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Abstract

The perceptron and the hologrém are two dissimilar devices
which have been advanced as neurological models. It is shown
that there are other and perhaps more plausible models which have
properties common to both of these devices; The performance of
these intermediate models thch are termed Associative Nets is
déscribed and analysed statistically. The main similarities
and differences betweén Perceptron theory and holography can
also be demonstrated; it is possibie to demonstrate formal links
between the translation invariance in certain types of holography
and group ;nvariance in perception.theory. Some single proofs
of certain theorems in the latter are also givén and some other

learning procedures are formulated.

It.is shown that the imbortant difference between these
various models resides in the method used to accomplish a mod-
ification. If this modificacion is an analogue of a neurological
change al a synaptic level, then it should be possible to dhalify
the relevance of those models by determining what types of synaptic
change can take place in different parts of the nervocus systenm,
‘Although the évidence is far from complete, it suggests that the
neocortex is limited to having one type of synaptic change.
Finally, each model is discussed in respect of its neurological

x

plausibility.
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CHAPTER 1 Introduction

Two theories have been put forward in recent years which,
as models of the brain, have.enjbyed séme popularity. These
are holography and the theory of perceptrons and similar learn-
ing machines. It is intended to show tnat between these tﬁo
superficially dissimilar models there lies a series of alternative
theories, some of which are proposed as serious neurological
models. An attempt will also be made to examnine these tneorics
on the basis of existing neurological evidence and as a result of
this examination a proposal is advanced Boncerning a structurzl
and functional difference between the neocortex and other parts

of the nervous systen,

In order to demonstrate the formal links between these
theories, the first chapters of this dissertation will be concerned
with a lafgely mathematical treatment of these theories. The
physiological or psychological rationale for their constructicn
will be stated briefly in this chapter and as a short intro-
duction to some of the theoretical chapters. The detailed

investigation of this will be reserved for the later chapters.

Though a great deal of work has recently been directed at
discovering a neurological basis for memory or learning (no

attempt is made at the moment to define those terms) our under-

standing is still not very far advanéed. This is perhags o=rtly



due ‘to the limited techniques of experimental neurology; perﬁaps
it is even more due to the fact that we do not know which questions
to ask of experimental neurology: that is, we lack good hypotheses
about the nervous system. Neveriheless broad neurological
considerations allow us to infer for example that the organisation
of the brain does not very much resemble the organisation.of the

hardware of a digital computer.

No less important to our study of behaviour is our intuition
about it, The recent advances made in our knowledge of the
structure of English are founded more or less wholly on the
intuition of native speakers. It is hard to believe that this
study will not throw some light on the organisation of the human
brain., We might even hope for the reverse if some sound neuro-

logical principles of the right kind were to be discovered,

Such considerations have led some neurophysiologists to taxe
holography seriously as a model for memory. While holography,
as a brain model, is somewhat condemned later on, many of its
features are obviously attractive. Among these are the non
local storage of information, the survival of the image after
damage tp the hologram, the ability to 'recognise' displaced
patterns and, in certain cases the recovery of a 'ghost' image.
These same consideracions led to the develoment of zssociative
nets and group invariant asscciative nets which have many of

L

these reatures in common with holography and other desirable
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properties as well. It is felt that such systems could ce
realised in the nervous system and some evidence is given for

this.

Group invariant associztive nets were initially developed
as an attempt to solve some problems about our use of language,
which may involve our ability éo recognise the deep structure
of one sentence as a part of the deep structure of another.

It was felt that such an operation might be accomplished by a
parallel system rather than a serial search - which in this
case is a very slow procedure, It is far too early to say
whether or not such networks are embodied in the nervous system.
It is however suggeéted that they may be relevant tq the psycho-
logical phenomenon of generalisation in which for example one
recognlaes an object in some position even though one hes never

seen it in precisely that oooltlon before.

' One of the most gratifying results of this study was the
clese relationship it has to some recent results in the.theory
of perceptrons in which it is possible to say a certuin amount
about the size and structure of a perceptron that evaluates a

predicate which is invariant under certain transformations of
its arguments. It also served to underline the fact that the
fundamental difference between percestrons and the other models
lies in the way a change is effected in these devices. This

is the only real distinction which will be made between models



of memory and models of learning. Such a distinction will be
central to the neurological investigation of the later chapters
in which it is suggested that certain parts of the nervous
system are more suited to 'remember' and others are better able
to 'learn' according to this distinction. The evidence for
this is, of course, rather séanty but it does result in sonme
hypotheses about the nervous system which could be tested by

present neurophysiological and neurocanatomical techniques.

A final chapter will be devoted to speculation about how
the brain can use a system which remembers or learns. It is
unsatisfactory to produce a theory of memory unless one has
some notion of a schema of behaviour into which it might fit.
The relevance of group invariant associative nets to language
and-forms of simple generalisatibn wi;l be discussed along

with the relation between these-and other brain models.



CHAPTER 2 Hologsranhy

2¢1l. General Principle

Before embarking on a description of those asvects of
holography which are considered to be of particular interest
as models of memory, we outline the general physical set-up.
Hologranhy was invented by G'aborl’2 as a method of getting
round the limits of resolution of electron microscopes of
that tinme, Gabor's proposal was to exvose a photograrhic
plate to the diffraction pattcrn produced by a ;mall object
in the coherent illumination of the electron lens system of
an electron microscope. The developed plate‘is tiaen put
into a scaled up system of coherent optical illumination in
such a way that the ratio of the linear dimensions of the two
systems is the ratio of the wavelengths of the tvo sources,
An énla?ged image of the original object, which mey be three
dimensionai, occurs in the optical system and this may be

viewed or photographed by normal optical means,

According to Gabor, the principle underlying the re-~
construction is the following. Suppose that two coherent
monochromatic sources of the same frequcency illuminate a
photographic plate. Then the wave at that plate may bve

described by the functions:

Ay by ¢+ 21;“) and A; i(d, + 27ct)
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Where AO’A1’¢O’¢1’ are real numbers and fuactions only of'
position on the plate. The intensity of the superposition of
these two waves is then gi&en by
(Aoei¢o + Alei¢l)%(Aoe-i¢O + Ale'i¢1)%

= (8 + AT + 2nhyeosty=4))*
The plate can then be developed in sucﬁ a viay thzat the photo-
grachic denéity ig the squére of thisg inteansity, so that when
this pléte is illumninated in the same way oput with just one of
i(dy , 2w i ct)

these sources Aoe say, we get a transaitted wave:

2T Lt (3otfo + 2y otbo * 42a eyt aZaet o)) 2
If AO is constant over the plate, one part of this exprezsion
will be Ag Alei(bl + 2°rct) which is the sccond wéve aultinlied
by the constant Ag. | There are clearly other transmitted waves
and it is only in certcin circumstaiaces taat these other waves

can be separated or neglected as small in comparison with the

reconstruction of the second wave.

The most straightforward physical de?ice to decuionstrate
this proserty is illustratcd in figure 1. This has been used
by Leith and UpatnieksB. A laser produces a cochereni beam of
~illuminafion which is reflected from both an object and a'mirror
to a nhotographic plate. The plate is exposed and developed
and the object removed., On replacing the plate exactly in
its original nosition a virtual ima;etof the object appears at
the position of the object. In addition a real image is

produced at the reflccted position of the object in the ziaoto-



-7 -

granhic plate. There is also a plane wave component from
the nirror, These are three of the four terms in the
expression 2.l. cznd taey are easily separated in the physical

system.,

0:JzEC?T

" LASZER " MIROR

HOLOCRAHM
Figure 1

Pribragghas proposed'this‘device asva model of mecuory,
among his reasons are first that the hélosram is a tnon loeali
store,-there is not a point to point correspondence between the
plate and the object (as there would be in normal rhotograrhy)
and second that a fragaent of the plate cén be used to recon-
struct the wvhole object, though with some blurring. = But we

will examine this analogy in detail later.
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2.2. - Fourier Transform Holography

In Fourier Transform Holography the hbiogram plate records

the power spectrum of a photographic transparency. The System

shown in figure 2, which was proposed by Van Heerdenq does just

this operation.

""’___————;‘———;—;;——'jlU ¢ y

— e— _ \
Pi(x,y) ¢ YL £ Po(s,t)

L

Fig., 2-
A source of coherént light illuminates a photographic trans-
Parency af Pl which is ip the focal plane of the lens L. P2
is a photographic plate in the other focal plane. If the lens

is reasonably large then the amplitude of the wave arriving at

~

P2 is proportional to

1 o
A (s,t) = ;7__;'7'1 {ea,vl(ax * ty) f(x,y) dx dy

where (x,y) and (s,t) are coordinztes for P, and PZ rmeasured
from the optic axis respectively and f(x,y) describes the density
O0f the transparency at Pl' If we suppose that f(x,y) is zero

off Pl then A(s,t) - where it is defined, is the two dimensional

fourier transform of f.
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To understand the usefulness of this, we first list some
of the elgmentary properties of fourier transforms. - The
fourier transform mf of a complex valued function f of the

real time is defined by ) o '

-
lnf(S) = --l-_— feaﬂ 1sX .f(X) dx
,’2 n c
=%

mf is only well defined for certain functions.f, but the
Operation can be extended to take account of generalised
functions so that, for example, a constant function has a well
defined fourier transform, namely a delta function 2, The

Droperties of fourier transforns that we shall need here are:

1) n°f = nf where F(x) = £(-x)

2) mis = (I‘“Tf)
3) m(fg) = (mf) § (mg) where f§3 is the convolution

+o _

of f and g i.c. ujhf(t)g(x-t)dt

We also define the correlation of f and g to be the function:
+o '

(f@g)(x) = f(t)g(t=x)dt = f*é.

~ .

And vhile convolution is commutative and associative, for

correlation:
f®g =70
(r®@ g Cn

So that (mf)(m»i‘)* = m(f; E) =n(f® £)

51

£® (¢ @)

This is the power spectrum of f which is also the fourier

transform of the autocorrelation of f, Finally, if 5‘is



the generalised function with the property that

+%
Jé'f = £(0) then £,8=f and §® £ = £

These remarks apply equally to complex valued fuanctions
of R%. Kow if we expose the plate in van Heerden's apparatus
and develop it approoriately t@e density of this plate wiil be
broportional to the square intensity so that we shall have
recorded (mf) (mf)*. The exposed plate can now be replaced
in its former position and in the position of the photographic
transparency at Pl we place a new transparency described by
8(x,¥). Immediately in front of PZ we will then get a wave
described by mg ahd immediately after it a wave described by

(mg) (mf) (mg)* ‘ .
Now by means of a second lens (see figure 3), we can perform
the same optical oﬁeration to arrive at the fouricr transforan of

this expression:

BT f£=§ (@ 1) - 2.2.
} |
PR PR A vy %a i L3 T

}"‘15. 3



'Now f® f reaches a maximum at O and if f is suitably
noisy or random (in a sense we shall examine shortly) we may
approximate it by a delta function at 0 so that the reconstructed
image at P3 is: .
Ex @D ~E |
§0 that we recover, first of all an inverted imase of g. It
nay happen that, if g is a fragment of f then g ® f also resembles
a delta function so that the recovered image at Ps'can also be
approximated:
(BOD, Tt

The latter is tﬁe 'shost image! of f, that is to say we have
recovered the whole of the original<function,f by putting into
the system a frégment g of that function, Of course, these two
approximations for the rccoveréd image will only be consistent

when f = g, in practice the image of g will be stronger than
the image of f to an éxtent which dépends on the size of the
fragment g. Moreover = had the fragment g becen displaced froam

f by a, a two-Qector, then g ® f would be a delta function
displaced by a sb that the ghost image of f would be corresoond-
inélyldispiaced, and in the output, the ghost image of f will

match with the strong reconstruction of g.
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2.3, Applications

By taking vérious forms of f we can put the fourier
transform holograrh to a variety gf uses. In particular if
f = fl + f2 where fl and f2 are non zero in adjacent regions
then, having recorded the hologram of f we may use either of

£, or f_ to evoke. an output of the other. So that putting

1 2
in fl will produce an output of fl together with a ghost image

of fln+ f2.

A special Case of this is where f2 consists of a single
bright spot, at the origin say, so the function whose hologram
we construct is of the form f; + §, where § is the delta
function representing this bright spot. On inputting g to

the system we reconstruct:

By (+6) 0 (5,08
=,‘g;@(§l@fl)+§¥EI+E'*?1+E 2.3
There areltwo choices we could mzke for é, the first is a
bright spot, again suppose it is at the origin. Then the

reconstruction of the image at P3 is

fl®fl+fl+fl+5 : , : 2.

Suppose £ had been chosen so that it occupied a limited region

of space-whose greatest distance was less than the distuznce of

x

this region from the bright spot (figure 4). Then of the
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terms of 2.3 fj.C)fl end & would occupy a central region
and the terms fl and fi would be non zero in diametrically

Opposite regi.ns which are both adjacent from the central

region.
(kf/’—-\\\
A {~extent of
reconstruction 5 f
of fl i 1

_—
- = A DR
. .
.

’

Fifs. l*.-

In consequence, we would get accurate recall of fl and this is

the case that most closely relates to the apparatus shown in

figure 1.

The second choice we could make for g is to make it a
fragmnent of £y so that from 1.4 the recalled pattern has now a term
B x fl which is (é7§—fl) so that we credte a bright spot in the
(inverted) image at the origin. Moreover 1f this fragument is
displaced the bright spot will be displaced by a corresgonding

amount, so that the fragment may be located in the criginal.

The latter is yan Heerden's suggestion for locating a fragment
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of a page in a stored library.

The final application of this system is to make a .
'multiple hologram!'. We expose the hologram plate to a
number of separate transparencies and record
_(mfl)(mfl)* + (mfa)(mfz)* +....+(mfk)(mfk)*

If we now input Eis 2 fragment of fi one of the output
terms is

Hopefully, there will not be much correlation between &5 and
any of the other stored fi’ s0 that the reconstruction of 5;

will predominate though we should expect there to be an increase

in the noise level.

As to the noise, suppose now that in a one dimensional
case, ‘the signal f is repecated by a discrete set of values
(¢l PZ.... ®n) and that g is represented by (yY; eees¥,). Then

we may express the recall by

P = z y b,

ij -1 b-j+i k=]
= g; Y bj-i d’k+j

where b <i¢m, 0<j-i<n 0. <k+j<n

i 4

7

-k ~k+n
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3
The number of terms which contribute to each term‘f% ’
is represented by the shaded area of the diagram above. Ve
aow make the assumption that the bi are independent with a
Zaugsian distribution, each with a variance A. Ve also
assunme that g is a fragment of f so that Yi = b. for i=l...n

vi
Then, in general the variance of P, will be oA ‘/Nk where

k

area of the shaded region above, Those terms which contribute

N, is the number of terms in the expression for /Dk or the

to the ghost image f'k are given by

Proo= 2y, b b

X izksj L 3T TkY)

Z Very fiey ok 22

J

whose variance will be m a(Bsince there are m non-zero y terms.
n

My

Within these limits Nk varies between m2 and nm-m2 so that

. . m s
the signal to noise ratio is never worse than %—:]) nor better

so for P, 1<kgn the signal to noise ratio is /

than 1. Tnis is not very satisfactory, unless there is some
redundancy in the signals we cannot expect good recall of a
ghost image from a smzll fragment.

N

The expreésion 2.5 above forfg'k gives us a clue for a

- pystem which is fundamentally simpler than holography and

L]
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possésses, or can be modificd to possess all the desirable
aspects of holography. Tihese are assocliative nets to which

we examine in some detail.



CHAPTER 3 Associative Hets

-

3.,1. Linear Associative lets

In this chapter we shall discuss a class of models for
meimory which are conceptually simpler than holographic modeis
yet retain many of the properties which make holograzhy an
interesting model., The likelihood that these associative
nets are realised in the nervous system will be discussed in
detuil later, but it is worth pointing out now that such nets:
require only.those properties of cells and synan»ses:'which are
almost universally acknowledged to exist in the nervous systemn,
One property of fourier transform holography will be lost - the
ability of such holographs to produce a displaced output from
a correspondingzly displaced inpht* Later we shall see how to

recover this property and gaoin others by modifying thase nets,

Rather than store continuous functions we shall think of

the signals to be stored and recorded as vectors. If vwe have

a set of n-vactors {El} where El = (xi, ces x;)
then we may store the nuabers W = X~ ¥- and on inputting
_ : PA 4 Pa

a vector y = (yy oo yn) we may recover by matrix multioslication

i:l’ 2’ .a.k

a signal



- 18 -

Now as in holography if y is a suitable fragment of gi

i, i . . .
then the term (y.X )51 will prcdominate and we again recover
i . - .
a ghost image of X . Figure 1 shows a system which will do
just this operation.

i i

& 57 7. ] T

i

i

XB_ > —

1
- ] ]

‘Figure 1
Eaéh box iﬁ Fiéure 1 represents a ‘real number or “weightm,
When a vector §i is stored, the weight at the pth row and
qth colunn is increased by XP xq. To recall we input a
vector y along the rows and form the weighted sum of its
components in ench column. - these constitute the outputs.
Such a system is linear and we note that if we haye only one
stored vector x the output from any input vector whicih is
not orthogonal‘ to X will be a multiple, the recovery of a
tghost! image in this case is not at all remarkable, but

unlike the hologram it is noise free.
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In the same way that an estimate for the signal to noise
ratio was found for phe-holograph we can estimate the signal
to noise ratio in this linear associative net. Suppose there
are k stored n-vectors and suppose Yy is a fragment of one of )
them ih that it matches §i say, in m'places and is O elsewherec.
" Then, és before if the components‘of the stored vectors are-
taken independently from a gau;siandistribution of vafiance<x ’
the variance of the 'signal! term (:z.é% zi will be md°

3

while the noise term will have variance (k-1l)ne~ zand the
slgnal to noise ratio will be V/%E%TTn which is of course

infinite when k=1.

There is nothing to stop us storing pairs of signals in
an associative net of this kind, for example, let
(51,11) (gaaza) ‘oo (zk,zk) be pairs of n vectors. The
weight (p,q) 1s now Z%Z x; y: and i@putting z, a fragment

i=1

of 51 we get Z;-(g.zi)xé which should result in an output of

zi, such a system then 'associates' the pairs gi and z;. The
recall of z? is again subject to exactly the same noise as the
case discussed previously. It is also worth noting that if
the system is suitabl& constructed we may use it reversibly.to
associate y patterns with x patterns, or their fragmuents,

This is not a.very plausible biological state of affairs.



The Linear A sociative Het with Thresholds

It is possible in part to get round the noise v»roblem in an
associative net by endowing the signals with scome sort of redund-
ancy and using this redundancy to find the signal in *the noise.
As an examdle ve consider the case in which each x; and yz is
independently chozen to be +1 or =1 with probability . The
output from such a net will not, in general consist of 1l's and -1's
s0 we call the output on one line +1 if the output is in-fact positive
and -1 otherwise.. This could be readily realised by some threshold

device on each output line,

Vle now determine the probability of error in such a systen.

. 1 . .
Suppose that z is a fraguent of X™ and agrees with it in exactly

m places (it is still +1 on the other places) so that E.gl = 2m-n,

This will be the strength of the signal on ecch outzut line, If

L
. . . k i . , .
the noise on that line 1.e.'2: (5,5 ) yq is less than this
i=2
number we get no error - if it is greater we get an error with

probability %.

v , i . .
The probability that (z.x") takes on a given value s is

i 1l n
P(z.X =8) = o n+s
.o T 2
where the blnomlal coeff101ent is tuﬁen to be O if n+s is odd,
i
(

The probability that 2:_ Z2.X) y; takes on the value s,

i=2
given y is:



IR

n(k-1)

by examining coefficientg in (x+§) this is seen to be

n(k=1)

n(k=1l)+s

1
5 . 2n(k-l)

and this expression is, by the normal ap»roximation

2
1 , - S

—_— A LT n(k=-1)
T /n(k-1)

and the probability of error then becomes

1 f L
BT fa(k-1) e~47rn(k-1)

t> s

This can be evaluated numerically, for example, to get an

2510 n(k-1)

~error rate of less than 1% we require that t
approximately. Certainly 'if 'k is of srder n and t=n i.e.
we use the whole of an gi as an input, the recall should
become better as n increases. Waile this is not totally
satisfactory as a store it is very much better than a linear
associative net or the fourier transform holograph, Iﬁ can
also be shown\that chooszing equal numbers (on average) of
+1's and ~l's for the components of ench vector is a 'hest”

case: we night, for example have chosen the vectors from a

different essemble in the followin; way.

i
!
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i i
Suppose the vectors (x ,y  ond z) are chosen to have

components %% with probability p and %% with probability q.

. i i . i .
Then we note that X .X = n and the expectation of xl.z is 0.

The variance however is

N

_;g(pf+g§+_xﬂ>=_1€(.l_+_l_)2
1
pt ot pfqd) 16\ a
which is minimum when p=q=3.

By‘the Central Limit Theorem, the probability that

Xk:. _z_.§i> s will, for large n and k be least when p=q=} =

the case we have alreudy considered.

The Binary Associative Het

In a recent paper by Villshaw, Buneman and Longuet-Higgins6
a rather different type of associative net was investigated. In
this the input and output vectors consisted of ones and zeros
and the weights, unlike the linear associative nets were
restricted to being 1 or O, The inpﬁt vectors 51 now with
NA components are randomly selected from a set of such vectors,
each with exactly MA ones and NA—MA

xi with NB components were similarly chosen from a set with

zZeros., fhe outout vactors

exactly MB zeros.,
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The weight wpq is set to one if x; yz = 1 for at least one i.

We can think of these weights as switches, any switch‘is turned
"~ on by simultaneously sceing a one in its input and output lineg
and is never turned off. If we héve stored R pairs of vectors

and we then input a vector gl say, we get an outpdt

(xl.gl) zl = MAll +

(xh.xHyt

M=
M

2

v
i

i=1

So that if we put a threshold of just under M e will get

A , v‘r
. . 1l : .
a vector with ones whenever y~ has a one and possibly other

oncs as well which we regard as spurious.

If MA << NA B

that any line gives out a spurious one. The probzbility P,

and MB << N_ we can calculate the probability
that any weight is one is (since the patterns are chozsen at random)

given by

M \ R

A'B
1-p =(!-§nm

AYB

and since MAMB is very small compared with NANB we may write

RM,My = NNy log (1-p )

The probability that one line spuriously exceeds threshold is
pcMA and, if we demand thut there be on average one spurious

output for each output pattern:

M

A
'(NB_MB) Pe

=1
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which may again be approximated by

MA 10ge P, = -logeNB

If we regard the information stored in such a network
as the information necessary to store the R output patterns

this is

I=R logz(gB)bits
B

and this may be written, using the previous expressions as
I = NANB logea logapc loga(l-pc)

~

I then, reaches ité maximum when pi=%, that is when half the
weights are one. In this case I = NANB logea,kso that the
informatiocn density is about 0,69, Even if we were to use
the NANB binary weights in some other manner, as in the core
store of a computer, the information density could not be
higher than 1l. It is surprising that the information stored

can be so high vwhile we retain the association with arbitrary

input patterns.
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CHAPTER 4 Group Invariant Associative Nets

Although the associative nets of the previous chapter
" had many properties in common with the holograph, the ability
to recognise displaced patterns wés lost, Even if such an'
ability has no direct relevance to human perception, it is
possible that the ability to recognise soue transformations
of an input may account for the psychological phenomenon of
generalisation. For example, an object may be recognised by
humans and some animals when it is viewed in some position in
which it has never been seen before; Scme transformation of
the input (even if it is not displacement) has taken place.
In this chapter we shall show how an associative net may be
moditied so that when a transforanation of its inputs takes
place, we can ensure that a‘previously specified transformation
of its outputs also takes place. It will euerge lafér that
from the theory of such nets that Qe can prove, as a spgcial
casze, Minsky and Papert's group iﬁvariance theoremy for
perceptrons. Before dezling With the general theory, two
examples are given, the first is an associative net winich is
functicnally siuilar to a holograph in that it will give
displaced outputs from displaced inputs. The second will
recognise one graph as a subgraph of another. This is a
problen which hay bear upon the manijpulation of languagze, but

the discussion of thls is reserved for the last chapter.
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These two exanples will. be extensions of the binary
associative net, so that the connections will be referred to
as switches. Later, in the general theory we shall take account

of the other types of associative net.

4.1. The Correlograph ‘ '

In the same paper in which they put forward the binary

mr

associative‘net, Willshaw, Buneman and Longuet—Higsins6 also
proposéd an opticalkdevice the 'correlograph! which would record
directly the cross correlation of two photographic transparencies.
Such a device could, though it was limited by diffraction, be
used to display all the pro?erties of the holograph without the
cse of coherent light.. 1In detail the correlograph functioned
as a binary associative net with its switches 'tied'; This
means that whenever one swifch in such a net‘is turned on (by
recording a pair of patterns) a whole subset of the switches is
also turned on. Suppose that, in a binary associative net.
with N input znd N output lines we turn on the switch (i,3)
which connects the ith input line to the jth output line. We

then turn on any other switch (p,q) if

P i+r mod N

J+r mod N

q

for some value of r, (We work modulo N to avoid boundary

conditions which would produce, in some cases, incomplete outputs).
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As before, we store pairs of patterns in which the input

patterns have M, active lines and the threshold on the output'

A

lines is just under M . Suppose that such an input pattern is

A‘
given by the active input lines °p(l), p(2) ... p(MA) and this

evokes an output of active lines q(l), q(2) ... q(k). Then

the input of the displaced pattern:
p(l)+r{ P(2)4T, cvees p(MA)+r
evokes the correspondingly displaced output:

q(l)+r, q(2)+r, ...cc. q(k)+r

> A B c D
> D A B c
N c D A B
— 5 c D A

b y

'Fig. Lel. The sets of switches tied for a simple correlograph.

1
N
number of effective switches and consequantly reduces by the

Tying switches in this way reduces by a factor = the

same factor the amount of information that can be stored in such

a net. We shall show later tha! some improvement can be gained
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by suitably coding the inputs so that more input lines and
more sets of tied switches are provided.  But the net as it
stands can be used to store cross correlations or auto-.

correlations and function in a similar fashion to a holograrh.

4.2. The Granh Iszomorphism Problem ;

The problem is as follows: given.two graphs F and G,
how do we récogniée tiat F is a part of G and, given that F
is a paft of G, what is the fuaction that carries the nodes of
F to fhe nodes of G if such a function is unique? Formally

let TF and TG be two sets (the sets of nodes). A graph F is

a relation TF that is a subset RF of TF'XTF;

relation RG defines a graph G. We say there is a graph mono-

morphism from F to G if there is an injection TF to TG’ ¢ say,

similzarly a

such that

(b x$) () €R,

F and G are isomorphi¢ if there is a monomorpnism F to G and

a monomorpaism G to F. Clearly any graph is isomorphic to the
graph produced by permuting its nodes. What we 51ail do now
is.to demonstrate the existence of a.sociative nets with tied
switches which will, up to a point, rocognise one graph as part
"of another. It will be rocalled that a tied associative net

can be made to function as a device waich stores correlations and
that if the aﬁtocorrelation of a function or pattern f is stored,

x

then a sufficicntly large fragmernct of f will produce a 'gnost
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image! of f and this image will be displaced by an amount
corresponding to the dispiacément of the fragment. The
following proccdure for tying switches in an associative net,
will in certain circumstanées produce a 'ghost! graph with its

nodes permuted to match with the input of the fragment.

We start by supposing that the given graph G is defined

on a node set TG containing N elements. G is then specified

by a subset of thé N2 pairs in TG>< T How let us.suppose

G.
that tﬁesc Ha pairs are in fact the input lines to an associative
net, \le have observed that permuting the nodes of a graph leaves

us with an isomorphic graph so, for example the following figures

will represent isomorphic graphs:

X Y Z T Xt Yt Zt T
X X"
s
Y e Yy
7
2 / 1
)
7 -
T N .
s -

In fact the set of all such graphs will be determined by .
.corresponding paromutations of the rows and columns in such a
figure. If fhe inputs are ordered row by row 1 ... N2 then

the following permutations of these inputs will give isomorphic
x
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inputs
PN+q = P(p) .N+.-/>(q)

where Pis an elemént of the'symmetric group Slv and p,q ére
chosen so that q <X. Let us call'ﬁhis permutation group ZE:N’
it is isomorphic to SN' As we did in the discrete correlograph,
we tie the switches togethor in the sense that if we turn on |
(p,q) we also turn on the switch (€(p),8(q)) for all Se Z:N'
Figure 4 2.1 shows 2: and the switches on the 32 x 32 assoclative
net that we would tie together in éonsequencc, Each set of tied

switches is denoted by the same letter.

"A graph on three nodes X Y Z, say is represented by a choice

of a subset of the numbers in the following diagram

X Y Z

This would be rather a siaple graph, but graphs of this

size are adequate to illustrate the function of such associztive

nets.
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(123 456 7809)
(564 879 | 231)
(978 312 6405
(546 213 879
(987 654 321)
(132 798 4605)
1 2 | 3 by 6 | 7 8 9
1l A B B C D E C B D
2 F I J K G L M N I
3| F J I M H N X L G
L G K L 1 F J N | M H
5 D C E B A B E C D
6 H M N J F I L K G
7 G L K N H M I J F
8 H N M L G K J I F
9 D E c E D cC | B B A
Figure L.2 The permutation group Zand an assocliative

net with its switcnes tied by Z.
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The graph: . _ .

X

Y
would then be reprcsented by (X,%) and (X,Y) or lland 2 in .
© this diagram. Now we could form the equivalent of an auto-
correlation function in this diagram; that is to say we store
the pair both with signals in lines 1 and 2 and in consequence
turn on all the switches denoted by A B F I. We could now put
into this net a part of this graph, not necessarily on the same

nodes; for example we could put in the graph:

Z,

I

which is represented by ? in the diagram and, if the threshold
of the cutput lines is set at just under 1 we get an output on

lines 7 and 9, that is the graph:

X
We not only get out the little one=-link graph we put in but

also a 'ghost image'! of the original! This ghost image is
again sﬁitably altered to match with the input. Before embarking
on extensions of this idea it is as well to exanine the liaitations

of such a device in this fornm.
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.Our first obscrvation is that if we pgt in a graph which
is ambiguously monomorpyhic with the stored graph then we cannot
expect a unique representation of the stored graph in the outbut.
This corresponds to correlating a fraction of a picture with thé
autocorrelation of that picture when the fraction is an ambiguous
part of the whole, we would expect an output of more than one
tghost image!'., This ambiguity may take én rather more serious

forms; in the example above inputting the simple graph,

O

b

produces the output:

(1]

which is the superposition of the two possible continuations

of this simple graph which match the stored sraph. To get
round this in any practical application of this device, we would
have to have some a priori knowlelge of how we wanted the graph
continued and tiaen to limit the number of output lines in an

apgropriate fashion.

A more serious limitation occurs because the nunber of
groups of tied switches in such a device does not continue to
grov as the size of the net increases. In fact if N (the nuaber

x

of nades) is four or more then the number of such groups is 15.
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Compare this with the correlograph whcre the number of these

groups is n for an nxn net.

To see this*; we can label each switch in the net by
(i,3,k,1) where i,J,k,1 run from 1 to N. (i,j) defines the
node pair which gives an input line and (k,l) similarly defines
an output line. Two switches (i,j,k,1l) and (if,j',k',l')vére‘
tied if and only if there is a permutation of SN which carries

i toi', j to j', k to k', and 1 ﬁo 1. For example if

i,j,k,1 are all different and so are iy, j',k', 1Y if N 4 f
then we can form such a permutation, so that such switches are
tied. | In general there will be a partition of these four elements
such tnat each member of the partition éontains equal elements
and any elements from two distinct members are unequal. Again,

if N 4 then any other (i',j',k',1') with a similar partition.
will represent a switch tied to the first. It is easy to see

that there are only 15 such partitions.

We have already recmarked that the capacity of such a net
as an inforamation store is liuited by the number of distinci
(untied) switches so that this upper limit would prove a serious.
drawback if tnis device were used to store much informatidn.

Howe ver, there is a method of increasing thnis capacity by the

use of masks. A mask can be envisaged as a new input line

* 1 am very grateful to Mr. Stephen Isard for pointing out

this solution.
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which is active only when a certain subset of the old input
lines are active, in the example justvgiQen the pair of input
lines (1,7) would define a mask. The order of a mask is the
order of the subset which defines it. If we were prepared to
add to the Nax %% associative net all the %NZ(NZ-I) masks éf
order 2 then we nave a further set of input lines and switches-
and we can again give a procedure for tying together the new
switches (we will do this in the next section). It can be
shown at some length that the number of groups of tied switches
on these masks is not greater than 114, equality being reached

when N=6. For N=3 the nunber is 56.

4.%3. The Theory of G.I. Associative Nets

In this section we formalise what was done in the last
section for graph rccognition, To start with we shall
generalise the definition of an associative net so that the
cases we considered in Chapter 3 will be special cases of this.
Suppose, firstly that the inputs {ai} are not necessarily bincary
but can assume any real value. We also assume that the connections
may also be specified by real numberé wji’ likewise the thresholds

7

©. on the output lines, We adopt Minsky and Papert's notation

J

rb1 which has the value . 1 when the predicate P is true and O

if it is false. (For exaaple [3>2] = 1 [pe q] = [*] [o])

n
b, = v.. a,>® o3l
s T8 memoe | o

then defines the jth output, bj.
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We now assume that there is a group action which permutes

both the input and the output'lines. Let & be a group and

let pand @' be homomorphisus from G to the permutation groups

: Sn and Sm on the input lineé and ogtput lines respectively. For
exanple in the correlograph n=m and G was the cyclic group of 1
order nj 1in the case of the graph recogniser, G was SN gnd this i
was nmapped onto the grou;)Z:N on both the input and output lines.
In general, however we need not assume that P G and AL'G are

isomorphic. Let geG', in this section, by an abuse of

2t . ill b i . ) i
notation a]’g(l) wi e written A (1) and bP'g(J) will be

g(J)’
since we shall reserve the suffices i,n for the input and j,m

written b This should not produce any confusion especially
for the output. _Our first result is that if certain of the
weights and thresholds are equal then the action of G on an input
pattern will result in the corresponding action of G on an output
pattern. Let a be the vector (al,aa... a,) and let a, be the

vector (a”(l), -} )) define b and b_ similarly, finally let
. (&) Q .

g(n
_q/ bte the function defined by 4.3.1l. so0 that b = }II (a).
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Prop. Le3.2.

h g i o= T . . and 8., = .
If for each g in G, le WG(J) g(i) an i 98(3)
then if b = P (a),b, = ¥ (a,)
!
f b - vl 2] |
. . = v . a. " {
Froo g3 = 2 Ve 2> Og) |
i=1 '
r~
=12 Vel elg7i@) ay > 0
ia 17 "ed)
[~ n
= W, =-1,. .
jg (1) a; > 9; » by the hypotheses -
i=1
’-—.
s *
= Wes @ _,:y > 93 since the sum vproceeds
11:1 i “a(i) over all i

which is the jth component

of ¥ (a,) |
This shows that vwe get, as we expected from the exanples, from
inputs altered By an element of G correspondingly altered ouﬁputs.
Lowever, vie would also expect that if Pwere not an endomorphism
then it is possible that we only get this group invariant prbperty
because the outputs are rather simple. That is to say that
several output lines will'always produce the same signal. The

followin; corollary makes this precise:

Let H be the group @ -l(l) that is, the null space of € .

" Then b = bj for each g in H. ¥

()
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-

Since g is in P7H(1) a,

b

a so that

¥(a) =¥(zp) = b,

In order to avoid this situation of the output patterns being
redundant we need to be able to identify G with a group action
on the input lines.However we shall need the more general result
of when we deal with the possibility of encoding the inputs.
Before this, there is an interesﬁing converse to the last
proposition. It is clear that tying the connections of an
associative net will recduce the amount we can store in it.

Is it possible that there are nets which exhibit this group
invariant property but whose performance would be éltered by

tying their switches? The answer is no:

Prop. 4.3.3

Let {gt, gt } be a set of input-output pairs of an
associative net defined by 4.3.1. so that p_t = ﬁT_’ (_e_a_t) for
each t. If also there is a group G and homomorphisns (0 and E’

&y gt for each t and for each g ¢ G.
8 &

as before such thatl; (a

is an associative net with weizghts w!., = wt!,, .
Then there i ij &(1) &(3)
and ©'; = Q;(j) for all ge¢ G; and which defines a function
' o

_,W_ - such that y(gz)si'(gg) for each t and each g ¢ G.
o
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Proof First of all we observe tnat if

X [x>y |- ff1<x)> ,lcyﬂ ff <x>>.*2<y>7

" for some functions fl f2 ...le ha ~se tilen :

FX>y-]=rZ_i_ fi(x)>iZh'i(x)\]

Now by ocur assumption that.f'is invariant under G, for each

t we have . n :
t .. . BN " t __:..‘l". N ]
- Y —— J (& "'] . P G
Pty %gilﬂl RINCORNRR
N n
_— t B
f 2 i o 93‘7
t £ - . ‘
So that b, = b 3, ..
J £X3)

' n
t . - 1" t
But bj is also [_jz: in 3y > Qg(j) ‘]
i=1
Sumning over all g € G, we nave by our first observation

- a | .
that Dby = g.l > LNED g(j)> ! >}:93(j)—l

ge G

So that we may set N (Z E(J) b(l)>

" .

G

2 t
gzﬁ 5(3) s(1) %1 > 95(3;]

]
5o that 9; and wji have the required property.

x
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This result, then shows that if a net has a group invariant
propérty, an associative nct with tied connections can be built
which has the socme power in that it nst'only realises the
invariznce under the same group, but that the input output pairs

will be the same. |
|

Incoding

Since-ﬁying switches will always reduce the anount of
information that can be stored in an associative.net, it would
be aanntageous to increase the number of'conﬁections in the nét,
and possibly in'consequence, the nunber of sets of tied conncctions.

We can do this by a set of encoding functions:_@ which are

simply a set of real valued fuactions on the input space. The
set of encoding functions will map the space of inputs into a
new and generally higher dimensional space. The setj@ is said

to be closed under G if for all g ¢ G and ¢ ¢§:
PE(x) = d(x,) «

where we have used X = (xl, X5y see x]} to denote an element in
the input space, and supposed that G is a permutation group on

these inputs.

| Now it is easy to see that if 'ﬁ is closed under G then
there 1s a homomorphisa from G to ?& ’ the>permutation group
on EE. Vle are now in a position to let the values of the

. .
functions p serve as the inputs to an associazative net so that
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ay = ¢i for some ordering of the encoding'functions. e can
further let a_ 4y = @f and tie the connections of this new
associative net as before. ~ We now get the result that the

input output pairs of this net_witﬁ encoding functions will be

invariant under G. That is if: .
AX) = V. R
v5(2) )’% Vg 9500 > e;]

" then

Pe() (%g) = Py()

In a similar way the outputs of an associative net can also

be encoded, but in order to store anjthing in such a net the
encodinz functions would have to be reversible. Moreover it

is useful only in cert;in cases to have any coding on the out-
put wires. An associative net whose connections are thresholds
are descrived by arbitrary real nuabers and whosé encoding
functions are masks can be thought of as a battery of two layer
perceptrons. It will be shown shortly thzt such a device can
realise any map from the space of all binary inputs to the space
of all binary outputs, so that any coding of the outputs is un-
necessary. In cases where the limitations of the net produce
incorrect outputs it may be nossinle to correct for these By
encoding functions which exploit some redundancy in the uncorrected

outputs.
x

Returnin; to the raph recogniser, we can sece that this
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‘higher. Likewise with the correlograph, we can use as exXtra
inputs masks of order two or more and.refain the group invariant
properfy of the network. -As an example tnere are (g) masks of
order 2, and for the correlogzraph we tie them with the output

lines under the group Zn with the appropriate homomorpbisms;

Under Zn the masks split into Eél transitive subsets of n

elements each if n is odd. If n is even there are[q/é}il
transitive sets of n elements and one of n/2 elements. Thus

n(n;l) groups of tied switches

and in the second n(n/2-1) + n/2 = n(g-l)

there will be (2) masks of order r and these will give rise to

in the first case we will have

Eroupse. In general

(?) groups of switches in the correlograph.

The most interesting theoretical aspect of group invariant
associative nets is fhe close relation they bear to lMinsky and
Papert's two layer group invariant perceptrons. The résult
which gives, as a special case, their group invariance theorem
is the following extension of 4.3%.3. to the case wheré wve have

encoding fuiactions.

Prop. 4¢3.4.

Suppose an associative nct has a set of encoding fuactions
I'closed under G a permutation group on the arguments of these
functions, and that G acts on tne output lines as before

1 2 « 7
If for a set of inputs x7, X~ ... X
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t t t t
b. =b ,. pid £ 1l z,t & j
i (x7) £(3) (—g) or all g,t and j

Then the same outputs { g; ;can be realised by an associative
t i vhich W.., = W_, . . de. =90 iy .
net in whic ji 2(3) ali) an QJ £(3)

The proof is immnediate from 4.3.3.

L,4. Generalised Correlation

Ve have seen in the previous sections how associative nects
can exhibit group invariant properties. But associative nets -
unlike holographs - operatc on discrete input spaces. We now turn
to the problem of whether we can generalise the definition of
correlation (for functions defined on the real line or Rn) S0
that we can get group invariant properties for groups other than
the translation group. We shall also see that when we get such
group invariant properties (they are only obtained for ceftain
groups) we can sometimes obtain the equivalent of a fourier
transform which, as before, maps the generalised correlation of
two functions‘intq their (pointwise) product. To begin with ve

recapitulate on the uces of correlation:
A Y

Suppose that f and g are two functions on the real line
- (we shall extend to higher dimenslons later). Thelr cross

correlation f(kg was defined to te:

(f & g)(t) = f(x)g(x =-t)dx

correlations may be used in the following ways if the functions
used satisfy certain conditions. Tﬁese statements are not

mathematically precise; they need the statistical qualification
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1. Recognition

If g resembles a fragment of { for example if
g(x) = £f(x) on a <x< Db
O elsewhere
then f& g will have a peak at t=0 whose width and sharpness
will depend on f and g. In general if f and g are 'noisy!

and b-a is large, this peak will be sharp.

"If g' resembles a displaced fragment of f, for example if

g'(x) = g(x+7T) then

(f@s')(t) = (feg) (t-7T) |
so that f®g*' will have a displaced but otherwise similzr peak
at t= T, Thus we could use this peak to locate a fragment of

a signal in that signal.
2e Recall

Consider (g®L)®sg = (gag)@i‘; if as before g is such as
to make g®g a sharp peak at O then (g@&z) ®f will approxinmate f.
go thnat if we can store f®g, a subsequent correlation of this
with g will produce an output or frecall' of f. Moreover if

we had stored several pairs flgl,f eee as vwell as f g so

232)

that theﬁcontents of the store were g@f + glﬁf + &f

1% 8
then on corrclating this with g would give the output

2"0. ,

(gez)ef + (geg))efl + (gegy)ef + ...

x
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Then, provided g does not 'rescudle!? Gy 8y o+ the out?ut

snould again approximate f. As before, a displaced input of

g will produce a correspondingly displaced output of f. Another
interesting feature of this type of storage is that if we out in
an inverted copy of f i.e. £(-%) we get an inverted output of g

so that the store can be used reversibly.

3 Ghost Images

A related, but not identical situation to that in the previous
sectién is where we store the autocorrelation of a functién say
fef. If we form the correlation of this with another function
g we expect to get from (£®If) @z a copy of g. Put since this
previous expression can also be written as (feg)ef, if g, as in s
section 1 resembles a part of f, then we should also get a weaker
output of f. This is the 'ghost image!' of holography and is a
speciél case of thebmore éeneral holographic reconstruction
which does not.employ fourier tréﬁsforms. The same remarks

about storing several pattirns and displacements apply.

It has already been said that these renarks lack any xind
of mathematical rigour and that the signal to noise ratio in
the output must be examined as before, before these claims can
be made with any statistical justification. However our imacdiate
purpose is to examlne the possibility of extending these remzrks
to take account of other operations of the input space apart from

displacements. As a start we will examine the possibility of



- 46 -

recognising one function as a dilated version of another.

Suppose thnat we have the problem of recognising a function
on a line as a dilated (expanded or contracted) version of
another. Let f be such a function, and let g be a dilation
of it so that f(x) = g( AN x). DNow consider the function

N .
b(t) = [f(x) g(tx) T

oo

it is clear that this integral will not exist unless we place
some restriction on f and g such as being O(xa) for some positive
a) in a neighbourhood of O. We can first show that b rcecaches

its maximum value at t=A; for:

_'_ns
o(t) = -1 j(g( Ax) -g(tx))? ]_disr . i

+ %
SN CEPNE LR Fo j( (2)®
- % - L.4. 1.

The second two terms are constant and the first term cannot be
greater than O.  Then P must reach its maximum value at t=0
where the first term is zero, Moreover we can make the same
'femarks as before avbout storing and retrieving as before excepé
that now, the retrieved patturns are dilated to an extent vaich

corresponds to the dilations of the inputs.

We might now wender if there i1s a generalisation of this

procedure to other opsrations on the réal line. The following |
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proposition shows when and wihen we cannot hope to extend it

to other operations,

Let ¥ be a set of functions defined on S and taking values
in S, where S is a subset of the real line, which is a semigroup

under cogaposition i.e.

. /ﬁfl /g is a function in ywhenever/:gj/ﬁé' are in &

Prop. L.4.2.

If: 1) There is a non=-trivial homomorphism E carrying the

semigroup into the additive reals.

2) There is a point a of § with the property that: for

any x in S there is an f in F and 4 (a) = x

3)//1(8.) =/'(2(a) impllES/Jl = MZ,

/

Then we can find a function Y: S2R such that:
Y(x) = Y(/u(x)) - E(/‘*)

proof: . Let Y(x) = ESpl) vhere /Ul(a) = X. /Al exists
and is unique by 2 and 3.
Now Y(}A(x)) = E(y) where /A(X) =V (a) so that

V(a) =/)\( }\l(a)) and hence V =/Ah

e can therefore write

YO = BCR. pg) = B+ S

Y(x) + E(/A).
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The importunce of thnicis taat we cun find intégrals which
are invariant under transforma.ions by members of S of the
underlying space. Suppose that, in addition that the functions
are differentiable and that the function Y turns out to be

differentiable, then from the preceding proposition we find taat.

dCx) =pf(x)  bCae(x))

~ where ¢ = Y'(x)
so that ff(}«(x))b(x) dx = [ (e (x) d( () w(x) @x
S S =ff(x) d(x) dx

5

Now in the example 4.qnl. we took . (x)to be tx so that

the conditions of the previous proposition are satisfied by
taxing a=1 and E(Q = log t. e then find that ¥(x) = log x
and that ¢ = 1/ | x| as we had beforehand. (Taking a different

a would not nave altered this latter result).

It is worth perhaps, examnining other functions on the real

line to see how this mcthod applics in other cases for exémpler

A Bu,) :

x+t+tx 198(1+t) 1
1x
xt log t 1
x log x
tx log ¢ _1
N x

e(e(t log(log x)))

log ¢ 1

x.log x.log{log x)
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In all these it is easy to find an appropriate range for the
integration, though perhaps, in this one dimensional case, the

only interesting operators are translation, x+t and dilation tx.

It is possible to use tnese ideas to show that we can
meaningly define a correlation function over the set of trans-’

formations. We define

(f®xe) (t) =_/;“(X) g( py (%)) $(x) dx
S

It is then easy to show that if g(,a%iﬁx))= f(x) for soume ty
then (f@g g)(t) reaches its maximum value where x:tl, by using

the same procedure taat we used in 4.4.2..

. We can now show that tanis generalisation of a c&rrelation
function is in some cases equivalent to the standard definition,
We assume, in addition to the conditions of prop. Lolhe2. that E
is an epimofphism fromzx to R; It may happen tnat the functions

f, g which we wish to correlate can be written in the form
£(x) = F(Y(x)),s(x) = 6(¥(x)) 4ol 3.

fhen:
(f @, () = fsr(nx)) G(Y( ey (x))) P(x) ax

=£g(y< G(Y+E( fo)) aY

»



From the conditions of prop. 3.2., if E is an epimorphism 3f€>R
then Y maps S onto R so that the range of this integral is R and
that it takes on a unique value for each value of E(;f). so

that if we can effect the transformation 4.4.3. then we can; by
mapping R to L( %) transform this generalised correlation into the

standard (additive) definition.

The point of 3.2. is that it enables us.to construct, in
certain cases the correlation ov.r a given group of transformaticns,
it is a sufficient, rather thnan a necessary set of conditions,

There are certalnly generalisatipns of it; for ékample the second
condition, a sort of tronsitivity, can be replacedvby a condition

which divides S'into a set of transitive subsets.

L.h.2. will also generalise to higher dimensions: gf is
now a semigroup of operatiops sc:RQ» Rn, E carries S into the
o n o, . ' . .
additive group R Y is then a function S»R and, if it is differ-

entiable is the Jacobian of Y.

We zannot, in general hope .to define correlation functions
in this manner for non~commutative groups, for example the group
of all translations and dilaticns of the real line is not

commutative, an element of it can be written

/“'a‘,b(x) = ax + b
it is ensily scen thut condition 3 of 4,.4.2. is not satisfied

by such a set of fuictions and that the integral

+ S0
vf;(ax + b) ¢(x) dx

for any cholce of f for winich tne integral exists will only be
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invariant if. it iso0. It is worth noting that if f and g
are functions which only take on the value O or 1 and ifv

f(x) = glax + b) then the integrai

+ 0o
ﬁ(x) g(sx + t)dx.=

takes on its maximum value where s=a, t=b because thnis

integral is always less than the integral of f(x) or fa(x).

We now turn to the theory of two layer verceptrons and
demonstrate the relation between these and group invariant

associative nets.



-5 -

CIHAPTER 5 Perceotrons

In this chapter we shall examine the correspondence between
groﬁp invariant associative nets and Minsky and Papert's work on
perceptrons? Sone of their main results will be proved here by
rather different methods, which seem more direét. Their work
is based on the fact that‘any Boolean function of n Boolean
variables can be rezlised by a *two layer perceptron' the first
layer consists of a set of masits whose outputs are weighted and

sunmed. According as this sum is greater or less than a certain

threshold we get an output of 1 or O,

To make this precise, an input x will be an n-tuple
(xl,xa, oee xn) where each X5 is ‘either O or 1. A mask, as
it was defined previously, is a function of the form:
052 =TT %
ies
where S is a subset of the integers 1 ... n. Also as before,
rP1 is fefined to have the value 1 whenever P 1s true otherwise
it is O. A Boolean fuanction ylis linear in a set § of Boolean

functions if

§(x) =[-b¥§‘:!¢,cb<§)>g7

for real numbers q& and @, then:
Proo. 5S.1. Any Boolean fuaction Q’(E) is lineor in the sst of
e —————

all masks (%))



Proof: by induction on n, the number of variables. If we
let the eupty set detfine the constant mask, ¢O wnich always

has the value 1, then the Boolean constants (functions of no

v

variables) are given by rwo ¢)O ( Z_\ S 6’, if we take W. as

0

+1 or -1. This is the inductive base. Now we assume that

for n-1 variables: (xy, Xos see X q)= 5',.say
'(x') = W X! N
AIES [’}; sidge(x) > "]
where the S' are subsets of the integers 1, 2 ... n-1,

S If X, = l, we may write in consequence:

Y (2 = }—s' agy Pgy (x') > o_]
and if x, = 0
Y =r%.bs' be (x> 07
this is equivalent to writing
Y o =[x, 2_; ag $g0 (x1) + (1-x)) Zsﬁ' be, §gy (x1)> O]

now the function X, ¢S'(5') is simply the masx ¢S(§)

where S = S' U {xn } so tnat the last expression, which is

(y(?_(_) =r§' [(aS'-bS‘) an)sc(ﬁ) + bsc(;)s|(3_{')] > 07

is linear in a set of masks, and the induction is complete.



The oparity predicate

As an example of putting predicates in this form, we
examine the nature of the predicate that the number of ones

in the input is an odd number, or:
n
V@.(E) =]ﬁ fgl X4 is odd—]

We define the order of a mask.§ to be the order of (or the

S
(finite) nuzber of points in) the set S. The orders of the
masks necessary to represent certain predicates are of theor-
etical_interest, and certainly of practical interest if one
believes that perceptrons are useful models of parallel

processing. From this point of view %é,is a particularly 'bad!

case, as the following rasults show.

Prov. 5.2. If lH? is linear in a set § of masks thcn.§

contains the mask of order n.

Proof: If n=1 then clearly lyp requires the mask of order 1.
Let ' be the first n for which %é is linear in a set of masks

of order less than N; Then

W () =Fs§;§ as g () >O7

where § contains masks of order less than N. Now let.ﬁl be

the subset of’} vinose nmasks contain xN and let §2 =-} -'§1,

X

Then



rseh s b v sZe'éa % Ps >07

Now if S’€.§l, define S' as S- {Xn} and set a., = a. also

St S
let fi be the set of all such sets S'. @1 then x contains
masks of order x less thzn N-1. So that
@ = [ SZ} 251 P50 () + SZ— s $50 > o]
' 1 <,
In this eXpression we can set xN=l or XN:O. In the first
case we will get a Boolean function of the N-1 variables

X! = (xl, Xy ews N-l) which must be the even Qrgdicate::

%i% x:.L is even
i=1

/
In the second case we must get the odd predicate 4&, on these
N-1l variables. So that by taking the negation of the case
xN=1; we get two expressions for the odd predicate 9&; ’

namely:

%' (x')

r St §1 a5 \bs' (x') - 2 ag §5(x" > 07

%P,

(ql) 5 O
r 5%2_ asq’s £ > ]

We can now ‘*sua' these predicates to get an equivalent

[
expression for yé:

/’_. S%l ag, %, >qr



But we have already noted tnat-§£ contains masks of order at
most N-2, so that we have found an §xpfession for %g which is
linear in masks of order N-2; and this contradicts our initial
assumption.

t
H

From the proof of this proposition we can also infer that
q’P must contain any mask that(y; always contains. Continuing
this arggment, ifqlé is the parity predicate on the variables
{xi: ie A}where A is:any subset of the integers.l ... n then
qu contains any masl; that(}r’é must contain, in particular it

must ccatain the mask ¢A (by the previous proposition. Hence:

Prop: 5.3. ¢)P contains all masks.

Using similar methods we can also find a set of weights for ?UP:

P’ SRS T\OY

Yp = F'Z('.'Z)Isl bs 2 07

Prop. 5Se.4. An expression for(yp is:

Proof

Define the function PN(xl, X eee XN) as

-2 (-2) <1 bs

where the sum extends over all subsets (including the empty

set) of the numbers 1, 2 ... N. We shall prove inductively
that
N
Py =1 ifZl x; is odd
N )
PN = =1 if 2;_ x. 1is cven
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Certainly Pl has this property; assuae that PN_1 also has it,

then the exXpression

“XyPp-1 * (%) Proy
also has ite. But this cgn be seen to be PN. The point of
doing this is the number of masks and their coefficiénts
constitute a worst possible casey i.e, there are predicates
vhere masks of high order and large welghts are needed. By
examining the proof of Prop. 5.1; it can be seen that if the
weights arz integers, then any Boolean function can still be

realised and that tiae magnitude of the weilzhts need not be

higher than 2.

Group invariant perceptrons

There is a very close relation between the two layer
perceplrons that nave Jjust bgen discussed and the assobiative
nets with eacoding functions that we discussed in-the last
chapter. In fact, a two layer perceptron is such a net whose
inputs are binary, whose encoding functions are masks and which
hes precisely one output line. Let G bé a group oi permutacions
of the integers 1 ... n and let S be a subset of those integers.
We can deiine the g(S) by {i: g(i) €S} so taat for each mask
ps we can define a mask ?g(s)' As before, a set §'of masks is
closed under G if dg(s) e:§ whenevor ¢S€:§’ s0 that we have a

L
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homomorphism P from G to the permutation group on f Also
ve let f'be the trivial homomorphism from G to the trivial
group of permutations of the one output line. Then the two

results that we derive frca 4.3 of the previcus chapter are:

Prop. 5.5. If § i1s closed under G and if, for =21l masks ¢S‘

and all g chXS =‘*§(s) then the prediéate

Y () rz/g Ps(x) >‘07

is invarient under G; that is to say that

\l}(g_g) =(}) (x) for all g ¢Ge

Prop. 5.6.. If § is closed under G and if q/ has a representation:

'*V=[—ZAas¢s >°_,

and is invariant under G

then it also has a representation
l)/:rz_ bs¢s >0—,
where bs = bg(S) for all g.

The latter, then is Minsky and Papert's Group invariance theoren.
They use it to.obtain bounds on the sizes of perceptrons needed
to recognise certain, mostly geometriczal, predicates. In

" addition they use it to show that V/P’ the parity predicate,
requires all @asks, wiich has been done here without it. If
the input to the perceptron is thoug?t of as a two dimensional
array or retina on which is presented a black and white figure,

those input lines which sce black register 1 and thne others
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register O. Connectivity for example cannot be recognised

by a perceptron whose order (the maximum order of masks) is
bounded independently of the size of the retina. For oar
examplesof partly serial methods for topological decomposition,

8

some are given in Perccotrons, another is given Uy. Buneman .
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CHAPTZR 6 Learning algorithms

6.1. Percevtron l=arning

The methods of weight adjuspment in the associative nets
described carlier were straightforward; connections were
established, or modified as some function of the immediate
activity on either side of that connection. If one output
line of an associative net is considered, the connections are
set by a simultaneous presentation of the input and output in

that line. Suppose that no such information is given, but

merely an indication whether or not the current response is

correct, Some modifying instruction is given to that connection
wnich is not identical with the input to thot connection or the
response in the output line. The most femous examnple of this
type of modification is Perceptron convergence*which was first
demonstrated by Rosenblattgand two proofs are given of the
Perceptron convergence theorem by Hillson, The proof given

here has a certain amount in common with Hillson's geometric
proof (though it does not involve geometry); its main virtue

is to show that tnere are a variety of feedback procedures which

work for fundamentally similar reasons.

*
The word 'perceptront' occurs in a variety of litcrature

and assumes different meanings. In this chapter, when it is
used, its reference will be to a 'one layer' device, which is
L4

like the scscond lay:r of the two layer Perceptrons of the

previous chapter.
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Let S be a finite set of vectors in R" and let T be a
subset of S. T is said to be linearly separable (with respect
to §) if tnere is a vector a in Rn and a real number © such that
the vector x of S is in T if and only if a.x >8. (Aa.x denotes-

the scalar product of a and X). This condition is equivalent
to saying taat taere 1s a n-l1l hyperplane separating T and S=T

so that T is linearly separable if and only if S-T is. Tne
problem is to find a vector a and a threshold ¢ given.a sequence
of elements in S and the xnowledge of whether or not they are in
Te for the purposes of learning, a percedtron can be regarded
as a device vrich is presented with a sequence of X elements

in S, at ecach input it outputs a 1 or O. It is desired to

have an out»ut of 1 just for those eclements of T. If then

an out.ut is incorrecct, the weights are adjusted in a way which
depends on what sort of error'was made, Now a perceptron
gives'an output [ a.x > G-]. In.order'to give the weight
adjustment procedure, it will be casier to work with the set S!
of aujmented vectors. The augmentation of x = (xl, X5y oo xn)
is the vector y = (xl, ces X -1). Tt is the set of aug-
mentations of vectors in T. The Perceptron's bchaviour is then
described by r_g.x > 0'-, ,' wvhere w is the vector in Rn+l

(al, coe By Q). We shall write this function & (w.y) vaere

& is the obvious step function,

Now we give the procedure for adjusting the weigntsw,
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On the presentation of a vector y:

1)  ifg (w.y)
g(vi.y) =0 and y is in S*' = T' then

1l and y is in T' or if

w is lcft unchanged.

2) ifé(w.y) =0 and y is in T' then w

is increased by cy.

3) ifé(w.y) =1 ond y is in S' = T! then
w is decreased by cy

here ¢ is a positive constant.

Let xi(r) be a segquence of vectors in S' where r = 1,2, ...
Then the pcrcestron convergence theorem states that if T is
linearly separable then the vector w only changes a finite number

i(r) is such that

of tinmes. In particular, il the sequence y
each membér of St occurs in it infinitely often, then after a
finite numbor of prescntations it will have 'learntt! 7', that

is to say it will give correct outputs.

The condition that T, and consequently T' are linearly
separable says that there is a vector w* such that §(w*.y) =1
if and only if y is in T!'. We are now in a position to write

the procedure given above as:

w is changed to w + cy( 6 (v*.y) "6(!1'2'.))'

at each prescntation of a vector y in 5°,



In order to prove the convergence theorem, we first need

the lemamas

If T 1s linecrly sceparable, then for any positive number

K we can find a w* such taat:

Y €T =>u*ey>K

leS"T' =5 !1_'.1<-K

Proof. Since T' is finite, the condition that there is a w
such that w.y> O<»>Yy eT! means that we can find two positive

numbers e, Ssuch that

YeT'=>M.y > +82¢

and YeS'-T'=> W.y <O

Now recalling that the last componcent of y is -1 we can add

§ + ¢ to the last component of w to get w' such that

YeT'=>¥'Y > ¢

and YeS'T'=>¥'ey < ¢

Finally we caan multiply the vector w' by the quantity K/€ to

get the desired result.

To prove the main result we first exanine the change in

cresentation of

&

the squared distonce between w and w¥* at the

xi(r).

at the presentation of y

. s 1
To start with an arbitrary caoice ¥ 1s wmade for w,

i(k) k+1

,
it chonges froa y‘ to W,

Writing y for li(k) the squared dislunce change is:



[l = 2|2 - e - )

k+l k+1

= -(u " - E{k)-(ﬂ - ﬂk) + (2(_‘31"‘+1 - _V_rk). (ur = v

which is, by the expression for the weight change

ce2y g (6 (srey) - 65y
+ 2e(utay - ¥Sp) (6 (wry) -6 )

The first tzrm here is non-positive and thac second (since 6 is a
non-decreasing monotine function) is non-negative. Moreover,
whenever a weight change occurs, the first term will have
magnifude cax.l and the sccond will have magnitude at least
chﬂ'.ll » the sccond term is gﬁlx non-zcro when w* .y and

Ek'l have different signs. By the lewmma, we can choose w* so

that

Wy >(?2max (y.y) + b}/,
- yes® ¢

for any positive b and for 2ll y in S', again using the finite-

ness of -S?'.

In this way we can ensure that the squared distance clange
between w and w* 1s greater taan b every time w is changed, but
this distance caanot decrease indefinitely so w can only change
a finite numbeé of times, which was the result required. (Prop.

6.1.1.).
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6.2.. Continuous analogues of Perceptron Convergence

Perceptron convergence is a particular form of feedback
to a system which can only output.a 0 or 1l. Suppose we have
a perceptron like system which realises a function § (w.y)
where § is now some more gencral fuhction. HMoreover, suppose
that there is a 'desired' output from tais system 6 (w*.y) say,
we shall show how, in certain casecs, the same or similur weight
adjustment procedures produce a convergence to this desired state.
Suppose, in fact that the weight adjustaent is, as before, given
by:

l;{ is increased by cy( 6 (u*.y) = & (w.y))

at the presentation of y

Prop. 6.2.1. if 6§ is a monotone non-decreasing function such

that
6 (a) = 6(b)< 2 (a=b)

where M = max (y.y). Then |w* - w | never increases and if
Ye S!

G (w*ey) £ 6(u.y), |u* - w| decreascs. The proof is imacdiate
from excmiration of the expression for the squared distance
change. [Note that the condition on 6 avove means that & must

be continuous. Thlis ensurecs:

Pron. 6.2.2. If xi(r) is as before, a series in which each y

in S' occurs infinitely often, then {or any positive e there is

an integer Nc for which

6 (}z'.}:i(r) -G(Er.xi(r)) < € for all r> N _
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Suopose the contrary, then there would be a subsequence of the

positive integers Z: and an ¢ such that

b

6'(3,_;,}:1(1‘)) -6(331‘.11(1‘)) >e for all r in 2

so that for each r in ¥, | w* -w| decreases. Also, 2 must

be such that some y in S' must occur infinitely often, fof‘this i

y the decreace in | w* - w || is then a continuous positive
function of w ond hence || w* - w | must tend to zero., Therefore,

ll’ﬁ* - X'El must also tend to zero and, by the continuity of §,

this contradicts our initial supposition.

The condition for this convergence can be interpreted in the
following waye. If vie are given § , a continuous monotone increasing

function, and we are given S' and in consecquence M = max(y.y) theh
JeS!

¢ nust be chnosen so that

M sup a=b
C <3 afb 6(a) = 6(b)

(if 6 is differentiable)

so that tae weight adjustaents cannot be too large. If ¢
exceeds this amount the weight vector w may oscillate rather

than converge, and it is casy to construct examnmples in which this
happens. Tiis means that the rate of convergence or-learning
can only be increased at the risk of some sort of oscillatory
behaviour, It could be posuible to havé o ¢ vhich was varied

x

with the y in order to gnin come increuse 1n the convergence rate,
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but we would have to comsute or be given Yoy at each present-

ation of NG

6.3 Learning from a continuous inout

Up to now we have thought of the presentations of the Y
as discrcte events, and the time intervals between these
presentations bcing of no importunce. Ve get a rather nice -
variant of these learring procedures if we think of S' as a

connected and now not generally finite subset of Rn+l

(recall
that S' is a set of'augmented vectors in R%). The function
z(t) is then input to the system, and at the same time we
adjust the weight vector wvhich is now also a function of time,

w(t). It is immediately obvious that it is worth trying weight

adjustments of the form:
dw

d

= cy( §(urey) =6 (w.y))

ct

Now consider the rate of change of || w* - w | ©

this 15 =c(u*ey = Wwo¥) (6 (m*.y) =6 (wey))
which is always non-positive if & is any monotone non-decreasing
function. The conditions that all y in S' are Qearnt! are

firstly that S* is cowpact, second, that y(t) fills S' that is

for any open set U of S' and any time tl there is a time t > tl

at which y(t)e U.
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Pron. 6.3.1. Under these conditions for any positive € there

is a time te for which

Glur.y) -6(u.y) < e'fo: any‘time t > t€ .
The proof follows in almost the same way to the corresponding
proof in the previous scction. It is not nccessarily true
that this sort of convergence mcans thgt v need get close to
w* in an absolute way,-ise. || w* - w | ->0.  This will only
have to happen whén S' spans the n dimensional subspace of |
'R§+l cénsisting of all those vectors whose last coordinate
is =1.

This concludes the study of learning and memory models
and it is hoped that their relation to one another has been
clarified. In particular it has been shown that the crucial
distinction to be made is between the two methods of causing a
change to take place. The method of causing a weight change
in a perceptron is very different to that whichkalters a switch
or weight in an assocliative net. We now turn to the neuroiogical
evidence for these types of change at a Synabtic level in an
attempt to deteramine the importance of these ideas as biological

models.
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CHAPTZER 7 Synaptic plasticity:

It is generally held that persistent changes in synapses -
synaptic plasticity - form'the physiological basis for learning
and memnory. Of other possibilities, the proposals of Rashevskyl
and Householder and Lahdahl2 that the brain can sustain permanentay
circulating patterns of activity, (analogous to the mercury_dela;.
lines of soue computeré) do not seem compatible with the ability
of conditioned behaviour to survive the suppression of all electrical
activity in the brain by freezing or anaesthesia. Nor is it likely

that such activity would remain undistorted by epilepsy or electro-

convulsive therapy.

The idea that permanent changes may take place at a neuronal
level, for example changes in the threshold of a nerve cell is a
possible alternative to synaptic plasticity although it certainly
does not exclude it. As an altérnative it is less attractive
since there are many more synapses than nerve cells in the eentral
nervous system; the ratio is of the order 104 - lO5 in the
cerebral cortex (Craggj) and the amount of information that could
be stored synaptically would be correspondingly higher, Moreover
there is now a certain asount of neuropnysiclogical evideﬁce,which
we shall‘shortly exanine, which indicates tunat changes caﬁ take
place in the conductivity of a pathway which ére spcecific to a
synapse, or a group of synapses in that pathway, rather than a

r

whole cell.
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First of all we shall describe some of the physiological
demonstrations of persistent changes in the nervous system and
the evidence that associates learning with changes in certain
synaptic structures. Lalter we sﬁall discusc the possible neuro-

logical mecnanisms which could effect such changes. ;

L

Hebb'!'s' suggestion that synaptid éhanges could persist for
the life of an animal nas not yet been amenabls to any substantial
‘test. But there are exbériments whiéh seemn to indicate that

some Ehange takés place which can persist for at least the time
for which one can record from a cell. Such cnanges have been
demonstrated in the cortek, but may well occur eclsewhere:

5

Lashley” has shown that decorticate animals can be conditioned
in limited ways, and certainly some animals whose develooment
has not progressed to tae stage of naving any neocortex can

perform simple learning tasks.

Morell6

found tihat epilepsy induced in an area on ong side
of the cortex would cauée a simllar epileptic focus in the
corresponding contralateral arca. Even after the callosal
fivbres connecting these areas had been severed, the increcased
contralatesral activity persisted indefinitely. Related
‘experimcnts vere performed by Bindaan,  Lippold and Redfearn7,
and Gartside And Lippold8. In the first of these it was shown

that a small currcnt passed through the cortex of an anaesthetized
Ay

rat would increasec the sgontaneous firing rates of cells and
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this rate incrcase would peréist at least for a few hours after
the stimulating current had been turned off, In the second
experiment, a similar resuit was thained by locally freezing
the cortex. Since the eiffect of freezing is to produce a :
. {
potential gradient in a direction opposite to that in‘the first l
exoeriment, it was thought that the persistent increase in the |

firing rate may have been attributable to its initial increase

rather than any other effect associated with the depolarisation.

Bliss, Burns and Utfley9 vere able to investigate this
effect in very much more Qetail. In their preparation,.wﬁich
was this time isolated but unandesthetized cortex, they recorded
from a cell vhich could be driven by independent stimuli to
neighbouring parts of the cortex or white matter. ~They were
able to define a 'conducfivity' for one of these stimuli, the
test stimulus which was the ratio of the strength of response
of tne cell (number of spikes immediately folliowing thé stimulus)
to the strength of the stimulus. If we call the other stinmulus
'the priming stimulus, their results may be by saying that the
conductivity

increaced when the priming stimulus alone had bsen used for
some ;ime; |
decreased when the test stimulus alone had been used for
some tine;

x

decrcased vhen these stimuli wire 'paired! or used simultancously.
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In order to effect any cihange in the conductivity it was
necessary to drive the cell (by the test, priming or paired
stimuli) for at least six minutes, but, having done this, the
conductivity changes often persistéd for as 1lung as it was

possible to record from the cell.?

From these eXperiments one can only guess tiat synaptic
change is involved; the pathways could have involved a series
of nerve cells and the change could have been caused by a change
in, say, a cell threshold. In a similar set of experiments
Kandel and Tau%o were able to demonstrate that in their preparation
a chénge in conductivity was almost certainly attributable to a

synaptic change.

Kandel and Tauclo worxed with a nerve cell ganglion from
the abdomen of a sea snail. ‘while this is not a region of the
nervous system or an animal wnich would be expected to show any
retention, a cnange in the conductivity of a pathway was demon-
strated which was produced by uecthods similar to those used by
Bliss, ﬁurns and Uttleyg. The cells in this ganglion are large
and it ispossible to record the intracellulor potential chan;es,

Such cells could be driven independently by two pathways. It

was found that:

1. The sensitivity of the cell to a weak (sub-thresiold)
stimulus in the test pathway could be greatly increcsed
by driving the cecll by a strong priming stimulus in the

iothcr pathwaye.
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2e That this sensitivity change could last for sonme

minutes after the priming stimulus had ceased.

3. For somae cells this stimulus was conditional on

the stimuli being paired, and in some cases specific

to one of two .possible test pathways.

In a second paper Kandel and Tauc 1 verformed related

expnriﬂenfs and were able to hypothesise that the test pathway

was monosynaptic in that the fibre tthey were (test) stimulating

synapsed onto the cell from which they were recording. They

also proposed that this increase in sensitivity could be attributed

to presynaptic facilitation (sece figure 1) in which the priming

test
prathway
prlmlng
pathway
Figure 1

paﬁhway terminates in a synapse which serves only to modify the
behaviour of a synavse in the test pathway, but does not itself

influence the cell. Such synapses ,could hzve the effect of a

gain knob on a variable gain amplifier and could be used to
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control a synapse in a way which would be completely independent
of the activity on either side of the synapse. However, there is
no evidence to say that this is the underlying mechanism for
control of synaptic change in the cortex and in the next section
we shall examine the possible controls that could exist for

synaptic change.

7.1. Mechanisms for control of synantic change

.It is not known what hapgens wnen a synad»tic knob increases
-its effect 5n a membrane, It may simply grow (Youhgla, Cragg13)
and nore effectively depolarise or hyp:rpolarise a membrane on
account of its increased area of contact. Other experinents
suggest (Brown and Pascoelq) that the ability to produce nmore
transmitter substance is modified, Another proposal is that

15)

entirely new knobs may sprout (Eccles . In spite of this it
is reasonable to ask whnat coentrols such a change; and the
answer may depend only in its details on the precise mechonism

of change.

16) that the reaction

By surposing (like Pitts and McCulloch
of a nerve cell to its inputs can be described by a Boolean
function of its.inputs, Brindleyl? has listed some of these
possible mechanisms and devised a notation for describing them.

Brindley's notation assigns to each cell and its inputs an output

function S of the form: ok

S =vv of<u|vs>s o . 7o Lo
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W, u and v are Boolean functions of the inputs, the notation
mecans that if inputs satisfying v=1 arec given sufficiently often,

then

1) S changes from w to wv u if A =f (for a

facilitated synapse)

2) S changes from wy u to wif & = h (for a

habituated synapse)

In addition it is stipulated that wau = 0 and it is always
possible to choose w and u to satisfy these conditions. As
examples of Brindley's notation can be used to describe the

following systems (the triansular synapses are modifiable).
1) Presynaptic facilitation of an excitatory synapse

x | 5= <x|x>

.___\46\_:_: ‘f

2) Postsynaptic facilitation of an excitatory sypapse

X
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'3) Excitatory synapse facilitated by‘pairing

X . .
’\4@:;:: S=yV <<xAT7y | 2AY>
.y-/s £

4) Ixcitatory facilitoted by a presynaptic knob

Brindley points out that (3) is an example of the type of
conditioning postulated by Hebb4 and that various other of

these functional arrangenents have been found or postulcted.

Vie may-use Brindley's notation to formalise the idea that
some synapéés can change only as a fuaction of the activity in
the synaptic knob and the post-synaptic mewmbrane, We call

such a synaprse locally modifiable.

If x is an input which terminates in a locally modffiable
synapse, then if the output of the cell is described by
S=wwv <u|Vv>
sul
v (the modifying stimulus) will be of the form v = O (w,x)
where b is a Boolean fuuction. If the output of the cell is

described by x

S=wy iu v>
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then for a locally modifiable synapse: Vv = ¢(w vV u, x),

It is easy to verify trat of the four types of synapse
described above, the first three arc locally modifiable and the

last is not,

Brindley lists many more examples of modifiable synapses
and classifies them according to the rules: Class 4 if uAv = u;
Class B if uav = O0; and others are placed in Class C. low
although Brindley's classification does not imply this, it is
interesting that of the examples he lists, all those in Class A
and Class B are locally modifiable and that synapse in Class C
(case 4 above) is not. Naturally, if Brindley's Boolean
descrintion of synaptic plasticity is not totally accurate, which .
it probably isn't, our definifion of a locally modifiable synapée
fails ana the dcfinitién of a locally modifiable synapse would
have to be couched in the specific terms of another model, Never-
theless we have becen able to state in precise terms the foct that
a locally modifiable synapse modifies only as a function of the

activity on either side of the synaptic cleft.

Finally it is worth noting that there is corious anatomical

13)

knobs and that these as ve huve seen, would provide a mechanisnm

evidence‘for the existence of presynaptic (for example Gray

for non-local modifiability. It has not yet been estavlished
whether all possible types of local modification can teke place

in the nervous system. In particular there secems tc be no
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absolutely conclusive evidence of the synapses propcsed by

Hebb, As far as can be ascertained. from the individual record-
ings of Bliss, Burns and Uttley, their results could be explained
by local godifiability, even 1if thé cortical pathways they tested
|

f
l

were nonosyna»tic.



- 79 =

CHAPTZR 8 Neurolosical restrictions on models

Before exanining the neurological relevance of the‘modeis
advanced earliecr, ve put forward a hypothesis aboﬁt synapses
which will restrict the applicabllity of these models and allow
us to put forward further testable neurological hypotheses,
This is:

Synapses in the neocortex can only be modified locally.

ff such is the case, then any model which is thought to
describe any of the higher functions of the nervous system must
conform with such a restriction, Also we may gain some insight
into the exact nzture of these 'higher!' functions if we can

advance plausible models meeting this restriction,

The anatomical evidence for this hypothesis, if not con-
clusive, indicates that if there are presynaptic knobs in the
cortex, they are not frequcntly secen. Grayl, in his famous
electron microscope study of cortical synapses states that they
are either axo-sonatic or axo-dendritic. Crazg has remzrked
in personal comaunication that he has never observed such structures
in the corteX. However, presynaptic effzcts may not be the only
mechanisn for non locnl modification and the alternatives are worth

considering.

Non local modification may be thé result of postsynantic

effcctse For example a synapse might be capable of permcnently
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altering a small region of the postsynaptic membrane so that

the conductivity of a neighbouring synapse or synapses would

be impaired. A rather striking piece of anatomy which illustrates
this possibility is the structure of the grandlé cells of the
cerebellum shown in Figure 1 which is taken from a drawing in

Eccles, Ito and Szentogothaia.

grenule parallel fibre
cell ocutput
\ ] |
‘»‘_____§:>—\ Colgi cell

N
mossy fibre .
input ”
Ficgure 1

The mossy fibre input excites the granule cell and the Golgi
cell inhibits it, The appearance of the inhibitory Golgi
synapses indicatec that they are in one to one correspondence
with the excitatory mossy fibre synapses. Could 1t be tnat the
Golsi cell syncpses exert a local effgct on tae granule cell

membrane?
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If not, one wonders why the inhibitory effect of the Gdlgi
cell iz not achieved by axo-somatic contact. However there is(
no physiological evidence from the cerebellum to corroborate this
postulate though Diamond3 has shéwn that in the Mauthener cell of
a goldfish inhibition can be specific to inputs distal (with
respect to the axon) to the dnhibitory synapse. Rallq has also
demonstrated on theoretical grounds that it is in general wrong
to regard the polarisation of a cell membrane as the sum of the
polarisations aznd depolarisations éaused by eachvsynapse. Cells
like the granule cells do not seem to be present in the cortex,
the spines on the dendritic trunks 6f pyramidal cells night
verform a similar function to this hypothetical property of the
granule cclls, but we have no anatomical or physiological
evidence to coafirm this and hence no certain objection to the

hypothesis abecut neocortical synapses.

Griffiths5 has su:gested that non loczal modification could
take place by the diffusicn of some chemical throughout the neo-
cortex and this is a scrious possibility if it is not required
that the modifying influences should be very specific. Another
poscibility that will be considered later, is that there may be
some temporal-coding of events at a synapse which would lcad to
modification. This would imply that the function of a synapse
is rather more complicated then is normally supposed and would,

in particuler aake Briadley's classification inadequate.
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(V)
I

The adantive nets of Chaﬁter 2 and the perceptrons of
Chapter 6 differ fundamentally in respcecct of what type éf
synapses would be required for thelr operation. Ve now take
the step of supposing that the weights, connections or switches
mentioned in these chapters are to be identified with synapses.
It was pointed out that the adjustments required to modify an
éssociative ncet wilen a new pair of patterns are to be stored
could be effected by Hebb synapses and we have seen that such
synapses are locally modifiable. At lezst our hypothesis about
modifiable synapses does not exclude‘the rossibility fhat

assoclative nets are realised in one of thelr forms in the cortex.

Fér perceptron learning and its associated forms discussed
in Chapter 6, it is much more difficult to understand how the
weight adjustuaent could be accomplished with locally ﬁodifiable.‘
synapses. * The wiring diagram of.a peréeptron is illustrated

in Figure 2.

Weights
cunmmer Threshold
—-—»——- ‘l
. /7
Ay ’ . outout
5 5 1 EaN hy - 4
V—_ J
s correct/incorrect
T . ,
-————v—-———-
Weight

« modifier

Figure 2
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Now althouch it is rcasonable to suppose that the process of
taking a weighted sum of tne inputs could be rcalised by one
nerve ccll, it is not at all clear tnat the feedback to the
thresholds and synapses could be accomplished by the same cell,

The two natural possibilities are:

1. That this feedback is accomplished by pre-
synaptic knobs which habituate or facilitate
each synapse (together with some control on

the threshold of the cell).

2e That the weights are associoted with cells
rather than synapses and welght adjustment
is accomplished by altering a parameter’of /
the whole cell, This :equiros there to be
one cell for each weight. Taylor6has
proposed a schcmé for the cortex which works

in this waye.

The second pocsibility is somewhat unattractive on the
grounds that it is uneconomical in comparison with the first
and would indicate a set of "weight" cells with one effective

input and one eifecctive modifier.

The former possibility would be excluded from the cortex
by our hypothesis since it involves the non local modification

of synapsec.
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But there is nothing to exclude this type of'léarning
from other parts of the nervous system - first of all pre-
synaptic knobs are scen in the spinal cord and in profusion

7 3

in many thalanic nuclei (Gray‘, Purpura”). Secondlv there
is a certain amount of physiology which lends support to this:
Kandel and Spencer in a review article of neurophysiology in

the study of learning distinguish two types of conditioning.:

In type 1 conditioning a behavioural stimulus (UCS) gives
rise to some well defined response which is not elicited by some
other stinulus (C.S.);‘ often pairing‘these two stimuli a nunber
of t;mes the C.S5. elicits the response without the U.C.S. This
of course, is classical Pavlovian conditioning and the experiments

of Kandel and Taucprovide a neural znalogue of this situation.

Type 11 conditioning = often called operant conditioning

is quite different and requires that sonle reinforcexment take

.

&

place if a response is given to a particular stimulus, For
exanple, in a Skinner box an animal misht be rewarded with a
pellet of food if it presses a lever in response to the sound

of a buzzcr. Initially the animal gresses the lever by accident
and subsequently learns that the reward is produced by dcing so
in response to the buzzer. The reinforcement in this case is
positive - in othcer cases the reinforceuaent can be nezative,

that is the animal lzaras to avoid a painful stimulus, The

basic distinction is that in type II conditioning, one of ttrz
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stimuli is conditional on a recsponse.

The possibility that either the C.S. or the U.C.S. in
type I conditioning might be an electrical stimulus to the
central nervous system was investigated by Louckéu%ho found
that a C.8. consisting of a direct stimulus to the visual
cortex of a dog could be effectively paired with a U.C.S.
of a shock to the foreleg. Giurgeg%lsed as U.C.5, and C.S.
electrical stimuli to the motor on visual cortices rcspectively;
the reéponse being some movement elicited:fy stimulating the
motor cortexX. Finally Bures: and Buresiva, were able to use
a behavioural C.S. and the local polarization by an extracellular
electrode as a U.C.S. winich induced an increased or decreased
firing rate in some cell from which their electrode would also
record. The C.S. in this cose an auditory stimulus was effective
for certain cells in the thalamus and inferior colliculus though;'
the conditioned responze usually disappeared rapidly after pairing
had ceased. To suamarize: 1t szems that type i conditioning
to electrical stimuli éan occur anywhere in thc nervous system,
even in very primitive structures of simple animals, But in
general the effects are most permanent when the stimulus is
given to parts of the higher nervous system'- in varticular to

the neocortex..

Tyve II conditioning has also been tne subject of similar

investigétions. ‘Delgadoi%howed that electrical stimulation of



parts of fhe brain, mainly in the region of the hypothalamus

could substitute as positive or negative feinforcement.
Stimulatién in this region could cause thé animal to manifest

rage or fear and the latter could be used to train the animal

to avoid certain types of food. Oldslédvanced this work and
showed that rats would pursistently stimulgte themselves through
electrodes implanted near the hypothalamus in the medial forebrain
bundle. Other electrodes in the same region would produce
avoidance‘or aversive behaviour. 0lds tested other ports of

the brain in this way and found that the most striking results
were produced from regions (such as the median forebrain bundle)
which are closely associated with the hypothalamus. No evidgnce
of posiﬁive or negative reinforcement was produced from electrodes

in the neocortex or in the sensory areas of the thalanmus.

0Olds and Oldgiiubsequently investigated whether or not they
could, by the szme stimulus to the medial forebrain bundle, re-
inforce the firing rate of a single cell, Here they were able
to get positive results in the same regions as before including,
significantly, the mamnilo thalamic tract - one of the pathways
by which connccts the hypothalamus to the thalaaus. Only with
great difficulty could they train cells iﬁ the neocortex and
then only réther weakly. Later, Olds and Milneiewere able to

produce the same learning in cells by using a behavioural re-

inforcement such as food; again they found it very much eesier
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to train cells in areas connected directly with the hypothalamus.

It is an attractive conjecﬁure that physiological type I
conditioning requires only locally modifiable synapses but that
type II coﬁditioning cannot be achieved this way and perhaps
requires presynaptic terminals. This would explain the absence
.of presynaptic knobs in the cortex and account for the apparent
difficulty in producing type II conditioning in neocortical cell
responses, Some caution is needed in interpreting the physio=-
logical results in this way. The ceclls or axons which could be
conditioned were almost certainly involved in a more complipated
pathway that was also belng conditioned. It is not in general
possible to say that the cell which is recorded is necessarily
the cell at which the changes take place. It could be that it is
one of the cell's predecessors which is responsible for the

altered behaviour of that cell.

\
However, these results suggest some further exXperianents in
order to confirm, both anatomically and physiologically the

hypothesis about locally modifiable synapses.

1) Can a cortical cell be type I conditioned to a
*behavioural stimulus? For example in the right
assgciation area of the cortex is it possible to
condition a cell which noruwally responded to a
visual stimulus, also to respond to an auditory

stimulus? This experiment would be exceptionally



convineing if done in conjunction with a type II
conditioning experiment in which the animal was
rcwarded if the cell did not respond or punished

Aif it responded.

2) Can areas of the hypothalamus be demonstrated to
modify other pathways presynaptically? It might
be shown, for exam»le, that the mamnillo-thalaanic
tract or even the mamalllo-tegmental tract operated in

this way.

3) Is it possible to get further anatomical evidence
for the previous conjecture? Perhrops one of these
tratts could be traced, by degeneration studies or

otherwise, to presynaptic terminals.

L4) The paleocortex cannot be classified with the neocortex
in this way. It is structurally different (Andersen)
and exhibits type II conditioning (0lds and Oldsfﬁ
It is organised in a relatively simple manner and
could pgerhaps be the subject of similar exXpoerimental

tests.,

On the other hand it has been conjectured that the hippo=-
campus is part of the mochanism responsible for 'laying down'
nmemory traces, in this case we cannot at the.moment atteupt any

L4

simple generalisations sbout the structure or function of its
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synapses, but acain it would be interesting to know if there

are presynaptic or axo-axonal contacts in this region.

Relevant to this discussion of the modification of synapses
is a suggestion by Young on the function of the amacrine
‘cells in the brain of an octopus. In a model of type II
conditioning which becars some relation to the’learning mmachines
of Chapter 6 he suggests the need for presynaptic inhibition
and suggests that amacrine cells (small nerve cells with
apparently no axorns) amight effect this by interposing themselves
between the pre and post synaptic membranes. Young's model
has features which overcome many of the difficulties which would
be encountered in takingiperceptron lecarning as an exact des-
'cription of a ncurological process. Whether or not it is
realised entirely in the ncocortex of mammals is, like the
perceptron, subject to what has already been said about the

local modification of synapses.
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CHAPTER 9 The relevance of models

In the previous chapter the one crucial difference between
learning and remeumbering devices.was examnined in some detail.
We now talte the models individually and attempt to subject
them to neurological criticisms. As usual, this will not be
entirely conclusive and de@anﬁs answers to further neurological

questions.

. 9.1. Hologravhy

In its general form holograrhy requires a propagative
‘medium and a stable periodic sourcé. If the brain or part of
4+ constitutes such a medium and contains such a source, vhat
is the speed of propagation and the frequency of the source?
There seens tb be little evidence that such a source exists;
the.E.E.G. rhythms might'be taken as such evidence but these
are neither stable nor very peréistent. Even if there wvas

such a source - the simplest oscillator, consisting of two
neurcns connected in a loop would be unlikely to have a

frequency of more than 100 c.p.s.

As for propagation it might happen along nerve filbres
and in this case the slowest possible conduction rate would
seem to be of the order of 1 metre per sec. The wavelength

is then not less than 1 cm.

Kow ihe interference fringes produced by two such waves
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would always be spaced at a distance greater than this wave-
length.  According to Sholllé square centimetre of cortex
éontains, very roughly, 2 X lO6 neurons and, in consequence

of the order of 1010 synapses., To store a signal so far above
the limits of resolution of the medium is at least uneconomical.
" Moreover, in a linear systenm,-any superposition of interference
fringes would not contsin higher frequencies so this very high
redundancy would a»ply as well to the storage of many hologranms.
It is hard to believe that a non-linear system which approx-

imated this would exhibit a much more economical one of the

available store (if this is synaptic).

2 3

A proposal advanced by Beurle“and van Heerden suggests

that the propagation may be much slower and consist of spreading
waves of excitation throushout a mass of cells; If the con- |
duction rates were nuch élower, the wavelength could‘be reduced
to a more acceptable quzontity. .Again, if this mass of cells

were in the cortéx, the propagation would presumably take place

laterally.

The phenomenon of spyreading depression in which a wave
of activity is observed to pass slowly across. the cortex misht
be taken ac evidence of such propagation, though it cannot be
taken too lit;rélly since it results in prolonged inactivity
in most of the cortex. Observations by Sperryqand Lashley 0

nowever, would not lend support to this idea. They were unable
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to detect any chaonge in the behaviour of aniﬁalé in which they
had attempted to interfere with lateral conductién in the cortex
by cutting through it in many places; or by insertiﬁg lengths

of electrically conducting material, It is also hard to imégine
how any recall could be sufficiently fast if the rate of i
conduction was only a few millimetres a second. Finally, van
ﬁHeerden's proposal involves pfopagati$n through a linear medium

which does not reconcile with the known non-linearity of neural.

responses at lecast in the lower parts of the nervous system..

9.2, Assoclztive nets

Two types of associdtive nets have been advanced, and each
of these have points in their favour as neurological models,
Since it is fairly certain that a synapse is éither excitatory
or inhibitory and cannot change from one type to the other, each
inpﬁt line of the linear net would have to branch and give rise
to both an inhibitary and excitatory input to each output line.
Also, since nerve cells scen to possess entirely innibitory or
entirely excitatory synapses, we have to postulate a set of
interneurons to achizsve this. A very much more serious
limitation on the lincar assbciative net is that the weights can
. become very large. The strength of a synapse is probabiy
1imited so that to get large weights may involve the growth of
new synapses. Eccles hus sugsested this as a mecaanism for
synaptic change, but this is only a Ecnjécture. fﬁese diffi-

cultics are avoided in the binary assoclative net wiich could
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be realised with onc type of excitatory synapsec. The need
for an accurate threshold, and the need for the nervous systen
to produce patterns with specific numbers active and inactive
lines present new obstacles to ﬁhich we do not yet have any

complete solution.

Both types of associative net require that synaptic
change only takes place on the presentation of a pair of
patterns to be associated, tihe binary net requires just one

typé of irreversible change.

Suppose that such synapses were of Hebb'!s type. How
could a synaptic change be prevented from happening, as
a result of noise, or in the linear net, simply in the use of
the net to recall a pattern? One solution is fo suppose that
the pairs of patterns must be paired many times in order to
produce synaptic change and it 1s poésible that the function of
the hipjocampus and its related structures is to maintain such
a pairing, for bilateral destruction of these regions produces
Korsa:o&fs syndromc? the inab%lity to establish new memories

*‘or to form new associations.,

The need for repetitive pairing in order to effect synaptic
change is certainly indicated by the experiments of Bliss, Burns
8 ' .

énd Uttley: A factor wiich may also be iuportant is the relative

timing of the C.S. and U.C.S. to a Synapse; 1t may be that the
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most effective stimulus for producing synaptic change is not
the simultaneous depolarisation of botﬁ the presynaptic and
post=synaptic mexmbrane but these two eQenté occurring with a
slight time difference, Suppose for example that the U.C.S.
were to precede the C.S5. by a few milliseconds. Some reverse
chenical diffusion could take place frem the post-synaptic
membrane wihich would reach the presynaptic membrane at the

time of arrival of the U.C.S.

Note also that if the cells were being fired by the C.S.
alone, such a time delay would not occur so that the synapse
would fknow' when and when not to modify. Such a timing
hypothesis could again be tested bj methods similar to those
of Bliss, Burns and Uttlcy? - It is of course equally poszible
that the time delay could be the other way round, that is to
say, that the C.S. should precede the U;C.S. The latter is the

most effective order for behavioural conditioning.

The synaptic contacts on the dendfitic spines of pyramidal
cells (Gray)9are peculiarly saited to this function, First
the spines contain a specialised process, the spine afparatus
wiaich could form part of a system which communicates any post=-
synaptic activity to same other purt of‘the synapse. Second,
such cpines lie on the main dendritic trunks and woﬁld be
necescorily affeccted by any(active or passive) dep°1arisation
of the apical dendrites. Moreover the apicai dendrites

10 o
(Lorente de lo) lie in the outer parts of the cortex which is
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the region in which fibres afferent to the cortex (either from

the thalamus, or irom other parts of the cortex) terminate.

9.3. Groun invariant associate nets

There are scvcral possible ways in which such a net ﬁight
be embodied in the brain and little to say which is more likely.
All we can do at the moment is to make some rather general
observations. First of all, the complex Hubel. and Wiesel.ll
cells which respond to a pattern of a certain orientétion no
métter what its position provide evidence that some sort of
group irvariant response obtains even in the primary visual
corteX. Similarly there are sliding frequency detectors in
the auditory cortex which detect rising of falling notes in
almost any audible frequency range (Evans and ‘;Jhitfield).l2
Recently, cclls have been found in the visual cortex waich
respond maximally to patterns presented binocularly, of an
arbitrary nosition but fixed disparity (Pettigrew, Nikara
and Bishop;? A1l thesc are manifestations of simyle forms of
group invariance; there are probably more complicated forms

which might be shown up by simultaneous recording of many

cells,

t

given that there are group invariant responses in the
brain, are the nccessary connections formed automatically
during the developaent of the brain or is some sensory exper-

iei.ce required to establish them? The answer is likely to be
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both of these. There is.an innate rough set of conncctions,
but the fine details ars leérnt. Pdssibly this rather com->
plicated wiring czn only be achic?ed by growth of nerve cells
over some distance, and in consequence can only happen fairly.

early in life. Such is the case with binocular vision, which

is, in cats, critically dependent on their being sighted in !

the first few weeks of life (Hubelf.and iliesel, }4),,. If
the acquisitioﬂ of soume group invariance is, as has bee
suggested, also essential to the development of language, it
is-reasonable to give a similar exploration of our inability
to learn to specak after the age of six or seven.b The latter
seéms to be shown by cﬁildren who have suffered damnaze to the

dominant heulsphere at an carly age.

Finally, as fhey stand, the group invariant nets and
perceptrons seem to fequire too 4igh a degree of precision to
be talken as precise neurological models. The principle of
'tying! synapses together (i.e. altering many synapses af the
same time) nevertheless provides an interesting'mechanism for
generalisation. One’of the most serious shortcoaings of such
models is the difficulty of turning a continuous (perceptual)
group into a discrote group action on a set of input fibres.

1S

It is possible that the concept of tolerance space (Zeeman)

could be used to get round these obstacles.
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9.4. Perceptrons

It has been shown that the fundamental distinction
between perceptrons.and.associgtive nets lies in the method
of adjusting the weights in these devices, Because of this
distinction it was felt that the modifiable elements of a
perceptron could not represent cortical synapses. {le now
ask 1f the method of weight adjﬁstment or learning algorithm

for perceptrons represents any other part of the nervous system.

First of all, perceptron learning is in no way a model
of operant conditioning. To make this clear, cénsider for
example, a thalaanlc neuron which we know can be 6perant
conditioned to respond to a stimulus. While there is no

response, no reinforcing stimulus is given and there is no

evidence that any charges have taken place: a perceptron always

"alters when an incorrect output is given. Thus if perceptron
learning describes thalamic conditioning we should expect that
every conditionable cell in the thalanus i1s being conditioned

even wvhen no reinforcing stimulus is given.

After the first reinforcing stimulus is given (that is

e e A A i B A R s e ot

when the cell responds for the first tiume) it does not nccessaril:

follow that the respoase has yet been conditioned: the cell canﬁ

and is likely to, not respond to the stimulus at its next

occurrence, and many more trials are nacessary in order to
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condition the response. A perceptron trained to one innut
pattern will, when it has responded correctly once to that
input, will continue to do so. Also, training a perceptron
to a particuluar input ic likely to interfere with its previous
training on other inputs. There does not scem to be any good

reascn that this happens in the same way with operant conditionihé&g
Behaviourally, an animal being operant conditioned makes explor- !
atory responses, apparently at random, until it makes/the correct
response, which is recinforced, A perceptron, which is limited

to two possible responses in a similar one-stimulus situation,
gives a series of incorrect responses and will thereafter give

a series of corrcct responses,

It was chown in the discussion of training algorithms for
perceptrons that a perceptron could be thought of as 'hill
ciimbin;' and that eacﬁ we%sht change effected a move up this
hill. Certuinly Uttley's ioﬁditional probability machine and
Young'slgiasram for operant conditioning in the octopus would
scem to preseat more accurate paradigms of operant conditioning.
If taen, percaptrons do not provide a model for operant conditione
ing, they may well describe other types of conditioning eSpecially
in improving the porformance of an already established task.
such conditioning could well involve this type of hill climbing

but a neurolorical represcntation of it has yet to be discovered,

Also, it hus been shown that in certain cases the weizhts involved
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can become very large - in such cases it may ve difficult to

find a reasonable mechanism for holding these larze numbers,

On the other hand there is no reason for suppos

such as the parity predicate are at all natural in a behavioural

Sense, yl

|

o

ing that Predicate;

Y e AT

=1
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CHAPTER 10 Conclusions and spaculations

No theory of memory or learning, however well founded
it is in physiology, is satisfactory unless it advances our
knowledgce of bchaviopr. It is not hard to devise systems i
which exnibit souc form of memory, nor is it usually difficul%
to build up somz neural analogue of such a system, Our asscss-
ment of‘any sueh fheory must finally rely on our idcas about
behaviour, Scnz proposals will be made here coacerning
associative naxts, and since it has been suggested that assoc-
iative nets could exié; in the cortex, such proposals will also
bz interoreted in terms of the function and evolution of the
neocortex. The central proposal is that it is the fuaction

of the neocortex to make predictive models of the eavironment,

To clarify thls last statement, assume the following
over simplified médel of bchaviour, An animal reccives a
stimulus S at a certain time - it produces a response R gnd
as a result receives a nzw stinulus St. St will be partly
or:wiholly predictaoble from S and R. Consider some exaaplzs

of this:

1) In operant conditioning, if some stimalus is given
(a bell) and a response is thenh made (pressing a
lever) a new stimulus (food) ensues; if some other

*

response 1s made a iifferent (or no) stimulus is

recelivead.
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2) In the visual perception of some static scene,
a wmovement of the cye causts the image on the

rctina to translate tarough a certain distance.

3) Any auscular contraction or relaxation causes

altered signals from the various receptors

associated with that muscle.

Iﬁ each case here S is a function of S and R, but in
general S and R do not determine a unique 5S¢, The environmnent
might not be static as in (2), for example. To take a com~ |
plicated paradignm, in a game such as chess, suppose that §
is given by the state of the board before a player makes a
move (R). S! - the state beforc he makes his next move will
depend on his opponent's move so that S and R do not determine
a unique S5°'. liowever, to start with let us make the naive

assuaption that S' is uniquely determined by S zand R.

The clalm is that an associative net is used to nredict
S' given S ond R: in neurological ‘terms this cannot mean
that the stimulus S' is physically reproduced by the nervous
system nor does it mcan that the sensory input fibres are
caused to fire in the same way that they would if 5t is
actually recceived, It 1s suggested that the pattzrns of
firiné of the pyramidal cells (which effect the output of tae

necocortex) cre similear whether SV is rccelved or not. This
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is compatible with the supposition that the neocortex can
be classically conditioned, the unconditional stimulus being
S with R and the conditional stimulus being St. It would be

interesting to inow whether this effect obtains even in the
'

sensory cortex. In the experiménts suggested in Chapter
7: can for example, the primary visual cortex be conditioned?
It is thén poséible that the 'moving edge!' detectors of Ilubel

aqd;Wiesellare established by this mechanism; and perhaps

such cells continue to fire even if the stimulus is halted or

turncd off in the midd}e of its traverse through the receptive

field,

In many situations therevwill be some very strong
connections between S and St, In one of thé examples above,
if R consists of some movement of thec eye, S' is apéroximately
a translate of S on the retina, it would seem unlikely that
each S' in this case has to be conditicned. \Winat is more
lilkkely is that there is some mechanism '‘for translating S, and
this may be achieved in the same way that group invariant nets
were constructed. It is unlikely that the 'correlograrh! is
an appropricte model hz2re because a great deal of coding taxes
place in the visual cortex ond a translation of the retinal
imaze will not cause a similar modification in the pattern of

firing cells. But 1t scems likely from Hubel and Wiesclids

-
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work that units of all types and orientations exist with
receptive fields in all parts of the fovea - if this is so
then the set of such units is ﬁlosed under the translation

‘group! and it is still possible to build associative nets
invariant under this operation.

We now digress and turn briefly to the possible use of
&roup invariant associative nets in the use of language.
It is not proposed here to expound any modern linguistic
theory except to state that it is commonly held that the

meaning of an English utterance can be in part represented

by some sort of graphical structure. The nodes of such a

structure represent words or grammatical constituents.

Suppose a set of demonstrative sentences is given and these
Any question

are passed into one or nore of these structures.
can also be parsed into another structure and the answer to

that question necessitates matching the question structure

with part of the original dewionstrative structure.

Take, for examnple the demonstrative sentence:

" A) Annie eats meat.

Which might be represented by:

S
NP N VP
4o L Neat

Annie
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The question:

B) What: does Annie eat?i

gives .us an incomplcte structure:

S

NP/// \\;VP
/o I\

-Annie eats *

To answer the question B, given A, is now straightforward
the parsing of B must be matched with the parsing of A. The
missing node in this case is the answer to the question, In

another case the question:

C) Does Annie eat meat?
Gots the answer yes if the parsing of A has been

given in a demonstrative sentence.

In one case, therefore we are seeking to match one graph
with a subgraph of another and then continue it. In the
other we are siuply segking a direct match of one graph with
another graph or subgraph. It has been suggested 2 that a
set of deﬁpnstrative sentences could be represented by a
.large connected graph with common tefminals identified: so

that if "Annie" occurs in two sentences we link the parsings
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of these two sentences by that word so that we can represent

these sentences by one connected graph.

The-problem of identifying a graph as a subgrarh of some
other gravh 1is superficially like that problem which is
resolved by hologfaphy. The graph recogniser in Chapter 4
shows that a group invariant associative net can .perform this
operation, In fact the graph recogniser worked on graphs
with undistinguished nodes, that is it worked simply on the
relation which defined.the graph. In the linguistic.problem
posed above we would not want to allow a noun phrase node to
be identified with a verb phrase node. Such a restriction
would mean that an associative net built for this purpose
would work on a subgroup of the full permutation group of
the nodes and perhaps on a subset of all possible relatiouns
betweeﬁ nodes.» Thcse two restrictions would mean taat the
size of sucﬁ a nzt would be reduced and, since fewer switches
would be 'tied', that the information that could be stored in

it would be very much greater.

It is not of course proposed that group invariant assoc-
iative nets will propsrly solve any linguistic model, nor is
it more than a very naive model for how the brain copes with

a particular problem. It is intended to show that the graph

L 4
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isomorphism problem which crops up in several areas of
artificial intelligence3can be tackled by parallel systens
rather than the reclatively slov pyrogrammes that have been

written to cope with it? : ;

To reconcile‘this proposal with what has been said
about madels of the environment is, at the moment, a very
difficult task. But if it seems too far-fetched to believe
that the mechanisms for préducing language are fundamentally
similer to those for meking predictive models of the environ-
ment, it is at least worth noting that it is an important,
and possibly-the only, function of language to communicate
expectations about the environment. It-is certain that what-
ever machénisms are involved in these abilities, they are

closely linked,

Whaf use is the ability to model the envircnment and vhy
did it develop? Why is 1t a necessary addition to whatecver
subcortical ledrning machinery that.exists? It has been
seen that some devices which can be operant conditioned can

suffer from drawbacks such os taking many trials to fespond -’

’

correctly to many different stimuli and !'forgetting! some
01k responzes vhen it is being trained to new stimuli. Such
a device, if it had in addition a past record of previous

stimuli, would be able to avoid ghese drawvbacks, It cculd
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train on these stored stimuli, and when'new stimuli were
presented, could continue to check these against its store

of old stimuli. If, in fact the store contains every stimuli
and the appropriate response, the operant conditioning machine
becomes redundant, however many; if not most stimalus -
response situations of the type descrived at the beginning of
this chapter need not nave any negative or positive reinforce-

ment accompanying them.,  They are initially neutral and may

only later becomne associated with some reinforcement.  Here
again we have a loose behavioural reason for supposing that the
cortex, if it forms such models,should be neutral with respect

to behavioural.or hypothalamic ‘rewards'.

In cdnnection with this, it has frequently been obéerved
thiat only higher animals can perform well in delayed condition-
ing tasks, and it is reasonable to interpret 'higherf.as meaning
the presence of neocortex. Furthermore, the destruction of
neocortex, cspecially the frontal lobeé?-can lead to the

impairment of this ability.

In phylogenetic terms the neocortex is an outzrowth of

the paleocortex which was originally a pzart of the brain

. (g : .
associated with smell) This is perhaps the moszt interesting
of senses in that it can be used for information about both

distant and close objects, Grcgbrgghas pointed out that feood
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disapnecars from sight wheh it is taken in and that touch is
only effective wien an object is close, Smell>and taste
iogether form a sense ﬁhich can detect objects which secrete
chexically (and wmost food is of this form) whether they are
distaﬁt or have been talken in, To indulge in teleology, a |
group of cells receiving information of this nature would be
an idea}~starting point for the outgrowth of a new structure
wiich could form predictive models. In a general way this
also ciréumvents a problem posed by Gregory: how did tlHe eye
develop when the bradn did not have the 'computing powert to
deal with the information it would receive? And why did the
brain develep such computing power when, if there was no well
developed eye, it‘had no data on which to compute? - The fact
that the neocortek, which includes the visual cortex, is an
extension of the rhinencephalon, that part of the nervous
system associated with smellsshows how the necessary inter-

medicte development took place.

Such requirements of cont}nuity in evolution also puts
up another obstacle for holographic théories. How can a few
cells store a useful fourier trensform or set of intsrference
fringes? On the otuner nand, viat sort of ‘mutation éould hawve
suddenly taken place in order to effect a working holograph in

the brain?
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Having proposecd this function for the neocortex that
it contains an internal 'world' of predictive models, what
can we say about Homunculus who explores this world? He is
clearly very complicated, but he is not quite as complicated
as.the nervousrsystem he inhabits, for he himself does not
have the ability to‘make these models, Homunculus no more
represents the individual that contains him, than a comguter
without its core store represents the whole machine. Ve have
suzgested that it ic possible to ogerant condition him and he
may be slichtly frog-like (the latter animal having no neo-
cortex). The point is that he is nevertheless coaplicated, and
a full understanding of the physiology of the neocortex may be
attained very much sooner than that of lower and phylogenetically

older structures.
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