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Abstract 

The perceptron and the hologram are two dissimilar devices 

which have been advanced as neurological models. It :is shown 

that there are other and perhaps more plausible models which have 

properties common to both of these devices. The performance of 

these intermediate models which are termed Associative Nets is 

described and analysed statistically. The main similarities 

and differences between perceptron theory and holography can 
. 

also be demonstrated; it is possible to demonstrate formal links 

between the translation inva.riance in certain types of holography 

and group invariance in perception. theory. Some single proofs 

of certain theorems in the latter are also given and some other 

learning procedures are formulated. 

It is shown that the important difference between these 

various models resides in the method used to accomplish a mod-

ification. If this modifica~i0n is an analogue of a neurological 

change a~ a synaptic level, then it should be possible to qualify 

the relevance of those models by determining what types of synaptic 

change can take place in different parts of the nervous system. 

-Although the evidence is far from complete, it suggests that the 

neocortex is.limited to having one type of synaptic change. 

Finally, each model is discussed in respect of its neurological 

plausi bi Ii ty • 
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ChAPTER 1 Introduction 

Two theories have been put forward in recent years wnich, 

as models of the brain, have enjbyed some popularity_ These 

are holoeraphy and the theory of perceptrons and simil&r learn-

ing machines. It is intended to show that between these two 

superficially dissimilar models there lies a series of alternative 

theories, some of which are proposed as serious neurolo~ical 

models. An attempt will also be made to examine these theories 

on the basis of existing neurological evidence and as a result of 

this examination a proposal is advanced ~oncerning a structural 

and functional difference between the neocortex and other :2ClrtS 

of the nervous system. 

In order to demonstrate the formal links between these 

theories, the first chapt·ers of this dissertation will be concerned 

with a largely mathematical treatment of these theories. The 

physiological or psycholo~ical rationale for their constructi~n 

will be stated briefly in this chapter and as a short intro-

duction to some of the theoretical chapters. The d~tailed 

investigation of this will be reserved for the later chapters. 

Though a great deal of work has recently been directed at 

discovering a neurological b3sis for memory or learnine (no 

attemp~ is made at the moment to define those ter~s) our under-

standing is still not very f&r advanced. This is perhaps ~~rtly 
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due -to the limited techniques 0 f experi:nen tal neurology; perhaps 

it is even more due;! to the fact that we do not know which questions 

to ask of experimental neuroloGY: that is, we lack good hypotheses 

about the nervous system. Nevertheless broad neurological 

considerations allow us to infer for example that the orGanisation 

of the brain does not very much resemble the organisation of the 

hardware of a digital computer. 

No less important to our study of behaviour is our intuition 

about it. The recent advances made in our lmowledge of the 

structure of English are founded more or less wholly on the 

intuition of native speakers. It is hard to believe that this 

study will not throw some lisht on the organisation of the human 

brain. We might even hope for the reverse if some sound neuro-

logical principles of the right kind were to be discovered. 

Such considerations have led some neurophysioloGists to ta~e 

holography seriously as a model for memory. While holography, 

as a brain model, is somewhat condemned later on, many of its 

features are obviously attractive. Among these are the non 

local storage of information, the survival of the image after 

damaee to the hologram, the ability to 'recognise' displaced 

patterns and, in certain cases the recovery of a 'ghost' image. 

These same considera .. ions led to the develo)ment of o.ssociative 

nets and group invariant asso<.;iative nets which have many of 
or 

these features in common with holography and other desirable 
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properties as well. It is felt that such syste~s could be 

realised in the nervous system and some evidence is Given for 

this. 

Group invariant associative nets were initially developed 

as an attempt to solve some problems about our use of languace, 

which may involve our ability to recoGnise the deep structure 

of one sentence as a 9art of the deep structure of &nother. 

It VlaS felt that such an operation miGht be accomplished by a 

parallel system rather than a serial search - which in this 

case is a very slow procedure. It is far too early to say 

whether or not such networks are enbodied in the nervous system. 

It is however sU~Gested that they may be relevant to the psycho-

logical phenomenon of generalisation in which for example one 

recognises an object in some position even though one he_s never 

seen it in precisely that position before. 

One of the most gratifying results of this study was the 

close relationship it has to some recent results in the.theory 

of perceptrons in \':hich it is possible to say a cert:dn a:nount 

about the size and structure of a perceptron that evaluates a 

predicate which is invariant under certain transformations of 

its arguments. It also served to underline the fact that the 

fundamental difference between perceptrons and the other models 

lies in the way a change is effected in these devices. This 

is the only real distinction which will be made between mode:s 
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of memory and models of leorning. Such a distinction will be 

central to the neurological investigation of the later chapters 

in which it is sUGgested that certain parts of the nervous 

system are more sui ted to 'reme~nber' and others are better able 

to 'learn' according to this distinction. The evidence for 

this is, of course, rather scanty but it does result in some 

hypotheses about the nervous system which could be tested by 

present neurophysioloeical and neuroanatomical techniques. 

A final chapter will be devoted to speculation about how 

the brain can use a system which re;nembers or learns. It is 

unsatisfactory to produce a theory of memory unless one has 

some notion of a schema of behaviour into which it might fit. 

The relevance of group invariant associative nets to languaGe 

and· forms of simple generalisation will be discussed along 

with the relation between these·and other brain models. 



CHAPTER 2 Holo~raphy 

2.1. G~ncral Principle 

Bofore embarldn~ on a desc~iption of those aspects of 

holography which are considered to be of particular interest 

as models of memory, we outline the general physical set-up. 
1,2 

Hologra:.?hy was invented. by Gabor as a method of getting 

round the limits of resolution of electron microscopes of 

that time. Gabor's prop6sal was to expose a photosra~hic 

plate to the diffraction pattern produced by a small object 

in the coherent illumination of the electron lens system of 

an electron microscope. The developed plate is taen put 

into a scaled up system of coherent optical illumination in 

such a way that the ratio of the linear dimensions of the two 

systems is the ratio of the wavelengths of the two sources. 

An 'enlarged image of the original object, ,'[hich mc.y be three 

dimensional, occurs in the optical syste~ and this may be 

viewed or photogra:.?hed by normal optical means. 

According to Gabor, the principle underlying the re-

construction is the following. Suppose that two coherent 

monochromatic sources of the same frequGncy illu~inate a 

photographic plate. Then the wave at that plate may be 

described by the functions: 
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position on the plate. The intensity of the superposition of 

these t",ITO wa.ves is then given by 

(AoeiPo + Alei~l)i(Aoe-iPo + Ale-i~l)t 

= (~ + A~ + 2AaAlcos(Pi-~I))t 

The plate can then be developed in such a \'lay that the photo-

gra~hic density is the square of this intensity, so that when 

this plate is illu:ninated in the sm:1e way but .,':i th just one of 

ct) say, v:e get a trans:nitted v/ave: 

If Ao is constant OV8r the plate, one ?art of this exp=ession 

vlill be Ag Al ei (~l + 2 -rrct) which is tIle second \":ave ~IUI ti~lied 
2 >: 

by the constant AO. There are clearly other tr.::nsl:1i tted \'!<tves 

and it is only in certain circumst~uces tnat these otner W;J.ves 

can be separated or neGlected as small in COl:'lp:Tison with the 

reconstruction of the second wave. 

The most straightforward physical device to dc~onstrate 

this pro)erty is illustrated in fiGure 1. This has been used 

by Le~th and Upatnicks3• A laser produces a coherent be~ of 

'illu,nination r!hich is reflected from both an object u...'1d a mirror 

to a ~hotoGraphic plate. The plate is ex?osed and developed 

and tho object r0moved. On replacinG the ..i.'Jlato ex'o.ctlY in 

'" its orieinal ::>osi tion a virtunl ir..::t,::;e of the object ap~e2,rs at 

the position of the object. 

produced at the reflected ~oGitlon of tha object in the ~~oto-
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graphic plate. There is ulso a plane TIuve component from 

the nirror. These are three of the four terms in the 

expression 2.1 • .::nd they are easily -sepa.::'3.t0d in the physic.;,l 

systcm.. 

----------- ~ -

LASZR .-- HLUOR 

----------------~-- ~ -

li'igurc 1 

pribrc.J~1o.G proposed this 'device as a model 0 f me:llory, 

among his reasons are first that the holo,srnm is a 'non local' 

store, there is not a point to point correspondence bet~e3~ the 

plate and the object (as there ~ould be in normal photoGraphy) 

ruld second that a frnGl!lcnt of the plate cc..n be uGed to recon-

struct the \,/ho1e obj ect, thoUGh with some blurrinG_ Bu t v:e 

will examine this analogy in detail later. 

It 
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2.2 .. Fourier Trnnsforrn HoloGraphy 

In Fourier Transform Holography the hologram plnte records 

'the power spec trum of a photograph.ic transparency. The system 

shown in figure 2, which was proposed by V:lU Heerden4 does just 

this operation; 

s 

·t. _ .~.. '." . 

Fi;;s. 2· 

A source of coherent light illuminates a photographic trnns-

parency at PI which is in the focal plane of the lens L. P2 

is a photographic plate in the other foc01 plane. If the lens 

is reasonably larGe then the runplitude of the wave arriving at 

P2 is proportional to 

1 
A (s, t) = VZ"IT 

g : ;"Tri (Sx' + 
o e 
"'1 

ty) f(x,y) dx dy 

where (x,y) and (s,t) are coordiIlc,tes for PI and 1'2 measured 

from the optic axis respectively and f(x,y) describes the density 

of the transparency at Pl. If wesuPJose that f(x,y) is zero 

off P1 then A(s,t) - where it is defined, is the two dimensional 

fourier transform of f. 
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To underntCUld the unefulnens of this, we first list nome 

of the elementary properties of fourier transforms. . The 

fourier tro.nsforlll mf of a cOlllplex valued function f of the 

real time is defined by 
+ ... 

.-L. j 2 iT isx mf(s) =J2;r e , f(x) dx 
-liD 

mf 1s only well defined for ccrtcin functions f, but the 

Operation con be extended to tDJW account of generalised 

functions so that, for example, a constant· function has a well 

defined fourier transfor.:'!, l12.mely a delta function .5. The 

properties of fourier triillsfor::1S that Yfe sholl need here are: 

1) ::12 f = r.1f where [(x) = fe-x) 

2) mF = (iiif) 

3) mC ig) = (mf) ;. (mg) \'/here f~.; is the convolution .... 
of f illld g i.e •. jf(t)g(X-t)dt 

-DO 

Vie also define the correlation of f <md g to be the function: 

(f0g)(x) =J"'~t)G(t-X)dt = f~g. 
_. G 

And while convolution is cor.1Jnutative and ansoci::ltive, for 

correlation: 

fG)g=~®f 

( f G g) (} h = f ® (g e h) 

So that (mf) (mf) * = m( f '* f) = m( f ® f) 

This is the power spectrum of f \'!hich is also the fourier 

transforr:1 of the autocorrelation of f. Fin.:\lly, if S is 
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the Generalised function with the property that 

Ji;=f(O)thenf*~=fand b®f=f 
-00 

These renarks apply equally t~ complex valued functions 

Now if vie expose the plate in Vo.n Heerden t s apparatus 

and develop it apr)ropriately the density 0 f this plo.te will be 

proportional to the square intensity so that we shall have 

recorded (mf) (mf)*. The exposed plo.te can now be replaced 

in its former position and in the position of the photogra;.hic 

transparency at PI we place a new transparency described by 

g(x,y). Ir.l;nediately in front of P2 we will then get a VlaVe 

described by mg and immedie.tely after ita wave described by 

(mg) (mf) (mg) * 

Now by means of a second lens (see figure 3), VIe can perform 

the sa'1le optical operation to arrive at the fourier transfor:n of 

this expression: 

g:'* f' f = g * (f @ f) 2.2 • 

.. 
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Hovl f e f reaches a maximum at 0 and if f is suitably 

noisy or random (in a sense we shall examine shortly) we may 

approximate lt by a delta function at 0 so that the reconstr'.lcted 

image at P3 is: 

g * (f ® f) ,v g 

so that \'/8 recover, first of all an inverted ima,;c of g. It 

may hap'pen that, if g is a fraGment of f then g ® f also resembles 

a delta function so that the recovered image at P3 can also be 

approximated: 

-f N f 

The latter is the 'ghost image' of f, that is to say we have 

recovered the whole of the oriGinal-function f by patting into 

the system a fraement g of that function. Of course, these two 

approximations for the recovered imaGe will only be consistent 

when f = g, in practice the image of g will be stronger than 

the image of f to an extent which depends on the size of the 

fragment g. Moreover - had the fraement g been displaced fro~ 

f by a, a two-vector, then g® f would be a delta function 

displaced by a so that the ghost image of f would be correspond-

ingly displaced, and in the output, the ghost imo.ce of f will 

match with the strong reconstruction of g. 
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2.3. Applications 

By taking various forms of f we can put the fourier 

transform hologra~h to a variety of uses. In particular if 

f = fl + f2 where fl and f2 are non zero in adjacent regions 

then, having recorded the hologram of f we may use either of 

fl or f2 to evoke an output of the other. So that putting 

in fl will produce e.n output of fl together with a C;host image 

of f l + f
2

. 

A special case of this is where f2 consists of a single 

bric;ht spot, at the origin say, SO the function whose hologram 

we construct is of the form fl + 6', where 6 is the delta 

function representing this bright spot. On inputting g to 

the system we reconstruct: 

g * (fl + b) ® (fl ® 6) 

=. g * (f 1 ® f 1) + g "* f 1 + g '* f 1 + g 
There are two choices we could make for g, the first is a 

bright spot, again suppose it is at the origin. Then the 

reconstruction of the image at P3 is 

Suppose fl had been chosen so that it occupied a limited region 

of space-whose greatest distance was less than the dist.:;.nce of 
It 

this reGion from the bright spot (figure 4). Then of the 
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ter:ns of 2 .. 3 fl ® fl and I) would occupy a central region 

-and the terms fl and fl would be n0!l zero in diametrically 

opposite regi.lns which are both adjacent from the central 

region. 

reconstruction 
of 1 1 

, , 

,. ---~'" 
, , . 
I 

, 
" . .. ..... ,,' 

of 

Fig. l~. 

In consequence, we would get accurate recall of fl and this is 

the case that most closely relates to the apparatus shown in 

figure 1. 

The sec ond choice we could maI~e for g is to make ita 

fragillent of fl so that from 1.4 the recalled pattern has now a ter~ 

i ~ fl which is (g® f l ) so that we create a bright spot in the 

(inverted) image at the origin. Moreover if this fragment is 

displaced the bright spot will be displaced by a corres2o~ding 

amount, so that the fragment may be located in the original. 

The latter is~n Heerden's sUGgestion for locating a fraGment 
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of a page in a stored library. 

The final application of this syster:l is to make a 

'multiple holoGram'. We expose the hologra.'1l plate to a 

number of separate transparencies and Fccord 

If vIe now input gi' a fraGment of fi one of the output 

terms is 

Hopefully, there will not be much correlation between ei and 

any of the other stored fi , SO that the reconstruction of fi 

will predominate though ~';e should expect there to be an incrense 

in the noise level. 

As to the nOise, suppose now that in a one dimensional 

case, 'the sienal f is repeated by a discrete set of values 

Then 

we may express the recall by 

Pk = E Y. 
-~ ~-j+i ~k-j 

=L Yi 
p .. $k+j 

ij J-~ 

where ~ < i~ m , 0 < j-i~ n 0'" < k+j ~n 

i 

m 

o /' ; 

-k -k+n 
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The number of terms which contribute to each term fk 
is represented by the shaded area of the diagram above. We 

:-.ow make the assumption that the ~~ are independent \'1ith a 

gaussian distribution, each with a variance 0<. We also 

assume that g is a fraoncnt of f so that Yi :: Pi for i::1. •• m 

Then, in general the variance of f k will be d,.3/Nk \,lhcre 

N
lt 

is the numbGr of terms in the expression for flt or the 

area of the shaded reeion above. Those terms which contribute 

to the ghost imaee f'k are given by 

:: L 
i::k+j 

= ~k+j ~-k 

whose variance will be m cI.. 3 since there are m non-zero y terms. 

So for f k 1 < k < n the si8nal to noise ratio is / fr 
k 

VJithin these limits Nk varies between m2 and nm-m2 so that 

the signal to noise ratio is never worse than ~=~ nor better 

than 1. This is not very satisfactory, unless there is some 

redundancy in the si.:;nals vie cannot expect good recall of a 

ghost imaGe from a small fragment. 

, '\ 
The expression 2.5 above for'f"k gives us a clue for a 

. system which is fundamentally simpL:;r than holot;raphy and 
or· 
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possesses, or can be modified to possess all the desir~ble 

aspects of holoGraphy. T~cse are associative nets to which 

we examine in some detail. 



- 17 -

CHAPTZR 3 Associ~tivc Nets 

. ,.1. Line~r Associative Nets 

In this chapter we shall discuss a class of models for 

memory which are conceptually simpler than holographic models 

yet retain f;W.ny of the pro~x;rt'ies which rnal ... e holo.:,;ra.:;hy an 

interestinG model. TlJ~ 11k~11hood th.'J.t these associative 

nets are realised in the nervous system will be discussed in 

detail later, but it is worth pointing out now that such nets' 

require only those properties of cells and synayses'which are 

almost universally acknowledged to exist in the nervous system. 

One property of fourier transform holOGraphy will be lost - the 

ability of such holographs to produce a displaced output from 

a correspondinGly displaced input. Later we shall see how to 

recover this property e.nd· gain others by modifyinS these nets. 

Rather than store continuous functions ~e shall think of 

the siennls to be stored and recorded as vectors. If i"iC have 

f t { i}, i (i a set 0 n-vec'ors ! Wl1ere z: = Xl' ••• 

then ',ve may store the nU.nbcrs W = f xi 
. pq i=l P 

i xn) i=l, 2, ••• k 

i 
Xq and on inputting 

a vector 1 = (y, ••• Yn) we may recover by matrix multiplication 

a siGnal 

n k i i 
l: yp L x p x or q 
p=l i=l 

It 

k 
(1.2:1 ) xi L 

i=l 
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i Now as in holo~raphy if Z is a suitable frag~ent of ~ 

i i then the term (ZOo!)! will preuominate and we again recover 

i a ghost imace of x • FiGure 1 sh,ows a system which will do 

just this operation. 

r
et x~ Bk j: xl - i ____ w,)., ___ _ 

I 
cr 

------0-

i x --)---
2 

T-' Figure 1 

" 
Each box in Figure 1 represents a 'real nu~nber or "weight". 

When a vector !i is stored, the weight at the pth row and 

qth colu.nn is increased by x . x .. p q To recall ~e input a 

vector I alons the rows and form the weichted SQ~ of its 

components in e~ch column- these constitute the outputs. 

Such a system is linear and we note that if \':e have only one . -
stored vector x the output from any input vector which is 

not orthogonal to ~ will.be a multiple, the recovery of a 

'Ghost' imaGe in this case is not at ?-ll remo.rlmble, but 

unlike the holo·craIn it is 110ise free. 
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In the same way that an estimate for the signal to noise 

ratio was found for the holograph we can estimate the signal 

to noise ratio in this linear associative net. Su.ppose there 

are k stored n-vectors and suppose ;[, is a frag~ent of one of 

them in that it matches xi say, in m places and is 0 elsewhere • 

. Then, as before if the components of the stored vectors are 

taken independently fro!U a gaussian distribution of variance ~ , 

the variance of the 'siGnal' term (.;['.i) '!:.i will be m ~.3 

while the noise term will have variance (k-l)no(.3 and the 

signal to noise ratio will be j(k~l)n which is of course 

infinite when k=l. 

There is nothing to stop us storing pairs of signals in 

an associative net of this ldnd, for exalnple, let 

1 1 22 k k (! ,;[, ) ('!:. ~;[, ) ••• (! ,I ) be pairs of n vectors. The 
k . i 

weight (p,q) is now L:. x~ yq and inputtinG ~, a fragment 
i=l P 

of xi we Get L (z.xi)vi which should result in an output of 
~ - - ~ 

;[,i, such a system then 'associates' the pairs z:i and ;[,i. The 

recall of ;[,i is again subject to exactly the same noise as the 

case discussed previously. It is also worth noting that if 

the syste!U is suitably constructed we may use it reversibly to 

associate I patterns with z: patterns, or their frae;:nents. 

This is not a,very plausible biol06ical state of affairs • 

... 
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The LL1c2.r A :socic.tive Hot \':i th Threc;(lOlds 

It is possible in !lart to Cet round the noise problem in cill. 

associative net by endowing the siGnals with some cort of redund-

ancy and usinG this redund.::mcy to find the signal in t·he noise. 

As an exa.71?le \'ie consider the case in v:hich each x~ and Y~ is 

independently cho.:en to be +1 or -1 ,,;i th .crobabili ty i. The 

o'Jt?ut frol:! Buch a net will not, in general consist of lIS and -l's 

so we call the out}ut on one line +1 if the output is in fact positive 

and -1 otherwise.. This could be readily realised by some threshold 

device on each output line. 

\'Ie no':: determine the probability of error in such a system. 

1 Su,?pose that ~ is a fraG!".lOnt of ~ and ar;rees with it in exactly 

m places (it is still +1 on the other places) so tlwt I z.x = 2m-n. 

This Vlill be the strength of the siGnal on ec.ch out)ut line. If 

, k 
the noise on that line 3.. e.' L 

i==2 

. i 
(z, x3.) Y 
- - q 

is less than this 

number \'/0 set no error - if it is greD.t'~r ViC Get an error ',:i th 

probability J. 

i The probability that (~.~ ) takes on a Given value S ,is 

i 
p(z.x =s) = - -

where the binomial coefftcient is taken to 
k 

be 0 if n+s is odd. 

L (z.xi) i The prob"-'.bili ty tilD.t Y ta!~cs on 
- - q 

the value 5, 
i=2 

given lis: 



11:1,7 examining coefficie'nts in this is seen to be 

(

nOC-I) ) 

n(k~l)+S ." ~n(lC-I) 

and this expression is,. by the normal aP:Jroximation 

2 s 

7T fn(k-l) 

I 
41Tn(l~-1) 

and the probability of error then becomes 

1 

.4 "jn(k-l) 

This can be evaluated numerically, for exa~ple, to get an 

er.ror r.:l.te of less than l;~ we require that t 2 > 10 n(1~-l) 

appro xil:t(;tte ly .. Certainly .'if ,k is :)'f)rdcr nand t=n i.e. 

Vie use the whole of an xi as an input, the recall should 

become better as n increases. While this is not totally 

satisfactory as a store it is very much better than a linear 

associative net or the fourier transfor/:1 hol05ra;'Jh. It can 

also be sho~n that choosing equal numbsrs (on average) of 

+1 f ti and -1 f S for the compon8nts of e;,ch vector is a "best" 

case: we mieht, for exa:nple have chosen the vectors from a 

different essemble in the followin~ way. 
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i . 
SUlhJOGC the vectors (~ 'lJ. o.nd ~) are cho<Jen to h::ve 

components ;~ with probability p and ;~ with probability q. 

h t t ' t i i d th t' i T en we no e an x.x = n an e expeC"ntlon of x .z is O. 

The variance however is 

which is minimum when p=q=i. 

By the Central Li;:1i t Theorem, the probability that 

t '!:..;l> s will, for large n and l~ be le:..tst when p=q=i 

i=2 

the case we have already considered. 

The Binary Associative Net 

In a recent paper by \'/illahaw, Bunemon and Lone;uet-HiGsins6 

a rather different type of associative net was investiGated. In 

this t~e input cilld output vectors consisted of ones and zeros 

and the ~eightst unlike the linear associative nets were 

restricted to being 1 or O. The input vectors :s.i now \uth 

NA components are ro.ndo~ly zelected from a set of such vectors, 

each with exactly HA ones and N A-HA zeros. The output vectors 

i r with NB components were si~ilarly chosen fro~ a set with 

exactly HB zeros. 

.. 
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i i The weiGht Wpq is Eet to one if xp Yq = 1 for at least one i. 

Vie can think a f these weights as swi tchos, ,any switch is turned 

on by simultaneously seeing a one in its input and output lines 

and is never turned off. If VIe have stored R pairs of vectors 

and we then input a vector xl say, we get an output 

R 
L 
i=l 

1 i ' 
(1:: .~ ) ';l~ 

So that if we put a threshold of just under l'1A, we will get 

a vector with ones whenever ';ll has a one and possibly other 

ones as well which we regard as spurious. 

If HA « NA and HB« NB we can calculate the probability 

that any line Gives out a spurious one. The probability p 
c 

that any weight is one is (since the patterns are chosen at random) 

given by 

and since HilB is very small comp3.red wi th N ANB VIe may write 

The probability that one line spuriously exceeds threshold is 

pcHA and, if \'/e demand th~,t there be on averaGe Olle spurious 

output for euch output p3.ttern: 

MA 
. (NB-HB) Pc = 1 

.. 
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which.may again be approximated by 

HA log p e c 

If we reGard the information itored in such a network 

as the information necessary to store the R output patterns 

this is 

and this may be written, using the previous expressions as 

I then, reaches its maximum vfhen Pi =-!, that is when half the 

weights are one. 

information density is about 0.69. Even if we were to use 

the NANB binary weights in some other manner, as in the core 

store of cl computer, the information density could not be 

higher than 1. It is surprising that the information stored 

can be SO high while we retain the association with arbitrary 

input patterns. 

It 
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CliAPrSR 4 Group Invariant Associative Nets 

Although the associative nets of the previous chapter 

had ma.ny properties in cominon with the holograph, the ability 

to recognise displaced patterns was lost. EV8n if such an 

ability has no direct relevance to human perception, it is 

possible that the ability to recognise sorae transformations 

of an input ma.y account for the psycholoGical phenomenon of 

generalisation. For exanple, an object may be recognised by 

humans and some animals when it is viewed in some position in 

which it has never been seen before. Some transfor~ation of 

the input (even if it is not displacement) has taken .place. 

In this chapter we shall show how an associative net may be 

modified so that when a transfor~ation of its inputs takes 

place, we can ensure that a previously speci fied transfor:nation 

of its outputs also takes place. It will eraerce lat~r that 

from the theory of such nets that we can prove, as a special 

case, Hinsky and Pa2 ert' s e;roup i~va.riunce tl1Corem1 for 

perceptrons. Before dealinG with the general theory, two 

examples are Given, the first is an associative net which is 

functionally si;:lilar to a holoe;raph in that it will give 

displaced out}uts from displaced inputs. The second will 

recognise one Graph asa subgraph of another. This is a 

proble~ which ma.y bear upon the manipulation of languaGe, but 

the discussion of this is reserved fOF the last chapter. 
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These two exanples will. be extensions of the binary 

associative net, so that the connections will be referred to 

as switches. Later, in t.he general theory we shall take account 

of the other types of associative'net. 

4.1~ The Correlocraph 

In the same paper in which they put forward the binary 

associative nct, '.'lillshaw, Bunelllon and LonGUet-Hiecins6 also 

proposed an optical device the 'correlograph' which would record 

directly the cross correlation of t~o photographic transparencies. 

Such a device could, though it was limited by diffraction, be 

used to display all the properties of the holograph without the 

use of coherent light •. In detail the correlograph functioned 

as a binary associative net with its switches 'tied'. This 

means that whenever one switch in such a net "is turned on (by 

recording a pair of patterns) a whole subset of the switches is 

also turned on. Suppose that, in a binary associative net· 

with N input and N output lines we turn on the switch (i,j) 

which connects the ith input line to the jth output line. We 

then tUrn on any other switch (p,q) if 

p = i+r mod N 

q = j+r mod N 

for some value of r. (\'/0 work modulo N to avoid boundary 

conditions ~lich would produce, in some csses, incomplete outputs). 
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As before, we store pairs of patterns in which the input 

patterns have MA active lines and the threshold on the output 

lines is just under M •. Suppose that such an input pattern is 
A 

given by the active input lines 'p(l), p(2) ••• P(HA) and this 

evokes an output of active lines q(l), q(2) ••• q(k). Then 
.. 

the input of the displaced pattern: 

evokes the correspondingly displaced output: 

q(l)+r, q(2)+r, ••••• q(k)+r 

) 

> 

Fig. 4.1. The sets 6f switches tied for a simple corre10~raph. 

Tying switches in this way reduces by a factor ~ the 

nurnner of effective switches and consequently reduces by the 

same factor the amount of informati9n that can be stored in such 

a net. We shall show later tha~ some improve~ent can be gained 



- 23 -

by suitably coding the input~ so that more input lines end 

more sets of tied switches are provided. But the net as it 

stands can be used to stor~ cross correlations or auto-· 

correlations and function in a similar fashion to a holograph. 

4.2. The BraDh Isomorphism ?roblem 

The problem is as follows: Given two graphs F and G, 

how do we r2cognise t::at F is a part of G and, given that F 

is a part of G, what is the function that c~rries the nodes of 

F to the nodes of G if such a function is unique? Formally 

let TF and TG be two sets (the sets of nodes). A graph F is 

a relation TF that is a subset RF of TF x TF; similc.rly a 

relation RG defines a eraph G. We say there is a graph mono-

morphism from F to G. if there is an injection 'fF to TG, Q say, 

such that 

F and G are iso:norphic if there is a monomorphism F to G and· 

a monomorphism G to F. Clearly any graph is isomorphic to the 

What we shall do no'll 

is to demonstrate the eY'.istence 0 f a .. sociecti ve nets with tied 

switches which will, up to a point, racognise one graph as part 

of another. It will be r0called that a tied associative net 

can be r.w.de to function as n. device wl1ich sto,:'es correln.tions and 

that if the autocorrelation of a function or pattern f is stored, 

then a sufficiently laree fraz~cnt of f will produce a 'ghost 
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image' of f and this imaGe will be displaced by an wnount 

correspondinG to the displace,nent of the fraement. The 

following procedure for tying switches in an associative net, 

will in certain circuiUst.:\nCes produce a 'ghost t graph with its 

nodes permuted to match wlth the input of the fragment. 

We start by supposing that the given graph G is defined 

on a node set TG containing N elements. G is then specified 
. . 2 

by a subset of the N pairs in TG x TG- Now let us .. suppose 

th.:.t th'esc H2 pairs are in fact the input lines to an associative 

net. VIe have observed that permuting the nodes of a graph leaves 

us with an isomorphic graph so, for example the following figures 

will represent isomorphic graphs: 

x Y Z T X' Y' Z' T' 
--, 

I 

X X' 

" / / 
" /,,/, 

Y 
, . 

Y' / , . /, ..•.. , " . , % 
/' /'. 

Z 
~" 

/ . Z' 
/ '-

T T' 

'-

~> /~. I 
/ / /' . / d :'/. / . 
. " ." ...... / 

In fsct the set of all such graphs will be determined by 

correspondinG p3rmutations of the rows and coluons in such a 

figure. If the inputs are ordered row by row 1 ••• N2 then 

the followinJ permutations of these inputs will give isomorphic 
It 
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where p is an element of the sY,Hmetric Group SN and p, q are 

chosen so that q < N.. Let us call this permutation group L N' 

it is isomorphic to SN' As we did in the discrete correlograph, 

we tie the switches together in the sense thQt if vie turn on 

(p,q) we also turn on the switch (6( p) ,b ( q) ) for all 6€~. 

Figure 4 2.1 shows r- and the switches on the 32 
x 32 associative 

net that we would tie together in consequence. Each set of tied 

switches is denoted by the same letter. 

'A graph on three nodes X Y Z, say is represented by a choice 

of a subset of the numbers in the followine; diagram 

x Y I Z 

X 1 2 3 

y 4 5 6 

Z 7 8 9 -. 

This would be rather a si~ple Graph, but craJhs of this 

size are auequ~te to illustr~lte the function of such associative 

nets. 

It 
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1 A 

2 F 

3 F 

----
4 G 

5 D 

6 H 

7 G 

8 II 

9 D 

Figure ~. 2 

- 31 -

(1 2 3 456 7 8 9) 

2 

B 

I 

J 

K 

C 

11 

L 

N 

E 

(5 6 4 879 2 3 1) 

(9 7 8 312 6 4 5) 

(5 4 6 213 8 7 9) 

(9 8 7 6 5 L~ 3 2 1) 

(1 3 2 798 4 6 5) 

3 4 5 1*,-- 8 9 --
B C D E D 

J K G L 11 N II 

I H H N K L G 
-

L I F I J N 1-1 H 

E B A B E C D 

N J F I L K G 

K I N H H I J F 
----

H L G K J I F 

C E D C B B A 

The pcr:!1Utation group L and DJl associative 

net with its sr:i tches tied by L. 

It 
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The graph: 

Y 

w,)uld then be represented by (X,X) and (X, Y) or 1 and 2 in 

this diagram. Now we could form the equivalent of an auto-

correlation function in this diagram; that is to say we store 

the pair both with siGnals in lines 1 and 2 and in consequence 

turn on all the switches denoted by A B F I. We could now put 

into this net a part of this graph, not necessarily on the same 

nodes; for example we could put in the graph: 
:r 

t 
which is represented by 7 in the dia~ram and, if the threshold 

of the ~utput lines is set at just under 1 we get a~ output on 

lines 7 and 9, that is the graph: 

X 

We not only get out the little one-link groph we put in but 

also a 'ghost imace' of the original, This ghost image is 

again suitably altered to r:l::ttch with the input. Be fore emborldng 

on extensions of this idea it is as well to exo~ine the li~itations 

of such a device in this form. 
It 
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.Our first observation is that if we put in a Graph which 

is ambiguously l:1onomor)hic with the stored Graph then we cannot 

expect a unique representation of the stored graph in the output. 

This corresponds to correlating a "fraction of a picture with the 

autocorrelation of that picture when the fraction is an ambiguous 

part of the wnolo, we would expect an output of more than one 

'ghost imaGe'. This ambiguity may take on rather more serious 

forms; in the exrunple above inputting the simple Graph, 

Q 
produces the output: 

x y 

which is the superposition of the two possible continuations 

of this simple graph \'lhich match the stored t;raph. To get 

round this in any practical application of this device, we would 

have to h:lve some a priori knowlelGe of how we wanted the Graph 

continued and then to limit the number of output :t.ines in an 

appropri~te fashion. 

A more serious limitation occurs because the number of 

groups of tied switches in such a device does not continue to 

grow as the size of the net increases. In fact if N (the nu~ber 

of nodes) is four or more then the number of such groups is 15. 
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Compare thii with the correlograph where the number of these 

groups is n for an n x n net. 

*. 
To see this, we can label each switch in the net by 

(t,j,k,l) where i,j,k,l run from 1 to N. (i,j) defines the 

node pair which gives an input line and (k,l) similarly defines 

an output line. Two switches (i,j,k,l) and (il,j',kl,l') are 

tied if and only if there is a permutation of SN which carries 

i to i', j to j I J It to k I J and 1 to 1'. For exa:nple if 

i,j,k,l are all different and so are i',j',k',l' if N 4 

then we can form such a permutation, so that such switches are 

tied. In general there will be a partition of these four elements 

such that each member of the partition contains equal elements 

and any elements from two distinct members are unequal. Again, 

if N 4 then any other (i',j',k',l') with a similar partition 

will repre~ent a switch tied to the first. It is easy to see 

that there are only 15 such partitions. 

We have already· remarked that the capacity of such a net 

as an infor~ation store is li~ited by the nu~ber of distinct 

(untied) switches so that this upper liillit would prove a serious 

drawback if this device were used to store much information. 

Howe/er, there is a method of increasins this capacity by the 

use of m~slts. A mask can be envisaGed as a new input line 

* I am very erateful to Mr. Stephen Isard for pointing out 

this t:olution. 
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which is active only ~/hen a certain subset of the old iniJut 

lines are act! ve, in the example just .gi ven the pair of input 

lines (1,7) would define a mask. The order of a mask is the 

order of the subset which riqfines it. If we were prepnred to 

order 2 then we riave a further set of input lines and switches, 

and \'ie can again eive a procedure for tying together the new 

switches (we will do this in the next section) .. It can be 

shown at some lenGth that the number of groups of tied switches 

on these masks is not greater than 114, equality being reached 

when N=6. For N=3 the nu~ber is 56. 

4 .. 3. The Theory of G.I. Associative Nets 

In this saction we formalise what was done in the last 

section for graph reCOGnition. To start with we shall 

generalise the definition of an associative net so that the 

cases we considered in Chapter 3 will be special cases of this. 

Suppose, firstly that the inputs {ail are not necessarily binQry 

but can as:3u~e any real value. We also assume that the connections 

may also be specified by real numbers Wji , likewise the thresholds 

9
j 

on the output lines. 

fp 1 which has the vQlue 

We adopt Minsky and Papert's notation 7 

1 when the predicate P is true and 0 

if it is false. (For eX:l,~ple r3>27 = 1 (p& Ql = rpl rQl) 
b j = r.f wJ'i ai > 9 j 1 4 .. 3.1-

~=l 

then defineR the jth output, b j • 
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We now assume that there is a group action \,/hich permutes 

both the input and the output lines. Let G be a group and 

let p and e I be homomorphis!ns from G to the permutation groups 

5 and 5 on the input lines and output lines respectively. For n m 

example in the correloGraph n=m and G Vias the cyclic group of 

order n; in the case of the graph recogniser, G was 5'T and this 
i., . 

was mapped onto the group LN on both the in?ut and output lines. 

In general, ho~ever we need not assume that p G and fiG are 

isomorphic. Let g f G I, in this sec tion, by an abuse of 

notation a fg(i) will be written ag(i) and b p Ig(j) will be 

This should not produce any confusion especially 

since we shall reserve the 'suffices i,n for the input and j,m 

for the output. Our first result is that if certain of ehe 

weights and thresholds are equal then the action of G on an input 

pattern will result in the corresponding action of G on an output 

pattern. 

vector (a (1)' •.• a ( » define band b similarly, finally let • lS g n --g 

P be the function de fined by 4.3.1. SO that E. = ~ (~) . 



Prop. 4.3.2. 

then if b = :r: (a),b X - -g 
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Froof: "] 
'g( j)i a. > g~( .l) 

~ £;;, J) J 

W. -1(.) J g ~ • by the hypotheses· 

slnce the ~um p~ocecds 
over all i 

which is the jth component 
of :r. (a ) 
~ -g 

This shows that we get, as we expected from the exa~ples, from 

inputs altered by an element of G correspondin,(;ly altered out::,uts. 

gOVlever, \,Ie would also expect that if pwere not an endomorphism 

then it is po~sible that we only get thin group invariant pr6perty 

because the outputs are rather simple. That is to say that 

several output lines \':ill always proLiuce the same si.::;nal. The 

followin: corollary makes this precise: 

Let H be the group e -1(1) that is, the null space of f . 
, Then bg(j) = b j for each g in H. 



Since' g is in ,-1(1) 
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a -g = a so that 

b = 

In order to avoid ~his situation of the outvut patterns being 

redundant we need to be able to identify G with a group action 

on the input lines.However we shall need the more general res'ult 

of when \'/e deal with the possibility of encoding the ini)uts. 

Before this, there is an interestinG converse to the last 

proposition. It is clear that tying the connections of an 

associative net v;ill reduce the amount we can store in it. 

Is it po[wible that there are nets which ex.l-J.ibit this group 

invariant property but whose performance would be altered by 

tying their switches? The answer is no: 

Prop. 4.3.3 

Let l~t, £t 1 be a set of input-output pairs of an 

associative net defined by 4.3.1. so that £t = ~ (!t) for 

each t. If also there is a group G and hom~morphisr.ls f and e' 
as before such tho.t* (!t) = bt for each t and for each g ~ G. 

g t; 

Then there is an associative net with weights w!. = 
~J 

and 

1! " 
9'; = Qg(j) for all g ~ G; and \'Ihich defines a function 

such that P (at):::r.I(at ) for each t and each g ~ G. -g X -8 
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Proof First of all Vie observe tIwt if 

. . 
fx> y l = r f1 (xl> h1 (Y~ = [f 2( xl >i'2(Yl7· ...• 

for some functions fl f 2 ••• li.':1 ~2 .... tllen 

r x> y 1 = r L. fi (xh~ b;~(X)l 
1. 1. 

Now by our assumption that ~ is invariant under G, for each 

n 

QiJ ={ L PJ t 
, Je{i) ai > 

i=l 

b: 
t ,', 

So that = bg- 1j )," J 

= rt. Wg(jl 
t Qg(j~ g(i) ai > 

i=l 

t But b~ is also r t 1'1 > Qg(jl 1 a. 
J 'ji 1. 

1=1 

Su~minG over all g € G, 

that b
t = rt (2:: 
j I i=l g€ G 

, 
So that ve may set Wji 

, , 

we have by our first observation 

Wg(jl g(jl) a~ > 2::: Qg(j~ 

= ('~G Wg(jl e(il) 

So that ~j and ITji have the required property. 
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This result, then shows that.if a bet has a group invari~nt 

property, an associative nJt with tied connections can be built 

which has the sOome power in that it not only realises the 

invari:mce under the same group, but that the inpu.t output pairs 

will be the same. 

EncodinE 

Since ·tying sVli tchcs will alv:ays reduce the anount of 

information that can be stored in an associative net, it would 

be advantageous to increase the number of connections in the net, 

and possibly in consequence, the nu:nbet' ·of sets of tied connections. 

We can do this by a set of encodinG functions 1. which are 

si~ply a set of real valued fU3ctions on the input space. The 

set of encodinG fUl1ctions \'Iill map the space of in:?uts into a 

new and generall~ higher dimensional space. The set! is said 

to be closed under G if for all g ~ G and ¢ €i: 

where vIe hUv'e used! = (xl' x2 ' ••• x J! to del10te an element in 

the input spnca, and sup.?osed that G is a permutation group on 

these in:mts. 

Now it is easy to see that if I is closed under G then 

there is a homomorphis;n fro:n G to S.I ' the permutation group 

on I. We are now in a position to let the valaes of the 
.. 

functions p serve as the inputs to an associative net so that 
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ai = ¢i for some ordcrin~ of the encoding functions. We can 

further let ~_(.) = ~~ and tie the connections of this new 
" 1. 1. 

associative net as before. . We now set the result tl:at the 

input output pairs of this ::8t, with encoding functions will be 

invariant under G. That is if: 

then 

In a similar way the outputs of an associative net can also 

be encoded, but in order to store anything in such a net the 

encodinz; functions \'!ould have to be reversible. Noreover it 

is useful only in ccrtuin cases to have any codinG on the out-

put wires. An associative net whose connections are thresholds 

are described by arbitrary real numbors and whose encodinG 

functions are masks can be thouGht of as a battery of two laye,r 

perceptrons. It will be shown shortly th:lot such a device can 

realise any map fro~ the space of all binary in?uts to the spa~e 

of all binary outputs, so that any codin~ of the outputs is un-

necessary. In cases where the limitations of the net produce 

il}correct out,?uts it may be :£)oGs1;;le to correct for these by 

encodin~ functions which exploit some redundancy in the uncorrected 

outputs. 

or 

Returninc to the crp..ph recogni,c;er, we can see th3.t this 
/ 
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higher .. Likewise with the correloGraph, ','le can use as extra 

inputs masks of order two or more and retain the croup invariant 

property of the network. A 1 tn' ere are (n) , f " s an examp e 2 mas",>-s 0 

order 2, and for the corre'ograph ~e tie them with the output 

lines under the group Zn with the appro ~)riate homo:norphisms. 

n-l Under Zn the masks split into a transitive subsets of n 

elements each if n is odd. 

transitive 'sets of n elements and one of n/2 elements. Thus 

in the first cose we will have n(n~l) groups of tied switches 

n(n-l) and in the second n(n/2-1) + n/2 = 2 groups. In general 

there will be (~) masks of order r and these will give rise to 

n (r) groups of switches in the correlograph. 

The most interesting theoretical aspect of group invariant 

associative nets is the close relation they bear to Minsky and 

Papert's two layer group invariant perceptrons. The result 

which gives, as a special case, their group invariance theorem 

is the following extension of 4.3.3. to the case where we have 

encodinG fU;lcti:ms. 

Suppose an associative n8t has a set of encoding functions 

I closed under G a pcr~utation ~roup on the arguments of these 

functions, nud that G acto on the output lines as before 

1 2 .. ,"[1 

If for a set of inputs ~ , ~ ••. x~ 
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t t t t b. (x) = b (.) (x) for all c;,t and j 
J - g J -g 

Then the same outputs { bt lcan be realised -e by an associative 

net in which Wji = Wg(j) gei) and ~j = Qg(j). 

The proof is im~ediate from 4.3.3~ 

4.4. Generalised Correlation 

We have seen in the previous sections how associative nets 

can exhi bi t group invariant properties. But Qssociative nets -

unlike holographs - operate on discrete input spaces. Vie now turn 

to the problem of whether \'Ie can generalise the definition of 

correlation (for functions defined on the real line or Rn) so 

that we can get group invariant properties for groups other than 

the translation group. We shall also see that when Vie get such 

group invariant properties (they are only obtained for certain 

groups) we can sometimes obtain the equivalent of a fourier 

transform. which, as before, maps the e;eneralised correlation of 

two functions into their (pointwise) product. To begin \'lith Vie 

recapitulate on the uses of correlation: 

Suppose tll<:'.t f and C are two functions on the real line 

(we shall extend to hic;her dimensions later). Their cross 

correlation f(i·g ,'las defined to "be: 

f
1- 00 

(f ® g)(t) = f(x)g(x'-t)dx 
_ 00 

correlations may be used in the fo110i'lin6 ways if the functions 

used satisfy certnin conditions. These statements are not 

mathematically precise; they need the st~tistical qualification 
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1. RecoGnition 

If g resembles a fragment of f for example if 

g( x) = f( x) on a < x < b 

o elsewhere 

then f ~ g Vlill have a peak at t=O whose width and sharpness 

will depend on f and g. In G~neral if f and g are 'noisy' 

and b-a. is large, this peak will be sharp. 

If g' resembles a displaced fraGment of f, for example if 

g' (x) = g(x+"t) then 

(f ®G' )( t) = (f e g) (t- -c:) 

so that f<Eg' will have a displaced but otherwise sirnil&r peak 

at t= -C. Thus we could use this peak to locate a fragment of 

a signal in that Signal. 

2. Recall 

Consider (g®f)(t)g = (ge>g)efj if as before g is such as 

to make g® g a sharp peak at 0 then (GlV,;) (Df will approxi:'nate f. 

So that if \':e can store ~g, a subsequent correlation of this 

with g will produce an output or 'recall' of f. Horeover if 

Vie had stored several pairs fl Gl' f 2g2' ••• as Vlell as f g so 

that the contents of the store Viere g@f + gl~fl + g2~r2 .••• , 

then on correlating this with g Vlould give the output 
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Then, provided g doe~ not 'resemble' gl g2 ••• the output 

should again approximate f. As before, a displaced input of 

g will produce a corrcspondin~ly displaced output of f. Another 

interesting feature of this type of storage is that if we put in 

an inverted copy of f 1. e. f( -x) VIC get an inverted output of g 

so that the store CQn be used reversibly. 

3. Ghost Imaees 

A related, but not identical situation to that in the previous 

section is where we store the autocorrelation of a function say 

If ~e form the correlation of this with another function 

g we expect to cet from (f~f) ®e a copy of g. But since this 

pravious expression can also be written as (f~ g) ®f, if g, as in s 

section 1 resembles a part of f, then we should also get a weaker 

output of f •. This is the 'ghost imaGe' of holography and is a 

special case of the more general hologra)hic reconstruction 

'which does not e::llJloy fourier transforms .. The same remarks 

about storing .several patL.rns and displacements apply. 

It has already been said trnt these re~n;:,.rll::s lacl~ any kind 

of mathematical rigour and that the signal to noi.se ratio in 

the output must be exa~ined as before, before these clai~s can 

be made with any statistical justification. Howevur our im~cdiate 

purpose is to examine the possibility of extendinG these re~arks 

to take account of othcr operations ~f the input .space apart from 

displacements. As a start we will examine the possibility of 
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recognising one function as a dilated version of another. 

Suppose that we have the problem of recognising a function 

on a line as a dilated (expanded o~ contr~cted) version of 

another. Let f be such a function, and let g be a dilation 

of it so that rex) = e( A x). NoW consider the function 

~(t) = ~~) )_1 too 

dx 
e;(tx) TXT 

it is clear that this integral will not exist unless we place 

some restriction on f and g such as being O(xa ) for some j?ositive 

a) in a neighbourhood of o. 

its maximum value at t=)'I; 

+110 

~(t) = -t j(g(). x) 

- ()o 

We can first show that ~ recches 

for: 

2 dx 
-g( tx») TXT 

+t f!&( ;.. x»2 I~Xl +t }~"(tX»2 I~XI 
- .... 

The second two terms are constant and the first term cannot be 

greater than O. Then ~ mu~t reach its ~aximum value at t=o 

where the first t~rm is zero. Horeover we can ~:l9.1~e the same 

remarks as before about storing nnd retrieving as before except 

that now, ,tha retrieved patt~rns arc dilated to D....'1. extent \'i~lich 

corresJonds to the dilations of the inputs. 

We might now wender if there is a generalisation of this 

procedure to other o~8rations on the r~al line. The following 
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proposition shows when and when we cannot hope to extend ~t 

to other operations. 

Let~ be a set of functions d~fined on S and taking values 

in S, where S is a subset of the real line, which is a semigroup 

under co~position i.e. 

1"1 f~ is a function in ~Vlhenever /~A1. are in ~ 

Prop. 4.4.'1 . . 

If: 1) The re is a non-trivial hornom"orphism E carrying the 

semieroup into the aJditive reals. 

2) There is a point a of i with the property that: for 

any x in S there io an f in F and ,I'- (a) = x 

Then \'/e can find a function Y: S~ H such that: 

Proof: " 

y(x) = yet' (x» - E(j) 

where 

and is unique by 2 and 3. 

, Now Y(f (x» = E(\J) where f(x) =\\(a) so thqt 

\)(a) =f( ("-l(a» and hence ~ =r j\ 

We c~n therefore write 
.. 

y( f'(x» = E( F" /)1) = E(I'l) + E(/l ) 

= Y(x) + E(l'>. 
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The import<.;.nce of thh:is tiw.t wc CWl find integrals which 

are invario.nt unuer transforma"ions by members of S of the 

underlying space. Suppose that, in addition that the functions 

are differentiable and that the function Y turns out to be 

differentiable, then from the pr~ceding proposition ~e find tnat. 

¢(x) =f"(X) P(,P(x» 

. where V = Y'(x) . 

so that Y(r.(xl) !>(xl dx = fiv-, (xl V(I"(xl)· )<-(xl die 

s s = jf(X) ¢(x) dx 

s 

NoVi in the example 4.4 .. 1. we took /-'~ (:;:) to be tx so that 

the ~onditions of the previous proposition are satisfied by 

taking a=l and EW = log t. We then find that Y(x) = log x 

and that ~ = 1/ I x I as we had beforehand. (Taking a different 

a would not nave altered this latter result). 

It is worth perhaps, exa~inihg other functions on the real 

line to see how this method applies in other cases for example: 

t 
x 

tx 

(e(t log(log x») 
e 

E(.u,,) 

10g(1+t) 

log t 

log t 

log t 

1 

Itx 
1 

x log x 

1 

x 

1 

x.log x.log(log x) 
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In all these it is easy to find an appropriate range for the 

integration, though perhaps, in this one dimensional case, ths 

only interesting operators are translation, x+t and dilation tx. 

It is possible to use taese ideas to show that v[e can 

meaninely define a correlation function over the set of trans-' 

formations. We define 

. 
It is ,then easy to show that if e;( ;UtI (x» = f( x) for some tl 

then (f ®(t e;) (t), reaches its maximum value v,here x=t l , by using 

the same procedure that we used in 4.4.2 ... 

. We can now show that this ceneralisation of a correlation l 

function is in some cases equivalent to the standard definition. 

We assume, in addition to the conditions of prop. 4.4.~. that E 

is an epimorphis;n from;;' to R. It'may happen that the functions 

f, g which we wish to correlate C3.n be written in the form 

f(x) = F(y(x»,e(x) = G(Y(x» 

then: 

= h'(Y(X» G(Y(/"t(x)) P(x) dx 
s 

= £?(Y( G(Y+E(f"t» dY 



From the conditions of prop. 3.2., if E is an epimorphism ~-) R 

then Y maps S onto R so that the range of tilis integral is n and 

that it takes on a unique value for each value of E( ':J:.).. So 

that if vie can effect the tronsforl!1ation 4.4.3. then •• e can, by 

mappinG R to E(~) transform this generalised correlation into the 

standard (additive) definition. 

The point of 3.2. is that it enables us to construct, in 

certain cases the correlation ov r a given group of transformations, 

it is a sufficient, rather than a necessary set of conditions. 

There are certainly generalisations of it; for example the second 

condition, a sort of transitivity, can be replaced by a condition 

which divides S into a set of trCtIlsitive subsets. 

4.4.2. will also generalise to higher dimensions: ;X is 

now a semiGroup of ol)crations S C nn_> R
U

, E carries S into the 

additive group nn Y is then a function &+a and, if it is differ-

entiable is the Jacobian of Y. 

We~annotJ in general hope to define correlation functions 

in this mann2r for non-COffi,nu tati ve Groups, for example the group 

of all tr.~nslations and dila ti'.:.ns 0 f the real line is not 

commutative, an ele:aent of it c:'.n be written 

~ .' b( x) = ax + b I - a, . 

it is e~sily scen th~t condition 3 of 4.4.2. is not satisfied 
" 

by such a set of fUlctions and that the inte~ral 
+00 

~(ax + b) ~(x) dx 
-QO 

for an;}: choice of f fur \'iIllcn tae ints.e;ral exists will only be 
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invaria"1t if.'~t-isO. It is worth noting that if f and g 

are functions which only take on the value 0 or 1 and if 

f(x) = e;(ax + b) then the 

r:. -to 00 

J_f,( x) g( sx + 
_00 

integral 

t) dx.'-' 

takes on its ::lD-xi::1um value where 5=a, t=b becnuse this 

integral is always less than the inteGral of f(x) or f 2(x). 

We now turn to the theory of two layer pcrceptrons and. 

demonstrate the relation between these and group invarinnt 

associative nets. 
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CHAPl'ZR 5 

In this chapter we shall examine the correspondence between 

group invariant associative nets ana Minsky and Papert's work on 
7 

perceptrons. So~e of their main results will be proved here by 

rather different methods, which seem more direct. Their work' 

is based on the fact that any Boole<1.n function of n Boolean 

variables can be realised by a 'two layer perceptron' the first 

layer consists of a set of masil:.S whose outi,Juts are weiGhted and 

summed. According as this sum is greater or less than a certain 

threshold we get an output of 1 or O. 

To mal\:e this precise, an input ~ will be an n-tuple 

A mask, as 

it was defined previously, is a function of the form: 

~s(!) = IT Xi 
iE"S 

where S is a subset of the inteGers 1 ••• n. Also as before, 

rpl is r'efined to have the value 1 whenever P is true otherwise 

it is o. A Boolean function \f' is lineer in a set f of Boolean 

functions if 

for real numbers \'~ and ~, then: 

Prop .. 5.1. Any Boolean fUllction ~' (,2S) is line~r in the set of 

all masks {~s(.:::)l 



Proo.f: by induction on n, the number of variables. If we 

let the eillpty set define the constant mask, to which always 

has the value 1, then the Boolean constants (functions of no 

variables) are Given by 010 ~o ( ~ ) :> 0/, if vie take '/10 as 

+1 or -1. This is the inductive base. Now we assume that 

for n-1 variables: (x x x)- Xl say "1' 2' •.• n-l - - , 

where the SI are subsets of the intcsers 1, 2 ••• n-l. 

If x = 1, we may write in consequence: n 

and if xn = 0 

this is equivalent to writing 

now the function xn ~SI(!I) is Sblply the mas:t ts(~) 

where S = S I U {xn 1 so thD.t the last expression, which is 

is linear in a set of masks, and the induction is complete. 

It 



The parity predicate 

A.s an example of putting predicD-tes in this form, vie 

examine the nature of the predic~te that the number of ones 

in the input is an odd nu~ber, or: 

4'P (~) = r.f. xi is odd l 
. ~=l 

We define the order of a mask Is to be the order,of (or the 

(finite) nu~bcr of points in) the set s. The order~ of the 

masks necessary to represent certain predicates are of theor-

eticalinterest, and certaillly of practical interest if one 

believes that perceptrons are useful models of parallel 

processing. From this point of view lJp, is a particularly 'bad' 

case, as the following results show. 

Prop. 5.2. If lJ'P is linear in a set f of maslts then 1 
contains the mctGk of order n. 

Proof: If n=l then clearly l.jJp requires the mask of order 1. 

Let r{ be the first n for which ~' p is linear in a set of masks 

of order less than N. Then 

where ~ contains ~asks of order less than N. Now let 11 be 

the subset of 1 \'i1103e masks contain Xz·~ and let ~2 = 1 -11. 
Then 
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""p = r sffl as ts ;- L as ~s >07 
S e ~2 

Now if S e 11' define S' as s- {Xn J and set as' = as also 

let f~ be the set of all such sets S'. ~~ then x ;:.ontains 

masks of order x less th3n N-l. So that 

In this expression we can set ~=l or ~~::O. In the first 

case we will Get a Boolean function of the N-l variables 

x' = (xl' x2 ' ••• xN_ l ) which must be the even predicate:! 

r ~ ~ is evenl 
i=l . I 

I 
In the second case we mu~t get the odd predicate ~p on these 

N-l variables. So that by takinG the negation of the case 

XN=l, we get tV/O expressions for the odd predi cate 

namely: 

, r- L- as' PSI Z ~ (!') = (25 1 ) - as 
Sle ~l ~f2 

= r t12 as ts (!' ) >' °1 

" I tf'p , 

~S(~I) ~ 

We can now 'sum' these .?redico.tes to get an equivalent 

expression for 

r-

~l 
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But we have already noted thatI~ contains masks of order at 

most N-2, so that -,:ie have found an ~xpre~osion for q;; which is 

linear in masks of order -N-2; and this contradicts our initial 

assumption. 

From the proof of this proposition we can also infer that 

lJ' P must contain any mask that tjJ~ always contains. ContinuinG 

this argument, ifo/~ is the parity predicate on the variables 

{xi: i £ A }where A is -any subset of the inteGers 1 .... n then 

q;p contains any mask thattf~ must contain, in particular it 

must contain the mask tA (by the previous pro90sition. Hence: 

Prop: 5.3. ~p contains all masks. 

Using similar methods v!e can also find a set of wcigh t& for tp P: 

Prop. 5.4. An expression foro/p is: 

1J1 p = r-[. (~2) I s I ~ s > 0 1 
Proof 

-[ (-2) lsi ~S 

where the s~ extends over all subsets (including the e:npty 

set) of the nu.:lbers 1, 2 ... N. We shall prove inductively 

that 

N 
PN = 1 if L Xi is odd 

1 It 

N 
P

N = -1 if L- Xi is ~ven 
1 
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Certainly PI ho.s this property; aSSU;!le that PN- l also has it, 

then the expression 

also has it. But this can be seen to be PN- The point of 

doing this is the nu~ber of masks and their coefficients 

constitute, a worst possible co.-se, Le. there are predicates 

where :nasks of high order and large vleichts are needed. By 

examining the proof of Prop. 5.1. it co.n be seen that if the 

weights ar r3 intec:;crs, then any Boole:m function can still be 

realised and that the maGnitude of the weishts need not be 

h " t' 2N 19ner nan • 

Group invariant perceptrons 

There is a very close relation between tho two layer 

perce',?trons tho.t have just been discussed and the associative 

nets with encodinG functions thn~ we discussed in the last 

chapter. In fact, a two layer perceptron is SQch a net whose 

~ni?uts are binary, \,/hose encodin,:; fUl1ctiuns are masks c.nd Wilich 

has precisely one out)ut line. Let G be a group of per~utacions 

of the int8Gcrs 1 ••• n and let S be a subset of those inteGers_ 

We can dei'inc the g(S) by {i: g(i) e S j so that for each lllask 

~s we can define a mask tees). As before, a set! of masks is . 

closej under G if 1 e;(s) e I whenever ~S e 1, so that Vie h.:3 .. ve a 
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homomorphism P from G to th~ permutation 

we let f'b~ the trivial homomorphism .from 

eroup on f. Also 

G to the trivial 

group of permutations of fhe one output line. Then the two 

results that we derive fr~~ 4.3 of the ?rcvious cha~ter are: 

Prop. 5.5. If I is cloGed under G and if, for all masks ¢s' 
and all e; ~ G o(s = o(g(S) then the pretli~ate 

is invariant under G; that is to say that 

Prop. 5.6 •. If ! is closed under G and if tJ' has a representation: 

and is invariant under G 

then it also h~s a ropresentation 

where bS = bg(S) for all G. 

The latter, then is Hinsh:y and Papert's Grou) invariance theorci"a. 

They u.::;e it to obtain bounds on the sizes of perceptrons needed 

to recocnise certain, mostly Geometrical, ~~edicates. In 

addition they use it to show that ~P' the parity predicate, 

requires all maslcs, wl1ich has been done here \'Ii thout it. If , 

the input to the pcrceptron is thouGht of as a two dimensional 
" 

arras or retina on which is presl'nt~d a black and white figure, 

those input lines which aee black reGister 1 and the otiers 
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reGister o. Connectivity for exa~ple cannot be rocoGnised 

by a perceptron whose order (the maximum order of masks) is 

bounded independently of the size of the retina. For .:;:.H" 

example.sof partly serial methods for topological decomposition, 
8 

some are Given in PerC2]trons, .:mother is given by. Bunernan • 

.. 
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CllAPT~R 6 Learning nlcorithms 

6.1. Perceptron l2~rning 

The methods of weight adjustment in the associative nets 

described earlier were straightforward; connections were 

established, or modified as some function of the immediate 

activity on either side of that connection. If one output 

line of an associative net is considered, the connections are 

set by a simultaneous presentation of the input and output in 

that line. Suppose that no such information is given, but 

merely an indic.:ltion whether or not the current response is 

correct. Some modifying instruction is given to that connection 

which is not identical with the input to th2t connection or the 

response in the output line. ~he most famous eXQuple of this 

* type o~ modification is Perceptron convercence which was first 

demonstrated by Rosenblatt9 and two proofs are given of the 

10 
Perceptron convergence theorem by Hillson. The proof e;iven 

here has a certain amount in common with Nillson's geometric 

proof (thOUGh it does not involve geometry); its main virtue 

is to show that tilere are a voriety of feedback procedures which 

Vlork for funclal:lEln tally sil.'lilar re::tsons. 

* The word '~crccptron' occurs in a variety of lit8rature 

and assumes different meanings. In this chapter, ~hen it is 

used, its re fcr~nce v:ill be to a 'one layer' device t which is 

like the s8cond lay..;r of the two layer Perceptrons of the 

previous chapter. 
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Let S be a finite eet of vectors in Rn and let T be a 

subset of S. T ie said to be linearly separable (\':i th respect 

to S) if there is a vector a in Rn and a real nu~ber 9 such that 

the vector x of S is in T if and only if a.x >9. (.:!.! denotes' 

the scalar product of ~ and ~). This condition is equivalent 

to sc.ying tllat t;1ere is a n-l hyperplane separatinG T and S-T 

so that T is line~rly separable if and only if S-T is. The 

problem is to fInd a vector ~ and a threshold ~ given n sequence 

of eicments in S and the lmo\'Jlzd.::;e of whether or not they are in 

T. For the pur2o:3es of learning, a percept ron can be regarded 

as a device w~ich is presented with a seqJence of ~ elements 

in S, at each input it outputs a 1 or O. It is desired to 

have an out)ut of 1 just for those clements of T. If then 

an out~ut io incorrect, the weichts are ~djusted in a w~y which 

depends on what sort of error was m~de. How a perce)tron 

In order to give the weicht 

adjustment procedure, it will be eQsicr to work with the set SI 

of au;~ented vectors. 

is the vector l = (Xl' ••• xn ' -1). T' is the set of aug-

mentations of vectors in T. The Pcrceptron's bch~viour is then 

described by r ~'l > 01 ' where w is the vector . Rn+l 
~n • 

(0.1' .... an' g) • \'/e shall write this function O(!!.·l) wiere 

6 is the obvious step functi-.>n. 

NoVi we ~i ve the procedure for adjustin~ the vleiGh ts !!. 

! ~ 
I, 

! 
! 
! 
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On the presentation of a vector z: 

1) if 6 (!!.l) = 1 .:'-Od l is in T' or if 

6 (Y!...;t.) = 0 and ;t. is in S"- T' then 

w is left unchanged. 

2) if 6 (!!.;t.) = 0 and I is in· T' then w 

is increased by c;t.. 

3) if 6 (Y!...l) = 1 o.nd Z is in S' - 'r' then 

~ is decreased by c;t. 

here c is a positive constD.llt. 

Let li(r) be a sequence of vectors in S' where r = 1,2, ... 
Then the pcrceptron convergence theorem states that if T is 

linearly separable then the vector ~ only chanees a finite number 

- i' 1 if i(r) of times. In p~rt ca ar, the sequence 1 is such that 

each me~ber of S' occurs in it infinitely often, then after a 

finite numb~r of presentations it will heve 'learnt' Tt, that 

is to say it will Give correct out 9utS. 

The condition th~t T, and consequently T' are linearly 

separable says that there is n vector w* such that6(!*.I) = 1 

if and only if I is in T'. We arc now in a position to write 

the procedure civen above as: 

!! is cr.o.n~ed to!! + er( 6 (y!..*·Z) -6(!!.1». 

at each presentation of a vector I in S'. 



- 63 -

In order to prove the oonvercence tneorem, we first need 

the 1e::uw: 

If T 1s 11ne~rly separable, then for any positive number 

K we can find a '!!.* such trlat: 

I (T => J!.* .I > K 

I ( S '-T' => '!!.* -I < - K 

Proof _ Since T' is finite, the condition that there is a w 

such th.::l.t '!f.-I> 0 <=>1. (T' means that Vie can find tv:o positive 

numbers (, ~s'Jch that 

I ( T' => !,! -:t. > + 02 ( 

Now recallinc thnt the last component of :t. is -1 we can add 

~+ e to the last component of! to get ~' such that 

I E' T' => E. '-I > E' 

and IE'S • -T' =>.!! '. -;t. < ( 

Finally we C.::.Il multil}ly the vector w' by the quantity K1e to 

eat the de~ired reG~lt. 

To prove the mO-in rcs'Jl t we first eX::l.;nine the cho.nGe in 

the squared dist~nce between! and !* at the presentation of 

Ii(r). 'ro start with un arbitro.ry caoice ,!l1s m.::.de for !,!, 

at the ,?rcsoJntatlon of liCk) it ch,~nGeG from '!f.k to wk+l. 

Writins I for li(k) the sqlt<lred disLo.nce chance is: 
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II ~* -
k 2 k+l 2 

E 11- - II J!.* - E. I I 
1. 1al k k+l = -('i!. - E. ).(E. -

k k+l k 
'i!. ) + (2{~ - E. ). _ !!,n.) 

which is, by the ex~rcssion for the weicht chance 

The first t~rm here is non-positive and the second (since 6 is a 

non-decreasin~ rnonotine function) is non-negative. 110reover, 

whenever a weiGht chDn~e occurs, the first term will have 

magnitude c2'L.'J. and the second will have magnitude at least 

2c I!!*. zl , the sccor.d term is only non-zero when 'f.!.* • 'J. and 

By the le'-1l:la, we can choose w'! so 

thi.it 

for any posi ti ve b o...'1d for c.ll y ill S', a~aill usin[; the filli t e-

ness of st. 

In this wny 1!:e cnn encare tl1:J.t the squared dist8.nce o:18.nce 

between wand w* is Greater tnnn b every time ! is chanGed, but 

this distnnce ca..1l1ot decrc:ls'c indefini toly so w c~n only chanco 

a finite nu~b3r of ti~cs, ~hich was the rCEult required. (Prop. 

6.1.1.). 
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6.2 •. Continuous analocues of Perceptron Convereence 

Perceptron converscnce is a particular form of feedback 

to a syster.l w1:ich call only output a 0 or 1_ Su.?"?ose we have 

a perceptron 1i1.0 system which rea.1i8es a function 6 (!!-l) 

where 0 is now some more ceneral function .. Moreover, suppose 

that there is a 'desired' OUtiJut from tnis system 6 (!*-l) say, 

VIe shall show how, in certain cases, the sa:ne or simi1c..r \':eich t 

adjust~cnt procedures produce a converGence to this desired state. 

Sup.pose, in fact that the weicht adjust,ncnt is, as before, given 

by: 

w is incrcD.sed by cx,( 6 (!* .X,) - 6 (!!.X,» 

at the presentation of l 

Prop. 6_2_1. if 6 is a monotone non-decreasinG function such 

that 

L 11 6 (a) - u(b)<iC' (a-b) 

where M = max (l-l). Then I '!!..* - !:: I never increas·~s and if 
X,f S I 

6 (!* ·l) ;l 6" (!-l), 1}1* - ~ I decre.::tses. The proof is im20diate 

from eXD.mication of the eX2rczsion for the squared distance 

chance. Kote that the condition on 6 above means that 6 must 

be continuous. This ensures: 

6 ~ 2 . If vier) i b f i i h" h h Prop. .Co.. M. S aa e ore, a scr es n W l.e cae l 

in SI occurs infinitely often, then for any positive (there is 
v 

an in t~,;er rr for \"!!lich 
€ 
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Su)pOGe the contrary, then th.cr~ would be a subsequence of the 

positive intezers L::tnd an e such tlw.t 

so that for each r in L", I' w* 1- -!! II decrenses. Also, L must 

be such th::J.t.sone l in S· must occur infinitely often, for this 

l the decrer.:::::e in 

" 
w* !! ~ is then a continuous positive 

function of. !! ond hence "J!.* - w must tend to zero. Therefore, 

Il.!£* - r·Y!.1 ::lUst 0.1130 tend to zero and, by the continuity ofO, 

tbis contr&dicts our initinl supposition. 

The co ndi tion for this convergence can be interpreted in the 

following way. If Vie ure e;iven 6', a continuous monotone incre~lsing 

function, and we are given 5' and in·consequence M = max(l.l) then 
lest 

c must be chosen so thnt 

H sup 
c < '2 a~b 

= 

n - b 

6(a) - 6(b) 

1 (if 6 iG differentiable) 6 t (x) 

so that the wci~ht ndju3t~ents cannot be too large. If c 

exceeds this a:no'Jnt the \'Iei~ht vector E. may oGcillnte rather 

than·convor~e, and it is c~sy to construct exo~ples in which this 

T~is m~~ns thut the rate of conver~ence or.learnine 

can only be incre:;:.r.;ed at. the riG!\. of Gome sort of oscillc.tory 

behcviour. I t could be pos:..;i bL~ to have c. c which \'!·: .. s v.:::.ried 

with the r in order to c~in come .Lncrc~~e in the convcr~ence rnt0, 
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but we would have to com,ute or be given r.1 at each present-

ation of z. 

6.3. LearninG from A continuous input 

Up to now we ho.ve thought of the presentations of the Z 

as discrete events, and the time intervals between these . 

presentati?ns being of no i:nport: .. nce. TIe get a rather nice 

variant of these lear~ing procedures if we think of SI as a 

connected and now not generally finite subset of Rn+l (recall 
. n 

that SI is a set of aUGmented vectors in R ). The fUnction 

ret) is then input to the system, and at the same ti:ne we 

adjust the weicht vector ~hich is now also a function of time, 

!!(t). It is immediately obvious that it is worth trying weight 

adjustments of the form: 

d\'T 

dt 

Now consider the rate of chance of \I '!!.* _ '!!. II 2 

which is always non-positive if G is any monotone n6n-decreasin~ 

function. The conditions that all r in SI are ~earntl are 

firstly that S I is cOJn~Jact, :::;ec:)nd, that r( t) fills S I that is 

for any open set U of SI and any time tl there is a time t > tl 

at \'Ihich let) ~ u. 

It 
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Pro o. 6.3.l. Under these conditions for any positive ~ thore . 

is a time t( for which 

6 (Y!.*. '1..) - 6 (Y!.. z) < E' -for any time t > t ~ • 

The proof follows in almopt the s~me way to the corresponding 

uroof in the orevious section. ... - It is not necessarily true 

that this sort of converccnce means that ! need get close to 

w* in eJl absolute way,-L,e. II \'1* - W 11->0. This will only 

have to ha~)en when S' spans the n dimensional subsp~ce of 

Rn+1 consisting of all those vectors whose last coordinate 

is -1. ' 

This concludes the study of learning and memory models 

and it is hoped that their relation to one another has been 

clarified. In particular it has been shown that the crucial 

distinction to be made is botween the two methods of causing a 

change to take place. The method of causing a weight change 

in a perceptron is very different to that which alters a switch 

or weight in an associative net. We now turn to the neuroiogica1 

evidence for these types of chan6e at a synaptic level in an 

attempt to determine the im~ortance of these ideas as biological 

models. .' 

" 
j 
1 

1 
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CHAPTZR 7 Synaptic plasticity 

It is generally held that persistent changes in synapses -

synaptic plasticity - form the phy~iological basis for learninz 

and me:nory. 1 Of other possibilities, the proposals of Rashevsky 
r 

, 2 
and Householder .:md Landahl that the brain can sustain permanently 

circulating patterns of activity, (analogous to the mercury. delay 

lines of SOille comput~rs) do not seem compatible with the ability 

of conditioned behaviour to survive the suppression of all electrical 

activity in the brain by freezing or anaesthesia. Nor is it likely 

that such activity would remain undistorted by epilepsy or electro-

convulsive therapy. 

The idea that permanent chonses may take place at a neuronal 

level, for example chan~es in the threshold of a nerve cell is a 

possible alternative to synaptic plaflticity although it certainly 

docs not exclude it. As an alternative it is less attractive 

since there are many more Bynapses than nerve cells in the ce'ntral 

nervous syste!n; the ratio is of the order 104 - 105 in the 

cerebral cortex (CrD.gg3) and the a;nount of infor!nation that could 

be stored Bynaptically would be correspondingly higher. ~loreover 

there is now a certain D..!lount of neurophysioloGical evidence, which 

,;,e shall shortly examine, which indicates tilat changes can tal;:e 

place in the cond\.lctivity of a ,pathway wh.ich are specific to a 

synapse, or a zroup of synapses in that pathway, rather than a 
.. 

whole cell. 
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First of all we shall describe some of the physioloGical 

demonstrations of persistent changes in the nervous system and 

the evidence that associat~s learning with changes in certain 

synaptic structures. Lat~r we shall discuse the possible neuro-

106ical mec~anisms which could effect such chances. 

Hebb 1 s 4 su~gestion that synaptic changes could persist for 

the life of an animal has not yet been amenabl~ to e..ny substantial 

test. But th'ere are experiments Which see:n to indicate that 

some change ta~es place vihich can persist for at least the time 

for which one can record from a cell. Such changes have been 

demonstrated in the cortex, but may well occur elsewhere: 

Lashley5 has shown that decorticate animals can be conditioned 

in limited ways, and certainly some animals whose develo}~ent 

has not progressed to the stage of having any neocortex can 

perform si~ple learning tasks. 

Morel16 found that epilepsy inJuced in an area on on~ side 

of the cortex ~~uld cause a similar epileptic focus i~ the 

corrcs)onainG contralateral area. Even after the callosal 

fibres connectinG these areas had been severod, the increased 

contralateral activity ~er~isted indefinitely. Related 

experiments v:.:.:re performed by Bind;nan,. Lil1l)old and Redf'2::lrn7 
t 

8 and Gartside and Lippold • In the first of these it was sho~n 

that a small current paGsed thrOUGh the cortex of an anaesthetized 
• 

rat would increase the s~ontaneo~q firinG rates of cells and 
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this rate increase would persist at least for a few hours after 

the stimulating current had been turn~d off. In the second 

experiment, a similar result Vias o,btained by locally freezing 

the cortex. Since the effect of freezing is to produce a 

potential gradient in a direction opposite to that in the first 

experiment, it ~as thought that the pe~sistent increase in the 

firing rat~·may have been attributable to its initial increase 

rather than any other effect associated with the depo'larisation. 

Bliss, Burns and Ut'tley9 \:ere able to investigate this 

effect in very much more detail. In their preparation, which 

was this time isolated but unanaesthetized cortex, they recorded 

from a cell which could be driven by independent stimuli to 

neighbourinG p~rts of tho cortex or w11i te rna tte·r. They were 

able to define a 'conductivity' for one of these stimuli, the 

test stimulus which w~s the ratio of the strength of response 

of the cell (nu~ber of spikes im~ediately following the stimulus) 

to the strenGth of the stimulus. If we call the other stimulus 

'the priminG stimuluo, their results may be by sayinG that the 

conductivity 

increased \'[hon the priminG stimulus alone 1wd been used for 

some time; 

decreased when the test stimulus alone had been used for 

some tir.lBj 

decreased ~hcn those stimuli w:re 'paired' or used simultaneously. 
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In order to effec t any c!1D.nr;e· in the conducti vi ty it was 

necessary to drive the cell (by the tf.?st, priming or paired 

stimuli) for at le~st six minutes, but, h~ving done this, the 

conductivity changes often persisted for as l'Jng as it was 

possible to rocord from the cell~f 

From these experiments one can only Guess tl"at synaptic 

change is illvolved; the pa.thways could have involved a series 

of nerve cells and the chen~e could neve been caused by a clw .. nee 

in, say, a cell threshold. In a similar set of experiments 

Kandel and Tau!O were able to demonstrate tha.t in their preparation 

a chanGe in conductivity Vias almost certainly attributable to a 

synaptic chanGe. 

Kandel n..'1d Tauc10 worlced VIi th a nerve cell ganr;lion from 

the abdomen of a sea snail. While this is not a region of the 

nervous system or an animal waich would be expected to shoVi any 

retention, a chanGe in the conductivity of a pathYJaY was dernon-

strated which was produced by ~ethods similar to those used by 

Bliss, ~urns and Uttley9. The cells in this ganglion are larGe 

and it ispossibl3 to record the intracellular potential chan~es. 

Such cells could be driven independently by two pathways. It 

vias found that: 

1. The sE;nsitivlty of the cell to a weak (sub-thres;lo1d) 

stimulus in the test pathway could be greatly increased 

by driving the cell by a strong pricinG stimulus in the 

other pathway. 
----------------------------------------------.... 
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2. That this sensitivity change could last for some 

minutes after the priminG stim~lus had ceased. 

3. For some cells this sti~ulus was conditional on 

the stimuli beine paired, and in some cases spccific 

to one of two.possible test pathways. 

11 In a second paper Kandel and Tauc performed related 

experiments and Vlere able to hypothesise that the test pathway 

was monosynaptic in tha.t the fibre tthey Viere (test) stimulating 

synapsed onto the cell from v/hich they \'Icre recording. They 

also proposed that this increase in sensitivity could be attributed 

to presyna::?tic facili ta tion (~ figure 1) in \'lhich the priming 

priming 
pathway 

Figure 1 

pathway ter::linates in a synapse \':hich se~ves only to modify the 

behaviour of a synapse in th3 test pathway, but does not itself 

influence the cell. Such synapses~ould h=ve the effect ora 

gain knob on a variable gain D,;np:'ifier nnd could be used to 
, . 
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control a synapse in a way which would be completely independent 

of the activity on either side of the synapse. However, there is 

no evidence to say that this is the underlying mechanism for 

control of synaptic change in the cortex and in the next section 

Vie shall examine the possible controls that could exist for 

synaptic change. 

7.1. Mech~nisms for control of synaptic chance 

It is not Imovm what hap,,)ens vlL1en a synaptic knob increases 

·its effect on a membrane. It may simply grow (Young12, Cragg13) 

and more effectively depolarise or hyp~rpolarise a membrane on 

account of its increased area of contact. Other experi~onts 

suggest (Brovm and Pascoe14) that the ability to produce more 

transmitter substance is modified. Another proposal is that 

entirely new lmobs may sp~out (Eccles15). In spite 0 f this it 

is reasonoble to ask wl1at controls such a chanGo; and the 

answer may depend only in its details on the precise mechc.nism 

of change. 

By supposing (like Pitts and MCCullOChI6 ) that the reaction 

of a nerve cell to its inputs can be described by a Boolean 

function of its inputs, Brindley17 has listed some of these 

possible mecha!lisms u.'ld devised a notation for describing them. 

Brindley's notation assigns to each cell and its inputs an output 

function S of the form: It 

s = w v 0( < u I v > • • • • . . . . . . • . . . . . . • •• 7. 1. 
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w, u and v are 13oolon11 fUYlctions of the inputs, the notation 

means that if inputs satisfying v=l arc given sufficiently often, 

then 

1) S changes from VI to w V u if ~ =f (for a 

facilit~ted synapse) 

2) S changes from w V u to w if 0{ = h (for a 

habituat3d synapse) 

In addi tion it is stipulated that VI 1\ u = 0 und it is always 

possible to choose wand u to satisfy these conditions. As 

exwnples of Brindley1s notation can be used to describe the 
. 

followinc systems (the trian..;ular synapses are modifiable). 

1) Presynuptic facilitation of an excitatory synupse 

x 

2) post~ynaptic facilitation of an excitatory sy~apse 

x 

S = y V f<X " -, y I y > 

... 

/ 
;' 



- 76 -

'3) Excitatory synapse fo.cili tated by ,pairing 

x 

-:)0: = S::.yV <x 1\ 7 Y 
f 

I XAY> 

4) Excitatory facilit~ted by a presynaptic knob 

S = 'r 

Brindley points out tlwt (3) is an exanple of the type of 

conditioninG postulated by Hebb4 and that various other of 

these functional arranee~ents have been found or postul~ted. 

We may use Brindley's notation to formalise the idea that 

some synapses cc.n ch;:,nge only as a function of the activity in 

the synaptic knob nnd the post-synaptic membrane. We call 

such a synapse locnlly modifiable. 

-If x is an input \';hic11 tcr~tlinates in a loc.2.lly modifiable 

synapse, then if the out)ut of the cell is described by 

, S = w V '< u Iv> 
f 

v (the modifyinG oti:nulus) will be of the form v = P (\'f,x) 

where ~ is a Boolean function. 

described by 

S = \'/ V < u I v > n 

I f the au tl)U t of the cell is 

It 
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then"for a locally modifiable synapse: v = few v u, x), 

It is ensy to verify t~at of the four types of synapse 

described above, the first three are locally modifiable aYJ.d the 

last is not. 

Brindley lists many more examples of modifiable synapses 

and classifies the:n according to the rules: Class A if U 1\ v = u; 

ClaGs B if u A V = 0; and others are placed in Class C. Now 

althouGh Brindley's classification docs not imply this, it is 

interestinG that of the examples he lists, all those in Class A 

and Clnss B are locally modifiable and that synapse in Class C 

(case 4 above) is not. Natu~nlly, if Brindley's Boolean 

description of synaptic plasticity is not totally accurate, which" 

it probably isn't, our definition of a locally modifiable synapse 

fails anJ. the definition a f a locally modifiable synapse viould 

have to be couched in the specific terms of another model. Never-

theless we have been able to state in precise terms the f~ct th~t 

a locally modifiable synapse modifies only as a fu~ction of the 

activity on either side of the synaptic cleft. 

Finally it is Vlorth notinG taat there is co:pious anatomical 

13 evidence for the e:~stence of presynaptic (for exwnple Gray ) 

knobs and that· these as \"!e h:-ve seen, \'iould provide a mechanism 

for non-local modifiability. It has not yet been esta~lished 

wnether all possible tYi?cs of local modification can te1~c place 

in the nervous system. In particular there seems to be no 

I, 
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absolutely conclusive evidencie of the synapses proposed by 

Hcbb. As far as c:J.n be ascertained. from the individual record

ings of Bliss, Burns and Uttley, their results could be explained 

by local rnodifiabili ty, eV .. al if the cortical pathvlays they tested 

were monosynaptic. 
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CHAPTSR 8 NeuroloGical restrictions on models 

Before examinine the neurological relevance of the models 

advanced eurli3r, ~e put forward a hypothesis about synapses 

which Vlill restrict the applicability of these models and allow 

us to put forward further testable neurological hyp0theses. 

This is: 

Synapses in the neocortex can only be modified loc&lly. 

If such is the case, then any model which is thought to 

describe any of the hisher functions of the nervous system must 

conform with such a restriction. Also we may gain some insiGht 

into the exact nature of these 'hi.::;her' functions if VIe can 

advance ,plausible models ~eeting this restriction. 

The anato~nical evidence for this hypothesis, if not con-

elusive, indicates that if there are presynaptic knobs in the 

cortex, they are not frequently seen. 1 Gray , in his fruJOUS 

electron microsco)e study of corticul synapses states that they 

are either axo-so~atic or axo-dendritic. 

in personal COi:liilunication that he h~(s never observed such structures 

in the cortex. However, presynaptic effacts may not be the only 

mechanism for non loc~l ~odification and the alternatives are worth 

considering. 

.. 
Non local ~odiflcation may be the result of postsyno?tic 

effects. For example a synapse micht be ca.pable of permcmently 
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alterinJ; a s:!1all reGion of the postsynaptic membrane so that 

the conductivity of a neiGhbourinG synapse or synapses would 

be impaired. A r~ther striking piece of anatomy which illustrates 

this possibility is the structur~ of the granule cells of the 

cerebellum shown in Figure 1 which is taken from a drawing in 

Eccles, Ito ~nd szento~1I;h:.li2. 

gro.nule 
cell 

t 

mOGsy 
input 

parallel fibre 

8.ol&i cell 

7' 
fibre 

Ficure 1 

The ~ossy fibre input excites the granule cell ~nd the Golei 

cell inhibits it. The u?pear~~ce of the inhibitory Golei 

synapses indicates that they are in one to one correspondence 

with the excitatory mossy fibre synapses. Could it be that the 

Gol"i cell syn:pses exert a local effect on the granule cell 
u ~ 

membran"'? 
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If not, one wonders why the inhibitory effect of the Gol~i 

cell is not actieved by axo-somatic cont~ct. HOwever there is 

no physiol05ical evidence froill the cerebellum to corroborate this 

postulate thouCh Diamond3 has shown that in the Mauthener cell of 

a goldfish inhibition can be specific to inputs distal (with 

res~ect to the axon) to the inhibitory synapse. Ral14 has also 

demonstrated on theoretical grounds that it is in general wrong 

to regard the polarisation of a cell membrane as the sum of the 

polarisutions and depolarisations caused by each synapse. Cells 

like the grnnule cells do not seem to be present in the cortex, 

the spines on the ~endritic trunks of pyramidal cells miGht 

:perfor,!!. a Sili,ilar func tion to this hypothetical property 0 f the 

granule cells, but ','10 have no anatomical or physioloGical 

evidence to confirm this and hence no certain objection to the 

hypoth0sis 3boat neocortical synapses. 

Griffiths' has su~cested that non local modification could 

take place by the diffusion of so~e chemical throughout the neo-

cortex and this is a serious possibility if it is not required 

that the modifyinc influences should be vGry specific. Another 

pos::::ibility tllnt v:111 be considered later, is that there may be 

some t~mporul'codin~ of events at a synapse whiCh ~ould lead to 

modi fica tien. This would imply that the function of a syn~pse 

is rather ;nore complicated then io nor;nally sUp'?osed and \';ould, 

in p~rtic'Jlc.r .:take 13rL1dlcy I s clD,3sl. ficat'ion inadequate. 
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The adaptive nets of Chapter 2 and the perceptrons of 

Chapter 6 differ fundamcnt~lly in respect of what type of 

synapses would be required for th~ir operation. Vie now take 

the step of supposing that the weiGhts, connections or switches 

mentioned in these chapters are to be identified with synapses. 

It wos pointed out that the adjustments required to modify an 

associotive net wilen a new pair of patterns are to be stored 

could be effected by Hebb synapses and we have seen thct such 

synapses are locally modifioble. At le~st our hypothesis about 

modifiable synapses does not excludG the possibility that 

associotive nets are realised in one of their forms in the cortex. 

For perceptron learninG and its associated forms discussed 

in Chapter 6, it is much more difficult to understand how the 

weicht adjust::1~mt could be accomplished with locally modifiable. 

synapses •. The \,liring diacram of a perceptron is illustr:tted 

in Figure 2. 

Weiehts 
rurnner Threnhold 

output 

correct/incorrect 
... 

Ficure 2 
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Now althou~h it is reasonable to suppose that the process of 

tal~in~ a \,/eic;h ted sum of tile inputs could be realised by one 

nerve cell, it is not at all clear that the feedback to the 

thresholds and synapses could be accomplished by the same cell. 

The two natural possibilities are: 

1. That this feedback i3 accomplished by pre-

synaptic knobs which habituate or facilitate 

each synapse (to~ether with some control on 

the threshold of the cell). 

2. That the ~eiEhts are associated with cells 

rather than synapses and i'/eic;h t adjustl:1ent 

is accomplished by alterinG a paraneter of 

the whole cell. This requires there to be 
6 

one cell for each weicht. Taylor has 

proposed a scheme for the cortex v/hich works 

in thi s \':o.y. 

The second ~)ossibility is some\':hat unattractive on the 

I 

erounds that it is uneconomical in comparison with the first 

and "Iould indicate a set of lI\'IoiGh til cells with one effective 

input and one effective modifier. 

The former po~sibility ~ould be excluded from the cortex 

by our hypothesis si~ce it involves the non local modification 

of synapses. 
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But there is nothinc to exclude this type of learning 

from other parts of the nervous system - first of all pre-

synaptic Imobs arc seen in the spinal cord and in profusion 

1 · 1 . ( 7 " 8 in many tha a,Uc nuc e1. Gray, Purpura ). Secondly there 

is a certain Q.l::lOUn t of physioloGY v:hich lends sU~JPort to this: 

Kandel and Spencer in a review ar"ticle of neurophysiology in 

the study of learning distin5uish two types of conditioning. 

In type 1 conditioninG a behavioural stimulus (UeS) gives 

rise to sO::le well defined reslJonse which is not elicited by some 

other sti!:"l"J.lus (C.S.); often !1uiring these two stimuli a nu:nbor 

of times the C.S. elicits the response YJithout the U.C.S. This 

of course, is classical Pavlov.~an condi tionins c.nd the ex)criraents 

of Kandel en.d Tuue provide a neural analoc;ue of this situation. 

" 

Type II conditioning - often called operant conditioning 

is quite different and requires that sotae reinforce:uent tuke 

place if a res)onse is given to a particular stimulus. For 

exa~ple, in a Skinner box an animal mi~ht be rewarded with a 

pellet of food if it presses a lever in rcs~qnse to the sound 

of a bllzzor. Initially the animal presses the lever by accident 

and subsequently learns that the reward is produced by doing so 

in res?onse to the buzzer. The reinforcc~ent in this case is 

positive - in other cases the reinforce,;1ent can be nezative, 

that is the ani!:'lal barns to avoid a painful stLnu.lus. The 
~ 

basic dlztinction is that in typa II conditioninc, one of t~3 
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stimuli is conditional on a rosponse. 

The possibility that either the C.S. or the U.C.S. in 

type I conditionine might be an electrical stimulus to the 

central nervous system was investiGated by Loucl'>.slq,ho found 

that a C.S. consisting of a direct stimulus to the visual 

cortex of a dog could be eff'3ctivelypaired \'lith a U.C.S. 

of a shock to the foreleg. G" 11 d IT d lurgea use as· .C.S. an C.S. 

electrical stimuli to the motor on visual cortices respectively; 

the response beinG some movement elicited by stimulating the 
12 

motor cortex. Finally Bures~ DJld Bures)va, were able to use 

a behavioural C.S. and the local polarization by an extracellular 

electrode as a. U. C.S. which inc.'.lced an increased or decree.sed 

firing rate in some cell from ';:hich their electrode would also 

record. The C.S. in this CQSe an auditory stimulus was effective 

for certain cells in the thalamus and inferior cOlliculus though ,. 

the conditioned respon~e usually disap~eared rapidly after pairing 

had cen.sed. To su.llIJarize: it S2ems that ty)8 I condi tiolling 

to electrical stimuli c&n occur an~"\'Jhere in tho nervous system, 

even in very primitive structures of simple animals. But in 

general the effects are most permanent v:hen the stimulus is 

given to parts of the hieher nervous system - in particular to 

the neocortex •. 

Type II conditioning has also been the subject of similar 
~ 

investi..rations. 
. l~ 

Delgado ~howed that electrical stimulation of 
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par~s of the brain, mail!ly in the region of the hypothalamus 

could substitute as positive or negative reinforcement. 

Stimulation in this region could cause the animal to manifest 

raee or fear and the lntter could be used to train the animal 

to avoid certain types of food. 
14 

Olds advanced this work and 
, 

showed that rats wo~ld p~rsistently stimulate themselves through 

electrodes implanted near the hypothala:nus in the medial forebrain 

bundle. Other electrodes in the SaGle region would produce 

avoidance or aversive behaviour. Olds tested other parts of 

the brain in thiB way and found that the most striking results 

were produced from regions (such as the median forebrain bundle) 

which are closely associated with the hypothalamus. No evidence 

of positive or negative reinforcement was produced from electrodes 

in the neocortex or in the sensory areas of the thalamus. 

15 
Ol.1s and Olds subsequently investigated whether or not they 

could, by the swne stimulus to the medial forebrain bundle, re-

inforce the firing rate of a single cell. Here they were able 

to get positive results in the same regions as before including, 

significantly, the mam.nilo thala;nic tract - one of the pathways 

by which connects the hypothalamus to the thala.nus. Only with 

great difficulty could they train cells in tl10 neocortex and 
16 

then only rather weakly. Later, Olds and Milner were able to 

produce the swne learning in cells by using a behavioural re-

inforcemant such as food; again they found it very much eesier , 
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to train cells in areas connected directly. with the hypothalamus. 

It is an attractive conjecture that physiological type I 

conditioning requires only locally modifiable synapses but that 

type II conditioning cannot be achieved this way and perhaps 

requires presynaptic terminals. This would explain the absence 

of presynaptic knobs in the cortex and account for the apparent 

difficulty in producing type II conditioning in neocortical cell 

responses. Some caution is needed in interpreting the physio-

logical results in this way. The cells or axons which could be 

conditioned were almost certainly involved in a more complicated 

pathway that was also being conditioned. It is not in general 

possible to say that the cell which is recorded is necessarily 

the cell at which the changes take place. It could be that it is 

one of the cell's predecessors which is responsible for the 

altered behavioQr of that cell. 

\ 

However, these results su i56BSt some further experi.nen ts in 

order to confirm, both anatomically and physiolOGically the 

hypothesis about locally modifiable synapses. 

1) Can a cortical cell be type I conditioned to a 

'behavioural stimulus? For exa:nple in the rich t 
" 

association area of the cortex is it possible to 

condition a cell which norillslly responded to a 

visual sti~ulus, also to respond to an auditory 

stimulus? This experi~ent would be exceptionally 
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convincin~ if done in conjunction with a type II 

condi tionin;:; expcri:nent in which the animal was 

rewarded if the cell did not respond or punished 

.if it ref;ponded. 

2) Can arens of the hypothalamus be demonstrated to 

modify other p3thways presynaptically? It r:light 

be sho\':n, for eXD..'Tl,;?le, thot the mam;nillo-thala:nic 

tract or even the mD.m~illo-teGmental tract operated in 

this way. 

3) Is it possible to get further anatomical evidence 

for the previous conjecture? Perh~ps one of these 

tratts could be traced, by degeneration studies or 

otherwise, to presynaptic terminals~ 

4) The paleocortex cannot be classified with the neocortex 
17 

in this way_ It is structurally different (Anders~n) 
15 

and oy.hi bi ts ty)e II conditioning (Olds and Oltls). 

It is or0anised in a relatively simple manner ~nd 

could perhaps be the subject of similar expcri~ental 

tests. 

On the other h~d it has been conjectured that the hippo-

C8I!1PUS i.s part of the m:)chClnism res,i?onsible for 'laying; down' 

memory tracas, in this case we cannot at the moment atte~pt any 
.. 

simpl~ ~enoralisations eboat the structure or function of its 
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synaps9£, but acnin it v{ould be interesting to know if there 

are presynaptic or axo-axonal contacts in this region. 

Relevant to this discussion af the modification of synapses 
18 

is a sUGgestion by Young on the function of the amacrine 

cells in the brain of an octopus. In a model of type II 

~nditioning which bears some relation to the lcarninJ machines 

of Chapter 6 he su~costs the need for presynaptic inhibition 

and sugr;ests that amacrine cells (smull nerve cells with 

apparently no axons) ;niGht effect this by interposing the:nselves 

between the pre and post synaptic membranes. Young's i:lOdel 

has features which overcome ln3.ny of the difficulties which would 

be encountered in taidnc pcrccptron learning as an exact des-

cription of a neuroloGical procesa. mlether or not it is 

realised entirely in the neocortex of mammals is, like the 

perceptron, subject to what has already been said about the 

local modification of synapses. 
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CHAPTSR 9 Tile relevnnce of models 

In the previous chapter the one crucial difference between 

learnine and remc:nb.::rinc devices. was exainined in some detail. 

We now ta!\.e the models individually and atte:npt to subject 

them to neuroloGical criticisms. As usual, this will not be 

entirely c.:>nclusive and demands answers to further neurOlogical 

questions. 

HoloGraphy 

In its general form holography requires a propagative 

medium and a stable poriodic source. If the brain or part of 

it constitutes such a medium and contains such a source, what 

is the speed of propaGation and the frequency of the source? 

There seems to be little evidence that such a source exists; 

the E.E.O. rhythms mi£;ht be taken as such evidence but these 

are neither st~blc nor very persistent. Even if there ~as 

such a source - the sim~lest oscillator, consistinG of two 

neurons connected in a loop would be un"likely to have a 

frequency of more than 100 c.p.s. 

. As for prop~Gatlon it micht happen along nerve fibres 

and in this case the slOwest possible co~duction rate would 

seem to be of the order of I metre per sec. The wavelength 

is then not les3 than 1 cm. .. 

Now the interference frinGes produced by two such waves 
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would always be spaced at a distance greater than this wave-
1 

length. . AccordinG to Sholl a sCluare centimetre of cortex 

contains, very rouc;hly, 2 x 106 neurons and, in consequence 

10 of the order of 10 synapses. To store a siGnal so far above 

the limits of resolution of the medium is at least uneconomical. 

Moreover, in a linear system,·any superposition of interference 

fringes would not cont~in hiGher frequencies so this very hieh 

redundancy wOilld Cl,?)ly as well to the storage of many holoer.::tffis. 

It is hc-rd to believe that a non-linear system which approx-

imated this would exhibit a much more economical one of the 

available store (if this is synaptic). 

A proposal advanced by Beurle2and van Heerden3sugcests 

that the propagation may be much slower and consist of spreading 

waves of excitation throughout a mass of cells. If the con-

duction rates ~ere much slower, the waVelength could be reduced 

to a more acceptuble qu~ntity. Again, if this mass of cells 

were in the cortex, the propaEa tion would presu;:;1ably take place 

laterally. 

The pheno~enon of spreadinG depression in ~hich a wave 

of activity is observed to pass slowly across·the cortex micht 

be taken as evidence of such propagation, thouCh it cannot be 

taken too li ter-ally ::.~ince it results in prolor-ged inacti vi ty 

in most of the cortex. Obscrvation,s by Sperry4and LaShley 5 

however, would not lend sup.?ort to this idea. They were ~~able 
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to detect ony ellc.ngc in the. behaviour 0 f anir.lals in v{hieh they 

had attempted to interfere with lateral conduction in the cortex 

by cutting throuch it in ~any places, or by inserting lengths 

of electrically conducting material. It is also hard to imaginE 

how any recall could be sufficiently fast if the rate of 

conduction ~as only a fe~ millimetres a second. Finally, van 

Heerden's proposal involves propaGati~n through a linear medium 

which does' no t reconcile with the knovm non-linearity of neural. 

responses at least in the lower parts of the nervous sy~tem. 

9.2. Associative nets 

Two types of associative nets have been advanced, and each 

of these havo points iri their fnvour as neurological models. 

Since it is fnirly certnin that a synapse is either excitatory 

or inhibitory and cannot change from one type to the other, each 

input line of the lineu~ net would have to branch and eive rise 

to both an inhibitary and excitatory inpllt to each output line. 

Also, since nerve cells seem to possess entirely inhibitory or 

on tirely excitatory syn:l.psos, \','0 hc~ve to postUlate a set of 

interneurone to achieVe this. A very muc~ more serious 

limi tation on tho lin::'CJ.r cu:;soci:tti ve net is that the weich ts can 

. become v~ry l~rc;e. The strength of a synapse is probably 

limi ted SO that to ~et l::trge weiGh ts F.lay involve the growth of 

new synapses. Eccles h~s GU~Gcstcd this as a mechanism for 
.. 

synaptic cl:.o.nzc, but this is only a conjecture. These diffi-

cultics are Gvoidetl j.n the bin~ry associative net \':hich .could 
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be ~eali5ed with one ty~c of excitatory synapse. The need 

for an accurate threshold, D.nd the need tor the nervous nystem 

to produce pat terns vii th Dpccific numbers active and inactive 

lines present nc,'} obstacles to which vIe do not yet have any 

complete solution. 

Both types of associative net require that synaptic 

change only tc.lces place on the presentation of a pair of 

patterns to be associated, the binary net requires jast one 

typ~ of irreversible chanGe. 

SUPJ.Jo...;e tho.t Duch synapses were of Hebb' s type. How 

could a synaptic ch~nGe be prevented from happenin8, as 

a result of noise, or in ths linear net, simply in the U~e of 

the net to recall a pattern? One solution is to suppose that 

the pa:'rs of putt8rns must be paired many ti:aes in order to 

produce synaptic chanco and it is possible that the function of 

the hippocampus a~d its related str~ctures is to maintain such 

a pairinG, for bil:~tcral destruction of these regions produces 

'f 7 , . b 1 bl KorsatO~'s synctro~a, tae lna i ity to esta ish new memories 

~r to form new a~sociations. 

The need for r03pctitlvo p.::l.iring in order to effect synaptic 

chance is certainly indicated by the experiments of Bliss, Burns 

~nd Uttley? A factor which, lilay also be irnporta..'1t is the rel3.t.Lve 

timinG of the C.S. and O.C.S. to a ~ynapGe; it may be th.::l.t the 
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m,ost effective stimulus for producing synaptic chanGe is not 

the simultaneous depolarization of both the presynaptic and 

post-synaptic me:nbrane but these two events occurring with a 

slight tine difference. Suppose for exruaple that the U.C.S. 

were to precede the C.S. by a few milliseconds. Some reverse 

chemical diffusion could take place from the post-cynaptic 

membrane which \"ould rC3ch the presynnptic membrane at the 

time of arrivDl of the U.C.S. 

Note also that if the cells were being fired by the C.S. 

alone, ouch a time delay would not occur so that the synapce 

Vlould 'l~now' i'.'hen and when not to modify. Such a timing 

hypothesis could aGain be tested by methods similar to those 
8 

of Bliss, Burns and Uttley. It is of course equally posaible 

that the time delay could be the other way round, that is to 

say, that the C.S. should precede the U.C.S. The latter is the 

most effective order for b0hnvioural cOl;}.ditionine. 

The synaptic contacts on the dendritic spines of pyramidal 

cells (Gr~y)9are peculiarly s~ited to this function. First 

the spines contain a specialised process, the spine apparatus 

which could form part of a system \';hich communicates any post-

synaptic activity to ODme other p:..trt of the synapse. Second, 

such c!,ines lie on the main dendritic trunks and would be 

neccssDrily affected by any(active or passive) depolarisation 

.. 
of the a)icol Jc~drites. Moreover the apical dendrites 

10 
(Lore~t~ de No) lie in the outer parts of the cortex which is 



- 95 -

t~e re~ion in which fibres afferent to the cortex (either from 

the thalamus, OJ. .. 1'rOi-:l other ports of the cortex) terminate. 

Groun inv3.riant n~~)ocio te nets • 

There are several possible ways in which such a net mieht 

be erabodied in the br.:lin and Ii t tIe to Gay which is more likely .• 

All we cnn do at the moment is to make some rather general 

observatio:ls. First of all, the complex HUbel. and 1:11esel ll 

cells Y/hich respond to a pattern of a certain orientation no 

matter what its position provide evidence that some sort of 

~roup ir.vari'?Jlt response obtoins even in the primory visual 

cortex. Similurly there are eliding frequency detectors 1n 

the auditory cortex Which detect rising of falling notes in 

almost MY audible frequency range (Evans and rlhitfield) .12 

Recently, cells hove been found in the visual cortex which 

respond :'1axil:lolly to patterns presented binocularly, of an 

arbitrary ,osition but fixed disparity (PettiGrew, Nikara 
13 

E.l.nd Bisho!'). All these are manifestations of sim?le forms of 

~roup invari~nce; there are ~robably more complicated forms 

which miGht be shown up by simUltaneous recording of many 

cells. 

Given that tl~cre are croup invariant responses in the 

brain, are the necessary connections formed automatically 

durinG the devclo ;".r:')11 t 0 f the bra;t.n or is somc sensory exper-

iel.:e required to establish them? The ansr.er is likely to be 
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both of these. There is.an innOote rough set of connections, 

but the fine details are learnt. Possibly this rather com-

plicated wirinG con only be achieved by Growth of nerve cells 

over some distance, and in consequence can only happen fairly 

early in life. Such is the case with binocular vision, vlhich 

is, in cOots, critically dependent on their being sighted in 

the first fevl \':eeks of life (Hube 1 and ~'Ji.esel, .14),.. If 

the acq~isition of so~e group invariance is, as h~s been 

sugcested, also essential to the development of lanGuace, it 

is reasonable to sive a similar exploration of our inability 

to learn to speal\. after the aGe 0 f six or seven. The latter 

seems to be shown by children v:ho hCtve suffered dal~a.:;e to the 

dominant helnisphere at an carly ace. 

Finally, as they stand, the group invariant nets and 

perceptrons seem to require too ~igh a decree of precision to 

be ta:~en as precise ne'-lrological models. The principle of 

I tying I syna:pses together (1. e. altering i.lCJlY synapses at the 

sOome tiJne) nevertheless provides <::Ul in tercstins :nechR!1is;n for 

generalisation. One of the most serious shortco~ings of such 

models is the difficulty of turning a continuous (perceptual) 

group into a discrote Group action on a set of input fibres. 
,!; 

It is possible that the concept of tolerc.nce s,;?Ooce (Zeeman) 

could be used to cet rOund these obstacles • 

.. 
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Perceptrons 

It has been shown that the fundamental distinction 

between perceptrons and associ~tive nets lies ~n the method 

of adjusting the weiehts in these devices. Because of this 

distinction it was felt that the modifiable elements of a 

perceptron could not represent cortical synapses. i'le now 

ask if the method of weight adjustment or learning algorithm 

forperceptrons represents a~y other part of the nervous system. 

First of all, perceptron learning it; in no way a model 

of operant conditioning. To mal ... e this clear, consider for 

eX~'llple, a thalamic neuron which we know can be operant 

condi tioned to res ... 8ond to a sti:nulus. While therG is no 

response, no reinforcing sti~ulus is given and there is no 

evidence that any charges have tal\:en place: a perceptron always 

-alters when an incorrect outl)ut is given. Thus if percept ron 

learning describes thalwnic conditioning we should expec~ that 

every condi tionable cell in the thala,nus is being condi tiol1ed 

even when no reinforcing stimulUS is Given. 

After the first reinforcing stL:iulus is given (that is 

when the cell responds for the first tiille) it does not nccessariJt 

follo\'l that the response has yet been conditioned: the cell cans I 

and is likely to, not respond to the stimulus at its next 

occurrence, and many more trials are necessary in order to 
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condition the rcspon~e. A pcrceptron truined to one in~ut 

pat tern ','rill, v!hen it h.:tn responued correctly once to that 

input, will continue to do so. Also, traininz a percept ron 

to a particular Input ic likely to interfere with its previous 

traininG on other in~uts. There does not seem to be any good 

re.:tson th.:tt this hD.l?2cns in the same way with operant condi tioni;'d : : 
.' 

Behaviou!'ally, en animal beinG 0 pcrant condi tioned mal~es explor
/ 

atory reG~10nCCS, aPP.:trently at rnndo;n, until it mal~es the correct 

res,r:.onse, which is reinforced. A pcrceptron, which is limited 

to two possible rcs}onses in a simil.:tr one-stimulus situation, 

gives a series of incorrect res!,onses Qnd will thereafter give 

a series of correct responses. 

It wo.s :;:hown in the discusGion of tro.ininG algorithms for 

perceptrons th.:tt a perceptron could be thought of as 'hill 

climbinc' n~d thnt each weicht chante effected a mOYe up this 
15 

hill. Ccrt:.:lnly Uttlcy's conditiono.l probability machine and 
16 

youn~'s dlc.:ra~ for opcr:.:nt conditioninc in the octopus would 

see:n to prc':::c!lt more .:tccurnte paradiGms of operant conditioning. 

If then, p0rcJpLrons do not provide a model for operant condition_ 

ing, they may well describe other types of conditioning especially 

in improvi!lC the p,: r for:n,:mce 0 f all already established task. 

Such conditio!".ir.~ could \'foIl involve this type of hill climbing 

but a ne~rolocic=-l rcpr0s0nt.:ttion of it has yet to be discovered. 
,. 

Also, 1 t h:"o u·~cn shown thot in ccrtoin cases the wei.::;hts involved 



- 99 -

-~ 
can beco::lc very 1aree - in such cases it may be di fficul t to f 

[ 
find a reasonable mechanism for holding these large numbers. l 
On the other h~nd there is no reason for supposing that predicate 

::~:e~$ the parity prcotcate are at all natural in a behavioural I 
I 

·r 
i 

I 
f 

I 
I , 
\ 
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CHA2TS~~ 10 Conclusions and sD2culations . 

No theory of me:nory or lcarning, however well fO;lnded 

it is in physioloGY, ip s~tisfactory unlees it advances our 

lmo\':lcdc;e of bch~viour .. It is not hard to devise syste~s 
i 
I 
I 

which exhibit SO;:lO form of memory, nor is it usually difficult 

to build up so~~ neural analOGue of such a syste~. Our assess-

ment of any such thcory must finally rely on our ideas about 

behaviour. S~c~ proposals will be made here conca~nin~ 

aS30ciatlv" !i.:lts, and since it has been zuesested that assoc-

i"ative nots could exist in the cortex, such proposals will also 

be intcrr>reted in terms of the function and evolution of the 

neocortex. The central propos3.1 is that it is the function 

of ~le neocortex to make predictive models of the environment. 

To clari fy this last state:aen t, a.::sume the following 

over simplified model of behaviour. An animal receives a 

stimulus S at a certain time - it produces a res90nse Rand 

as a result receives a n3W stimulus st. S' will be p~rtly 

or:\'lholly predicto.blc from Sand R. Consider some exa:nj!l~s 

of this: 

1) In opero.nt conditioninc, if s::>me stilllJlus is given 

(a bell) and a response is then made (pressing a 

lever) a new stim:.tlus (food) ensues; if so!!).e other 

r~sponse is made D. liffercnt (or no) stimulus is 

received. 
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2) In the visual pirception of some ~tatic scene, 

a movement of the eye ca~ses the imaGe on the 

retina to trnrislatc throuch a certain distance. 

3) Any :nuscular contraction or rela:{ation causes 

altered si~nals from the various receptors 

as~ociated with that muscle. 

In each ca13e here S· is a function of S and R, but in 

genernl Sand R do not determine a unique st. The environ:nent 

mic;ht not be static 3.S in (2), for example. To take a com

plicated paro.digm, ina game such as chess, suppose that S 

is civen by the stcte of the board before a player makes a 

move (R). st - the state before he makes his next move will 

depend on his opponent's move ~o that S and R do not determine 

a unique st. HO\'lever, to star:' \'lith let us make the naive 

aSGu:nption that S' is uniquely determined by S and R. 

The claim is that an associative net is used to predict 

~ , given S :md R: in neuroloGical 'terms this cannot mea..'1. 

th~t the stimulus S' is physically reproduced by the nervous 

syste:n nor does it !:1c<m tlwt the sensory input fibres are 

caused to fire in the same way that they would if 51 is 

actually received. It is sugGested th~t the patt:rns of 

firing of the pyramidal cells (\'/llich effect the output of the 

neocortex) erc simil~r whether S'~1s received or not. ThiG 
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is cO!n:patible with the su,?position that the neocortex can 

be classically conditioned, the unconditional stimulus beinG 

S vii th R and the condi ti.onal stimulus beir..g S'. It would be 

interesting to .;.!lOW \'lhether this effect obtains even in the 

sensory cortex. In the eXPGri~ents sus~ested in Chapter 

7: cG.n for example, the primary visual cortex be condi tioned? 

It is then possible that the. 'moving edge' detectors of Hubel 
1 

and :'/iesel are establi.shcd by this mechanism, and perhaps 

such cells continue to fire even if the stimulus is halted or 

turned off in the middle of its traverse through the receptive 

field. 

In many situations there will be some vcry strong 

conn0ctions between S &Ild SI. In one of the exa~ples above, 

if R consists of some movement of the eye, S' is approxim3.tely 

a transl~t~ of S on the retina, it would seem unlikely that 

each SI in this case has to be conditioned. \'Jhat is more 

li!~ely is that there is SO::lO mechanism 'for tr&nslatinc; S, and 

this may be achieved in the same way that group invariullt nets 

were constructed. It is unli!~ely that the 'correlo~raph' is 

an ap~)ropri:::te model h3re becau.se a Great deal of coding ta~ ... es 

phtcC in the visua~ cortex o.nd a translation of the retinal 

ima_~e v:ill not cause a simi.lar :nodifica.tion in the pattern of 

firinG cells. But it ssems likely from Hubel and \,liesGh~s' 
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worI:;: that units of all types and orientations exist viith 

receptive fields in all parts of the fovea - if this is so 

then the Get of such units is ~losed under the translation 

'group' and it is still possible to build associative nets 

invari~nt under this operation. 

We now diGress and turn briefly to the possible use of 

group invarirult associative nets in the use of lan0u~ge. 

It is not propo3ed here to expound any modern linguistic 

theory except to state that it is comiilonly held that the 

me.::tnine of an En.:;lish utterance can be in part represented 

by some sort of gra~lical structure. The nodes of such a 

structure represent words or gram~natical constituents. 

Suppose a set of de:nonstrative sentences is given a.nd these 

are passed into one or core of these structures. Any question 

can also be parsed into another structure and the answer to 

that question necessitates matching the question structure 

wi th part of the oriGinal dC!'lOnstrati ve structure. 

Take, for cxa:!ll)le the de;nonstrati ve sentence: 

A) Annie eats meat. 

Which miGht be represented by: 

s 
lIP/ "VP 

/ /" Annie cats meat 
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The question: 

B) \'Jho. t·~ does Annie eat? 

gives ,us an incomplete structure: 

s 

1'\ 
NP VP 

/ /\ 
. Annie eats * 

To answer the question B, given A, is now straightfor\'/ard 

the p.:1.rsine of B must be matched with the parsing of A. The 

missinG node in this case is the anSVler to the question. In 

another case the question: 

c) Does Annie eat meat? 

Gots tho anSVler yes if the pnrsing of A has been 

given in a demonstrative sentence. 

In one caso, therefore we are seeking to ::latch one graph 

with a sub graph of another and then continue it. In the 

. other we are Si.:lply see:dng a di.cect matcl1 of one crn:)h \,;'i th 

&nother gra.ph or sub3raph. It has been sUGGested 2 that a 

set of dem?n~trative sentences could be represented by a 

larGe connected ~raph with common ter~inals identified: so 

that if "Annie" occurs in hIO sentences we link the p['xsinr;s 
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of those t·;:o sentences by that word so th:lt vIe can represent 

these sentences by one connected Graph. 

The problem of identifying a graph as a subcraph of some 

other Crctl)h is superficially like that problem which is 

resolved by hol0 0raphy. The graph rec05niser. in Chapter 4 

shovs that a group invariant associative net can.perform this 

operation. In f:lct the graph recogniser worked on graphs 

Vlith undistinguished nodes, that is it worked simply on the 

relation which defined the Graph. In the linguistic problem 

posed above we would not want to allow a noun phrase node to 

be identified with a verb phrase node. Such a restriction 

Vlould mean that an associ:ltive net built for this purpose 

would work on a subGroup of the full permutation group of 

the nodes ar.d perhaps on a subset of all possible relations 

between nodes. These two reStrictions would mean that the 

size of such a not would be reduced and, oince fewer switches 

would be 'tied', that the information that could be stored in 

it would be very much greater. 

It is not of course proposed that eroup invariant assoc

iative nets will properly solve any linguistic model, nor is 

it more than a very naive model for how the brain copes with 

a pnrticular problem. It is intended to sho"f that the gra}Jh 
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isomorphism problem which crops up in several areas of 

artificial intelligence3can be ta~kled by parallel systems 

rather than the relatively Slo-\,1 programmes that have been 

written to cope with it~ 

To reconcile this proposal with what has been said 

about models of the environment is, at the moment, a very 

difficult tc,sk. But if it seems too far-fetched to believe . 
that the mechanisms for producing language are fundrunentally 

simi13.r to those for maldng predictive models of the environ-

ment, it is at least worth notin[£ thEtt it is an important, 

and possibly the only, function of language to communicate 

expectations about the environment. It is certain that what-

ever mechanisms are involved in these abilities, they are 

closely linlted. 

\'fuat use is the ability to model the environment and \'Ihy 

did it develOp? \"~1Y is ita necessary e.ddi tlon to whatever 

subcortical learninG machinory that exists? It has b-sen 

seen that SOl:le devices \'!hich co.n be o)erant condi tioned can 

suffer from drawbacks such r.lS taking tlany tria18 to i~espond 

correctly to cnny different stimuli &nd !for~ettingt some 

011, responses vihen it is beine trc..ined to new stimuli. Such 

a device, if it hQd in addition a past record of previous 
.. 

stimuli, would be able to avold these dra\'!b~cl{s. It could 
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train on these stored stimuli, and wten new stimuli r,ere 

presented, could continue to chccl~ these against its store 

of old' stimuli. If, in fact .the store contains every stimuli 

and the appropriate response, the operant conditioning machine 

becomes redund::mt, however many, if not most stim'.llus _ 

response situations of the type described at the beginning of 

this chapter need not have any neGative or positive reinforce-

men t acco!ll.oanying them. .Tlley are ini tially neutral and :''1ay 

on'lY later beco::le associated with some reinforce:;len t. Here 

aGain we have a loose behavioural reason for supposing that the 

cortex, if it forms such models, should be neutral r/i'th respect 

to behavioural.or hypothalamic 'rewards'. 

In connection with this, it has frequently been observed 

that only hiGher animc..ls can perform \'Jell in delayed condi tion-

ing tnsks, and it is reasonnble to interpret 'hieher' as me::ni~g 

the presence of neocortex. Furthermore, the destr~ction of 
5,-6 

neocortex, especially the front~l lobos, can lend to the 

impairnent of this ability. 

In phyloc;enetic torms the neocortex is an outc;rowth of 

the paleoco~tex which was originally' a p~rt of the brain 
. 7 

B3sociated with smell. This is perhaps the most interesting 

of senses in thnt it C2..n be used for infor:l1ation about both 

distant nnd close objects. 
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dis:l~j::>ears from siell t when it is t3.~~cn in <md ths..t touch is 

only eff()ctivc 'allen <Ul object is close. S:nell .:::Jld taste 

toeether form u sense \'/hich can detect objects v:hich secrete 

che.::ico.lly (and lJO.:>t food is of this form) whether they are 

disto.nt or hove been t3.:;:en in. To inQalse in teleology, a 

croup of cells receivinG infor:1ation of this nc..ture \'lould be 

en ideal startinG point for the outgro':lth of a new structure 

Which could for~ predictive models. In a genernl \':o..y this 

also circumvents a problem posed by GreGory: how did tue eye 

develop v:hen the brcin did not h::.ve the 'computing pO~':er t to 

de~1l with the information it would receive? And why did the 

brain develop Duch computine; pOi'/er when, if there '~laE:· no well 

developed eye, it had no data on which to compute? The fact 

that the neocortex, which includes the visual cortex, is an 

extension of the rhinencephalon, thnt part of the nervous 

system associ~ted with smell,shows ho~ the necessary inter

mediate devolopment took place. 

Such require!U8n ts of cont,inui ty in evolution also puts 

up an~ther obstacle for holographic theories. HOVI CCll a ferl 

cells .store a useful fourier trc.:'.nsform or set of interference 

frinGes? On the otller hand, what sort of 11tutation could hove 

sud.denly talwn place in order to effect a \'forking holocrc.ph in 

the brain? 
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Having proposod this fQnction for the neocortex that 

it contains an internal 'world' of predictive models, what 

can we say about Homunculus who explores this world? He is 

clearly very complic8ted, but he is not quite as co~plicated 

as the n3rvous system he inhabits, for he himself does not 

have the ability to m"tl\:e these models. Homunculus no more 

represents the individual that contains him, than a com~uter 

without its core store represents the whole machine. Vie have 

sU~Gested that it io possible to operant condition him and he 

may be sli~h tly frog-li~-;:e (the lat ter animal having no neo

cortex). The point is that he is nevertheless complicated, and 

a full understanding of the physiolo~y of the neocortex may be 

attained very much sooner than"th:.tt of lower and phylo2:enetically 

older structures. 
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