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Abstract

In this thesis the effect of collective particle behaviour within a plasma was
explored using kinetic plasma theory in conjunction with magnetohydrodynamics
(MHD). Collisionless or quasi-collisionless space plasmas were used as test labora-
tories in an attempt to understand the evolution of space plasmas. In a collisionless
plasma, forces and fields are mediated through collective behaviour such as instabil-
ities and plasma waves, thus the plasma parameters evolve due to modification by
collective effects. In this work we implemented analytical and numerical techniques
to predict the effect of collective behaviour. These hypotheses were then tested
against experimental data as a validation process.

The region near the Earth’s bow shock where incoming solar wind interacts
with plasma emanating from the bow shock is known as the foreshock. This region is
an abundant source of complex particle distributions with associated collective phe-
nomena. We report the first observation of correlation between elevated solar wind
core plasma temperatures and temperature anisotropy in the terrestrial foreshock.
Direct comparison of contemporaneous anisotropic temperatures in the upstream
solar wind and the foreshock suggests that the net heating of plasma is mediated
via a increase of the parallel temperature in the foreshock region where ultra low
frequency (ULF) plasma waves have been observed. We consider the possibility
that a mechanism based on Landau damping, where solar wind plasma temperature
parallel to the background magnetic field is increased by interaction with oblique
compressible fast magneto-acoustic ULF waves, influences temperature anisotropy.

Next the impact of wave phenomena on the radio emission fine structure
in flaring loops of the solar corona was investigated. In particular, the impact of
MHD oscillations on zebra pattern (ZP) radio emission. Initially static analytical
studies were carried in one and two dimensions to show it was possible do derive
a ZP using MHD techniques. The dynamics of ZP formation in the presence of
MHD oscillations were then analytically studied to show the presence of ‘wiggles’
in the ZP. These results were then repeated using numerical simulations using the
Lare2D MHD code. The catalogue of results suggests that the detected ZP wiggles
were caused by a standing sausage oscillation. We affirm this conclusion using the
observation that both instant frequencies of individual stripes and their spectral
separation oscillate with the same periods. Thus it is consistent with a sausage
oscillation that perturb both the plasma density and magnetic field. These results

xx



are further underpinned by comparison to experimentally obtained ZP wiggles which
exhibit similar periodicities. This new result could lead to a method for the direct
measurement of coronal magnetic fields in flaring loops.
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Chapter 1

Introduction

1.1 Basic Plasma Physics

1.1.1 Definition of a Plasma

A plasma is defined as a state of matter consisting of a fully or partially ionised gas

which exhibits electric charge quasi-neutrality, [Sturrock, 1994]. An ideal plasma

consists of equal numbers of free positive and negative charges usually ions and

electrons. The relative concentration of free charges should exceed a threshold for

the medium to be considered as a plasma. Also, in a plasma above a certain spatial

scale the average number of electrons within a volume almost equals the electric

charge of the ions thus producing an overall neutral state or quasi-neutrality.

1.1.2 Characteristic scales of plasma dynamics

Temporal Scales

If a disturbance is introduced to the quasi-neutrality of the plasma, the electrons,

in contrast to the much more inertial ions, will move to reinstate the equilibrium

condition. In the process of doing this the electrons oscillate around the equilibrium

at the electron plasma frequency, [Davies and of Electrical Engineers, 1990]:

ωpe =

(

nee
2

meε0

)
1

2

, (1.1)

with ne the electron number density, e is the elementary charge, me is the electron

mass and ε0 the permittivity of free space. The electron plasma frequency is an

important parameter as it defines the time scales in which the effects of electric field

disturbances are important. Another important timescale that must be addressed
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is the gyro-frequencies of the electrons and ions. As seen in the theory of electro-

dynamics, [Griffiths, 1999], electrons and ions gyrate around magnetic field lines at

specific frequencies. The gyro-frequency for the s-species in a plasma is defined as,

[Chen, 1984]:

ωcs =
qsB

ms
, (1.2)

where B is the magnetic field strength, qs and ms is the respective charge carrier

mass and charge. This frequency is also referred to as the cyclotron frequency or

Larmour frequency.

Spatial scales

The gyroradius is an important quantity to define spatial scales of the plasma, for

the s species it is defined as:

rcs =
v⊥s

|ωcs|
=

msv⊥s

|qs|B
, (1.3)

where v⊥s is the particle velocity in the plane perpendicular to the magnetic field.

The Debye sphere is a sphere with radius equal to the ‘Debye length’, λD defined

as, [Clemmow and Dougherty, 1969]:

λD =

(

ε0kBTe

nee2

)
1

2

, (1.4)

with kB the Boltzmann constant and Te electron temperature. Outside of this

volume charges are electrically screened such that larger volumes can be considered

as quasi-neutral.

1.2 Kinetic Plasma Theory

The starting point of modelling a plasma is to consider the collective behaviour of

the electrons and ions within the quasi-neutral fluid. This approach is encompassed

by kinetic plasma theory. The basis of using this method is anchored in the existence

of long range electromagnetic interaction between charged particle components via

the generation of electric E(x, t) and magnetic B(x, t) fields. The other charge

carriers then respond to these fields and undergo energy and momentum exchange.

In order to consider a macroscopic plasma, the contribution to E(x, t) and

B(x, t) from each particle would need to be incorporated, which creates an extremely

complicated spatial structure for a many bodied system. This can quickly become

2



a highly complex and thus untreatable task. Hence using a statistical description

reduces the size of the task while retaining the underlying physics of the system.

1.2.1 Phase Space Description

The plasma as a medium and its evolution can be described fully by a six dimensional

phase space. This method is a well established approach for plasma modelling, the

overlying theory and derivations can be found in a number of texts [Mandl, 2013,

Baumjohann and Treumann, 2012, Krall and Trivelpiece, 1986, Montgomery and

Tidman, 1964, Vlasov, 1961]. Each particle is tracked through this parameter space

by its position xi(t) and velocity vi(t) as a function of time, where i denotes indi-

vidual particles. The plasma can then be modelled by its particle density function

as a summation over every particle contained therein:

F (x,v, t) =
∑

i

δ (x− xi (t)) δ (v− vi (t)) , (1.5)

where the δ represents the three dimensional Dirac delta functions.

Further equations are required to adequately understand the evolution of

particles within the plasma and as a result the medium in it’s entirety. The equation

of motion for a charged particle in the presence of electric and magnetic fields is

given by the Lorentz force, [Griffiths, 1999]:

mi
dvi

dt
= qi(E+ vi ∧B). (1.6)

To understand the impact of particles on one another a coupling is required

between their respective equations of motion. This is sufficiently described through

Maxwell’s equations, [Maxwell, 1865]:

∇∧B(x, t) = µ0j(x, t) + ε0µ0
∂

∂t
E(x, t), (1.7)

∇∧E(x, t) = − ∂

∂t
B(x, t), (1.8)

∇ · E(x, t) = 1

ε0
ρ(x, t), (1.9)

∇ ·B(x, t) = 0, (1.10)

where µ0 and ε0 are the permeability and permittivity of free space, respectively.

The coupling between particles is contained within the definition of the electric

charge ρ and current density j. We define these as:
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ρ(x, t) =
∑

i

qi

∫

F(x,v, t)dv, (1.11)

j(x, t) =
∑

i

qi

∫

v F(x,v, t)dv, (1.12)

where we have summed over all particles within the medium and integrated over

the velocity parameter space to produce a spatial distribution of charge and current

respectively.

In a macroscopic system such as a space plasma, the number of particles is

very large and usually impossible to accurately evaluate. Therefore it is not possible

to describe the motion of every particle, thus some form of averaging is required.

Statistical kinetic theory smooths out the microscopic information of individual

particles but still retains the observable phenomena. This is done by defining the

particle distribution function:

f(x,v, t) = 〈F(x,v, t)〉 (1.13)

The particle distribution function is averaged in one of two ways, the first is the

mathematically rigorous method of producing an ensemble average over an infi-

nite number of realizations which leads into statistical mechanics. However, for the

purpose of this thesis the second method is sufficient, we consider the distribution

function as a discrete distribution whereby particles are counted in definite boxes

with size ∆x and ∆v respectively and binned correspondingly. This is an adequate

approach as most instruments use this method when reproducing distribution func-

tions from experimental data, these are often subsequently fitted to a Gaussian or

Maxwell-Boltzmann distribution, [Mandl, 2013].

The distribution function f describes the plasma and its evolution, thus it

is subject to manipulation through forces and external fields just as the particles it

describes. The exact governing equation of the distribution function is very depen-

dent on the environment it is applied to, predominantly based on the assumptions

that can be made. As an estimate, the Boltzmann equation is generally used and

can be derived using a variety of methods such as the ‘Klimontovich equation ap-

proach’ or the ‘Louiville equation approach’. The Boltzmann equation in this form

neglects correlations between fields assuming the evolution can be modelled through

particle interactions only. The derivations also assume the total number of particles

are conserved by constraining the total derivitave of the density function such that:
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dF
dt

= 0 (1.14)

The exact details of the derivation and the situational applicability of the terms in

the Boltzmann equation encompass a large field of discussion but for simplicity the

equation will be stated here without explicit derivation, however examples can be

found in, [Vlasov, 1961]:

∂

∂t
f + v · ∇xf +

q

m
(E + v ∧B) · ∇vf =

(

∂f

∂t

)

c

. (1.15)

The term on the right denotes the rate of change of the distribution function due

to collisions of particles within the plasma. Again the exact nature of this term

is dependent on the assumptions made however in this ideal case we assume the

plasma to be collisionless and thus it tends to 0. This results in the well known

Vlasov equation, [Vlasov, 1961, Krall and Trivelpiece, 1986]:

∂

∂t
f + v · ∇xf +

q

m
(E + v ∧B) · ∇vf = 0 . (1.16)

The Vlasov equation, supplemented by the Maxwell equations (1.7-1.10) forms the

basis of all kinetic theory in all collisionless plasmas such as those found in the

solar corona and solar wind. Although simplified, (1.16) still remains a highly non-

linear equation in time and a six-dimensional phase space. This complexity requires

further approximations to be made to find solutions under special conditions.

1.2.2 Macroscopic Variables

The fact that the distribution function represents the velocity, space and time of the

particles within the system allows macroscopic quantities to be extracted. Physical

quantities such as density n, bulk velocity V, temperature T do not explicitly depend

on the particle velocities. Hence to obtain these one would naturally integrate over

the velocity space. These integration operations are known as ‘taking moments’.

The i-th moment is defined as, [Montgomery and Tidman, 1964]:

Mi(x, t) =

∫

f(v,x, t)vidv, (1.17)

where vi denotes the i-fold dyadic product. The result of this equation is a set of

macroscopic variables:

n =

∫

f(v)dv, (1.18)
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V =
1

n

∫

v f(v)dv, (1.19)

P = m

∫

(v−V)(v−V)f(v)dv, (1.20)

where m represents the particle species mass and P is defined as the plasma pressure

tensor. The (v−V)(v −V) term breaks down into several dyadic products: vv−
2vV +VV. The dyadic product results in a second order dyadic tensor from two

vectors. If we let:

a = a1i+ a2j+ a3k,

b = b1i+ b2j+ b3k,
(1.21)

such that:

ab =







a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3






, (1.22)

we form the dyadic tensor from two vectors. Here i, j and k are the Cartesian unit

vectors.

Understanding Temperature

The macroscopic temperature can be derived from kinetic theory using the definition

of the pressure tensor (1.20) which is then substituted into the ideal gas equation,

[Moran and Shapiro, 2006]:

p = nkbT, (1.23)

to produce the temperature tensor:

T =
m

kbn

∫

(v−V) · (v−V)f(v)dv. (1.24)

This temperature is the kinetic temperature which can be calculated for any dis-

tribution. Importantly though, it is not a true thermodynamic temperature but

an estimate of the velocity distribution. In an anisotropic distribution this can be

used to estimate the parallel and perpendicular temperatures independently, how-

ever non thermal distributions such as a bi-Maxwellian will result in an artificially

high kinetic temperature, thus it is important to isolate the particle population of

interest, a common occurrence in space plasmas.
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This is helpful if we obtain an expression for the distribution function. How-

ever in experimental work this is rarely known. Instead the temperature can be

derived using the plasma pressure. We can split the pressure tensor P into compo-

nents parallel and perpendicular to the field:

P = p⊥I+ (p‖ − p⊥)
BB

B2
, (1.25)

which, in a coordinate system where the z-coordinate is field aligned, the tensor

becomes:

P =







p⊥ 0 0

0 p⊥ 0

0 0 p‖






. (1.26)

such that:

T =
1

nkb







p⊥ 0 0

0 p⊥ 0

0 0 p‖






, (1.27)

which taking p‖ = p⊥ = p recovers the ideal gas equation for an isotropic plasma.

1.2.3 Adiabatic Invariants

Adiabatic invariants are physical quantities that change very slowly compared to

typical periodicities of the particle motion. For particles in electromagnetic fields

adiabatic invariants are associated with each type of motion the particle can perform.

The magnetic moment µ is associated with gyration around the magnetic field. The

magnetic moment can be defined by the ratio between the perpendicular kinetic

energy of the particle and the absolute value of the magnetic field, which for an

isotropic medium is defined as:

µ =
mv2⊥
2B

, (1.28)

where v⊥ is the total perpendicular speed in an isotropic medium. When µ is

expressed in average quantities such as those derived in section 1.2.2 it can be

expressed as:

〈µ〉 = kBT⊥
B

=
p⊥
nB

, (1.29)

because 〈µ〉 is an ensemble average it must be conserved, thus the right hand side

is a constant.
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1.3 Magnetohydrodynamics (MHD)

In many situations it is not necessary to know the exact evolution of the distribution

function as outlined in section 1.2. In these cases it pays to consider only the

macroscopic moments such as densities, velocities and temperatures as defined in

section 1.2.2. The resulting theory falls under the category of fluid theories due to its

hydrodynamic nature. Hence the name magnetohydrodynamics (MHD), the study

of electrically conducting fluids which interact with external electric and magnetic

fields.

1.3.1 Multi-Fluid Theory

The MHD used in solar physics is usually a single fluid approximation of the more

general multi-fluid MHD theory for plasmas, which is derived from the Vlasov equa-

tion (1.16). It is then natural to start by stating the full multi-fluid theory and then

applying the one-fluid approximations.

The aim of multi-fluid theory is to describe the evolution of macroscopic

quantities such as number density ns(x, t), bulk flow velocity Vs(x, t), pressure

tensor Ps(x, t) and the kinetic temperature Ts(x, t) for each particle species s within

the plasma, in the first order case only electrons and ions are considered. Moments

can be derived by integration over velocity space of the Vlasov equation (1.16)

according to the method detailed in section 1.2.2. The results of this procedure are

stated here, for a full derivation consult the work of [Baumjohann and Treumann,

2012, Davidson, 2001, Krall and Trivelpiece, 1986], one of many works on the topic.

The zero-order moment produces what is known as the continuity equation:

∂ns

∂t
+∇ · (nsVs) = 0. (1.30)

The physical interpenetration of this equation is mass and charge density conserva-

tion in a plasma system where particles of species s are neither created nor destroyed.

The continuity equation is the first of the multi-fluid plasma equations as

it forms an equation where velocity is coupled with density. Another equation is

required for velocity to solve for the density field of the plasma. This naturally

follows by repeating the procedure but this time using the first moment treatment

of the Vlasov equation to produce the Navier-Stokes equation, [Landau and Lifshitz,

1989]:
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∂

∂t
(nsVs) +∇ · (nsVsVs) +

1

ms
∇ ·Ps −

qs
ms

ns(E +Vs ∧B) = 0. (1.31)

This equation is responsible for momentum density conservation and force consid-

eration in the plasma fluid.

With each iteration of the moment procedure, the previous quantity i.e.

number density is fully described by involving a higher order variable such as velocity

in this case. Thus the system is never closed. The last equation we will consider will

describe the evolution of the pressure tensor Ps. The resulting equation is known

as the energy density conservation equation:

3

2
nskB

(

∂Ts

∂t
+Vs · ∇Ts

)

+ ps∇ ·Vs = −∇ · qs − (P′
s · ∇) ·Vs, (1.32)

where Ts is the temperature defined by (1.24), ps is the scalar plasma pressure

and qs is the heat flux vector. The values ps is found by assuming isotropy in the

pressure tensor (1.26) such that p⊥ = p‖ = ps. P′
s denotes the stress tensor part

of the full pressure tensor, Ps, which describes the shear stress. In some cases the

heat flux can be neglected and thus a closed system is formed. This approximation

is not always valid however it is useful to derive a closed set of equations for MHD

theory and the further simplified one-fluid theory.

1.3.2 One-Fluid Theory

A useful starting point is to consider the previously multi-species plasma as a sin-

gular charged fluid carrying magnetic and electric fields. As a result we can define

some generalised average quantities, which have assumed no heavier species than

the protons:

n =
mene +mini

me +mi
, (1.33)

m = mi

(

1 +
me

mi

)

, (1.34)

v =
minivi +meneve

mene +mini
, (1.35)

where n as the number density of charge carriers, m the fluid mass and v the velocity

of each species. The charge and current densities are defined as:
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ρc = e(ni − ne), (1.36)

j = e(nivi − neve). (1.37)

As me ≪ mi and the quasi-neutrality condition states ni ≃ ne, (1.33) - (1.35)

approximate to n ≃ ni ≃ ne , m ≃ mi and v ≃ vi respectively, the i subscript will

be dropped. This assumption states that the global dynamics tend to be dominated

by the ions and their inertia. This condition is only held under a slowly varying (on

the order of the ion cyclotron frequency (1.2)) regime.

The MHD equations outlined in section 1.3 can be extracted from the multi-

fluid theory.

Continuity Equation

Again the starting point is the continuity equation, (1.30). If the equation for each

species (electron and ion) is multiplied by the mass of the other and subsequently

summed, the one-fluid version can be reached using the definition (1.33):

∂n

∂t
+∇ · (nv) = 0. (1.38)

Which in keeping with the multi-fluid version maintains mass conservation in the

non-relativistic plasma.

Equation of Motion

Constructing the momentum density conservation equation for the total fluid is

more difficult due to the non-linear nsvsvs terms of (1.31). The detailed derivation

can be found in [Baumjohann and Treumann, 2012, Chen, 1984] however for brevity

it will just be quoted as:

∂(nmv)

∂t
+∇ · (nmvv) = −∇ ·P+ ρcE+ j ∧B, (1.39)

where ρc and j have come from the definitions (1.36 - 1.37). This equation ensures

momentum conservation in the MHD system of equations.

Generalised Ohm’s Law

The momentum conservation equation (1.39) contains the electric current density,

j as a new variable. To close the set of equations one requires an expression for
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the evolution of j. This equation is the generalised Ohm’s law of a plasma, [Somov,

2007]:

∂j

∂t
= − e

me
∇ ·Pe +

ne2

me
(E+ ve ∧B) +

e

me
(j ∧B)− ne2

me
η̂ · j, (1.40)

where η̂ is the resistivity tensor, e2 arises from Coulombic collisions between par-

ticles. The generalised Ohm’s law can be explained through consideration of the

individual terms. The term on the left hand side considers the electron inertia anal-

ogous to F = ma; the first term on the right considers the force due to gradients in

the electron pressure; the second considers the Lorentz force; the third on the right

is considered as the hall term which accounts for the fact that electrons and ions

decouple and move separately and the final term incorporates the electron drag on

the ions (called the resistive term).

This equation implicitly implies that plasma resistivity, Rei can be modelled

as as a collisional term between electrons and ions:

Rei = ηe2n2
e(vi − ve) (1.41)

where η is the specific resistivity.

One Fluid MHD

Concluding the full set of equations, including the appropriate Maxwell equations

(1.7 - 1.10), are listed:

∂n

∂t
+∇ · (nv) = 0,

∂(nmv)

∂t
+∇ · (nmvv) = −∇ ·P+ ρcE+ j ∧ B,

∂j

∂t
= − e

me
∇ ·Pe +

ne2

me
(E+ ve ∧B) +

e

me
(j ∧B)− ne2

me
η̂ · j,

∇∧B = µ0j+ ε0µ0
∂

∂t
E,

∇∧E = −∂B

∂t
,

∇ ·B = 0.

(1.42)

This system is also usually accompanied with an energy equation which depends

on the nature of the pressure tensor. To simplify further the pressure tensor can
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be taken to be isotropic such that it becomes a scalar quantity p for a uniform

medium. In an MHD context the pressure can be expressed using (1.39) under the

full electric neutrality, which cancels the ρcE. It is then useful to eliminate the

electric field using Faraday’s law, (1.8):

∂B

∂t
= −∇ ∧E = ∇∧ (v ∧B− ηj). (1.43)

Such that:

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)

∂t
+ ρ(v · ∇)v = −∇p+

1

µ0
(∇∧B) ∧B,

∂B

∂t
= ∇∧ (v ∧B− ηj),

∂p

∂t
= −(v · ∇)p − γp∇ · v.

(1.44)

Which now contains an energy equation to close the isotropic uniform system. It is

important to note that ρ = mn here is defined as the mass density not ρc which is the

charge density described in (1.36). The full MHD energy equation can be derived

by considering energy conservation. An expression can be found by multiplying

the momentum conservation equation (1.39) by v and manipulating the resulting

expression with the implementation of the continuity equation to produce:

∂

∂t

[

nm(
1

2
v2 +w) +

B2

2µ0

]

= −∇ · q, (1.45)

where q is the heat flux density vector and w is the free internal energy density also

known as fluid enthalpy. The energy equation’s derivation and its integration into

the full set of MHD equations is beyond the scope of this work.

This set of equations provides a construct for modelling a plasma which

doesn’t require knowledge of the distribution function as outlined in section 1.2.1.

This proves useful in the context of space plasmas as often in-situ observations of

plasmas are not possible, therefore information must be extracted in the form of

bulk parameters such as density, n or velocity v.

1.3.3 Plasma β

The interaction between the plasma and an external magnetic field induces a j ∧B

Lorentz force, defined in (1.6). This interaction carries the effect of the magnetic
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field on a conducting MHD fluid. Using Maxwell’s equation (1.7) we can write:

j ∧B = −∇
(

B2

2µ0

)

+
1

µ0
∇ · (BB). (1.46)

The first term on the right corresponds to the magnetic pressure, pB = B2/2µ0, this

ultimately adds to the thermal pressure to form the total pressure of the plasma.

The second forms the magnetic stress tensor, BB/µ0 which describes the magnetic

stress in the plasma. This contributes to tension and torsion of the fluid. If we also

assume equilibrium conditions such that ∂t → 0 and v = 0:

∇ ·P = −∇
(

B2

2µ0

)

+
1

µ0
∇ · (BB), (1.47)

P is the gas pressure. If we take the isotropic pressure tensor such that P = pI and

neglect off diagonal terms in the magnetic stress tensor, a homogeneous and straight

field approximation we arrive at:

∇
(

p+
B2

2µ0

)

= 0. (1.48)

Under these conditions we can define a plasma β parameter. The value β is used

as a gauge whether a plasma is thermally or magnetically dominant, defined as,

[Wesson and Campbell, 1997]:

β =
2µ0p

B2
=

2

γ

c2s
v2A

, (1.49)

where cs is the plasma sound speed (defined in section 1.5 , equation 1.70) and

vA is the Alfvén speed (defined in section 1.5 , equation 1.72). Plasmas can be

categorised by their β value i.e. A ‘hot plasma’ typically has β ≫ 1 and a ‘cold’

β ≪ 1. In anisotropic plasmas where the pressure tensor is split into parallel and

perpendicular forms, as in section 1.2.2, β itself can be split accordingly:

β‖ =
2µ0p‖
B2

,

β⊥ =
2µ0p⊥
B2

.

(1.50)

1.3.4 MHD Approximations

The use of MHD is only applicable under certain conditions, if these are not met

more involved constructs such as resistive MHD or Chew-Goldberger-Low (CGL)

(see [Chew et al., 1956]) are required. In certain cases a full kinetic approach is
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needed, using techniques outlined in section 1.2.

MHD is a fluid theory and thus by definition certain restrictions are applied

to the time and spatial scales. This approximation requires that the characteristic

time scale of variation of the fluids and fields must be longer than the time scale

of the heaviest particle, usually the ion (sometimes the alpha particle). Hence time

scales should be larger than the ion cyclotron periods, (1.2). The assumption that

electron dynamics will negate any fields produced enforces the restriction that time-

scales are larger than those associated with plasma oscillations, (1.1):

ω ≪ ωci, ωpe. (1.51)

The same logic is applied to the spatial domain such that spatial scales should extend

the ion gyroradius (1.3):

L ≫ rgi. (1.52)

Magnetohydrodynamics is therefore restricted to very low frequencies and large

spatial scales. We also state that all flows must be non-relativistic to avoid all

relativistic terms, even so MHD proves very useful in space plasmas.

1.4 Plasma Wave Theory

A plasma, a charged fluid permeated by magnetic and electric fields provides the

perfect environment for the appearance of a plethora of wave modes. In fact due to

the high temperatures required for plasmas to exist and thus their high particle ve-

locities it is impossible for a collision-less plasma to exist without collective motions.

Microscopic charge separations produce restoring electric and magnetic forces.This

background level of fluctuation is known as the thermal fluctuation level.

In addition to these unavoidable thermal fluctuations any plasma will react

violently to external actions. Waves are the means in which these distortions are

transported across the medium to communicate the energy and information to the

entire plasma. These waves are not generated at random. In order for them to exist,

first the wave must belong to one of the discrete modes as defined by the governing

equations and secondly it can only be said to exist when its amplitude grows above

the background fluctuation level. In line with this the linear growth rates must

exceed non-linear such that the linear dispersion relation is defined. These waves

are the linear eigenmodes of the plasma.
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1.4.1 General Dispersion Relation

To thoroughly derive all possible wave modes a general dispersion relation is needed

for a plasma. It use difficult to encompass the entirety of wave phenomena as

non-linear effects can come into play in large amplitude waves, therefore in this

section we restrict our analysis to linear waves which can be considered as small

amplitude perturbations. This assumption holds for the remit of this thesis as our

investigations only explore waves in the linear regime. As for most plasma properties

the starting point is Maxwell’s equations, (1.7-1.10) which can be written, [Maxwell,

1865]:

∇∧B = µ0j+ ε0µ0
∂

∂t
E, (1.53)

∇∧E = − ∂

∂t
B, (1.54)

∇ ·B = 0, (1.55)

∇ ·E =
1

ε0
ρc. (1.56)

This derivation assumes the plasma is infinite to allow Fourier analysis in space and

time. We assume variables can be described by planar perturbations to equilibrium

fields in the form:

exp i(k · x− ωt), (1.57)

where the quantities B, E and j follow this form. Thus through this assumption we

can write (1.53) as:

ik ∧B = µ0j+
−iω

c2
E, (1.58)

where the definition c2 = 1/ε0µ0 has been invoked, similarly (1.54) can be written:

ik ∧E = iωB. (1.59)

The dependency on the magnetic field can be eliminated to produce:

k ∧ (k ∧E) +
ω2

c2
E+ iωµ0j = 0. (1.60)

To progress to a general wave solution we require a relationship between the electric

field and the current density, this is supplied by Kirchhoff’s reformulation of Ohm’s

Law, [Darrigol, 2000]:
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j = σ ·E, (1.61)

where σ is the plasma wave conductivity tensor which can be shown to only depend

on relative position and time. Thus using a vector identity for the first term and

substituting Ohm’s law:

kk ·E− k2E+
ω2

c2
E+ iωµ0σ ·E = 0. (1.62)

As a simplification the definition of the dielectric tensor which contains the physical

response properties of a given dielectric medium, [Ichimaru, 2008]. :

ǫ(ω,k) = I+
iµ0c

2

ω
σ (1.63)

which then reduces the overall equation to:

D̂ ·E = 0 (1.64)

with:

D̂ = {kk− k2I+
ω2

c2
ǫ} (1.65)

The medium’s dispersion relation is then derived from the only non trivial solution

to (1.64) whereby the determinant of D is zero. Thus if the dielectric tensor is know

the above relation produces the solutions for every linear wave mode that is viable

in the specific plasma environment. The specifics of the medium define the terms of

the dielectric tensor, for example an isotropic unmagnetised plasma reduces ǫ and

σ to diagonal matrices.

1.5 Magnetohydrodynamic Waves

MHD waves can be derived using the general dispersion relation, (1.64) however

it is easier to derive them using the idealised form of the MHD equations (1.44).

As stated in section 1.3, MHD involves slow varying large spatial scale phenomena.

In this section we apply this theoretical construct to derive a set of plasma waves

which can be expressed in the MHD framework. Thus they themselves adhere to

the assumptions made when deriving MHD theory.

We begin with the one fluid MHD equations outlined in 1.42 in the idealised

regime. The system is referred to as idealised as the resistivity η = 0 and the energy

equation is written in its adiabatic form. The electric field has also been substituted

16



for the magnetic field and nm is set to ρ to simplify the derivation. Thus we use

the following equation set, [Freidberg, 1987]:

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)

∂t
+ (v · ∇)ρv = −∇ ·P− 1

µ0
B ∧ (∇∧B),

∂B

∂t
= ∇∧ (v ∧B),

d

dt

(

P

ργ

)

= 0.

(1.66)

If we then consider a plasma in equilibrium and apply perturbation analysis

such that:

n = n0 + δn(r, t),

v = δv(r, t),

B = B0 + δB(r, t),

P = P0 + δP (r, t).

(1.68)

in this regime it is assumed that the background flow v0 = 0 and the time derivative

of equilibrium values is zero such that they are constants. The substitution of these

values into (1.66), neglecting terms which contain powers of perturbed quantities

greater than one yields:

∂δρ

∂t
+∇ · (ρδv) = 0,

ρ0
∂δv

∂t
= −∇δP − 1

µ0
B0 ∧ (∇∧ δB),

∂δP

∂t
− c2s

∂δρ

∂t
= 0,

∂δB

∂t
= ∇∧ (δv ∧B0).

(1.69)

where the quantity cs is the sound speed, defined by:

c2s = γP0/ρ0 = γP0/min0 (1.70)

Projection of these equations into a coordinate system with careful consideration of

the magnetic field direction yields a set of partial equations. A planar wave solution

with wave number k = k‖ê‖ + k⊥1ê⊥1 + k⊥2ê⊥2 can then be applied following the

process outlined in section 1.4.1 to find the consistency conditions which result in

the MHD wave dispersion relation. The equation is stated here without derivation
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but the full work can be found in many plasma physics texts i.e. [Baumjohann and

Treumann, 2012, Freidberg, 1987, Davidson, 2001] amongst many others:

[(ω2 − k2‖v
2
A)I− c2mskk+ (kê‖ + ê‖k)k‖v

2
A] · δv0 = 0, (1.71)

where vA is a new quantity defined as:

v2A =
B2

µ0n0mi
. (1.72)

This is known as the Alfvén speed which can be thought of as the ‘magnetic sound’

speed. It is also useful to define cms, known as the fast magnetosonic speed:

c2ms = v2A + c2s (1.73)

The solutions to (1.71) form the basis of linear MHD waves and will be discussed in

section 1.6.1.

1.6 Low Frequency Plasma Waves

We define low frequency waves as oscillations with ω ≪ (ωpi, ωgi). One fluid MHD

as that outlined in section 1.3.2 is valid only at these low frequencies. This is well

below the ion cyclotron and plasma frequencies where electron inertia can be safely

neglected and dynamics depends purely on ion motion.

1.6.1 Linear MHD Waves

If the system is orientated such that the perpendicular wave component is parallel

to the x axis so that k = k‖ê‖ + k⊥êx the wave mode solutions to (1.71) can be

separated into two forms of linear waves.

The Alfvén Wave

The first solution of (1.71) is the shear wave. The above system allows a solution in

which δv decouples in the y direction. Such that:

ω = ±k‖vA . (1.74)

This wave propagates parallel to the ambient field and is purely transverse and in-

compressive. It is an electromagnetic wave called a shear Alfvén wave. It represents

simple string like oscillations of the magnetic field lines.
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The Magnetosonic Wave

The remaining solutions couple the parallel velocity components to the other trans-

verse component δvx. Thus the determinant of (1.71) reduces to the dispersion

relation:

ω4 − ω2c2msk
2 + c2sv

2
Ak

2k2‖ = 0, (1.75)

which formally has two pairs of roots:

ω2 =
k2

2

{

c2ms ±
[

(v2A − c2s)
2 + 4v2Ac

2
s

k2⊥
k2

]
1

2

}

. (1.76)

The argument of square root is always positive resulting in real solutions. The root

with the positive sign is called the fast magnetosonic wave and the negative the

slow magnetosonic wave. They are both compressive modes. The phase difference

between the thermal and magnetic field pressures dictate which mode the wave

becomes. Given as ptot = p+B2/2µ0 when δB and δp are in phase they amplify the

force on the plasma and thus enter the fast branch, while if anti-phase they retard

the magnetosonic wave and force it onto the slow branch. The relative phase and

group velocities depend on the wave-vector as shown in figure 1.6.1.

B
0
 →

θ = 0

θ = π /2

θ = π

θ = 3π /2

V
A

Group Velocities (β<1)

 

 
Alfven
Fast
Slow

B
0
 →

θ = 0

θ = π /2

θ = π

θ = 3π /2

V
A

Phase Velocities (β<1)

 

 
Alfven
Fast
Slow

Figure 1.1: Wave velocity diagram for the three MHD wave modes. The left diagram,
(a), displays group velocity, (b), shows the wave mode phase velocities for the low
β case. The length of the radius from the origin to a point on the associated closed
curve is proportional to the wave vector.

1.6.2 Waves Modes of a Plasma Cylinder

In the previous section the ideal MHD wave modes in a uniform magnetised plasma

were introduced, namely the Alfvén wave and the slow and fast magnetoacoustic
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Figure 1.2: Model of a straight magnetic cylinder of radius a, with the parameters
of the internal and external plasma labelled.

waves. It is useful to model a more structured plasma such as the solar corona

which contains plasma that is filamented along the magnetic field, with characteris-

tic transverse spatial scales comparable to the wavelength of the waves of interest.

These structures can be modelled as a cylinder of plasma stretched along the mag-

netic field, which is denser than its surroundings. Wave modes of a straight magnetic

cylinder have been investigated analytically by [Zaitsev and Stepanov, 1982, Edwin

and Roberts, 1983] and this discussion follows their work. A simple model for a

straight cylinder with a radius of a is shown in figure 1.3. To start with a stationary

state is taken with a total pressure balance across the boundary, using the penulti-

mate equation of (1.44) it is assumed that across the tube the internal (subscript 0)

pressures balance the external (subscript e). Such that:

p0 +
B2

0

2µ0
= pe +

B2
e

2µ0
. (1.77)

It is useful at this stage to define two characteristic speeds, the tube speed, cT :

cT =
csvA0

(c2s + v2A0)
1

2

, (1.78)

and the kink mode speed, ck:

ck =

(

ρ0v
2
A0 + ρev

2
Ae

ρ0 + ρe

)
1

2

. (1.79)

Linear perturbations about this equilibrium lead to two equations in cylindrical

co-ordinates (x, y, z) → (r, θ, z), [Edwin and Roberts, 1983]:
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∂2

∂t2

(

∂2

∂t2
− (c2s0 + v2A0)∇2

)

∆+ c2s0v
2
A0

∂2

∂z2
∇2∆ = 0, (1.80)

(

∂2

∂t2
− v2A0

∂2

∂z2

)

Γ = 0, (1.81)

with

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
, (1.82)

and

∆ = ∇ · v, (1.83)

Γ = ẑ · (∇∧ v), (1.84)

Following [Edwin and Roberts, 1983] we take a perturbation ∆ such that:

∆ = p̃T (r)exp(iωt+ imθ + kz). (1.85)

Then equations (1.80) and (1.81) imply that p̃T (r) satisfies the Bessel equation:

d2p̃T
dr2

+
1

r

dp̃T
dr

−
(

m2
0 +

m2

r2

)

p̃T = 0, (1.86)

where

m2
0 =

(k2c2s0 − ω2)(k2v2A0 − ω2)

(c2s0 + v2A0)(k
2c2T − ω2)

, (1.87)

where am0 is the radial wavenumber which depends on the frequency of the wave.

Equation (1.86) is a Bessel equation. For a solution bounded on the axis of the

cylinder (r = 0):

p̃T = A0

{

Im(m0r) m2
0 > 0

Jm(n0r) n2
0 = −m2

0 > 0
(1.88)

for r < a, the solutions of interest are those trapped by the wave guide, so:

p̃T = A1Km(mer), (1.89)

where A0 is a constant and Jm is the Bessel function of the first kind. The functions

Im andKm are the modified Bessel functions of the first and second kind respectively,

see [Abramowitz and Stegun, 1967]. The expression me is the same as m0 but with

external quantities. The dispersion relations follow from the continuity of the radial
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displacement component and the total pressure across the cylinder boundary:

ρ0(k
2v2A0 − ω2)me

K ′
m(mea)

Km(mea)
= ρe(k

2v2Ae − ω2)m0
I ′m(m0a)

Im(m0a)
, (1.90)

for surface waves (m2
0 > 0), and

ρ0(k
2v2A0 − ω2)me

K ′
m(mea)

Km(mea)
= ρe(k

2v2Ae − ω2)n0
J ′
m(n0a)

Jm(n0a)
, (1.91)

for body waves. A surface wave propagates along the interface between the internal

and external plasmas while the body wave exists throughout the plasma cylinder

structure. The dash denotes a derivative of a Bessel function. For coronal conditions,

vAe, vA0 > cse,cs0 and there are no surface modes, only body modes. Modes with

m = 0 are cylindrically symmetric modes called sausage modes, modes with m = 1

are called kink modes (see Figure 1.3) and modes with m > 1 are called fluting or

ballooning modes.

Figure 1.3: The profiles of plasma cylinder perturbations for different modes. Left:
Symmetric (sausage) and Right: Antisymmetric (kink) perturbations of a straight
cylinder.

1.7 High Frequency Plasma waves

In the region where wave frequencies approach the values (ωpe, ωce, ωpi, ωci) the

combination of electron and ion dynamics become important for wave propagation.

One possibility is to relax the one-fluid model and analyse waves in a two component

plasma. First we consider a cold unmagnetised electron plasma where the ions form

a neutralising background. The derivations and equations used in this section can be

found in any plasma waves text book, i.e. [Stix, 1992, Swanson, 2012, Baumjohann

and Treumann, 2012] and many others.
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1.7.1 Waves in unmagnetised plasmas

Figure 1.4: Schematic diagram showing electron oscillations around the ion back-
ground, (image from [Tesla, 2013]).

Waves in this regime are easy to understand when the motion of electrons is

compared to that of the ions. The far less massive electrons will move fast enough to

neutralise any fields produced, thus the ions can be neglected to the background and

the electrons can be seen to oscillate around this neutral equilibrium with a frequency

ωpe from (1.1), demonstrated in figure 1.4. This is somewhat artificially represented

since the electron distribution is smeared in velocity space. Thus thermal effects

need to be accounted with the introduction of the adiabatic variation of the electron

thermal pressure δpe = γekBTeδne, such that the new wave frequency resides at:

ω2
l = ω2

pe + k2γev
2
the, (1.92)

with vthe being the electron thermal velocity defined as vthe = (kBTe/me)
1

2 . This is

the so-called Bohm-Gross Dispersion Relation, [Bittencourt, 2013] which describes

the propagation of waves that are commonly known as Langmuir waves.

At lower frequencies the ion behaviour comes into play, a similar oscillation

occurs for the ion species. These are known as ion acoustic waves and will not be

discussed here. The dispersion plot for this plasma system is shown in figure 1.5.

Electromagnetic Waves

The general dispersion relation (1.64) also includes a description of purely electro-

static disturbances which propagate as wave modes in the absence of an external

magnetic field. A large number of these waves can propagate in a magnetised plasma
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Figure 1.5: Dispersion relations for electromagnetic waves, Langmuir waves, and
ion-acoustic waves in an unmagnetised plasma. In the dotted regions the waves
are strongly damped, according to kinetic theory, figure from [Baumjohann and
Treumann, 2012].

which are described in the subsequent sections. Here we consider the simple case

of a electromagnetic wave propagating through an isotropic unmagnetised plasma.

The dispersion relation for these waves is given without derivation:

ω2 = ω2
pe + c2k2. (1.93)

The key difference to free space waves shows itself at frequencies below the elec-

tron plasma wave frequency as no real solutions exist for k. The electron plasma

frequency acts as a cut-off frequency for the ordinary electromagnetic mode.

1.7.2 High Frequency Waves in a Magnetised Plasma

The addition of a magnetic field introduces a directionality to the system which

interacts with the two species in opposing directions, see figure 1.6. This anisotropy

affects wave propagation and modifies dispersion relations.

The dispersion relations in this case can be obtained from the general dis-

persion relation (1.64). The results of these calculations will be shown without

derivation. Full calculations can be found in [Stix, 1992, Swanson, 2012, Baumjo-

hann and Treumann, 2012]. Here we restrict ourselves to the consideration of waves

propagating along and across the field only.
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Figure 1.6: Relative electron and ion gyration directions and radii (not to scale).

Parallel Propagation

The presence of the magnetic field introduces new modes and the modification of

waves known to exist in a vacuum. In particular, in the case of parallel propaga-

tion the right-hand (R) and left-hand (L) circularly polarised electromagnetic wave

modes exhibit different dispersion. Thus they have different cut-off frequencies and

group and phase velocities. Accompanying these there is also the more dispersive

whistler wave branch that does not exist in a vacuum. The full dispersion relation

is shown in figure 1.7.

Perpendicular Propagation

Following a similar path to that for parallel propagation the dispersion relation

can be found for perpendicular propagation. The first mode to be introduced is

the ordinary mode (O) already described for an unmagnetised plasma in section

1.7.1. It is called the ordinary mode because has the same dispersion relation as an

electromagnetic wave in a plasma without the magnetic field. The second branch of

the dispersion relation is called the extraordinary mode (X). See figure 1.7.

1.7.3 Summary of Plasma Wave Modes

Wave modes can be categorised by whether they are electromagnetic (magnetic

field perturbations present) or electrostatic (no perturbations of the magnetic field).

The modes can then be further classified by their oscillation species such as ions or

electrons. The summary is shown in Table 1.1.

1.8 Non-Thermal Distribution Functions

In a collisionless plasma the equilibrium particle distribution is usually taken to be

a Maxwellian (as shown below) as this is an exact, time independent solution to
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Figure 1.7: Top: The dispersion curves for parallel propagation are shown on the
ωk-plane. Bottom: The dispersion curves for perpendicular propagation are shown
on the ωk-plane, from [Baumjohann and Treumann, 2012].

the Vlasov equation, (1.16). When a distribution deviates from this the plasma

reacts to produce instabilities and generate waves as an attempt to stabilise the

distribution back to the thermal equilibrium. The study of this evolution can reveal

details about the plasma medium and the wave modes that can exist within it.

1.8.1 Growth Rate

The solution to a wave’s dispersion relation, as those listed in table 1.1, can carry

an imaginary component, such that ω(k) = ωr(k) + iγ(ωr,k). It is clear that the

real part of the solution ωr forms the oscillatory part of the wave function. The
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Plasma Waves
EM character Species Conditions Dispersion Relation Wave Name

Electrostatic

Electrons
B0 = 0 or k ‖ B0 ω2 = ω2

pe + 3k2v2th Langmuir
k ⊥ B0 ω2 = ω2

pe + ω2
ce = ω2

uh Upper Hybrid

Ions
B0 = 0 or k ‖ B0 ω2 = k2c2s Ion Acoustic
k ⊥ B0 (nearly) ω2 = ω2

ci + k2c2s Ion Cyclotron
k ⊥ B0 (exactly) ω2 = [(ωciωce)

−1 + ω−2
pi ]

−1 Lower Hybrid

Electromagnetic

Electrons

B0 = 0 ω2 = ω2
pe + k2c2 Electromagnetic

k ⊥ B0, E1 ‖ B0
c2k2

ω2 = 1− ω2

pe

ω2 Ordinary (O)

k ⊥ B0, E1 ⊥ B0
c2k2

ω2 = 1− ω2

pe

ω2

ω2
−ω2

pe

ω2
−ω2

uh

Extraordinary (X)

k ‖ B0 (right circ. pol.) c2k2

ω2 = 1
ω2

pe/ω
2

1−(ωce/ω) Right (R) (Whistler)

k ‖ B0 (left circ. pol.) c2k2

ω2 = 1
ω2

pe/ω
2

1+(ωce/ω) Left (L)

Ions
B0 = 0 None
k ‖ B0 ω2 = k2v2A Alfvén

k oblique to B0
ω2

k2 = c2
c2s+v2

A

c2+v2

A

Magnetosonic

Table 1.1: A summary of plasma wave modes classified by magnetic field dependency
and propagation direction. Key symbols: ω - wave frequency, k - wave number, c
- speed of light, ωpe - electron plasma frequency (1.1), ωpi - ion plasma frequency
(1.1), ωce - electron cyclotron frequency (1.2), ωci - ion cyclotron frequency (1.2),
ωUH - upper hybrid frequency, cs - sound speed (1.70) and vA is the Alfvén speed
(1.72). Table adapted from [Swanson, 2003].

parameter γ defines whether the wave’s amplitude will grow or decay:

A = exp(ik · x− iωt) = exp(ik · x− iωrt)exp(γt). (1.94)

Thus if γ < 0 the wave amplitude decreases with time and the wave is said to

be ‘damped’, while for γ > 0 the amplitude grows exponentially in time and we

encounter a linear instability. In this case γ is called the growth rate for the corre-

sponding eigenmode. Note the instability can only arise if there is a source of free

energy which can feed the growing waves, if not it is considered a spurious solution

which violates energy conservation.

When the growth rate becomes greater than the wave frequency, γ > ω the

perturbations have no time to preform a single oscillation during one wave period.

In doing so the wave concept becomes obsolete.

1.8.2 Landau Damping

Consider a one dimensional perturbation in a plasma with B = 0. The unperturbed

distribution function f = f0(v) where f0 is the equilibrium distribution usually the
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Maxwellian distribution, a solution to the Vlasov equation (1.16):

f0(v) = n0

(

me

2πkBTe

)

exp

{

− mv2

2kbTe

}

, (1.95)

there is no time or spatial dependency for the background solution. If a perturbation

is then applied such that:

f(r,v, t) = f0(v) + f1(r,v, t), (1.96)

then, under the assumption that f1 ≪ f0, substitution into the Vlasov equation

(1.16) yields:

∂f1
∂t

+ vx
∂f1
∂x

− e

m
E1

∂f0
∂vx

= 0, (1.97)

for the one dimensional case, with E1 being the electric field induced by the per-

turbation. If we let the perturbation take the harmonic form of Langmuir waves

outlined in section 1.7.1 then f1 ∝ exp(ikx− iωt) then (1.97) becomes:

− iωf1 + ikvxf1 =
e

m
E1

∂f0
∂vx

, (1.98)

which rearranged gives an expression for f1:

f1 =
ieE1

m

∂f0
∂vx

1

ω − kvx
. (1.99)

Using Maxwell’s equations (1.7-1.10), ε0∇ · E1 = −en1, where n1 is the perturbed

electric charge density which is dependent on the distribution function:

n1 =

∫∫∫

f1dv, (1.100)

such that combined:

ε0∇ ·E1 = −e

∫∫∫

f1dv, (1.101)

we can eliminate f1 using (1.99) and assuming E1 is also harmonic such that ∇·E1 →
ikE1:

1 = − e2

kmε0

∫∫∫

∂f0/∂vx
ω − kvx

dv, (1.102)

for simplicity we now replace f0 with a normalised distribution F = f0/n0 such

that:
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1 = −
ω2
pe

k

∫ +∞

−∞

∂F/∂vx
ω − kvx

dvx, (1.103)

with the definition of ωpe being used, (1.1). The triple integral becomes a single

integral if we constrain the system to one dimension. If we now take F to be the

Maxwellian:

F =
1√
πvTe

exp

(

− v2x
v2Te

)

, (1.104)

with vTe as the thermal electron speed, then without derivation, [Baumjohann and

Treumann, 2012]:

1−
ω2
pe

ω2
−

3k2v2Teω
2
pe

2ω4
− iπ

ω2
pe

k2
∂F

∂vx
≈ 0. (1.105)

This equation forms the dispersion relation for Langmuir waves (see discussion in

Figure 1.8: Maxwellian distribution for a one dimensional plasma. Particles slower
than the vph absorb energy from the waves. Particles faster lose energy to the wave.

section 1.7.1). The first two terms describe plasma oscillations at frequency ωpe. The

second, propagation of waves at around the sound speed. The third term describes

the kinetic processes, as an imaginary component it can either define growth (if

positive) or absorption (if negative) in the system. In general, ω = Re(ω)+ iIm(ω).

According to (1.105) the plasma waves either experience a decay or an undergo

an instability around the wave phase speed in the velocity space. The sign of the

imaginary part is defined by the sign of the derivative as:
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Im(ω) ∝ ∂F

∂vx
, (1.106)

as all other parameters are either positive or squares. In the case of the Maxwellian

the derivative is always negative, as shown in figure 1.8, such that the Langmuir

waves are always damped. This is known as Landau damping. The plasma waves

experience decay due to the presence of “resonant particles” with velocities near the

phase speed of the wave. Particles with v < ω/k gain energy from the wave whereas

particles with v > ω/k transmit energy to the wave as shown in figure 1.8. Due to

the nature of the Maxwellian there are always more particles with v < ω/k thus the

net energy transfer is from the wave to the particles, thus the wave is damped.

1.8.3 Instabilities and Resonances.

Generation of instability or resonances is a general way of redistributing energy

which has accumulated in a non-equilibrium state. In general when a particle dis-

tribution function is driven to a non-thermal (i.e. non-Maxwellian) then the system

will endeavour to re-stabilise using these mechanisms. In plasma physics, sources of

free energy interact with the eigenmodes of the plasma to grow or damp waves.

Quasilinear Theory and the Resonance Instabilities

So far we have outlined the existence of a variety of wave modes within the plasma

medium. The work carried out in this thesis also requires an understanding of the

phenomena involved in wave particle interaction. Quasilinear theory provides an

analytical description of the interaction between waves and particles in a collisionless

plasma, a outline of quasilinear theory can be found in [Kennel and Engelmann,

1966, Stix, 1992] and the references therein. The common key assumptions held in

these texts are outlined as:

• Fluctuation amplitudes are sufficiently small that they can be described as the

superposition of linear waves.

• A particles orbit can be approximated as an unperturbed helix aligned with

the background field.

• Growth or damp rates of the waves are much smaller than the linear frequen-

cies.

• The plasma is treated as infinite and homogeneous.
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This theoretical construct allows the interaction between waves and particles to be

explicitly derived in a plasma with a constant homogeneous background magnetic

field. These interactions have been shown to manipulate the distribution function

through an energy exchange between particles and the plasma wave. In particular

it has been shown that a distribution function containing a non thermal beam can

in fact disrupt particular wave modes. These non-linear distributions have been

shown to modify dispersion relations while simultaneously existing as a source of

free energy which in turn can grow electromagnetic instabilities, [Montgomery et al.,

1976, Gary, 1993]. Non-linear wave-wave coupling is disregarded in this work as it is

essentially encompassed in assumptions made of the wave spectrum present, however

it has been shown to be very important in the evolution of a plasma, [Galeev et al.,

1965]. As we use quasi-linear theory in a qualitative sense it is less important to

include these non-linear effects but more understand their impact if further analysis

was required.

Figure 1.9: Schematic diagram to illustrate the direction of diffusion for a cold ion
beam. Blue denotes the proton bulk while red the energetic alpha beam which has
been used as a proxy for a proton beam. The diffusion paths are shown around the
position of the parallel phase speed vph. The beam speed of a particle in the proton
frame Ui is shown by the green dash iso-contours. a) Ui < vph and b) Ui > vph.
Similarly (c-e) show the diffusion of particles in velocity space for the cyclotron-
resonance due to the presence of an alpha particle beam. c) Ui < vph, d) Ui > vph,
e) vph < 0. (Image from [Verscharen and Chandran, 2013]).

Quasi-linear theory is built upon the Vlasov equation, (1.16) which describes

the evolution of the distribution function. Thus, under the right assumptions, it is

31



able to model the interaction between waves and particle distributions in a useful

manner. The analytical process used to describe quasilinear theory is beyond the

scope of this text as we will only present the relevant results, however detailed deriva-

tions can be found in [Verscharen and Chandran, 2013, Kennel and Engelmann,

1966] and the references contained therein. In a very qualitative sense quasi-linear

theory separates the variables f , E and B into two parts: the space independent

components and small, rapidly fluctuating parts due to waves. A Fourier analysis

approach is then used on the components separately, the resulting equations pre-

dict that waves cause particles to diffuse in velocity space. The second consequence

of the analysis manifests itself as a resonance condition due to the presence of a

delta function within the quasi-linear diffusion equation of the particle distribution

function:

ωkr − k‖v‖ = nωcs, (1.107)

where n is any integer. This is called the Landau resonance condition when n = 0

and the cyclotron-resonance condition when n 6= 0. Note, because the Landau

resonance only occurs when vph = v‖, diffusion of particles in velocity space only

occurs in v‖, not v⊥.

We can demonstrate the impact of the resonance condition using the very

simplistic case a particle within a non thermal beam and its projection onto the

(v‖, v⊥) plane. In the situation we assume the interaction with the wave involves

no energy exchange and the kinetic energy of the particle is conserved. Its position

therefore sits on a circular curve with a radius proportional to its kinetic energy

in the (v‖, v⊥) plane. Thus changes to the particle’s parallel velocity through the

resonance condition will move it along this curve towards the perpendicular axis,

this is represented by the green dashed curve in figure 1.9. This in essence models

a transfer of energy from the parallel to perpendicular direction. It is important to

note that [Verscharen and Chandran, 2013] was tailored to alpha particle beams,

shown by 1.9. In our research we do not consider alpha beams, however the analysis

presented is transferable to proton beams.

If we now relax the assumption of conserved kinetic energy and allow particles

to gain or lose energy to the interacting wave mode then these circular curves will

no longer exhibit constant radii. Their trajectory is now defined by:

(v‖ − vph)
2 + v2⊥ = constant, (1.108)
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where vph = ωkr/k‖ is the parallel phase velocity of the waves. Some particle

diffusion paths are shown in figure 1.9 for various values of vph. The consideration of

one particle can be extended to a section of the distribution function which interacts

with a range of frequencies contained within a broad peak in the wave spectrum.

The result, shown in figure 1.9 c,d,e is that the cyclotron resonant wave-particle

interactions cause the beam particles to lose energy if 0 < vph < Ui.

The Beam Instability

Figure 1.10: A bi-Maxwellian distribution is used to describe a plasma with a beam
or a two stream plasma system. The positive gradient in the distribution gives rise
to the beam instability. The red region contains particles with v < vph which stand
to gain energy from the wave while the blue region contains particles with v > vph
which stand to lose energy.

Following Section 1.8.2 we consider the introduction of a ‘beam’ into the dis-

tribution function. This can be considered as a secondary Maxwellian peak centred

on the average beam velocity, figure 1.10. The positive gradient produced by the

second peak in figure 1.10 leads to Im(ω) becoming positive locally. Therefore the

Langmuir waves with the associated values of k are grown at a rate, t0 = [Im(ω)]−1.

The dispersion relation of the beam system can be constructed using the fact

that the dielectric tensor, (1.63), can be found as the sum of the contributions of

the plasma components [Treumann and Baumjohann, 1997]. Seeing as the system

can be thought of as two isotropic plasmas coexisting we get:

ǫ(ω,k) = 1−
ω2
p0

ω2
−

ω2
pb

(ω − k · vb)2
= 0. (1.109)
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The first term on the right hand side is the background plasma which in the absence

of the beam would yield Langmuir oscillations. The second term is the same struc-

ture except the background plasma frequency is replaced with the Doppler-shifted

beam frequency (ω − k · vb), and the plasma frequency is replaced with the beam

plasma frequency ω2
pb = nbe

2/ε0me from (1.1). If we neglect the background plasma

by setting ωp0 = 0 the dispersion relation can be solved yielding, [Treumann and

Baumjohann, 1997]:

ω = k · vb ± ωpb. (1.110)

The two waves described by this relation are known as beam modes. They exist only

in the presence of a beam.

The Firehose Instability

Figure 1.11: The image shows the effect of the ion-cyclotron and firehose instabilities
on a long element of plasma. Colour contours encode the background magnetic
fluctuations generated by ion-cyclotron (left) and fire-hose (right) instabilities. The
density of protons at the current sheet at the same simulation time is reported on the
superimposed black solid line contour. The arrows show the local direction of the
resulting contribution to the electric field component Ex generated by the magnetic
fluctuations in the figure. Adapted from [Matteini et al., 2013].

In section 1.6 we showed that plasmas can support a variety of low frequency/

large scale Alfvén and magnetosonic waves. We now focus on a mechanism which

can be used to produce these wave modes, the firehose instability. It can arise in a

plasma when the plasma pressure becomes anisotropic:

34



P = p⊥I+ (p‖ − p⊥)
BB

B2
(with p‖ 6= p⊥). (1.111)

Under certain conditions a magnetic flux tube containing the anisotropic plasma can

be stimulated to preform global transverse oscillations such as the oscillations seen

in a firehose when the water is turned on and allowed to move freely. The nature of

the firehose instability is shown in figure 1.11.

The physical mechanism of the firehose instability can be understood as

follows, from the derivation in [Treumann and Baumjohann, 1997]. Imagine a mag-

netic flux tube and let the plasma flow along the magnetic field at a parallel velocity,

v‖. If the flux tube is slightly bent the plasma flow will exert a centrifugal force,

FR = min0v
2
th‖/R, on the flux tube of curvature radius, R.

The centrifugal force is directed outwards and tends to increase the amplitude

of the initial bending. The thermal pressure force in the plane perpendicular to

the tube as well as the magnetic tension forces resist a full kink. Requiring force

equilibrium in the tube implies:

min0v
2
th‖

R
=

p⊥
R

+
B2

0

µ0R
. (1.112)

The term on the left hand side is simply the thermal pressure p‖ over the radius of

curvature R. So the condition for the firehose instability simplifies to:

p‖ > p⊥ +B2
0/µ0. (1.113)

The instability excites or amplifies waves in the parallel direction, a oblique firehose

mode does exist for waves travelling in the oblique direction however for the pur-

poses of this thesis the parallel mode will sufficiently represent both. For parallel

propagation there are two solutions, one is the parallel propagating ion acoustic

wave detailed in section 1.7.3. The other solution induces instability in the flux

tubes creating transverse oscillations resulting in parallel propagating Alfvén waves.

The firehose threshold is correctly described in CGL theory.

The Mirror Instability

Themirror instability evolves at nearly perpendicular propagation of waves. Though

it is a macroscopic instability it involves the motion on the particle level, therefore

it is difficult to treat using MHD. One therefore requires kinetic methods in the very

low frequency limit. The mirror mode works to excite or amplify obliquely propa-

gating slow magnetosonic waves in the low frequency limit. The mirror mode grows
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Figure 1.12: The left shows magnetic field and plasma density within mirror mode
waves. The right shows the satellite measurements across the mirror-unstable rela-
tion region, from [Treumann and Baumjohann, 1997].

if the free energy of the pressure anisotropy is sufficiently large. For this growth

the instability requires that the perpendicular pressure is larger than the parallel

pressure. Phenomenologically it can be understood as particles stuck in magnetic

configurations. In this bottle the particles perform a mirror motion between the

knots of the wave. If then a whole region consists of these particle streams then

to an observing spacecraft pulsations can be seen, see figure 1.12. The instability

condition, [Treumann and Baumjohann, 1997] is given as a function of plasma β

defined in section 1.3.3:

∑

s

βs‖ > 2 +
∑

s

βs⊥. (1.114)

If this condition is fulfilled the mirror instability sets engages in an anisotropic

plasma. The mirror instability condition cannot be satisfied simultaneously with the

firehose therefore the two instabilities are mutually exclusive.
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Chapter 2

Space Plasmas

2.1 Introduction

In this chapter we introduce several space plasma environments. We intend to

provide the reader with a background understanding of the different environments

we have explored in our research. We also aim to exhibit some average parameters

for each arena to give a quantitative feel for the strongly contrasting natural plasma

laboratories.

2.2 The Solar Wind

The solar wind is a continuous flow of plasma emitted by the Sun at speeds of ≈ 300

- 1400 kms−1. This outflow is due to the supersonic expansion of open magnetic

field configurations within the solar corona, [Meyer-Vernet, 2007].

The solar wind interacts with the Earth’s magnetic field to produce the bow

shock and magnetopause shown in figure 2.1 discussed in more detail in section 2.3.2.

The plasma parameters change drastically as the observer progresses from the solar

wind through the bow shock and into the magneto-sheath. The composition of the

solar wind plasma is predominantly electrons and protons but does contain 5 %

fully ionised Helium. Its key properties are given in table 2.1, [Baumjohann and

Treumann, 2012, Chashei et al., 2005, Mullan and Smith, 2006]:

In [Parker, 1958], Parker proposes the ingenious idea that the open corona

(see section 2.4.3) could not be in a hydrostatic equilibrium and as a result derived

a dynamic solution that includes the continuous expansion of the solar wind, with a

vanishing pressure at large distances. The solution for the solar radial velocity, v(r)

is stated without derivation, which can be found in [Aschwanden, 2006]:
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Figure 2.1: The variability of solar wind speed with inclination from the ecliptic
plane, [NASA, 2014a].

Parameter Value

Electron or ion number density n ≈ 5 cm−3

Debye wavelength λD ≈ 10 m

Plasma electron frequency wpe 104 < ωpe < 105 Hz

Plasma β 0.1 < β < 10

Electron temperature Te ≈ 105 oK

Acoustic ion sound speed cs ≈100 kms−1

Alfvén wave speed at 1 AU vA ≥100 kms−1

Table 2.1: Key physical parameters within the solar wind, Baumjohann and
Treumann [2012].

v2

c2s
− ln

(

v2

c2s

)

= 4ln

(

r

rc

)

+ 4
rc
r
+ C (2.1)

where C is a constant and rc = g⊙R2
⊙/2c

2
s which is the radius at which the wind

speed equals the sound speed, v = cs. Acceptable solar wind solutions are that which

are subsonic at the sun and pass through the critical point (v = cs thus requiring

C = −3), although these characterise the observed solar wind approximately not

exactly. The solutions have been shown in figure 2.2 with type V solution as the
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Figure 2.2: The Parker solar wind model solutions, values are normalised to the
critical radius rc and sound speed cs. Types I and II are double valued proving to
be non-physical. Types III has supersonic speeds at the Sun which are not observed.
Types IV is excluded due to the infinite densities predicted in the heliosphere. Hence
we are left with the unique solution of type V which passes through the critical point
(r = rc , v = cs ) and is given by C = −3. This is known as the ‘solar wind’ solution
[Parker, 1958].

accepted simplest solar wind model.

2.3 Collisionless Shocks

2.3.1 What is a Shock Wave?

A shock wave has similar properties to any other wave, a propagating disturbance

that carries energy. It differs from a regular wave, which has a smooth variation

in physical quantities, as a shock is characterised by an abrupt, nearly discontinu-

ous change in the medium parameters before and after the wave front [Anderson,

2010]. Critically, a shock wave can travel much faster than a regular travelling wave,

which propagates at the sound speed (or magnetosonic speed for a magnetoacous-

tic wave). The speeds of shock waves are characterised by their respective Mach
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number, defined as:

Ms,ms =
v

cs,ms
(2.2)

where cs and cms are the sound and fast magnetosonic speeds defined by (1.70) and

(1.73) respectively.

Shocks are a thin layer, approximately the size of the mean free path of the

medium. Thus shocks, locally, can be thought of as a two dimensional plane in

a three dimensional system. In the case of acoustic perturbation, if an object or

disturbance moves faster than the respective sound speed in the medium then there

is no transfer of information between the wave front and the upstream fluid. This

results in the thin layer transition between the upstream and downstream regions

of the shock.

Oblique and Bow Shocks

An oblique shock wave is a shock wave which forms at an angle to the incident flow

direction. It occurs for example, when a supersonic flow encounters an object which

deflects the flow into itself as shown in the left of figure 2.3, [Anderson, 2010]

A bow shock wave forms when a blunt object is in a supersonic or super-

magnetosonic flow or is moving supersonically in a fluid. A stationary shock wave

(relative to the object) is formed at the front surface. Unlike an oblique shock

the bow shock is not necessarily attached to the body. When the deflection needed

exceeds the maximum achievable deflection for an oblique attached shock, the shock

detaches from the body (see the right of figure 2.3). This usually occurs in high Mach

numbers shocks.

2.3.2 Interplanetary Shocks

One of the most prevalent phenomena in interplanetary space plasmas are collision-

less shock waves. The most famous being the Earth’s bow shock. A shock like this

forms due to its high magnetosonic Mach number, Mms ≈ 8 that characterises the

relative speed of the Earth and solar wind. The bow shock is a fast magnetosonic

shock, i.e. it falls in the fast magnetosonic family. The incoming solar wind impacts

the Earth’s magnetic field faster than the information can be conveyed through

magnetosonic waves. Therefore a discontinuity forms between the two regions. The

shock exists only over a limited region of space in front of the Earth, the size of this

region depends on the angle between the normal of the bow shock, n, the interplan-

etary magnetic field direction, B and the wind velocity component normal to the
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Figure 2.3: Left: A small scale X-15 missile placed in supersonic flow to produce an
oblique shock wave at the nose of the model, shown by the straight lines directed
at an angle to the nose. (Image from [NASA, 2014g]). Right: photograph of bow
shock waves around a blunt object, displayed as the black curve ahead of the object.
(Image from [NASA, 2014f]).

shock. The plasma is slowed at the shock and a substantial portion of its kinetic

energy is converted to thermal energy. The geometry of the bow shock is shown in

figure 2.4.

2.3.3 Parallel and Perpendicular Shocks

Plasma shocks can take many forms, however for the purpose of this thesis we will

restrict to parallel and perpendicular collisionless shocks. First to address what is

meant by collisionless: when a shock wave transitions from pre to post shock on

a length scale smaller than the average particle collisional mean free path, usually

the ion gyroradius (1.3) it can be considered as collisionless. The reason such struc-

tures exist is because particles interact with each other through the emission and

absorption of collective excitations of plasma waves, as detailed in section 1.7.3, not

through Coulomb collisions.

Another differentiation between regions of the bow shock can be realised from

figures 2.5 and 2.6. Regions where the angle, θBn, between the shock normal and

magnetic field is zero are classified as parallel shocks. Similarly if θBn = 90◦ then

the shock is known as a perpendicular shock. The prefix quasi is usally applied to a

shock if the shock angle does not deviate too far from these specified geometries.

The physics of these two categories varies drastically. In a truly perpendicular

shock the wind and shock regions are only connected by a small diffuse region
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Figure 2.4: Schematic diagram of the interaction between the high speed solar wind
and the Earth’s magnetic field. The white arrows indicate the direction of plasma
flow while the grey arrows show the movement of charges along the plasma boundary
layer. Finally the red arrows indicate the direction of charged particles along the
plasma sheet boundary layer, [Reiff, 1999].

between field lines on the gyro-scale. On the other hand the pre-shock and post-

shock regions in a parallel shock are magnetically connected. This allows a reflection

of charge carriers upstream. These newly formed beams can induce instabilities to

grow wave activity such as that defined in section 1.8.3. This region of reflected

particles is known as a foreshock which proves to be a useful laboratory in studying

wave activity in space plasmas.

2.3.4 The Terrestrial Foreshock

The region of quasi parallel shock upstream of the bow shock is known as the fore-

shock. It is magnetically connected to the bow shock and permeated with upstream-

ing particles. The two dominant regions in the foreshock are the electron and ion

foreshocks where the respective species constitutes the majority of upstreaming par-

ticles. The electron foreshock is a narrow region which extends further into the solar

wind bounded by the field line tangential to the bow shock, see figure 2.7. The most

energetic electrons appear at the tangential point.

In this thesis our attention is solely restricted to the ion foreshock. In the

ion foreshock region ions are reflected from the shock front and propagate upstream.
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Figure 2.5: Schematic view of the terrestrial foreshock system. The solar wind
direction is shown from left to right. The bow shock is represented by the curved
purple line. Representative 2D particle velocity distributions are shown to give an
understanding of the large variation in distributions across the foreshock, [Eastwood
et al., 2005].

43



Figure 2.6: A kinetic simulation of the foreshock region where di refers to the cell
number in the X and Y directions. The magnetic field lines structure is overlaid in
white. The colour range is prescribed by the total ion temperature. Although bow
shock and foreshock temperatures are not negative in this simulation the scale was
shifted to provide improved contrast in the image, from [Karimabadi et al., 2014].
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Figure 2.7: Unstable ion beam effects in the foreshock region (left). Electron and
ion foreshock geometries (right). (Image from [Treumann and Baumjohann, 1997]).

This sets up conditions for the classic beam instability outlined in 1.8.3. The beam

is less dense than the solar wind ≈ 1% of the background. The right hand circularly

polarised wave also known as the R-mode (detailed in section 1.7.3) is the fastest

growing wave mode due to the nature of ion rotation. It causes large fluctuations in

the foreshock solar wind magnetic field. Figure 2.7 shows schematically what may

happen in the Earth’s ion foreshock.

2.4 Solar Atmosphere

2.4.1 The Sun

The Sun is our closest star and thus is the best starting point in plasma observations

in our Solar system. It hosts some of the most energetic and spectacular plasma

phenomena in our vicinity. Its proximity allows detailed observations to be carried

out while simultaneously gauging the impact of these events on the Earth. Solar

flares are some of the most powerful of these phenomena, they will be discussed in

more detail in section 2.5. The Sun is a main sequence star with spectral classifi-

cation G2, it has a mass of 2× 1030 kg, radius of 6.96 × 108 m and a luminosity of

3.83 × 1026 W. The radial structure the Sun and its atmosphere is shown in figure

2.8.

The Sun’s interior consists of a central core where the Sun’s energy is gener-

ated, radiation and convection zones where this energy is transported from the core

towards the upper layers, the photosphere and the atmosphere comprising of the

chromosphere, transition region and corona. Probing the solar interior is possible
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Figure 2.8: The solar structure. (Image from [Infactcollaborative, 2014]).

using helioseismology a technique outline in detail in [Gizon and Birch, 2005]. This

analysis is not necessary for our research domain we will instead focus on the solar

atmosphere.

2.4.2 The Photosphere and Chromosphere

The photosphere is a narrow layer that separates the convective zone of the solar

interior and the solar atmosphere. Between an average temperature of 4500 K and

6000 K it can be seen in the optical spectrum as the recognisable ‘yellow smooth

sun’ that we are accustomed to, see figure 2.9. It marks the point at which the

plasma becomes opaque in the white light band to observations. The photosphere is

composed of convection cells called granules each approximately 1000 km in diam-

eter. Hot plasma rises in regions which are in the centre of a granulation cell while

cooler plasma returns to the depths at the edges of each granule. A typical granule

has a lifespan of only about eight minutes, resulting in a continually shifting boiling

pattern. Super-granulation is observed in the chromosphere. Super granules grow
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Figure 2.9: Top: Image of the photosphere with a few sunspots present. Bottom:
An image of the chromosphere. These images were taken by the Solar Dynamics Ob-
servatory (SDO) on the 16/11/2014. The numbers identify different active regions
according to the NOAA classification scheme.
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up to 30, 000 km in diameter with lifespans of up to 24 hours. These details are too

fine to see on other stars.

The chromosphere is the base of the solar atmosphere extending to 2000 km.

Using spectral analysis it was found that temperatures in the chromosphere grow

with height from photospheric temperatures at its base up to 10, 000 - 20, 000 K at

its boundary with the corona, [Golub and Pasachoff, 2010]. Densities are seen to

decrease rapidly from 1015 cm−3 near the photosphere to 1011 cm−3. At these higher

temperatures hydrogen emits light that gives off a reddish colour (H-α emission) see

figure 2.9.

2.4.3 The Solar Corona

Figure 2.10: Large structured loop arcades demonstrate the inhomogeneity of the
solar corona. (Image from [NASA, 2014e]).

The solar corona is the high-temperature layer of the Sun’s outer atmosphere.

It is difficult to define, a simple stratified atmospheric model doesn’t capture the

prevalent inhomogeneous structures scattered throughout. The extent in which

these structures deviate the corona from a spherically symmetric model is shown in

figure 2.10. These loop like structures are believed to be magnetic flux tubes filled

with hot dense plasma that can be seen anchored in the photosphere and stretching
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out to the outer solar atmosphere. Therefore they too, in turn fail to provide a

distinct way of categorizing the corona. As it proves difficult to define using height

alone another parameter is involved, namely temperature. The photosphere is at

a temperature ≈ 5800 K. Using basic equations of state it can be shown that the

atmosphere is expected to drop in temperature with height however we observe a

sharp rise in temperature at ≈ 2000 km above the photosphere, see figure 2.11. This

small region is labelled the transition region. A rough definition of the corona is

taken as the domain above the transition region where the temperature has grown

to exceed 105 K. The physical mechanisms for this unexpected heating are unknown,

which constitute the coronal heating problem - one of the most popular directions

of the solar research, [Marsch, 2006]. This topic although intriguing will not be

covered in this work.

Figure 2.11: Variation of the temperature versus the height above the photosphere.
(Image from [Yang et al., 2009]).

The highly structured corona is a magnetically dominated, fully ionised

plasma which provides an ideal ground for wave generation and propagation studies.
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The observed coronal radiation is characterised by three components: the K-corona

where photospheric light is scattered by free electrons; the L-corona which is the

spectral line emission from highly ionised atoms or heavy elements and the F-corona

exists due to absorption lines of photospheric Fraunhofer spectrum caused by scat-

tering from dust, [Aschwanden, 2006].

2.4.4 Coronal Structures and Phenomena

Figure 2.12: A image showing the plethora of phenomena found in the solar corona,
including coronal loops, flares, coronal mass ejections, sunspots and prominences,
from [NASA, 2014b].

Regions of the corona can be categorised into three main phenotypes, the

first are active regions, closed magnetic field concentrations which are visible at

the photospheric level in optical wavelengths such as sunspots or other large-scale

magnetic concentrations , see figure 2.9. These regions are normally associated

with dynamic processes such as solar flares, see section 2.5. The second domain

are coronal holes, predominantly located in polar regions and usually consisting of

open field lines. They can appear darker due to their reduced density, as a result of

efficient plasma transport into the solar wind. The third and final category is the

quiet sun, regions of closed field lines that are not active regions or coronal holes.
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Coronal phenomena tend to be categorised by their morphological appearance in

observed images. Analogous to the variety of clouds the Earth’s atmosphere can

support, the solar corona exhibits an equally rich menagerie of structures presented

in figure 2.12. Reviews of observations and models for all the phenomena discussed

can be found in [Reale, 2010, Benz, 2008, Borrero and Ichimoto, 2011, Parenti, 2014].

Coronal Loops: The most basic and prevalent structure is the coronal

loop. It can be thought of as a magnetic flux tube which has both ends anchored in

the photosphere. A closed field line does not constitute a coronal loop, the closed

flux tube must be filled with plasma before it can be called a coronal loop. The

mechanism behind plasma filling and the stability of such structures remains an

active research area, [Aschwanden, 2006, Reale, 2010]. Loops can be seen forming

a loop arcade in figure 2.10. Regions of opposite magnetic polarity can sometimes

extend to large enough regions to form loop arcades, so that the dipoles can be

found aligned perpendicularly to a neutral line.

Flares: A flare process is associated with a rapid conversion of non-potential

magnetic energy into a rapid energy cascade. Such a release results in an accelera-

tion of non-thermal particles, heating of chromosphere/coronal plasmas and a vast

quantity of electromagnetic radiation. These processes release radiation on almost

all wavelengths: radio, white light, extreme ultra violet (EUV), soft X-rays, hard

X-rays and sometimes γ rays for very high energy flares. A more detailed summary

of solar flares is outlined in section 2.5.

Coronal Mass Ejections (CME’s): Large flares are generally accompa-

nied by eruptions of mass into interplanetary space. Flares and CME’s are two

aspects of a large scale magnetic energy release. The two terms have evolved his-

torically from different observational manifestations.

Filaments and Prominences: A filament is a region of plasma above a

magnetic neutral line that builds up gradually over a few days and may erupt during

a flare or CME process. Filaments and prominences are the same structures just

observed from different view points. Filaments are observed across the solar disk

whereas prominences are observed off limb.

2.5 A Solar Flare

In this section we discuss the most eminent physical model, in 2D, for flare excitation

and the associated electromagnetic energy releases mechanisms in the radio spec-

trum. There are a variety of flare models which can describe different phenomena

seen in flares. What distinguishes them are mainly the initial magnetic topologies.
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A comprehensive review on flare/CME models can be found in Shibata and Magara

[2011]. Although not all flares can be explained by a single model, it is constructive

to start with a standard model that fits most observations and has a well under-

stood theoretical foundation. The most widely accepted model for flares is the 2D

magnetic reconnection model that evolved from the concepts of [Carmichael, 1964,

Sturrock, 1966, Hirayama, 1974, Kopp and Pneuman, 1976], called the CSHKP

model according to the author initials as described in [Aschwanden, 2006].

2.5.1 The Standard 2D Model

Figure 2.13: The standard model according of a flare, initially a prominence rises (a),
this triggers magnetic reconnection beneath a prominence (b), shown in side view
(b’), and ends with the draining of chromospheric plasma from the flare loops (c).
‘LPS’ refers to Hα loops which tend to be the most dense regions, from [Hirayama,
1974].

[Hirayama, 1974] explains the preflare process as a rising prominence above the neu-

tral line in an active region. The prominence carries electric current parallel to the
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neutral line which induces a magnetic collapse on both sides of the current sheet

after the eruption of the prominence as seen in figure 2.13. The reconfiguration of

the magnetic topology converts the liberated magnetic energy into thermal. The

local coronal plasma is heated and non-thermal particles follow the magnetic field

lines and approach the denser layers of the solar atmosphere at the footpoints of

the guiding field lines. As a result of this impulsive heating, chromospheric plasma

evaporates and fills the newly reconnected field lines with over dense heated plasma,

which produce soft X-ray emitting flare loops. Fast shocks produced in the recon-

nection outflows collide with previously connected field lines to produce hot thermal

hard X-ray sources above the flare loop tops.

2.5.2 Quasi-Periodic Pulsations (QPP)

QPP are the quasi-periodic variation in time of flare generated emission in a variety

of different bands. Oscillatory variations in the radio and microwave emission from

flaring loops have been investigated for several decades, [Aschwanden, 1987]. They

are not truly harmonic in nature therefore they have been coined as quasi-periodic

pulsations (QPP). The periodicities range from a fraction of a second to several

minutes. Similar periodicities are often seen in hard X-rays, see [Nakariakov and

Melnikov, 2009b]. There is growing evidence that QPP are an intrinsic feature of

solar flares. A recent analysis of microwave emission generated in 12 similar single-

loop flares showed that 10 events (83%) had at least one or more significant spectral

peaks with periods from 5 to 60 s, [Kupriyanova et al., 2010]. Figure 2.14 shows

a typical QPP event in microwave emission. MHD coronal seismology uses MHD

disturbances as a diagnostic tool to investigate the solar corona. Hence flaring QPPs

are a very interesting subject in the coronal seismology community. The observed

periods of QPP coincide with the periods of coronal waves and oscillations that are

confidently interpreted in terms of the MHD wave theory. Thus, QPP may well be

the manifestation of coronal MHD oscillations.

2.5.3 Radio Emission from Flaring Regions

In parallel to QPP investigations there are renewed efforts into the radio emission in

solar flares mainly due to advances in radio observation instrumentation. According

to [Benz, 2008] most radio emission emanating from flare regions do not come from

the acceleration region itself but more the non-thermal electrons produced in the ac-

celeration processes which then travel along field lines. This radiation is categorised

into two subsets, coherent and incoherent.
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Figure 2.14: a) Integrated flux time profile of microwave emission at 17 GHz for the
solar flare of 08/05/1998, as recorded by NoRH. The dashed line is the background
emission profile obtained from the integrated flux signal which was smooth using a
20s window. b) The background subtracted signal. c) Microwave emission profiles at
9.4 GHz (dot-dashed line), 17 GHz (solid line) and 3.75 GHz (dotted line), acquired
by the Nobeyama Radiopolarimeters, from [Inglis et al., 2008].
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Figure 2.15: An example of a typical radio spectrogram of a solar flare. At low fre-
quencies the radio emission is predominantly type III bursts. The brightest feature
is a type V event. At high frequencies, synchrotron emission of mildly relativistic
electrons dominates. In the mid-frequency range from 800−2000 MHz, narrowband
spikes of the decimetric type can be seen, from [Benz, 2008, Figure 28].
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In incoherent emission, such as synchrotron emission, non-thermal electrons

radiate individually. When a wave organises electrons to emit in phase, the emission

becomes coherent. In particular, in some cases radio emission can result from the

coalescence of two plasma waves. Coherent emissions are typically produced at the

local plasma frequency, (1.1), electron gyrofrequency, (1.2), upper hybrid frequency,

(ω2
uh = ω2

pe + ω2
ce) and their higher harmonics. The plasma frequency, being the

cut-off frequency, is the lowest frequency observable directly from outside the solar

atmosphere. It is common for these phenomena to produce emission to frequencies

high enough to be categorised as microwave. The large variety of flare related

radio emissions may be grasped from figure 2.15. It is important to distinguish the

emission proccesses as they refer to widely different physical mechanisms. A brief

overview of some of the radio emissions are outlined in table 2.2, however we will

not go into detailed explanations in this thesis. Instead we focus more on the impact

of MHD perturbations on the radio emission mechanisms.

Radio Burst Fine Structure

Radio bursts are short lived radio emission usually accompanied with flare activity.

The first spectral observations of the large type IV radio bursts revealed a rich

variety of fine structures within the radio emission, in particular, a modulation of

the continuum emission in the form of narrow stripes in emission and absorption.

Stripes in emission and absorption against the continuum background of

solar type IV radio bursts in the meter and decimeter wave ranges are traditionally

subdivided into two kinds: zebra pattern (ZP) and fiber bursts (FB), [Kuijpers,

1980, Slottje, 1980]. Their respective parameters are outlined in table 2.5.3. In this

thesis we will solely focus on ZP structures.

2.5.4 The Zebra Pattern (ZP)

Zebra pattern structures, see figures 2.16 & 2.17, have been observed since the early

seventies [Slottje, 1971] yet we are still undecided on their generation mechanism.

What is clear is that they are becoming an increasingly revealing tool in the study

of flaring loops in the corona. Advances in radio telescopes such as the new Chinese

Spectral Radio-Heliograph (CSRH) will allow not only high temporal but also some

spatial resolution. If ZP structure can be fully understood then it may become a

viable probe into the coronal magnetic field.
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Table 2.2: Table of radio burst parameters taken from [IPS, 2014].
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Figure 2.16: A sample dynamic spectrogram exhibiting a ZP structure from the
event of 21/04/2002 at 02:00:43-02:01:03 UT, from [Chernov et al., 2005].

58



Figure 2.17: An example of a large stripe number ZP radio emission. The highly
polarised ZP was observed by the Huairou radio observatory near Beijing.

Figure 2.18: Proposed extended source of the double plasma resonance emission
mechanism, from [Winglee and Dulk, 1986].
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Observed characteristics of ZP and FB
Zebra patterns:
Frequency extent ≤ 3.8 GHz
Number of consecutive stripes 5-20 (up to 70)
Stripe spacing at 160 - 200 MHz 2-3 MHz
at 800 - 900 MHz 20 MHz
Fiber bursts:
Frequency extent 30 MHz (up to 120 MHz)
Duration 5-10 s
Single frequency duration 0.2-0.4 s
Instantaneous bandwidth ≤ 1 MHz

Drift rate, −df
dt 10−2f + 6x105f2

Number in one group 10-30 (up to 300)
Flux
At 160 - 320 MHz 200 sfu
At 50 - 600 MHz 500 sfu

Table 2.3: Characteristic fine structure parameters of solar radio bursts, from [Kui-
jpers, 1980, Yu et al., 2013]

The Double Plasma Resonance Model

The Double Plasma Resonance model, (DPR) is the most widely accepted model

to describe the peculiar ZP emission, [Zheleznyakov and Zlotnik, 1975, Kuznetsov

and Tsap, 2007]. It relies on electrostatic wave emission when Langmuir waves (see

section 1.7.1) self-interact at frequencies near the upper hybrid:

fuh =
√

f2
ce + f2

pe = sfce, (2.3)

where f2
ce ≪ f2

pe and s is any integer. DPR leads to the amplification of plasma

fluctuations which following their the conversion to electromagnetic waves signifi-

cantly increases the associated radio emission in frequencies near the upper hybrid

harmonics. This is shown in more detail in figure 2.19.

If the plasma density and the absolute value of the magnetic field, and hence

the electron plasma and cyclotron frequencies, vary with height, there are several

spatially-separated levels where the DPR condition is satisfied, figure 2.18. Radio

emission from different DPR levels come at the local upper hybrid frequencies. The

emission from DPR levels form different individual stripes within the ZP structure.

Taking into account that fpe ≫ fce in coronal plasmas, i.e. the upper hybrid fre-

quency fuh ≃ fpe, the emission frequency, fs of a ZP stripe at the harmonics s

equals the plasma frequency fpe or its harmonic. In a horizontally uniform plasma,

the frequency separation between the neighbouring ZP stripes at the harmonics s
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Figure 2.19: Energy flow for the production of ZP using the DPR emission mech-
anism. This is an adaptation of the plasma emission theory from [Ginzburg and
Zhelezniakov, 1958], with the inclusion of the DPR mechanism (red). The radio
emission mechanisms are highlighted in green.
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and s+ 1 is given by:

∆fs = fs+1 − fs ≃
m

1− (2Ln/LB)
fce, (2.4)

where Ln = ne(∂ne/∂h)
−1 and LB = B(∂B/∂h)−1 are the density and magnetic

field scale heights as a function of height above the photosphere h and the coefficient

ξ describes the mechanism of wave coalescence. In DPR ξ = 1 when the emission

engages from the coalescence of two excited plasma waves, resulting in weakly po-

larised radio emission. ξ = 2 when the emission generates from the coalescence of an

excited plasma wave with a low frequency electrostatic wave, conversely producing

strongly polarised radio emission shown in figure 2.17. The concluding relations:

fs ≃ ξfpe ∝ n1/2
e , (2.5)

∆fs ∝ ξfce ∝ B, (2.6)

implicate time variation of magnetic and density fields with the dynamics of ZPs.

This link can be exploited to gain new information on the plasma regions in which ZP

production occurs. By this argument the movement of MHD fluctuations through

ZP emission regions should result in periodic fluctuations in ZP emission and struc-

ture.

There are several other ZP emission models in literature, the most advanced

model is that proposed by [Winglee and Dulk, 1986], based on cyclotron non-

saturated maser emission of electrostatic waves by a loss-cone electron distribution.

However the DPR mechanism is the most widely accepted although it and most

other emission mechanisms cannot account for all the features found in ZP fine

structure.
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Chapter 3

Instrumentation

3.1 Introduction

In this chapter we present an overview of the satellite and ground based observational

systems used throughout this thesis. The purpose is to provide the reader with a

base understanding of the observational tools used in this thesis as well as detailed

description of data available from each instrument.

3.2 Space Mission Cluster

The Cluster mission was launched in the year 2000 to study the magnetosphere and

interplanetary plasmas in three dimensions. The mission consists of four satellites

flying in a tetrahedral formation. Cluster was set up in a polar orbit with apogee and

perigee at 19.6 RE and 4.0 RE respectively. The separation of the individual Cluster

spacecraft has changed throughout the mission and was approximately ≈ 1000 km

for the periods studied in this thesis.

Its elliptical orbit takes it through the magnetosphere and out into the fore-

shock region (as discussed in 2.3.2) and eventually the solar wind, see figure 3.2.

During certain intervals of time the satellite group can be used to study the solar

wind and the terrestrial foreshock in situ. Cluster continuously takes measurements

of electromagnetic fields, plasma velocity and charge carrier densities at a sampling

frequency of ≈ 0.25 Hz. The FGM measurement system (see section 3.2.2) has an

enhanced resolution capacity for magnetic field readings, sampling at a frequency

of ≈ 22 Hz. It is for this reason that studies on the solar wind will be carried out

predominately using magnetic field data when available.

Cluster satellites spin with a period of 4 s to produce three dimensional
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Figure 3.1: Artist’s impression of the four satellites of Cluster in orbit, (Image from
[ESA, 2014b]).

distributions. Data on particle distribution functions is obtained with the Cluster

Ion Spectrometer (CIS). The instrument produces spectra which are averaged over

the 4-second window, as a result the resolution of plasma parameters is much lower

than magnetic field. This thesis utilises data from both FGM and CIS instruments,

see sections 3.2.2 and 3.2.3. To account for the difference in sampling rates the

magnetic field data can be re-sampled at the lower rate of 0.25 Hz when being

compared with plasma parameters. A full list of the instruments on the Cluster

spacecraft is shown in table 3.1.

3.2.1 Geocentric Solar Elliptical Co-ordinate System

All three dimensional Cluster data is presented in a Cartesian format with (x, y, z)

components. The Cluster group uses the geocentric solar elliptical co-ordinate sys-

tem (GSE). With the origin at the centre of the Earth it aligns the x-axis with

the central line between the Earth and Sun centres. The z-axis is aligned with the

ecliptic north pole which is defined as the normal to the plane of the Earth’s orbit.

The y-axis is simply oriented such that the system forms a orthonormal axis set

that points in the direction motion through the orbit, this is shown schematically

in figure 3.3. It is useful for magnetospheric and bow shock studies as all motion is

relative to the Earth not to the Sun.
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Figure 3.2: Cluster Orbit plot for the 27/01/2004, the left, displays the tetrahedral
formation, the right, demonstrates Cluster’s elliptical orbit. The orbit plots also
presents lines to show the average positions of the bow shock and magnetopause,
from [ESA, 2014a].

3.2.2 Flux Gate Magnetometer (FGM)

Each Cluster spacecraft carries an identical FGM instrument, [Balogh et al., 2001].

The instrument consists of two tri-axial fluxgate magnetic field sensors located on

one of the two radial booms of the spacecraft. The primary sensor samples the

magnetic field vector at 201.793 vectors s−1 however this cannot be streamed to the

ground due to the small bandwidth. This rate is therefore re-sampled at a lower rate

for streaming. The sample rate used in this thesis is at a rate of 22.417 vectors s−1.

The magnetic field vectors are converted from Cluster’s spinning reference frame to

the de-spun frame in GSE coordinates and into the scientific units nT.

3.2.3 Cluster Ion Spectrometer (CIS)

CIS is capable of measuring three dimensional ion distributions at a resolution which

coincides with the spacecraft rotation time (spin resolution), [Rème et al., 2001]. It

is made up of two detectors, the Hot Ion Analyser (HIA) and the Composition and

Distribution Function Analyser (CODIF). The data used in this thesis comes from

HIA thus the CODIF instrument will not be discussed further.
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Instrument Purpose

ASPOC Spacecraft potential control
CIS Ion velocity distributions
EDI Electric field drift velocity
FGM Magnetometer

PEACE Electron velocity distributions
RAPID High energy electron and ion velocity distributions
DWP Wave processor
EFW Electric field and waves
STAFF Magnetic and electric fluctuations
WBD Electric field and wave forms

WHISPER Electron density and waves

Table 3.1: The complete instrument list for each Cluster spacecraft, [Escoubet and
Goldstein, 2001]

CIS Mode Mode Name

0 SW-1 Solar Wind / SW tracking - Mode 1
1 SW-2 Solar Wind / 3D upstreaming ions - Mode 2
2 SW-3 Solar Wind / SW tracking - Mode 3
3 SW-4 Solar Wind / 3D upstreaming ions - Mode 4
4 SW-C1 Solar Wind / SW tracking - Data Compression - Mode 1
5 SW-C2 Solar Wind / 3D upstreaming ions - Data Compression-Mode 2
6 RPA RPA Mode
7 PROM PROM Operation
8 MAG-1 Magnetosphere - Mode 1
9 MAG-2 Magnetosphere - Mode 2
10 MAG-3 Magnetosphere - Mode 3
11 MAG-4 Magnetosphere / Magnetosheath - Mode 1
12 MAG-5 Magnetosheath - Mode 2
13 MAG-C1 Magnetosphere - Data Compression - Mode 1
14 MAG-C2 Magnetosheath - Data Compression - Mode 2
15 CAL Calibration / Test Mode

Table 3.2: CIS Operational Modes, taken from [Dandouras and Barthe, 2012].
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Figure 3.3: Schematic diagram of the geocentric solar elliptical coordinate system
used by the Cluster satellite group.

The CIS instruments posses a large degree of flexibility in the selection of

operational mode. CIS can maintain one of sixteen operational modes listed in table

3.2. Our data was sampled while CIS was in mode 5 exclusively to insure that the

solar wind and the upstream ions were the sole contribution to the HIA moments.

In this mode the solar wind beam is tracked by HIA only once every 16 spins. In the

remaining 15/16 spins a broader energy sweep is used for the solar wind detection

by the ‘’ section (discussed below). At the same time upstreaming ions are observed

by the ‘high G’ section, which is then looking in the anti-sunward direction.

Hot Ion Analyser (HIA)

The Hot Ion Analyser (HIA) instrument combines the selection of incoming ions

according to the ion energy per charge by electrostatic deflection in a symmetrical,

quadrispherical analyser which has a uniform angle-energy response with a fast

imaging particle detection system. HIA has two 180◦ sections which look in a plane

parallel to the spin axis as shown in figure 3.6. They are known as high and low

sensitivity, high G and low G, respectively. They provide different resolution in

the polar angle yet have the same azimuthal resolution of 5.625◦. The azimuthal

resolution arises because of the two dimensional resolution is recorded every 62.5 ms

as the spacecraft spins. In this way a full three dimensional distribution can be

measured every spin. The high G section’s polar range is divided into 16 equal

sections, whereas the low g is divided into 8. High G is specified for hot plasmas

and is dedicated to studying the magnetosphere while low g is meant for the solar

wind. The plasma data from HIA presented in this work is made up solely from

data taken in the low g mode.
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Figure 3.4: Schematic diagram of Hot Ion Analyser (HIA) high and low sensitivity
sections. (Image from [Rème et al., 2001]).

3.3 Wind

Wind was launched on November 1, 1994 and was the first of two NASA space-

craft in the Global Geospace Science initiative and part of the International Solar

Terrestrial Physics (ISTP) Project. A schematic diagram is shown in figure 3.5.

Objectives of the Wind mission were to provide complete plasma and magnetic

field data for magnetospheric and ionospheric studies. It also aimed to study basic

plasma processes in the near Earth solar wind. Since its launch it has spent time

orbiting near Earth studying the ionosphere and then the magnetosphere. In the

more recent years it has shifted to an orbit around the L1 Lagrange point between

the Earth and the Sun, allowing studies of the solar wind before its interaction with

the Earth’s bow shock, see section 2.3.2. We have used data from times when it was

in the deep solar wind and thus not influenced by the terrestrial foreshock.

We used the Solar Wind Experiment (SWE) as a comparison to Cluster data

taking advantage of the fact Wind was situated upstream of the Cluster mission.

The SWE measures ions and electrons in the solar wind to deduce the solar wind

velocity, density, temperature and heat flux. SWE consists of five integrated sensor

boxes and a data processing unit. Three dimensional velocity distributions of the ion

component in the solar wind are made by a pair of Faraday Cup analysers, [Lazarus

et al., 2007]. These provide a wide field of view while being able to measure velocity

distributions in plasmas with Mach numbers greater than one. In this thesis we
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Figure 3.5: Left: schematic diagram of the Wind satellite, image from [NASA,
2014c]. Right: six month orbit given in GSE coordinates, starting in July 2009,
image from [NASA, 2014d].

implement Wind SWE ion anisotropy data with a cadence of 92 s. This data is used

as a control comparison to Cluster data.

3.4 Ground Based Radio Telescopes

Ground based radio telescopes are used to investigate flare processes in the solar

corona in the radio and microwave wavebands. There is little absorption of high

frequency (> 50 MHz) radio waves in the Earth’s atmosphere. Radio telescopes

require very large antenna in comparison to shorter wavelength observatories to

achieve the same spatial resolution. Tangentially to this radio observatories possess

shortened time cadences in comparison to space-borne instruments such as on-board

SOHO or SDO. This allows observers to probe temporal scales approaching and

beyond the MHD limit.

It is often useful to compare events using two or more radio telescopes to

ensure that they are not acquiring terrestrial or artificial signals. Thus this thesis

has utilised data from both Nobeyama Radioheliograph and the Solar Broadband

Radio Spectrometer. They are situated far enough apart to de-tangle respective

local interference yet close enough to ensure they are able to simultaneously observe

the full solar disc for extended periods of time.
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3.4.1 Solar Broadband Radio Spectrometer (SBRS/Huairou)

The Solar Broadband Radio Spectrometer (SBRS/Huairou) is a robust solar radio

spectrometer based near Beijing, China. It consists of one dish and is built to mea-

sure radio waves emitted by the Sun, [Fu et al., 1995]. The total flux density of solar

microwave emission is observed in both left- and right-handed circular polarization

(LHCP and RHCP) at three frequency bands:

• 1.10-2.06 GHz (time resolution: 5 ms, frequency resolution: 4 MHz).

• 2.60-3.80 GHz (time resolution: 8 ms, frequency resolution: 10 MHz).

• 5.20-7.60 GHz (time resolution: 5 ms, frequency resolution: 20 MHz).

Typical data is presented as a dynamic spectra, see figure 2.17, which has

already undergone calibration. Each one of the 240 channels records intensity of

emission against time. These are then stacked to form an image of frequency against

time with the artificial colour specified by the intensity.

3.4.2 Nobeyama Radioheliograph (NoRH)

Figure 3.6: Photograph of the array of dishes at the Nobeyama Radioheliograph,
Japan. (Image from [NOAJ, 2014]).

Nobeyama Radioheliograph (NoRH) is a ground based radio-interferometer

situated in Nagano, Japan, [Nakajima et al., 1994]. The instrument consists of

84 parabolic antennas, 80 cm in diameter. It was built in a T-shape base line
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Frequency 17 GHz (Right and left circular polarization), 34 GHz (only intensity)
Field of view Full solar disk
Spatial resolution 10 arcsec (17 GHz), 5 arcsec ( 34GHz)
Temporal resolution 0.1 s (Event), 1 s (Steady)

Table 3.3: Overview of the operating parameters of NoRH.

configuration and has been observing since April 1992 at an observation frequency of

17 GHz in both left- and right-handed circular polarisation. Later an observational

band of 34 GHz was added however it is unable to distinguish between polarisations.

An overview of the operational parameters is shown in table 3.3.
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Chapter 4

Temperature Anisotropy in the

Terrestrial Foreshock

4.1 Introduction

In this chapter we aim to explore the effect of non equilibrium particle distributions

on waves and turbulence in the foreschock region, already discussed in 2.3.4. Typical

plasma parameters for this region are shown in Table 4.1. A portion of the solar

wind plasma is returned to the upstream region after a collisonless interaction with

the Earth’s magnetosphere to produce an observable ion beam, see section 2.3.4.

The combination of inflowing and counterstreaming plasma upstream of the shock

is subject to a variety of instabilities leading to wave generation described in more

detail in section 1.8.

Parameter Interval: 27/01/2004

Average Magnetic Field 〈B〉 8.3 ± 0.8 nT

Average Number Density 〈n〉 7.052 ± 0.050 cm−3

Plasma β 0.488 ±0.405

Alfvén Wave Speed vA 513 ± 110 kms−1

Solar Wind Speed vsw 483 ± 139 kms−1

Table 4.1: Experimentally measured parameters of the solar wind at a distance of
approximately 10RE from Earth along the Earth-Sun line. Values were averaged
over the interval: 27/01/2004, 03:50-04:35.

The terrestrial foreshock is an ideal laboratory for the in-situ study of the

interaction between a quasi-stationary shock and a collisionless plasma. In particu-

lar, the region upstream of the quasi-parallel shock supports a plethora of dispersive
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plasma waves as discussed in section 1.7.3. Wave modes can interact with particles

in both a resonant and non-resonant manner as described in section 1.8.3. These in-

teractions may lead to particle acceleration and plasma heating. An understanding

of heating mechanisms in collisionless quasi-parallel shocks is crucially important

to many outstanding space plasma problems, such as coronal heating and the non-

adiabatic expansion of the solar wind. This work presents observational evidence

for foreshock dissipation mediated by the fire hose instability.

Early foreshock studies identified multiple wave generation mechanisms for

both left and right hand circularly polarised waves in the plasma frame [Heppner

et al., 1967, Fairfield, 1969, Russell et al., 1971, Barnes, 1970].

The beam instability (see section 1.8.3) is the primary mechanism producing

right-hand polarised transverse waves, propagating parallel and anti-parallel to the

interplanetary magnetic field (IMF). Waves travelling along the beam are resonant

with the ion beam population, while waves propagating anti-parallel to the beam

may become unstable to the non-resonant fire hose instability.

4.1.1 Wave Modes of the Terrestrial Foreshock

Recent studies in this region explore a number of distinct wave modes which have

previously been identified in the Earth’s foreshock. Burgess [1997], Eastwood et al.

[2005] provide comprehensive reviews of this topic. The foreshock displays a large

variance in particle distributions. This complex morphology leads to an associated

multitude of upstream waves. Eastwood et al. [2005] outlines how wave species are

categorised by observed frequency and key characteristics. A first step in under-

standing the evolution of the terrestrial foreshock plasma is to understand which

of these wave modes are present. We can then assess their impact on the particle

distributions and thus the plasma parameters.

The first mode of importance to this work was identified as the ultra low

frequency (ULF) fast magnetoacoustic wave mode. This mode typically spans 5 mHz

to 0.1 Hz with a peak frequency ≈ 0.1 wpi. These fast magneto-acoustic waves are

seen travelling radially outward from the Earth. They are distinct due to their large

amplitude, δB/B ≈ 0.2, compared to other wave modes. It is believed that they

are generated via the ion resonant beam instability, section 1.8.3.

The second, higher frequency mode, was identified as the ‘1 Hz whistler’ wave

mode. Eastwood et al. [2005] and Burgess [1997] describe it by its small amplitude

and intrinsic right hand polarisation. Burgess [1997] provides evidence for their

production via oscillations of the bow shock, not an energised particle population,

however this is still not proven conclusively.
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Several data analysis techniques have been used to identify these modes in

our data intervals. We pay particular attention to the ULF magnetoacoustic modes.

4.2 Data Intervals

The data analysed in this chapter consists of Cluster high resolution (≈ 22 Hz) mag-

netic field data from the FGM instrument (see section 3.2) and the lower resolution

spin data (0.25 Hz) from CIS-HIA onboard calculated solar wind moments. They

contain measurements of core population properties such as proton temperature,

density and velocity in GSE coordinates as discussed in section 3.2.1). All CIS-HIA

samples were collected in mode 5, which measures the core population of the solar

wind beam, see section 3.2.3.

In principle, a small fraction of a field-aligned beam may contribute to these

measurements. Here, we assume that such effects would lead to small variations in

the on-board computed moments, but would not result in the large and systematic

changes. Also, the HIA instrument cannot differentiate between different ion species,

thus the effects of α-particles are folded into these measurements. The field of

view of the instrument in this mode is approximately ±22 degrees as discussed

in section 3.2. The visual inspection of the velocity distributions, using [CLWeb,

2014] ground computed product, confirmed that this field of view was sufficient to

capture the majority of the distribution functions for selected intervals. We consider

a ‘core’ proton velocity distribution that is defined as a distribution which can be

approximated by a single temperature Maxwellian, [Kasper et al., 2002, Hellinger

et al., 2006]. While HIA was in mode 5 it excluded any particles outside of the core

distribution of the reflected ions, i.e. the bulk solar wind distribution. All intervals

had core plasma thermal velocities much lower than the average solar wind velocity.

4.2.1 Data Interval Selection

We began by searching for intervals where Cluster passed through the foreshock

while showing a strong increase in fluctuation strength, shown by the example figure

4.1. A comprehensive list of these intervals was found in [Narita et al., 2004].

Unfortunately not all of these suited our study due to missing data or Cluster

taking observations in an unsuitable mode. However we isolated the intervals which

were found to match all the necessary criteria, listed in Table 4.2.

In this chapter we use the interval 27/01/2004 as a canonical sample to

represent all intervals highlighted in table 4.2 as the results found are in agreement.

If results differ the full dataset will be presented with variations highlighted. When
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Figure 4.1: Cluster overview showing key parameters, for the 27/01/2004 with a
plot of the constellation position in relation to the bowshock displayed in the upper
right panel. This interval exhibits a clear increase in electric field wave power at
discrete frequencies, seen to occur at 2:00 am. The higher resolution magnetic field
data was needed to observe fluctuations clearly.

Date Times Spacecraft

27/01/2004 03:50-04:35 C1
16/02/2002 06:19-06:29 C1, C3
20/02/2002 22:00-22:06 C1 C3
19/02/2010 00:16-01:10 C1
21/02/2002 22:19-22:29 C1, C3
11/02/2002 22:04-22:14 C1, C3
27/03/2002 07:15-07:25 C1, C3

Table 4.2: Cluster data intervals used in this chapter. Intervals were selected from
the much larger dataset presented in [Narita et al., 2004].
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available, measurements from spacecraft C1 and C3 were treated as independent

measurements. Separation between these spacecraft was ≈ 10000 km, except for

interval 4, when spacecraft C1 and C3 were considerably closer. In order to compare

foreshock data with that of the ambient solar wind upstream, we have identified one

interval of Wind spacecraft data, for which Wind magnetic field vector data was

correlated to Cluster data. This is Cluster interval of 19/02/2010 which resides in

the foreshock from 00:16-01:10. We examined Wind SWE ion anisotropy data with

time cadence of 92 seconds. Time shift of 3200 s was obtained from cross correlation

of Wind (3 sec cadence) and Cluster (4 sec cadence) magnetic field data.

4.3 Signal Analysis

This section outlines the various data analysis techniques deployed to exploit the

datasets as an attempt to identify wave activity. Several different techniques have

been used to derive the same result in order to underpin the observations made.

Inspection of Cluster quick view data panels indicated fluctuations in all of

the intervals chosen as shown by our example figure 4.1. The nature of these fluc-

tuations needed to be identified to find regions of strong wave activity to compare

to established observations as those shown in [Eastwood et al., 2003, 2005, Burgess,

1997]. The fluctuations have strong, regular periodicity as shown by figure 4.2.

Strong periodicity doesn’t provide evidence for the presence of waves as there are

several wave-free mechanisms which can induce periodicity into a signal. If we con-

sider a situation where Cluster is moving obliquely to the field and thus experiencing

varying particle densities, then there could exist a situation where a periodic signal

would be observed by the instrumentation due to periodic regions of concentrated

particle densities. This could not be considered a wave but would still manifest as

a strongly periodic signal, hence other data analysis techniques were required to

investigate their existence.

4.3.1 Field Aligned Projection

The individual Cluster spacecraft are spread over a large region in space. This

results in each spacecraft feeling the IMF at a slightly different orientation in the

GSE coordinate system (see section 3.2.1). So to compare datasets between satellites

it was important to rotate into an invariant coordinate system, for simplicity a field

aligned Cartesian system was chosen. The unit vectors were chosen to be:
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Figure 4.2: Example of structured fluctuations found in the foreshock region. A 70 s
snapshot taken from the 27/01/04 interval.
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ê1 = b̂,

ê⊥1 = B− (B · b̂)b̂,
ê⊥2 = (ê1 × ê⊥1),

(4.1)

where b̂ = B/B. The magnetic field vector B was taken to be the interval average.

The data sets used span a few hours at most, therefore it was assumed that the

IMF varies slowly enough in this time to be considered as constant in direction.

The benefit of this set up was that it allowed the observer to disentangle fluctuation

motion parallel and perpendicular to the magnetic field. This aids the identification

of fluctuations and their growth mechanisms.

4.3.2 Correlation

As shown in section 1.6.1 the phase shift between thermal and magnetic pressure

oscillations has a succinct impact on the nature of the fluctuations. It was possible

to use proton density for the determination of the thermal pressure, through the

ideal gas law (1.23). Hence we were able to observe correlations between magnetic

and thermal pressures using Cluster’s CIS proton densities directly. This analysis

allowed a quick preliminary check to identify correlated fluctuations and the phase

between density and magnetic field. Magnetoacoustic perturbations will show in

both variables and can present themselves as inphase ‘fast’ oscillations or antiphase

‘slow’ oscillations as outlined in section 1.6.1.

Both magnetic field strength |B| and individual magnetic field components

were used in the correlation analysis. Analysis showed that density and magnetic

field strength were correlated with the cross correlation coefficient exceeding 0.97 for

all intervals in Table 4.2, see example figure 4.3 and values are shown in Table 4.3.

This provided some evidence for the presence of MHD oscillations in the foreshock

as found in [Eastwood et al., 2005]. The fact that density and magnetic field fluc-

tuations were correlated indicates that the fluctuations could be waves which exist

on the fast branch of the magnetosonic dispersion relation such as the ULF waves

outlined in section 4.1.1. It must be stressed that correlation between density and

magnetic field strength is not conclusive proof of the presence of MHD fluctuations.

However, if it can be shown that the fluctuation period is well below the gyro-periods

(see section 4.3.4) then we can present a strong argument for the presence of MHD

oscillations, given the many examples in literature.

78



0 100 200 300 400 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

N
or

m
al

is
ed

 V
al

ue
s

 

 

Magnetic Field Magnitude

Proton Density

0 10 20 30 40 50
0.85

0.9

0.95

1

Time Shift [s]

C
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

Figure 4.3: Upper panel: The normalised magnetic field magnitude and proton den-
sity used in the correlation analysis. Lower panel: A representitive cross correlation
analysis for the interval: 27/01/2004, time: 03:50-04:35 for magnetic field magnitude
and proton density. Magnetic field strength and density were found to be strongly
correlated with a coefficient of 0.9907. All other intervals exhibit a similar form and
correlation value.
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Date Times Correlation Coefficients

27/01/2004 03:50-04:35 0.99
16/02/2002 06:19-06:29 0.98
20/02/2002 22:00-22:06 0.98
19/02/2010 00:16-01:10 0.97
21/02/2002 22:19-22:29 0.99
11/02/2002 22:04-22:14 0.99
27/03/2002 07:15-07:25 0.97

Table 4.3: Correlation coefficients for the correlation analysis between magnetic field
magnitude and proton density for the intervals listed. A 2000 s sample was taken
for each interval.

4.3.3 The Taylor Hypothesis and Advection

The Taylor hypothesis was first described in [Taylor, 1938], it attempts to tackle the

problem of advection in high speed flows. In this section we derive the hypothesis in

a solar wind context due to the solar wind’s high speed. Taylor’s original derivation

was developed for the application to a general high flow plasma.

The IMF and the fluctuations that exist within the solar wind plasma de-

scribed in as a function of space and time, B(x, t) can be expressed as a sum of

Fourier components in wavevector, k and frequency ω by the expression:

B(x, t) =
∑

k

∑

ω

B̂(k, ω)ei(k·x−ωt). (4.2)

The solar wind data is collected by a spacecraft moving at velocity −vsw which is

equivelent to the spacecraft’s measurment of the solar wind velocity as it streams

past. The position of the spacecraft as a function of time is given by x = −vswt. So

the magnetic field time series is simply given by B(t) = B(x, t)|x=−vswt yeilding:

B(t) =
∑

k

∑

ω

B̂(k, ω)e−i(k·vsw+ω)t. (4.3)

Finally, we Fourier transform the spacecraft frame magnetic field time series via

Bsc =
∫

dtB(t)eiωsct to obtain the signal in terms of the spacecraft frame frequency

ωsc given by:

B(ωsc) =
∑

k

∑

ω

B̂(k, ω)δ[ωsc − k · vsw − ω]. (4.4)

Thus we find that the spacecraft-frame frequency is given by the argument of the

delta function:
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ωsc = vsw · k+ ω. (4.5)

The Taylor hypothesis follows from this and takes advantage of the fact that the

plasma flow is predominantly super Alfvénic, vA ≪ vsw. Allowing observers to adopt

the Taylor hypothesis which assumes that |ω| ≪ |vsw ·k|. Thus we can approximate

(4.5) to:

ωsc ≈ vsw · k, (4.6)

which allows the conversion between frequency and wavenumber under certain con-

ditions.

We should mention that more recently observers have begun to question the

validity of the Taylor hypothesis, [Howes et al., 2014]. This will not be explored

within this thesis. The hypothesis will be used to estimate the wave numbers using

frequency values from section 4.3.4 in order to understand the size of spacial scales

involved. These are not required to derive the results for this chapter.

4.3.4 Periodicity Analysis

After the identification of fluctuations in the data it was imperative to establish

if they were indeed periodic in nature as those outlined in section 1.7.3, providing

confirmation that the fluctuations in the data were the same as those observed in

[Eastwood et al., 2003, 2005, Burgess, 1997]. There are various techniques used to

understand the periodicity of fluctuations. This section will implement some of these

processes to identify periodicity and structure within the observed perturbations of

the foreshock region such as that shown in figure 4.2.

Power Spectrum

The power spectrum technique implements the fast Fourier transform (FFT) to

convert the time series into the frequency domain. The resulting dataset consists of

the spectral amplitude or power versus the frequency, phase information was also

available from the complex plane if required. The frequency domain is bounded by

the Nyquist frequency which is just simply half the sample rate, [Oppenheim and

Schafer, 2010]. The FFT converts a time series f(t) into the frequency domain,

F (ω) [Fourier, 1822, Cooley and Tukey, 1965]:

F (ω) =

∫

f(t)eiωtdt. (4.7)
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Figure 4.4: The power spectra were calculated for the representative interval
27/01/2004 and an interval where the Cluster satellite group was upstream of the
foreshock region, a data sample considered to be free of the foreshock interaction.
The black curve denotes the power as a function of frequency for the upstream solar
wind region. The red curve displays the power as a function of frequency for the
27/01/2004 interval. Two distinct peaks above the solar wind spectrum were found
at frequencies of ∼ 0.04 Hz and ∼ 1 Hz. This was in agreement with the frequency
ranges for ULF waves 5 mHz to 0.1 Hz and the whistler wave which is found at ∼1
Hz as outlined in section 4.1.1.

This technique was carried out on all of the intervals outlined in Table 4.2. The

power spectra were then compared with the spectra of signals obatined in the solar

wind intervals considered to be free of the foreshock interaction region. This was

used as a control background turbulence level due to its lack of noticeable spectral

peaks. Increases in the fluctuation power above the solar wind turbulence level

were found at discrete frequencies for all intervals, see Table 4.4. The presence of

peaks above the solar wind background turbulence power spectrum indicated quasi-

monochromatic fluctuations which are usually associated with wave activity. The

results shown in Table 4.4 strongly agree with the values found in [Narita et al.,

2004]. This identifies them to be within the ULF classification outlined in section

4.1.1 which is in agreement with Burgess [1997], Narita et al. [2004], Eastwood et al.

[2005].
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Date Times Peak Frequencies [Hz] vsw [kms−1] Wavelength [Mm]

27/01/2004 03:50-04:35 0.04 385 6.40
16/02/2002 06:19-06:29 0.04 311 7.80
20/02/2002 22:00-22:06 0.05 445 8.90
19/02/2010 00:16-01:10 0.03 442 14.70
21/02/2002 22:19-22:29 0.06 437 7.30
11/02/2002 22:04-22:14 0.05 521 10.40
27/03/2002 07:15-07:25 0.04 440 11.00

Table 4.4: Table of peak frequency values found in the power spectra of the cor-
responding data intervals, the average solar wind speed for that interval and the
corresponding wavelength found using the Taylor hypothesis (section 4.3.3).

Dynamical Spectra

The disadvantage of using the power spectrum as described above was the lack of

time resolution in the power measurement of distinct frequency modes. So it was not

possible to observe how long they last or if there was any periodicity in their growth.

The dynamical approach sacrifices spectral resolution to allow the observation of the

time variation in a spectrum.

The dynamical spectrum is constructed with the FFT algorithm but instead

of carrying out the analysis on the entire time series it applies the Fourier transform

to a short time window which can be altered at the users discretion. A Hanning

window was applied to the data to allow analysis to be carried out on a segment of

the time series. The Hanning window is given by, [Oppenheim and Schafer, 1989]:

W (t) = α− β cos

(

2πt

N − 1

)

, (4.8)

where α and β are control parameters specified by the program. The power spectra

procedure was carried out on the windowed dataset and the result was logged. This

was then repeated after shifting the Hanning window along the time series to produce

a dynamical spectrum image, see figure 4.5.

Figure 4.5 has shown that the waves are not continuous in nature but are

produced in a more intermittent manner. This was to be expected by a system of

waves driven by the beam instability, as the non thermal particles are produced

from the turbulent solar wind.

The dynamical spectrum was limited by its shorter windowed data series.

This meant that it was not able to observe the time variation of the lower ULF

frequencies. However, attempts yielded a consistently increased power in the ob-

servable ULF frequency range. The rest of this chapter will focus on the ULF waves
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Figure 4.5: Dynamical spectrum of the solar wind interval (upper panel) shows that
background turbulence has the majority of its power in the lower frequency modes.
With the presence of fluctuations (lower panel) a sudden increase in density at a
higher frequency range was observed. Some higher frequencies are seen intermit-
tently in the solar wind panel (left) however we define wave activity as a sustained
increase in power, these could be intermittent bursts of waves or just background
turbulence being advected past the satellite.
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only, due to their large amplitudes. Further analysis will allow the separation of

left-handed and right handed ULF waves.

4.4 Polarisation and Propagation Direction

After the identification of ULF waves in the foreshock, the next step was to estimate

their propagation direction and polarisation in the plasma frame of reference. This

information allowed us to understand what excitation and amplification mechanisms

were being activated. It also allowed us to narrow down the possible instability

mechanisms that were engaged by the ULF waves.

A problem arose when we considered the super Alfvénic speed of the solar

wind and its advection of structures past the spacecraft. This meant it was not

possible to measure intrinsic wave speed or direction using a single spacecraft. As

a consequence it was important to cross-reference data from multiple spacecraft to

look at propagation times and directions. The advection further complicated the

situation by altering polarisation measurement. Waves travelling upstream in the

plasma stream with speed lower than the stream velocity, |vwv| < |vsw| would see

a polarisation reversal as they were advected past Cluster. This holds as a good

assumption as vA < vsw for all of our intervals, see table 4.4 for exact values. Hence

both polarisation and propagation direction were required to isolate the wave’s in-

trinsic polarisation.

4.4.1 Hodogram

The hodogram technique takes advantage of the high resolution magnetic field data

to estimate the sense of wave polarisation in the spacecraft reference frame. First the

magnetic field data was rotated into the field aligned co-ordinate system as outlined

in section 4.3.1. This system aligns the magnetic field to the average of the time

series magnetic field. The two perpendicular components were then plotted against

each other to observe the rotation of the magnetic field vector around the sample

average magnetic field. This method only works for small sections of the dataset

with lengths on the order of the wave period for the ULF waves, as it is very sensitive

to noise. In a longer sample, the noise would clutter the graph, any shorter and a

complete rotation would not be observed. Longer intervals will also experience a

greater drift in the average magnetic field. This prevents the hodogram from itself

and thus observation of polarisation helices will become increasingly difficult.

Again 27/01/2004 was used as the representative interval for the ensemble as

similar results were observed in all of the samples. The hodogram analysis showed
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Figure 4.6: A sample of hodograms of Cluster magnetic field data taken from the
canonical sample 27/01/2004 from 04 : 03 : 20 onwards. Nine samples were taken,
each five seconds in length. The magnetic field was projected on the plane perpen-
dicular to the sample average magnetic field which is directed out of the page in
all figures. Some panels show distinct left handed polarisation while others show a
more noisy fluctuation.
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Date Times Spacecraft Polarisation

27/01/2004 03:50-04:35 Left-hand
16/02/2002 06:19-06:29 Left-hand
20/02/2002 22:00-22:06 Left-hand
19/02/2010 00:16-01:10 Left-hand
21/02/2002 22:19-22:29 Left-hand
11/02/2002 22:04-22:14 Left-hand
27/03/2002 07:15-07:25 Left-hand

Table 4.5: Table of circular polarisation directions found for the highest spectral
power ULF wave observed in each interval. The polarisation was calculated in the
spacecraft reference frame using the hodogram technique.

that the waves found in the power spectra, section 4.3.4, were in fact circularly

polarised for some periods of time shown by figure 4.6. However their existence

was fleeting which was to be expected in a regime driven by the turbulent solar

wind. Table 4.5 shows the relevant polarisations observed in the spacecraft frame

of reference. At times they also exhibited the reverse of the polarisations shown in

table 4.5, however the spacecraft polarisation was taken to be the most common

and prevalent polarisation observed for the respective interval.

After a more detailed inspection of the 27/01/2004 sample we were able

to observe both periodicities within the hodogram, as shown in figure 4.7. The

retrograde motion observed indicates both wave modes exhibit left-hand polarisation

in the spacecraft frame of reference.

It is important to highlight that the polarisation observed in the spacecraft

reference frame is not necessarily the intrinsic polarisation of the wave. This also

depends on the propagation direction. Waves travelling upstream will experience a

polarisation reversal due to the advection of the super Alfvénic solar wind. These will

display the reverse polarisation in the spacecraft frame. Hence further information is

needed to isolate the wave propagation direction and hence the intrinsic polarisation.

4.4.2 Time Delay Analysis

In order to determine the intrinsic polarisation of the ULF waves, a multi-spacecraft

time delay analysis [Paschmann and Daly, 1998] was performed. This allowed the

direct determination of the propagation direction.

Autocorrelation of each signal highlights its periodicity which can be com-

pared to the power spectra of section 4.3.4. The results are shown for our canonical

sample 27/01/2004, figure 4.8. A peak was found at 19 s corresponding to a fre-

quency of 0.05 Hz which closely matches the 0.04 Hz seen in the power spectrum,
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average magnetic field. The hodogram clearly shows the two periodicities observed
in the power spectrum shown in section 4.3.4. The lower frequency ULF wave
underwent half a period of rotation while the ‘1 Hz’ whistler was seen to last for
about six cycles of the oscillation during the same time interval.
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Date Times B Field Direction Wave Vector Intrinsic Polarisation

27/01/2004 03:50-04:35 Sunward (0.99, 0.16,−0.04) Right-hand
16/02/2002 06:19-06:29 Anti-sunward (−0.81, 0.58, 0.74) Right-hand
20/02/2002 22:00-22:06 Sunward (0.83, 0.55,−0.01) Right-hand
19/02/2010 00:16-01:10 Anti-Sunward (−0.84,−0.29,−0.45) Right-hand
21/02/2002 22:19-22:29 Sunward (−0.98,−0.14,−0.14) Left-hand
11/02/2002 22:04-22:14 Anti-sunward (0.86,−0.39,−0.31) Left-hand
27/03/2002 07:15-07:25 Anti-sunward (0.86,−0.51, 0.03) Left-hand

Table 4.6: Table of results for delay analysis. The wave vector co-ordinate system
was orientated to the field aligned system outlined in section 4.3.1.

figure 4.4. Thus the ULF frequency observations were further underpinned.

A cross-correlation between the signals recorded by different Cluster space-

craft provided the time of travel information of the ULF waves between the satellites.

An optimisation procedure was used to obtain the direction of the wave vector. The

wave vector was found using the field aligned co-ordinate system outlined in section

4.3.1. The first component of the wave vector identifies if the wave was travelling

along (positive) or against (negative) the magnetic field direction. This information

was filtered through the flow chart in figure 4.9 to establish the intrinsic polarisa-

tion of the sample, IL or IR for the intrinsically left and right handed polarisation,

respectively. The results are displayed in Table 4.6.

Table 4.6 shows that the dataset has bifurcated into two distinct subsets,

those with waves that are intrinsically left-handed, IL and those that are right-

handed IR. Due to this we have used the 11/02/2002 as the second representative

sample to contrast to the 27/01/2004 sample. These two will now represent the

intrinsically left and right handed intervals of ULF waves. They are labelled IL and

IR respectively.

4.5 Differential Analysis

ULF waves are fast magnetoacoustic waves, detailed in section 1.7.3, therefore they

exhibit compressibility. A study into the compressibility of the dataset was therefore

required as further proof of the presence of magnetoacoustic waves. Unfortunately

Cluster does not possess high enough resolution proton density data to view this

directly, hence the magnetic field data was used as a proxy.

Using high resolution magnetic field data in the projected form, outlined in

Section 4.3.1, fluctuations in the magnetic field data were directly related to number

density fluctuations as shown in [Hollweg, 1999]:
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Figure 4.9: A flow chart to demonstrate how the collected information was used to
identify the intrinsic polarisation of the ULF waves found in the data samples. The
flow chart was based on a left-handed spacecraft polarisation input. If the input
was right-handed in the spacecraft reference frame the chart is simply inverted.
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δB‖
δB0

∼ δn

n0
. (4.9)

In order to obtain δB‖ the magnetic field data was processed using a differential

algorithm at a range of time-scales, τ :

δB‖(t) = B‖(t+ τ)−B‖(t), (4.10)

δB0(t) = |B(t+ τ)| − |B(t)|. (4.11)

In order to attain a dataset for various time-scales the algorithm was simply run in

a loop with the value of the time-scale growing with each iteration.

In the solar wind a pure Alfvén mode will exhibit perpendicular wave vector

components even if initially it is only parallel propagating, see section 1.7.3. The

effect of turbulence on the parallel wave components is to naturally transfer a frac-

tion of the energy into the perpendicular direction. Therefore there will always be

a background level of compressibility observed. Figure 4.10 shows that the solar

wind (dotted black line) does exhibit a base level of compressibility. However, the

IR and IL intervals presented a significantly higher level of compressibility in the

ULF frequency range. The solar wind compressibility also tended to smaller values

with larger time-scales as one would expect for turbulence.

In the IR compressibility analysis two distinct peaks were found at 1.6 s

and 25 s, these correspond to the frequency modes outlined in Section 4.3.4 for this

interval. These correspond to frequencies 0.8 Hz and 0.04 Hz respectively which was

slightly lower than established in previous sections for the 1 Hz ‘whistler’ mode.

Although the peaks in the IL are less defined it was still possible to make out

a peak at 5.8 s which corresponds to a 0.17 Hz frequency. Unfortunately the longer

period peak appears to be lost to an overall increase in compressibility. Alternatively

it may be possible that this peak has shifted beyond the time-scale maximum. It was

not possible to extend the time-scale range due to the computing power required.

These observations agree with the frequencies outlined in Table 4.4, how-

ever all frequencies seem to be slightly underestimated which could be due to an

unidentified systematic error in the algorithm.

Nevertheless we have observed that at distinct time-scales, in the vicinity

of the wave periodicities, we detect an increase in δB‖/δB0. This demonstrates an

enhanced compressibility via (4.9) due to the presence of the ULF waves.
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Figure 4.10: A study into compressibility using magnetic field data as a proxy.
Differential analysis was carried out on the pre-foreshock solar wind (dotted black)
and both IR (solid black) and IL (solid red) data samples. An increase, above the
turbulence level, in compressibility was observed in both IL and IR with distinct
peaks found in both.
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4.6 Temperature Anisotropy

Through sections 4.3 to 4.5 we have conclusively demonstrated the existence of ULF

waves in the foreshock dataset shown in Table 4.2. We now move on to follow [Selzer

et al., 2014] and explore the growth and impact of the ULF waves in the foreshock.

The beam instability (see section 1.8.3) is the primary mechanism for pro-

ducing right-hand polarised transverse waves, propagating parallel and anti-parallel

to the interplanetary magnetic field (IMF). Waves travelling along the beam are

resonant with the ion beam population, while waves propagating anti-parallel to

the beam may become unstable to the non-resonant fire hose instability (see section

1.8.3), in the presence of temperature anisotropy [Sentman et al., 1981, Gary et al.,

1998]. The plasma becomes unstable to fire hose when P‖ − P⊥ > B2/2µ0, the

plasma pressure parallel to the magnetic field direction is greater than that per-

pendicular by an amount exceeding the local magnetic pressure, explained in more

detail in section 1.8.3.

The linear phase of the beam instability is well understood: long wavelength

transverse electromagnetic fluctuations are produced and these scatter and isotropise

the beam particles reducing the source of the instability, discussed in detail in section

1.8.3. The interaction of these waves with the unstable population may, however,

be diminished due to advection of waves by the solar wind as well as their refraction

[Scholer et al., 2003]. The non-linear phase of this process is less understood, but it

is known that the generated fluctuations can interact with the bulk ion population

and affect global plasma properties.

Two general mechanisms may then be considered. If an isolated mode be-

comes unstable and nonlinear temporal scale exceeds the linear one, coherent waves

may lead to the wave particle interactions. If the broad-band spectrum is gener-

ated and nonlinearity is strong, the energy may cascade to large scales modifying

plasma parameters in order to suppress the instability [Rosin et al., 2011, Quest and

Shapiro, 1996].

Here, we consider a hypothesis that, in the nonlinear phase of the beam

instability, the ULF waves influence the temperature anisotropy of the core ion

population, which may lead to a “secondary instability” of the fire hose or proton

cyclotron (PC) type.

4.6.1 The (β‖, T⊥/T‖) Parameter Space

A parameter space given by proton temperature anisotropy R = T⊥/T‖ and parallel

plasma β, β‖ = 2µ0nkBT‖/B
2 [Hellinger et al., 2006, Bale et al., 2009, Osman et al.,
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Instability Threshold a b β0
Proton Cyclotron 0.43 0.42 -0.0004

Mirror 0.77 0.76 -0.0016
Parallel Firehose -0.47 0.53 0.5900

Perpendicular Firehose -1.4 1.0 -0.1100

Table 4.7: Instability thresholds used to bound the (β‖, R) parameter space. These
values are the parametric fit values used in equation 4.12 to calculate the maximum
growth rate of γ/ωci = 10−3. Values have been taken from [Hellinger et al., 2006,
Marsch et al., 2004].

2012] was used to visualise a possible link between temperature anisotropy and core

proton temperatures (defined in section 4.2).

This parameter space is bounded by the theoretical marginal stability thresh-

olds [Hellinger et al., 2006, Marsch et al., 2004] of the proton cyclotron resonance

(PC) instability, mirror instability, oblique and parallel fire hose instabilities. These

are discussed in more detail in section 1.8.3. When the plasma parameters cross

these instability thresholds the plasma engages the corresponding instability, thus

bringing the parameters back into the stable domain. The position of the threshold

lines is somewhat arbitrary, since the exact position requires the ratio of growth

rate and ion cyclotron frequency, γ/ωci = 0. In practice this limit is approximated,

similarly to other studies, by a small value γ/ωci = 10−3. The thresholds follow the

form:

R = 1 +
a

(β‖ − β0)b
, (4.12)

where a, b and β0 are adjustable parameters. The parameter values for each insta-

bility threshold can be found in Table 4.7.

4.6.2 Visualisation

We follow the method used by [Hellinger et al., 2006, Bale et al., 2009, Osman et al.,

2012] to visualise the (β‖, R) plane, see figure 4.11. Each data point was mapped

onto the plane, colour values were then assigned to it using HIA ion temperature

values. All the data points were then used to extrapolate a two dimensional mesh

which was then displayed as a colour image on the (β‖, R) axis, see figures 4.12 and

4.13. The instability thresholds (section 4.6.1) were then plotted over the image to

bound the parametric space.

Cluster HIA temperature data has been smoothed over a window of four

neighbouring points in order to construct these quantities. A anisotropy plot was
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Figure 4.11: A contour plot is presented for the grouping of (β,R) in the Wind/SWE
data for the period of (1995-2001), the p subscript denotes that these have been
plotted for protons. The curves show the contours of the maximum growth rate
(normalised to ωci) in the plasma (left) for the proton cyclotron instability (solid
curves) and the parallel fire hose (dashed curves) and (right) for the mirror instability
(dotted curves) and the oblique fire hose (dash-dotted curves), [Hellinger et al., 2006,
Figure 1].

made for each interval of Table 4.2. The plots have been grouped according to

intrinsic polarisation, see figures 4.12 and 4.13.

Figure 4.12 shows the temperature anisotropy plots for the IR intervals of

table 4.2. With the exception of the 20/02/2002 C3 interval all plots show an

increase in proton temperature when the distribution approaches the firehose insta-

bility thresholds. The temperature for the points located near the fire hose marginal

stability curves were usually a factor of 2− 3 times higher than compared to those

located near the R = 1 line. The fact that 20/02/2002 C3 interval lacks the cor-

responding increase in temperature could be down to a number of reasons. Most
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Figure 4.12: Anisotropy plots for the intrinsically right-hand polarised intervals for
both Cluster 1 and Cluster 3. The curves show the maximum growth rates for
the proton cyclotron instability (solid black curve), mirror instability (dashed black
curve), oblique fire hose instability (green dashed curve) and the parallel fire hose
instability (solid green curve). The growth rates were plotted for γmax=10−3ωci.The
colour was assigned using the Cluster HIA ion temperature data.
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Figure 4.13: Anisotropy plots for the intrinsically left-hand polarised intervals for
both Cluster 1 and Cluster 3. The curves show the maximum growth rates for
the proton cyclotron instability (solid black curve), mirror instability (dashed black
curve), oblique fire hose instability (green dashed curve) and the parallel fire hose
instability (solid green curve). The growth rates were plotted for γmax=10−3ωci.
The colour was assigned using the Cluster HIA ion temperature data.
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likely is that the C3 satellite passed through the wave region at a later time due to a

larger Cluster formation at this date. Interval 19/02/2010 also shows some heating

along the PC and mirror instability thresholds. This could be due to the existence

of some secondary left-handed ULF waves occurring at the same time.

The left-hand intervals show similar elevated temperatures near the PC /

mirror instability thresholds. While the differences between the proton cyclotron

and the mirror mode instability threshold are small for β‖ > 1, the mirror mode is

linearly polarised and thus can be excluded from our consideration. A problem arises

by carrying out analysis in this fashion. The low count rate in the individual plots

do not individually provide a statistically significant result. However by combining

the individual plots into an ensemble plot for each polarisation we were able to build

a statiscally significant result, see figure 4.14.

Figure 4.14, panels (a,b) shows distributions of counts for the left- and right

hand wave intervals, respectively. The ensemble averaged distribution of tempera-

tures, based on core ion distributions for intervals of specific polarisation are shown

in panels (c,d) of Figure 4.14. Only temperature in the bins with more then 3

counts was considered for these plots. We highlight that the axis of these plots are

related via their common dependence on the parallel temperature. Note that for

the IL intervals, the count distribution has its maximum nearer to the isotropy line

and the outliers stretch from PC to fire hose marginal stability lines. This, and a

smaller number of data points contributing to the plot for the left-hand polarised

waves makes the interpretation difficult.

Elevated temperatures around the marginal thresholds of the kinetic insta-

bilities do not imply net heating of plasma. Indeed, available energy may simply be

transferred between perpendicular and parallel particle motions. In addition, similar

correlations between ion temperature and the anisotropy have been previously re-

ported for the ambient solar wind [Bale et al., 2009, Osman et al., 2012]. Thus it was

crucial to verify that the upstream solar wind conditions were not fully responsible

for these observations. Such a test requires a contemporaneous observation of up-

stream and foreshock plasmas. We have identified one interval (interval 19/02/2010

of Table 4.2) where Wind and Cluster spacecraft magnetic fields correlated well after

a forward time shift of 3200 seconds, applied to Wind data.

Panel (a) of Figure 4.15 shows Wind (black diamonds) and Cluster (red cir-

cles) measured temperature anisotropy, with Wind data shifted forward in time by

3200 seconds. Blue solid line corresponds to the integrated wavelet power for the

ULF frequencies in the range 0.02 − 0.06 Hz. While the upstream solar wind con-

ditions broadly modulate foreshock conditions, it was clear that the temperature
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Figure 4.14: (a) Ensemble averaged distribution of counts for all intervals with left-
hand polarisation. (b) Same as (a) for the ensemble of right-hand polarisetion. (c)
Pixelised plot of the ensemble averaged, normalised proton temperature at (β‖, R)
for the left-handed intervals. Only bins with counts larger than 3 are considered. (d)
same as (c) for the right-hand intervals. The curves show the maximum growth rates
for proton cyclotron instability (solid black curve), mirror instability (dashed black
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from [Selzer et al., 2014].
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Figure 4.15: (a) A Comparison of the upstream solar wind anisotropy, as seen by
Wind spacecraft (black solid line) with that observed by Cluster spacecraft (red solid
line) is presented. The dashed blue curve shows the integrated wavelet coefficient
power in the ULF frequencies of 0.02 − 0.06 Hz. (b, c) Distribution of counts for
Cluster and Wind spacecraft, from [Selzer et al., 2014].

anisotropy in the foreshock was much lower when compared to Wind. We find a

sharp increase in the mean (and median) parallel temperature from 27 eV (0.31 MK)

to about 76 eV (0.88 MK), a factor of ≈ 3 increase between the upstream and the

foreshock plasma. The perpendicular temperature exhibits only a small increase

(within the error bar). Interestingly, the power in the ULF waves appear to corre-

late well with the observed anisotropy where the ULF wave activity exhibit sharp

decrease, the anisotropy rises and reaches values observed by Wind in the ambient

solar wind.

We have also examined intervals 1 − 4, listed in Table 4.2, for times when

Cluster’s orbit appeared to be in the ambient solar wind. While this is not equiva-

lent to the upstream-foreshock analysis, we have identified similar behaviour in the

interval 3, with the parallel temperature increase by factor of ∼2 between the solar

wind and the foreshock part of the Cluster trajectory.
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4.6.3 Time Evolution

We next examined the temporal dynamics of the measurements, presented in Figure

4.14(b), on the (β‖,R) plane. The aim was two-fold: to establish if points contribut-

ing to the temperature peak come from a single time interval within the time series

and to check if changes in anisotropy are always associated with changes in the

magnetic field strength. In order to facilitate such a test, we examined an observed

correlation between temperature and the anisotropy, R, for time intervals where β‖
is not varying significantly. We also considered the relation between anisotropy and

the macroscopic versions of adiabatic invariants discussed in section 1.2.3.

Figure 4.16 shows quantity of interest for each data point of the interval

27/01/2004 between times 04:05-04:25. Panel (a) shows the magnetic field magni-

tude down-sampled to 4 seconds resolution of the plasma data as well as proton

density perturbations. It is clear that the density is well correlated with magnetic

field strength perturbations, already established in section 4.3.2. Panel (b) shows

temperature for this time period and panel (c) shows the temperature anisotropy, R.

Solid filled circles in panel (c) represent temporal positions of 30 highest temperature

measurements. Panels (d) and (e) show temporal traces of first (µ = p⊥/2B) and

second (approximated by J =p‖B
2) adiabatic invariants (section 1.2.3) normalised

to their maximum values, respectively. In the fluid description these adiabatic invari-

ants should be constant, but we observe significant fluctuations on small time-scales,

which are of order ≈21% for µ and ≈46% for J .

It is clear that the points close to the fire hose marginal stability line (R ≤ 0.5

) do not originate from a single set of data. We observe an intermittent behaviour

where the temperature anisotropy varies considerably and does not follow periodic

oscillations of the magnetic field components. The highest temperatures coincide

with points of minimum anisotropy and these are also evenly distributed throughout

this interval. We note that between times t0 = 900 s and t1 = 1150 s, the magnetic

field magnitude and the anisotropy both decrease, but this does not coincide with a

significant increase of concentration for temperature enhancements. Close examina-

tion of traces in Figure 4.16 shows that sharp drops in the anisotropy trace do not

show direct correlation with magnetic field strength, that is they do not coincide

with magnetic field strength maxima or minima, exclusively. In the same time, how-

ever, the times of elevated temperatures coincide with large deviations in the second

adiabatic invariant, suggestive of parallel heating via wave particle interactions.
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4.7 Discussion

Results presented above indicate a correlation between higher plasma temperature,

the presence of the right-hand polarised waves and the plasma proximity to the fire

hose marginal stability threshold in the parametric space. Similar correlation was

observed for the left-hand polarised waves, close to the marginal stability line of

the PC instability. Correlations are not synonymous with causality and, given the

complexity of plasma dynamics in the foreshock region, the interpretations of these

results are non-trivial.

The proximity of core plasma distribution to the fire hose marginal stability

line does not imply that the instability itself must necessarily control the dynamics

of the plasma. By monitoring the upstream conditions, using Wind spacecraft, we

have demonstrated that the temperature anisotropy was modified in the foreshock

in such way that T⊥ ≪ T‖. The enhancement in the total temperature correlates

well with the factor 2 − 3 increase in T‖ observed in two intervals. The results

suggest that the power in ULF waves was also strongly correlated with the observed

temperature anisotropy in the foreshock, at least for the right-hand polarised waves.

One possible interpretation of these results was to suggest that the “sec-

ondary” fire hose instability was indirectly driven by the right-hand polarised ULF

waves. Aided with observations presented in figure 4.16, we consider two distinct

mechanisms which can modify plasma temperature anisotropy in the presence of

large magnetic field fluctuations. If the first adiabatic invariant was conserved, any

decrease in the magnetic field strength would lead to an equivalent decrease in the

perpendicular pressure, p⊥, pushing the bulk plasma fluctuations towards the fire

hose unstable region. Our results, however, show that the anisotropy changes are

not exclusively associated with such magnetic field decreases. This suggests the

second mechanism in a form of Landau damping of oblique fast magnetosonic ULF

waves and it has been often discussed in the context of cosmic ray acceleration [see

e.g. Schlickeiser and Miller, 1998, and references therein]. The wave energy was

transferred into the parallel particle motion in the presence of a compressive mag-

netic field component. Compressibility is essential for the viability of this proposed

heating mechanism and it is clearly visible from the panel (a) of Figure 4.16 that

these right-hand polarised wave do perturb the magnetic field magnitude. For large

amplitude waves, particles with super-Alfvénic velocities will experience a large mir-

ror force Fm = −(mv2⊥/2B)∇‖B and will be accelerated if they experience a head-on

reflection. The net heating is a result of the difference between the occurrence of

wave-particle interactions for particles moving with (lower occurrence) and against
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(higher occurrence) the wave.

In summary, the results presented here pertain directly to a correlation be-

tween elevated temperatures and temperature anisotropy in the terrestrial foreshock.

However, these could also be relevant to studies of the solar wind plasma, where

similar correlations have also been observed. For example, given a small number

of points, which populate regions close to marginal stability thresholds in the solar

wind studies [Bale et al., 2009, Kasper et al., 2002], it is reasonable to suggest that

these signatures may arise from wave activity near relatively small number of coher-

ent structures, such as shocks [Wilson et al., 2009]. The Landau damping of ULF

waves, identified as a possible driving mechanism for the fire hose instability, may

also be important in solar wind turbulence, where oblique fast magneto-acoustic

waves of low frequency are believed to be present, for example, in the foreshocks of

quasi-parallel CME shocks [Gonzalez-Esparza et al., 1996, Tu et al., 1989].
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Figure 4.16: Magnetic field strength down-sampled to 4 sec. resolution (black line)
and HIA proton density (blue line) (a), ion temperature (b), temperature anisotropy
ratio R (c), normalised first adiabatic invariant (d) and normalised second adiabatic
invariant (e) for the interval: 27/01/2004 4:07-04:26. Solid symbols (circles) in panel
(c) indicate temporal position of 30 highest temperature measurements. Dashed
vertical lines indicate examples of drops in the anisotropy trace, which are not
coinciding with a significant magnetic field strength change, from [Selzer et al.,
2014].
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Chapter 5

Zebra Patterns I: Simulation

and Analytics

5.1 Introduction

In this chapter we have followed on from section 2.5.4 and delved into the relationship

between MHD fluctuations and the double plasma resonance (DPR, see section

2.5.4) emission mechanism for zebra patterns (ZP). We implemented analytical and

numerical techniques to arrive at theoretical predictions for the behaviour of ZP

in the presence of MHD waves affected by plasma structuring. There are some

observational indicators that there is indeed a link as shown in [Yu, Nakariakov,

Selzer, Tan, and Yan, 2013] which we will discuss in further detail in chapter 6.

Initially a broad assessment was carried out into the current state of research

into solar radio bursts. [Chernov, 2006] was used as a skeleton to provide what is

generally accepted in the radio physics community. [Chernov, 2006] describes the

growing field of type IV radio bursts and events involving stripes in emission and

absorption against the continuum background. Traditionally observed in the meter,

decimeter and more recently centimetre wavebands, fine structure elements of type

IV events are divided into two types, zebra patterns (ZP) and fibre bursts (FB).

It is now commonly thought that the two phenomena are produced by the same

mechanism under different conditions.

In recent years a new page has opened on ZP in the microwave range, mainly

due to the new observations from the Chinese spectrometer at a finer spectral and

time resolution (10 - 20 MHz and 5 ms). New data on zebra pattern structures at

centimetre wavelengths show that they are similar to the corresponding structures

at meter wavelengths. Hence we aim to align our analytical and numerical results
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with the new data. We began with an attempt at analytically deriving the spatial

structure of ZP in coronal loops.

5.2 Analytical Description of Zebra Pattern Fine Struc-

ture.

This work calls upon simulation and analytical techniques to derive ZP emission from

first principles to underpin our current understanding of DPR emission mechanism.

5.2.1 Deriving the Density Field

The investigation began with the work of [Cooper et al., 2003], a study into the

propagation of short period fast magnetoacoustic waves (see section 1.7.3) in a

coronal loop (section 2.4.4). The same assumptions were taken and the derivation

follows from there. A magnetic slab geometry was chosen to model the coronal

loop. It consists of a smooth density profile across the magnetic field, given by the

function:

ρ0 = ρmaxsech
2
(x

δ

)

+ ρ∞, (5.1)

where ρ0, ρmax and δ are all constants. Here the parameter ρmax is the density at

the centre of the loop and ρ∞ is the density at x = ∞. The constant δ governs

the width of the inhomogeneity. This profile is known as the symmetric Epstein

profile, see figure 5.1, [Adams, 1981, Nakariakov and Roberts, 1995]. With a uniform

background magnetic field, B0 = B0ẑ the model satisfies a total pressure balance

at equilibrium under the zero-β limit.

According to [Nakariakov and Roberts, 1995], linear perturbations of the transverse

plasma velocity:

Vx = U(x)exp i(ωt− kz), (5.2)

are described by the equation:

d2U(x)

dx 2 +

[

ω2

vA∞2
− k2

ω2

vAmax
2
sech2

(x

δ

)

]

U(x) = 0, (5.3)

where vA∞ is the Alfvén speed at x = ∞ and vAmax is the Alfvén speed based upon

the difference in density between that at x = 0 and that as x → ∞. As the corre-

sponding profile of the Alfvén speed maintains a minima at the center of the slab,
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Figure 5.1: The symmetric Epstein profile representing the plasma density across a
coronal loop, normalised to the width paramter δ and the maximum density, ρmax

(see [Adams, 1981, Nakariakov and Roberts, 1995]).
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the slab can be considered as a refractive waveguide for the fast magnetoacoustic

waves (see [Edwin and Roberts, 1988] for discussion).

Equation 5.3 states an eigenvalue problem which can be solved analytically

if supplemented by the boundary condition U(x → ± ∞) → 0, [Adams, 1981].

The eigen function describing the sausage mode is given by:

U =
sinh (x/δ)

coshλ (x/δ)
, (5.4)

with λ given by:

λ =
|k| δ
vA∞2

√

vA∞2 − a2 + 1. (5.5)

Here a was defined as the wave phase speed where a = ω/k. The phase speed was

then prescribed by the dispersion relation:

|k| δ
vA0

2

(

a2 − vA0
2
)

− 2
1

|k| δ =
3

vA∞

√

vA∞2 − a2, (5.6)

for the sausage mode. We define vA0 = vA∞vAmax/(v
2
A∞ + v2Amax)

1

2 as the Alfvén

speed at the center of the Epstein profile, x = 0.

To understand the effect of sausage perturbations on the zebra pattern, equa-

tions 5.4 to 5.6 need to be solved analytically for the density and absolute magnetic

field profiles, ρ = ρ(x, z, t) and B = B(x, z, t). First it was necessary to define a set

of normalised units:

k′ = |k|δ
vA∞ = 1,

x′ = x/δ,

z′ = 2π
L z,

t′ = ωt,

(5.7)

where L is the length of the loop. The dispersion relation, equation 5.6, could then

be reduced to the explicit form a = a(k) with only one parameter vA0. The primes

were dropped for convenience, hence the normalised dispersion relation:

k

vA0
2

(

a2 − vA0
2
)

− 2

k
= 3

√

1− a2. (5.8)

This was solved as a bi-quadratic with 4 roots, two roots do not obey the condition

that vA∞2−a2 > 0 reducing the solution to two symmetric roots for waves travelling

in opposing directions. Picking the positive solution:
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a =
vA0

√

8 + 4 k2 − 18 vA0
2 + 6

√

4 k2 − 4 k2vA0
2 − 8 vA0

2 + 9 vA0
4

2k
. (5.9)

Figure 5.2: The dispersion relation plotted for equation 5.9. The solution is confined
between the region of vA0 < a < vA∞ in phase speed (vA0 is chosen at 0.3). A cutoff
wavelength kc also prescribes the domain in k space to insure a real phase speed
defined as kc.

This dispersion relation was plotted in figure 5.2, the solution is confined between

the region of vA0 ≤ a < vA∞ in phase speed (vA0 is arbitrarily set to 0.3). A cutoff

wavelength kc also prescribes the domain in the k space to insure a real phase speed,

defined as:

kc =

√

2vA0
2

1− vA0
2
. (5.10)

This solution was then passed to the normalised solution for the λ exponent:

λ = k
√

1− a2 + 1, (5.11)

substitution into equation 5.4 resulted in the full normalised transverse plasma ve-

locity in the fast sausage mode:
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U(k, x) =
sinh (x)

cosh|k|
√
1−a2+1 (x)

. (5.12)

The result was plotted in figure 5.3 for various values of k.

Figure 5.3: The normalised transverse profile of plasma velocity perturbations in a
sausage mode was plotted for various values of normalised longitudinal wave number
k as a function of the transverse spatial variable x.

Only small perturbations were considered such that ρ = ρ0 + ρ̃ where ρ̃ was

assigned by a small perturbation in the plasma velocity field Vx. Hence from the

continuity equation:

ρ̃ = −
∫

∂(ρ0Vx)

∂x
dt, (5.13)

substituting equation 5.12 into this:

ρ̃ = −
∫

∂

∂x

[

(

ρmaxsech
2 (x) + 1

)

sinh (x) cos (t) sin (z)

(cosh (x))k
√
1−a2

]

dt, (5.14)

returns:

110



Figure 5.4: The normalised density perturbations were plotted for the loop apex
(x = 0) (solid line) and the loop edge (x = δ) (dotted line). A clear regular
oscillation was seen in both regions with the greatest amplitude shown in the loop
apex.

ρ̃(x, z, t, k) = 2 ρmaxsech
2(x) tanh(x) sinh(x) sin(t) sin(z)

(cosh(x))k
√

1−a2

− (ρmaxsech2(x)+1) cosh(x) sin(t) sin(z)

(cosh(x))k
√

1−a2

+
(ρmaxsech

2(x)+1) sinh2(x) sin(t) sin(z)k
√
1−a2

(cosh(x))k
√

1−a2 cosh(x)
.

(5.15)

The perturbation was then added to the background density, the Epstein profile

such that ρ(x, z, t, k) can be expressed in its full form, shown in figure 5.4:

ρ(x, z, t, k) = ρmaxsech
2 (x) + 1

+ 2 ρmaxsech2(x) tanh(x) sinh(x) sin(t) sin(z)

(cosh(x))k
√

1−a2

− (ρmaxsech
2(x)+1) cosh(x) sin(t) sin(z)

(cosh(x))k
√

1−a2

+
(ρmaxsech2(x)+1) sinh2(x) sin(t) sin(z)k

√
1−a2

(cosh(x))k
√

1−a2 cosh(x)

+ ρ∞.

(5.16)
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5.2.2 Deriving the Magnetic Field Perturbations

An analytical description of the magnetic field perturbation, B̃ was needed to re-

construct the ZP fine structure using the DPR mechanism. The magnetic field

perturbation is induced due to small oscillations in the plasma velocity field, ṽ such

that the overall magnetic field becomes B = B0 + B̃ where B̃ ≪ B0. The linear

MHD equations (1.69) were used as the starting point to derive B̃, in particular the

Euler equation in the zero-β approximation:

ρ0
∂ṽ

∂t
=

1

µ0
(B0 ∧∇ ∧ B̃), (5.17)

and the induction equation:

∂B̃

∂t
= ∇∧ ṽ ∧B0, (5.18)

where B̃ and ṽ are the perturbations of the magnetic field and plasma velocity,

respectively. They are defined by:

B̃ = Bxx̂+Bz ẑ,

ṽ = Vxx̂+ Vz ẑ,
(5.19)

where Vx is given by (5.2) while Bx, Bz, Vz are to be derived. To begin (5.17) was

projected onto the coordinate axis such that in the z direction:

ρ0
∂Vz

∂t
= 0 (5.20)

If we assume Vz to be harmonic like Vx then iρ0ωVz = 0 or Vz = 0, thus the only

velocity perturbation component lies in the x direction. Equation (5.18) allows the

derivation of the magnetic field perturbation components using Vx:

∂Bx

∂t
= −B0

∂Vx

∂z
, (5.21)

and:

∂Bz

∂t
= B0

∂Vx

∂x
, (5.22)

which yields:

Bx

B0
= −Vx

a ,
Bz

B0
= − i

ω
∂Vx

∂x ,
(5.23)
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which produces:

Bx

B0
= −1

a

sinh (x)

cosh1+k
√
1−a2(x)

cos(t− z), (5.24)

and:

Bz

B0
=

1

a

(

(1 + k
√
1− a2) sinh2(x)

cosh2+k
√
1−a2(x)

− cosh(x)

k cosh1+k
√
1−a2(x)

)

sin(t− z). (5.25)

5.2.3 Zebra Pattern Formation

The next stage of the study was to assess whether it was possible to analytically

derive the results found in [Yu et al., 2013], discussed in detail in chapter 6. In the

paper we observe periodic oscillations in both stripe frequency and stripe separation

known as ‘wiggles’. The perturbations in the ZP are hypothesised to be induced by

a fast mode propagating through the zebra pattern emission region. We aimed to

simulate a standing or propagating sausage mode in the emitting loop and observe

the disturbance induced in the simulated ZP, as an attempt to support this inter-

pretation theoretically. To begin with the double plasma resonance model’s (see

[Kuznetsov and Tsap, 2007, Zheleznyakov and Zlotnik, 1975]) conditions (section

2.5.4) needed to be satisfied by the density function given in equation 5.16 and the

magnetic field perturbations given by equations 5.24 and 5.25. ZP stripe locations

and frequencies in radio emission were given by the regions where the DPR condi-

tion is fulfilled, see section 2.5.4. These regions amplify plasma fluctuations excited

by an electron beam passing through the background non-uniform plasma with a

non-uniform magnetic field, through the DPR mechanism. The new larger ampli-

tude fluctuations then coalesce and induce radio emission processes, for the sketch

of this mechanism see figure 2.19. The DPR condition is given by:

sωce =
√

ω2
ce + ω2

pe = ωuh, (5.26)

where fce is the electron cyclotron freguency (equation 1.2), fpe is the plasma fre-

quency and s is the harmonic number which can hold any positive integer value.

The radio emission is produced at the frequency fuh or the double harmonics

of fuh as a consequence of coalescence of two plasma waves generated by kinetic

instabilities. These instabilities are greatly enhanced under the DPR condition.

Equation 5.26 can be rewritten with ω2
pe substituted by ρ and ω2

ce substituted by

B2 as:
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Figure 5.5: The analytically derived zebra pattern in radio emission is recreated.
The zebra pattern clearly exhibits the ‘wiggle’ result shown in [Yu et al., 2013, figure
1, section 1].

ρ

|B|2 = s2 − 1, (5.27)

due to the definitions of fpe and fce. Using equations (5.24, 5.25) and (5.16) it was

possible to find the spacial location of the DPR for different integer values of s at

different instances of time. Using the (x, z) co-ordinates the local density fields was

converted to frequency and values that satisfied the DPR mechanism were plotted

as a function of time resulting in the dynamic spectra, figure 5.5. The wiggle period

as derived analytically was observed at PA = 1 s in figure 5.5, as simulation time

was normalised to the fast mode period which is typically 1 s in coronal loops.

5.3 Numerical Simulations

Having derived the ZP using analytical techniques it was beneficial to use simulations

to confirm that these results do in fact agree with the experimental results outlined

by [Yu et al., 2013]. Key results from section 5.2 will be compared to those produced

by the simulations to underpin the location of the DPR resonances.
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5.3.1 Static Simulations

The starting point of ZP simulation was a snapshot of the sausage at a fixed instant

in time. Time dynamics were neglected to allow us to understand what the back-

ground ZP should look like and how to effectively simulate it. Once established it

will be possible to perturb these simulations using the different phases of the MHD

oscillation.

1D

An investigation was undertaken to assess if the simulation of ZPs was a viable

concept. We began with a simple 1D toy model accounting for the variation of the

density along the field only. The intent was to understand the spacial scales involved

in the ZP emission region. We implemented the work of [Dulk and McLean, 1978] as

an attempt to reproduce the results shown in [Chernov, 2006] on a one dimensional

zebra pattern. We consider a stratified plane atmosphere with the density depending

on the height, h measured along the field only such that:

ρ(h) = ρ0exp

[−(h− h0)

104T

]

, (5.28)

where ρ0 is the equilibrium density at the base of the chromosphere, T is the constant

coronal temperature and h0 is the base of the chromosphere. The introduction of a

constant temperature from photosphere to the outer corona is a huge oversimplifi-

cation. As described in chapter 2 the chromosphere and corona have a complicated

temperature structure, but as we have already stated this is the most simple model

to start our investigation and thus its results should only be used as a starting point.

In particular any resonances found in the chromosphere region are unlikely to be

physically relevant due to the error in temperature values at these lower altitudes.

It proved to be easier to convert this into a relationship for electron plasma

frequency via (1.1). This meant that the model was scaled by an average coronal

electron plasma frequency fpe0 rather than trying to estimate the height of the

photosphere-chromosphere boundary:

fpe(h) = fpe0exp

[ −h

104T

]

. (5.29)

The 1D approach violates the ∇ · B = 0 condition, but we restrict our attention

to the emission from the central axis of the emitting loop only. The magnetic field

profile was taken as:
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Figure 5.6: The s harmonics of fce are plotted (solid black) against fuh (dashed).
Intersections are where the DPR condition was satisfied.
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Figure 5.7: The following are plotted for the one dimensional zebra pattern emission
system for both high and low altitude solutions: The stripe spacing is plotted against
the double resonance harmonic number; the stripe spacing is plotted against stripe
frequency; the stripe spacing is plotted against stripe emission height and finally
the frequency is plotted against stripe emission height.
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Harmonic Number - s Height [Mm] Frequency [GHz]

2 0.54 3.49
3 0.91 3.18
4 1.25 3.10
5 1.58 3.06
6 1.91 3.04
7 2.24 3.03
8 2.57 3.02
9 2.90 3.02
10 3.22 3.01

Table 5.1: Results for the 1D static ZP model. A value of 1.2 MK was taken for the
coronal temperature while the coronal magnetic field was assumed to take a value
of 1 mT (10 gauss). The coronal plasma frequency was estimated at 3 GHz.

B =
B0

2

(

z

R⊙

)−a

, (5.30)

where R⊙ is the solar radius and B0 the magnetic field at the base of the chro-

mosphere; a is a scaling parameter which was chosen to be from 1 − 1.5, [Dulk

and McLean, 1978]. The magnetic field was then tranformed into the electron cy-

clotron frequency via (1.2). The fpe and fce values were subsequently used to find

what heights and frequency values the DPR condition, fuh =
√

f2
ce + f2

pe = sfce

(equation 2.3) were fulfilled for each harmonic. The results are shown in table 5.1.

These values align with recent observations made in the GHz range, see sec-

tion 2.5.4. Figure 5.6 shows sfce for 10 values of s plotted against fuh. Intersections

are where the DPR condition is satisfied. As shown in table 5.1 there are crossings

up to a heights of 3 Mm. We also found DPR fulfilment at far larger altitudes and

therefore lower frequencies i.e. in the MHz range.

The difference between the lower and higher altitude stripe emission was fur-

ther explored by looking at several parameters as shown in figure 5.7. The most

interesting observation was the stripe separation, or ‘frequency spacing’ versus fre-

quency. The two regions seem to exhibit the opposing behaviour. While these

observations are interesting it is important to remember that this is an oversimpli-

fied toy model. Several assumptions have been made which would not hold in the

vastly structured solar atmosphere. Even so the study showed that it was possible

to reproduce an extended source region for ZPs. Further to that we were able to re-

trieve realistic frequency and height information for a 1D system. The ZP emission

heights were greatly underestimated when in comparison with [Chen et al., 2011]

who predicted heights of 60− 80 Mm, a factor of 20 larger.
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Figure 5.8: Normalised transverse and longitudinal electron density (dashed) and
absolute magnetic field (solid) profiles for the static 2D loop model. The loop’s den-
sity structure was used to solve for the magnetic field under equilibrium conditions
according to [van Hoven et al., 1977].

2D

The main motivation to progress into two dimensional modelling is the possibility

that different harmonics of DPR can be situated not only at the non-uniformity

along the field, as considered above, but also across the field. Following on from

section 5.3.1 we move into a two dimensional snapshot model. In 2D we began

to build a naive loop structure to resemble that of a coronal loop. The coordinate

system is aligned along the loop axis, z and hence the magnetic field, with the radial

coordinate r. As the system is now 2D we need to ensure the pressure field retains

the magnetostatic equilibrium across the loop. A pressure field was constructed by

combining a pressure profile along the loop with a pressure field across the loop. We

were then able to substitute pressure for density as they maintain a local relation

via (1.23).

The radial pressure profile, pr(r) was taken as the Epstein profile (5.1), used in

section 5.2. The longitudinal profile, pl(z) was taken as the [Dulk and McLean,

1978] model from section 5.3.1 which assumed a stratified atmosphere. The profiles

were then normalised and multiplied together to evaluate the pressure as a function

of r and z, p(r, z) = pr(r)pl(z).
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Figure 5.9: The 2D static loop model for ZP emission using the DPR mechanism.
Magnetic field, electron density, upperhybird frequency and ZP locations are plotted
onto the 2D loop.
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Figure 5.10: A 2D static loop model for ZP emission using the DPR mechanism
zoomed in the vicinity of one of the footpoints. Magnetic field, electron density,
upperhybird frequency and ZP locations are plotted onto the 2D loop.
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The equilibrium magnetic field was found by following the derivation in [van

Hoven et al., 1977]. The derivation uses small-scale pressure gradients to specify the

locally non-force-free field which is embedded in a global force free configuration.

The assumption is that in the loop, pressure forces become important thus dropping

the low−β limit in these small regions. The paper demonstrates that the configura-

tion can be stable given certain parameter choices. In this chapter we merely use it

as a starting point for 2D modelling as a proof of concept. They began by using the

static momentum-transfer equation, (1.31) in a static regime (∂t → 0 and v = 0) in

order to incorporate the pressure gradients, with E = 0:

0 = −∇p+ j ∧B. (5.31)

Separating the current density j into the parallel and perpendicular components to

B, we see that only j⊥ enters the force balance equation hence we needed another

relation for j‖. Since j‖ can always be written as j‖ = α(r, t)B, we only need to

specify the dependence of α on r and t. In this simplistic model we selected the

linear case where α is constant and uniform. Then using Ampere’s Law (1.7) we

have:

∇∧B = µ0(j‖ + j⊥)

≈ αB(r) +
µ0B ∧ ∇p

B2
.

(5.32)

Following [van Hoven et al., 1977], this was solved analytically using the Bessel-

function solution of the force free equation. In cylindrical coordinates where B =

(Br, Bθ, Bz):

Br = 0, (5.33)

to conserve ∇ ·B = 0, while:

Bz(r) = B0(r)J0(αr), (5.34)

and

Bθ(r) = B0(r)J1(αr), (5.35)

where J0 and J1 are the Bessel functions of the first kind. B0 is the common field

amplitude given by, [van Hoven et al., 1977]:

d

dr
(B2

0) = − 2µ0

J2
0 (αr) + J2

1 (αr)

dp

dr
. (5.36)
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The magnetic field strength profile B(r) was reconstructed from the the magnitude

of its components:

B(r) = |B| =
√

B2
z +B2

θ . (5.37)

The solution requires solving for the equilibrium magnetic field, B0 using (5.36). A

differential finite element analysis was carried out to solve for B0 at each point on

the grid using the input pressure field p(r, z). The result was fed through the system

of equations above to produce the overall magnetic field strength B(r). The two

normalised functions, p(r, z) and B(r) shown in figure 5.8, were then converted to

fpe and fce respectively using average coronal parameters. The process carried out

in section 5.3.1 was then repeated to find the location and emission frequencies of

regions where the DPR condition was satisfied. The results are shown in figures 5.9

and 5.10. The frequency values found range from 0.8− 1.9 GHz which again aligns

with observational values seen in table 2.5.3.

This simple model predicted the location of the zebra patterns to be extended

from the foot points to the apex of the coronal loop with the higher harmonics

isolated to an outer shell running the length of the loop. This is in agreement

with [Chen et al., 2011] who constrain the ZP emission region to an area at a

height of 60 − 80 Mm above the foot points, shown in figure 5.11. However [Chen

et al., 2011] do not observe ZP emission in the loop foot points. There may be

secondary absorption mechanisms which prevent ZP radio emission from the foot

points however they are beyond the scope of this model. Moreover, [Chen et al.,

2011] did not manage to see the DPR layers at the transverse slopes of the loop.

This discrepancy with our theoretical results could be caused by the localisation of

the non-thermal electron beam near the central axis of the loop cylinder. In this

scenario the DPR layers at the transverse slopes are not excited because of the lack

of non-thermal electrons there.

5.3.2 2D Dynamic Coronal Loop Model

Through sections 5.2 - 5.3.1 we have begun to understand the spatial structure and

frequency range of ZP using numerical simulations. In this section we progress the

numerical analysis by modelling a dynamic coronal loop which we have perturbed

with MHD oscillations in an attempt to observe their impact on the ZPs. Numerical

simulations were executed using Lare2D numerical MHD code, [Arber et al., 2001].
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Figure 5.11: Schematic diagram outlining the observations of [Chen et al., 2011].
The ZP sources are located at a height of 60−80 Mm in a post flare/post-CME loop
system. The ZP source region was observed to be extended across a height range of
≈ 20 Mm. Within the zebra source, individual stripes correspond to emissions near
the local plasma frequencies at the DPR levels (horizontal dashed lines, of which
the lowest one corresponds to the s = fpe/fce = 8 layer).
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Lare2D

Lare2D is a shock capturing Lagrangian remap code that solves the resistive MHD

equations in a Cartesian geometry. These were reduced to ideal MHD by setting

resistivity to zero. The following ideal MHD equations (taken from section 1.3.2)

were used for the simulations:

∂ρ

∂t
= −∇ · (ρv), (5.38)

(

∂

∂t
+ v · ∇

)

v =
1

ρ
(∇×B)×B− 1

ρ
∇P, (5.39)

(

∂

∂t
+ v · ∇

)

B = (B · ∇)v −B(∇ · v), (5.40)

(

∂

∂t
+ v · ∇

)

ǫ = −P

ρ
∇ · v, (5.41)

∇ ·B = 0, (5.42)

where ρ is the mass density, v is the velocity, B is the magnetic field, ǫ is the

internal energy, P = ρǫ(γ − 1) is the thermal pressure and γ = 5/3 is the ratio of

specific heats. The effects of gravity on the evolution of the loop are neglected in

the equations above. This holds under the assumption that the flow induced by

the gravitational forces are much slower than the fast waves we are studying. A

simple acceleration calculation for the free fall time from the typical 10 Mm loop

height used, under the acceleration of gravity on the Sun, 274 ms−2, yields a time

scale of ≈ 100 s. Therefore the relaxation process due to these forces would be

expected to modify profiles over the simulation time scales chosen but much slower

than compared to most of the wave periods of interest (1−5 s), thus the qualitative

dynamics would not be affected.

The software is second order accurate in space and time and each computa-

tional time step is split into two. First, the Lagrangian step during which the MHD

equations are advanced in time on a mesh that moves with the solution. Next the

solutions are remapped onto the fixed Eulerian grid. The numerical grid is staggered

to prevent the development of the checker-board numerical instability and is shown

in figure 5.12. Velocities are defined at the cell vertices, scalar quantities and the

ignorable magnetic field component are defined at cell centres and the remaining

magnetic field components are defined at the cell edges. The code solves the nor-

malised form of the MHD equations and the dimensionless forms of the length scale,
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Figure 5.12: The numerical grid used in the Lare2D numerical software.
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magnetic field and density are defined as:

x = L0x̂,

B = B0B̂,

ρ = ρ0ρ̂,

(5.43)

where L0, B0 and ρ0 are user defined normalisation parameters for length, magnetic

field and density respectively. These are then used to define the normalisation of

other quantities such as the velocity, pressure and time:

v0 =
B0√
µ0ρ0

,

p0 =
B2

0

µ0
,

t0 =
L0

v0
.

(5.44)

A 2D Dynamic Coronal Loop

A semi-circular coronal loop was modelled as a simple magnetic slab [Edwin and

Roberts, 1982] of enhanced density, with a uniform constant initial magnetic field

B0 = B0ẑ along the coronal loop (See figure 5.13). The density distribution in

the transverse direction is given by the slab step function of width 2δ. All the

simulations were carried out in a domain of (−L/2, L/2)×(−L/2, L/2), covered by

1000 × 1000 grid points. In the z-direction the density distribution is governed by

the gravitational force:

ρ(x, s(z)) =







ρ0 exp(− s
H ), |x| < δ,

ρe exp(− s
H ), |x| > δ,

(5.45)

where ρ0 and ρe are the internal and external density at y = 0 (the loop apex),

s = L
π cos(Lπ z) is the loop length coordinate (starting at the loop apex), L is the

loop length and H = L
2 is the scale height of density along the loop. The magnetic

field and density at z = 0 were chosen such that the Alfvén speed, (1.72) inside and

outside the loop, vA0 and vAe respectively, are 0.7 Mms−1 and 1.2 Mms−1, which

is typical for the solar corona.

In all simulations the length of the loop L is chosen to be 10 Mm, the mag-

netic field B0 was 0.5 mT (50 gauss) and the density contrast was ρ0/ρe = 10.

The boundary conditions fixed the magnetic field direction z at z = −L/2, L/2,

corresponding to the photospheric boundary conditions at the coronal base. In the
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Figure 5.13: Illustration of the straight slab geometry. L is the loop length with
2a representing the cross-sectional width. A uniform magnetic field is shown as B0

with internal and external density values given by ρ0 and ρe respectively. The colour
denotes the scaling of the density structure.

transverse direction, open boundary conditions were applied. The plasma β was

chosen to be 0.1 internally and externally.

We hypothesised that magnetoacoustic waves should interact with the ZP

as they perturb both density and magnetic field as shown in section 1.6.1, key

quantities in the DPR mechanism. The most prevalent of these oscillations situated

in coronal loops are the sausage mode disturbances predicted by wave mode analysis

of a plasma cylinder, section 1.6.2. The fast magnetoacoustic sausage mode was the

wave that most closely matched the 1 s periodicity observed in [Yu et al., 2013,

Section 3].

The standing and propagating fast waves in a coronal loop periodically mod-

ify the magnetic field and density in phase, see section 1.6.1. Which, in consideration
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with the work carried out in section 5.2 looked like a promising avenue of research.

So we began by introducing these magnetoacoustic oscillations to the system by trig-

gering a propagating fast wave of the sausage symmetry [Nakariakov et al., 2004].

Propagating waves were excited by a velocity pulse situated at the loop apex was

induced:

Vx = A0 x exp

[

−
(

x

λx

)2
]

exp

[

−
(

z

λz

)2
]

, (5.46)

where A0, λx, λy are the pulse amplitude and widths in the transverse and longitu-

dinal directions, respectively. The pulse width was set to the half loop width with

λx = λy = δ. A transverse velocity pulse was induced at the loop apex to trigger a

standing fast wave:

Vx = A0 U(x) cos(kz), (5.47)

where the transverse velocity U(x) is prescribed by equation 5.4. In all simulations

the pulse amplitude A0 was chosen to be 0.1 to prevent the appearance of non-linear

effects.

A cut across the loop was taken to observe the transverse velocity profile

for comparison to figure 5.3 obtained analytically. As shown by figure 5.14 the

form of the velocity field closely matches that found analytically in figure 5.3. This

provides further evidence that the simulated perturbations are similar in nature to

the solutions found for equation 5.3.

5.3.3 Zebra Pattern Simulation

As in section 5.2, the ZP showed a strong response to the induced magnetoacoustic

structures (section 5.3.2). The density field was converted to fpe via (1.1), while the

magnetic field to fce via (1.2). The two fields were then cross-referenced for regions

which satisfied the DPR mechanism outlined by equations 5.26 & 5.27. The emission

frequency for each location was then determined at each time interval. This process

was repeated for each s harmonic and thus the dynamic spectra of the induced

radio emission were constructed. The stripe width was produced using an artificial

Gaussian profile in frequency space for each value produced by the simulation. The

results for a propagating and standing fast modes are shown in figures 5.15e and

5.15j.

Another proxy for the correlation between simulation and analytics was the

wiggle period of the dynamic spectra. Both simulated and derived dynamic spectra
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Figure 5.14: The transverse velocity is measured across the loop performing a
sausage oscillation and plotted. It shows identical form as that demonstrated in
figure 5.3 produced from an analytical investigation.
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Model Section ZP Emission Heights Frequency Range [GHz]
(normalised)

1D Static 5.3.1 0.01− 0.05 3.0 − 3.5
2D Static 5.3.1 0.00− 1.00 0.9 − 1.3

2D Dynamic 5.3.2 0.00− 1.00 2.8 − 3.8
Analytical 5.2 0.00− 1.00 0.0 − 1.7

[Chen et al., 2011] n/a 0.80− 1.07 1.0 − 1.5
[Yu et al., 2013] n/a (not known) 2.6 − 3.8

Table 5.2: A comparison of frequency and height results from the reproduction of
ZPs using several techniques. All heights are normalised to the height of the loop
apex of 75 Mm which corresponds to a loop of length 235 Mm, [Chen et al., 2011].
All simulations where carried out for the s = 1− 50 harmonics.

demonstrate a wiggle in the zebra pattern radio structure. The analytically derived

dynamic spectra shown in figure 5.5 exhibits a normalised wiggle period of PA = 1.

The time domain is normalised to the period of the propagating velocity disturbance

in (5.7). Based on [Roberts et al., 1984] a period of 1 s was chosen as the driving

fast sausage mode wave period.

This results in the wiggle period, PA, being PA = 1 s for the analytically

derived zebra pattern. This one to one relation indicates that the fast wave acts

as a direct driver of the ZP wiggles. Periodicity analysis of the simulated zebra

pattern (figure 5.5) reveals that the wiggle periodicity for the simulations, PN , are

approximately PN = 0.3 s for both propagating and standing fast wave disturbances.

This is the same order of magnitude as that found analytically with PA ≈ 3PN .

These periods also correspond to the periods observed experimentally for the ZP

wiggles in [Yu et al., 2013, Section 3], which observed a period of 1 s in their

periodicity analysis.

5.4 Conclusion

Using [Yu et al., 2013] as the motivation we investigated the link between ZP ‘wig-

gles’ (chapter 6) and propagating and standing fast modes in a coronal loop using

analytical and numerical techniques. The results presented in this chapter clearly

indicate that ZPs are strongly affected by the presence of magnetoacoustic waves,

in particular the fast sausage mode. This link was first shown in the analytically de-

rived ZP shown in section 5.2 where we derived the perturbed density and magnetic

field for a fast mode in the loop context.

The ZP was constructed using the DPR mechanism and the analytically de-

rived density and magnetic field perturbations. Figure 5.5 clearly shows the periodic
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modification of the simulated zebra pattern in the presence of fast magnetoacous-

tic waves. This was an indication of the manifestation of the fast mode in the ZP

emission region.

With this clear result we decided to underpin the result by carrying out the

same investigation using numerical techniques. We approached the problem system-

atically by starting with a 1D static toy model (section 5.3.1). This proved useful as

we were able to recreate the 1D results for the DPR emission mechanism presented

in [Chernov, 2006]. An extended source region was observed for DPR emission,

thus we have shown that numerical analysis could reproduce observational results

with a relatively simple model. Moreover, we demonstrated that high frequency ZP

may have a low-frequency counterpart that should be looked for in the data, e.g.

obtained with LOFAR or spacebourne radiospectrometers.

A 2D study was the logical next step, which came with a higher degree

of complexity in balancing magnetic and thermal pressures under magnetostatic

equilibrium. We were successfully able to reconstruct a magnetic field which would

maintain equilibrium from an input pressure distribution. The pressure distribution

was converted to fpe via (1.1), while the magnetic field was used to create the spacial

structure of fce field via (1.2) for each s harmonic. The two spatial distributions

were then cross-referenced for regions which satisfied the DPR conditions outlined

by equations 5.26 and 5.27. The results showed an extended source region along

the loop. ZP emission was found to be produced in the foot points and along the

transverse slopes of the loop which was not observed by [Chen et al., 2011]. We

speculate that radio emission from low altitude regions of the coronal loop may

be reabsorbed before reaching an optically thin region. The frequency and spatial

ranges of obtained simulated ZPs have been compared to [Chen et al., 2011] and

[Yu et al., 2013] in table 5.2. The simple 1D static model seems to underestimate

the maximum height of the ZP emission which implies that a 1D magnetic topology

is not sufficient to capture the full extent of the ZP. ZP emission is seen along

the entire length in all the 2D loop models. This implies the maximum emission

height is limited by the loop length. If we take the loop value of 235 Mm from

[Chen et al., 2011] we arrive at the same upper bound on heights where ZPs are

created. The emission frequencies are scaled by electron density that has a fairly

large range of values in coronal loops. We used an average value of 1011 cm−3 for

our simulations, [Aschwanden, 2006], however this does leave some uncertainty in

the frequency ranges.

Having successfully reproduced ZP emission regions and frequencies in a time

independent system we moved to follow its evolution in the presence of magnetoa-
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coustic fluctuations using a dynamic model. Section 5.3.2 successfully implements

the use of Lare2D numerical MHD code to produce a stable 2D loop. A frame by

frame approach allowed for the methodology from the section 5.3.1 to be used. A

dynamic ZP spectrum was produced from the emission frequencies found using the

DPR mechanism at each instant of time for both standing and propagating fast

waves.

The resultant ZP by a visual inspection closely matched the observed wiggles

in [Yu et al., 2013]. The standing mode produced a more closely matching spectra

than propagating.

As a secondary check we compared analytical and numerical transverse ve-

locity profiles, figures 5.3 and 5.14. They were in strong agreement concluding

that both analytical and numerical studies yielded the manipulation of ZPs in the

presence MHD disturbances such as the fast wave.

Finally we compared the oscillation periods of the reproduced ZP wiggles.

We found that periodicity analysis of the simulated zebra pattern (figure 5.5) re-

vealed that the wiggle period for the simulations was approximately PN = 0.3 s for

both propagating and standing fast wave disturbances. This was the same order of

magnitude as that found analytically in the previous chapter with PA ≈ 3PN where

PA is the analytical period. These periods also correspond to the 1 s experimentally

observed period for the ZP wiggles, [Yu et al., 2013].

So to conclude this chapter, we have successfully shown that a standing

sausage magnetoacoustic oscillation in a coronal loop is most likely responsible for

the wiggles found in ZP emission in [Yu et al., 2013]. We have confirmed this

both numerically and analytically. However it is important to highlight that all

the results presented in this chapter are model dependent, particularly the results

outline in table 5.2. Many approximations have been made to the simulations due to

the complex nature of coronal loop modelling. This was manifest by the variety of

magnetic field and density profiles used. We have also not accounted for the change

in plasma parameters seen in the chromosphere, instead only focusing on coronal

values. Thus results pertaining to this region are not physically founded. The

variety in the assumptions made in these models could provide an explanation for

the diversity of model predictions shown in table 5.2. Which in turn is an indication

that the modelling used in this thesis has not fully captured the complexity of

a coronal loop. However, with new experimental techniques becoming available,

a future avenue of work would be to reconcile these coronal and chromospheric

models with newly available experimental data to gain a better understanding of

loop geometry and ZP themselves.
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Importantly, we have shown that both loop geometry and wave propagation

have an equal part to play in ZP evolution. We can consider these results as a good

starting point to explore more detailed and realistic simulations in the future which

can then be compared to new experimental observations.
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Chapter 6

Zebra Patterns II:

Observational Work

6.1 Introduction

Quasi-periodic pulsations (QPP) discussed in section 2.5.2 are a common feature of

solar flares (section 2.5). QPP are observed in a vast energy range from radio to

hard X-ray and gamma-ray bands (see [Nakariakov and Melnikov, 2009a, Nakariakov

et al., 2010, Tan et al., 2010] for recent reviews). Typically, QPP appear as a

pronounced oscillatory patterns in the intensity of the radiation, with the typical

periods ranging from a fraction of a second to several minutes, see figure 2.14. QPP

have been found as oscillations of the Doppler shift of the emission lines associated

with the hot plasma in flaring sites [Mariska, 2006] or its density [Kim et al., 2012].

QPP events are often found to contain zebra pattern (ZP) structures as those

discussed in Chapter 5. Analysis of ZPs indicated the occasional presence of periodic

variation within the ZP itself. In particular, [Chernov et al., 2005] found that the

intensity of ZP stripes observed on 21/04/2002 pulsated quasi-periodically. The

ZP stripes consisted of separate short-duration pulses with the period of about 30

ms. Pulsations of the intensity in the adjacent stripes were found to be similar.

The detected periodicity was associated with the oscillatory non-linear interaction

of whistlers with ion-sound and Langmuir waves.

In this Chapter we focus on another, less studied type of ZP modulation:

the quasi-coherent oscillating drift of spectral stripes known as ‘wiggles’. We have

already discussed its possible generation mechanism in depth in Chapter 5 using

analytical and numerical techniques. We will present the results published in [Yu,

Nakariakov, Selzer, Tan, and Yan, 2013] which were carried out as a collaboration
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work into the observation of ZP wiggles.

Generally, the periods detected in ZP wiggles coincide, by the order of mag-

nitude, with the transverse fast magnetoacoustic (or Alfvén) crossing time in a

typical loop of a coronal active region [De Moortel and Nakariakov, 2012] as dis-

cussed in Chapter 5. Thus, it is natural to expect that the periodicity may be

associated with either an impulsively-generated fast magnetoacoustic wave train

[Roberts et al., 1984, Nakariakov et al., 2004] or with a standing sausage mode

of a fast magnetoacoustic resonator [Kopylova et al., 2007, Zaitsev and Stepanov,

2008, Nakariakov et al., 2012], or result from a passage of a perpendicular fast wave

through a randomly-structured coronal plasma [Nakariakov et al., 2005]. An im-

proved understanding of these events will provide us with unique information about

fine, sub-resolution structuring of coronal plasmas. It is difficult for these stud-

ies to be carried out at other wavelengths due to a insufficient time resolution in

observational instruments.

6.2 Radio Data

Our data consisted of dynamic radio spectrograms observed and calibrated by the

ground-based Chinese Solar Broadband Radio Spectrometer, Huairou (detailed in

section 3.4.1). The data has already been processed to remove any instrument noise

or Earth based artefacts by the instrumental team.

We focused on a flare that occurred on 03/12/2006. A typical two-ribbon flare

in the NOAA active region 10930 located on the disk (S05W33), [Isobe et al., 2007,

Yan et al., 2007]. This flare was also observed by the Nobeyama Radioheliograph.

Thirteen ZPs were observed by SBRS/Huairou at 2.6 − 3.8 GHz during the flaring

process in this event [Yu et al., 2012].

We focused on the time interval 02:40-03:05 UT after the soft X-ray maxi-

mum. Two long lasting zebra pattern structures were obtained at 02:43:00-02:43:20

UT (ZP1) and 03:03:00-03:03:20 UT (ZP2), respectively, which were considered to

be associated with quasi-periodic oscillations.

We cross-referenced the ZP radio signal with both SOHO and NoRH (see

Chapter 3 for details on the instrumentation) in an attempt to confirm the signal

was solar in origin. The left panel in Figure 6.1 shows the full disk EUV image at 195

Å obtained by Extreme-ultraviolet Imaging Telescope [Delaboudinière et al., 1995,

EIT] onboard SOHO during the decay phase, with inset of the TRACE [Handy et al.,

1999] image at 195 Å showing the post-flare loop arcade with explosive features at

the time of ZP2. The right panel shows the NoRH 17 GHz full disk intensity image,
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2006-12-13 02:47:09 UT NoRH 17GHz R+L

Figure 6.1: Full disk SOHO/EIT 195 Å at 03:00:01 UT and NoRH 17 GHz intensity
images at 02:47:09 UT on 13/12/2006. Insets show the TRACE 195 Å image and
the enlarged NoRH 17 GHz image of AR 10930, from [Yu et al., 2013].

and inset of the enlarged 17 GHz image superposed with 34 GHz image. The source

region of radio emission at 17 GHz has approximately the same position as the EUV

arcade structure in flare region during the decay phase, with the maximum situated

in the northeast of the arcade, between the opposite footpoints of 34 GHz radio

sources. The spatial separation of the footpoints is about 50 arcsec. The NoRH 17

GHz full disk image shows the AR 10930 is the unique strong radio emission source

on the solar disk in this flare event, confirming that the radiation of the ZPs comes

from the flare core region.

6.3 Zebra Pattern Wiggles

The extended duration (t>15 s) of the two ZP structures ZP1 and ZP2 made it

possible to study the long-term QPP in the solar corona. To analyse the QPP os-

cillations in ZP structures, we extracted the ZP stripes from background emission

in the raw microwave spectrogram, with the intent to study frequency variation of

individual stripes fN, where N = 1, 2, 3, 4..., note here N is not the ZP harmonic

number s discussed in section 2.5.4 but N = s + α, where α is some integer value

corresponding to s at the first observable harmonic of the ZP. The microwave dy-

namic spectrograms of ZP1 and ZP2 in left-handed circular polarization (LHCP) are

shown in figures 6.3(a, b). The right-handed circular polarization (RHCP) compo-
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Figure 6.2: The various image processing techniques used in the extraction of ZP
stripe data. In image: a) the original image is displayed; b) the trend has been
removed; c) a low pass filter was applied; d) a threshold filter was applied; e) the
image was thinned to stripes and f) the final stripe locations are plotted over b).

nents are not used for data processing here due to large saturation in low frequency

range (< 2.9 GHz).

6.3.1 ZP Image Processing

The extraction of individual ZP stripes from the dynamic spectra required several

image processing techniques. The end goal was to obtain the variation of a ZP

stripe as a function of frequency and time. This enabled us to carry out periodicity

analysis to study ZP wiggles directly.

6.3.2 Large Scale Trend Removal

The raw dynamic spectrograms are noisy and prove difficult when extracting ZP

stripes, such as our example ZP, figure 6.2(a). Therefore the images required several

layers of filtering to purify the data. The first of these was an overall trend removal.
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The ZP emission is observed with a background continuum emission superimposed.

This varies with time as discussed in section 2.5.4. The first step was to remove

these trends from our ZPs.

The trend removal process takes place on a slice by slice basis, i.e. the

dynamic spectrogram is divided into the static spectra which were originally used

to construct the image. Each spectra or slice is a function of intensity against

frequency. The slices are then smoothed over a large window of the data usually a

fifth of the overall number of frequencies. This smoothed trend was then subtracted

from the original data to emphasise small scale variations such as ZP frequency

modulation. The result is shown in figure 6.2(b). After this procedure the stripes

appear more pronounced and defined, which greatly reduced errors in the stripe

extraction process.

6.3.3 Low Pass Filter

Figure 6.2(b) still presented some trouble with high frequency noise. To reduce this

the image was convoluted using a low pass filter kernel:

K =







0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11






. (6.1)

Convolution is a general process that can be used for various types of smoothing,

signal processing, shifting, differentiation, edge detection, etc. [Scargle, 1982]. The

kernel is multiplied to each element of the ZP image, 6.2(b). The intent of this

process was to smooth small scale structuring so that the essential stripe skeleton

could be isolated. The results are shown in figure 6.2(c).

6.3.4 Threshold Filter

A threshold filter was applied to make data processing easier as a binary image made

stripe detection analysis more efficient. An optimum threshold value was decided,

following this every data element below the threshold was set to zero while every

data element equal to or above was set to one. The output was a binary version of

the ZP spectra shown in figure 6.2(d).

The binary image was then passed to a ‘Morph Thin’ filter. The Morph Thin

function performs a thinning operation on binary images. The thinning operator is

implemented by first applying a hit or miss operator to the original image with a

pair of structuring elements, and then subtracting the result from the original image.
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Figure 6.3: Zebra pattern structures on 13 December 2006 02:43:00-02:43:25 UT
and 03:03:00-03:03:20 UT observed by SBRS/Huairou at 2.6-3.8 GHz, and the il-
lustration of the processes of extracting the zebra pattern stripes. a,b) The raw
spectrograms at 2.6-3.8GHz on LHCP; c,d) high contrast images; e,f) the rescaled
images with the extracted stripes superimposed; (g, h) the de-trended stripes fre-
quency fN , from [Yu et al., 2013].

Its purpose was to transform the binary image to a series of candidate-stripes which

can be extracted for analysis. The result of this process is shown in 6.2(e).

6.4 Data Series Extraction

The aim of this investigation was to test the frequency modulation of ZP stripes, to

do this we required a time series fN = fN (ν, t) where ν is the channel frequency, for

each stripe N . Image processing was carried out on ZP1 and ZP2 after a successful

cleaning algorithm had been established in section 6.3.1. Each ZP underwent the

same analysis to extract the candidate-stripes. We began by fitting a Gaussian to

the frequency profile of each candidate-stripe and then normalised the Gaussians
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to their amplitudes, so that the brightness of stripes was uniform. This procedure

removed the information about the amplitude modulation of the signal, however it

emphasised the frequency modulation. The centres of the Gaussian peaks gave us

the instant radio-frequency ν of the stripes.

We then progressed to manually identify and track the frequency data of

several of the longest stripes. The variation of the centres of the best-fitted Gaussians

in time allowed us to obtain the ‘skeletons’, fN (t) of the frequency modulation for

the individual spectral stripes in the analysed ZPs. Note that here N denotes the

N -th extracted stripe enumerated from the highest to lowest observed frequency

in the spectrogram. Also, we were able to study the time variation of the stripe

difference by ∆fN = fN+1 − fN between the neighbouring stripes. Figures 6.3(e-f)

show the rescaled Gaussian image superimposed with the spectral skeletons of the

four stripes of highest frequencies. Note that as the third extracted stripe in ZP2

was seen to be gapped in the raw spectrogram 6.3(b) and the high contrast image

6.3(d) at 03:03:05 - 03:03:06 UT, so we connected the two segments with a straight

line to produce a continuous stripe.

6.5 Periodicity Analysis

In the sections above we successfully obtained a data set of stripes for both ZP1 and

ZP2 with the stripe data fN (ν, t) extracted for (N = 1, 2, 3, 4) as shown in figures

6.3(g,h). We progressed the analysis by deploying periodicity analysis techniques,

some of which were previously used in section 4.3.

6.5.1 Auto-Correlation

The time profiles of fN were first smoothed by 30 points (0.24 s) to remove high-

frequency noise, and then de-trended by subtracting fN smoothed with a 100 points

(0.8 s) using the boxcar technique. The fN stripes were then autocorrelated to

shown any regular periodicity. The four auto-correlation functions shown in figure

6.4(b) and figure 6.5(b) displayed very clear in-phase periodic behaviour over several

periods. There were two well-pronounced periodicities observed, (P1 ∼ 1.43 s and

P2 ∼ 0.83 s). P1 was apparent in all stripes, while P2 was only present in f3 and f4.

The auto-correlation functions of the de-trended ∆fN in figure 6.4(d) and

6.5(d) show pronounced periodic oscillatory patterns. Frequency modulation in

both stripe position fN and separation ∆fN in conjunction with the DPR mechanism

infers oscillations in both magnetic field and electron density. This in turn indicates

the presence of MHD fluctuations.
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6.5.2 Periodogram

We implemented the periodogram procedure to confirm the appearance of the ob-

served periodicities in the autocorrelation while simultaneously insuring that the

periodicities are not artificial due to smoothing.

Lomb-Scargle Periodogram

The Lomb-Scargle periodogram is a widely used tool in period searches and fre-

quency analysis of time series, [Scargle, 1982]. It fits the data with a harmonic

oscillation in the form:

y = acosωt+ bsinωt+ c, (6.2)

where a, b and c are fitting parameters. Standard fitting procedures require the

solution of a set of linear equations for each sample frequency. The Lomb-Scargle

periodogram, for a time series (ti, yi) with a zero mean (ȳ = 0) in its simplest form

is given by:

p̂(ω) =
1

∑

i y
2
i

{

[
∑

i yicos ω(ti − τ̂)]2
∑

i yicos
2 ω(ti − τ̂)

+
[
∑

i yisin ω(ti − τ̂)]2
∑

i yisin
2 ω(ti − τ̂)

}

, (6.3)

where the τ̂ parameter is calculated via:

tan 2ωτ̂ =

∑

i sin 2ωti
∑

i cos 2ωti
. (6.4)

There are shortcomings to the Lomb-Scargle periodogram as it does not take mea-

surement errors into account. This was solved by introducing weighted sums by

[Gilliland and Baliunas, 1987] and [Irwin et al., 1989] equivalent to the generalisa-

tion to a χ2 fit.

Results

The presence of structured, periodic components in the two ZP structures was con-

firmed by periodogram and autocorrelation analyses of time profiles fN and ∆fN of

the extracted stripes (N = 1, 2, 3, 4), which are shown in Figures 6.4-6.5.

Figure 6.4(a) presents the periodograms of the time profiles of fN of four ex-

tracted stripes in ZP1 with large-scale trend removed. There are two well-pronounced

spectral peaks in the vicinities of 0.70 and 1.20Hz (P1 ∼ 1.43 s and P2 ∼ 0.83 s)

which are seen in all four stripes. Figure 6.4(c) presents the periodograms of time
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Figure 6.4: Periodograms and auto-correlation functions of QPP components of
a,b) stripe frequency fN and c,d) frequency separation ∆fN in the ZP structure
(ZP1) recorded on 13 December 2006, 02:43:00-02:43:25 UT: red line for f1, yellow
line for f2, green line for f3, blue line for f4. The horizontal line in periodograms
indicates the 99.99% confidence level for the highest spectral peak, calculated using
the Fisher randomisation test detailed in section 6.5.2. The confidence levels for
each trace were tightly packed in the power range therefore a representative level
was plotted. Figure taken from [Yu et al., 2013].

144



0 1 2 3 4
Frequency (Hz)

0

20

40

60

80

100

120

S
pe

ct
ra

l P
ow

er

Stripes 1
Stripes 2
Stripes 3
Stripes 4

a)

0 1 2 3 4
Frequency (Hz)

0

20

40

60

80

100

120

S
pe

ct
ra

l P
ow

er

Stripes diff 1
Stripes diff 2
Stripes diff 3

c)

-6 -4 -2 0 2 4 6
Time (s)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

co
ef

f.

Stripes 1
Stripes 2
Stripes 3
Stripes 4

b)

-4 -2 0 2 4
Time (s)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

co
ef

f.

Stripes diff 1
Stripes diff 2
Stripes diff 3

d)

Figure 6.5: Periodograms and auto-correlation functions of QPP components of a,b)
stripe frequency fN and c,d) frequency separation ∆fN in the ZP structure (ZP2)
recorded on 13 December 2006, 03:03:00-03:03:20 UT: red line for f1, yellow line for
f2, green line for f3, blue line for f4. The horizontal line in periodograms indicates
the 99.99% confidence level calculated using the Fisher randomisation test detailed
in section 6.5.2. Figure taken from [Yu et al., 2013].

profiles of de-trended ∆fN. The three profiles of ∆fN show different periodicity be-

haviours with three dominant peaks in the vicinities of 0.86, 1.58 and 1.90Hz (1.16,

0.63 and 0.53 s) separately.

Figure 6.5(a) shows the periodograms of the de-trended time profiles of fN of

the four extracted stripes in ZP2. Two pronounced common peaks are seen in the

vicinities of 1.20 and 1.70Hz (P2 ∼ 0.83 s and P3 ∼ 0.59 s). The periodicity of P2

is not detected in the de-trended time profile of f2. The auto-correlation functions

of the de-trended time profiles of fN all have pronounced oscillatory patterns over

several periods (figure 6.5(b)). Periods P2 and P3 are both found to be present in the

auto-correlation function of f1, f3 and f4. Figure 6.5(c) presents the periodograms

of time profiles of de-trended ∆fN, showing a obvious peak at 1.20Hz (P2 ∼ 0.83 s).

The auto-correlation functions in Figure 6.5(d) present a similar periodicity for all

the three ∆fN.

We calculated the periodograms of the time profiles of fN corresponding to

a set of noise-removing boxcars (10, 20, 30 points) and trend-removing boxcars (60,

70, 80, 100 points). The positions of the pronounced spectral peaks do not show any

dependence on the smoothing width, implying that these spectral peaks are real and

have not resulted from smoothing. The periods corresponding to the highest peaks

145



of each curve revealed in Figures 6.4-6.5 are strongly significant in the periodograms

as they are all above the 99.99% confidence level from Fisher randomisation analysis,

section 6.5.2.

Fisher Randomisation Test

The observed wiggles only last for 5-7 periods, hence it is important to test the

validity of the spectral properties observed in the periodogram technique. We im-

plemented the Fisher randomization analysis outlined in [Linnell Nemec and Nemec,

1985]. The basic principle involves multiple random rearrangements of the time se-

ries in the time domain. The assumption is that in a non-periodic time signal the

measured values are independent of the observation time. A maximum spectral

peak of a periodic fluctuation will vanish under the reordering while a non-periodic

signal will be invariant. A series of n! permutations of the original data set are

constructed as the number of occurrences, l of the the spectral peak in question

are recorded. The ratio of l/n! gives the probability that no periodic component is

present. Hence the probability of a spectral peak corresponds to a true periodicity

in the periodogram is given by:

P = 1− l

n!
, (6.5)

where P is the Fisher randomisation periodic signal probability. In practice, the P

is only calculated for a random sample of m permutations out of n!, due to the large

value of n!. Here we calculate the peak power for 200 iterations and it turns out

that all wiggle spectral peaks give probabilities > 99.99% which result in confidence

that the stripes exhibit truly oscillatory behaviour.

6.6 Discussion

ZP1 and ZP2 spectrogram images were successfully cleaned using image processing

techniques outlined in section 6.3.1. The stripes were subsequently extracted using

the techniques outlined in section 6.4 to provide a data set of fN (ν, t) and ∆fN(ν, t)

displayed in figures 6.3(g,h).

Periodicity analysis carried out on fN and ∆fN (section 6.5) of the fine spec-

tral structure of individual stripes in two microwave ZP observed with SBRS/Huairou

revealed that radio frequencies of the stripes performed quasi-periodic oscillations

(wiggling) with a periodicity ranging from 0.5 s to 1.5 s. Simultaneously, the oscilla-

tions were found to have two to three significant periodicities. Similar periodicities
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were detected in the spectral difference of neighbouring ZP stripes, ∆fN . The fre-

quency variation amplitude was approximately 20 MHz, giving a relative amplitude

of 0.7 %. The wiggling periods and amplitudes observed were consistent with the

previous investigations into this effect, [Chernov et al., 1998, Ning et al., 2000, Cher-

nov et al., 2001]. The wiggling of neighbouring stripes were found to be almost in

phase. The detected periods were of the order of the fast magnetoacoustic (section

1.6.1) transverse time in a typical active region loop (for typical spatial scale of

1 Mm and Alfvén speed of 1 Mms−1).

These values of periodicity correspond closely with the numerical and ana-

lytical results found in Chapter 5 table 5.2. However if the oscillations were in fact

caused by a propagating magnetoacoustic wave as discussed in Chapter 5, neighbour-

ing ZP stripes, separated by several Mm, would be positioned at different phases

of the perturbation. Hence, neighbouring ZP stripes would wiggle with a signifi-

cant phase difference, this was not found in our analysis. As a result, we rule out

the interpretation of the ZP wiggling in terms of propagating waves. Instead, we

considered a global standing mode in which the coronal loop oscillates in phase.

In a non-uniform, field aligned plasma structure the transverse size determines the

periodicity of the global sausage mode, [Kopylova et al., 2007, Nakariakov et al.,

2012]. As the periods of the detected oscillations were on the order of 1 s, we obtain

that the required spatial size of the waveguiding plasma non-uniformity with the

estimated value of the Alfvén speed is about 1 Mm. This value is a typical minor

radius of an active region loop. Consequently, the systematic lack of a significant

phase shift between oscillations of different stripes, coming from several different

spatial locations in the DPR mechanism, indicates that the MHD oscillation is most

likely to be standing.

All of the above suggests that the detected ZP wiggles were caused by a

standing sausage oscillation. This conclusion is supported by the finding that both

instant frequencies of individual stripes and their spectral separation oscillate with

the same periods. Thus it is consistent with a sausage oscillation that perturb both

the plasma density and magnetic field [Nakariakov et al., 2012]. These results are

further underpinned by the results derived in Chapter 5 in which a standing sausage

mode was shown to analytically and numerically produce a wiggle periodicity of

approximately 1 s.
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Chapter 7

Summary and Discussion

In this thesis two vastly different space plasmas were investigated, the terrestrial

foreshock and the solar corona. We began with an introduction into plasma theory,

instrumentation and plasma environments which spanned chapters 1 to 3, providing

a grounding for the following research chapters. In chapter 4 an observational study

was carried out into the interaction between the solar wind and the Earth’s magnetic

field and bow shock. The nature of the chapters 5 and 6 shifted to analysis of radio

fine structure emitted from the solar corona. In chapter 5 zebra pattern emission

was investigated using simulations and analytical techniques while in chapter 6 we

proceeded to explore observational evidence for the results derived in the previous

chapter. These studies were motivated by growing interest in the respective fields

accompanied by newly available data. Here we summarise each study by chapter

and describe its contribution to plasma physics.

In Chapter 4 we implemented the theoretical constructs outlined in Chapter

1 in an observational study of seven intervals of Cluster solar wind data. These

intervals were selected as periods when the Cluster satellite group was directly ob-

serving the terrestrial foreshock. Wave modes in the frequency range (0.03-0.06 Hz)

were successfully identified in each interval using a variety of data analysis proce-

dures. The observed fluctuations agreed with previous results in the identification of

ULF waves in the terrestrial foreshock. We identified individual circularly polarised

waves using the hodogram technique. A difficulty arose in distinguishing between

spacecraft polarisation and intrinsic wave polarisation. The supersonic nature of

the solar wind caused the observed waves to undergo an apparent polarisation re-

versal. The solution was to implement multi-spacecraft delay analysis to estimate

wave direction. This, in conjunction with the hodogram technique allowed us to

successfully identify the intrinsic polarisation of the ULF wave intervals. The waves
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were subsequently labelled left- and right-handed depending on the intrinsic wave

polarisation.

A technique to investigate the compressibility directly from magnetic field

measurements was developed and implemented. Increased compressibility above

background turbulence levels was observed in the presence of the ULF waves. This

provided further evidence for the magnetoacoustic nature of ULF waves as observed

in other publications. The novel step was to investigate the contrasting effect of

different polarisations on the solar wind anisotropy using quasilinear plasma the-

ory. Specific attention was paid to the instability mechanisms engaged by the ULF

waves. The (β‖, T‖/T⊥) parametric space was used to investigate subtle changes in

plasma stability conditions between the two polarisations. A clear divide was ob-

served between left- and right-handed polarisation intervals. The results indicated

a correlation between higher plasma temperatures in the presence of right handed

waves while the plasma was in proximity to the firehose marginal stability threshold

on the (β‖, T‖/T⊥) plane. In turn, higher plasma temperatures were demonstrated

by the left handed waves close to the proton cyclotron instability threshold. Cor-

relations are not synonymous with causality and, given the complexity of plasma

dynamics in the foreshock region, the interpretations of these results are difficult.

Using the WIND spacecraft data to monitor the upstream conditions it was possible

to demonstrate that the temperature anisotropy was not modified until reaching the

foreshock region. The enhancement in the total temperature correlates well with

the factor 2−3 increase in T‖ observed in LH and RH intervals. The results suggest

that the power in ULF waves also strongly correlated with the observed anisotropy

in the foreshock, at least for the right-hand polarised waves.

The results obtained in Chapter 4 relate directly to a correlation between

elevated temperatures and temperature anisotropy in the terrestrial foreshock. The

impact of these results could also relate to studies of the solar wind plasma, where

similar correlations have also been observed. The Landau damping of ULF waves,

identified as a possible driving mechanism for the fire hose instability, may also be

important in solar wind turbulence, where oblique fast magneto-acoustic waves of

low frequency are believed to be present such as the quasi parallel shocks observed

in CMEs.

In Chapter 5 we change tack and move to investigate the interaction of MHD

waves in flaring coronal loops however still following the overarching concept of

plasma modification due to collective plasma behaviours. The motivation arose due

new results presented in the field of zebra pattern (ZP), in particular the interaction

between the DPR mechanism and MHD waves. We investigated the link between
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ZP ‘wiggles’ and fast magnetoacoustic modes in a coronal loop using analytical and

numerical techniques.

Initially we used analytical techniques to derive the presence of a ZP in a

static 1D system. The ZP was reconstructed using the DPR mechanism in con-

junction with the analytically derived density stratification. After successfully con-

structing the ZP structure using a 1D theoretical model we perturbed the system to

induce magnetoacoustic oscillations. The dynamic radio spectrum was artificially

reconstructed using the frequencies predicted by the model. As a result we were

able to successfully reproduce observations of ZP wiggling using a purely analytical

approach. This underpinned the hypothesis that fast magnetoacoustic waves do

affect the ZP emission structure through modification of the DPR levels.

After this clear result, we progressed to strengthen the hypothesis by carrying

out the same investigation but instead using numerical techniques. We approached

the problem systematically by starting with a 1D static toy model. This proved

useful as we were able to reproduce previous 1D analytical results for the observed

frequencies. However, the simple 1D static model seemed to underestimate the

maximum height of the spatial localisation of ZP emission, implying that a 1D

model was not sufficient to capture the full spatial extent of the ZP.

Thus we extended to a 2D static study which came with a higher degree of

complexity in balancing magnetic and thermal pressures under magnetostatic equi-

librium. We were successfully able to reconstruct the magnetic field from an input

pressure structure. The results showed an extended source region which stretched

along the loop. This implies the maximum emission height is limited by the loop

length. In particular if we take the loop value of 235 Mm we arrive at the same

upper bound on spatial heights as found in literature. The emission frequencies are

scaled by electron density which has a fairly large range of values in coronal loops.

ZP emission was also found to be produced in the footpoints of the loop which was

not observed in literature. We speculate that radio emission from the footpoints

may be reabsorbed before reaching an optically thin region. Alternatively there is

a secondary process inhibiting the plasma from engaging the DPR mechanism.

The reproduction of ZP emission regions and frequencies in a static system

provided the starting point for a time dependent model which could follow the

ZP evolution in the presence of MHD fluctuations. The Lare2D numerical MHD

code was implemented to produce a stable 2D loop. Standing and propagating fast

waves were triggered by inducing MHD pulses at the loop apex. The dynamic radio

spectrum was reproduced using a frame by frame approach to visualise the emission

frequencies found accounting for the DPR mechanism, as a result the synthesised

150



ZP were found to closely match the observed wiggles.

Finally we compared the oscillation periods of the reproduced ZP wiggles. We

found that the periodicity analysis of the simulated zebra pattern revealed that the

wiggle period for the simulations was approximately PN = 0.3 s for both propagating

and standing fast wave disturbances. This was the same order of magnitude as that

found analytically, PA, with PA ≈ 3PN . These periods also correspond to the 1 s

experimentally observed period for the ZP wiggles.

In Chapter 6 we present the collaboration work carried out into the ob-

servation of ZP wiggles using the Chinese Solar Broadband Radio Spectrometer

(SBRS/Huairou). Two ZP found in a QPP flare event were identified to contain

ZP wiggles, labelled ZP1 and ZP2 respectively. ZP1 and ZP2 spectrogram images

were successfully cleaned by sequentially using several image processing techniques.

The stripes were subsequently extracted from the images to provide a data set of

the central stripe frequency as a function of time.

Analysis on well-pronounced fine spectral structure of individual stripes in

both ZP1 and ZP2 revealed strong periodicity. Studies showed that the ZP stripes

performed quasi-periodic oscillations (wiggling) with a periodicity ranging from 0.5 s

to 1.5 s in the frequency domain. Similar periodicities were detected in the spec-

tral difference of neighbouring ZP stripes. The frequency variation amplitude was

approximately 20 MHz, giving a relative amplitude of 0.7 %. The wiggling periods

and amplitudes observed were consistent with the previous investigations into this

effect. Wiggling of neighbouring stripes were found to be almost in phase. The

detected periods were of the order of the fast magnetoacoustic transverse time in

a typical active region loop (for typical spatial scale of 1 Mm and Alfvén speed of

1 Mms−1).

The periodicity observed in the data closely matches that found in both

numerical and analytical studies described in Chapter 5. If the oscillations were

instead caused by a propagating magnetoacoustic wave as discussed in Chapter 5,

neighbouring ZP stripes, separated by several Mm, would present a different phase

of the perturbation than their neighbouring stripes. This was not observed in the

periodicity analysis. Hence, we ruled out the interpretation of the ZP wiggling in

terms of propagating waves. Instead, we considered a global standing mode in which

the whole coronal loop oscillates in phase. In a non-uniform, field aligned plasma

structure the transverse size determines the periodicity of the global sausage mode.

As the periods of the detected oscillations were on the order of 1 s, we obtained

that the required spatial size of the wave guiding plasma non-uniformity with the

estimated value of the Alfvén speed is about 1 Mm. This value is a typical minor
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radius of an active region loop. Consequently, the distinct lack of a significant phase

shift between oscillations of different stripes, coming from several different spatial

locations in the DPR mechanism, indicates that the MHD oscillation is most likely

to be standing.

Overall this thesis has successfully employed various signal analysis tech-

niques to extract observational results. Theoretical techniques in both kinetic

plasma physics and MHD were used in parallel to explain and reproduce experi-

mental results. The collective behaviours of space plasmas such as the terrestrial

foreshock and solar corona have made it possible to use analytical tools to probe into

the dynamics of the highly non-linear medium of space plasmas. The result is an

improved understanding in the effect of waves on kinetic processes in the terrestrial

foreshock and new insights into the impact of MHD waves in the kinetic process of

coronal loop ZP emission. We have repeatedly demonstrated the benefit of using

kinetic and MHD techniques together to gain a deeper understand of events that

span large time and spatial ranges.
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Fornaçon, E. Georgescu, K.-H. Glassmeier, J. Harris, G. Musmann, T. Oddy,

and K. Schwingenschuh. The Cluster Magnetic Field Investigation: overview

of in-flight performance and initial results. Annales Geophysicae, 19:1207–1217,

October 2001.

A. Barnes. Theory of generation of bow-shock-associated hydromagnetic waves in

the upstream interplanetary medium. Cosmic Electrodynamics, 1:90–114, 1970.

153



W. Baumjohann and R.A. Treumann. Basic Space Plasma Physics. Imperial College

Press, 2012. ISBN 9781848168947.

A. O. Benz. Flare observations. Living Reviews in Solar Physics, 5(1), 2008.

J.A. Bittencourt. Fundamentals of Plasma Physics. Springer New York, 2013. ISBN

9781475740301.

J. M. Borrero and K. Ichimoto. Magnetic structure of sunspots. Living Reviews in

Solar Physics, 8(4), 2011.

D. Burgess. What do we really know about upstream waves? Advances in Space

Research, 20:673–682, September 1997.

H. Carmichael. A Process for Flares. NASA Special Publication, 50:451, 1964.

I. V. Chashei, A. I. Efimov, L. N. Samoznaev, D. Plettemeier, and M. K. Bird. Two-

velocity structure observed in the inner solar wind. Advances in Space Research,

35:2195–2198, 2005.

B. Chen, T. S. Bastian, D. E. Gary, and J. Jing. Spatially and Spectrally Resolved

Observations of a Zebra Pattern in a Solar Decimetric Radio Burst. ApJ, 736:64,

July 2011.

F.F. Chen. Introduction to Plasma Physics and Controlled Fusion: Plasma physics.

Plenum Press, 1984. ISBN 9780306413322.

G. P. Chernov. Solar Radio Bursts with Drifting Stripes in Emission and Absorption.

Space Sci. Rev., 127:195–326, December 2006.

G. P. Chernov, A. K. Markeev, M. Poquerusse, J. L. Bougeret, K.-L. Klein, G. Mann,

H. Aurass, and M. J. Aschwanden. New features in type IV solar radio emission:

combined effects of plasma wave resonances and MHD waves. A&A, 334:314–324,

June 1998.

G. P. Chernov, L. V. Yasnov, Y.-H. Yan, and Q.-J. Fu. On the Zebra Structure in

the Frequency Range near 3 GHz. Chinese J. Astron. Astrophys., 1:525, December

2001.

G. P. Chernov, Y. H. Yan, Q. J. Fu, and C. M. Tan. Recent data on zebra patterns.

A&A, 437:1047–1054, July 2005.

154



G. F. Chew, M. L. Goldberger, and F. E. Low. The boltzmann equation and the one-

fluid hydromagnetic equations in the absence of particle collisions. Proceedings of

the Royal Society of London. Series A. Mathematical and Physical Sciences, 236

(1204):112–118, 1956.

P.C. Clemmow and J.P. Dougherty. Electrodynamics of particles and plasmas.

Addison-Wesley series in advanced physics. Addison-Wesley Pub. Co., 1969.

CLWeb. Cluster spin distribution products, 2014. URL www.clweb.cesr.fr.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex

Fourier series. Math. Comput., 19:297–301, 1965.

F. C. Cooper, V. M. Nakariakov, and D. R. Williams. Short period fast waves in

solar coronal loops. A&A, 409:325–330, October 2003.

I. Dandouras and A Barthe. User guide to the cis measurements in the cluster active

archive (caa). CIS Team, 2012.

O. Darrigol. Electrodynamics from Ampère to Einstein. Clarendon Press, 2000.

ISBN 9780198505945.

P.A. Davidson. An Introduction to Magnetohydrodynamics. Cambridge Texts in

Applied Mathematics. Cambridge University Press, 2001. ISBN 9780521794879.

K. Davies and Institution of Electrical Engineers. Ionospheric Radio. IEE electro-

magnetic waves series. Peregrinus, 1990. ISBN 9780863411861.

I. De Moortel and V. M. Nakariakov. Magnetohydrodynamic waves and coronal

seismology: an overview of recent results. Royal Society of London Philosophical

Transactions Series A, 370:3193–3216, July 2012.

J.-P. Delaboudinière, G. E. Artzner, J. Brunaud, A. H. Gabriel, J. F. Hochedez,

F. Millier, X. Y. Song, B. Au, K. P. Dere, R. A. Howard, R. Kreplin, D. J.

Michels, J. D. Moses, J. M. Defise, C. Jamar, P. Rochus, J. P. Chauvineau,

J. P. Marioge, R. C. Catura, J. R. Lemen, L. Shing, R. A. Stern, J. B. Gurman,

W. M. Neupert, A. Maucherat, F. Clette, P. Cugnon, and E. L. van Dessel. EIT:

Extreme-Ultraviolet Imaging Telescope for the SOHO Mission. Sol. Phys., 162:

291–312, December 1995.

G. A. Dulk and D. J. McLean. Coronal magnetic fields. Sol. Phys., 57:279–295,

April 1978.

155

www.clweb.cesr.fr


J. P. Eastwood, A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras. On the

existence of Alfvén waves in the terrestrial foreshock. Annales Geophysicae, 21:

1457–1465, July 2003.

J. P. Eastwood, E. A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, and

R. A. Treumann. The Foreshock. Space Sci. Rev., 118:41–94, June 2005.

P. M. Edwin and B. Roberts. Wave propagation in a magnetically structured atmo-

sphere. III - The slab in a magnetic environment. Sol. Phys., 76:239–259, March

1982.

P. M. Edwin and B. Roberts. Wave propagation in a magnetic cylinder. Sol. Phys.,

88:179–191, October 1983.

P. M. Edwin and B. Roberts. Employing analogies for ducted MHD waves in dense

coronal structures. A&A, 192:343–347, March 1988.

ESA. Cluster active archive, 2014a. URL caa.estec.esa.int/caa/home.xml. Ac-

cessed: 2014-05-29.

ESA. Image of cluster satellite group, 2014b. URL http://sci.esa.int/cluster/.

Accessed: 2014-05-29.

C. Escoubet and M. Goldstein. The Cluster Mission. AGU Fall Meeting Abstracts,

page D1, December 2001.

D. H. Fairfield. Bow shock associated waves observed in the far upstream interplan-

etary medium. J. Geophys. Res., 74:3541, 1969.
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