University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/74075

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

by

Oscar Peter Buneman

Submitted for the degree of Doctor of Philosophy at the University of Warwick. November, 1970.

Abstract

The perceptron and the hologram are two dissimilar devices which have been advanced as neurological models. It is shown that there are other and perhaps more plausible models which have properties common to both of these devices. The performance of these intermediate models which are termed Associative Nets is described and analysed statistically. The main similarities and differences between perceptron theory and holography can. also be demonstrated; it is possible to demonstrate formal links between the translation invariance in certain types of holography and group invariance in perception.theory. Some single proofs of certain theorems in the latter are also given and some other learning procedures are formulated.

It is shown that the important difference between these various models resides in the method used to accomplish a modification. If this modificacion is an analogue of a neurolocical change ai a synaptic level, then it should be possible to qualify the relevance of those models by determining what types of synaptic change can take place in different parts of the nervous system. Although the evidence is far from complete, it suggests that the neocortex is limited to having one type of synaptic change. Finally, each model is discussed in respect of its neurolosical plausibility.

Much of the work described here was accomplished during the terms of an S.R.C. studentship at the Univorsity of Warwick. I am deeply grateful to Professor E.C. Zesman for his encouragement and enthusiasm and for his assistance in enabling me to meet people with similar interests. For many long and helpful discussions on physiology and anatomy I am indebted to Dr. P. Rack and Dr. Brian Cragg. I should also like to thank Professor H.C. Longuet-Higorins, Mr. S. Isard and Mr. D. Willshaw for tneir help in formuiating many of the ideas and for their ueful cominents on sone of the results.

ChAPTER 1 Introduction

Two theories have been put forward in recent years which, as models of the brain, have enjoyed some popularity. These are holography and the theory of perceptrons and similar learning machines. It is intended to show that between these two superficially dissimilar models there lies a series of alternative theories, so:ne of which are proposed as serious neurolocical models. An attenpt will also be made to exanine these theorics on the basis of existing neurological evidence and as a result of this examination a proposal is advanced concerning a structural. and functional difference between the neocortex and other parts of the nervous system.

In order to demonstrate the formal links between these theories, the first chapters of this dissertation will be concerned with a largely mathematical treatinent of these theories. The physiolofical or psycholojical rationale for their construction will be stated briefly in this chapter and as a short introduction to some of the theoretical chapters. The detailed investigation of this will be reserved for the later chapters.

Though a great deal of work has recently been directed at discovering a neurological basis for memory or learning (no attempt is made at the moment to define those terns) our understanding is still not very far advanced. This is perhaps rartly
due to the limited techniques of experinental neurology; perhaps it is even more due to the fact that we do not know which questions to ask of experimental neurolocy: that is, we lack good hypotheses about the nervous system. Nevertheless broad neurolosical considerations allow us to infer for example that the oreanisation of the brain does not very much resemble the organisation of the hardware of a digital computer.

No less important to our study of behaviour is our intuition about it. The recent advances made in our knowledge of the structure of English are founded more or less wholly on the intuition of native speakers. It is hard to believe that this study will not throw some light on the organisation of the huan brain. We might even hope for the reverse if sone sound neurological principles of the right kind were to be discovered.

Such considerations have led some neurophysiologists to taxe holography seriously as a model for memory. While holoeraphy, as a brain model, is somewhat condemned later on, many of its features are obviously attractive. Among these are the non local storage of information, the survival of the inage after damage to the hologram, the ability to 'recognise' displaced patterns and, in certain cases the recovery of a 'ghost' inage. These same consideraions led to the develoment of associative nets and group invariant associative nets which have many of these ieatures in common with holography and other desirable
properties as well. It is felt that such systems could be . realised in the nervous system and sone evidence is given for this.

Group invariant associative nets were initially developed as an attempt to solve some problems about our use of language, which may involve our ability to recognise the deep structure of one sentence as a part of the deep structure of another. It was felt that such an operation micht be accomplished by a parallel system rather than a serial search - which in this case is a very slow procedure. It is far too early to say whether or not such networks are embodied in the nervous system. It is however suggested that they may be relevant to the psychological phenomenon of generalisation in which for example one recognises an object in some position even though one has never seen it in precisely that position before.

One of the most gratifying results of this study was the close relationship it has to some recent results in the theory of perceptrons in which it is possible to say a cert:in anount about the size and structure of a perceptron that evaluates a predicate which is invariant under certain transformations of its arguments. It also served to underline the fact that the fundamental difference between perceptrons ond the other models lies in the way a change is effected in these devices. This is the only real distinction which will be made between modeis
of memory and models of learning. Such a distinction will be central to the neurolocical investigation of the later chapters in which it is sugeested that certain parts of the nervous system are more suited to 'remenber' and others are better able to 'learn' according to this distinction. The evidence for this is, of course, rather scanty but it does result in some hypotheses about the nervous system which could be tested by present neurophysiolodical and neuroanatomical techniques.

A final chapter will be devoted to speculation about how the brain can use a system which remembers or learns. It is unsatisfactory to produce a theory of memory unless one has some notion of a schema of behaviour into which it might fit. The relevance of group invariant associative nets to language and-forms of simple generalisation will be discussed along with the relation between these and other brain models.

CHAPTER 2 Holography

2.1. General Principle

Before embarking on a description of those aspects of holography which are considered to be of particular interest as models of memory, we outline the general physical setup. Holography was invented by Gabor as a method of getting round the limits of resolution of electron microscopes of that time. Gabor's proposal was to expose a photographic plate to the diffraction pattern produced by a small object in the coherent illumination of the electron lens system of an electron microscope. The developed plate is then put into a scaled up system of coherent optical illumination in such a way that the ratio of the linear dimensions of the two systems is the ratio of the wavelengths of the two sources. An enlarged image of the original object, which may be three dimensional, occurs in the optical system and this may be viewed or photographed by normal optical means.

According to Gajor, the principle underlying the reconstruction is the following. Suppose that two coherent monochromatic sources of the same frequency illuminate a photographic plate. Then the wave at that plate may be described by the functions:

$$
A_{0} e^{i\left(\phi_{0}+\frac{2 \pi c t}{\lambda}\right)} \text { and } A_{1} e^{i\left(\phi_{1}\right.}+\frac{2 \pi c t)}{\lambda}
$$

Where $A_{0}, A_{1}, \phi_{0}, \phi_{1}$, are real numbers and functions only of position on the plate. The intensity of the superposition of these two waves is then given by

$$
\begin{aligned}
& \left(A_{0} e^{i \phi_{0}}+A_{1} e^{i \phi_{1}}\right)^{\frac{1}{2}}\left(A_{0} e^{-i \phi_{0}}+A_{1} e^{-i} \phi_{1}\right)^{\frac{1}{2}} \\
= & \left(A_{0}^{2}+A_{1}^{2}+2 A_{0} A_{1} \cos \left(\phi_{i}-\phi_{1}\right)\right)^{\frac{1}{2}}
\end{aligned}
$$

The plate can then be developed in such a way that the photographic density is the square of this intensity, so that when this plate is illuminated in the same way but with just one of these sources $A_{0} e^{i\left(\phi_{0}\right.}+\frac{\left.\sum \pi i c t\right)}{\lambda}$ say, we get a transmitted wave: $e \frac{2 \pi i c t}{\lambda}\left(A_{0}^{3} e^{i \phi_{0}}+A_{1}^{2} A_{0} e^{i \psi_{0}}+A_{0}^{2} A_{1} e^{i \phi_{1}}+A_{0}^{2} A_{1} e^{i\left(2 \phi_{0}-\phi_{1}\right)}\right) \quad 2.1$

If A_{0} is constant over the plate, one part of this expression will be $A_{0}^{2} A_{1} e^{i}\left(\phi_{1}+\frac{2 \pi c t}{\lambda}\right)$ which is the second wave multiplied by the constant A_{0}^{2}. There are clearly other transmitted waves and it is only in certain circumstances that these other waves can be separated or neglected as small in comparison with the reconstruction of the second wave.

The most straightforward physical device to demonstrate this property is illustrated in ficure 1. This has been used by Leith and Upatnieks ${ }^{3}$. A laser produces a coherent bean of illumination which is reflected from both an object and a mirror to a photographic plate. The plate is exposed and developed and the object removed. On replacing the plate exactly in its original position a virtual irade of the object appears at the position of the object. In addition a real image is produced at the reflected position of the object in the photo-
sEraphic plate. There is also a plane wave component from the mirror. These are three of the four terms in the expression 2.1. and they are easily separated in the physical system.

Figure 1

Pribreflnas proposed this device as a model of memory, among his reasons are first that the hologram is a 'non local' store, there is not a point to point correspondence bet:\%en the plate and the object (as there would be in normal photo eraphy) and second that a fracinent of the plate can be used to reconstruct the whole object, though with some blurring. But we will examine this analogy in detail later.
2.2. Fourier Transform Holography

In Fourier Transform Holography the hologram plate records the power spectrum of a photographic transparency. The system shown in figure 2, which was proposed by van Heerden ${ }^{4}$ does just this operation:

Figs. $2 \cdot$
A source of coherent light illuminates a photographic transparency at P_{1} which is in the focal plane of the lens L. P_{2} is a photographic plate in the other focal plane. If the lens. is reasonably large then the amplitude of the wave arriving at P_{2} is proportional to
$A(s, t)=\frac{1}{\sqrt{2 \pi}} \iint_{P_{1}} e^{2} \pi_{i}(s x+t y) f(x, y) d x d y$
where (x, y) and (s, t) are coordinates for P_{1} and P_{2} measured from the optic axis respectively and $f(x, y)$ describes the density of the transparency at P_{1}. If we suppose that $f(x, y)$ is zero off P_{1} then $A(s, t)$ - where it is defined, is the two dimensional fourier transform of f.

To understand the usefulness of this, we first list some of the elementary properties of fourier transforms. . The fourier transform $m f$ of a complex valued function f of the real time is defined by

$$
m f(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{2 \pi i s x} f(x) d x
$$

$m f$ is only well defined for certain functions f, but the operation can be extended to take account of generalised functions so that, for example, a constant function has a well defined fourier transform, namely a delta function 5 . The properties of fourier transforms that we shall need here are:

1) $m^{2} f=n \bar{f}$ where $\bar{f}(x)=f(-x)$
2) $\mathrm{mf}:=(\overline{\mathrm{MI}})$
3) $m(f g)=(m f) \%(m g)$ where f ot is the convolution

$$
\text { of } f \text { and } g \text { i.e. } \int_{-\infty}^{+\infty} f(t) g(x-t) d t
$$

We also define the correlation of f and g to be the function:

$$
(f \circ g)(x)=\int_{-\infty}^{+\infty} f(t) \varepsilon(t-x) d t=f_{*} \bar{E} .
$$

And while convolution is comitative and associative, for correlation:
$f * g=\bar{E} * \bar{f}$

$$
(f \otimes g) \otimes h=f \otimes(g \otimes \bar{h})
$$

So that (mf)(inf)* $=m(f ; \bar{f})=m(f(\# f)$
This is the power spectrum of f which is also the fourier transform of the autocorrelation of f. Finally, if δ is
the generalised function with the property that

$$
\int_{-\infty}^{+\infty} \delta f=f(0) \text { then } f_{*} \delta=f \text { and } \delta * f=f
$$

These remarks apply equally to complex valued functions of R^{n}. How if we expose the plate in van Heerden's apparatus and develop it appropriately the density of this plate will be proportional to the square intensity so that we shall have recorded (mf) (mf)*. The exposed plate can now be replaced in its former position and in the position of the photograghic transparency at P_{I} we place a new transparency described by $g(x, y)$. Imnediately in front of P_{2} we will then cet a wave described by $m g$ and immediately after it a wave described by

$$
(m g)(m f)(m g) *
$$

Now by means of a second lens (see figure 3), we can perform the same optical operation to arrive at the fouricr transform of this expression:

$$
\bar{\xi}_{*} \bar{f}_{f}^{f}=\bar{\xi} *(f * f)
$$

How $f * f$ reaches a maxinum at 0 and if f is suitably noisy or random (in a sense we shall examine shortly) we may approximate i.t by a delta function at 0 so that the reconstructed image at P_{3} is:

$$
\bar{E} *(f \circledast f) \sim \bar{E}
$$

so that we recover, first of all an inverted imace of g. It may happen that, if E is a fragment of f then $g * f$ also resembles a delta function so that the recovered image at P_{3} can also be approximated:

$$
(\overline{\mathrm{g}} \Theta \overline{\mathrm{f}})_{*} \overline{\mathrm{f}} \sim \overline{\mathrm{f}}
$$

The latter is the 'ghost image' of f, that is to say we have recovered the whole of the original function f by putting into the system a fragment g of that function. Of course, these two approximations for the rocovered imase will only be consistent when $f=E$, in practice the image of G will be stronger than the image of f to an extent which depends on the size of the fragment g. Moreover - had the fragment E been displaced from f by a, a two-vector, then $\mathcal{E} * f$ would be a delta function displaced by a so that the ghost image of f would be correspondingly displaced, and in the output, the chost image of f will match with the strong reconstruction of g.

2.3. Applications

By taking various forms of f we can put the fourier transform holograch to a variety of uses. In particular if $f=f_{1}+f_{2}$ where f_{1} and f_{2} are non zero in adjacent regions then, having recorded the hologram of f we may use either of f_{1} or f_{2} to evoke an output of the other. So that putting in f_{1} will produce an output of f_{l} together with a chost image of $f_{1}+f_{2}$

A special case of this is where f_{2} consists of a single bright spot, at the origin say, so the function whose hologram we construct is of the form $f_{1}+\delta$, where δ is the delta function representing this bright spot. On inputting g to the system we reconstruct:

$$
\begin{align*}
& \overline{\mathrm{E}} *\left(\bar{f}_{1}+\delta\right) *\left(f_{1} * \delta\right) \\
= & \left.g \ddot{f_{1}} * \mathrm{f}_{1}\right)+\overline{\mathrm{E}}_{*} \bar{f}_{1}+\overline{\mathrm{E}}_{*} \overline{\mathrm{f}}_{1}+\overline{\mathrm{g}}
\end{align*}
$$

There are two choices we could make for 5 , the first is a bright spot, again suppose it is at the origin. Then the reconstruction of the image at P_{3} is

$$
f_{1} \oplus f_{1}+f_{1}+\bar{f}_{1}+\delta
$$

Suppose f_{1} had been chosen so that it occupied a limited region of space whose greatest distance was less than the distance of this recion from the bright spot (figure 4). Then of the
terins of $2.3 f_{1} \circledast f_{1}$ and δ would occupy a central region and the terms f_{l} and \bar{f}_{1} would be non zero in dianetrically opposite regins which are both adjacent from the central region.

Fig. 4 .

In consequence, we would get accurate recall of f_{1} and this is the case that most closely relates to the apparatus shown in figure 1.

The second choice we could make for g is to make it a fragnent of f_{1} so that from 1.4 the recalled pattern has now a term $\bar{E} \ddot{*} f_{1}$ which is $\left(\overline{\left.g()_{1}\right)}\right.$ so that we create a bright spot in the (inverted) image at the origin. Moreover if this fragment is displaced the bright spot will be displaced by a corresponding amount, so that the fragment may be located in the criginal. The latter is yan Heerden's sufgestion for locating a fracment
of a page in a stored library.

The final application of this system is to make a 'multiple hologram'. We expose the hologram plate to a number of separate transparencies and record $\left(m f_{1}\right)\left(m f_{1}\right) *+\left(m f_{2}\right)\left(m f_{2}\right) *+\ldots+\left(m f_{k}\right)\left(m f_{k}\right) *$ If we now input g_{i}, a fragment of f_{i} one of the output terms is

$$
\left(\bar{E}_{i} \oplus \bar{f}_{i}\right) * \bar{f}_{i} \sim \bar{f}_{i}
$$

Hopefully, there will not be much correlation between ε_{i} and any of the other stored f_{i}, so that the reconstruction of \bar{f}_{i} will predominate though we should expect there to be an increase in the noise level.

As to the noise, suppose now that in a one dimensional case, 'the signal f is repeated by a discrete set of values $\left(\phi_{1} P_{2} \ldots \phi_{n}\right)$ and that g is represented by $\left(\gamma_{1} \ldots \gamma_{m}\right)$. Then we may express the recall by

$$
\begin{aligned}
p_{k} & =\sum_{i j} Y_{-i} \phi_{-j+i} \phi_{k-j} \\
& =\sum_{i j} \gamma_{i} \phi_{j-i} \phi_{k+j}
\end{aligned}
$$

where $\quad \phi<i \leq m, \quad 0<j-i \leq n \quad 0<k+j \leq n$

The number of terns which contribute to each term P_{k}. is represented by the shaded area of the diagram above. We now make the assumption that the ϕ_{i} are independent with a gaussian distribution, each with a variance α. We also assume that g is a fragment of f so that $Y_{i}=\phi_{i}$ for $i=1 \ldots m$ Then, in general the variance of P_{k} will be $\alpha^{3} \sqrt{ } H_{k}$ where $N_{k s}$ is the number of terms in the expression for P_{k} or the area of the shaded region above. Those terms which contribute to the ghost image ρ_{k} are given by

$$
\begin{align*}
P_{k} & =\sum_{i=k+j} x_{i} \phi_{j-i} \phi_{k+j} \\
& =\sum_{j} Y_{k+j} \phi_{k+j} \phi_{-k}
\end{align*}
$$

whose variance will be $m \alpha^{3}$ since there are m non-zero y terms. So for $P_{k} \quad 1 \leq k \leq n$ the signal to noise ratio is $\int \frac{m}{N_{k}}$ Within these limits N_{k} varies between m^{2} and $n m-m^{2}$ so that the signal to noise ratio is never worse than $\left({ }_{(n-1}^{m}\right)$ nor better than 1. This is not very satisfactory, unless there is some redundancy in the si finals we cannot expect good recall of a ghost image from a small fragment.

The expression 2.5 above for $\hat{\rho}_{k}^{\prime}$ gives us a clue for a system which is fundamentally simpler than holography and
possesses, or can be modificd to possess all the desirable aspects of holography. These are associative nets to which we exanine in some detail.

CHAPTER 3 Associative Nets

3.1. Linear Associative Nets

In this chapter we shall discuss a class of models for memory which are conceptually simpler than holographic models yet retain any of the properties which make holography an interesting inodel. The likelihood that these associative nets are realised in the nervous system will be discussed in detail later, but it is worth pointing out now that such nets require only those properties of cells and synapses'which are almost universally acknowledged to exist in the nervous system. One property of fourier transform holography will be lost - the ability of such holographs to produce a displaced output from a correspondingly displaced input. Later we shall see how to recover this property and gain others by modifying these nets.

Rather than store continuous functions we shall think of the signals to be stored and recorded as vectors. If we have a set of n-vectors $\left\{\underline{x}^{i}\right\}$ where $x^{i}=\left(x_{1}^{i}, \ldots x_{n}^{i}\right) i=1,2, \ldots k$ then we may store the numbers $W_{p q}=\sum_{i=1}^{k} x_{p}^{i} x_{q}^{i}$ and on inputting a vector $y=\left(y, \ldots y_{n}\right)$ we may recover by matrix multiplication a signal

$$
\sum_{p=1}^{n} y_{p} \sum_{i=1}^{k} x_{p}^{i} x_{q}^{i} \text { or }
$$

$$
\sum_{i=1}^{k}\left(y \cdot \underline{x}^{i}\right) \underline{x}^{i}
$$

Now as in holography if y is a suitable fracnent of \underline{x}^{i} then the term $\left(\underline{y} \cdot \underline{x}^{i}\right) \underline{x}^{i}$ will preciominate and we again recover a ghost imace of \underline{x}^{i}. Ficure l shows a system which will do just this operation.

Each box in Ficure 1 represents a real number or "weight". When a vector \underline{x}^{i} is stored, the weight at the pth row and qth colunn is increased by $x_{p} x_{q}$. To recall we input a vector y alons the rows and form the weighted sum of its components in esch column - these constitute the outputs. Such a systen is linear and we note that if we have only one stored vector x the output from any input vector which is not orthogonal to x will be a multiole, the recovery of a 'ghost' inase in this case is not at all remarsable, but unlike the holocram it is noise free.

In the same way that an estimate for the signal to noise ratio was found for the holograph we can estimate the signal to noise ratio in this linear associative net. Suppose there are k stored n-vectors and suppose y is a fragaent of one of them in that it matches \underline{x}^{i} say, in m places and is 0 elsewhere. Then, as before if the components of the stored vectors are taken independently from a Eaussian distribution of variance α,
 while the noise term will have variance $(k-1) n \alpha^{3}$ and the signal to noise ratio will be $\sqrt{\frac{m}{(k-1) n}}$ which is of course infinite when $\mathrm{k}=1$.

There is nothing to stop us storing pairs of signals in an associative net of this kind, for example, let $\left(\underline{x}^{1}, \underline{y}^{l}\right)\left(\underline{x}^{2}, \underline{y}^{2}\right) \ldots\left(\underline{x}^{k}, \underline{y}^{k}\right)$ be pairs of n vectors. The weight (p, q) is now $\sum_{i=1}^{k} x_{p}^{i} y_{q}^{i}$ and inputtine Z, a fragment of \underline{x}^{i} we get $\sum_{i}\left(\underline{z} \cdot \underline{x}^{i}\right) y^{i}$ which should result in an output of y^{i}, such a system then 'associates' the pairs \underline{x}^{i} and y^{i}. The recali of \underline{y}^{i} is again subject to exactly the same noise as the case discussed previously. It is also worth noting that if the system is suitably constructed we may use it reversibly to associate \underline{y} patterns with \underline{X} patterns, or their fragnents. This is not a very plausible biolodical state of affairs.

The Linear A cociative Net with Thresholds

It is possible in part to eft round the noise problem in an associative net by endowing the signals with some sort of redundandy and using this redundancy to find the signal in the noise. As an example we consider the case in which each X_{p}^{i} and y_{q}^{i} is independently chosen to be +1 or -1 with probability $\frac{1}{2}$. The output from such a net will not, in general consist of l's and -l's so we call the output on one line +1 if the output is in fact positive and -1 otherwise. This could be readily realised by some threshold device on each output line.

We now determine the probability of error in such a system. Suppose that z is a fragment of \underline{x}^{1} and agrees with it in exactly m places (it is still ± 1 on the other places) so that $\underset{I}{z} \underline{x}^{1}=2 m-n$. This will be the strength of the signal on each output line. If the noise on that line i.e. $\sum_{i=2}^{k}\left(\underline{z}, \underline{x}^{i}\right) y_{q}^{i}$ is less than this number we get no error - in it is greater we get an error with probability $\frac{1}{2}$.

The probability that ($\underline{z} \cdot \underline{x^{i}}$) takes on a given value s, is

$$
P\left(\underline{z} \cdot x^{i}=s\right)=\frac{1}{2^{n}} \quad\left(\frac{n+s}{2}\right)
$$

where the binomial coefficient is taken to be O if $n+s$ is odd. The probability tinct $\sum_{i=2}^{k}\left(z \cdot x^{i}\right) y_{q}^{i}$ takes on the value s, given y is:

Wy examining coefficients in $\left(x+\frac{1}{x}\right)^{n(k-1)}$ this is seen to be
$\binom{n(k-1)}{\frac{n(k-1)+5}{2}} \cdot \frac{1}{2^{n(k-1)}}$
and this expression is, by the normal approximation

$$
\frac{1}{\pi \sqrt{n(k-1)}} \cdot \varepsilon-\frac{s^{2}}{4 \pi n(k-1)}
$$

and the probability of error then becomes

$$
\frac{1}{4 \pi \sqrt{n(k-1)}} \quad \int_{t>s} e^{-\frac{t^{2}}{4 \pi n(k-1)}}
$$

This can be evaluated numerically, for example, to get an error rate of less than 1% we require that $t^{2}>10 n(k-1)$ approximately. Certainly if k is of order n and $t=n$ ie. we use the whole of an \underline{X}^{i} as an input, the recall should become better as n increases. Wile this is not totally satisfactory as a store it is very much better than a linear associative net or the fourier transform holograph. It can also be shown that choosing equal numbers (on average) of +l's and -l's for the components of each vector is a "best" case: we might, for example have chosen the vectors from a different essemble in the following way.

Suppose the vectors (\underline{x}^{i}, y^{i} and \underline{z}) are chosen to have components $\frac{+1}{2 p}$ with probability p and $\frac{-1}{2 q}$ with probability q. Then we note that $\underline{x}^{i} \cdot \underline{x}^{i}=n$ and the expectation of $\underline{x}^{i} \cdot \underline{z}$ is 0 . The variance however is

$$
\frac{1}{16}\left(\frac{p^{2}}{p^{4}}+\frac{q^{2}}{q^{4}}+\frac{2 p^{q}}{p^{2} q^{2}}\right)=\frac{1}{16}\left(\frac{1}{p}+\frac{1}{q}\right)^{2}
$$

vinich is minimum when $p=q=\frac{1}{2}$.

By the Central Linit Theorem, the probability that $\sum_{i=2}^{k} \underline{z} \cdot \underline{x}^{i}>s$ will, for large n and k be least when $p=q=\frac{1}{2} \quad$ the case we have alreudy considered.

The Binary Associative Net
In a recent paper by willahaw, Buneman and Longuet-Higeins ${ }^{6}$
a rather different type of associative net was investigated. In this the input and output vectors consisted of ones and zeros. and the weights, unlike the linear associative nets were restricted to being 1 or 0 . The input vectors ${\underset{\underline{x}}{ }}_{i}$ now $\forall 1$ th N_{A} components are randomly selected from a set of such vectors, each with exactly H_{A} ones and $N_{A}-H_{A}$ zeros. The output vectors Y^{i} with N_{B} components were similarly chosen from a set with exactly H_{B} zeros.

The weight $w_{p q}$ is set to one if $x_{p}^{i} y_{q}^{i}=1$ for at least one i. We can think of these weights as switches, any switch is turned on by simultaneously seeing a one in its input and output lines and is never turned off. If we have stored R pairs of vectors and we then input a vector $\underline{x}^{\text {l }}$ say, we get an output

$$
\sum_{i=1}^{R}\left(\underline{x}^{I} \cdot \underline{x}^{i}\right) \underline{y}^{i}=M_{A^{1}} \underline{y}^{I}+\sum_{i=2}^{R}\left(\underline{x}^{I} \cdot \underline{x}^{i}\right) \underline{y}^{i}
$$

So that if we put a threshold of just under M_{A}, we will get a vector with ones whenever y^{1} has a one and possibly other ones as well which we regard as spurious.

If $M_{A} \ll N_{A}$ and $M_{B} \ll N_{B}$ we can calculate the probability that any line gives out a spurious one. The probability p_{c} that any weight is one is (since the patterns are chosen at random) given by

$$
1-p_{c}=\left(1-\frac{M_{A} A_{B}}{N_{A}^{N} B}\right)^{R}
$$

and since $M_{A} M_{B}$ is very small compared with $N_{A} N_{B}$ we may write

$$
R M_{A} M_{B}=N_{A} N_{B} \log _{e}\left(l-p_{c}\right)
$$

The probability that one line spuriously exceeds threshold is $p_{c}{ }^{M A}$ and, if we demand that there be on average one spurious output for each output pattern:

$$
\cdot\left(N_{B}-M_{B}\right) p_{c}^{M_{A}}=1
$$

which may again be approximated by

$$
M_{A} \log _{e} p_{c}=-\log _{e} N_{B}
$$

If we regard the information stored in such a network as the information necessary to store the R output patterns this is

$$
I=R \log _{2}\binom{\mathbb{N}_{B}}{M_{B}} \text { bits }
$$

and this may be written, using the previous expressions as

$$
I=N_{A} N_{B} \log _{e} 2 \log _{2} p_{c} \log _{2}\left(1-p_{c}\right)
$$

I then, reaches its maximum when $p_{i}=\frac{1}{2}$, that is when half the weights are one. In this case $I=N_{A} N_{B} \log _{e} 2$, so that the information density is about 0.69. Even if we were to use the $N_{A} N_{B}$ binary weights in some other manner, as in the core store of a computer, the information density could not be higher than 1. It is surprising that the information stored can be so high while we retain the association with arbitrary input patterns.

CHAPTER 4 Group Invariant Associative Nets

Although the associative nets of the previous chapter had many properties in comnon with the holograph, the ability to recognise displaced patterns was lost. Even if such an ability has no direct relevance to human perception, it is possible that the ability to recognise some transformations of an input may account for the psycholocical phenomenon of generalisation. For exanple, an object may be recognised by humans and some aninals when it is viewed in sone position in which it has never been seen before. Some transformation of the input (even if it is not displacement) has taken place. In this chapter we shall show how an associative net may be modified so that when a transfornation of its inputs takes place, we can ensure that a previously specified transfornation of its outputs also takes place. It will energe later that from the theory of such nets that we can prove, as a special case, Minsky and Pavert's group invariance theorem ${ }^{7}$ for perceptrons. Before dealing with the general theory, two examples are Given, the first is an associative net which is functionally sinilar to a holograph in that it will give displaced out juts from displaced inputs. The second will recognise one graph as a subgraph of another. This is a proble:n which may bear upon the manipulation of languase, but the discussion of this is reserved for the last chapter.

These two exanples will. be extensions of the binary associative net, so that the connections will be referred to as switches. Later, in the general theory we shall take account of the other types of associative'net.

4.1. The Correlograph

In the same paper in which they put forward the binary associative net, ":illshaw, Buneman and Longuet-Higéins ${ }^{6}$ also proposed an optical device the 'correlograph' which would record directly the cross correlation of two photographic transparencies. Such a device could, though it was limited by diffraction, be used to display all the properties of the holograph without the use of coherent ligit.. In detail the correlograph functioned as a binary associative net with its switches 'tied'. This means that whenever one switch in such a netis turned on (by recording a pair of patterns) a whole subset of the switches is also turned on. Suppose that, in a binary associative net. with N input and N output lines we turn on the switch (i,j) which connects the ith input line to the jth output line. We then turn on any other switch (p, q) if

$$
\begin{aligned}
& p=i+r \bmod N \\
& q=j+r \bmod N
\end{aligned}
$$

for some value of r. (We work modulo N to avoid boundary conditions wiich would produce, in some cases, incomplete outputs).

As before, we store pairs of patterns in which the input patterns have M_{A} active lines and the threshold on the output lines is just under $M_{A^{*}}$. Suppose that such an inout pattern is given by the active input lines $p(1), p(2) \ldots p\left(M_{A}\right)$ and this evokes an output of active lines $q(1), q(2) \ldots q(k)$. Then the input of the displaced pattern:

$$
p(1)+r, p(2)+r, \ldots \ldots p\left(M_{A}\right)+r
$$

evokes the correspondingly displaced output:

$$
q(1)+r, q(2)+r, \ldots \ldots q(k)+r
$$

Fig. 4.1. The sets of switches tied for a simple correlograph.

Tying switches in this way reduces by a factor $\frac{1}{\mathrm{~N}}$ the number of effective switches and consequently reduces by the same factor the amount of information that can be stored in such a net. We shall show later tha: some improvement can be gained
by suitably coding the inputs so that more input lines and more sets of tied switches are provided. But the net as it stands can be used to store cross correlations or auto-. correlations and function in a similar fashion to a holograph. 4.2. The Graph Isomorphism Problem

The problem is as follows: Given two graphs F and G, how do we recognise tat F is a part of G and, given that F is a part of G, what is the function that carries the nodes of F to the nodes of G if such a function is unique? Formally let T_{F} and T_{G} be two sets (the sets of nodes). A graph F is a relation T_{F} that is a subset R_{F} of $T_{F} \times T_{F}$; similarly a relation R_{G} defines a graph G. We say there is a graph monoorphism from F to G if there is an injection T_{F} to T_{G}, ϕ say, such that

$$
(\phi \times \phi)\left(R_{F}\right) \subset R_{G}
$$

F and G are isomorphic if there is a monomorpism F to G and a monomorphism G to F. Clearly any graph is isomorphic to the graph produced by permuting its nodes. What we shall do now is to demonstrate the existence of associative nets with tied switches which will, up to a point, recognise one graph as part of another. It will be recalled that a tied associative net can be made to function as a device which stones correlations and that if the autocorrelation of a function or pattern f is stored, then a sufficiently large fragment of f will produce a 'ghost
image' of f and this inage will be displaced by an anount corresponding to the displacenent of the fragnent. The following procedure for tying switches in an associative net, will in certain circunstances produce a 'ghost' graph with its nodes permuted to match with the input of the fragment.

We start by supposing that the given graph G is defined on a node set T_{G} containing N elements. G is then specified by a subset of the N^{2} pairs in $\mathrm{T}_{\mathrm{G}} \times \mathrm{T}_{\mathrm{G}}$. Now let us.suppose that these H^{2} pairs are in fact the input lines to an associative net. We have observed that permuting the nodes of a graph leaves us with an isomorphic graph so, for example the following figures will represent isomorphic graphs:

In fact the set of all such fraphs will be determined by correspondinf ${ }_{\tilde{0}}$ nermutations of the rows and columns in such a ficure. If the inputs are ordered row by row $1 \ldots N^{2}$ then the following permutations of these inputs will give isonorphic
inputs

$$
p N+q-p(p) \cdot N+p(q)
$$

where P is an element of the symmetric croup S_{N} and p, q are chosen so that q <N. Let us call this permutation group \sum_{N}, it is isomorphic to S_{N}. As we did in the discrete correlograph, we tie the switches togethor in the sense that if we turn on (p, q) we also turn on the switch $(\sigma(p), \sigma(q))$ for all $\sigma \in \sum_{N^{*}}$. Figure 42.1 shows \sum and the switches on the $3^{2} \times 3^{2}$ associative net that we would tie together in consequence. Each set of tied switches is denoted by the same letter.

A graph on three nodes X $Y Z$, say is represented by a choice of a subset of the numbers in the following diagram

	X	Y	Z
X	1	2	3
Y	4	5	6
Z	7	8	9

This would be rather a simple graph, but graphs of this size are adequate to illustrate the function of such associative nets.
(123 2456789)
(564879231)
(978312645)
$\left(\begin{array}{lllll}546 & 213 & 879\end{array}\right)$
(987654 642 1)
(132 798465)

	I	2	3	4	5	6	7	8	9
I	A	B	B	C	D	E	C	E	D
2	F	I	J	K	G	L	M	N	H
3	F	J	I	M	H	N	K	I	G
4	G	K	I	I	F	J	N	M	H
5	D	C	I	B	A	B	E	C	D
6	H	M	N	J	F	I	I	K	G
7	G	I	K	N	H	M	I	J	F
8	H	N	M	L	G	K	J	I	F
9	D	E	C	E	D	C	B	B	A

Figure 4.2
The permutation group \sum and an associative net with its switches tied by \sum.

The graph:

would then be represented by (X, X) and (X, Y) or 1 and 2 in this diagram. Now we could form the equivalent of an autocorrelation function in this diagram; that is to say we store the pair both with signals in lines 1 and 2 and in consequence turn on all the switches denoted by AB F I. We could now put into this net a part of this graph, not necessarily on the same nodes; for example we could put in the graph:

which is represented by 7 in the diagram and, if the threshold of the output lines is set at just under 1 we get an output on lines 7 and 9, that is the graph:

We not only get out the little one-link graph we put in but also a 'ghost image' of the original: This ghost image is again suitably altered to match with the input. Before embarking on extensions of this idea it is as well to examine the limitations of such a device in this form.

Our first obsorvation is that if we put in a graph which is ambicuously monomorphic with the stored graph then we cannot expect a unique representation of the stored fraph in the output. This corresponds to correlating a fraction of a picture with the autocorrelation of that picture when the fraction is an ambiguous part of the whole, we would expect an output of more than one 'ghost image'. This ambiguity may take on rather more serious forms; in the exanple above inputting the siaple fraph,

produces the output:

which is the superposition of the two possible continuations of this siaple graph which match the stored eraph. To get round this in any practical application of this device, we would have to have sone a priori knowleleg of how we wanted the graph continued and then to limit the number of output lines in an appropriate fashion.

A more serious limitation occurs because the number of groups of tied switches in such a device does not continue to grow as the size of the net increases. In fact if N (the number of nades) is four or more then the number of such Eroups is 15.

Compare this with the correloerraph where the number of these groups is n for an $n \times n$ net.

To see this*, we can label each switch in the net by (i, j, k, l) where i, j, k, l run from 1 to N. (i, j) defines the node pair which gives an input line and ($k, 1$) similarly defines an output line. Two switches (i,j,k,l) and (i',jl,k',l') are tied if and only if there is a permutation of S_{N} which carries i to i^{\prime}, j to j^{\prime}, k to $k \prime$, and l to l^{\prime}. For example if i,j,k,l are all different and so are i',j',k',l' if N 4 then we can form such a permutation, so that such switches are tied. In general there will be a partition of these four elements such that each member of the partition contains equal elements and any elements from two distinct members are unequal. Again, if $N 4$ then any other (i',j',k',l') with a similar partition. will reprecent a switch tied to the first. It is easy to see that there are only 15 such partitions.

We have already romarked that the capacity of such a net as an infornation store is linited by the number of distinct (untied) switches so that this upper linit would prove a serious drawback if this device were used to store much information. However, there is a method of increasing this capacity by the use of masks. A mask can be envisaed as a new input line

* I an very srateful to Mr. Stephen Isard for pointing out this solution.
which is active only when a certain subset of the old input lines are active, in the example just given the pair of input lines (1,7) would define a mask. The order of a mask is the order of the subset which defines it. If we were prepared to add to the $N^{2} \times N^{2}$ associative net all the $\frac{1}{2} N^{2}\left(N^{2}-1\right)$ masks of order 2 then we nave a further set of input lines and switches. and we can again give a procedure for tying together the new switches (we will do this in the next section). It can be shown at some length that the number of groups of tied switches on these masks is not greater than 114 , equality being reached when $N=6$. For $N=3$ the number is 56.

4.3. The Theory of G.I. Associative Nets

In this section we formalise what was done in the last section for graph recognition. To start with we shall generalise the definition of an associative net so that the cases we considered in Chapter 3 will be special cases of this. Suppose, firstly that the inputs $\left\{a_{i}\right\}$ are not necessarily binary but can assume any real value. We also assume that the connections may also be specified by real numbers $W_{j i}$, likewise the thresholds θ_{j} on the output lines. We adopt Minsky and papert's notation ${ }^{7}$ $\lceil P\rceil$ which has the value. I when the predicate P is true and 0 if it is false. (For example $\lceil 3>2\rceil=1\left\lceil P_{\&} Q_{Q}\right\rceil=\lceil\mathrm{P}\rceil\lceil\mathrm{Q}\rceil$)

$$
b_{j}=\left\lceil\sum_{i=1}^{n} w_{j i} a_{i}>\theta_{j}\right\rceil \quad 4.3 .1
$$

then defines the fth output, b_{j}.

We now assume that there is a group action which permutes both the input and the output lines. Let a be a group and let ρ and ρ^{\prime} be homomorphisms from G to the permutation groups S_{n} and S_{m} on the input lines and output lines respectively. For example in the correlocrapin $n=m$ and G was the cyclic group of order n; in the case of the graph recogniser, G was S_{N} and this was mapped onto the sroup Σ_{N} on both the input and output lines. In general, ho::ever we need not assume that $P G$ and $P^{\prime} G$ are isomorphic. Let $G \in G I$, in this section, by an abuse of
 written $b_{g(j)}$. This should not produce any confusion especially since we shall reserve the suffices i, n for the input and j, m for the output. Our first result is that if certain of che weights and thresholds are equal then the action of G on an input pattern will result in the corresponding action of G on an output pattern. Let \mathfrak{a} be the vector $\left(a_{1}, a_{2} \ldots a_{n}\right)$ and let a_{g} be the vector $\left(a_{\mathcal{E}}(1), \cdots a_{f(n)}\right)$ define \underline{b} and \underline{b}_{g} similarly, finally let Ψ be the function defined by 4.3 .1 . so that $\underline{b}=\Psi(\underline{a})$.

Prop. 4.3.2.

If for each of in $G, w_{j i}=W_{G}(j) \mathcal{E}(i)$ and $\theta_{j}=\theta_{G(j)}$
then if $\underline{b}=\Psi(\underline{a}), \underline{b}_{G}=\Psi\left(\underline{a}_{g}\right)$
Proof:

$$
\begin{aligned}
& b_{E(j)}=\left\lceil\sum_{i=1}^{n} W_{g(j) i} \quad a_{i}>\theta_{\delta(j)}\right\rceil \\
& =\left\lceil\sum_{i=1}^{n} W_{E}(j) E\left(E^{-1}(i) \quad a_{i}>\theta_{E}(j)\right]\right. \\
& =\left[\sum_{i=1}^{n} W_{j} g^{-1}(i) \quad a_{i}>\theta ;\right\rceil \text {, by the hypotheses. } \\
& =\left\lceil\sum_{i=1}^{n} W_{j i} a_{g(i)}>\theta ;\right\rceil \begin{array}{l}
\text { since the sum wrocecds } \\
\text { over all } i
\end{array} \\
& \text { which is the th component } \\
& \text { of } \Psi\left(\underline{a}_{g}\right)
\end{aligned}
$$

This shows that we get, as we expected from the examples, from inputs altered by an element of G correspondingly altered outputs. However, we would also expect that if P were not an endomorphism then it is possible that we only get this group invariant property because the outputs are rather simple. That is to say that several output lines will always produce the same signal. The following corollary makes this precise:

Let H be the group $e^{-1}(1)$ that is, the null space of ρ. Then $b_{E(j)}=b_{j}$ for each g in H.

Since g is in $P^{-1}(1) \quad \underline{a}_{g}=\underline{a}$ so that

$$
\underline{b}=\Psi(\underline{a})=\Psi\left(\underline{a}_{g}\right)=\underline{b}_{g}
$$

In order to avoid this situation of the output patterns being redundant we need to be able to identify G with a group action on the input lines. However we shall need the more general result of when we deal with the possibility of encoding the inputs. Before this, there is an interesting converse to the last proposition. It is clear that tying the connections of an associative net will reduce the amount we can store in it. Is it possible that there are nets which exhibit this group invariant property but whose performance would be altered by tying their switches? The answer is no:

Prop. 4.3.3

Let $\left\{\underline{a}^{t}, \underline{b}^{t}\right\}$ be a set of input-output pairs of an associative net defined by 4.3.1. so that $\underline{b}^{t}=\Psi\left(\underline{a}^{t}\right)$ for each t. If also there is a group G and homomorphisms ρ and ρ^{\prime} as before such that $\Psi\left({\underset{G}{a}}^{t}\right)=\underline{b}_{G}^{t}$ for each t and for each $E \in G$.

Then there is an associative net with weights $w_{i j}^{\prime}=w_{g}^{\prime}(i) g(j)$
and $\theta^{\prime} ;=\theta_{\dot{\delta}(j)}^{\prime}$ for all $\mathcal{E} \in G$; and which defines a function Ψ^{\prime} such that $\Psi\left(\underline{a}_{\delta}^{t}\right)=\Psi^{\prime}\left(\underline{a}_{g}^{t}\right)$ for each t and each $g \in G$.

Proof First of all we observe that if

$$
\lceil x>y\rceil=\left\lceil f_{1}(x)>f_{1}(y)\right\rceil=\left\lceil f_{2}(x)>\dot{1}_{2}(y)\right\rceil \ldots .
$$

for some functions $f_{1} f_{2} \ldots h_{1} h_{2} \ldots$ then :

$$
\lceil x>y\rceil=\left\lceil\sum_{i} f_{i}(x)>\sum_{i} i_{i}(x)\right\rceil
$$

Now by our assumption that $\bar{\Psi}$ is invariant under G, for each t we have

$$
\begin{aligned}
b_{c}^{t}-I_{j}(j) \therefore & =\left[\sum_{i=1}^{n} w_{j i} a_{j}^{t}-7(i) \cdots>\theta_{j}\right] \\
& =\left[\sum_{i=1}^{n} w_{j o t i)} a_{i}^{t}>\theta_{j}\right]
\end{aligned}
$$

So that $\left.b_{j}^{t}=b_{g}^{t}-I_{j}\right)$

$$
=\left\lceil\sum_{i=1}^{n} W_{g(j)} g(i)^{a_{i}^{t}}>\theta_{G(j)}\right\rceil
$$

But b_{j}^{t} is also $\left\lceil\sum_{i=1}^{n} w_{j i} a_{i}^{t}>\theta_{g(j)}\right\rceil$
Summing over all $\mathcal{E} \in G$, we have by our first observation that $b_{j}^{t}=\left\lceil\sum_{i=1}^{n}\left(\sum_{G \in G} v_{g(j)} g(j)\right) a_{i}^{t}>\sum \theta_{g(j)}\right\rceil$
So that we may set $w_{j i}^{\prime}=\left(\sum_{\mathcal{E} \in G} w_{\mathcal{E}(j)} E(i)\right)$
and $\quad \theta_{j}^{\prime}=\sum_{G} \theta_{\delta(j)}$
So that θ_{j}^{\prime} and ${ }^{\prime \prime}{ }_{j i}^{\prime}$ have the required property.

This result, then shows that. if a net has a group invariant property, an associative net with tied connections can be built which has the same power in that it not only realises the invariance under the sane group, but that the input output pairs will be the same.

Encoding

Since tying switches will always reduce the amount of information that can be stored in an associative net, it would be advantageous to increase the number of connections in the net, and possibly in consequence, the number of sets of tied connections. We can do this by a set of encoding functions Φ which are simply a set of real valued functions on the input space. The set of encoding functions will map the space of inputs into a new and generally, higher dimensional space. The set Φ is said to be closed under G if for all $G \in G$ and $\phi \in \Phi$:

$$
\phi^{g}(\underline{x})=\phi\left(\underline{x}_{g}\right) \in \Phi
$$

where we have used $\underline{x}=\left(x_{1}, x_{2}, \ldots x_{1}\right)$ to denote an element in the input space, and supposed that G is a permutation group on these in juts.

Now it is easy to see that if $£$ is closed under G then there is a homomorphism from G to S Φ, the permutation group on Φ. We are now in a position to let the values of the functions P serve as the inputs to an associative net so that
$a_{i}=\phi_{i}$ for some ordering of the encoding functions. We can further let $a_{E}(i)=\phi_{i}^{E}$ and tie the connections of this new associative net as before. We now get the result that the input output pairs of this nat. with encoding functions will be invariant under G. That is if:

$$
b_{j}(\underline{x})=\left\lceil\sum_{\Phi} w_{j i} \phi_{i}(\underline{x})>\theta_{j}\right\rceil
$$

then

$$
b_{g(j)}\left(\underline{x}_{g}\right)=b_{j}(\underline{x})
$$

In a similar way the outputs of an associative net can also be encoded, but in order to store anything in such a net the encoding functions would have to be reversible. Moreover it is useful only in certain cases to have any coding on the output wires. An associative net whose connections are thresholds are described by arbitrary real numbers and whose encoding functions are masks can be thought of as a battery of two layer perceptrons. It will be shown shortly that such a device can realise any map from the space of all binary inputs to the space of all binary outputs, so that any coding of the outputs is unnecessary. In cases where the limitations of the net produce incorrect outputs it may be possie to correct for these by encoding: functions which exploit some redundancy in the uncorrected outputs.
higher. Likewise with the correlofraph, we can use as extra inputs masks of order two or more and retain the group invariant property of the network. As an example there are ($\binom{n}{2}$ masks of order 2, and for the correlograph we tie them with the output lines under the group Z_{n} with the appropriate homonorphisins. Under Z_{n} the masks split into $\frac{n-1}{2}$ transitive subsets of n elements each if n is odd. If n is even there are $n / 2<1$ transitive sets of n elements and one of $n / 2$ elements. Thus in the first case we will have $\frac{n(n-1)}{2}$ groups of tied switches and in the second $n(n / 2-1)+n / 2=\frac{n(n-1)}{2}$ groups. In general there will be (n) masks of order r and these will give rise to $\binom{n}{r}$ groups of switches in the correlosraph.

The most interesting theoretical aspect of group invariant associative nets is the close relation they bear to Minsky and Papert's two layer group invariant perceptrons. The result which gives, as a special case, their group invariance theorem is the following extension of 4.3.3. to the case where we have encoding fu:rctions.

Prop. 4.3.4.

Suppose an associative not has a set of encodins functions I closed under G a permatation croup on the arcuments of these functions, and that G acts on the output lines as before

If for a set of inputs $\underline{x}^{2}, \underline{x}^{2} \ldots \underline{x}^{-}$

$$
b_{j}^{t}\left(\underline{x}^{t}\right)=b_{g(j)}^{t}\left(\underline{x}_{g}^{t}\right) \text { for all } g, t \text { and } j
$$

Then the same outputs $\left\{\underline{b}_{\mathbb{E}}^{t}\right\}$ can be realised by an associative net in which $W_{j i}=W_{G}(j) G(i)$ and $\theta_{j}=\theta_{g(j)}$. The proof is immediate from 4.3.3.

4,4. Generalised Correlation

We have seen in the previous sections how associative nets can exhibit croup invariant properties. But associative nets unlike holographs - operate on discrete input spaces. We now turn to the problem of whether we can generalise the definition of correlation (for functions defined on the real line or R^{n}) so that we can get group invariant properties for groups other than the translation group. We shall also see that when we get such group invariant properties (they are only obtained for certain groups) we can sometimes obtain the equivalent of a fourier transform which, as before, maps the generalised correlation of two functions into their (pointwise) product. To begin with we recapitulate on the uses of correlation:

Suppose that f and \mathbb{C} are two functions on the real line (we shall extend to higher dimensions later). Their cross correlation f 踪 was defined to be:

$$
(f \otimes g)(t)=\int_{-\infty}^{+\infty} f(x) g(x-t) d x
$$

Correlations may be used in the following ways if the functions used satisfy certain conditions. These statements are not mathematically precise; they need the statistical qualification

$$
\begin{aligned}
& \text { If } E \text { resembles a fragment of } f \text { for example if } \\
& \mathscr{E}(x)=f(x) \text { on } a \leq x \leq b \\
& \\
& O \text { elsewhere }
\end{aligned}
$$

then $f \in$ will have a peak at $t=0$ whose width and sharpness will depend on f and g. In general if f and g are 'noisy' and $b-a$ is lares, this peak will be sharp.

If G^{\prime} resembles a displaced fragment of f, for example if $g^{\prime}(x)=g(x+\tau)$ then

$$
\left(f \circledast \xi^{\prime}\right)(t)=(f \in g)(t-\tau)
$$

so that f 因我 will have a displaced but otherwise similar peak at $t=\tau$. Thus we could use this peak to locate a fragment of a signal in that signal.
2. Recall

Consider $(E \oplus f) \oplus E=(E \oplus \mathcal{O}) \oplus f$; if as before \mathscr{E} is such as
 So that if we can store far, a subsequent correlation of this with g will produce an output or 'recall' of f. Moreover if we had stored several pairs $f_{1} E_{1}, f_{2} E_{2}, \ldots$ as well as $f g$ so that the contents of the store were $E @ f+\mathcal{E}_{1} f_{1}+E_{2}$ Of \ldots, then on correlating this with E would give the output

$$
(g \& f) \& f+\left(g G_{1}\right) \Delta f+\left(\delta \& g_{2}\right) \otimes f+\cdots
$$

Then, provided f does not 'resciole' $E_{1} E_{2} \ldots$ the output should asain approximate f. As before, a displaced input of E will produce a correspondinily displaced output of f. Another interestine feature of this type of storage is that if we put in an inverted copy of f i.e. $f(-x)$ we get an inverted output of g so that the store can be used reversibly.

3. Ghost Imaces

A related, but not identical situation to that in the previous section is where we store the autocorrelation of a function say $f *$. If we form the correlation of this with another function g we expect to get from $(f \otimes f) \&$ a copy of g. Eut since this previous expression can also be written as (f\&g) f, if f, as in s section l resembles a part of f, then we should also get a weaker output of f. This is the 'ghost image' of holography and is a special case of the more general holographic reconstruction which does not employ fourier transforms. The same remarks about storing several patterns and displacoments apply.

It has already been said that these renarks lack any kind of mathematical rigour and that the signal to noise ratio in the output must be examined as before, before these claias can be made with any statistical justification. However our inacdiate purpose is to examine the possibility of extending these remarks to take account of other operations of the input space apart from displacements. As a start we will examine the possibility of
recognising one function as a dilated version of another.

Suppose that we have the problem of recognising a function on a line as a dilated (expanded or contracted) version of another. Let f be such a function, and let g be a dilation of it so that $f(x)=C(\lambda x)$. Now consider the function

$$
\phi(t)=\int_{-\infty}^{\infty} f(x) \quad \varepsilon(t x) \frac{d x}{|x|}
$$

it is clear that this integral will not exist unless we place some restriction on f and E such as being $O\left(x^{a}\right)$ for some positive a) in a neighbourhood of 0 . We can first show that ϕ reaches its maximum value at $t=\lambda$; for:

$$
\begin{aligned}
& \phi(t)=-\frac{1}{2} \int_{-\infty}^{+\infty}(g(\lambda x)-g(t x))^{2} \frac{d x}{|x|} \\
&\left.\quad+\frac{1}{2} \int_{-\infty}^{+\infty}\left(g^{+\infty} \lambda x\right)\right)^{2} \frac{d x}{|x|}+\frac{1}{2} \int_{-\infty}^{+\infty} s((t x))^{2} \frac{d x}{|x|}
\end{aligned}
$$

The second tivo terms are constant and the first term cannot be greater than 0 . Then ϕ must reach its maximum value at $t=0$ where the first term is zero. Moreover we can make the same remarks as before about storing and retrieving as before except that now, the retrieved patterns are dilated to an extent winch corresponds to the dilation of the inputs.

We might now wonder if there is a generalisation of this procedure to other operations on the real line. The following
proposition shows when and when we cannot hope to extend it to other operations.

Let ${ }^{*}$ be a set of functions defined on S and taking values in S, where S is a subset of the real line, which is a semigroup under composition ie.

- 代 1 位 is a function in \neq whenever $K_{1} N_{2}$ are in

Prop. 4.4.2.

If: 1) There is a nontrivial homomorphism E carrying the semi group into the additive reals.
2) There is a point a of \boldsymbol{S} with the property that: for any x in S there is an f in F and $\mu(a)=x$
3) $\mu_{1}(a)=\mu_{2}(a)$ implies $\mu_{1}=\mu_{2}$.

Then we can find a function $Y: S \rightarrow R$ such that:

$$
Y(X)=Y(\mu(x))-E(\mu)
$$

Proof: . Let $Y(x)=E\left(\mu_{1}\right)$ where $\mu_{1}(a)=x \cdot \mu_{1}$ exists and is unique by 2 and 3.

- Now $Y(\mu(x))=E(v)$ where $\mu(x)=\nu(a)$ so that $\nu(a)=\mu\left(\mu_{1}(a)\right)$ and hence $V=\mu \mu$

We can therefore write

$$
\begin{aligned}
Y(\mu(x)) & =E\left(\mu \cdot \mu_{1}\right)=E\left(\mu_{1}^{*}\right)+E(\mu) \\
& =Y(x)+E(\mu) .
\end{aligned}
$$

The importance of thicis that we can find integrals which are invariant under transformations by members of S of the underlying space. Suppose that, in addition that the functions are differentiable and that the function Y turns out to be differentiable, then from the preceding proposition $\%$ find that.

$$
\phi(x)=\mu^{\prime}(x) \quad \phi(\mu(x))
$$

where $\phi=Y^{\prime}(x)$
so that $\begin{aligned} \int_{s} f(\mu(x)) \phi(x) d x & =\int_{S} f(\mu(x) \phi(\mu(x)) \cdot \mu(x) d x \\ & =\int_{s} f(x) \phi(x) d x\end{aligned}$

Now in the example 4.4.1. we took $\mu_{t}(x)$ to be tx so that the conditions of the previous proposition are satisfied by taking $a=1$ and $E(\mu)=\log t$. We then find that $Y(x)=\log x$ and that $\phi=1 /|x|$ as we had beforehand. (Taking a different a would not nave altered this latter result).

It is worth perhaps, examining other functions on the real line to see how this method applies in other cases for example:

In all these it is easy to find an appropriate range for the integration, though perhaps, in this one dimensional case, the only interesting operators are translation, $x+t$ and dilation $t x$.

It is possible to use these ideas to show that we can meaningly define a correlation function over the set of transformations. We define

$$
\left(f \otimes g(G)(t)=\int_{s} f(x) g\left(\mu_{t}(x)\right) \phi(x) d x\right.
$$

It is then easy to show that if $E\left(\mu_{t_{i}}(x)\right)=f(x)$ for some t_{1} then ($f=E$) (t). reaches its maximum value where $x=t_{l}$, by using the same procedure that we used in 4.4.2.

- We can now show that this generalisation of a correlation function is in some cases equivalent to the standard definition. We assume, in addition to the conditions of prop. 4.4.2. that E is an epimorphisin from \mathcal{F} to R. It may happen that the functions f, g which we wish to correlate can be written in the form

$$
f(x)=F(Y(x)), g(x)=G(Y(x))
$$

then:

$$
\begin{aligned}
\left(f G_{\mu}()(t)\right. & =\int_{s} F(Y(x)) G\left(Y\left(\mu_{t}(x)\right)\right) \phi(x) d x \\
& =\int_{i\left({ }_{s}\right)} F\left(Y \left(G\left(Y+E\left(\mu_{t}\right)\right) d Y\right.\right.
\end{aligned}
$$

From the conditions of prop. 3.2., if E is an epimorphism $\not \subset \sim$ R then Y maps S onto R so that the range of thais integral is R and that it takes on a unique value for each value of $E(\not y)$. So that if we can effect the transformation 4.4.3. then ire can, by mapping R to $E(\not Z)$ transform this generalised correlation into the standard (additive) definition.

The point of 3.2. is that it enables us to construct, in certain cases the correlation ova ra given group of transformations, it is a sufficient, rather than a necessary set of conditions. There are certainly generalisations of it; for example the second condition, a sort of transitivity, can be replaced by a condition which divides S into a set of transitive subsets.
4.4.2. will also generalise to higher dimensions: \mathcal{Z} is now a semigroup of operations $S C R^{n} \rightarrow R^{n}$, E carries S into the additive croup $R^{n} Y$ is then a function $S \rightarrow R$ and, if it is differentiable is the Jacobian of Y.

We cannot, in General hope to define correlation functions In this manner for non-comnutative groups, for example the group of all translations and dilation of the real line is not commutative, an element of it can be written

$$
\mu_{a, b}(x)=a x+b
$$

it is easily seen that condition 3 of 4.4 .2 . is not satisfied by such a set of functions and that the integral

$$
\int_{-\infty}^{+\infty} f(a x+b) \phi(x) d x
$$

for any choice of f for winch the integral exists will only be
invariant if.itiso. It is worth noting that if f and g are functions which only take on the value 0 or 1 and if $f(x)=E(a x+b)$ then the integrai

$$
\int_{-\infty}^{+\infty} f(x) g(s x+t) d x::
$$

takes on its maximum value where $s=a, t=b$ because this integral is always less than the integral of $f(x)$ or $f^{2}(x)$.

We now turn to the theory of two layer perceptrons and demonstrate the relation between these and group invariant associative nets.

CHAPTER 5 Perceotrons

In this chapter we shall examine the correspondence between group invariant associative nets and Minsky and Papert's work on 7 perceptrons. Sone of their main results will be proved here by rather different inethods, which seem more direct. Their work is based on the fact that any Boolean function of n Boolean variables can be realised by a 'two layer perceptron' the first layer consists of a set of masks whose outputs are weighted and summed. According as this sum is greater or less than a certain threshold we get an output of 1 or 0 .

To make this precise, an input x will be an n-tuple $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ where each x_{i} is either 0 or 1 . A mask, as it was defined previously, is a function of the form:

$$
\phi_{S}(x)=\prod x_{i}
$$

$i \in S$
where S is a subset of the integers l... n. Also as before, $\lceil P\rceil$ is refined to have the value 1 whenever P is true otherwise it is O. A Boolean function ψ is linear in a set Φ of Boolean functions if

$$
\psi(x)=\left[\sum_{\phi \epsilon \Phi} w^{W} \phi(x)>\theta\right]
$$

for real numbers w and θ, then:
Prop. 5.1. Any Boolean function $\psi(x)$ is linear in the set of all mashing $\left.\oint_{S}(\underline{x})\right\}$

Proof: by induction on n, the number of variables. If we let the empty set define the constant mask, ϕ_{O} which always has the value 1 , then the Boolean constants (functions of no variables) are Given by $\left\lceil W_{0} \phi_{0}(\underline{\lambda})>0\right.$, if we take W_{0} as +1 or -1. This is the inductive base. Now we assume that for $n-1$ variables: $\left(x_{1}, x_{2}, \ldots x_{n-1}\right)=\underline{x}^{\prime}$, say

$$
\psi^{\prime}\left(\underline{x}^{\prime}\right)=\left\lceil\sum_{S} W_{S} \phi_{S}\left(\underline{x}^{\prime}\right)>0\right\rceil
$$

where the S^{\prime} are subsets of the integers $1,2 \ldots n-1$.

If $x_{n}=1$, we may write in consequence:

$$
\psi(\underline{x})=\left\lceil\sum_{S^{\prime}} a_{S}, \phi_{S^{\prime}}\left(\underline{x}^{\prime}\right)>0\right\rceil
$$

and if $x_{n}=0$

$$
\psi(\underline{x})=\left\lceil\sum_{S}, b_{S}, \phi_{S},\left(\underline{x}^{\prime}\right)>0\right\rceil
$$

this is equivalent to writing

$$
\psi(x)=\left[x_{n} \sum_{S} a_{S} \phi_{S},\left(\underline{x}^{\prime}\right)+\left(1-x_{n}\right) \cdot \sum_{S}, b_{S}, \phi_{S},\left(\underline{x}^{\prime}\right)>0\right]
$$

now the function $x_{n} \phi_{S}\left(\underline{x}^{\prime}\right)$ is simply the mask $\phi_{S}(\underline{x})$
where $S=S^{\prime} \cup\left\{x_{n}\right\}$ so that the last expression, which is

$$
\psi(\underline{x})=\left\lceil\sum_{S^{\prime}}\left[\left(a_{S^{\prime}}-b_{S^{\prime}}\right) x_{n} \phi_{S}(\underline{x})+b_{S}, \phi_{S^{\prime}}\left(\underline{x}^{\prime}\right)\right]>0\right]
$$

is linear in a set of masks, and the induction is complete.

As an example of putting predicates in this form, we examine the nature of the predicate that the number of ones in the input is an odd number, or:

$$
\psi_{p}(\underline{x})=\left[\sum_{i=1}^{n} x_{i} \text { is odd }\right]
$$

We define the order of a mask Φ_{S} to be the order of (or the (finite) number of points in) the set S. The orders of the masks necessary to represent certain predicates are of theoretical interest, and certainly of practical interest if one believes that perceptrons are useful models of parallel processing. From this point of view ψ^{2}, is a particularly 'bad' case, as the following results show.

Prop. 5.2. If ψ_{P} is linear in a set Φ of masks then Φ contains the mask of order n.

Proof: If $n=1$ then clearly ψ_{p} requires the mask of order 1. Let II be the first n for which ψ_{p}^{\prime} is linear in a set of masks of order less than N. Then

$$
\psi_{S}(\underline{x})=\left[\sum_{S \in \Phi} a_{S} \psi_{S}(\underline{x})>0\right]
$$

where Φ contains masks of order less than N. Now let Φ_{1} be the subset of Φ whose masks contain x_{N} and let $\Phi_{2}=\Phi-\Phi_{1}$. Then

$$
\psi_{p}^{\prime}=\left\lceil\sum_{S \in \Phi_{1}} a_{S} \phi_{S}+\sum_{S \in \Phi_{2}} a_{S} \phi_{S}>0\right]
$$

Now if $S \in \Phi_{1}$, define S^{\prime} as $S-\left\{x_{n}\right\}$ and set $a_{S 1}=a_{S}$ also let Φ_{1}^{\prime} be the set of all such sets S'. Φ_{1}^{\prime} then x contains masks of order x less than N-1. So that

$$
\psi_{S}^{\prime}(\underline{x})=\left[x_{N} \sum_{S^{\prime} \in \Phi_{1}^{\prime}} a_{S}, \phi_{S},(\underline{x})+\sum_{S \in \Phi_{2}} a_{S} \phi_{S}(\underline{x})>0\right]
$$

In this expression we can set $x_{N}=1$ or $X_{N}=0$. In the first case we will get a Boolean function of the N-l variables $\underline{x}^{\prime}=\left(x_{1}, x_{2}, \ldots x_{N-1}\right)$ which must be the even predicate: :

$$
\left\lceil\sum_{i=1}^{N-1} x_{i} \text { is even }\right\rceil
$$

In the second case we must get the odd predicate ψ_{P}^{\prime} on these N-l variables. So that by taking the negation of the case $x_{N}=1$, we get two expressions for the odd predicate ψ_{P}^{\prime}, namely:

$$
\begin{aligned}
\psi^{\prime}\left(\underline{x}^{\prime}\right) & =\left[-\sum_{S^{\prime} \in \Phi_{1}} a_{S} \phi_{S}\left(\underline{x}^{\prime}\right)-\sum_{S_{\in} \Phi_{2}} a_{S} \phi_{S}\left(\underline{x}^{\prime}\right) \geq 0\right] \\
& =\left[\sum_{S \in \Phi_{2}} a_{S} \phi_{S}\left(\underline{x}^{\prime}\right)>0\right.
\end{aligned}
$$

We can now 'sum' these predicates to get an equivalent expression for ψ_{P}^{\prime} :

$$
\left\lceil\sum_{s^{\prime} \in \bar{I}_{1}} a_{s}, \phi_{s_{1}}>0\right\rceil .
$$

But we have already noted that Φ_{1}^{\prime} contains masks of order at most $N-2$, so that we have found an expression for ψ_{p}^{\prime} which is linear in masks of order $\mathrm{N}-2$; and this contradicts our initial assumption.

From the proof of this proposition we can also infer that ψ_{P} must contain any mask that ψ_{P}^{\prime} always contains. Continuing this argument, if ψ_{P}^{A} is the parity predicate on the variables $\left\{x_{i}: i \in A\right\}$ where A is any subset of the integers $1 \ldots n$ then ψ_{P} contains any mask that ψ_{P}^{A} must contain, in particular it must contain the mask \oint_{A} (by the previous proposition. Hence: Prop: 5.3. ψ_{p} contains all masks.

Using similar methods we can also find a set of weights for ψ_{P} :

Prop. 5.4. An expression for ψ_{P} is:

$$
\psi_{P}=\left[-\sum(-2)|s| \phi_{S}>0\right]
$$

Proof

Define the function $P_{N}\left(x_{1}, x_{2}, \ldots x_{N}\right)$ as

$$
-\sum(-2)|s| \phi_{S}
$$

where the sum extends over all subsets (including the empty set) of the numbers $1,2 \ldots$. We shall prove inductively that

$$
\begin{aligned}
& P_{N}=1 \quad \text { if } \sum_{I}^{N} x_{i} \text { is odd } \\
& P_{N}=-1 \text { if } \sum_{I}^{N} x_{i} \text { is even }
\end{aligned}
$$

Certainly P_{1} has this property; assume that P_{N-1} also has it, then the expression

$$
-x_{N} P_{N-1}+\left(1-x_{N}\right) P_{N-1}
$$

also has it. But this can be seen to be P_{N}. The point of doing this is the number of masks and their coefficients constitute a worst possible case, ie, there are predicates where macks of high order and large weights are needed. By examining the proof of Prop. 5.1. it can be seen that if the weights are integers, then any Boolean function can still be realised and that the magnitude of the weights need not be higher than 2^{N}.

Group invariant perceptrons

There is a very close relation between the two layer perceptrons that have just been discussed and the associative nets with encoding functions that we discussed in the last chapter. In fact, a two layer perceptron is such a net whose inputs are binary, whose encoding functions are masks and which hes precisely one out jut line. Let G be a group of permutations of the integers $1 . . . n$ and let S be a subset of those integers. We can define the $g(S)$ by $\{1: ~ g(i) \epsilon S\}$ so that for each mask ϕ_{S} we can define a mask $\oint_{E(S)}$. As before, a set Φ of masks is. closed under G if $\phi_{E(S)} \in \Phi$ whenever $\phi_{S} \in \Phi$, so that we nave a
homomorphism \boldsymbol{P} from G to the permutation group on Φ. Also we let ρ^{\prime} be the trivial homomorphism from G to the trivial group of permutations of the one output line. Then the two results that we derive from 4.3 of the previous chapter are:

Prop. 5.5. If Φ is closed under G and if, for all masks ϕ_{S} and all $\in \in G \alpha_{S}=\alpha_{G(S)}$ then the predicate

$$
\psi(\underline{x})=\left\lceil\sum \alpha_{S} \phi_{S}(\underline{x})>0\right\rceil
$$

is invariant under G; that is to say that

$$
\psi\left(\underline{x}_{E}\right)=\psi(\underline{x}) \text { for all } g \in G
$$

Prop. 5.6. If Φ is closed under G and if ψ has a representation:

$$
\psi=\left\lceil\sum a_{S} \phi_{S}>0\right\rceil
$$

and is invariant under G
then it also has a representation

$$
\psi=\left\lceil\sum b_{S} \phi_{S}>0\right\rceil
$$

where $b_{S}=b_{\mathcal{C}(S)}$ for all ε.
The latter, then is Minsky and Paper's Group invariance theorem. They use it to obtain bounds on the sizes of perceptrons needed to recognise contain, mostly geometrical, predicates. In addition they use it to show that ψ p' the parity predicate, requires all masks, which has been done here without it. If the input to the perceptron is thought of as a two dimensional array or retina on which is preserited a black and white figure, those input lines which see black resister 1 and the others
register 0 . Connectivity for example cannot be rocognised by a perceptron whose order (the maximum order of masks) is bounded independently of the size of the retina. For ar examplesof partly serial methods for topological deconposition, some are given in Perceptrons, another is given by. Buneman .

CHAPTER 6 Learning alcorithms

6.1. Perceptron lasining

The methods of weight adjustment in the associative nets described cerlier were straiehtforward; connections were established, or modified as some function of the immediate activity on either side of that connection. If one output line of an associative net is considered, the connections are set by a simultaneous presentation of the input and output in that line. Suppose that no such information is given, but merely an indication whether or not the current response is correct. Some modifying instruction is given to that connection which is not icentical with the input to that connection or the response in the output line. The most famous exariple of this type of modification is Perceptron convercence* which was first demonstrated by Rosenblatt ${ }^{9}$ and two proofs are given of the Perceptron convorgence theorem by Nillson. The proof given here has a certain anount in common with Nillson's geometric proof (thoush it does not involve feonetry); its main virtue is to show that there are a variety of feedback procedures which work for fundamentally similar reasons.

The word 'perceptron' occurs in a variety of literature and assumes different meanings. In this chapter, when it is used, its reference will be to a 'one layer' device, which is like the sacond layor of the two layer Perceptrons of the previous chapter.

Let S be a finite set of vectors in R^{n} and let T be a subset of S. T is said to be linearly separable (with respect to S) if there is a vector a in R^{n} and a real number θ such that the vector \underline{x} of S is in T if and only if $\mathfrak{a} \cdot \underline{x}>\theta$. ($\operatorname{ar} \cdot \underline{x}$ denotes the scalar product of a and x). This condition is equivalent to saying that there is a $n-1$ hyperplane separating T and $S-T$ so that T is linearly separable if and only if $S-T$ is. The problem is to find a vector a and a threshold θ given a sequence of elements in S and the knowledGe of whether or not they are in T. For the purposes of learning, a perceptron can be retarded as a device which is presented with a sequence of x elands in S, at each input it outputs a 1 or 0 . It is desired to have an output of 1 just for those elements of T. If then an out jut is incorrect, the weights are adjusted in a way which depends on what sort of error was made. Now a perception gives an output $\Gamma a \cdot x>\theta\rceil$. In order to give the weight adjustment procedure, it will be easier to work with the set S^{\prime} of augmented vectors. The augmentation of $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is the vector $y=\left(x_{1}, \ldots x_{n},-1\right)$. T ' is the set of augmentations of vectors in T. The perceptron's behaviour is then described by $\lceil\underline{x} \cdot \underline{y}>0\rceil$, where \underline{w} is the vector in R^{n+1} $\left(a_{1}, \ldots a_{n}, \theta\right)$. We shall write this function $\sigma(\underline{w} \cdot \underline{y})$ where. σ is the obvious step function.

Now we give the procedure for adjusting the weights w.

On the presentation of a vector y :

1) if $6(\underline{w} \cdot \underline{y})=1$ and \underline{y} is in T^{\prime} or if
$\sigma(\underline{w} \cdot \underline{y})=0$ and \underline{y} is in $S^{\prime \cdot}-T^{\prime}$ then
\underline{w} is loft unchanged.
2) if $6(\underline{w} \cdot \underline{y})=0$ and y is in T^{\prime} then \underline{w}
is increased by dy.
3) if $6(\underline{w} \cdot \underline{y})=1$ and \underline{y} is in $S^{\prime}-T^{\prime}$ then
wis decreased by wy
here c is a positive constant.

Let $y^{i(r)}$ be a sequence of vectors in S^{\prime} where $r=1,2$, Then the perceptron convergence theorem states that if T is linearly separable then the vector w only changes a finite number of times. In particular, if the sequence $y^{i(r)}$ is such that each member of S^{\prime} occurs in it infinitely often, then after a finite numbs of presentations it will have 'learnt' T ', that is to say it will five correct outputs.

The condition that T, and consequently T are linearly separable says that there is a vector \underline{w}^{*} such that $\sigma\left(\underline{w}^{*} \cdot \underline{y}\right)=1$ if and only if Y is in T '. We are now in a position to write the procedure given above as:

$$
\underline{w} \text { is chanced to } \underline{w}+\operatorname{cy}\left(\sigma\left(\underline{w}^{*} \cdot \underline{y}\right)-\sigma(\underline{w} \cdot \underline{y})\right) \text {. }
$$

at each presentation of a vector y in S^{\prime}.

In order to prove the convergence theorem, we first need the leman:

If T is linearly separable, then for any positive number K we can find a w^{*} such that:

$$
\begin{aligned}
& y \in T \Rightarrow \underline{w}^{*} \cdot \underline{Y}>K \\
& y \in S^{\prime}-T^{\prime} \Rightarrow \underline{w}^{*} \cdot \underline{y}<-K
\end{aligned}
$$

proof. Since T^{\prime} is finite, the condition that there is a \underline{W} such that $\underline{W} \cdot X>0 \Leftrightarrow X \in T^{\prime}$ moans that we can find two positive numbers ϵ, Such that

$$
\underline{y} \in T^{\prime} \Rightarrow \underline{w} \cdot \underline{y}>+\delta 2 \epsilon
$$

and

$$
\underline{Y} \in S^{\prime}-T^{\prime} \Rightarrow \underline{w} \cdot \underline{Y} \leq 0
$$

Now recalling that the last component of X is -1 we can add $\delta+\epsilon$ to the last component of \underline{w} to get $\underline{\underline{\prime}}$ such that

$$
\begin{array}{ll}
& Y \in T^{\prime} \Rightarrow \underline{Y}^{\prime} \cdot \underline{Y}>\epsilon \\
\text { and } \quad & Y \in S^{\prime-T^{\prime} \Rightarrow \underline{W}^{\prime} \cdot} \cdot \underline{Y}<\epsilon
\end{array}
$$

Finally we can multiply the vector w ' by the quantity K / ϵ to get the desired result.

To prove the main result we first examine the chance in the squared distance between \underline{w} and \underline{W}^{*} at the presentation of $\underline{y}^{i(r)}$. To start with an arbitrary choice $\underline{\underline{w}}^{1}$ is made for w, at the presentation of $\underline{y}^{i(k)}$ it chances from \underline{w}^{k} to \underline{w}^{k+1}. Writing y for $y^{i(k)}$ the squared distance chance is:

$$
\begin{aligned}
&\left\|\underline{w}^{*}-\underline{w}^{k}\right\|^{2}-\| \underline{w}^{*}-\left.\underline{w}^{k+1}\right|^{2} \\
&=-\left(\underline{w}^{k+1}-\underline{w}^{k}\right) \cdot\left(\underline{w}^{k+1}-\underline{w}^{k}\right)+\left(2\left(\underline{w}^{k+1}-\underline{w}^{k}\right) \cdot\left(\underline{w}^{*}-\underline{w}^{k}\right)\right.
\end{aligned}
$$

which is, by the expression for the weight chance

$$
\begin{aligned}
-c^{2} y \cdot y\left(6\left(\underline{w}^{*} \cdot \underline{y}\right)\right. & \left.-6\left(\underline{w}^{k} \cdot \underline{y}\right)\right)^{2} \\
& +2 c\left(\underline{w}^{*} \cdot \underline{y}-\underline{w}^{k} \cdot \underline{y}\right)\left(6\left(\underline{w}^{*} \cdot \underline{y}\right)-6\left(\underline{w}^{k} \cdot \underline{y}\right)\right)
\end{aligned}
$$

The first term here is non-yositive and the second (since σ is a non-decreasini monotine function) is nonnegative. Moreover, whenever a weight chance occurs, the first term will have magnitude $c^{2} y \cdot y$ an the second will have magnitude at least $2 c\left|\underline{w}^{*} \cdot \underline{y}\right|$, the second term is only non-zero when $\underline{w}^{*} \cdot \underline{y}$ and $\underline{w}^{k} \cdot \underline{y}$ have different signs. By the lena, we can choose w* so that

$$
\underline{w}^{*} \cdot y>\left(c_{\max _{y \in S}}^{2}(y \cdot y)+b\right) / 2 c
$$

for any positive b and for all y in S^{\prime}, again using the finiteness of S^{\prime}.

In this way we can ensure that the squared distance change between $\underset{W}{ }$ and \underline{W} is greater tan bevery tine \mathbb{W} is changed, but this distance cannot decrease indefinitely so w can only chance a finite number of tines, which was the result required. (Pron. 6.1.1.).

6.2. Continuous analogues of Perceptron Convergence

Perception convergence is a particular form of feedback to a system which can only output a or l. Suppose we have a perceptron like system which realises a function $6(\underline{w} \cdot \underline{y})$ where σ is now some more general function. Moreover, suppose that there is a 'desired' output from this system $6\left(\underline{w^{*}} \cdot \underline{y}\right)$ say, We shall show how, in certain cases, the same or similar weight adjustment procedures produce a convergence to this desired state. Suppose, in fact that the weight adjustment is, as before, given by:

$$
\underline{\underline{W}} \text { is increased by } c \underline{y}\left(6\left(\underline{\underline{w}}^{*} \cdot \underline{y}\right)-\sigma(\underline{w} \cdot \underline{y})\right)
$$

at the presentation of Y

Prop. 6.2.1. if 6 is a monotone non-decreasinf function such that

$$
\sigma(a)-\sigma(b)<2 \frac{M}{c}(a-b)
$$

where $M=\max _{\underline{y} \in S^{\prime}}(\underline{y} \cdot \underline{y})$. Then $\left|\underline{w^{*}}-\underline{w}\right|$ never increases and if $\sigma\left(\underline{w}^{*} \cdot \underline{y}\right) \neq \sigma(\underline{w} \cdot \underline{y}),\left|\underline{w^{*}}-\underline{w}\right|$ decreases. The proof is immediate from examination of the expression for the squared distance change. Note that the condition on σ above means that σ must be continuous. This ensures:
prop. 6.2.2. If $y^{i(r)}$ is as before, a series in which each y in S^{\prime} occurs infinitely often, then for any positive ϵ there is an interior ${ }^{\circ}$ e for mich

$$
6\left(\underline{w}^{*} \cdot y^{\ddagger(r)}\right)-6\left(\underline{w}^{r} \cdot \underline{y}^{1(r)}\right)<\epsilon \text { for all } r>N \in
$$

Suppose the contrary, then there would be a subsequence of the positive integers \sum and an ϵ such that

$$
\sigma\left(\underline{w}^{*} \cdot \underline{y}^{i(r)}\right)-6\left(\underline{w}^{r} \cdot \underline{y}^{i(r)}\right)>\epsilon \text { for all } r \text { in } \sum
$$

so that for each r in $\Sigma,\left\|\underline{w}^{*}-\underline{w}\right\|$ decreases. Also, Σ must be such that some Y in S^{\prime} must occur infinitely often, for this \underline{y} the decrease in $\left\|\underline{W}^{*}-\underline{w}\right\|$ is then a continuous positive function of \underline{w} and hence $\left\|\underline{W}^{*}-\underline{w}\right\|$ must tend to zero. Therefore, $\left|\underline{y} \cdot \underline{\underline{E}}^{*}-\underline{y} \cdot \underline{\underline{W}}\right|$:aust also tend to zero and, by the continuity of 6 , this contradicts our initial supposition.

The condition for this convergence can be interpreted in the following way. If we are given 6, a continuous monotone increasing function, and we are given S^{\prime} and in consequence $K=\max _{y \in S}(\underline{y} \cdot y)$ then
c must be chosen so that

$$
\begin{aligned}
c & <\frac{M}{2} \sup _{a \neq b} \frac{a-b}{\sigma(a)-\sigma(b)} \\
& =\frac{M}{2} \sup \frac{1}{\sigma^{\prime}(x)} \text { (if } \sigma \text { is differentiable) }
\end{aligned}
$$

so that the weight adjustments cannot be too large. If c exceeds this anoint the weight vector may oscillate rather than convorie, and it is easy to construct examples in which this happens. This means that the rate of convergence or learning can only be increased at the risk of some sort of oscillatory behaviour. It could be possible to have a c which wa varied with the y in order to gin some Lacrosse in the convergence rate,
but we would have to compute or be given $\underline{y} \cdot \underline{y}$ at each presentaction of y.

6.3. LearninG from a continuous input

Up to now we have thought of the presentations of the y as discrete events, and the tine intervals between these presentations being of no importance. Ne get a rather nice variant of these learning procedures if we think of S^{\prime} as a connected and now not generally finite subset of $\mathrm{R}^{\mathrm{n}+1}$ (recall that S^{\prime} is a set of augmented vectors in R^{n}). The function $\underline{y}(t)$ is then input to the system, and at the same time we adjust the weight vector which is now also a function of time, $\underline{w}(t)$. It is immediately obvious that it is worth trying weight adjustments of the form:

$$
\frac{d \underline{w}}{d t}=c \underline{y}\left(\sigma\left(\underline{w}^{*} \cdot \underline{y}\right)-\sigma(\underline{w}-\underline{y})\right)
$$

Now consider the rate of change of $\left\|\underline{w}^{*}-\underline{w}\right\|^{2}$ this is $-c\left(\underline{w}^{*} \cdot \underline{Y}-\underline{w} \cdot \underline{y}\right)\left(\sigma\left(\underline{w}^{*} \cdot \underline{y}\right)-\sigma(\underline{w} \cdot \underline{y})\right)$
which is always non-positive if 6 is any monotone non-decreasing
function. The conditions that all y in S^{\prime} are learnt' are firstly that S^{\prime} is compact, second, that $Y(t)$ fills S^{\prime} that is for any open set U of S^{\prime} and any time t_{I} there is a time $t>t_{I}$ at which $\underset{y}{ }(t) \in U$.

Prop. 6.3.1. Under these conditions for any positive \in there is a time t_{ϵ} for which

$$
\sigma\left(\underline{w}^{*} \cdot \underline{y}\right)-\sigma(\underline{w} \cdot \underline{y})<\epsilon \text { for any time } t>t_{\epsilon}
$$

The proof follows in almost the same way to the corresponding proof in the previous section. It is not necessarily true that this sort of convergence means that weed get close to \underline{w}^{*} in an absolute way, ie. $\left\|\underline{\underline{w}}^{*}-\underline{w}\right\|->0$. This will only have to happen when S^{\prime} spans the n dimensional subspace of $\mathrm{R}^{\mathrm{n}+1}$ consisting of all those vectors whose last coordinate is -1.

This concludes the study of learning and memory models and it is hoped that their relation to one another has been clarified. In particular it has been shown that the crucial distinction to be made is between the two methods of causing a change to take place. The method of causing a weight change in a perceptron is very different to that which alters a switch or weight in an associative net. We now turn to the neurological evidence for these types of chan ce at a synaptic level in an attempt to determine the importance of these ideas as biological models.

CHAPTER 7 Synaptic plasticity

It is eenerally held that persistent changes in synapses synaptic plasticity - form the physiological basis for learnine and menory. Of other possibilities, the proposals of Rashevsky ${ }^{1}$ and Housenolder and Landahl ${ }^{2}$ that the brain can sustain permanently circulating patterns of activity, (analogous to the mercury delay lines of sone computers) do not seem compatible with the ability of conditioned behaviour to survive the suppression of all electrical activity in the brain by freezing or anaestnesia. Nor is it likely that such activity would remain undistorted by epilepsy or electroconvulsive therapy.

The idea that permanent changes may take place at a neuronal level, for exanple changes in the threshold of a nerve cell is a possible alternative to synaptic plasticity although it certainly does not exclude it. As an altcrnative it is less attractive since there are many more synapses than nerve cells in the central nervous system; the ratio is of the order $10^{4}-10^{5}$ in the cerebral cortex (Crage ${ }^{3}$) and the amount of information that could be stored synaptically yould be correspondingly higher. Moreover there is now a certain anount of neurophysiological evidence, which we shall shortly examine, which indicates that chances can take place in the condactivity of a pathway which are specific to a synapse, or a group of synapses in that pathway, rather than a whole cell.

First of all we shall describe some of the physioloifical denonstrations of persistent changes in the nervous system and the evidence that associates learning with changes in certain synaptic structures. Laier we shall discusc the possible neurological mecnanisms which could effect such changes.

Hebb's ${ }^{4}$ suäcestion that synaptic changes could persist for the life of an animal nas not yet been amenabla to any substantial test. But there are experiments which seem to indicate that some change taxes place which can persist for at least the time for which one can record from a cell. Such changes have been demonstrated in the cortex, but may well occur elsewhere: Lashley ${ }^{5}$ has shown that decorticate animals can be conditioned in limited ways, and certainly some animals whose develonent has not progressed to the stage of having any neocortex can perform simple learning tasiss.

Morell ${ }^{6}$ found tinat epilepsy induced in an area on one side of the cortex would cause a si:nilar epileptic focus in the corresponding contralatoral area. Even after the callosal fibres connecting these areas had been severcd, the increased contralateral activity persisted indefinitely. Related experiments vere performed by Bind:ann, Lippold and Redfearn? ${ }^{\text { }}$, and Gartside and Lippold ${ }^{8}$. In the first of these it was shown that a small current passed through the cortex of an anaesthetized rat would increase the sontaneous firine rates of cells and
this rate increase would persist at least for a few hours after the stimulating current had been turned off. In the second experiment, a similar result was obtained by locally freezing the cortex. Since the eifect of freezing is to produce a potential eradient in a direction opposite to that in the first experiment, it was thought that the persistent increase in the firing rate may have been attributable to its initial increase rather than any other effect associated with the depolarisation.

Bliss, Burns and Ut'tley 9 i:ere able to investigate this effect in very much more detail. In their preparation, which was this time isolated but unanaesthetized cortex, they recorded from a cell which could be driven by independent stimuli to neighbouring parts of the cortex or white matter. They were able to define a 'conductivity' for one of these stimuli, the test stimulus which was the ratio of the strength of response of the cell (number of spikes inmediately following the stimulus) to the strength of the stimulus. If we call the other stimulus 'the priminé stimulus, their results may be by saying that the conductivity
increased when the priming stimulus alone had been used for some time;
decreased when the test stimulus alone had been used for some time;
decreased when these stimuli wore "paired' or used simultaneously.

In order to effect any chande in the conductivity it was necessary to drive the cell (by the test, priming or paired stimuli) for at least six minutes, but, having done this, the conductivity changes often persisted for as long as it was possible to record from the cell. "

From these experiments one can only guess that synaptic change is involved; the pathways could have involved a series of nerve cells and the change could have been caused by a change in, say, a cell threshold. In a similar set of experiments Kandel and Tauc ${ }^{\frac{1}{0}}$ were able to demonstrate that in their preparation a change in conductivity was almost certainly attributable to a synaptic change.

Kandel. and Tauc ${ }^{10}$ worked with a nerve cell ganglion from the abdonen of a sea snail. While this is not a region of the nervous system or an animal which would be expected to show any retention, a chance in the conductivity of a pathway was demonstrated which was produced by aethods similar to those used by Bliss, Burns and Uttley'. The cells in this eanglion are larce and it ispossible to record the intracellulor potential chances. Such cells could be driven independently by two pathways. It was found that:

1. The sensitivity of the cell to a weak (sub-thres:iold) stimulus in the test pathway could be ereatly increased by driving the coll by a strong primine stimulus in the other pathway.
2. That this sensitivity change could last for some minutes after the primine stimulus had ceased.
3. For sone cells this stimulus was conditional on the stimuli being paired, and in some cases specific to one of two. possible test pathways.

In a second paper Kandel and Tauc ${ }^{1 l}$ performed related experiments and were able to hypothesise that the test pathway was monosynaptic in that the fibre they were (test) stimulating synapse onto the cell from which they were recording. They also proposed that this increase in sensitivity could be attributed to presynaptic facilitation (see figure l) in which the priming

Figure 1
pathway terminates in a synapse which serves only to modify the behaviour of a synapse in the test pathway, but does not itself influence the cell. Such synapses could have the effect of a gain knob on a variable gain amplifier and could be used to
control a synapse in a way which would be completely independent of the activity on either side of the synapse. However, there is no evidence to say that this is the underlying mechanism for control of synaptic change in the cortex and in the next section we shall examine the possible controls that could exist for synaptic chanรีe.

7.1. Mechanisms for control of synaptic chance

It is not known what hapiens when a synaptic knob increases its effect on a membrane. It may simply grow (Young ${ }^{12}$, Cragg^{13}) and more effectively depolarise or hyparpolarise a membrane on account of its increased area of contact. Other experiments suggest (Brown and Pascoe ${ }^{14}$) that the ability to produce nore transmitter substance is modified. Another proposal is that entirely new knobs may sprout (Eccles ${ }^{15}$). In spite of this it is reasonable to ask what controls such a change; and the answer may depend only in its details on the precise mechenism of change.

By supposing (like Pitts and McCulloch ${ }^{16}$) that the reaction of a nerve cell to its inputs can be described by a Boolecn function of its inputs, Brindley ${ }^{17}$ has listed sone of these possible mechanisas and devised a notation for describing them. Brindley's notation assigns to each cell and its inputs an output function S of the form:
w, u and v are Boolean functions of the inputs, the notation means that if inputs satisfying $v=1$ are given sufficiently often, then

1) S chances from w to $w V$ if $\alpha=f$ (for a facilitated synapse)
2) S changes from $w v u$ to w if $\alpha=h$ (for a habituated synapse)

In addition it is stipulated that $w \wedge u=0$ and it is always possible to choose w and u to satisfy these conditions. As examples of Brindley's notation can be used to describe the following systems (the triangular synapses are modifiable).

1) Presynaptic facilitation of an excitatory synapse
X

$$
S=f^{\langle x \mid x\rangle}
$$

2) Postsynaptic facilitation of an excitatory synapse

$$
s=y \vee \quad f^{\langle x} \wedge 7 y|y\rangle
$$

3) Excitatory synapse facilitated by pairing

4) Excitatory facilitated by a presynaptic knob

Brindley points out that (3) is an example of the type of conditioning postulated by Hebb ${ }^{4}$ and that various other of these functional arrangements have been found or postulated.

We may use Brindley's notation to formalise the idea that some synapses can chonge only as a function of the activity in the synaptic knob and the post-synaptic membrane. We call such a synapse locally modifiable.

If x is an input wich terminates in a locelly nodifiable synapse, then if the outiput of the cell is described by

$$
S=w v i_{f} u|v\rangle
$$

v (the modifying stimulus) will be of the form $v=\phi(w, x)$ where ϕ is a Boolean function. If the output of the cell is described by

$$
s=w v \sum_{n}^{u} u|v\rangle
$$

then for a locally modifiable synapse: $v=\phi(w v u, x)$,
It is easy to verify that of the four types of synapse described above, the first three are locally modifiable and the last is not.

Brindley lists many more examples of modifiable synapses and classifies then according to the rules: Class A if $u \wedge v=u$; Class B if $u \wedge v=0$; and others are placed in Class C. Now although Brindley's classification docs not imply this, it is interesting that of the examples he lists, all those in Class A and Class B are locally rodifiable and that synapse in Class C (case 4 above) is not. Naturally, if Brindley's Boolean description of synaptic plasticity is not totally accurate, which it probably isn't, our definition of a locally modifiable synapse fails and the dofinition of a locally modifiable synapse would have to be couched in the specific terms of another model. Nevertheless we have been able to state in precise terms the fact that a locally modifiable synapse modifies only as a function of the activity on either side of the synaptic cleft.

Finally it is worth notine that there is copious anatomical evidence for the existence of presynaptic (for example Gray ${ }^{13}$) knobs and that these as we have seen, would provide a mechanism for non-local modifiability. It has not yet been estaiolished whether all possible types of local modification can teke place in the nervous system. In particular there seems to be no
absolutely conclusive evidence of the synapses proposed by Hebb. As far as can be ascertained.from the individual recordings of Bliss, Burns and Uttley, their results could be explained by local modifiability, evea if the cortical pathways they tested were monosynaptic.

CHAPTER 8 Neurological restrictions on models

Before examining the neurological relevance of the models advanced eurlisr, i.e put forward a hypothesis about synapses which will restrict the applicability of these models and allow us to put forward further testable neurological hypotheses. This is:

Synapses in the neocortex can only be modified locally.

If such is the case, then any model which is thought to describe any of the hisher functions of the nervous system must conform with such a restriction. Also we may gain some insiegt into the exact nature of these 'higher' functions if we can advance plausible models neeting this restriction.

The anatomical evidence for this hypothesis, if not conclusive, indicates that if there are presynaptic knobs in the cortex, they are not frequently seen. Gray ${ }^{l}$, in his famous electron microscope study of corticul synapses states that they are either axo-soantic or axo-dendritic. Crajo has remanked in personal conaunication that he has never observed such structures in the cortex. Howevor, presynaptic effects may not be the only mechanisn for non local modification and the alternatives are worth considering.

Non local modification may be the result of postsynaptic effocts. For example a synapse micht be capable of permenently
altering a saall region of the postsynaptic membrane so that the conductivity of a neichbouring synapse or synapses vould be impaired. A rather striking piece of anatomy which illustrates this possibility is the structure of the granule cells of the cerebellum shown in Figure 1 which is taken from a drawing in Eccles, Ito and Szentogethai ${ }^{2}$.

Ficure 1

The mossy fibre input excites the sranule cell and the Golsi cell inhibits it. The appearance of the inhibitory Golgi synapses indicates that they are in one to one correspondence with the excitatory mossy fibre synapses. Could it be that the Goldi cell synzpses exert a local effect on the granule cell menbrano?

If not, one wonders why the inhibitory effect of the Golgi cell is not achieved by axo-somatic contact. However there is no physiological evidence fron the cerebellum to corroborate this postulate thourh Diamond ${ }^{3}$ has shown that in the Mauthener cell of a goldfish inhibition can be specific to inputs distal (with respect to the axon) to the inhibitory synapse. Rall ${ }^{4}$ has also demonstrated on theoretical grounds that it is in general wrong to regard the polarisation of a cell membrane as the sum of the polarisations and depolarisations caused by each synapse. Cells like the cranule cells do not seem to be present in the cortex, the spines on the dendritic trunks of pyramidal cells micht perform a similar function to this hypothetical property of the granale colls, but wo have no anatonical or physiolocical evidence to confirm this and hence no certain objection to the hypothesis avout neocortical synapses.

Griffiths ${ }^{5}$ has sugeested that non local modification could take 引lace by the diffusion of soar chenical throughout the neocortex and this is a serious possibility if it is not required that the modifying influences should be very specific. Another poscibility that : $: i l l$ be considered lator, is that there may be some temporal coding of events at a synapse which would lead to modification. This would inply that the function of a synapse is rather more complicated then is noraally supposed and would, in particuler rake Brindley's classification inadequate.

The adaptive nets of Chapter 2 and the perceptrons of Chapter 6 differ fundamentally in respect of what type of synapses would be required for their operation. We now take the step of supposing that the weichts, connections or switches mentioned in these chapters are to be identified with synapses. It was pointed out that the adjustments required to modify an associative not wien a new pair of patterns are to be stored could be effected by Hebb synapses and we have seen that such synapses are locelly modifiable. At least our hypothesis about modifiable synapses does not exclude the possibility that associative nets are realised in one of their forms in the cortex.

For perceptron learning and its associated forms discussed in Chapter 6, it is much more difficult to understand how the weicht adjustinent could be accomplished with locally modifiable synapses. The wirinc diauram of a perceptron is illustrated in Figure 2.

Figure 2

Now althouih it is reasonable to suppose that the process of taking a weighted sum of the inputs could be realised by one nerve ccll, it is not at all clear that the feedback to the thresholds and synapses could be accomplished by the same cell. The two natural possibilities are:

1. That this feedback is accomplished by presynaptic lnobs which habituate or facilitate each synapse (together with some control on the threshold of the cell).
2. That the weights are associated with cells rather than synapses and weight adjustment is accomplished by altering a paraneter of the whole cell. This requires there to be 6 one cell for each weight. Taylor has proposed a schome for the cortex wich works in this way.

The second possibility is somewnat unattractive on the grounds that it is uneconomical in comparison with the first and would indicate a set of "weicht" cells with one effective input and one eifective modifier.

The former possibility would be excluded from the cortox by our inypothesis since it involves the non local modification of synapees.

But there is nothing to exclude this type of learning from other parts of the nervous systern - first of all presynaptic knobs are seen in the spinal cord and in profusion In many thalamic nuclei (Gray ${ }^{7}$, purpura ${ }^{8}$). Secondly there is a cortain amount of physiolocy wich lends support to this: Kandel and Spencer in a reviev article of neurophysiology in the study of learning distinguish two types of conditioning.

In type 1 conditioning a behavioural stimulus (UCS) gives rise to so:ne well defined response which is not elicited by some other stimulus (C.S.); often pairing these two stimuli a number of times the C.S. elicits the rosponse without the U.C.S. This of course, is classical pavlovian conditioning and the experinents of Kandel and Taucprovide a neural analocue of this situation.

Type II conditioning - often called operant conditioning is quite difforent and requires that some reinforcenent take place if a response is given to a particular stimulus. For exanple, in a Skinner box an animal mioht be rewarded with a pellet of rood if it presses a lever in response to the sound of a buzzer. Initially the animal presses the lever by accident and subsequently learns that the reward is produced by dcing so in response to the buzzer. The reinforcenent in this case is positive - in other cases the reinforcenent can be nezative, that is the animal la arns to avoid a painful stinulus. The basic distinction f.s that in type II conditionine, one of tra
stimuli is conditional on a response.

The possibility that either the C.S. or the U.C.S. in type I conditioning might be an electrical stimulus to the central nervous systen was investigated by Loucks ${ }^{10}$ who found that a C.S. consisting of a direct stimulus to the visual cortex of a dof could be effectively paired with a U.C.S. of a shock to the foreleg. Giurgea ${ }^{l}$ used as U.C.S. and C.S. electrical stimuli to the motor on visual cortices rospectively; the response being some movement elicited by stimulating the motor cortex. Finally Bures and Buressva, were able to use a behavioural C.S. and the local polarization by an extracellular electrode as a U.C.S. which induced an increased or decreased firing rate in some cell from which their electrode would also record. The C.S. in this case an auditory stimulus was effective for certain cells in the thalanus and inferior colliculus thouch the conditioned response usually disappeared rapidly after pairing had ceased. To sumarize: it seems that type I conditioning to electrical stimuli can occur anywhere in tho nervous system, even in very primitive structures of simple animals. But in general the effects are nost permanent when the stimulus is given to parts of the higher nervous system - in varticular to the neocortex.

Type II conditioning has also been the subject of similar investisations. Delgado ${ }^{\ddagger}$ showed that electrical stinulation of
parts of the brain, mainly in the resion of the hypothalamus could substitute as positive or negative reinforcement. Stimulation in this region could cause the animal to manifest rage or fear and the latter could be used to train the animal to avoid certain types of food. Olds ${ }^{14}$ dvanced this work and showed that rats would pursistently stimulate themselves through electrodes implanted near the hypothalamus in the medial forebrain bundle. Othar electrodes in the same region would produce avoidance or aversive behaviour. Olds tested other parts of the brain in this way and found that the most striking results were produced from regions (such as the median forebrain bundle) which are closely associated with the hypothalamus. No evidence of positive or negative reinforcement was produced from electrodes in the neocortex or in the sensory areas of the thalamus.

15
Olis and Olds subsequently investigated whetier or not they could, by the sane stimulus to the medial forebrain bundle, reinforce the firing rate of a single cell. Here they were able to get positive results in the same regions as before including, significantly, the mamilo thalanic tract - one of the pathways by which connccts the hypothalamus to the thalamus. Only with great difficulty could they train cells in the neocortex and 16 then only rather weakly. Later, Olds and Milner were able to produce the sane learning in cells by using a behavioural reinforcement such as food; again they found it very much eesier
to train cells in areas connected directly. with the hypothalamus.

It is an attractive conjecture that physiological type I conditioning requires only locally modifiable synapses but that type II conditioning cannot be achieved this way and perhaps requires presynaptic terminals. This would explain the absence of presynaptic knobs in the cortex and account for the apparent difficulty in producing type II conditioning in neocortical cell responses. Some caution is needed in intorpreting the physiological results in this way. The colls or axons which could be conditioned were almost certainly involved in a more complicated pathway that was also being conditioned. It is not in general possible to say that the cell which is recorded is necessarily the cell at which the changes take place. It could be that it is one of the cell's predecessors which is responsible for the altered behaviour of that cell.

However, these results suabest sone further experinents in order to confirm, both anatomically and physiologically the hypothesis about locally modifiable synapses.

1) Can a cortical cell be type I conditioned to a behavioural stinulus? For exanple in the richt association area of the cortex is it possible to condition a cell which nornally responded to a visual stimulus, also to respond to an auditory stimulus? This experiment would be exceptionally
convincin ${ }_{0}$ if done in conjunction with a type II conditioning experinent in which the animal was rewarded if the cell did not respond or punished if it responded.
2) Can areas of the hypothalamus be demonstrated to modify other pathways presynaptically? It might be shown, for example, that the mamillo-thalaic tract or even the mamillo-tecinental tract operated in this way.
3) Is it possible to get further anatomical evidence for the previous conjecture? Perhaps one of these tratts could be traced, by degeneration studies or otherwise, to presynaptic terminals.
4) The paleocortex cannot be classified with the neocortex in this way. It is structurally different (Andersen) and exhibits type II conditioning (Olds and Olds). It is orcanised in a relatively simple manner and could perhaps be the subject of similar experimental tests.

On the other hand it has been conjectured that the hippocampus is part of the mechanisn responsible for 'laying down' memory traces, in this case we cannot at the moment atteapt any simpla generalisations sbout the structure or function of its
synapses, but asain it would be interesting to know if the re are presynaptic or axo-axonal contacts in this region.

Relevant to this discussion of the modification of synapses 18
is a sugeestion by Younc on the function of the amacrine cells in the brain of an octopus. In a model of type II conditioning which bears some relation to the learnint machines of Chapter 6 he succests the need for presynaptic inhibition and suggests that amacrine cells (small nerve cells with apparently no axons) might effect this by interposing thenselves between the pre and post synaptic nembranes. Young's model has features which overcome many of the difficulties which would be encountered in tasine perceptron learning as an exact description of a ncurological procesc. Whether or not it is realised entirely in the neocortex of mamals is, like the perceptron, subject to what has already been said about the local modification of synapses.

CHAPTER 9 The relevance of models

In the previous chapter the one crucial difference between learning and remenbering devices. was exanined in some detail. We now take the models individually and attenpt to subject them to neurolouical criticisms. As usual, this will not be entirely conclusive and demands answers to further neurological questions.
9.1. Holoeraniny

In its general form holography requires a propagative medium and a stable periodic source. If the brain or part of it constitutes such a medium and contains such a source, what is the speed of propacation and the frequency of the source? There seems to be little evidence that such a source exists; the E.E.G. rhythms misht be taken as such evidence but these are neither stable nor very persistent. Even if there was such a source - the simplest oscillator, consisting of two neurons connected in a loop would be unlikely to have a frequency of more than 100 c.p.s.

As for propagation it micht happen along nerve fibres and in this case the slowest possible conduction rate would seem to be of the order of 1 metre per sec. The wavelength is then not less than 1 cm .

Now the irtevference fringes produced by two such waves
would always be spaced at a distance greater than this wave1 length. According to sholl a square centimetre of cortex contains, very rouchly, 2×10^{6} neurons and, in consequence of the order of 10^{10} synapses. To store a signal so far above the limits of resolution of the nedium is at least uneconomical. Moreover, in a linear system, any superposition of interference fringes would not contain higher frequencies so this very high redundancy would apply as well to the storage of many holocrams. It is hard to believe that a non-linear system which approximated this would exhibit a much more economical one of the available store (if this is synaptic).

A proposal advanced by Beurle ${ }^{2}$ and van Heerden ${ }^{3}$ sugeests that the propagation may be much slower and consist of spreading waves of excitation throughout a mass of cells. If the conduction rates were auch slower, the wavelength could be reduced to a more acceptable quantity. Again, if this mass of cells were in the cortex, the propaciation would presuably take place laterally.

The phenomenon of spreading depression in which a wave of activity is observed to pass slowly across the cortex micht be taken as evidence of such propacation, though it cannot be taken too literally since it results in prolonged inactivity in most of the cortex. Observations by Sperry 4 and Lashley 5 hovever, would not lend support to this idea. They were inable
to detect any chenge in the behaviour of animals in which they had attempted to interfore with lateral conduction in the cortex by cuttine throuch it in many places, or by inserting lengths of electrically conducting material. It is also hard to imagint how any recall could be sufficiently fast if the rate of conduction was only a few millinetres a second. Finally, van Heerden's proposal involves propacation through a linear medium which does not reconcile with the known non-linearity of neural responses at least in the lower parts of the nervous system.

9.2. Associative nets

Two types of associative nets have been advanced, and each of these have points in their favour as neurological models. Since it is fairly certain that a synapse is either excitatory or inhibitory and cannot change from one type to the other, each input line of the linear net would have to branch and give rise to both an inhibitary and excitatory input to each output line. Also, since nerve cells seen to possess entirely inhibitory or entirely excitatory synapses, we have to postulate a set of interneurons to achieve this. A very much more serious limitation on the linour associative net is that the weights can becone vary laree. The strength of a synapse is probably linited so that to sot large weights may involve the growth of new synapses. Eccles hus succested this as a mechanism for synaptic change, but this is only a conjecture. These difficulties are avoided in the binary associative net which could
be realised with onc type of excitatory synapse. The need for an accurate threshold, and the need for the nervous system to produce patterns with specific numbers active and inactive lines present new obstacles to which we do not yet have any complete solution.

Both types of associative net require that synaptic change only takes place on the presentation of a pair of patterns to be associated, the binary net requires just one type of irreversible change.

Suppose that such synapses were of Hebb's type. How could a synaptic change be prevented from happeniné, as a result of noise, or in the linear net, simply in the use of the net to recall a pattern? One solution is to suppose that the pairs of patterns must be paired many times in order to produce synaptic chence and it is possible that the function of the hipiocampus and its related structures is to maintain such a pairing, for bilsteral destruction of these regions produces Korsaroy ${ }^{\prime \prime}$'s syndrome, the inability to establish new menories or to form new associations.

The need for repotitive pairing in order to effect synaptic change is certainly indicated by the experinents of Bliss, Burns and Uttley? A factor which, may also be inportant is the relative timing of the C.S. and U.C.S. to a synapse; it may be that the
most effective stinulus for producing synaptic change is not the simultaneous depolarisation of both the presynaptic and post-synaptic menbrane but these two events occurring with a slight time difference. Suppose for example that the U.C.S. were to precede the C.S. by a few milliseconds. Some reverse chemical diffusion could take place from the post-synaptic membrane wich would reach the presynaptic membrane at the time of arrival of the U.C.S.

Note also that if the cells were being fired by the C.S. alone, such a time delay would not occur so that the synapse would 'know' when and when not to modify. Such a timing hypothesis could augain be tested by methods similar to those 8 of Bliss, Burns and Uttley. It is of course equally possible that the time delay could be the other way round, that is to say, that the C.S. should precede the U.C.S. The latter is the most effective order for behavioural conditioning.

The synaptic contacts on the dendritic spincs of pyranidal cells (Gray)9are peculiarly suited to this function. First the spines contain a spccialised process, the spine apparatus which could form part of a system winch communicates any postsynaptic activity to some other part of the synapse. Second, such spines lie on the main dendritic trunks and would be necescorily affected by any(active or passive) depolarisation of the ajical dondrites. Moreover the apical dendrites (Lorente de $N 0)^{10}$ lie in the outer parts of the cortex which is
the region in which fibres afferent to the cortex (either from the thalanus, oi from other parts of the cortex) terminate.

9.3. Groun invariant associate nots

There are sevoral possible ways in which such a net might be embodied in the brain and little to say which is more likely. All we can do at the moment is to make some rather general observations. First of all, the complex Hubel and Wiesel 11 cells which respond to a pattern of a certain orientation no matter what its position provide evidence that some sort of croup invariant rosnonse obtains even in the primary visual cortex. Similarly there are sliding frequency detectors in the auditory cortex which detect rising of falling notes in almost any audible frequency range (Evans and Whitfield). ${ }^{12}$ Recently, cells have been found in the visual cortex which respond aaximally to patterns presented binocularly, of an arbitrary position but fixed disparity (Pettierev, Nikara 13
and Bishop). All thesc are manifestations of simple forms of group invarionce; there are probably more complicated forms which might be shown up by simultaneous recording of many cells.

Given that there are croup invariant responses in the brain, are the nocesoary connections formed automatically durine the develoment of the brain or is some sensory experie..se required to establish them? The answer is likely to be
both of these. There is.an innate rough set of connoctions, but the fine details are learnt. Possibly this rather complicated wiring can only be achicved by growth of nerve cells over some distance, and in consequence can only happen fairly early in life. Such is the case with binocular vision, which is, in cats, critically dependent on their beinc sighted in the first few veeks of life (Hubel and Wiesel, l^{14})... If the acquisition of sone group invariance is, as has been sugcested, also essential to the development of lansuace, it is reasonable to sive a similar exploration of our inability to learn to speak after the ase of six or seven. The latter seems to be shown by children who have suffered damace to the dominant heinisphere at on carly age.

Finally, as they stand, the group invariant nets and perceptrons seem to require too high a decree of precision to be taken as precise neurolofical models. The principle of 'tying' synapses together (i.e. altering aany synapses at the same time) nevertheless provides an interesting mechanisn for generalisation. One of the most serious shortconines of such models is the difficulty of turnine a continuous (perceptual) group into a discrote croup action on a set of input fibres. It is nossible that the concopt of tolerance space (Zeeman) could be used to cet round these obstacles.

9.4. Percentrons.

It has been shown that the fundamental distinction between perceptrons and associative nets lies in the method of adjusting the weights in these devices. Because of this distinction it was felt that the modifiable elements of a perceptron could not represent cortical synapses. We now ask if the method of weight adjustment or learning algorithm for perceptrons represents ony other part of the nervous system.

First of all, perceptron learning is in no way a model of operant conditioning. To make this clear, consider for example, a thalanic neuron which we know can be operant conditioned to respond to a stimulus. While there is no response, no reinforcins stimulus is siven and there is no evidence that any charges have taken place: a perceptron always alters when an incorrect output is given. Thus if perceptron learning describes thalanic conditioning we should expect that every conditionable cell in the thalanus is being conditioned even when no reinforcing stimulus is given.

After the first reinforcing stimulus is given (that is when the cell responds for the first time) it does not necessari] follow that the response has yet been conditioned: the cell can, and is likely to, not respond to the stimulus at its next occurrence, and many more trials are necessary in order to
condition the responce. A perceptron trained to one input pattern :rill, when it has responded correctly once to that input, will continuc to do so. Also, training a perceptron to a particular input is likely to interfere with its previous training on other inputs. There does not seem to be any good reason that this happens in the same way with operant conditioning Behaviourally, an animal being operant conditioned makes exploratory responses, apparently at random, until it makes'the correct response, which is reinforced. A perceptron, which is limited to two possible rosponses in a similar one-stimulus situation, gives a scries of incorrect responses and will thereafter give a series of correct resjonses.

It was shown in the discussion of training algorithms for perceptrons that a perceptron could be thought of as thill climbinc' and that each weicht chanse effected a move up this hill. Cortiinly Uttley's conditional probability machine and 16
Young's diayram for oporant conditioning in the octopus would seen to present more accurate paradigns of operant conditioning. If then, percastrons do not provide a model for operant conditioning, they may well describe other types of conditioning especially in improvine the priformance of an already established task. Such conditioning could well involve this type of hill climbing but a neurolosical representation of it has yot to be discovered. Also, it has beon shown that in certain cases the weights involved
can beco:ne very large - in such cases it may be difficult to find a reasonable mechonism for holding these larēe numbers. On the other hand there is no reason for supposing that predicate such as the parity prodicate are at all natural in a behavioural sense.

Chartea 10 Conclusions and speculations

No theory of menory or learning, howevor well founded it is in physiolocy, is satisfactory unless it adeances our knowledje of bohaviour, It is not hard to devise systems which cxibit so:nc form of memory, nor is it usually difficult to build up some neural analogue of such a system. Our assessment of any such theory must finally rely on our ideas about behaviour. Scme proposals will be made here concerning associative nats, and since it has been sugsested that associative nets could exist in the cortex, such proposals will also be interpreted in terms of the function and evolution of the neocortex. The central proposal is that it is the function of the neocortex to make predictive models of the environant.

To clarify this last statement, assume the following over simplified model of bohaviour. An animal receives a stiraulus S at a certain time - it produces a response R and as a result recoives a now stimulus S'. $^{\prime}$ S' will be partly or:wholly predictable from S and R. Consider some exanales of this:

1) In operant conditioning, if some stimulus is given (a bell) and a response is then made (pressing a lever) a new stimulus (food) ensues; if some other response is made a ifferent (or no) stimulus is received.
2) In the visual perception of some static scene, a aovement of the cye causes the image on the retina to translate throukh a certain distance.
3) Any muscular contraction or relaxation causes altered sicnals from the various receptors associated with that muscle.

In each case here S^{\prime} is a function of S and R, but in Eeneral S and R do not determine a unique $S '$. The environnent micht not be static as in (2), for example. To talse a complicated paradigm, in a came such as chess, suppose that S is civen by the state of the board before a player makes a move (R). S^{\prime} - the state before he makes his next move will depend on his opponent's move so that S and R do not determine a unique S'. However, to start with let us make the naive assumption that $S '$ is uniquely determined by S and R.

The claim is that an associative net is used to predict S' given S ond R: in neurological terns this cannot mean thet the stimulus S is pinysically reproduced by the nervous syste:n nor does it mean that the sensory input fibres are caused to fire in the same way that they would if S^{\prime} is actually received. It is susgested that the pattirns of firing of the pyramidal cells (wich effect the outpat of the neocortex) sre similar whether $\mathcal{S l}^{\prime}$ is roceived or not. This
is compatible with the supposition that the neocortex can be classically conditioned, the unconditional stimulus beinc S with R and the conditional stimulus beirat S^{\prime}. It would be intercsting to now whether this effect obtains even in the sensory cortex. In the experiments suggested in Chapter 7: can for example, the primary visual cortex be conditioned? It is then possible that the 'moving edge' detectors of liubel and "\#iesel ${ }^{l}$ are established by this mechanism, and perhaps such cells continue to fire even if the stimulus is halted or turned off in the middle of its traverse through the receptive field.

In many situations there will be some vory strong connections between S and S^{\prime}. In one of the examples above, if R consists of some movement of the eye, S^{\prime} is approximately a translate of S on the retina, it would seem unlinely that each S^{\prime} in this case hes to be conditioned. What is more likely is that there is some mechanism for translatinc S, and this may be achieved in the same way that group invariant nets were constructed. It is unlikely that the 'correlouraph' is an apyropriate model here because a great deal of codins takes place in the visual cortex and a translation of the retinal imace will not cause a similar modification in the pattern of firing cells. But it seems likely from Hubcl and Wiescl:s
work that units of all types and orientations exist with receptive fields in all parts of the fovea - if this is so then the set of such units is closed under the translation 'group' and it is still possible to build associative nets invariant under this operation.

We now digress and turn briefly to the possible use of Eroup invariant associative nets in the use of lanuage. It is not proposed here to expound any modern linguistic theory except to state that it is cominonly held that the meaning of an Enislish utterance can be in part represented by some sort of graphical structure. The nodes of such a structure represent words or gramatical constituents. Suppose a set of denonstrative sentences is given and these are passed into one or more of these structures. Any question can also be parsed into another structure and the answer to that question necessitates matching the question structure with part of the original denonstrative structure.

Take, for examile the demonstrative sentence:
A) Annie eats meat.

Which might be represented by:

The question:
B) What: does Annie eat? gives us an incomplete structure:

To answer the question B, given A, is now straightforward the parsine of B must be matched with the parsing of A. The missing node in this case is the answer to the question. In another case the question:
C) Does Annie eat meat?

Gots the answer yes if the parsind of A has been given in a demonstrative sentence.

In one case, therefore we are seching to match one graph with a subgraph of another and then continue it. In the other we are siaply seeking a direct match of one eraph with another graph or subgraph. It has veen sugcested ${ }^{2}$ that a set of demonstrative sentences could be represented by a larce connected éraph with common terminals identified: so that if "Annie" occurs in two sentences we link the persings
of these t::o sentences by that word so that we can represent these sentences by one connected Graph.

The problem of identifying a graph as a subcraph of some other eraph is superficially like that problem which is resolved by holography. The graph recogniser in Chapter 4 shows that a group invariant associative net can perform this operation. In fact the graph recogniser worked on graphs with undistinguished nodes, that is it worked simply on the relation which defined the sraph. In the linguistic problem posed above we would not want to allow a noun phrase node to be identified with a verb phrase node. Such a restriction would mean that an associative net built for this purpose would work on a suberoup of the full permutation group of the nodes and perhaps on a subset of all possiblc relations between nodes. Those two restrictions would mean that the size of such a net would be reduced and, since fewer switches would be 'tied', that the information that could be stored in it would be very mach greater.

It is not of course proposed that eroup invariant assoclative nets will properly solve any linguistic model, nor is it more than a very naive model for how the brain copes with a particular problem. It is intended to show that the graph
isomorphism problem which crops up in several areas of artificial intelifgence ${ }^{3}$ can be tackled by parallel systems rather than the relatively slow programes that have been written to cope with it. ${ }^{4}$

To reconcile this proposal with what has been said about models of the environment is, at the moment, a very difficult task. But ifit seems too far-fetched to believe that the mechanisms for producing language are fundamentally similer to those for making predictive models of the environment, it is at least worth noting that it is an important, and possibly the only, function of languase to communicate expectations about the environment. It is certain that whatever machanisms are involved in these abilities, they are closely linked.

What use is the ability to model the environment and why did it develop? Why is it a necessary addition to whatever subcortical learning machinery that exists? It has been seen that some devices winch can be operant conditioned cen suffer from drawbacks such as takine many trials to respond correctly to many different stimuli and !forgetting' some old responses when it is being trained to new stimuli. Such a device, if it had in addition a past record of previous stimuli, would be able to avoid these drawbacks. It could
train on these stored stimuli, and when new stimuli were presented, could continue to check these against its store of old stinuli. If, in fact the store contains every stinuli and the appropriate response, the operant conditioning machine becomes redundant, however many, if not most stiadus response situations of the type described at the beginning of this chapter need not nave any negative or positive reinforcement accompanying them. They are initially neutral and may only later become associated with some reinforcement. Here again we have a loose behavioural reason for supposing that the cortex, if it forms such models, should be neutral with respect to behavioural. or hypothalamic 'rewards'.

In connection with this, it has frequently been observed that only hicher animals can perform well in delayed conditioninc tasks, and it is reasonable to interpret 'hicher' as meaning the presence of neocortex. Furthermore, the destruction of neocortex, cspecially the frontal lobes, can lead to the impairment of this ability.

In phylocenctic terms the neocortex is an outcrowth of the paleocortex which was oricinally a part of the brain associated with sinell.? This is perhaps the most interesting of senses in that it can be used for information about both distant and close objects. Grecory has pointed out that food
disappars from sicht when it is taken in and that touch is only effective when an object is close. Smell and taste tosether form a sense which can detect objects wich secrete cheaically (and most food is of this form) whether they are distant or have been taisen in. To inculge in teleology, a croup of cells roceivine information of this nature would be an ideal starting point for the outgrowth of a new structure which could form predictive models. In a Eeneral way this also circumvents a problem posed by Grejory: how did the eye develop when the brain did not have the 'computing power' to deal with the information it would roceive? And why did the brain develop such computing power when, if there was no well developed eye, it had no data on which to compute? The fact that the neocortex, which includes the visual cortex, is an extension of the rhinencophalon, that part of the nervous system associated with smell, shows how the necessary intermediate developnent took place.

Such requiretants of continuity in evolution also puts up another obstacle for holographic theories. How can a few cells store a useful fourier trensform or set of interforence frinces? On the other hand, what sort of nutation could hav suddenly taken place in order to effect a working holoeraph in the brain?

Having proposed this function for the neocortex that it contains an internal 'world' of predictive models, what can we say about Homunculus who explores this world? He is clearly very complicated, but he is not quite as complicated as the narvous system he inhabits, for he himself does not have the ability to make these models. Homunculus no more represents the individual that contains him, then a conguter without its core store represents the whole machine. We have sujcested that it is possible to operant condition him and he may be slightly frog-like (the latter animal having no neocortex). The point is that he is nevertheless complicated, and a full understanding of the physiolocy of the neocortex may be attained very much sooner than that of lower and phylocenetically older structures.

RTFRTMOMS

CIAPTMS $1-6$

1. GADOR, D. Mature, Vol. 161, p. 777. 1948
2. GABOR, D. Proc. ROY. SOC. A. Vol. 197, p. 454. . 1949
3. LeIth, E.IT. and UPATHIEKS, J. J. Oyt. Soc. America, Vol. 52, p. 1123. 1962
4. VAN HOERDNN, P.J. A2Vlied Ontics, Vol. 2, p. 393. 1963
5. LIGHTHILL, M.J. An Introduction to Fourier Analysis and Generalised Functions. 1953. C.U.P.
6. WILLSHA: D.J., BUNEMAN, O.P. and LONGUET-HIGGINS, H.C. Nature, Vol. 222, p. 960. 1969
7. MINSKY, M. and PAPRRT, S. Perceptrons. 1969. M.I.T. Press.
8. BUADAAN, O.P. Machine Intellicence 5 (eds. B. Meltzer and D..Michie) p. 383, 1970. Edinburch University Press.
9. ROSENELATT, F. Perceptrons. 1962. Spartan Books.
10. NILLSON, N. Learning Machines. 1965. McGraw Hill.
11. PRIBRAM, K.H. Macromolecules and Behaviour (J. Gaito ed.) 1966. Appleton - Century - Crofts.
12. RASHDVSKY, N. Mathematical Biophysics. 1933. Chicago University Pross.
13. HOUSEHOLDER, A.S. and LAHDAHL, H.D. Mathematical Biophysics of the Contral Nervous System. 1945. Principia Press.
14. CRAGG, B.G. J. Anat. Vol. 101, p. 639. 1967.
15. HEZB, D,O. The Organisation of Behaviour. 1949. Wiley.
16. LaSIILYY, K.S. Brain Mechanisms and Intellicence: A Quantitative Study of Injuries to the Brain. 1929. Chicaco University Press.
17. MORRELL, F. Brain Mechanisms and Learning. (ed. J.F. Delafreanays) p. 375, 1961. Blackwell.
18. BITDAAN, L.J., LIPPOLD, O.C.J. nnd REDFEARM, J.M.T. Nature, Vol. 196, p. 534, 1962.
19. GAPTSIDE, I.M. and LIPOLD, O.C.J. J. Py ysiol. Vol. 139, p. 475, 196\%.
20. BLISS, T.V.P., BUZAS, B.D. and UTTLEY, A.H. J. Physiol. Vol. 195, 2. 339, 1968.

REPSPSNOR Cont 1 d
CHAPTGR 7 cont ${ }^{\text {C }}$
10. KANDEL, E.R. and TAUC, L. J. Pliysiol. Vol. 131, p. 1, 1965.
11. KANDEL, F.R. and TAUC, L. J. Physiol. Vol. 181, p. 28, 1965 ,
12. YOUNG, J.Z. A Model for the Brain. 1964. Oxford University Press.
13. CAAGG, B.G. Proc. Roy. Soc. Vol. 171, p. 319, 1969.
14. BROMN, G.L. and PASCOI, J.E. J. Phyciol, Vol. 123, p. 565, 1954.
15. ECCLES, J.C. Physiolocy of Synapses. 1964. SpringerVerlae.
16. PITTS, W. and MCCULLOCH, W.S. Bull. Math. Biophysics, Vol. 9, p. 127, 1947.
17. BRIMDIEY, G.S. Proc. Roy. Soc. B. Vol. 163, 2. 361, 1967.
13. GRAY, E.G. Nature, Vol. 193, p. 82, 1962.

REERERCES Contld.

CHAPTER 8

1. GRAY, E.G. J. Anat. Vol. 93, p. $420,1959$.
2. EJCLES, J.C., ITO, M. and SZRititocomal, J. The Cerebellum as a Neuronal Machine. 1967. SprincerVerlag.
3. DIAMOND, J. J. Physiol. Vol. 194, p. 669, 1968.
4. RALL, W. Neural Networks (ed. E. Caioniello) p. 1, 1968.
5. GaIFFIMIS, J.S. A view of the Brain. 1967. O.U.P.
6. TAYLOR, W.K. Proc. Roy. Soc. B. Vol. 159, p. 466, 1964.
7. G_AY, E.G. Nature, Vol. 193, p. 32, 1962.
8. PhPPAS, G.D., COAEN, E.B. and PURPURA, D.p. (eds. D.P. Purpura and H.D. Yainr) The Thalanus. 2. 47, 1966. Columbia University Press.
9. Khidel, E.R. and SPencer, W.A. Dhysiol. Rev. Vol. L3, p. 65, 1963.
10. LuJこKs, R.B. J. Cong. Psychol. Vol. 16, 2. 439, 1933.
11. GLUAGEA, C. Studii Cercetari Fiziol. Neurol. Vol. it p. $41,3.959$.
12. BuaEs, J. and BURESOVA, O. Proc. 23rd Intor coner. Pyois?.

REERRHOSS Cont'd.

CIIAPTER 8 Contad.
13. DELGADO, J.M.R., RUBERTS, W.W. and MILLER, W.E. Am. J. Physiol. Vol. 179, p. 537, 1954.
14. OLDS, J. Proc. 23rd Int. Conjr. Physiol. Sci., p. 372, 1965.
15. OLDS, J. and OLDS, M.E. Brain Mechanisins and Learning. (ed. J.F. Delafresnaye) p. 153, 1961. Blacinivell.
16. OLDS, J. and MILYER, P. J. Comp. Physiol. Vol. 4?, p. 419, 1954.
17. Aildensmif P.O. Brain and Concious Experience. (ed. J.C. Eccles) p. 59, 1966. Springer-Verlag.
13. YOUNG, J.Z. A Model for the Brain. 1964. O.U.P.

RERERECES Cont'd.
CHAPTER 9

1. SHOLL, D.A. The Organisation of the Cerebral Cortex. 1956. Methuen.
2. BEJRLE, R.L. Phil. Trans. Roy. Soc. B. Vol. 240, p. 15j, 1956.
3. VAN HEERDEN, P.J. Applied Ontics. Vol. 2, p. 393, 1963.
4. SPERRY, R.W. J. ITeurophysiol. Vol. 12, p. 325, 1947.
5. LASHLEY, K.S. J. Comp. Neurol. Vol. 30, p. 257, 1944.
6. ECCLES, J.C. Physiolocy of Synapses. 1964. SpringerVerlag.
7. PENFILLD, W. and MILNER, B. A.M.A. Arch. Neurol. Psychiat. Vol. 79, 2. 475, 1958.
8. BLIES, T.V.P., BJMHS, B.D. and UTTLEY, A.A. J. physiol. Vol. 195, 0. 339, 1963.
9. GRAY, E.G. Nature, Vol. 183, p. 1592, 1959.
10. LOREMT, $D E$ NO. Chap. 15 in Physiolocy of the Nervous System by J.F. Fulton, 1943, O.U.P.
11. HU3EL, D.H. and WIESEL, T.N. J. Physiol. Vol. 171. p. 476, 1964.

REABRENCES Contid.
CIAPMR 9 Contld.
12. EVAHS, E.F. and WiITFIELD, I.C. J. Physiol. Vol. 171, p. 476, 1964.
13. PATPIGREM, J.D., NIKARA, T. and BISHOP, P.D. Exp. Brain Res. Vol. 6, p. 353, 1963.
14. HiSEL, D.H. and WIESEL, T.N. J. Physiol. Vol. 206, p. 419, 1970.
15. Zeninit E.C. Mathenatics and Computer Scicnce in Biolocy and Medicine. p. 277, 196\%. H.H.S.O.
16. U'ALEY, A.M., Proc. lst Int. Conor. on Cybernetics. 1965. Gouthier Villars.
17. Yựig, J.Z. A Model for the Brain. 1964. O.U.P.

REPTRMOSS Cont'd.
CiAPTYR 10

1. HUBEL, D.II. and WIMSBL, T.IF J. Physiol., 195, p. $339,1963$.
2. IEARD, S.D. and LOMGUT-HIGGIIS, H.C. To appear in Machine Intellicence 6. Eainburgh University Press.
3. RAETALL, J. Internal Report, Resench Momorandum, No. 62. Departaent of Machine I_{n} tellicence and Perception, University of Edinburch, 1969.
4. UNGER, S.H. Commications A.C.M., 7, p. 1, 1954.
5. ROESHOLD, H.T. and SWARBART, M.K. The Frontal Granular Cortex and Behaviour, p. 1. McGrat Hill, 1964.
6. MILIV2, B. The Frontal Granular cortex and Behaviour, p. 313, NcGraw Mill, 1264.
7. PAPEZ, J.\%. Comparative Neurology, 1929, Hafner.
8. G.EGJNY, R.I. Proc. Roy. Soc. B., 171, 2. 279, 1969.
