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ALGORITHMS AND THE MATHEMATICAL FOUNDATIONS
OF COMPUTER SCIENCE

WALTER DEAN

1. Introduction

The goal of this paper is to bring to the attention of philosophers of mathemat-
ics the concept of algorithm as it is studied in contemporary theoretical computer
science, and at the same time address several foundational questions about the
role this notion plays in mathematical practice. In the most general sense, an
algorithm is simply a procedure for achieving a particular mathematical end –
paradigmatically computing the values of a function, or deciding whether a given
mathematical object has a particular property. Most readers will be familiar with
a variety of such procedures – e.g. carry addition, long division, Euclid’s greatest
common divisor algorithm – and will also be able to provide a characterization of
the features in virtue of which we traditionally classify these methods as practical
aids to calculation.

Methods such as these form an important part of the intellectual heritage of
mathematics in several respects. For instance, methods for calculating quantities
such as areas, inverses, powers, and roots appeared early in the Babylonian,
Sumerian, and Egyptian mathematical traditions first being recorded around
2500 BCE. In the early middle ages, Arabic mathematicians developed a variety of
procedures for performing arithmetic and algebraic operations which exploit the
features of positional notation systems. The greater efficiency of these algorithms
– some of which are the ancestors of algorithms still taught to school children
today – over earlier methods for calculating with Roman numerals is often cited as
having been the determining factor in the acceptance of Hindu-Arabic numerals
in medieval Europe.

In the modern era the discovery of algorithms of practical import has often gone
hand in hand with significant mathematical discoveries. For instance, Gauss first
noted that both long division and Euclid’s algorithm can be generalized to the
ring KrXs of polynomials over a field K. Together with the procedure now known
as Gaussian elimination for solving systems of linear equations, these algorithms
figured prominently in the proofs of a variety of theorems of 19th century algebra
– e.g. Gordan’s demonstration that the ring of invariants of binary forms of fixed
degree is finitely generated, Hilbert’s Nullstensatz, and Strum’s Theorem. An
important contemporary example in the same tradition is Buchberger’s algorithm
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2 WALTER DEAN

[9] for computing Gröbner bases.1 Many similar examples can be cited in linear
algebra (e.g. the Gram-Schmidt algorithm), analysis (e.g. the Newton-Raphson
method), and graph theory (e.g. Krusal’s algorithm).

In the face of such examples, it seems reasonable to propose that the no-
tion of algorithm deserves a place alongside concepts such as number, set, and
function as an important substrate of contemporary mathematics. This role is
partially accounted for in light of the well-known analyses of computability un-
dertaken during the 1930s. For note that all of the methods mentioned thus far
are paradigmatically effective – i.e. they are finitely specifiable in terms of opera-
tions (e.g. adding or subtracting natural numbers, comparing the order of leading
terms of polynomials, etc.) which may be carried out using finite resources by
a mechanical computing agen. Such characteristics inform the conception of an
effectively computable function – i.e. one computable by an effective procedure
– which was analyzed in distinct but extensionally equivalent ways by Church,
Turing, Post, Kleene, and Gödel.

Reflection on these analyses led via a well known route to the framing of
Church’s Thesis:

(CT) f : Nk Ñ N is effectively computable if and only if fp~xq is recursive.

Note, however, that an effectively computable function is standardly understood
to be one whose values can be computed by an algorithm. Church’s Thesis can
thus also be formulated as follows:

(CTa) There exists an algorithm for computing f : Nk Ñ N if and only if fp~xq
is recursive.

CTa is indeed a significant contribution to our understanding of the notion of al-
gorithm. In particular, it enables us to analyze the truth conditions of statements
such as

(1) There is no algorithm for determining whether an arbitrary formula of
first-order logic is valid.

in terms of a proposition which quantifies not over algorithms but rather over
the members of some mathematically well defined class (e.g. that of Turing
machines). CTa thus provides a means of assigning significance to the formal re-
sults which Church and Turing demonstrated in the course of answering Hilbert’s
Entscheidungsproblem in the negative (which is what is reported by (1)). And it
has a similar effect for other formal undecidability results for problems such as
the word problem for semigroups or Hilbert’s Tenth Problem.

Taken on its own, however, CTa provides little direct insight into how the
notion of algorithm is understood in contemporary computer science. For note
that while several of the examples mentioned above suggest that mathematical
advances have often been tied to the discovery of new algorithms, the statements

1Buchberger’s algorithm can be understood as generalizing both Euclid’s algorithm and
Gaussian elimination. It finds a variety of applications in both pure and applied mathematics
– cf., e.g., [15].
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of the associated mathematical theorems rarely mention algorithms explicitly.2

Thus it might appear that the task of formalizing classical mathematics (say
within axiomatic set theory) does not require that we accord algorithms the
status of freestanding objects or that we provide a rigorous reconstruction of the
means by which we apply or analyze them in practice.

In computer science this order of inquiry is often inverted. For instance, in
fields like complexity theory and algorithmic analysis, individual algorithms are
treated as the presumptive objects of study and mathematical methods are then
used to investigate their properties. This emphasis is reflected, for instance, in
the practice of referring to individual algorithms by what appear to be gram-
matical proper names (e.g. Euclid’s algorithm, MergeSort, etc.). Moreover,
results in algorithmic analysis are often reported by predicating computational
properties directly of individual procedures by using these names (e.g. “The AKS
primality algorithm has polynomial running time”) or by quantifying over classes
of procedures (e.g. “There exists a polynomial time primality algorithm”, “There
is no linear time comparison sorting algorithm”).

As the use of such language bears many of the hallmarks which philosophers
have traditionally associated with ontological commitment, the practice of com-
puter science thus raises a variety of questions about the status of algorithms
which have been overlooked by philosophers of mathematics. Perhaps most
prominent among these is the following:

(Q1) Are individual algorithms properly regarded as objects? If so, are they
abstract, concrete, or somehow intermediate between these possibilities?
How can we account for our apparent ability to make reference to and
prove both singular and general propositions about them?

Questions of type (Q1) – which are of an overtly ontological nature – can be
contrasted with epistemological concerns about the use of algorithms in mathe-
matical practice such as the following:

(Q2) How can we justify the use of computational methods in the derivation of
mathematical results? In particular, why ought we to accept a calculation
carried out by using an algorithm as an adequate demonstration of a
mathematical proposition?

Questions in the vicinity of (Q2) have attracted more attention within philosophy
of mathematics than (Q1) largely because of the difficulties which are thought
to arise in accounting for the status of proofs – most famously of the Four Color
Theorem [78] – which have substantial computational components.

2For instance, consider Sturm’s Theorem – “The number of distinct real roots of a square-free
polynomial ppxq located in the half-open interval pa, bs is given by σpaq´σpbq where σpxq is the
number of sign changes in the Sturm sequences p0pxq, p1, pxq, . . . , pmpxq for ppxq.” Although
the classical proof of this result consists largely in specifying an algorithm for computing the
Sturm’s sequence for ppxq (and thereby the value of σpaq ´ σpbq) and proving it correct, the
statement of the theorem itself makes no mention of this.
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I will discuss such examples further in §2. Therein I will also argue that they
lead naturally to the formulation of the following thesis about how questions of
type (Q1) should be answered:

(A) Algorithms are mathematical objects.

(A) answers (Q1) by proposing that algorithms are no different in kind than
the sorts of objects (e.g. numbers, sets, groups, matrices, graphs, etc.) stud-
ied in recognized branches of classical mathematics. Such a view also provides
a convenient answer to questions of sort (Q2): if algorithms are just another
type of mathematical object, then the use of an algorithm to perform a lengthy
calculation which may be required in the course of a proof can be justified by
a mathematical proof taking the algorithm as its subject that the algorithm is
correct (i.e. that it computes the function that it is claimed to).

I will refer to the view expressed by (A) as algorithmic realism.3 Although it is
often not identified as a thesis requiring an explicit statement and defense, I will
argue in §3 that (A) is presupposed throughout much of contemporary theoretical
computer science.4 Variants of (A) are also implicit in the writings of virtually all
theorists who have considered the notion of algorithm in a foundational setting.
This most prominently includes Yiannis Moschovakis and Yuri Gurevich, each of
whom have set out theories wherein in algorithms are explicitly identified with
certain classes of mathematical objects (respectively in [54], [56], [57] and [36],
[37], [35]). Other formulations of algorithmic realism can also be found in the
writing of many other theorists who have addressed the nature of algorithms in
relation to other concepts studied in computer science – e.g. Gödel [32], Rogers
[66], Kreisel [48], Milner [51], Knuth [41], Odifreddi [59], Foster [23], and Yanofsky
[82] – many of whose views will be discussed (at least in passing) below.

The primary goal of this paper will be to address the question of whether
algorithmic realism can be sustained as a foundational thesis about the nature of

3Of course one might also think that a view deserving the name “realism” about algorithms
ought to be involved with providing a non-reductive account of our discourse about them –
i.e. one which identifies algorithms not with mathematical objects as traditionally conceived,
but rather with a distinctive class of entities which might (or instance) possess genuine spatio-
temporal properties. Although such a view – which I will discuss further in §4 under the name
direct algorithmic realism – does not appear to be widely held in mainstream computer science,
it bears an obvious affinity to intuitionistic or constructive mathematics. For instance, the
understanding of mathematical objects as idealized mental constructions within intuitionism
may itself be taken to form a kind of converse to (A) – i.e. rather than seeking to identify
procedural entities with mathematical ones, it seeks to identify mathematical entities with
procedural ones. Unlike intuitionism, however, algorithmic realism is not intended to be a
foundational thesis about mathematics as a whole, but rather a thesis about the relationship of
procedural discourse – especially as it figures in theoretical computer science – to mathematics.

4Donald Knuth – who is generally credited with founding (as well as naming) the field now
known as algorithmic analysis – has been one of the most outspoken proponents of algorithmic
realism. One of his most explicit formulations of this view is as follows: “Algorithms are
concepts which have existence apart from any programming language . . . I believe algorithms
were present long before Turing et al. formulated them, just as the concept of the number
‘two’ was in existence long before the writers of first grade textbooks and other mathematical
logicians gave it a certain precise definition.” [45], p. 654.
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algorithms in light of the details of our mathematical and computational practices
involving them. Despite the realistic character of much of our discourse about
algorithms, I will ultimately argue that it cannot be so sustained. The central
reason I will offer for this is that our practices simply do not exert sufficient
pressure on the use of the expressions we employ to refer to algorithms to allow
us to assign them mathematical denotations in a non-arbitrary manner. In fact, I
will suggest that the fundamental problem confronting someone wishing to defend
algorithmic realism is the familiar one of showing how to associate algorithms with
mathematical objects such that the identified objects represent all and only the
computational properties which we associate with them directly in the course of
our practices.

I will refer to variants of this view on which the class of mathematical objects
with which algorithms are identified are members of one of the conventional
models of computation studied in computability theory – e.g. Turing machines,
partial recursive function definitions, lambda terms – as Strong Church’s Thesis.5

When seen simultaneously through the lens of computer science and philosophy
of mathematics, this view faces a strong prima facie challenge. For note that if
we propose to identify, say, Euclid’s algorithm with a particular mathematical
object M (say a specific Turing machine), we thereby equip the former with all of
the properties – e.g. having a particular number of states, an exact as opposed to
asymptotic running time, etc. – which are possessed by the latter. As we will see
below, however, it is out of keeping with the methodologies of algorithmic analysis
and complexity theory to think that such properties are appropriately attributed
to individual algorithms as opposed, e.g., to their implementations with respect
to a given model of computation or their expression in a given programming
language.

The adoption of Strong Church’s Thesis thus faces a potential objection on
the basis of what we might call the what-numbers-could-not-be problem. In its
original form, this is the charge famously formulated by Benacerraf [5] that a
successful reduction of number theory to set theory must provide not only a
means of identifying numbers with sets which preserves the truth of our chosen
arithmetical axioms, but also an account of what makes a particular means of
making such an identification correct relative to other identifications which also
preserve the truth of the axioms. For to take the familiar example, were we to
propose to identify the natural numbers with the finite von Neumann ordinals – as
opposed to, say, the finite Zermelo ordinals – we would be faced with the seeming
unanswerable question of why 2 has the properties of tH, tHuu (e.g. having two
members) as opposed to those of ttHuu (e.g. having a single member).

Perhaps for this reason, the contemporary consensus appears to be that indi-
vidual algorithms should be identified not with particular instances of models of
computation, but rather to equivalence classes of such items determined by an
appropriate notion of “computational equivalence” defined over an appropriate

5Inchoate versions of Strong Church’s Thesis can be found already in Post [64] and in Kol-
morogov and Uspensky [46]. More explicit formulations are given by Knuth [41], Gandy [28],
Sieg and Byrnes [74] and Dershowitz and Gurevich [18].
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class C of mathematical objects. I will refer to this as the algorithms-as-abstracts
view.6 The most popular versions of this view take C to coincide with the class of
machine M of some (sufficiently generalized) model of computation or the class
of programs P over a (sufficiently generalized) programming language. These
proposals respectively lead to what I will refer to as the machine-based and
program-based variants of the algorithms-as-abstracts view. In order to develop
this view it is also necessary to propose an equivalence relation „ by which these
classes can be factored into the classes which its proponents hold to be algorithms.
As I will discuss further below, standard choices for „ on the machine-based and
program-based variants are respectively mutual simulation (which I will denote
by «) and various technical definitions of program synonymy (which I will denote
by »).

Once appropriate definitions for these parameters have been fixed, the pro-
ponents of the algorithms-as-abstracts view can then be understood to propose
that the following implicit definitions provide an analysis of statements about
algorithmic identity and non-identity:

(MP) the algorithm implemented by machine M1 = the algorithm
implemented by machine M2 if and only if M1 »M2

(PP) the algorithm expressed by program Π1 = the algorithm expressed by
program Π2 if and only if Π1 « Π2

Putting aside for the moment how a proponent of the algorithms-as-abstracts
view might go about defining M,P,» and «, it is also evident that the schema
(MP) and (PP) have the form of abstraction principles of the sort which have
been widely discussed in the relation to Frege’s [24] proposed analysis of natural
numbers as equivalence classes of finite sets with respect to the relation of equi-
cardinality. It might thus at first appear that it is open to proponents of the
algorithms-as-abstracts view to propose that these schemas provide a means by
which we can understand the status of algorithms as abstract objects in some-
thing like the manner in which neo-logicist philosophers of mathematics such as
Wright and Hale [81], [38] propose that the adoption of Hume’s Principle (i.e. the
abstraction principle the number of F s = the number of Gs just in case the F s
and Gs are equinumerous) can be understood to introduce the natural numbers
as a new class of “logical objects”.

But despite the outward affinity between the two proposals, the problems which
must be confronted to develop the algorithms-as-abstract view are of a different
character than those which have traditionally been taken to confront neo-logicism.
In particular, the neo-logicist project is traditionally understood to be premised
on the claim that Hume’s Principle should be understood as a conceptual or
analytic truth about our understanding of the concept natural number. In order
to defend this view, it is usually taken to be incumbent on the neo-logicist not

6Inchoate forms of the algorithms-as-abstracts view can be found in Rogers [66] and Kreisel
[48], whereas more refined versions have been developed by Milner [51], Moschovakis (e.g.) [56]
and Yanofsky [82].
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only to defend this claim but also to respond to other challenges which are often
pressed against the neo-logicist program.7

As we will see below, however, a significant problem which the algorithms-
as-abstracts view must face is that it is difficult to find non-trivial instances in
which the schema (MP) or (PP) are applied in practice against which we can test
our intuitions about their potential analyticity. In fact, the practice of fields like
algorithmic analysis and complexity theory appear to leave not only the choice
of the classes M and P, but also the choice of the equivalence relations » and
« highly unconstrained. Proponents of the algorithms-as-abstracts view thus
face the initial challenge not only of defining what is meant by “computational
equivalence”, but also of characterizing the class of objects over which it is defined.
And perhaps more significantly, for such a proposal in this family to serve as a
convincing analysis of what we mean when we speak of the notion of algorithm
in the course of our informal practices, it would presumably have to be informed
by the same sort of linguistic, conceptual, and technical investigation to which
Frege [24], [25] famously subjected the notion of natural number. There is thus
much work to be done even before analogues of the traditional challenges to
neo-logicism can be raised for the algorithms-as-abstracts view.

These points notwithstanding, the algorithms-as-abstracts view is currently
the best developed strategy for addressing the status of algorithmic realism and
questions of type (Q1) more generally. In order to understand the challenges fac-
ing this view it will be useful to first consider in greater detail the factors which
motivate algorithmic realism and also the practices of the subfields of theoretical
computer science which bear on the details of our contemporary understanding
of algorithms. These will be the respective purposes of §2 and §3. In §4, I will
further develop several of the strategies for developing algorithmic realism just
surveyed so as to provide a more systematic case that the machine based variant
of the algorithms-as-abstracts view is currently the most proposing approach for
defending this view. In §5, I will then consider the relation of mutual simulation
which several theorists have proposed can play the part of ». Upon conclud-
ing that it is not possible to provide a definition of this notion which serves
needs of algorithmic realism, in §6 I will then discuss this conclusion in light of
Moschovakis’s and Gurevich’s theories of algorithms, as well as offering some final
thoughts on the significance of intensional identity statements in mathematical
practice.

2. Motivating algorithmic realism

The purpose of this section will be to set out a series of considerations which
serve to motivate the consensus view that algorithmic realism is a correct means
of responding to questions of type (Q1). As mentioned above, questions of this
sort have received considerably less attention in philosophy of mathematics than
those of type (Q2). For although there has been relatively little philosophical
engagement with theoretical computer science to date, what interaction there

7E.g. the Julius Caesar or “bad company” objects as discussed in [38].



8 WALTER DEAN

has been has focused around evaluating the epistemic questions raised by math-
ematical arguments which involve lengthy algorithmic calculations. The best
known example of this sort is, of course, the so-called “computer proof” which
was employed by Appel and Hanken [2], [3] in their original demonstration of the
Four Color Theorem.8 However, in order to illustrate how attempts to answer
questions of type (Q2) lead inevitably to consideration of questions of type (Q1),
it will be useful to examine not this example but rather the use of algorithmic
methods to solve a more commonplace problem: given a natural number n, is n
prime?9

Until the late 19th century, all known methods for solving this problem appear
to have been based on variants of the “naive” method of trial division – i.e. in
order to determine if n is prime, show p1 ffl n, p2 ffl n, . . . for all primes pi ď

?
n.

But it was also recognized that this method is both laborious and unreliable
due to the large number of divisions it required. The first significant advance
in primality testing was the development of a procedure by the French mathe-
matician Édouard Lucas who showed how it was possible to determine whether
a Mersenne number (i.e a number of the form mp “ 2p ´ 1 for p prime) is prime
without checking it for divisibility by a large number of smaller primes.

The basis of Lucas’s method is a number theoretic lemma whose general form
is now known as the Lucas-Lehmer primality test:

(2) For p an odd prime, 2p ´ 1 is prime if and only if rp´2 ” 0 mod 2p ´ 1
where r0 “ 4 and ri`1 “ r2i ´ 2.

This statement implies that in order to determine whether 2p ´ 1 is prime it
suffices to carry out the following procedure (which I will refer to here as Lucas’s
algorithm): compute the sequence of numbers r0, r1, . . . , rp´2 and then check if
2p ´ 1 divides rp´2.

In 1876 Lucas employed this procedure to show that the 39 digit number m127

was prime. This required that he compute the values of 125 products on numbers
up to 39 decimal digits in length. While this is still an arduous task to perform

8The version of the proof which was originally published included an exhaustive case analysis
conducted by computer to check whether a collection of almost 2000 graphs possessed a property
known as reducibility. Although this number has been reduced in subsequent proofs, all known
demonstrations of the Four Color Theorem rely on verifying a number of decidable graph
theoretic statements which is greater than the number which can be feasibly tested (or even
surveyed) by a human mathematician. On this basis Tymoczko[78] famously argued that the
Appel and Hanken demonstration is not a mathematical proof in the traditional sense as its
correctness relies on the empirical (and hence a posteriori) assumption that the computing
device which is employed to carry out the relevant calculations has operated correctly.

9The of primality testing was described by Gauss [30] (p. 329) as “the most important and
useful in arithmetic.” Anticipating later developments in complexity theory, he went on to
say that “nevertheless we must confess that all methods that have been proposed thus far are
either restricted to very special cases or are so laborious and difficult that even for numbers
that do not exceed the limits of tables constructed by estimable men, they try the patience of
even the practiced calculator.” The significance of primality testing – and in particular of the
Lucas-Lehmer test described below – to the status of the debate about “computer proofs” was
first observed by Detlfesen and Luker [19].
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without mechanical computing equipment, it should be compared with the fact
that more than 1.9 ˆ 1036 divisions would be required to test the primality of
m127 using the trial division algorithm. The contrast between trial division and
Lucas’s algorithm thus illustrates the reason why we are often concerned with
the existence of an algorithm for solving a given mathematical problem – i.e.
by exploiting a “clever” or indirect method, algorithms often allow us to solve
instances of problems of antecedent interest which would be infeasible for us to
solve by direct or “naive” methods alone.10

The question arises, however, why we ought to accept Lucas’s calculation as an
admissible mathematical demonstration of the proposition expressed by “m127 is
prime”. For even if we put aside the possibility that Lucas made a mistake during
his calculation, we must presumably also that demonstrate Lucas’s algorithm
accurately decides the primality of 2p´1 before we are justified in accepting that
a computation carried out by this algorithm is sufficient to demonstrate that mp

is prime. In order to understand the significance of such a requirement, note
that the specification of the algorithm does not bear a transparent relationship
to the traditional definition of primality (i.e. n is prime just in case n is divisible
by only 1 and itself). A computation carried out by the algorithm will thus
bear little resemblance to an execution of the trial division algorithm described
above and even less resemblance to a “canonical” deductive proof that m127 is
prime – i.e. one whose structure mirrors the logical form of the proposition
@xrx|m127 Ñ px “ 1 _ x “ m127qs). When viewed in isolation, we would thus
have little reason to accept such a calculation as a demonstration that m127 is
prime.

The desired connection between this calculation and the definition of primality
is, of course, provided by the Lucas-Lehmer Test. This result allows us to see
informally why repeatedly carrying out the operation s ÞÑ ps2 ´ 2q by which the
value associated with the variable s is replaced by that of s2 ´ 2 results in a
final value of s such that s mod 2p ´ 1 “ 0 just in case 2p ´ 1 is prime. Note,
however, that in order to turn this observation into what we normally regard as a
mathematical proof, some explanation must presumably be given of the meaning
of expressions such as repeatedly carrying out or replacing one value of a variable
with another.

A related question is how we are to understand such language if we wish to
give a purely mathematical proof that a given algorithm computes a function or
decides a predicate which has an antecedently given mathematical definition. For
note that while it is standard to think of mathematical objects as static, the use
of operational terms in the specification of algorithms reflects our understanding

10Note this is often true regardless of whether the algorithm is carried out by hand or with
a computer. For even using a computer, our ability to practically apply an algorithm to solve
particular instances of a problem will still be determined by its running time complexity. As
such, Lucas’s algorithm remains a significant improvement over the naive primality algorithm
for testing Mersenne numbers even when they are both carried out mechanically rather than
with paper and pencil calculation.
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that to execute an algorithm is to carry out a sequence of operations which are
ordered in time.11

In the current case, however, a resolution to this apparent incongruity still
appears near at hand: in order to prove that Lucas’s algorithm is correct, it
suffices to construct a formal representation of the procedure – call it φLucas –
which relates the value associated with the variable s at the i ` 1st stage in its
operation to the value of the term ri occurring in (2). This may be accomplished
by specifying a mathematical structure φLucas sometimes known as an iterator.12.
φLucas may be taken to consist of a set of computational states St Ď NˆN whose
first member keeps track of the index i and whose second member keeps track
of the value of si together with a transition function σ : St Ñ St such that
σpxx, yyq “ xx´ 1, y2´ 2y. We may then define ApppφLucas, pq – i.e. the result of
applying Lucas to p – to be 1 if upon iterating σ we obtain a sequence of states
of the form s0 ” xp, 4y, s1 “ σps0q, . . . , si`1 “ σpsiq, . . . , σp´1 “ σpsp´1q ” x2, yy
and y “ 0 and 0 otherwise.13

Using (2) it is now straightforward to prove a statement expressing the cor-
rectness of Lucas in the following form:

Proposition 2.1. For all odd primes p, ApppφLucas, pq “ 1 if and only if 2p ´ 1
is prime.

Unlike the observations about the operation of Lucas’s algorithm recorded above,
Proposition 2.1 is a result involving only mathematical definitions and structures
(i.e. natural numbers, finite sequences of ordered pairs, etc.). As such, it admits
to a standard proof by mathematical induction which does not require us to
reason informally about notions like “repeatedly carrying out” an operation.

Proposition 2.1 reports what computer scientists call the correctness of Lu-
cas’s algorithm – i.e. that for all odd primes p the algorithm outputs 1 or 0

according to whether 2p´ 1 is prime. The derivation of Proposition 2.1 from the
Lucas-Lehmer test is sufficiently straightforward that this result might at first
appear trivial. In the general case, however, correctness proofs for more complex

11Observations about the tension between the abstract subject matter of mathematics and
the use of dynamic language in the formulation of mathematical proofs are at least as old as
Plato’s critique of the geometers in the Republic VII.1 [62]. The resolution typically favored by
proponents of classical mathematics is to interpret talk of constructions (e.g. of a line bisecting
an angle, the minimal closure of a set) as a heuristic way of expressing atemporal existence
assertions which may in some cases lack constructive proofs – c.f., e.g., [72]. But as the methods
which will be at issue in this paper are all effective, the issue at stake will not be whether
dynamic discourse involving algorithms has genuine constructive content. Rather it is whether
classical mathematics possesses the resources to interpret the operational discourse itself in
a manner which is faithful to our understanding of the mode of operation of the individual
algorithms in question and, more broadly, of our means of classifying them according to their
computational properties.

12The term “iterator” to describe such a structure owes to Moschovakis [56]. However,
similar models have been independently proposed many other theorists – e.g. Kolmogorov and
Uspensky [47], Knuth [41], and Gandy [28].

13For instance the computation induced by φLucas on the input 5 is the sequence of states
x5, 4y, x4, 17y, x3, 8y, x2, 0y and ApppφLucas, 5q “ 1.
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algorithms may require sophisticated mathematical arguments themselves. But
what is most significant in the current case is not the difficulty of demonstrating
correctness, but rather the proposal that algorithms admit to mathematical proof
of correctness in the first place.

For as we have just seen, the availability of such a proof for an algorithm
A appears to presuppose the existence of a mathematical structure such as φA
which provides a precise representation of what we might informally describe as
A’s “mode of operation”. Once we have specified A informally, it is also often a
routine exercise in formalization to construct φA. But even after we have provided
such a representation, the question remains what relationship such a structure
bears to the algorithm A in the sense we originally understood it relative to an
informal specification similar to that by which Lucas’s algorithm was introduced
above.

One obvious proposal is that the relationship between an algorithm and its
formal representation as a structure such as an iterator is sufficiently direct and
systematic that the former may simply be identified with the latter. A conse-
quence of this is that the procedure we started out calling Lucas’s algorithm
simply is the structure ϕLucas and similarly that all of the other algorithms we
have previously identified in our mathematical practices may be identified with
such structures. This is not to deny that our initial apprehension of how such
procedures operate is often grounded in the sort of informal description provided
for Lucas’s algorithm above or that such descriptions are sufficiently precise to
guide us in their execution. Rather the import of both the current example as
well as several others considered below is to suggest that nothing of mathematical
import is lost when we move from such informal descriptions to the sort of formal
representation of a procedure which is required to support a correctness proof.

Our apparent ability to make such identifications in a manner which preserves
the details of how we apply and reason about algorithms in practice appears
to provide the basis of the consensus that algorithmic realism is correct. In
particular, the need to provide correctness proofs before we can assimilate algo-
rithmic calculations to traditional mathematical proof coupled with the apparent
consensus that we are indeed justified in believing the outcomes of algorithmic
calculations on the basis of something akin to proof appears to provide a strong
prima facie case in favor of this view. The goal of §3-§5 will be to show that the
practice of contemporary computer science exerts sufficiently many other pres-
sures on the form which an adequate foundational theory of algorithms must take
so as to render algorithmic realism untenable. The goal of §6 will then be to pro-
vide an alternative reconstruction of the justification of the use of computational
methods in mathematics.

3. Algorithms in theoretical computer science

The goal of this section will be to provide a concise account of how algorithms
are treated within theoretical computer science. This will inform the detailed
considerations which are required to evaluate algorithmic realism relative to our
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contemporary practices. In so doing we face the challenge that despite its relative
youth as a subject, theoretical computer science has spawned subfields in which
algorithms are treated, each with its own motivating questions and methodology.
Of these, considerations originating in complexity theory and algorithmic analysis
(which will be considered in this section), and programming language semantics
(which will be considered in §4) will be most relevant below.14

An elementary (but deceptively simple) class of examples is provided by the
study of procedures for sorting a finite array B of numbers or other items linearly
ordered by a relation ď.15 Consider, for instance, the following passage from a
popular algorithmic analysis textbook:

In this chapter, we introduce another sorting algorithm: HeapSort. Like
MergeSort, but unlike insertion sort, HeapSort’s running time isOpn log2pnqq.
Like InsertionSort, but unlike MergeSort, HeapSort sorts in place:
only a constant number of array elements are stored outside the input array
at any time. Thus, HeapSort combines the better attributes of the two
sorting algorithms we have already discussed. [14], p. 151

This passage exemplifies how expressions like HeapSort, MergeSort, and
InsertionSort are used to denote individual methods for computing the sort-
ing function – i.e. the the function sortpxq which on input array B returns a
permutation B1 of B such that B1r0s ď B1r1s ď . . . ď B1rns. A notable feature of
the discourse of algorithmic analysis and related subjects is that terms play the
apparent grammatical role of proper names – i.e. linguistically primitive expres-
sions which function as singular terms for purpose of predication and formulation
of statements of identity and non-identity. I will refer to such as expressions as
algorithmic names.

A question close to the heart of algorithmic realism is how we should under-
stand the reference of expressions likeHeapSort or MergeSort. As a first
step toward addressing this, note that algorithmic names are often introduced
along with informal mathematical descriptions as exemplified by the following
specification of InsertionSort:

[C]onsider the elements one at a time, inserting each in its proper place among
those already considered (keeping them sorted). The element being considered
is inserted merely by moving larger elements one position to the right, then
inserting the element into the vacated position. [71], p. 95-96

Although such informal descriptions are sometimes taken to be sufficient for
purposes of proving that an algorithm is correct or analyzing its computational
complexity (a task I will discuss further in a moment), it is also conventional
to supplement them with more regimented formulations in an idiom known as
pseudocode. A specification of InsertionSort in this manner might take the
following form:16

14Standard references for these subjects are as follows: complexity theory [29], [60], [20];
algorithmic analysis [41], [42], [43], [71], [14]); semantics of programming languages [75], [58],
[52].

15For a history of such methods and their role in the development of algorithmic analysis,
see [41].
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InsertionSortpBq

1 for j Ð 2 to |B|
2 do mÐ Brjs
3 iÐ j ´ 1
4 while i ą 0 and m ď Brjs
5 do Bri` 1s Ð Bris
6 iÐ i´ 1
7 Bri` 1s Ð m

Expressions like Lucas, InsertionSort, or Euclid (i.e. Euclid’s algorithm)
are introduced in much the same way that names for theorems and definitions
are used in conventional mathematical texts (e.g. Desargue’s Throrem, the Snake
Lemma, the Riemann Integral, etc.) – i.e. as means of facilitating reference to
prior complex definitions or results. Within computer science, however, algo-
rithmic names also commonly appear as the grammatical subjects of sentences
reporting that individual algorithms have particular computational properties –
e.g.

(3) a) Euclid computes the function gcdpx, yq.
b) InsertionSort has running time complexity Opn2q.
c) MergeSort has faster running time complexity than InsertSort.

The frequency with which such statements appear in computer science textbooks
and other sources underscores the fact that what is often of interest in fields
like algorithmic analysis and complexity theory is not merely the discovery of
algorithms, but rather the use of mathematical methods to show that certain
properties and relations hold of procedures which have already been introduced.

In addition to the property of correctness with respect to a given mathemati-
cally defined function (e.g. as reported by (3a)), of paramount concern in com-
puter science are the sorts of complexity theoretic properties reported by (3b,c).
For it is the attribution of such properties by which the efficiency of algorithms
for solving particular mathematical problems are measured and compared. The
manner in such attributions are treated in algorithmic analysis and complexity
theory will play a significant role in the evaluation of algorithmic realism devel-
oped below. It will thus be useful to offer the following brief account of how such
statements are demonstrated.

Informally speaking, the running time complexity of an algorithm A on an
input x is the number of basic computational steps which are required for A to
halt and return a output when applied to the input x measured as a function
of some standard measure |x| “ n of the size of x (e.g. the length of its binary

16As is evident from this example, psuedocode employs a combination of natural language
and formal programming constructions. Many of the latter express instructions which are
awkward to describe in natural language – e.g. that several operations should be iterated
until a specified condition is met, or that a subprocedure should be called recursively. The
conventions for interpreting pseudocode thus involve many conventions about how scope and
variable binding are to be interpreted which are akin to those employed in formal logic. See
[14] p. 19-20 for a more detailed discussion of such conventions.
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representation in the case x is a natural number). This property of A is typically
reported as a function timeApnq of type N Ñ N which returns the maximum
number of steps consumed by A for all inputs x of length equal to n.17 As much
of theoretical computer science is aimed at finding and analyzing efficient methods
for solving mathematical problems such as primality testing or sorting a list of
numbers, this property is often taken as the single most significant feature of an
algorithm. But before timeApnq can be precisely defined, some prior stipulation
must be made as to what should be counted as a “basic computational step” of
A.

Complexity theory and algorithmic analysis can be understood to offer distinct
but complementary answers to this question. On the one hand, complexity theory
is typically developed so that measures of time (and also space or memory)
complexity are reported relative to a particular fixed model of computation M.18

Although most familiar models are sufficient for this purpose, complexity theory
does impose additional constraints beyond those imposed by computability theory
on the choice of M (wherein in M is typically only required to be Turing complete
and provide a suitable means of indexing machines so that results like the s-n-
m Theorem hold). In particular, M must be powerful enough to allow for the
representation of numbers in binary form, but not so powerful as to allow for
arbitrarily branching parallel computations.19 Such models – which include the
familiar single- or k-tape Turing machine model Tk with a binary tape alphabet
or the standard Random Access [RAM] model R with unit time addition and
subtraction – are often referred to as reasonable and are taken to comprise a
natural category known as the first machine class [79].

Although the reliance of complexity theory on the existence of a well defined
class of models of this sort is often not stressed explicitly, it is difficult to un-
derstate its overall significance for theoretical computer science. For complexity
theory is standardly taken to provide our most complete account of which math-
ematical problems are feasibly decidable – i.e. decidable by a method which can

17More precisely, this is the so-called worst case running time of A. Although it is possible
to also study the best and average case running time (relative to some probability distribution
on inputs) of A, the worst case metric is often taken to be the most useful in practice – see,
e.g., [71] for discussion.

18For present purposes I will assume that it is clear what it means for a particular mathe-
matical formalism – e.g. the lambda calculus or the class of Turing machines – to serve as such
a model. Matters of family resemblance aside, however, an important foundational question
which is shared by computability theory, complexity theory, and algorithmic analysis is that of
making the notion of a model of computation precise. I will return to this issue in §4 (see also
[28], [73], [79]).

19For instance, the former restriction excludes the variant of the Turing machine model with
only a single non-blank symbol in its tape alphabet, while the latter excludes the so-called
Parallel RAM [PRAM] model, or the so-called MBRAM variant of the traditional sequential
model which allows for unit time multiplication. Although these models are Turing complete
– and hence sufficient for the development of computability theory – they are members of the
so-called second machine class for which the complexity classes P and PSpace defined below
collapse. See [79] for details.
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be carried out in practice for inputs of a reasonable size, as opposed to only in the
“in principle” sense of computability theory. Thus if there were no precise means
of distinguishing those models of computation which provide abstract characteri-
zations of the sort of basic operations which can be carried out in a single by the
sort concretely embodied computing devices we employ in practice, there would
be little hope of giving a mathematical analysis of feasible computability in the
manner which complexity theory aims to provide.20

Once a model M in the first machine class has been fixed as a benchmark, com-
plexity theory suggests that the running time timeApxq of an algorithm A should
be defined by first constructing a machine M PM which is said to implement A.
In order to state in precise terms what it means for M to implement A requires
solving what I will refer to as the implementation problem – i.e. that of providing
necessary and sufficient conditions for when a given M PM is an adequate math-
ematical representation of A. As should already been evident from the example
of §2, providing a non-stipulative answer to this question is of central importance
to assessing the status of algorithmic realism itself. In broad terms, however,
the manner in which M is often constructed from the specification of A will be
familiar to anyone who has attempted (e.g.) to construct a Turing machine for
performing addition or multiplication on natural numbers represented in binary
notation – i.e. it must be shown how the basic operations and data structures of
M may be used to mimic the step-by-step operation of A in terms of the (possibly
“higher-level”) primitive operations in terms of which A is informally specified.
Upon so doing, the function timeApnq can then be defined as timeMpnq – i.e. the
mathematically defined running time complexity of the machine M constructed
in this manner.

After the choice of M has been fixed, complexity theory then goes on to
study the properties of timeMpnq where M varies over the machines which solve
mathematical problems – e.g. primality testing, determining whether a given
propositional formula is satisfiable or is a tautology, determining whether a given
graph has a clique of a certain size or whether two graphs are isomorphic. This
gives rise to the notion of a complexity class TimeMpfpnqq which is defined to
consist of those computational problems X which can be solved by a machine
M P M such that timeMpnq ď Opfpnqq.21 Such classes form the familiar hier-
archy LogTime Ď P Ď NP Ď PSpace, respectively defined as the classes of

20For instance, in distinguishing the first machine class from the second, van Emde Boas
states “The first machine class represents the class of reasonable sequential models. However,
for the machine models in the second machine class it is not clear at all that they can be
considered to be reasonable. It seems that the marvelous speed-ups obtained by the parallel
models of the second machine class require severe violations of basic laws of nature. Stated
differently: if physical constraints are taken into account, all gains of parallelism seem to be
lost.” [79], p. 14.

21See below for discussion on the use of the order of growth notation Opfpnqq. Also note
that many of the problems mentioned above pertain to the classification of mathematical (e.g.
logical formulas or graphs) objects which are not natural numbers. As such, suitable encodings
of these items will often need to be found in order that they may be presented as inputs to an
appropriate M P M. In the case where M is taken to be the Turing machine model Tk, it is
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computational problems which can be solved in time k log2pnq and k1 ¨ n
k2 using

(e.g.) the deterministic Turing machine model Tk (respectively described as log-
arithmic time and polynomial time), the class of problems which can be solved
in time k1 ¨ n

k2 using the non-deterministic Turing machine model NTk (non-
deterministic polynomial time), and the class of problems which can be solved in
space k1 ¨ n

k2 using Tk (polynomial space) – see, e.g., [60] for details.
As should be evident from the foregoing discussion, complexity theory is pri-

marily concerned with the classification of computational problems understood
extensionally as classes of their instances. The most fundamental distinction in
this regard is between those problems which can be shown to be members of P –
which is commonly thought to provide an upper bound on the class of problems
whose instances can be uniformly solved in practice – and those which can be
shown to be hard for a class such as NP which is strongly believed (but not
known) to properly contain P. A problem X is shown to be hard in this sense by
showing that there is a polynomial time reduction which efficiently transforms
any instance of X into an instance of some problem which is known to be com-
plete for NP. Such a problem can thus be understood to embody the underlying
computational difficulty of solving all problems in this class.22

One well known example of such a problem is the set SAT consisting of the set
of (binary strings encoding) formulas of propositional logic for which there exists
a satisfying assignment – e.g. P0 _ P1 P SAT, but P0 ^  P0 R SAT. Since SAT
is known to be NP-complete, it is very unlikely that SAT is feasibly decidable.
Such a fact would typically be reported in complexity theory as follows:

(4) If P ‰ NP, then there does not exist an algorithm with polynomial
running time complexity which solves the problem SAT of determining
whether a formula of propositional logic is satisfiable.

Note that like many other limitative results in computability theory such as (1),
statements like (4) are often reported informally using quantifiers over algorithms.
But it should be clear on the basis of the foregoing that just as CTa allows us
to paraphrase away the quantification over algorithms in “There is no algorithm
for deciding first-order validity” in favor of quantification over the members of
any Turing complete model of computation, it is possible to paraphrase away the
quantifier in (4) in favor of quantification over the members of an appropriate
model of computation in the first machine class.23

Matters are somewhat different in algorithmic analysis wherein the focus of
study is not on computational problems, but rather on individual algorithms
themselves. Note, however, that in order to justify a statement such as (3b)

typical to assume problem instances are encoded as binary strings. In this case a computational
problem X will be a subset of t0, 1u˚.

22See, e.g., chapter 8 of [60] for the relevant definitions and examples.
23Note, however, that unlike the classical limitative results of computability theory, the

statement of (4) is premised on the non-coincidence of the complexity classes P and NP. Such
a qualification can be removed by considering a computational problem which is known to be
complete for a complexity class such as NExp (i.e. non-deterministic exponential time, see
chapter 20 of [60] for examples) which can be proven to properly contain P.
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requires that we are able to somehow count the number of steps which are required
by an algorithm like InsertionSort or MergeSort to sort a list of length n.
This is typically accomplished by performing a so-called running time analysis
of the algorithm – i.e. a combinatorial argument which counts the maximum
number of distinct operations which must be performed when the algorithm is
carried out for an input of length n. For instance, a routine calculation shows
that as by the described by the pseudocode specification above, InsertionsSort
has exact running time complexity p3{2qn2 ` 5{2pnq ´ 4.

It should be borne in mind, however, that such calculations are conducted un-
der the assumption that it is admissible to determine the running time complexity
of an algorithm by counting each instruction in its pseudocode specification as a
single primitive step. This convention raises two questions: 1) should the exact
running time complexity derived in this manner be understood as an intrinsic
property of an algorithm itself?; 2) given that a pseudocode specification can in
principle be stated in terms of arbitrary mathematical operations (inclusive, e.g.,
of non-effective ones), does it make sense to ascribe a running time complexity to
an algorithm directly, or should such ascriptions be understood modulo a further
specification of what operations are to be taken as primitive?

A comparison of different textbooks is often sufficient to confirm that con-
ventional usage of common algorithmic names allows for slight variations in the
way in which an algorithm is specified – e.g. InsertionSort might be specified
by using a “for” or “repeat-until” loop instead of a “while” loop, or it might
increment its counter variables in a different order. Experience bears out, how-
ever, that such small variations in how an algorithm is specified typically affect
the computation of its exact running time by at most a scalar factor. In virtue
of this, the running time complexity of individual algorithms are conventionally
reported not as exact functions, but rather using so-called asymptotic notation.

Recall in particular that the notation Opfpnqq is used to denote the class of
functions whose rate of growth is dominated by a scalar multiple of fpnq for
sufficiently large n24 – i.e.

(5) Opfpnqq “df tg : NÑ N | Dc, n0@n ě n0rgpnq ď cfpnqsu

Based on the calculation reported above, InsertionSort would thus typically
be reported as having running time Opn2q. And based on similar (but more
complex) calculations, the algorithms MergeSort and HeapSort would both
be reported as having running time Opn log2pnqq. It is easy to see that any
function in the latter class is eventually dominated by one in the former. And it
is such facts which are typically understood to provide the mathematical content
of comparisons of the efficiency of algorithms as reported by (3c).

The use of asymptotic notation goes some distance towards justifying the claim
(which appears implicit in the methodology of algorithmic analysis) that a run-
ning time complexity can be associated directly with an algorithm. However, a
yet more serious challenge to the basis of this practice arises in regard to the

24The use of asymptotic notation in computer science was originally introduced and popu-
larized by Knuth – see., e.g., [44].
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second question flagged above – i.e. is it licit to use arbitrary effective operations
in a pseudocode specification of an algorithm?

In order to address this question, it is useful to keep in mind that the devel-
opment of algorithmic analysis has been largely guided by the practical goal of
developing methods for comparing the efficiency of procedures for solving prob-
lems which are of some practical interest. But at the same time, it is also easy
to see that by selecting an appropriate choice of primitive operations, it is often
possible to trivialize the comparison of the relative efficiency of algorithms A1

and A2, by simply defining another algorithm A3 which performs the same task
as A1 and A2 in fewer (effective, but intuitively complex) steps.

For instance, although one might think that (3c) reports that a genuine gain
in practical efficiency can be had by sorting a list using MergeSort instead of
InsertionSort, even the Opn log2pnqq running time complexity of the latter is
expensive in comparison with that of the Op1q (i.e. constant time) algorithm

TrivialSortpBq

1 return sortpBq

TrivialSort sorts lists of arbitrary length in a single step by simply calling the
function sortpBq – an operation whose effectiveness is in turn attested to by the
existence of algorithms such as MergeSort instead of InsertionSort.

The conventional manner in which this problem is addressed in algorithmic
analysis is to assume that while it is legitimate to specify and reason about algo-
rithms informally via their pseudocode specifications, such specifications should
be understood relative to a choice of a fixed model of computation M for which it
is assumed that they can be implementable. Although this model is often chosen
for convenience, it is still important that it be among those in the first machine
class. One hallmark of such models is that they allow the sorts of algorithms A
which arise most often in mathematical practice to be implemented in a manner
such that it is possible to construct M PM such that A and M not only compute
the same function (possibly up to an efficiently computable encoding of inputs
and outputs), but also such that timeMpnq P OptimeApnqq – i.e. although M may
have a larger exact running time than A (e.g. in virtue of needing to explicitly
compute the value of a function which is assumed as a primitive in the informal
specification of A), it will have the same asymptotic running time.25

The foregoing observations provide further justification for the use of asymp-
totic notation to report the running time of individual algorithms. However, they
also further highlight the significance of the implementation problem – i.e. in or-
der for M P M to count as an implementation of A, not only must it mimic its
operation in a step-by-step sense, but it must do so in a manner which preserves
its asymptotic running time complexity. The fact that we are able to construct
such implementations using the models R or Tk for the sorts of procedures which
have traditionally been valued as effective methods in mathematical practice is

25For further discussion of the status of these assumptions as well as the choice of specific
models for the purpose of implementing algorithms arising in mathematical practice, see, e.g.
[14] pp. 23-28 and [41], §1.3.
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suggestive of the fact that there may be a much closure connection between the
specific properties of these models and our detailed intuitions about effectivity
than is often acknowledged.26

With these details in place, it may finally be observed that algorithmic analysis
is concerned not only with the sorts of attributions of running time complexity
as reported by (3b,c) but also with proving so-called lower-bound results which
report that a given algorithm is optimal in terms of time or space complexity.
Because they require combinatorial analysis not only of a single algorithm, but of
all algorithms of a certain sort which compute a given function such results are
often much harder to obtain than individual running time calculations. Recall,
for instance that InsertionSort is known as a comparison sorting algorithm in
virtue of the fact that it sorts the array B using comparisons performed with ď
but without making use, e.g., of the size or multiplicity of the elements which
comprise this array. For such methods it is possible to prove the following:

(6) There is no comparison sorting algorithm with running time complexity
asymptotically less than Ωpn log2pnqq.

27

In terms of its logical structure (6) should be compared with other limitative
propositions about computability like (1) and (4). Suppose, however, our ultimate
goal is to show – in conformity with the thesis (A) – that the quantifier over
algorithms in (6) can be replaced with a quantifier over some other well defined
class of mathematical objects in a manner which preserves the meaning of the
proposition expressed. In this case, we are faced with a refinement of the problems
which make it more challenging to find a suitable paraphrase of (4) than of
(1). For recall finding such a paraphrase for (1) requires only that we have
at our disposal a Turing complete model of computation – i.e. one that (per
CTa contains a machine computing every function which is computable by an
algorithm), whereas in the case of (4) we must also at least ensure that this
model is in the first machine class. But now note that providing an adequate
paraphrase of (6) requires that we consider a model of computation M2 which
satisfies at least the following properties: i) M2 is in the first machine class; ii) the
implementation problem for sorting algorithms can be solved for M2 in a manner
which preserves asymptotic running time complexity; iii) it is still meaningful to
talk about what it means for a machine M P M2 to be an intuitively correct
implementation of a comparison sorting algorithm such as InsertionSort or
MergeSort.

26It is, for instance, by no means a trivial observation that the sort of primitive algebraic
operations in terms of which procedures like Gaussian elimination or the Gröbner basis algo-
rithm are stated can be implemented using the limited set of operations and data structures
made available by the standard RAM model in a manner which preserves informal estimates of
their running time complexity. In particular, such implementations often exist only in virtue
of sophisticated techniques such as hashing which allows rapid look up of complex data objects
in a manner which is independent of their size.

27Here Ωpfpnqq denotes the asymptotic lower bound for fpxq – i.e. the class of functions
which c ¨ fpnq eventually dominates for some constant c.
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4. In search of a foundational framework

Given that complexity theory and algorithmic analysis represent our most re-
fined methods for reasoning about the sorts of effective procedures which arise
in mathematical practice, the sorts of considerations surveyed in §3 are typical
of the primary linguistic and technical data to which a foundational theory of
algorithms ought to be responsive. On this basis, it seems reasonable to extract
the following general observations about the status we accord algorithms in our
mathematical and computational practices:

I) Algorithms are mathematical procedures which may be described either
informally using standard mathematical prose or through the use of a pseu-
docode specification. Such procedures can be executed or carried out for
a given input, resulting in a sequence of intermediate states which leads to
the calculation of an output.

II) Algorithms can be implemented by members of models of computation M.
To implement an algorithm A is to specify a machine M P M which not
only computes the same function as A (possibly up to an efficient encoding
of inputs and outputs), but also operates in the same step-by-step manner.

III) Algorithms possess their asymptotic running time complexity intrinsically.
This imposes additional constraints on the implementation relation – e.g.
i) M must be a model in the first machine class; ii) if M P M implements
A, then M and A must have the same asymptotic running time complexity.

The question which we must now confront is how a proponent of algorithmic
realism might develop a general theory which simultaneously accords algorithms
the status of mathematics objects and also provides a satisfactory account of con-
straints like I)-III). In order to address this question it will be useful to consider
three views about the nature of algorithms, two of which were briefly discussed
in §1:

Direct algorithmic realism: Algorithms comprise a class A of intrinsi-
cally intensional objects which are distinct from those traditionally rec-
ognized in classical mathematics.

Strong Church’s Thesis: Algorithms may be identified with (or reduced
to) the members of a class of mathematical objects M.

Algorithms-as-abstracts: Algorithms correspond to equivalence classes
defined over some class of mathematical objects M factored by an appro-
priate equivalence relation.

In §1, the second (and also implicitly the first) of these options were dismissed
summarily. It will now behoove us to backtrack slightly and examine them again
in light of the considerations adduced in §2 and §3. This will allow for a better
appreciation of why the algorithms-as-abstracts view appears to be the most
plausible of the enumerated options.

As noted above, direct algorithmic realism might seem like the most straight-
forward means of making sense of the realistic tone of much of our informal
discourse about algorithms (as typified by the passage cited at the beginning of
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§3). For it seems that this discourse possesses many of the characteristics which
philosophers often associate with ontological commitment to a category of objects
– e.g. use the of singular terms such as Lucas, InsertionSort, etc. to make
(apparent) singular reference, the use of quantification over algorithms to express
limitative results, etc. And thus when taken in conjunction with the apparent in-
congruity flagged in §2 between the abstractness of mathematical objects and the
use of temporal language to describe algorithms and their executions, one might
reasonably conclude that there is at least prima facie justification for considering
algorithms to comprise a class of freestanding “procedural” entities which unlike
those traditionally countenanced as mathematical objects,

Another potential motivation for exploring this view is the observation that al-
gorithms have traditionally conceive of as intensional entities. Some motivation
for this classification derives from the observation that algorithms evidently can-
not be assimilated to functions understood in the extensional sense. For whatever
we take algorithms to be, it must be acknowledged can exist distinct algorithms
for computing the same extensional function – e.g. although InsertionSort and
MergeSort both compute the function sortpBq, they cannot both be equal to
this function in virtue of the fact that we regard them as having distinct compu-
tational properties (e.g. running time complexity). For reasons in this vicinity, it
might seem that there is some hope of developing direct algorithmic realism long
the same lines which philosophers have occasionally attempted to develop theo-
ries of other classes of intensionally individuated objects – e.g. Fregean senses,
propositions, constructive proofs, etc.

While it seems that there is nothing which blocks proceeding in this manner,
the prospects for developing and defending such a theory of algorithms along
these lines begins to seem less plausible when we start to look at the methodolo-
gies of complexity theory and algorithmic analysis in detail. For on the one hand,
while there do exist formal theories of notions like senses (e.g. [12], [76], [40]),
propositions (e.g. [4], [16], [83]), and constructive proofs (e.g. [50], [31]), many of
these make use of modal apparatus which appears out of place in a mathematical
context, or are parasitic on technical notions which are already employed in logic
or theoretical computer science (e.g. the typed lambda calculus or operational
semantics for programming languages of the sort discussed below). Such observa-
tions serve to deflate the hope that extant theories of intensional entities can be
used to explain the sense in which there is something distintive about algorithms
which distinguishes them from, e.g., mathematically defined models of compu-
tation.28 And on the other, none of these philosophically motivated accounts

28These considerations notwithstanding, it has been repeatedly suggested that the relation-
ship between functions (understood extensionally) and algorithms can be taken to mirror that
of the relationship between the reference of an expression and its Fregean sense – e.g [80],
[21], [55], [40]. However, this represents at best a partial reconstruction of Frege’s own un-
derstanding of the relation between sense and reference for functional expression. For on the
one hand while an algorithm for computing a function fpxq prototypically provides an effective
means of determining the denotation of fpaq, a mathematical function can be introduced by a
non-constructive definition (e.g. fpxq “ 1 if the Riemann Hypothesis is true and 0 otherwise)
which still might be taken to give its sense. And on the other hand, while we have seen that we
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offers a principled explanation of the complex relationship which exist between
algorithms, antecedently defined mathematical problems, and specific kinds of
models of computation as described in §3.

Turning now to Strong Church’s Thesis [SCT], another prima facie plausible
view which one might attempt to develop is that it is possible to construct a
mathematical object which could be taken to correspond to an algorithm starting
from its pseudocode representation. An obvious point of comparison for such
a view is the so-called sententialist theory of propositions according to which
the proposition expressed by a natural language sentence just is that sentence
itself. By analogy, a straightforward version of SCT might propose that we
might similarly take an algorithm as nothing other than the text comprising its
pseudocode specification.

Note, however, that sententialism is generally put forth as a form of elimina-
tivism about propositions (a sentiment which is presumably counter to the spirit
of algorithmic realism). And it is also typically held to suffer from a variety of
problems – e.g. if unamended it leaves no room for two sentences in different
natural languages to express the same proposition – versions of which can readily
be seen to beset the analogous view about algorithms. A more plausible view
is thus that algorithms should not be identified with linguistic descriptions such
as pseudocode specifications themselves, but rather with some other sort of ob-
ject which is derived by interpreting such specifications according to a form of
compositional semantics. Such a view has obvious affinities to the conventional
view that the proposition expressed by a sentence of a natural language is deter-
mined by a compositional semantic theory – e.g. of the sort originally propose
by Montague [53] and now widely studied in formal linguistics.

Note, however, that in developing such a proposal we face the initial prob-
lem that pseudocode cannot be understood to be a part of any extant natural
language. For instance, it employs constructions – e.g. those used to describe
iteration, recursion, and flow control – which appear to have no natural language
counterparts. But at the same time, pseudocode is also not typically taken to
be a fully fledged formal language with a precisely defined syntax and semantics.
It would thus appear that there is little hope that current semantic theories for
natural languages can be directly applied to pseudocode specifications without
substantial modifications and other precifications which would most likely have
to be supplied by the practice of computer science itself.

A related view is that algorithms are the sorts of entities which are expressed
not by pseudocode specifications themselves but rather their regimentations ex-
pressed using a formal programming language. It is often said that such languages
were originally developed in part to provide a medium for expressing algorithms
in a manner which is similar to pseudocode but which has a sufficiently precise
syntax to allow direct translation into the primitive instruction sets which can

typically speak of the application of an algorithm to an argument as something which happens
in time, Frege explicitly rejects the view that the composition of functions and arguments in
the domain of sense should be understood as a temporal process (cf. [27]).
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be carried out by conventional digital computers. But although it can be reason-
ably maintained that this is true of familiar “high level” languages like Algol, C,
or LISP, it should also be kept in mind that unlike pseudocode specifications –
which are at least intended to be continuous with informal mathematical language
– programs constructed over such languages are originally uninterpreted.

It is now standardly acknowledged that formal semantics for programming lan-
guages are needed to enable rigorous correctness proofs similar to that considered
in §2 – i.e. that when a programs is carried out in accordance with the intended
interpretation of the constructs in which it is specified, it computes the values
of an independently defined mathematical function. The recognition of this fact
(which began in the 1960s) gave rise to the subject now known as programming
language semantics. For present purposes, we may take a formal semantics for a
programming language L to be a function rr¨ssL which maps ProgL – the class of
programs over L – onto some domain D of mathematical objects which in some
(yet to be specified sense) are taken to be the interpretations of L-programs.

Suppose we now also assume that given an informally specified algorithm A,
it is unproblematic to construct a program Π P ProgL which we take to be an
adequate expression of A. We might then attempt to understand expressions of
the form

(7) A is the algorithm expressed by Π

as a sort of canonical means of referring to algorithms. And on this basis, we
might also propose that the reference of terms of the form “the algorithm ex-
pressed by Π” is given by applying the function rr¨ssL to the program Π.

It is, however, by no means a trivial question what sort of objects should be
taken to comprise the class D which forms the range of rr¨ssL, or how the value
of rrΠssL ought to be determined according to the structure of Π. Abstracting
away from many details, it is possible to identify two broad approaches to these
problems – respectively known as denotational semantics and operational seman-
tics. In the first case, D is taken to be an appropriately defined function space
XY such that the value of rrΠssLden will be a (possibly partial) function of type
X Ñ Y which is intended to correspond to the function induced by executing Π
for all inputs in X. From this it follows that a denotation semantics will associate
any two programs Π1 and Π2 which compute the same function with the same
extensional object. But this presumably is an unsatisfactory result in the cur-
rent context given that, e.g., we can easily construct programs which naturally
express intuitively distinct algorithms (e.g. InsertionSort and MergeSort)
but which compute the same function.

The specification of an operational semantics for L can be understood to ad-
dress this issue by assigning to a program Π not a function but rather an abstract
mathematical representation of its mode of operation, as determined composition-
ally according to the interpretation assigned by basic constructs made available
by L. Such a representation can take a number of forms.29 What is significant

29For instance, in the structural operational semantics of Plotkin [63], the class D is com-
prised of labeled trees whose structure represents the compositional structure of Π and whose
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for our current purposes, however, is that in the case of operational semantics,
the members of D are recognizable as instances of models of computation in the
sense introduced in §3. Such a model is a class of mathematical structures M
together with a definition of a (possibly partial) function App : M ˆ X Ñ Y
which determines the output of applying M P M to input x P X. In familiar
cases like Tk and R the members of M can be reasonably described as machines –
i.e. they may be described as classes of computational states, over which various
operations are defined and which induce a transition between states – while the
ApppM,xq can be seen as providing a mathematical analysis of what it means to
carry out or execute the computation which is induced by applying M to x.

In order to make these notions somewhat more precise it will be useful to
introduce Moschovakis’s [56] notion of an iterator as was described informally in
§1:

Definition 4.1. An iterator from a set X to a set W φ : X Ñ Y is a quintuple
φ “ xin, S, σ, T, outy such that

- St is an arbitrary non-empty set, the computational states of φ;
- in : X Ñ St is the input function of φ;
- σ : StÑ St is the transition function of φ;
- T Ď St is the set of terminal states of φ and s P T implies σpsq P T ;
- out : StÑ Y is the output function of φ.

A computation induced by the iterator φ on an input x P X is a sequence of
states s0pxq, s1pxq, s2pxq, . . . such that s0pxq “ inpxq and sn`1pxq “ σpsnpxqq if
snpxq R T and is undefined otherwise. The length of such a computation is given
by lenφpxq “ n ` 1 where n is the least such that snpxq P T ` 1. The result of
applying φ to x induces a (possibly partial) function Apppφ, xq “df outpslenφpxqq.

It is a straightforward but useful exercise to see how familiar models of compu-
tation like Tk and R can be modified so that their instances satisfy the definition
of an iterator. It is evident, however, that this definition cannot itself be taken
to serve as an adequate analysis of either the general notion of an effective model
of computation (as is needed for the development of computability theory), or
for the definition of the first machine class as discussed in §3 (as is needed for
the development of complexity theory and algorithmic analysis).30 Nonetheless,

nodes are labeled with representations of state transitions of the form xα, sy Ñ s1 with the
intended interpretation “if statement α is executed in state s, then the resulting computation
will terminate in state s1”. On the other hand, in the so-called abstract machine semantics of
Nielson and Nielson [58], D is comprised of instances of a simple RAM model.

30For on the one hand, it is evident that since Definition 4.1 places no constrains itself on
the mapping τ , there will exist iterators φ which compute (e.g.) all functions of type N Ñ N
(inclusive of non-recursive ones). And on the other, even if various so-called locality and
boundedness constraints are placed on this definition to rule out such examples (e.g. in the
manner of [28] or [73]), it will still be possible to canonically represent various models from the
second machine class as iterators.
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Definition 4.1 is still useful in the sense that it allows us to speak uniformly about
notions like computational states and transition functions across different models
of computation.

Let us return now to assess the plausibility of the version of SCT considered
above. Relative to this proposal the reference of an expression of the form “the
algorithm expressed by Π” is asserted to correspond to the value of rrΠssLop where
rr¨ssLop is the denotation function of some form of operational semantics for a pro-
gramming language L for which Π P ProgL. Based on the foregoing discussion, we
can now see that (at least in prototypical cases), we will have rrΠssLop PM where
M is some fixed model of computation. The question which we must now ask is
whether this view gives rise to a version of algorithmic realism which satisfies the
constraints described at the beginning of this section.

To see that it does not, it is sufficient to observe that although the proposal
in question succeeds in providing an account of how an informally specified algo-
rithm A can be associated with a mathematical object – i.e. by first regimenting a
pseudocode specification of A as a program Π over a language L, and then identi-
fying A with rrΠssLop – it still leaves the choice of this object highly unconstrained.
For note that even if we fix the schema (7) as a canonical means of making ref-
erence to algorithms, the choice of both the programming language L as well as
the precise form of the denotational semantics rr¨ssLop are still left undetermined.
But as will be evident to anyone who has ever attempted to express an algorithm
A of even moderate complexity in a formal programming language, not only will
different languages lend themselves in different ways to expressing the operation
of A, but there will typically be many programs over the same language which
we will accept as equally “apt” expressions of A.

When compounded with the further variation which may be introduced by
different forms of operational semantics we might adopt for the various choices
of L, it would seem that the current proposal provides little insight into why
we are justified (e.g.) in attributing a particular running time complexity (ei-
ther exact or asymptotic) to the algorithm A itself. As such, it seems that the
current proposal is unable to account for the constraints imposed on how we in-
terpret our informal discourse about algorithms in a manner which is compatible
with constraints imposed (per requirement III) above) by complexity theory and
algorithmic analysis.

The difficultly just described evidently represents a variant of the familiar
what-numbers-could-not-be-problem described in §1 – i.e. when we attempt to
identify algorithms directly with either their linguistic specifications or the math-
ematical objects which we might take to be the semantic interpretations of these
specifications, we are faced with an abundance of seemingly arbitrary choices
about which objects should be taken as their “canonical” representations. A well
known reply to this problem comes in the form of structuralist propsosal (cf.,
e.g., [72]) which holds that “algebraic” objects like groups or graphs should not
be indentified with individual sets, but rather with structures (conceived roughly
as in first-order model theory), which themselves are identified only up to isomor-
phism. An analogous refinement of the foregoing proposal is as follows: i) rather
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than seeking to identify algorithms with particular programs or their interpreta-
tions, we seek to define an appropriate equivalence relation « over the class P of
programs drawn from the different programming languages L1, L2, . . . which we
take to be adequate media for expressing the sorts of algorithms we encounter in
practice; ii) we then identify an algorithm with the «-equivalence class of some
program we take to express it.

This proposal leads us away from SCT toward the second form of the algorithms-
as-abstracts view I discussed at the end of §1 – i.e. the view that algorithms
should be understood as the “logical objects” obtained via the abstraction prin-
ciple (PP) – i.e.

(PP) the algorithm expressed by Π1 = the algorithm expressed by Π2

if and only if Π1 « Π2

Recall, however, that I suggested there that this view also admits to a machine-
based variant according to which the equivalence relation in question should be
defined not over programs, but over an appropriate class M of machine models.
This gives rise to the rival abstraction principle

(MP) the algorithm implemented by M1 = the algorithm implemented by M2

if and only if M1 »M2

where » is an appropriate equivalence relation defined over the class M.
Given that the algorithms-as-abstracts view appears to have significant advan-

tages over direct algorithmic realism or SCT, it seems that the best prospects
for an algorithmic realist lie with developing the form of this view based on
(PP) or (MP) so as to provide a foundational account of algorithms which is in
conformity with I)-III). But before entering into the details of how this might
be accomplished in §5, it will also be useful to observe that there are a num-
ber of reasons to think that the the machine-based variant based on (MP) will
ultimately fare better than the program-based variant based on (PP).31

In order to see why this is so, it will also be useful to briefly return to the
comparison between the algorithms-as-abstracts view and the neo-logicist view
of number theory mentioned in §1. Recall in particular that part of the standard
defense of neo-logicism is that Hume’s Principle – i.e.

(HP) the number of F = the number of G if and only if F ” G

where ” denotes the second-order definable relation of equinumerosity – repre-
sents an analytic feature of our concept of natural number. Although this claim
has often been challenged (e.g. [8]), neo-logicists at least start out with a precise
mathematical definition of the equivalence relation by which they proposes to
factor the class of finite sets into equivalence classes. And additionally, HP itself
at least seems to have the following in its favor: 1) it is extensionally adequate

31I will discuss the machine-based variant in greater depth in §5. For general discussion of the
program-based variant see, e.g., [65], [39], [22], [77]. For a well-worked out technical proposal
along these lines see Yanofsky [82] who writes “‘For us, an algorithm is the sum total of all
the programs that express it. In other words, we look at all computer programs and partition
them into different subsets. Two programs in the same subset will be two implementations of
the same algorithm. These two programs are ‘essentially’ the same.” [82], p. 3
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in the sense that it explains both the truth of “the number of days in a fortnight
= the number of moons of Neptune” and the falsity of “the number of planets =
the number of US supreme court justices”; 2) even if it is not an analytic feature
our of our basic understanding of number, HP can plausibly be maintained to
follow from such an understanding plus suitable definitions (cf., e.g., [38]).32

I will ultimately argue that no foreseeable version of the algorithms-as-abstracts
views fares particularly well with respect to either of these criteria. But in order
to see that the machine-based variant may at least fare better, note that a pro-
ponent of either form of the view faces the initial challenge of providing a precise
definition of either M and » or of P and «. As I suggested above, although there
are many different models of computation have been introduced, their members
can typically be described in a transparent manner as iterators. This provides
the proponent of the machine-based variant with a natural suggestion as to the
appropriate choice of M – e.g. for maximal generality, he can just take M to coin-
cide with the (proper) class of sets satisfying a canonical translation of Definition
4.1 into the language of set theory. And as we will see in §5, over such a class
it is at least possible to provide a general definition of equivalence – i.e. that of
mutual simulation – which provides a prima facie plausible means of responding
to concerns of type 1) (i.e. extensional adequacy) and type 2) (i.e. fidelity to an
antecedently recognized notion of “procedural equivalence”).

But matters would appear to stand somewhat differently with respect to the
program-based variant of the algorithms-as-abstracts view. To get an impression
for why this is so, note first that as with the notion of machine model, the num-
ber of programming languages which have been introduced in computer science
numbers at least into the hundreds. However, the characteristics which qualify
a formalism as a programming language seem to be less well defined than in the
case of machine models. This is witnessed, for instance, by the existence of differ-
ent programming paradigms – e.g. declarative, functional, object-oriented, etc. –
each of which can be understood to be based on a fundamentally different concep-
tion of what is involved with providing a linguistic description of a mathematical
procedure (cf., e.g., [70]). Given that these languages employ primitive constructs
drawn from a wide range of developments in logic and mathematics – e.g. the
typed and untyped-lambda calculus (LISP and Haskell), first- and higher-order
logic (ProLog, HiLog), graph rewriting (GP), linear algebra (Fortran) – it seems
unlikely that we can find an overarching mathematical definition analogous to

32Another dimension along which the neo-logicist project compares favorably with the
algorithms-as-abstracts view pertains to the fact that we possess a prior axiomatic theory of the
natural numbers whose interpretability in a putatively analytic extension of second-order logic
can be used a criterion of success. In particular, the adjunction of HP to pure second-order logic
yields a system in which it is possible to derive the second-order Peano axioms PA2 once zero
and successor are analyzed in the manner which Frege suggests (i.e. “Frege’s theroem” – cf.,
e.g., [10]). Note on the other hand that not only do we not at present possess anything like an
axiomatic theory of algorithms (over what language would such a theory be formulated? what
would its axioms be?) relative to which the success of principles like PP and MP in accounting
for our procedural discourse can be judged.
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that of an iterator relative to which all of the programming languages studied in
computer science may be naturally circumscribed.

Such diversity considerations aside, however, a proponent of the program-based
variant might still attempt to nominate some specific language L relative to which
it might be argued that all algorithms may be naturally expressed.33 Putting
aside the question of what could justify the choice of L over other languages
which might be put forth for this purpose, one might then attempt to explicitly
define the relation « over ProgL by attempting to identify pairs of programs (or
potentially even individual programming language constructs) which satisfy some
antecedent intuitions about when two programs (or constructions) expressed the
same algorithm, or as we might put it, are “procedurally equivalent”.

Such an approach bears an evident affinity to the notion of synonymy isomor-
phism explored by Carnap [11] and Church [13] in the case of sentence meanings.
Various approaches to defining procedural equivalence have also been studied
in the literature on programming language semantics. But such proposals of-
ten have an ad hoc flavor in the sense that they concentrate on only particular
species of “procedure preserving” transformations such as renaming of bound
variables, substitution of evaluable expressions, or transformations of one form of
flow control construction into another.34 They thus provide little confidence that
a notion adequate to meeting the needs of algorithmic realism – e.g. with respect
to extensional adequacy or the justification of attributing asymptotic running
times directly to algorithms – can be defined in a manner which does not ulti-
mately rely on the same intuitions which underlie the machine-based variant of
the algorithms-as-abstracts view which will be considered in §5.35

33Understood in the current context, such a claim is considerably stronger than Church’s
Thesis. For in order to show that L is “expressively complete” in the relevant sense, it must be
shown that not only does it allow for the formulation of programs which compute all recursive
functions, but also that these formulations are adequately representative of the relevant class
of all algorithms. And it would appear that it would be hard to make a systematic case for
this (even in the case of widely used languages like C) without having at our disposal a detailed
account of which sorts of computational properties apply in the first instance to algorithms as
opposed (e.g.) to their implementations.

34The technical goal of such accounts is typically not that of providing a conceptual analysis
of “procedural equivalence” but the much more modest one of determining (e.g.) when two
program fragments can be substituted for one another in a manner which does not affect the
execution of a program into which they are substituted (see, e.g., [61]).

35To take just one example (derive from [82]), consider the following two program fragments:
1) for i “ 1 to n`1 tx “ fpxqu and 2) for i “ 1 to n tx “ fpxqu; x “ fpxq. One might claim that
1) and 2) express the same “procedural meaning” in the sense that they each describe a method
for iterating the application of function fpxq to itself n` 1 times (where in the latter case, the
iteration by which this is achieved is simply “unraveled” by one step). In speaking in this
manner, however, we seem to rely on extra-linguistic intuitions about the effect of executing
the program in question – e.g. based on how data is stored in the registers of an abstract
machine relative to which it is carried out. And as I will suggest in §5, such intuitions seem
to be most naturally accounted for in terms of the notion of simulation equivalence which is
defined on machines rather than programs.
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5. Procedural equivalence

The view which I will discuss in this section is a further refinement of the pro-
posal which I just argued represents the most promising means of defending al-
gorithmic realism – i.e. the machine-based variant of the algorithms-as-abstracts
view. In order to develop such a proposal in greater detail, recall that one needs
to put forth both a class of machine models M and an equivalence relation » over
M such that if one then identifies algorithms with »-equivalence classes over M
determined by their implementations, we may then provide a plausible account
of requirements such as I)-III) from above.

Such a proposal has historically attracted the most attention among propo-
nents of algorithmic realism. For unlike the situation we face with respect to the
program-based variant of the algorithms-as-abstracts view, it seems possible to
nominate definitions of M and » which are both technically and conceptually
plausible. With respect to the former, for instance, we can see that both com-
plexity theory and algorithmic analysis provide a principled basis for requiring
that an implementation of an algorithm be a member of a model of computation
from the first-machine class. Thus although the general definition of an iterator
introduced above is it itself too broad to serve as a definition of M, we might
plausibly try to develop the machine based view by considering the class M1

comprised of the iterator representations of the union of all models in the first
machine class.36

Since machines in M1 can be naturally represented as iterators, they share a
common mathematical structure which appears to be lacked by programs formu-
lated over different languages. Not only might we hope to take advantage of this
common structure so as to provide a definition of » which somehow engages with
the specification of machines in virtue of their properties as iterators, but there
might even we some hope that this can be accomplished in a manner which can
be understood to analyze a salient pretheoretical notion of computational equiv-
alence. This might in turn be thought to improve the chances that the principle
(MP) can be regarded as akin to a logical or conceptual truth which grounds
our understanding of algorithms in something like the way the neo-logistics claim
that Hume’s Principle grounds our understanding of the notion of number. It has

36In [79] the following precise definition of M1 is given: a model M is in the first machine
class just in case there exists a polynomial time, linear space overhead simulation of M relative
to the single-tape Turing machine model T1. (It may be seen that this definition is sufficiently
broad to encompass Tk (for k ą 1) and the standard RAM model R, as well as many more
refined models based on computational architectures which may be concretely embodied as
practical microprocessor designs.) On the order hand, the second machine class M2 is defined

to contain those models M such that PM
“ PSpaceM – i.e. for which the classes of polynomial

time and polynomial space coincide when these notions are analyzed relative to M. Since it
is currently unknown even if PT1 ‰ PSpaceT1 , it is in principle possible that M1 and M2

coincide. Although of course this is taken to be exceedingly unlikely, any indeterminacy in the
definition of M1 lies with the status of open separation questions in complexity theory and
not with the imprecision of notions like “reasonableness” by which this class might be initially
characterized.
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in fact been repeatedly claimed that » can be taken to be a form of simulation
equivalence of the sort which has been extensiely studied in a variety of contexts
in theoretical computer science. I will introduce and motivate this notion in §5.1,
before arguing in §5.2 that it is also unlikely that a version of (MP) based on
simulation equivalence will be able to meet the needs of algorithmic realism.

5.1. Simulation Equivalence. The origins of the notion of simulation which
will be at issue in this section can be traced back to the results demonstrating
that the models of computation originally defined in the 1930s all determine the
same class of functions – i.e. the partial recursive ones. Such results are exten-
sional in the sense that they pertain to the class of functions which are determined
by the machines comprising a model rather than to how they are computed. How-
ever, they are typically demonstrated in a paradigmatically intensional manner
as described in the following passage:

The proofs for the results . . . have the following common structure. In every
instance, the fact that one formally characterized class of partial functions is
contained in another is demonstrated by supplying and justifying a uniform
procedure according to which, given any [machine M1] from the first charac-
terization, we can find a [machine M2] from the second characterization for
the same partial function. . . . [Results of this type show] that there is a sense
in which each standard characterization appears to include all possible algo-
rithms . . . For, given a formal characterization . . . there is a uniform effective
way to “translate” any set of instructions (i.e. algorithm) of that characteriza-
tion into a set of instructions of one of the standard formal characterizations.
[66], p. 19

Consideration of the equivalence proofs in question also makes clear that the
notion of a “translation” between models is what would later come to be known
as a simulation – i.e. that of a uniform transition-preserving maping between
the states comprising the computations induced by two machines M1 and M2

from different models.37 The proposal that it is possible to define the notion of
algorithm in terms of an appropriate refinement of this notion appears to have
originated in early development of the field which would come to be known as
process algebra (cf. [67]) wherein the notion of simulation was first rigorously
defined.

In one of the founding papers in this subject Milner writes as follows:
One aim . . . is to make precise a sense in which two programs may be said
to be realizations of the same algorithm. We can say loosely that for this to
be true it is sufficient though perhaps not necessary that the programs do
the same “important” computations in the same sequence, even though they
differ in other ways: for example 1) we may disregard other computations
perhaps different in the two programs, which are “unimportant” in the sense
that they are only concerned with controlling the “important” ones, (2) the
data may flow differently through the variables or registers, (3) the data may
be differently represented in the two programs. . . . [W]e give a relation of
simulation between programs which may fairly be said to match [this descrip-
tion] . . . Mutual simulation is an equivalence relation, and it is the equivalence

37See Kreisel [48], p. 177-178 for similar comments about the significance of such
“translation-based” proofs in regard to Strong Church’s Thesis.
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classes under this relation which may be regarded as algorithms - at least this
is an approximation to a definition of algorithm. [51] p. 2

What Milner refers to here as “programs” are in fact structures very similar to
iterators. If we let φ1 “ xin1, St1,Σ1, T1, out1y and φ2 “ xin2, St2,Σ2, T2, out2y be
iterators of type X Ñ Y , Milner’s proposal may thus be understood as the claim
that such structures should be taken to implement the same algorithm just in
case there exists a relation which correlates the steps in the computations induced
by the input x ~spxq “ s0pxq, s1pxq, s2pxq, . . . of φ1 and ~tpxq “ t0pxq, t1pxq, t2pxq, . . .
and of φ2 which satisfies certain properties. I will refer to these properties re-
spectively as the transitional and representational conditions on a definition of
simulation.

The transitional requirement is intended to analyze the intuition that iterators
φ1 and φ2 corresponding to machines which implement the same algorithm A
ought to each perform the same sequences of operations which must be performed
to carry out A in the same order. In the most straightforward situation, this
could be formalized by requiring that there exists a simulation relation R Ď

St1 ˆ St2 such that every transition between states s, s1 P S1 mediated by σ1 in
a computation of φ1 is matched by a similar transition between R-related states

mediated by σ2 in the corresponding computation of φ2.
38 Writing s

i
ÞÑ s1 for

σipsq “ s1 (i P t1, 2u), such a condition can be schematized as follows:

(8) @s P S1 @s
1 P S2 @t P S2rps

1
ÞÑ s1 ^ Rps, tqq Ñ Dt1 P S2pt

2
ÞÑ t1 ^ Rps1, t1qqs

It is a condition of this type which is typically demonstrated to hold between
machines from different models in the course of demonstrating both the sort of
extensional equivalence and complexity overhead results mentioned above.

But it is also not hard to see that as stated (8) is almost certainly too restrictive
to apply to many cases in which we wish to regard φ1 and φ2 as implementations
of the same algorithm. Milner flags this problem by noting that a simulation
should only be required to relate sequences of states corresponding to “important”
subcomputations but (presumably) not the “unimportant” sequences of states
which comprise them. We can, for instance, imagine that the former correspond
to implementations of the steps of the algorithm A which we take φ1 and φ2
to mutually implement, while the latter correspond to the sequences of “finer
grained” steps by which the iterators carry out these molar steps.

If we write s
i ˚
ÞÑ s1 to denote that the state s1 is derivable by some finite number

of iterations of σi from s, then one way of revising (8) to take this observation
into account is as follows:

(9) @s P S1 @s
1 P S2 @t P S2rps

1 ˚
ÞÑ s1 ^ Rps, tqq Ñ Dt1 P S2pt

2 ˚
ÞÑ t1 ^ Rps1, t1qqs

38Since the models we are considering here are all deterministic, the relations R in question
will all be single-valued – a point which will be taken into account when we adopt the definition
of iterator isomorphism below. I have introduced the notion of simulation in terms of relations
so as to conform to the tradition of process algebra wherein non-deterministic and concurrent
models are also typically considered.
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As van Emde Boas [79] observes, however, in moving from (8) to (9) there is a
risk that we will make the transitional condition too weak by allowing, e.g., a
simulation which links only the initial and final states in each computation of φ1
and φ2. It is hence generally acknowledged that an adequate formalization of the
transitional condition must find a compromise between these constraints which
is compatible with the extensional adequacy condition that » holds between φ1
and φ2 just in case they derive from machines M1 and M2 which we are prepared
to accept as implementations of the same algorithm.

The representational requirement on the analysis of simulation is intended to
formalize the fact that if we regard the iterators φ1 and φ2 as implementations of
the same algorithm, then a simulation between them ought to relate states which
represent the same mathematical structures (or “data”) on which we understand
them to operate. Suppose, for instance, that we are willing to regard φ1 and φ2
as implementations of Euclid’s algorithm but that neither is based on a machine
which is able to operate directly on natural numbers. (For instance, φ1 might
be a Turing machine and φ2 might be a graph rewriting machine similar to that
introduced by Schönage [68].) In this case, both φ1 and φ2 will need to use
some form of alternative encoding to represent both the numerical inputs n,m
to Euclid’s algorithm, as well as the sequence of intermediate values (i.e. r0 “ n
mod m, r1 “ m mod r0, r2 “ r1 mod r0, . . .) which are computed during the
course of its operation. (We might, for instance, imagine that φ1 uses binary
stings written on its tape to store these values, whereas φ2 might uses a sequence
of nodes and pointers.) In such a case the representational requirement imposes
the condition that a simulation R between φ1 and φ2 must relate states which
represent the same numerical values for each computation of Euclid’s algorithm
as implemented by these iterators.

5.2. The exigencies of simulation. While the foregoing conditions charac-
terize the conceptual role which the notion of simulation is expected to play,
they fall short of providing a precise definition of an equivalence relation » de-
fined on M1. A variety of different technical definitions of simulation have been
proposed in computer science. Many of these are designed specifically to treat
non-deterministic or concurrent computation. But since all of the models we have
been considering are deterministic and non-concurrent, it will be useful to take
as our paradigm Moschovakis’s [56] definition of iterator isomorphism.

Definition 5.1. An isomorphism between two iterators φ1 and φ2 is a bijection
ρ : St1 Ñ St2 such that ρpin1pxqq “ in2pxq for all x P X, ρrT1s “ T2, ρpσ1psqq “
σ2pρpsqq for all s P S1 and out1psq “ out2pρpsqq, for every s P T1 which is input-
accessible (i.e., such that for some x P X and some n P N, s “ σn

1 pin1pxqq).
We say φ1 and φ2 are isomorphic just in case there exists a mapping with these
properties.
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Requiring simulation relations to be bijections has the advantage of ensuring
that simulation is an equivalence relation.39 Clearly this definition can be mod-
ified in a number of ways – e.g. by relaxing the requirement that ρpxq be a
function, or requiring only that it satisfy a requirement analogous to (8). But as
I will now argue, however, there appear to be several reasons why any definition
in this vicinity is still likely to fail to satisfy one or more of the requirements
which would be necessary to vindicate the version of the algorithms-as-abstracts
view under consideration.

5.2.1. Formalizing the transitional condition. The need to provide a definition
of simulation which strikes a balance between (8) and (9) in order to satisfy
Milner’s transitional requirement obviously raises the concern that no definition
in the spirit of iterator isomorphism can be found which induces the correct
identity conditions for all of the algorithms we speak of in the course of our
mathematical practices. For on the one hand it is easy to construct pairs of such
structures which intuitively implement the same algorithm but for which this
condition does not hold. And on the other hand, note that once we have decided
to uniformly represent machines as iterators, it follows that the running time
complexity timeMpnq of a machine M will be given by maxtlenφpxq : |x| “ nu.
But also note that if φ1 and φ2 are isomorphic in the sense of Definition 5.1,
then it will follow that lenφ1

pxq “ lenφ2
pxq for all x P X. Thus if φ1 and φ2 are

isomorphic in this sense, it will follow that they have the same exact running
time complexity.40 And this would appear to imply – counter to the argument
given in §3 – that exact as opposed to asymptotic running time is an intrinsic
property of individual algorithms.

These observations can be taken to illustrate another way in which the classical
problem of “grain” – which is often pressed against theories of intensional entities
like Fregean senses and propositions – also arises when we attempt to provide a
definition of » which matches our intuitions about algorithmic identity and non-
identity.41 But such concerns can also be understood to point towards a yet more
general worry for any view which attempts to analyze the notion of algorithm in
terms of a principle akin to (MP) wherein » is taken to be a form of simulation
equivalence similar to iterator isomorphism.

The underlying difficulty may be illustrated by first recalling that for a given
model M in the first machine class and algorithm A, there will often be multiple
equally “apt” or “faithful” ways of implementing A as instances of M. To better

39Milner originally achieved this by requiring that there exist a pair of relations R and R1

such that R satisfies (8) between φ1 and φ2 and conversely R1 satisfies (8) between φ2 and φ1.
These conditions respectively correspond to back and forth clauses of the familiar definition of
bisimulation which is studied widely in process algebra and modal logic – cf., e.g., [6]. However,
we are only interested in deterministic algorithms whose computations can be represented as
linear sequences of states rather than trees. In such cases, it is more straightforward to adopt
a definition like 40 in which simulations are functions rather than relations.

40In other words, iterator isomorphism in the sense of Definition is a congruence with respect
to the property of the exact running time complexity timeM pfpnqq.

41For a number of concrete examples of this type see [17] and [7].
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appreciate the scope of this concern, note that many mathematical algorithms
operate on structured mathematical entities like polynomials, matrices, of graphs
and may also involve auxiliary data structures like trees, stacks, or heaps. Prac-
tical experience again bears out the fact that efficient implementations of such
structures can be founded using the RAM model R.42 But predictably, these
representations are almost never unique – e.g. a matrix can be represented as
a sequence of appropriately indexed registers or (if sufficiently sparse) as a hash
table, a graph may be represented either as a list of adjacent vertices or as an
adjacency matrix, a tree may be represented either as a prefix-closed list of se-
quences or as a graph, etc. And in addition, operations on these structures which
we often treat as unmediated operations when specifying algorithms informally
– e.g. looking up an entry in a matrix, adding or deleting a node from a graph
– will generally be associated with operations which require multiple steps when
implemented using a RAM machine.

Consider, for instance, a specific algorithm A for operating on graphs – e.g.
Kruskal’s minimum spanning tree algorithm.43 A basic operation employed in
this algorithm is that of adjoining an edge pu, vq to a set of edges E 1 of the
graph G1 “ xV,E 1y which will ultimately form a minimal spanning tree for the
input graph G “ xV,Ey. But now suppose φ1 and φ2 are iterators representing
RAM machines which implement A in different ways – say φ1 represents G and
G1 as adjacency matrices and φ2 represents them as lists. And finally consider
the sequence of steps ~spGq “ s0pGq, . . . , sc1pnqpGq of ~tpGq “ t0pGq, . . . , tc2pnqpGq
of φ1 and φ2 which will be required for A to adjoin the edge pu, vq to a particular
spanning tree U which it is constructing.

Although it is reasonable to assume that the lengths of ~spGq and ~tpGq will
vary as linear functions c1pnq and c2pnq for n “ |V |, there is no a priori reason
to suspect that these functions will be identical. Nonetheless, the transitional
condition on the definition of simulation requires that any simulation between φ1
and φ2 ought to correlate not the individual steps of ~spGq and ~tpGq (which will
be impossible if c1pnq and c2pnq ever differ in value), but rather these sequences
themselves. This suggests that in order to satisfy the spirit of Milner’s transitional
requirement, we must find an appropriate way of partitioning the sequences of
states corresponding to the computations of φ1 and φ2 into subsequences to take
into account how these iterators (or more accurately, the machines from they are
derived) implement the basic steps in terms of which A is defined.

In specific cases, it will generally be clear how this can be accomplished by
modifying Definition 5.1 so that a simulation ρpxq is now understood as corre-
lating not individual states, but rather sequences of states determined by the

42Techniques for constructing RAM implementations of such structures are considered sys-
tematically in the context of Knuth’s meticulous implementations of informally specified algo-
rithms as so-called MIX machines (a variant of the RAM model). See in particular Chapter II
of [42].

43See, e.g., [14] p. 631-633.
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relevant partitioning.44 But such a modification will obviously depend on the
particular partitioning of states required to ensure that the definition holds be-
tween the pair of iterators φ1 and φ2 in question. And it thus seems that the
relevant modification to the definition of iterator can only be formulated given
after we have decided that φ1 and φ2 should both be understood as implementing
the same algorithm.

Recall, however, that according to the algorithms-as-abstracts view it is only
through a principle such as (MP) that we understand what algorithms are in the
first place. But if this is so, then the definition of » must presumably be fixed
in a manner which is independent of the details of specific algorithms and the
class of machines which we are willing to regard as their implementations. The
proposed modification to the definition of iterator isomorphism using partition
functions thus highlights that in moving away from a purely structural account
of Milner’s transitional requirement as exemplified by (8) there appears to be
no natural stopping point short of (9) which is fixed independently of our prior
understanding of specific algorithms and implementations. But it would seem
that if a proponent of the algorithms-as-abstract view has any hope of maintaing
that (MP) reflects a conceptual or analytic feature of our informal notion of
algorithm, he cannot allow that the definition of » is fixed on a case-by-case
basis in this manner.

5.2.2. Formalizing the representational requirement. In order to formalize Mil-
ner’s representational requirement, we must find some relation between the com-
putational states of iterators which formalizes the fact that they encode the same
mathematical “data” on which a single algorithm A operates. As a first step in
this direction, suppose that φ “ xin, St,Σ, T, outy and that s P St is one of the
states of φ. Then we will typically be able to think of s as a mathematical struc-
ture akin to a Turing or RAM machine configuration. Such a structure can in
turn be viewed in the conventional manner of first-order model theory – i.e. as a
model of a first-order language Ls of the form As “ xA,R1, . . . , Rn, f1, . . . , fn, tci :
i P Iuy consisting of a non-empty domain A, a set of relations Ri, functions fj,
together with a designated collection tci : i P Iu Ď A.45

44For instance, in the case under consideration, there would presum-
ably exist monotone functions τ1, τ2 : X ˆ N Ñ N which uniformly parti-
tion the computation ~spxq and ~tpxq of φ1 and φ2 into subsequences ~spxq “

sτ1px,0qpxq, . . . , sτ1px,1qpxq, sτ1px,1q`1pxq, . . . , sτ1px,2qpxq, . . . , sτ1px,k´1q`1pxq, . . . , sτ1px,kqpxq and
~tpxq “ tτ2px,0qpxq, . . . , tτ2px,1qpxq, tτ2px,1q`1pxq, . . . , tτ2px,2qpxq, . . . , tτ2px,k´1q`1pxq, . . . , tτ2px,kqpxq
such that the subsequences sτ1px,iqpxq, . . . , sτ1px,iqpxq and tτ2px,iqpxq, . . . , tτ2px,iqpxq correspond
to the “unimportant” computations which implement the same step in the operation of A. On
this basis, we could imagine redefining an isomorphism between φ1 and φ2 to be a function
ρ˚ : St˚1 Ñ St˚2 mapping all and only sequences of the form sτ1px,iqpxq, . . . , sτ1px,iqpxq to

tτ2px,iqpxq, . . . , tτ2px,iqpxq for i ď timeApxq
45For instance, in the case of the Turing machine model, we could represent states as struc-

tures of the form xN, f, cy where f : NÑ t0, . . . , k´ 1u and fpnq represents the contents of the
nth tape cell, and c records the location of the machine’s head.
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In this setting, formalizing the representational requirement thus amounts to
saying when the structures As and At representing the same configuration of data
(and presumably also control parameters such as the values of loop variables) on
which A operates. Since these structures are conventional first-order models,
it is natural to first ask if any of the familiar notions of structural equivalence
from model theory – e.g. isomorphism, elementary equivalence, back-and-forth
equivalence – can be of use in this regard. Note, however, that if φ1 and φ2 are
based on machines from different models of computation (e.g. one is derived from
a Turing machine, and one from a RAM machine), then As and At will generally
interpret distinct languages Ls and Lt. But in this case, these structures cannot
be isomorphic to one another in the traditional sense.

In the case that φ1 and φ2 are based on machines from a single model of
computation M, the situation is likely to be more complex. To continue with
the example from above, for instance, suppose that φ1 and φ2 are both based on
RAM machines which we wish to interpret as implementing an algorithm which
operates on a graph G “ xV,Ey. A concrete illustration of the problem we face
in formalizing the representational condition is to nominate some notion relation
U Ď St1ˆSt2 which holds just in case they contain sequences of registers encoding
graphs which are isomorphic. Note, however, that by proceeding in this way, we
will almost certainly incur the same problem highlighted above with respect to
formalizing the representational condition. For if φ1 and φ2 represent G differently
in their computational states – e.g. one uses a matrix representation, and the
other a list representation – then we will be forced to define U in a manner that
will be unlikely to generalize to arbitrary algorithms operating on arbitrary data
structures.

We might attempt to circumvent both of the foregoing problems by trying to
identify a more general definition which analyzes what it means for one structure
At to be representable in another As even if these structures are for different
signatures L1 and L2. One possibility is the notion of definable interpretability
from model theory which holds between structures As and At just in case it is
possible to define an L1-structure N whose domain is an L1-definable subset X
of the domain of M1 consisting of L1-definable elements, subsets, and functions
of X so that N is isomorphic to At.

46 We might then attempt to analyze the
representational condition by requiring that computational states correlated by
a simulation relation are mutually interpretable in one another in this sense.

But if we attempt to apply this definition to the sorts of cases which are
likely to be encountered in practice, we quickly run into what appears to be a
complication arises in virtue of the way first-order model theory interacts with
the mathematical definitions of common models of computation. For note that
in order to describe the relation U which a state s of the iterator φ1 described
above bears to a state t of φ2 in virtue of representing the same graph G, it is
not sufficient to work in a language which describes s and t simply as vectors of
natural numbers representing the contents of the registers of φ1 and φ2. Rather, we

46See [49] for definitions and examples of this relation.
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must work in a language containing additional arithmetical vocabulary sufficient
for describing how these iterators encode and operate on finite graphs as sequences
of natural numbers stored in their registers.

The most natural way to do this is to view s and t as structures of the form
As “ xN, R1, 0, s,`,ˆy and At “ xN, R2, 0, s,`,ˆy where R1, R2 are binary
relations such that Ripn,mq holds just in case m is stored in the nth register
of φi as represented by s (if i “ 1) or t (if i “ 2). It is now easy to see that
As and At are mutually interpretable in one another since we can find formulas
in either language which allow us to represent either structure in terms of the
other using standard techniques for coding finite sequences to construct an L1-
formula ψR2px, yq which defines R2 up to isomorphism as a subset of N2 and an
L2-formula ψR1px, yq which defines R1 up isomorphism also as a subset of N2. But
since R1 and R2 will only encode a finite number of register-value pairs which
will be employed in the computations of φ1 and φ2 in their computations on a
fixed graph, we can see that ψR1px, yq and ψR2px, yq can be taken to be purely
arithmetical formulas – i.e. to simply show that At is definable over As does not
require that we make use of the relation R2 itself (and conversely for As and R2).

In fact, since As and At are structures over a language which extend that
of first-order arithmetic, it is also easy to see (again using standard coding tech-
niques) that there will be a vast array of other structures of the form xN, R, 0, s,`,ˆy
with which they will be mutually interpretable but for which R will not bear any
discernible relation of structural similarity to the graph G which we are assuming
the states s and s1 encode. This would seem to illustrate another fundamental
limitation on our ability to use traditional notions of sameness of structure taken
from model theory to analyze Milner’s representational condition.

5.2.3. Implementing recursion. The foregoing observations raise the general con-
cern that despite the intuitive appeal of Milner’s original analysis of simulation in
terms of transitional and representational requirements, his characterization does
not succeed in implicitly defining a relation (or even a family of relations) which
holds between iterators in virtue of what we might broadly describe as their gen-
eral structural properties which also induces an extensionally adequate criterion
of identity for algorithms. But as I will now also attempt to illustrate, there
are also instances in which these conditions can themselves be seen as pulling in
opposite directions on the form which a definition of simulation ought to take.

Most of the procedures mentioned above would traditionally be classified as
iterative (or sequential) algorithms in the sense that the computations induced
by their operation can be understood as sequences of states induced by the re-
peated application of a transition function in the sense formalized by the notion
of an iterator. There is, however, another class of procedures studied in algo-
rithmic analysis known as recursive (or divide and conquer) algorithms which
operate by successively decomposing their input into two or more subproblems
(i.e. structural components) on which they then repeatedly call themselves until
a base case is reached.
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Splitting and merging in parallel
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Figure 1. The operation of Mergesort on the array
r8, 7, 6, 5, 4, 3, 2, 1s. h1 denotes the operation of taking the first half
of an array, h2 the second half, and merge the merging operation
described in the text.

A commonly cited example is the sorting algorithm known as MergeSort.
This procedure can be described informally as follows: 1) divide the input array
B into two subarrays B1 and B2 comprising the first and second halves of B
(rounding indices up or down as needed); 2) if either of these arrays are of length
greater than 1, recursively call MergeSort (i.e. the procedure here described)
on B1 and B2; 3) combine the sorted arrays B11 and B12 which result from this into
a single sorted array by calling the auxiliary procedure Merge.47 In pseudocode
such a procedure may be expressed as follows:

MergeSortpB, p, rq

1 if p ă r
2 then q Ð tpp` rq{2u

3 MergeSortpB, p, qq
4 MergeSortpB, q ` 1, rq
5 MergepB, p, q, rq

It will be useful to illustrate the operation of MergeSort by considering
an example. To this end consider the initial array B “ r8, 7, 6, 5, 4, 3, 2, 1s as
depicted at the bottom of Figure 1. The bottom four levels depict the decompo-
sition of B into halves as effected by the recursive calls to MergeSort. This

47Merge itself can be understood as an iterative procedure which operates by repeatedly
comparing the first elements of its inputs B1 and B2 (which are assumed to be sorted), selecting
the one which is smaller with respect to ă, removing it from the relevant list, and then adding
it to the end of a new sorted list which it returns as output. See, e.g., [14], p. 31.
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process terminates after calls of the form MergeSortpB, i, i ` 1q (as the next
calls would be of the form MergeSortpB, i, iq and MergeSortpB, i` 1, i` 1q
for which the condition p ă r will fail). At this point control passes back to
the point of the recursive call and the operations MergepB, i, i, i ` 1q are per-
formed. This results in the fifth level from the bottom. After these values have
been computed, control passes to the prior call to MergeSort by which the
resulting values and the subarrays of length two are merged by performing op-
erations of the form MergepB, i, i ` 1, i ` 3q, yielding the second row from the
top. Finally, control passes to the initial calls of the form MergeSortpB, 1, 4q
and MergeSortpB, 5, 8q which leads to the computation of MergepB, 1, 4, 8q
yielding the sorted array at the top.

As is evident from the foregoing description, MergeSort is most naturally
described as operating in a manner which assumes that certain of its steps can
be carried out in parallel – e.g the calls to the Merge operation for the inputs
r7, 8s, r5, 6s and r3, 4s, r1, 2s corresponding to the third row from the top are
understood to be carried out simultaneously. A question which often arises in
computational practice, however, is whether such a procedure can be implemented
using a machine drawn from a model in the first machine class. For as we have
observed above, such machines do not allow for unbounded parallelism of the sort
which would be required to construct a direct implementation of the procedure
just described.

In order to demonstrate that such implementations are available, it is typical
to employ a sequential model of computation equipped with an auxiliary data
structure known as a stack. Such a device can be used to keep track of both
the subarrays which are being operated on and the location of a particular split-
ting or merging operation in the structure depicted in Figure 1. A method for
transforming recursive specifications of procedures into machines in a class such
as R (to which a stack may either be added or implemented in terms of its other
primitives) is known as an implementation of recursion. The details of how this is
accomplished in practice are often quite complex (cf., e.g., [1]) and need not con-
cern us here. What is of current concern, however, is that there will often not be
a unique way of implementing a recursive algorithm specified using an sequential
model such as R. For instance, there are distinct stack-based implementations of
MergeSort Rleft and Rright such that the former always performs the left-most
possible merge operation first (relative to the sort of computation tree depicted in
Figure 1) and the latter always performs the right-most possible merge operation
first (as well as a variety of other intermediate possibilities).

These complications notwithstanding, the relation borne by both Rleft and
Rright to MergeSort would conventionally be regarded as paradigmatic of the
implementation relation in computational practice. There is thus a strong prima
facie reason to think that any adequate definition of » ought to hold between
Rleft and Rright. As should now be evident, however, no relation satisfying these
properties can satisfy both the transitional and representational requirements on

a definition of simulation simultaneously. For suppose that we let ~l1, . . . ,~l7 and
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~r1, . . . , ~r7 respectively represent the sequence of transitions of Rleft and Rright re-
sponsible for carrying out the merges depicted in Figure 1. According to the tran-
sitional condition, a simulation relation of typeR˚ Ď St˚leftˆSt

˚
right ought to relate

sequences of states which occur in the same order – i.e. R˚p~l1, ~r1q, . . . , R
˚p~l7, ~r7q.

But on the other hand, according to the representational condition R˚ ought to
relate sequences corresponding to the operations which MergeSort performs on

the same data – e.g. R˚p~l1, ~r5q, R
˚p~l2, ~r4q, R

˚p~l3, ~r7q, . . . The transitional and rep-
resentational requirements thus cannot be simultaneously satisfied by any single-
valued relation on St˚1 ˆ St

˚
2 . As such, it would seem that there are instances in

which the transitional and representational conditions on the definition of simula-
tion are in genuine conflict with respect to certain of our pretheoretical intuitions
about computational equivalence.

6. Taking stock

6.1. Moschovakis, Gurevich, and the level-relativity of algorithms. As
I mentioned in §1, the task of providing a foundational account of the nature of
algorithms of the sort we have been considering here has been largely overlooked
by both mathematicians and computer scientists. Two notable exceptions are the
theories of algorithms which been developed by Yiannis Moschovakis and Yuri
Gurevich, each of whom can be understood as offering an extended defense of
algorithmic realism. There are, however, several respects in which their views
differ not only from one another, but also from the general framework I have
argued in §4 and §5 represents the most promising means of developing this
view. It will thus be useful to investigate their proposals in more detail before
attempting to

In a series of papers spanning over twenty years (including [36], [37], [35])
Gurevich develops the proposal that individual algorithms should be identified
with instances of a class of formalisms known as Abstract State Machines [ASMs]
– a proposal he refers to as the ASM Thesis:

The ASM thesis is that every sequential algorithm, on any level of abstraction,
can be viewed as a sequential abstract state machine. [37], p. 1

The definition of an ASM is very similar to that of an iterator – e.g. in [35]
(p. 7) such a model M is defined to consist of class of states SpMq (a subset
IpMq Ď SpMq of which are referred to as initial), and a transition function
τM : SpMq Ñ SpMq. A similar definition of the computation induced by M on
input x0 P IpMq as the sequence derived by iterating τpxq on x0 is also provided.

Moschovakis’s proposal is many respects similar, but is developed in terms of
a formalism known as a recursor. Unlike any of the models we have considered
thus far, this model takes recursion (rather than iteration) as its basic compu-
tational paradigm. A recursor formally is defined ([56], p. 85) to be a triple
α “ xD, τ, valuey such that D “ xD,ăy is an inductive partially ordered set,
τ : X ˆ D Ñ D, and the result αpxq of applying α to x P X is defined to be
valuepdq where d is the ă-least element of D satisfying the fixed-point equation
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d “ τpx, dq.48 Two recursors α1 “ xD1, τ1, value1y and α2 “ xD2, τ2, value2y are
defined to be isomorphic just in case there exists an order-preserving bijection
π : D1 Ñ D2 for which πpτ1px, dqq “ τ2px, πpdqq and value1px, dq “ value2px, πpdqq
([56], pp. 86-87). On the basis of these definitions, Moschovakis proposes a view
which might aptly be called the Recursor Thesis – i.e.

Proposal: Algorithms are recursors. The mathematical structure of every
algorithm on a poset X to a set W is modeled faithfully by some recursor α :
X ÑW ; and two recursors model the same algorithm if they are isomorphic.
[56], p. 86

Relative to the terminology adopted in §4, such remarks make clear that Gure-
vich is a proponent of Strong Church’s Thesis,49 while Moschovakis can be un-
derstood to be a proponent of the machine-based variant of the algorithms-as-
abstracts view where M is taken to be the class of recursors and » is the relation
of recursor isomorphism. Thus although Moschovakis and Gurevich can thus
both be reasonably classified as algorithmic realists, it would at first appear to
disagree with respect to how they would answer the following questions: 1) should
algorithms be identified directly with the instances of a model of computation
or rather with equivalence classes thereof? 2) should the mathematical class to
which algorithms are reduced (either by direct identification or by factoring by a
notion of procedural equivalence) be comprised of machines which take iteration
or recursion as a basic computational paradigm?

Further reflection on their views would seem to suggest that their disagreement
over 1) is not as substantial as it might initially appear. For instance, Moschovakis
himself issues the following caveat about the significance of recursor isomorphism:

[R]ecursor isomorphism is a very fine equivalence relationship which is not
preserved by many useful algorithm transformations (optimizations, refine-
ments, etc.), and we must often introduce ‘coarser’ equivalences . . . to express
important facts of informal algorithm analysis. [56], p. 87

Some experimentation with formalizing algorithms as recursors bears out this
point – i.e. in the course of constructing recursor representations of informally
specified algorithms, we are often confronted with arbitrary choices about how
to represent the data on which an algorithm operates together with its compu-
tational state as a partially ordered set. And since different choices will lead
to different recursors among which the defined isomorphism relation need not

48Less formally, a recursor can be understood as the interpretation of a set of mutually
recursive equation definitions f1p~xq, . . . , fnp~xq (or more generally as a recursion scheme in the
sense of Greibach [34]) relative to a fixed-point semantics of the sort originally proposed by
Scott [69] in the form of domain theory.

49Or at least this appears to be true of Gurevich’s views up to at least his joint 2008 paper
with Dershowitz [18]. In his joint subsequent 2009 paper with Blass and Dershowitz [7], it is
argued that the program-based variant of the algorithms-as-abstracts view is unsustainable in
virtue of our inability to define an appropriate equivalence relation « on programs for reasons
resembling those discussed in §4. For instance it repeatedly suggested in this paper that the
relation between programs of “expressing the same algorithm” is subjective or interest relative.
But since no account of why the same problem does not also beset the machine-based variant of
this view is given in this paper, it is unclear at present whether Gurevich should be understood
as continuing to support the ASM Thesis in its original form.
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hold, it would seem that factoring representations of algorithms by recursor iso-
morphism does not lead to a satisfactory resolution to the problems of “grain”
discussed in §5. It is, moreover, easy to see that isomorphic recursors will have
the same running time complexity relative to the analysis Moschovakis provides.
Hence both his view and Gurevich’s predict that exact (as opposed to asymptotic)
running time complexities are directly attributable to individual algorithms.

Moschovakis and Gurevich’s proposals do, however, make different predictions
about the identity conditions of certain recursive algorithms. Recall for instance,
that we saw in §4.2.3 that in order to implement MergeSort as a RAM machine
we needed to make a seemingly arbitrary decision about how the merge opera-
tions it performs in parallel are put into sequential order, leading to distinct
implementations Rleft and Rright which cannot stand in a simulation relation
which simultaneously satisfies Milner’s transitional and representational condi-
tions. On the other hand, it is possible to canonically define a recursor αmerge

whose operation can be understood to formalize the sort of parallel computation
tree for MergeSort depicted in Figure 1. On this basis Moscovakis ([56], p. 90)
suggests that αmerge is a more apt mathematical representation of MergeSort
than iterators such as Rleft and Rright deriving from sequential models of com-
putation like R.

This example illustrates that the fundamental distinction between the propos-
als of Gurevich and Moschovakis is not so much that one prefers a “reductionist”
ontology for algorithms while the other prefers an “abstractionist” one, but rather
whether the sort of objects with which they seek to identify algorithms derive
from a model which is based on iteration or recursion. In virtue of the argument
I made against taking simulation to be an adequate analysis of computational
equivalence in §4.3, the foregoing observations may reasonably be taken to sug-
gest that Moschovakis’s proposal fares better than Gurevich’s in accounting for
the identity conditions of recursive algorithms like MergeSort.50

There is, however, another sense in which the proposals of Moschovakis and
Gurevich are alike in the sense that they depart in the same way from the strategy
which I argued at the beginning of §5 constitutes the most promising way of
vindicating algorithmic realism. In particular, rather than attempting to define
an algorithm in terms of its implementations from the class of machines M1

from the first machine class, they take individual algorithms to be defined only
relative to the primitive operations in terms of which they are specified (it is such
a specification of primitives which is typically taken to correspond to a “level of

50There is, however, some question of how general this advantage can be taken to be. For on
the one hand, there are standard techniques which allow for the uniform translation between
members of iterative and recursive models of computation (cf, e.g., the flowchart and recursion
scheme models developed in [34]). And on the other, an open but widely believed conjecture
in complexity theory (i.e. NC ‰ P, cf. [33]) predicts that there is a wide class of naturally
occurring computational problems (i.e. those which are complete for the class P) which can
only be solved by sequential algorithms. If this is the case, then problems like sorting for
which their exist parallel algorithms which are more efficient than the most efficient sequential
algorithm by which they can be solved by more than a scalar factor may represent only an
exceptional case of the sort of problems we confront in mathematical practice.
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abstraction” in the sense of Gurevich’s formulation of the ASM thesis). Thus like
the general definition of iterator introduced in §3, the ASM and recursor models
are very different from models like Tk or R. For whereas arbitrary mathematical
operations may be used to define the states and transition functions of the former,
the latter make available only very restrictive classes of functions and primitive
data structures.

One potential advantage of the level-relative approach is borne out by the
elegant reconstruction which Moscovakis ([56], p. 83-84) provides of the sort of
informal running time analysis of MergeSort as would typically be given in
algorithmic analysis. As his analysis is developed directly by reasoning about the
properties of the primitive mathematical notions in terms of which this algorithm
is specified, it hence avoids the necessity of reasoning about the details of how
machines like Rleft and Rright discussed in §4.2.3 operate on registers or stacks.
But in the case of many sequential algorithms which operate (e.g.) on graphs,
matrices, or polynomials, the same will also be true of the ASM model in virtue
of the considerations described in §4.2.1 and 4.2.2 – i.e. since an ASM can be
specified at an arbitrary “level of abstraction” (i.e. such that its steps are defined
in terms of arbitrary mathematical operations, regardless of their underlying
feasibility) it is also possible to simplify running time analyses by working with
ASMs instead of (e.g.) RAM machines.

These considerations aside, however, the question also arises as to the utility
of applying such analyses directly to “level-relative” models such as ASMs or
recursors. For although it may be that an ASM M or recursor α which we em-
ploy to model an informally specified algorithm A will introduce fewer arbitrary
properties into its mathematical representation than, say, an implementation R
of A as a RAM machine, neither Moschovakis nor Gurevich provides an argument
that M or α must be unique. As such, their proposals must still presumably face
variants of the what-numbers-could-not-be problem introduced in §1. But much
more seriously than this, the generality of the ASM and recursor theses is pur-
chased precisely at the price of severing the link between our practice of assigning
running time complexities to informally specified algorithms and the underlying
complexity costs of models like R and Tk.

As I argued in §3, it is our ability to implement algorithms with respect to
these models which ultimately explains how it is that complexity theory and
algorithmic analysis provide a means by which we can meaningfully measure and
compare the utility of different computational procedures in practice. As such, it
seems reasonable to conclude that the level-relative view of algorithms advocated
by Moschovakis and Gurevich does not provide an account which makes good on
all of the foundational aspirations of algorithmic realism described above.

6.2. Algorithms, identify, and mathematical practice. After initially stress-
ing the importance of foundational questions about algorithms to our mathemat-
ical practices in §1, §4 and §5 of this paper have been largely devoted to arguing
that despite its evident allure, there is no apparent means of substantiating the
algorithmic realist’s claim that algorithms are freestanding mathematical objects
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which is compatible with the practice of complexity theory and algorithmic anal-
ysis. In order to better orient ourselves with respect to how the diminished
prospects of algorithmic realism bear on how one might ultimately go about an-
swering (Q1) and (Q2) from §1, it will be useful to first recall that much of the
evidence that was initially marshaled in favor of the plausibility of this view de-
rives from our willingness to speak of algorithms as if they were abstract objects
on a par with those studied in mathematics – e.g. natural numbers, graphs,
groups, etc. This is evident not only from our practice of introducing singular
terms (e.g. in the form of algorithmic names) to refer to individual procedures,
but also in our willingness to quantify over certain classes of algorithms as exem-
plified by statements like (1), (4), and (6).

Note, however, that another linguistic phenomenon which is often taken to
be diagnostic of whether a class of expressions t1, t2, . . . is properly regarded as
denoting objects is our willingness to use them in identity statements of the forms
ti “ the ϕ, ti “ tj, or ti ‰ tj. We have seen some evidence that algorithmic names
can be used in the first of these schema in the course of considering statements
such as

(10) a) InsertionSort “ the algorithm expressed by program Π
b) MergeSort “ the algorithm implemented by machine M

Proponents of the algorithms-as-abstracts view will presumably take such state-
ments as paradigmatic of the way in which algorithmic names are introduced into
our mathematical language.

Based on their grammatical form, it might seem reasonable to take these state-
ments to be of a piece with the following:

(11) a) 3 = the number of roots of x3 ´ 6x2 ` 11x´ 6
b) D4 “ the group represented by xx, y | x4 “ 1, y2 “ 1, yxy “ x´1y

But in the case of bona fide mathematical items like natural numbers and groups
it is also typically easy to find within our discourse statements instance of another
form of identify statement – i.e. the ϕ1 = the ϕ2 – as exemplified by

(12) a) the number of primes less than 6 = the number of roots of
x3 ´ 6x2 ` 11x´ 6

b) the group represented by xx, y | x4 “ 1, y4 “ 1, xyxy “ 1y =
the group represented by xx, y | x4 “ 1, y2 “ 1, yxy “ x´1y

It is the analogs of such statements involving the expressions “the algorithm
implemented by M” and “the algorithm expressed by Π” which the two variants
of the algorithms-as-abstracts views suggest ought to be regarded as fundamental
to our general understanding of what it is to be an algorithm. In particular, it
precisely this kind of statement which figures on the lefthand side of the principles
(MP) or (PP) which proponents of this view regard as an implicit definition
of algorithmic identity. It is hence a significant observation that our everyday
computational-cum-mathematical discourse seems to provide few examples of
such statements about which we appear to have firm convictions. As the case
described in §4.3.2 attests, we do occasionally attempt to adjudicate the status of
statements like “the algorithm implemented Rleft = the algorithm implemented
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by Rright”. But it would seem that our judgements about the truth or falsity of
such statements is conventional at least to the extent that we do not expect that
their truth values are fixed relative to other pre-established mathematical facts.
On the other hand, it seems that not only do we regard statements like (12a,b)
as potentially informative in the sense that they admit to non-trivial proof, but
also that their truth values are fixed in advance by our prior understanding of
the meanings of the expressions in terms of which they are formulated.

Reflection on this point goes a fair distance towards explaining why we do not
need to be algorithmic realists in order to explain the manifest utility of subjects
like complexity theory and algorithmic analysis. For, recall the example of the
algorithm Lucas discussed in §1. As we saw, it was by applying this algorithm
not only was Lucas able to establish the primality of m127. Nonetheless, there is
no evident sense in which the algorithm Lucas itself figures in the proposition
expressed by “m127 is prime”. Rather, the algorithm functions as an auxiliary
device which aids in our demonstration of the theorem.

Note, however, that it is via a similar route by which algebraic entities like
groups also began their life in mathematics – i.e. as auxiliary devices figuring in
the proof of purely number theoretic propositions.51 Although the contemporary
definition of a group had not been formulated at the time which what we would
now identify as algebraic methods started to be used, such structures are now
universally recognized as bona fide mathematical objects. There thus appears
to be little reason to regard an algebraic proof of a result in number theory to
be in any sense “extra-mathematical”. As we have seen, algorithmic realism
seeks to secure the same status for results derived by computational methods by
assimilating algorithms into the framework of classical mathematics.

If algorithmic realism were true, it thus seems reasonable to think that we
should regard the status of algorithms in mathematics as something like that
of groups. As we have seen, the general notion of algorithm has a considerably
older pedigree than that of group. And although it is somewhat newer in origin
than abstract algebra, we also do possess a theory which takes algorithms as
its ostensible subject matter – i.e. algorithmic analysis. It is notable, however,
that no consensus has arisen within this field as to the appropriate criterion of
identity for algorithms or even as to the form such a condition might take. In
comparing algorithmic analysis and group theory, it is thus reasonable to wonder
why the development of the latter prompted the formulation of a family of notions
of structural equivalence (e.g. homomorphism, isomorphism, embedding, etc.)
for groups while no family of similar notions has developed in the context of
algorithmic analysis to serve the role of canonically relating one algorithm (or
representation thereof) to another.

51A prototypical example is Gauss’s [30] proof of Fermat’s Little Theorem. We would now
describe this proof as relying on the fact that the set of integers t1, . . . , pu form a group under
multiplication and that this group is isomorphic to the cyclic group Zp. However, no mention
of either group appears in the statement of theorem (i.e. “if p is prime, then for any integer
a, ap ´ a is divisible by p”) nor had the notion of a group been defined at the time of Gauss’s
proof.
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The answer to this question ultimately seems straightforward: the primary
significance we place in the discovery of an algoriothm A is likely to be in applying
it to solve instances of an antecedently identified mathematical problem – e.g.
computing the values of a function fpxq. For this reason, our interest in A is
also likely to be exhausted by proving its correctness with respect to fpxq and
possibly of comparing its efficiency with that of other means of computing the
values of this function.

If we are to perform the latter task in a manner which is responsive to the
analysis of feasibility provided by complexity theory and algorithmic analysis, it
seems that we have no choice but to work with a representation M of A drawn
from a model M in the first machine class. When working with such models, we
have also seen that the implementation problem can become genuinely non-trivial
– i.e. based on the informal specification of A, it may not be initially obvious
how to employ the basic operations and data structures made available by M to
construct M so as to mimic A’s operation in a step-by-step manner.

Given that we are able to construct such a machine, however, it is also very
likely that we will also be able to construct other formally distinct M 1 PM which
implement A in a different manner (e.g. by using a different representation of
the data structures on which M operates as discussed in §5). However, once we
have constructed our initial representation M (thereby making it possible to give
rigorous proofs both of A’s correctness and its running time complexity), our
interest will typically shift from the properties of M to that of employing it to
compute the values of fpxq. Our willingness to acknowledge that M and M 1 are
both implementations of A notwithstanding, it would seem that mathematical
considerations alone never dictate that we return to consider what (if anything)
about the structural properties of M and M 1 accounts for the fact that we are
willing to regard them as implementations of the same algorithm.

Thus although there will be many instances in which our practices may dispose
us to regard two programs or machines as representing the same algorithm, the
question of whether such judgements can be made precise does not seem to be
of any independent mathematical significance. And there thus seems to be no
abiding reason why ontological questions of type (Q1) need to be answered before
we can provide detailed answers to epistemological questions of type (Q2). At
least to date, the story of algorithmic realism might thus be taken to represent
a cautionary tale for the study of ontological commitment. For it is indeed
difficult to deny that our discourse is highly suggestive of the fact that parts of
theoretical computer science are engaged in the study of a class of procedural
entities which are closely related to but yet somehow distinct from those studied
in classical mathematics. But at the same time, a more detailed appraisal of the
methodologies of the relevant subjects suggests that there may be no way to take
this language at face value without contravening some of the assumptions about
the nature of algorithms in which these fields themselves seems to be grounded.

This conclusion may at first sound like a negative one with respect to the
proposal formulated in §1 that the general notion of algorithm deserves a place
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alongside concepts such as number, set, and function as a substrates of contem-
porary mathematics. However, it should now also be evident that many of the
considerations which have been touched on in this paper point to the import
of questions refining (Q2) in regard to the practice of algorithmic analysis and
complexity theory. Some of these are as follows:

(Q3) What does it mean for a mathematical model to provide an accurate
representation of the constraints we face in concretely embodied compu-
tation? What does it mean to say that a function is intrinsically difficult
to compute given that it is recursive or for one recursive function to be
more difficult to compute than another? How can the practical utility of
different effective methods for solving the same mathematical problem be
objectively measured and compared?

It would seem that such questions must be subjected to closer scrutiny before it
can reasonably be said that we have a philosophically satisfactory account of the
growing role which computational techniques play in mathematical practice. But
beyond what has been said in §3, a more thorough consideration of these issues
must await another occasion.

References

[1] H. Abelson and G. J. Sussman. Structure and interpretation of computer programs. MIT
Press, Cambridge, MA, 1985.

[2] K. Appel, W. Haken, et al. Every planar map is four colorable. part i: Discharging. Illinois
Journal of Mathematics, 21(3):429–490, 1977.

[3] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II: Reducibility.
Illinois Journal of Mathematics, 21(3):491–567, 1977.

[4] G. Bealer. A solution to Frege’s puzzle. In Philosophical Perspectives, Volume 7: Language
and Logic, pages 17–60. Blackwell Publishers, 1993.

[5] P. Benacerraf. What numbers could not be. The Philosophical Review, 74(1):47–73, 1965.
[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,

Cambridge, England, 2001.
[7] A. Blass, N. Dershowitz, and Y. Gurevich. When are two algorithms the same? The

Bulletin of Symbolic Logic, 15(2):145–168, 2009.
[8] G. Boolos. Is Hume’s Principle Analytic? In Language, Thought, and Logic: Essays in Hon-

our of Michael Dummett, pages 245–261. Oxford University Press, Oxford, 1997. Edited
by Richard G. Heck Jr.

[9] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical forms.
ACM SIGSAM Bulletin, 10(3):19–29, 1976.

[10] J. P. Burgess. Fixing Frege. Princeton Monographs in Philosophy. Princeton University
Press, Princeton, 2005.

[11] R. Carnap. Meaning and Necessity. The University of Chicago Press, Chicago, 1947.
[12] A. Church. A formulation of the logic of sense and denotation. Structure, Method, and

Meaning: Essays in Honor of Henry M. Sheffer, Liberal Arts Press, New York, pages
3–24, 1951.

[13] A. Church. Intensional isomorphism and identity of belief. Philosophical Studies, 5(5):65–
73, 1954.

[14] T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT Press, second
edition, 2005.



48 WALTER DEAN

[15] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-Verlag, New
York, 1992.

[16] M. J. Cresswell. Structured meanings: The semantics of propositional attitudes. The MIT
Press, 1985.

[17] W. Dean. What Algorithms could not be. PhD thesis, Rutgers University, 2007.
[18] N. Dershowitz and Y. Gurevich. A natural axiomatization of computability and proof of

Church’s Thesis. The Bulletin of Symbolic Logic, 14(3):299–350, 2008.
[19] M. Detlefsen and M. Luker. The four-color theorem and mathematical proof. The Journal

of Philosophy, 77, 1980.
[20] D. Du and K. Ko. Theory of computational complexity. John Wiley, 2000.
[21] M. Dummett. Frege’s distinction between sense and reference. In Truth and other enigmas,

pages 116–144. Harvard University Press, 1978.
[22] L. Floridi. Philosophy and computing. an introduction. Ethics and Information Technology,

2(2):137–138, 2000.
[23] C. Foster. Algorithms, abstraction and implementation: Levels of detail in cognitive science.

Academic press, 1992.
[24] G. Frege. Die Grundlagen der Arithmetik. Koebner, Breslau, 1884.
[25] G. Frege. Grundgesetze der Arithmetik: begriffsschriftlich abgeleitet. Pohle, Jena, 1893,

1903. Two volumes. Reprinted in [26].
[26] G. Frege. Grundgesetze der Arithmetik. Olms, Hildesheim, 1962.
[27] G. Frege. Compound thoughts. Mind, 72(285):1–17, 1963.
[28] R. Gandy. Church’s Thesis and principles for mechanisms. In H. K. J. Barwise and

K. Kunen, editors, The Kleene Symposium, volume 101, pages 123–148. North Holland,
1980.

[29] M. Garey and D. Johnson. Computers and intractability. A guide to the theory of NP-
completeness. W.H. Freeman and Company, 1979.

[30] C. F. Gauss. Disquisitiones Arithmeticae. Springer, New York, 1986. Translated by Arthur
A. Clarke.

[31] J. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.
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1929-1936, pages 346–371. Oxford University Press, 1986.

[33] R. Greenlaw, H. Hoover, and W. Ruzzo. Limits to parallel computation: P-completeness
theory. Oxford University Press, USA, 1995.

[34] S. A. Greibach. Theory of program structures: schemes, semantics, verification, volume 36
of Lecture Notes in Computer Science. Springer, 1975.

[35] Gurevich. Sequential abstract-state machines capture sequential algorithms. ACM Trans.
on Computational Logic, 1(1):77–111, 2000.

[36] Y. Gurevich. Evolving algebras 1993: Lipari guide. Specification and validation methods,
pages 9–36, 1995.

[37] Y. Gurevich. The Sequential ASM Thesis. Bulletin of the EATCS, 67:93–124, 1999.
[38] B. Hale and C. Wright. The reason’s proper study. Oxford University Press, Oxford, 2001.
[39] D. Harel. Algorithmics: the spirit of computing. Addison-Wesley, Reading, Massachusetts,

2006.
[40] J. F. Horty. Frege on definitions: a sase study of semantic content. Oxford, 2007.
[41] D. Knuth. The art of computer programming, volume I: Fundamental algorithms. Addison

Wesley, 1973.
[42] D. Knuth. The art of computer programming, volume II: Seminumerical algorithms. Addi-

son Wesley, 1973.
[43] D. Knuth. The art of computer programming, volume III: Searching and sorting. Addison

Wesley, 1973.
[44] D. Knuth. Big omicron and big omega and big theta. ACM Sigact News, 8(2):18–24, 1976.



ALGORITHMS 49

[45] D. E. Knuth. Algorithm and program; information and data. Communications of the ACM,
9(9):654, 1966.

[46] A. Kolmogorov and V. Uspensky. On the notion of algorithm. Uspekhi Mat. Nauk,
8(4/56):175–176, 1953.

[47] A. Kolmogorov and V. Uspensky. To the definition of algorithms. Uspekhi Mat. Nauk,
13(4):3–28, 1958.

[48] G. Kreisel. Some reasons for generalizing recursion theory. In R. Gandy and C. Yates,
editors, Logic Colloquium 69. North-Holland, Amsterdam, 1971.

[49] D. Marker. Model Theory, volume 217 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 2002.
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