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Toward Automatic Model Comparison: An
Adaptive Sequential Monte Carlo Approach

Yan ZHOU, Adam M. JOHANSEN, and John A.D. ASTON

Model comparison for the purposes of selection, averaging, and validation is a
problem found throughout statistics. Within the Bayesian paradigm, these problems
all require the calculation of the posterior probabilities of models within a particular
class. Substantial progress has been made in recent years, but difficulties remain in the
implementation of existing schemes. This article presents adaptive sequential Monte
Carlo (SMC) sampling strategies to characterize the posterior distribution of a collection
of models, as well as the parameters of those models. Both a simple product estimator
and a combination of SMC and a path sampling estimator are considered and existing
theoretical results are extended to include the path sampling variant. A novel approach
to the automatic specification of distributions within SMC algorithms is presented and
shown to outperform the state of the art in this area. The performance of the proposed
strategies is demonstrated via an extensive empirical study. Comparisons with state-
of-the-art algorithms show that the proposed algorithms are always competitive, and
often substantially superior to alternative techniques, at equal computational cost and
considerably less application-specific implementation effort. Supplementary materials
for this article are available online.

Key Words: Adaptive Monte Carlo algorithms; Bayesian model comparison; Normal-
izing constants; Path sampling; Thermodynamic integration.

1. INTRODUCTION

Model comparison lies at the core of Bayesian decision theory (Robert 2007) and has
attracted considerable attention in recent decades. Most approaches to the calculation of
the required posterior model probabilities depend upon asymptotic arguments, the post-
processing of outputs from Markov chain Monte Carlo (MCMC) algorithms operating on
the space of a single model or using specially designed MCMC techniques that provide
direct estimates of these quantities (e.g., reversible jump MCMC, RJMCMC; Green 1995).
Within-model simulations are simpler, but generalizations of the harmonic mean estimator
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(Gelfand and Dey 1994) that are widely used in this setting require careful design to
ensure finite variances and convergence assessment can be difficult. Simulations on the
whole model space are often difficult to implement efficiently even though they can be
conceptually appealing.

More robust and efficient Monte Carlo algorithms have been established in recent years.
Many of them are population based, dealing with a collection of samples at each iteration,
including sequential importance sampling and resampling (annealed importance sampling
AIS, Neal 2001; sequential Monte Carlo SMC, Del Moral, Doucet, and Jasra 2006b) and
population MCMC (PMCMC; Liang and Wong 2001; Jasra, Stephens, and Holmes 2007a).
However, most studies have focused on their abilities to explore high-dimensional and
multimodal spaces. The application of these algorithms to Bayesian model comparison is
less well studied. Here, we motivate and present approaches based around the SMC family
of algorithms, and demonstrate their effectiveness empirically.

SMC methods are a class of sampling algorithms, which combine importance sampling
and resampling. They have been primarily used as “particle filters” to solve optimal filtering
problems; see, for example, Cappé, Godsill, and Moulines (2007) and Doucet and Johansen
(2011) for recent reviews. They are used here in a different manner, which were proposed
by Del Moral, Doucet, and Jasra (2006b) and developed by Del Moral, Doucet, and Jasra
(2006a) and Peters (2005). This framework employs a sequence of artificial distributions
on spaces of increasing dimensions, which admit the distributions of interest as marginals.

Although it is well known that SMC is well suited to the computation of normalizing
constants and that it is possible to develop relatively automatic SMC algorithms by em-
ploying a variety of “adaptive” strategies, their use for Bayesian model comparison has not
yet received a great deal of attention. We highlight three strategies for computing posterior
model probabilities using SMC, focusing on strategies that require minimal tuning and can
be readily implemented requiring only the availability of locally mixing MCMC proposals.
These methods admit natural and scalable parallelization and we demonstrate the potential
of these algorithms with real implementations suitable for use on consumer-grade parallel
computing hardware including GPUs, reinforcing the message of Lee et al. (2010). We also
present a new approach to adaptation and guidelines on the near-automatic implementation
of the proposed algorithms. These techniques are applicable to SMC algorithms in much
greater generality. The proposed approach is compared with state-of-the-art alternatives in
extensive simulation studies that demonstrate its performance and robustness.

The next section provides a brief survey of Bayesian model comparison literature. Sec-
tion 3 presents three algorithms for performing model comparison using SMC techniques
and Section 4 provides several illustrative applications, together with comparisons with
other techniques. The article concludes with some discussion.

2. BACKGROUND

Bayesian model comparison depends upon the posterior distribution over models. It is
only possible to obtain closed-form expressions for posterior model probabilities in very
limited situations. The general problem has attracted considerable attention and it is not
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feasible to exhaustively summarize this literature here. We describe the major contributions
to the area and recent developments of particular relevance.

2.1 ANALYTIC METHODS AND MCMC

The Bayesian information criterion (BIC), developed by Schwarz (1978), is based upon
a large sample approximation of the Bayes factor. An asymptotic argument concerning
Bayes factors under appropriate regularity conditions justifies the choice of the model with
the smallest value of BIC. Although appealing in its simplicity, justification requires the
availability of a large number of observations.

The Bayesian approach to model comparison is, of course, to consider the posterior
probabilities of the possible models (Bernardo and Smith 1994, chap. 6).

Given a denumerable collection of models {Mk}k∈K, with model Mk having parameter
space �k , Bayesian inference proceeds from a prior distribution over the collection of
models, π (Mk), a prior distribution for the parameters of each model, π (θk|Mk) and the
(model-specific) likelihood p( y|θk,Mk) to the model posterior:

π (Mk| y) = p( y|Mk)π (Mk)

p( y)
, (2.1)

where p( y|Mk) = ∫
θk

p( y|θk,Mk)π (θk|Mk) dθk is termed the evidence for model Mk and
the normalizing constant p( y) =∑k∈K p( y|Mk)π (Mk) can be easily calculated if |K| is
finite and the evidence for each model is available. The case where |K| is countable is
discussed later. We first review some techniques for evidence calculation.

Several techniques have been proposed to approximate the evidence for a model using
simulation techniques, which approximate the posterior distribution of that model, including
the harmonic mean estimator of Newton and Raftery (1994), Raftery et al. (2006), and
generalizations thereof (Gelfand and Dey 1994). These pseudo-harmonic mean methods
use the insight that for any density g, such that g(·)� p(·| y,Mk), the following identity
holds,∫

g(θk)

p( y, θk|Mk)
π (θk| y,Mk) dθk =

∫
g(θk)

p( y, θk|Mk)

p( y, θk|Mk)

p( y|Mk)
dθk = 1

p( y|Mk)
(2.2)

and by approximating the leftmost integral one can obtain an estimate of the evidence.
Unfortunately, considerable care is required in the implementation of such schemes to
control the variance of the resulting estimator—see Neal (1994).

In the particular case of the Gibbs sampler, Chib (1995) provided an alternative approach
based on the identity,

p( y|Mk) = p( y|θk,Mk)π (θk|Mk)

π (θk| y,Mk)
, (2.3)

which holds for any value of θk . An estimator of the marginal likelihood can be ob-
tained by replacing θk with a particular value, say θI

k , which is usually chosen from the
high probability region of the posterior distribution and approximating the denominator
π (θI

k | y,Mk) using the output from a Gibbs sampler. Though this method does not suffer
the instability associated with generalized harmonic mean estimators, it requires that all full
conditional densities are known (including their normalizing constants) and that the Gibbs
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sampler mixes adequately. This approach was generalized to other Metropolis–Hastings
algorithms, by Chib and Jeliazkov (2001), who required only that the proposal distributions
be known.

The RJMCMC strategy first proposed by Green (1995) is undoubtedly the most
widespread approach that targets the joint posterior distribution over model and param-
eters. RJMCMC adapts the Metropolis–Hastings algorithm to construct a Markov chain
on an extended state-space, which admits the posterior distribution over both model and
parameters as its invariant distribution. The design of efficient between-model moves is
often difficult, and the mixing of these moves largely determines the performance of the
algorithm. For example, in multimodal models, where RJMCMC has attracted substantial
attention, information available in the posterior distribution of a model of any given dimen-
sion does not characterize modes that exist only in models of higher dimension, and thus
successful moves between those models become unlikely and difficult to construct (Jasra,
Stephens, and Holmes 2007b). In addition, RJMCMC will not characterize models of low
posterior probability well, as those models will be visited by the chain only rarely. In some
cases, it will be difficult to determine whether the low acceptance rates of between-model
moves result from actual characteristics of the posterior or from a poorly adapted proposal
kernel.

A post-processing approach to improve the computation of normalizing constants from
RJMCMC output using a bridge-sampling approach was advocated by Bartolucci, Scaccia,
and Mira (2006). Sophisticated variants of these algorithms, such as those developed in
Peters, Hayes, and Hossack (2010), have also been considered but depend upon essentially
the same construction and ultimately require adequate mixing of the underlying Markov
process.

Carlin and Chib (1995) presented an alternative method for simulating the model prob-
ability directly through a Gibbs sampler on the space {Mk}k∈K ×

∏
k∈K �k . The joint

parameter is thus (M, θ ) where θ is the vector (θk)k∈K and conditional on model Mk the
data y only depend on a subset, θk , of the parameters. To form the Gibbs sampler, a
so-called pseudoprior π (θk|M �= Mk) in addition to the usual prior π (θk|Mk) is selected,
such that given the model indicator M, the parameters associated with different models are
conditionally mutually independent. In this way, a Gibbs sampler can be constructed pro-
vided that all the full conditional distributions π (θk| y, θk′ �=k,M) and π (M = Mk| y, θ ) for
k ∈ K are available. The performance of this sampler, which was generalized by Godsill
(2001), is very sensitive to the selected pseudopriors and sampling from the full conditional
distribution must be feasible.

The methods reviewed above either demand substantial knowledge of the target distri-
butions or require substantial tuning.

2.2 RECENT DEVELOPMENTS ON POPULATION-BASED METHODS

We consider two broad groups of population-based Monte Carlo methods. One family,
including SMC, is based on sequential importance sampling and resampling. Another
approach is population MCMC (PMCMC; Geyer 1991; Marinari and Parisi 1992; Liang
and Wong 2001) also known as parallel tempering. PMCMC operates by constructing
a sequence of distributions {πt }Tt=0 with π0 corresponding to the target distribution and
successive elements of this sequence consisting of distributions from which it is increasingly
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easy to sample. A population of samples is maintained, with the ith element of the population
being approximately distributed according to πi ; the algorithm proceeds by simulating an
ensemble of parallel MCMC chains each targeting one of these distributions. The chains
interact with one another via exchange moves, in which the state of two adjacent chains is
swapped, and this mechanism allows for information to be propagated between the chains
and hopefully for the fast mixing of πT to be partially transferred to the chain associated
with π0. The resulting samples target the product

∏T
t=0 πt , which admits π0 as a marginal.

There is substantial interest in the use of population-based methods to explore high-
dimensional and multimodal parameter spaces, which challenge conventional MCMC
algorithms. Jasra, Stephens, and Holmes (2007a) compared the performance of the two
approaches in this context. There is also increasing interest in using these methods for
Bayesian model comparison. In principle, PMCMC output can be post-processed in the
same way as conventional MCMC to obtain estimates of evidence for each model. However,
this approach inherits many of the disadvantages of the basic estimators. Jasra, Stephens,
and Holmes (2007b) combined PMCMC with RJMCMC and thus provided a direct es-
timate of the posterior model probability. Another approach is to use the outputs from
all the chains to approximate the path sampling estimator (Gelman and Meng 1998), see
Calderhead and Girolami (2009). However, the mixing speed of PMCMC is sensitive to the
number and placement of the distributions {πt }Tt=0 (see Atchadé, Roberts, and Rosenthal
(2010) for the optimal placement of distributions in terms of a particular mixing criterion
for a restricted class of models). As seen in Calderhead and Girolami (2009), the placement
of distributions can be critical—see Section 4.

The use of AIS for computing normalizing constants directly and via path sampling
dates back at least to Neal (2001); see Vyshemirsky and Girolami (2008) for a recent
example of its use in the computation of model evidences. It has often been suggested
that more general SMC strategies provide no advantage over AIS when the normalizing
constant is the object of inference. Later we will demonstrate that this is not generally
true, adding improved robustness of normalizing constant estimates to the advantages
afforded by resampling within SMC. This is consistent with theoretical results (Schweizer
2012) obtained in a slightly different context, which show that resampling can qualitatively
improve the theoretical behavior of the estimator when the initial and final distributions
differ substantially. More details on the use of SMC and path sampling for Bayesian model
selection are provided in the next section. The use of PMCMC coupled with path sampling
was discussed in Vyshemirsky and Girolami (2008).

Jasra et al. (2008) developed a method using a system of interacting SMC samplers for
transdimensional simulation. The targeting distribution π and its space S are the same as in
RJMCMC. As usual in SMC, a sequence of distributions {π̃t }Tt=0 with increasing dimensions
are constructed such that π̃T admits π as a marginal. The algorithm starts with a set of SMC
samplers with equal number of particles; each of them targets π̃i,t (x) ∝ π̃t (x)I(x ∈ Si) up
to a predefined time index t I , such that {Si} is a partition of S. At time t I particles from
all samplers are allowed to coalesce, and from this time on, all of them are iterated with
the same Markov kernel (on S) until the single sampler reaches the target π . One of the
three algorithms detailed in the next section coincides, essentially, with the final stage of
the approach of Jasra et al. (2008); the other algorithms that are developed rely on a quite
different strategy. We note that subsequent to the completion of the first version of this
article, a related strategy has been proposed by Karagiannis and Andrieu (2013). They
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combined SMC and MCMC via the mechanism of particle MCMC (Andrieu, Doucet, and
Holenstein 2010) using an SMC algorithm as an RJMCMC proposal. This strategy is likely
to lead to better mixing than conventional RJMCMC algorithm but comes at considerable
computational cost.

A proof-of-concept study in which several SMC approaches to the problem were
outlined was provided by Zhou, Johansen, and Aston (2012) and these approaches are
developed below. These strategies based around various combinations of path sampling
(Gelman and Meng 1998) and SMC (as used by Johansen, Del Moral, and Doucet (2006)
in a rare events context and by Rousset and Stoltz (2006) in the context of the estimation of
free energy differences) or the unbiased estimation of the normalizing constant via standard
SMC techniques (Del Moral 1996; Del Moral, Doucet, and Jasra 2006b).

A strategy for SMC-based variable selection was developed by Schäfer and Chopin
(2013); however, this approach depends upon the precise structure of this particular problem
and does not involve the explicit computation of normalizing constants.

2.3 CHALLENGES FOR MODEL COMPARISON TECHNIQUES

There are a number of desirable features in algorithms that seek to address any model
comparison problem and that these desiderata can find themselves in competition with one
another. One always requires accurate evaluation of Bayes factors or model proportions and
to obtain these one requires estimates of either normalizing constants or posterior model
probabilities with small error making the efficiency of any Monte Carlo algorithm employed
in their estimation critical. If one is interested in characterizing behavior conditional upon
a given model or even calculating posterior-predictive quantities, it is likely to be necessary
to explore the full parameter space of each model; this can be difficult if one employs
between-model strategies that spend little time in models of low probability. In many
settings, end-users seek to interpret the findings of model selection experiments and in such
cases, accurate characterization of all models including those of relatively small probability
may be important.

3. METHODOLOGY

SMC samplers provide, iteratively, collections of weighted samples from a sequence
of distributions {πt }Tt=0 over essentially any random variables on some measurable spaces
(Et, Et ), by constructing a sequence of auxiliary distributions {π̃t }Tt=0 on spaces of increasing
dimensions,

π̃t (x0:t ) = πt (xt )
t−1∏
s=0

Ls(xs+1, xs), (3.1)

where the sequence of Markov kernels {Ls}t−1
s=0, termed backward kernels, is formally

arbitrary but critically influences the estimator variance. See Del Moral, Doucet, and Jasra
(2006b) for further details and guidance on the selection of these kernels.

Standard sequential importance resampling algorithms can then be applied to the se-
quence of synthetic distributions, {π̃t }Tt=0. At time t = n− 1, assume that a set of weighted
particles {W (i)

n−1, X
(i)
0:n−1}Ni=1 approximating π̃n−1 is available, then at time t = n, the path



TOWARD AUTOMATIC MODEL COMPARISON: AN ADAPTIVE SMC APPROACH 707

of each particle is extended with a Markov kernel say, Kn(xn−1, xn) yielding the set of
particles {X(i)

0:n}Ni=1 and importance sampling is then applied. The weights are update by a
factor w̃n, termed the incremental weights, calculated as

w̃n(xn−1, xn) = πn(xn)Ln−1(xn, xn−1)

πn−1(xn−1)Kn(xn−1, xn)
. (3.2)

If πn is only known up to a normalizing constant, say πn(xn) = γn(xn)/Zn, then we can use
the unnormalized incremental weights

wn(xn−1, xn) = γn(xn)Ln−1(xn, xn−1)

γn−1(xn−1)Kn(xn−1, xn)
(3.3)

for importance sampling. Further, with the previously normalized weights {W (i)
n−1}Ni=1, we

can estimate the ratio of normalizing constant Zn/Zn−1 by

Ẑn

Zn−1
=

N∑
i=1

W
(i)
n−1wn(X(i)

n−1:n), (3.4)

and

Ẑn

Z1
=

n∏
p=2

Ẑp

Zp−1
=

n∏
p=2

N∑
i=1

W
(i)
p−1wp(X(i)

p−1:p) (3.5)

provides an unbiased (Del Moral 2004, Proposition 7.4.1) estimate of Zn/Z1. See Del
Moral, Doucet, and Jasra (2006b) for details on calculating the incremental weights in
general; in practice, when Kn is πn-invariant, πn � πn−1, and Ln−1 is the associated time-
reversal kernel, the unnormalized incremental weight function becomes

wn(xn−1, xn) = γn(xn−1)

γn−1(xn−1)
. (3.6)

This will be the situation throughout the remainder of this article.

3.1 SEQUENTIAL MONTE CARLO FOR MODEL COMPARISON

The problem of interest is characterizing the posterior distribution over {Mk}k∈K, a
set of possible models, with model Mk having parameter vector θk ∈ �k , which must
also usually be inferred. Given prior distributions π (Mk) and π (θk|Mk) and likelihood
p( y|θk,Mk), we seek the posterior distributions π (Mk| y) ∝ p( y|Mk). There are three
fundamentally different approaches to the computations:

1. Calculate posterior model probabilities directly.

2. Calculate the evidence, p( y|Mk), of each model.

3. Calculate pairwise evidence ratios.

Each approach admits a natural SMC strategy. The relative strengths of these approaches
and alternative methods are identified in Table 1.
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Table 1. Strengths of algorithms for model choice. PMCMC admits a degree of parallelization, but is not a natural
candidate for implementation on massively parallel architectures

PHM RJMCMC PMCMC SMC1 SMC2 SMC3

Can deal with a countable set of models
√ √

Can exploit intermodel relationships
√ √ √

Characterizes improbable models
√ √ √ √

Does not require reversible-pairs of moves
√ √ √ √ √

Does not require intermodel mixing
√ √ √

Admits straightforward parallelization
√

/× √ √ √
Does not rely upon ergodicity arguments

√ √ √

3.1.1 SMC1: An All-in-One Approach. One could consider obtaining samples from
the same distribution employed in the RJMCMC approach to model comparison, namely:

π (1)(Mk, θk) ∝ π (Mk)π (θk|Mk)p( y|θk,Mk), (3.7)

which is defined on the disjoint union space
⋃

k∈K({Mk} ×�k).
One obvious SMC approach is to define a sequence of distributions {π (1)

t }Tt=0 such that
π

(1)
0 is easy to sample from, π

(1)
T = π (1) and the intermediate distributions move smoothly

between them. In the remainder of this section, we use the notation (Mt, θt ) to denote a
random sample on the space

⋃
k∈K({Mk} ×�k) at time t. One simple approach is the use

of an annealing scheme such that

π
(1)
t (Mt, θt ) ∝ π (Mt )π (θt |Mt )p( y|θt ,Mt )

α(t/T ), (3.8)

for some monotonically increasing α : [0, 1]→ [0, 1] such that α(0) = 0 and α(1) = 1.
Other approaches are possible and might prove more efficient for some problems (such as
the “data tempering” approach that Chopin (2002) proposed for parameter estimation—a
strategy that would lend itself naturally to “online” estimation of evidence, but that would
preclude the use of the path sampling estimator), but this strategy provides a convenient
generic approach. These choices lead to Algorithm 1.

This approach might outperform RJMCMC when it is difficult to design fast-mixing
Markov kernels. Such an SMC strategy can outperform MCMC at a given computational
cost—see, for example, Fan, Leslie, and Wand (2008), Johansen, Doucet, and Davy (2008),
and Fearnhead and Taylor (2010). Such transdimensional SMC has been proposed in several
contexts (Peters 2005) and an extension proposed and analyzed by Jasra et al. (2008).

Algorithm 1 SMC1 : An All-in-One Approach to Model Comparison.
Initialization: Set t ← 0.

Sample X
(i)
0 = (M (i)

0 , θ
(i)
0 ) ∼ ν for some proposal distribution ν (usually the joint prior).

Weight W
(i)
0 ∝ w0(X(i)

0 ) = π (M (i)
0 )π (θ (i)

0 |M (i)
0 )/ν(M (i)

0 , θ
(i)
0 ).

Apply resampling if necessary (e.g., if ESS (Kong et al. 1994) less than some threshold).
Iteration: Set t ← t + 1.

Weight W
(i)
t ∝ W

(i)
t−1p( y|θ (i)

t−1, M
(i)
t−1)α(t/T )−α([t−1]/T ).

Apply resampling if necessary.
Sample X

(i)
t ∼ Kt (·|X(i)

t−1), a π
(1)
t -invariant kernel.

Repeat the Iteration step until t = T .
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We include this approach for completeness and study it empirically later. Like other
transdimensional methods, this approach depends upon collection of models being specified
in advance. If new models are considered, then the entire simulation must be redone. The
more direct approaches described in the following sections lead more naturally to easy-to-
implement strategies with good performance.

3.1.2 SMC2: A Direct-Evidence-Calculation Approach. An alternative approach
would be to estimate explicitly the evidence associated with each model. We propose
to do this by sampling from a sequence of distributions for each model: starting from the
parameter prior and sweeping through a sequence of distributions to the posterior.

Numerous strategies are possible to construct such a sequence of distributions, but one
option is to use for each model Mk , k ∈ K, the sequence {π (2,k)

t }Tk

t=0, defined by

π
(2,k)
t (θt ) ∝ π (θt |Mk)p( y|θt ,Mk)αk(t/Tk ), (3.9)

where the number of distribution Tk , and the annealing schedule, αk : [0, 1]→ [0, 1] may
be different for each model. This leads to Algorithm 2.

The estimator of the posterior model probabilities depends upon the approach taken
to estimate the normalizing constant. Direct estimation of the evidence can be performed
using the output of this SMC algorithm and the standard estimator (Del Moral, Doucet, and
Jasra 2006b, eq. (14)), termed SMC2-DS below:

1

N

N∑
i=1

π (θ (k,i)
0 |Mk)

ν(θ (k,i)
0 )

×
T∏

t=2

N∑
i=1

W
(k,i)
t−1 p( y|θ (k,i)

t−1 Mk)αk(t/Tk )−αk ([t−1]/Tk ), (3.10)

where W
(k,i)
t−1 is the importance weight of sample i, θ

(k,i)
t−1 , after any resampling step of

iteration t − 1 for model Mk . This formula can be simplified by replacing W
(k,i)
t−1 with

1/N when resampling is conducted at every iteration (and it is unbiased); otherwise a
mathematically simpler representation less naturally suited to computational use is provided
by Del Moral, Doucet, and Jasra (2006b, eq. (15)). An alternative approach to computing
the evidence is also worthy of consideration. As has been suggested, and shown empirically
to perform well previously (see, e.g., Johansen, Del Moral, and Doucet 2006), it is possible
to use all of the samples from every generation of an SMC sampler to approximate the path
sampling estimator. Section 3.2 provides details.

The posterior distribution of the parameters conditional upon a particular model can also
be approximated using

π̂
(2,k)
Tk

(dθ ) =
N∑

i=1

W
(k,i)
Tk

δ
θ

(k,i)
Tk

(dθ ).

This approach is appealing for several reasons. It is designed to estimate directly the
quantity of interest: the evidence. It provides as good a characterization of each model
as is required: it is possible to obtain a good estimate of the parameters of every model,
even those for which the posterior probability is small (although, of course, in certain
circumstances the automatic assignment of computational resources to the most promising
models may be desirable). Perhaps most significant is that this approach does not require the
design of proposal distributions or Markov kernels that move from one model to another:
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each model is dealt with in isolation. While this may not be desirable in every situation,
there are circumstances in which efficient moves between models are almost impossible to
devise.

This approach also has some disadvantages. In particular, it is necessary to run a separate
simulation for each model—rendering it impossible to deal with countable collections of
models (although this is not such a substantial problem in many interesting cases). The ease
of implementation may often offset this limitation.

Algorithm 2 SMC2 : A Direct-Evidence-Calculation Approach.
For each model k ∈ K execute the following algorithm.
Initialization: Set t ← 0.

Sample θ
(k,i)
0 ∼ νk for some proposal distribution νk (usually the parameter prior).

Weight W
(k,i)
0 ∝ w0(θ (k,i)

0 ) = π (θ (k,i)
0 |Mk)/νk(θ (k,i)

0 ).
Apply resampling if necessary.

Iteration: Set t ← t + 1.
Weight W

(k,i)
t ∝ W

(k,i)
t−1 p( y|θ (k,i)

t−1 , Mk)α(t/Tk )−α([t−1]/Tk ).
Apply resampling if necessary.
Sample θ

(k,i)
t ∼ Kt (·|θ (k,i)

t−1 ), a π
(k,2)
t -invariant kernel.

Repeat the Iteration step until t = Tk .

3.1.3 SMC3: A Relative-Evidence-Calculation Approach. A final approach can be
thought of as sequential model comparison. Rather than estimating the evidence associated
with any particular model, we could estimate pairwise evidence ratios directly. The SMC
sampler starts with an initial distribution being the posterior of one model (an initial sample
could be obtained using a secondary SMC algorithm or other sampler) and moves toward
the posterior of another related model. Then the sampler can continue toward another
related model and so forth.

Given a finite collection of models {Mk}, k ∈ K, suppose the models are ordered in a
sensible way (e.g., Mk−1 is nested within Mk or θk is of higher dimension than θk−1). For
each k ∈ K, we consider a sequence of distributions {π (3,k)

t }Tk

t=0, such that π
(3,k)
0 (M, θ) =

π (θ| y,Mk)I{Mk}(M) and π
(3,k)
Tk

(M, θ) = π (θ| y,Mk+1)I{Mk+1}(M) = π
(3,k+1)
0 (M, θ). When

it is possible to construct an SMC sampler that iterates over this sequence of distributions,
the estimate of the ratio of normalizing constants is the Bayes factor estimate of model
Mk+1 in favor of model Mk .

This approach is conceptually appealing, but requires the construction of a smooth path
between the posterior distributions of interest. The geometric annealing strategy that has
been advocated as a good generic strategy in the previous sections is only appropriate when
the support of successive distributions is nonincreasing. This is unlikely to be the case in
interesting model comparison problems.

In this article, we consider a sequence of distributions on the disjoint union {Mk,�k} ∪
{Mk+1,�k+1}, with the sequence of distributions {π (3,k)

t }Tk

t=0 defined as the full posterior,

π
(3,k)
t (Mt, θt ) ∝ πt (Mt )π (θt |Mt )p( y|θt ,Mt ), (3.11)

where Mt ∈ {Mk,Mk+1} and the “prior” over models at time t, πt (Mk+1) := α(t/Tk), for
some monotonically increasing bijection α : [0, 1]→ [0, 1]. The MCMC moves between
need to be similar to those in the RJMCMC or SMC1 algorithms. However, instead of
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efficient exploration of the whole model space, only moves between two models are required
and the sequence of distributions employed helps to ensure exploration of both model
spaces. Algorithm 3 uses this particular sequence of distribution but other sequence of
distributions between models could be employed.

An advantage of this approach is that it provides direct estimates of the Bayes factor,
which is of interest for model comparison purpose while not requiring exploration of
as complicated a space as that employed within RJMCMC or SMC1. The estimation of
normalizing constant in SMC3 follows in exactly the same manner as in the SMC2 case.
In SMC3, the same estimator provides a direct estimate of the Bayes factor.

Algorithm 3 SMC3: A Relative-Evidence-Calculation Approach to Model Comparison.
Initialization: Set k← 1.

Use Algorithm 2 to obtain weighted samples for π
(3,1)
T1

, the parameter posterior for model M1

Relative Evidence Calculation
Set k← k + 1, t ← 0.
Denote current weighted samples as{W (k,i)

0 , X
(k,i)
0 }Ni=1, where X

(k,i)
0 = (M (k,i)

0 , θ
(k,i)
0 )

Apply resampling if necessary.
Iteration: Set t ← t + 1.

Weight W
(k,i)
t ∝ W

(k,i)
t−1 πt (M

(k,i)
t−1 )/πt−1(M (k,i)

t−1 ).
Apply resampling if necessary.
Sample (M (k,i)

t , θ
(ki)
t ) ∼ Kt (·|M (k,i)

t−1 θ
(k,i)
t−1 ), a π

(3,k)
t -invariant kernel.

Repeat the Iteration step up to t = Tk .
Repeat the Relative Evidence Calculation step until sequentially all relative evidences are calcu-
lated.

3.2 PATH SAMPLING VIA SMC2/SMC3

A Monte Carlo approximation of the path sampling identity (Gelman and Meng 1998)
(also known as thermodynamic integration or Ogata’s method) also provides an estimate
of the normalizing constant. The use of AIS for the same purpose (Neal 2001) is common
in some settings; as will be demonstrated below the incorporation of some other elements
of the more general SMC algorithm family can improve performance at negligible cost.
Given a parameter α that defines a family of distributions, {pα = qα/Zα}α∈[0,1] that move
smoothly from p0 = q0/Z0 to p1 = q1/Z1 as α increases from zero to one. The logarithm
of the ratio of their normalizing constants satisfies a simple integral relationship under mild
regularity conditions:

log

(
Z1

Z0

)
=
∫ 1

0
Eα

[
d log qα(·)

dα

]
dα, (3.12)

where Eα denotes expectation under pα; see Gelman and Meng (1998). Note that the
sequence of distributions in the SMC2 and SMC3 algorithms above, can both be interpreted
as belonging to such a family of distributions, with αt = α(t/Tk), where the mapping
α : [0, 1]→ [0, 1] is again monotonic with α(0) = 0 and α(1) = 1.

The SMC sampler provides us with a set of weighted samples obtained from a sequence
of distributions suitable for approximating this integral. At each t, we can obtain an esti-
mate of the expectation within the integral for α(t/T ) via the usual importance sampling
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estimator, and this integral can then be approximated via numerical integration. Whenever
the sequence of distributions employed by SMC3 has appropriate differentiability, it is also
possible to employ path sampling to estimate, directly, the evidence ratio via this approach
applied to the samples generated by that algorithm. In general, given an increasing sequence
{αt }Tt=0 where α0 = 0 and αT = 1, a family of distributions {pα}α∈[0,1] as before, and an
SMC sampler that iterates over the sequence of distribution {πt = pαt

= qαt
/Zαt
}Tt=0, then

with the weighted samples {W (j )
t , X

(j )
t }Nj=1, and t = 0, . . . , T , a path sampling estimator

of the ratio of normalizing constants 	T = log(Z1/Z0) can be approximated (using an
elementary trapezoidal scheme) by

	̂N
T =

T∑
t=1

1

2
(αt − αt−1)(UN

t + UN
t−1), (3.13)

where

UN
t =

N∑
j=1

W
(j )
t

d log qα(X(j )
t )

dα

∣∣∣
α=αt

. (3.14)

We term these estimators SMC2-PS and SMC3-PS. The combination of SMC and
path sampling is somewhat natural and has been proposed before, for example, Johansen,
Del Moral, and Doucet (2006) although not there in a Bayesian context. The estimation
of normalizing constants by this approach seems to have received little attention in the
literature. Perhaps because of widespread acceptance of the suggestion of Del Moral,
Doucet, and Jasra (2006b) that SMC does not outperform AIS when normalizing constants
are the object of inference or that of Calderhead and Girolami (2009) that all simulation-
based estimators based around path sampling can be expected to behave similarly. We will
demonstrate below that these observations, while true in certain contexts, do not hold in
full generality.

3.3 EXTENSIONS AND REFINEMENTS

3.3.1 Improved Univariate Numerical Integration. The path sampling estimator re-
quires evaluation of the expectation, Eα[d log qα/dα] for α ∈ [0, 1], which can be approx-
imated by importance sampling using samples generated by an SMC sampler operating
on the sequence of distributions {πt = pαt

= qαt
/Zt }Tt=0 directly for α ∈ {αt }Tt=0. For any

α ∈ [0, 1], by finding t such that α ∈ (αt−1, αt ), the expectation can be approximated using
existing SMC samples—the quantities required to obtain such an estimate have already
been calculated during the running of the SMC algorithm and such computations have little
computational cost.

As noted by Friel, Hurn, and Wyse (2014), we can use more sophisticated numerical
integration strategies to reduce the path sampling estimator bias. In the case of SMC, it
is especially straightforward to estimate the required expectations at arbitrary α and so
higher order integration can be used cheaply. Numerical integrations that make use of a
finer mesh {α′t }T

′
t=0 than {αt }Tt=0 can be easily implemented. Due to the possible instability

of numerical integrations based on approximations of derivatives, the second approach can
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be more appealing in some applications. A demonstration of the bias reduction effect is
provided in Section 4.2.

3.3.2 Adaptive Specification of Distributions. As the importance weights at time t
depend only upon the sample at time t − 1, it is relatively straightforward to consider
sample-dependent, adaptive specification of the sequence of distributions (typically by
choosing the value of a parameter, such as αt = α(t/Tk) in the settings of SMC2 and
SMC3, based upon the current sample). Jasra et al. (2010) proposed such a method based
on controlling the rate at which the effective sample size (ESS; Kong, Liu, and Wong
1994) falls. With little computation cost, this provides an automatic method of specifying
a tempering schedule in such a way that the ESS decays in a regular fashion. Schäfer and
Chopin (2013, Algorithm 2) used a similar technique but by moving the particle system
only when it resamples they are in a setting equivalent to resampling at every timestep
(with longer time steps, followed by multiple applications of the MCMC kernel) in our
formulation. We advocate resampling adaptively only when the ESS is smaller than a preset
threshold, and here we propose a more general adaptive scheme for the selection of the
sequence of distributions that has better properties when adaptive resampling is employed.

The ESS was designed to assess the loss of efficiency arising from the use of a simple
weighted sample (rather than a simple random sample from the distribution of interest) in
the computation of expectations. It is obtained by considering a sample approximation of
a low-order Taylor expansion of the variance of the importance sampling estimator of an
arbitrary test function to that of the simple Monte Carlo estimator; the test function vanishes
from the expression as a consequence of this expansion.

In our context, allowing W
(i)
t−1 to denote the normalized weights of particle i at the end

of time t − 1, and w
(i)
t to denote the unnormalized incremental weights of particle i during

iteration t, the ESS calculated using the current weight of each particle is simply

ESSt =
⎡⎣ N∑

j=1

(
W

(j )
t−1w

(j )
t∑N

k=1 W
(k)
t−1w

(k)
t

)2
⎤⎦−1

=
(∑N

j=1 W
(j )
t−1w

(j )
t

)2∑N
k=1

(
W

(k)
t−1

)2(
w

(k)
t

)2 . (3.15)

It is clearly appropriate to use this quantity (which corresponds to the coefficient of variation
of the current normalized importance weights) to assess weight degeneracy and to make
decisions about appropriate resampling times (see Del Moral, Doucet, and Jasra 2012) but
it is rather less apparent that it is the correct quantity to consider when adaptively specifying
a sequence of distributions in an SMC sampler.

The ESS of the current sample weights tells us about the accumulated mismatch between
proposal and target distributions (on an extended space including the full trajectory of the
sample paths) since the last resampling time. Fixing either the relative or absolute reduction
in ESS between successive distributions does not lead to a common discrepancy between
successive distributions unless resampling is conducted after every iteration as will be
demonstrated below.

When specifying a sequence of distributions it is natural to aim for a similar discrepancy
between each pair of successive distributions. The natural question to ask is consequently,
how large can we make αt − αt−1 while ensuring that πt remains sufficiently similar to
πt−1. One way to measure the discrepancy would be to consider how good an importance
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Figure 1. A typical plot of αt − αt−1 against αt (for a Gaussian mixture model example using the SMC2
algorithm; see the supplementary material). All four samplers use roughly the same number of distributions.

sampling proposal πt−1 would be for the estimation of expectations under πt and a natural
way to measure this is via the sample approximation of a Taylor expansion of the relative
variance of such an estimator exactly as in the ESS .

Such a procedure (see the supplementary material for its derivation) leads us to a quantity
that we have termed the conditional ESS (CESS):

CESSt =
⎡⎣ N∑

j=1

NW
(j )
t−1

(
w

(j )
t∑N

k=1 NW
(k)
t−1w

(k)
t

)2
⎤⎦−1

= N
(∑N

j=1 W
(j )
t−1w

(j )
t

)2∑N
k=1 W

(k)
t−1

(
w

(k)
t

)2 , (3.16)

which is equal to the ESS only when resampling is conducted during every iteration. The
bracketed term coincides with a sample approximation (using the actual sample that is
properly weighted to target πt−1) of the expected sum of the unnormalized weights squared
divided by the square of a sample approximation of the expected sum of unnormalized
weights when considering sampling from πt−1 and targeting πt by simple importance
sampling.

Figure 1 shows the variation of αt − αt−1 with αt when fixed reductions in ESS and
CESS are used to specify the sequence of distributions both when resampling is conducted
during every iteration (or equivalently, when the ESS/N falls below a threshold of 1.0) and
when resampling is conducted only when the ESS/N falls below a threshold of 0.5. As is
demonstrated in Section 4 the CESS -based scheme leads to a reduction in estimator variance
of around 20% relative to a manually tuned (quadratic; see the supplementary material)
schedule while the ESS-based strategy provides little improvement over the linear case
unless resampling is conducted during every iteration.

In addition to providing a significantly better performance at essentially no cost, the
use of the CESS emphasizes the purpose of the adaptive specification of the sequence of
distributions: to produce a sequence in which the difference between each successive pair is
the same (when using the CESS one is seeking to ensure that the variance of the importance
weights one would arrive at if using πt−1 as a proposal for πt is constant).

We note that the standard estimate of the normalizing constant need not be unbiased
when adaptive techniques are employed. However, a very recent analysis (Beskos, Jasra,
and Thiéry 2013) provides some formal justification of the use of both adaptive tempering
schedules and adaptive specification of proposals, the topic of the next section.
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3.3.3 Adaptive Specification of Proposals. The SMC sampler is remarkably robust to
the mixing speed of MCMC kernels employed (see the empirical study below). However,
as with any sampling algorithms, faster mixing does not harm performance and in some
cases will considerably improve it. For random walk Metropolis kernels, the mixing speed
depends upon the proposal scale.

We adopt an approach similar to Jasra et al. (2010) who used sample covariance estimates
to inform the proposal covariance for the next iteration. We found that such an approach
generally produces satisfactory results and it is simple to implement. In difficult problems
alternative approaches could be employed; one approach demonstrated by Jasra et al.
(2010) is to simply employ a pair of acceptance rate thresholds and to alter the proposal
scale from the simply estimated value whenever the acceptance rate falls outside those
threshold values. Beskos, Jasra, and Thiéry (2013) showed, convergence results for this
kind of adaptive specification of Markov kernels.

More sophisticated proposal strategies could undoubtedly improve performance further
and their use warrants investigation. One appealing approach is using the Metropolis
adjusted Langevin algorithm (MALA; see Roberts and Tweedie 1996). We could use the
particle approximation at time index t = n− 1 to estimate the covariance matrix of πn and
thus tune the scale h online. As these algorithms are known to be somewhat sensitive to
scaling, and we seek approaches robust enough to employ with little user intervention, we
have not investigated this strategy here.

3.4 A NEAR-AUTOMATIC, GENERIC ALGORITHM

With the above refinements, the SMC2 algorithm can be implemented with mini-
mal tuning and application-specific effort while providing robust and accurate estimates
of the model evidence p( y|Mk). The geometric annealing path that connects the prior
π (θk|Mk) and the posterior π (θk| y,Mk) provides a smooth path for a wide range of prob-
lems. The actual annealing schedule under this scheme can be determined using the adaptive
schedule as described above. Finally, we can adaptively specify the Metropolis random walk
(or MALA) scales through the estimation of their scaling parameters as the sampler iter-
ates. In contrast to the MCMC setting, where such adaptive algorithms will usually require
a burn-in period, which will not be used for further estimation, in SMC, the variance
and covariance estimates come at almost no cost, as all the samples will later be used
for marginal likelihood estimation. Additionally, adaptation within SMC does not require
separate theoretical justification—something that can significantly complicate the develop-
ment of adaptive schemes in the MCMC setting. We outline the adaptive form of SMC2 in
Algorithm 4.

As laid out above, the algorithm requires minimal tuning. Its robustness, accuracy, and
efficiency will be shown empirically in Section 4. Automating SMC1 is less straightforward
as the between model moves still require effort to design and implement. In SMC3, the
specification of the sequences between posterior distributions are less generic than the
geometric annealing scheme in SMC2. However, the adaptive schedule and automatic
tuning of MCMC proposal scales can readily be applied.

Some auxiliary inputs are still required. However, for a given class of models, with
minimal tuning, the algorithm can be carried out in a nearly automatic fashion for different
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Algorithm 4 An Automatic, Generic Algorithm for Bayesian Model Comparison.
Accuracy control

Set constant CESSI ∈ (0, 1), using a small pilot simulation if necessary.
Initialization: Set t ← 0.

Perform the Initialization step as in Algorithm 2
Iteration: Set t ← t + 1

Step size selection
Use a binary search to find αI such that CESSαI = CESSI

Set αt ← αI if αI ≤ 1, otherwise set αt ← 1
Proposal scale calibration

Computing the importance sampling estimates of first two moments ofparameters.
Set the proposal scale of the Markov proposal Kt with the estimated parameter variances.

Perform the Iteration step as in Algorithm 2 with the found αt and proposal scales.
Repeat the Iteration step until αt = 1 then set T = t .

data or model settings, in the sense that these inputs do not need to be done on a per model
or per dataset basis. We believe this framework presented here is at least a good foundation
for building automatic model comparison procedures for many application areas.

Although further enhancements and refinements are clearly possible, we focus in the
remainder of this article on this simple, generic algorithm that can be easily implemented
in any application and has proved sufficiently powerful to provide good estimation in the
examples we have encountered thus far.

4. ILLUSTRATIVE APPLICATIONS

A classical Gaussian mixture model (GMM) as formulated in Del Moral, Doucet, and
Jasra (2006b) was first used to compare all three SMC algorithms with RJMCMC, AIS, and
PMCMC. The details of model setting and results are in the supplementary material. It was
found that all five algorithms agree on the results while the performance in terms of Monte
Carlo variance varies considerably. We reached the conclusion that the SMC2 algorithm
with adaptive strategies is the most promising among the SMC strategies, considering ease
of implementation, performance, and generality. Also, while it has been suggested that AIS
might perform similarly to SMC for the estimation of normalizing constants, the GMM
example shows that resampling can have a beneficial effect on the variance allowing SMC
to outperform AIS in practice.

In this section, two realistic examples, a nonlinear ordinary differential equation (ODE)
model and a positron emission tomography compartmental model are used to study the
performance and robustness of algorithm SMC2 compared to AIS and PMCMC. Various
configurations of the algorithms are considered including both sequential and parallelized
implementations.

The C++ implementations, which make use of the vSMC library of Zhou (2013), of all
examples can be found at https://github.com/zhouyan/vSMC.

4.1 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

In this section, SMC2 will now be further explored in a more complex model, a nonlinear
ordinary differential equations system. This model, which was studied by Calderhead and
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Girolami (2009), is known as the Goodwin model. The ODE system, for an m-component
model, is

dX1(t)

dt
= a1

1+ a2Xm(t)ρ
− αX1(t)

dXi(t)

dt
= ki−1Xi−1(t)− αXi(t) i = 2, . . . , m

Xi(0) = 0 i = 1, . . . , m.

The parameters {α, a1, a2, k1:m−1} have common prior distribution G(0.1, 0.1). Under this
setting, X1:m(t) can exhibit either unstable oscillation or a constant steady state. The data
are simulated for m = {3, 5} at equally spaced time points from 0 to 60, with time step 0.5.
The last 80 data points of (X1(t), X2(t)) are used for inference. Normally distributed noise
with standard deviation σ = 0.2 is added to the simulated data. Following Calderhead and
Girolami (2009), the variance of the additive measurement error is assumed to be known.
Therefore, the posterior distribution has m+ 2 parameters for an m-component model.

As shown by Calderhead and Girolami (2009), when ρ > 8, due to the possible instability
of the ODE system, the posterior can have a considerable number of local modes. In this
example, we set ρ = 10. Also, as the solution to the ODE system is somewhat unstable,
slightly different data can result in very different posterior distributions.

4.1.1 Results. We compare results from the SMC2 and PMCMC algorithms. For the
SMC implementation, 1000 particles and 500 iterations were used, with the distributions
specified by Equation (3.9), with α(t/T ) = (t/T )5, or via the completely adaptive specifi-
cation. For the PMCMC algorithm, 50,000 iterations are performed for burn-in and another
10,000 iterations are used for inference. The same tempering as was used for SMC is used
here. Note that, in a sequential implementation of PMCMC, with each iteration updating
one local chain and attempting a global exchange, the computational cost of after burn-in
iterations is roughly the same as the entire SMC algorithm. In addition, changing T within
the range of the number of cores available does not substantially change the computational
cost of a generic parallel implementation of the PMCMC algorithm, with each iteration up-
dating all local chains concurrently. We compare results from T = 10, 30, 100 for PMCMC
and T = 500 (or close to this number when the distributions are specified adaptively) for
SMC. The results for data generated from the simple model (m = 3) and complex model
(m = 5), summarizing variability among 100 runs of each algorithm, are shown in Tables 2
and 3, respectively.

As shown in both cases, the number of distributions can affect the performance of
PMCMC algorithms considerably. When using 10 distributions, large bias from numerical
integration for path sampling estimator was observed, as expected. With 30 distributions,
the performance is comparable to the SMC2 sampler, though some bias is still observable.
With 100 distributions, there is a much larger variance because, with more chains, the
information travels more slowly from rapidly mixing chains to slowly mixing ones and
consequently the mixing of the overall system is inhibited.

The SMC algorithm provides results comparable to the best of three PMCMC imple-
mentations in all settings, including one in which both the annealing schedule and proposal
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Table 2. Results for nonlinear ODE models with data generated from simple model. Italic: Minimum variance
for particular algorithm. Bold: Minimum variance among samplers

Marginal likelihood
(log p( y|Mk)± SD)

T Proposal scales Annealing scheme Algorithm m = 3 m = 5 Bayes factor log B3,5

10 Manual Prior (5) PMCMC −109.7 ± 3.2 −120.3 ± 2.5 10.6 ± 3.8
30 −105.0 ± 1.2 −116.1 ± 2.2 11.2 ± 2.5
100 −134.7 ± 7.9 −144.1 ± 6.2 9.4 ± 11.2
500 Manual Prior (5) SMC2-DS −104.6 ± 2.0 −112.7 ± 1.8 8.1 ± 2.8

SMC2-PS −104.5 ± 1.8 −112.7 ± 1.5 8.2 ± 2.5
500 Manual Adaptive SMC2-DS −104.5 ± 1.1 −112.7 ± 1.1 8.1 ± 1.6

SMC2-PS −104.6 ± 1.0 −112.8 ± 1.0 8.2 ± 1.5
500 Adaptive Adaptive SMC2-DS −104.5 ± 0.5 −112.7 ± 0.4 8.1 ± 0.8

SMC2-PS −104.6 ± 0.4 −112.8 ± 0.3 8.1 ± 0.6

scaling were fully automatic, and significantly better for the data generated from simple
model. In fact, the completely adaptive strategy was the most successful.

It can be seen that in contrast to the PMCMC algorithm, the SMC algorithm can increase
the number of the distributions to reduce the bias of the numerical integration for the path
sampling estimator without increasing the Monte Carlo variance.

4.2 POSITRON EMISSION TOMOGRAPHY COMPARTMENTAL MODEL

It is now interesting to compare the proposed algorithm with other state-of-art algorithms
using a realistic example.

Positron emission tomography (PET) is a technique used for studying the brain in vivo,
most typically when investigating metabolism or neuro-chemical concentrations in either
normal or patient groups. Given the nature and number of observations typically recorded
in time, PET data are usually modeled with linear differential equation systems. For an
overview of PET compartmental models, see Gunn et al. (2002). Given data (y1, . . . , yn)T,

Table 3. Results for nonlinear ODE models with data generated from complex model. Italic: Minimum variance
for particular algorithm. Bold: Minimum variance among samplers

Marginal likelihood
(log p( y|Mk)± SD)

T Proposal scales Annealing scheme Algorithm m = 3 m = 5 Bayes factor log B5,3

10 Manual Prior (5) PMCMC −1651 ± 27.9 −85.1 ± 36.6 1566 ± 42.1
30 −1640 ± 7.4 −78.9 ± 11.2 1561 ± 12.8
100 −1625 ± 15.7 −75.7 ± 24.8 1549 ± 25.6
500 Manual Prior (5) SMC2-DS −1641 ± 10.8 −78.5 ± 9.8 1562 ± 10.1

SMC2-PS −1641 ± 8.4 −79.2 ± 7.9 1562 ± 8.5
500 Manual Adaptive SMC2-DS −1640 ± 6.9 −78.6 ± 4.8 1561 ± 7.1

SMC2-PS −1640 ± 5.4 −78.8 ± 3.7 1561 ± 6.8
500 Adaptive Adaptive SMC2-DS −1640 ± 2.2 −79.4 ± 1.7 1560 ± 3.1

SMC2-PS −1640 ± 1.9 −78.5 ± 1.5 1562 ± 2.3
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Figure 2. Estimates of VD from a single PET scan as found using SMC2. The data show that the volume of
distribution exhibits substantial spatial variation. Note that each pixel in the image represents an estimate from an
individual time series. There are approximately 250,000 of them and each requires a Monte Carlo simulation to
select a model.

an m-compartmental model has generative form:

yj = CT (tj ; φ1:m, θ1:m)+
√

CT (tj ; φ1:m, θ1:m)

tj − tj−1
εj (4.1)

CT (tj ; φ1:m, θ1:m) =
m∑

i=1

φi

∫ tj

0
CP (s)e−θi (tj−s) ds, (4.2)

where tj is the measurement time of yj , εj is additive measurement error and input function
CP is (treated as) known. The parameters φ1, θ1, . . . , φm, θm characterize the model dynam-
ics. See Zhou, Aston, and Johansen (2013) for applications of Bayesian model comparison
for this class of models and details of the specification of the measurement error. In the
simulation results below, εj are independently and identically distributed according to a
zero mean Normal distribution of unknown variance, σ 2, which was included in the vector
of model parameters.

Real neuroscience datasets involve a very large number of time series (∼200,000 per
brain), which are typically somewhat heterogenous. Figure 2 shows estimates of VD =∑m

j=1 φj/θj from a typical PET scan (generated using SMC2 as will be discussed later).
Robustness is therefore especially important. An application-specific MCMC algorithm
was developed for this problem in Zhou, Aston, and Johansen (2013). A significant amount
of tuning of the algorithms was required to obtain good results. The results shown in
Figure 2 are very close to those of Zhou, Aston, and Johansen (2013) but, as is shown later,
they were obtained with almost no manual tuning effort and at similar computational cost.

For SMC and PMCMC algorithms, the requirement of robustness means that the al-
gorithm must be able to calibrate itself automatically to different data (and thus different
posterior surfaces). A sequence of distributions that performs well for one time series may
not perform even adequately for another series. Specification of proposal scales that pro-
duces fast-mixing kernels for one data series may lead to slow mixing for another. In the
following experiment, we will use a single simulated time series, and choose schedules that
performs both well and poorly for this particular time series. The objective is to see if the
algorithm can recover from a relatively poorly specified schedule and obtain reasonably
accurate results.

4.2.1 Results. In this example, we focus on the comparison between SMC2 and PM-
CMC. We also consider parallelized implementations of algorithms. In this case, due to
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its relatively small number of chains, PMCMC can be parallelized completely (and often
cannot fully use the hardware capability if a naı̈ve approach to parallelization is taken;
while we appreciate that more sophisticated parallelization strategies are possible, these
depend intrinsically upon the model under investigation and the hardware employed and
given our focus on automatic and general algorithms, we do not consider such strategies
here). The PMCMC algorithm under this setting is implemented such that each chain is
updated at each iteration. Further, for the SMC algorithms, we consider two cases. In the
first, we can parallelize the algorithm completely (in the sense that each core has a single
particle associated with it). In this setting, we use a relatively small number of particles and
a larger number of time steps. In the second, we need a few passes to process a large number
of particles at each time step, and accordingly we use fewer time steps to maintain the same
total computation time. These two settings allow us to investigate the trade-off between the
number of particles and time steps. In both implementations, we consider three schedules,
α(t/T ) = t/T (linear), α(t/T ) = (t/T )5 (prior), and α(t/T ) = 1− (1− t/T )5 (poste-
rior). In addition, the adaptive schedule based upon CESS is also implemented for the
SMC2 algorithm.

Results from 100 replicate runs of the two algorithms under various regimes can be found
in Tables 4 and 5 for the marginal likelihood and Bayes factor estimates, respectively.
The SMC algorithms consistently outperforms the PMCMC algorithms in the parallel
settings. The Monte Carlo SD of SMC algorithms is typically of the order of one-fifth
of the corresponding estimates from PMCMC in most scenarios. In some settings with
the smaller number of samples, the two algorithms can be comparable. Also at the lowest
computational costs, the samplers with more time steps and fewer particles outperform those
with the converse configuration by a fairly large margin in terms of estimator variance. It
shows that with limited resources, ensuring the similarity of consecutive distributions, and
thus good mixing, can be more beneficial than a larger number of particles. However, when
the computational budget is increased, the difference becomes negligible. The robustness
of SMC to the change of schedules is again apparent.

It can also be seen that increasing the number of distributions not only reduces the
path sampling estimator bias (as seen in the previous example), but also reduces the
variances considerably given the same number of particles. On the other hand, increasing
the number particles can only reduce the variance of the estimates, in accordance with
the central limit theorem; see Del Moral, Doucet, and Jasra (2006b) for the standard
estimator and extensions for the path sampling estimator, Proposition 1 in the supplementary
material. (As the bias arises from numerical integration approximation of the path sampling
estimator.)

Effects of Adaptive Schedule. A set of samplers with adaptive schedules are also used.
Due to the nature of the schedule, it cannot be controlled to have exactly the same number
of time steps as nonadaptive procedures. However, the CESS was controlled such that the
average number of time steps are comparable with the fixed schedules and in most cases
slightly less than the fixed numbers.

It is found that, with little computational overhead, adaptive schedules do provide the
best results (or very nearly so) and do so without user intervention. The reduction of
Monte Carlo SD varies among different configurations. For moderate or larger number of
distributions, a reduction about 50% was observed. In addition, it shall be noted that, in this
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Table 4. Marginal likelihood estimates of two component PET model. T: Number of distributions in SMC and
number of iterations used for inference in PMCMC. N: Number of particles in SMC and number chains in
PMCMC. The PMCMC and SMC with N = 192 are completely N-way parallelized. SMC with N = 960 are
N/5-way parallelized. Italic: Minimum variance for the same computational cost and the same proposal scales
and annealing schemes. Bold: Minimum variance for the same computational cost and all proposal scales and
annealing schemes

Proposal scales Manual Adaptive

Annealing scheme Prior (5) Posterior (5) Adaptive

T N Algorithm Marginal likelihood estimates (log p( y|Mk)± SD)

500 30 PMCMC −39.1± 0.56 −926.8± 376.99
500 192 SMC2-DS −39.2± 0.25 −39.7± 1.06 −39.2± 0.18 −39.1± 0.12

SMC2-PS −39.2± 0.25 −91.3± 21.69 −39.2± 0.18 −39.1± 0.13
100 960 SMC2-DS −39.3± 0.36 −40.6± 1.41 −39.2± 0.31 −39.2± 0.19

SMC2-PS −39.3± 0.35 302.1± 46.29 −39.3± 0.31 −39.2± 0.18
5000 30 PMCMC −39.3± 0.21 −917.6± 129.54
5000 192 SMC2-DS −39.2± 0.09 −39.2± 0.20 −39.2± 0.08 −39.1± 0.04

SMC2-PS −39.2± 0.09 −43.8± 2.13 −39.2± 0.08 −39.1± 0.04
1000 960 SMC2-DS −39.2± 0.08 −39.2± 0.31 −39.2± 0.07 −39.2± 0.03

SMC2-PS −39.2± 0.08 −65.7± 5.54 −39.2± 0.07 −39.2± 0.03

example, the bias of path sampling estimates are much more sensitive to the schedules than
the previous Gaussian mixture model example. A vanilla linear schedule does not provide a
low bias estimator at all even when the number of distributions is increased to a considerably
larger number. The prior schedule though provides a nearly unbiased estimator, there is no
clear theoretical evidence showing that this shall work for other situations. The adaptive
schedule, without any manual calibration, can provide a nearly unbiased estimator, even
when path-sampling is employed, in addition to potential variance reduction.

Table 5. Bayes factor B2,1 estimates of two component PET model. T: Number of distributions in SMC and
number of iterations used for inference in PMCMC. N: Number of particles in SMC and number chains in
PMCMC. The PMCMC and SMC with N = 192 are completely N-way parallelized. SMC with N = 960 are
N/5-way parallelized. Italic: Minimum variance for the same computational cost and the same schedule. Bold:
Minimum variance for the same computational cost and all schedules

Proposal scales Manual Adaptive

Annealing scheme Prior (5) Posterior (5) Adaptive

T N Algorithm Bayes factor estimates (log B2,1 ± SD)

500 30 PMCMC 1.7± 0.62 −70.9± 525.79
500 192 SMC2-DS 1.6± 0.27 1.3± 1.13 1.6± 0.20 1.6± 0.15

SMC2-PS 1.6± 0.27 −3.9± 30.02 1.6± 0.20 1.6± 0.15
100 960 SMC2-DS 1.6± 0.37 0.5± 1.55 1.6± 0.34 1.6± 0.21

SMC2-PS 1.6± 0.37 −13.1± 66.30 1.6± 0.33 1.6± 0.21
5000 30 PMCMC 1.6± 0.24 −60.3± 198.10
5000 192 SMC2-DS 1.6± 0.10 1.6± 0.23 1.6± 0.09 1.6± 0.05

SMC2-PS 1.6± 0.10 1.3± 2.98 1.6± 0.09 1.6± 0.05
1000 960 SMC2-DS 1.6± 0.09 1.6± 0.33 1.6± 0.08 1.6± 0.04

SMC2-PS 1.6± 0.09 −0.2± 6.63 1.6± 0.08 1.6± 0.04
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Table 6. Path sampling estimator of marginal likelihood of two component PET model. The estimator was
approximated using samples from SMC2 algorithm with 1000 particles and 20 iterations, with different numerical
integration strategies. Large sample result (see Table 4) provide an estimate of −39.2

Number of grid points (compared to sampled iterations)

Integration rule ×1 ×2 ×4 ×8

Trapezoid −52.2± 5.01 −45.5± 1.93 −42.1± 1.21 −40.5± 1.06
Simpson −43.2± 1.39 −41.0± 1.10 −40.0± 1.04 −39.4± 1.04
Simpson 3/8 −42.1± 1.21 −40.5± 1.06 −39.7± 1.04 −39.3± 1.04
Boole −40.9± 1.09 −39.9± 1.04 −39.4± 1.04 −39.2± 1.05

Bias Reduction for Path Sampling Estimator. As seen in Tables 4 and 5, a bad choice of
schedule α(t/T ) can results in considerable bias for the basic path sampling estimator, here
for SMC2-PS but the problem is independent of the mechanism by which the samples are
obtained. Increasing the number of iterations can reduce this bias but at the cost of additional
computation time. As outlined in Section 3.3.1, in the case of the SMC algorithms discussed
here, it is possible to reduce the bias without increasing computational cost significantly.
To demonstrate the bias reduction effect, we constructed SMC sampler for the above PET
example with only 1000 particles and about 20 iterations specified using the CESS-based
adaptive strategy. The path sampling estimator was approximated using Equation (3.13) as
well as other higher order numerical integration or by integrating over a grid that contains
{αt } at which the samples was generated. The results are shown in Table 6.

Real Data Results. Finally, the methodology of SMC2-PS was applied to measured
positron emission tomography data using the same compartmental setup as in the simula-
tions. The data shown in Figure 2 come from a study into opioid receptor density in Epilepsy,
with the data being described in detail by Jiang, Aston, and Wang (2009). It is expected that
there will be considerable spatial smoothness to the estimates of the volume of distribution,
as this is in line with the biology of the system being somewhat regional. Some regions
will have much higher receptor density while others will be much lower, yielding higher
and lower values of the volume of distribution, respectively. While we did not impose any
spatial smoothness but rather estimated the parameters independently for each time series at
each spatial location, as can be seen, smooth spatial estimates of the volume of distribution
consistent with neurological understanding were found using the approach. This method is
computationally feasible for the entire brain on a voxel-by-voxel basis, due to the ease of
parallelization of the SMC algorithm. In the analysis performed here, 1000 particles were
used, along with an adaptive schedule using a constant CESSI = 0.999, resulting in about
180 to 200 intermediate distributions. The model selection results are very close to those
obtained by a previous study of the same data (Zhou, Aston, and Johansen 2013), although
the present approach requires much less implementation effort and has roughly the same
computational cost.

4.3 SUMMARY

These two illustrative applications and the GMM example in the supplementary material
have essentially shown three aspects of using SMC as a generic tool for Bayesian model
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selection. First, as seen in the GMM example, all the different variants of SMC proposed,
including both direct and path sampling versions, produce results that are competitive
with other model selection methods such as RJMCMC and PMCMC. In addition, in this
somewhat simple example, SMC2 performs well, and leads to low variance estimates with
no appreciable bias. The effect of adaptation was studied more carefully in the nonlinear
ODE example, and it was shown that using both adaptive selection of distributions as well
as adaptive proposal variances leads to very competitive algorithms, even against those with
significant manual tuning. This suggests that an automatic process of model selection using
SMC2 is possible. In the final example, considering the easy parallelization of algorithms
such as SMC2 suggests that great gains in variance estimation can be made using settings
such as GPU computing for application where computational resources are of particular
importance (such as in image analysis as in the PET example). It is also clear that the
negligible cost of the bias reduction techniques described means that one should always
consider using these to reduce the bias inherent in path sampling estimation. As can also
be seen in the supplementary material, there is theoretical justification, in terms of a central
limit theorem, available for the path sampling estimator considered in SMC2-PS.

5. DISCUSSION

It has been shown that SMC is an effective Monte Carlo method for Bayesian inference
for the purpose of model comparison. Three approaches have been outlined and investigated
in several challenging scenarios. The proposed strategy is always competitive and often
substantially outperforms the state of the art in this area.

Among the three approaches developed, SMC1 is applicable to very general settings. It
can provide a robust alternative to RJMCMC when inference on a countable collection of
models is required (and could be readily combined with the approach of Jasra et al. (2008)
at the expense of a little additional implementation effort). However, like all Monte Carlo
methods involving between model moves, it can be difficult to design efficient algorithms
in practice. The SMC3 algorithm is conceptually appealing. However, specifying a suitable
sequence of distributions between two posterior distributions is challenging.

The SMC2 algorithm, which only involves within-model simulation, is most straight-
forward to implement in many interesting problems and has been shown to be exceedingly
robust in many settings. As it depends largely upon a collection of within-model MCMC
moves, any existing MCMC algorithms can be reused in the SMC2 framework. However,
much less tuning is required because the algorithm is fundamentally less sensitive to the
mixing of the Markov kernel and it is possible to implement effective adaptive strategies
at little computational cost. With adaptive placement of the intermediate distributions and
specification of the MCMC kernel proposals, it provides a robust and nearly automatic
model comparison method.

Compared to the PMCMC algorithm, SMC2 has greater flexibility in the specification of
distributions. Unlike PMCMC, where the number and placement of distributions can affect
the mixing speed and hence performance considerably, increasing the number of distribu-
tions will always benefit a SMC sampler given the same number of particles. Compared
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to its no-resampling variant, it has been shown that SMC samplers with resampling can
reduce the variance of normalizing constant estimates considerably.

Even after three decades of intensive development, no Monte Carlo method can solve
the Bayesian model comparison problem completely automatically without any manual
tuning. However, SMC algorithms and the adaptive strategies demonstrated in this article
show that even for realistic, interesting problems, these samplers can provide good results
with very minimal tuning and few design difficulties. For many applications, they could
already be used as near automatic, robust solutions. For more challenging problems, they
can serve as solid foundation for the design of dedicated algorithms.

SUPPLEMENTARY MATERIALS

The file Zhouetal supp.pdf (PDF file) provides:
Additional examples: A Gaussian mixture model example used to compare all algo-

rithms considered in this article and additional results for the PET model.
Technical Material: A derivation of the conditional ESS and a central limit theorem

for the path sampling estimator suggested in the methodology section.
The file vSMC.zip (zip file) provides the code to analyze the simulated examples in the

article.
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