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TJURINA AND MILNOR NUMBERS
OF MATRIX SINGULARITIES

V. GORYUNOV and D. MOND

Abstract

To gain understanding of the deformations of determinants and Pfaffians resulting from
deformations of matrices, the deformation theory of composites f ◦F with isolated singularities is
studied, where f : Y −→C is a function with (possibly non-isolated) singularity and F : X −→Y
is a map into the domain of f , and F only is deformed. The corresponding T 1(F ) is identified
as (something like) the cohomology of a derived functor, and a canonical long exact sequence is
constructed from which it follows that

τ = µ(f ◦ F ) − β0 + β1,

where τ is the length of T 1(F ) and βi is the length of Tor
OY
i (OY /Jf ,OX ). This explains numerical

coincidences observed in lists of simple matrix singularities due to Bruce, Tari, Goryunov,
Zakalyukin and Haslinger. When f has Cohen–Macaulay singular locus (for example when f is the
determinant function), relations between τ and the rank of the vanishing homology of the zero
locus of f ◦ F are obtained.

0. Introduction

In [1], Bill Bruce classified simple singularities of symmetric matrix families with
respect to a natural equivalence relation (see Section 2 below). The very first look at
his tables reveals a rather unexpected relation peculiar to two-parameter families:
the dimension of the base of a matrix miniversal deformation coincides with the
Milnor number of the determinant of the family. This observation was the main
motivation for the paper [3], where equality of the Tjurina and Milnor numbers
for hypersurface sections of an isolated hypersurface singularity was proved. That
provided a partial explanation for the symmetric matrix problem, in the case of
2 × 2 matrices.

In the present paper, we prove that τ =µ for two-parameter families of symmetric
matrices of any order. We also prove similar statements for two other closely related
matrix classification problems: for arbitrary square matrices depending on three
parameters (as conjectured in [14]), and for skew-symmetric 2k× 2k matrices in
five variables. The key to the proof is to switch from the Koszul complex used in
[3] to an appropriate free resolution of a determinantal or Pfaffian variety. Very
suprisingly, these resolutions (introduced in [15, 17, 18]) have all been known for
many years and use exactly the Lie algebras involved in the matrix classifications
introduced recently in [1–3, 14, 16].

The coincidence of τ and µ in the three classifications is a particular case of
our main result, Theorem 1.5, on the relation between these two numbers for sec-
tions, with isolated singularity, of a possibly non-isolated hypersurface singularity

Received 22 April 2004.

2000 Mathematics Subject Classification 32S25, 32S30, 14B07.



206 v. goryunov and d. mond

(V, 0)⊂ (Cn, 0), obtained by pulling back V by a map F : (Cm, 0)−→ (Cn, 0):

τ = µ − β0 + β1, (1)

where the βi are the Betti numbers of the pull-back of a free resolution of the
jacobian algebra of the hypersurface singularity (and thus are the ranks of certain
Tor modules). The main result of [3], on sections of an isolated hypersurface
singularity, is also a special case.

The formula (1) has a topological interpretation when the singular subspace of
V = f−1(0) is Cohen–Macaulay. In the case of families of matrices (symmetric,
general, skew) in two or three, three or four, and five or six variables respectively,
the right-hand side is in fact the rank of the vanishing homology of V (det(St)) (or
the Pfaffian V (Pf(St)) in the skew-symmetric case) for a generic perturbation St

of the matrix S. This is the generalised Milnor number, in the sense of the rank
of the vanishing homology of the nearby stable object, appropriate to the problem
considered. In two, three and five variables, V (det(S)), or V (Pf(S)) in the skew
case, is smoothed in a deformation of S; in dimensions 3, 4 and 6 it is not. In all
these cases, however, one has

rank of the vanishing homology = Tjurina number.

Closely related results on sections of free divisors were obtained in a number of
papers by Damon, for example [9, 10], and in the paper [12] by Damon and Mond.
Free divisors in Cn are characterised by having a singular subspace which is Cohen–
Macaulay of dimension n − 2. Our topological results here concern sections with
isolated singularity of hypersurfaces whose singular subspace is Cohen–Macaulay of
arbitrary dimension. In [12] the freeness of the divisors was important in allowing
an easy proof of conservation of multiplicity (analogous to conservation of the
Milnor number in a deformation of a function singularity), which was the basis
for the comparison between the vanishing homology and the module of first-order
deformations. Here we use the conservation of the Milnor number itself.

The structure of the paper is as follows.
The proof of our main theorem here is a modification of the arguments used (not

very explicitly) in [3] to prove (1) for sections of isolated hypersurface singularities.
We generalise this in Section 1 by identifying the T 1 of a section of a singular
hypersurface as something rather like (the homology of) a derived functor associated
to the comparison between the jacobian algebra of the section and the pull-back of
the jacobian algebra of the hypersurface singularity. This allows us to embed the
T 1 in a canonical long exact sequence, from which (1) follows in case the section
has isolated singularity.

Section 2 deals in detail with various notions of equivalence of matrix families, and
Section 3 describes the commutative algebra which allows us to relate the various
notions of equivalence to one another, and to prove conservation of multiplicity.
Section 4 builds on the material of the previous sections to relate τ to the rank of the
vanishing homology, and in Section 5 we comment on Cohen–Macaulay properties
of the relative T 1’s and on some related results which suggest that the discriminants
in the matrix versal base spaces are free divisors.
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0.1. Notation

At the urging of Kyoji Saito, in this paper we have harmonised our notation with
standard notation in algebraic geometry. Given a divisor V in a complex space X, it
has been usual in singularity-theory papers to denote by Der(log V ) (or Derlog(V ))
the OX -module of vector fields on X which are tangent to V at its smooth points,
and by Ω1(log V ) the OX -module of 1-forms with logarithmic poles along V . Since
these two modules are mutually dual, the conventions of algebro-geometric notation
would insist that one of them have a − log V in parentheses rather than log V . As
a logarithmic pole is after all a pole, and k-forms with a (first-order) pole along V
are denoted Ωk(V ), it is clear that it has to be Der(log V ) that accepts the minus
sign and henceforth becomes Der(− log V ). Similarly, we have replaced the notation
Der(log f), for the module of vector fields tangent to all the level sets of a function
f , by Der(− log f).

1. Equivalence and deformations of sections of hypersurfaces and functions

Consider a pair consisting of a function f : (Cn, 0)−→ (C, 0) and a map F :
(Cm, 0)−→ (Cn, 0). Let V = f−1(0). We seek to describe the deformations of F in
relation to f , with a view to understanding the deformations of F−1(V ). Many
of our formulae will involve both OCm and OCn; where possible, we will use O to
abbreviate OCm, but never OCn.

Definition 1.1. Two map-germs F, F ′ : (Cm, 0)−→ (Cn, 0) are called Kf -
equivalent if there exist diffeomorphisms Φ of (Cm ×Cn, 0) and ϕ of (Cm, 0), such
that the following hold.

(1) π1 ◦ Φ= ϕ ◦ π1 (that is, Φ lifts ϕ).
(2) f ◦ π2 ◦ Φ= f ◦ π2 (that is, Φ preserves f).
(3) Φ induces a diffeomorphism graph(F )−→ graph(F ′).

This equivalence was introduced in [12]. It is closely related to KV -equivalence,
introduced by Damon in [8], in which (2) is replaced by

(2′) Φ sends Cm × {f = 0} to itself.

If F and F ′ are Kf -equivalent then f ◦ F and f ◦ F ′ are right-equivalent, and if
F and F ′ are KV -equivalent then f ◦ F and f ◦ F ′ are contact-equivalent.

The extended tangent space to the Kf -orbit of F is

TKf
F = tF (θCm) + F ∗(Der(− log f)),

where the following hold.
(i) θCm is the space of germs of holomorphic vector fields on (Cm, 0).
(ii) tF : θCm −→ θ(F ) := F ∗(θCn) is the sheafification of the derivative dF .
(iii) Der(− log f)⊂ θCn is the OCn-module of vector fields annihilating f , and

F ∗(Der(− log f)) is the OCm-submodule of θ(F ) generated by the composites with
F of the vector fields in Der(− log f).

The extended tangent space to the KV orbit of F is

TKf
F = tF (θm) + F ∗(Der(− log V )),
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where Der(− log V ) is the OCn-module of vector fields on Cn which are tangent
to V at its smooth points. Denote θ(F )/TKfF and θ(F )/TKV F respectively by
T 1
Kf

F and T 1
KV

F.
Notice that

θ(F )
TKV F

⊗
OCm ,x

C =
TF (x)Cn

dxF (TxCm) + T log
F (x)V

,

where for any point y ∈Cn, T log
y V = {ζ(y) : ζ ∈Der(− log V )y} is the logarithmic

tangent space to V at y. Thus T 1
KV

F measures failure of ‘logarithmic transversality’
(or algebraic transversality, in Damon’s terminology) of F to V . The geometric
interpretation of T 1

Kf
F ⊗C is less clear (see Remark 4.7(iii) below) although T 1

Kf
F

in some sense measures failure of logarithmic transversality of F to the level sets
of f .

Both KV and Kf are ‘geometric subgroups’ of the group of all diffeomorphism-
germs, and so by Damon’s general theory [7] the usual theorems of singularity
theory apply: finite determinacy, infinitesimal criterion for versality, and so on. In
particular T 1

Kf
F and T 1

KV
F are the tangent spaces at 0 to the (smooth) miniversal

base-spaces of F for the two equivalences.
Now we describe another approach to these two deformation theories, which

identifies the two T 1 as something resembling a derived functor. By this means
we are able to locate them in long exact sequences which provide solutions to the
problems that prompted this paper. (Of course this is not how the solution was
first found! Nevertheless this seems to be the most canonical presentation.)

Consider the two surjective comparison maps
OCm

Jf◦F
−→ OCm

F ∗(Jf )
and

OCm

(f ◦ F ) + Jf◦F
−→ OCm

F ∗((f) + Jf )
.

By considering free resolutions of the modules involved, we are going to incorporate
these maps into long exact sequences also involving T 1

Kf
F and T 1

KV
F .

Let L• and L̃• be OCn-free resolutions of OCn/Jf and OCn/(f) + Jf , let K•(f)
be the Koszul complex on the first-order partials of f , and let K̃•(f) be K•(f)
augmented by another generator in degree 1, mapping onto f in degree 0 (so that
H0(K̃•(f))=OCn/(f)+Jf ). By lifting the identity maps on OCn/Jf and OCn/(f)+
Jf , we obtain morphisms of complexes

K•(f) −→ L•

and
K̃•(f) −→ L̃•.

These complexes and morphisms can be pulled back by F (in other words, tensored
over OCn with OCm). There is a natural morphism∧•

tF : K•(f ◦ F ) −→ F ∗(K•(f)),

and by taking the direct sum of tF with the identity map O−→O in degree 1
(recall that we frequently abbreviate OCm simply to O) we also obtain a morphism∧•

t̃F : K̃•(f ◦ F ) −→ F ∗(K̃•(f)).
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By composing these with the pulled-back morphisms mentioned above, we obtain
morphisms of complexes

φf : K•(f ◦ F ) −→ F ∗(L•)

and

φV : K̃•(f ◦ F ) −→ F ∗(L̃•).

Let C•(φf ) and C•(φV ) be the cones (cf. [13, pp. 153–158], but the definition is
recalled below) on these morphisms of complexes. Then our main technical result
is the following.

Theorem 1.2.

T 1
Kf

F � H1(C•(φf ))

and

T 1
KV

F � H1(C•(φV )).

Proof. Both statements are straightforward consequences of the definitions. If
ψ : A• −→B• is a morphism of complexes then the cone C•(ψ) has Cn(ψ)= An−1⊕
Bn and differential taking (an−1, bn) to (−d(an−1), d(bn) − ψ(an−1)).

The following diagram shows the morphism φf .

K•(f ◦ F ) : . . .
d(f◦F )−→

∧2 Om d(f◦F )−→ Om d(f◦F )−→ O −→ 0

φf ↓ . . . ↓ dF ↓ id ↓

F ∗(L•) : . . . −→ Or F∗(α1)−→ F ∗(θCn)
F∗(df)−→ O −→ 0

(2)

The cone is the total complex of this (rather small) double complex; its modules are
direct sums along the south-west to north-east parallels, and its differential runs
south-east. Note that the image of F ∗(α1) is F ∗(Der(− log f)).

We have

Z1(C•(φf ))= {(a, ξ)∈O⊕F ∗(θCn) : F ∗(tf)(ξ)= a}= {(F ∗(tf)(ξ), ξ) : ξ ∈F ∗(θCn)},

and H1(C•(φf )) is the quotient of this by

{(−t(f ◦ F )(η), ζ − tF (η)) : η ∈ θCm, ζ ∈ F ∗(Der(− log f))}.

Under projection to F ∗(θCn), forgetting the first component, this quotient maps
isomorphically to

F ∗(θCn)
{ζ − tF (η) : η ∈ θCm, ζ ∈ F ∗(Der(− log f))} = T 1

Kf
F.

In the case of C•(φV ), we can choose L̃• to take the form

. . . −→ L̃2
d2−→ θCn ⊕OCn −→ OCn −→ 0,

with the image of d2 consisting of pairs (ζ, b) such that tf(ζ) + b · f = 0, so that
ζ ∈Der(− log V ). Thus

Z1(C•(φV )) = {(a, η, b) ∈ O ⊕ F ∗(θCn) ⊕O : a = t(f ◦ F )(η) + (f ◦ F )b}.
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This projects isomorphically to F ∗(θCn) ⊕ O by forgetting the first component.
Also B1(C•(φV )) consists of sums of terms of the form (0, ζ, b)∈O ⊕ F ∗(θCn) ⊕O
such that ζ ∈F ∗(Der(− log V )) and F ∗(tf)(ζ) + b · f ◦ F = 0, coming from F ∗(L̃2),
together with terms of the form (−−, tF (η), a) coming from K̃1 (we do not care
what is in the first component). By projecting this into F ∗(θCn)⊕O, forgetting the
first component, we see that

H1(C•(φV )) =
F ∗(θCn) ⊕O

{(ζ − tF (η), b − a) : F ∗(tf)(ζ) + b · f ◦ F = 0, η ∈ θCm, a ∈ O} .

This is isomorphic to
F ∗(θCn)

tF (θCm) + F ∗(Der(− log V ))
,

that is, to T 1
KV

F .

If C•(φ) is the cone on a map of complexes φ : A• −→B•, there is a long exact
sequence of homology

. . . −→ Hk(A•) −→ Hk(B•) −→ Hk(C•(φ)) −→ Hk−1(A•) −→ . . .

constructed by completely standard means (see for example [13]). Thus from
Theorem 1.2 we deduce the following.

Corollary 1.3. There are exact sequences

. . . −→ H1(K•(f ◦ F )) −→ H1(F ∗(L•)) −→ T 1
Kf

F −→ OCm

Jf◦F
−→ OCm

F ∗(Jf )
−→ 0

(3)
and

. . . −→ H1(K̃•(f ◦ F ))−→H1(F ∗(L̃•))−→T 1
KV

F

−→ OCm

(f ◦ F )+Jf◦F
−→ OCm

F ∗((f)+Jf )
−→ 0 (4)

in which the maps T 1
Kf

F −→OCm/Jf◦F and T 1
KV

F −→OCm/(f ◦ F ) + Jf◦F are
induced by F ∗(tf) : θ(F )−→OCm.

Remark 1.4. Let g = f◦F . Then OCm/Jg is the T 1 of g for right-equivalence.
The morphism T 1

Kf
F −→T 1g in (3) is a map between deformation functors, telling

us which of the first-order deformations of g we can get by deforming F alone. A
similar statement holds for T 1

KV
F −→OCm/(g) + Jg, with contact-equivalence in

place of right-equivalence.

In most of what follows we use (3) to compute τKf
F := dimCT 1

Kf
F in cases where

f ◦F has isolated singularity. In such cases the Koszul complex K•(f ◦F ) is acyclic.
The homology of F ∗(L•) computes TorOCn

• (OCn/Jf ,OCm); denoting the rank of the
jth Tor module by βj , from the exact sequence (3) we obtain the following.

Theorem 1.5. If f ◦F has isolated singularity then τKf
F =µ(f ◦F )−β0 +β1.

This equality is the key to the comparisons between τf (F ) and the rank of the
vanishing homology of f ◦F under deformations of F alone, which occupy Section 4.



tjurina and milnor numbers of matrix singularities 211

Note that acyclicity of the Koszul complex K•(f ◦ F ) means that for k � 2,
Hk(C•(φf )) � TorOCn

k (OCm,OCn ,0/Jf ).

1.1. Is this the key to any door?

When f ◦F has isolated singularity, by taking the alternating sum of the lengths
of the modules in the exact sequences (3) and (4) we obtain the formulae

χ(C•(φf )) = µ(f ◦ F ) − χ(OCm ,0,OCn/Jf ) (5)

and

χ(C•(φV )) = τ(f ◦ F ) − χ
(
OCm ,0,OCn/(f) + Jf

)
. (6)

Here, the last term on the right is Serre’s intersection multiplicity [21]. This is
defined, for modules M,N over the ring R (= OCn in our case) by

χ(M,N) =
∑

j

(−1)j

(
TorR

j (M,N)
)
.

The right-hand side makes sense only if M
⊗

R N has finite length, and in fact this
is a sufficient condition for finiteness of all the other summands.

When dimM + dim N < dim R then χ(M,N) = 0 [21]. If also
TorOCn

j (OCm,OCn/Jf ) = 0 for j > 1, then β0 = β1, and from Theorem 1.5 it follows
that τKf

F = µ(f ◦ F ). As we shall see in Lemma 4.3 below, this explains the
surprising equality referred to in the opening paragraph of the introduction.

When f ◦F has non-isolated singularity the Koszul complex is no longer acyclic,
and one might wish to replace it by a free resolution F• of O/Jf◦F . However, in
general the comparison morphism O/Jf◦F −→O/F ∗(Jf ) will not lift to a morphism
of complexes F• −→F ∗(L•) if F ∗(L•) is not acyclic. In particular, it is not clear that
tF (Der(− log f ◦ F ))⊂F ∗(Der(− log f)), which is required in order to have such a
lift in degree 1. The functoriality of the Koszul complex seems to be playing an
important rôle here. In order to progress towards an understanding of the relation
between τf (F ) and the vanishing homology of V (f ◦ F ) when f ◦ F has non-
isolated singularity, we will need some understanding of the first Koszul homology
of OCm/J(f ◦ F ).

1.2. Almost free divisors

Some of the most interesting developments in the theory of sections of hyper-
surface singularities have concerned sections of free divisors (see for example
[9–12]), and here the condition of isolated singularity is very far from being fulfilled.
A singular free divisor in Cn has singular subspace of dimension n−2, so that among
reduced spaces, free divisors have the biggest possible singular set. An almost free
divisor is a section of a free divisor V = f−1(0) by a map F which is logarithmically
transverse to V outside the origin (this definition is due to Damon), so an almost
free divisor is also singular in codimension 1. Thus both the modules OCm ,0/F ∗(Jf )
and OCm ,0/Jf◦F have (m−2)-dimensional support. On the other hand in this case
TorOCn

j (OCm ,0,OCn/Jf ) = 0 for j > 0, and so the sequence (3) reduces to the short
exact sequence

0 −→ T 1
Kf

F −→ OCm

Jf◦F
−→ OCm

F ∗(Jf )
−→ 0, (7)



212 v. goryunov and d. mond

together with a collection of isomorphisms Hk(C•(φf )) � Hk−1(K•(f ◦ F )) for
k � 2. It is interesting to note that (7) allows us to give T 1

Kf
F the multiplicative

structure of the quotient of two ideals:

T 1
Kf

F � F ∗(Jf )
Jf◦F

. (8)

The acyclicity of F ∗(L•) for almost free divisors, versus the acyclicity of K•(f◦F )
for sections with isolated singularity, shows that these two cases are at opposite
corners of the field one might wish to survey.

2. Singularities of matrix families and their determinants

In papers [1–3, 16], parametrised families of n × n matrices are classified up
to coordinate changes in the parameter space and parametrised versions of the
natural action of Sln(C) and Gln(C). In this section we show that these equivalence
relations are in fact the same as the relations Kf and KV when f is the determinant
or Pfaffian function on matrix space.

First we recall the definition of the equivalence relations. There are three cases,
corresponding to symmetric, skew symmetric and arbitrary square matrices, each
with two flavours, special and general. We remind the reader that we use O to
abbreviate OCm.

Definition 2.1. (1) For symmetric matrices, symmetric matrix families

S1, S2 : (Cm, 0) −→ Symn(C)

are Sln-symmetric equivalent if there is a matrix family A∈Sln(O) and a germ of
biholomorphic diffeomorphism ψ : (Cm, 0)−→ (Cm, 0) such that

S2 = At(S1 ◦ ψ)A,

and Gln-symmetric equivalent if A is allowed to be in Gln(O) rather than Sln(O).
(2) For skew symmetric matrices, Sln- and Gln-skew-equivalence are defined by

the same formulae.
(3) Arbitrary square matrix families M1,M2 : (Cm, 0)−→Matn(C) are Sln-

equivalent if there are matrix families A,B ∈Sln(O) and a germ of biholomorphic
diffeomorphism ψ : (Cm, 0)−→ (Cm, 0) such that

M2 = A(M1 ◦ ψ)B,

and Gln-equivalent if A and B are allowed to be in Gln(O).

It is an immediate consequence of the definitions that the extended tangent-
spaces to the special and general orbits are

TssS = tS(θCm) + {AtS + SA : A ∈ sln(O)},

TgsS = tS(θCm) + {AtS + SA : A ∈ gln(O)},
for symmetric and skew symmetric matrices, and

TsgM = tM(θCm) + {AM + MB : A,B ∈ sln(O)},

TggM = tM(θCm) + {AM + MB : A,B ∈ gln(O)},
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for arbitrary square matrices. Here the first letter in the subscript refers to the
flavour, special or general, and the second letter refers to the type of the matrix,
symmetric, skew or general. We do not need to distinguish, in our notation, between
the symmetric and skew-symmetric cases, since the equivalence relation is the same.

We denote the codimension of these tangent spaces (in S∗(symn(C)), S∗(skn(C))
and M∗(matn(C)) respectively) by τss, τgs, τsg and τgg.

Let det denote the determinant function on Matn(C) in the general case, and
on Symn(C) in the symmetric case, and let V = {det = 0} (in which space will be
clear from the context). Similarly, let Pf : Skn(C)−→C be the Pfaffian function,
and in this context let V denote its zero-locus. Since Pf ≡ 0 if n is odd, from now
on when we are discussing skew-symmetric n×n matrices, n will be assumed to be
even.

Theorem 2.2. (i) For a symmetric matrix family S,

TssS = TKdetS, TgsS = TKV S.

(ii) For a general matrix family M ,

TsgM = TKdetM, TggM = TKV M.

(iii) For a skew-symmetric matrix family S,

TssS = TKPfS, TgsS = TKV S.

Proof. In each of the three cases, the first equality, concerning Sln-equivalence,
can be read off from the well known free resolutions mentioned in the introduction.
These are described in detail after this proof. For now, we show only that the right
hand of each of the three pairs of equalities follows from the left.

In fact we show it only for symmetric matrices; the other two cases are essentially
identical.

By comparing the formulae for the tangent spaces, we see that

TgsS = TssS + {λS : λ ∈ O} (9)

since gln = sln +{λ · idn : λ∈C}, where idn is the n×n identity matrix, from which
gln(O) = sln(O) + {λ · idn : λ∈O} follows. On the other hand, because det is a
homogeneous function, there is a splitting

Der(− log V ) = Der(− log det) ⊕OMatn (C) · χe,

where χe is the Euler vector field
∑

i,j xij∂/∂xij . Hence

TKV S = TKdetS + S∗(OMatn (C) · χe) = TKdetS + {λ · S : λ ∈ O}. (10)

From (9) and (10) the equality TgsS = TKV S follows.

The equalities of the tangent spaces, together with uniqueness of solutions of
ordinary differential equations, imply that the equivalences themselves coincide, as
stated at the beginning of the section. However we will only need equality of the
tangent spaces in what follows.
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3. Free resolutions

In this section we describe complexes which give free resolutions of the jacobian
algebras of det : Matn(C)−→C, det : Symn(C)−→C, and the Pfaffian function
Pf : Skn(C)−→C for n even. Surprisingly (to us), the original papers where they
appeared make no mention of partial derivatives and vector fields; in each of the
three cases, the jacobian ideal is identified as a purely algebraic object, namely the
ideal In−1 generated by the submaximal minors in the case of det, and the ideal
Pfn−2 generated by the (n − 2) × (n − 2) sub-Pfaffians in the case of Pf.

3.1. The Gulliksen–Neg̊ard resolution

For a family M ∈Matn(O), Gulliksen and Neg̊ard constructed in [15] a complex
which is a free resolution of O/In−1(M) in case the codimension of the variety
V (In−1(M)) in Cm is 4 (its greatest possible value). Their complex is

0→O d4−→ matn(O) d3−→ sln(O) ⊕ sln(O) d2−→ matn(O) d1−→ O−→O/In−1(M)−→ 0,

(11)

where the following hold.
(i) d1(U)= trace(M∗U), where M∗ is, the adjugate of M , that is, the matrix of

signed cofactors.
(ii) d2(X,Y )= MX − Y M .
(iii) d3(Z) = (ZM − (tr(ZM)/n) In, MZ − (tr(MZ)/n) In).
(iv) d4(a)= aM∗.
(v) We use lower case mat(O) rather than upper case Mat(O) because we are

thinking of the (pull-back of the) tangent sheaf on the vector space Mat(C). It is
of course indistinguishable from Mat(O) as O-module.

Several aspects of this resolution come unexpectedly to our aid. The first is that
the i, jth signed cofactor M∗

ij of a matrix M is equal to the partial derivative of det
with respect to the i, jth entry Mij , so in the generic case (where the entries are
the variables), (11) is a resolution of OMatn (C)/Jdet. Moreover

trace (M∗X) =
∑
ij

M∗
ijXij =

∑
ij

Xij
∂ det
∂Mij

= t(det)

(∑
ij

Xij
∂

∂Mij

)
.

The second is that thanks to this fact, we can interpret the module of relations
among the sub-maximal minors as the module of vector fields annihilating the
function det, and the Gulliksen–Neg̊ard resolution shows that the relations among
them are precisely those induced by the action of sln. This fact, which was already
noted by Bill Bruce in [1], is precisely what is needed to prove Theorem 2.2 for
matrix families.

Moreover, the Gulliksen–Neg̊ard complex GN•(S) is equal to M∗(GN•), where
GN• is the generic complex, over OMat(C). Thus it can play the rôle of the complex
F ∗(L•) of Theorem 1.2. A similar remark holds for the other two complexes we now
describe.

Once again we have slightly modified the description of the complex from that
found, for example, in [5], in order to adapt it to our situation.
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3.2. Józefiak’s resolution

In [17], Józefiak constructed a complex of free O-modules which gives a resolution
of O/In−1(S) provided that the codimension of the zero variety V (In−1(S)) of
In−1(S) in Cm is 3 (its greatest possible value). His complex is

0 −→ skn(O) d3−→ sln(O) d2−→ symn(O) d1−→ O −→ O/In−1(S) −→ 0. (12)

Here the following hold.
(i) skn(O) is the space of order n skew-symmetric matrices over O.
(ii) d1(X)= trace (S∗X), where S∗ is the adjugate matrix of S.
(iii) d2(Y )= SY + Y T S.
(iv) d3(Z)= ZS.

In fact in [17], gln(O)/skn(O) appears in place of symn(O), and d2 has a different
(equivalent) description.

As with the Gulliksen–Neg̊ard resolution, in the generic case d1 is equal to t(det) :
θSym(C) −→OSym(C), and so the acyclicity of (12) shows that the module of vector
fields annihilating det is generated by the infinitesimal sln action.

3.3. The Józefiak–Pragacz resolution

A complex giving a free resolution of O/Pfn−2(S) in case V (Pfn−2(S)) has
codimension 6 (its greatest possible value) in Cm is due to Józefiak and Pragacz
[18]. In slightly modified form it is

0 −→ O d6−→ skn(O) d5−→ sln(O) d4−→ symn(O) ⊕ symn(O) d3−→

sln(O) d2−→ skn(O) d1−→ O −→ O/Pfn−2(S) −→ 0, (13)

where the following hold.
(i) d1(U)= 1

2 trace(S∗U), where S∗ is the matrix of order (n−2) signed Pfaffians
of S, which satisfies S∗S =SS∗ = Pf(S)In.

(ii) d2(V )= SV + V T S.
(iii) d3(W,X)= S∗W − XS.
(iv) d4(Y ) = (SY + (SY )T , Y S∗ + (Y S∗)T ).
(v) d5(Z)= ZS − (tr(ZS)/n) In.
(vi) d6(a)= aS∗.

In the generic case ∂Pf/∂Sij =S∗
ij , so Pfn−2 = JPf, d1 = t(Pf), (13) is a resolution

of the jacobian algebra of Pf, and by acyclicity of (13) it follows that the vector
fields annihilating Pf are generated by the sln action.

3.4. The morphisms φf for matrix families

In the case of matrix families, the morphism of complexes K•(f ◦F )
φf−→ F ∗(L•)

constructed in Section 1 embodies some non-trivial rules of differentiation. For a
symmetric or skew-symmetric n × n matrix family S,

(φf )2 :
2∧

θCm −→ sln(O)

is given by
(∂/∂xi ∧ ∂/∂xj) �−→ (S∗

xi
Sxj

− S∗
xj

Sxi
)/2 (14)
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(where the subscript xi indicates partial derivative), and for a general n×n matrix
family M ,

(φf )2 :
2∧

θCm −→ sln(O) ⊕ sln(O)

is given by

(∂/∂xi ∧ ∂/∂xj) �−→ (Mxj
M∗

xi
− Mxi

M∗
xj

,M∗
xj

Mxi
− M∗

xi
Mxj

)/2. (15)

It would be interesting to obtain explicit formulae for the remaining (φf )j .

3.5. Cohen–Macaulay and Gorenstein properties of determinantal varieties

In each of the three cases, let m0 denote the length of the resolution (12), (11) and
(13). Since m0 is also the codimension of V (In−1(S)), V (In−1(M)) and V (Pfn−2(S))
in the generic case, the three resolutions show that these varieties are Cohen–
Macaulay, and the same conclusion also holds for any matrix family provided the
codimension of the respective variety is m0, which is its maximal possible value.

If S is a deformation over base B of a three-parameter matrix family S meeting
this requirement in (say) the symmetric case, then the codimension in C3 × B of
V (In−1(S )) is also 3. Since V (In−1(S)) is the fibre of V (In−1(S )) over 0∈B,
V (In−1(S )) is finite over B, and therefore OC3×B/In−1(S ) is OB-free. This
implies that dimC OC3,0/In−1(S) is conserved in a deformation; it is equal to∑

x dimC OC3,x/In−1(St) (where the sum is over the points x into which the
isolated zero of In−1(S) splits), since both are equal to the rank of the free sheaf
π∗ OC3×B/In−1(S ). It is the index of intersection of the image of C3 under S with
the set of symmetric matrices of corank greater than 1.

Similar arguments prove conservation of multiplicity in the other two cases, when
m = m0.

Both (11) and (13) are self-dual complexes, and so if the codimension of
V (In−1(M)) or V (Pfn−2(S)) is m0, then both are Gorenstein varieties. This has a
consequence for the relation between the Betti numbers of GN•(M) and JP•(S)
when m is less than m0, which we now explain.

Lemma 3.1. Let R be a noetherian local ring, let F• =: 0−→FM −→ . . . −→
F0 −→ 0 be a finite complex of free R-modules, and let F• be its R-dual. There is
a spectral sequence with Ep,q

2 = Extq
R(Hp(F•), R) converging to Hp+q(F•).

Proof. Form the double complex Hom(F•, I
•), where I• is an injective resolution

of R. Writing the arrow of F• pointing from left to right and the arrow of the
injective resolution pointing up, the double complex has arrows pointing up and
from right to left.

Taking first the horizontal differential, we get

Hp(Hom(F•, I
q)),

which is equal to

Hom(Hp(F•), Iq)

by injectivity of Iq. Now, taking the vertical differential we get

Ep,q
2 = Extq(Hp(F•), R).
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If we take first the vertical differential in the double complex we get

Extq(Fp, R),

which is equal to F p for q = 0 and is zero otherwise (since Ext can also be calculated
by using a projective resolution of Fp). Now, taking the horizontal differential, we
get

Hp(F•).

Since both means of calculating the homology of the double complex must give the
same answer, we conclude that the first spectral sequence must also converge to
Hp(F•).

Lemma 3.2. Suppose in addition that each of the homology modules Hp(F•)
has finite length and that R is a regular local ring of dimension m. Then

Hp(F•) � Extm(Hp−m(F•), R).

Proof. Each module Hp(F•) now has a free resolution of length m. By a lemma
of Ischebeck [19, p. 133],

Extq(Hp(F•),O) = 0.

except when q =m. It follows that the spectral sequence of Lemma 3.1 collapses at
E2, and the lemma follows.

Now suppose that the complex F• is self-dual, in the sense that there is an
integer m0 (the length of the complex) such that Hp(F •)= Hm0−p(F•). This is the
case for the complexes GN•(M) and JP•(S), since they are the pull-backs of free
resolutions of Gorenstein quotients. Then Lemma 3.2 gives

Hm0−p(F•) � Extm(Hp−m(F•), R). (16)

Proposition 3.3. Suppose that F• is a self-dual complex of free modules, of
length m0, over the regular local ring R of dimension m, with all homology modules
of F• having finite length. Then Hm0−p(F•) has the same length as Hp−m(F•).

Proof. This is immediate from (16) and the following lemma.

Lemma 3.4. Let M be an R-module of finite length. Then Extm(M,R) has the
same length as M .

Proof. Because R is Gorenstein, local duality (see for example [4]) gives us

Extm(M,R) = Extm(M,ωR) = Hom
(
H0

{0}(M), E(k)
)
,

where ωR is the dualising module of R and E(k) is the injective hull of the residue
field of R. Since M is supported only at 0, this gives

Extm(M,R) = Hom(M,E(k)).

Finally, an easy induction [4, p. 102] shows that the length of Hom(M,E(k)) is
equal to the length of M for any R-module M of finite length.
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Proposition 3.5. (i) Let M be a general matrix family on m < 4 parameters,
and suppose that det(M) has isolated singularity. Then

βk(GN•(M)) = βk+(4−m)(GN•(M)).

(ii) Let S be a skew-symmetric matrix family on m < 6 parameters, and suppose
that Pf(S) has isolated singularity. Then

βk(JP•(S)) = βk+(6−m)(JP•(S)).

4. τ, µ and the vanishing homology of sections with isolated singularity

We will suppose throughout this section that OCn/Jf is Cohen–Macaulay, of
dimension n − m0. Then the dimension of OCm/F ∗(Jf ) is at least m − m0, and if
it is m−m0 then OCm/F ∗(Jf ) is Cohen–Macaulay. Moreover in this case if L• is a
free OCn-resolution of OCn/Jf then F ∗(L•) is a free OCm-resolution of OCm/F ∗(Jf ).
From Theorem 1.5 we therefore obtain the following.

Theorem 4.1. If m = m0 and f ◦ F has isolated singularity then

τKf
F = µ(f ◦ F ) − dimCOCm/F ∗(Jf ).

Applying this to the matrix families we considered in Section 2, we have the
following.

Corollary 4.2. (i) Symmetric case with m = 3:

τss(S) = µ(det(S)) − dimCOC3/In−1(S).

(ii) General case with m = 4:

τsg(M) = µ(det(M)) − dimCOC4/In−1(M).

(iii) Skew-symmetric case with m = 6:

τss(S) = µ(Pf(S)) − dimCOC6/Pfn−2(S).

If m = m0 − 1 or m = m0 − 2 a surprising phenomenon occurs.

Lemma 4.3. (i) Suppose that m =m0 − 1, and f ◦ F has isolated singularity.
Then the numbers β0 and β1 in Theorem 1.5 are finite and equal to one another,
and βj = 0 for j � 2. In consequence, τKf

F =µ(f ◦ F ).
(ii) If m = m0−2 and f ◦F has isolated singularity, then β0, β1 and β2 are finite

and βj = 0 for j � 3. Moreover β0 + β2 = β1, so that τKf
F =µ(f ◦ F ) + β2.

Proof. We remarked in Subsection 1.1 that given the vanishing of higher
Tor modules, the relations between the βj follow from the vanishing of
χ(OCn/Jf ,OCm). Since we need this vanishing, however, we give a self-contained
proof.

(i) Choose a deformation F of F on one extra parameter t, so that
OCm 0−1×C/F ∗(Jf ) has dimension 0. Then F ∗(L•) is acyclic. The short
exact sequence of complexes

0 −→ F ∗(L•)
t·−→ F ∗(L•) −→ F ∗(L•) −→ 0
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gives rise to a long exact sequence of homology; since F ∗(L•) is acyclic, this ends

0 = H1(F ∗(L•))−→H1(F ∗(L•))−→H0(F ∗(L•))−→H0(F ∗(L•))

−→H0(F ∗(L•))−→ 0.

As H0(F ∗(L•))=OCm 0−1×C/F ∗(Jf ), it has finite length, and the conclusion
follows from the fact that the alternating sum of the lengths of the modules in an
exact sequence is 0.

(ii) Let F1 be a deformation of F on the parameter t1 and let F2 be a
deformation of F1 on the parameter t2, such that V (F ∗

2 (Jf )) has codimension m0.
The argument of (i) applied to the long exact sequence arising from

0 −→ F ∗
2 (L•)

t2·−→ F ∗
2 (L•) −→ F ∗

1 (L•) −→ 0

shows that β2(F ∗
1 (L•))= 0 and β1(F ∗

1 (L•)) < ∞. An analogous argument, applied
to the (longer) exact sequence arising from

0 −→ F ∗
1 (L•)

t1·−→ F ∗
1 (L•) −→ F ∗(L•) −→ 0

then gives the result.

In case (i) it is curious that despite the equality of µ and τ , the natural map from
T 1
Kf

F to the jacobian algebra is not an isomorphism.
For our matrix families we conclude the following from Theorem 1.5 and

Lemma 4.3(i).

Corollary 4.4. (i) Symmetric case with m = 2:

τss(S) = µ(det(S)).

(ii) General case with m = 3:

τsg(M) = µ(det(M)).

(iii) Skew-symmetric case with m = 5:

τss(S) = µ(Pf(S)).

Also somewhat surprisingly, under a mild assumption on the distributions
Der(− log V ) and Der(− log f), the two disparate phenomena described in
Theorem 4.1 and Lemma 4.3 are both subsumed into the same phenomenon when
we consider the vanishing homology of F−1(V ) under deformation of F .

The assumption is that the following hold.
(1) There exist perturbations of F which are logarithmically transverse to V .
(2) At each point x∈V where dimCT log

x V � n − m,

T log
x V = Der(− log f)(x). (17)

This equality holds, for example, if f ∈mxJf . For if f ∈Jf then Der(− log V )
splits as a direct sum Der(− log f) ⊕ OCn · χ where χ is a vector field such that
χ · f = f . If in addition we can choose χ to vanish at x (that is if f ∈mxJf ) then
(17) follows. In fact if f ∈mxJf and u is any unit then uf ∈mxJuf , so (17) holds
for every choice of equation. This has a partial converse.
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Proposition 4.5. Suppose that T log
x V 
= 0. Then (17) holds for every choice

of equation for V if and only if f ∈mxJf .

Proof. ‘If’ is already shown. Choose χ∈Der(− log f) such that χ(x) 
=
0. If χ(x)∈Der(− log uf)(x), then there must exist η ∈mxθCn ,x such that
(χ + η) ·uf = 0. This gives

u(η · f) + f
(
(χ + η) · u

)
= 0.

Now choose a unit u such that dxu(χ(x)) 
= 0. Then (χ + η) · u is a unit in OCn ,x,
so f ∈mxJf .

We will say that m is in the range of holonomy with respect to f if (17) holds at
all points of V where dimCT log

x V � n − m.

Theorem 4.6. Suppose that m = m0 or m = m0 − 1, and is in the range
of holonomy with respect to f , and let Ft be a perturbation of F which is
logarithmically transverse to V . Let Xt =V (f ◦ Ft) and X0 =V (f ◦ F ). Then Xt

has the homotopy type of a wedge of τKf
F copies of the (m − 1)-sphere.

Proof. When m =m0 − 1 the argument is straightforward; Xt is a Milnor fibre
of X0, since F can only meet V at regular points, and there transversely. Hence Xt

has the homotopy type of a wedge of µ spheres. By Lemma 4.3(i), µ= τ .
When m = m0, Xt is no longer a smoothing of X0. Instead, it has an isolated

singular point at each zero of F ∗
t (Jf ). However, T 1

KV
Ft is everywhere 0, so by the

assumption that m is in the range of holonomy of f , T 1
Kf

Ft vanishes also at each
point of V (F ∗

t (Jf )) (these points all lie on F−1
t (V )), and so by Theorem 1.5, the

Milnor number of f ◦ Ft at each singular point x is equal to the local contribution
β0(Ft, x). By smoothing each singularity, and so obtaining a Milnor fibre for the
isolated singularity (X0, 0), we would increase the rank of the middle homology
by the local Milnor number of Xt at x. It follows that the rank of Hm−1(Xt) is
µ−

∑
x β0(Ft, x). However,

∑
x β0(Ft, x)= β0, by the well-known argument sketched

at the start of Subsection 3.5.
It is also well known that every fibre of a deformation of an isolated hyper-

surface singularity, whether smooth or not, has the homotopy type of a wedge of
spheres.

Remark 4.7. (i) The existence of a perturbation Ft of F which is logarithmi-
cally transverse to V is not always assured (see (ii) below); however, the logarithmic
stratification of matrix space is finite, and an argument of Damon [10, 2.4] using
Sard’s theorem shows that for families of matrices the required perturbations do
exist. Moreover, standard row-reduction arguments show that the varieties det = 0
and Pf = 0 are everywhere locally quasihomogeneous, so that the range of holonomy
of det and Pf has no upper bound. In fact, at the singular points of the determinant
of a generic matrix in four parameters or of a generic symmetric matrix in three
parameters, and at a singular point of the Pfaffian of a generic skew-symmetric



tjurina and milnor numbers of matrix singularities 221

matrix in six parameters, the families are Sln-equivalent, respectively, to

x1 x2 0
x3 x4 0
0 0 Mn−2

,

x1 x2 0
x2 x2 0
0 0 Sn−2

 and


0 x1 x2 x3 0

−x1 0 x4 x5 0
−x2 −x4 0 x6 0
−x3 −x5 −x6 0 0
0 0 0 0 An−4

,

(18)

where Mn−2, Sn−2 and An−4 are constant matrices with non-vanishing deter-
minants. The determinants and Pfaffians of the families in (18) are equal to

x1x4 − x2x3, x1x3 − x2
2 and x1x6 − x2x5 + x3x4, (19)

each of which has a non-degenerate critical point at 0. The ideals In−1 and Pfn−2

are in each case equal to the maximal ideal.

(ii) Consider the hypersurface V = {y(x+y)(x−y)(x+zy) = 0} in C3 and the map
F (x, y) = (x, y, 0). This is the total space of a family of quadruple lines in the plane,
with parameter z. As the cross-ratio varies with z, V is not analytically trivial along
the z-axis. We claim that F has no perturbation which is logarithmically transverse
to V . For on the one hand at every point P on the z-axis, T log

P V = 0, so that no
map from C2 to C3 can meet V transversely at P , while on the other hand since
F meets the z-axis in an isolated point, every perturbation Ft of F will also meet
the z-axis. In this example, V is neither globally weighted homogeneous, nor locally
quasihomogeneous at any point on the z-axis.

(iii) In contrast, the hypersurface (cf. [6]) with equation

f(x, y, z) = x5z + x3y3 + y5z

is globally homogeneous, but not locally quasihomogeneous at any point of the z-
axis outside 0. As a Macaulay calculation readily shows, Der(− log f) is generated
by vector fields which vanish everywhere on the z-axis, so Der(− log f)(0, 0, z) = 0.
On the other hand Der(− log V )(0, 0, z) 
= 0 for z 
= 0, since it contains the value
of the Euler vector field. The section F (x, y) = (x, y, x + y), with τKf (F ) = 10, has
a perturbation Ft(x, y) = (x, y, x + y + t) which is logarithmically transverse to V
(in fact it is transverse to the distribution spanned by the Euler vector field) but
nevertheless we have Ft(0, 0)∈V and (T 1

Kf
Ft)(0,0) 
= 0.

We must admit that here OC3/Jf is not Cohen–Macaulay, so that the conclusion
of Theorem 4.6 fails for other reasons too. Indeed the conclusion of Theorem 4.1
fails also; one calculates that µ(f ◦F )= 25 and dimCOC2/F ∗(Jf )= 19, so that here

τKf
(F ) 
= µ(f ◦ F ) − dimCOC3/F ∗(Jf ).

From Theorem 4.6 and Remark 4.7(i) we conclude the following.

Theorem 4.8. In each of the three kinds of matrix families, if m = m0 or
m = m0−1 then the relevant Tjurina number τ is equal to the rank of the vanishing
homology of the determinant or Pfaffian.

One further comparison between τKf
(F ) and the vanishing homology follows

immediately from Theorem 1.5, Proposition 3.3 and Lemma 4.3(ii) in case OCn/Jf

is Gorenstein.
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Proposition 4.9. Suppose that OCn/Jf is Gorenstein of dimension n − m0,
and that F : (Cm0−2, 0)−→ (Cn, 0) has τKf

F < ∞. Then

τKf
F = µ(f ◦ F ) + dimC OCm 0−2/F ∗(Jf ).

Corollary 4.10. (i) If M is a general matrix family on two parameters, then

τsg(M) = µ(det(M)) + dimC O/In−1(M).

(ii) If S is a skew-symmetric matrix family on four parameters, then

τss(S) = µ(Pf(S)) + dimC O/Pfn−2(S).

Remark 4.11. Since J• is not self-dual, an analogue of Corollary 4.10 does not
hold in general for symmetric matrices. According to [1], any 1-parameter family
of such matrices with finite Tjurina number is equivalent to S = diag{xa1 , xa2 ,
. . . , xan }, for some non-decreasing sequence of integers 0 � a1 � a2 � . . . � an. For
such a family S,

τss(S) =
n∑

i=1

(n − i + 1)ai − 1, µ(det S) =
n∑

i=1

ai − 1, β0(J•) =
n−1∑
i=1

ai.

Therefore, τss(S)= µ(det S) + β0 if and only if the corank of the matrix S(0) is
at most 2, in which case S∗(Jdet) is actually a complete intersection ideal and
Theorem 4.12(2) (below) applies.

4.1. Sections of isolated hypersurface singularities

Now suppose that f : (Cn, 0)−→ (C, 0) has an isolated singularity at the origin.
Then m0 = n, and there are three values of m when the number β1 in the right-hand
side of (1.5) is easy to calculate: β1 = 0, β0, 2β0 if m =n, n−1, n−2 respectively.
From Theorem 4.1, Lemma 4.3 and Proposition 4.9 we have the following.

Theorem 4.12 [3]. (0) τKf
(F )= µ(f ◦ F ) − β0 if m = n.

(1) τKf
(F )= µ(f ◦ F ) if m = n − 1.

(2) τKf
(F )= µ(f ◦ F ) + β0 if m = n − 2.

If m = n− 1, a generic perturbation Ft of F will be transverse to V (f) and miss
0∈Cn altogether. Hence V (f ◦ Ft) is a smoothing of V (f ◦ F ). If m = n, than
β0 =µ(f) · deg F ; moreover if Ft is a generic perturbation of F , it will cover 0∈Cn

deg F times, and thus F−1
t (V (f)) will have deg F singular points, each with Milnor

number µ(f). Smoothing these to get a Milnor fibre of f ◦ F , we increase the rank
of the middle homology of F−1

t (V (f)) by deg F ·µ(f); hence we have the following.

Corollary 4.13. If m = n or m = n − 1, then

rank Hm−1(V (f ◦ Ft))= τKf
(F ).

5. Cohen–Macaulay properties of the relative T 1

In the last section we showed that given a diagram

(Cm, 0) F−→ (Cn, 0)
f−→ (C, 0)
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with OCn/Jf Cohen–Macaulay of codimension m0, τKf
F < ∞, and m = m0 or

m = m0 − 1, then

rank(vanishing homology of V (f ◦ F )) = τKf
F.

In each case, this formula was proved by placing T 1
Kf

F in an exact sequence which
related it to other modules whose lengths are conserved in a deformation. Now
suppose that F : (Cm×B, (0, 0))−→ (Cn, 0) is a deformation of F over the smooth
base B. A slight modification of this argument gives us information about the
relative T 1:

T 1
Kf /BF :=

θ(F )
tF (θCm ×B/B) + F ∗(Der(− log f))

.

Theorem 5.1. Suppose, in addition, that τKf
F < ∞. Then the following hold.

(i) If m = m0 then T 1
Kf /BF is Cohen–Macaulay over OCm ×B , of dimension

equal to dim B. Moreover, it is free of rank τKf
F over OB .

(ii) If m = m0−1 and in addition we suppose that codimOCm ×B/F ∗(Jf )= m0,
then the same conclusions hold as in (i).

Proof. (i) From the relative version of Theorem 1.2, we obtain the exact
sequence

0 −→ TorOCn

1 (OCn/Jf ,OCm×B)−→T 1
Kf/BF −→OCm×B/J rel

f◦F

−→ OCm ×B/F ∗(Jf )−→ 0.

As the absolute Tor, TorOCm

1 (OCn/Jf ,OCm), vanishes, so does the parametrised
Tor, and this sequence reduces to a short exact sequence. The second and third
modules in this short exact sequence are finite over OB , and are both of dimension
equal to dimB. It follows that they are OB-free. Hence, by the depth lemma, so is
the first.

(ii) The argument is almost identical. The only differences are that we have
explicitly to require that codimV (F∗(Jf ))= m0, in order to guarantee the vanishing
of the relative Tor, and that instead of OCm ×B/F ∗(Jf ) being free over OB , it is
finite of dimension dimB−1. Once again, the depth lemma guarantees that T 1

Kf /BF
is OB-free.

From this one can prove Theorem 4.8 by the argument of [12, Section 5].
Recall from Section 1 the Damon module T 1

KV
S, in which Der(− log det) is

replaced by Der(− log V ), and its relative version T 1
KV /BS . Their support is the

set of points where S is not logarithmically transverse to V (respectively, S is not
logarithmically transverse to V relatively to B). The discriminant D ⊂B is defined
to be the projection to B of the support of T 1

KV /BS .
It turns out that in all simple singularities of symmetric matrix families in two,

three and four variables, D is a free divisor. For simple families in two variables,
this follows from the explicit description of the discriminant given in [14, Propo-
sition 3.3]; as implied also by [1], for three variables it follows from the fact that
all of the discriminants are the discriminants of simple singularities of functions
on a manifold with boundary. The result in dimension 4 (observed empirically by
computer calculation) is surprising; also surprising in these (rather few) examples
of four-parameter simple symmetric matrix families is that the conclusion of
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Theorem 5.1 (and therefore Theorem 4.6) holds for them. We note that by the
argument of Damon [10], the freeness of D is closely related to the (experimentally
verified) fact that T 1

KV /BS is Cohen–Macaulay of dimension dimB − 1, and that
Damon’s condition on the existence of ‘Morse-type singularities’ holds.

Freeness of the discriminant in the base of a family of general matrices in two
variables would follow from [14, Conjecture 3.5].

Acknowledgements. We are grateful to Dmitry Rumynin for suggesting that we
use the cone construction.
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