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ABSTRACT
In part A we consider three separate problems concerned

with the radical of the group algebra of a finite group over
a field of characteristic p dividing the order of the group.
In Section I we characterise group-theoretically those
soluble groups for which the radical of the centre of the
group algebra is an ideal of the group algebra. In Section
II we find a canonical basis for the radical of the centre of
the group algebra of a finite group. In Section III we give
an algorithm for determining the radical of the 6rouP algebra
of a p-soluble group. i'ie evaluate the result for groups of
p-Iength one and prove that the exponent of the radical in
this case is the same as for a Sylow p-subgroup. We show by
examples that no similar result holds in the general case.

In part B we quote a conjecture of J. A. Green's on
characters of Chevalley groups and prove
Theorem A (i) If the conjecture holds then, excepting for
each r at most a finite number of values of q, the group
PSp(2r+1,q) has no multiply transitive permutation
representations for r > 1.

(ii) PSp(4,q) has no multiply transitive
permutation representations for q > 2, regardles~ of the
conjecture.
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PART A

RADICALS OF GROUP ALGEBRAS

Introduction.
In this part we consider three fairly se~arate problems

concerned with the radical of the group algebra of a finite
group over a field of non zero characteristic p dividing
the order of the group. In Sectionl. we characterise
group-theoretically those soluble groups for which the
radical of the centre o~ the group algebra is an ideal of the
grou~ algebra. So we are characterising a certain class of
groups, albeit a very restricted class, by a purely
algebra-theoretic property of their group algebras. This is
an extension of the work of D. A. R. Wallace in the saae
direction, in particular of his papers [11] and [12]. The
results of this section are to appear in the Journal of the
London Matheaatical Society.

In Section II. we consider the radical of the centre of the
group algebra of any finite group and find a basis for it
consisting of eleaents of special type. We relate the
radical of the centre to that of certain ideals of the centre,
associated with p-subgroups of the group, which appear in the
work of J. A. Green and A. Rosenberg. Unfortunately we have
been unable to use this canonical basis tu say much about
the stucture of the radical of the centre.
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In Section III. we give an "algorithIll"t'ordeteraining
the radical of the group algebra of a p-soluble group in
teras of the radical for groups of smaller p-Iength. We
evaluate the result in the case of p-Iength one and prove a
result on the exponent of the radical in this case. The
corresponding result is not true for groups of p-Iength
.ore taan one, ani indeei it is difficult to conjecture
what the correct result aight be. For the case of a non
soluble group. of course, the situation see.s impossible.
There is al.ost no infor.ation as to what the radical might
be in such a case. The methods of Section III, depending as
they do on series of noraal subgroups, are of little use.

Theorem 1. of Section III. has appeared in si.ilar fora in
ay dissertation for the degree of M.Sc. at this University.
Notation.

Through this ~art p denotes a fixed prime, k an
algebraically closed field of characteristic p, C the
caaplex field and G a finite group. kG and CG are the group
algebras of Gover k and C respectively and A = A(G) is the
centre of kG.

The standard notation of group ani representation theory
is used. For exa.ple G' denotes the derived group of G and
Z(G) the centre of G. All kG aodules are left kG modules. In
accordance with this conveation, aaps are written on the left,
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all transversals are left transversals and the symbol xY
.eans yxy-1, for x and y in a group G.

If H < G and L is a kH module, LG is the induced module
kG ®kH L. If K is a kG mo~ule, K1kH is the restriction of K

to kH.
Definition. The radical of a finite ai.ensional k-algebra A,
radA, is defined to be the .axi.al nilpotent ideal of A.

Since A is finite dimensional, radA is also the
intersection of the kernels of the irreducible
representations of A. 'i/eput for brevi ty

N = N(G) = rad(kG) and
M = M(G) = radA(G).
Any more specialised notation used will be defined as it

occurs.



Section I.
On the Radical ot the Centre ot a Group Algebra
In this section we consider the radical of the centre of the

group algebra of a finite group over a field of non zero
characteristic, and characterise those soluble groups for
which this radical is an ideal of the group algebra. We shall
use R. Brauer's theory of blocks of modular characters, for
which we refer the reader to [3] Chapter XII.

As always, p is a fixed prime, k an algebraically closed
field ot characteristic p and G a finite group. We shall
assume throughout this section that piIGI. N is the radical of
kG, A the centre of kG and M its radical.
__~D~e~f=i=n~i~t=i~o_n~.__ Let J be the class of finite groups G for
which pi IGI and kG.M = M = M.kG.

Our aim is to classify group-theoretically the p-soluble
groups contained in J.
j. Subsidiary Lemmas

The following result is basic:
Lemma 1. Let HAG, pllHI and e = ~ h/IHI E kG. Then

h~
kGe = k(G/H) under the isomorphism

~ Ag(gH). Moreover,
~G

e(Ne) = N(G/H).
Proof, e is well defined and is easily seen to be an
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isomorphism of algebras. Hence e(rad(kGe» = N(G/H). We
therefore have to prove that Ne = rad(kGe). Now e is clearly
a central kG idempotent. Hence kG ~ kGe $ kG(1-e) as algebras.
Thus kG.rad(kGe) = kGe.rad(kGe) $ kG(1-e).rad(kGe)

= rad(kGe) = rad(kGe).kG.
Therefore rad(kGe) is a nilpotent ideal of kG, and so

rad(kGe) c N n kGe = Ne. But Ne is a nilpotent ideal of kGe.
Hence Ne c rad(kGe). This proves the result.
Lemma 2. Let e be a primitive central idempotent of kG. If the
block kGe contains n ordinary irreducible characters then

di~Me = n - 1 •

If G has r ordinary irreducible characters and t blocks then
di~M = r - t.

Proof. Let E be the central idempotent of CG corresponding to
e in the sense of [3] page 615. Decompose E into primitive
central ide.potents: E = E1 + ••• + En. The number of

summands equals the number of ordinary irreducible characters
belonging to kGe.

Now Z(CG)E = Z(CG)E1 $ •••$ Z(CG)En and each Z(CG)Ei is a
simple abelian algebra over C and therefore has C-dimension 1 •
Thus di~Ae = dimCZ(CG)E = n. Now, by [3] page 607, Ae/Me ~ k.

Thus di~Me = di~Ae - 1 = n - 1 •

The second part follows immediately from the remark that each
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ordinary irreducible character belongs to exactly one block
of kG.
Lemma 3. Let e be a central idempotent of kG and suppose
M = Me. Then N = Ne.
Proot. Decompose 1-e into primitive central idempotents:
1-e = e1 + ••• + en. Then

o = M(1-e) = Me1 e ••• ~ Men. Hence Mei = 0 for all i. Now
by Lemma2. this means that each block kGei contains exactly
one ordinary irreducible character, and is therefore a block
of defect zero (see [3] page 611). Hence Nei = 0 for all i.
Thus N(1-e) = Ne1 e e Nen = O. This proves the lemma.
Lemma 4. Let G e J and write 0 = Z g e kG. Then for allgEG'
a E M, g E G' we have ag = a and M c kGa.
It p IIG' I then M = kGo.
If pllG'1 then e = a/IG'I is an idempotent and

M = rad(kGe) = Ne.
Proof. Let x,y e G, a e M.

ax-1y-1xy = y-1ax-1xy, as ax-1 E M.kG = M c A,
= y-1 ay
= 8l, as a E MeA.

Therefore ag = a for all g e G'. Hence a E kGo.
If pi IG'I, 02 = O. Hence 0 E N n A = M. Therefore M = kGo.
If pflG'1 we have Mc kGe. Now clearly kGe is central in kG

and so M = rad(kGe) = Ne.
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Corollary. It G E J and pYIG'1 then N = M.
Proof. By the Lemma Id= Ne and hence Me = Ne2 = Ne. Hence, by
Lemma 3, M = Ne = N.
Lemma 5. It G E J and H ~ G then either G/H E J or p%(G:H).
Moreover it pi IHI then G' c H.
Proot. (1). Suppose pI IH I and write e as in LeJll;Ila1. We have
an isomorphism 6 between kGe and k(G/H).

rad(Z(kGe)) = rad(Z(kG)e)
= rad(Ae) = Me.

Hence kGe.rad(Z(kGe)) = kGe.Me
= Me. Using e we obtain

k(G/H).M(G/H) = M(G/H). Thus G/llE J.

(2). Suppose pi IHI. Then ~ = ~ h is central in kG and
heR

~2 = O. Thus ~ E M. Therefore ~ = ~g = ~ hg for all g E G'.
heR

Thus g E H and G' c H. But then G/H is abelian, so the result
tollolJs.

The following results of D. A. R. Wallace are important
tor our classification:
Theorem 1. ([11] page 128). If G is a finite group, P a
Sylow p-subgroup of G and Ipl = pa then dimkN(G)) pa_1,
equality holding if and only it P has a normal complement H
and G is a Frobenius Jroup with kernel H.
Theorem 2. ([12] page 103). Let G be a tinite group with
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order divisible by p. Then N = M if and only if either

(1) G is abelian or
(2) ir G has Sylow p-subgroup F then G'F is a Frobenius

group with kernel G'.
Lemma 6. If G is a finite group such that di~M = 1 then
di~N = 1 and G is 2-nilpotent. Also IGI = 2n with n odd.
Froor. Let X1, ~•• ,Xr be the ordinary irreducible characters
and'1' ••• '~s be the modular irreducible characters of G
and suppose G has t blocks. Then t ~ s ~ r and by Lemma 2.,
1 = di~M = r - t. Now if s = r, every block of G has defect
zero and so pflGI. But then M = 0, contradiction. Hence

Thus one block, say B1, contains one modular character '1
and two ordinary characters Xi and X2' while Bi ror i > 1
contains one modular character 'i and one ordinary character
Xi+1. These latter blocks have defect zero and therefore
cannot contain the trivial character. Hence '1 is the
trivial modular character and Xi is the trivial ordinary
character.

Now for all p-regular elements g of G, X2(g) = z'i(g)
= z'1(1)
= X2( 1 ),

where z denotes the degree of X2. Thus if Z is the CG module
with character X2' L = kerZ contains all of the p-regular
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eleaents of G. So GjL is a p-group, which implies that G' ~ G.
Hence G has a non trivial ordinary one dimensional character.
Such a character cannot be in a block of defect zero and so
must be X2• Hence z = 1.

Now dimkN = (1+z2) - 1 = 1. The remainder of the Lemma now
follows f"romTheorem 1 •
2. The Discussion of J

Lemma 7. It G E J then Gt ~ G.
Proof. Suppose G = G'. Then by Lemma 4, di~M = 1. But then

'"by Lemma 6, G is 2-nilpotent and so Gt t G, contradiction.
Lemma 8. A group G with a non trivial normal p-subgroup is in
J if and only if one of the following conditions is satisfied:

(1) G is abelian or
(2) G is an extension of an elementary abelian p-group P by

an abelian pt-group H acting transitively on p-{11, every
element of H either acting fixed point free on p-{11 or
centralising P, or

(3) G is an extension of a 2-group P by an abelian group
H of odd order such that Gt = z(p) has order 2.
Proof. (a). The necessity ot the conditions:

Let G e J have a normal p-subgroup Q. It G' = {11 we have
case (1). Suppose G' ~ 111. By Lemma 5, Gt c Q Hence G has a
normal Sylow p-subgroup P.

Let x e Z(P)-{1} and write n = (G:CG(X». Let a be the
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conjugacy class sum o~ x in G. Now Z(p) is characteristic in P
and hence normal in G, so N(Z(P» c N(G). Thus i-z e N for all
z E Z(p). Hence n.1 - a = Z(i-z) e N, sum taken over all
conjugates z of x in G. Also n.1 - a is in A. Hence n.1 - a

is in M. By Lemma 4. we have that for all g e Gt
,

ng - ag = n.1 - a. Now as P c CG(x), pin. Comparing
coefficients, it follows that for all g e Gt

_ {i}, g is
conjugate in G to x. Thus g E Z(p), so that G' c z(p). But x
is conjugate to an element of G', so x E G'. This is true for
every non identity element of Z(P), so G' = Z(p).

We also kn0W that Z(P)-{1} consists of one conjugacy class
in G. Hence Z(p) is elementary abelian.

Write Iz(p)1 = pr. Ne have three cases:
r~ Suppose p = 2. As P ~ G, P has a complement H. H is

abelian, for H ~ Gip is a homomorphic image of GIG'. Case (3)

holds.
~ Suppose pr > 2 and Z(p) = P. Then P is elementary

abelian. Let H be a complement to P in G and suppose there is
a y in H such that y does not centralise P. Write
n = (P:Cp(Y». Since Gt c P we have that the conjugacy class
sum of y in G is of form ~ = y(i+X2+ ••• +Xn); Xi e ~.

Since P ~ G, i-xi E N(G) ~or all i. Thus y(i-Xi) E N and so
ny - ~ E N. Since pin this means that ~ E N. As ~ E A, ~ E M.
Then tor all z in P, Lemma 4 shows that ~ = ~z. Camparing
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coef'f'icientsof z on each side gives that z = Xi for some i.

Thus ~ = Z yz. There~ore n = pr and y centralises no element of
zeP

P except 1. This is case (2).
Ill. Suppcse pr > 2 and Z(P) ~ P. Consider

X = U CG(x). If x e Z(P)-{11 the conjugates of x
xeZ(P)-l1}

are just the elements of Z(p)-{i1 and so (G:CG(x» = pr_i.
Thus Ixi < Z IcG(x)1xeZ(P)-{1}

= (pr_i )IGI/(pr-1)
= IGI. Therefore X ~ G and there is a y in G

centralising no element of Z(p)-{i1.
Put n = (G:CG(y». As G/Z(p) is abelian, the conjugacy class

sum of y is of form ~ = y(1+x2+ ••• +Xn); xi e Z(p) for all i.
Thus n " pr. Now we already have that Cp(y) ()Z(p) = fi}.
Hence ICp(y).z(p)1 = ICp(y)I.lz(p)1

~ Ipl/pr.pr
= Ipl. Theref'ore Cp(Y).Z(P) = P. However

Cp(Y) = Cp(y)/Cp(Y) ()Z(p)
~ Cp(Y).Z(P)/z(p) is abelian, for p' c G' = Z(p).

Thus P is abelian, contradiction.
7le have now shown that case III does not occur and that the

conditions of the Lemma are necessary. We now show their
sufficiency.

(b). If (1) holds, clearly G e J.
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Suppose (2) holds. G = PH, where P is a Sylow p-subgroup of

G and H is an abelian pI-group, every element or which acts
either trivially or fixed point rree on P-{1J. We may assume
G is non abelian, and then GI = P.

2((,.)

If x E (P-{ 1 ~ the conjugacy class sum of x is
'Wla = m~ z , m. £ z c c/.ZEP-{1}

Ir x E G.. (p .. Z(G», (G:CG(x» = Ipl and the conjugacy class
sum of x is Z xz = x(1+a).

z-;p

If x e Zt;) then x is a p-regular element of G. A basis for
A therefore consists of the elements

(i) m; m e Z(G),
(ii)1WICL= m~ z, m ~ 2(6-),zEP-{11
(iii) m(1+<I.);m e H-Z(G).
A basis for N(G) consists of elements m(1-z), m E H,

z E P-{1}. Cne easily calculates that a basis for M = N n A
consists of elements m(1+a); m e H. Hence clearly M = kG.M
and G E J.

Suppose (3) holds. G = PH, where P ~ G is a 2-group and H
an abelian group of odd order such that GI = Z(p) has order 2.
Put Z(P) = {1,zl. If xi z(G), (G:CG(x» = 2 and the
conjugacy class sum of x is x(1+z). A is therefore spanned by
elements x; x E Z(G) and x(1+z); x ¢ Z(G).

A basis for N(G) consists of elements m(1-x); m E H,
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X E P-{1j. Hence M = N n A is spanned by elements g(1+z);
g E G. Thus clearly M = kG.M and G E J. This completes the
proof.
Corollary. A p-group P is in J if and only if either P is
abelian or pi = Z(P) has order 2.
Lemma 9. If G E J is p-soluble then G has p-length one.
Proof. By definition, p II G I. If G is simple, p = IG I and the
result is clear. Suppose G is not simple and induce on the
order of G. Let H be a minimal normal subgroup of G. As G is
p-soluble, H is either a p-group or a p'-group. If H is a
p-group, Lemma 8. applies and G is easily seen to have
p-length one. If H is a pi_group, Lemma 5. shows that G/H E J

and by induction G/H has p-length one. Hence so has G.
Theorem. G is p-soluble and G E J if and only it one of the
tollowing conditions holds:

(1) G is p-nilpotent with abelian Sylow p-subgroup P and
Gip is a Frobenlus group with kernel GI, or

(2) G is p-nilpotent with Sylow p-subgroup P and
p-complement H, p' = Z(P) has order 2 and Gip is a Frobenius
group with kernel G' n H, or

(3) G is abelian, or
(4)G has normal subgroups H, K such that H and G/K are

p·-groups, G ::> K :::> H, -K/H == P, a Sylow p-subgroup of G, and
GI = H.Z(P). G/H E J and K is a Frobenius group with kernel H.
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Proof. (a). Assume G is p-soluble and G e J. If G is abelian
there is nothing to prove, so suppose not.

Suppose G is p-nilpotent. Let P be a Sylow p-subgroup or G
and H its normal complement. G/H = P and so by Lemma 5,P e J.
By the corollary to Lemma 8. we have two cases:

(1). Let P be abelian. Then G' cHand pYIG' I. By the
corollary to Lemma 4, N = M. Now by Theorem 2, G'P is a

Frobenius group with kernel G'.
(2). Let P' = z(p) have order 2. Consider G' n H. This is a

p'-group. Further, defining f = ~ h/IG'nH] and
heG'nH

o = Z h, we have 0 e kGf, since G' n H c G'. By Lemma 4,
heG'

M = kGo c kGf. Hence M = Mr and by Lemma 3, N = Nr.
Now as G'P ~ G, N(G'P) c kG.N(G'P) c N(G). Thus

N(G'P) = N(G'p)r
= rad(k(G'P)f)
~ N(G'p/G' n H) by Lemma 1 •
= N(P), for a' = (G' n H)P'. Thus

di~N(G'P) = di~N(P)
= Ipi - 1.

Now by Theorem 1, G'P is a Frobenius group with kernel
G' n H.

Suppose now that G is not p-nilpotent. By Lemma9, G has
p-length one and so has a normal series G ~ K ~ H ~ 11} such
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that G/K and Hare p'-groups and K/H ~ P, a Sylow p-subgroup
of G. Choose the series such that (G:K) is maximal.

By Lemma 5, G/H e J. Now G/H is not abelian, for if it were
G would be p-nilpotent. Hence by Lemma 8,

(G/H)' = Z(K/H) ~ Z(p). So G'H = H.Z(P). Now G' c K and
(G:K) is maximal prime to p. Hence (K:G') is a power of'p. We
therefore have G' ~ H and then G' = H.Z(P).

Define f = Z h/IHI, 0 = Z h. By Lemma 4,
heH heG'

M = kGo c kGf. Therefore M = Mf. By Lemma 3, N = Nf. Now as
K A G, N(K) c N(G) and 80 N(K) = N(K)f

= rad(kKf)
~ rad(k(K/H») by Lemma 1.

""N(P).
Thus di~N(K) = Ipl - 1. By Theorem 1, K is a Frobenius

group with kernel H. This is case (4).
(b). Suppose (1) holds. By Theorem 2. we have that N = M.

Hence G e J. If (3) holds we come to the same conclusion.
Suppose (2) or (4)hold. In the former case put K = G.

Write f = Z h/IG'nHI.
heG'nH

DimkN(G'P)f = di~N(G'P/G' n H)
= di~N(P)
= Ipi - 1

= di~N( G'p) by Theorem 1 •
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Thus N(G'P) = N(G'P)f.
By [12] Lemma 6, N(G) = kG.N(G'P)

= kG.N(G'P)f
= N(G)f.

Hence M = Mf ~ M(G/G' n H), by Lemma 1. Now in case (2),
GIG' n H ~ (H/G' n H) x P E J, while in case (4),
GIG' n H = G/H E J. In each case write
-r = 1: a. and 0 = 1: h. 'l'Jieli by Le.ma 1;ae(G/G'nH)' heG' '

M(G./G' A Ii) E k(G/G' A H)~. If 6 io the canonical .ap from kG
to k(G/G' A Ii), 6(0),. -~- Talls )4(<1) c 6-1 (M(G!G' A Ii» c ~Gg.

Iii faet M(G) _ kGe, fop pi IG'I. Hence
kG.M = kG.kGo = kGo = M and G E J. This proves the theorem.

(J~ ~ '+-) t1 ( G- Ielf) H) : h (6/ c. 1!1 H) '(" j ~ ~

~ tc . c. (). ~ ~ 6-0-. f!z. C. 0- , N( c), ..i£w. .£Gv

~ ~ r c :c:'), 11~ f{{c:.)~ /'1(C./CJ!7H)~

H (C) '= Il G-a-.
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Section II.
A Basis for the Radical of the Centre
The purpose or this section is to use so.e concepts of

J. A. Green [6] and A. Rosenberg [8] to exhibit a canonical
k-basis for the radical of the centre ot a group algebra. We
use the notation ot the preceding section. As an example we will
take the general linear group.

Let H ~ K ~ G and {til be a transversal ror H in K.
Definition. (kG)H = {a E kG; ah = a for all he HJ.

(kG)H is a subalgebra of kG. We have
(kG)H ~ (kG)K ~ (kG)G = A.

Definition. TH,K is tAe .ap from (kG)H to (kG)K given by
tiTH,K(a) = 1a . TH,K is clearly independent of the choice of

the transversal.
Detinition. (kG)H,K = ImTH,K = TH,K«kG)H) and

~ = (kG)H,G·
The various properties posessed by these entities are

indicated in [6]. In particular we have:
Lemma 1.([6] Lemma 4h) If D, H ~ K ~ G then

(i) (kG)D,G C (kG)K,G

(ii) (kG)H K C ~ (kG) k, keK H nD,D

(iii) (kG)H K·(kG)D K C ~ (kG) k •, , keK H nD,K
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Derinition. Let D , G and let r be any collection of
subgroups of G all contained in K. Then D' denotes the set of
proper subgroups of D,

(kG)r K = ~ (kG)H K·, Her '
From Lemma 1. we see that (kG)D',G is an ideal of (kG)D,G. The

factor algebra (kG)D,~(kG)D',G is denoted by W(D,G).

For the remainder of this section D will be a p-subgroup of G
and Hits normaliser in G. Let R be any conjugacy class of G
and S the corresponding class sua in A. Define o(S) to be the
sum of all the elements in R n CG(D), if such elements exist,

zero otherwise. Since the class sums form a basis for A, 0

can be extended linearly to A.
Lemma 2.([8] Lemma 3.3) 0 is a homomorphism from A(G) to A(H).
Kero is spanned by the class SUBS S with R n CG(D) = ~.

We use Rosenberg's definitions of the defect group of a
class and ot a block:
Definition. Let R be the conjugacy clas8 of G containing the
element x. A Sylow p-subgroup of GG(x) is called a defect
group of R.
Detinition. Let e be a primitive central kG idempotent. A



18.

defect group of the block kGe is a p-subgroup D of G such
that e e AD' e ~ An'.

By [8] 5.2, the defect group of a block is determined up to
conjugacy. The defect group of a class is obviously
determined up to conjugacy. We shall also speak ot the defect
group of a class sua in the natural way.

By [6] page 142 we see that (kG)D,G is spanned by the
class sums with defect groups contained in D.
Lemma 3. a gives rise to an isomorphism

W(D,G) W(D,H).
Proof. a may be restricted to (kG)n,G. From Lemma 2. we see
that kera n (kG)D,G is spanned by those class suas S whose
defect groups are in D'. So we have a monomorphism

W(D,G) ----~~ A(H). Now [8] Lemaa 3.4 tells us that the
image ot this aap is spanned by the class suas of A(H) with
detect group n. Now by [8] Lemma 4.1 these classes tor. an
algebra which aust be iso.orphic to the algebra
(kH)n,H/(kH)n',H = W(D,H). Hence the result tollows.

Lemma 4. radW(n,G) = (AD n M + An,)/An,.

Proof. (An n M + AD,)/AD, is a nilpotent ideal ot W(D,G) and
is therefore contained in rad W(D,G).

Let x e An such that x + AD' E radW(D,G). For everyone
dimensional representation ~ ot AD over k such that
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,(AD') = 0 we have ,(x) = O.
Let e1, ••• ,er be the primitive central kG idempotents

corresponding to those blocks with detect groups not
containing any conjugate o~ D. Put

r
y = Z xei• Let ei correspond to a block with de~ect group

i=1

C. xei E An.Ac c An' by Lemma 1 (iii). Hence Y E AD"

Let, be a one dimensional representation o~ A over k. rr

,(AD') = 0 then ,(y) = 0 = ,(x). Hence ,(x-y) = O. Suppose

'(Au,) ~ O. Then by [8] Lemma 3.2, ~ belongs to exactly one of

the blocks kGei, that is tor exactly one i we have ,(ei) = 1,
while for all other j we have ,(ej) = O. Thus
~(y) = ~(x)~(ei) = ,(x) and ,(x-y) = o. x-y is there~ore in the
kernel of every irreducible k-representation o~ A and so
x-y E M. So we have

x + AD' = x-y + AD' E (AD n M + AD,)/AD,.

Let n be a co.plete set ot pairwise non conjugate
p-subgroups o~ G. For each D in n let nD be the number o~

conjugacy classes o~ G with defect group D, and aD the number
ot blocks ot G with defect group D.
Lemma 5. (i) For each D, dimkradW(D,G) = nD - aD'

(ii) M = Z (An n M - AD' n M) as a disjoint sum of
Den
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vector spaces.
Proof. (i). Since nn' mn and w(n,G) are unchanged when passing

to H = NG(n), we may assume n ~ G.
nimkW(n,G) = nn. Let w(n,G) contain sn primitive central

idempotents. As W(D,G) is an abelian algebra it is easy to see
that di~radW(n,G) = nn -sn. Now by [8] 4.4 a primitive

central idempotent of kG lies in the algebra
An - AD' = w(n,G) if and only if it corresponds to a block o~

kG with defect group n. Moreover an idempotent is primitive
in A if and only i~ it is primitive in An - An' • Hence
sn = mD and the result follows.

(ii). Di~M = ~ nn - Z mDDen Den

~ di~radW(n,G)
Den

= ~ di~(An n M) - di~(An,n M).
Den

=

Since (AD n M - AD' n M) n (AD n M - AD' n M) = ~ for
1 1 2 2

D1 f D2 e fl, the result follows.
On account o~ this result we may choose a basis ~or M

consisting o~ eleaents o~ form
x = ZA S + ~~~S~, where the Sa.are class sums having a

a. a. a. f3 ~ ~ ,

common defect group n, say, the S~ all have defect groups



21 •

properly contained in D and some Aa ~ O. x has a well
defined defect group D. We call such a basis a canonical
basis for M.

To apply Lemma 5. to find M, one need only consider those D
which are defect groups of a block. For if Den is not the
defect group or a block, W(D,G) is nilpotent. Let
e1, ••• ,er be the primitive centr~l idempotents of kG
corresponding to blocks of defect group containing D. Then
from the proof of Leama 4. we see that the elements

( S~ei; S a class sum with defect group D J form a basis for
i

AD n M - AD' n M.
One might hypothesize that A(G) ~ ~ w(n,G), since theDen

corresponding identity is true for representation algebras.
This hypothesis is false, however, because W(D,G) can be a
nilpotent algebra, whereas A(G) cannot have a nilpotent direct
summand.

Example.
We illustrate these results for the case G = GLn(q), q = pr,

k of characteristic p.
Let m be the pi part of the exponent of G, ~ a primitive

m'th root of 1 in the complex field C and x a primitive m'th
root of 1 in k , Extend the map e: ~ -+ x to an isomorphism
between the groups of m'th roots or 1 in C and in k. For any
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matrix A in G write d(A) = e-1(detA)o It is known that G has
exactly q-1 ordinary irreducible characters of defect zero,
~O' 0.0 '~q-2' related by ~i(A) = ~o(A)(d(A))io See for
example [~] page 49 0 Here ~O is the Steinberg character of
G (see [1 0] ) •

A complete set of representatives for conjugacy classes of
defect zero in G consists of matrices

Or , Ci all different, where Ci is the
co.panion matrix of an irreducible polynomial of degree mi
over GF(q). An elementary calculation shows that

-1 DlrIOG(A)1 = (q -1)•• o(q -1).

As before we write A tor the centre ot kG and M for the
radical of A~ We find AD ()M - AD' ()Idfor each element D of

a complete set n of non conjugate p-subgroups of P, the
Sylow p-subgroup of Go

(1). D = {1}. Let wO' 00. ,wq_2 be the linear characters of
Z(CG) corresponding to ~O' .00 '~q_20 By definition

IGI x

=
• 1Il 1( )(q 1-1 ) •• 0 (q r -1 )q2"n n-1
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Hence the linear characters 'i of A obtained by taking the
above expression modulo p are given by
'Vi (A) = (-1)n(_1 )n-r(detA)i/(_1 )r

= (detA)i.
Now ,AD n M consists of those elements of AD in the kernel,,:

of every 'i' as one sees from [8] 4.4. For each p E GF(qJ*,
the multiplicative group of GF(q), let R ••• Rp be the

Pi np

conjugacy classes of elements of G with defect zero and
determinant p, and SP1' ••• ,Sp the corresponding class sums

np

in A. Consider the elements SP1 - Sp
j
; j 11, P E GF(q)*.

These are all in the kernel of every 'i and are therefore in
An n M. Since they are linearly independent, they span a
subspace of AD of co-dimension q-1. However the 'i are all

linearly independent and therefore span a subspace of An of

the same \ dimension. Hence we have a basis for AD n M.
(2). Let {11 < D < P and let e be the sua of the central

kG idempotents for blocks of defect zero. G has no blocks of
defect group D ([4] page 19 ). Hence for any class sum S with
defect group D, S(1-e) is a basis element for
AD n M - AD' n M.

(3). Let D = P. Let P be the set of upper unitriangular
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matrices. H = NG(P) consists of upper triangular matrices

of matrices of forll.0.[1 ~J
1~8

o .1 , 0. F o. Call this
matrix aI.z

f3
•

The H-conjugacy classes in CG(p) are of two types:

(i) Ra. = {all, 0. E GF(q)*,
(ii) R~ = {aI.z~; f3 E GF(q)*}, a E GF(q)*. Call the

corresponding class sums Sa. and S~. Now N(H) has basis
{aI - aI.zf3; a,f3 F OJ. Hence the algebra A(H)p - A(H)pl

spanned by these class suas has radical with basis the
elements Ta.= Sa + S~; a F o. The elements Ta + A(H)pl thus

give a basis for radW(P,H).
Let U , U' be the conjugacy class suas in kG "containinglla. a.

the elements 0.1, aI.zf3 respectively. Let e be as in (2). From
Lemmas 3. and 4. we see that the eleaents So. + s~ + ApI form
a basis for radW(P,G) and the eleaents(Sa. + S~)(1-e), 0. ~ 0
form a basis for Ap n M - Apt n M. This completes the
canonical basis for M.
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Section III.

Radicals of Group Algebras of p-soluble Groups
As before, p denotes a fixed prime, G a finite group and k

an algebraically closed field of characteristic p. In this
section we give an algorithim for deteraining N(G) in the
case when G is p-soluble. We calculate the radical explicitly
for the case of p-Iength one and make so_e remarks on the
exponent or the radical.

If M is a left kG module, ~(M) denotes the Frattini
submodule of M. ~(M) = N(G).M is the smallest subaodule L of
M such tkat MIL is co_pletely reducible. See [1].
1. Useful Leamas
Lemma 1. Let H be a nor_al p'-subgroup of G and L an
irreducible kH module. Write E = EndkG(LG), F = rad E and

N = N(G). Then, using the natural action ot'F on LG,
G G G . i GiG~(L ) = N.L = F.L and for all 1, N.L = F .L •

Proof. We .ay take L = kHe t'orsoae pri_itive kH ide.potent e,
and LG = kGe. Write 1 = e + e2 + ••• + en' a sum of
primitive kH ide_patents.

kG = kGe e kGe2 e ...e kGen as left kG modules. Hence
~(LG) = N.LG = Ne = kG.Ne

= kGeNe + kGe2Ne + ••• + kGenNe as left
kG modules, where the sua is not necessarily direct.

Now eikGe = HO_kG(kGei, kGe) under the map
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a ~ ~ e HomkG(kGei, kG.) such that ~(b) = ba for all b in

kGei• We use this fact to show that Ne = kGeNe.
Let f and f. be the primitive central kH idempotents

1.

corresponding to e and ei respectively. Denote by NG(f) the

group of ele.ents of'G commuting with t and by T, T. lett
1.

transversals tor NG(f) and NG(fi) respectively in G. Then

= ~ f g are central kG ide.potents. Also
geT. i

1.

Ft = f and Fiti = f'i.Now if t and ti are not co~ugate in G,
FiF = O. Hence eikGe = eif'iFikGFfe = O.

Suppose f and ti are conjugate in G, say f = fig. Now
eigf'= (eif'i)g= eig• Hence eig and e are in the same kH
block kHf. Since k has characteristic p and pjlHI we .ay use
ordinary representation theory to deduce that kHe ~ kHeig•
Thus kGe == kGeig ~ kGei• We clai. that in this case,
eiNe = e1kGeNe. For there is an a in eikGe such that the aap
~: kGei ~ kGe given by ~(x) = xa is an isomorphism. Hence
there is a b in ekGei such that ~-1(y) = yb tor y in kGe.
Now ~-1q> is the identity lIlapon kGei, and ~-1~(x) = xab.
Hence ei = eiab = ab, as a e eikGe. Now let c e eiNe. Then
bc e eNe and c = eic = abc = a(bc) e eikGeNe. Thus
eiNe c eikGeNe. Since the reverse inclusion is obvious, we
have equality.
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Hence kGeiNe = kGeikGeNe c kGeNe.
Therefore Ne = kGeNe = (kGe)(eNe). Now by [3] 54.6 we know

that eNe and F are anti-isomorphic as rings. Hence
N.LG G= F.L • Thus our result holds for i = 1 •

Suppose Nj.LG = Fj.LG for all j ~ i, that is
Nje = kGe(eNe)j
Multiplying (1) on the left by N gives
Nj+1e = (Ne)j+1
Multiplying (1) on the right by Ne gives
(Nje)(Ne) = kGe(eNe)j+1 •

(2)

Hence Ni+1e = (Ne)i+1, taking (2) with j = i,

= (Ne)i(Ne)
= (Nie)(Ne), taking (2) with j = i-1,
= kGe(eNe)i+1, taking (3) with j = i.

Therefore Ni+1.LG = Fi+1.LG. Hence the result follows by
induction.
Definition. If H ~ G and L is a kH module, the stabiliser
S = S(L) of L in G is de~ined by S = {g E G; Lg = L}.

S is a subgroup of G containing H.
Lemma 2. In the situation of Lemma 1, if S is the stabiliser
of L in G, Ni.LG = kGN(S)i.LS for all i ~ o.
Proot. First we prove the well known result that

G '" SEn~G(L ) = En~S(L ) as rings.

Let g1' ••• ,gs be a left transversal for H in Sand
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g1' ••• ~ a left transversal for H in G.
S sL = $ gi ® L .ay be embedded naturally as a kS submodule of

1
n

LG = e gi ® L and L may be embedded naturally as a kH submodule
1

Sof L .
Let e E En~s(LS) and define ~: En~s(LS) ---> En~G(LG)

by putting ~(e) = e' such that
e'(gi ® 1) = gie(l), 1 E L, i = 1, ••• ,n and extending
linearly to LG.

Let g E G. There is a j such that ggi = gjh, h E H.
Hence e'(g(gi ® 1)) = e'(gj ® hI)

= gje(hl)
= gjhe(l)
= ggie(l)
= gel (gi ® 1). So e' E EndkG(LG:---).

Let. E EndkS(LS). Clearly e' + " = (e + v)'.
e ' t ' (21 ® l) = e' (git (I ))

= gie't(l)
= giet(l), as e'l s = e,

L

= (et)'(gi ® 1). So el,' = (eV)' and ~ is a
ho.omorphis ••

Let e E ker~. As e' = 0, e'l S = e = O. Hence ker~ = O.
L
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Finally, let, E EndkG(LG). Denote by ~i the projection

f'roaLG onto gi e L, i = 1, ••• ,n , If'j ~ s,
~ivlgj~L E HoakH(gj 0 L, gi ® L). Now as Si ® L is tor all i

an irreducible kH aodule, HoakH(gj ® L, Si ® L) = k if'

gj ® L ~ Si ® L, = 0 otherwise. Now gj ® L ~ gi 0 L if'and
only it i ~ s, so if'i > s we have ~iwlg.®L = O. Thus

J
vi S E EndkS(LS)p say ,ILS = e. ThenL
et(gi ® 1) = gi8(1)

= giv(l)
= ,(gi ® 1) for all i and 1.

Hence et = , e I.cp.<p is therefore the required isomorphism.
Under this isoaorphisa, 8 and cp(e)have the saae action on

i G ( G))i nL. Thus N.L = radEn~G(L ~gj ® L, by Lemma 1,
1

n G i= ~gj(radEndkG(L )) L
1

n S .
= ;gj(radEndkS(L ))1L

c kGN(S)i.LS by Lemma 1.

The reverse inclusion is proven similarly. Hence the result
follows.
Lemma 3. Let Q be a nor.al p-subgroup of the finite group G
and let 8: kG ~ k(G/Q) be the natural ho.omorphism. Then
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N(G) = e-1(N(G/Q».
Proor. As Q is a ~-group, N(Q) = 1 z ahh; Zah = ol, so

heQ

ker6 = kG.N(Q) c N(G). Now N(G) is the intersection or the

kernels or all the irreducible representations or kG. Since

kere c N(G), every such representation .ay be regarded as a

representation or k(G/Q). The result therefore rollows.

2. p-Soluble Groups

We use these results to give an ttalgoritha" for determining

the radical of the group algebra o~ a p-soluble group G with

p-length n. We assuae the radical is known for all groups

with p-length less than n.

G has p-series 11 1 ~ NO < P1 ...
the maxi.al nora.l pt-subgroup of G/Pi and Pi/Ni-1 the

aaxi.al nor.al p-subgroup of G/Ni_1 •

Let 1 = e1 + ••• + er be a decoaposition of 1 into a sum of

pri.itive kl~O ide.potents. Let the irreducible kNO module
GLi = kNOei have stabiliser Si in G. Li = kGei•

kG = ekGei = eLiG as left kG modules. Therefore
i i

G SiN = eN.Li = ekG.N(si)Lii i
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S.

So we must determine ~(Li 1) for every i.
Consider the series {1} ~ MO ~ ••• ~ ~ ~ Mn = Si obtained

from the p-series of G by intersecting each term with Si.
MO = NO n Si = NO. Now if soae p-factor Qi/Mi-1 is trivial,
Si has p-length less than n and its radical is known. So
suppose no p-factor is trivial, in particular ~ > MO.

S.
Now E = En~s (Li 1) ~ B, a twisted group algebra over

i

(Si/NO)·' the opposite group to Si/NO. For see [2] page 162
for a more general version of the saae result. Moreover we
see from Remark 5. on page 155 of the same paper that there
is a group T with a cyclic central pt-subgroup K and a kK

idempotent f such that
(i) B ~ kTf as algebras and

(ii) (T/K)* ~ 9/No.
T has a p-series {1} ~ K < R1 ~ K1 < ••• < Rn ~ Kn = T,

where (Ki/K)* ~ Mi/MO' (Ri/K)* ~ Qi/MO. Now let U be a Sylow

p-subgroup of R1• As K is central in R1, U is unique and
therefore characteristic in R1• Hence U ~ T.

T/U has p-length less than n, for a p-series for T/U is
obtainable by factoring the p-series for T by U. Hence we can
find N(T/U). By Lemma 3. we can find N(T) and therefore
radB ~ N(T)t and radE. However by Leama 1.

S. Sit(Li 1) = radE.Li • Hence we can find N(G).
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In ~act, by a well known result which we will now indicate,
we only need to find N(Pn)
Definition. Let R be a ring and P a subring of R. d(R,P) = 0

means that every exact sequence of R modules sp11tting as
P modules splits over R.
Theorem. ([13] page 28.) In the above notation, suppose that
d(R,P) = 0 and that R is a free P module with basis lUi}
such that uiP = Pui ror every i and the map 0: p ~ p' given
by UiP = p'ui is an automorphism of P ~or every 1. Then
RadR = R. radP •
Lemma 4. Let H be a normal subgroup of the finite group G of
index pri.e to p. Then N(G) = kG.N(H).
Proof. Fro. page 373 of [7] we have that d(kG, kH) = O. For
a basis of kG over kH we just take a transversal for H in G.
The hypotheses of Villamayor's theorem are now clearly
satisfied.
3. Groups with p-Length One

The above method does not appear to enable us to find the
radical of kG explicit lYe However we can do this if G has
p-length one.

Let G have p-length one and p-series
{1 j .; NO < P1 < N1 = G. N(G) = kG.N(P1), and P,is p-nilpotent.
We Ilay therefore assuae that G is p-nilpotent. Changing the
notation somewhat, let G = HP be a p-nilpotent group with
Sylow p-subgroup P and normal p-coaplement H. Let
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1 = e1 + ••• + er be a decomposition of 1 as a sua of
primitive kE idempotents. Put Li = kHei and let Li have
stabiliser Si = HQi in G. Here Qi is a Sylow p-subgroup of Si
and we may as well take P ~ Qi.

Si SiNow E = EndkS (Li )~ HomkH(Li' Li IH) as k-spaces, via
i

Sithe Bap e e E ~ elL e Ho_kE(Li, Li IH), for e is completely
i

Sidetermined by its action on Li. Since Li IH =

Now we know from [9] that there is a unique kSi module X
such that xlkE = Lt. Let X afford the representation p on Si.

For each q e ~J the map Tq: Li ---> q ® Li given by

Tq(l) = q ® p(q-1 )1, 1 eLi' is a kH hamomorphism. For if

h EH, Tq( h1) = q ® p ( q-1 ) (hI)

= q ® p(q-1h)1 by definition of p,
= q ® p(q-1hq)p(q-1 )1
= q.q-1hq ® p(q-1 )1 as q-1hq e H,

= h.Tq(l). Thus as HO~(Li' q ® Li) = k, Tq
gives a k-basis for it. {Tq; q E ~1 is therefore a k-basis
for the right hand side of (1). E therefore has k-basis
{~ ; q E Ql, where ~q is defined byq ('
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~q(q' ® 1) = q'~q(1 ® 1)

= q' q ® p ( q-1 )1•

Now ~q~q' = ~q'q. Hence E ~ kQ*, Q* being the opposite

group to Q, and radE has basis {~1 - ~q; q E Q - {111.
Define ~(q,l) = 1 @ 1 - q ® p(q-1 )1, 1 eLi. Let W be a set

or basis elements for Li• SiTheorem 1. A basis ror ~(Li ) consists of the ele.ents
~(q,l); q e Q - 11}, 1 e W.
Proof. These elements are clearly linearly independent. Now
, Si Si S
as ~(Li ) = radE.Li ' ~(Li i) is spanned by the ele.ents

("1 - "q)(q' ® 1); q E Q - {1 J, q' e Q, 1 e W. But

("1 - ~q)(q' e 1) = q' ® 1 - q'q ® P(q-1)1

= -~(q', p(q' )1) + ~(q'q, p(q')l). Thus
(~ - ~q)(1 e 1) = ~(q,l). Since ~(q,l) is linear in 1, the
result follows.

Now N(G) = ~ N(G).LiGi

Si= ~ kG.~(Li ), which can be calculated.
i

Definition. The exponent of N(G) is the least integer n such
that N(G)n = o.

A/{(,.)
we are now in a position to deduce the exponent of..8for

the case of p-length one.
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Theore. 2. It G has p-length one and P 1s a Sylow
p-subgroup ot G then N(G) and N(P) have the saae exponent.
Proof. We may assume G to be p-nilpotent and use the
previous notation.

Let e be the canonical homomorphism kG ~ kP and
consider the idempotent e = Z ~IHI of kG. The elements

heH

(1 - x)e; x E P span a two sided ideal I ot kG, and clearly
e(I) = N(P). Since I and N(F) have the same diaension, they
are isomorphic as algebras and so I is nilpotent. Thus
IcN(G).

Let N(G)n = O. Then In c N(G)n = 0 and N(p)n = e(In) = O.
Suppose conversely that N(p)n = O. We have that

N(G)n = Z N(G)nLiG
i

Si
= Z kG.N(Si)~i by Lellma 2,

i
S. S.

= 1: kG.{radEndkS.(Li 1)1~i ~ by LelUlla1•
i 1

applying an anti-isomorphism. Since
Si n= kQi* we have {radEndkS.(Li )} =

~
o tor all i

and therefore N(G)n = o.
We now give two exaaples to show that nothing can be
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salvaged from Theorem 2, even in the case of p-length 2.
Example 1. Take p = 2 and G the symmetric group on rour
symbols. G is generated by elements a = (1234), b = (12)(34)
and c = (123). A Sylow 2-subgroup of G is P = <a, b>, which
is dihedral or order 8. We show that N(p)4 = 0 but
N(G)4! o.

Jennings in [5] has investigated the exponent or the
radical for a p-group, and shown that it is the same as the
length of the R-series of the group. The R-series is a series
of subgroups definei by

9rea.~es(;
Ri = <[Ri_1,P], R[i/P](P», where [i/pJ denotes the leeet

Jr~ate",

integer not ~ than i/p and R[i/P~P) denoted the group

generate. by the pIth powers of the ale.ents or R[i/p]. It is

easily seen that for P = <a, b; a4 = b2 = 1, baba = 1> we
have R1 = P, R2 = R3 = <a2> and R4 = 1. Hence N(p)4 = o.

Consider the ide.potent e = 1 + c + c2 of kG and write
U = kGe. Since kG = kGe e kG(1-e), U is a direct summand or
kG. Define the descending Loewy series of U,

U = Uo > U1 > ••• > Ur = 0, by Ui = Ni.U. Ui/Ui+1 is the

greatest completely reducible factor of Ui ( see [1J). Let n
be the exponent of N(G). N(G)n = 0, so n ~ r. We show that
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r > 4.

U, being a direct sumaand of kG, is a direct sum of
principal indecomposable kG modules. Now U has dimension 8,
and each principal indeeo.posable kG module has dimension
divisible by 8 ([3] 84.15). Hence U is indecomposable. But
then U has a unique aaxiaal subaodule U1 = N.U ([3] 54.11).
One easily sees that N(P)e is a submodule of U, and as N(P)e
has dimension 7 it is .aximal in U. Hence U1 = N(P)e.

Write Q = <a2, b> ~ G.
N(P) = k{1+x; X E P - {1}}

= kP.N(Q) + k{1+a}.
Hence U1 = kP.N(Q)e + k{1+a}e. Now as Q 6 G, N(Q) c N(G).

Therefore U2 = N(G).U1 ~ N(Q).U1
= kP.N(Q)2e + N(Q)(1+a)e.

N(Q)2 has basis 1+a2+b+ba2• SO N(Q).U1 has basis
{(1+a2+b+ba2)e, (1+a2+b+ba2)ae, (1+a2)(1+a)e, (1+b)(1+a)e}.
Thus U1!N(Q).U1 has basis {~ = "{1+a)e, x2 = (1+a2)e,

x3 = (1+bJe 1. Here the bar refers to the coset of tae
element with respect to N(Q).U1•

By using the relations ca = a~c2, cb = a2bc and ca2 = be
it can easily be calculated t~at in the representation p
afforded by the .odule U1!N(Q).U1,
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p(a) = l:~n .p(c) = [~ ~ : ] •

Now as U1/U2 is the greatest completely reducible factor of
U1' it is the greatest coapletely reducible factor of
U1/N(Q).U1• An easy calculation shows that U1/N(Q).U1 has no
one dimensioual sub.odules. As it has a one dimensional
factor module, it is not co.pletely reducible. Now the
submodule k{X2, x31 has no one diaensional submodules and so
is irreducible. Therefore the only possibility is that

U2 = N(Q).U1 + k(1+a2)e + k(1+b)e

= kP.N(Q)2e + N(Q)(1+a)e + k(1+a2)e + k(1+b)e.
U3 = N(G).U2 ~ N(Q).U2

= kP.N(Q)3e + N(Q)2(1+a)e + N(Q)(1+a2)e +
N(Q)(1+b)e. N(Q)3 = O. Hence N(Q).U2 is two diaensional,

being equal to kP.N(Q)2.
Suppose U4 = O. We know fro. Exercise 1. on page 598 of [3]

that U has a unique mini.al submodule of diaension 1. Hence
U3 has dimension 1. This contradicts the fact that
U3 ~ N(Q).U2• Hence U4~ 0 and so N(G)4 ~·O.
Exaaple 2. Let Q be the quaternion group:

.2 2 2 2Q = <1, j, k, Q; 1j = k, 1 = j = k = d, d = 1>. Consider
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-1. -1 -1.-1the group G = < Q, b, c, C 1C = j, C jc = k, b ib = 1 ,

b-1jb = k-1, b-1cb = c-1, b2 = c3 = 1>. G is an extension
of Q by 83, the symaetric group on 3 letters. ':Ie take p = 2.

G has Sylow 2-subgroup P = < Q, b>. The R-series of P is
Ri = P, R2 = R3 = <i>, R4 = R5 = R6 = R7 = <4>, R8 = 1.
Hence N(p)8 = 0, N(p)7 ~ O. We show that N(G)7 = O.

First we co.pute the ~owers of N(Q).
N(Q) has basis {1+X; x E Q - {111.
N(Q)2 has basis {1+d, i+i-1, j+j-1, k+k-1, 1+i+j+kl.
N(Q)3 has basis {1+d+i+i-1, 1+d+j+j-1, 1+d+k+k-11.
N(Q)4 has basis la = 1+d+i+i-1+j+j-1+k+k-1 l.
N(Q)5 = o.

These are easily checke4.
Let e be the canonical .ap kG ~ k(G!Q). By Lemma 3,

N(G) = e-1(N(G!Q)). We .ust therefore find the radical for
G/Q ~ S3.
'S3 has character table 1 (12) (123)

'1 1 1 1
~2 1 -1 1

'3 2 0 -1

Now for p = 2, 83 has two p-regular conjugacy classes and
therefore two distinct moiular irreducible characters ([3]
83.5 ). ~ is irreducible .od 2, being a linear character, and
'3 is irreducible mod 2 by [3] 86.3. Hence the irreducible
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representations o~ kS3 have dimensions 1 and 2 and N(S3)'
the intersection o~ their kernels, has dimension

2 26 - 1 - 2 = 1, and basis ele.ent e = (1+(12»(1+(123) + (132»
Write E = (1+b)(1+c+c2). Then aCE) = e and

N(G) = leE + ker6
= kE + kG.N(Q) •

Now N(G)7 is a SUlD of "words" o~ ~ora
-1 n1 mr nrkE (kera) ••• E (kere) ,where ~ -i+ni = 7. We show that

i

every such word is zero.
Since Q 6 G, kG.N(Q) = N(Q).kG and there~ore the above word

1is contained in ~r9, where 1 = ~ ni• Hence ~or this word to
i

be non zero we aust have 1 < 5. Moreover E2 = 0, hence we must
have -1 = 0 or 1 and ai = 1 tor i ~ o.

Now EiE = Ei(1+b)(1+c+c2)
= E(i+bi-1+Cj+bCj-1+c2k+bC2k-1)
= E(a+1+i). There~ore E(ker6)E has basis E(O+1+d).

However E(1+i+j+k)E = 3EiE = EiE mod 2. There~ore
E(kere)2E = E(kere)E. This means that any word containing a
section E(kere)E can be re~laced by a longer word. Fro. these
re.arks we see that the only possible nan zero word is
E(kere)2E(kere)2E• But
E(kere)2E(ker6)2E = E(a+1+d)(ker6)2E
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c E(kere)~
= EoE
= E20 = 0, ~or 0 is central in kG. Hence

N(G)7 = o.
In conclusion we note that more complicated exaaples exist

for p I 2. There seems to be no obvious way of generalizing
Theore. 2.
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PART B

PERMUTATION REPRESENTATIONS OF SYMPLECTIC GROUPS
Introduction.

In this part we consider multiply transitive permutation
representations o:fsome projective symplectic groups.

Many non abelian simple groups have multiply transitive
permutation representations, and it was at one time thought
that this was true for all non abelian simple groups. The
:first counter example, PSU(4,4), was pointed out by Parker
in [10]. A proo:f of this result :for the same group in its
guise o:fPSp(4,3) was given by Huppert in [6]. Here we
generalise the result considerably and give an infinite
class of simple groups with no multiply transitive
permutation representations, namely the groups PSp(4,q), q a
prime power greater than 2. In fact we show that, modulo an
almost proven conjecture of J. A. Green quoted in §4, the
groups PSp(2r+1,q), r > 1, have no multiply transitive
representations, excepting for each r at most a finite
number of prime powers q.

There seems no reason why the methcds used should not apply
to a much wider class of Chevalley groups, except that the
complexity or the calculations would increase prohibitively.
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'{Ie begin with introductory sections on groups with B-N

pairs, Chevalley groups and symplectic groups. The results
quoted here can be round in [1], [2] and [11]. Section 4

lists a rew isolated results we need and in section 5 we
prove the main theorem.
1. Groups with BN-pairs.

Let G be a finite group with subgroups Band N.
Definition. (B,N) is a BN-pair for G if the rollowing 3
condi tLcn s held:

(i) G = <B, N >
(ii) H = B n N 6 N.
\'lriteVi = NIH, the ':Jeylgroup of the BN-pair. If W E W,

W = llwH for some nw e N. For convenience we write Bw for the
coset B~.

(iii) There is a set R or involutory generators of W such
that (a) if r E R and w E W then

rBwB c BwB u BrwB and BwBr c BwB U BwrB,
(b) if r e R, rBr ~ B.

For any subset J of R, define WJ as <J> and GJ as BWJB c G.

Theorem 1.([11] Prop. 2.2 )
(a) GJ is a subgroup of G and in particular G = GR = BWB.

(b) If w, 'II' e W such that BwB = Bw'B then w = w'.
(c) Ir J, J' c R such that GJ = GJ, then J = J'•
( d) Every subgroup or G containing B 15 of form GJ for some

J c R.

(e) Each subgroup GJ is self normalising.
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The GJ are called parabolic subgroups of G. The map J ~ GJ
gives a lattice isomorphism between the subsets of Rand
the parQbolic subgroups of G.
Theorem 2.([11] Prop. 2.5 ) Let G1 < G and write Bi = B n Gi,
N1 = N n G1• Suppose that HBi = B. Then there is a subset J

or R such that HG1 = G1H = GJ•

As examples of groups with BN-pairs we have the Chevalley
groups. 'Ne now give a very brier discussion of'them.
2. Chevalley Groups.

For a fuller explanation of the results indicated here we
ref'er the reader to [2] and the bibliography of'that article.

Let L be a simple Lie algebra of rank lover the complex
rield, having root system n, ordered as usual. Let n+ be the
set of positive roots and ~ the set of fundamental roots of L.
L has a C-basis {bil with the property that

Cbi' bj] = ~aijkbk' aijk integers. Let K be a finite field

or characteristic p and size q. Then we can define a Lie
algebra ~ over K by taking as a K-basis for LK elements
ci with multiplication [ci, cj] = ~aijkck. Here we take the

aijk modulo p. The Chevalley group L(q) is a certain finite
subgroup or the automorphism group of LK•
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For each r e IT, t e K, L(q) contains an element xr(t). The

xr(t) generate L(q). Xr = {Xr(t); t e Kl is a subgroup of
L(q) naturally isomorphic to K+, the additive group of K,
and known as a root subgroup of L(q). Wri ting [a,b] for the
commutator a-1b-1ab, we have the Chevalley Commutator
JlormUla
[xs(u),Xr(t)] = IT

i, j> 0
ir+jseIl

independent roots and Cijrs is ±1, 2, or 3, depending on the
root system of the Lie algebra L. The product is taken in

i jxir+js(Cijrs(-t) u ). Here rand s are

increasing order of rocts.
u = IT Xr, product taken over roots in increasing order,ren+

is a Sylow p-subgroup of G. If m = III+I, lui = qm.
Write B = NL(q)(U). U has an abelian complement H in B

such that IHI = (q-1 )l/d for a certain integer d depending on
L and q. H normalises each root subgroup.

For each reIl, write nr = xr(1 )X_r(-1 )Xr(1). Then if
N = <H, nr; r e IT>,H = B n N 8 N and N/H = W, the Weyl group
of the Lie algebra L. For each w in W choose nw in N such
that ~ e w.

L(q) has BN-pair (B,N) with 'Neyl group which we may take to
be W. The involutory generators are the fundamental
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reflections wr' r e Z.
Theorem 3.(Cheva11ey) L(q) is simple except ~or A1(2), A1(3),
B2(2) and G2(2).
3. Symplectic Groups.

Throughout this part we write G* for the symplectic group
Sp(2r+1,q) and G for the projective symplectic group
PSp(2r+1,q), r ~ 1. q = pt, P prime. We may look on G in any

of three ways, as convenient~
(1) G* is the subgroup o~ GL(2r+1,q) consisting or all

matrices A satisfYing A'JA
J=r01 00

1-100 ••• 0l0

= J, where

o 1
-10

Factoring this group by its centre, the group or scalar
matrices in G*,

2r
IGI = q2 IIk~2r

gives G.
(q2k_1)/d, d = (2,q-1 ). "Uncapped" matrices

will denote elements of G.
(..2) Let V be a 2r+1 dimensional vector space over GF( q) with
basis {Xi} and symplectic rorm 6:

~(Xi,Xj) = 1 ir j = i+1, i odd
-1 if i = j+1, j odd
o othe!'Wise•
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G* is the group of linear transformations of V commuting
with o.

From V we derive a 2r+1_1 dimensional projective space ~
as usual. G* has a natural action on the points of~, and
the permutation group on ~ so produced is the projective
symplectic group G.

The equivalence of (1) and (2) is fairly obvious. The
following equivalence is not obvious, but we have not the
space to prove it here.

(3) G is isomorphic to the Chevalley group C r(q). So G
2

2r rhas a BN-pair with IBI = q2 (q_1)2.
We can be more explicit for r = 1: C2 has fundamental roots

Pi' P2 and positive roots Pi' P2' P1+P2 and 2P1+P2' For the
corresponding elements ~(t) of C2(q) we may write
~ (t) = 1 0 t 0 ~ (t) = 1 o 0 0
1 o 1 o 0 2 0 1 0 0

o 0 1 0 0 o 1 t
O-t 0 1 , 0 o 0 1 ,

~ +p (t) = 1 o 0 t X2P1+P2(t) = 1 t o 0
1 2 0 1 0 0 0 1 o 0

0 t 1 0 0 0 1 0
0 o 0 1 , 0 0 o 1

and X_ret) = (xr(t»'. We also have H as the set of "matrices"
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A. 0 0 0
o A. -1 0 0

o 0 j.I.0
o 0 0 j.I.-1, A, j.I.e GF(q)*.
The Weyl group W or C2 is <W1' w2; w12 = w22 = (w1w2)4 = 1>.

Here w1(P1) = -P1' w1(P2) = 2P1+P2'
w2(P1) = P1+P2' w2(P2) = -P2·

4. Little Lemmas.
For convenience we collect in this section various

unconnected results and definitions which we require.
Lemma 1. Let A e K = GL(m,q) have the following form:

conjugate in any linear group and Ci has order r1 dividing
m

q i_1 but not dividing ql_1 for any 1 < mi. Then
m.

ICK(A) I = n (q ~-1 ) •
i

This well known lemma may be obtained using Schur's lemma
and Theorem 7.3 on page 187 or [6].
Lemma 2.([9]) Let K be an algebraic group over the finite
field k. If x E K denote by x(q) the element obtained by

raising all the coordinates of x to the q'th power. Then the
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map f: x ~ x-1x(q) is a surjective map of K into itself.
Lemma 3.([13]) Let a group K have a k-ply transitive
permutation representation on a set fi, L the subgroup of K
fixing some k points and U a subgroup of L such that for
every G-conjugate V of U contained in L, V is conjugate to U
in L. Then NK(U) acts l<-ply transitively on the points of'
n fixed by U.
Definition. If U is a subgroup of'a group K, U is called
pronormal in K if'for all g e K, U and Ug are conjugate in
<U, ug>.

Evidently, if'U is pronormal in K, Lemma 3. shows that
NK(U) acts k-ply transitively on the points f'ixedby U.
Lemma 4. Let a group K have a k-ply transitive permutation
representation of degree n on a set fl. Let L be the subgroup
of'K fixing some k points and U a subgroup of L fixing
exactly m points. Then
• IliK(U) I < 1NL(U) Im(m-1 )..•(m-k+1). Equality holds if'and on Ij

if every subgroup V of'L conjugate to U in G is conjugate to U
in L. In this case

Proof. * simply results f'rom the fact that NK(U) acts as a
permutation group on the points of fi f'ixedby U, and NL(U) is
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the subgroup of NK(U) fixing some k points.
** is a restatement or * in the case when equality holds,

and is seen to be a formula for the number of subgroups of K
conjugate to U. Each such subgroup is contained in exactly
~ subgroups of X fixing k points. There are c~ subgroups of
K fixing k points, each one of which contains at least
(L:NL(U) K-conjugates of U, and exactly that many
K-conjugates of U if the condition stated in the Lemma holds.
Hence the i-e sult follows.

Le~a 4. is equivalent to Lemma 3. The fact that the right
hand side of ** is an integer is often a useful restriction
on m.
Lemma 5. Let K have a doubly transitive permutation
representation of degree n on a set fl, let ~, ~ E fl, let Ka~

be the subgroup of K fixing a and e and let p be a prime
dividing both n-1 and 'Kaf'l. If Q is a Sylow p-subgroup of
~j3 then Q = Op(l~K(Q», that is Q is the maximal normal
p-subgroup of its normaliser.
Proof. Let P = 0p(NK(Q» and suppose Q fixes exactly m points
of fl. N = NK(Q) is doubly transitive on these m points and
as P 6 n, r acts either trivially or transitively on them
([12] 9.9). Now m == n == 1 (modp). So P, being a p-group,
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cannot act transitively on m points. Hence P acts trivially
on them, which means P c Ka~. But Ka~ n OpeN) = Q. Hence
P = Q.

Lemma 6. Let K = K1 x K2 have a doubly transitive permutation
representation p of degree n on a set fl. Then either
kerp ~ K1, kerp ~ K2 or n = 2.
Proof. Suppose not. K1 and K2, being normal in K, act
transitively on fl. Let a, ~ E fl. Take g E K1 with ga = ~.
Consider Ka n K2• If h E Ka n K2,

hf3 = hga = goo as h E K2,
= ga = ~. Hence h E kerp. Therefore

Kn n K2 c kerp and similarly Ka n K1 c kerp. We may therefore
assume Ka n K2 = Ka n K1 = {1}. But then
IK1 I = (K1 :Ka n K1) = n = IK21. Hence IKI = n2• However
n-11IKI. Therefore n = 2.

We now look at the doubly transitive permutation
representations of metacyclic groups.
Lemma 7. Let N = <y,a; yb = aC = 1, aya-1 = yq> have a doubly
transitive permutaticn representation of degree m on a set r.
Then either (1) m = 2 and the kernel of the representation is

2<y,a > or
(ii) mlb, m-1Ic, m is a prime power, ym is in the

kernel and y ls transitive on r.
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Proof. Let p be the representation. p«y» ~ p(N) is a
normal subgroup of a multiply transitive group so acts
either triVially or transitively on r. If p(y) = {1}, the
abelian group N!<y> acts doubly transitively on r. Hence
m = 2 and we have case (i).

Suppose p«y» is transitive on r. As <y> is abelian, it
acts regularly on r. Hence mlb and ym E kerp. Now
Ip(N)1 divides mc and m(m-1)1 Ip(N)I. Hence m-1 le. m is a
prime power by [12] 11.3.
Lemma 8. Let a group K have a permutation representation on
a set n and let r be an orbit of some y E K. Let s be a power
of a prime So such that s divides the order of y and let yU
have order s. Then if yU fixes any point of r it fixes all
points of r, while otherwise solIrl.
Proof. Let yU fix n E r and let ~ E r. For some i, yin = ~.
Hence yU~ = y~in

= yiyun
= yin = ~.

Suppose yU fixes no points of f. yU permutes the points of
r, so r is a union of yU orbits, each of which has length
divisible by sO. Hence sOl Irl.
Lemma 9. If K = SL(2,q) has a doubly transitive representation
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of degree m on a set r then either

(i)m = q+1 or
(ii) q = 2 and m = 2, q = 3 and m = 2 or 3, q =4 and

• = 6 or q = 9 and m = 6.
Proof. Let a E r. K has an irreducible character ~ ot degree
.-1 such that 1K K = 1K + ~ as complex characters. For each

a
g in K, ~(g) is a rational integer not less than -1 •
Examination of the character table of SL(2,q), for which we
reter the reader to [8], yields the result.

We note that this result could have been proven by the
methods we use in section 5.
Theorem 4. ([3]) In the notation of §2, let ~ be the set of
fundamental roots of L and J,K c ~. Define the subgroup WJ
of W to be the group generated by the fundamental reflections
for the roota in J and define GJ = BW~. Write tJ

w
= 1w

J
G= 1G • Then the mapping
J

6: t = ~ aJtJ ~ X = ~ aJXJ is an isometry between the
J J

complex vector spaces generated by the 'J and the XJ. In ~act
the scalar product (XJ,XK) = number of (GJ,GK) double cosets
in G = number ot (WJ,WK) double cosets in W = (tJ"K).

We finish with some arithmetical lemmas.
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Lemma 10. For all integers u ~ 1, (q_1)u ~ qu+1_2qu-1,
equality holding if and only if u = 1 or 2 or q = 2.
Proof. q-1 = q+1-2, so the result holds for u = 1. Suppose it
holds for u. (q_1)u Ei; qu+1_2qu-1.

(q-1)U+1 " qU+1+q_2qU_qu_1 +2qU-1
= qU+1+1_2qU_(qU_2qU-1_q+2)
= qU+1+1_2qu_(q_2)(qU-1_1). Hence the result

follows.
Lemma 11. For all integers i and j, (qi_1,qj-1) = q(i,j)_1
and(2qi-1,qj-1 )12j/(i,j)-1.
Proof. If llj, qi_1 Iqj-1. Hence q(i,j)_1 l(qi_1,qj-1).
Choose a and b > 0 such that ai-bj = (i,j), b minimal. Since
(qai_1)_q(i,j)(qbj_1) = q(i,j)_1 we have
(qi_1,qj-1 )lq(i,j)-1. This proves the first part.

'f/ritea' = j/(i,j)-a, b' = i/(i,j)-b. Then
-a'i+b'j = ai-bj = (i,j). Since b was minimal we have b' > 0
and a' > o. Now
(2aqai_1 )_2aq(i,j)(qbj_1) = 2aq(i,j)_1 and

q(i,j)(2a'qa'i_1 )_2a'(qb'j_1) = 2a'_q(i,j). Hence
(2qi_1 ,qj-1)1(2aq(i,j)-1 ,2a'_q(i,j»

I 2a+a'_1 = 2j/(i,j)-1 as required.
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Consider the ring z[x). This is a unique factorisation

domain, so the statement Iff,g E Z[x] are coprime" may be
def"ined to mean "f and g have no irreducible factors in
common". Write <f,g> for the ideal generated by t: and g.
Definition. It: f and g in Z[x] are coprime, (r,g) is the
unique positive integer generating the Z-ideal Z n <r,g>.

The above ideal is clearly non zero. (f,g) is the least
positive integer which can be written in the rorm
uf+vg, u,v E Z[xj.

If k is an odd integer write ~ = ~(x) for the cyclotomic
polynomial for 2k, the monic polynomial in Z[x) whose
complex roots are the primitive 2k'th roots of 1. Evidently
<P1~+1. Write ~+1 = <Pt.
Lemma 12. ~ and, are coprime and (~,V)divides 1, the
product of the distinct primes dividing k. It: q E Z+, the
set of positive integers, (<p(q),t(q» and (~(q),2k) divide 1.
Proof. If ~ and t were not coprime they would have a common
factor f in z[x), f ~ ~1. If f had degree zero it would be an
integer dividing xk+1, contradiction. If f had positive
degree it would have a root in C, tHe complex field. Then ~
and, would have a common root in C which they do not.

Let {Pi} be the distinct primes dividing k and write
k kiki = k/pi. For each i, ,I(X-+1 )/(x +1)
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ki(Pi-1) ki k.Hence ~Ix - -x +1. By substitutihg x 1 = -1 in

k k. kithis polynomial we see that «X-+1)/(x 1+1),x +1)IPi• Hence
k.

(cp,x 1+1 )IPi.
k.

Now tln(x 1+1) and one easily proves that
i

(f,gh)l(f,g)(f,h) for any f, g and h E Z[x]. Hence
k.

(cp,"')I~(cp,x1.+1)I~ Pi as required.1. 1

This clearly implies that (cp(q),t(q»ll.
Now let s be a prime dividing (cp(q),2k). We must show

821 cp(q). Let s' be a prime dividing k and write k' = k/s'.
cpl(~+1 )/(Xk'+1). Now if q is even, cp(q) is odd, so s ~ 2.

If q is odd, ~k _ ~k' _ 1 (mod *). Hoaeo 2%(qk+1 )/(qk'+1) and
we again have s J 2. Therefore s lk , \'/ritek ' = k/s.

qk~ qk == -1(mod s) afta IE' iB oaa, BO flk' 1(mea B) •
•

Write qk' = u8-1.
,(q)l(qk+1 )/(qk'+1) = Z qk'i(_1)i

i

Now qk'i = (us-1)i
_ (-1)i-1iUS+(_1)i (mod s2). Hence

s-1
z (-ius+1)

i=O
(mod 62)

_ -us.is(s-1 )+s (mod s2)
== 6 (mod 52). Therefore 621cp(Q).

Finally we have the following conjecture of J. A. Green:
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Conjecture I. Let L(q) be a Chevalley group with BN-pair
(B,N) and let the complex character ~BG have irreducible
constituents 1G, X1' ••• , Xr• Then r is independent or q and
there exist fixed polynomials r1, ••• , fr independent or q,
with rational coefricients and constant coefricient zero,
such that degxi = fi(q) for each i.

This conjecture is true for many groups of low rank and has
been proven in part for the general case. The proor proceeds
by exploiting the isomorphism between the group algebra of
the Weyl group and the CG-endomorphism algebra of the module
corresponding to 1BG.
Corollary. Let L be a fixed Lie algebra. In the above
notation, except for a finite number of values of q the
degrees of the characters Xi' i ~ 1, are not coprime to q.
Proof. Write ri(x) = gi(x)/D, D an integer and gi E Z[x]. If
q does not divide D, fi(q) and q will not be coprime, for fi
has constant coefficient zero.
5. The Main Theorem.

Our object is to prove the following theorem:
Theorem A. (i) If Conjecture I holds then, excepting for each

. r+1r at most a finite number of values of q, PSp(2 ,q) has no
multiply transitive permutation representations for r > 1.
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(ii) PSp(4,q) has no multiply transitive permutation

representations for q > 2, regardless of I.
We prove these results in a number of stages. Write

G* = Sp(2r+1 ,q) and G = PSp(2r+1,q) as before, r;;'1, and
suppose G has a multiply transitive permutation
representation p on a set n with 1nl = n. G* has an action on
n via the map G* ~ G, which it will at times be convenient to
consider. Let a e n and let Ga be the subgroup of G fixing a.

(A) If q = pt and pjn then Ga is a maximal parabolic subgroup
of G.
Proof. Consider G as a Chevalley group. G has a BN-pair and as
pIn \....e may take the Sylow p-subgroup U of G to be contained in
Ga. Writing Ba = B n Ga we have B ~ HBa ~ HU = B. Hence, by
Theorem 2. of §1, HGn is a parabolic subgroup of G. Now Ga,

being the stabiliser of a point in a multiply transitive
G-set, is maximal in G. Thus either HGa = Ga or HG~ = G. In
the first case we have the required result. In the second
case, H acts transitively on n. Now H normalises each root
subgroup Xr and if r > 0, Xr cUe Ga. For each ~ e n there is
an h e H such that ha = ~. Then

X = X h c G h = GQ• X therefore acts trivially on fl. But
l' r a ~ r

in the cases we are considering G is simple. Hence p is
faithful, contradiction.
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Note that this result holds for arbitrary L(q).
(B) pin.
Proof. If pln, Gu = GJ for some maximal J c R, the set of
involutory generators of the Weyl group W. Now the number of:
(Gu,Gu) double cosets is 2, so by Theorem 4, the number of'
(WJ'WJ~ double cosets is 2. 'I-ieshow this is f:aIse.The
structure of the Weyl group of'C is given in [7].21'+1

For Cl' the Weyl grou:pW may be considered as a
:permutation group on the 21 points 1, ••• ,1,-1, ,-1. The
fundamental reflections w1' ••• ,wI are given by

wi = (i i+1)(-i -1-1), 1 ~ 1 < 1,
WI = (1 -1).

Thus Iwi = 21l!
Write Ji = <Wj; j f. 1> and Wi = WJi• We must prove that the

number of'(~'Vi'Wi)dcuble cosets is more than 2.

Now WI is the symmetric group on {1, ••• ,I} and Iwll = l~.
(1 -1) i WI and (1 -1 )Wl(1 -1) is symmetric on {-1,2, ••• ,ll.
Hence WI n Wi(1 -1) is symmetric on {2, ••• ,11 and has order
(1-1)!.

Thus IVvl(1 -1 )wll = IwlI2/IWI n WI(1 -1),

= (I!) 2/( 1-1 )!
= 1.1!
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So W = WI U WI (1 -1 )'Nl if and only if

2l1! = l!+I.l!. Hence 21 = 1+1, which is 1 = 1. But this is
not one of our cases. Hence there are more than 2
(Wl,Wl) double cosets.

Now let Le 1. Wi = <w1, ••• ,wi-1>x<wi+1, ••• ,wI> has

order i~21-i(1_i)!. (1 -1) i Wi and clearly

IWi n Wi(1 -1)1 = (i-1 ):21-i(1_i)!. Hence

IWi(1 -1 )Hil = [i!21-i(1_i)!]2/[(i_1 )!2l-i(1_i)!]
i .,21-i (1 n:= .1. -1 •.

Hence W = Wi U Wi(1 -1 )Wi lf'and only if'

2l1! = (i+1)!21-1(1_1)!. It may easily be shown that if'1 > 1

this does not happen. Thus (B) ls proven.
2r I'

(C) nl IBI = q2 (q_1)2, except for each I' at most a f'inite
number of prime powers q, if Conjecture I holds.
Proor. In the notaticn or Conjecture I we have

G1B = 1G+x.,+ ••. +Xr, Xl irreducible. 'I'Ve can also write
G1G = 1G+~' where ~ is an irreducible character. ~ has degreea.

n-1 ~ 0 (mod p). 11'ever,yXi has degree divisible by the prime
p, ~ is not among the Xi' BO the scalar product
( G G1B ,1G ) = 1. This means that BGa. =

a
n = (G:Ga)1 IBI. By the corollary to I this situation occurs
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almost always if I holds, so we have the result.

Later we shall show that I holds for r = 1.
r

(D) For some c = 1 or 2, n - c (mod(q2 +1 )/d).
r+1

Proof. 'Nrite GL for GL( 2r+1 ,q), GL for GL( 2r+1 ,q2 ) and

G for SP(2r+1,q2r+1). Let x be a primitive q2r+1_1 'th root of
r+1 2r

1 in GF(q2 ) and ~ = xq -1. Write X for the diagonal
matrix 1n at such that X = (Xij) with X1j = 0 if 1 ~ j,

q2r+1-1 2r
x Put xq -1 = Y. Then

i 1-1
= ~q , Y21,2i = ~-q • ThusY = (Y ij) wi th Y2i+1 ,21+1

2rY e G and yq +1 = 1. Now 1f A is the element of ~ defined

by A - 1 1 / i / 2r+1_2,
i . 2 - , .... ...., ~+

A = 1, A r+1 = -1,
2r+1-1 ,2 2,1

Aij = 0 otherwise, we see that A e G and AXA-1 = xq.

From Lemma 2, there is a B in G such that A-1 = B-1B(q).
Put x = BXB-1, Y = BYB-1 and a = BAB-1• Then

x(q) = B(q)X(q)B-(q)
= B(q)AXA-1B-(q), as x(q) = Xq,
= BXB-1 = x. Hence x e GL. Similarly y and a are in GL.

Therefore y and a are in GL n G = G*.
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2r

Write N = <y,a>. Vie have yq +1 =

r
Let b be any integer not divisible by (q2 +1 )/d. Then

CG*(yb) = G* n CGL(yb)

= G* n <x>, by Lemma 1,
= <y> • For if's is an integer, Xs E G* if'and only if'

s - which if and onlyX E G, happens if s is divisible by
2r if and only if'Xs <y>•q -1, E
From Theorem 7.3 on page 187 of'[6] we see that

N = NG*(<Y~).
In this section we consider the action of G* on il.

r
Let s be a prime power dividing (q2 +1)/d and write s =

So prime. Now So is prime to (G*:<y», so the Sylow
so-subgroup of <y>, which is cyclic, is a Sylow So-subgroup of
G*. If'S = <yb>, the unique subgroup of <y> of order s, then
S is the unique subgroup of order s in any Sylow So-subgroup
of'G* whd ch contains S. Hence S is pronormal in G*.

Let rs be the set of points fixed by S. If Irsl = ms'
either ms = 0, ms = 1 or ms > 2. In the last case we know
from Lemma 3. that NG*(S) acts doubly transitively on rs'
which means that N acts doubly transitively on rs.

Consider the following f'ourp08sibilities:
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(1 ) ms = O.
(2) ms = 1 • By Lemma 8, y fixes exactly one point of'fl.
(3) ms = 2 and y f'ixesrs. y f'ixes no other points of'fl.
(4)ms = 1+2i, i st r11and y acts transitively on fs. y

fixes no point of fl.

We see f'romLemma 7. that these are the only possibilities.
If (1) holds we have from Lemma 8. that soln. But IBI and
2r r(q +1)/d are coprime, sol(q2 +1)/d and nl IBI almost always,

contradiction ( f'or the remainder of the proof' we are
assuming that nl IBI).

If (2) holds it is clear that ms'= 1 for every prime power
a'. Now let ~ be an S orbit of fl of length greater than one.
Suppose s1161. Then 161 = sof f'or some l' < e. Now
bs l'

y 0 has order soe-f and fixes all points of the orbit ~, a
contradiction, since an element of order a power of BO fixes
only one point of n. Hence s ]]~ I •

We theref'ore have sln-1 f'orall prime powers s dividing
2r 2r(q +1 )/d, so (q +1 )/dln-1.

If (3) holds, it holds for every s and similar reasoning
r

shows that (q2 +1 )/dln-2.
Suppose (4) holds, and suppose first that ms = 2 f'orall s.
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We see that y2 rixes exactly 2 points or il. Thererore ror

2revery prime power s dividing (q +1)/d, the corresponding
subgroup S fixes the same 2 points. Similar reasoning to

2rcase (1) gives that (q +1)/dln-2.
Now suppose that for some s, ms = 1+21 > 2. Take a prime

2r .s' dividing ms. Then s' I(q +1 )/d and ms' = 1+2J rorpower
some j. rsand rs' are each y-orbits or fl. 'Ne have two cases:

(i) rs = rs'. Then solms and as soln-ms by Lemma 8, soln,
contradiction.

(ii) rs n rs' = cp. Write {a,b} for the least common
m m ,

multiple of a and b. Now y s fixes the points or rs and y S

{ms'ms' 1fixes the points of rs" so y fixes the points of
rs u rs'. It follows that no odd prime divides the order of
{ms,ms,l {ms,ms,jy , for otherwise y would have to fix only the

points in one y-orbit, which it does not. We must have
2{ms,ms,1 2r

y = 1, since 4jq +1.
2r i'Thus q +1 12{1+2 ,1+2J}. As q ~ 2 we have

22r < 2.2i+12j+1 = 2i+j+3 ~ 22r+5. Hence 2r < 2r+5 and r ~ 3.
8 i'r = 3: q +11211+2 ,1+2J}, i,j ~ 4,

~2.9.17. Thus q = 2, q8+1 = 257, which gives no
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solutions.
r = 2: q4+112{1+;,:i,1+2j},i,j ~ 3

~ 2.5.9. Hence q = 2 or 3, q4+1 = 17 or 82 ,
giving no solutions.
r = 1: q2+112{1+2i,1+2jj, i,j ~ 2,

~ 2.3.5. Thus q = 2 or 3. But in each of these
cases, q2+1 is not divisible by two odd primes, ccntradiction.
'fie have therefore proven (D).

(E) "lie may reduce to the following possibilities:
(a) r = 1, (i) q = 3, n = 6

(ii) q = 4, n = 18
(iii) q = 5, n = 40
(iv) g = 8, n = 196
(v) q = 11, n = 550

2r+1
= q ,r ~ 1, any g.(b) n

2r+1a
(c) n = 2g ,s ome a ~ 1, r ~ 1, any q.

2r tProof. n == c (mod (g +1 )/d), c = 1 or 2, q = P , P prime.
Write n = qip-bm, 1 ~ i ~ 22~, 0 ~ b < t, pJm and
i = l2r_j, 1 ~ 1~ 2r, 0 , j < 2r. Now

r r
1/q2 == -1 (mod (g2 +1 )/d). Hence

m = nq-l2rgjpb == C(_1)lqjpb. Write
r r• m = k(g2 +1)/d+(-1 )lcqjpbl(g_1)2 Id.
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','le have to consider various separate cases.

(1) 1 even. Then k ~ o.
(i) k = o. As plq-1, b = j = o. m = (-1)lc = c,

12r ;"12r+1 If 2 this is (c).n = cq = cq 2 • C = case
Suppose c = 1, a = il > 1. We show we have a contradiction.

ra2r+1 2 2kn-1 = q -1 I IT (q -1). Now by Lemma 11,
k=1

a2r+1 2k(q -1 , q -1)
r(qa2 -1,q2k-1) =

r r(qa2 _1,qa2 +1) = d. It
r (a2r 2k)follows that unless k = 2, q +1,q -1 = d. Also

2r+1 2r 2r a2r 2rq -1 = (q +1)(q -1) and (q +1,q -1) = d,

a2r 2r(q +1,q +1) = d. Hence
r r

qa2 +1 1 d2 , contradictioU. So we in fact have a = 1 and
case (b).

(ii) k < O. Since m > 0 we have

q2r+1 < Cdqjpb ~ cdqj+1/p• Thus p < C~q2r-j-1. This gives
p = 3, j = 2r_1, c = d = 2

r r2m = _(q2 +1)+4q2 /3
2r 2r= (q -3)/31(q-1) •

and b = t-1.

Now (q_1,q2r_3) = (q-1,2) = 2. Thus
2r 2r 2r 2r 2r(q -3)/312 • 3 'q ~ 3.2 +3. The only solution is

I



r = 1, q = 3. Then m = 1 and n = 33. But n-1 = 261Ipsp(4,3),
contradiction.
(2) Suppose 1 is odd. Then as m > 0, k > o.
(1) k = 1.

2r' . b r r rq +1-cdqJp ~ (q_1)2 ~ q2 +1_2q2 -1, by Lemma 10.
Hence 2q2r-1 ~ Cdqjpb ~ Cdqj+1/p• Thus p ~ C~(2q2r-2-j).

r r rHence j = 2r_1 and dm = q2 +1-cdq2 -1pbl(q_1)2 • Now
(q-1,dm) = (q-1,2-cdpb). Hence we have

r
dm] (cdpb_2)2 •

rNow cdpb ~ 2, else dm > (q_1)2 • We have two cases.
(a) cdpb = 2.

2r 2r_1 2r
dm = q +1-2q I(q-1) • From Lemma 1'0.we have r = 1 or

q = 2.
r = 1: dm = q2+1_2q = (q-1 )2. i = 2l-j = 1. n = q(q-1 )2/dpb.

If dpb = 1, n-1 = q(q-1 )2-11IGI, and
IGI = q4(q_1)2(q+1)2(q2+1). Now q2+1In-2, so 2

(q +1,n-et) = 1.
Also (n=t , q) = (n-a,q-1) = 1. Hence n-1 I(q+1 )2. But
(n-1,q+1) = (5,q+1)15, so q(q-1)2125. This is false for any

prime power greater than 2, so this case does not occur.
It follows that dpb = 2, n = tq(q-1 )2.

n-1 = tq(q-1 )2_1 Iq4(q_1)2(q+1 )2(q2+1)/d. Therefore, as
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n-1 = t(q2+1 )(q-2), we obtain
q-212q4(q-1 )2(q+1)2/d • Now (q-2,q-1) = 1 and (q-2,q+1 )13.
Hence q-212.32• q = 3,4,5,8 or 11. These are case (a).
g = 2: m = 1 and i = 12r_j = u2r+1, u even.

rn = 2u2 +1/pb, pb = 1 or 2. This gives cases (b) and (c)
again.

r r r(b) cdpb > 2. dm = q2 +1-cdq2 -1pb < (cdpb)2 • Hence

q2r-1(q_Cdpb) < (Cdpb)2r. If q = cdpb we have p = c = 2,
r

b = t-1, d = 1. Then n = 2qU2 +1q-1, U even,
r+1

= 2qa2 as before.
If q > cdpb it is easy to see that q ~ 5cdpb/4. Hence

q2r/5 ~ (Cdpb)2r and q ~ Cdpb.51/2r. Hence 5/4 ~ 51/2r•
We have r = 1 or 2.

r = 1: dm = q2+1_cdgpb I (q-1)2. Now
(q2+1_cdgpb,(q_1)2) = (2q_cdgpb,(q-1)2) = (2_cdpb,(q_1)2).
Hence q2+1_Cdqpblcdpb_2. q2+3 ~ cdpb(q+1),
cdpb ~ q-1+4/(q+1 ). Thus either p = c = 2, pb = iq, m = 1 and
n = 2 or p = 3, c = d = 2, pb = q/3 and m = i-q2/6• Each of
these cases is clearly impossible.
r = 2: dm = q4+1_cdq3pbl(q_1 )4. Now
(q4+1_Cdq3pb ,(q-1)4) = (4q3 _6q2+4q_Cdq3pb ,(q-1)4)

14q2_6q+4_cdq2pb. Therefore
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q4+1_Cdq3pb < Cdq2pb-4q2+6q_4 and
q4+4q2_6q+5 < Cdq2pb(q+1). Hence cdpb ~ q. As am > 0 we have
equality, with p = c = 2, d = 1, pb = ~q. Then m = 1,
I = 1 or 3, i = 1 or 9 and n = 2 or 2q8. The first is plainly
impossible, the second is covered by (c).

2r . b 2r(ii) k > 1. Then am = k(q +1 )-cdqJp I(q-1) • As in (i) we

have j 2r 2r b= 2r_1. Now dm = (k-1)(q +1 )+q -1(q_cdp )+1. Hence
q < cdpb. We must have p = 3, c = d = 2, pb = g,/3.Then

2r 2r 1 2r 2r2m = 2(q +1)-4q - .g,/3= 2(q +3)/31(q-1) •
2r 2r 2r(q +3,q-1 )14. Hence 2(q +3)13.4 • Thus r = 1, q = 3.

m =(32+3)/3 = 4 and mI22/2, contradiction.
This completes the proof of (E). We now consider separately

the cases r = 1 and r > 1.
Proof of Theorem A(ii). We have to show first that the above
values of n give contradictions for r = 1 and secondly that
nIIBlforr=1.
(F) All the cases of (E) give contradictions for r = 1 •
Proof. (a) (i) q = 3, n = 6. IpSp(4,3)1 = 26345. But
Is61 = 6! = 24325. Hence we have a contradiction.

(iii) and (v) we do together.
IGI = 26325413, q = 5

26325211461, q = 11. Let a,~ E fi, a ~~.
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IG~I = 23325313, q = 5

253211361, q = 11 •
IG~~I = 233.53, q = 5

25113, q = 11.

Let Q be a Sylow q-subgroup of Ga~and let Q fix exactly m
-Ipoints of fl. (Go.:NG (Q» = (Ga~ :NG (Q) )(n-1 )(m-1) is

a a~
integral, so, by SYlow's Theorem,

1, q=11.
Consider q = 11. m = 11k, k < 50, and by integrality

1ik-i 1550-1. There is no such k. Hence q = 11 may be ignored.
Consider q = 5. m = 5k, k < 8, and by integrality

5k-iI40-1 or 6(40-1). Hence k = 2 and (Go.~:NG (Q» = 6.
o.f3

ING (Q)lm(m-i) by Lemma 4.
a.f3

= 2353.1 0.9 = 2'+3254•'Ne show this is not the case.
IQI = 53, lui = 54. Hence we may take Q as a normal

subgroup of U with cyclic factor group. U' < Q.
From the Chevalley Commutator Formula, or by matrix

calculations, [X ,X ] < X X2 'Pi P2 Pi+P2 Pi+P2
[X ,X ] = X2 • Commutators of other root subgroups ofPi P1+P2 P1+P2
U are trivial. Hence Uf - X X •- -Pi+P2 2P1+P2
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Q : <~ (t1)~ (t2),U'>, t1,t2 E GF(q), not both zero.
1 2

(1) Suppose t1 I O. Then Q' = X2 andPi+P2
0Q(Q') = X X2p +p • Both these groups are characteristicPi+P2 1 2
in Q. Hence NG(Q) < NG(X2 ) Cl NG(X X2p p) ~ N, say.P1+P2 P1+P2 1+ 2

By the Commutator Formula, B < N. Thus if w E W, BllwB eN
if and only if n E N.w

nwX2P1+P2llw-1 = XW(2P1+P2) by [2] page 214
= X2 if and only if W(2P1+P2) = 2P1+P2'P1+P2

if and only if w = w2 ( in the notation of §3). But

nW2~1+p2nW2-1 = ~2CP1+P2) = ~1· Thus N = B. But

IBI = 2354, so ING(Q)I I 2354, contradiction.
(2) Suppose t1 = O. Then Q = X X X2 • As beforeP2 P1+P2 P1+P2
NG(Q) ~ B. Routine calculation shows that
NaCQ) = B U Bnw B. Thus INa(Q)1 = IBI(1+qN1,where Nwis the

1
number of positive roots of 02 transformed by Wi into
negative roots ([2] page 220). In this case Nw: 1. Thus
INa(Q)1 = i.54C5-1 )4(5+1) = 283•54, contradiction.

(ii) q = 4, n : 18. IGI = 28325217, IG I = 275217 anda.

1Ga.j31= 2752•
Let P be a Sylow 5-subgroup of Ga.13and suppose P fixes m
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points of il. m = 3 or 8. By Sylow's Theorem,
(Ga~:NG (p» = 1 or 24. Nowa.(3
(Ga.:NG (p» = (Ga.f3:NG (P»(n-1 )!(m-1) is integral. Hencea. a(3
• = 3 and (Ga.(3:NG (p» = 24.

a~
ING(P)I = 1NG (P)lm(m-1) = 243.52• We show this is false.

a~
Since G = G* = SP(4,4) we may work with matrices in G*.
A Sylow 5-subgroup of G* is generated by elements

• = [~ ~Jb = [:2 :1where A e SL(2,4) has order 5.,
Using Lemma 1 we see that ICGL(4,4)(ab2)I = (42_1)2. In fact
the centraliser consists of elements [C 0]

OD, such that
C,D e CGL(2,4)(A), which is generated by an element of order
15 with determinant a primitive cube root of 1. Such an
element is in G* if and only if C,D E SL(2,4). Hence
ICG*(ab2)I = 52. Thus IcG(p)1 = 52 and CG(P) = P.

The only elements of P with the same eigenvalues as a are
a,b,a-1 and b-1• Thus if g E NG(P), gag-1 = a,b,a-1 or b-1

and there are the saae choices for gbg-1• Using the fact that
gag-1 and gbg-1 generate P we see that (NG(P):P) , 8. This
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is a contradiction.
(iv) q = 8, n = 196.

IGI = 212345.7213, IG I = 21°345.13 and IG I = 21°33. Wea a~

work in Sp(4,8) and apply Lemma 5, taking p = 3. Let Q be a
Sylow 3-subgroup of Ga~ and P a Sylow 3-subgroup of G. P is
generated by elements a

A E SL(2,8) has order 9. The argument used in the
i .preceeding case shows that CG(p) = P. Now 0G(a bJ) = P

unless i = 0, j = 0 or i = j. Clearly Q, being a subgroup of
P of order 27, must contain elements other than the elements
ai, bi and (ab)i. Hence CG(Q) = Q.

If g E NG(Q), g E NG(CG(Q» = NG(P). Hence P /1 NG(Q). This
contradicts Lemma 5.
(b) n = q4, any q.
Let a E fl. If U is a Sylow p-subgroup of G, G = UGa• We may

take the elements of U as left coset representatives for Ga
in G.

Choose 6 E GF(q)*, the multiplicative group of GF(q), of

maximal order such that h = [ 1 e J
6-1 is in some G:. Such a

e exists because (q-1 )2/dl IGal. Now h E H normalises U, so if
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U E U, h(uG ) = (huh-1 )hG = (huh-1)G • Thus the number ofa a a
points of n fixe.dby h is ICU(h) I .

A general element of U is
u = ~ (t1)~ (t2)xp +p (t3)x2P +p (t4)and one checks that

1 2 1 2 1 2

huh-1 = xp (6-1 t1)xp (62t2)xP +p (e t3)x2P +P (t4). Here
1 2 1 2 1 2

t1, ••• ,t4 e GF( q ) •

Now either 62 ~ 1 and h fixes exactly q pOints or 62 = 1
22'and h fixes q points. If 6 = 1 it is clear that q = 3. We

do this case later.
Suppose 62 ~ 1 and wrl te S = <n> , By Lemma 4,

INa(S)1 ~ INL(S)lq(q-1), L = G~~, ~ ~ a e fl.

< ILlq(q-1) = q(q-1 )2(q+1)/d. But h is centralised
by the elements A 0 0

o 0
o 0 a 0 1o 0 0 a- of G, A E SL(2,q), a ~ o. Thus

(q-1)IpSL(2,q) I = q(q-1 )2(q+1 )/d. Also

normalises S. Thus
> q(q-1 )2(q+1 )/d, contradiction.

We now dispose of q = 3. h fixes 9 points. Hence
ING(S)I < ILl.9(9-1) = 223223 = 2532•

ICG(S) I ..
1 0 0 0
0 1 0 0
0 0 0 1
0 0 -1 0

ING( S) I
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Now h is centralised by elements I ~ o

B

~ ~ ISL(2,3) 12
I of' G,

A,B E SL(2,3). Thus ICG(S)I
= ~(3.2.4)2
= 2532• As before

INa(s)1 > 2532, contradiction.
The case PSp(4,3) was first studied by Parker in [10].
(c) n = 2q4a, any q. As nilG I we have Ii = 1 •
n-1 = 2q4_1 I(q-1 )2(q+1 )2(q2+1 )/d. But as

n-2 = 2(q4_1) = 2(q-1 )(q+1 )(q2+1) we have
(q-1 ,n-1) = (q+1,n-1) = (q2+1 ,n-1) = 1. Hence n-111/d,
contradiction.

We have now proven (F). We now have to show that nilB I for
r = 1. This involves proving that if 1Ba = 1G+x1+ .•• +Xr,
Xi irreducible, then plde&Xi' i ~ 1.

For the Weyl group W of C2 we have subgroups W{p } = <w1>,
1

W{p21 = <w2>, lVI, = W = <w1'W2>' Wcp = {1j. Using the notation

of 'I'heor-em4. of §4, write "'1for "'{P11' etc.

W has conjugacy classes Co = {1}, C1 = {(w1w2)2J,
02 = {w1w2,w2w11, C3 = {w1,w2w1w21 and C4 = {w2,w1w2w11. We
have for the characters 'J:
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Co C1 C2 C3 C4
VZ 1 1 1 1 1

;1 4 0 0 2 0

'2 4 0 2 0 0

• 8 0 0 0 0

The entries in the f'ollowing table are the scalar products
of these characters:

O/Z 0/1 "'2 '"
"'Z 1 1 1 1

'1 1 3 2 4

'2 1 2 3 4, 1 4 4 8

A similar table is valid for XZ' X1' X2 and X~, by
Theorem 4. Using it, we see that
Xz = 1G, X1 = 1G+q>+V, X2 = 1G~+V' and

X¢ = 1BG = 1G+2~+V+"+X' where cp","" and X are irreducible
characters. Now X = X¢-X1-X2+XZ. Hence

deg X = (G:B)-(G:G{P11)-(G:G{P21)+(G:G). Now

G, 1 = B u Bn.. B. As before, IBIlw BI = qlBI. Also
(P1 1 1

IBI = q4(q_1 )4/d. Hence
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deg X = (q+1 )2(q2+1 )-2(q+1 )(q2+1 )+1 = q4.

Consider G1p21. Using (3) or 03 we may write

nW2 = xp (1)X_p (-1)Xp (1), by page 214 of [2],222
= 1 0 0 0 Moreover we see from §3 that B is contained

o 1 0 0
o 0 0 1 in the subgroup or "matrices" in G with
o 0 -1 0 •

first
column I~

• Hence G{p21 = B U Bnw2B is contained in

this subgroup, fixing the point P = (i
of projective 3-space

~. Since G{P2} is maximal, G{p21 is the whole subgroup. As

1G G = 1G+4>+'" G has rank 3 action on the points of E.
{P21

The orbits of G{p21 on E consist of the point P, the q+q2

ppints ~ P on the orthogonal hyperplane to P and the q3 points
outside this hyperplane. We shall use the results of Higman in
[5] to obtain the degrees of the characters ~ and ,'.

In Higman's notation, k = q+q2, 1 = q3, k < 1. We wish to
calculate the Higman parameters A and ~.
Lemma ([5] Lemma 5.) ~l = k(k-A-1).
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In our case ~q3 = (q+q2)(q+q2_A_1). Hence
q2Iq_A_1. Since A ~ k = q+q2, A = q2+q_1 or A = q-1. In the
former case ~ = O. But as G{p21 is maximal in G, the rank 3
representation of G is primitive. By [5] page 149,~ I o.
Therefore A = q-1 and ~ = q+1.

Write D = (A_~)2+4(k-~) = 22+4(q2_1) = 4q2. For the degrees
f2 and t3 of ~ and .' we have in some order
f2,f3 = [2k+(A-~)(k+l)+ D(k+l)]/(+2VD)

= +iq2+iq(1+q+q2). Thus as q > 2, plf2,f3• We therefore
have that p divides the degrees ot the irreducible non

Gtrivial consti tuents of 1B • This completes the pr-oor'of
Theorem A (ii).
Proof ot Theorem A (i). If G = PSp(2r+1,q), r > 1, has a
multiply transitive permutation representation ot degree n
on a set fl, then excepting tor each r at most a finite

2r+1 2r+1anumber ot prime powers q, n = q or 2q , a integral.
We eliminate these cases, discarding as we go a finite
number of prime powers.

Write k = 2r_1. q2k_1 IIGI. Similar reasoning to that on
page 63 shows that G* contains an element

ol
I~, y E Sp(2k,q) ot order qk+1• It b is an integer



b 2k'such that x has order not dividing q -1 for any k' < k
then CG*(xb) consists of elements I yt 01

o z, t integral,
Z E SL(2,q). Write C = CG*(x).

N = NG*«x» = <C,a>, where a = A 0

o 12 satisfies the
relations a2k = 1, axa-1 = xq•

Write Ii = H x K, where H = <x,a> and K ~ SL(2,q). We
consider the action of G* on n with regard to the orbits of N.

In the notation of §4 let ~ be the cyclotomic polynomial
for 2k and write ~+1 = ~t. Let 1 be the product of the
distinct prime divisors of k. Put Iq = (,(q),t(q». Ey
LemJI,a12, 1q11 and (~(q),zx) 11.

Write z = xt(q). z has order ,(q). Let IT be the set of
prime powers dividing ~(q) and coprime to 2k. If u is the
product of the maximal prime powers in D, we have that
(q)/llu. Let s = soe E IT, So prime and let S = <zb> be the

unique subgroup of <x> of order s.
If k t < k, (s,q2k'-1 )I(qk+1,q2k '-1 ). Now

(q2k_1 ,q2k'-1) = q2(k,k')-1 and
(qk_1,q2k'_1) = q(k,2k')_1 = q(k,k')_1. Hence
(qk+1,q2k'_1) = q(k,k')+1 It(q). Thus

2k' 2k'(a,q -1)I(cp(q),t(q» = lq. Since S/lq we have s/q -1.
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Theretore CG*(S) = C, NG*(S) = N.
So is coprime to Iq' as lqlk, so So is coprime to

(G*:<z». A Sylow so-subgroup 01' <z> is therefore a Sylow
Ba-subgroup 01' G*. As on page 64 we deduce that S is
lIronormal in G*.

Let rs be the set 01' points of n tixed by S. If lr si = ms
then either ms = 0, m = 1 or ms :> 2. In the last cases
N = NG*(S) is doubly transitive on rs.

Consider the following tour possibilities:
(1) ms = 0

(2) ms = 1 • By Leama 8, x tixes exactly one point of n.
(3) x fixes the points 01' ra ' x tixes no other points 01' fl..s = 2 or q+1, any q,

2 and q = 2,
3 and q = 3,
6 and q = 4, or
6 and q = 9.

m(4)ms is a prime power, ms-112k, x s fixes the points 01'

rs and x acts transitively on rs. x fixes no point of fl.

We see from Lemmas 6,7,8 and 9 that these are the only
possibilities.

It (1) holds, we have tromLemma B that the S-orbits ot'fl
each have length divisible by sO' so sOln. As So is coprime to



IBI and nl IBI we have a contradiction.
If (2) holds then for all s' e n ms' = 1. By the argument

of page 65 we have that s' In-1 for all such s'. Hence uln-1
and q> (q)/lln-1 •

If (3) holds, it holds for every s' E ITand ms = ms' = m
for all s,s' E IT.By the same sort of reasoning we have
q>(q)/lln-m with m taking one·of the values mentioned in (3).

If (4)holds then it holds for all Sf E IT.Suppose first
that every ms = 2. x2 must fix exactly 2 points of fl, so for
each s, the corresponding subgroup S fixes the same 2 points.
Hence we get q>(q)/1In-2.

Suppose now some ms > 2. If ms = ms' = m for all s E ITwe
get q>(q)/lln-m as before. If in this case m is a prime power
coprime to 2k then m E ITand so mln-m. Therefore min,
contradiction. Hence ml2k. Since m divides the order ot y,
q>(q), as well we get ml(q>(q),2k)ll. Hence m is a prime
dividing k.

Finally, suppose that for some s,s' E IT,ms F ms'. The
x-orbits r and r , are disjoint. Now we know thats s
m m f

x s fixes the points of rs and x s fixes the points of rs'.
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{ms,ms'}x is therefore divisible by no prime powers S E IT,

and therefore divides (qk+1 )/u. Thus ullms,ms' [, Since
~(q)/llu we have ~(q)/ll{ms,ms'}. Now ms and ms' are bounded
in terms of r, for ms-1 12k = 2r+1_2. Therefore only a finite
number of prime powers q can satisty the relation
,(q)/ll{ms,ms'} for each r. We ignore these primes. In fact
it is easily shown that the only case we are dismissing 1s
PSp(8,2).

We have deduced that q>(q)/lln-m, where m may take one of the
following values:

(i)m = 1,2 or q+1,
(ii) m is a prime dividing k,
(iii) m = 2 and q = 2, m = 3 and q = 3, m = 6 and q = 4 or

m = 6 and q = 9.
2r+1 2r+1a q2r+1 q2 ( ()/ )Now n = q or 2q But mod, q 1 • Also

1f r > 2 it is easily seen that the degree of the polynomial
,(x), the number of coprime residues mod 2k, is greater than
2. Hence the relation q2 == m (mod ~(q)/l), whe:cem is one of
the above numbers, is satisfied for at most a finite number
of primes q for each r. This disposes of the case

2r+1n = q except for the case r = 2.
If r = 2, ,\x) = x2_x+1 and 1 = 3. So



q2 5 q-1 (mod ~(q)/l). Clearly only a finite number of prime
powers satis~y the relation q-1 5 m (mod ~(q)/l). This case is
theI'eforedisposed of as well. In f'act, we can again show that
we are only dismissing PSp(8,2).

2r+1aFinally, let n =2q • n-1 IIGI, so
2r

n-1 I IT (q2k_1). But by Lemma 11,
k=1
r+1 I( r+1)(2q2 a_1,q2k_1 )122k 2k,2 a -1. Hence

r+1 2r . r+12q2 a_1 I IT (22k/(2k,2 a)_1). Clearly only a finite
k=1

number of prime powers q can satisfy this equation.
The proo~ of Theorem A is now complete.
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