(y));,
Fr CNTF ] cF and Fr R(y) € LU H(y) (see lemma (3.13)),
we deduce that Fr Cc MU H(y). We wish to show that
Fr Cc N d(y) # ¢.

Suppose on the contrary that Fr ¢ N d(y) = ¢, so
that Fr Cc M. ©Now CnN (Q(x) - Q(x)) =¢, Qx) -cC
is connected and Q(x) 1s unicoherent modulo Q(x) - Q(x).
This implies that Fr C 1is connected, and so lies in a
component F of M. Since C 1is a component of Q(x) - F
and C N (Q(x) - Q(x)) = ¢, it follows that F separates
Q(x). But a component of M ‘separates Q(x) if and only

if Fw c M. Thus we must have rF = F But now C meets

w
neither [F,} - F, nor Q(x) - Q(x), both of which are
— +

contained in (Q(x) N R(y))K.
of Q(x) - F, which contains neither x nor Q(x) - Q(x).

Thus C 1s a component

This implies that F, disconnects X, which is contrary
to hypothesis. The contradiction shows that Fr C N H(y) # ¢ .
We now show that € - XK € H(y). Let =z € H(y) n Fr C.

In an arbitrarily small neighbourhood of =z there 1s then
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an arc uv such that uv - {v} € C and v € Fr C. Since
C = Ci, it follows that wuv - {v} contains points of

C - K. This shows that z € C - K, Now C - Kec X - L,
and so (C - X) U {2z} 1is a connected subset of X - L.
Since =z € H(y) it follows that C - X c H(y).

Now we can show that H n Q(x) (F, 2. For if
p € HNn Q(x) - [F,] then in fact p £ R(y) U K, because
HN R(y) = ¢. Thus p belongs to some component C of
QAUx) - (Qx) n -ﬁ(y)); ', and in fact p € C - K. But
we have seen that C - K € H(y), which is disjoint from
He.. This contradiction shows that H N Q(x) 1is contained
in FEAJ, and consequently in [Eu] - F .

In this case in which Q(x) is‘an arm of S(x) of
type (b) and {Fh}a has as a maximal element F_, we
define QT(X) = [Fb] - E, .

In the second case we suppose that {Fa}a has no
maximal element. Then Ua [Fa] = Ua(FFa] - Fﬁ)' which

is an open subset of Q(x). We denote it by G. Let

Rl' RZ’ ... be a sequence of regions in Q(x) that

cover G and such that ﬁi is a compact subset of G,
Then we are easily able to find a sequence Fbl, sz, PN
from {F,}, such that [Fak] - Fp 2 B end R < Ry oo

It now easily follows that F& - Fr G. Thus Fr G 1is
k
either a subcontinuum of L or a single point in the

complement of L. The former, however, cannot occur,
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for this would imply that the collection {Pa}a has a
maximal element. Thus Fr G 1is a single point in the
complement of L, and we shall denote it by g.

We let P(x) = Q(x) - G. Then we show that
P(x) NH=¢ in exactly the same way that we showed
that (Q(x) - ([F,J - E,)) n H=4¢ in the case when
{F&}a had Ew as a maximal element. The only difference
1s that we work in the space P(x) instead of the space
QUx) .

Now since g £ HU L, it follows that g £ H. Thus
HNG=HNG is a compact subset of G, Let U be a
region in the subspace Q(x) such that EnGecUcTcg,

Since U does not contain g, we can find a set Fak such

that Fy N U =¢. It then follows that
UCclF. 1-F ; i.e., HNGc[F - F,
We define QT(x) = [Fak] - F“k for this case in which

Q(x) 1is an arm of S(x) of type (b) and {Fa}OL has no
maximal element.

Now we define T(x) = UQT(X), the union being taken
over all the arms Q(x) of S(x). Then we notice that
the arms of T(x) are precisely the sets Qé(x)[ each
one of which satisfies the conditions (i) - (iv) of lemma
(3.12). Thus T(x) 1is a special region about x. Further,
from the relations QT(X) N R(y) =¢ and Q(x) n HS Qp(x),

it follows that T(x) satisfies (I) and (II). This
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completes the proof of lemma (3,14).

Let A, B and L ©be subsets of a space X. Ve
say that L sevarates A and B in X if X - L is
the union of two separated sets, the one containing A
and the other containing B (two sets I and N are
separated if M N N=¢ =1 n N). We say that L broadly
separates A and B in X if L separates A - L and

B-L in X. Finally, we say that L weakly separ:tes

A and B in X 1if no component of X - L meets both
A and B. The latter two definitions may be found in

327 and [ 35], respectively.

THEOREM (3.5). Let X be a cyclic U-space and L a semi-

closed subset of X no component of which separates X.

Iet A and B be two closed subsets of X which are

weakly separated by L 1in X. Then L contains a

closed subset K of X which broadly separates A and

B in X.

PROOF. We let H = U{H(x) : x € A - L}, where H(x)
is defined in notation (3.5), and we first show that
H-HcL.

For let y € X - HU L and let BR(y) Dbe a special

region about y such that E(y) N A =¢ . Then by lemma
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(3.13), Fr R(y) ©H(y) UL, and so Hn Fr R(y) = ¢ .
Thus every component of H meets A c X - X(y), and
no pomponent.éf d meets Fr R(y). Thus no component
of H meets R(y), and consequently H does not meet
R(y)i 1.e., y £ H. This shows that H- Hc L.
For each point y € X - HU L, let R(y) be a
special region about y such that R(y) n H=¢ . Then
the open covering {R(y) : y € X - HU L} of X - HU L.
has a countable subcovering R(yl), R(yz), s of X -4y L.
Similarly, for each point x € H there is a special
region S(x) about x such that S(x) 1is compact and
disjoint from B. From the covering {S(x) : x € H}
of H, we select a countable subcovering S(xl), S(xz), .o
of H.
Now we show that there is a special region T(xn)

about xn such that

(I) for each 1 < n, T(Xn) :'R(yi) or T(Xn) N R(y;) =¢,

(I1) S(xn) n Hc T(xn) c S(xn)

We define T(xn) as follows. Define To(xn) = S(xn).
If each of the sets R(yl), ceos R(yn) is contained in
To(xn), then let T(xn) = TO(Xn). If not select one
set from R(yl). cens R(yn) which is not contained in

To(xn) and call it Ry ). By lemma (3.14) there is
1
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a special region Tl(xn) about X, such that
Tl(xn) n R(le) = ¢ and To(xn) nigc Tl(xn) c TO(Xn) .

If each of the sets R(yl), ceey R , R(yN +1). cees R(yn)

Yy
Nl—l 1

is contained in Tl(xn)’ define T(xn) = Tl(xn). If not

select one of these sets which is not contained in 7 (x )

1'"n
and call it R(yN ). By using lemma (3.14) again, we find
2
a special region Tz(xn) about X, such that
T (x )N =
2( n) R(yNZ) ¢ and Tl(xn) N HC Tz(xn) c Tl(xn)'
Continuing in this way, we arrive at the definition
T(xn) = Tm(xn) for some m < n, and it is clear that

(I) and (II) hold.

let G = Uz=1 T(xn). By virtue of (II) it follows
that Hc G and G N B = ¢. We assert that Fr G c L.

In order to prove that Fr G ¢ L, suppose that there
is a point y € Fr G - L. Since y € X - HU L, it
follows that y € R(yk), for some k. Now R(yk) is not
contained in any of the sets T(xk), T(xk+1), ... (because
y £ G), and so by (I) each of the sets \T(xk), T(Xk+1). ceo
is disjoint from R(yk). On the other hand, if n < k
then y £ T(xn) and y £ Pr T(xn), which is contained
in H(xn) U L, by lemma (3.13). Therefore R(yk)'- Lﬁ;i T(Xn)
is a neighbourhood of y which does not meet G, and so
y £ Fr G. This contradiction shows that Fr G c L.

Let K= (A-G)U Fr G. Then K 1s a subset of L
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which is closed in X, and it broadly separates A and
B in X.

Theorem (3.5) is as much as we will need for the
proof of theorem (3.6). However, by modifying the proofs
of lemmas (3.12) - (3.14) slightly, we can prove the

following extension of theorem (3.5).

THEOREM (3.5a). Let X be a cyclic U-space and L a

semi-closed subset of X. If A and B are two closed

subsets of L which are weakly separated by L 1in X,

then L contains a closed subset K of X which

broadly separates A and B in X.

THEOREM (3.6) let X ©be a U-space and Y a regular

Tl-snace. If £ 3+ X= Y 1s a connectivity function,

then f 1is peripherally continuous.

PROOF. Let U Dbe a neighbourhood of a point p of

X such that U 1is compact, and V a neighbourhood of
f(p). We shall show that there is a neighbourhood W
of p such that Wc U and f(Fr W) c V.

Let Al' A ooy An be the sets that are expressible

2!
as the union of {p} and a component of X - {p} that

meets Fr U (we may naturally suppose that Fr U # ¢),
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and let A Dbe a typical set from this sequence,

Since p 1s not a cut point of the Peano sSpace 4,
it ;s either an end point of A, or it belongs to a true
cyclic element C of A (see(1.1), p.64 of [30]). We
deal with the latter case first.

In the first case let »p bélong to a true cyclic
element C of A, Let Ul be a neighbourhood of p
in the subspace C such that ﬁl c Un C. Then among
the components of C - A whose closures meet Ul' only

B B meet Fr U, For

a finite number R ot ceen By

17
suppose on the contrary that C - A has an infinite
number of such components Bl’ BZ’ oo Select

bi € Bi N Fr U. Then the infinite set bl’ b2, .ss has
a point of accumulation b € Fr U. It is now clear that
no neighbourhood of b that is contained in A - T; can
be connected, which contradicts the local connectedness
of A, Since ©p 1is not a cut point A, it follows that

U1 - LE:l Bi is a neighbourhood of p 'in the sﬁbspace c.
Now consider the connectivity function f|C : C - Y,

Since C 1is also a true cyclic element of X, it follows

that C 1is a cyclic U-space. Thus, by theorem (3.3),

f]lc s C - Y 1is peripherally continuous; i.e., there is a

neighbourhood W’ of p in the subspace C such that

W' ey, - Uil:l B, and f(Fro W') € V,. Let W, Dbe the

union of W’ and all the components of A - C whose



84

closures meet W’. Then NA is a neighbourhood of ho)

in the subspace A such that WA cU N A and f(FrA WA) c V.,
‘ In the second case we suppose that P 1s an end point
of. A. Then in the space A we can find a neighbourhood
U, of p such that Ul cUpP A and Fr, U; 1s a single
point q. We let E(p,q) be the set of all points in
U, that separate p,q in ﬁl'
If there is a2 point r ¢ {a} U E(p,q) suvch that
f(r) € V, then the component WA of ﬁl -{r} is a
neighbourhood of p in A such that WA cUnN A and

f(FrA W,) € V. So we may suppose that this does not

A
happen.
Now let C be a true cyclic element of Ul which
contains exactly two distinct points r, s € {q}u E(p,q),
and suppose that f_l(V) separates r, s in C. Then
it follows that f-l(V) contains some closed subset X
of C such that C - K = MU N, where M and N are
disjoint open subsets of C that contain r and s,
respectively. Let P be the component of ﬁl - C that
contains p. Then P - P 1is equal to {r} or {s},
and we may suppose it is the former. Let WA be_the
union of M and all the components of ﬁl - C whose
closures meet M, Then q £ M, and so WA is a neighbour-~
hood of p such that wA cUnA and f(FrA WA) c V.
So we shall also suppose that this case does not happen;
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that is, the case in the first sentence of this paragraph,.
Now let V1 be a neighbourhood of f(p) in Y
such that Vl c V,

Let C again be a true cyclic element of U which

1
contains exactly two distinct points r, s € {a} v Z(p,q).
Let {Fa}a be the collection of components of the semi-

closed subset f-l

(Vl) N C of C. By supposition, F
does not contain r or s, and does not separate r and
s in C., Let [F&] be the union of F, and all the
components of C - [F&] except the one that contains
r and s. We now define [F&] ~ [Pé] if and only if
some [F;] ) [F&]U [Eé], and we easily prove that this
is an equivalence relation on {[F&]}a. Now let ¢ Tbe
an equivalence class of [ﬁ&]'s. The assumption that
€ has no maximal element (that is, no element that
contains every other element in & ) leads us to the
conclusion, as in the proof of theorem (2.1), that
UT gD [I&] € 2} is an open subset of C whose
boundary in the subspace C 1is a single point. But
as a cyclic space, C contains no such open sets whose
complements are non-degenerate., This proves that‘every
equivalence class € contains a maximal element,

We let {[FQB]}B be the collection of maximal
J. Let

elements of {[Fa]}a,'and define Hé = [F&B

L =lJBHé° Then L 1is a semi-closed subset of C whose
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components are the sets HB' and none of these components
separates 1r, s in C. Since C 1is a cyclic U-space,

as a true cyclic element of the U-space X, it now follows
from theorem (3.5) that L does not weakly separate r
and s in C. But L contains £ (V) nC. Thus

r,s lie in the same component Do of C - f'l(vl).

Now we recall that, since p 1is an end point of
ﬁl' the cyclic chain C(p,q) from p to g in the
Peano continuum ﬁl is expressible as the union of
{qa} U E(p,q) and all the true cyclic elements of U,
that contain just two points in {q} U E(p,q) (see (5.2),
p.71 of [31]). Purther, the true cyclic elements of
C(p,q) are exactly the same as the true cyclic elements
of ﬁl that meet {q} U E(p,q) 1in just two points.

Let D = {p,q} U E(p,q) U Uc Dg» the union being
taken over all true cyclic elements C of C(p,q).

We assert that D 1s connected.

For suppose that D 1s not connected. Then D = My N,
where M and N  are two non-empty separated subsets of
C(p,q). Let M’ ©be the union of M and all the true
cyclic elements of C{(p,q) such that Cn Dc M, and let
N’ be the union of N and all the true cyclic elements
of C(p,q) such that CN Dc N. Then C(p,q) = M U N’.
Further, since for each true cyclic element C of C(p,q),

¢ -{q}U E(p,q) 1is an open subset of C, it readily
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fbllows that M’ and N’ are separated in C(p,q).
This contradicts the connectedness of C(p,q). Thus D
is connected,

. Now consider the connectivity function f|A : 4 - Y,
There is no point of D other than p which this

function maps into V This contradicts lemma (2.2).

1'
Returning to the sequence of sets 44, A2. vy An'

we have now shown that for each 1 there is a neighbour-

hood wi of p 1in the space A.l such that W; € U N Ai

n

and f(Fr, Wy) V. Let W= (L{_; W) u (X -U]_; &)

i
Then W 1is a neighbourhood of p in X such that

Wc U and f(Fr W) € V. This completes the proof.



88

L. In this section we answer a question that Stallings

reaised in [237.

On p.253 of [23] Stallings showed that if f

s P~ Y

is a local connectivity map of the lpc polyhedron P into

a regular Hausdorff space Y, then f 1is peripherally

continuous.

On p.262 of [23] he asks whether this theorem remains
true when the 1lpc polyhedron P is replaced by an ANR,
In this section we give an affirmative answer to this
question. We shall use theorem (3.2) to show that P
may be replaced by any locally compact ANR(m).

We first give the necessary definitions. If X
and Y are topologlical spaces, then a function f : X = Y

is a local connectivity function if there 1is an open

covering {U,}, of X such that f|U, : U, = Y 1is a
connectivity function.

A glance at the proofs of theorems (2.1), (3.2), (3.3)
and (3.6) will show that in each case the connectivity of
the function f was only used locally. Thus each of
these theorems holds if the connectivity function f
is replaced by a local connectivity function £,

Following chap. IV of [ 5], we shall say that X is

an absolute neighbourhood retract for metrizable spaces

(or X is en ANR(m)) if X 1is a metrizable space

and for each homeomorphism h mapping X onto a closed
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subset h(X) of a metrizable space Y, h(X) 1is a

neighbourhood retract in Y.

A topological space X 1is said to be locally

contractible provided that for each pqint x € X and

each neighbourhood U of x, there is a neighbourhood
V of x such that V €U and V 1is contractible to
a point in U. We notice that a locally contractible

space 1is locally connected.

Let X be an ANR(M). We notice from (3.3), chap.
IV of T5], that X 1is locally contractible.

Let X Dbe a locally compact ANR(Mh). Then it
follows that, when X 1is metrized, each component of
X 1s a Peano space.

Let X Dbe an arbitrary topological space and Y
a subset of X. We say that a continuous mapping
£ 3 X = Sl,'where S1 is the circle of complex numbers

of unit modulus, is exponentiglly eguivalent to 1 on Y

(written "f ~ 1 on Y") 4if there is & continuous
real-valued function ¢ on Y such that f(x) = explip(x)]
for each x € Y,

The following is a standard lemma on connected spaces

which are not unicoherent.

LEMMA (4#.1)., Let X be a connected normal space which is

not unicoherent,‘and M and N two connected closed sub-
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sets of X such that X =¥ UN and ¥ A N 1is not

connected, Then there is a continuous function f s X - S1

such that f ~1 on M, f~1 on & and f4£1 on X.

PROOF. ILet M NN =PU Q, where P and Q are disjoint
non-empty closed sets., By Urysohn's lemma, there is a
continuous function @, s+ M = [0, =] such that o,(P) =0
and ml(Q) = 1, and a continuous function ®, s+ N - Fe,2m)
such that mZ(Q) = m and o,(P) = 2m, Let £, 6 X = st

be deflined by

) ‘{exp[iml(x)] for x €M,
f(x) =
exp[imz(x)] for x € N,

Then f is well-defined, since exp[iml(x)] = explig,(x)]
for x € M NN, and f 1s continuous, because the
restricted functions f|M and f|N are continuous on
the closed subsets M and N of X,

By definition f ~1 on M and f ~1 on N. We
show that f £ 1 on X by supposing on the contrary
that f ~ 1 on X. Then there is a continuous real-
valued function ¢ on X such that f(x) = explio(x) ]

r.'l} and

for all x € X. Thus o(P) < {0, Ta2m, Xum,
m(Q)C‘{fﬁ. Y3m, Ys5m, £...}. Let p and q be points

of m(P) and o(Q), respectively, and let r be a
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point between p and q such that r 1is not a multiple

of m, Since (M) and @(N) are connected sets, it
follows that r € o(M) "N o(N). Thus explrl € £(¥) n £(N).
But explr] 1s not equal to either of the two complex
numbers +1 or -1, and f£(M) N £(N) 1is precisely the

set of these two complex numbers. This contradiction shows

that £ £ 1 on X,

THEOREM (4.1)., If X 1is a locally contractible Peano

space, then X has a covering by regions {Ri}i such

that each Ei is unicoherent modulo Fr Ri'

PROOF. Suppose on the contrary that X does not have a
covering by such regions. Then there 1is some point p € X
such that each region R that contains p has the
property that R 1s not unicoherent modulo Fr R.

Let U and V be regions about p such that
Vc U and V 1is contractible to a point in U. Since
each‘subregion of V 1is also contractible to a point
in U, we may clearly suppose that ¥V 1is cdmpact and
contained in U,

Since by supposition V 1is not unicoherent modulo
Fr V, there are two connected closed sets M and N such
that V=MUN, (VT -V)NN=¢ and MN N is not

connected. By lemma (4.1), there is a continuous function
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= 1
f ¢+ V=87, the latter being the set of complex numovers

of unit modulus, such that f-~ 1 on M and f L 1
on V,

We shall now produce a contradiction. Let © be a
real-valued function on M such that f(x) = expl i (x)1
for each x € M. Then o|V - V is a real-valued function
on the compact set V - V, and so by Tietze's extension
theorem there is a real-valued function § on U -V
such that |V - Vv = |V - v,

Define

f(x), for x € V,
g(x) =
expl 1y (x)], for x € U - V,

Then g : U - S1 is a well-defined continuous function,
because f(x) = exp[i}y (x)] for x€V -V, and TV and
U -V are relatively closed subsets of U.

Since V is contractible to a point in U, there
is a mapping h : V x [0,1] - U such that h(x,0) = x

and h(x,1) = q for all x € V, where q 1is some point
in U. The composition gh : Vx [0,1] - sl is a
homotopy between the mapping g|V : ¥V - s! and the
constant mapping from V into SY. By theorem (6.2),
chap. XI of [31], this implies that g|V~ 1 on V.

However, glv =f, and f#4 1 on V. This contradiction
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proves the theorem.,

TH=OREM (4.2). Let X be a locally contractible Peano

space and Y a resular Tq-space. If f : X =Y is a

connectivity function (or local connectivity function)

then f 1s peripherally continuous,

THEOREM (4.3). Let X be a locally compact ANR(M)

and Y a regular Tl—space. If £ ¢: X =Y 1is a

connectivity function (or local connectivity function)

then f 1s peripherally continuous,

Theorem (4.2) follows immediately from theorems (4.1)
and (3.2) (the latter also holds for local connectivity
functions, as it was remarked earlier in this section).
Theorem (4.3) is a corollary of theorem (4,2), since each
component of a locally compact ANR(M) 1is a locally

contractible Peano space.
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5. The purpose of this section has been outlined in 81.
We shall say that a connected space X 1is weaxly

finitely multicoherent if for each pair of connected

closed subsets M, N of X such that X = M N, ¥MAN
always has a finite number of components. Such Spaces
were investigated by A.H. Stone in [26].

Let A be a subset of a connected space X. We

shall say that X 1is weakly finitely multicoherent

modulo A 1if for each pair of connected closed subsets
My N of X such that X =MUDN and ANN=¢, ¥ " N
is always connected,

We then hafe the following result, the proof of which

is simple and is omitted.

LEMMA (5.1). Let X Dbe a connected, locally connected

and completely normal space, and let A Dbe a connected

subset of X such that X is weakly finitely .

multicoherent modulo A. If L 1is now a subset of

X - A which separates X, then a finite number of

components of L separate X.

The following are also two straightforward lemmas,

and their proofs are omitted.

LEMrA (5.2). Let 4 2 A, @ ... De a sequence of
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connected closed sets in a metric space X. Sucuore,

furthermore, that there is a compact set K such that

X '-An c K for all n. Then ﬂ;=1 A, 1s connected.

LEMMA (5.3). Let Cl’ C2, vesy C be components of a

n

space X such that X # Ci U c, U T C,- [Ihen there

are two non-empty separated subsets M, N of X such

that X =M UN and N 2Cy, Cp,ee., Cp.
The above three lemmas are needed for the proof of
theorem (5.2), Becausé in this theorem the range space
is only regular; and not regular and T4 (as it is in
§2,3,4% of this chapter and in [23], [34], [35])) we also
Aneed the appropriate modifications of lemmas (2.2) and

(2.3), and these are given next.

LEMMA (5.4), Let f ¢ X =Y be a connectivity function,

where X and Y are both regular spaces. Then.if C

is a connected subset of X, the graph r(rlc) has no

isolated points.,

PROOF. Suppose T(f|C) has an isolated point (p, f£(p)).
Let U x V be a basic open set about (p, £f(p))  in
X x Y which does not meet T(f|C - {p}). We can find

neighbourhoods Uy, V; of p, f(p), respectively, such
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that ﬁl cU, V; € V. But now the two disjoint open

sets Uy x V;, (X xY) - (Uq x V,) provide a separation

of T(f]C), which is a contradiction.

LEMMA (5.5). Let f :+ X =Y be a connectivity function,

where X 1s a locally connected, Hauédorff space witn

a countable basis and Y 1s a regular space. Then for

each closed subset F of Y, £~1(F) 1is a semi-closed

subset of X.

PROOF. Let F ©be a closed subset of Y, and let Fal'
Faz, ... be a convergent sequence of components of
£~1(F) whose limit is L. Let p,q be two distinct
points of L such that p €L - £~1(F). Let U, V be
disjoint regions containing p.,q, respectively. We may
without loss of generality suppose that V meets all
Let Q@ =V U L§=1 Fan. Then
Q 1s a connected set, and so QU {p} 1is also a

F

the sets F_ , y seo o
' "9

connected set. However, there 1s an open subset G of

Y such that f(p) €G cG c¥Y - F, and therefore the two
disjoint open sets U x G, (X x(Y¥ - G)) U (V x Y) provide

a separation of T(flQ U {p}) in X x ¥, This contradiction

proves the lemma.

In the proof of theorem (5.2) we also use the fact that a
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connectivity function preserves connectedness (thousn it is

not necessary to use this fact), and we state thais as a lemma,

LErHA (5.5a). Let f 1 X = Y be a connectivity function,

wnere X and Y are arbitrary topological spaces, Then

for each connected subset C of X, f£(C) 1is a counnected

suovset of Y,

The following two lemmas are used to prove leunas

(5.8) and (5.9), and theorem (5.2).

LEMKA (5.6). Let A be a connected subset of a connected,

locally connected and normal space X which is weakly finite-

ly multicoherent modulo A, Let F be a closed and connected

subset of X - A, Then all but a finite number of components

of X - F have connected frontiers,

This result is stated.for the case where F 1s an arbi-
trary subset of X and X ié a weakly finitely multicoherent
space, in the footnote of p.298 of l26]., This argument used
to prove this footnote may also be used to prove lemma (5.6).
This argument is similar to the argument given in the proof

of theorem 5, §4 of [25].

COROLLARY. Let U, V be two conditionally compact(l)

(1)4 set A is conditionally compact if A 1s compact,
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~

conneqted and X 1is weakly finitely multicoherent

modulo X -V, ILet ¥ Dbe a connected closed subset of

X such that X - U € F. Then all but a finite number

of components of X - F have connected boundaries.

PROOF. Because X is locally connected and V is
compact, it follows from Janiszewski's border theorem

(p.18%4, 13]) that each component of F N V has closure
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points in Fr V. Thus only a finite number of components.

Fyy Fpy +evs By of F NV meet T,

Suppose now that X - F has an infinite number of
components Cl' CZ' ... With disconnected boundaries.
Since U 1s compact, the frontiers of only a finite

number of the sets Cl' C2, ... can meet more than one

ol

of the sets Fl' F2' ooy Fm. Thus there is a set Fy

o0 0 3 C » e« o0 Such that

and a subsequence C_ , C ny,

n1 n2'

Fr C is disconnected and Fr Cn c Fi' But F.l is
k

My

a connected closed subset of V and X‘ is weakly

finitely multicoherent modulo X - V. This contradicts

lemma (5.6)

We introduce the following definition. It 1is
equivalent to the definition given in §2.2 of [24]) and

§3.3 of [25). Let A and B De subsets of some space.
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We say that A 1s connected relative to B if every

non-empty relatively open and closed subset of the subspace
AU B meets B,
We state the following obvious Properties of this

relations

(1) if BC AC B, then A 1is connected relative
to B,

(ii1) if each A, 1s connected relative to B, then

so is Ua Ay
(11i1) 4if A 1is connected relative to B and B 1is
connected, them A U B 1is connected,

(iv) if A 1is connected relative to B and B is
connected relative to C, then A U B 1is connected
relative to C,

(v) if A 1is connected relative to B, and B c C,

then A 1s connected relative to C.

Notice that (iii) and (iv) are generalized versions of

(1) and (2) in §3.3 of [25), and (v) is stated in §2.2

of f24], PFinally, in connection with this definition,

notice that if A 1is a compact set and B 1s a closed
set, then A 1is connected relative to B if and only

1f each component of A meets B,

Let A Dbe a subset of a space X. We say that X
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is locally connected modulo A if X 1is locally

connected modulo A if X 1is locally connected at

each point in X - A,

=4 (5.7). Let X be a continuum (metric) and let

A and B Dbe two disjoint closed subsets of X such

that X 1s locally connected moduloc A U B. Then there

is an open set U such that U D A, U 1s connected

relative to A, and U N B = o.

PROOF., Let V be an open set such that V 2 A and
T nB =¢. We show that all the components of V are
open.

Since it is clear that any component of V which
does not meet A 1is open, we consider a component C
of V which does meet A. Let X be a point in C
such that x £ int C.‘ Then clearly x € A, Also there
is a sequence of components Cq, Cpy ... of V, all
different from C, such that x € lim inf Cmo Let
le, sz, ... be a convergent subsequence of C;i, Cpy oceu
Then lim Cmn = lim Eﬁn = K, which is a continuum. Since,

by Janiszewski's border theorem (p.184 of 133; c.f.,

lemma (3.8)) Em NFr V# ¢ for each m,, we have
n

Kn Fr V £ ¢. However, we also have K N A # ¢ and

K n(V - A) =¢. This shows that K 1s not connected,
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which is false., Thus each component of V is open.
To complete the proof, we now define U as the
union of the finite number of components of V which

meet A,

Following [24], we say that a set E is a simple

subset of a space X if both E and X - E are

connected,

LEMMA (5.8). Let U, V be conditionally compact recions

in a Peano space X such that T €V, X -V 1is connected

and X 1s weakly finitely multicoherent modulo X - V,

Let El CiE2 C... €U Dbe a sequence of simple closed

subsets of X, and suppose that Fr Ep = 44 U4, U ... U
A, UB,» By ©int E ., , where Ay, Ay, ..., A, B, are
disjoint closed sets. Then (4; U4y U... U An+l) N

Fr(int E,,q - E;) #¢ for at most a finite number of

different values of n,

PROOF. We suppose that the conclusion of the lemma is
false., Then we may suppose, without loss of generality,
that (A; U Ay U ... U A ) NFr(int B 4 - ;) # ¢ for
every value of n. Again, without loss of generality,
we may suppose that A, £ .

Since X 1is locally connected, the hypothesis that
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(AqU AU «ev U Ay 4) NFr(int B 4 - E,) # ¢ implies

that

that

component Dn of E - int E

and

AU

En+1

then

there is a component Cn of int En+1 - En such

(A3 U Ay U eee UA 4)UC # 8. Let C, 1lle ina

n+1 n

Notice that D, N (&) UA, U... Ua UB) £ ¢
Dy M (Ay4g UByiq) = 8. For if D N (4 UA, U...U

B,)= @ then D, n E, = ¢ and we easily deduce that

is not connected; and if D, N (An+1 UB,iq) =9

Fr Cn c Al U A2 U ... U An U Bn' and so En

separates X.

Now we use lemma (5.7). Since D, is locally

connected modulo D, N (4; U Ay U... UA 4 UB U Bn+1)"

it follows from lemma (5.7) that the subspace D

n

contains two relatively open subsets Un and Vn such

that

Dn N

Un contains and is connected relative to

(4 UA, U ... U A), V, contains and is connected

relative to Dy NA .4, U, NV, = ¢ and (T, UV, N

(B, UBpy1) =0.

We notice that (U, - Uy) U (V, - V) # 8, for all

possible choices of Un' Vn' For suppose that this is

false. Since D

D =

\w}
o]
D

D n

n is connected, it then follows that

Un or Dn = Vn' But if D, = Un' then

(Ap,q UBp,q) = ¢ and, if Dy = Vy, then
(A1 UAdy, U.wo UA U B,) = %, both of which conclusions

are false,
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N . _ o) _ =] —_ -

ow we define F ﬂn:l (x int E ) U Un:l(Un U Vn)'
Then F 1is a closed, connected set which contains ¥ - U.
F }s closed because the complement of F 1is equal to

O — —

=1 (int Epyq - LE:l U, U Vm)' which is open. To see
that F is connected, we observe that X - int.Eq{ 2 X -
int E, o ... 1is a decreasing sequence of connected closed
sets the complements of which are contained in U.

©

Therefore, by lemma (5.2), N

h=1 (X - int E ) is

connected, and it easily follows from this that F is
connected.

We notice that the sets (U, - U,) U (V, - Vv,),
n=1,2,..., form a sequence of relatively open and
closed; disjoint non-empty subsets of the subspace Fr F.
Further, X 1is weakly finitely multicoherent modulo
X - V., Thus, on the one hand, the boundary of a component
of X - F can meet at most a finite number of the sets
(U, = V) u (¥, -V, n=1,2,.... On the other hand,
only a finite number of components of X - F can have
disconnected boundaries, by the corollary to lemma (5.6).
Thus we can find an integer k with this property: if
G 1is a component of X - F and (Fr G) N ((Uy - Uy) U
(Vy - V) #¢, then Fr G ¢ (U - Ug) U (Vy - V). We
shall use this property to produce a contradiction.

Firstly, suppose that Dy N (B U By,q) =4. Then

Fr Dy cA; UA, U.eo Ulyp,q. Thus Ty #9, Vi #9¢;



for if Uy (or V,) were empty, then we could have

defined V. (or Uy) to be equal to Dy in the first

place, and for these choices of Uxs Vx we should

have had (ﬁk - Uk) U (Ve - Vi) =¢, which, as we have

seen, 1s false, Since Dk i1s connected and locally

connected modulo 5k U'Vk, 1t now follows that we can

find a component G of Dy - U, U V. such that

(Fr G) n (T - Uy) #6, (Fr6) n (T - v) #¢.

But G 1is also a component of X - F, and, since Fr G

1s not connected, the choice of k is contradicted.
Secondly, suppose that D, U (B U Byyq) £9 .

Let H be a component of D - ﬁk U Vk such that

Hn (B U B.1) # 8. By Janiszewski's border theorem

(see p.184 of [13]); c.f., lemma (3.8)), (Fr H) N ((Ty - gL

(Vi - Vy)) # 8. Let G be the component of X - F

that contains 4., Then G N (Bk UBy,q1) # ¢ and,

because of the choice of k, Fr G c (T - Uy) U (Vy - V).

But, if G N By #¢, then G NE, 1is a relatively open

and closed, non-empty proper subset of Ey (proper because

By - G D4;), and, if G N By,q #8, then G N (X - £, )

is a reiatively open and closed, non-empty proper_subset

of X - Ek+1' This is a contradiction, and so the lemma

is proved.

In corollaries (1) and (2) to lemma (5.8), the



105

notation and hypotheses of the statement of lemma (5.8)

are assumed.

COROLLARY (1). Let N be an integer such that

(A]_UAZ U..ro U An+1)n Fr(int En+1 - En) =¢ for n = N,
Then An = ¢ for n > N.

This follows immediately from the fact that each

-

B i1s connected.

COROLLARY (2). 1im B, exists.
Yl =<

PROOF. We have to prove that 1lim sup Bn C lim inf By
Thus we suppose that there is a point x € lim sup B, -

lim inf Bn' Then we can select two subsequences B

m ’
1
Bmz, e and Bnl. an, ..o sSuch that N s my < n, < My q
for each k¥ and x € lim sup Bn - lim sup Bn » N Dbeing

k k
the integer in corollary (1).

Now select Xy € Bn so that x, - X, and let Ck

k
be the component of int Emk . - Emk which contains X.
+
Then C, - C, B UB .
k k my My iq _
Let R Dbe a region about x such that R N lim sup B, =¢.

k
Select the integer Xk so large that C, NR =¢, and

(B, U ) N R = ¢. Notice that x £ Cy, because
m, B, 4

Cx 1s an open set which meets only Bnk among the sets
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Bnl. an, .+ « Thus Cx N B2 1is a relatively open and closed,
non-empty proper subset of R, because (Ek - C) N=r=9,

This contradiction proves corollary (2)

LEMMA (5.9). Let U, V be conditionally compact regzions

in a Peano space X such that U cX, X -V 1is connected

and X 1is weakly finitely multicoherent modulo X - V,

and let Eq C:E2 C... ©€U Dbe a sequence of simple closed

subsets of X. Let Fr En = A U‘AZ Ueoo U An U Bn'

where Bn C int En+1 and Al' AZ' coer Ay, Bn are
dis joint closed sets., Let the components of En+1 - int En,
n=1,2,..., E_e_ Dn'mv m=1,2,..., np' Then Dn’mf\En

1s connected for all but a finite number of pairs (n,n) .

PROOF. Suppose that the conclusion of the lemma is false,
Then we can suppose without loss of generality, that for
each value of n there is a component Dn of

’
E 41 - int E; such that Dn,mn n En is no:nconnected.
For convenience we shall write Dn,mn = D,.

Let N be the integer given in corollary (1) to
lemma (5.8), so that A, =¢ for n > N. For n‘> N,
let Cn be a component of D, - Ep such that
B, N C, = P, U Q,, where P, and Q, are two disjoint
non-empty closed sets. Join each component of 3B, ., n Ch

to Q, by an arc which lies in C, - Py, and denote the



107

union of the finite number of arcs so obtained by Q-
Let My =Q, Uay U (By,y NCy).

" Now define F = X - L%>N (C, - M,). Then F 1is a
closed set containing X - U, and it is also connected,

This can be seen by observing, firstly, that E U

N+1
ﬂ;=1 (X - E,) 1is connected, by lemma (5.2), and,
secondly, that it follows by induction ﬁhat FDO Bn
for each n > N.

Thus F 1is a connected closed set containing X - U,
But the components of Cn - My, n > N, are components
of X - F, and at least one component of Cp - Mn has

a disconnected boundary for each n > N. This contradicts

the corollary to lemma (5.6).

In the following two corollaries to lemma (5,9), the
notation and hypotheses in the statement of lemma (5.9)

are assumed.

COROLLARY (1). There is an integer b such that B,

has =< b components for all n.

This i1s a straightforward consequence of lemma (5.9) .

COROLLARY (2). 'lim B, has only a finite number of

components.
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This is an immediate consequence of corollary (2)
to lemma (5.8) and corollary (1) to lemma (5.9).
We sum up the pertinent parts of lemmas (5.8) and

(5.9) and their corollaries in the following theorem.

THEOREM (5.1). Let U, V be Conditionally compact

regions in a Peano space X such that U cV, X -V

is connected and X is weakly finitely multicoherent

modulo X - V., Let Eq CTE2 C... €U be a sequence

of simple closed subsets of X. Let Fr En = A U Ay Uy ... U

An ] Bn' B, € int En+1' where Al' A2""' An. Bn are

disjoint closed sets, Then

(1) A, £ ¢ for at most a finite number of values of n,

(11) 1lim B, exists and has only a finite number of

components,

In the context in which we shall use this theorem,
we shall not in general have Fr E, = A1 U A, U ... U A U By
we shall have Fr E € A; U4y U... Udy U By, where
Ay Apy eee A,, B, are disjoint closed subsets of E, which
uweet Fr E . We remark that lemmas (5.8) and (5.9) and their
corollaries can all be proved under these circumstances with-

out change, except for the few obvious modifications. Thus

we have this theorem,
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THEOREM (5.1)'. If the hypotheses of theorem (5.1) remain

unaltered, except that it 1s supposed that Fr EV1 c Al U

AZ,U-"‘ U A.n U B> 3, C int = where Aq, Apy .4,

An' Bn are disjoint closed subsets of En which meet Fr E

then the conclusions of theorem (5.,1) remain unaltered.

It is obvious that the first conclusion of theorem
(5.1) or theorem (5.1)’ may not hold if X fails to be
weakly finitely multicoherent modulo X - V, The following
example shows that the second conclusion of these theorems
may not hold if X fails to be weakly finitely multico-

herent modulo X - V; viz it shows that 1lim B, may not exist.

EXAMPLE (5.1). Let X be the set-theoretic difference bet-
ween [0, 1]xT0, 1] and the set of all points (x, y) such
that 172250 o x < 17278, 1/2 < y < 1/2 + 1727, for some
" non-negative integer m, and let V = X, Let A,y be the set
of all points (x, y) such that 1727 L x <1727, 0 s
y s 1/2. The sets Ay, Ay Ayy ... 8TE shown by the diagonal
shading in fig. (5.1). Let Ay, 4 = 6. Let E, be the union
of A, and all the points (x, y) € X such that x 2 3/2n+2,
and let B, = (Fr En) - A,. The sets By, By, By ... arTe
shown in fig. (5.1) by the thick vertical lines.

Then Bop -~ {0} x [1/2, 1], while 1lim By .q1 - {0} x [0, 17,

and so 1linm Bn does not exist.
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We shall say that X is an S-space if X 1is a Peano
space and if for each true cyclic element C of X, there
is a base of regions {Ua} for the subspace C such that
ch Ua is weakly finitely multicoherent modulo Frc Ua'

It is easily shown that we can without loss of generality

take (¢ - U0 to be connected for each Ua in C.

THEOREY (5.2). If f : X - Y 1is a connectivity function

(or local connectivity function), where X 1is a cyclic

S-space and Y 1is a regular space, then [ 1is Dgri-

pherally continuous,

PROOF. Let p be a point in X, and let U and V Dbe

neighbourhoods of p and f(p), respectively, where



111

U 1is a conditionally compact region such that X -0
1s connected and X 1is weakly finitely multicoherent
modulo X - U, (In addition select U so small that
£10 : U =Y 1is a connectivity function in case f is
only a local connectivity function). The existence of
the region U follows from lemma (3.1)., It is required
to show that there is a neighbourhood W of P such

that W €U and f(Fr W) cV,

The sets U, and Vy. Let V, Dbe a neighbourhood

of f(p) such that Vl cV., Let U’ be a region
about p such that U‘’c U and X - U’ is connected.
Such a region exists by lemma (3.1). Then U’ N f-l(vl)

)+ the union
L@y

that meet X - U’. By lemma (3.9), (X -U')" is a

is a semi-closed set. Denote by (X - U’

of X - U’ and all the components of U’ n f~

closed and connected set. Let U4 be the component of
X - (X -U)% to which p belongs. Then U; is a
region about p such that X - Uy 1is connected, and a
component of T’ N f'l(vl) which meets U; 1is wholly
contained in U;. It is the components of Uy N f‘l(vl)

that will interest us.

~The notation 3dA. We introduce the following notation.

For any subset A of U; we shall denote by 3A the
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union of all the components of Uj N f'l(vl) which meet

Fr A = A - int A,

The notation FA]., We also introduce this notation, Let

A be any closed subset of X 1lying in Ul' We shall
denote by TA] the union of A and all the components of
X - A except the one containing the non-empty connected
set X - U;. Thus T[A] 1is a closed subset of X which
is contained in Ul and does not disconnect X, Further,
if A and B are any two closed subsets of X which
lie in Ul' then we have the following simple relations,

the third of which is a consequence of the first two:

(a) [[A]] = TAT,
(b) if A< B then [A) c [B],
(¢c) [ral u [BJ) = fau BL

The enclosures. For each finite number of components

Fi» Fpy «euy Fy of Uy 0 £71(Vy), we shall call

[F{ UF, U ..o U F,] an enclosure if it is connected.

Now let E = [F; UF, U ... UFy] Dbe an enclosure,
o ~1,=
where Fl’ Fp, «osy Fp are components of Uy N T (Vl)'
Then Fr E € 38 € F; UF, U... UF . Tms E= [3E].
In future, when we express an enclosure E as

E=(F UFp U... UF;], where Fy, Fp, «ouy F, are
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components of Uq N f'l(vl), we shall always assume that

BE=F1UF2U...UFm.

Douivalence relation on the enclosures, We set up an

equivalence relation on the collection of enclosures as
follows. We say that two enclosures E4 and E, are
equivalent, written El ~ Ez, if there 1is a third

enclosure E3 such that 24 U E2 c EB' That this
relation is reflexive and symmetric is clear. In order

to prove that it is transitive, let E4 ~E2 and E, ~ E3'
Then there are enclosures E; and E5 such that

E,uU E,c Ey and EpU E3€© Eg. Consider [Ey U E5].

It is a connected set and, by (c),

i

[Ey U Eg] (laE,) U [RELD ,

[3E, U 2Eg].

Thus [E4 U’E5] is an enclosure. But El U E3 C tEb U E5].
by (b) . Thus Eq ~ E3' This completes the proof that

the relation on the enclosures 1s an equivalence relation,

Chains., Let & Dbe an equivalence class of enclosures.
Let
H(e) UE «+ E € €},

G(e)

U(E - 3E s+ E € &}.
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We shall call H(€) a chain. In the case where &
contains a maximal element with respect to inclusion,

d(e) will be an enclosure.

Properties of an eguivalence class with no maximal element

with respect to inclusion, Let & be an equivalence class

with no maximal element with respect to inclusion., For
the purposes of this section, write H = H(&) and G = G(&) .

We first show that H ~ G has only a finite number

of components. Suppose, on the contrary, that from the

collection of components of H - G we can select an
infinite sequence of distinct elements FO' Fiv oev

We select a sequence of elements E; € E; € ... from €
as follows, Let Ez ©be any-element in & such that

Fo © 3Ej . Suppose now that E, has been selected.
Since G N BEn is a union of components of °Ej, (for
if F is a component of 3E, and Fn (H - G) # ¢,
then F N (E - 3E) = ¢ for each E €e; 1i,e.,
FcH-G) wecan find a set Ep;, in & such that

En ’ Fn c En+1' BEn nGgc En+1 - aEn+1 . Now put

Ay =Egn(H-G),
Ayq= (Epyq - Ep) n(H - 6

Bn =3En-A1UA2U'.-U%Q
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Then the hypotheses of theorem (5.1)’ are satisfied,
but A, #£ ¢ for an infinite number of values of n,
which 1is false,

Next we construct a seguence EO o E1 c... of

elements from & such that

H -G coEg,

GNoE, c E - J3E

n-+1 n'

To do this, let Ry Rl' .». be a sequence of regions
the union of whose closureé is equal to G. Since

H - G has only a finite number of components, we can
find an element E; in € such that H - G C BEO.
So suppose that En has been selected.‘ We select

En+1 as follows, G N BEn is a union of components of

JE as was pointed out in the preceding paragraph. Thus

n’
ﬁn U (G n 3E,) 1is a compact subset of G, and so the

collection of open sets {E - 3E : E € €} contains a

finite subcollection E - 3}, EZ - 384, ..., E® - 2E"
whose union covers ﬁh U (G n BEn). There is now an
element E_,, in € which contains E, EZ, ..., BT, E.
It is then clear that the sequence EO, El' .«» has the

desired properties.

Let us now write
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d-G for n= 0,

¢ for n> 0,

joe]
1]

n G N 3E, .

Then we have the hypotheses of theorem (5.1)' satisfied .

Thus, in particular, 1lim Bn exists and has a finite

number of components. We shall denote thesevcomponents

EX Ll, LZ’ e 0 0y L_S.

Now we show that, if n 1is sufficiently large, then

S

G - (E, NG) has precisely s components My, My, ..., K
(these components depend on n, of course), Where
M; DLy and My nB, #¢, for i =1,2,...,5. Such

a set En will be called a special set. To show this,

let Sq, Sy e Sg be neighbourhoods of Lj, Lp, ..., Lg,
respectively, with mutually disjoint closures. Then there
is an integer m such that B, c 83 U S, U ... U 5S¢ for
each n > m., Now we notice that for only a finite number
of values of n >m, sSay n = mMq, Mo, ee.y Dy, is there

a component of (En+1 - Bn+1) - Ep which meets more than
one of the sets Sl. 52’ eeey Sgoe If we how take

n =mq, My, «se, L then. En is easily shown to have

the properties required of a special set.

Now we show that Li is either a single point in

the complement of U1 N f—l(vl), or is a subset of X - Ul“

In order to do this, we first observe that there are at
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most a finite number of points X1 Xpy ees, Xy in
— I
lim B, - u’‘'nfr (V4) . For suppose x 1is a point in
. = -1,=
lim ‘B, - Jg’'nf (V1) « Then it is possible to select
& component F, of B, so that x € lim inf Fp . But

it then follows that {x} = lim F,, for otherwise some

convergent subsequence {Fnk}k_o 1 of {Fn}n=0,1,...

can be chosen which has a non-degenerate limit, and this

limit consequently lies in a component of U’ n f'l(vl)-

this, however, contradicts the fact that x g T’ n f'l(vl).

That there can now be only a finite number of points

X1» Xp1 seey Xy in 1im B, - U’ n f—l(vl)f follows from

the fact} given in corollary (1) to lemma (5.9), that the

supremum of the number of components of Bn is finite.
Now we show that each component L; of 1im Bj

which meets Uy N f'l(vl)’ is actually contained in

Ul N f'l(vl), and so is contained in a component of

Uy N f_l(vl)° For let L; Dbe a component of 1lim By

L

which meets U; nf ~(V,) and suppose that xj € Ly -

U/ n f-l(vl), for some j s v. Let N be a neighbourhood
of xj such that Ly #N and Xy, wees Xjoq Xyiqe eees
x, £#N. ©Let C Dbe the component of L; N N to which

xj belongs. By lemma (3.8), C meets Fr N, and so

1s a non-degenerate connected set. But the only point

of C whose image under f 1lies in the open set Y -~ Vl

is x., and this contradicts lemma (5.4) (or, alternatively,

J
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it contradicts lemma (5,5a), because Y is g regular
space, and so f(C) 1is not connected).

.Suppose now that L-l meets a component F of

1

Uy N (Vl). By the preceding paragraph, L; then

lies in P, Also FcCcH - G. Let E, be a special set

and let L lie in a component M; of T - (E, N G).

i
Let C-l be a component of Mi - Li' Since F c aEn.
it now follows that En_ separates X, for aci c aEn
and C P X - U;. This is a contradiction, and it proves
the assertion that Ly 1is elther a single point in the
complement of U N f-l(Vl) or a subset of X - Uy.
Finally, since H N Uq = H U U{L, :+ Ly © Uy}, and
since L; 1is a single point in the complement of

=1 -
U1 nf (Vl) whenever L; < U (as we have just shown),

we notice that ¥83H = H - G.

The union of a finite number of chains does not sepa-

rate X. Let &4, €3, ..., &€, De distinct equivalence
classes, We shall assume that &y has no maximal elemgnt
with respect to inclusion if and only if k < g (q < r).
We write Hy = H(€y), and it is required to prove that
X-Hy UHy U +os U d, 1s connected.

We suppose that the contrary is the case, so that

X‘HlUHzL‘oooUHr:PUQ’



where P, Q are disjoint non-empty separated sets.

For k< q, 1let Ek,nk be a special set, and denote

the.components of Gy - (Ek’nk n Gk) by My 15 Mk,Z’ e,

Mk’sk (Gy=U[E -3E : E €¢,.1}). For k >gq, let

Ek,nk = Hy, Which is an enclosure. Let
Pl

QI

1]

PUUM, ¢ Ny g NP £ ST,

Then P‘, Q' are easily shown to be separated sets, but
the complement of their union is Li—l Ek n.* This
. - 1] k

T
implies that Uk:l By ny separates X, which is false.

H(e) - G(&) 1is disconnected for only a finite number of

equivalence classes €. Suppose on the contrary that an

infinite number of equivalence classes &35,&1, ..., €n v oo
can be found such that H(Rm) - G(em) is not connected,
Write Hp = H(&p), Gy = G(8y). For a fixed m, let

Em,o c Em,l cC... bea sequince of enclosures such that

H, - Gy © aEm;o and Gy = U,_g (Em,n - BEm'n) (such a
sequence of enclosures was described previously).A

Let

X - UlEy , ~ 3By p ¢ min < kb,

Ay
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Then 4, is connected, because X - U{Em,n : m4n < %)

1s connected. Thus Ay @ A P A2 2 ... 1s a contracting
sequence of connected closed subsets of X. So, by
lemma (5.2) ,

o0

nk=0 Ak = X - Un.—_O Gm

is a connected closed set, and it contains X - Uq . Now
Hm - Gm is disconnected, and so it follows that there
is a component Cm of Gy such that Fr Cn is dis-
connected. But C, 1is a éomponent of X - ﬂ;zo A,

and this contradicts the corollary to lemma (5.6) .

The set L. Let us now denote the collection of chains

by (H and let L = Uy Hy.

a}a’

The components of L are the sets Hy. Let {HGB}B

be a non-degenerate subcollection of {Ha}a' We ‘show

that L% HGB is not connected. Let

Ug 3Hy = X unN,

where M, N are non-empty, disjoint separated sets such
that i, < N whenever o, is disconnected. Such
8

a separation exists by lemma (5.3). Let
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M =My LKHG : ch c M},
. B 8

NY=NUUE, : 3, cN},
B B

Then it follows easily from the local connectedness of
the space X that 1’ N’ are separated sets, and so
L% HGB is not connected.

P € int L. Suppose p £ int L. Since no finite number
of components of L separates X, it follows from lemma
(5.1) that L does not Separate X. The supposition
that p £ int L implies that p € X - L. But then

(X = L) U {p} 1is a connected set whose graph meets

U; x V4 1in the isolated point (p, f(p)). This

contradicts lemma (5.4) .

f 1is peripherally continuous at p. Since p € int L

and X 1s locally connected, it follows that p € int Heys
for some . Let H = Hy = H(ey), G =Gy = G(e ). Let

EO c:E1 C... be a sequence of enclosures (previously
described) such that H - G c 38y and G = Uf_, (B, - 3E,) .
Thus, if p €éH - G, then p € int EO, while if p €G
then p ¢ int E, for some n. Thus, in either case we
find an enclosure E, such that p € int B, . Put W = int E_ .
Then W c Uy «¢U and f(Fr W) ¢V, ¢V, Thus f 1is

peripherally continuous at p.

This completes the proof of theorem (5.2) .
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RZMARK (5.1). It will be noticed that in lemmas (5.8)
and (5.9) and theorems (5.1) and (5.2) we have a system
of two regions in the space X, which for the purposes
of This remark we shall call Uy, Up. These regions
have the properties that Uq 2 32 y X - Ul is connected
and X 1is weakly finitely multicoherent modulo X - Ul
(in theorem (5.2) X - Up 1is also connected, U, being
the "U;" of that theorem). The reason for the use of
two regions (instead of one) is that in all these lemmas
and theorems we have used the corollary to lemma (5.6).
If we had used lemma (5.6) itself, which we could have
done, only one region U would have been necessary, with
the properties that X - U was connected and X was

weakly finitely multicoherent wmodulo X - U,

We conclude this section by making some general
remarks,

If we examine the proofs of Th(P;(X)) and
Th(PZ(X)) (see §1 of this chapter) as given in [23]
and T34], respectively, and the proofs of Th(PB(X)) -
Th(Ps(X)) in this chapter, then we see that it is
purported to have been proved that a connectivity function
f i1 X - Y is peripherally continuous. However, something
more than this has actually been proved, In all these

theorems the only two properties of the connectivity
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function f : X = Y that have been used are these:

(a) for each non-degenerate connected subset C
of X, the graph T(f|C) has no isolated points,
(b) for each closed set F in Y, f_l(F) is

semi-closed in X,

Since (a) implies (b) (if X and Y have the appropriate
properties), it is seen that what has actually been proved
in Th(Pl(X)) - Th(P8(X)) is that a function f ¢ X - Y
which has property (a) is peripherally continuous. Since
property (a) is hardly interesting in itself, it may be
wondered whether we cannot assign some more satisfactory
property (or properties) to f and still draw the con-
.clusion that f 1is peripherally continuous, The follow-
ing considerations, culminating in theorem (5.3), show

that this can indeed be done.

LEMMA (5.10)., Let G be a region in a connected and

locally connected space X, and E a component of X - G,

Then X - E 1is connected,

PROOF. Let F Ybe a component of X - G which is different
from E, Let R Dbe the component of X - E which contains

F. Then R # F, for otherwise X would not be connected.
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Thus R ¢ X - G, for otherwise F would not be a
component of X - G, Thus R N G # ¢. But this implies
that F, G are contained in the same component of
X - E, and this holds for all F. Thus X - E is

connected,

LEMMA (5.11)., Let U, V Dbe conditionally compact

simple regions in a Peano space X such that U c V

and X 1s weakly finitely multicoherent modulo X - V,

Let L Dbe a subset of U such that the components of

I. are closed subsets of X and no finite number of

components of L separates X. Then U - L has only

a finite number of components,

PROOF., Suppose on the contrary that U - L has an
infinite number of components. Then there are two dis-
Joint open subsets Gq, G2 of U such that
U-LcGlu 6%, (U -1L)n Gy #¢, (U-L)n . ¢ .
We may suppose without loss of generality that G2
contains more than one component of U - L. Thus there
are two disjoint open subsets Go, C—3 of G such that
(U-L1)ne2ecGyu &2, (U -1)n G, #¢, (U=-1)nN > £e.
Again we may suppose without loss of generality that G3

contains more “than one component of U - L, Thus there

L
are two disjoint open subsets G3, G of G3 such that
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3 L
(U -1L) nGg” c G3 UG, (U~-1L)n Gy ¢, (U-1)n Gu =6,
Continuing in this way, we define a sequence Gl' GZ' ooy
Gn""' of non-empty disjoint open subsets of U, and we

notice that U n Fr G, c L.

Now let GA be a component of G, . Then
UNFrGycUnNFrG,cL. Also G/ N (X =-U)#£¢ for
otherwise L would separate X (which is impossible,
because no finite number of components of L separate
X; see lemma (5.1)). Let E, be the component of
X - Gé which contains the connected set X - U. Let
Hy = X - By .

By lemma (5.10), H, 1is a region in U such that
UNFrH cUNFrGycL., Also 4, n (X -U) # a6, We
show that H, n Hy =¢ for n # m. To see this consider
the following. Gé is disjoint from GA and is not
separated from X - U, Therefore Gé C En' Now suppose
that there is some component E of X - Gé such that
Z#E, and ENnH, #6. Since E 1is closed and is not
separated from G/, E N E, # 4. Since H  1is the union
of G, and the collection of all the components of X - Gpy
except E,, 1t follows that E n Gy # 6. Now E. is a
component of X = Gé and so Gﬁ cE., But E 1is closed,
and this implies that E n (X - U) # ¢ ; that is, E = E,
wnich is false.

Now we show that U Nn Fr H, 1s a closed subset of X.
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Since both H, and X - d, are connected closed subsets

of X, and H, ¢V and X is weakly finitely multa-

coherent modulo X -V, it follows that Fr £ = H, n (X - )
has only a finite number of components, which we shall

denote by C;, 1 =1, 2, ..., P, Recall that

UnFr H cL, and let Ci meet U, We prove that

Ci cU. Suppose that this is not the case, and let D.l

be a component of C; - (X - U). Then by Janiszewski's

border theorem, ﬁi N (X -U) #6é¢. But this means that

D is not a closed set, and this implies that the component

i

of L 4in which D is contained 1is not closed, which is

i
false, Thils shows that U n Fr H, 1is equal to the union
of a finite number of components of Fr Hn, and so is a
closed subset of X,

Now let oy be the union of a finite number of arcs
lying in ﬁn N U such that each component of U N Fr H
is joined to each other component of U n Fr Hn by an arc

in oy o Let R, be a relatively open subset of the

subspace I

o such that R, contains H. n (X - U) and

contains no point whose distance from En n (X - U) 1is

vT\

> 1/2"%, R, 1s connected relative to I N (X - 7}, and
ﬁh n (e, u (U N Fr H))) = ¢. Such aset R, exists by
lemma (5.7). Let M, be the union of R, and all the
components of ﬁn - ﬁn that do not meet a, U (UnrFr ).

Let FP=(X-U)uU Lz—l M, . Then it follows that F 1is
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a closed and connected set which contains X - U, Zut
each of the sets H, N Fr R, 1s a non-empty, relatively
open and closed proper subset of Fr Fy and each component
of X - F whose frontier meets Hn N Fr R, has a dis-
connected frontier (since ﬁh does not separate X), This

contradicts the corollary to lemma (5.6).

We shall say that a function f : X - Y is pseudo-
continuous if for each closed subset . F of Y, f-l(F)
is a semi-closed subset of X (we assume that X has a
countable open base -- see definition of semi-closed set

in §2 of this chapter).

THEOREM (5.3). Let X Dbe a cyclic S-space and Y a

regular space, Let f ¢+ X - Y Dbe a pseudo-continuous

and connectedness preserving function. Then f 1is

peripherally continuous,

PROOF. In order to prove this theorem, we indicate the
~changes that have to be made to the proof of theorem (5.2).
Thus we adopt the notation of the proof of theorem (5.2).
In place of the semi-closed set U’ n f-l(Vl). we
work with the semi-closed set T’ N f-l(Fr Vl)’ which does
not contain p, and we form the enclosures using the com-

— =1 _
ponents of this set, Thus, wherever U’ n f (Vl) and
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and its components were used in the proof of theorem (5.2),
we now use U’ N f-l(Fr V,) and its components,

The proof is now identical to the proof of theorem
(5.2) down to the second last paragraph. The changes that
then have to be made are these, The components of L
are not necessarily closed sets, But since X 1is cyclic,
and Fr H 1is disconnected for only a finite number of
chains, 1t follows that there are only a finite number

of chains Hl' HZ' - wnich are not closed. We

T ’ r
assume that p £ U1 Gy » Let X’ =X - Uiz1 Gy o
U’ =X'"nU; and L’ =X'nL., Then X’ 1is still weaxly
finitely multicoherent modulo X’ - X' nV =X -V, and
the components of L’ are closed subsets of X’ no
finite number of which disconnect X’. Thus, by lemma
( + ), Ui - L’ has only a finite number of components
Ci, Cé, cess Cé. and we may suppose that p € Cq. Since
f preserves connectedness, by lemma (5.5a), it follows
that f(Ci) c V. In the space X', let W’ bYe a
neighbourhood of p such that W’ N (02 U eeo U Ct) = ¢
and W' c Ui. Let (X’ - w’)+ be the union of X’ - W’
and all the components of L’ that meet X’ - W'. Then
(X’ = w')+ is a closed set in X’. Let W'’ =
X’ - (x' - w)". Then Fry. W'’ c (U{n £t (Fr Vi)) U Cls
and so f(FrX, W'’') c Vl, but W'’ may not be open in X.

Thus let Eq be a special set for the chain Hj, for
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i=1, 2, veoy, v, If W'’ contains a point in I, - Z.
4 4L

add to W'’ the component of Hy - E; containing that

point. Denote the set formed in this way by W, which is
then an open neighbourhood of p in X, Further,
Fr W c (Uy 0 £75(Fr V,)) U C;, and so f(Fr W) c 7, cV,

This proves the theorem,

The results of §5 can be summed up in the diagram of

fig. (5.2), where the arrows represent implications,

connechvﬁ3

‘S;Uf\(‘ ! 0‘A

connectednes pseodo- (1) has no
Preser\/mr) f" . CO’L*"’\UOUS {" isolated Pom{‘s
for C non-de A,
’ (ormec{ e({
Per[PkenJ%

contin Jous f"

fig. (5.2)
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In this diagram, the implications (i) (ii) and (iii) are

)(1) and (5.5a), respectively.

siven by lemmas (5.4), (5.5
Tne.implication (iv) 1is theorem (5.2), and the implication
(v) is theorem (5.3). What makes (v) interesting is that
there 1s evidence to believe that the implication (vi),
marked by a dotted line, also holds (see the remark on
pseudo-continuous functions in $§1), If this is the case,

then theorem (5.3) is a considerable improvement over

theorem (5.2).

(1)The onl t f the connectivity function f @i X=X
y property o func

that is used in the proof of lemma (5.5) is that for each

non-degenerate connected set C, T(f‘C) has no isolated

points,



A COUNTER EXAMPLE ON UNICOHCRZNT PZANO 3PACTS
1. INTRODUCTION. 1In this chapter we give an example of a
sequence of disjoint closed sets Ay AZ' e 1in a uni-
coherent Peano space X such that X - An  1s connected
for each n, and yet X - L%=1 An is not connected,
Thls example is described in §3, and in §4 it is proved
that it has the stated properties. In §5 we raise a
question which arises from this example and the paper of
van Est [28]. In §2 we explain the significance of the

example,

2. A Peano space is a locally compact, connected and

locally connected metric space. A Peano continuum is sa

compact Peano space. A connected space is said to be

unicoherent if however it is expressed as the union of two

connected closed -subsets A and B, A N B is always

connected. We then have the following well-known theorem:

If X 1is a uniconerent Peano continuum and Al' A2' o e

1s a sequence of disjoint closed subsets of X no one of

which separates X, then U;=1 A, does not separate X,

This theorem has also been proved for certaln non-compact

unicoherent Peano spaces. In 1923 Miss mullikin proved it
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in 203 for the case in which X 1is the plane (this proof
was considerably simplified in 1924 by Mazurkiewicz in
[161), and in 1952 van Est proved it in [28] for the

case In which X 1is a Euclidean space of any (finite) ~
dimension , Our example shows that the theorem does not
hold when X 1s an arbitrary Peano space,

The proof of the theorem that has been quoted was
shown to me by Dr. G.T. Whyburn, and runs briefly as
follows, If on the contrary U;=1 A, separates X, then
it follows from the unicoherence of X that some subset
F of lJ:=1 Ah which 1s closed and connected in X also
separates X, But now F 1is a continuum which can be
decomposed into the sequence of disjoint closed sets
A N F, AZ nrF, ..., and this contradicts Sierpenski's
theorem on continua (see p.113 of [ 14] or p.16 of [31]) .

So in trying to construct our example,.we look for
an example of a “locally compact connected space which can
be decomposed into a sequence of disjoint closed sets.
Such space was given by Kuratowski on p.115 of (147 . As
it is the essential feature in the construction of our

example, we begin §3 by describing this space of Kuratowski.

3. In the Euclidean plane 1let An consist of the points

(x, y) which satisfy one of the following conditions:
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fig., (1)

fig. (2)



(1) -1/2" sx <1, y = 1/2",
(11)  x = -1/2", -1/2" <y < 1/2",
(111)  -1/2" < x < 1/2"%, y = -1/2°
(iv) X = 1/2n, -1/2n =y <0,

(v)  3/2"% < x <3/2% x <1, y =0,

Then the set A = Lﬁ:o An 1s the space given by
Kuratowski in [14]. It is shown in fig. (1), where the
crosses indicate the points on the line segment
0 < x <1, y =0 which are not in A.
In order to describe the space of our counter example,
we l1ldentify the point (x, y) in the Buclidean plane with
the point (x, y, O0) 1in Euclidean 3-space, of which the
set A therefore becomes a subset.
Let B, Dbe the component of (-1, 1] x [~-1, 1] x {0} - &
whose frontier lies in A, _ 4 U A,, for n=1, 2, 3, ....
We define a set Y' by subtracting from the cube
(-1, 1] x [-1, 1] x 70, -1] the two sets Lg=1 B, x T0, -1/2n)
and [0, 1] x {0} x {0} - A. The set Y 1is shown in fig. (2).
Let Z be the reflection of Y 1in the plane z = 0,

and let X =Y U Z. The space X 1is our countervexample.

k. It is clear that X 1is a Peano space in which A5, A, ...
is a sequence of disjoint closed sets such that X - An is

connected for each n and yet X - L;=O Ay is not connected.
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Thus it remains only to show that X 1is unicoherent

In order to do this we shall quote three theorems

which can be found with small changes in chap. XI of [317

We first make two definitions,

1

We dencte by S the circle of complex numbers of

unit modulus. We say that a space X 1is contractible

with respect to S1 if each mapping f : X = S1 is

homotopic to the constant mapping from X into Sl. Ve

say that a space X has property (b) if for each mapping

£f 3@ X = S1 there is a real-valued mapping ® on X such
that f(x) = expli ¢ (x)] for each x € X. The first
of these definitions may be found in [147]; the second
in [317.

We then have the following three theorems, in which
it is assumed for convenience that the spaces in gquestion
are separable and metric.

THEOREM 1, A space X 1is contractible with respect

to 81 if and only if it has property (b) .

THEOREM 2. Let Xl and X2 be closed subsets of their

union X = X; U X, such that X1 N X2 is connected.

Then if X; and X, both have property (b), so does X,

THEOREM 3. A connected space X which has property (b)
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is unicoherent,

Now we show that the space X of §3 is unicoherent.
We notice that Y has this property:; if (x, ¥, z) Dbelongs
to Y so do all the points on the line segment joining
(x, ¥, 2) and (x, y, -1). From this it follows that the
square [-1, 1] x [-1, 1] x {-1} 1is a deformation retract
of Y, and so Y 1is contractible. Therefore Y 1is con-
tractible with respect to Sl, and so Z 1s as well., Thus,
by theorem 1, both Y and Z have property (b). Since Y
and 2Z are closed subsets of X and Y N Z = 4, it now
follows from theorem 2 that X has property (b). Thus,

by theorem 3, X 1is unicoherent.

5. We have seen that the theorem of §2 does not hold for an
arblitrary Peano space, and yet it does hold for some non-
compact Peano spaces, as has been shown by Miss Mullikin and
van Est in [20] and (28], respectively. These considerations
lead us to seek a precise analytical definition of the class
of unicoherent Peano spaces for which the theorem of §2 holds.
We notice that the space X of §3 has this property:
some of its points (namely those of the form x £ 3/2n+1.
for n=1, 2, 3, «soe, ¥y =0, z =20) do not lie in
unicoherent regions with compact closures., Since the

Euclidean spaces (and likewise the locally Euclidean
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spaces) do not suffer from this deficiency, we are prompted

to ask:

QUESTION., Let X Dbe a unicoherent Peano space which has

a covering by unicoherent recions with compact closures.

If Ay, Ay ... 1s a sequence of disjoint closed sets no

one of which separates X, is X - U:—l A, necessarily

connected?

If this falls we can try imposing stronger conditions on
the unicoherent regions that cover X. We can for example

demand that their closures be unicoherent Peano continua.



CHAPTER 5

A NEW PROOF OF LEBESGUE'S COVERING LEMMA

1.  INTRODUCTION. Lebesgue's covering lemma states that,
given an open covering Ul' «eey U, of a compact metric
space X, p, there is a positive number § such that if
p(x, y) < & then both x and ¥y belong to some Uy .
The purpose of this short note is to enlarge upon this
conclusion and thereby provide a more interesting proof
of the lemma than the usual ones.

We first explain how we arrive at the new result.
Figure 1 shows a compact metric space covered by two open
subsets U and V, If & 1s the distance between
U-V and V - U, then any two points whose distance
apart is less than § both lie in U or V; further,
no number greater than & will ensure this. Figure 2
shows a compact metric space X, p covered by a finite
number of open subsets Uq, U2. oe e Un and one may
suspect that the same idea holds. The lines of the figure
divide the set X up into a number of 'compartments"
(those white regions crossed by no lines) and by analogy
one may suspect that two of these.compartments A and B,

at a positive distance apart, have the properties

(1) if o(x, y) < p(A, B) then both x and y

belong to some Ui'
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(11) no number greater than p(4, B) has this

property.

Except in a trivial case this is S0, and it is the

extension of Lebesgue's lemma that we shall prove.

fig., (1) fig. (2)

2. We first notice the trivial exception. When each
pair of points is contained in some Ui’y no pair of
compartments satisfies (ii), because every positive
number satisfies (i). In this case, however, Lebesgue's
lemma is trivial.

Now we define a "compartment" (in T157 this is

called a constituent). Let X be a set covered by a

finite number of subsets Xl' Xz. ce ey Xn. A compartment

(of the covering X4, Xor eoes X,) 1is a non-empty set
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expressible as the intersection of n distinct sets
consisting of Xi's and complements of Xi'ts .

It follows from the definition that the compartments
of a finite covering of X form a finite, disjoint
covering of X, Where no confusion arises, we simply

speak of compartments, instead of compartments of a

particular covering. We do this below,

n is an open covering of a

TI{EOREM. _I__f_ Ul 9 LI I U

compact metric space X, p, and some palr of points is

contained in no Ui' then there are two compartments

A and B at a positive distance apart such that

(1) if p(x, y) < p(4, B), then both x and ¥y

belong to some Ui'

(1i1) no number greater than p (4, B) has property (i) .

PROOF. The two points contained in no common Uy belong

to a pair of compartments contained in no Ui' Thus we

t

may define § = min p(E, F), where and F are any
compartments contained in no common Ui' Then § 1is
attained as the distance between some pair of compartments

A and B, and it satisfies the requirements of the theoremn,.

First, &6 > 0. For let E and F be compartments

such that p(E, F) = 0. Then from E and F we can
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select sequences (xi} and {yi} such that
p(xi, yi) - 0. By compactness, there is a point x
and .a subsequence (xNi} of {xi1 such that xy - x.
Since yNi - x as well, x belongs to both & ;nd F.
But x Dbelongs to some open Uk' Thus Uk meets both
E and F and so, by the definition of compartment,
contains both E and F.

Also & satisfies (i) and (ii). For let op(x, y) < 6.
Then x and y Dbelong to compartments £ and F. Ir
E = F then both x and y necessarily belong to some
common Ui' because each compartment is contained in
some U;. If E ZF then p(E, F) <8 and some Uy
contains both E and F. Thus some Uy contains both
x and y. On the other hand, if 8’ > &§ then there
are two compartments E and F, contained in no common

U such that p(E, F) <6’. In E and F we can

'l ]
select points x and y such that p(x, ¥) <€ 8’. Then

X and y belong to no common U; since otherwise Uj

would contain both E and F.

3. The above theorem has a simple formulation in terms

of Lebesgue numbers.

Let Ul’ Uos eees Uy be a finite open covering of
a compact metric space X, p . We shall call & > O

the Lebesgue number of the covering Ul’ U2, veey Uy if
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(1) p(x, ¥) < & implies both x and y belong
to some Ui'

‘(11) no number greater than § satisfies (1) .

If every positive number satisfies (1) we shall say that

the Lebesgue number of the covering is infinite.

It is then a trivial conmclusion that the Lebesgue
number is infinite if and only if each pair of points
lies in some Uiv Thus our interest is turned to the

case Where some pair of points lies in no Ui'

THEOREM (alternative form) ., If Uys Upy evey U, is a

finite open covering of a compact metric space X, p

such that some palir of points is contained in no Ui'

then the Lebesgue number & of the covering Ul' U2, coo

U, is given by & = min p(E, F), where E and F are

any compartments contained in no common Uy .




CHAPTER 6

A THEOREM ON INVOLUTIONS ON CYCLIC PZANO SPACES

The purpose of this note is to Prove that an involution
I on a cyclic Peano space S leaves some simple closed
curve in S setwise invariant,

We shall first define the required terms. A Peano
space 1is a locally compact, connected and locally connected
metric space. A connected space is called cyclic if it
has no cut point. An involution on a Space 1is a periodic
mapping whose period is 2; it is necessarily a homeomorpnism,
A mapping f : X = X 1is said to leave a subset E of S

setwise invariant if f(E) = E. These definitions may be

found, for example, in [31].

We shall use the following lemma, which is a variation

of lemma 1 of 307.

LEMMA., If U, V are disjoint non-empty open sets in a

cyclic Peano space S, then there are two disjoint arcs

ab, cd in S such that a, c€ A and b, d € B,

An arc whose end points are a, b will generally

be denoted by ab., If A and B are closed sets, we

say that ab 1s an arc from A to B 1if ab NA = {a}

and ab N B = {b}.
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THEOREM., An involution f on a cyclic Peano Space S

leaves some simple closed curve in § Setwise invariant.

PROOF. Let f Dbe an involution on a cyclic Peano space
S. Since f(x) # x for some point x in S, it follows
that there is a non-empty regilon R in S such that
R n £f(R) =A¢. By the lemma, there are two disjoint arcs
ab and cd in S such that a, ¢ € R and b, d € f£(R).
In the first case suppose that one of these arcs is
disjoint from its image, say ab n f(ab) = 6. Let pg
be an arc in R from ab to f(ab). Then f leaves
the simple closed curve pg U qf(p) U f(pq) U f(q) p
setwise invariant, where qf(p) € f(ab) and f(gq) p € ab.,
In the second case suppose that both of the arcs meet
their images. First consider ab. Let m be the first
point on ab in the order a, b such that am N f(am) # &,
where am c ab., Then am N f(am) contains just the e
points m, f(m). If m # f(m) then the subarcs of am
and f(am) from m to f{(m) form a simple closed curve
which is left setwise invariant under f. So suppose
thet m = f(m). Also, let n Dbe the first point on cd
in the order c¢, & such that cn N f(en) # ¢, and suppose
that n = f(n) . Then am U f(am) and cn U f(cn) are
setwise invariant arcs under f. If am N f(cn)= ¢,

then am y f(am) and cn U f(cn) are disjoint, and the
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construction of an arc Pq@ in R from an to c¢n shows,
as in the first case, that there 1s a simple closed curve
which is setwise invariant under f. So suppose taat

am N f(en) #d. Let r be the first point on am in
the order a, m which lies on f{cn) . Then r #m, n

so that ‘ar U rf(c) and f(a) f(r) U f(r) ¢ are disjoint
arcs, where ar Cam, rf(c) c f(cn), f(a) f(r) © f(am)

and f(r) ¢ ccn. Further ar U rf(c) and f(a) f(r) U
f(r) ¢ are images of each other under f, and ar and
f(r) ¢ both meet R. Thus the construction of an arc

Pq in R from ar to f(r) ¢ again shows that there

is a simple closed curve which is left setwise invariant

by f.

REMARK. The well-known cyclic connectivity theorem of
f301 can be used to prove this theorem, in which case the
region R 1is replaced by a point and the construction
of the arc pg 1in each case becomes unnecessary. But
use of the cyclic connectivity theorem does not change
the i1deas of the proof, and eliminates only the trivial
constructions of the arc pq. On thne other hand the
proof of the cyclic connectivity theorem is based upon
the theory of cyclic elements, none of which 1s required
in the above proof. Thus in our proof we have avoided
the cyclic connectivity theorem and used only the lemma

and in so doing have kept the proof at its most elementary

level,



CHAPTER 7

ON R. L. MOORE'S DECOMPOSITION THEOREM

1. INTRODUCTION. The decomposition theorem that R.L.

Noore proved in 191 states that if #® 1is a non-degenerate

monotone uvpper semi-continuous decomposition of a 2-svnere

S and no element of 8 sevarates S, then the decomposition

space S/8 is also a 2-sphere. The proofs of this theorem

that appear in the literature all show that the space S/8
has some properties which it 1is well-known characterize thne
2-sphere. Thus in R.L. Moore's papert19]it is shown that
S/8 satisfies the eight axioms of f18]. which characterize
the plane (S is a plane in [19}). In chap. IX of ri49
Kuratowski shows that S/8 1s a Janiszewski space, which

it is kXnown is homeomorphic to the 2-sphere. In chap. IX

of f31)and chap. XVII of [36) wayburn shows that S/8
satisfies the hypotheses of Zippin's characterization theoren
of the 2-sphere (the argument in [31) has been refined in [367;
in the former it is shown that no arc separates the decompoéi-
tion space; in the latter it is merely shown that no arc that
lies on a simple closed curve separates the decomposition
space). (Zippin's theorem on the characterization of the
2-sphere may be found as theorem (5.1) in chap. VI of 1313

or as theorem (4.2) in chap. III of 7387].)

In this note we give a proof that the decomposition

space S/8 satisfies the hypotheses of Zippin's theorem
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wilch 1s different from those given inT311 and M367. our
proof follows Alexander's proof of the Jordan curve theorem
as given by Newman 1n,r21jvery closely, and thus consists

of arguments that are already familiar.

2. We first quote the two results from [21] that we shall

need, We shall suppose throughout that S 1is the 2-sphere.

THEOREM 1, If the common part of two closed subsets A

and B of S 1is connected, then two points which are

separated by neither A nor B 1in S are not separated

by AUB in S.

THEOREM 2. If the common part of two connected closed

has +4wo components ]
subsets A and B of S #p cwmweeksd, and neither A

nor B separates S, then S - A U B has Jjust two

components,

Theorem 1 is given as theorem (9.2), p.112 of [21],and is
an immediate consequence of Alexander's lemma. Theorem 2
is proved for the case where A and B are arcs in the
proof of the Jordan curve theorem in [21]. But in this
proof the only property of the arc that is used is that

it is a continuum which does not separate the plane (or

sphere).
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The definition of an upper semi-continuous (usc)
decomposition is given in chap. VII of [31]., A usc de-
composition 1s monotone if each of its elements is a

continuum,

THEOREM., Let 8 ©be a non-degenerate monotone usc de-

composition of S no element of which separates S.

Then the decomposition space S/R 1is a Peano continuum

which satisfies the hypotheses of Zippin's theorem on

the characterization of the 2-sphere; i.e., S/8

satisfies these three properties:

(a) S/8 contains at least one simple closed curve,

(b) no arc in S/8 separates S/8,

(c) every simple closed curve in S/8 separates S/8.

PROOF. Since the decomposition space is a Peano contlnuum
with no cut points, it is clear that (a) is satisfied.

In order to prove (b) we suppose that there is an
arc o in S/8 which does separate S/8 . We denote Dby
m i S - 8/8 the natural projection. Then n1 (@) 1is a
closed subset of S which separates S. et x, ¥y Dbe
two points in S that are separated by nt (o) .

e let @3 [0, 11 = a be a homeomorphism and we

use Alexander's "pinching process." Let a’ = o(T0, 1/21])
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and o/’ = 9([1/2, 1]). Then n~t (¢’) and w7l (0’
are closed sets whose union is ﬂ-l (a) and whose inter-

section is the connected set q = (¢’ nea’’). Thus, by

theorem 1, one of the two sets mn—1 (a’), ﬁ-l (o'’
separates x, ¥y in S. ‘e may suppose that it is the
former, and we define o4 = a’, Applying the same

argument to 04 as we have applied to a, we get a
subarc as of 04 which separates x, y in S.
Continuing in this manner, we get a sequence of arcs
@) Da, Dag ... such that — (e,) separates x, y
in S for each n, and 6(a,) = 0 by construction,.
Let {p}l = ﬂ:=1an . Then T (p) is a closed
set which does not separate x, y in S. From this we
obtain a contradiction as follows., Let Y be an arc in
S - w'l (p) whose end points are x, y. Let U be the
union of all the elements of 8 which do not meet Y.
It follows from the upper semi~continuity of 8§ that U
is a neighbourhood of n_l (p) in S. Thus n(U) 1is
a neighbourhood of p in S/8, and so we can find an n
such that a, © n(U) . Therefore n-l (o) cU, and so
ﬂ'l (an) does not separate x, y in S. This cgntra-
diction shows that there is no arc a which separates S/8,
In order to prove (c), let J = a U B be a simple

closed curve in S/8, where a, B are two arcs such that

@ N B ={a, b}, where a, b are two points. Then
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@ =t @ unt(g) ana w7t (@) n nt (B) =

n-l (a) U w-l (b), which has exactly two components.

We pave just shown that no arc separates S/8. From
‘this and the fact that ™ is monotone, it follows that
n'l () and w1 (B) are continua which do not separate
S (see (2.2), p.138 of [31]). Thus by theorem 2,

s - nl (J) has exactly two components U, V. Since
the decomposition is monotone, w(U) N m(V) = ¢, Thus
(3/8) - J = m(U) U (V) 1is a separation of (S/8) - J .

This shows that the decomposition space satisfies (c).
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A NOTE ON Ti{E CYCLIC CONNECTIVITY THEQRZ:

S

1, .INTRODUCTION. A locally compact, connected and locally

connected metric space is called a Peano Space. A cut

point of a Peano space is a point whose complement is not
connected. In 2] Ayres proved the well-known cyclic

connectivity theorem, which states that every two points

of a Peano space X having no cut points lie together

on a simple closed curve in X, Whyburn simplified the

proof of this theorem in 30], .using some elementary
properties of cyclic elements. In this simplification

he first proved these two lemmas.

LA 1. If A and B are non-degenerate, closed and

dis joint subsets of X, then there are two disjoint arcs

in X Joining A and B.

LEVMMA 2. Every point x in X 1is an interior point of

some arc a x b in X.

The proofs of these two lemmas constitute the main part of
the proof in [30], the fact that each two points lie together
on a simple closed curve being a simple consequence of the
two lemmaé.

Since its first appearance in 1931, the proof of the
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cyclic connectivity theorem that Whyburn gave in f30] has
appeared in several places in the literature, namely in
r31_] » 138] and 111, 1In this note we shall show that
lemma 1 can be proved differently from {307,

(A second bProof of the cyclié connectivity theorem
has been given by Ayres in [3). 1In this paper the
organization and proof of the theorem are different from
those in 30). Our proof and the proof of the correspond-
ing part of "[3] have in common the use of a "finiteness"

argument, but our techniques are different.)

2., We base the proof of lemma 1 on a theorem(l)of Whyburn
that appeared in 1933, two years after the appearance of
Whyburn's proof of the cyclic connectivity theorem in [30].

This theorem states that

Each non-cut point of a Peano space S 1lies in an

arbitrarily small region U such that U has property

S and S - U is connected,

(A second method of proving this theorem has been given by
Bing in the proof of theorem 1 of [4]). It follows as
a corollary of the above theorem that the region U 5iven}

there has a locally connected closure (see p.20 of [31]).

cernine S-regions in

1 burn, Con
loithgorem, Sk of ¢.T, Whybuin, CORSSOBETEo53) per131-139.
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When we speak of an arc in the sequel we permit it

to be degenerate., We shall séy that an arc ab joins a

closed set A ana ahclosed set B if abn A = {a}
and ab N B = {b}.

NEW PROOF OF LEMMA 1. Let X be a Peano space with no
cut points and let A and B be non-degenerate, closed
and disjoint subsets of X. It follows from the theorem
and its corollary that have been quoted, that for each point
x € X, there is a region U, about x such that A &£ 7T,
B & ﬁx and ﬁx is a Peano space_which does not separate
X. We shall in addition suppose that Uy = int U_.

By the simple chain theorem, the covering {Ux}x of
X contains a simple chain from A to B, which we shall
denote by U,, Uz, ey ﬁn' '

Supposing that n >'1, Wé see that 52 ¢U;. For
i% n > 2 this follows from the relations U, N U3 £ 0
and Uq N U3 = ¢, and if n =2 it follows from the
relations U, n.B 4£¢, Uy NB=¢ and Uy = int U, .
Thus in the Peano space X - Uy, there is an arc a4 that
joins A and Uz. Also, in the Peano space ﬁlt there
is an arc B4 that joins A and T,. '

Supposing that n > 2, it follows‘by the same reasoning
as before that t’J'B' #T,. Let y be an arc in the Peano

space X - U2 that joins A U aq U B1 and U3. If v

meets neither a; nor B4, we define ap ='Yf If Y
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meets either aq or 81, we may Suppose without loss of
generality that it is the former, and we define 0, as
thg union of Yy and the subarc of a4 that joins A
and v. We let 8 bYe an arc in the Peano Space 52
that joins 837 and U;, and we define B, = By U 8,

We continue inductively in this manner. If we put
B =‘Un+1’ then we finish up with two disjoint arcs

joining A and B.

We remark thét in the above proof we can get by
demanding only that the sets Uq, 52 o.s, Up do not
separate X We‘do not need the closures of these sets
to be locally connected. For in this case, after having
selected the arc o) in X - U, in the proof, we can
select By as an arc Joining A and Up,.q in the
componentof X ~ 0y that contains the connected set
Bre-1 U Tk

Finally we remark that it does not seem that the
method that we have used to prove lemma 1 can be used to
prove the second n-arc theorem (see 81, chap. 1 of this
thesis) . This is because if X 1s a Peano space wnich
is not separated by any pair of points, 1t does not
necessarily follow that each point x €X 1lies in an
arbitrarily small region U of X such that X - T
is a Peano space with no cut points. An example of

such a space X can easily be given.
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At the beginning of §3, chap. 3 of this thesis, we
‘said that, using the definition of unicoherence between
two subsets as given in §5 of [34] (see also p.44 of this
thesis) we can easily show that if M 1is any connected,
locaily connected regular T,-space, and M 1is unicoherent
between some pair of distinct points, then M 1is unico-
herent, We demonstrate this below,

Suppose M 1s unicoherent between a pair of distinct
points Py1s Py but that M 1is not unicoherent. Thus
there are two connected closed subsets A4, Ao such that
M=A U A2 and A4 ﬂ'Az = By U By, where Bg and B,
are disjoint non-empty closed sets. We may suppose with-
out ioss of generality that P4 and- Ps both belong to

A For each point x € M there is a region Uy about

2'
x such that ﬁx contains py; if and only if X = p;,
and ﬁx n By # ¢ -if and only if x € B;. From the cover-
ing {ng x € M} of M we can select a simple chain

Ugr Ugs enss U, from the set {pj, pp} to the set

Bl U B2' We may without loss of generality suppose that
p, €U, and Uy N By # ¢. Let V bea region about

p, such that Vol 0, =¢ and TNnBy#0 if and

only if - Py € Bi'



156

Define

Then Al’ N Az' 1s the union of the three non-empty
closed sets By UUj_; (U, n4y), B, eand 4, n ¥,
As the first two of these sets are disjoint, and the
third does not meet the first two, it follows that
Al' n Az’ is not connected, But for 1 =1, 2, Ai'
is a connected closed set and p; € int A;‘., This

is a contradiction,
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Connectivity function, 30
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associated with, 62
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Separated sets, 79
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