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ABSTRACT

The chronic fibrosing interstitial pneumonias (CFIPs) are diseases which cause 

progressive and often fatal progressive scarring of the lungs. The recent discovery of 

the first e�ective pharmacological therapies for this condition have increased interest 

in the monitoring of this disease. 

Due to the complex appearance of the CFIPs on computed tomography, visual 

quantification of disease severity and extent is limited. 

The purpose of this thesis was to develop and test a computer algorithm for the 

automated quantification of pulmonary fibrosis on CT using textural measures 

known as Minkowski functionals. 

A computer algorithm was successfully developed and this thesis presents initial 

results of testing the algorithm on a series of normal scans and on 24 prospectively 

recruited patients who also underwent a series of other tests including pulmonary 

function tests and a patient reported symptom questionnaire. The computer output 

was also compared with the visual assessment of two radiologists. 

Significant correlations were found between computer calculated lung volume and 

total lung capacity as measured on pulmonary function tests. We also found a 

significant correlation between computer calculated fibrosis volume and both gas 

transfer and forced vital capacity. The radiologists’ visual assessment of fibrosis and 

the computer estimated fibrosis volume were highly correlated. 

The novel computer algorithm represents a promising method for quantifying 

pulmonary fibrosis on CT with potential roles in monitoring disease progression and 

e�ects of therapeutic interventions. 
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CHAPTER 1: BACKGROUND

1.1 INTRODUCTION

The idiopathic interstitial pneumonias (IIPs) are a diverse group of diseases that are 

united in their ability to cause progressive fibrosis or scarring in the lungs, often 

leading to severe morbidity and ultimately death. The most important of the 

idiopathic pneumonias in terms of prevalence, morbidity and mortality is the clinical 

syndrome of idiopathic pulmonary fibrosis (IPF). Typically striking in the 6th to 7th 

decades, the disease causes dry cough and progressive breathlessness and has a 

median survival of only 3 years (Gribbin et al., 2006). Unfortunately there are many 

unknown quantities in this disease including the aetiology, the reason that some 

patients progress much faster than others and the lack of precision in measuring 

disease severity. This thesis will focus on one particular aspect of this disease, namely 

the need to precisely measure disease severity on computed tomography (CT). We will 

describe the development and testing of a novel computer algorithm designed to 

quantify disease severity on CT and compare it with the current clinical practice of a 

radiologist reading the scans. We will also compare the computer quantification with 

other measures of severity including pulmonary function tests (PFTs) and patient 

reported symptoms.

This first section of this introductory chapter will describe the current understanding 

of disease classification, clinical phenotypes, epidemiology, theories of aetiology, 

treatment and prognosis of the IIPs, focusing mainly on the clinico-pathological 

entity of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP). The 

next section will examine the role of radiology in the assessment of IPF and the need 

to progress beyond a visual assessment of disease extent. We will also discuss non-
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radiological methods of assessing disease severity and describe some of the pros and 

cons of the di�erent methods. 

1.2  THE IDIOPATHIC INTERSTITIAL PNEUMONIAS

1.2.1 Definition of the idiopathic interstitial pneumonias

The idiopathic interstitial pneumonias (IIPs) are a complex and heterogeneous 

collection of pathological conditions that cause significant morbidity and mortality. In 

2002, the ATS/ERS international multidisciplinary consensus classification of 

idiopathic interstitial pneumonias was published, redefining the histological, clinical 

and radiological diagnosis of the IIPs (European and Society, 2002). In 2013 an update  

to the guidelines was issued which the authors specified should be treated as a 

supplement to the 2002 guidelines rather than as a ‘stand-alone’ document. This 

update introduced a number of alterations to the 2002 guidelines including the 

removal of the term ‘cryptogenic fibrosing alveolitis’, acceptance of idiopathic non-

specific interstitial pneumonia (NSIP) as a distinct clinico-pathological entity and the 

use of the term ‘chronic fibrosing interstitial pneumonia’ (CFIP) to describe both 

idiopathic pulmonary fibrosis and idiopathic nonspecific interstitial pneumonia. 
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Table 1-1 The 2013 updated ATS/ERS classification of idiopathic interstitial pneumonias. 
Reprinted with permission of the American Thoracic Society. Copyright © 2014 American 

Thoracic Society

The most common IIP is the clinical entity of idiopathic pulmonary fibrosis (IPF), 

which corresponds to the histological pattern described as Usual Interstitial 

Pneumonia (UIP). The distinction between subtypes of IIP is important because of the 

di�erences in prognosis associated with di�erent histological patterns amongst 

patient cohorts (Mapel et al., 1998, Hubbard et al., 1998, Flaherty et al., 2002), with 

UIP having a significantly worse prognosis than most of the other IIPS. For the 

purpose of this thesis, we will not be discussing conditions such as desquamative 

interstitial pneumonia and hypersensitivity pneumonitis but will be confining our 

studies to patients with idiopathic disease. 
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1.2.2 Incidence/Prevalence

Estimating the incidence and prevalence of IPF is hampered by the fact that there is 

no readily available and specific test for the disease. However, available data from 

death certification and GP diagnostic databases suggest an incidence of between 4.6 

(Gribbin et al., 2006) and 7.4 (Navaratnam et al., 2011) per 100,000 person years. 

This equates to approximately 5000 new diagnoses per year and is higher than the 

incidence of several cancers including thyroid cancer and lymphoma (Cancer 

Research UK, UK Cancer Incidence (2010) by Country Summary, April 2013). 

It has been suggested that the incidence of IPF has increased over the last few 

decades (Navaratnam et al., 2011) but no specific reason for this has been identified. 

It may partly be explained by the increased use of CT scanning which is able to pick 

up early-stage disease. In addition, the introduction of a non-invasive test (CT) when 

the previous definitive test has been invasive and restricted to patients fit enough for 

surgery (open lung biopsy) is likely to lead to an increase in diagnosis. The 

endorsement of CT as a diagnostic test for IPF by professional societies is also likely 

to be a factor (Raghu et al., 2011). 

1.2.3 Mortality

Studies of mortality in IPF have shown a median survival of between 3 and 4 years 

(Gribbin et al., 2006, Mapel et al., 1998, Hubbard et al., 1998). It should be noted that 

there is a higher median survival in incident cases than prevalent cases. This is due to 

survival bias, meaning that incident cases are representative of the whole spectrum of 

disease severity, whereas patients with aggressive disease who die quickly will be 

under-represented in the prevalence group. Because of this, it has been suggested 

that studies into prognostic variables in IPF are restricted to incident cases, although 

this is not always practical (Hubbard et al., 1998).
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Unsurprisingly, mortality from IPF is increased in older age groups (Navaratnam et al., 

2011). This may be due to co-morbidities in older patients, but may also reflect the 

fact that younger patients diagnosed with IPF are more likely to be a�ected by less 

aggressive histological forms of disease such as NSIP or connective tissue disease-

associated pulmonary fibrosis. 

1.2.4 Age and sex distribution

A British Thoracic Society study of 588 newly presenting patients found a median age 

at diagnosis of 67 years and a male:female ratio of 1.7:1 (Johnston et al., 1997). Other 

studies have suggested an earlier age at diagnosis but have been from specialist 

centres where younger patients with more aggressive disease are likely to be over-

represented. Some authors have suggested that IPF is, in fact, a degenerative disease 

associated with ageing. This theory is supported by the finding of shortened 

telomeres in patients with familial pulmonary fibrosis and non-familial cases. 

Telomeres are non-coding  areas of DNA nucleotide repeats found at the end of 

chromosomes which protect the chromosome during cell division. Each time a cell 

divides, chromosome replication occurs and a small amount of DNA is lost from the 

end of each chromosome. Loss of a small part of the non-coding telomere DNA from 

the end of the chromosome means that important coding DNA is not lost (Cowell, 

2001). Telomere shortening is also thought to occur as a result of oxidative stress 

(Von Zglinicki, 2002). Telomeres were discovered by Elizabeth Blackburn in the 1970s 

(Blackburn and Gall, 1978) but it was only in the 2000s that the link with ageing was 

established and roles in the pathogenesis of multiple cancers and age-related 

diseases were proposed (Blasco, 2005, Brouilette et al., 2007, Torella et al., 2004, Ito 

and Barnes, 2009). A crucial factor in the maintenance of telomeres is the enzyme 

telomerase which is a ribonucleoprotein enzyme that catalyses the addition of 
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hexameric (6-base length) nucleotide repeats to the ends of chromosomes. This 

enzyme consists of 6 components - 3 pairs of each of the following molecules: 

telomerase reverse transcriptase (TERT), telomerase RNA (TERC) and dyskerin (DKC1). 

In 2007 two groups published evidence of mutations in the genes encoding 

telomerase in cases of familial pulmonary fibrosis (Tsakiri et al., 2007, Armanios et 

al., 2007). Tsakiri et al also found a mutation in one patient with no family history 

(Tsakiri et al., 2007). Following this, Cronkhite el al (Cronkhite et al., 2008) studied a 

cohort of patients with familial IPF and a cohort of patients with sporadic IPF but who 

did not have specific mutations of TERC or TERT genes. They found that even patients 

without a specific genetic mutation had shorter telomeres than a control group 

without IPF. They found that 14 of 59 patients (24%) with familial IPF had telomeres 

below the 10th percentile prediction line and 17 of 73 patients (23%) with non-

familial IPF had telomeres in the bottom 10th centile. This was statistically significant 

in both familial (p = 8.0 x 10 -6) and non-familial (p = 2.6 x 10-6) cases. The fact that 

the prevalence of IPF increases significantly with age also lends weight to the fact that 

telomere shortening may be an important co-factor in the aetiology of the disease. 

Copley et al studied CT scans of two groups of asymptomatic patients who were 

undergoing a CT of the abdomen or a CT of the head and did not have any history of 

respiratory disease. The first group consisted of 40 patients aged over 75 years 

(mean age 80.6 years) and the second group comprised 16 patients aged less than 55 

(mean age 39.4 years). An extensive list of exclusion factors was designed to ensure 

that patients were unlikely to have a latent undiagnosed respiratory disease. This 

prospective study consented patients to undergo thin-slice prone inspiratory high-

resolution CT. Two radiologists scored the CT scans for the presence and extent of 

reticular abnormality, cysts, bronchial dilatation, bronchial thickening, ground glass 

opacity, interlobular septal thickening and centrilobular emphysema. They found that 
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60% of the older group had a limited, predominantly subpleural, basal reticular 

pattern which was not seen in any of the younger group. Cysts were also seen in 25% 

of the older group but none of the younger group. The authors noted that the 

reticular pattern was not associated with traction bronchial dilatation, one of the 

main features of IIP. They concluded that a limited subpleural basal reticular finding 

may be a normal finding in older age groups and should not necessarily be 

interpreted as interstitial lung disease. Limitations of this study included the fact that 

the majority of patients were city dwellers and therefore there may be environmental  

factors which limit extrapolation to a non-urban population. Another limitation was 

that some subjects were ex-smokers. Perhaps the most significant limitation is the 

lack of histological confirmation, since biopsy could not be justified in this 

population. 

1.2.5 Risk factors for idiopathic pulmonary fibrosis

No definitive cause for idiopathic pulmonary fibrosis has been identified but a 

number of risk factors have been described. The most powerful association is with 

smoking (odds ratio 2.9) (Iwai et al., 1994) but weaker associations have also been 

shown with exposure to metallic dusts and wood dust. Farming, raising birds, 

working with stone and exposure to animal dust have also been associated with IPF 

(Baumgartner et al., 1997). Another suggested aetiology is chronic viral infection with 

the largest amount of evidence for EBV and hepatitis C. Both DNA and protein from 

EBV have been detected in greater numbers of lung biopsies from patients with IPF 

compared to the general population (Egan et al., 1995, Stewart et al., 1999). However, 

definitive conclusions are hampered by the high prevalence of EBV in the normal 

population and by the fact that many patients with IPF have received 

immunosuppression at some point, which is likely to increase the incidence of EBV. 
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Evidence for the role of hepatitis C is also mixed. Ueda et al (Ueda et al., 1992) found 

that 19 of a group of 66 patients with IPF (28.8%) tested positive to hepatitis C 

compared with 3.7% of a control group whilst Meliconi et al  (Meliconi et al., 1996) 

found a 13.3% prevalence of hepatitis C in 60 Italian patients with IPF compared with a 

0.3% prevalence in a large control group of blood donors. However, they did not find a 

significant di�erence in prevalence amongst patients with IPF compared with a group 

with other mixed lung diseases (6.1%). Other implicated viruses are herpes viruses 7 

and 8 and cytomegalovirus (Yonemaru et al., 1997). Several other medical conditions 

have been associated with IPF, including gastro-oesophageal reflux and diabetes 

mellitus (Tobin et al., 1998, Gribbin et al., 2009) but a causative relationship has not 

been proven. 

1.2.6 Histology

The histological hallmark of IPF is a usual interstitial pneumonia (UIP) pattern of 

fibrosis. UIP is characterised by subpleural and paraseptal fibrosis and 

honeycombing, interspersed with areas of less severely a�ected or normal lung 

(spatial heterogeneity). There is a lack of transition zone between normal and 

a�ected lungs, in other words an abrupt change from normal to abnormal lung. 

Honeycombing consists of cystic, fibrotic airspaces with a bronchiolar epithelial 

lining. The honeycomb cysts may contain inflammatory cells and mucin. Within the 

abnormal lung are fibroblastic foci which reflect active fibrosis and suggest temporal 

heterogeneity (Figure 1-1). There is hyperplasia of type II pneumocytes and there 

may be a mild lymphocytic infiltrate, but this should not be a prominent feature. 
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Figure 1-1 Surgical lung biopsy demonstrating UIP pattern. (A) Scanning power microscopy 

showing patchy process with honeycomb spaces (thick arrow), some preserved lung tissue 

regions (thin arrow), and fibrosis extending into the lung from the subpleural regions. (B) 
Adjacent to the regions of more chronic fibrosis (thick arrow) is a fibroblastic focus (asterisk), 
recognised by its convex shape and composition of oedematous fibroblastic tissue, suggestive 

of recent lung injury. Reproduced with permission from (Raghu et al., 2011)
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1.2.7 Potential mechanisms of disease causation

Two main mechanisms have been proposed for the development and progression of 

IPF, namely the inflammatory pathway and the epithelial pathway (King Jr et al., 2011). 

Initial theories centred on the contribution of inflammatory mechanisms and 

demonstration of an increased population of lymphocytic cells in the broncho-

alveolar lavage fluid of patients with IPF. Despite this, anti-inflammatory medication, 

including steroids, have shown consistently poor results in patients with IPF, leading 

investigators to question the role of inflammation in the disease. The epithelial 

pathway focuses on the role of epithelial-dependent activation of fibroblasts, which 

then leads to fibrosis. This is illustrated in Figure 1-2 below:

Figure 1-2 Schematic showing the potential causative mechanisms of pulmonary fibrosis in 

IPF. Reproduced with permission from (King Jr et al., 2011)
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1.3  ROLE OF RADIOLOGY IN THE ASSESSMENT OF IPF

1.3.1 Role of the chest x-ray

The first imaging investigation in most patients with suspected lung disease is a 

chest x-ray and the majority of patients with IPF will have an abnormal chest 

radiograph at diagnosis. The classical appearance of IPF on chest x-ray is of 

peripheral reticulation, which is worse at the lung bases and often causes ill-

definition of the heart borders. The advantages of chest x-ray are that it is 

inexpensive, readily available and has a relatively low radiation burden (typical dose 

equivalent to 2.4 days background radiation) (Hall, 2002). The disadvantages of chest 

x-ray are that technical factors such as degree of inspiration and obesity may limit 

interpretation, that early disease may be missed and that findings in interstitial lung 

disease are often non-specific. For example, in a study of 118 patients with di�use 

interstitial lung disease where radiologists were asked to specify their first choice 

diagnosis and level of confidence in that diagnosis, chest x-ray was accurate in only 

57% of cases compared to an accuracy of 76% for CT. Therefore, before the advent of 

HRCT, open lung biopsy was often recommended for definitive diagnosis (Mathieson 

et al., 1989). Nevertheless, chest x-ray remains the first imaging test in most 

patients, is often performed at routine clinic appointments to look for disease 

progression and is usually the first line investigation when patients present acutely 

with an exacerbation of disease. 

1.3.2. Role of computed tomography

CT has a number of roles in the assessment of patients with suspected or known 

interstitial lung disease including: diagnosis, assessment of severity, follow-up and 

prediction of prognosis. 
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The typical HRCT findings of interstitial pulmonary fibrosis are of peripheral, 

subpleural reticulation and honeycombing. The widely accepted Fleischner Society 

guidelines define reticulation as ‘a collection of innumerable small linear opacities 

that, by summation, produce an appearance resembling a net’. On CT imaging, 

reticulations are typically peripheral/subpleural and are usually composed of 

thickened interlobular and intralobular septa (Hansell et al., 2008) (Figure 1-3b). 

Honeycombing is defined as ‘clustered cystic airspaces, typically of comparable 

diameters on the order of 3-10 mm’ (Hansell et al., 2008). It is usually subpleural and 

characterised by well-defined walls and is considered to be a feature of established 

fibrosis and to be irreversible (figure 1-3a).

a cb

Figure 1-3 Selected axial CT images showing a) honeycombing b) reticulation and c) traction 

bronchial dilatation

Traction bronchiectasis or traction bronchiolectasis is another feature that is 

commonly seen on HRCT and is defined as ‘irregular bronchial or bronchiolar 

dilatation caused by surrounding retractile pulmonary fibrosis’ (Hansell et al., 2008). 

Dilated airways normally appear as tubular, air-filled structures that do not taper in 

the same way as normal airways but may appear as cysts or microcysts at the 
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periphery of the lung, in which case they may be di�cult to distinguish from 

honeycombing (Figure 1-3c).

Traditionally, open lung biopsy has been considered to be the gold standard for 

diagnosis of IIP. Unfortunately, many patients with suspected ILD are elderly with 

frequent co-morbidities and surgical risk factors that may preclude open biopsy. In 

addition, patients often present with relatively severe disease which many make them 

unsuitable for surgical biopsy. With this in mind, the sensitivity and specificity of CT 

for diagnosis has been explored. Several studies have indicated that HRCT has a high 

sensitivity and specificity for diagnosis of IPF with a positive predictive value of 

between 90 and 100% (Mathieson et al., 1989, Hunninghake et al., 2001, Raghu et al., 

1999, Grenier et al., 1991, Lee et al., 1994). As a result, several guidelines now 

recommend that if the CT appearances are typical of UIP, biopsy is not required to 

make a diagnosis (Raghu et al., 2011, Wells, 2013). Criteria for a typical/probable UIP 

pattern on CT and are described by Raghu et al in the 2011 ATS statement (Raghu et 

al., 2011) and are shown in the table below (table 1-2). It should be noted that all four 

features (subpleural basal predominance, reticular abnormality, honeycombing and 

absence of features inconsistent with UIP) should be present in order to make a 

confident CT diagnosis of UIP.

Table 1-2 High-resolution computed tomography criteria for a diagnosis of UIP. Reproduced 

with permission from (Raghu et al., 2011)

27



Fell et al recently studied the predictive power of several clinical, physiological and CT 

variables for diagnosis of IPF (Fell et al., 2010). They studied 97 patients with biopsy 

proven IPF and 38 patients with other IIPs and specifically excluded patients with 

honeycombing on CT. Clinical variables included age, sex, smoking status, 

pulmonary function tests (FVC and DLCO) and 6-minute walk test (distance walked 

and whether or not the patient desaturated to <88%). CT scans were analysed by 2 

experienced radiologists using a semi-quantitative method which assesses the 

percentage of lung with ground glass change (alveolar score) and the degree of 

interstitial changes (reticulation or honeycombing) and was previously described by 

Kazerooni et al (Kazerooni et al., 1997). Using a multiple logistic regression approach, 

they found that the two most powerful predictors of IPF on biopsy were age and 

extent of fibrosis on CT. Even without honeycombing they found that they could 

confidently predict a biopsy diagnosis of IPF based on age and degree of fibrosis on 

CT. For example, they found that for patients aged 55 and over with relatively minor 

fibrosis on CT, there was a positive predictive value of 100% for IPF at surgical biopsy. 

A grading system was proposed which integrated the patient’s age and extent of CT 

fibrosis in order to predict the positive predictive value for IPF on biopsy. The grading 

formula is as follows: (0.084 x age + 2.346 x HRCT interstitial score) - 3.31/5.856.

1.3.3 Role of CT in assessing IPF prognosis

Flaherty et al examined the prognostic implication of a radiological diagnosis of UIP 

compared with a radiological diagnosis of NSIP. The study group comprised 76 

patients with a histological diagnosis of UIP and 23 patients with a histological 

diagnosis of NSIP. Two radiologists read the scans and assigned them to one of three 

categories: ‘definite/probable UIP’; ‘definite/probable NSIP’ or ‘indeterminate’. 

Analysis of survival curves showed that there were significant di�erences in the 
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survival of the three categories, with the poorest survival seen in ‘definite/probable 

UIP’ and the best survival in ‘definite/probable NSIP’ (Flaherty et al., 2003a). The 

extent of fibrosis on CT as judged by a semi-quantitative scoring system has also 

been shown to be a powerful predictor of prognosis (Lynch et al., 2005).

1.3.4 Role of CT in quantification of pulmonary fibrosis

A number of approaches have been applied to the quantification of pulmonary 

fibrosis on HRCT. The most basic, but probably the most widely used in clinical 

practice, is simply to describe the disease as mild, moderate or severe. There are no 

specific definitions of these severity categories so the reporting radiologist will 

typically describe the disease severity in relation to other cases they have seen in the 

past and one reader’s ‘mild’ may be another reader’s ‘moderate’. With this in mind, a 

number of attempts have been made to develop a more quantitative and reproducible 

approach to the visual estimation of disease severity. 

Goh et al, in a study of 215 patients with systemic sclerosis referred to the Royal 

Brompton Hospital (UK), performed visual scoring at 5 defined anatomical levels on 

the HRCT scan (Goh et al., 2008). They firstly calculated a global extent score by 

estimating the amount of lung a�ected by interstitial lung disease on each slice to the 

nearest 5% and averaging this score over the 5 slices. They then assessed ‘coarseness 

of reticulation’ using a 3 point score as follows: ground glass (grade 1); microcystic 

honeycombing (air spaces less than or equal to 4 mm in diameter – grade 2); 

macrocystic honeycombing (airspaces greater than 4 mm in diameter – grade 3). The 

total ‘coarseness score’ was calculated by summating the score at each level for a 

total score of 0 to 15. They also introduced a multiplier whereby if the HRCT was 

completely normal on one section, they adjusted the score by multiplying by 5/4, 
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although this approach may lead to over-estimation of disease severity in patients 

with milder disease. 

Edey et al, also working with the Brompton Hospital group, used a similar method to 

calculate disease severity in idiopathic pulmonary fibrosis (Edey et al., 2011). They 

calculated the global severity score in the same way as Goh et al although they 

analysed 6 sections per patient and assessed 5 features. The features analysed were: 

ground glass opacification, fine reticulation, coarse reticulation, microcystic and 

macrocystic honeycombing (lumped together), and consolidation. The final scores for 

each pattern were calculated as a percentage of abnormal lung then summed and a 

mean overall score for the 6 levels was calculated. They also gave a binary score for 

emphysema at each level (0 – present, 1 – absent) and produced a total score for each 

patient (0 to 6). Traction bronchiectasis was assessed in each section for each 

parenchymal pattern (i.e. fine reticulation, coarse reticulation etc.) according to a 3 

point score: 0 = none, 1 = mild, 2 = moderate or 3 = severe/striking. A so-called 

summed traction bronchiectasis score was calculated for each parenchymal pattern 

over the 6 sections. A discrepancy between the two radiologist observers was defined 

as a > 15% di�erence in global disease scores, more than 1 grade di�erence in 

traction bronchiectasis scores and disagreement of whether or not bronchiectasis or 

emphysema were present. These were said to be resolved by consensus evaluation 

although details of the process to obtain consensus were not given in the paper. 
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1.4 COMPUTERISED METHODS FOR QUANTIFICATION OF PULMONARY FIBROSIS ON 

CT

1.4.1 The need for computerised methods

There are several disadvantages to the visual assessment of pulmonary fibrosis 

including lack of precision, inter/intra-observer variation and the tedious and time-

consuming nature of the task. The computerised analysis of pulmonary fibrosis o�ers 

a potential solution to these problems. The next section of this introduction details 

the main steps of this process and some of the di�erent approaches to lung analysis. 

1.4.2 Computerised segmentation of the lungs

A prerequisite to quantitative analysis of the lung parenchyma is to separate the lung 

from the surrounding structures of the chest wall, since subsequent analysis needs to 

be applied to lung tissue only. A number of approaches to this have been developed. 

The most simplistic is termed ‘thresholding’. In this technique, a density (Hounsfield 

Unit - HU) threshold is identified which is chosen to distinguish between lung tissue 

and other tissues of the chest wall and mediastinum. Since lung typically has 

Hounsfield Units values in the range -1000 HU to -500 HU and soft tissues typically 

have values greater than -50 HU, a threshold of approximately -200 HU e�ectively 

separates normal lung from adjacent soft tissue. This method also e�ectively 

segments emphysematous lungs from the chest wall since this disease typically 

lowers lung density. On the other hand, fibrotic or consolidated lung may have values 

of up to +100 HU and therefore segmentation of abnormal lung from adjacent soft 

tissue is problematic. Several approaches to overcoming this problem have been 

developed, all of which have advantages and disadvantages and include ‘snake’, 

‘rolling-ball’ and region-growing algorithms. Other authors such as Hu et al (Hu et 

al., 2001) have developed algorithms which use a combination of methods such as 



adaptive thresholding, region-growing and void filling. The adaptive thresholding 

method selects a density threshold which is determined by the individual scan and 

can therefore be varied according to di�erences in scan technique, patient and 

disease characteristics. 

1.4.3 Automated quantification of lung density

Once the lungs have been segmented from the chest wall, it is then possible to 

analyse the characteristics of the lung parenchyma. One of the most simple 

quantitative metrics is the mean lung density (MLD), whereby the Hounsfield Unit 

value for each voxel of lung tissue is added together and divided by the total number 

of voxels. This approach is used in the analysis of emphysema, where diseased lung 

typically has lower density than normal lung (Müller et al., 1988). A number of other 

density measures have been used, such as the percentage of lung tissue below a 

defined density threshold. Commonly used thresholds for assessment of emphysema 

range between -950 and -900 HU (Coxson et al., 2013, Müller et al., 1988, Coxson, 

2013).

Multiple studies have shown good correlation between quantitative emphysema 

indices, pulmonary function tests and patient reported symptoms and it has also 

been shown that MLD is increased in idiopathic pulmonary fibrosis (Hartley et al., 

1994) . However, global indices of lung density are much less useful for the 

assessment of interstitial lung disease compared with emphysema. There are a 

number of reasons for this: firstly, areas of decreased attenuation such as the cystic 

spaces of honeycombing and traction bronchial dilatation are o�set by the increased 

attenuation of reticulation, the borders of honeycomb cysts and areas of ground 

glass consolidation; secondly, IIP is by definition a spatially heterogenous disease 

(more so than emphysema) so global measures of lung density cannot reflect this. 
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Other problems with using density measurement are the variation with degree of 

inspiration, sensitivity to artefacts (e.g. beam-hardening) and dependence on scanner 

calibration (Parr et al., 2004, Coxson, 2013). 

1.4.4 Analysis of the CT density histogram

Initial attempts to produce a more sophisticated measurement than MLD have 

focussed on analysis of the shape of the CT density histogram, a distribution 

representing the densities of all the pixels/voxels in a CT scan. Various metrics can 

then be used to describe the shape of the histogram, including kurtosis and 

skewness. Kurtosis describes how ‘peaked’ the histogram is compared with the 

normal distribution, which is considered to have a kurtosis of zero. A histogram 

which is more peaked than the normal distribution is said to have a positive kurtosis 

or to be leptokurtic, whilst a histogram which is flatter than the standard normal 

distribution is said to have a negative kurtosis or to be platykurtic. Skewness 

describes deviations in symmetry of a distribution compared with the symmetrical 

normal distribution. If the left tail of a distribution is longer than the right, it is said to 

be skewed to the left or negatively skewed. Positive skewness describes a distribution 

where the right tail is longer than the left. The CT density histogram of normal lung is 

strongly skewed to the left with a sharp peak around -800 HU (negative skewness 

and positive kurtosis). An illustration of the histogram distribution of a region of 

normal lung is shown below (Figure 1-4). This image was produced using the Osirix™ 

open source software (© Pixmeo Sarl).
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Figure 1-4 Region of interest (inside blue dots) of a slice of normal lung with its corresponding 

histogram. Note the sharp, narrow peak. 

Pulmonary fibrosis typically causes an increase in the amount of soft tissue density 

(higher densities) in the lung and therefore causes an increase in mean lung density, 

a reduction in the peak and increased skewness to the left (Hartley et al., 1994). An 

example of the histogram from a patient with pulmonary fibrosis is shown in Figure 

1-5. 
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Figure 1-5 Region of interest (inside blue dots) of a slice of fibrotic lung with its 
corresponding histogram. There is a wider peak, larger right sided ‘tail’ and lower peak (NB: x-
axis is automatically scaled on Osirix™). 

Best et al (Best et al., 2003), in a study of 144 patients enrolled in a therapeutic trial, 

demonstrated moderate correlation between PFTS and kurtosis (r=0.53) but found 

relatively poor correlation between DLCO and all histogram features, despite DLCO 

being widely accepted as one of the most sensitive physiological measure of IIP. This 

study was limited by several factors including: retrospective design; CT scans 

obtained from 30 di�erent institutions; CT scanners from 5 di�erent manufacturers 

and lack of a standardised image acquisition protocol. Scans were typically acquired 

with a 2 cm interval between slices and manual correction was required to remove 

central airways and blood vessels. 

Zavaletta et al (Zavaletta et al., 2007) used a more complex histogram-based method 

to analyse CT scans from patients with IPF. The method involved adaptive binning of 

the density histogram (using K-means clustering), followed by creation of a canonical 

signature for 5 sub-classes of lung pattern (normal, reticular, ground glass, 

honeycombing and emphysema). Fourteen scans were classified by 3 expert 



radiologists into volumes of interest (VOIs) containing at least 70% of a lung pattern 

(reticulation, honeycombing, ground glass opacification, normal and emphysema) 

and these VOIs were used to train the classifier. The classifier was also trained on four 

whole (volumetric) scans. The algorithm was highly successful in distinguishing 

normal areas of lung from abnormal (sensitivity 93%, specificity 94%) but was less 

successful at distinguishing all 5 types of pattern with the following sensitivities and 

specificities: normal (92%, 95%), ground glass (75%, 89%), reticular (22%, 92%), 

honeycombing (74%, 91%), emphysema (94%, 98%). It is noteworthy that the least 

successful classification is in cases of ground glass opacification and reticular 

pattern. There may be several reasons for this. In terms of ground glass, this is a 

subtle and rather subjective density change which may be seen in normal lung in 

gravity dependent areas and when a scan is performed in relative expiration. In terms 

of reticulation, one of the major challenges is how to distinguish a linear ‘reticulation’ 

from a blood vessel. Both may be of similar width in cross-sectional diameter and of 

similar density. Whilst the authors attempted a semi-automatic segmentation and 

removal of blood vessels greater than one-third of the size of the VOI, they admitted 

that removal of smaller blood vessels is not yet reliably achievable in patients a�ected 

by fibrotic lung disease. 

1.4.5 Analysis of lung texture - general approaches

A more sophisticated approach to computerised analysis in IPF is to look at textural 

features of the  lung. This approach has been used in materials science (Mecke, 2000) 

and aims to quantify di�erent visual patterns of disease. Since this is an important 

element of a radiologist’s reading of a CT, automated textural analysis is a logical 

approach to the quantification of disease. Uppaluri et al developed an adaptive 

multiple feature method (AMFM) for the assessment of emphysema and then 
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extended this to the assessment of idiopathic pulmonary fibrosis (Uppaluri et al., 

1999). The AMFM used in the emphysema study had the following stages: 1. Lung 

segmentation 2. Pre-processing of the scan using ‘edgmentation’ – a region-growing 

technique that merges adjacent pixels where the di�erence in grey level of the pixels 

is small and then assigns a single grey level to the whole region based on the average 

of the pixels within the region. 3. Regions of interest defined on the original and pre-

processed image. 4. Feature extraction - five first-order features (mean, variance, 

skewness, kurtosis and grey-level entropy) and eleven second order features (five 

run-length features: short-run emphasis, long-run emphasis, grey-level non-

uniformity, run-length non-uniformity, run percentage and six co-occurrence matrix 

features: angular second moment, entropy, inertia, contrast, correlation, inverse 

di�erence moment). 

Whilst Uppaluri et al analysed multiple di�erent features prior to selecting those 

which were most discriminating, Uchiyama et al (Uchiyama et al., 2003) pre-selected 

6 features designed to address the specific task. Of the 6 pre-determined features, 

there were 3 grey-scale distribution measures including the mean CT value of an ROI, 

the standard deviation of CT values in an ROI and the fraction of lung with density 

between -910 HU and -1000 HU in an ROI. The other three features were shape 

measures including measures of nodularity, linearity and multi-loculation. An 

artificial neural network algorithm was used, with training based on 315 slices 

marked up by 3 radiologists and comprising the following textures: ground-glass 

opacity; reticular and linear opacities; nodular opacities; honeycombing; 

emphysematous change and consolidation. Two other mark-up labels were employed 

but not used for training the algorithm, namely ‘non-specific/indeterminate’ and 

‘other’ which included any other abnormal feature such as atelectasis, bullae or 

artefact. The algorithm was able to reliably distinguish honeycombing from normal 
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and ground glass opacity, but ground glass opacity showed some overlap with 

normal lung. They also found it di�cult to distinguish nodularity from normal lung, 

presumably partly due to the non-spiral nature of the CT scans and the fact that 

blood vessels may appear very similar to nodules in cross-section. Of 53 

indeterminate slices, the algorithm classified 28 as normal and 25 as abnormal.

Sluimer et al (Sluimer et al., 2006) developed an algorithm for the textural analysis of 

di�use parenchymal lung disease using two di�erent sets of texture-analysis 

features, one that they had previously described and a set based on the Uchiyama 

method. They classified lung into one of six classes: normal, hyperlucent, fibrotic 

(including reticulation, honeycombing and traction bronchial dilatation in association 

with ground glass), ground glass, solid and focal (including solid and ground glass 

nodules, mucus-plugging, scars).

They did not find any significant di�erence in the performance of the system 

depending on which of the  two texture-analysis feature sets was used. One 

interesting feature of their approach was the use of non-square regions of interest, 

designed to encompass more of an area of interest and ensure it contained a more 

homogenous texture. This approach improved the performance of the algorithm with 

up to a 10% increase in the area under the ROC curve. 

In a more recent study, Yoon et al (Yoon et al., 2013) used a texture-based 

automated quantification system (AQS) to assess 89 patients with fibrotic interstitial 

lung disease (71 UIP and 18 fibrotic NSIP) each of whom had 2 CT scans performed 

one year apart. The AQS classified the lung on each CT slice into the following 

categories: normal, emphysema, ground glass opacification, reticular opacities, 

honeycombing or consolidation and calculated the percentage of lung a�ected by 

each category. Interestingly, they used round ROIs with a diameter of 10 pixels 

whereas most studies use square ROIs. They also calculated the total abnormal lung 
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fraction (sum of all abnormal lung categories) and a fibrosis score (sum of 

honeycombing and reticular opacity). The AQS was compared with visual readings by 

2 radiologists who visually estimated the percentage of involved lung on each CT 

slice. The CT scans were not volumetric but rather 0.75 mm slices, which were 

obtained at 10 mm intervals. Interclass correlation coe�cient (ICC) was used to 

assess the degree of inter-reader agreement and the degree of agreement between 

reader 1 and the AQS, reader 2 and the AQS and the mean of the two radiologist 

scores and the AQS. Scores were also compared with the patient’s FVC and DLCO. 

There was good agreement between both readers and the AQS in terms of fraction of 

emphysema and honeycombing (ICC 0.70 - 0.79 and 0.62 - 0.79 respectively) but the 

readers had less good agreement in terms of reticular opacity (ICC 0.49). Both readers 

had relatively poor agreement with the AQS in terms of ground glass opacification (R1 

and AQS = 0.36, R2 and AQS = 0.44) and relatively poor agreement with the AQS in 

terms of reticular opacification (R1 and AQS = 0.32, R2 and AQS = 0.40). Reader 1 

had relatively good agreement with AQS in terms of consolidation (ICC = 0.66) but 

reader 2 had less good agreement (ICC = 0.39). Agreement at the one-year follow up 

scan was not so good, with poor agreement between radiologists and the AQS in 

terms of whether there was interval change in the percentage of a�ected lung.

1.4.6 Analysis of lung texture - Minkowski functionals

Minkowski functionals (MFs) are a group of integral geometry measures that describe 

the geometry and topology of an image and have been used in both materials science 

and cosmology. In 3D, there are 4 di�erent MFs which are proportional to volume, 

surface area, mean breadth and the Euler-Poincaré characteristic. A precursor to 

analysis of MFs is to binarise the image so that all pixels are either black or white. 

This can be done at a number of di�erent pre-defined density (Hounsfield Unit) 
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thresholds or at an adaptive threshold which is selected depending on the image 

properties. The topological features are based on the connectivity of the pixels in an 

image. Connectivity can be expressed as either 4-connectivity, in which a square 

pixel is said to be connected to an adjacent pixel if it contacts one whole side of that 

pixel or as 8-connectivity, in which a pixel is said to be connected even if it only 

contacts a corner of the pixel (figure 1-6). 

Figure 1-6 4-connectivity (left) and 8-connectivity (right)�

The first report of MFs for the analysis of thoracic CT scans was proposed by Boehm 

et al in 2008 (Boehm et al., 2008). They used MFs to analyse a total of 275 volumes of 

interest from 7 patients with emphysema, 7 patients with pulmonary fibrosis and 7 

patients with normal lungs. All these VOIs were cubic volumes with edge length of 40 

pixels. Only a proportion of each scan was sampled. Computerised classification of 

pathological subtype (emphysema, fibrosis or normal) was compared with 

classification by 2 radiologists. They found that the computer algorithm agreed with 

radiologist classification in 98% of normal VOIs and in 86% of fibrotic VOIs. In 2010, 

this work was extended by Thonnes et al (Thönnes et al., 2010) with use of smaller 

VOIs (approximately 5 x 5 x 1 voxels). A total of 10 fibrotic, 10 normal and 8 

emphysematous VOIs were analysed with a mis-classification rate of 7%. The 

advantage of the smaller VOIs is to increase the spatial accuracy of classification, 

although image noise may be more of a problem. 
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1.5 CONCLUSION AND THESIS STRUCTURE

In summary, there is a need for more accurate methods of assessing the severity of 

IIP and measuring change in disease over time. Methods of quantification have 

progressed from visual estimates, to single quantitative metrics to the assessment of 

multiple textural features. Further work needs to be done to assess the use of these 

metrics in a prospective study with strictly controlled scanning parameters and 

detailed clinical correlation. In this thesis we will report on the  development and 

testing of a computer algorithm to analyse lung texture in CFIP, followed by its 

application to scans from a group of prospectively recruited patients. The computer 

output will be compared with radiologists visual estimation, with physiological 

measures of lung function and with a questionnaire-based assessment of patient 

symptoms and wellbeing. Chapter 2 will describe the methodology of the study, 

Chapter 3 will describe the testing of the computer algorithm on a number of pre-

selected, retrospectively-obtained normal and abnormal CT scans, Chapter 4 will 

describe the results of the prospective study in terms of comparing the computer and 

radiologist output, Chapter 5 will describe the comparison of the computer output 

with lung function tests and the symptom and well-being questionnaire, Chapter 6 

will comprise an overall discussion of the results and Chapter 7 will discuss future 

directions. 
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CHAPTER 2: MATERIALS AND METHODS

2.1 INTRODUCTION TO CHAPTER

In this chapter we will discuss the study design including patient recruitment, ethics 

approval, patient selection and sample size. We will then discuss the timeline of study 

visits and the variables measured at each visit, including a detailed description of the CT 

scanning protocol. This is followed by an account of the automatic computerised 

quantification algorithm, detailing its design and development. Finally we describe the 

procedure for radiologist visual scoring of CT scans and the planned statistical analysis. 

The computer analysis work was done in collaboration with Dr Abhir Bhalerao at the 

Department of Computer Science at Warwick University, who also kindly supplied 

Figures 2-2 to 2-5. 

2.2 STUDY DESIGN 

2.2.1. Study overview/aims

The work in this thesis forms part of a larger study, the Quantification of Interstitial lung 

disease on CT (QUIC) study. The QUIC study is a prospective longitudinal cohort study of 

patients with idiopathic interstitial pneumonia. The primary aim of the QUIC study is to 

see if change in fibrosis on CT, as assessed by an automated computer algorithm, is a 

better predictor of mortality at 5 years than change in pulmonary function tests. 

Therefore, the primary outcome measure was all cause mortality at 5 years. Secondary 

aims were to compare automated computerised estimation of fibrosis with radiologist 

estimation of fibrosis, pulmonary function tests and a patient-reported outcome 

measure. 

Due to delays in starting the study and the fact that recruitment that was slower than 

expected, this thesis will focus on the baseline results from the first 24 patients which 
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were recruited and we will not therefore address the primary outcome measure in this 

thesis. Therefore the aim of the current thesis is to describe the development and 

testing of a novel computer algorithm based on Minkowski functionals for the 

quantification of CFIP on CT. 

2.2.2 Ethical approval

Full ethical approval was obtained from the West Midlands Research Ethics Committee 

(study reference 11/WM/0387). 

2.2.3 Study population

The study population consisted of patients with a diagnosis of chronic fibrotic 

interstitial pneumonia (CFIP) based on clinical findings and either a surgical lung biopsy 

showing UIP or NSIP and/or a CT showing a typical UIP pattern as described by Raghu et 

al (Raghu et al., 2011). All patients were discussed at the bi-weekly regional interstitial 

lung disease multi-disciplinary team meeting at University Hospital Coventry and 

Warwickshire NHS Trust, where a consensus diagnosis was documented. The table below 

shows the patient inclusion and exclusion criteria:

Inclusion criteria Exclusion criteria

Diagnosis of CFIP based on clinical findings 
and either lung biopsy and/or CT scan

Clinical, biopsy or CT findings suggesting a 
secondary cause of interstitial lung disease

Age greater than or equal to 40 years. Age less than 40 years

Ability to provide informed consent Inability to provide informed consent

Ability to breath-hold or lie flat for the CT 
scan

Inability to breath-hold or lie flat for the CT 
scan

Pregnancy

Table 2-1 Patient inclusion and exclusion criteria
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2.2.4 Patient recruitment

Patients who were thought potentially suitable for the study were approached by their 

usual physician during their routine outpatient appointments. If they expressed an 

interest in participating in the study, they were given a copy of the patient information 

leaflet. They were invited to take this away, think about the study and contact the study 

co-ordinator if they decided they would like to participate.

2.2.5 Sample size calculation

We planned to recruit a total of 80 patients with idiopathic interstitial pneumonia (UIP or 

NSIP), averaging 1-2 patients a week. UIP has a mortality of 50-70% at 5 years whilst 

idiopathic NSIP has a mortality of approximately 20% at 5 years. Therefore we expected 

half the patients to be alive at 5 years. Assuming a linear regression model linking 

radiological change to time to death, for 4 predictor variables and a sample of 80 

patients we would have approximately 80% power to detect a medium e�ect size (R2 = 

0.13), at the 5% significance level (Cohen, 1988).

Previous studies have examined between 39 (Xaubet et al., 1998) and 109 patients 

(Flaherty et al., 2003b) with CFIP and have analysed the relationships between findings 

at HRCT and changes in DLCO and FVC. Flaherty et al (Flaherty et al., 2003b) showed that 

a greater than 10% change in FVC over 6 months was an independent predictor of 

mortality. They did not find any predictive value of changes on CT, as assessed by a 

semi-quantitative visual scoring system but suggested that use of a computerised 

scoring system may be more sensitive. Xaubet et al (Xaubet et al., 1998) studied 39 

patients who underwent 2 CT examinations at a mean interval of 7.5 months. With a 

semi-quantitative visual scoring system they showed an approximately 7% change in 

global disease score between scans and found that this change was significantly 



correlated with DLCO and FVC. We therefore concluded that 80 was an appropriate 

number of patients to recruit. At the time of writing, 24 patients have been recruited. 

2.3 STUDY VISITS

2.3.1 Schedule of visits

The QUIC study protocol specified that patients should undergo a total of 5 study visits 

over a 24 month period. A detailed case record form (CRF) was completed at baseline 

(appendix A) and a shortened CRF was completed at each subsequent visit. The St 

George’s Respiratory Questionnaire  (Appendix B) and full pulmonary function tests 

were completed at each visit. Screening blood tests were performed at the first visit 

including: full blood count; urea and electrolytes; liver function tests; creatine kinase; 

rheumatoid factor; anti-CCP titre and nuclear antibodies. The latter four tests were to 

look for possible connective tissue disease. 

CT scans were performed at 0, 3, 12 and 24 months. All other tests were performed at 0, 

3, 6, 12 and 24 months. As previously mentioned, this thesis will be limited to analysis 

of the baseline investigations. 

2.3.2  Clinical assessment/case record form

Patients were each assessed by one of the study respiratory physicians (DP or FW), both 

of whom have a subspecialty interest in interstitial lung disease. A diagnosis of CFIP was 

only made only once secondary causes of interstitial pneumonia had been excluded. 

Secondary causes included exposure to inorganic dusts (pneumoconioses), organic 

dusts (hypersensitivity pneumonitis) or therapeutic agents known to cause interstitial 

lung disease. Patients were questioned about symptoms associated with collagen 

vascular disease and examined for signs of these conditions. Patients were designated 
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to have a CFIP if they did not have a secondary cause and did not fulfill the criteria for a 

defined rheumatological condition. 

The CRF was designed to capture information about all current and previous medical 

conditions, current medication and exposures to possible toxic agents (including a 

detailed occupational history). The CRF was also used to record lung function and blood 

test results. 

2.3.3  St George’s Hospital Respiratory Questionnaire

The St George’s Hospital Respiratory Questionnaire (STGRQ) was used to assess the 

severity of patients’ symptoms and their impact on their daily activities. The STGRQ is a 

50 item disease-specific questionnaire which was originally designed to be used in 

patients with chronic obstructive airways disease (COPD) and asthma (Jones et al., 1992). 

The questionnaire has two parts. The first part asks the patient about their symptoms in 

the preceding 3 months and produces the ‘symptoms’ score. The second part is 

concerned with how patients are functioning currently, how their disease a�ects their 

physical functioning (the ‘activities’ domain), how it a�ects their psychological state and  

how it a�ects their social functioning (the ‘impacts’ domain). The full questionnaire is 

reproduced in Appendix B. The highest maximum total STGRQ score is 100 and the 

highest score for each of the domains is also 100. A higher score indicates a greater 

degree of limitation. Each response is individually weighted and the domain/total scores 

are calculated using a free custom-designed excel spreadsheet supplied by the St 

George’s group. The questionnaire was developed by Professor Paul Jones at St George’s 

Hospital and although originally validated for the assessment of patients with asthma 

and COPD (Jones et al., 1991, Jones et al., 1992), it has also been used in a number of 

studies of IPF. For example, in their 2005 systematic review of the use of health related 

quality of life (HRQL) questionnaires in IPF, Swigris et al (Swigris et al., 2005) found 7 
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studies which met their inclusion criteria and which enrolled between 10 and 330 

patients into various studies (median 34 patients). All of these studies administered 

their questionnaires at a single time-point. Three of the studies used the STGRQ, three 

used a generic (not respiratory specific) HRQL questionnaire called the ‘short form 

36’ (SF-36) (Ware Jr and Sherbourne, 1992), and two used a generic quality of life form  

developed by the World Health Organisation (WHOQOL-100) (group, 1995). The SF-36 

and WHOQOL-100 both look at multiple aspects of wellbeing and health, whereas the 

STGRQ is specific to patients with respiratory disease. Five of the studies were cross-

sectional in design and two were therapeutic trials. Only one of the studies was 

specifically designed to try to validate the use of the HRQL questionnaire in IPF. This 

cross-sectional study by Martinez et al (Martinez et al., 2000) compared 34 patients with 

IPF with 34 age and sex-matched controls. They administered the SF-36 questionnaire 

and another respiratory questionnaire, the Baseline Dyspnea Index (BDI) (Mahler et al., 

1984), to IPF patients and controls; IPF patients also underwent pulmonary function 

tests and resting arterial blood gas measurements. They found that the IPF patients 

scored significantly lower than normal subjects on 7 out of 8 components of the SF-36. 

They also found that there was significant correlation between five of the SF-36 score 

components and the BDI and that there was significant correlation between two 

components of the SF-36 score (physical functioning and general health perceptions) 

and spirometry (FEV1 and FVC). 

More recently, Swigris et al (Swigris et al., 2010) looked to further validate the SF-36 and 

the STGRQ in a large group of patients with IPF and try to estimate the minimum 

important di�erences in scores for the two questionnaires. The data was collected as 

part of the BUILD-1 study of the use of Bosanten in IPF. The questionnaires were 

administered to 158 patients with IPF who were randomised to receive either Bosanten 

or placebo. They found that changes in both the SF-36 and STGRQ reflected changes in 
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patients disease progression (as assessed by the BDI, FVC and DLCO). They found that the 

minimum important di�erence in scores was 2-4 for SF-36 and 5-8 for STGRQ. 

2.3.4 Pulmonary Function Tests

All patients underwent full lung function tests at baseline including spirometry (FEV1, 

FVC), lung volumes (TLC, RV, ERV and FRC) and transfer factor (TLCO, KCO, VA). TLC was 

measured using the helium dilution technique and DLCO was measured using the single 

breath technique.

2.3.5 CT scans

The study protocol specified that scans should be performed within 2 weeks of 

pulmonary function tests. All patients were scanned on a state of the art 64-slice CT 

scanner (Discovery HD - GE Healthcare, Milwaukee, WIS). The following table details the 

CT scan parameters and the choice of parameters is described in more detail below:

Parameter Setting

Number of detectors 64

Pitch 0.98

kV 120

mA 100

Slice thickness (mm) 0.625

Reconstruction algorithms Bone, Lung and Standard

Table 2-2 CT scan parameters

2.3.5.1 Spiral vs non-spiral acquisition

In the early days of CT, high-resolution CT (HRCT) of the lungs was performed using a 

non-spiral technique, since acquiring a whole lung volume using thin slices on the 
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earlier generation of CT scanners would take much longer than a reasonably achievable 

breath-hold. Therefore, the percentage of lung scanned had to be sacrificed for the 

increased resolution achieved by using thin slices. With the advent of modern multi-

detector scanners it has become possible to obtain whole lung coverage using thin slice 

spiral acquisitions. There are many advantages of this volumetric spiral scanning, 

including the possibility to acquire a dataset which represents the whole of the lungs 

and the ability to reconstruct images in multiple orthogonal planes. For situations where 

serial scans need to be compared volumetric scanning techniques make slice matching 

much easier. For quantitative analysis, spiral acquisition is necessary for 3D-analysis 

techniques to be performed. The potential downside of spiral acquisition is that it 

typically results in a higher patient radiation dose than non-spiral CT and therefore 

non-spiral CT continues to be used in certain circumstances such as in paediatric 

patients. In the older patients who are typically a�ected by IPF, radiation dose is not 

usually such an important consideration, since older patients are less sensitive to the 

e�ects of radiation and have less time to develop the potential side e�ects (Kleinerman, 

2006). 

Another important feature of the study protocol is that patients were scanned from the 

lung bases to the lung apices (caudo-cranially). This is the opposite direction to how 

most CT is obtained. The reason for starting the scan at the lung bases is that during 

normal breathing there is much greater excursion of the lower part of the chest 

compared with the apices. Thus if a patient is unable to hold their breath for the 

duration of the scan, any breathing movement is more likely to a�ect the apices, which 

are less mobile, thus leading to less breathing artefact.  
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2.3.5.2 Slice thickness

Choice of slice thickness on CT is a compromise between image noise, spatial resolution 

and partial volume e�ect. Thinner slices have greater image noise (due to less data) but 

have better spatial resolution and decreased partial volume e�ect. In order to facilitate 

accurate 3D reformatting and analysis of texture, we decided that the CT scan should be 

acquired with the thinnest possible slices achievable on our scanner, which for the GE 

Discovery HD is 0.625 mm. This results in near-isotropic voxels. 

2.3.5.3 Dose parameters - mA and kV

In choosing appropriate levels of mA and kV, consideration must be given to patient 

dose, image noise and image contrast. An increase in mA leads to a linear increase in 

dose, whereas the relationship between kV and dose is non-linear with, for example, a 

20% increase in kV leading to an approximately 30% increase in dose. 

Since the lung shows high inherent contrast between aerated lung and adjacent 

structures, a low dose scan protocol was chosen with a fixed mA of 100 and a fixed kV 

of 120. Previous studies have shown that such low dose protocols do not lead to an 

important decrease in the ability of automated algorithms to detect lung nodules 

(Diederich et al., 1999) and that emphysema quantification is not significantly hampered 

by thresholds as low as 50 mAs (Zaporozhan et al., 2006). Sverzellati et al performed an 

analysis of histogram features in patients with idiopathic interstitial pneumonia and did 

not find any significant di�erence between scans performed at 50 mAs and scans 

performed at 100 mAs (Sverzellati et al., 2005). 

Specific dose reduction post processing techniques such as adaptive statistical  iterative 

reconstruction were not used because the e�ect on automated quantification is not yet 

known. 



2.3.5.4 Pitch

The pitch of a multi-detector CT scanner can be defined as the distance moved by the 

table during one rotation, divided by the detector collimation (total length of detectors) 

(Schilham et al., 2010) and can be thought of in terms of how tightly a spring is coiled, 

imagining the beam of the x-ray tube tracing a spiral around the patient. A pitch of 1 

means a spring where there are no gaps between the coils of the spring but no 

overlapping of coils. Therefore during a single 360 rotation of the x-ray tube, each 

element within the body is sampled twice. A pitch of less than 1 implies overlapping and 

a pitch of more than 1 implies ‘gaps’ between the springs and reduced sampling. For our 

study, a pitch as near as possible to 1 (0.98) was chosen as a compromise between the 

reduced amount of data acquired with a pitch of more than 1 and the oversampling and 

increased dose of a pitch less than 1. 

2.3.5.5 Reconstruction algorithm

CT raw data can be reconstructed in multiple di�erent ways using di�erent 

mathematical algorithms. A number of studies have examined the e�ect of using 

di�erent reconstruction algorithms on automated quantification of emphysema. They 

concluded that most accurate results were obtained with use of a ‘soft tissue’ algorithm. 

Studies of the e�ect of algorithm choice on automated quantification of IPF are less 

numerous and a number of di�erent algorithms have been used in quantitative studies 

including bone (Maldonado et al., 2014, Sverzellati et al., 2005), lung (Yoon et al., 2013) 

and ‘non-edge enhanced’ (Bartholmai et al., 2013) . At the time of writing, we are not 

aware of any texture-based quantification study which compares more than one 

algorithm. 
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2.3.5.6 Window level and width

The CT attenuation of a voxel of tissue is defined by its CT number which is defined as 

the di�erence in attenuation of the contents of the voxel relative to water. The CT 

number is expressed in terms of the Hounsfield Unit (HU) where water is assigned a 

value of zero. The window level and width specify the CT numbers which define the 

midpoint and the range respectively of the gray-level scale used to display a CT image 

(Barnes, 1992). Radiologists viewed all images on standard lung windows (window level 

= - 500 HU, window width =1400 HU). 

2.3.5.7 Level of inspiration/breathing instructions

The QUIC protocol specifies that the scans are performed at full inspiration. The most 

important factor in ensuring that a CT scan of the chest is suitable for quantitative 

analysis is making sure that the patient achieves the appropriate level of inspiration and 

expiration and that the patient holds their breath during the scan (Newell Jr et al., 2013). 

In order to ensure this, specific breathing instructions were created for the QUIC study 

and pre-programmed onto the scanner. The instructions are given in the table below:

Breathing instructions “Breath in....breath out....breath in.... 
breath out....breath all the way in... and 
stop breathing”

Table 2-3 CT scan breathing instructions

2.4 DEVELOPMENT OF THE AUTOMATED COMPUTERISED ANALYSIS SOFTWARE

2.4.1 Steps required for automated analysis

The process of developing the algorithm was an iterative process building on a previous 

algorithm developed by the Department of Computer Science at Warwick University 

(Charemza et al., 2008). The process can be broken down into a number of steps as 

follows:



� Step 1:  Separation of the lung voxels from the chest wall and the air outside 

� the thorax

� Step 2:� Segmentation of the major airways and their removal from the lung 

� volume

� Step 3:  Training the algorithm using marked up data, analysis of the di�erent 

� lung textures and development of classifiers according to the di�erent 

� Minkowski functionals

� Step 4:  Texture analysis of the new lung volume using Minkowski functions.

� Step 5:  Classification of the lung voxels according to similarity to the 

� classifier.

In the first step, the lung voxels must be separated from surrounding structures. There 

have been many di�erent methods described for automatically segmenting the lungs 

from the chest wall which are described in a recent review article by van Rikxoort et al 

(van Rikxoort and van Ginneken, 2013). These methods vary in their sophistication, 

computational e�ciency and degree of user input required. 

In people with normal lungs the task can be relatively easily accomplished since the lung 

is typically much lower attenuation than the structures of the chest wall. The density of 

normal lung is typically below -500 HU whereas normal chest wall structures are greater 

than -50 HU and there is therefore a large di�erence between the two. A process of 

simple thresholding can therefore be used to isolate the lungs using a threshold of, for 

example -100 HU. On the other hand, diseased lung often has increased density and 

may therefore be very similar in attenuation to the adjacent chest wall. This makes 

separation of abnormal lung and the chest wall di�cult. Another challenge is that 

diseased lung (e.g. emphysema, honeycomb cysts) may have abnormally low density, 

creating ‘holes’ in the image which may be confused with airways. We chose an approach 
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which uses a combination of thresholding and a ‘shrink-wrapping’ technique. This 

technique has a number of steps, as follows:

1) Segmentation: a basic initial segmentation is performed using an adaptive 

thresholding technique as described by Hu et al (Hu et al., 2001). As shown below 

(Figure 2-1) , this may have some ‘holes’ i.e. fail to include some lung tissue, both at the 

periphery of the lungs and more centrally within the lung parenchyma.

Figure 2-1 Initial segmentation of the lungs using thresholding

2) ‘Shrink-wrapping’: this technique involves generating multiple points on the surface 

of the lung volume and then casting linear rays through these points in order to identify 

points exterior and interior to the surface. A bounding, convex mesh is then initialised 

outside the surface points. Figure 2-2 provides a schematic representation of this using 

a cube and sphere as the object to be segmented. Next, the positions of the mesh are 

updated using a self organising map (SOM).
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Figure 2-2 Convex mesh placed outside the desired volume

This is a type of artificial neural network where points (called ‘nodes’ or ‘neurons’) are 

assigned to an approximation of the desired structure and then moved in position 

according to their similarities with neighbouring nodes. Multiple iterations of this 

process gradually decrease the size of the polygons forming the mesh and allow it to 

move closer to the desired shape. This procedure was originally described by Kohonen 

et al and therefore SOMs are sometimes known as Kohonen maps (Kohonen, 1982). 

Figure 2-3 shows several iterations of the software as it approximates the lung surface 

and Figure 2-4 shows a 3D surface-rendered representation of the final segmented lung 

volume. 

55



Figure 2-3 Several iterations of the self-organising map (SOM) showing gradually decreasing 

surface polygon size as the external mesh approximates to the true lung volume

56



Figure 2-4 Surface rendered representation of the final 3D lung volume after it has been ‘shrink-
wrapped’

3) Removal of airways: the major airways must now be removed from the lung volume. 

The method chosen is based on the approach by Doel et al (Doel et al., 2012). Firstly, a 

seed point is first manually placed in the trachea. Next, a region-growing algorithm is 

used whereby neighbouring voxels are grouped together if their density is below a 

threshold of -900 HU. An ‘explosion-control’ mechanism is used to prevent low 

attenuation lesions adjacent to airways being included within the airway volume. This 

mechanism relies on the fact that airways will generally decrease in size over successive 

generations and stipulates that, as the region growing algorithm progresses, the 

number of voxels joining the volume should gradually decrease (apart from small 

temporary increases at airway bifurcations). If there is a sudden increase in the number 

of voxels joining the airway tree, this implies ‘leakage’ into the surrounding lung and 



the process is terminated. Once the airway volume has been ‘grown’, it is subtracted 

from the lung volume. Figure 2-5 (below) shows an example of the extracted airways.

Figure 2-5 Extracted major airways

4) Training: the next stage in the process is to train the software using expert radiologist 

mark-up. In order to provide the algorithm with ground truth data, a Radiologist (EH - 

‘Radiologist 1’), marked up a scan of a patient with IPF. The scan was chosen to be 

representative of all the typical features of IIP and was of a patient with moderate 

severity disease. The algorithm was marked up using a software called ITK-snap (http://

www.itksnap.org), an open-source software which allows the viewing and drawing of 

irregular ROIs on a CT scan saved in DICOM format. These ROIs can be colour-coded to 

indicate di�erent types of abnormality and saved in several di�erent formats 

(Yushkevich et al., 2006). For the purpose of this study, the .NRRD format was chosen. 
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The labels used and colour codes were as follows:

Texture Colour code Degree of Confidence

Honeycombing Red Definitely abnormal

Reticulation Green Definitely abnormal

Emphysema Orange Definitely abnormal

Ground glass change Yellow Definitely abnormal

Indeterminate* Cyan Subtly abnormal

Normal Purple Definitely normal

Table 2-4 Labels for radiologist mark-up of scan 13

Category 5 (indeterminate) was selected when the region of lung did not fit into any of 

the other categories. Generally, this was when the region was only subtly abnormal but 

not abnormal enough to be coded as 1-4. Particular care was taken to only mark as 

normal areas which were definitely normal, since reliable categorisation of lung into 

normal or abnormal was felt to be one of the most important characteristics of any 

algorithm. 

Initially, the whole right lung of a single scan was marked up. This involved marking up 

409 slices using an average of 7 ROIs per slice producing a total of approximately 2800 

irregular ROIs. This task took approximately 40 hours in total. 

The whole of the lung volume was then divided up by the computer algorithm into non-

overlapping ROIs of 5 x 5 x 5 pixels each. This resulted in 13,855 ROIs which had been 

assigned by the radiologist to the honeycomb class, 14767 reticulation ROIs, 4875 

indeterminate ROIs and 5422 normal ROIs (total 38,919 ROIs - table 2-5). Since there 

were an uneven number of voxels in each class, and in order not to bias the training of 

the algorithm, a total of 3000 voxels of each class were used to train the algorithm. 



Class Number of ROIs

Honeycombing 13855

Reticulation 14767

Indeterminate 4875

Normal 5422

Table 2-5 Number of ROIs marked-up for each class

5) Calculation of Minkowski Functionals: the next stage in training the algorithm was to 

calculate the Minkowski functionals (MFs) for each of the voxels in order to try and 

separate out the di�erent classes. The calculation of the MFs can only be performed on 

binary data so the pixel density had first to be converted to black or white (rather than 

the 256 shades of grey which are shown in a typical CT image). This can be done at a 

single threshold or at multiple thresholds. We chose to perform the calculations at 100 

thresholds of 10 HU from -1000 to 0. The four MFs were calculated for each of the 100 

thresholds giving 400 samples per ROI. The formula which is used to derive the MFs for 

convex sets is expressed in terms of the volume of a given set when dilated by a ball, Br 

of radius r. In 3D the formula is :

V (K � Br) = V (K) + S (K)r + 2πB (K)r2 + 4/3" (K)r3         (Arns et al., 2002)

Where K is a convex set and � is the dilation operation; V= volume; S = surface area, B = mean breadth 

and ! = the Euler-Poincare Characteristic (EPC)

Building a classifier: a neural network (NN) using a multi-layer perceptron (MLP) was 

used to build a classifier. This approach is similar to that adopted by Huber et al and is 

suited to dealing with the high-dimensionality of our multiply thresholded features. 
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Having designed a computer algorithm according to the steps listed above, we then 

tested it in a number of di�erent situations, as detailed below.

2.4.2 Testing the computer algorithm - control scans

The computer algorithm was first tested on normal CT scans, designed to act as 

controls. For this purpose, 7 consecutive high resolution CT scans of the thorax which 

had been reported as normal were selected from the routine CT work-list. These were 

validated by EH as being normal, then fully-anonymised (no patient identifiable data) 

and the computer algorithm was run on these scans. Results of this experiment are 

presented in Chapter 3). 

2.4.3 Testing the computer algorithm against a CT scan marked up by a 

radiologist

Next the algorithm was tested on the initial scan (patient 13) which the radiologist had 

marked up for training the algorithm. Although the radiologist had marked up only the 

right lung, the algorithm was applied to both the left and right lungs. Comparison of the 

radiologist mark-up with the computer output for the left lung is discussed in Chapter 3.

2.4.4 Testing the computer algorithm against selected slices marked up 

by a radiologist

The algorithm was tested on multiple scans from prospectively recruited patients. One 

subject (patient 19) was subsequently omitted due to their scan having normalised. 

The output of the computer algorithm was compared with 5 slices per patient which had 

been visually scored by a radiologist. For these scans, all 23 were marked up by at least 

one radiologist and 8 scans were marked up by 2 radiologists. Before being presented to 

the radiologists, all scans were fully anonymised using the GE advantage workstationTM . 

This viewing and post processing workstation has a feature called ‘Anonymous Maker’ 

which enables the removal of all patient identifier and demographic data but allows 
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metadata concerning the scan parameters (e.g. slice thickness, field of view, voxel 

dimensions) to be retained. Scans were provided to radiologists for scoring in a random 

order. 

A total of five slices were selected for the radiologists to score, chosen at 5 pre-

determined anatomical levels as follows: the top of the arch of the aorta, the carina, the 

right superior pulmonary vein, 1 cm above the dome of the diaphragm and 2 cm below 

the dome of the diaphragm. These 5 slices were presented to the radiologists in a 

separate folder for each patient. 

A scoring sheet (Appendix C) was developed based on the work of Edey et al (Edey et al., 

2011) and Goh et al (Goh et al., 2008). Radiologists were provided with specific scoring 

instructions for this purpose (Appendix D) and were blinded to the results of the 

computerised estimation of fibrosis. To summarise, the scoring process was as follows:

1. For each slice, radiologists were asked to give a visual estimate of the percent of lung 

involved with honeycombing, reticulation, ground glass opacification and 

consolidation. Estimates were to be given to the nearest 5%. 

2. Radiologists were asked to report whether they thought there was emphysema on 

each slice, giving a simple yes or no answer. 

The results of the radiologists’ scoring are presented in Chapter 5. 

2.5 STATISTICAL ANALYSIS

Correlation between computer calculated lung volume and TLC was assessed by linear 

regression and was examined for systematic error using Bland-Altman plots (Bland and 

Altman, 1986) . 

Linear regression was used to examine the correlation between the two radiologists, 

between radiologist and computer, and between computer scores, pulmonary function 

tests and respiratory questionnaire scores. Spearman’s rank-order correlation was 
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performed to compare the ranking of scan severity by the computer and radiologist. 

Intraclass correlations were used to compare radiologists’ visual scores. All analysis was 

performed using SPSS statistics software version 22.0.0.0 (SPSS, Chicago, IL). The results 

of these analyses will be presented in Chapter 5. 
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CHAPTER 3: RESULTS PART 1: INITIAL TESTING OF THE COMPUTER 

ALGORITHM

3.1 OVERVIEW OF THE RESULTS CHAPTERS

This is the first of three results chapters in which we will discuss the initial testing of the 

computer algorithm including testing on 7 normal (control) scans and a single 

pulmonary fibrosis scan, comparing the output of the computer algorithm on the 

fibrosis scan with radiologist manual segmentation. 

3.2 INTRODUCTION TO CHAPTER 3

In this chapter (Chapter 3) we will discuss the outputs of the computer algorithm on 7 

scans from patients with no lung disease and on a single patient with pulmonary 

fibrosis. We will use the normal scans to look specifically at di�erent sources of error 

and variation in the behaviour of the computer algorithm including artefact at tissue 

boundaries, movement artefact and gravitational e�ects. We will also assess the 

important influence of CT reconstruction algorithm and degree of inspiration/expiration 

on the computer output. We will then look at the computerised classification of lung 

texture on a scan from a patient with pulmonary fibrosis, including the Minkowski 

functional characteristics of di�erent lung textures, and compare the computer 

classification with radiologist manual segmentation. 

3.3 COMPUTER ANALYSIS OF NORMAL SCANS

Details of the selection of the normal scans is given in Chapter 2 (Materials and 

Methods). We will first describe examine how the computer algorithm classified the 7 

normal scans when performed in full inspiration and reconstructed using the bone 

algorithm (the algorithm that the software was trained on), focussing specifically on 

accuracy of segmentation and classification. Several representative slices of the normal 
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scans will be presented, along with a table showing the variation in lung texture 

classification between the scans. We will then look at the e�ect of CT reconstruction 

algorithm on 5 of the 7 scans which had been reconstructed using three di�erent 

algorithms (bone, standard and lung). Finally we will look at the e�ect of lung volume on 

two of the normal scans which were performed in both inspiration and expiration. 

3.3.1 Computer segmentation and classification of 7 normal inspiratory 

scans

Normal scan 1:

The overall segmentation for this scan was good but it can be seen that there is mis-

classification of some of the most peripheral voxels as honeycombing. This is seen as a 

universal phenomenon on all scans and is believed to be due to inclusion of some soft 

tissue of the chest wall in these voxels (partial volume e�ect). We can also see that there 

is some erroneous inclusion of the hilar vessels in the segmented lung component. 

These two sources of error can be seen in the figure below: 

Figure 3-1 Computer output on axial slice of normal scan 1 at the level of the carina
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This scan also su�ered from some breathing artefact at the lung bases and some cardiac 

pulsation artefact. The breathing artefact led to some ‘ghosting’ of the diaphragm onto 

the lung parenchyma (Figure 3-2). 

Figure 3-2 Computer output on axial slice of normal scan 1 at the level of the diaphragm

It is evident that this led to both segmentation issues and texture classification issues 

with some of the ghosted diaphragm included in the segmented lung and some omitted. 

The lung that was included was classified as either honeycombing or reticulation. 

Cardiac pulsation artefact was also present on this scan and led to some normal lung 

being classified as ‘indeterminate’ (Figure 3-3). 

*
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Figure 3-3 Computer output on axial slice of normal scan 1 at the level of the heart. Large area of 
blue colouration in the left lung is consistent with cardiac pulsation artefact (asterisk)

Normal scan 2:

This scan showed good segmentation but experienced problems with texture 

classification at the posterior basal parts of the lung (Figure 3-4)

Figure 3-4 Computer output on axial slice of normal scan 2 at the level of the heart. Note the 

large volume of indeterminate lung (blue) and the erroneous reticulation classification at the lung 

bases (green). 

This was felt to be due mainly due to the degree of noise a�ecting the scan with a lot of 

streak artefact posteriorly. This linear streaking was misinterpreted by the computer 

algorithm as being reticulation and illustrates the fact that it may not be possible to 

distinguish between di�erent types of linear abnormality. This scan was also rather 

expiratory and this led to a large amount of the lung being classified as indeterminate. 

Further analysis of inspiratory/expiratory acquisitions is discussed in Section 3.3.3. 

Normal scan 3:

This scan again demonstrates the edge artefact which gives a spurious band of 

honeycomb classification around the lung edges. It also shows areas of ‘indeterminate’ 

classification posteriorly which is thought to be due to a gravitational gradient in lung 
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density (figure 3-5). This phenomenon has previously been described in studies of CT 

lung density in normal patients who were imaged supine and prone at di�erent degrees 

of inspiration (Verschakelen et al., 1993).

Figure 3-5 Computer output on axial slice of normal scan 3 at the level of the heart. Note the 

large volume of ‘indeterminate’ classification which is thought to be due to a gravitational change 

in lung density

Normal scan 4:

This shows similar findings to scan 3 but with less of the indeterminate classification 

(see figure below):

Figure 3-6 Computer output on axial slice of normal scan 4 at the level of the heart showing a 

small amount of indeterminate classification posteriorly (arrows)
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Normal scan 5

The output from scan 5 was similar to that from scan 3, containing a moderate amount 

of indeterminate classification and some erroneous reticulation due to posterior streak 

artefact (Figure 3-7).

Figure 3-7 Computer output on axial slice of normal scan 5 at the level of the heart
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Normal Texture Volumes:

The table below (Table 3-1) summarises the percentage of lung volume classified as 

each texture in the 7 normal inspiratory scans. This table also shows the percentage of 

voxels classified as honeycombing which were at the lung edge (surface voxels). 

Total

Honeycomb

(a)

Honeycomb 
surface 
voxels

Reticulation
(b)

Total 
fibrosis 
(a+b)

Indeterminate
(c)

Normal
(d)

Non 
fibrosed

(c+d)

Normal 1 11.4 8.4 2.8 14.1 6.7 79.2 85.9

Normal 2 13.1 9.0 15.3 28.4 54.9 16.8 71.6

Normal 3 11.1 8.0 5.5 16.6 45.7 37.7 83.4

Normal 4 9.2 6.8 4.3 13.5 14.0 72.5 86.5

Normal 5 9.0 7.2 4.4 13.4 33.8 52.7 86.6

Normal 6 9.6 7.1 2.3 11.9 5.9 82.2 88.1

Normal 7 11.1 7.6 1.4 12.4 2.9 84.7 87.6

Mean 
(SD)

10.6 (1.5) 7.7 (0.8) 5.1 (4.7) 15.8 (5.8) 23.4 (21.2) 60.8 (26.0) 84.2 (5.8)

Table 3-1 Classification of lung texture in 7 normal scans (bone algorithm). All figures are given 

as percentages

From this table it can be seen that there is a percentage of lung which is incorrectly 

classified as honeycombing on each of the normal scans (false positive honeycombing). 

This can be explained mainly by segmentation errors including at the interface between 

lung and chest wall, between lung and mediastinum and at the hila (incorrect inclusion 

of large airways and vessels in the lung volume). We can see that the percentage of lung 

classified as honeycombing which was at the edge of the segmentation has a mean 

volume of 7.7% (SD 0.78). The consistent nature of this error with a small standard 

deviation suggests that, if it is not correctable on future algorithms, it could e�ectively 

be subtracted from the final estimate of honeycombing.



Incorrect classification of normal lung as reticulation was generally less of a problem but 

also tended to occur at interfaces between lung and soft tissue. An exception was 

Normal scan 2 where excessive posterior streak artefact led to increased false positive 

reticulation. As previously described, indeterminate lung was thought to be a reflection 

of gravity dependent increased density or increased density due to an expiratory scan. 

This is further explored in Section 3.3.3. 

3.3.2 E�ect of CT reconstruction algorithm on normal scans

The table below (Table 3-2) illustrates the e�ect of the CT reconstruction algorithm 

on texture classification for five of the normal scans for which three separate 

reconstruction algorithms were available, all with the same slice thickness (lung, 

standard and bone algorithms). 
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Lung Standard Bone 

Normal 1 Honeycomb (%) 39.1 7.3 11.4

Reticulation (%) 1.3 6.3 2.7

Indeterminate (%) 1.8 5.6 6.7

Normal (%) 57.8 80.8 79.2

Normal 2 Honeycomb (%) 51.3 6.9 13.1

Reticulation (%) 7.2 17.0 15.3

Indeterminate (%) 19.7 49.6 54.9

Normal (%) 21.8 26.5 16.8

Normal 3 Honeycomb (%) 34.2 5.6 11.1

Reticulation (%) 1.7 10.7 5.5

Indeterminate (%) 18.0 31.2 45.7

Normal (%) 46.2 52.6 37.7

Normal 4 Honeycomb (%) 26.1 5.9 9.1

Reticulation (%) 2.5 7.1 4.3

Indeterminate (%) 6.2 11.8 14.0

Normal (%) 65.2 75.2 72.5

Normal 5 Honeycomb (%) 35.7 5.6 9.0

Reticulation (%) 1.6 8.7 4.4

Indeterminate (%) 13.2 24.3 33.8

Normal (%) 49.5 61.4 52.7

Table 3-2 E�ect of di�erent reconstruction algorithms on classification of lung texture on normal 
scans

This table shows that the choice of CT algorithm has a significant e�ect on the 

classification of the lung. 

Several conclusions can be drawn from the data, as follows:

1) The lung algorithm leads to significantly more lung being wrongly assigned to the 

honeycombing class. The mean percentage honeycombing for the 7 normal scans with 



lung algorithm is 37.3% (SD = 9.2%) compared with 6.3% (SD = 0.8%)  for the standard 

algorithm  and 10.6% (SD = 1.7%) for the bone algorithm . The reason for this appears to 

be two-fold. Firstly, a large proportion of smaller vessels are mis-classified as 

honeycombing and secondly, there is an exaggeration of the tendency to classify voxels 

at the costal and mediastinal borders as honeycombing. This e�ect is demonstrated in 

figure 3-8 below.

Figure 3-8 Selected axial slice from normal scan 1 showing vessels mis-classified as 
honeycombing (red) using the lung algorithm (left hand image) compared with the bone algorithm 

(right hand image)

2) The amount of lung which is mis-classified as reticulation is proportionally greater 

when using the standard algorithm and the amount of mis-classification as 

reticulation is least marked when using lung algorithm.

3) The bone algorithm gives results which are somewhere in between lung and standard 

algorithms.  

4) The amount of lung which is classified as indeterminate is largest with the bone 

algorithm with progressively lower proportions of indeterminate classification on the 

standard and lung algorithms.

5) The standard algorithm consistently gives the greatest portion of normal 

classification with bone and standard in second or third place depending on the scan. 
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3.3.3  E�ect of inspiration/expiration on normal scans

Two of the normal scans (normal 6 and 7) had both inspiratory and expiratory images 

available. These are discussed below:

Normal scan 6 - inspiration

This scan showed overall good segmentation of the inspiratory images (see figure 3-9 

and 3-10) with just minor edge artefact and cardiac pulsation artefact.

Figure 3-9 Normal scan 6 performed in inspiration (bone algorithm) showing minor edge artefact

*

Figure 3-10 Normal scan 6 performed in full inspiration shows minor edge artefact and cardiac 

pulsation artefact (*)
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Normal scan 6 - expiration

Expiration had a significant e�ect on the classification of the lung producing an 

increased percentage of lung incorrectly classified as indeterminate or reticulation. 

Figure 3-11 below shows a similar slice to figure 3-10 (note position of oblique fissures) 

and demonstrates that although the slice does not look very di�erent visually, there is a 

dramatic di�erence in texture classification. 

Figure 3-11 Normal scan 6 performed in expiration showing a large amount of indeterminate 

classification (blue)

Normal scan 7 - inspiration

The inspiratory images of normal scan 7 classified well, apart from some minor mis-

classification of posterior lung, thought to be due to posterior linear streak artefact 

(Figure 3-12). The expiratory images showed a large amount of indeterminate lung as 

well as a small amount of spurious reticulation. Figure 3-12 and Figure 3-13 show a 

similar level slice on the same subject performed in inspiration and expiration. 



Figure 3-12 Normal scan 7 performed in full inspiration shows minor streak artefact posteriorly 

which has been mis-classified as honeycombing (arrows)  

Figure 3-13 Normal scan 7 performed at full expiration shows a large amount of indeterminate 

lung (blue) as well as a small amount of erroneous reticulation (green)

Interestingly, the inspiratory/expiratory nature of the scan a�ected mis-classification of 

di�erent lung textures di�erently and di�erent algorithms were more sensitive to the 

degree of inspiration/expiration. 

This can be seen in the table below (table 3-3). Note that the figures in brackets are the 

change in percentage volume on expiration compared with inspiration. 
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Normal 6 Lung insp Lung exp Standard 

insp

Soft 
tissue 

exp

Bone 

insp
Bone exp

Honeycombing (%) 38.8 42.5
(+ 3.6)

6.0 8.5 

(+2.5)
9.6 13.7

(+4.1)

Reticulation (%) 1.2 16.9
(+ 15.7)

4.6 23.7 

(+19.1)
2.3 26.9 

(+24.6)

Indeterminate (%) 1.1 24.6
(+23.5)

4.7 49.6 

(+44.9)
5.9 44.7 

(+38.8)

Normal (%) 58.9 16.0
(-42.8)

84.6 18.2
(-66.4)

82.2 14.8
(-67.4)

Normal 7 Lung insp Lung exp Standard 

insp

Soft 
tissue 

exp

Bone 

insp
Bone exp 

Honeycombing (%) 39.6 35.5
(-3.6)

5.3 5.1
(-0.2)

11.0 11.6
(+0.5)

Reticulation (%) 0.5 2.7
(+2.3)

4.5 11.0
(+6.6)

1.4 7.1
(+5.7)

Indeterminate (%) 0.3 23.5
(+23.1)

4.7 38.1
(+33.4)

2.9 48.3
(+45.4)

Normal (%) 60.1 38.3
(-21.8)

84.6 45.8
(-38.9)

84.7 33.0
(-51.7)

Table 3-3 E�ect of reconstruction algorithm and inspiration/expiration on normal scans 6 and 7. 

Figures in brackets indicate change in percentage lung volume between inspiration and expiration

For both scans, the class which was least a�ected by inspiration/expiration was 

honeycombing, with only a small change in the percentage of lung classified as 

honeycombing across all the reconstruction algorithms. The reticulation class was more 

sensitive to expiration/inspiration with the a�ect again seen across all reconstruction 

algorithms. The most sensitive class was indeterminate with a large increase seen on the 

expiratory scans. These e�ects are reflected in the amount of lung classified as normal 

for each reconstruction algorithm. Both standard and bone algorithms show over 82% of 

lung as normal on inspiratory scans whereas this drops to between 14 and 46% for 

expiratory scans.  



3.4 TESTING THE COMPUTER ALGORITHM AGAINST AN ABNORMAL CT SCAN 

MARKED UP BY A RADIOLOGIST

We will now present the results of testing the algorithm on the initial scan (patient 13) 

which was marked up by the radiologist for the purpose of training the algorithm. 

Although the radiologist had marked up only the right lung, the computer algorithm was 

used to analyse both the left and right lungs. A sample slice demonstrating the 

radiologist’s original mark-up and the computer generated mark-up side by side is 

show in figure 3-14.

Figure 3-14 Radiologist training segmentation (left) compared with automated computerised 

segmentation (right) on a single identical slice. Courtesy of Dr A Bhalerao

This shows that there is a similar spatial distribution of texture classification for the 

computer and the radiologist but the computer algorithm shows more variability over a 

small area, consistent with it using smaller regions of interest (5 x 5 x 5 pixels) 

compared with the radiologist’s larger and variable sized (freehand) ROIs. The previously 

described edge artefact is again seen around the mediastinal vessels. 

Further comparison of the radiologist mark-up can be made by looking at principle 

components analysis (PCA) of the radiologist mark-up and computer classification. 

Principle components analysis provides a visual demonstration of the Minkowski 

functional features which best distinguish between the di�erent textural classifications 
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on a VOI by VOI basis.  Figure 3-15 shows the PCA analysis for the radiologist (left hand 

image) and computer (right hand image) for slice 266 (the same slice as in Figure 3-14). 

Figure 3-15  PCA analysis of the di�erent textural classes in slice 266 of patient 13. The left hand 

image is from the radiologist mark up and the right hand image is from the computer mark up

From Figure 3-15 we can see the radiologist classification shows more overlap of the 

reticulation, honeycombing and indeterminate classes compared with the computer. The 

normal mark-up appears to be the most robust feature, with tight clustering of the 

normal VOIs at the left hand side of the graph. In comparison, the computer 

classification shows tighter clustering of the classes and less overlapping of the 

honeycombing and reticulation classes. It does show slightly more overlapping of the 

normal and honeycombed lung compared with the radiologist but this may be due to the 

edge segmentation artefact described earlier where normal lung at the edge of a slice 

may be mis-classified as honeycombing. There is also some uncertainty in the 

indeterminate class although this is less marked than for the radiologist mark-up. 

Another way of comparing the radiologist and computer classification is to compare the 

classification of all 5 x 5 x 5 VOIs in the right lung of patient 13. This data is shown in 

the following 2 x 2 tables (table 3-4 and table 3-5) where ‘true class’ represents the 

radiologist classification, training set P represents the 3000 original training VOIs per 

classification (total 12,000) and the testing set Q represents the remaining 26,919 ROIs 

which were not used for training. All figures are given as percentages.
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Class

Computer classification

Honeycombing Reticulation Indeterminate Normal

Honeycombing

Radiologist
Classification

Reticulation
Classification

Indeterminate

Normal

81.2 8.5 5.5 4.8

9.3 44.9 16.3 29.6

2.7 6.5 42.5 48.3

0.9 2.9 9.4 86.8

Table 3-4 Classification of the computer output compared with the radiologist classification on 

the training set (P)

Class

Computer classification

Honeycombing Reticulation Indeterminate Normal

Honeycombing

Radiologist
Classification

Reticulation
Classification

Indeterminate

Normal

65.2 18.4 8.5 7.9

17.4 27.7 23.2 31.7

4.0 10.9 26.6 58.5

2.2 4.5 18.3 75.0

Table 3-5 Classification of the computer output compared with the radiologist classification on 

the testing set (Q)

We can see that for the training set (P), there is an 81.2 % sensitivity for honeycombing, a  

44.9% sensitivity for reticulation, a 42.5% sensitivity for indeterminate lung and an 86.8% 

sensitivity for normal lung. As would be expected, the performance for the testing set 

(Q) is less good with 65.2% sensitivity for honeycombing, 27.7% sensitivity for 

reticulation, 26.6% sensitivity for indeterminate and 75.0 % sensitivity for normal lung. 

For both data sets, it is evident that honeycombing and normal lung show best 

agreement between radiologist and computer. 

3.4.1 Minkowski functional output

The figure below illustrates the Minkowski functional outputs from the whole of the 

right lung of subject 13 across the complete range of Hounsfield Unit thresholds. It 



shows that normal and indeterminate categories do not show much separation in any of 

the MFs. Honeycombing is well separated across all the MF distributions but this 

separation varies according to the threshold. 

Figure 3-16 Minkowski functional distributions from the right lung of subject 13. Coloured 

curves represent the MF distributions for each texture classification averaged over all VOIs in the 

right lung. Red = honeycombing, green = reticulation, blue = indeterminate, purple = normal. The 

black line represents the MF distribution for a single voxel of normal lung

3.5 CONCLUSION

In this chapter, we have discussed the output of the computer algorithm both in 

qualitative and quantitative terms. We have looked at some of the sources of variation in 

the classification of lung texture by the computer algorithm including artefacts at the 

interface of di�erent tissues, artefacts due to movement and artefacts due to 

gravitational e�ects. We have also looked at the influence of reconstruction algorithm 

and depth of breathing on classification. Specifically, we have looked at outputs 

produced when the algorithm is tested on scans from patients with normal lungs and a 

single scan from a patient with pulmonary fibrosis. We have looked at typical Minkowski 
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functional outputs from a whole scan and have used principle components analysis to 

study the power of discrimination of Minkowski functionals on a single slice. 

Classification of the pulmonary fibrosis scan has been compared with radiologist 

classification over a total of 26,919 VOIs. 
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CHAPTER 4 - RESULTS PART 2: TESTING OF THE COMPUTER 

ALGORITHM ON PROSPECTIVELY RECRUITED PATIENTS

4.1 INTRODUCTION TO CHAPTER 4

In this chapter we will look at the characteristics of the 24 prospectively recruited 

patients with CFIP including demographics, pulmonary function tests, respiratory 

questionnaire scores and computerised analysis of the CT scans.

4.2 DEMOGRAPHICS

4.2.1 Age

The subjects ages ranged from 62 years to 84 years. The mean age at enrollment to the 

study was 73 years and 8 months and the median age was 74 years 6 months. 

4.2.2 Gender

The majority of patients were male (18 male patients and 6 female patients).

4.2.3 Smoking status

The majority of patients were ex-smokers with only 8 of 24 patients classifying 

themselves as ‘never smokers’. The mean exposure to cigarette smoke was 20.4 pack 

years (SD = 15.4 years). At the time of enrollment to the study none of the patients were 

current smokers or had smoked in the month before enrollment.

4.2.4 Sub-type of IIP

Five patients had undergone a lung biopsy for diagnosis. In one patient this showed 

desquamating interstitial pneumonia (DIP). For this patient, although a previous clinical 

scan had showed ground glass shadowing, the first study scan was completely normal 

and therefore this patient was excluded from further analysis. Biopsy showed a UIP 
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pattern in two patients and fibrotic NSIP in two patients. For the remaining patients 

without a lung biopsy, the conclusion of the regional interstitial lung MDT was used as 

the working diagnosis. Of the 19 patients who did not have a biopsy, eleven showed a 

typical UIP pattern on CT (according to the criteria in table 1-2); two were felt to have 

possible UIP; five were felt to have findings most compatible with NSIP and one was felt 

to have features of both NSIP and organising pneumonia. 

4.3 PULMONARY FUNCTION TESTS

Two patients were unable to perform baseline pulmonary function testing: one patient 

was too breathless and one patient found it too unpleasant an experience. This left 21 

patients with full pulmonary function and CT scan for analysis.

4.3.1 Spirometry

4.3.1.1 Forced expiratory value in 1 second (FEV1)

Baseline FEV1 ranged from 1.73 L to 2.55 L with a mean of 2.13 L and a standard 

deviation of 0.27 L. The percent predicted FEV1 ranged from 70.8% to 107.8% with a 

mean of 85.6 % and a standard deviation of 11.2 %

4.3.1.2 Forced vital capacity (FVC)

Baseline FVC ranged from 1.97 L to 3.82 L with a mean of 2.71 L and a standard 

deviation of 0.40 L. The percent predicted FVC ranged from 62.3% to 103.2% (mean 

83.4%, standard deviation 11.0%).

4.3.2 Gas transfer (DLCO)

The values for DLCO at baseline ranged from 1.83 mm.min-1.kPa -1 to 6.51 mm.min-1.kPa 

-1 (mean = 3.58, SD = 1.14). The percent predicted DLCO ranged from 23.8% (absolute 
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value = 1.83) to 85.1% (absolute value = 4.74) with a mean of 48.1% and a standard 

deviation of 16.6%. 

 

4.4 ST GEORGE’S RESPIRATORY QUESTIONNAIRE (STGRQ) SCORES

As previously discussed in Chapter 2, the highest possible total STGRQ score is 100 and 

the highest score for each of the domains (symptoms, activities or impacts) is also 100 

with a higher score indicating a greater degree of limitation. 

Total scores in the STGRQ ranged from 10 to 98 (mean = 47, SD = 23). Scores in the 

symptoms domain ranged from 11 to 95 (mean = 49, SD = 25). Scores in the impacts 

domain ranged from 4 to 100 (mean = 37, SD = 25) and scores in the activities domain 

ranged from 6 to 100 (mean = 59, SD = 28). This indicates a large spread in the 

distribution of STGRQ scores across all the domains and a wide range in the severity of 

patients symptoms, physical limitations and impairment in quality of life.  

4.5 COMPUTERISED CLASSIFICATION OF CT SCANS

The table below (table 4-1) shows the complete computerised classification data for the 

23 patients including the CT calculated total lung volume and the CT calculated volume 

of honeycombing, reticulation, indeterminate and normal lung, both in millilitres and in 

percentage of the total lung volume. 
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Study ID CT total lung 
volume (ml)

CT 
honeycombi

ng (ml)

CT 
honeycombi

ng (%)

CT 
reticulation 

(ml)

CT 
reticulation 

(%)

CT 
indeterminat

e (ml)

CT 
indeterminat

e (%)

CT normal 
(ml)

CT normal 
(%)

1 6400 663 10 390 6 685 11 4663 73

2 4696 708 15 410 9 1013 22 2565 55

3 4620 456 10 507 11 1339 29 2318 50

4 4073 785 19 800 20 1788 44 700 17

5 4259 1346 32 429 10 975 23 1509 35

6 2037 901 44 507 25 544 27 85 4

7 4975 1130 23 412 8 752 15 2681 54

8 4637 1286 28 288 6 532 11 2531 55

9 3565 665 19 1195 34 1492 42 213 6

10 5356 2116 40 615 11 1122 21 1502 28

11 3499 720 21 615 18 862 25 1203 34

12 4272 502 12 990 23 1080 25 724 17

13 4015 1673 42 734 18 1084 27 525 13

14 4760 509 11 714 15 1644 35 1803 38

15 3680 489 13 684 19 510 14 1425 39

16 3730 1452 39 427 11 882 24 969 26

17 5240 669 13 392 7 1239 24 2941 56

18 4138 630 15 1179 28 1876 45 190 5

20 5903 3356 57 128 2 1098 19 3383 57

21 4003 1253 31 627 16 627 16 1829 46

22 4509 1017 23 444 10 745 17 2303 51

23 4117 1314 32 327 8 513 12 1963 48

24 4487 572 13 330 7 687 15 2898 65

Mean 
(SD)

4390
(884)

1088
(432)

26
(11)

519
(224)

13
(7)

1004
(408)

24
(10)

1779
(1149)

38
(20)

Table 4-1 Total lung volumes and computer classification of the 23 prospectively recruited 

patients (note that there is no patient 19 as this subject was excluded due to a normal CT)

From this table we can see that the CT calculated lung volume ranged from 2037 ml to 

6400 ml (mean 4390 ml, SD 884 ml).
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The CT calculated volume of honeycombing ranged from 456 ml to 3356 ml (mean = 

1088 ml, SD = 432 ml) with the percentage of honeycombing ranging from 10 % to 57 % 

(mean = 26%, SD = 11%).

The estimated volume of reticulation ranged from 128 ml to 1195 ml (mean = 519 ml, 

SD = 224 ml) with the percentage of reticulation ranging from 2% to 34 % (mean = 13%, 

SD = 7%). 

The estimated volume of indeterminate lung ranged from 532 ml to 1788 ml (mean = 

1004 ml, SD = 408 ml) with the percentage of indeterminate lung ranging from 11 % to 

45 % (mean = 24%, SD = 10%).

The estimated volume of normal lung ranged from 85 ml to 4663 ml (mean =1779 ml, 

SD = 1149 ml) with the percentage of normal lung ranging from 4% to 73% (mean = 38%, 

SD = 20%).

Examples of the automatically classified scans are given below, showing examples of a 

patient with mild disease, a patient with moderately severe disease and a patient with 

advanced disease (Figures 4-1 to 4-3). 

Figure 4-1  An example of an axial slice from the least severely a�ected patient showing that the 

computer has correctly identified a tiny area of honeycombing in the para-vertebral region of the 

right lung (red) but has also erroneously classified central vessels as honeycombing
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Figure 4-2 An example of an axial slice from a moderately severely a�ected patient showing an 

area of established honeycombing in the posterior segment right upper lobe adjacent to the 

oblique fissure (red) and areas of subtle reticulation (green). The large amount of indeterminate 

classification (blue) is thought to be be due to the scan being relatively expiratory

Figure 4-3 An example of an axial slice from a patient with advanced disease showing extensive 

honeycombing (red) admixed with reticulation (green) with only small amounts of normal lung 

remaining

4.6 RADIOLOGIST VISUAL SCORING OF CT SCANS

The range of radiologists scores will be discussed in this section and comparisons 

between radiologists’ scoring and the computer fibrosis score will be presented in the 

next chapter. Radiologist 1 (EH) scored all the scans, scoring 5 axial slices per patient 

(total of 115 slices). The range of honeycombing scores on a single slice for radiologist 1 

was between 0% and 85%. One patient was scored as having no honeycombing on any 

slices whilst the patient scored as having most honeycombing had percentage 

involvement of 15%, 50%, 50%, 70% and 85% on their five slices (cranial to caudal).  The 

range of reticulation scores on a single slice was between 0% and 45%. The most mildly 
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a�ected patient had a reticulation score of 5% on each slice and the most severely 

a�ected patient had scores of 35%, 20%, 15%, 10% and 60% (cranial to caudal). 

Radiologist 2 (RB) scored a subset of 40 slices and had a range of 0% to 60% for 

honeycombing and 5% to 50% for reticulation. Figure 4.4 shows an example slice which 

has was scored by the two radiologists. Radiologist 1 scored it as having 20% 

honeycombing whilst Radiologist 2 scored it as having 10% honeycombing. For the same 

slice, reticulation score was 10% for Radiologist 1 and 25% for Radiologist 2. This 

illustrates how it may be di�cult for the radiologists to decide whether an abnormal 

pattern should be classed as honeycombing or reticulation. 

Figure 4-4 An example axial slice at the level of the carina where Radiologist 1 and 

Radiologist 2 scored the amount of honeycombing at 20% and 10% respectively and 

the amount of reticulation at 10% and 25% respectively

4.6 CONCLUSION

In summary, our group of prospectively recruited patients were largely male, ex-

smokers with an average age of 74, most of whom had a diagnosis of UIP or NSIP. They 

had relatively mild impairment of their FEV1 (mean = 85.6 % predicted) and relatively 
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mild impairment of FVC (mean = 83.4% predicted). Patients generally had more severe 

impairment of DLCO than FVC with a mean value of 48% predicted. The DLCO also showed 

a much larger range of values than either FEV1 or FVC. Scores in the St George’s 

Respiratory Questionnaire showed a wide variation between patients, both in terms of 

the total score and the individual domains. Equally, both the computerised and 

radiologist assessment of abnormal lung textures suggest a wide range in disease 

severity between patients. 
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CHAPTER 5 - RESULTS PART 3: RELATIONSHIPS BETWEEN THE 

MEASURED VARIABLES

5.1 INTRODUCTION

In this chapter we will explore the relationships between the computer fibrosis score 

(CFS), the pulmonary function tests (TLC, FVC and DLCO) and the St George’s 

respiratory questionnaire. We will also compare the computer fibrosis score and the 

radiologist fibrosis score (RFS) and the inter-observer variability between two 

radiologists. Each set of results will be followed by a brief discussion of the meaning 

of the results with a full discussion presented in Chapter 6.

5.2 COMPARISON OF COMPUTER ESTIMATED LUNG VOLUME AND TLC

The computer calculated total segmented lung volume was compared with the total 

lung capacity as measured on pulmonary function tests. The graph below (Figure 5-1)  

shows the correlation between the two measurements. The data for this graph 

excludes the two patients who were unable to perform lung function tests. 

We can see that there is a very good correlation between the two measurements with 

an R-value of 0.85 (p<0.001). 



Figure 5-1 Linear regression showing correlation between computer calculated lung volume 

and TLC

A Bland-Altman plot was created to examine whether there was any systematic 

di�erence between the computer calculated lung volume and the TLC (Figure 5-2). 

Please note that the data are the same as in Figure 5-1. 
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Figure 5-2 Bland-Altman plot illustrating the di�erence between the computer calculated lung 

volumes and TLC

This plot illustrates the fact that the mean di�erence between the computer 

estimated lung volume and the TLC is + 561 ml i.e. the computer tends to estimate 

the lung volume as larger than the TLC measurement. The confidence interval for the 

mean is +345 ml to +777 ml. The most likely explanation for the discrepancy is that 

the computer calculated CT lung volume includes the pulmonary interstitium and 

blood vessels which typically make up approximately 10% of the pulmonary 

parenchyma (Cressoni et al., 2013, van Rikxoort and van Ginneken, 2013). Therefore 

it would be expected that the CT calculated volume is approximately 10% larger than 

the TLC. There are several other variables that may contribute to the di�erence 

between these measurements including: areas of honeycombing which do not 

ventilate will reduce the TLC; areas of air-trapping will reduce the TLC; depth of 

inspiration will a�ect the CT calculated lung volume; errors in segmentation will 
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a�ect the CT calculated lung volume. There is an outlier in the bottom left hand 

corner of the plot (circled in blue). This was a patient with TLC of 2910 ml and CT 

calculated lung volume of 2037 ml and is point situated furthest to the left on Figure 

5-1. The discrepancy is thought to be due to the fact that the patient’s CT was quite 

expiratory, reducing the apparent lung volume on CT. 

5.3 THE RELATIONSHIP BETWEEN COMPUTER ESTIMATED CT FIBROSIS AND DLCO

Linear regression was used to compare the CT calculated fibrosis score 

(honeycombing plus reticulation) and the percentage predicted DLCO. The patients are  

the same as in Section 5.2. The graph below (Figure 5-3) illustrates that there is a 

moderately strong negative correlation between the two variables with an R-value of 

-0.65 (p=0.001).

Figure 5-3 Linear regression showing the correlation between computer calculated 

percentage fibrosis and DLCO. Outliers are circled. 
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We can see that there are two outliers who have a higher percent-predicted DLCO than 

would be expected from the percentage of fibrosis measured on CT. The first outlier 

(Patient 1 - circled in blue) is the subject with both the lowest percentage of fibrosis 

on CT and the highest DLCO. Since we have a lack of any other data-points with DLCO 

more than 66%, there is more uncertainty about the shape of the graph near the 

beginning of the x-axis. It may be that the best fit-line for the plot is actually a 

logarithmic curve and patients with lower amounts of fibrosis on CT have 

proportionally greater values of DLCO  than patients with higher amounts of fibrosis. 

Further investigation of this relationship would require confirmation by testing in a 

larger patient group with more mildly a�ected patients. Alternatively, either the CT 

fibrosis or the DLCO may have been under or over-estimated due to error in either 

measurement. Visual inspection of the classification of this patient shows that 

classification is good but due to this patient having very little honeycombing, the 

erroneous classification of edge voxels as honeycombing will contribute a significant 

proportion of this patients total fibrosis and may partly explain the higher DLCO than 

would be expected for the estimated amount of fibrosis. The second outlier (Patient 

12 - outlined in red) had a large amount of lung which was erroneously classified as 

honeycombing on CT. This is thought to be due to the scan being considerably 

noisier than the other scans due to the patient’s relatively large body habitus. To test 

this theory, the algorithm was re-run on thicker slice reconstructions from the same 

patient (1.25 mm vs 0.625 mm). This reduced the amount of lung wrongly classified 

as honeycombing from 44% to 34%. An example slice is shown below (Figure 5-4).



Figure 5-4 Example from Patient 12 showing a greater percentage of honeycomb 

classification (red) in the left-hand thin (0.625 mm) slice compared with the thicker (1.25 mm) 
slice on the right

5.4 THE RELATIONSHIP BETWEEN COMPUTER ESTIMATED CT FIBROSIS AND FVC

Linear regression was used to compare computer estimated CT fibrosis and percent 

predicted FVC (Figure 5-5). The patients are the same as in the previous section.

Figure 5-5 Linear regression showing the correlation between computer calculated 

percentage fibrosis and FVC
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We found a moderate correlation between the two variables with an R-value of -0.54 

(p=0.01). The strength of correlation is not quite as good as for CT fibrosis and DLCO 

(Section 5.3). There are a number of possible explanations for this. Firstly, our 

patients had quite a narrow range of percent predicted FVC values, ranging from 62% 

to 103%. In fact, nearly half the patients had values above 80% which can be 

considered within the normal range. This means that FVC is likely to be a less 

sensitive measure of lung disease in our patient group and may be more a�ected by 

random variation (noise). Ideally more subjects with a greater range of FVC values 

would be needed to better understand the relationship between the CT fibrosis score 

and FVC. 

5.5 RELATIONSHIP BETWEEN CT FIBROSIS AND THE ST GEORGE’S RESPIRATORY 

QUESTIONNAIRE

Data was available for all 23 patients. Linear regression analysis was performed to 

assess the correlation between CT fibrosis and the total St George’s score and 

between CT fibrosis and the individual domains of the St George’s score, namely 

‘symptoms’, ‘impacts’ and ‘activities’. As shown in Figure 5-6, there was no 

significant correlation between CT fibrosis and either the total St George’s score 

(R=0.31, p = 0.17) or the individual components relating to symptoms (R = 0.27, p = 

0.24), impacts (R = 0.26, p = 0.25) or activities (R = 0.36, p = 0.11). There are several 

possible reasons for this: the St George’s Respiratory Questionnaire was originally 

designed for use in patients with COPD and therefore some of the questions, for 

example about wheeze, are less relevant to patients with CFIP; the questionnaire 

relies on patients recall of their symptoms over the previous 3 months and therefore 

their answers may be a�ected by recall bias; for the questions in the activity and 
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impacts domains patients may find it di�cult to judge whether their limitations are 

due to their respiratory disease or a�ected by other co-morbidities - this is likely to 

be especially relevant in our relatively elderly patient group. Also, as a general rule, 

questionnaire studies normally need large numbers of patients to show meaningful 

results due to the subjective nature of this type of measurement tool. 

Figure 5-6 Relationship between CT fibrosis and the St George’s Respiratory Questionnaire

5.6 RELATIONSHIP BETWEEN DLCO AND THE ST GEORGE’S RESPIRATORY 

QUESTIONNAIRE

Linear correlation did not show any significant relationship between DLCO and either 

the total score in the St George’s Respiratory Questionnaire (R = 0.33, p = 0.14) or 

the individual St George’s domains of symptoms (R = 0.24, p = 0.29), activities (R = 
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0.37, p = 0.10) or impacts (R = 0.35, p = 0.12) as shown in Figure 5-7 below. It is 

likely that this lack of correlation is due to similar reasons as the lack of correlation 

between CT fibrosis and STGRQ.

Figure 5-7 Relationship between DLCO (percent-predicted) and the St George’s Respiratory 

Questionnaire

5.7 RELATIONSHIP BETWEEN FVC AND THE ST GEORGE’S RESPIRATORY 

QUESTIONNAIRE

Linear correlation did not show any significant correlation between FVC and either the 

total STGRQ score (R = 0.30, p = 0.19) or the activities (R= 0.21, p = 0.36) or impacts 

(R = 0.32, p = 0.15) domains. There was a weak association shown between the FVC 

and the symptoms domain (R = 0.46, p = 0.04) but this result should be interpreted 

with caution, due to the small numbers of patients. Similar reasons to those 
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described in section 5.5 and section 5.6 are likely to explain the lack of association 

between FVC and the responses to the STGRQ.

Figure 5-8 Relationship between FVC (percent-predicted) and the St George’s Respiratory 

Questionnaire

5.8 RELATIONSHIP BETWEEN RADIOLOGIST FIBROSIS SCORE AND COMPUTER 

FIBROSIS SCORE

The correlation between radiologist visual score and computer calculated fibrosis 

score was analysed for the 23 patients scored by Radiologist 1 (EH). Five slices per 

patient were visually scored as previously described in the Methods section. This 

produced a total of 115 slices for which a radiologist visual score and computer 

fibrosis score was available. There was a moderate correlation between the 

radiologist fibrosis score (reticulation plus honeycombing) and the computer fibrosis 

score (reticulation plus honeycombing) with an R-value of 0.61 (p<0.0001) as shown 

in Figure 5-9. 
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Figure 5-9 Relationship between the radiologist fibrosis score and the computer fibrosis score

Figure 5-9 illustrates a number of aspects of the data. Firstly, the radiologist score 

has been performed to the nearest 5% since it is not feasible to score more accurately 

than this and therefore there is clustering of the data along the x-axis. Secondly, 

because most of the patients in the study have relatively mild disease, there is 

clustering of data points towards the origin. Apart from the inherent di�erences 

between the continuous numbers provided by the computer and the discrete bins of 

the radiologist scoring, there are several other reasons for potential discrepancies 

between the radiologist and computer scoring including: the radiologist visual 

‘guestimate’ of percentage involvement is prone to error which would be expected to 

be at least 5% either way; the radiologist is able to mentally dismiss artefact such as 

breathing or image noise which the computer frequently mis-classifies as pathology; 

the computer has not been trained to identify certain patterns such as ground glass 

opacity or consolidation which it must then assign to another category. Such 
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alternative patterns may be classified as fibrosis by the computer leading to a falsely 

inflated fibrosis result. In order to assess whether there was a systematic over- or 

under-estimation of the computer compared with the radiologist, we generated a 

Bland-Altman plot (Figure 5-10 below). 

Figure 5-10 Bland-Altman plot illustrating the di�erence between the computer calculated 

fibrosis score and the radiologist estimated fibrosis score

As can be seen from figure 5-10, the computer fibrosis score tends to be higher than 

the radiologist fibrosis score with a mean di�erence of +12.4% (95% confidence 

interval = +9.1 to +15.8%). Most of this over-estimation can be accounted for by the 

edge artefact described earlier whereby the computer falsely assigns pixels at the 

periphery of the lung to the honeycombing class (accounting for a mean of 7.7% of 

erroneous honeycombing on the control scans) and by blood vessels which are 

erroneously classified as honeycombing. Other potential reasons include other 

artefacts such as breathing artefact and classification of vessels or airways as fibrotic 
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lung; mis-classification of emphysema or atelectasis as fibrosis and visual under-

estimation by the radiologist.

Some clustering of data points is seen near the origin of the graph on the left. This 

may partly be explained by the fact that the potential to under-estimate disease is 

more limited when there are smaller amounts of fibrosis since it is not possible to 

have a fibrosis score of less than 0%. Whilst a score of more than 100% is also 

impossible, very few slices had such large amounts of fibrosis. 

In order to assess whether the computer ranking of severity is similar to the 

radiologist ranking of severity, even if there was a systematic over-estimation of 

fibrosis by the computer or under-estimation by the radiologist, a Spearman’s rank-

order correlation was performed. This showed a correlation co-e�cient of 0.568 

which was significant at the 0.01 level and indicates a moderate correlation between 

the radiologist and computer fibrosis scores. 

5.9 INTER-OBSERVER VARIABILITY BETWEEN RADIOLOGIST’S VISUAL SCORING

For 8 of the CT scans, scoring was performed by two radiologists - Radiologist 1 who 

performed the scoring on all 23 patients as presented in section 5.8 and Radiologist 2 

who performed scoring on 8 patients. Therefore, at 5 slices per patient, there were 40 

slices which were scored by both radiologists. 

Linear regression analysis was performed to compare the two radiologists scoring for 

honeycombing, reticulation and total fibrosis (honeycombing plus reticulation). As 

shown in Figure 5-11, there was excellent agreement between the radiologists for 

honeycombing (R=0.86; p < 0.001) but less good agreement in terms of reticulation 

(R = 0.44; p < 0.01). This is not surprising as honeycombing usually has discrete 

margins, often lying adjacent to normal lung and is therefore fairly straightforward to 

visually assess in terms of area a�ected. However, linear reticulation typically a�ects 

103



the sub-pleural lung with linear densities interspersed with more normal lung and 

with an ill-defined boundary between normal and abnormal lung. Interestingly, total 

fibrosis scores showed even better agreement than honeycombing with an R-value of 

0.90 (p<0.001) suggesting that some lung which was classified as honeycombing by 

Radiologist 1 was classified as reticulation by Radiologist 2 and vice versa. Intraclass 

correlations were also used to compare Radiologist 1 and Radiologist 2. This gave an 

ICC of 0.94 for total fibrosis, 0.90 for honeycombing and 0.60 for reticulation which 

according to Landis et al, represents ‘near perfect’ agreement for total fibrosis and 

honeycombing and ‘moderate’ agreement for reticulation (Landis and Koch, 1977). 

Figure 5-11 Comparison of radiologists scores for total fibrosis, honeycombing, and 

reticulation for 40 axial CT slices
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5.10 CHAPTER SUMMARY

In summary, we have now looked at the correlations between the computer estimated 

lung volume and the total lung capacity (TLC); between the CFS and pulmonary 

function tests (DLCO and FVC); between the CFS and scores on the St George’s 

Respiratory Questionnaire; between pulmonary function tests and the St George’s 

Respiratory Questionnaire; between the visual scoring of radiologist 1 and the 

computer fibrosis score and between the two radiologists’ scoring. 



CHAPTER 6: DISCUSSION

6.1 INTRODUCTION TO CHAPTER

As previously discussed, the chronic fibrosing idiopathic pneumonias (CFIPs) are 

challenging diseases with no definite aetiology and with a poor prognosis. The 

commonest CFIP, which also has the worst prognosis, is idiopathic pulmonary fibrosis. 

Recently, new pharmacological treatments for this disease have become available (King 

Jr et al., 2014, Noble et al., 2011, Richeldi et al., 2014) but still have a relatively small 

e�ect on disease progression. They are also very expensive and therefore it is important 

to ensure they are being used on patients who are likely to benefit and to consider 

stopping treatment if it is ine�ectual. Measuring disease severity at diagnosis and over 

time is important for determining treatment decisions and for assessing the e�ect of 

new therapeutic agents. Because new treatments are likely to have relatively small 

e�ects on disease severity an accurate and reproducible measurement is essential. A 

recent observational study of patients with CFIP who had two CT scans performed one 

year apart and were not receiving any interventional treatment (Yoon et al., 2013) 

showed that there was only a 1.6% change in disease severity over the year, as assessed 

by two radiologists, which is within the range of measurement error. Another potential 

role for CT is in predicting prognosis in people with CFIP - both visual assessment and 

quantitative indices of fibrosis have shown promise in this area (Best et al., 2008, Edey et 

al., 2011, Oda et al., 2014, Maldonado et al., 2014). In terms of measuring severity, CT 

has the advantage of providing a non-invasive and quick method for demonstrating the 

volume of disease as a percentage of the total lung volume. Whilst patients with 

significant lung disease may struggle to perform pulmonary function tests, almost all 

patients are able to tolerate a CT. CT also has the advantage of being able to provide 

spatial information on disease extent and can quantify the contribution of di�erent 
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disease pathologies such as UIP and emphysema which often co-exist (Jankowich and 

Rounds, 2012). 

To date, visual assessment has been the mainstay of assessing disease extent on CT and 

in the clinical situation is usually limited to a verbal description of disease severity such 

as mild, moderate or severe. Attempts to develop a more formal method of visually 

assessing disease severity have been made, typically using a semi-quantitative scoring 

system or a visual estimation of a�ected lung (Goh et al., 2008, Edey et al., 2011). 

However, such techniques are time consuming, prone to imprecision and limited by 

inter and intra-observer variability. Moreover, they are not practical for assessing the 

hundreds of slices generated by multi-detector volumetric CT. As a consequence, visual 

quantification techniques have not been adopted outside of the research setting. 

An automated computerised approach to quantifying disease therefore has several 

potential advantages, particularly in terms of speed and reproducibility. Various 

attempts have been made to develop such methods but most studies have been 

retrospective and therefore have several biases including patient selection, use of 

di�erent models of CT scanner and use of di�erent CT algorithms, to which quantitative 

analysis is highly susceptible (Rosas et al., 2011, Uchiyama et al., 2003, Maldonado et 

al., 2014, Bartholmai et al., 2013, Yoon et al., 2013). 

The purpose of the current thesis was to develop and test a new computer algorithm for 

the assessment of disease severity on CT using a specific measure of textural geometry 

known as Minkowski Functionals. In previous chapters we have discussed the need for 

novel methods of measuring lung abnormality on CT in the CFIPs and described the 

methodology for developing our computer software including its training and testing. 

We have examined the performance of the computer algorithm on a series of normal 

scans and on scans from 24 prospectively recruited patients with CFIP. The performance 

of the computer algorithm has been assessed by comparing the computer estimated 
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fibrosis score (CFS) with a radiologist estimated computer score (RFS) and by comparing 

the CFS with pulmonary function tests and with a symptom and activities questionnaire 

(St George’s Respiratory Questionnaire). We will now discuss our results in the light of 

previous studies and draw conclusions about the meaning of our results, including the 

limitations of our findings. 

6.2. DEVELOPMENT OF THE COMPUTER ALGORITHM

The first challenge when developing an automated lung analysis algorithm is to separate 

the lung tissue from other structures which do not need to be analysed such as the chest 

wall, mediastinum, large airways and blood vessels. The separation of the lung from the 

chest wall, mediastinum and large blood vessels is a relatively straightforward task in 

patients with normal lung owing to the large di�erence in density between aerated lung 

and other soft tissue structures. However, it has proven much more challenging in 

interstitial lung disease. For example Meng et al (Meng et al., 2012) tested a basic 

adaptive thresholding segmentation method on 2768 CT scans obtained from a number 

of databases including the Lung Image Database Consortium which includes patients 

with interstitial lung disease (Armato III et al., 2007). They found that 16% of the 

interstitial lung disease scans encountered segmentation problems, typically excluding 

the diseased lung from the calculated lung volume. Wang et al (Wang et al., 2009) 

developed a more successful method using a combination of thresholding and textural 

analysis. The method was tested on 45 scans with moderate to severe interstitial lung 

disease in which an expert manually traced the lung edge, on three slices per patient, to 

provide the reference standard. They measured the percentage overlap between the area  

segmented by the radiologist and the automatically segmented area and found a mean 

agreement of 96% (range of 90 - 99%). Although this is an impressive success rate, it 

should be noted that only three slices were assessed and the diaphragmatic lung was 
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not assessed, which is often the most di�cult area to segment. In addition, the 

maximum discrepancy of 10% is not insignificant. Such a level of discrepancy would be 

enough to make a considerable impact on the estimation of the extent of abnormal lung 

and may limit assessment of small degrees of change. We found that our segmentation 

method was robust and reliable even when assessing scans with severe interstitial lung 

disease but encountered problems when there was breathing artefact, particularly at the 

lung bases, and when there was excessive image noise such as in larger patients. 

It should also be mentioned that we have only segmented out the larger, more central 

airways and blood vessels from the lung volume. This was a conscious decision as there 

is a risk when segmenting the smaller peripheral airways and blood vessels that adjacent 

lung parenchyma will also be removed. This is a particular concern in interstitial lung 

disease which preferentially tends to a�ect the outer, pleural-based lung where smaller 

vessels are found. The downside of our approach is that it will lead to the classification 

of some smaller airways and blood vessels as diseased lung. 

Another important aspect of our software development was the training of the 

algorithm. We trained our algorithm using regions of interest marked up by a single 

radiologist on a single CT scan with the identification of 4 categories of abnormality - 

honeycombing, reticulation, normal and indeterminate lung. The training scan was 

chosen to be representative of the four lung classifications and to have a range of 

disease extent (mild, moderate and severe) within the same scan. A total of 38,919 ROIs 

were generated from the radiologist’s manual segmentation and a sample of 12,000 5 x 

5 x 5 pixel VOIs were randomly selected from this total to train the algorithm. In 

contrast, in the paper by Zavaletta et al (Zavaletta et al., 2007), the CALIPER (Computer-

Aided Lung Informatics for Pathology Evaluation and Rating) software was trained using 

14 scans with representative VOIs which were determined by ‘experts’ to contain at least 

70% of one of the following categories: honeycombing, reticulation, ground glass, 
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emphysema and normal lung. It is not specified in the paper how many radiologist 

readers were used or why they were considered to be experts. Despite training the 

algorithm to detect ground glass and emphysema, their test CT datasets (n=4) did not 

contain either of these abnormalities and therefore performance in this area could not 

be assessed. They did not have an indeterminate classification. The use of this 

indeterminate or ‘near-normal’ category in our study was designed to allow the 

categorisation of areas of subtle disease which could represent a pre-clinical or 

potentially reversible stage of pathology. Honeycombing and reticulation in UIP are 

believed to be irreversible and not amenable to pharmaceutical treatment (Müller et al., 

1987) although reticular opacities in NSIP do have the potential to resolve (Nishiyama et 

al., 2000). Therefore when assessing new potential therapeutic treatments, identification 

of a pre-cursor to reticulation or honeycombing is desirable. The current study is 

insu�cient to establish whether this ‘near-normal’ lung is important but future studies 

could be performed to address this. 

Our algorithm has a number of limitations. Firstly, we did not train the algorithm to 

identify GGO or emphysema due to a lack of representative ROIs in our patient 

population. Therefore, our algorithm may mis-classify emphysema or ground glass as 

other abnormalities such as honeycombing or reticulation, falsely increasing the volume 

of these abnormalities. Most of our patients did not have significant emphysema and 

therefore the size of error is probably small but this may not be the case in other patient 

groups. 

The fact that the training VOIs were provided by a single radiologist is a potential 

limitation of our study. Zavaletta et al (Zavaletta et al., 2007), in their study using the 

CALIPER software, describe how their test scans, which were marked up by 3 di�erent 

radiologists, showed considerable variation in the areas considered to be normal or 

reticulation. It is also evident that three of their CT scans (datasets 1-3) contained very 
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little honeycombing and would therefore be considered to have relatively mild disease. 

Only the scan labelled ‘dataset 4’ contained a significant percentage of honeycombing 

and much of this looks to have been mis-classified, judging by the example of 

segmentation presented in their paper. In 2014, Maldonado (Maldonado et al., 2014) 

presented further work using an updated version of CALIPER in a study looking at 

interval progression of interstitial lung disease in a retrospective study of 55 patients 

with at least 2 scans spaced between 3 and 15 months apart. The CALIPER algorithm was 

trained using VOIs from the scans of 14 patients from the Lung Tissue Research 

Consortium (LTRC) (Armato III et al., 2007). From these scans 4 radiologists 

independently labelled ROIs as emphysema, ground glass, honeycomb, normal or 

reticular densities with the proviso that at least 70% of the VOI should be composed of a 

single class. VOIs were only selected for training purposes if there was consensus on the 

classification from all 4 radiologists. This resulted in the following number of training 

VOIs: emphysema (80), ground glass (150), honeycomb (187), normal (265), reticular 

densities (294). The CALIPER software uses VOIs of 15 x 15 x 15 pixels whereas we use 

VOIs of 5 x 5 x 5 pixels. We chose the smaller VOIs because we found that it allowed 

greater accuracy on our thin-slice acquisitions. We therefore used a considerably larger 

number of smaller ROIs in training our algorithm. Interestingly, it appears that texture-

based methods may not need huge numbers of training ROIs/VOIs. The texture-based 

method of Lee et al (Lee et al., 2009) used a training dataset comprising 63 severe 

emphysema ROIs, 65 mild emphysema, 70 bronchiolitis obliterans and 67 normal lung. 

Despite not being trained on interstitial lung disease, this method formed the basis of 

the AQS software which was successfully used by Yoon et al (Yoon et al., 2013) to assess 

for serial changes in CFIP on scans performed 1 year apart. 
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6.3  LESSONS LEARNT FROM THE ANALYSIS OF NORMAL SCANS

Several important points can be learnt from the analysis of the normal scans, mostly in 

terms of sources of error in the computer algorithm, as follows:

1) Edge artefact: it is apparent that there is a mis-classification at the edge of the lung 

volume, where the lung abuts the chest wall, and where normal lung is sometimes mis-

labelled as honeycombing or reticulation. This is consistent in that it a�ects all scans but 

is much more pronounced when using the lung algorithm. The 2014 paper by 

Maldonado et al (Maldonado et al., 2014) also shows a similar artefact in their Figure 2 

where the strip of lung at the boundary between lung and chest wall has been mis-

classified as normal whereas the rest of the lung in the slice of interest shows 

honeycomb change. This artefact is not alluded to in the paper but is consistent with a 

boundary phenomenon. 

2) Choice of algorithm: we have demonstrated that the choice of reconstruction 

algorithm has a significant influence on the classification of lung texture. For example 

we found that on average, 37% of a normal scan was mis-classified as honeycombing on 

the lung algorithm whilst only 6% on average was mis-classified on the standard 

algorithm. A phantom study looking at the best reconstruction algorithm for assessing 

ILD, performed as a pre-cursor to the Lung Tissue Research Consortium project, was 

performed by Zhang et al using the American College of Radiologist’s ‘CT Image Quality 

Phantom Model 464’ (Zhang et al., 2008). This phantom is designed to measure multiple 

aspects of the CT image including CT number accuracy, high and low contrast resolution 

and image noise. They found that the GE ‘bone’ algorithm and the Siemens ‘B46f’ 

algorithm were the best algorithms in terms of providing high enough spatial resolution 

for clinical use as well as preserving CT number accuracy. Maldonado et al (Maldonado 

et al., 2014) used the bone algorithm for their study using the CALIPER software, 

presumably because the software had been trained on LTRC scans. We conclude that it is 



essential that all studies of automated quantification in IIP provide explicit details of the 

algorithm used, something which is not always done.

3) E�ect of inspiration: we examined the e�ect of inspiratory volume on texture analysis 

of two normal scans which had been obtained in both full inspiration and full expiration 

and found that degree of inspiration had a dramatic e�ect on the amount of lung 

classified as indeterminate and a significant e�ect on the amount of lung incorrectly 

classified as reticulation but little e�ect on the amount of lung incorrectly classified as 

honeycombing. This highlights the importance of ensuring scans are performed in full 

inspiration. 

The important lessons learnt from the analysis of normal scans should inform the 

interpretation of the results from the pathological scans. To our knowledge, there have 

been no previous studies of the use of a texture-based lung analysis algorithm on CT 

scans of normal lungs which we would argue is a fundamental aspect of assessing any 

new algorithm. 

6.4 SCANS FROM PROSPECTIVELY RECRUITED PATIENTS

6.4.1. General observations

As expected, it was evident that issues that caused problems with normal scans also 

caused problems with pathological scans, including ‘image noise’ (particularly related to 

increased patient BMI) and ‘breathing artefact’. Linear streak artefact which is seen in 

low dose scans are particularly problematic for texture based quantification as they can 

mimic reticulation (Coxson, 2013). This was more of a problem with the scans of the 

prospectively recruited patients than with the normal scans due to the reduced dose 

protocol used in the QUIC scans. 
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6.4.2 Comparison of computer-estimated fibrosis and radiologist-
estimated fibrosis

We used two methods to assess the accuracy of the computer algorithm compared with

radiologist assessment, as follows:

1) In the first experiment, we compared the computer output with radiologist manual 

segmentation on a region by region basis using a single CT scan. This data was 

presented in Chapter 3 and showed that on a training set of 12,000 ROIs, the computer 

had a sensitivity of 81.2% for identification of honeycombing, 86.8% sensitivity for 

identification of normal lung, 44.9% sensitivity for reticulation and 42.5% sensitivity for 

indeterminate lung. The computer performed less well with classification on the testing 

set of 26,919 ROIs with sensitivity of 65.2% for honeycombing, 75.0 % sensitivity for 

normal lung, 27.7% sensitivity for reticulation and 26.6% sensitivity for indeterminate. 

Therefore, the computer is most accurate at distinguishing normal lung from abnormal 

lung and within the abnormal lung, is most accurate at classifying honeycombing 

compared with the other textures. There are several potential reasons for this: a) the 

results are likely to reflect the radiologist’s confidence for the di�erent classes during 

the preparation of the training data; b) whereas honeycombing is easily distinguished 

from normal lung by both radiologist and computer, the boundary between coarse 

reticulation and honeycombing is often less clear; c) the boundary between 

indeterminate and normal lung, by the very definition of the indeterminate class, is likely 

to be blurred. Of note, most of the honeycombing that was wrongly classified was 

classified as reticulation, which is likely to represent a milder stage of the same fibrotic 

process. It could therefore be argued that total fibrosis is a more important metric than 

individual features of fibrosis, such as honeycombing and reticulation. 

Only a few previous studies have directly compared computer classification of lung 

texture with radiologist classification and only one (Uchiyama et al) has looked at the 



sensitivity of computer versus radiologist on a region-by-region basis rather than on a 

slice-by-slice or lobar basis (Uchiyama et al., 2003). Uchiyama examined 315 single 

non-spiral slices from 105 patients with 3 radiologists labeling irregular ROIs as 

reticulation, nodular, honeycomb, emphysema, consolidation, non-specific or other 

(includes bulla, pleural thickening and atelectasis). They compared radiologist 

classification with a computer algorithm based on an artificial neural network. For the 

ROI analysis, they looked first at regions where all 3 radiologists agreed on the texture. 

In this case, the computer had 100% sensitivity for honeycombing, 100% sensitivity for 

reticulation and 88% sensitivity for normal lung. It should be noted that there were only 

15 reticulation ROIs. They also performed a separate analysis where they looked at 

whether an ROI was classified as abnormal or normal. For this analysis they found that 

the computer had 97% sensitivity for abnormal lung if all 3 radiologists agreed the ROI 

was abnormal but this dropped to 85% if there was discrepancy between radiologists. 

They performed a third analysis on a slice-by-slice basis, this time looking at whether 

the radiologist and computer classified the whole slice as normal, abnormal or 

indeterminate. For slices classified by the radiologist as normal the computer classified 

that slice as normal 84% of the time and for slices classified by the radiologist as 

abnormal, the computer classified them as abnormal 90% of the time. On the other 

hand, if the radiologist classified the slice as indeterminate, then the computer classified 

it as normal 53% of the time and abnormal 47% of the time. Therefore, from both our 

findings and those of Uchiyama et al, we can conclude that: honeycombing and normal 

lung are most accurately identified by the computer; that computers using artificial 

neural network methods are highly sensitive to training data; and that both computers 

and radiologists struggle with ‘indeterminate’ lung which may represent an overlap 

between other categories. 
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2) The second method we used to validate the computer output was to prospectively 

compare it with radiologist visual scoring of multiple scans on a slice by slice basis with 

radiologist scoring of lung abnormalities to the nearest 5%. This was done using 5 slices 

for each of 23 patients (total of 115 slices). This method of comparison cannot be as 

spatially precise as the VOI-based method but it would be impractical to expect 

radiologists to manually segment the whole of a volumetric scan into all its di�erent 

textural classifications. For comparison of the radiologist and computer in this method 

we decided to compare total fibrosis (reticulation plus honeycombing) rather than 

looking at honeycombing and reticulation separately. This decision was made due to the 

overlap that these classes had demonstrated in the first method described and because 

we felt that it was more important to distinguish diseased lung from non-diseased lung 

rather than to distinguish between di�erent features of fibrosis. 

Linear regression analysis was performed to examine the agreement between the 

radiologist total fibrosis score and the computer total fibrosis score. This showed a 

moderate correlation between the two scores with an R-value of 0.61 (p<0.0001) and 

Spearman’s rank-order correlation co-e�cient of 0.568 (p < 0.01). It is inevitable that 

there will never be perfect correlation with this method since the radiologist is scoring to 

the nearest 5% and the computer is measuring on a continuous scale. In addition, the 

radiologist visual scoring will always involve a margin of error due to the nature of the 

method, which is a value judgement. We have also identified a number of inaccuracies in 

the computer method caused by problems such as image noise; artefact from patient 

breathing, diaphragm motion and cardiac motion; problems segmenting airways and 

blood vessels and the edge artefact that was described earlier. It is also worth noting 

that the computer processes the data in terms of 3D volumes (5 x 5 x 5 pixel VOIs) 

whereas the radiologist is making their assessment on 2D slices. Nevertheless the 

degree of correlation is reasonable, particularly given that the computer has only been 
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trained on data from a single subject and by a single radiologist. Iterative training with 

new datasets could improve this performance. 

6.4.3 Comparison of computer estimated fibrosis and pulmonary 

function tests

In the previous chapter we looked at the correlation between the computer fibrosis score  

(CFS) and pulmonary function tests, specifically the forced vital capacity (FVC) and the 

di�usion capacity of carbon monoxide (DLCO). These lung function measures were 

chosen since they are the most frequently used clinical measures of CFIP and because 

changes in these measures are the most frequent end-points in clinical trials involving 

CFIP patients (Raghu et al., 2012). We found that there was a good correlation between 

CFS and DLCO with an R-value of -0.65 (p = 0.001) despite two outliers. We also found a 

slightly lesser correlation between CFS and FVC with an R-value of -0.54 (p = 0.01).

As previously discussed, several factors may influence the CT fibrosis score including 

segmentation errors, image noise and movement artefact. Some of these errors, such as 

the erroneous honeycombing seen at the edge of scans, will have a proportionally larger 

e�ect on the more mildly a�ected patients. Factors which may a�ect the DLCO 

measurement include the patient’s haemoglobin concentration, current smoking status, 

cardiac output and ability to expire and inspire appropriately for the single breath-hold 

technique (Macintyre et al., 2005). Equally, a number of factors can a�ect the FVC 

measurement including patient e�ort, fitness levels and co-existent emphysema (Miller 

et al., 2005). 

In a similar study to ours, Xaubet et al (Xaubet et al., 1998) prospectively studied 39 

untreated patients with IPF who underwent HRCT and full pulmonary function tests at 

baseline. Two radiologists in consensus performed a semi-quantitative visual scoring of 

the amount of ground glass opacification and ‘reticular patterns’ at each of 6 pre-

defined anatomical levels. They did not specify quantification of honeycombing and 
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therefore it is assumed that this was included within the reticular pattern. Scoring was 

performed to the nearest 10% and then scores at the six levels were averaged to give a 

single overall score - the ‘global disease extent’. The same method was employed to 

quantify emphysema. In 34 of the patients there was both ground glass opacification 

and a reticular pattern and in 30 of these cases, the reticular pattern was greater in 

extent that the ground glass opacification. They found that there was a significant 

correlation between global disease extent and both DLCO (R = -0.40, p = 0.03) and FVC 

(R = -0.46, p = 0.003). They found that patients with co-existent emphysema had a 

significantly higher FVC but that this did not have a significant e�ect on DLCO. The fact 

that we have used a volumetric measure of fibrotic lung and that we have used a 

continuous scale rather than measuring to the nearest 10% may explain the greater 

correlation we saw in our study. An earlier study by Staples et al (Staples et al., 1987) 

also used a visual assessment of overall disease extent estimated to the nearest 10% and 

compared this with spirometric lung volumes and DLCO. They did not find any significant 

correlation between CT score and TLC, FVC or FEV1 but did find a significant correlation 

with DLCO (R = - 0.64, p < 0.001). More recently, a number of studies using 

computerised methods of quantifying ILD have correlated their computer scoring with 

pulmonary function tests. For example, Yoon et al assessed the scans of 71 UIP and 18 

NSIP patients with their AQS (automated quantification score) which examines multiple 

textural features. They studied 2 interval CTs performed one year apart. They found that 

baseline ‘fibrosis score’, defined as honeycombing plus reticulation, had a moderate 

correlation with DLCO (R = -0.47, p < 0.05) and ‘total abnormal’ (which also included 

ground glass opacification, emphysema and consolidation) also showed a moderate 

correlation with DLCO (R = -0.52, p < 0.05). This correlation is slightly less strong than in 

our study and there are several potential reasons for this, including patient related 

factors and factors to do with the software algorithm. However, the fact that the AQS was 
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not trained on patients with pulmonary fibrosis may be particularly relevant. 

Interestingly, although their study reports correlations of change in FVC with change in 

AQS, they do not report correlation between the AQS score at baseline and baseline FVC, 

as they do with DLCO. The reason for this is not specified. A separate study by Bartholmai 

et al (Bartholmai et al., 2013) described the use of the CALIPER software for CT 

quantification, an algorithm which uses a histogram signature mapping technique and 

multidimensional scaling (see also Section 6.2). The software was designed to measure 

honeycombing, reticulation, ground glass opacification and emphysema. They studied a 

group of 119 subjects from the Lung Tissue Research Consortium (LTRC) which is a 

multi-institutional database of CT scans, lung function and pathology information. The 

subjects were described as having ‘interstitial lung disease’ but a specific pathological 

diagnosis was not given. Although standardised protocols are provided by the LRTC for 

GE and Siemens CT scanners, it is likely that the patients were scanned on a number of 

di�erent scanners from these manufacturers. The authors found that the percentage of 

reticulation showed significant correlation with FVC (R = -0.63) and DLCO (R = -0.65) 

and that percentage normal lung correlated with FVC (R = 0.66), DLCO (R = 0.59) and TLC 

(R = 0.56). Similar results were shown by Rosas et al (Rosas et al., 2011) in a group of 

patients with rheumatoid arthritis associated interstitial lung disease. Their texture-

based quantification method with 25 vectors, including co-occurrence and run-length 

vectors, showed significant correlations with FVC (R = -0.48) and DLCO (R = -0.53). In 

summary, our findings of correlation between CFS and pulmonary function tests (FVC: 

R= -0.54; DLCO: R= -0.65) are similar to those achieved in previous studies which have 

used both visual scoring methods and computerised methods. 

Ultimately, it may be that the fundamental di�erences between what is being measured 

on pulmonary function tests and what is being measured on computer fibrosis scores is 

such that linear correlation between the two measures with an R-value of more than 0.6 
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to 0.7 is not possible. It also raises the question of what the reference standard for 

measurement of pulmonary fibrosis should be. Whilst both spirometry and DLCO provide 

functional measures of pulmonary capacity and DLCO provides an integrated assessment 

of the process of transferring carbon monoxide (and by inference oxygen) from the 

alveolus to the blood (Cotton and Graham, 2005), CT provides regional information 

about disease severity which is potentially less a�ected by non-respiratory impairments 

that may a�ect lung function tests such as general fitness, musculoskeletal problems 

and haemoglobin levels. A CT scan may also be less onerous for patients than 

pulmonary function tests and can be successfully performed in patients who are unable 

to perform pulmonary function tests. 

6.4.4 Comparison of computer-estimated total fibrosis, pulmonary 

function tests and the St George’s Respiratory Questionnaire

As described in the previous chapter, we found no significant or clinically meaningful 

correlation between either the total STGRQ score or the individual domains of the STGRQ 

and either the computer fibrosis score or any of the pulmonary function tests in our 

patient group. 

There are several possible reasons for this, as follows:

1) Most questionnaire studies require many more patients than we had in our study due 

to the subjective nature of this type of measurement.

2) It was noted that the mainly elderly patients in our study often had di�culty with the 

three-month recall elements of the questionnaire, particularly if they had had 

intercurrent illnesses.

3) Patients have had di�culty distinguishing between impairments due to respiratory 

disease and impairments due to other co-morbidities such as cardiac disease or 

musculoskeletal problems. 
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4) As previously discussed, the STGRQ was not primarily designed for patients with 

interstitial lung disease and therefore is likely to be a less good tool for quantifying IIP 

compared with quantifying the airways diseases for which it was designed. 

To our knowledge, no other studies have compared automated computerised textural 

quantification of interstitial lung disease with quality of life questionnaires although 

Camiciottoli et al compared lung density features (MLA, kurtosis and skewness) and the 

baseline dyspnoea index (BDI) in 48 patients with systemic sclerosis associated 

interstitial lung disease (Camiciottoli et al., 2007) and found a correlation between one 

of the BDI domains (magnitude of task) and all three density features (R = -0.39 to 

-0.44; p <0.05). In a separate study on patients with systemic sclerosis, Kim et al 

described the used of their texture-based quantitative lung fibrosis (‘QLF’) computer 

algorithm with radiologist scoring and with the baseline dyspnoea index. The QLF, which 

measured reticulation only, showed a small correlation with the BDI domains of 

‘magnitude of task’ (R-value = 0.16, p =0.02) and ‘magnitude of e�ort’ (R-value = 0.17, 

p = 0.01) (Kim et al., 2010). 

6.4.5 Radiologist agreement

We found excellent agreement between radiologists for total fibrosis (ICC = 0.94) and 

honeycombing (ICC = 0.90) with lesser agreement for reticulation (ICC = 0.60). As 

discussed in the previous chapter, honeycombing is likely to be easier to score 

accurately due to its generally well-defined borders, relative homogeneity and typical 

appearance. Reticulation tends to have less well-defined borders and reticular 

abnormalities often interdigitate with normal appearing lung, making it di�cult to 

segment manually or visually. Other studies which have compared radiologist 

agreement for measures of pulmonary fibrosis include the study by Yoon et al (Yoon 

et al., 2013) which compared the scoring of 89 scans (71 UIP and 18 NSIP) by two 
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radiologists. Each radiologist scored the scans to the nearest 5% for the following 

classes: normal, emphysema, ground glass opacification, reticular opacities, 

honeycombing and consolidation. Although not explicitly stated in the paper, it is 

assumed that all slices were scored as they used non-spiral scans which would each 

have contained only approximately 20 slices with lung parenchyma on them. They 

found ICCs of 0.63 for honeycombing and 0.49 for reticulation which were less good 

than our correlations of 0.90 for honeycombing and 0.60 for reticulation. Maldonado 

et al (Maldonado et al., 2014), in the electronic supplement to their article, quoted 

ICCs for radiologist scoring of 12 di�erent anatomical zones of the lung, dividing the 

lung into upper, middle and lower zones vertically and into ‘rind’ and ‘core’ regions 

from outside to inside. They quoted ICCs for honeycombing between 0.33 and 0.72 

and for reticulation between 0.46 and 0.77 depending on the anatomical zone. 

Interestingly, there was better agreement between the radiologists for reticulation 

scores in all the rind sections compared with the corresponding core sections but 

there was no di�erence between rind and core with respect to agreement on 

honeycombing. Again, the agreement between the radiologists on the Maldonado 

paper is less good than in our study although clearly our findings are limited by the 

relatively small numbers of comparison slices. 

6.4.6 Strengths and weaknesses of the study

There are several strengths to our study, as follows:

1) One of the main strengths is that the study was performed prospectively, whereas the 

majority of studies using QCT of ILD are retrospective. A potential criticism of 

retrospective studies is that only a small proportion of available scans were suitable for 

analysis with quantitative CT (QCT). For example, Maldonado et al were only able to 

identify 55 patients with at least 2 scans suitable for analysis over a 10 year period. It is 
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likely that many more patients than this were scanned but the scans were not suitable 

for analysis. The authors do not state how many scans were reviewed in order to identify 

the 55 paired scans for analysis. Issues which may make scans unsuitable for QCT 

include excessive image noise, breathing/cardiac motion, expiratory or non-spiral 

acquisition and super-added disease such as infection. Breathing artefact is a particular 

problem in patients with ILD who may often struggle to sustain a prolonged breath-

hold. This sampling bias makes it di�cult to know how generalisable the QCT technique 

is and how frequently it might work on routine scans. Other studies have scanned 

patients prospectively as part of pharmaceutical trials but the CT analysis is often done 

in a post-hoc manner (Best et al., 2003, Kim et al., 2010). 

2) Another strength of our study is the spiral nature of our CT scans. Until relatively 

recently, the standard high-resolution CT protocol was a non-contiguous acquisition 

with slices obtained every 10 to 30 mm meaning that typically only 10% of the lung 

volume was scanned. Comparison of this non-volumetric technique with a global 

measure such as DLCO or FVC is inherently flawed due to the sampling error produced by 

only assessing part of the lung volume with CT. Using a non-spiral technique also risks 

underestimating disease extent which is typically worse at the lung bases. The lower 

lobes may contribute most of the disease extent in terms of the total lung volume but if 

only a few lower lobe slices are obtained then their contribution may be under-

estimated. A recent study of cyclophosphamide vs placebo in scleroderma lung disease 

showed a 12% di�erence between the two groups when the most severely a�ected parts 

of the lung were compared but only a 5% di�erence when the whole lung was assessed 

(Kim et al., 2011). Even recently, studies of quantitative CT in interstitial lung disease 

have used non-spiral acquisitions (Rosas et al., 2011, Yoon et al., 2013). This likely 

reflects the retrospective nature of these studies which analyzed scans which had been 
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acquired before spiral CT was routinely performed in IIP but limits how generalisable 

their findings are to modern scanning techniques. 

3) As one of the benefits of the prospective study design, we took great care to optimise 

the CT parameters and ensure that these were accurately reproduced for all the scans. 

All scans were performed on the same scanner, using the same research protocol with 

dedicated breathing instructions and identical reconstruction algorithms. 

4) A strength of our experimental approach was the use of the control group of normal 

scans. This informed our understanding of potential sources of error in the computer 

algorithm and the e�ects of varying CT acquisition parameters such as reconstruction 

algorithm and degree of inspiration. 

Our study has a number of limitations. Firstly, we did not employ spirometric control to 

ensure that all the scans were performed in a fixed percentage of inspiration. It is known 

that depth of inspiration has a marked e�ect on lung attenuation (Newell Jr et al., 2013) 

and we have demonstrated significant e�ects of depth of respiration on the 

classification of normal lung using our texture-based method. However, whilst the use 

of spirometric gating allows more precision for determining depth of inspiration, it can 

be technically challenging for patients with lung disease (Madani et al., 2010) and is not 

routinely available in clinical practice. 

Another potential criticism of our study is that we did not use a ‘noise index’ to increase 

or decrease the mA in order to produce a target noise level. As previously discussed, this 

can cause problems with classification of textural abnormalities, often generating false 

positive abnormalities. Whilst acknowledging this will have led to a degree of inaccuracy 

in our results, the decision to used fixed exposure parameters was made in order to 

ensure that there was a more consistent range of dose to our research patients, who 

may not directly benefit personally from participation in the study. 
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We have also acknowledged the fact that the training of the algorithm by a single 

radiologist and the use of a single training scan are potential limiting factors (section 

6.2). Finally we recognise that the small numbers of patients in our study limits the 

conclusions which can be drawn. 

6.5 CONCLUSION

In summary, we have developed and tested a novel computer algorithm based on 

Minkowski functionals for the analysis of lung texture on CT scans of the thorax. Testing 

of the algorithm on normal scans and a group of prospectively recruited patients with 

pulmonary fibrosis has shown that, despite some minor limitations, the algorithm can 

successful segment the fibrotic lung from the surrounding tissues and separate it into 

the main types of fibrosis normally assessed by radiologists. A moderate correlation was 

shown between the radiologist and computer scoring, which was comparable with 

previous studies. Significant correlations were also shown between the computer 

estimated fibrosis score and the pulmonary function tests DLCO and FVC. Our study is 

the first prospective study to use Minkowski functionals for the assessment of 

pulmonary fibrosis and the standardised nature of our CT protocol and relative lack of 

selection bias makes our results likely to be more robust than similar retrospective 

studies. We also showed that training of the algorithm improved its performance. We 

believe that our computer algorithm has the potential for assessing severity of chronic 

fibrosing interstitial lung disease on individual scans as well as the potential for 

assessing change in lung disease with time. 
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CHAPTER 7: FUTURE DIRECTIONS

7.1 INTRODUCTION

Having demonstrated initial promising results with our new computer algorithm for the 

assessment of CFIP, there are several areas that need further work and several potential 

future applications for the algorithm. We will now discuss potential future work, 

concentration on improving the computer algorithm, testing of the algorithm in larger 

patient numbers, analysis of serial scans, potential use as a predictive classifier or 

surrogate endpoint and use in other lung pathologies. 

7.2 DEVELOPING THE COMPUTER ALGORITHM

We have already highlighted a number of areas where the computer algorithm could be 

improved and these can be summarised as follows:

1) We would like to try and reduce or eliminate the edge artefact which is seen at the 

surface of the lung and erroneously increases the percentage of honeycomb or 

reticulation classifications. Several methods could be used to overcome this including 

using overlapping VOIs at the edge of the lung to increase the amount of sampling in 

this area and reduce any partial volume e�ect. Another approach is to ‘reflect’ or 

‘project’ the outer rind of the lung outside the lung surface so that this lung is no longer 

seen by the algorithm as being at the edge. The excess projected lung could then be 

trimmed by the algorithm following the classification step. 

2) We would like to improve the removal of more distal airways and blood vessels from 

the lung volume since these can be erroneously classified as fibrosis. There are several 

di�erent potential methods for removing these structures and several di�erent methods 

may need to be tested before finding the most successful method. Challenges to 

improving this aspect of the algorithm include whether/how to ‘fill’ the holes left by 
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small vessels and avoiding removal of lung parenchyma during the segmentation 

process. 

3) It would be beneficial to train the algorithm to detect other pathological textures such 

as emphysema or ground glass opacification. This would need an appropriately selected 

training set of scans with these abnormalities and appropriate radiologist mark-up.

4) We believe the accuracy of the computer algorithm could be improved by training on a 

larger number of scans from patients with CFIP with a wider range of disease severity 

and by training the algorithm with larger numbers of radiologists. 

7.3 TESTING OF THE COMPUTER ALGORITHM IN LARGER NUMBERS OF PATIENTS

We have already acknowledged that we have tested the algorithm in a relatively small 

number of patients. Although it is encouraging that we have shown statistically 

significant agreement between the output of the computer algorithm and radiologist 

visual scoring and significant correlations with pulmonary function tests, we recognise 

that validation of the software in a larger patient group is necessary. We plan to do this 

in the near future. 

7.4 TESTING THE ALGORITHM ON SERIAL SCANS

We also plan to test the algorithm on serial CTs performed at defined intervals in order 

to see how well the algorithm can quantify change in disease and whether it is more 

sensitive to change than pulmonary function tests or patient questionnaires. These 

patients have already been recruited into the QUIC study and we expect the data will be 

available for analysis in 2016. 

If we can show that the algorithm is able to detect change in disease over time, there is  

potential for it to be used in the future as a surrogate endpoint for clinical trials of 

therapeutic agents. However, ultimate validation of the algorithm for this purpose is 
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likely to need a multi-centre study with su�cient patients in mild, moderate and severe 

groups and a follow-up period long enough to reach defined endpoints of either 

mortality or a significant change in lung function. In future studies we would also 

consider amending the CT protocol to use an automated mA modulation with a fixed 

noise level in order to ensure consistent image noise in all patients. 

7.5 USE OF THE ALGORITHM FOR ASSESSMENT OF OTHER LUNG PATHOLOGIES

With appropriate training, we believe the algorithm could be adapted for use in other 

lung pathologies. The most obvious examples would be other fibrotic lung disease such 

as scleroderma lung disease or rheumatoid associated lung disease. There is also 

potential for use in other lung diseases which cause distortion of the normal lung 

architecture and scarring such as sarcoidosis. 

7.6 CONCLUSION

We believe that further technical improvement/training of the computer algorithm 

would improve its performance and that it has potential for use as a surrogate endpoint 

or predictive biomarker if it’s validity can be proved in a large, longitudinal, prospective 

study. We also believe that textural analysis of the lung using algorithms such as ours 

has future use in several other lung diseases which a�ect the lung parenchyma. 
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APPENDICES

APPENDIX A: CASE RECORD FORM

NB: pages 8-16 of the CRF have not been reproduced as they relate to later study visits 
and this thesis deals only with the first (baseline) visit. 
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APPENDIX B: ST GEORGE’S RESPIRATORY QUESTIONNAIRE (STGRQ)

St George’s Respiratory Questionnaire - first page
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St George’s Respiratory Questionnaire - second page
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St George’s Respiratory Questionnaire - third page
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St George’s Respiratory Questionnaire - fourth page
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St George’s Respiratory Questionnaire - fifth page
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St George’s Respiratory Questionnaire - sixth page
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APPENDIX C: RADIOLOGIST SCORING SHEET

152



APPENDIX D: RADIOLOGIST SCORING INSTRUCTIONS
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