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Abstract 

 

 
The thesis is concerned with the study of the dynamic responses of a supercritical 

coal-fired power plant via mathematical modelling and simulation. Supercritical 

technology leads to much more efficient energy conversion compared with 

subcritical power generation technology so it is considered to be a viable option from 

the economic and environmental aspects for replacement of aged thermal power 

plants in the United Kingdom. However there are concerns for the adoption of this 

technology as it is unclear whether the dynamic responses of supercritical power 

plants can meet the Great Britain Grid Code requirement in frequency responses and 

frequency control.  

 

To provide answers to the above concerns, the PhD research project is conducted 

with the following objectives: to study the dynamic responses of the power plant 

under different control modes in order to assess its compliance in providing the 

frequency control services specified by the Great Britain Grid Code; to evaluate and 

improve the performance of the existing control loops of the power plant simulator 

and in this regard a controller based on the Dynamic Matrix Control algorithm was 

designed to regulate the coal flow rate and another controller based on the 

Generalized Predictive Control algorithm was implemented to regulate the 

temperature of the superheated steam; to conduct an investigation regarding 

frequency control at the power plant level followed by an analysis of the frequency 

control requirements extracted from the Grid Codes of several European and non-

European countries.  

 

The structure and operation of the supercritical power plant was intensively studied 

and presented. All the simulation tests presented in this thesis were carried out by the 

mean of a complex 600 megawatts power plant simulator developed in collaboration 

with Tsinghua University from Beijing, China. 

  

The study of the conducted simulation tests indicate that it is difficult for this type of 

power plant to comply with the frequency control requirements of the Great Britain 

Grid Code in its current control method. Therefore, it is essential to investigate more 

effective control strategies aiming at improving its dynamic responses. In the thesis, 

new Model Predictive Control power plant control strategies are developed and the 

performance of the control loops and consequently of the power plant are greatly 

improved through implementation of Model Predictive Control based controllers.   
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Chapter 1 

 

Introduction 

 

 
1.1 Background and motivation 

The operation and development of the national economies and everyday living rely 

heavily on the use of electricity. World net electricity generation in 2010 was 20200 

TWh and is predicted to reach 39000 TWh by 2040, which means an increase of over 

93% [U.S. Energy Information Administration, 2013]. 

The electricity is generated worldwide by a mix of primary energy sources, among 

which the largest share is allocated to coal. The percentage of each fuel used in 

power generation has changed dramatically throughout the past thirty years and will 

continue to change in the future. The high fossil fuel prices and the increasing 

environmental concerns due to CO2 emissions, have generated from the early 2000s 

an increased interest in developing nuclear power and especially renewable power 

generation. U.S. Energy Information Administration [2013] predicted an annual 

increase of 2.8% per year from 2010 to 2040 for the electricity generated from 

renewable energy sources, which also means the fastest growing rate. The second 

place in the predicted annual increase is dedicated to natural gas and nuclear power, 

with a 2.5% per year from 2010 to 2040. 

Although electricity generated by coal has the smallest increase rate of 1.8% over the 

predicted period, it remains the largest source of power generation until 2040. 

Nonetheless the use of coal might be limited in the future by national policies or 



2 
 

international agreements aimed at reducing the CO2 emissions [U.S. Energy 

Information Administration, 2013]. 

The forecast for the electricity generation by fuel for the period 2010-2040 is 

presented in Fig. 1.1. The graph illustrates that the electricity provided by coal-fired 

generation will increase from 8.05×10
3
 TWh in 2010 to 13.89×10

3
 TWh in 2040. 

 

     

FIGURE 1.1 World electricity generation by fuel for period 2010-2040 [U.S. 

Energy Information Administration, 2013] 

 

Electricity generation by fuel type in 2012 for member countries of the Organization 

for Economic Co-operation and Development (OECD) is presented in Fig. 1.2. 

 

0.00

10.00

20.00

30.00

40.00

2010 2015 2020 2025 2030 2035 2040

Oil

Nuclear

Natural gas

Renewables

Coal

x 103 TWh

Year



3 
 

 

FIGURE 1.2 World electricity supplied by fuel type in 2012 [International Energy 

Agency, 2013] 

. 

It can be seen from Fig. 1.2, that the major part of the electricity around the world 

(63%) is still generated from fossil fuels, which also includes coal, while the 

renewable sources stand for only 5% of the generation. 

According to the Department of Energy and Climate Change [2013], the electricity 

consumption in the UK has risen from 264.9 TWh up to 353.9 TWh for the period 

1980-2012, which represents an increase of nearly 34% in power demand. This is 

covered by a mix of power generation sources, which has continually changed 

through time. The evolution of the electricity generation mix for the analysed period 

is reflected by the data presented in Table 1.1 and in Fig. 1.3. 
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TABLE 1.1 Electricity supplied by fuel type in UK [Department of Energy and 

Climate Change, 2013] 

 Year 

 1980 1990 2000 2010 2011 2012 

Fuel type TWh 

Coal 220.8 213.4 114.7 102.3 103.1 135.9 

Oil & other fuels 7.9 19.2 7.3 5.6 4.4 4 

Gas 0 0.4 138.7 172.5 143.8 98.2 

Nuclear 32.3 58.7 78.3 56.4 62.7 63.9 

Hydro 3.9 5.2 5.1 3.6 5.7 5.3 

Wind & Solar 0 0 0.9 10.2 15.8 20.8 

Other renewables 0 0 4.1 10.9 11.8 13.4 

Net Imports 0 11.9 14.2 2.7 6.2 12 

Total 264.9 308.7 371.4 364.1 353.4 353.9 
 

 

 

    FIGURE 1.3 Electricity supplied by fuel type in UK [Department of Energy and 

Climate Change, 2013] 
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As a general characteristic, beginning with 1990s there is a decline in the use of coal 

and oil, while gas and renewables have registered increasing figures. The fluctuations 

of the gas prices through time compared to a more stable and smaller price for the 

coal, have allowed coal fired power plants to generate electricity at a lower cost than 

gas fired ones, maintaining in this way a significant share in the electricity generation 

mix. In 2012 to compensate for the decline of 32% in gas use, the coal generation 

increased with nearly the same percentage compared to 2011. Starting with 2000, 

more and more electricity was supplied by renewable sources, mainly wind and solar 

due to yearly increase of the capacity levels. For the analysed period a maximum of 

20.8 TWh was achieved in 2012. A more detailed overview of the generation mix for 

the year 2012 is given in Fig. 1.4. 

 

 

FIGURE 1.4 Electricity supplied by fuel type in 2012, UK [Department of Energy 

and Climate Change, 2013] 
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The conclusion which can be drawn from Fig. 1.4 is that coal and gas are still 

responsible for 38% and 28%, respectively of the generated power, the largest 

percentage from all the energy sources used for power generation.  

The forecast regarding economic growth, an increase in the population number and 

the end of service life for several power plants, will see UK in the situation of a 

power shortage of over 20 GW by 2015-2020 [Taylor, 2008]. The solutions to fill 

this power gap need to be in line as well with the government’s commitment to 

reducing the CO2 emissions by at least 80% (from the 1990 baseline) by 2050 

[Department of Energy & Climate Change, 2008]. 

The prospective renewable power generation capacity cannot provide only by itself 

the electricity needed; also if nuclear generation is considered, the closest estimated 

date for the nuclear power plants being currently under construction to become fully 

operational is 2018. Although gas power generation still makes 28% of the total 

generation in UK, its percentage started to decline from 2010 due to high prices and 

reached its lowest level since 1996 in 2012 [Department of Energy and Climate 

Change, 2013]. It is unrealistic under this trend to think of increasing the gas power 

generation for filling the power gap. Compared to gas, coal has had a smaller and 

more constant price which generated an increase in its use for power generation in 

2011 and consequently in 2012, having currently a share of 38% from the total 

electricity generated. Considering the data available from the statistics and presented 

above, one of the realistic solutions to fill the future power gap in the UK is the coal 

power generation. 
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Total coal production around the globe averages 55 billion tons and 50% of this 

quantity is used for electricity generation by coal-fired power plants [ETSU coal 

R&D Programme, 1997]. This makes coal-fired generation responsible for the major 

part of the global emissions. Through coal combustion process various pollutants 

such as oxides of carbon (COx), oxides of sulphur (SOx), oxides of nitrogen (NOx) 

and others are released. From these pollutants SO2 and NOx can cause acid rain, 

while CO2 is considered to be responsible for climate changes [Flynn, 2003]. This 

means that coal-fired power generation requires cleaner technologies. Electrostatic 

precipitators can remove up to 99% of the particles from the flue gases and a flue gas 

desulphurization plant can eliminate over 90% of SO2. The reduction of NOx still 

poses technical challenges in developing a practical method, which can achieve a 

high level of efficiency. Regarding the reduction of CO2 emissions, the best way to 

achieve this is to increase power generation efficiency [Flynn, 2003]. 

A conventional subcritical pulverized coal-fired power plant can achieve an 

efficiency between 33-35% and having a high level of flue gas emissions. Compared 

to this technology, the efficiency of a supercritical coal-fired power plant can go up 

to 46% and hence reduced CO2 emissions per unit of electricity generated. Also the 

capital cost is smaller in comparison with other clean coal technologies, which makes 

it more affordable for implementation [Wang, 2009]. 

Supercritical boilers were first developed in U.S. in the 1950s and with the 

development of materials and components, which are better fitted to withstand high 

pressure/temperature conditions, they are today reliable and operationally flexible. 

There are more than 430 supercritical power plants worldwide in operation or under 
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construction, with ratings ranging from 200 MW to 1300 MW and a total capacity of 

above 330 GW [Susta, 2008]. A distribution of these power plants around the world 

is presented in Fig. 1.5. At this moment there is no supercritical power plant 

operating in UK. 

 

 

FIGURE 1.5 The number and installed capacity of supercritical power plants 

worldwide [Susta, 2008] 

 

If coal-fired generation is considered as an option to compensate for the extra 

electricity needed in UK and its more efficient technology, the supercritical power 

plant is chosen, then this unit will have to be compliant with the operational 

requirements specified by GB Grid Code. 

Different amounts of power are required at different times in a power system. This 

generates a power demand curve (see Fig. 1.6), which varies by time of day and 

season. 

 



9 
 

Peak Load

Intermediate Load

Base Load

Time of Day

L
o

a
d

 (
M

W
)

12 am 2 am 4 am 6 am 10 am8 am noon 2 pm 4 pm 6 pm 10 pm8 pm 12 am

Total Load

10,000

0

20,000

30,000

40,000

50,000

FIGURE 1.6 Typically daily power demand curve 

 

The response from each of the grid connected power plants to a change in the power 

demand varies in size and ramping time. The response time and marginal operational 

costs are criteria which determine the dispatch order of the power plants. Some units 

are designed to operate at almost full power continuously and at low costs, like the 

nuclear power plants, giving them the name “must-run” plants and supplying the 

base-load. Some renewable power plants provide power only when the resource is 

available. Because of their intermittency and of almost zero marginal costs they are 

categorised as well as “must-run” plants. Predictable changes in the daily power 

demand are tracked by most fossil-fuelled and hydroelectric units, which can slowly 

be ramped up and down. These units are supplying the intermediate load. Peak load 

is supplied by power plants which have the capability to quickly ramp up and down 

in order to meet sudden increases and decreases in demand. They are expensive to 
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run and operate only for a few hours at a time. Typically they have natural gas 

combustion turbines.    

The Grid Code specifies that in case of a frequency ramp of 0.5 Hz over 10 seconds, 

each Generating Unit is required to provide a frequency response at least to the solid 

boundaries shown in Fig. 1.7, the percentage response capabilities and loading levels 

being defined on the basis of the Registered Capacity (RC) of the Generating Unit. 

The black line represents the minimum required level for the Primary and Secondary 

Frequency Response throughout normal operating range of the Generating Unit. The 

minimum required level for the High Frequency Response is represented by the dark 

grey line and this profile should be followed throughout normal operating range of 

the Generating Unit. 

The most demanding requirement for a power plant is the one regarding Primary 

Frequency Response. The time response specified by GB Grid Code is 10 s during 

which the power plant needs to increase its power output with 10% RC, according to 

the graph from Fig. 1.7. This requirement is very strict compared to other national 

grid codes and the reasons are the geographical isolation of the power system and the 

lack of strong interconnections with the neighbouring power systems. 
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FIGURE 1.7 Minimum frequency response requirement profile for a 0.5 Hz 

frequency change from target frequency [National Grid Electricity Transmission plc, 

2010] 

 

Compared to a subcritical power plant, the supercritical power plant does not have a 

steam drum, which acts as an energy storage. The steam stored in the drum is 

released accordingly by opening the governor valve and then through expansion in 

the turbine is converted into mechanical/electrical energy as required by the change 

in the load demand.  

As a result there are concerns from the power generation companies regarding the 

ability of a supercritical power plant to fulfil GB Grid Code requirements [Nicholls 
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et al., 2013]. The adoption of this clean coal technology depends on whether or not it 

can comply with GB Grid Code requirements and if there can be found ways to 

improve its dynamic responses. 

This research aims at studying the dynamic responses of the coal fired supercritical 

power plant through modelling and simulations. The conduct of this research 

requires operating data from real power plants. As it is illustrated in Fig 1.5, around 

30 supercritical power plants are already in operation in China, which makes a 

partnership for this research between the two countries very attractive. Given the 

above considerations, the research partners of this project were Tsinghua University 

and North China Electrical Power University, both from Beijing, China. The 

universities hold an outstanding research record in supercritical process and power 

plant modelling and simulation. 

 

1.2 Power plant control system 

Many processes are undergoing simultaneously during the operation of a power 

plant, where each action taken by an individual control loop is affecting not only its 

controlled variable but also variables from other processes regulated by their 

corresponding control loops. The actions of all the control loops must be coordinated 

to work together in such a way as to achieve the ultimate objective of the power 

plant, which is to follow the load demand signal in a safe and efficient manner.  

The control system of a power plant is generally comprised by a number of control 

loops and feedforward compensators, which have the role of keeping the main 

thermodynamic variables in their designed limits. The advantages of using such a 



13 
 

control structure is that it provides a satisfactory operation for normal operation of 

the power plant, it is reliable and it allows the intervention of the operator on single 

components in case of emergency situations. 

The control of the power plant refers mainly to the control of two major plant 

operating units: the boiler and the turbine. The dynamic characteristics of these differ 

significantly one from the other. The turbine has a quicker response to load changes 

than the boiler. The boiler’s dynamics are slower due to the thermal inertia of its 

steam and water circuits and also by the type of fuel used for combustion. 

The master control signal is represented by the load demand, which sets the firing 

rate, regulates the combustion air flow so that it matches the fuel input and controls 

the quantity of feedwater needed for the steam generation. 

Depending on the role the power plant is going to play in the power system, there are 

several control options available. 

 Boiler following mode In this control mode the turbine main steam governor 

is regulated such as to meet the load demand, while the boiler systems have 

the role to keep the steam pressure constant.  

 Turbine following mode In this control mode the load demand signal is sent 

directly to boiler’s control system, while the role of the turbine governor 

valve is to maintain a constant steam pressure. 

 Coordinated Control System (CCS) In this control mode the load demand 

signal is sent both to boiler and turbine control systems. This control 

structure allows a fast tracking of the load demand and prevents possible 

dangerous situations.  
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 Sliding pressure mode In this control mode the pressure set point is allowed 

to vary between certain limits. The governor valve is fully open, no throttling 

action being taken. The steam pressure is proportional to the load. In this way 

the steam pressure has the same value from boiler output, turbine input, 

inside turbine. 

The CCS control philosophy was developed and implemented during 1970s in the 

supercritical power units. This allowed for a better dynamic performance of the 

boiler-turbine unit in response to changes in load demand coming from the power 

system. The manipulated variables were: fuel flow, feedwater flow, air flow and 

steam flow. The load demand, acting as a feedforward signal, is sent to each of the 

four feedback control loops regulating the controlled variables: power output, steam 

pressure, steam temperature and the amount of air. In all the control loops 

Proportional-Integral-Derivative (PID) controllers are used to minimise the errors 

[Laubli et al., 1971]. 

While the performance of PID controllers is fairly adequate when the power plant is 

operating under steady-state conditions, its performance deteriorates for frequent 

load changes. This generated the need for more advanced control techniques to be 

developed [Waddington et al., 1987]. 

Fuzzy logic is used by Kocaarslan et al. [2006] to design the controllers needed to 

regulate a 765 MW coal fired once through boiler. The model used for the power 

plant has the coal flow and feedwater flow as input variables, while generated power 

and steam enthalpy are considered as output variables. As a decoupling system was 

used to linearise the relationships between outputs and inputs, two controllers are 
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needed to regulate each one of the system’s outputs. In order to assess their 

performance, three types of controllers are designed in this study: a conventional 

PID, a Fuzzy Logic (FL) controller and a Fuzzy Gain Scheduling Proportional and 

Integral (FGPI) controller. The last type of controller is used to adjust the gains of 

the PI controller according to the disturbances in the system’s outputs. The inference 

mechanism of the fuzzy logic controllers are realised by seven rules. The rules are 

formed based on the error signal and its time derivative, while triangular membership 

functions are preferred, since fast response is necessary for the system. The results 

from the simulations show that the best performance with regard to maximum 

overshoot and settling time is achieved by the FGPI controllers, followed closely by 

the FL controllers, while the PID controllers had the worst performance. 

A successful attempt of using optimal control in a 500 MW supercritical power plant 

was realised by Nakamura et al. [1981]. With fast and large load demand changes, 

keeping the steam temperature at the superheater and reheater outlets becomes a 

challenging problem. Considering the power plant as a mutually interacting 

multivariable system, it is hard to contain the controlled variables within their 

specified limits by using a multiple loop feedback system based on PID controllers. 

As a solution to the problem, the authors propose the design of a linear quadratic 

controller, which will augment the performance of the existing PID based control 

system. The manipulated variables are: fuel to feedwater ratio, flow rate of the spray 

water at the desuperheater and the opening of the gas damper in the rear path of the 

boiler shell. An Autoregressive model is fitted for a low and a high operating points, 

from which the state equation is derived afterwards. Subsequently the feedback gain 
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matrix is calculated by optimizing the cost function using the Dynamic Programming 

procedure.  As the dynamic properties of the power plant vary with the load demand, 

the state equation and the feedback gain matrix are recalculated for other operating 

points of the power plant using linear interpolation between the low and high 

operating points. In this way the control parameters are adjusted accordingly to each 

new value of the load demand, providing an adaptive feature to the controller. The 

new control architecture is tested both with a simulator and a field power plant and 

the results show a significant improvement in the control of both superheater and 

reheater steam temperature. Although the research proves successful in 

implementing a new control strategy in a supercritical power plant, there are not 

given enough details on how both control systems, PIDs and linear quadratic 

regulator, cooperate together.  

One of the advanced control techniques, which proved to be successful in practical 

applications in recent decades, is Model Predictive Control (MPC). MPC refers to a 

series of control algorithms, which uses a model of the process to calculate the next 

control moves by minimizing a cost function. MPC applications are very popular 

especially in the process industry given to several reasons: 

 it can take into account constraints both on process inputs and outputs; 

 the control moves are calculated with considerations to the internal 

interactions within the process, due to the use of a model; 

 it can easily deal with a multivariable process; 

 it can control processes with complex dynamics; 

 its concepts are relatively easy to explain to the operator staff. 
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One of MPC algorithms, Dynamic Matrix Control (DMC) was used by Rovnak et al. 

[1991] to design a multivariable controller for a supercritical power plant. The 

system is identified as a ninth-order process model having as inputs the feedwater 

flow, the fuel firing rate and the governor valve position and as outputs the steam 

pressure, the steam temperature and the energy of the turbine. The controller uses a 

matrix equation to calculate the future values of the controlled variables for 

increments in the manipulated variables. Step tests on the inputs of the identified 

process model are performed and the resulting step response coefficients are 

recorded. The coefficients are afterwards used explicitly in the matrix equation. In 

order to verify the performance of the controller, the power plant was subjected to a 

ramp up, ramp down change in the load demand signal. The results show a tight 

control of the steam pressure and temperature during the variations in the load 

demand. The research does not mention one disadvantage of this algorithm, which is 

the difficulty in performing the step tests on a real process. 

Another MPC algorithm, Generalized Predictive Control (GPC), is used by Hou et 

al. [2011] to design the CCS for a 500 MW power plant. The controlled object is 

simplified to two inputs, defined by the coal feeder speed and the opening degree of 

the turbine governor valve and two outputs, represented by generated power and 

main steam pressure. The controller is using a Controlled Auto-Regressive Integrated 

Moving Average model, which was identified for the power plant operating at 100 % 

power output. For comparison a CCS using PID controllers is also designed for the 

power plant. The performance of the CCS, for each control strategy employed, is 

tested for a load demand step disturbance and for a pressure step disturbance. A 
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smaller overshoot and settling time is recorded when using the GPC strategy, 

compared to when PID is used. The tests are repeated, this time for the power plant 

operating at 70% power output, without changing the model used by the GPC 

controller. The simulation results show a good set-point tracking of the controlled 

variables, which proves the robustness of the controller. The research proved the 

effectiveness of the GPC controller, although more manipulated variables might need 

to be included in a practical application. 

  

1.3 Project objectives 

The research work covered by this project has the following objectives: 

 to study the dynamic responses of the supercritical power plant for different 

operating scenarios. The capability of the power plant to provide system 

frequency control services under the requirements specified by the GB Grid 

Code is verified using the simulator. 

 to evaluate the performance of the existing control strategies from the 

simulator. Advanced control algorithms, like DMC and GPC are used to 

design new controllers for different subsystems of the power plant and their 

performance is compared against the existing controllers. 

 to investigate the way frequency control is realized at the power plant level. 

An extensive research into different national grid codes is carried out 

regarding frequency control requirements needed to be fulfilled by the power 

plants connected to the grid. 
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1.4 Thesis outline 

The thesis is structured into seven chapters, with the first chapter presenting the 

background and motivation of the research project and as well as other introductory 

notions. 

Chapter 2 is presenting the general structure and operation of a steam power plant 

with a focus on the supercritical coal-fired power plant. The basic thermodynamic 

cycles on which the operation of a power plant is based are illustrated and analysed. 

It continues with the description of the supercritical power plant and an analysis of 

its thermodynamic cycle is made. 

Chapter 3 defines power system frequency and then describes the way it is controlled 

at power plant level. Several national grid codes have been researched and the 

regulations regarding frequency control are tabulated and compared. 

Chapter 4 investigates the dynamic responses of the power plant through simulation 

tests, aiming to determine if the frequency control requirements specified by GB 

Grid Code are fulfilled. Different control modes for the steam pressure are 

considered and the data recorded for power output and steam pressure was presented 

in graphs and tables, which were afterwards used for analysis.  

Chapter 5 deals with the control system responsible for the regulation of the fuel 

flow sent to the furnace by the coal mills. The existing PID based control system 

architecture is presented and its performance is analysed. In order to optimize this 

control structure, a DMC controller is proposed to replace the PID controller. 

Through simulation tests the performance of the DMC controller is compared to the 

one of the PID and the superiority of the first one is assessed. 



20 
 

Chapter 6 analyses the control system which regulates through the use of the 

attemperator the steam temperature at the final superheater outlet. This control 

structure is based on a cascade PID control loop, which is far from being optimal due 

to various disturbing factors. As an improved solution, a GPC controller is proposed 

to replace the existing control structure. Simulation tests are run and the results show 

a better performance of the GPC controller compared to the existing PID based 

structure.  

Chapter 7 ends this thesis with a summary of the research work undertaken, 

underlying the main contributions brought in this specific research area. Also some 

future research directions are proposed in this part. 
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Chapter 2 

 

General Structure and Operation of a Supercritical Coal- 

Fired Power Plant 

 

 
2.1 Basic operating principles of a steam power plant  

A power plant is a complex facility, which generates electricity through 

transformation of various types of energy sources. If the electricity generation 

process requires the conversion of water into steam, the unit is defined as a steam 

power plant. In this research work the heat required to produce steam comes from the 

coal burning process. 

 

2.1.1 The Rankine cycle 

One of the most used thermodynamic cycles in power plants is the Rankine cycle. A 

simplified diagram of a power plant using a Rankine cycle is depicted in Fig. 2.1. 

 

Boiler Turbine Generator

CondenserPump

Qin

QoutWp

WT

 

FIGURE 2.1 Schematic diagram of a Rankine cycle [Woodruff et al., 2004] 
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Feedwater is sent to the boiler after the pump increased its pressure corresponding to 

the work done Wp. The boiler receives the heat Qin, which is then used to transform 

the water into dry saturated steam. The steam then expands in the turbine, producing 

the work WT, which drives the generator. The outlet steam from the turbine is then 

directed into condenser, where the heat Qout is removed. The condensed steam is sent 

back to the boiler and the process is repeated. 

The ideal Rankine cycle is presented in Fig. 2.2 (a, b) as pressure-volume, p-v and 

temperature-entropy, T-s diagrams. Cycle 1-2-3-4-B-1 is a saturated Rankine cycle 

and cycle 1-2-3-4-B-1 is a superheated Rankine cycle. It is assumed that the cycles 

are reversible, the processes going on in turbine and pump are adiabatic reversible 

and there are no pressure losses in the pipes.  
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FIGURE 2.2 Ideal Rankine cycle in (a) p-v and (b) T-s diagrams; 1-2-3-4-B-1 is a 

saturated cycle and 1-2-3-4-B-1 is a superheated cycle; CP - critical point; B - 

boiling point [Kiameh, 2002]. 
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During a Rankine cycle the following processes take place: 

 1-2 or 1-2 represents an adiabatic reversible expansion of the steam in the 

turbine; at point 2 or 2 the working agent is in the two phase-region; 

 2-3 or 2-3 takes place in condenser, at constant temperature and pressure, 

with the removal of the heat from the working agent. 

 3-4 is an adiabatic reversible compression by the pump. The saturated liquid 

from condenser is sent to the boiler with an increased pressure, as required by 

point 4. 

 4-1 or 4-1 is a constant pressure heat transfer in the boiler. The subcooled 

liquid from point 4 is brought to saturation in point B. This section is called 

economizer. Through additional heating, the saturated liquid is brought to 

saturated vapour in point 1. Portion B-1 takes place in the evapourator. For 

the saturated cycle, the temperature of saturated vapour is further increased 

from point 1 to point 1. This process is taking place in the superheater. 

For a unit mass of vapour the following thermodynamic relations can be written, 

where h denotes the specific enthalpy of the liquid [Kiameh, 2002]: 

 Heat added 

                     (2.1) 

 Turbine work 

                     (2.2) 

 Heat rejected 

 |  |                   (2.3) 

 Pump work 

 |  |                   (2.4) 
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 Net work 

       (     )  (     )            (2.5) 

 Thermal efficiency 

    
     

  
 

(     )  (     )

(     )
 (2.6) 

If the unit is small, the pressure    can be considered similar to    and so, 

       (2.7) 

which means the pump work can be neglected compared to the turbine work and the 

thermal efficiency will have the following formula, 

    
     

     
 (2.8) 

 

2.1.2 The Reheat cycle 

A schematic diagram for a reversible Rankine cycle with superheater and reheater is 

presented in Fig. 2.3 and the associated T-s diagram is illustrated in Fig. 2.4. The 

main advantages of reheating the steam are the increased thermal efficiency and the 

decreased quantity of moisture in the steam at the turbine exhaust, which has the 

effect the reduction of the erosion on the turbine blades caused by the impact of 

water drops. 

The steam leaving the superheater at point 1 expands through the high-pressure 

turbine up to point 2. From here it is reheated at constant pressure until it reaches the 

temperature from point 3, which is close to the one from point 1. It then expands 

through the low-pressure turbine up to condenser pressure at point 4. 
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FIGURE 2.3 Schematic diagram of a Rankine cycle with superheater and reheater 

[Kiameh, 2002] 
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FIGURE 2.4 T-s diagram of a Rankine cycle with superheater and reheater [Kiameh, 

2002]. 

 



26 
 

In this cycle heat is added twice: one time from point 6 to point 1 and the second 

time from point 2 to point 3. The supplementary added heat results in low-pressure 

turbine expansion work. In this way total output work is increased, which increases 

thermal efficiency. 

The moisture in the steam at the turbine exhaust is reduced due to the reheating 

process. Turbine exit point is shifted from 4 to 4, which means that the process is 

moved away from the two-phase region towards the superheat region of the T-s 

diagram, thus drying the turbine exhaust. 

The net work,      , is represented by the algebraic sum of the work done by the 

two turbines,   , and the pump work, |  |. Their expressions are [Kiameh, 2002]: 

    (     )  (     )            (2.9) 

 |  |                   (2.10) 

       (     )  (     )  (     )            (2.11) 

The total added heat is the sum of the heat added in the feedwater and the heat added 

in the reheater section. It has the following expression [Kiameh, 2002]: 

    (     )  (     )           (2.12) 

Considering the net work and total added heat expressions, thermal efficiency of the 

cycle can be calculated as [Kiameh, 2002], 

    
     

  
 

(     )  (     )  (     )

(     )  (     )
 (2.13) 

Generally fossil-fuelled power plants have at least one stage of reheat, but no more 

than two stages, as the improvement in efficiency is not justified by investment costs. 
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The efficiency of the reheat cycle is affected by the value of the reheat pressure   . If 

this pressure is close to the initial pressure, the heat added at high temperature has a 

small value, which negatively affects the efficiency. The reheat cycle reaches its 

maximum efficiency when the ratio       is between 20 and 25 percent. 

 

2.1.3 Water properties 

The working agent in the power plant is water, which changes phases along the 

thermodynamic cycle from liquid to vapour and vice versa. To better understand the 

thermodynamic processes undergoing in a power plant, a short description of the 

phases through which water passes as the pressure and temperature change, is given 

below. 

For a given temperature, the pressure at which water turns into vapour, or vapour 

condenses is called the saturation pressure. Similarly, for a given pressure the 

temperature at which these phenomena occur is named the saturation temperature. 

For example when the pressure is 1 MPa, the saturation temperature is 179.9 °C. 

Water is called a saturated liquid, when its phase is liquid for a given saturation 

pressure and temperature. If from the saturated liquid, the temperature is lowered, 

keeping during all this time the same saturation pressure, then the water is called 

subcooled or compressed liquid. Adding more heat to the saturated liquid, will 

generate some of the liquid to change into vapour, such as a mixture of liquid and 

vapour occurs. When all the water turns into vapour for a given saturation 

temperature and pressure, the phase is called saturated vapour. If more heat is added 
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to the saturated vapour, the temperature increases above the saturation temperature 

and the water reaches the superheated vapour phase.  

Fig. 2.5 and Fig. 2.6 illustrate the temperature-volume, T-v and pressure-volume 

diagrams, p-v for water, showing liquid and vapour phases. 
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FIGURE 2.5 T-v diagram for water [Kiameh, 2002] 
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FIGURE 2.6 p-v diagram for water [Rogers and Mayhew, 1992] 
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For pressure values above atmospheric pressure (0.1 MPa), the change of volume 

following the evaporation of the liquid reduces considerably, in such a way that for a 

specific high pressure, the change of volume is zero, and the isobar line is reduced to 

a point of inflexion. This is named the critical point (CP) and the state properties for 

water, namely the critical pressure pc, critical temperature Tc, and critical volume vc, 

have the following values [Rogers and Mayhew, 1992]:  

 pc = 22.12 MPa, Tc = 374.15 °C, vc = 0.00317 m
3
/kg. (2.14) 

For pressures above critical, there is no definite transition from liquid to vapour and 

the two phases cannot be distinguished visually. As a liquid is heated, its density 

decreases while the pressure and density of the vapour being formed increases. As 

temperature and pressure increase, the liquid and vapour densities become closer and 

closer to each other until they are the same. At that point, the CP, the two densities 

are equal and the liquid becomes a supercritical fluid. Above the CP, the fluid 

changes volume continuously with the change of pressure. 

Diagram p-T from Fig. 2.7 gives a spatial representation of the domains of existence 

for each of the phases of water: ice, liquid and vapour. Along the continuous lines, 

the two phases existing on each side coexist in thermodynamic equilibrium. From the 

CP onwards, there is no distinction between liquid and vapour. 

If the state values for pressure and temperature follow the curve p-q-r from Fig. 2.7, 

the phase changes continuously, but at no point there is coexistence between liquid 

and vapour. The phase is either liquid, supercritical fluid or vapour. 
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For descriptive purposes, the area above CP, is divided into supercritical liquid 

(p>pc, T<Tc), supercritical vapour (p<pc, T>Tc) and supercritical fluid (p>pc, T>Tc). 

However there is no discontinuity in the change of phase between any two domains. 
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FIGURE 2.7 p-T diagram showing phase equilibrium lines, the CP and the domains 

of the supercritical phases [Ganguly, 2008] 
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2.1.4 Operation of a typical pulverized coal-fired power plant 

Fig. 2.8 illustrates the typical structure of a pulverized coal-fired power plant. 
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FIGURE 2.8 Schematic of a typical pulverized coal-fired power plant [Kitto and 

Stultz, 2005]. 

 

The structure of a power plant is composed by the following major subsystems: 

 coal storage and preparation; 

 boiler and combustion; 

 environmental protection; 

 turbine-generator unit; 

 condenser and feedwater system; 

 cooling tower. 

The coal stored in the bunkers is sent at a controlled rate to the mills, where it is 

pulverized and passed afterwards to the burners. The forced draft fans draw warm air 
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from the top of the boiler house, which then picks up more heat in the air heater. Part 

of this air flow called secondary air, around 80%, is fed to the burners, while the rest 

20%, called primary air, is used to transport the pulverized coal from mills to the 

burners. The heat generated in the combustion process is used in the boiler to 

generate steam at the required temperature and pressure. In its way out, part of the 

heat from the combustion gas (flue gas) is recovered in the air heater. The flue gas 

enters the selective catalytic reduction system (SCR), the particulate collector, the 

sulfur dioxide (SO2) scrubbing system, where acid gases are removed and afterwards 

the resulting cleaned flue gas is sent to the stack by an induced draft fan. 

The steam from the boiler, under the controlled values of pressure and temperature, 

flows into the turbine, which in turn drives a generator. Most part of the electricity 

produced by the generator is sent to the grid, after its voltage was stepped up by the 

transformer. A small portion of the generated electricity is used by the power plant 

internal consumers. 

From the turbine, the steam is directed to the condenser, where it is condensed back 

to water by transferring its remaining heat to the coolant. The cooled water, called 

feedwater, is then passed through a series of heat exchangers and pumps, which will 

increase its temperature and pressure before is returned to the boiler. The heat 

absorbed by the coolant (water) in the condenser is then released in the atmosphere 

by means of a cooling tower. 
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2.2 Supercritical power plant 

In a subcritical power plant the steam generated in the boiler has its temperature and 

pressure values situated bellow the ones of the CP (22.12 MPa, 374.15 °C). The main 

structural particularity of a subcritical boiler is the existence of a drum. This 

component has the role to separate the saturated steam from the steam-water mixture, 

which leaves the walls of the furnace and has also the role to supply feedwater to the 

walls of the furnace, such that they do not overheat. A typical subcritical coal fired 

power plant can achieve an efficiency between 33-35% [Kitto and Stultz, 2005]. 

The efficiency of the thermodynamic cycle can be improved, if the mean temperature 

characterising the heat added in the process is increased. In the Rankine cycle, the 

saturation temperature is related to the feedwater pressure, which means that in order 

to increase the temperature, the pressure has to be increased as well. If the pressure is 

increased above CP (22.12 MPa), the resultant thermodynamic cycle is called 

supercritical steam cycle. The cycle was first proposed in 1920s and was originally 

given the name Benson Super Pressure Plant [Kitto and Stultz, 2005]. 

The first supercritical unit started its service in 1957 and continued until 1979. The 

unit installed at Philo Plant, had a power output of 125 MW and operated at a 

pressure of 31 MPa and a temperature of 621°C [Smith, 1998]. 

Supercritical boilers are also called once-through boilers, as the feedwater passes just 

one time through the boiler in each steam cycle. For pressure values above the CP, 

the resulting fluid can be treated as a single phase, as it changes from the liquid phase 

to the vapour phase without an interface. As a consequence, the separation between 
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water and steam, usually done by the drum is no longer needed. This structural 

difference between a subcritical and a supercritical boiler is illustrated in Fig. 2.9.  

 

Boiler feed pump

Drum

To turbine

F
u

rn
a

c
e

‘Drum’ boiler

Boiler feed pump

‘Once-through’ boiler

To turbine

F
u

rn
a

c
e

 

FIGURE 2.9 Steam-water circulation in a subcritical/supercritical boiler [Flynn, 

2003] 

 

The efficiency of a supercritical coal fired power plant can reach 46% [Wang, 2009]. 

 

2.2.1 Typical supercritical steam cycle 

A steam cycle for a typical supercritical power plant is shown in a T-s diagram in 

Fig. 2.10. The water leaving the condensate pump at point a increases its temperature 

up to point b by passing through the low pressure heater and adding in its way the 

heat transferred by the steam extracted from turbines. Point b corresponds to the 

input of the high pressure feedwater pump. The feedwater pressure is increased by 

the pump up to a value of 28.96 MPa, represented as point c in the diagram. Between 

points c and d more heat is added to the feedwater on its way through the heat 
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exchangers, which are supplied with steam extracted from high and low pressure 

turbines. At point d the feedwater has the right temperature and pressure, before 

entering the evaporation section of the boiler. The heat provided by the combustion 

process in the furnace is added to the fluid and when it reaches point e, 

corresponding to the boiler outlet and high pressure turbine inlet, the supercritical 

steam has a pressure of 24.1 MPa and a temperature of 566 °C. The steam expands in 

the turbine up to point f, which corresponds to the superheated steam phase. It is then 

reheated in the boiler up to a temperature of 560 °C and having a pressure of 3.7 

MPa, enters the low pressure turbine at point g. It expands in the turbine from point g 

to point h. The mixture of steam and water from point h, enters the condenser where 

it is transformed in a slightly subcooled liquid. The liquid is then recirculated by the 

condensate pump up to point a, which corresponds to the inlet of the low pressure 

heater. In this way the cycle is completed. 

In order to achieve the required high pressure values for the feedwater, the power 

needed to drive the feedwater pump is increased to 3% of the turbine output in a 

supercritical cycle, compared to 2% in a typical saturated Rankine cycle with a steam 

pressure of 16.55 MPa [Kitto and Stultz, 2005]. 
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FIGURE 2.10 Steam cycle for a typical supercritical power plant [Kitto and Stultz, 

2005] 

 

2.3 Summary 

The chapter gives a presentation over the structure and operation of a steam power 

plant, with an emphasis on supercritical coal-fired power plant.  

In the first part, the basic thermodynamic cycles Rankine and Reheat, which govern 

the operation of a steam power plant, are described by following the evolution of the 

working fluid along the main points of the cycles illustrated in T-s and p-V diagrams. 

The thermodynamic properties of water are detailed, with an accent on its behaviour 

for parameters situated above the CP. The first part ends with the description of a 

typical pulverized coal-fired power plant, its structure being illustrated by a 

schematic diagram. The pathways for water, steam, coal and flue gases are followed 

along the operation of the power plant. 
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The second part focuses on supercritical coal-fired power plant. A short history of its 

development is given and it is explained what defines a supercritical power plant and 

also why the term of once-through boiler is associated with it. The absence of the 

drum, as the major structural difference between a subcritical and supercritical power 

plant is illustrated by a schematic diagram and the advantages and disadvantages of 

using pulverized coal as fuel are given. The increased net efficiency places the 

supercritical plant above the subcritical one. Using the steam cycle for a typical 

supercritical power plant, the main working points are followed along the cycle path, 

underlining the values of the parameters for the water/steam (pressure and 

temperature) and showing in what section of the plant the process is taking place.
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Chapter 3 

 

Power System Frequency Control and Grid Code 

 

 
3.1 Introduction 

The frequency of AC power is associated with the rotation speed of the synchronized 

generators at the power plant. Its value is kept constant as long as the generated 

active power is balanced simultaneously with the electrical energy 

usage/consumption. Power demand in a power system is constantly changing. Figure 

3.1 illustrates the daily power demand curves in a power system for different 

seasons: summer and winter. The task of matching power generation with power 

demand is challenging, since the latter is constantly changing and an exact balance 

can only be maintained for a short period of time. 
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FIGURE 3.1 Daily power demand curves for summer and winter [Bucciero and 

Terbrueggen, 1998] 
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If the balance between power generation and power demand is lost, a power 

deviation occurs, which will cause a frequency deviation from its set-point value. 

When the load demand increases and the generation unit cannot respond 

simultaneously, the system frequency might drop and when the load demand 

decreases, the system frequency might increase accordingly.  

The level of the power imbalance and the capacity size of the power system 

determine the dimension and the speed of the frequency deviation. This deviation 

will be initially offset by the rotating masses of the generators and the rotating 

machines connected to the system. Power system inertia represents the resistance 

which the masses of the generators and the rotating machines synchronized to the 

system oppose to a change in system frequency. For large interconnected power 

systems, frequency is easier to retain than in reduced size ones. This is due to the 

higher inertia of the systems, which results in a relatively slow rate of change of 

frequency. 

The consequences of the frequency deviations from the operating value of the power 

system frequency can have varied effects and also different degrees of importance. 

Small frequency deviations do not have a serious impact on the operation of the 

power system, while large frequency deviations can pose serious threat to its security 

and reliability. The effects of a generating plant outage, transmission line trip or loss 

of large load block can generate large frequency deviations, which can drag the 

power system into instability. If this instability is not addressed properly, it can lead 

to a total outage (blackout). 
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The power system frequency is maintained between its operating limits first by the 

low level control hierarchy in the power plants, which is represented by the speed 

governor control system and second by the high level supervisory control system.  

 

3.2 Frequency control at the power plant 

A governor control system is used to control the shaft speed of an electric generator. 

The speed deviations of the shaft are monitored by the governor and it adjusts the 

mechanical power delivered to the generator, in such a way as to increase or decrease 

the generator’s speed. 

In case of a steam turbine, the mechanical power input is controlled by the opening 

or closing of the valves regulating the steam flow into the turbine. 

For the description of the governor operation the simple diagram of the turbine-

generator system from Fig. 3.2 is used. 
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FIGURE 3.2 Simple diagram of turbine-generator system [Bucciero and 

Terbrueggen, 1998] 

 

 



41 
 

Consider that the turbine-generator system from Figure 3.2 undergoes a large 

increase in the load demand. The counter torque of the generator is higher than the 

mechanical torque produced by the turbine. Because of this imbalance the generator 

shaft speed starts to decrease. The governor senses this speed deviation and sends the 

signal to open the steam valve for the turbine. In this way the steam flow to the 

turbine is increased and this added rotational energy will increase the shaft speed. 

The process will continue until the desired shaft speed is reached. 

 

3.2.1 Governor Droop Characteristics 

The capability of a generator to handle a full-load rejection due to an electrical fault 

in the system, to contribute to the frequency regulation and to work in parallel with 

other generators is only possible if it operates with a speed-droop characteristic. 

The speed-droop characteristic represents the expected response of a generator’s 

power output to changes in system frequency. This is the main characteristic of a 

governing system and an illustration of this characteristic is given in Fig. 3.3. 
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FIGURE 3.3 Governor speed droop characteristic [Kiameh, 2002] 

 

The formula defining the speed droop has the following expression [Kiameh, 2002]: 

  
      

  
      

(3.1) 

where    – rated speed 

     – speed at full load 

    – speed at no load 

A generator operating with a speed droop can share load with other generators in the 

system and its power output can be adjusted according to the operator’s command. A 
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better illustration for how changes of the speed set-point affect the power output is 

given in Fig. 3.4. 
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FIGURE 3.4 The effect of changes in the speed set-points on the power output of 

the generator [Kiameh, 2002]  

 

For a generator which is not connected to the power system, a change in the no load 

speed set-point from a1 to a3 will generate an increase in the frequency from a1 to a3. 

If the generator is synchronized to a power system operating at the scheduled 
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frequency a1, a change in no load speed set-point from a1 to a2 and then a3 will 

increase the power output to b2 and then b3. The generator operates with speed a1 at 

no load and with speed a3 at full load. The values used by the industry for the speed 

droop range between 3% and 7%. 

The phenomenon of overwound speed set-point is also illustrated in Fig. 3.4. If the 

generator is operating at full load at a frequency f following the a3b3 speed droop 

characteristic then a decrease in the system’s frequency should move the operating 

point of the generator to c3. Since the turbine is already operating at full power, the 

power output will not increase beyond b3. In this case the speed set-point is called 

overwound. In this situation the generator is unable to reduce its power output 

immediately. In order to do this the speed set-point needs to be lowered to the line 

given by c2a2. 

       

3.3 Frequency regulations defined by grid codes 

To ensure the power network’s operation stability and reliability, a set of technical 

specifications are defined to specify the technical parameters/boundary requirements, 

that power generation plants must meet; this is normally named Grid Code. Grid 

Code varies from country to country. 

 

This section provides an overview and a comparison for the current frequency 

control practices across several European (Great Britain, Northern Ireland, Ireland, 

France, Italy, Austria, Romania, Poland) and non-European (Australia, China) 

countries at the end of which a clearer picture of the present Grid Code specifications 

can be drawn across different regions worldwide. 
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Each country adopts a standardized frequency value called nominal frequency. This 

value represents a technical and economic compromise for the design and operating 

characteristics of the main components in the power system. The standardized values 

of the nominal frequency are 50 Hz in Europe and most of the Asian countries and 

60 Hz for the majority of the American continent. 

 

To maintain power system frequency, a certain amount of active power is kept to be 

available especially for this purpose. In case of a frequency disturbance, the 

deployment of the active power is required to restore the balance between generation 

and demand which is usually done in three stages [UCTE, 2004]. The names given to 

these stages may differ from one country to another. The chapter adopts the terms 

and definitions used in the Union for the Coordination of Transmission of Electricity 

(UCTE) interconnected system. The three frequency control stages in UCTE are: 

primary control, secondary control and tertiary control, which is depicted by the 

diagram in Fig. 3.5. 
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FIGURE 3.5 Frequency control stages in a power system [UCTE, 2004] 

 

Primary control is performed as soon as a frequency deviation occurs. The 

controllers for generators involved in primary control, will take actions within a few 

seconds after the occurrence of the contingency by modifying the power delivered 

into the grid. The actions will continue until the balance between generation and 

demand is re-established. As a result of the re-established balance, the frequency will 

be stabilised at a quasi-steady-state value, which is different from the frequency set-

point value existing in the grid before the contingency took place. This is due to the 

speed droops of the generators which set out their contribution for the correction of 

the disturbance. As a result, the power exchanges between interconnected power 

systems will differ from the initially agreed values. 
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Secondary control is a centralised automatic control and has the purpose to restore 

the power exchanges between power systems to their planned values and also to 

restore the frequency to its initial set-point value. In this way, the primary control 

power reserve will be available again. Secondary control will be performed only by 

those generators designated for this action. The controllers of the generators involved 

in secondary control need to be set such that, only the controller in the area affected 

by the contingency will respond and initiate the deployment of the necessary active 

power secondary reserve.  

 

Tertiary control is defined as an automatic or manual change in the operating points 

of the generators in order to restore the secondary control reserves when it is needed. 

Tertiary control will operate in succession as an addition to the secondary control and 

has the same effect on the power system responses as secondary control does. 

Figure 3.6 presents the evolution through time of the frequency in a power system 

which suffers from a serious contingency, such as the disconnection from the grid of 

a large power plant. From the figure, the activation of the three frequency control 

measures can be observed, which are described in the above paragraphs and how 

they contribute towards frequency regulation. 
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FIGURE 3.6 Frequency evolution through time, after the disconnection of a large 

power plant and the activation of power reserves [EWEA, December 2005] 

 

The Grid Code normally specifies the particular figures for those responses and set 

the limits for the variations. As results from the national grid codes, the nominal 

frequency for all the national power systems analysed here is 50 Hz. Having the 

same nominal frequency represents a mandatory condition for the interconnected 

countries like France, Italy, Austria, Romania and Poland, which are members of 

UCTE, allowing the power exchanges between them and keeping national power 

systems more secure and stable against different contingencies. 

During normal operation, the frequency is allowed to vary between a restricted 

interval, which has been defined by every Transmission System Operator (TSO). 

These intervals for allowed variations are shown in Table 3.1 [National Grid 

Electricity Transmission plc, 2010; System Operator for Northern Ireland,  2011; 

EirGrid, 2009; Réseau de Transport d'électricité, 2009; Terna, 2011; Energie - 
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Control Austria, 2008; CN Transelectrica SA, 2004; AEMC, 2001; National 

Development and Reform Commission, 2007; PSE Operator S.A., 2006]. 

 

TABLE 3.1 Normal operation frequency variation interval 

Country 

Frequency 

variation interval 

[Hz] 

Great Britain 49.5 - 50.5 

Northern Ireland 49.5 - 50.5 

Ireland 49.8 - 50.2 

France 49.5 - 50.5 

Italy 
49.9 - 50.1 

49.5 - 50.5
(1) 

Austria 49.5 - 50.5 

Romania 49.5 - 50.5 

Poland 49.5 - 50.5 

Australia 49.75 - 50.25 

China 49.8 - 50.2 

   (1) Sicily and Sardinia 

 

In the case of a serious contingency event, frequency will deviate considerably over 

the range of the normal operating conditions. The highest and the lowest limit 

allowed for the frequency to vary are presented in Table 3.2 [National Grid 

Electricity Transmission plc, 2010; System Operator for Northern Ireland,  2011; 

EirGrid, 2009; Réseau de Transport d'électricité, 2009; Terna, 2011; Energie - 

Control Austria, 2008; CN Transelectrica SA, 2004; AEMC, 2001; National 

Development and Reform Commission, 2007; PSE Operator S.A., 2006]. 
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TABLE 3.2 Critical situations frequency variation interval 

Country 

Frequency 

variation interval 

[Hz] 

Great Britain 47.0 - 52.0 

Northern Ireland 47.0 - 52.0 

Ireland 47.0 - 52.0 

France 47.0 - 52.0 

Italy 47.5 - 51.5 

Austria 47.5 - 51.5 

Romania 47.0 - 52.0 

Poland 47.0 - 52.0 

Australia 
47.0 - 52.0 

47.0 - 55
(1)

 

China 48.0 - 51.0 

   (1) Tasmania 

 

As observed from the tables above, the limits of frequency variations for 

normal/extreme operation are similar for the majority of the power systems analysed. 

During normal operation, a frequency deviation of ±0.5 Hz from the nominal value 

of 50 Hz is allowed in the majority of cases. The exceptions are Ireland, Italy, 

Australia and China, where the interval of allowed frequency variation for normal 

operation is smaller, which may be justified by power quality or interconnection 

problems that may arise.  

In the case of serious contingencies, the frequency variation interval is usually 47.0 - 

52.0 Hz for most power systems analysed in the paper. But Italy, Austria, Australia 

and China have different specified ranges. The smaller frequency variation interval is 
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motivated by the small value of the power system inertia, which means that in case 

of a contingency the rate of change for the frequency is high and the frequency will 

decrease fast. If this value is too low, the low frequency protection relays will 

disconnect the generators from the grid. Tasmania has a broader interval for allowed 

frequency variation in the case of extreme operation conditions and this is owed to 

the smaller size of the Tasmanian power system and its predominantly hydro-power 

nature. The smaller size of the power system results in a small value of the power 

system inertia and also the use of hydro power plants for primary frequency control, 

allow a considerable frequency decay before the system is brought back to the 

steady-state frequency. 

 

The strategies adopted for frequency control for the power systems analyzed are 

summarized in Table 3.3 [National Grid Electricity Transmission plc, 2010; System 

Operator for Northern Ireland, 2011; EirGrid, 2009; Réseau de Transport 

d'électricité, 2009; Terna, 2011; Energie - Control Austria, 2008; CN Transelectrica 

SA, 2004; AEMO, 2010; National Development and Reform Commission, 2007; 

PSE Operator S.A., 2006]. 

 

As can be seen from Table 3.3 presented below, different 

strategies/regulations/specifications for frequency control are applied. Although the 

definitions may vary, it can be observed that there are generally three levels of 

control to maintain the balance between generation vs. load demand: primary, 

secondary and tertiary frequency control. As primary frequency control is the first 
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action taken in the case of a serious frequency deviation happening, a brief analysis 

based on the data given in Table 3.3 is described below. 

 

TABLE 3.3 Frequency control strategies as implemented by each country 

Country Type of frequency control strategy Response time 

Great Britain 

Primary Frequency Response 
active power increase within 10 s and 

maintained for another 30 s 

Seconday Frequency Response 
active power increase within 30 s and 

maintained for another 30 min 

High Frequency Response 
active power decrease within 10 s and 

maintained thereafter 

Northern 

Ireland 

& 

Ireland 

Operating 

Reserve 

Primary Operating 

Reserve 

active power increase within 5 s and 

maintained for another 15 s 

Secondary Operating 

Reserve 

active power increase within 15 s and 

maintained for another 90 s 

Tertiary Operating 

Reserve band 1 

active power increase within 90 s and 

maintained for another 5 min 

Tertiary Operating 

Reserve band 2 

active power increase within 5 min and 

maintained for another 20 min 

France, Italy, 

Austria, 

Romania, 

Poland 

(UCTE 

members) 

Primary Control 

 50% of the active power increase 

within 15 s; 

 100% of the active power increase 

within 30 s; 

 100% of the active power increase 

supplied for at least 15 min. 

The quantum of active power required 

for Primary Control is regulated by the 

TSO, for each Generating Unit apart. 

Secondary Control 

activated no later than 30 s after the 

incident and its operation must end 

within 15 min at the latest 

Tertiary Control 
activated during Secondary Control 

and maintained for no longer than 15’. 
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Country Type of frequency control strategy Response time 

Australia 

Contingency service  

Fast Raise Service active power increase within 6 s 

Fast Lower Service active power decrease within 6 s 

Slow Raise Service active power increase within 60 s 

Slow Lower Service active power decrease within 60 s 

Delayed Raise Service active power increase within 5 min. 

Delayed Lower Service active power decrease within 5 min. 

Regulating service  

Regulating Raise Service 
active power increase needed for 5 

min. dispatch interval 

Regulating Lower Service 
active power decrease needed for 5 

min. dispatch interval 

China 
Primary Frequency Control active power increase within 15 s 

Secondary Frequency Control N/A 
 

 

Primary frequency control, responsible for the increase/decrease of the active power 

output from the generators, meant to quickly restore the balance between load 

changes and power output. There are different regulations to specify the allowed time 

interval taken for stabilizing frequency for each power system analysed here. The 

shortest time for activation is 5 seconds in Ireland and Northern Ireland and 6 

seconds in Australia. This means that in case of a serious contingency, the rate of 

change of frequency can be high, so if countermeasures are not taken in a short time, 

frequency can decay to a low value jeopardizing the stability and security of the 

entire power system. 

Being part of an interconnected system with a high inertia, which results in a low rate 

of change of frequency in case of a serious contingency, the UCTE members have 
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much slower activation times for primary frequency control: 15 seconds for 50% of 

the active power reserve and 30 seconds for the entire reserve. Given the size of the 

Chinese power system and the high inertia associated with it, the grid code specifies 

a time interval of 15 seconds for the generating units to provide the entire active 

power reserve. Great Britain, which can be considered as an island power system in 

nature, has also a reduced time of only 10 seconds available for the active power 

reserve designated for primary frequency control, to be fully activated. 

 

3.4 Summary 

This chapter gives an overview of the frequency control strategies and frequency 

regulations for power system operation. 

The importance of having a constant frequency in the power system is given and the 

consequences resulting for the cases when the frequency deviations are out of their 

normal operation boundaries are presented as well. Frequency emerges as an 

indicator of the system’s stability, providing information about system generation 

and load imbalance. 

Frequency control strategies are divided into local control at the power plant level 

and into supervisory control at the power system level. The local control is ensured 

by the speed governor control system, while the response of the generator to a 

frequency deviation depends on its speed-droop characteristic.  

All the participants in the power system operation must comply with the rules 

defined in a national document entitled Grid Code. Frequency regulations are also 

stipulated in it. As frequency control practices differ from one country to another, a 
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review of the national Grid Codes for several European countries and two non-

European ones has been made. The results from this review are presented in a 

tabulated format. The differences between the normal frequency variation interval 

and the emergency one are compared and possible reasons for these values are 

presented. Also the frequency control strategies implemented in each national power 

system are presented and comments upon their differences are made. 
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Chapter 4 

 

Simulation Study of Supercritical Power Plant Dynamic 

Performance 

 

 
4.1 Supercritical power plant simulator software 

The power plant simulator used in this research, was developed by the researchers 

from Tsinghua University, Beijing, China and is based on more than 20 years of 

research experience in the field of thermodynamic simulations of steam power plant 

process. This section makes an introduction to the software using the information 

made available by Institute of Thermal Dynamic Simulation and Control - Tsinghua 

University [2012]. 

   

4.1.1 Description of the operational power plant 

The mathematical model used behind the simulator software was developed by using 

the technical parameters and sets of operational data obtained from field tests of a 

supercritical coal-fired power plant in China. 

The power plant has a nominal power output of 600 MW and the diagram from Fig. 

4.1 presents its structure and the main paths used by the water and steam flows. 
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FIGURE 4.1 Schematic diagram of the operational power plant [Institute of Thermal 

Dynamic Simulation and Control - Tsinghua University, 2012] 

 

4.1.2 Structure of the simulator software 

All the components of the power plant mathematical model and the control loops 

have been converted into source code files by using FORTRAN 95 programming 

language. The mathematical models have been derived and refined by the researchers 

from Tsinghua University, who used appropriate sets of operational data for models 

parameters identification.   

The software platform used to compile, generate the executable files and run the 

simulations is SimuEngine. SimuEngine is a visual simulation support system 

between simulation systems and computer operating systems, which can run on a PC 
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using a Windows operating system. It provides real-time network database and 

complete simulation running support functions, data visualisation, online testing, 

collaborative development, multitask parallel running, multiple processes and 

distributed simulation and other functions. 

The supervisory control system installed in the real power plant, namely the 

Distributed Control System was also modelled and implemented in the simulator. 

The control system can be communicated through the Boiler Menu and the Turbine 

Menu and the menus lead to the process diagrams depicting the main components of 

the power plant and the network of pipes connecting them can be accessed. In each 

process diagram, parameters like temperature, pressure, flow rate of the fluid can be 

monitored at different points and the status of the flow control devices, like valves, 

can be observed and manually changed if required. The overall operation of the 

power plant and the decision of the level of power generation and the selection of the 

control system can be done by accessing the screen entitled Load Control Centre. 

Some screenshots of the Distributed Control System are illustrated in Fig 4.2. 

All the processes undergoing in the real power plant, starting from fuel processing 

and to the electricity generation are modelled in the power plant simulator. The 

values of the key operating parameters of the simulator for the power plant running 

at rated load are described in Table 4.1. The simulator was designed to run with a 

steady-state error of less than ±1% for key parameters and an error of less than ±5% 

for power plant dynamic response. 
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FIGURE 4.2 Illustration of the Distributed Control System 

 

TABLE 4.1 Power plant simulator specifications 

Name Value Unit 

Generated power 600 MW 

Fuel flow 276 t/h 

Water flow 1913 t/h 

Main steam pressure 25.4 MPa 

Reheat steam pressure 4.16 MPa 

Main steam temperature 571 °C 

Reheat steam temperature 569 °C 

Load ramping 72 MW/min 

Pressure rate of change 0.3 MPa/min 

Governor droop 5 % 
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4.1.3 Calculation of a fluid network model 

A power plant model can be considered as being composed of the models for 

different components and a network of different fluid flows connecting these 

components in between. The fluids circulating through this network can be 

incompressible, like water and compressible, like air, combustion gases and steam. 

The complex fluid network of the power plant can be divided into small networks 

formed of nodes and branches. After the calculation of pressures and flow rates for 

these small networks is conducted, connecting them together will provide the 

pressures and the flow rates for the entire fluid network of the power plant.  

The method used in this software to calculate the pressure and flow rate values is the 

Node Pressure Method and makes use of the basic relationships, known as 

Kirchhoff’s Laws, applicable to electric circuits but also to fluid networks. 

Kirchhoff’s first law states that the mass flow entering a node equals the mass flow 

leaving that node. The statement of Kirchhoff’s second law is that the algebraic sum 

of all pressure drops around a closed path in the network must be zero, having taken 

into account the effects of fans and pumps. A fluid network model consists of models 

of flow resistance inside pipes, of fans, of pumps, of source nodes and of sink nodes. 

 

4.1.3.1 Flow resistance model 

Flow resistance   is defined as: 

  
  

 ̇ 
 (4.1) 

where   is the resistance factor in , (    )⁄ ],    is the pressure drop over the pipe 

resistance in ,  - and  ̇ is the mass flow through the pipe resistance in ,   ⁄ -. 
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Equation (4.1) can be further detailed into (4.2) by using the characteristics of the 

pipe and fluid.  

  
 (     )

     
   

 (4.2) 

The terms used in (4.2) denote the following:   is the flow resistance coefficient,    

is a constant characterizing the medium,   represents the solid phase concentration of 

gas-solid two phase flow,   is the compressibility coefficient of the fluid,    is the 

flow area of the pipe in ,  -,    marks the flow density in ,    ⁄ -.   is a function 

of    and     ⁄ , with   being the pipe input pressure and can be considered 

constant for a small enough pressure ratio,     ⁄ . 

If the area of the pipe,    and the flow rate are considered constant, the resistance is 

found to depend only on the fluid temperature at the pipe input, as presented by the 

formula below,  

   (     )     (  
  

   
) (4.3) 

where    is the value of the resistance for a temperature of 0°C and    is the fluid 

temperature at the pipe input. 

 

4.1.3.2 Valve model 

The control of the fluid flow through pipes is achieved by the use of valves. A valve 

can be considered a resistance in the fluid flow, but for which the changing area of 

the flow has to be taken into account. Expression (4.3) is still valid for the calculation 

of the resistance, with the only amendment that now    is no longer constant, but its 

value depends on the valve opening.  
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     ( )  
   

,   ( )- 
 (4.4) 

where the following notations have been used: 

   is the valve opening,   ,   -; 

     is the resistance for    , valve fully open, and temperature 

0°C, , (    )⁄ ].  

   is a function depending on the   variable, according to the formula, 

  ( )     
         

 

4.1.3.3 Fan and pump model 

A pump or a fan can be modelled by its equivalent resistance to which is added the 

desired outlet pressure. 

 

4.1.3.4 Gravitational potential energy 

The difference in height between two points in the fluid flow path, represented by the 

potential energy, is modeled as a pressure difference expressed by the equation, 

      (      )  (4.5) 

where    represents the pressure gain generated by the height difference in ,  -,    

is the height difference between flow points in , -,      is the density of the 

environment in ,    ⁄ -,   represents the fluid density in ,    ⁄ - and   

symbolises the gravitational acceleration in ,   ⁄ -.  
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4.1.3.5 Resistance flow equation 

The relationship between the fluid flow rate and the pressure difference between two 

points on a pipe can be described as, 

       ̇  (4.6) 

where    symbolizes the pressure drop between the two points of the pipe in ,  -, 

 ̇ is the flow rate through the pipe in ,   ⁄ - and   is the resistance factor. 

 

4.1.3.6 Source and sink nodes 

In the fluid network model there are some branches, where the resistance flow 

equation cannot be applied for the calculation of the flow rate. It is assumed that one 

of these branches is connected between a source node and a sink node. The node 

where fluid flows are entering is considered a source and the node where the fluid 

flows are leaving is considered a sink. 

 

4.2 Power plant dynamic responses related to GB Grid Code 

requirements 

The main target of this research project is to verify through simulation study the 

compliance of a coal fired supercritical power plant to GB Grid Code frequency 

control requirements. The power plant must be able to provide three frequency 

control services: Primary, Secondary and High Frequency Response. The definition 

for these services is given below for the case of a frequency ramp of 0.5 Hz over 10s. 
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The Primary Frequency Response capability of a Generating Unit is defined as the 

minimum increase in active power provided within 10 s and maintained for another 

30 s, as it is illustrated in Fig. 4.3.  

The Secondary Frequency Response capability of a Generating Unit is defined as the 

minimum increase in active power output provided within 30 seconds and 

maintained for 30 minutes, as it is illustrated in Fig. 4.3. 

 

 

FIGURE 4.3 Interpretation of Primary and Secondary Frequency Response values 

[National Grid Electricity Transmission plc, 2010] 

 

The High Frequency Response capability of a Generating Unit is the decrease in 

active power output provided within 10 seconds and maintained thereafter as 

illustrated in Fig. 4.4. 
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FIGURE 4.4 Interpretation of High Frequency Response values [National Grid 

Electricity Transmission plc, 2010] 

 

The increase/decrease of the active power output by the power plant is required to be 

at least to the solid boundaries, as it is shown in Fig. 1.7 (Chapter 1). Considering 

that the supercritical power plant simulator has a RC of 600 MW, Fig. 1.7 can be 

converted to Fig. 4.5. 
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FIGURE 4.5 Minimum frequency response requirement profile for a 0.5 Hz 

frequency change from target frequency 

 

Among frequency control services, Primary Frequency Response is the most 

demanding for the power plant generating capabilities and very important for the 

operation of the power system, as it is the first measure taken in case of a frequency 

deviation. According to Fig. 4.5, the power plant needs to increase within 10 s its 

power output with 10% of RC, for operation between 330 MW (55% RC) and 480 

MW (80% RC) and then the necessary power increment decreases linearly towards 

zero for power plant operating at 600 MW (100% RC). For High Frequency 

Response, the power plant needs to decrease its power output linearly for operation 
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between 330 MW (55% RC) and 420 MW (70% RC) loading capacity and then a 

constant 10% RC decrement for loadings between 420 MW (70% RC) and 570 MW 

(95% RC). 

The load ramping capability of a supercritical power plant is between 8-12% 

RC/min. The power plant simulator has been set to the maximum 12% RC/min.  

Since the requirement for Primary Frequency Response for most operating loading 

levels of the power plant is 10% RC within 10 s, it follows that the load ramping 

should be 60% RC/min. The requirements of the Grid Code expressed in load 

ramping capability are illustrated in Fig. 4.6. 
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FIGURE 4.6 Load ramping required by Grid Code and power plant capability 

 

It appears from Fig. 4.6 that the Grid Code requirements are too stringent for the 

supercritical power plant technical capabilities. 

The dynamic response of the power plant is very much influenced by the relation 

existing between the steam pressure set point and the loading of the unit. One way is 
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to consider the steam pressure set point to have a constant value, regardless of 

whether the unit is at full load or partial load. This is called fixed pressure control 

mode and one negative aspect is that it leads to high thermal gradients during steam 

throttling, between control valve and the first stage of the high pressure (HP) turbine. 

In the case of the power plant simulator, the pressure set point for this control mode 

is 25.2 MPa. The second way considers steam pressure set point to be proportional to 

the load demand. The set point is allowed to slide within a range of admissible 

values. This is called sliding pressure control mode and it involves having the control 

valve kept almost entirely open, which minimises the temperature and pressure 

gradients between control valve and the first stage of HP turbine. The rate of change 

for steam pressure implemented in the simulator is 0.3 MPa/min. Fig. 4.7 presents 

the map of the pressure set points for different loading levels together with the fixed 

pressure set point values, as they are implemented in the power plant simulator.  
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FIGURE 4.7 Steam pressure set point for fixed and sliding pressure control modes 
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Although beneficial for the service life of the power plant, operating in sliding 

pressure control mode means a limited ability to use the stored energy of the boiler in 

meeting the quick changes of the load demand. In this aspect using fixed pressure 

control mode gives the fastest response time of the power plant needed for Primary 

Frequency Response service. 

 

4.2.1 Simulation tests for Primary Frequency Response 

requirements 

Using the requirements of Grid Code for Primary Frequency Response regarding the 

increase in power output by the power plant, several simulations for different 

operating loading levels were conducted, with steam pressure considered to be in 

fixed pressure control mode. Having the power plant operating at steady state, a step 

change was applied to the load demand signal at time t = 60 s.  The simulation data 

was processed in Fig. 4.8 – Fig. 4.12 presented below. 

 

 

FIGURE 4.8 Power output response and steam pressure evolution for 60 MW load 

demand step increase from the power plant loading level of 350 MW 
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FIGURE 4.9 Power output response and steam pressure evolution for 60 MW load 

demand step increase from the power plant loading level of 400 MW 

 

FIGURE 4.10 Power output response and steam pressure evolution for 60 MW load 

demand step increase from the power plant loading level of 450 MW 
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FIGURE 4.11 Power output response and steam pressure evolution for 50 MW load 

demand step increase from the power plant loading level of 500 MW 

 

 

FIGURE 4.12 Power output response and steam pressure evolution for 25 MW load 

demand step increase from the power plant loading level of 550 MW 

 

The response time, power output overshoot and pressure drop values obtained for 

each simulation test are presented in Table 4.2. 
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TABLE 4.2 Results obtained from the simulation tests for Primary Frequency 

Response requirements with the plant operating in fixed pressure control mode 

Loading 

level 

Fixed Pressure Control Mode 

Load demand 

step increase 

Response 

time 

Power output 

overshoot 

Steam pressure 

drop 

%RC MW %RC MW s % MW % MPa 

58.33 350 10 60 128 1.56 6.41 2.43 0.61 

66.66 400 10 60 136 1.50 6.90 2.54 0.64 

75 450 10 60 136 1.68 8.56 2.68 0.68 

83.33 500 8.33 50 147 1.08 5.91 2.19 0.55 

91.66 550 4.17 25 160 0.66 3.78 1.15 0.29 
 

 

The response time is defined as the time elapsed between the moment when the load 

demand step change signal was applied (t = 60 s) and the first time instance when the 

increase in the power output matches the load demand.  

Looking at the simulation response time values from Table 4.2, it shows that the time 

required by the power plant to increase its power output according to specified load 

demand step changes is increasing with the increase of the operating loading level. 

All the results show that the power plant cannot fulfil the Primary Frequency 

Response regulations specified by the Grid Code, being far more than the required 

response time of 10 s. By analysing Fig. 4.8 – Fig. 4.12, it results that after a new 

load demand signal is given to the power plant, there follows an immediate linear 

increase of the power output, with a high rate of change, which is due to the fast 

opening of the control valve, allowing more steam to flow into turbine. As the stored 

energy of the boiler is limited, this high rate of change of the power output comes to 
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an end after a certain time. The rest of the necessary power increase is delivered at a 

smaller rate, as there is a time delay until the new fuel demand signal is reflected by 

the coal mills’ output and then a further delay is added by the combustion and steam 

generation process in the boiler. 

The fast opening of the control valve generates an increase in the steam flow going 

through turbine, which means as well a steam pressure drop from its set point. These 

values and the ones of the power output overshoot obtained from the simulation tests 

are presented in Table 4.2. The power output overshoot expressed in MWs represents 

the maximum power generated minus the load demand step change value. This result 

can be expressed in percentages if it is further divided by the load demand step 

change value and multiplied with one hundred. The steam pressure drop is calculated 

as the difference between the minimum value of the steam pressure and its set point 

value. By dividing this result with the set point value and then multiplying it with 

one hundred, it can also be expressed in percentages. 

It can be observed from Table 4.2 that when the same load demand step signal (60 

MW) is sent to the power plant, operating at three different loading levels, the 

overshoot of the generated power (expressed in MW) is increasing with the increase 

of the loading level. This can be justified by the initial fuel demand signal given to 

the coal mills, which increases with the operating loading level. As power output 

reaches the set point setting, the fuel demand signal is decreased, but there will 

continue to be an increase in generated power due to the thermal inertia constant of 

the boiler. 
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The pressure drop values (expressed in MPa) for all the simulation tests are of small 

value, but it can be observed a slight increase with the increase of the operating load 

level. This is due to the wider opening of the control valve. 

Although operating with sliding pressure control mode is not suitable for achieving a 

fast power plant response, simulation tests were run considering the same Primary 

Frequency Response requirements specified by the Grid Code. The results were 

processed in the graphs presented in Fig. 4.13 to Fig. 4.17. 

 

FIGURE 4.13 Power output response and steam pressure evolution for 60 MW load 

demand step increase from the power plant loading level of 350 MW 
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FIGURE 4.14 Power output response and steam pressure evolution for 60 MW load 

demand step increase from the power plant loading level of 400 MW 

 

 

FIGURE 4.15 Power output response and steam pressure evolution for 60 MW load 

demand step increase from the power plant loading level of 450 MW 
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FIGURE 4.16 Power output response and steam pressure evolution for 50 MW load 

demand step increase from the power plant loading level of 500 MW 

 

 

FIGURE 4.17 Power output response and steam pressure evolution for 25 MW load 

demand step increase from the power plant loading level of 550 MW 

 

It can visually be observed from the figures above, that the response times of the 

power plant are longer than the ones obtained when operating in fixed pressure 

control mode. This is expected, considering that the control valve is kept more than 
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90% opened, which means that the boiler has no stored energy to use for fast changes 

in the load demand. The response time, power output overshoot and pressure drop 

values obtained for each simulation test are presented in Table 4.3. 

 

TABLE 4.3 Results obtained from the simulation tests for Primary Frequency 

Response requirements with the plant operating in sliding pressure control mode 

Loading 

level 

Sliding Pressure Control Mode 

Load demand 

step increase 

Response 

time 

Power output 

overshoot 

Steam pressure 

drop 

%RC MW %RC MW s % MW % MPa 

58.33 350 10 60 153 1.44 5.89 4.43 1.01 

66.66 400 10 60 155 1.50 6.89 4.49 1.05 

75 450 10 60 175 1.93 9.82 4.57 1.09 

83.33 500 8.33 50 189 1.52 8.37 3.08 0.74 

91.66 550 4.17 25 202 1.01 5.80 1.21 0.29 
 

 

Similar with the case of power plant operating with fixed pressure control mode, it 

can be noticed from Table 4.3, that the response time is increasing with the increase 

of the operating loading level. Analysing the figures in Table 4.3 for power output 

overshoot, it can be observed that for the same load demand step increase (60 MW), 

the overshoot of the power output (expressed in MW) is increasing for operating at a 

higher operating loading level. The values are higher than when the power plant was 

operating in fixed pressure control mode. The same conclusion can be drawn for the 

values of the pressure drop. The response time values obtained during simulation 

tests, for the power plant operating under fixed pressure and sliding pressure control 

mode are plotted together in Fig. 4.18. 
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FIGURE 4.18 Power plant response times for the boiler operating in fixed pressure 

and sliding pressure control mode 

 

It can be observed from Fig. 4.18 that the difference between response times for 

different pressure control mode is even more consistent for operating loading levels 

situated above 400 MW (~ 65% RC). The numerical comparison is summarised in 

Table 4.4. 

 

TABLE 4.4 Power plant response times for boiler operating in fixed/sliding pressure 

control mode 

Loading 

level 

Response time 

Fixed Pressure 

Control Mode 

Sliding Pressure 

Control Mode 
Time difference 

%RC MW s s s % 

58.33 350 128 153 25 19.53 

66.66 400 136 155 19 13.97 

75 450 136 175 39 28.67 

83.33 500 147 189 42 28.57 

91.66 550 160 202 42 26.25 

100
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Chart Title
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Table 4.4 shows that the difference in response times is quite consistent, being 

between 19 s and up to 42 s. The simulation results prove that the fastest response of 

the power plant is obtained when steam pressure is controlled in fixed pressure 

control mode. 

 

4.2.2 Simulation tests for High Frequency Response requirements 

In case power system frequency is increasing, the power plant needs to decrease its 

power output. Using the requirements of the High Frequency Response specified in 

the Grid Code, some simulation tests were conducted for different operating loading 

levels and the results were shown in Fig. 4.19 to Fig. 4.23. The steam pressure 

control was considered to be in fixed pressure control mode. 

 

 

FIGURE 4.19 Power output response and steam pressure evolution for 13.33 MW 

load demand step decrease from the power plant loading level of 350 MW 
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FIGURE 4.20 Power output response and steam pressure evolution for 46.66 MW 

load demand step decrease from the power plant loading level of 400 MW 

 

 

FIGURE 4.21 Power output response and steam pressure evolution for 60 MW load 

demand step decrease from the power plant loading level of 450 MW 
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FIGURE 4.22 Power output response and steam pressure evolution for 60 MW load 

demand step decrease from the power plant loading level of 500 MW 

 

 

FIGURE 4.23 Power output response and steam pressure evolution for 60 MW load 

demand step decrease from the power plant loading level of 550 MW 

 

Looking at the figures above, it can be observed that after the initiation of the step 

decrease load demand signal, the power output starts decreasing, having an 

undershoot until the new set point setting is reached. At the same time, as the control 
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valve is closing, the steam pressure is increasing, having an overshoot until it reaches 

its set point value again. The response times of the power plant for different 

operating loading levels and different load demand step decrements are tabulated in 

Table 4.5. 

 

TABLE 4.5 Results obtained from the simulation tests for High Frequency Response 

requirements with the plant operating in fixed pressure control mode 

Loading  

level 

Fixed Pressure Control Mode 

Load demand 

step decrease 

Response 

time 

Power output 

drop 

Steam pressure 

overshoot 

%RC MW %RC MW s % MW % MPa 

58.33 350 2.22 13.33 101 3.63 12.20 0.69 0.17 

66.66 400 7.78 46.66 115 1.87 6.61 1.88 0.47 

75 450 10 60 125 2.01 7.84 2.37 0.60 

83.33 500 10 60 133 1.80 7.93 2.36 0.59 

91.66 550 10 60 140 1.56 7.62 2.56 0.64 
 

 

Observing the data from Table 4.5, it can be noticed that the response time is 

increasing with the operating loading level, as well as with the load demand step 

decrements. This is due to the fact, that although the closing of the control valve is 

fast, the turbine’s rotor has its own spinning inertia, which will cause a delay until its 

rotational speed will decrease accordingly and the power output will reach the 

required level. 

The fast closing of the control valve produces an increase of the steam pressure and a 

decrease of the power output. Analysing the data from Table 4.5, it results that the 

steam pressure is well controlled, with small values of overshoot. For the same 
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reduction of the power (60 MW), these have similar values with the increase of the 

operating loading values. When operating loading levels and step down power 

demand signals are increased, the pressure overshoot is also increased. This is due to 

closing of the control valve, which minimises the opening area and increases in this 

way the steam pressure. There is a consistent amount of power drop for power plant 

operating at 350 MW and this is due to the fact that it hasn’t reached yet its full 

stable operating level. For the same reduction of power output, the values of the 

power drop are similar.   

 

4.2.3 Data analysis from an operating power plant 

With the help of data collected from an operating power plant, a comparative 

analysis between the real dynamic responses and the ones obtained through 

simulation tests was carried out. 

The power plant from which the data was recorded is a 600 MW supercritical coal-

fired unit, connected to grid and operated in a sliding pressure control mode. The 

collected data represents the daily normal operation of the power plant, so its 

performance does not replicate the test conditions from the power plant simulator. 

The most representative dynamic responses for load demand step increase are plotted 

in the graph below. 
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FIGURE 4.24 Power output responses for: 55 MW load demand step increase from 

the power plant loading level of 445 MW; 50 MW load demand step increase from 

the power plant loading level of 500 MW; 25 MW load demand step increase from 

the power plant loading level of 550 MW. 

 

The response times derived from the operating power plant data and from the 

simulations tests for different load demand step increments are gathered in Table 4.6. 

 

TABLE 4.6 Power plant response times from real and simulation tests data 

Loading  

level 

Sliding Pressure Control Mode 

Load demand 

step increase 

Response 

time 

MW MW 
Simulation Real 

s 

450 

445
*
 

60 

55
*
 

175 250 

500 50 189 210 

550 25 202 140 

                     * real power plant case  
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Analysing the response times from Table 4.6, it can be observed that the real power 

plant requires longer times to increase power than the ones resulted from the 

simulation tests. This is assumed to be due to different initial conditions and also to 

other factors which might deteriorate the performance of a real power plant and 

which cannot be considered in a simulation environment. 

To compare the simulation results obtained for the high frequency response 

requirements, a set of data collected from the operating power plant and representing 

a decrease in power output from 600 MW to 350 MW was used. This dynamic 

response of the power plant is plotted in Fig. 4.25. 

 

 

FIGURE 4.25 Power output response for 250 MW load demand step decrease from 

the power plant loading level of 600 MW 

 

The data plotted in Fig. 4.25 was used to determine the response time of the power 

plant for different load demand step decrease values from various power output 

operating levels. These results are presented in Table 4.7 together with the results 

obtained through simulation tests.   
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TABLE 4.7 Power plant response times from real and simulation tests data 

Loading  

level 

Load demand 

step decrease 

Response 

time 

MW MW 
Simulation Real 

s 

400 46.66 115 195 

450 60 125 260 

500 60 133 225 

550 60 140 200 
 

 

The results extracted from the real power plant operation differ significantly in 

comparison with the ones obtained through simulation tests. The real response times 

are longer and this is first of all due to the operation in sliding pressure control mode, 

which slows down the responses of the power plant. The differences can as well be 

justified by the initial conditions, settings of the control system, coal quality and 

other conditions encountered in real operation and which cannot be replicated in a 

simulation environment. 

 

4.3 Summary 

The chapter presents and analyses the results gathered from the simulation tests 

conducted by the mean of the power plant simulator, in order to asses if its dynamic 

performance can comply with the frequency control requirements specified by GB 

Grid Code. 
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The chapter begins with a description of the power plant simulator software, 

emphasising its technical characteristics. The Grid Code frequency control services 

and the dynamic responses required from a grid connected power plant are defined. 

The first set of simulations is considering the Primary Frequency Response 

requirements, with the power plant operating in fixed pressure control mode. 

According to the results, the power output increase conditions necessary to fulfil 

Primary Frequency Response regulations are too demanding for the coal fired 

supercritical power plant operating capabilities. 

Although is not providing a fast response, sliding pressure control mode was also 

considered and the results were presented and compared with the ones when 

operating in fixed pressure control mode. This control mode is preferred by power 

plant operators for its advantage of ensuring a longer service life of the power plants. 

Further simulation tests were conducted to verify if the power plant dynamic 

responses comply with the requirements of the High Frequency Response. The 

results show that the power plant has a faster response in decreasing its power output, 

but still not enough to comply with the Grid Code regulations. 
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Chapter 5 

 

Development of a New Coal Flow Rate Control Strategy 

Based on Dynamic Matrix Control Algorithm 

 

 
5.1 Introduction to Model Predictive Control 

Model Predictive Control (MPC) is part of the advanced control techniques, 

originating in the seventies and with many successful practical applications in 

diverse industrial areas [Gomez Ortega and Camacho, 1996; Linkers and Mahfonf, 

1994; Clarke, 1988; Richalet, 1993; Lee and Cooley, 1996]. MPC defines a class of 

control algorithms, which make use of an explicit model of the process to predict the 

future process behaviour, needed to calculate the control signal by minimizing an 

objective function. 

Among the advantages of MPC over other methods the following present more 

interest [Camacho, 2007]: 

 it takes into account constraints on control variables and on process outputs; 

 due to the use of a model to generate control inputs, the internal interactions 

within the process are also considered; 

 it can be applied to processes with complex dynamics; 

 multivariable control strategies can be developed; 

 its concepts are very intuitive and tuning is relatively easy; 

 it is very useful for processes with known future reference trajectories. 
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5.1.1 The principle of MPC 

All controllers belonging to MPC family make use of the same strategy. The 

following presentation references the detailed description of Tatjewski [2007]. 

If    is considered to be the sampling time of the controller, then at each sampling   

the future control signals  ( | )  (   | )    (    | ) are calculated, with 

the assumption that after a time window   , named control horizon, the control 

inputs are constant, that is  (   | )   (      | ) for     . The 

calculation is made having the following prerequisite information: 

 a process model, a disturbance model and a model of constraints; 

 known values up to instant   of process outputs and inputs; 

 trajectories of set-points,    (   | ) for the controlled variables for the 

prediction horizon   (         ). 

The future control inputs are calculated by optimizing a determined criterion to keep 

the predicted process outputs  (   | ) as close as possible to the future set-points 

   (   | ) over the prediction horizon  . The first element of the sequence of 

control signals,  ( )   ( | ) is sent to the process, while the rest is rejected. At 

the next sampling instant (   ), the process output  (   ) is measured and the 

entire calculation procedure is repeated, considering the same prediction horizon, but 

shifted one step forward. This is called the principle of a receding horizon. 

The simplified structure of an MPC controller is presented in Fig. 5.1. 
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FIGURE 5.1 Simplified structure of an MPC controller [Camacho, 2007] 

 

According to Fig. 5.1 a model is used to predict the future process outputs, based on 

the values of past control moves and process outputs and the optimal future control 

inputs. The optimal future control actions are calculated by the optimizer, 

considering the cost function, where the future errors are considered, and the 

constraints. 

Fig. 5.2 illustrates the principle of MPC for the case of a SISO (Single Input Single 

Output) process. 
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FIGURE 5.2 Illustration of the MPC strategy for the case of a SISO process 

[Tatjewski, 2007] 

 

The horizontal axis represents the discrete time, the process being at current 

sampling instant  , when the current control move  ( )   ( | ) has to be 

calculated. The variables of the control input and process output, needed for 

calculation of the next control move  ( ), are presented as trajectories. There can be 

distinguished two process output trajectories, two control input trajectories and a set-

point trajectory. The explanation for each trajectory is as follows: 
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 If the previous calculated control input,  (   ) is kept constant over the 

entire prediction horizon, which means  (     )   (   ) for  

       , then the predicted controlled output trajectory, 

  (   | )           is illustrated by the dashed line from the first 

graph. The trajectory of the control input is presented by the dashed line in 

the second graph. As the trajectory   (   | ) depends only on the 

previous control inputs, not being influenced by future control inputs 

calculated at time sampling  , it is also called a free output trajectory. 

 If both past control inputs, up to  (   ) and future control inputs  

 (   | )            , are applied to the process then the predicted 

output trajectory  (   | ) is obtained, represented by a continuous curve. 

The thin parts of the trajectory symbolize predicted values, whereas the thick 

parts represent the real past evolution of the process. The continuous line 

from the second graph has the same significance this time applied to control 

inputs trajectory, with the last thick segment being the control move applied 

to the process at the current sampling instant. 

 The set-points trajectory        (   | )           is presented 

with a thicker dashed line. In this example, the set-points trajectory presents a 

step change at time sampling   and then remains constant. In general the set-

points might vary accordingly along the prediction horizon. 

Because the process model used to calculate the predicted future behaviour of the 

process is an approximation of reality, there are differences between the output 

predictions and the measured values. This is represented in Fig. 5.2 as an 
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unmeasured disturbance  ( ), calculated as  ( )   ( )   ( |   ), where  ( ) 

is the currently measured process value and  ( |   ) is the predicted value of 

process output for time sample   calculated at the previous time sample    . 

The future control inputs  (   | )             are determined at sampling 

instant   by minimizing a cost function. This generally consists of two terms. The 

first term represents the predicted control errors between the predicted output values 

and the set-points values and the second term represents penalties for control moves. 

Considering these two terms, the cost function has the shape of a quadratic cost 

function described by the expression below: 

 ( )  ∑ (   (   | )   (   | ))
 
 ( )

 

    

(   (   | )   (   | ))   

 ∑   (   | )  ( )  (   | )

  

   

 

 

 ( )  ∑ ‖   (   | )   (   | )‖ ( )
 

 

    

 ∑ ‖  (   | )‖ ( )
 

    

   

 (5.1) 

The predicted errors are calculated starting from      and end at    , where 

      . A value      is chosen if there is a delay in the process output for a 

change in the control input at time  . The control horizon    can have values in the 

interval       , but usually is chosen     , as this reduces the 

computational load of the optimization problem. 

The expression (5.1) of the cost function contains the following terms: 

    (   | ) are the set-points for the controlled variables; 
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   (   | ) represent calculated future control increments, the solution of 

the optimization problem; 

  (   | ) are the values of the predicted future process output variables, 

dependent on previous control inputs and process outputs and on the 

calculated future control increments; 

  ( ) is a matrix of weights used to determine the influence of the predicted 

process output errors; 

  ( ) is a matrix of weights used to scale the control input increments. 

In order to calculate the values of the predicted controlled variables  (   | ), 

MPC algorithms use a process model. Although this model can be nonlinear as well, 

for this research work, there were considered only algorithms which make use of 

linear process models. 

Using a linear model means that the principle of superposition can be applied. Using 

this, the evolution of the predicted controlled variable  (   | ) can be presented 

as a sum of a first term dependent only on past control inputs and a second term 

dependent only on current and future control inputs. The first term,   (   | ) is 

called free trajectory component and the second term,   (   | ) is called forced 

output trajectory component. Thus the trajectory of predicted process outputs, 

  (   | ) can be expressed in the following form: 

  (   | )    (   | )    (   | )               (5.2) 

Considering the relation (5.2), the cost function (5.1) can be expressed in the 

following form: 
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 ( )  ∑ ‖,   (   | )    (   | )-    (   | )‖ ( )
 

 

    

  

        

 ∑ ‖  (   | )‖ ( )
 

    

   

 (5.3) 

In reality all processes are subject to constraints. Due to constructive reasons, safety 

operation regulations, environmental reasons or economic ones, the process needs to 

be controlled under certain constraints. 

The constraints which can be included in the MPC algorithms may refer to: 

 constraints on the amplitude of the control signal 

       (   | )                        (5.4) 

 constraints on the rate of change of control inputs 

          (   | )                        (5.5) 

 constraints on the amplitude of the process outputs 

       (   | )                        (5.6) 

The minimisation of the cost function from (5.3) is a minimisation of a convex 

quadratic function, strictly convex if  ( )    and  ( )   ,. If the inequality 

constraints on values of control inputs and controlled outputs (5.4), (5.5), (5.6) are 

added, then an analytic solution is not possible and numerical optimisation is 

necessary. 

 

5.1.2 Historical perspective over MPC algorithms 

Richalet et al. [1976, 1978] created an algorithm called Model Predictive Heuristic 

Control (MPHC), also known as Model Algorithmic Control (MAC) and presented 
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the successful industrial applications, where it was implemented. The algorithm uses 

a model in the form of a finite impulse response to predict the controlled outputs. 

Another algorithm, Dynamic Matrix Control (DMC) was developed in the early 

1970s by the engineers from Shell Oil and was used in an industrial application in 

1973, as mentioned in Cutler and Ramaker [1980], Prett and Gillette [1980]. In this 

case the model used to calculate the predictions of the process outputs has the shape 

of a step response.  

The algorithm of Generalized Predictive Control was developed by Clarke et al. 

[1987] and reported applications followed in Clarke [1988], Clarke and Mohtadi 

[1989]. This algorithm uses a discrete transfer function as a model to calculate the 

predicted process outputs. In 1988 was presented by Marquis and Broustail [1988] 

the first algorithm named Shell Multivariable Optimizing Controller (SMOC), which 

uses a process model in the form of state equations.  

 

5.2 DMC algorithm 

As was mentioned earlier, DMC was developed in the 1970s and successfully 

implemented in industrial applications by C.E. Garcia and Morshedi [1986], Prett 

and Gillette [1980], Cutler and Ramaker [1980], Dougherty and Cooper [2003], 

Aurora et al. [2004, Moon and Lee [2005], Kim et al. [2010], Li et al. [2006]. The 

structure of the DMC algorithm is presented below for a Single-Input Single-Output 

(SISO) process, for which the presentation of Tatjewski [2007] was used as a 

reference. 
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The process model used to make the predictions of process outputs is represented by 

a discrete step response. This model describes the output change for a unit step 

change of control input. In Fig. 5.3 it is illustrated the response of a SISO first order 

system to a unit step change in the control input. The process has a delay      , 

where    is the sampling period. 
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FIGURE 5.3 The process output response   of a system for a unit step change in the 

control input   [Tatjewski, 2007] 

 

The discrete step response of the process is given in the form of a set of coefficients  

*                    +. For an asymptotically stable process, the output 

stabilises, after a step change in the input at a certain value. The number of discrete 

time samplings after which the step response stays constant is denoted   and called 

the horizon of the process dynamics. The step response *             + represents 
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a complete model of the system, which allows to calculate the discrete process output 

for any control input sequence. 

The step response model and the principle of superposition are used to derive the 

following formula 

 (   | )  ∑    (     | )

 

   

  ( )  ∑      (   )

 

   

  

 

 ∑    (   )

 

   

 (5.7) 

where  (   | ) is the output prediction at the current sampling instant   for a 

future instant    ,   (     | ) is used to define the current and future control 

input changes, as calculated at the current time  ,   (   ) are the control input 

changes determined at previous instants and applied to the process and  ( ) is the 

measured output value at the current time   

It can be noticed that the first sum from the right hand side depends only on current 

and future control input changes, which will result as a solution of the optimization 

problem. This part is called the forced component of the predicted output trajectory. 

  (   | )  ∑    (     | )             

 

   

 (5.8) 

As the remaining part is only dependent on already implemented control input 

changes, this is called the free component of the predicted output trajectory. 

  (   | )   ( )  ∑(       )  (   )

 

   

           (5.9) 
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Using the notations given by (5.8) and (5.9), the predicted output for the future time 

instant     calculated at sampling instant   has the following formula: 

  (   | )    (   | )    (   | )           (5.10) 

The cost function (5.3) can be expressed in the matrix format, as follows: 

  ( )  ‖,   ( )    ( )-    ( )‖ 
  ‖  ( )‖ 

  (5.11) 

where the matrices involved in its expression are defined as, 

   ( ) – set-point matrix, dimension (      )   ;   ( ) – free component 

matrix, dimension (      )   ;   ( ) - forced component matrix, dimension 

(      )   ,   ( ) - future control inputs matrix, dimension     ,   - 

predicted output weights matrix, dimension (      )  (      );   - 

predicted control input weights matrix, dimension      . 

Using (5.9) the matrix form of the free component of the predicted output trajectory, 

  ( ) can be expressed as, 

   ( )   ( )       ( ) (5.12) 

where  ( ) is the matrix of current measurement, dimension (      )  

 ,    ( ) is a matrix of past control inputs, dimension (   )    and matrix   , 

dimension (      )  (   ), has the following shape 

    [

     
        

        
           

     

     
        

        
         

     

     
                                 

] 

  (5.13) 

Knowing (5.8), the matrix form of the forced component of the predicted output 

trajectory can be written as 
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   ( )     ( ) (5.14) 

where   is called the dynamic matrix and has the dimension (      )    . 

   

[
 
 
 
 
 
 
 

   
           

   
     

       

       
   

                    
   

        
                    

       
                   

        ]
 
 
 
 
 
 
 

 

  (5.15) 

Introducing the relations (5.12) and (5.14) into the expression (5.11) of the cost 

function the optimization problem can be written as 

      ( )  ( )  ‖,   ( )   ( )       ( )-     ( )‖ 
   

                          ‖  ( )‖ 
  (5.16) 

If to the optimization problem (5.16), there are added the linear inequality constraints 

(5.4)-(5.6), then the resulting optimization problem is a quadratic programming (QP) 

problem. The constraints need to be formulated in an adequate way, as to be 

functions of the future control inputs matrix,   ( ). The constraints on rate of 

change can be written in the following form: 

          ( )        (5.17) 

where matrix       has a dimension     . 

To derive the relation for the constraints on the amplitude of control signal, each 

control signal can be expressed as the sum of the previous control signal and the 

calculated future control increments. 
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 (   | )   (   )  ∑  (   | )

 

   

                 (5.18) 

Using (5.18), the constraints on the amplitude of control signal can be written in the 

matrix form. 

       (   )     ( )       (5.19) 

The terms from (5.19) are defined as:      is the matrix of lower bound, dimension 

    ,      is the matrix of upper bound, dimension     ,  (   ) is the 

matrix of previously implemented control signal, at sampling instant    , 

dimension      and   is a unit lower triangular matrix of dimension       

The relation (5.10), concerning the predicted future outputs      ( ), is expressed in 

matrix form, where   ( ) is replace by its definition from (5.14) as following, 

      ( )    ( )     ( ) (5.20) 

The constraints on the amplitude of the predicted future process outputs,      ( ) 

can be written in the following matrix form, 

        ( )     ( )       (5.21) 

Where all the terms have been defined before, except      which is the matrix of 

lower bound, dimension (      )   , and      which is the matrix of upper 

bound, dimension (      )   . 

It can be concluded that at every sampling instant the following QP problem is 

solved: 

   
  ( )

{‖,   ( )   ( )       ( )-     ( )‖ 
  ‖  ( )‖ 

 } 

subject to:           ( )        (5.22) 
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       (   )     ( )       

        ( )     ( )       

 

5.3 Quadratic Programming 

QP is a special case of Nonlinear Programming, which consists of a quadratic 

objective function and a set of linear constraints. The definition of the QP problem 

and the description of the active set methods for solving it are presented below, 

where the reference for this presentation can be found in Wang [2009]. If the 

objective function is   and the decision variable is  , then the general form of a QP 

problem is: 

 ( )  
 

 
         (5.23) 

      

where, 

   is an  -dimensional column vector describing the coefficients of the linear 

terms in the objective function 

   is an (   ) symmetric matrix describing the coefficients of the quadratic 

terms 

   is an  -dimensional column vector containing the decision variables 

   is a size (   ) matrix defining the constraints. 

   is an   dimensional column vector defining the right-hand side 

coefficients. 



103 
 

If the objective function  ( ) is strictly convex for all feasible points, then there is a 

unique local minimum which is also the global minimum. The sufficient condition 

for  ( ) to be strictly convex is that   to be positive definite. The QP problem can be 

solved iteratively by active set strategies or interior point methods. 

The Lagrangian function for the quadratic function  ( ) is 

 (   )  
 

 
           (    ) (5.24) 

where the coefficients stored in the column vector   of dimension  , are known as 

the Lagrange multipliers. 

The necessary conditions for a minimum of the function  ( ) in   are given by the 

Karush-Kuhn-Tucker conditions: 

  

  
               

 

  

  
     (    )    (5.25) 

        

     

The set of constraints        can be divided into active constraints and inactive 

constraints. The inequality          is defined by the coefficients of the i-th row 

of the matrix   and the i-th element of the column vector  . If the design variables 

 , determine a solution on the boundary of the constraint, then the constraint behaves 

like and equality constraint,         and is called and active constraint. If the 

solution determined by the design variable lies inside the region of the constraint, 

         then it is considered an inactive constraint. 
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Using the definition of the set of active constraints, the necessary conditions (5.25) 

can be expressed as 

     ∑     
 

      

   

                   

                   (5.26) 

               

               

where,      represents the index for the set of active constraints. From (5.26) it 

results that the Lagrange multiplier is non-negative, if the constraint is active and 

zero if the constraint is inactive. 

The original problem could be simplified if the set of active constraints are known, 

meaning that only the equality constraints would be considered. If this would be the 

case, the optimal solution is given by 

       (     
      

 )  (          
   ) 

       (      
     ) (5.27) 

where,      and      refers to the elements of the matrices   and  , defining the set 

of active constraints. 

 

5.3.1 Active set methods 

The algorithms belonging to the active set strategies, define at each step a set of 

active constraints. This set is a subset of the constraints, which are active for the 

current point. The algorithm searches then for an optimized point on the area defined 
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by the active constraints. At every step an optimization problem with equality 

constraints is solved. If the Lagrange multipliers are non-negative,      it means 

that the point represents a local solution to the problem. If any of the Lagrange 

multipliers is negative,      then the objective function can be further minimized 

by relaxing the constraint  .  

 

5.3.1.1 Primal-Dual method 

The decision variables are also called primal variables. The algorithms named primal 

methods use the original definition of the problem to search the feasible region for an 

optimal solution. Every point found along the process is feasible and the value of the 

objective function is decreased with each iteration. 

The disadvantage of primal methods is that the computational load is quite large, 

especially if the number of primal variables is more than the number of constraints. 

A dual method is used to identify the inactive constraints and eliminate them from 

the solution. The Lagrange multipliers,   are called dual variables. 

The original primal problem is converted to the dual problem by using the 

Lagrangian function from (5.24). 

   
   

   
 

,
 

 
           (    )- (5.28) 

Because of the convexity of the Lagrangian function, the optimal   must be a 

stationary point of the Lagrangian function: 

    (   )          (     ) (5.29) 

If the expression for   from (5.29) is substituted in (5.28), the dual problem becomes 
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( 
 

 
         

 

 
      ) (5.30) 

where the matrices   and   are defined as 

          (5.31) 

           (5.32) 

The Lagrangian dual of the QP problem is another QP problem with   as the decision 

variable and with only nonnegative constraints. Expression (5.30) can be transformed 

into a minimization problem as follows, 

   
   

(
 

 
         

 

 
      ) (5.33) 

It can be noticed that the primal optimization problem had   variables and   

inequality constraints, while the dual optimization problem has   variables and   

nonnegative constraints. This makes the dual QP more computationally attractive, 

especially for the case when there are more primal variables,   than the number of 

constraints,  . 

 

5.3.1.2 Hildreth’s algorithm 

The algorithm used in this research to solve the QP optimisation problem related to 

the implementation of the MPC controllers was elaborated by Hildreth [Hildreth, 

1957]. It is a simple algorithm, based on a row-action method and proved to be very 

efficient in solving large sparse quadratic programs [Herman and Lent, 1978]. Other 

references to the algorithm can be found in Wismer and Chattergy [1978] and 

Luenberger [1969]. The QP problem has the same definition as in (5.23) and all other 

variables used in the description of the algorithm have the same meaning as they 
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were previously defined. The description of the method below is based on the one 

given in Wang [2009]. 

The direction vectors are chosen to be equal to the basis vectors 

   ,         - . At each step of the algorithm, after a vector     is 

calculated, the objective function in a single component    is considered. The value 

of    is adjusted as to minimise the objective function. If a negative    is required, 

then it is set     . The procedure is repeated for the next component     . If the   

vector for the  -th iteration is written as   , then for the next iteration, the 

components of the vector      can be calculated as, 

   
        (    

   ) (5.34) 

with   
    calculated as 

  
     

 

   
,   ∑     

   

   

   

 ∑      
 

 

     

- (5.35) 

In expression (5.35),     defines the   -th element in the matrix   from (5.31) and    

is the  -th element in the vector   from (5.32). Substituting the converged vector,    

in (5.29) it results 

        (      ) (5.36) 

There is no need for any matrix inversion, as Hildreth’s algorithm performs an 

element by element search. If the number of the active constraints is less than or 

equal to the number of decision variables and they are linearly independent, then 

there will be a solution for the dual problem. If any or all of the two conditions above 

are violated, then the algorithm will not converge to a set of dual variables. The 
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algorithm will stop when the iteration counter will reach its maximum value. The 

advantage is that the algorithm will provide a near-optimal solution, even for the case 

when not all the constraints can be satisfied. So even when the QP problem is ill-

conditioned and the end of the iterations, the algorithm will provide a control input 

value, which will allow the safety operation of the process. When there is no conflict 

situation, the algorithm will converge to the set of   . The vector    contains zeros 

for inactive constraints and non-negative values for active constraints.     
  is a 

vector containing all the positive components, which is defined by 

     
   (     

      
 )  (          

   ) (5.37)  

where      and      are obtained from the constraints matrices   and  , from which 

the rows corresponding to the zero elements in    have been deleted. 

The Hildreth’s algorithm was coded using FORTRAN 95 programming language, 

which was later attached to the main routine of the DMC controller. 

 

5.4 The control system architecture implemented in the supercritical 

power plant simulator 

Fig. 5.4 represents the existing control structure of the CCS implemented in the 

power plant. The controlled variables are: the main steam pressure,    , the main 

steam temperature,    , and the electrical power,   . The CCS unit receives the load 

demand signal from the grid, calculates the deviations from the set-point values for 

the controlled variables and sends the turbine and boiler commands, which then 

reach the appropriate control systems. The turbine command is sent to the HP turbine 

valve control system and this decides the valve position of the turbine. The boiler 
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command is sent to the coal mill and feedwater pump control system. These control 

systems decide the required values for the coal flow rate and for the feedwater flow 

rate. The turbine valve position, coal flow rate and feedwater flow rate are input 

variables for the boiler-turbine-generator model. 
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FIGURE 5.4 Existing power plant control system architecture 



110 
 

 

5.4.1 Coal mill control strategy implemented in the simulator  

The control system of a supercritical power plant needs to be well designed and well 

tuned in such a way, that it allows the power plant to provide fast responses to 

changes in load demand [Mohamed et al., 2012]. Coal preparation is the first step in 

the power generation process and the pulverized coal flow rate sent to the boiler 

determines the total power generation. An increase of the power generation means an 

increase of the steam flow rate and this in turn means an increase of the coal flow 

rate sent to the boiler by the coal mills. As a result, an adequate control of the coal 

mills is one of the key factors to achieve the desired overall power plant 

performance. This is challenging due to the fact that mill’s response depends on the 

coal quality and wetness, mill wear and on its working principle [Waddington and 

Maples, 1987].  

The necessary coal for the operation of the power plant is provided by six 

pulverizing coal mills, five of them in continuous operation and one being in stand-

by as a reserve. More or less pulverized coal is sent to burners by the coal mills, by 

adjusting accordingly the speed of the coal feeders. The existing control loop of the 

coal mill is based on a PID controller. 

The speed command,   , is generated by the PID controller, which minimizes the 

error between the set-point value for the coal flow rate,      
   , and the process value 

represented by the total coal flow rate,      , sent to the furnace at the current time 

sampling. The set-point value for      
    iscalculated as a function of the air flow rate, 

    , and the current load demand,  . 
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The control strategy presented above is better illustrated by the control diagram 

shown in Fig. 5.5. 
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FIGURE 5.5 PID based control loop of the coal mill 

 

PID controllers are currently the most used controllers in industry, due to their good 

control performance, simplicity in design and control structure, technology maturity 

and relatively good robustness [Sung et al., 2009]. However PID controller has its 

limitations, namely it is tuned without taking into account the constraints on the 

process input signal [Tatjewski, 2007], it doesn’t consider the future implications of 

current control actions [Rossiter, 2004] and it is very difficult to tune PID controllers 

to achieve the satisfactory or desired performance for Multi Input Multi Output 

(MIMO) systems [Rossiter, 2004; Gawthrop and Nomikos, 1990]. 

 

5.5 Development of the DMC controller 

Due to development of computing technology in recent years, advanced control 

techniques, such as MPC, which has the capability to address previously mentioned 

disadvantages of PID controller, can now be easily implemented.   
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Given the importance of the coal flow control in the power generation process, it is 

proposed to replace the existing Coal Mill Control System, as it is presented in Fig. 

5.4 with a DMC controller. This controller will have the structure illustrated in Fig. 

5.6, where      
    

 is the predicted coal flow rate and the rest of the variables have the 

same definitions as the ones used for the variables from Fig. 5.5. 
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FIGURE 5.6 Structure of the coal mill control loop based on the DMC controller 

 

Following the implementation of the DMC controller, the control system architecture 

of the power plant simulator changes as it is illustrated in Fig. 5.7. 
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FIGURE 5.7 Power plant control system architecture with the DMC controller 

integrated in it 
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5.5.1 Identification of the unit step response model 

To calculate the predictions of process outputs, the DMC algorithm uses a process 

model in the form of a unit step response model. 

Two methods can be used to obtain this model [Moon and Lee, 2005]. 

 The first one assumes that the nonlinear mathematical model of the process is 

known. Thus one can simulate the response of the system to a step input 

change and obtain a step response model.  

 In the second approach, a step change to the input signal is applied to the real 

process and the model is identified from the experimental data collected. 

In this research the second approach was used for model identification. 

Particular attention must be paid to the choice of the amplitude of the step change 

signal. If it is too large the process output might get into a nonlinear region and if it is 

too small the output might be affected by disturbances and noise [Moon and Lee, 

2005]. 

The process plant has the speed command,   sent from the PID as input and the coal 

flowrate,       as output. 

From the steady state operation of the power plant simulator at 550 MW power 

generated, a 20% step increase of the speed command sent to the coal mills was 

considered the best for model identification. It needs to be mentioned that this step 

change test was performed with the power plant simulator control system operating 

in manual mode. This means that all the control variables had a constant value before 

the test started. Referring to the coal mill control system, this implies that the speed 
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command,    as the PID controller output variable, was stepped with 20% for the 

identification test. 

The output response was then normalized by dividing the output with the amplitude 

of the corresponding input. The processed output response represents the unit step 

response of the process plant as it is illustrated in Fig. 5.8. 

 

 

FIGURE 5.8 The unit step response model used to calculate the predicted outputs by 

the DMC controller 

 

Analysing the unit step response model from Fig. 5.8, one can observe the similarity 

with the step response from a First Order Plus Time Delay (FOPTD) model. The 

mathematical expression defining the model is 

 ( )  
     

    
 

(5.38) 

where   is the static gain,   is the time delay and   is the time constant. 

The parameters of the model were found by using the process reaction curve method, 

which is illustrated in Sung et al. [2009]. This method uses a step input test to 
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identify the approximated FOPTD model for a process. The step input    is applied 

to the process and its response follows the trajectory shown in Fig. 5.9, until it 

stabilises at the steady state value   . Higher order processes, having a similar 

response can thus be assimilated by a FOPTD model. 

 

0 5 10 15

time

θ

τ

Tangent

line

step process input

process output

u∞

y∞

0

0.5

1

2

1.5

 

FIGURE 5.9 Typical response from a stable and overdamped process generated by a 

step input test [Sung et al., 2009] 

 

The tangent line is drawn at the point of inflexion and from a visual inspection  the 

time delay   and the time constant   can be identified. The static gain   can then be 

calculated as the ratio of the process output    to the step input   .  

The parameters for the FOPTD model whose process response is illustrated in Fig. 

5.8 are:         ,      ,      . Substituting these values into the expression 

of the model from (5.38) it results 

 ( )  
            

      
 

(5.39) 
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The sampling time recommended for discrete control should be less than 10% of the 

time constant [Moon and Lee, 2005]. With the calculated time constant and 

following the above recommendation, a time sample of 0.1 s was chosen for the 

discretisation of the model. The number of coefficients used to define the unit step 

response model for the DMC controller is determined by how many time samples are 

necessary until the process stabilises after a step change in the input [Tatjewski, 

2007]. For this case, the model is defined by 147 coefficients. 

 

5.5.2 Tuning parameters of the DMC controller 

The performance of the DMC controller can be adjusted by manipulating four 

parameters: the predicted output weights,   the control input weights,   the 

prediction horizon,   and the control horizon,    [Tatjewski, 2007]. 

If a more aggressive control action and a faster response from the system is expected 

from the DMC controller, then this can be achieved by decreasing the prediction 

horizon,  , increasing the number of control moves from the control horizon,    and 

decreasing the control weights,  . There is a lower limit for the prediction horizon, 

an upper limit for the control horizon and lower limit on the control weights beyond 

which the closed loop system becomes unstable [Maciejowski, 2002]. 

In this research, scaling of the influence of the components from the error vector, 

           was not considered, so the matrix of the predicted output weights,  , is 

equal with the identity matrix   of dimension (      )  (      ). The 

matrix of the control input weights,  , is considered to have the same influence over 

all the control moves and therefore in its form     , with the identity matrix,   of 
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dimension      , the parameter   was found through the procedure of trial and 

error to have the best selected value of 80. Following the same procedure the optimal 

values for the prediction horizon and the control horizon were found to be 200 and 

110 respectively. The values of the constraints considered by the QP problem were: 

      ,       ,            ,       ,       . 

 

5.6 Simulation tests of the DMC controller performance 

The control system of the power plant simulator is based on PID controllers and 

adding to this the nonlinear dynamic behavior of the process, means that it can only 

be tuned to give an optimal performance at one operating point and just an 

acceptable performance at other operating points. 

Two initial simulation tests were run to check the performance of both controllers: 

 Test 1 

With the power plant operating at steady state conditions, generating 550 MW, a step 

increase of 25 MW in the load demand signal is performed. 

 Test 2 

With the power plant operating at steady state conditions, generating 550 MW, a step 

decrease of 25 MW in the load demand signal is performed. 

Throughout both simulation tests, the variables monitored were coal feeder speed 

command and coal flow rate. The simulation results gathered after the first test, were 

plotted in Fig. 5.10 - Fig. 5.13. 

 



119 
 

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

t [s]

Speedvf [p.u.]

 

FIGURE 5.10 PID controller in operation. The evolution of the speed command 

signal sent to the coal feeder for a 25 MW step increase in the load demand. 
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FIGURE 5.11 DMC controller in operation. The evolution of the speed command 

signal sent to the coal feeder for a 25 MW step increase in the load demand. 

 

During the steady state operation, the signal sent by the PID controller is presenting a 

continuous variation in time, which is then manifested even more intensely after the 

step change in the load demand. Compared to this, the signal sent by the DMC 

controller presents the same amplitude before the test is initiated and afterwards its 

amplitude is increasing in a steady manner.  

The service life of the electric motor of the coal feeder is increased for a more 

constant operation as is the case for the signal sent by the DMC controller and is 

shortened for a continuously varying control signal sent by the PID controller. 
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FIGURE 5.12 PID controller in operation. The evolution of the coal flow rate sent to 

the burners by the coal mill for a 25 MW step increase in the load demand. 
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FIGURE 5.13 DMC controller in operation. The evolution of the coal flow rate sent 

to the burners by the coal mill for a 25 MW step increase in the load demand. 

 

The set-points trajectory is very well tracked by the coal flow rate, when using the 

DMC controller and is poorly followed when the PID is in operation. The mean 

absolute error between the trajectories is 0.005 for the DMC controller and 0.01 for 

the PID controller. 

There is a sudden increase in the set-points trajectory, immediately after the change 

in the load demand is initiated, which is followed by the output variable when the 

PID controller is used and which is ignored for the other controller. This behaviour 
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of the output variable is generated by the constraints applied by the DMC algorithm 

to the rate of change of the control signal. 

All the results gathered from the second simulation test were processed into the 

graphs presented in Fig. 5.14 - Fig. 5.17. 
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FIGURE 5.14 PID controller in operation. The evolution of the speed command 

signal sent to the coal feeder for a 25 MW step decrease in the load demand. 
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FIGURE 5.15 DMC controller in operation. The evolution of the speed command 

signal sent to the coal feeder for a 25 MW step decrease in the load demand. 

 

Analysing both graphs from the above figures, it shows a very similar performance 

for both controllers during the second simulation test as compared to the first one. 
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The PID control signal is varying all the time, while the DMC control signal presents 

a very stable trajectory. 
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FIGURE 5.16 PID controller in operation. The evolution of the coal flow rate sent to 

the burners by the coal mill for a 25 MW step decrease in the load demand. 
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FIGURE 5.17 DMC controller in operation. The evolution of the coal flow rate sent 

to the burners by the coal mill for a 25 MW step decrease in the load demand. 

 

The output variable, the coal flow rate follows very closely the set-points trajectory 

for the DMC controller in operation, having a mean absolute error of 0.001, 

compared to a value of 0.02, when using the PID controller. The constraints on the 

rate of change of the control signal prevents the undershoot of the coal flow rate, 
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after the step change in the load demand was initiated, for the case when DMC 

controller regulates the process. 

For both simulation tests, the DMC controller outperformed the PID controller. The 

evolution in time of the control signal sent by the PID controller suggests that it 

might be poorly tuned for this operating point of the power plant. 

Given the above consideration, another simulation test was performed, this time for 

the power plant operating at steady state conditions for 450 MW (75%) power 

output. From this operating level a step load change of 50 MW up to 500 MW (83%) 

nominal load is run. The evolution of the coal flowrate subject to PID control is 

presented in Fig. 5.18. 
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FIGURE 5.18 The evolution in time of the coal flow rate sent to the burners by the 

coal mill for a 50 MW step increase in the load demand under PID control 

 

The parameters characterising the above controlled signal are: 

 Overshoot [p.u.] = 5.94; 

 Rise time [s] = 167.8; 
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 Settling time [s] = 1586.6. 

The definition for the rise time is the time needed by the signal to get from 10% to 

90% of the steady state value and the one for the settling time is the time needed by 

the signal to settle within ±5% of the steady state value. It can be observed that there 

is a good tracking of the reference trajectory with a maximum absolute error of 

0.0132. 

The trajectory of the coal flowrate using the DMC control strategy is illustrated in 

Fig. 5.19. 
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FIGURE 5.19 The evolution in time of the coal flow rate sent to the burners by the 

coal mill for a 50 MW step increase in the load demand under DMC control 

 

The parameters characterizing the controlled signal are: 

 Overshoot [p.u.] = 2.86; 

 Rise time [s] = 207.5; 

 Settling time [s] = 1540.5. 
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As is depicted in Fig. 5.19, there is almost no error between the reference and the 

process trajectory, with a maximum absolute error of 0.0018. This means the error is 

reduced with 86.4% compared to the PID case. A good tracking of the reference 

trajectory by the coal flowrate has a positive impact on the response time of the 

boiler to changes in the load demand. 

For comparison purposes, both coal flowrate trajectories for PID and for DMC 

controller are plotted in the same graph, as presented in Fig. 5.20. 
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FIGURE 5.20 The trajectories followed by the coal flow rate signal under PID 

control and under DMC control 

 

It shows that even for steady-state operation, DMC controller has a better 

management of the coal, the flowrate value being smaller than for PID controller. 

After the step load change is sent to the power plant, the overshoot using DMC 

controller is less than 50% of the value when using PID controller. In the PID control 
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case the increase in coal flowrate is nearly 40 s faster, but the settling time is similar 

for both controllers. 

The fact that the coal flowrate trajectory having the DMC controller on, is situated 

below the trajectory for the PID controller indicates that less coal is used to generate 

the same power output. For the ease of calculation the coal flowrate values are 

expressed in the simulator using the per unit system. The base quantity is obtained by 

considering that each coal mill is providing a coal flowrate of 13.168 kg/s. There are 

five working coal mills, so it results that the coal flowrate base value is 65.84 kg/s.   

Integrating the area under each trajectory, it results that 186.71 t of coal were used 

with the PID on, compared with 184.44 t of coal when having the DMC controller 

implemented. The difference of the two values shows that a saving of 2.27 t was 

made during an hour operation by using the DMC controller. The control signal sent 

to the coal feeder motor during the test is plotted for both controllers in Fig. 5.21. 
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FIGURE 5.21 The trajectories followed by the control signal sent to the coal feeder 

by the PID controller and by the DMC controller. 
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The control signal is regulating the motor speed of the coal feeder and as is described 

by Fig. 10 it has smaller amplitudes when the DMC controller is in use. The 

maximum control amplitude is 3% smaller than the one sent by PID controller.  

The response of the power plant, regarding the generated power is the same for both 

controllers and this is illustrated by Fig. 5.22. 
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FIGURE 5.22 The trajectories of the power output generated by the power plant for 

PID controller and DMC controller in operation  

 

During this test other significant process variables were monitored. The steam 

pressure evolution for both controllers is described in Fig. 5.23. 
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FIGURE 5.23 The evolution through time of the main steam pressure both for the 

PID controller and for the DMC controller in operation. 

 

The set-point value for the pressure is 25.2 MPa. A comparative numerical analysis 

is given below: 

PID controller in operation 

 peak error -0.55 ~ 0.06 MPa 

 standard deviation 0.19 MPa 

 settling time 2500 s 

DMC controller in operation 

 peak error -0.48 ~ 0.03 MPa 

 standard deviation 0.16 MPa 

 settling time 1700 s 

From steady-state operation there is no steady-state error when the DMC controller is 

operating. After the step load change occurs, the pressure drop is 14% more and the 
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settling time is with 800 s longer using the PID controller, than when the test is run 

with the DMC controller. 

The superheated steam temperature values were recorded throughout the test for both 

controllers and the trajectories are plotted in Fig. 5.24. 
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FIGURE 5.24 The evolution through time of the main steam temperature both for 

the PID controller and for the DMC controller in operation.  

 

Using the DMC controller has a good effect on the superheated steam temperature 

even from the steady-state operation of the power plant. Its trajectory is very close to 

the reference trajectory, which is not the case when using the PID controller. 

The performance of the controllers regarding the temperature is quantified by the 

following parameters: 

PID controller in operation 

 peak error -24.55 ~ -3.99 ºC 

 standard deviation 6.8 ºC 
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 settling time >3600 s 

DMC controller in operation 

 peak error -1.03 ~ 7.05 ºC 

 standard deviation 2.98 ºC 

 settling time 2500 s 

The set-point value for the superheated steam temperature is 570 ºC. The average 

steam temperature when the PID is in use, is 558.7 ºC, while its value is 572.48 ºC 

with the DMC controller in operation. So there is a 2% difference for the PID case 

and 0.43% for the DMC case. While the temperature is settled after nearly 42 

minutes when the DMC is in operation, it takes more than 60 minutes to reach a 

stable value when the PID controller is used. Keeping the steam temperature at a 

constant value is very important for the power plant efficiency and also for the 

lifetime of the boiler and steam turbine, by minimizing the thermal stresses.         

 

5.7 Summary 

The chapter begins with an introduction to the advanced family of control algorithms 

entitled MPC. One algorithm that was successfully implemented in industrial 

applications is the DMC algorithm, whose structure is presented for the case of a 

SISO system. The control inputs are calculated by solving a QP problem, which is 

carried out in this research by using Hildreth’s algorithm.  

The power plant simulator is regulated by a CCS, whose operation is described and 

all the manipulated and control variables are defined. Of utter importance to the 

dynamic response of the power plant is the coal mill control. The existing control 
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strategy is based on a PID controller, which doesn’t provide an optimal regulation. In 

order to improve the performance of the coal mill control system a DMC controller 

was proposed to replace the existing PID controller.  

Several simulation tests were performed in order to assess the performance of the 

DMC controller against that of the existing PID one. Initial tests consisted in an 

increase/decrease with 25 MW of the 550 MW power output level, while the 

variables monitored were: the coal feeder speed command and the coal flow rate. 

Another test referred to a step load change of 50 MW from the power plant operating 

at 450 MW power output. During this test the monitored variables were: the coal 

flowrate, the coal feeder speed command, the power output, the steam pressure and 

the superheated steam temperature. The results gathered from all tests were used to 

perform a comparative numerical analysis and they were then plotted into graphs, all 

showing an improved performance when the DMC controller was in use. 
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Chapter 6 

 

Superheated Steam Temperature Regulation Based on 

Generalized Predictive Control Algorithm 

 

 
6.1 Introduction to superheater steam temperature control 

Steam temperature control at the superheater’s (SH) outlet is one of the most 

challenging control loop in a fossil fuelled power plant. The difficulty in controlling 

this system is mainly due to the high nonlinearity of the SH, long time delays and the 

disturbances coming from the flue gases [Hlava, 2010; Fu et al., 2013]. 

If the temperature is kept constant, with only small variations, the set-point for the 

steam temperature can be higher, which will increase power plant efficiency. If the 

temperature is kept stable, the lifetime of the boiler and steam turbine are also 

increased, as the thermal stresses are minimized [Fu et al., 2013]. 

The new regulations regarding CO2 emissions, the increasing power generation from 

wind farms and the European energy market deregulation, have all changed the 

operating requirements for a power plant [Ziems and Weber, 2009]. Initially 

designed to operate at base load, at their almost full capacity, nowadays power plants 

need to be flexible, efficient and capable of following the changes in the load 

demand [Fu et al., 2013]. Considering all the above mentioned, keeping the steam 

temperature in certain limits is of crucial importance. 

Due to its good control performance, simplicity, technology maturity and good 

robustness [Sung et al., 2009], the PID controller is still the most used in the steam 

temperature control loops. However, due to large changes in the load demand and the 
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transients which follow in the combustion process the performance of the PID 

controller is far from being optimal [Gough, 2000]. This motivates the use of other 

type of controllers, such as model-based controllers. 

The MPC algorithm chosen for the regulation of the SH outlet steam temperature is 

Generalized Predictive Control (GPC). One characteristic of GPC algorithm is that it 

can deal with unstable and non-minimum phase plants [Camacho and Bordons, 

2007]. The GPC algorithm was developed by Clarke et al. [1987] and it became 

popular both in industry and academia, with successful industrial applications 

[Clarke, 1988].    

The use of the algorithm has been reported by Moelbak [1999], where the GPC 

controller showed a better performance against the existing PID controller, in 

regulating the superheated steam temperature in a real coal-fired power plant, 

equipped with a once-through boiler. 

Another MPC algorithm, namely the DMC was used for the design of controllers 

intended to regulate the steam temperature and its successful implementation was 

reported in the following publications. A DMC controller for steam temperature 

control was developed by Fu et al. [2013] and tested in a power plant simulator and 

in a field operating coal-fired power plant having a drum boiler. According to the 

simulation tests, the DMC control strategy proved to outperform the PID based one. 

Another successful implementation of a DMC controller for steam temperature 

regulation is reported by Kim et al. [2010], this time the controller was tested in a 

power plant simulator operating with a once-through boiler. Sanchez et al. [2004] 

developed a DMC and a fuzzy controller to regulate the steam temperature in a 300 



134 
 

MW power plant simulator. The controllers’ performance is compared to the existing 

PID and the test results show a tighter temperature control when the advanced 

control strategies are used. 

 

6.2 The GPC algorithm 

The particularity of the GPC algorithm against the rest of the MPC algorithms is the 

use of a process model described by a discrete difference equation or equivalently a 

discrete transfer function. It can also deal with unstable systems as is the case with 

the SH. The part of the SH, which will be regulated by the new controller is a SISO 

process. The predictive controller is designed following the GPC algorithm for a 

SISO process, as it is described by Camacho and Bordons [2007] and by Clarke et al. 

[1987]. 

 

6.2.1 The prediction model 

For a SISO process, the discretized model, linearized at a certain operating point, can 

be described by the following form: 

  (   ) ( )      (   ) (   )   (   ) ( ) (6.1) 

where  ( ) and  ( ) are the control and output sequences of the plant,   is the dead 

time of the system and  ( ) is a zero mean white noise.       are polynomials in 

the backward shift operator     of degrees   ,    and   , respectively. The model 

described by the equation (6.1) is known as a Controller Auto-Regressive Moving-

Average (CARMA) model. 
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6.2.2 The output predictions 

To calculate the future plant output,  (   ) the following Diophantine equation is 

considered: 

     ( 
  ) ̅(   )       ( 

  ) (6.2) 

where the notation  ̅(   )    (   ) was used and the degrees of the polynomials 

   and    are     and   . 

Performing several manipulations with (6.1) and (6.2), the prediction  (   ) can be 

written as 

  (   )    ( 
  ) ( )    ( 

  ) (   )  (       )   

                   ( 
  ) (   ) (6.3) 

As the noise terms  (   ) are placed in the future, they can be disregarded and the 

output predictions have the expression, 

  ̂(   | )    ( 
  )  (       )    ( 

  ) ( ) (6.4) 

where the notation   ( 
  )    ( 

  ) (   ) was used. 

The vector   of   ahead predictions can be written as: 

       (   ) ( )    (   )  (   )  (6.5) 

where  ,  ,  ,  ,    are defined as, 
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It is noticed that the last two terms from (6.5) only depend on the past inputs and 

outputs and so they can be grouped together into  . Using this notation expression 

(6.5) can be written as 

         (6.7) 

 

6.2.3 The control law 

At each sampling instant the GPC algorithm is minimizing a cost function of the 

form 

 (    )  ∑ ( )

 

   

, ̂(   | )     (   )-    

 

 ∑ ( )

  

   

,  (     )-                                                (6.8) 

where   is the prediction horizon,    is the control horizon,  ( ) and  ( ) are 

weighting sequences and    (   ) is the future reference trajectory. 

The cost function from (6.8) can be rewritten using the matrices defined in (6.6) and 

(6.7), where for simplicity in derivation  ( ) is considered to have the value of unity 

and   ( ) is set to the constant  , which gives the following expression: 

   (      ) (      )        (6.9) 
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where   is the vector of future reference trajectory, being defined as 

   ,   (     )    (     )     (     )-  (6.10) 

If no constraints are applied to the control signals, the solution to the optimization 

problem can be found by making the gradient of   equal to zero. The control inputs 

vector is  

   (      )    (   ) (6.11) 

From the vector   only the first element of the vector represents the control signal 

which is actually sent to the process. 

 

6.3 Description of the SH process 

6.3.1 Structure of the SH 

The structure of the SH implemented in the power plant simulator, together with the 

process inputs and outputs is illustrated in Fig. 6.1. 
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FIGURE 6.1 The structure of the SH and its connections to other systems 
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The SH is a heat exchanger which has the role of transferring the heat from the flue 

gases to the steam coming from the waterwall, to increase the steam temperature. 

The increased temperature means that more energy is available to be used by the 

turbine for conversion to mechanical and then electrical energy. Due to this added 

energy, the efficiency of the entire cycle is increased [Woodruff et al., 2004]. The 

efficiency of the turbine over a wide load range is affected, if the steam temperature 

is not maintained at constant over that range [Woodruff et al., 2004].  

The predominant method used to control steam temperature is attemperation. The 

device is called a spray-type attemperator. Water is sprayed into steam, it will form 

steam through evapouration and the temperature of the final mixture will be 

regulated to lower than the initial one [Woodruff et al., 2004]. 

The SH from the simulator has three sections: Primary SH, Platen SH and Final SH. 

Each section is divided in two subsections, such that there are two steam paths going 

through the SH, denoted A and B in Fig. 6.1. There are two attemperators on each 

side, one after Primary SH and one after Platen SH. The first attemperator is 

controlling the steam temperature at the outlet of the Platen SH and the second 

attemperator is regulating the steam temperature at the outlet of the Final SH. 

 

6.3.2 Steam temperature control structure 

The temperature of the superheated steam exiting the Platen SH and Final SH is 

regulated by a Proportional-Integral (PI) Cascade control structure. This type of 

control structure is depicted in Fig. 6.2. 
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FIGURE 6.2 Cascade PI control structure regulating the steam temperature at the 

outlet of Final/Platen SH; Tin – inlet steam temperature [°C];Tout – outlet steam 

temperature [°C]; Tset,out – outlet set-point steam temperature [°C]; X – valve position 

[%]. 

 

A PI cascade control structure uses an additional internal feedback loop to reject 

disturbances more effectively [Sung et al., 2009]. When the valve position of the 

attemperator changes, the spray water pressure changes as well and as a result, the 
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spray water flow rate will be disturbed [Yu and Kim, 2011]. This disturbance can be 

rejected by using a cascade PI structure. Referring to Fig. 6.2, the control signal sent 

by the outer PI controller acts as the set-point for the inner control loop. In this loop, 

the temperature at the attemperator outlet is measured and the PI controller acts in 

such a way as to reduce the deviation between the set-point temperature from the 

outer controller and the temperature at the attemperator outlet. Because the inner 

loop is faster than the outer loop, the disturbance is rejected. 

 

6.4 Development of the GPC controller 

The most important temperature to be controlled is the steam temperature at the 

output of the last stage of the SH, namely at the Final SH outlet, just before entering 

the HP turbine [Hlava, 2010]. The aim of this research work is to achieve better 

control performance by replacing the PI Cascade control, which controls the steam 

temperature at the outlet of the Final SH, with a controller based on the GPC 

algorithm. The block diagram of the steam temperature control system employing the 

GPC controller is illustrated in Fig. 6.3, where          is the set-point temperature, 

    is the temperature at the Final SH inlet,      is the temperature at the Final SH 

outlet and   is the valve position of the attemperator. 
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FIGURE 6.3 Final SH outlet steam temperature control loop based on GPC 

controller  

 

6.4.1 Identification of the prediction model 

The identification of the prediction model was carried out for the power plant 

operating at the steady-state conditions, generating 500 MW (83%) power output.  

Having the control system of the attemperator’s valve operating on manual (PI 

controller disconnected), a 10% step increase in the valve opening was added to 

existing control signal and sent to the motor operated valve. The step response of the 

process, namely the evolution in time of the Final SH outlet steam temperature was 

recorded at a sampling rate of          . After several trials were conducted, it was 

decided that a rank 4 model in the form of a discrete difference equation represents a 

good description of the process dynamics with a dead time   of 4.8 s. Using 

expression (6.1), the prediction model has the following form:   

  ( )     (   )     (   )     (   )     (   )   

     (    )     (    )     (    )     (    )   

                       (    )  (6.12) 



143 
 

where          and         are the parameters of the polynomials   and  .  

Multiple Linear Regression method described in Chapra [2012] and was used to fit 

the model parameters to the points of the step response. This method represents an 

extension of the linear regression, where   is a linear function of two or more 

independent variables, expressed as: 

                        (6.13) 

In order to obtain the best fit, the sum of the squares of the residuals is minimized. 

   ∑  
 

 

   

 ∑(                            )
 

 

   

 (6.14) 

This is achieved by differentiating relation (6.14) with respect to each of the 

unknown coefficients, which gives: 

   

   
   ∑(                            )
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 (6.15) 
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Setting the partial derivatives from (6.15) equal to zero gives the coefficients which 

minimise the sum of the squares of the residuals. This is expressed in the matrix 

format as 
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  (6.16) 

Expression (6.16) represents a set of (   ) equations with (   ) unknown 

variables, to which a solution can be found. After the calculation of the parameters 

by using the method described above, the CARMA model was obtained. 

 (                                         ) ( )   

 =    (                                      

         ) (   ) (6.17) 

From (6.17) the polynomials   and   can be identified as 

  (   )                                            

  (   )                                         

                                           (6.18) 

The real step response of the system and the one of the fitted model are presented in 

Fig. 6.4. 
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FIGURE 6.4 Step response of the real process and of the identified CARMA model 

 

6.4.2 Tuning parameters of the GPC controller 

The parameters of the GPC algorithm, which influence the control input values 

generated in the optimization process of the cost function are: 

   – prediction horizon, 

    – control horizon,     , 

  ( ) – weight of the predicted outputs, 

  ( ) – weight of the control inputs. 

It is suggested in Clarke et al. [1987] that the value of the prediction horizon,   

should be larger than the rank of the polynomial  . If the value of   is chosen to be 

of an adequate value compared to process dynamics and the feedback control system 

operates correctly, then choosing a larger value for it will not improve the 

performance of the control system [Tatjewski, 2007].  

The control horizon is considered an important design parameter [Clarke et al., 

1987]. If the value of    is increased, then the control and the corresponding process 
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response becomes more active. There is a limit for    beyond which there is no 

significant progress in the controller’s performance. Since the number of decision 

variables in the optimization problem are related to the value of   , it is advised to 

give relatively small values for this parameter as this will ease the computational 

burden [Tatjewski, 2007]. 

The GPC algorithm devised by Clarke et al. [1987] disregards the effect of the 

weight   on the predicted outputs values and sets its value equal to unity. The 

remaining tunable parameter   affects the cost of the control input moves. With the 

increase of the value for this parameter, the control effort is forced to decrease, 

which leads to a slower response from the system. For a small value of   the 

controller will tend to minimize the error between the predicted outputs and the set-

point values, disregarding the control effort [Camacho, 2007], which in turn 

generates a fast response from the system. 

The parameters of the GPC controller were tuned using trial-and-error procedure and 

the following values were found to deliver an optimal performance: 

 prediction horizon     

 control horizon      

 control weight       

 output weight    . 

 

6.5 Simulation tests of the GPC controller performance 

The initial conditions, common for all simulation tests run in the simulator, were 

considered to be for the power plant operating at steady-state 500 MW (83%) 
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generated power output. During all three simulation tests, the set-point value for the 

outlet Final SH steam temperature was 570°C. For the first simulation test, the 

disturbance is a step change in the load command signal from 500 MW (83%) to 600 

MW (100%) generated power. The power plant load change rate is 10 MW/min. The 

results of the simulation test are presented in the Fig. 6.5 - Fig. 6.7. 

 

 

FIGURE 6.5 Superheated steam temperature response 

 

 

FIGURE 6.6 Control signal variation 
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FIGURE 6.7 Spray water flow rate 

 

The results of this simulation test show an improved stability of the steam 

temperature, for the case when the GPC controller was used. A comparative 

numerical analysis is given below: 

PI control: 

 peak error -1.55 ~1.57 °C 

 standard deviation 0.62 °C 

 settling time 4500 s 

GPC control: 

 peak error -0.16 ~ 0.11 °C 

 standard deviation 0.03 °C 

 settling time 2300 s 

 

During the test, the average value for the valve opening area was 0.57 p.u., when the 

PI controller was used, compared to 0.45 p.u., with the GPC controller in operation. 

Regarding the water flow rate, the average value was 29.91 t/h, when using the PI 

controller and 19.51 t/h, when using the GPC controller. According to these results 

there is a smaller over/undershoot for the temperature, the system reaches steady-

state twice quicker and the amount of spray water needed, was reduced with 35% 

with the GPC controller in operation. Analysing the control signal, it can be seen that 
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the PI control signal has significant variation in amplitude, while the GPC control 

signal has smaller variation.  

In the second simulation test, the load demand signal has an initial ramp up trend 

from 500 MW (83%) to 600 MW (100% nominal load), with 10 MW/min load 

change rate, then it remains constant for 20 min and follows afterwards a ramp down 

trend from 600 MW (100%) to 500 MW (83% nominal load) with the same load 

change rate. The results obtained after this load demand signal was applied to the 

power plant, were used to plot the graphs illustrated in the Fig. 6.8 – Fig. 6.10. 

 

 

FIGURE 6.8 Superheated steam temperature response 
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FIGURE 6.9 Control signal variation 

 

 

FIGURE 6.10 Spray water flow rate 

 

The steam temperature shows again smaller variation, when the GPC controller is 

used. This is reflected as well by the numerical results given below. 

PI control: 

 peak error -1.28 ~1.19°C 

 standard deviation 0.5 °C 

GPC control: 

 peak error -0.64 ~ 0.26 °C 

 standard deviation 0.08 °C 
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 settling time 6100 s  settling time 4800 s 

 

During the test, the average value for the valve opening area was 0.55 p.u., when the 

PI controller was used, compared to 0.59 p.u., with the GPC controller in operation. 

Regarding the water flow rate, the average value was 26.19 t/h, when using the PI 

controller and 28.67 t/h, when using the GPC controller. 

Analysing the values for the peak error and the standard deviation, it shows a smaller 

over/undershoot for the temperature, and a settling time with 21% shorter for the 

system, when the GPC controller is in operation. The average spray water needed is 

slightly higher for the GPC controller, but the valve opening area has smaller 

variations, than for the PI case. Again the control signal sent by the GPC controller is 

more stable, compared to the one sent by the PI controller which has a continuous 

variation.  

The power plant modelled by the simulator is considered to have six coal mills, five 

of them in operation and one in stand-by. The disturbance considered for the third 

simulation test was a stop of a coal mill. This affects the combustion process, which 

results in a variation of the flue gases temperature and this, in turn generates 

disturbances of the steam temperature. The results of the simulation test are 

presented in Fig. 6.11 – Fig. 6.13. 
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FIGURE 6.11 Superheated steam temperature response 

 

 

FIGURE 6.12 Control signal variation 
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FIGURE 6.13 Spray water flow rate 

 

Fig. 6.11 shows an improved stability of the steam temperature, when the GPC 

controller is tested. The graphic results are backed by the numerical data given 

below. 

PI control: 

 peak error -0.47 ~0.6°C 

 standard deviation 0.18 °C 

 settling time 4800 s 

GPC control: 

 peak error -0.03 ~ 0.07 °C 

 standard deviation 0.01 °C 

 settling time 1400 s 

During the test, the average value for the valve opening area was 0.68 p.u., when the 

PI controller was used, compared to 0.67 p.u., with the GPC controller in operation. 

Regarding the water flow rate, the average value was 30.94 t/h, when using the PI 

controller and 30.32 t/h, when using the GPC controller. 

The average value of the control signal and the water flow rate are very similar, but 

as it can be observed from Fig. 6.12, the signal sent by the PI controller has 
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considerable transients compared to the GPC one. The settling time is improved by 

70% with the GPC controller in operation. 

 

6.6 Summary 

The chapter begins with an introduction to steam temperature control in power plants 

and its importance in the overall efficiency is underlined. Although PID control is 

still the most used control strategy to regulate the steam temperature, the new 

economic environment requires power plants to be more flexible in operation, which 

calls for more advanced control strategies. The controllers based on the algorithms 

belonging to MPC are able to deliver this new required control performance. The 

MPC algorithm chosen to develop the controller for regulating the steam temperature 

is GPC, because it can manage unstable systems as is the case with the SH.  

Steam temperature is regulated in SH by using attemperators, one controlling the 

steam temperature at the outlet of Platen SH and another one at the outlet of Final 

SH. The existing control structure for each one of them is a PI Cascade control 

structure. Because the steam temperature at the last stage of the SH, namely at the 

outlet of Final SH is considered to be the most important, the research focused on 

replacing the PI Cascade control structure from this part with a GPC based 

controller.  

After the CARMA model was identified, the GPC algorithm was coded in 

FORTRAN 95 and implemented in the power plant simulator. In order to assess the 

performance of the GPC controller against the PI Cascade control loop, three 

simulation tests were run for different scenarios. The variables monitored were the 
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steam temperature, the control signal sent to valve and the water flow rate from the 

attemperator. All scenarios were run both for the PI Cascade control loop and for the 

GPC controller. 

In the first simulation test, having the power plant operating at 500 MW steady state 

power output, a step increase change of 100 MW was made to the load command 

signal. In the second scenario the load command signal is ramped up from 500 MW 

to 600 MW, with a 10 MW/min rate of change, maintained there for the next 20 

minutes and then ramped down to the initial power output. In the third scenario, the 

combustion process is disturbed by a stop in operation of one of the coal mills.  

The results gathered from the simulation tests show a better temperature regulation 

when the GPC controller was in operation as to when the PI cascade control loop was 

used. 
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Chapter 7 

 

Conclusions and Suggestions for Future Research Work 

 

 
7.1 Summary 

The research work exposed in this thesis is concerned with the study of the dynamic 

responses of a supercritical coal-fired power plant, aiming to assess if it can comply 

with the frequency control requirements specified in the GB Grid Code. 

A complex power plant simulator, developed in collaboration with Tsinghua 

University from Beijing, China was used for running simulation tests under different 

operating scenarios.  

A study of the frequency control at power plant level was conducted and the 

requirements for a grid connected power plant were extracted from the GB Grid 

Code. A comparison of these requirements against eight other European and non-

European grid codes was then conducted. 

Based on the GB Grid Code frequency control requirements, several simulation tests 

were run and the results were processed and subjected to further analysis.  

The control architecture implemented in the simulator was studied and two major 

control loops of subsystems, whose performance could be improved were identified.  

Controllers based on MPC algorithms were designed and implemented in the power 

plant simulator to improve the performance of the previously identified control 

loops. Simulation tests for the existing control strategies and for the proposed ones 
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were run and the results and different performance indicators were compared and 

discussed afterwards. 

The conclusions which can be drawn based on my PhD research work summarized 

above are presented in the next section. 

 

7.2 Conclusions 

The operation of a steam power plant is based on the thermodynamic cycles of 

Rankine and Reheat, from where its efficiency can be calculated. A supercritical 

power plant uses a variation of these cycles, where the parameters for steam, namely 

the pressure and temperature have been raised above the critical point of water in 

order to increase its efficiency. In this way the power plant can reach an efficiency of 

up to 46% compared to 35% for a subcritical one. The main structural difference 

between a supercritical and a subcritical power plant is the lack of the drum. 

 

Power system frequency represents an indicator of the power system stability and its 

value is closely monitored at the power plant level and at the power system level. 

Frequency control requirements are specified in a technical document entitled Grid 

Code and an analysis of these requirements for several European and non-European 

countries was completed. The nominal frequency for all the analysed countries is 50 

Hz, allowing a variation of ±5 Hz from this value during normal operation and of -3 

Hz, +2 Hz in case of critical situations for the majority of the power systems. There 

are at least two frequency control strategies implemented by each country, which are 

generally named primary and secondary frequency control. 
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All the simulation tests performed in this research have been run on a complex power 

plant simulator designed after a field operating 600 MW supercritical coal-fired 

power plant. The requirements specified by the GB Grid Code for Primary 

Frequency Response and High Frequency Response were used to verify the dynamic 

responses of the power plant. The power plant was considered to operate first in 

fixed pressure control mode and then in variable pressure control mode and it 

resulted that the fastest response is achieved for the first control mode. 

The simulation results indicate that both frequency control requirements can’t be 

fulfilled by the power plant. The maximum load ramping of the power plant is not 

enough to comply with the requirements for Primary Frequency Response. 

 

Power plant control system is based on PID controllers, which are easy to implement 

and operate but due to the nonlinearity of the regulated processes, their performance 

is far from being optimal. The regulation of two variables, namely the coal flow rate 

and the temperature of the superheated steam is of utter importance for the power 

plant operation, therefore MPC based controllers were designed to improve the 

performance of these control loops.  

The new controller designed for the regulation of the coal flow rate is based on the 

DMC algorithm. Characteristic for this algorithm is the use of a discrete step 

response model to calculate the predictions of process outputs. Care needs to be 

taken of the choice for the amplitude of the step change signal, when the prediction 

model is identified. A set of linear inequality constrains on the amplitude of the 

control signal, on the rate of change of control inputs and on the amplitude of the 
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process outputs are considered by the controller when calculating the future control 

inputs. They represent the solution to a QP optimization problem which is solved at 

each time sample. Hildreth’s Algorithm, which uses a Primal-Dual method belonging 

to the Active Set was chosen to solve this problem, motivated by its ability to 

provide a near optimal solution, even for the case of ill conditioned problems. 

Simulation tests were run, consisting in a step increase/decrease of the load demand 

signal sent to the power plant, from power output levels of 550 MW and 450 MW, 

considering the case of the control loop being regulated by the PID controller and 

then by the DMC controller. The control loop performs better under DMC controller, 

with a steady evolution of the control input signal and with almost zero steady-state 

error between the set-point trajectory and the coal flow rate variable. There is also no 

need for re-identification of the prediction model or for re-tuning of the DMC 

controller’s parameters when power plant operating level was changed, as the 

controller’s performance didn’t deteriorate. Other monitored variables, like main 

steam pressure and temperature were found to be better regulated when the DMC 

controller was in operation. 

 

The control of the superheated steam temperature is of high importance, as it affects 

the efficiency of the power plant and the lifetime of the boiler and steam turbine. The 

high nonlinearity of this process makes it difficult for the PID controllers to regulate 

it. A controller based on GPC algorithm was designed to improve the performance of 

this control loop. The particularity of the GPC algorithm is the use of a discrete 

difference equation as the process model used to calculate the predicted outputs. A 
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rank four model was identified and describes with the required accuracy the process 

dynamics. The GPC controller replaced the two PI controllers from the cascade 

control loop. 

Several simulation tests were conducted for different scenarios from the power plant 

operating level of 500 MW. The results show an improved stability of the steam 

temperature with a very good tracking of the set-point trajectory when the GPC 

controller is in operation. Also the control signal sent to the motor actuating the 

attemperator’s valve is more stable in time, which means a longer service life for 

both the motor and the valve. Another improvement is represented by the decrease of 

the water flow rate sent by the attemperator. The GPC controller showed the same 

good performance when the power output level was changed to 600 MW, requiring 

no re-identification of the process model and no re-tuning of the parameters. 

 

7.3 Suggestions for future research work 

A power plant in general and a supercritical power plant in particular represents a 

very complex system, with many processes undergoing simultaneously and often 

interacting one with another. Therefore someone’s research work can only cover 

certain aspects of this topic, while many other areas of research still remain 

uncovered. 

As suggestions for future development of the software it should be investigated the 

introduction of a gain scheduling scheme for the PID controllers, which will allow an 

optimal performance of the power plant over a wider range of operating points. 
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It would also be beneficial for frequency control analysis if a simplified power 

system model would be connected to the simulator, so that more complex studies can 

be conducted and the impact on power system frequency as a result of power plant’s 

actions to be better understood. 

If the Grid Code requirements cannot be relaxed, than other technical solutions 

should be investigated, which will allow the supercritical coal-fired power plant to 

participate to frequency control in the grid. 

The MPC based controllers that were designed and implemented in the power plant 

simulator, proved a better control performance of the respective processes against the 

existing PID controllers. Other control loops can benefit as well from the 

implementation of MPC based controllers. 

A MIMO control strategy based on MPC algorithms should be investigated, as in 

this way the interactions between the simultaneously operating processes would be 

considered. 

If the nonlinear model of the process plant is available, then this can be used as the 

prediction model in Nonlinear Model Predictive Control (NMPC). In this case the 

performance of the closed loop can be increased significantly. Although the 

complexity of the algorithm is much increased, with the development of the 

computation technology this can be implemented. Using NMPC might be another 

way of improving the performance of the power plant and research in this area 

should be conducted. 
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Due to frequent fluctuations of the energy markets, a power plant should be as 

flexible as possible in the choice of the fuel. As an example in this regard, studies 

can be carried on the feasibility of a supercritical power plant to operate on biomass. 

The requirements on reducing the CO2 emissions demand adoption of new 

technologies, which will increase efficiency and are also suitable for retrofit to 

existing power plants. In this aspect the impact of circulating fluidized beds and coal 

gasification technologies on supercritical power plant is another research theme. 

Finally applying Carbon Capture and Storage technologies to a supercritical power 

plant should also be included in a future research work. 
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Appendix A 

FORTRAN code for DMC Controller 

 
 SUBROUTINE CONSTRAINED 
  
 REAL, DIMENSION (147) :: Model = (/0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0538,0.1045,0.1523,0.1974,0.24,0.28,0.3178, 
     @ 0.3535,0.3871,0.4188,0.4486,0.4768,0.5034,0.5284,0.552, 
     @ 0.5743,0.5953,0.6151,0.6337,0.6513,0.6679,0.6835,0.6983, 
     @ 0.7122,0.7253,0.7377,0.7493,0.7603,0.7707,0.7804,0.7897, 
     @ 0.7983,0.8065,0.8143,0.8215,0.8284,0.8349,0.841,0.8467, 
     @ 0.8522,0.8573,0.8621,0.8666,0.8709,0.875,0.8788,0.8824, 
     @ 0.8858,0.889,0.892,0.8948,0.8975,0.9,0.9024,0.9046,0.9068, 
     @ 0.9088,0.9106,0.9124,0.9141,0.9157,0.9172,0.9186,0.9199, 
     @ 0.9211,0.9223,0.9234,0.9245,0.9254,0.9264,0.9272,0.9281, 
     @ 0.9288,0.9296,0.9303,0.9309,0.9315,0.9321,0.9327,0.9332, 
     @ 0.9337,0.9341,0.9346,0.935,0.9354,0.9357,0.9361,0.9364, 
     @ 0.9367,0.937,0.9372,0.9375,0.9377,0.938,0.9382,0.9384, 
     @ 0.9386,0.9387,0.9389,0.9391,0.9392,0.9394,0.9395,0.9396, 
     @ 0.9397,0.9399,0.94,0.9401,0.9402,0.9402,0.9403,0.9404, 
     @ 0.9405,0.9405,0.9406,0.9407,0.9407,0.9408,0.9408,0.9409, 
     @ 0.9409,0.941,0.941,0.9411,0.9411,0.9411,0.9412,0.9412, 
     @ 0.9412,0.9413,0.9413,0.9413,0.9413,0.9413,0.9414,0.9414, 
     @ 0.9414,0.9414,0.9414,0.9415/) 
      
      INTEGER, PARAMETER :: D = SIZE ( Model ) ! size of the model 
      INTEGER, PARAMETER :: N1 = 8   ! process delay 
      INTEGER, PARAMETER :: N = 147  ! prediction horizon 
 INTEGER, PARAMETER :: NU = 100  ! control horizon 
 REAL, PARAMETER :: Lambda = 10.00  ! control weight 
 REAL, DIMENSION(N-N1+1, D-1) :: MP  ! matrix to calc. free component 
     REAL, DIMENSION(N-N1+1, NU) :: M  ! dynamic matrix for forced component 
     REAL, DIMENSION(NU, NU) :: ID  ! identity matrix 
 REAL, DIMENSION(NU, NU) :: H   ! matrix H from cost function, hessian 
 REAL, DIMENSION(NU, NU) :: J   ! lower triangular matrix for input control 
 REAL, DIMENSION(2*(2*NU+N-N1+1), NU) :: A ! left hand constraints matrix 
 REAL, DIMENSION(NU, 1) :: Umin  ! minimum input amplitude matrix 
 REAL, DIMENSION(NU, 1) :: Umax  ! maximum input amplitude matrix 
 REAL, DIMENSION(N-N1+1, 1) :: Ymin  ! minimum output amplitude matrix 
 REAL, DIMENSION(N-N1+1, 1) :: Ymax  ! maximum output amplitude matrix 
 REAL, DIMENSION(NU, 1) :: DUmax  ! maximum rate input matrix 
 REAL, DIMENSION(N-N1+1, 1) :: Y   ! current measurements matrix 
 REAL, DIMENSION(NU,1) :: U   ! last control input 
 REAL, SAVE, DIMENSION(D-1) :: DUp_vec = (/0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 
     @ 0.0,0.0,0.0/)    ! (D-1) past control inputs vector 
       REAL, DIMENSION(D-1,1) :: DUp  ! (D-1) past control inputs 
 REAL, DIMENSION(N-N1+1,1) :: Y_zero  ! free component trajectory 
 REAL, DIMENSION(2*(2*NU+N-N1+1), 1) :: B ! right hand constraints matrix 
 REAL, DIMENSION(N-N1+1,1) :: Ysp  ! set point matrix 
 REAL, DIMENSION(NU,1) :: F   ! matrix F from cost function, gradient 
 INTEGER MX, Lim 
 REAL, DIMENSION(NU, NU) :: INV_H  ! the inverse of matrix H 
 REAL, DIMENSION(NU,1) :: DU   ! future control inputs 
 REAL, DIMENSION(D) :: DUp_vecR  ! updated vector for (D-1) past control 
 INTEGER, SAVE :: T=0 
  
 T=T+1            
      
     CALL Matrix_MMP(Model, N1, N, D, NU, MP, M) 
      
     CALL Matrix_ID(NU, ID) 
      
     H = 2*(MATMUL(TRANSPOSE(M), M) + Lambda*ID) 
 
     CALL Matrix_J(NU, J) 
      
     CALL Matrix_A(N1, N, NU, ID, J, M, A) 
      
     Umin = 0 
 Umax = 1 
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 Ymin = 0 
 Ymax = 1 
  
 DUmax = 0.004 
  
 Y = CBFF_TOTALFUELQn 
  
 U = CBFF_DBM 
  
 DUp = RESHAPE ( DUp_vec, (/D-1,1/) ) 
  
 Y_zero = Y + MATMUL(MP, DUp) 
  
 CALL Matrix_B(NU, N, N1, Umin, Umax, Ymin, DUmax, U, Y_zero, B) 
  
 Ysp = CBFF_TOTALFUELCMDn 
  
 F = (-2) * MATMUL(TRANSPOSE(M),(Ysp - Y_zero)) 
  
 MX = NU 
         Lim = MX 
      
     CALL MATINV (H, Lim, MX) 
      
     INV_H = H 
      
     CALL HILDRETH (NU, INV_H, H, F, A, B, DU) 
      
     IF (T==1) THEN 
 CBFF_DBM_DMC=CBFF_DBM+DU(1,1) 
 ELSE 
 CBFF_DBM_DMC=CBFF_DBM_DMC+DU(1,1) 
 END IF 
  
 DUp_vecR = (/DU(1,1),DUp_vec/) 
      DO i = 1, D-1 
           DUp_vec(i) = DUp_vecR(i) 
      END DO 
      
 END SUBROUTINE CONSTRAINED 
  
 SUBROUTINE Matrix_MMP(EModel1, EN1, EN, ED, ENU, EMP, EM) 
       
      INTEGER EN1 
     INTEGER EN 
     INTEGER ED 
     REAL, DIMENSION(ED) :: EModel1 
     REAL, DIMENSION(EN-EN1+1, ED-1):: EMP 
     REAL, DIMENSION(EN-1) :: EModel2 
     REAL, DIMENSION(EN+ED-1) :: EModel3 
     INTEGER k 
     INTEGER ENU 
     REAL, DIMENSION(EN-EN1+1, ENU) :: EM 
     REAL, DIMENSION(EN-ED) :: EModel4 
     REAL, DIMENSION(EN) :: EModel5 
    
     DO i = 1, EN-1 
         EModel2(i) = EModel1(ED) 
     END DO 
 
      EModel3 = (/EModel1, EModel2/) 
     
     DO j = 1, ED-1 
                 k=0 
             DO i = EN1+j, EN+j 
                  k = k+1 
                  EMP(k,j) = EModel3(i) - EModel3(j) 
             END DO 
     END DO 
      
     DO i = 1, EN-ED 
         EModel4(i) = EModel1(ED) 
     END DO 
     
     EModel5 = (/EModel1, EModel4/) 
     
     DO i = 1, EN-EN1+1 
                 DO j = 1, ENU 
                    IF(i < j) THEN     
                        EM(i,j) = 0 
                    ELSE 
                        EM(i,j) = EModel5(i-j+EN1) 
                    END IF 
                 END DO 
     END DO 
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      END SUBROUTINE Matrix_MMP 
       
      SUBROUTINE Matrix_ID(ENU, EID) 
     
     INTEGER ENU 
     REAL, DIMENSION(ENU, ENU) :: EID 
      
     DO i = 1, ENU 
                 DO j = 1, ENU 
                    IF(i == j) THEN     
                        EID(i,j) = 1 
                    ELSE 
                        EID(i,j) = 0 
                    END IF 
                 END DO 
     END DO 
 
     END SUBROUTINE Matrix_ID 
      
     SUBROUTINE Matrix_J(ENU, EJ) 
  
 INTEGER ENU 
     REAL, DIMENSION(ENU, ENU) :: EJ 
  
 DO i = 1, ENU 
         DO j = 1, ENU 
                    IF(i >= j) THEN     
                        EJ(i,j) = 1 
                    ELSE 
                        EJ(i,j) = 0 
                    END IF 
                 END DO 
         END DO 
   
      END SUBROUTINE Matrix_J 
       
      SUBROUTINE Matrix_A(EN1, EN, ENU, EID, EJ, EM, EA) 
   
 INTEGER EN1 
     INTEGER EN 
     INTEGER ENU 
     REAL, DIMENSION(ENU, ENU) :: EJ 
     REAL, DIMENSION(EN-EN1+1, ENU) :: EM 
     REAL, DIMENSION(ENU, ENU) :: EID    
     REAL, DIMENSION(2*(2*ENU+EN-EN1+1), ENU) :: EA 
     REAL, DIMENSION(ENU*ENU) :: vecJ 
     REAL, DIMENSION((EN-EN1+1)*ENU) :: vecM 
     REAL, DIMENSION(ENU*ENU) :: vecID 
     REAL, DIMENSION(:), ALLOCATABLE :: vecA  
      
     vecJ = RESHAPE(TRANSPOSE(EJ), SHAPE=(/ENU*ENU/)) 
     vecM = RESHAPE(TRANSPOSE(EM), SHAPE=(/(EN-EN1+1)*ENU/)) 
     vecID = RESHAPE(TRANSPOSE(EID), SHAPE=(/ENU*ENU/)) 
C    
  IF(ALLOCATED(vecA)) DEALLOCATE(vecA) 
     ALLOCATE( vecA(2*(2*ENU+EN-EN1+1)*ENU) ) 
C 
     vecA = (/(-1)*vecID, vecID, (-1)*vecJ, vecJ, (-1)*vecM, vecM/) 
     EA = RESHAPE(vecA,SHAPE=(/2*(2*ENU+EN-EN1+1),ENU/),ORDER=(/2,1/)) 
C           
     IF(ALLOCATED(vecA)) DEALLOCATE(vecA) 
C      
 END SUBROUTINE Matrix_A 
  
 SUBROUTINE Matrix_B(ENU, EN, EN1, EUmin, EUmax, EYmin, EDUmax, EU, EY_zero, EB) 
  
 INTEGER ENU, EN, EN1 
 REAL, DIMENSION(ENU, 1) :: EUmin    
 REAL, DIMENSION(ENU, 1) :: EUmax    
 REAL, DIMENSION(EN-EN1+1, 1) :: EYmin   
 REAL, DIMENSION(EN-EN1+1, 1) :: EYmax   
 REAL, DIMENSION(ENU, 1) :: EDUmax 
 REAL, DIMENSION(ENU,1) :: EU 
 REAL, DIMENSION(EN-EN1+1,1) :: EY_zero 
 REAL, DIMENSION(2*(2*ENU+EN-EN1+1), 1) :: EB 
 REAL, DIMENSION(ENU) :: Uminvec  
 REAL, DIMENSION(ENU) :: Umaxvec    
 REAL, DIMENSION(EN-EN1+1) :: Yminvec   
 REAL, DIMENSION(EN-EN1+1) :: Ymaxvec   
 REAL, DIMENSION(ENU) :: DUmaxvec 
 REAL, DIMENSION(:), ALLOCATABLE :: EBvec 
  
 DUmaxvec = RESHAPE(EDUmax,SHAPE=(/ENU/)) 
 Uminvec = RESHAPE((-1)*EUmin + EU,SHAPE=(/ENU/)) 
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 Umaxvec = RESHAPE(EUmax - EU,SHAPE=(/ENU/)) 
 Yminvec = RESHAPE((-1)*EYmin + EY_zero,SHAPE=(/EN-EN1+1/)) 
 Ymaxvec = RESHAPE(EYmax - EY_zero,SHAPE=(/EN-EN1+1/)) 
C    
  IF(ALLOCATED(EBvec)) DEALLOCATE(EBvec) 
     ALLOCATE( EBvec(2*(2*ENU+EN-EN1+1)) ) 
C  
 EBvec = (/DUmaxvec, DUmaxvec, Uminvec, Umaxvec, Yminvec, Ymaxvec/) 
 EB = RESHAPE(EBvec,SHAPE=(/2*(2*ENU+EN-EN1+1), 1/)) 
C  
 IF(ALLOCATED(EBvec)) DEALLOCATE(EBvec) 
C  
 END SUBROUTINE Matrix_B 
  
 SUBROUTINE MATINV (A, LDA, N) 
   
! 
!   * INDICATES PARAMETERS REQUIRING INPUT VALUES  
! 
       PARAMETER (MX=100) 
       DIMENSION A(LDA,*),IEX(MX,2) 
       IFLAG = 0 
! 
!--- CHECK CONSISTENCY OF PASSED PARAMETERS 
! 
       IF (N.GT.LDA) THEN 
             IFLAG = -1  
             RETURN 
       END IF 
! 
!--- COMPUTE A = LU BY THE CROUT REDUCTION WHERE L IS LOWER TRIANGULAR 
!--- AND U IS UNIT UPPER TRIANGULAR 
! 
       NEX = 0 
       DO K = 1, N 
           DO I = K, N 
             S = A(I,K) 
              DO L = 1, K-1 
                S = S-A(I,L)*A(L,K) 
              END DO 
             A(I,K) = S 
           END DO 
! 
!--- INTERCHANGE ROWS IF NECESSARY 
! 
         Q = 0.0 
         L = 0 
          DO I = K, N 
             R = ABS(A(I,K)) 
             IF (R.GT.Q) THEN 
                Q = R 
                L = I 
             END IF 
          END DO 
         IF (L.EQ.0) THEN 
            IFLAG = K 
             
            RETURN 
         END IF 
         IF (L.NE.K) THEN 
            NEX = NEX+1 
            IF (NEX.GT.MX) THEN 
               IFLAG = -2 
               RETURN 
            END IF 
            IEX(NEX,1) = K 
            IEX(NEX,2) = L 
            DO J = 1, N 
               Q = A(K,J) 
               A(K,J) = A(L,J) 
               A(L,J) = Q 
            END DO 
         END IF 
! 
!--- END ROW INTERCHANGE SECTION 
! 
          DO J = K+1, N 
             S = A(K,J) 
             DO L = 1, K-1 
                S = S-A(K,L)*A(L,J) 
             END DO 
             A(K,J) = S/A(K,K)  
          END DO 
         END DO 
! 
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!--- INVERT THE LOWER TRIANGLE L IN PLACE 
! 
       DO K = N, 1, -1 
            A(K,K) = 1.0/A(K,K) 
          DO I = K-1, 1, -1  
             S = 0.0  
             DO J = I+1, K 
                S = S+A(J,I)*A(K,J) 
             END DO 
             A(K,I) = -S/A(I,I) 
          END DO 
         END DO 
! 
!--- INVERT THE UPPER TRIANGLE U IN PLACE  
! 
       DO K = N, 1, -1 
            DO I = K-1, 1, -1 
                 S = A(I,K) 
               DO J = I+1, K-1 
                  S = S+A(I,J)*A(J,K) 
               END DO 
                 A(I,K) = -S 
            END DO 
         END DO 
! 
!--- COMPUTE INV(A) = INV(U)*INV(L) 
! 
       DO I = 1, N 
            DO J = 1, N 
              IF (J.GT.I) THEN 
                 S = 0.0 
                 L = J 
              ELSE 
                 S = A(I,J) 
                 L = I+1 
              END IF 
              DO K = L, N 
                 S = S+A(I,K)*A(K,J) 
              END DO 
              A(I,J) = S 
            END DO 
         END DO 
! 
!--- INTERCHANGE COLUMNS OF INV(A) TO REVERSE EFFECT OF ROW  
!--- INTERCHANGES OF A 
! 
       DO I = NEX, 1, -1 
            K = IEX(I,1) 
            L = IEX(I,2) 
           DO J = 1, N 
              Q = A(J,K) 
              A(J,K) = A(J,L) 
              A(J,L) = Q 
           END DO 
         END DO 
C 
       END SUBROUTINE MATINV 
        
       SUBROUTINE HILDRETH (NX, Hinv, H, F, A, B, eta) 
             
            INTEGER NX 
            REAL, DIMENSION (NX,NX) :: H 
            REAL, DIMENSION (NX,1) :: F 
            REAL, DIMENSION (4*NX,NX) :: A 
            REAL, DIMENSION (4*NX,1) :: B 
            REAL, DIMENSION (NX,1) :: eta 
C           REAL, DIMENSION (4*NX,1) :: X_ini 
            REAL, DIMENSION(:,:), ALLOCATABLE :: X_ini 
            REAL, DIMENSION(:,:), ALLOCATABLE :: Lambda 
            REAL, DIMENSION(:,:), ALLOCATABLE :: Lambda_p 
            REAL, DIMENSION (NX,NX) :: Hinv 
C           REAL, DIMENSION (NX,NX) :: NHinv 
            REAL, DIMENSION(:,:), ALLOCATABLE :: NHinv 
C           REAL, DIMENSION (4*NX,4*NX) :: P 
            REAL, DIMENSION(:,:), ALLOCATABLE :: P 
C           REAL, DIMENSION (4*NX,1) :: D 
            REAL, DIMENSION(:,:), ALLOCATABLE :: D 
            REAL, DIMENSION (1,1) :: EL 
            REAL, DIMENSION (4*NX) :: Z 
            REAL, DIMENSION (NX) :: C 
            INTEGER k, i, km 
            REAL AL, W, LA, G 
! 
!   * CALCULATES THE NEGATIVE OF MATRIX H 
! 
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 IF(ALLOCATED(NHinv)) DEALLOCATE(NHinv) 
     ALLOCATE( NHinv(NX,NX) ) 
! 
            NHinv = (-1)*Hinv 
! 
!   * CALCULATES THE GLOBAL OPTIMAL SOLUTION 
! 
            eta = MATMUL(NHinv, F) 
            k = 0        
! 
!   * CHECKS THE INEQUALITY CONSTRAINTS FOR THE GLOBAL SOLUTION 
! 
            DO i = 1, 4*NX 
                C = A(i,:) * eta(:,1) 
                G = SUM(C) 
                 IF (G > B(i,1)) THEN 
                    k = k + 1 
                 ELSE 
                    k = k + 0 
                 END IF 
            END DO 
             
            IF (k == 0) THEN 
                RETURN 
            END IF 
! 
!   * CALCULATES THE MATRICES FOR THE DUAL PROBLEM 
!   
  IF(ALLOCATED(P)) DEALLOCATE(P) 
     ALLOCATE( P(4*NX,4*NX) ) 
C  
 
            P = MATMUL(MATMUL(A, Hinv), TRANSPOSE(A)) 
C    
  IF(ALLOCATED(D)) DEALLOCATE(D) 
     ALLOCATE( D(4*NX,1) ) 
C  
            D = B + MATMUL(MATMUL(A, Hinv), F) 
! 
!   * INITIATES THE LAGRANGE MULTIPLIERS 
!    
  IF(ALLOCATED(X_ini)) DEALLOCATE(X_ini) 
     ALLOCATE( X_ini(4*NX,1) ) 
C            
           X_ini = 0.0 
C    
  IF(ALLOCATED(Lambda)) DEALLOCATE(Lambda) 
     ALLOCATE( Lambda(4*NX,1) ) 
C             
           Lambda = X_ini 
           AL = 10.0 
! 
!   * CALCULATES THE LAGRANGE MULTIPLIERS THROUGH ITTERATIONS 
!    
  IF(ALLOCATED(Lambda_p)) DEALLOCATE(Lambda_p) 
     ALLOCATE( Lambda_p(4*NX,1) ) 
C         
         DO km = 1, 38 
             Lambda_p = Lambda 
             DO i = 1, 4*NX 
                Z = P(i,:) * Lambda(:,1)  
                W = SUM(Z) - P(i,i) * Lambda(i,1) 
                W = W + D(i,1) 
                LA = -W / P(i,i) 
                Lambda(i,1) = MAX(0.0,LA) 
             END DO 
             EL = MATMUL(TRANSPOSE(Lambda - Lambda_p), (Lambda - Lambda_p)) 
             AL = EL(1,1) 
             IF (AL < 10E-8) THEN 
                 EXIT  
             END IF 
         END DO 
! 
!   * CALCULATES THE PRIMAL VARIABLES 
!  
         eta = MATMUL(NHinv, F) - MATMUL(MATMUL(Hinv, TRANSPOSE(A)), Lambda) 
         IF(ALLOCATED(P)) DEALLOCATE(P) 
         IF(ALLOCATED(D)) DEALLOCATE(D) 
         IF(ALLOCATED(NHinv)) DEALLOCATE(NHinv) 
         IF(ALLOCATED(Lambda_p)) DEALLOCATE(Lambda_p) 
         IF(ALLOCATED(Lambda)) DEALLOCATE(Lambda) 
         IF(ALLOCATED(X_ini)) DEALLOCATE(X_ini) 
C         
         END SUBROUTINE HILDRETH 
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Appendix B 

FORTRAN code for GPC Controller 

 
 SUBROUTINE GPCATTEMP 
  
 INTEGER, PARAMETER :: Na = 4 
 INTEGER, PARAMETER :: Nb = 52 
 INTEGER, PARAMETER :: N = 5 
 REAL, DIMENSION(N*(Na+1)) :: F_vector 
 REAL, DIMENSION(N, Na+1) :: F 
 REAL, DIMENSION(N*Nb) :: G_prime_vector 
 REAL, DIMENSION(N, Nb) :: G_prime 
 REAL, DIMENSION(N*N) :: K_vector 
 REAL, DIMENSION(N, N) :: K 
 REAL, DIMENSION(N, 1) :: W 
 REAL, SAVE, DIMENSION(Na+1) :: Yp_vector = 0.0 
 REAL, DIMENSION(Na+1, 1) :: Yp 
 REAL, DIMENSION(Na+2) :: Yp_vec 
 REAL, SAVE, DIMENSION(Nb) :: DUp_vector = 0.0 
 REAL, DIMENSION(Nb, 1) :: DUp 
 REAL, DIMENSION(Nb+1) :: DUp_vec 
 REAL, DIMENSION(N, 1) :: DU 
 REAL, DIMENSION(N, 1) :: Y_zero 
! 
!========Horizon N=5=================================================== 
! 
C GO TO 500 
 F_vector = (/ 26.1532, 26.6303, 27.1058, 27.5798, 28.0522, 
     @        -5.8311, -5.9477, -6.0639, -6.1798, -6.2953, 
     @       -14.3220,-14.5909,-14.8591,-15.1264,-15.3927, 
     @        -9.3289, -9.5011, -9.6727, -9.8436,-10.0142, 
     @         4.3287,  4.4094,  4.4899,  4.5700,  4.6500 /) 
       
         F = RESHAPE ( F_vector, (/N, Na+1/) ) 
  
      G_prime_vector = (/ -0.0301,-0.0300,-0.0925,-0.1155,-0.1561, 
     @       -0.0300,-0.0925,-0.1155,-0.1561,-0.2014, 
     @       -0.0925,-0.1155,-0.1561,-0.2014,-0.2328, 
     @       -0.1155,-0.1561,-0.2014,-0.2328,-0.2766, 
     @       -0.1561,-0.2014,-0.2328,-0.2766,-0.3142, 
     @       -0.2014,-0.2328,-0.2766,-0.3142,-0.3516, 
     @       -0.2328,-0.2766,-0.3142,-0.3516,-0.3922, 
     @       -0.2766,-0.3142,-0.3516,-0.3922,-0.4291, 
     @       -0.3142,-0.3516,-0.3922,-0.4291,-0.4679, 
     @       -0.3516,-0.3922,-0.4291,-0.4679,-0.5063, 
     @       -0.3922,-0.4291,-0.4679,-0.5063,-0.5439, 
     @       -0.4291,-0.4679,-0.5063,-0.5439,-0.5822, 
     @       -0.4679,-0.5063,-0.5439,-0.5822,-0.6198, 
     @       -0.5063,-0.5439,-0.5822,-0.6198,-0.6575, 
     @       -0.5439,-0.5822,-0.6198,-0.6575,-0.6952, 
     @       -0.5822,-0.6198,-0.6575,-0.6952,-0.7325, 
     @       -0.6198,-0.6575,-0.6952,-0.7325,-0.7699, 
     @       -0.6575,-0.6952,-0.7325,-0.7699,-0.8071, 
     @       -0.6952,-0.7325,-0.7699,-0.8071,-0.8441, 
     @       -0.7325,-0.7699,-0.8071,-0.8441,-0.8811, 
     @       -0.7699,-0.8071,-0.8441,-0.8811,-0.9179, 
     @       -0.8071,-0.8441,-0.8811,-0.9179,-0.9546, 
     @       -0.8441,-0.8811,-0.9179,-0.9546,-0.9912, 
     @       -0.8811,-0.9179,-0.9546,-0.9912,-1.0277, 
     @       -0.9179,-0.9546,-0.9912,-1.0277,-1.0640, 
     @       -0.9546,-0.9912,-1.0277,-1.0640,-1.1003, 
     @       -0.9912,-1.0277,-1.0640,-1.1003,-1.1364, 
     @       -1.0277,-1.0640,-1.1003,-1.1364,-1.1724, 
     @       -1.0640,-1.1003,-1.1364,-1.1724,-1.2082, 
     @       -1.1003,-1.1364,-1.1724,-1.2082,-1.2440, 
     @       -1.1364,-1.1724,-1.2082,-1.2440,-1.2796, 
     @       -1.1724,-1.2082,-1.2440,-1.2796,-1.3152, 
     @       -1.2082,-1.2440,-1.2796,-1.3152,-1.3506, 
     @       -1.2440,-1.2796,-1.3152,-1.3506,-1.3859, 
     @       -1.2796,-1.3152,-1.3506,-1.3859,-1.4211, 
     @       -1.3152,-1.3506,-1.3859,-1.4211,-1.4561, 
     @       -1.3506,-1.3859,-1.4211,-1.4561,-1.4911, 
     @       -1.3859,-1.4211,-1.4561,-1.4911,-1.5259, 
     @       -1.4211,-1.4561,-1.4911,-1.5259,-1.5606, 
     @       -1.4561,-1.4911,-1.5259,-1.5606,-1.5952, 
     @       -1.4911,-1.5259,-1.5606,-1.5952,-1.6297, 
     @       -1.5259,-1.5606,-1.5952,-1.6297,-1.6641, 
     @       -1.5606,-1.5952,-1.6297,-1.6641,-1.6984, 
     @       -1.5952,-1.6297,-1.6641,-1.6984,-1.7325, 
     @       -1.6297,-1.6641,-1.6984,-1.7325,-1.7666, 
     @       -1.6641,-1.6984,-1.7325,-1.7666,-1.8005, 
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     @       -1.6984,-1.7325,-1.7666,-1.8005,-1.8344, 
     @       -1.7325,-1.7666,-1.8005,-1.8344,-1.8681, 
     @       -1.7666,-1.8005,-1.8344,-1.8681,-1.0573, 
     @       -1.8005,-1.8344,-1.8681,-1.0573,-1.2814, 
     @       -1.8344,-1.8681,-1.0573,-1.2814,-1.7782, 
     @       -1.8681,-1.0573,-1.2814,-1.7782,-0.3613 /) 
 
 G_prime = RESHAPE ( G_prime_vector, (/N, Nb/) ) 
!  
!========Lambda = 10=================================================== 
! 
 GO TO 100  
 K_vector = (/ -0.0030, 4.58E-06, 2.14E-06, 1.87E-06, 1.04E-06, 
     @        -0.0030,  -0.0030, 3.52E-06, 2.98E-06, 1.88E-06, 
     @        -0.0030,  -0.0030,  -0.0030, 3.51E-06, 2.14E-06, 
     @        -0.0092,  -0.0030,  -0.0030,  -0.0030, 4.58E-06, 
     @        -0.0115,  -0.0092,  -0.0030,  -0.0030,  -0.0030 /) 
100 CONTINUE 
!====================================================================== 
! 
!======== Lambda = 1000================================================= 
! 
 GO TO 200 
 K_vector = (/ -3.0099E-05, 4.5954E-10, 2.1527E-10, 1.8810E-10, 
     @         1.0464E-10, 
     @        -3.0099E-05,-3.0099E-05, 3.5325E-10, 2.9880E-10, 
     @         1.8844E-10, 
     @        -2.9999E-05,-3.0099E-05,-3.0100E-05, 3.5253E-10, 
     @         2.1527E-10, 
     @        -9.2497E-05,-2.9998E-05,-3.0099E-05,-3.0099E-05, 
     @         4.5945E-10, 
     @        -1.1550E-04,-9.2497E-05,-2.9999E-05,-2.9999E-05, 
     @        -3.0099E-05 /) 
200 CONTINUE 
!====================================================================== 
! 
!======== Lambda = 500================================================== 
! 
 GO TO 300 
      K_vector = (/ -6.0197E-05, 1.8381E-09, 8.6106E-10, 7.5235E-10, 
     @         4.1854E-10, 
     @        -6.0195E-05,-6.0197E-05, 1.4129E-09, 1.1951E-09, 
     @         7.5374E-10, 
     @        -5.9994E-05,-6.0196E-05,-6.0198E-05, 1.4101E-09, 
     @         8.6106E-10, 
     @        -1.8499E-04,-5.9992E-05,-6.0196E-05,-6.0197E-05, 
     @         1.8377E-09, 
     @        -2.3098E-04,-1.8499E-04,-5.9994E-05,-5.9995E-05, 
     @        -6.0197E-05 /) 
300 CONTINUE 
!====================================================================== 
!  
!======== Lambda = 100================================================== 
! 
         GO TO 400 
      K_vector = (/ -3.0093E-04, 4.5938E-08, 2.1520E-08, 1.8803E-08, 
     @         1.0460E-08, 
     @        -3.0088E-04,-3.0092E-04, 3.5312E-08, 2.9869E-08, 
     @         1.8838E-08, 
     @        -2.9986E-04,-3.0091E-04,-3.0096E-04, 3.5241E-08, 
     @         2.1520E-08, 
     @        -9.2469E-04,-2.9980E-04,-3.0091E-04,-3.0092E-04, 
     @         4.5928E-08, 
     @        -1.1545E-03,-9.2469E-04,-2.9986E-04,-2.9988E-04, 
     @        -3.0093E-04 /) 
400 CONTINUE 
!====================================================================== 
! 
!======== Lambda = 300================================================== 
! 
C GO TO 40 
      K_vector = (/ -1.0033E-04, 5.1055E-09, 2.3917E-09, 2.0898E-09, 
     @         1.1626E-09, 
     @        -1.0032E-04,-1.0032E-04, 3.9246E-09, 3.3197E-09, 
     @         2.0936E-09, 
     @        -9.9984E-05,-1.0032E-04,-1.0033E-04, 3.9167E-09, 
     @         2.3917E-09, 
     @        -3.0830E-04,-9.9978E-05,-1.0032E-04,-1.0032E-04, 
     @         5.1045E-09, 
     @        -3.8495E-04,-3.0830E-04,-9.9984E-05,-9.9987E-05, 
     @        -1.0033E-04 /) 
C40 CONTINUE 
!====================================================================== 
C500 CONTINUE 
!========End Horizon N=5=============================================== 



171 
 

 
!========Horizon N=10================================================== 
 GO TO 600  
 F_vector = (/ 222.4921, 231.9219, 240.9855, 249.6511, 257.8897, 
      @        265.6751, 272.9839, 279.7956, 286.0927, 291.8607, 
      @       -427.9897,-446.8949,-465.1119,-482.5755,-499.2258, 
      @       -515.0084,-529.8746,-543.7810,-556.6902,-568.5708, 
      @        206.4977, 215.9731, 225.1266, 233.9246, 242.3363, 
      @        250.3335, 257.8908, 264.9855, 271.5976, 277.7102 /) 
      F = RESHAPE ( F_vector, (/N, Na+1/) ) 
       
      G_prime_vector = (/ 0.0039, 0.0087, 0.0152, 0.0235, 0.0334, 
      @       0.0447, 0.0575, 0.0717, 0.0870, 0.1034, 
      @       0.0087, 0.0152, 0.0235, 0.0334, 0.0447, 
      @       0.0575, 0.0717, 0.0870, 0.1034, 0.1209, 
      @       0.0152, 0.0235, 0.0334, 0.0447, 0.0575, 
      @       0.0717, 0.0870, 0.1034, 0.1209, 0.1392, 
      @       0.0235, 0.0334, 0.0447, 0.0575, 0.0717, 
      @       0.0870, 0.1034, 0.1209, 0.1392, 0.1583, 
      @       0.0334, 0.0447, 0.0575, 0.0717, 0.0870, 
      @       0.1034, 0.1209, 0.1392, 0.1583, 0.1780, 
      @       0.0447, 0.0575, 0.0717, 0.0870, 0.1034, 
      @       0.1209, 0.1392, 0.1583, 0.1780, 0.1983, 
      @       0.0575, 0.0717, 0.0870, 0.1034, 0.1209, 
      @       0.1392, 0.1583, 0.1780, 0.1983, 0.2190, 
      @       0.0717, 0.0870, 0.1034, 0.1209, 0.1392, 
      @       0.1583, 0.1780, 0.1983, 0.2190, 0.2401, 
      @       0.0870, 0.1034, 0.1209, 0.1392, 0.1583, 
      @       0.1780, 0.1983, 0.2190, 0.2401, 0.2614, 
      @       0.1034, 0.1209, 0.1392, 0.1583, 0.1780, 
      @       0.1983, 0.2190, 0.2401, 0.2614, 0.2828, 
      @       0.1209, 0.1392, 0.1583, 0.1780, 0.1983, 
      @       0.2190, 0.2401, 0.2614, 0.2828, 0.3041, 
      @       0.1392, 0.1583, 0.1780, 0.1983, 0.2190, 
      @       0.2401, 0.2614, 0.2828, 0.3041, 0.3254, 
      @       0.1583, 0.1780, 0.1983, 0.2190, 0.2401, 
      @       0.2614, 0.2828, 0.3041, 0.3254, 0.3466, 
      @       0.1780, 0.1983, 0.2190, 0.2401, 0.2614, 
      @       0.2828, 0.3041, 0.3254, 0.3466, 0.3674, 
      @       0.1983, 0.2190, 0.2401, 0.2614, 0.2828, 
      @       0.3041, 0.3254, 0.3466, 0.3674, 0.3878, 
      @       0.2190, 0.2401, 0.2614, 0.2828, 0.3041, 
      @       0.3254, 0.3466, 0.3674, 0.3878, 0.4078, 
      @       0.2401, 0.2614, 0.2828, 0.3041, 0.3254, 
      @       0.3466, 0.3674, 0.3878, 0.4078, 0.4273, 
      @       0.2614, 0.2828, 0.3041, 0.3254, 0.3466, 
      @       0.3674, 0.3878, 0.4078, 0.4273, 0.4461, 
      @       0.2828, 0.3041, 0.3254, 0.3466, 0.3674, 
      @       0.3878, 0.4078, 0.4273, 0.4461, 0.4643, 
      @       0.3041, 0.3254, 0.3466, 0.3674, 0.3878, 
      @       0.4078, 0.4273, 0.4461, 0.4643, 0.4817, 
      @       0.3254, 0.3466, 0.3674, 0.3878, 0.4078, 
      @       0.4273, 0.4461, 0.4643, 0.4817, 0.4982, 
      @       0.3466, 0.3674, 0.3878, 0.4078, 0.4273, 
      @       0.4461, 0.4643, 0.4817, 0.4982, 0.5140, 
      @       0.3674, 0.3878, 0.4078, 0.4273, 0.4461, 
      @       0.4643, 0.4817, 0.4982, 0.5140, 0.5288, 
      @       0.3878, 0.4078, 0.4273, 0.4461, 0.4643, 
      @       0.4817, 0.4982, 0.5140, 0.5288, 0.5426, 
      @       0.4078, 0.4273, 0.4461, 0.4643, 0.4817, 
      @       0.4982, 0.5140, 0.5288, 0.5426, 0.5555, 
      @       0.2078, 0.2173, 0.2265, 0.2354, 0.2438, 
      @       0.2519, 0.2595, 0.2666, 0.2733, 0.2794 /) 
 G_prime = RESHAPE ( G_prime_vector, (/N, Nb/) ) 
!  
!======== Lambda = 10=================================================== 
! 
 GO TO 700  
 K_vector = (/ 0.0001, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0004, 0.0001, 0.0000, 0.0000, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0009, 0.0004, 0.0001, 0.0000, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0015, 0.0009, 0.0004, 0.0001, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0023, 0.0015, 0.0009, 0.0004, 0.0001, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0033, 0.0023, 0.0015, 0.0009, 0.0004, 
      @        0.0001, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0045, 0.0033, 0.0023, 0.0015, 0.0009, 
      @        0.0004, 0.0001, 0.0000, 0.0000, 0.0000, 
      @        0.0057, 0.0044, 0.0033, 0.0023, 0.0015, 
      @        0.0009, 0.0004, 0.0001, 0.0000, 0.0000, 
      @        0.0071, 0.0057, 0.0044, 0.0033, 0.0023, 
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      @        0.0015, 0.0009, 0.0004, 0.0001, 0.0000, 
      @        0.0087, 0.0071, 0.0057, 0.0045, 0.0033, 
      @        0.0023, 0.0015, 0.0009, 0.0004, 0.0001 /) 
700 CONTINUE 
!====================================================================== 
! 
!======== Lambda = 5==================================================== 
! 
 GO TO 800 
 K_vector = (/ 0.0002, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0008, 0.0002, 0.0000, 0.0000, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0017, 0.0008, 0.0002, 0.0000, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0030, 0.0017, 0.0008, 0.0002, 0.0000, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0047, 0.0030, 0.0017, 0.0008, 0.0002, 
      @        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0066, 0.0047, 0.0030, 0.0017, 0.0008, 
      @        0.0002, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0089, 0.0066, 0.0047, 0.0030, 0.0017, 
      @        0.0008, 0.0002, 0.0000, 0.0000, 0.0000, 
      @        0.0114, 0.0089, 0.0066, 0.0047, 0.0030, 
      @        0.0017, 0.0008, 0.0002, 0.0000, 0.0000, 
      @        0.0142, 0.0114, 0.0089, 0.0066, 0.0047, 
      @        0.0030, 0.0017, 0.0008, 0.0002, 0.0000, 
      @        0.0172, 0.0142, 0.0114, 0.0089, 0.0066, 
      @        0.0047, 0.0030, 0.0017, 0.0008, 0.0002 /) 
800 CONTINUE 
!====================================================================== 
! 
!======== Lambda = 1==================================================== 
! 
 GO TO 900 
      K_vector = (/ 0.0100, 0.0000, 0.0000, 0.0000, 0.0000, 
      @        0.0039, 0.0100, 0.0000, 0.0000, 0.0000, 
      @        0.0087, 0.0039, 0.0100, 0.0000, 0.0000, 
      @        0.0152, 0.0087, 0.0039, 0.0100, 0.0000, 
      @        0.0235, 0.0152, 0.0087, 0.0039, 0.0100 /) 
900 CONTINUE 
!====================================================================== 
! 
!======== Lambda = 0.1================================================== 
! 
 GO TO 1000 
      K_vector = (/ 0.0990, -0.0006, -0.0003, -0.0002, -0.0002, 
      @         0.0381, 0.0994, -0.0003, -0.0002, -0.0002, 
      @        0.0856, 0.0382, 0.0994, -0.0003, -0.0003, 
      @        0.1497, 0.0856, 0.0382, 0.0994, -0.0006, 
      @        0.2313, 0.1497, 0.0856, 0.0381, 0.0990 /) 
1000 CONTINUE 
!====================================================================== 
600 CONTINUE 
!========End Horizon N=10============================================== 
      
      K = RESHAPE ( K_vector, (/N, N/) ) 
       
      W = CTSS_LIM53_Y 
       
      Yp_vec = (/ CTSS_PVX2AL, Yp_vector /) 
       
 DO I = 1, Na+1 
    Yp_vector(I) = Yp_vec(I) 
 END DO 
  
 Yp = RESHAPE ( Yp_vector, (/Na+1, 1/) ) 
  
 DUp = RESHAPE ( DUp_vector, (/Nb, 1/) ) 
  
 Y_zero = MATMUL(F, Yp) + MATMUL(G_prime, DUp) 
  
 DU = MATMUL(K, (W - Y_zero))  
  
 DUp_vec = (/ DU(1,1), DUp_vector /) 
  
 IF (SWITCH_ATTEMP == 1) THEN 
     CTSS_GPC_ATTEMP = CTSS_PID52_Y + DU(1,1) 
 END IF 
  
 DO I = 1, Nb 
    DUp_vector (I) = DUp_vec (I) 
 END DO   
  
 END SUBROUTINE GPCATTEMP  



173 
 

Appendix C.1 

Control Diagrams of the coal mills control – Fuel calculation 
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Appendix C.2 

Control Diagrams of the coal mills control – Fuel control 
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Appendix C.3 

Control Diagrams of the coal mills control – Fuel command 
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Appendix C.4 

Control Diagrams of the coal mills control – Fuel feeder speed 
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Appendix D 

Control Diagram of the second stage SH temperature control 
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