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ABSTRACT

In part A we consider three separate problems concerned
with the radical of the group algebra of a finite group over
a field of characteristic p dividing the order of the group.
In Section I we characterise group-theoretically those
soluble groups for which the radical of the centre of the
group algebra is an ideal of the group algebra. In Section
II we find a canonical basis for the radical of the centre of
the group algebra of a finite group. Ih Section III we give
an algorithm for determining the radical of the .roup algebra
of a p-soluble group. ‘e evaluate the result for groups of
p-length one and prove that the exponent of the radical in
this case is the same as for a Sylow p-subgroup. e show by
examples that no similar result holds in the general case.

In part B we quote a conjecture of J. A. Green's on
characters of Chevalley groups and prove
Theorem A (i) If the conjecture holds then, excepting for
each r at most a finite number of values of g, the group
PSp(2r+1,q) has no multiply transitive permutaticn
representations for r > 1.

(ii) Psp(4,q) has no multiply transitive
permutation representations for q > 2, regardles: of the

conjecture.
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RADICALS CF GROUP ALGEBRAS




PART A
RADICALS OF GROUP ALGEBRAS

Introduction.

In this part we consider three fairly separate problems
concerned with the radical of the group algebra of a finite
group over a field of non zero characteristic p dividing
the order of the group. In Section I. we characterise
group-theoretically those soluble groups for which the
radical of the centre of the group algebra is an ideal of the
group algebra. So we are characterising a certain class of
groups, albeit a very restricted class, by a purely
algebra-theoretic property of their group algebras. This is
an extension of the work of D. A, R. Wallace in the same
direction, in particular of his papers [11] and [12]. The
results of this section are to appesar in the Journal of the
London Mathematical Society.

In Section II. we consider the radical of the centre of the
group algebra of any finite group and find a basis for it
consisting of elements of special type. We relate the
radical of the centre to that of certain ideals of the centre,
associated with p-subgroups of the group, which appear in the
work of J. A. Green and A. Rosenberg. Unfortunately we have
been unable to use this canonical basis td say much about

the stucture of the radical of the centre.
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In Section III. we give an "algorithm" for determining
the radical of the group algebra of a p-soluble group in
terms of the radical for groups of smaller p-length. We
evaluate the result in the case of p-length one and prove a
result on the exponent of the radical in this case. The
corresponding result is not true for groups of p-length
more than one, and indeed it is difficult to conjecture
what the correct result might be. For the case of & non
soluble group, of course, the situation secems impossible.
There is almost no information as to what the radical might
be in such a case. The methods of Section III, depending as
they do on series of normal subgroups, are of little use.

Theorem 1. of Section III. has appeared in similar form in
my dissertation for the degree of M.Sc. at this University.
Notation.

Through this part p denotes a fixed prime, k an
algebraically closed field of characteristic p, C the
complex field and G a finite group. kG and CG are the group
algebras of G over k and C respectively and A = A(G) is the
centre of kG.

The standard notation of group and representation theory
is used. For example G' denotes the derived group of G and

Z(G) the centre of G. All kG modules are left kG modules. In

accordance with this convemtion, maps are written on the left,
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all transversals are left transversals and the symbol e

1, for x and y in a group G.

means yxy
If H< G and L is a kH module, LU is the induced module

kG ®kH L. If K is a kG module, KlkH is the restriction of K

to kiH.

Definition. The radical of a finite dimensional k-algebra A,

radA, is defined to be the maximal nilpotent ideal of A.
Since A is finite dimensional, radA is also the

intersection of the kernels of the irreducible

representations of A. We put for brevity

rad(kG) and

N = N(G)

M= M(G) radA(G).

Any more specialised notation used will be defined as it

occurse.
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Section I.

On_the Radical of the Centre of a Group Algebra

In this section we consider the radical of the centre of the
group algebra of a finite group over a field of non zero
characteristic, and characterise those soluble groups for
which this radicel is an ideal of the group algebra. ¥e shall
use R. Brauer's theory of blocks of modular characters, for
which we refer the reader to [3] Chapter XII.

As always, p is a fixed prime, k an algebraically closed
field of characteristic p and G a finite group. We shall
assume throughout this section that p||G|. N is the radical of
kG, A the centre of kG and M its radical.

Definition. Let J be the class of finite groups G for

which p| |G| and kG.M = M = M.kG.
Cur aim is to classify group-theoretically the p-soluble
groups contained in J.

1. Subsidiary Lemmas

The following result is basic:
Lemma 1. Let H A G, 3/|H| and e = héﬂh/lﬂl € kG. Then

kGe = k(G/H) under the isomorphism

6: ( 2 A_gle ———> 2 A_(gH). Moreover,
gsG g gea g

6(Ne) = N(G/H).

Proof, 6 is well defined and is easily seen to be an
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isomorphism of algebras. Hence 6(rad(kGe)) = N(G/H). We
therefore have to prove that Ne = rad(kGe). Now e is clearly

a central kG idempotent. Hence kG = kGe ® kG(1-e) as algebras.

Thus kG.rad(kGe) = kGe.rad(kGe) & kG(1-e).rad(ikGe)

rad(kGe) = rad(kGe).kG.

Therefore rad(kGe) is a nilpotent ideal of kG, and so
rad(kGe) c N n kGe = Ne. But Ne is a nilpotent ideal of kGe.
Hence Ne c rad(kGe). This proves the result.

Lemna 2. Let e be a primitive central idempotent of kG. If the
block kGe contains n ordinary irreducible characters then

If G has r ordinary irreducible characters and t blocks then

Proof. Let E be the central idempotent of CG corresponding to
e in the sense of [3] page 615. Decompose E into primitive

central idempotents: E = E1 + oo + En. The number of

summands equals the number of ordinary irreducible characters
belonging to kGe.

Now Z(CG)E = z(CG)E1 D .. @ z(CG)En and each z(CG)Ei is a
simple abelian algebra over C and therefore has C-dimension 1.

Thus dim Ae = dim,Z(CG)E = n. Now, by [3] page 607, Ae/Me = k.

n-1¢

Thus dimkMe dimkAe - 1

The second part follows lmmediately from the remark that each
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ordinary irreducible character belongs to exactly one block
of kG.

Lemma 3. Let e be a central idempotent of kG and suppose
M = Me. Then N = Ne.
Proof. Decompose 1-e into primitive central idempotents:
1-e = e1 + oee. + €. Then

0 = M(4-e) = Me, ® ... ® Me . Hence Me, = 0 for all i. Now
by Lemma2. this means that each block’kGei contains exactly
one ordinary irreducible character, and is therefore a block
of defect zero (see [3] page 6141 ). Hence Ne, = O for all i.

Thus N(1-e) = Ne, & ... & Ne, = 0. This proves the lemma.

1

Lemma L. Let G € J and write 0 = 2 B € kG. Then for all
geG

acM, ge G' we have ag = a and M c kGo.
If pl|G'| then M = kGo.

If pY|G'| then e = 6/|G'| is an idempotent and

M = rad(kGe) = Ne.

Proof. Let x,y € G, a € M.

ax—1y'1xy = y'1ax'1xy, as ax-1 € M.kG = M c A,

=y ey
= @ as a € M c A.
Therefore ag = a for all g € G'. Hence a € kGo.
1f plle'|, 6° = 0. Hence 0 € N n A = M. Therefore M = kac.
If p/]|G'| we have M c kGe. Now clearly kGe is central in kG

and so M = rad(kGe) = Ne.
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Corollary. If G € J and p/|G'| then N = M.
Proof. By the Lemma M = Ne and hence Me = Ne2 = Ne. Hence, by
Lemma 3, M = Ne = N.
Lemma 5. If G € J and H A G then either G/H € J or p/(G:H).
Moreover if p||H| then G' c H.
Proof. (4). Suppose pf|H| and write e as in Lemua 1. Wle have
an isomorphism 6 between kGe and k(G/H).

rad(zZ(kGe)) = rad(z(kG)e)

rad(Ae) = Me.

Hence kGe.rad(Z(kGe)) = kGe.Me

Me. Using 6 we obtain
k(G/H).M(G/H) = M(G/H). Thus G/i e J.

(2). Suppose p||H|. Then 1 = hz h is central in kG and
€H

12 = 0., Thus T € M. Therefore T = tg = 2 hg for all g € G'.

heH

Thus g € H and G' ¢ H. But then G/H is abelian, so the result
follows.

The following results of D. A. R. Wallace are important
for our classification:
Theorem 1. ([11] page 128). If G is a finite group, P a
Sylow p-subgroup of G and |P| = p? then dimkN(G) > p%-,
equality holding if and only if P has a normal complement H
and G is a PFrobenius group with kernel H.

Theorem 2. ([12] page 103). Let G be a finite group with



order divisible by p. Then N = M if and only if either

(1) G is abelian or

(2) if G has Sylow p-subgroup P then G'P is a Frobenius
group with kernel G'.

Lemma 6. If G is & finite group such that dimkM =1 then
dim N = 1 and G is 2-nilpotent. Also |G| = 2n with n odd.
Proof. Let x1, e ,xr be the ordinary irreducible characters
and Py eve 99Pg be the modular irreducible characters of G
and suppose G has t blocks. Then t € 8 € r and by Lemma 2.,

1 = dimkM =r - t. Now if s = r, every block of G has defect
zero and so p/|G|. But then M = 0, contradiction. Hence
s=t=0Dr-1.

Thus one block, say B1, contains one modular character ?,
and two ordinary characters X4 and Xos while Bi for 1 > 1
contains one modular character ?y and one ordinary character
Xi44* These latter blocks have defect zero and therefore
cannot contain the trivial character. Hence ?, is the

trivial modular character and Xy is the trivial ordinary

character.
Now for all p-regular elements g of G, xz(g) = z¢1(g)
= 201(1)
= x5(1),

where 2z denotes the degree of Xo. Thus if Z is the CG module

with character X0 L = kerZ contains all of the p-regular
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elements of G. So G/L is a p-group, which implies that G' £ G.
Hence G has a non trivial ordinary one dimensional character.
Such a character cannot be in a block of defect zero and so
must be Xo+ Hence z = 1.

Now dim N = (1+22) -1 = 1. The remainder of the Lemma now
follows from Theorem 1.
2. The Discussion of J
Lemma 7. If G € J then G' # G.
Proof. Suppose G = G'. Then by Lemma L, dimkM = 1. But then

by Lemma 6, G i§\2-nilpotent and so G' £ G, contradiction.
Lemma 8. A group G with a non trivial normal p-subgroup is in
J if and only if one of the following conditions is satisfied:

(1) @ is abelian or

(2) G is an extension of an elementary abelian p-group P by
an abelian p'-group H acting transitively on P-{1}, every
element of H either acting fixed point free on P-{4} or
centralising P, or

(3) G is an extension of a 2-group P by an abelian group
H of odd order such that G' = Z(P) has order 2.
Proof. (a). The necessity of the conditions:

Let G € J have a normal p-subgroup Q. If G' = {41} we have
case (1). Suppose G' £ f1}. By Lemma 5, G' ¢ Q Hence G has a
normal Sylow p-subgroup P.

Let x € Z(P)-{1} and write n = (G:CG(I)). Let a be the
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conjugacy class sum of x in G. Now Z(P) is characteristic in P
and hence normsl in G, so N(Z(P)) ¢ N(G). Thus 41-z € N for all
z € 2(P). Hence n.1 - a = 3(1-z) € N, sum taken over all
conjugates z of x in G. Also n.1 - a is in A. Hence n.1 - a
is in M. By Lemma 4. we have that for all g € G',
ng - ag = n.1 - a. Now as P c Cy(x), pAn. Comparing
coefficients, it follows that for all g € G'- {1}, g is
conjugate in G to x. Thus g € Z(P), so that G' c Z(P). But x
is conjugate to an element of G', so x € G'. This is true for
every non identity element of Z(P), so G' = Z(P).

We also know that Z(P)-{1] consists of one conjugacy class
in G. Hence Z(P) is elementary abelian.

write |Z(P)| = p¥. We have three cases:

1. Suppose pr = 2. As P A G, P has a complement H. H is
G/P is a homomorphic image of G/G'. Case (3)

n

abelian, for H
holads.

II, Suppose p° > 2 and Z(P) = P. Then P is elementary
abelian. Let H be a complement to P in G and suppose there is
a y in H such that y does not centralise P. Write
n = (P:Cp(y)). Since G' c P we have that the conjugacy class
sum of y in G is of form B = y(1+x2+ ceo +xn); x; € P.

Since P A G, 1-x; € N(G) for all i. Thus y(1-xi) € N and so
ny - B € N. Since p|n this means that B € N. As B € A, B € M.

Then for all z in P, Lemma 4 shows that § = Bfz. Comparing
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coefficients of z on each side gives that z = xiﬂfor some 1i.

Thus 8 = 32 yz. Therefore n = pr and y centralises no element of
zeP

P except 1. This is case (2).
III. Suppose p*¥ > 2 and Z(P) # P. Consider

X = U GG(x). If x € Z(P)-{1} the conjugates of x
x€Z(P)-{1}

are just the elements of Z(P)-{1} and so (G:CG(x)) = pi-.
|Cq(x)]

A

Thus |X]| b
x€Z(P)-§1}

(s¥-1)1al/(p¥-1)

= |G|. Therefore X # G and there is a y in G

centralising no element of Z(P)-{1}.

Put n = (G:CG(y)). As G/Z(P) is abelian, the conjugacy class
sum of y is of form B = y(1+x2+ ces +X); x; € Z(P) for all i.
Thus n € p'. Now we already have that CP(y) n 2(P) =4}
ICp(¥) 1. 12(P)]
|Pl/p".0"
|P|. Therefore CP(y).Z(P) = P, However

Cp(y)/Cp(y) n 2(P)
CP(y).Z(P)/Z(P) is abelian, for P' c G' = z(P).

Hence ICP(y).Z(P)I

v

Cp(v)

1}

Thus P is abelian, contradiction.

e have now shown that case III does not occur and that the
conditions of the Lemma are necessary. e now show their
sufficiency.

(b). If (1) holds, clearly G e J.
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Suppose (2) holds. G = PH, where P is a Sylow p-subgroup of
G and H is an abelian p'-group, every element of which acts
either trivially or fixed point free on P-{1}. We may assume
G is non abelian, and then G' = P.

2(6)
If x e(P—{1U, the conjugacy class sum of x is

ma = m3 z, m € 2 (6.
zeP-{1}

If x € Go(P .. 2(G)), (G:Cu(x)) = |P| and the conjugacy class

sum of X is 3 xz = x(1+a).
z=P

If x € Z{¢) then x is a p-regular element of G. A basis for
A therefore consists of the elements
(1) m; m € z(6),

(iiJma = m3 2z, m € 2(6),
zeP-{11

(1ii) m(1+a); m € H-Z(G).

A basis for N(G) consists of elements m(1-z), m € H,

z € P-{1}. Cne easily calculates that a basis for M = N n A
consists of elements m(1+a); m € H. Hence clearly M = kG.M
and G € J.

Suppose (3) holds. G = PH, where P A G is a 2-group and H
an abelian group of odd order such that G' = Z(P) has order 2.
Put Z(P) = {1,z}. If x € Z(G), (G:Cy(x)) = 2 and the
conjugacy class sum of x is x(1+z). A is therefore spanned by
elements x; x € Z(G) and x(1+2); x &€ Z(G).

A basis for N(G) consists of elements m(4-x); m € H,
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x € P-{1}. Hence M = N n A is spanned by elements g(1+z);
g € G. Thus clearly M = kG.M and G € J. This completes the
proof.
Corollary. A p—group P is in J if and only if either P is
abelian or P' = Z(P) has order 2.
Lemma 9. If G € J is p-soluble then G has p-length one.
Proof. By definition, pl|lG|. If G is simple, p = |G| and the
result is clear. Suppose G is not simple and induce on the
order of G. Let H be a minimal normal subgroup of G. As G is
p-soluble, H is either a p-group or a p'-group. If H is a
p-group, Lemma 8. applies and G 1s easily seen to have
p-length one. If H is a p'-group, Lemma 5. shows that G/H € J
and by induction G/H has p-length one. Hence so has G.
Theorem. G is p-soluble and G € J if and only if one of the
following conditions holds:

(1) @ is p-nilpotent with abelian Sylow p-subgroup P and
G'P is a Frobenius group with kernel G', or

(2) G is p-nilpotent with Sylow p-subgroup P and
p-complement H, P' = Z(P) has order 2 and G'P is a Frobenius
group with kernel G' n H, or

(3) G is abelian, or

(4) G has normal subgroups H, K such that H and G/K are
pt-groups, G o K o H, X/H = P, a Sylow p-subgroup of G, and
G' = H.Z(P). G/H € J and K is a Frobenius group with kernel H.
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Proof. (a). Assume G is p-soluble and G € J. If G is abelian
there is nothing to prove, so suppose not.

Suppose G is p-nilpotent. Let P be a Sylow p-subgroup of G
and H its normal complement. G/H = P and so by Lemma 5,P € J.
By the corollary to Lemma 8. we have two cases:

(4). Let P be abelian. Then G' c H and pY|G'|. By the
corollary to Lemma 4, N = M. Now by Theorem 2, G'P is a
Frobenius group with kernel G'.

(2). Let P' = Z(P) have order 2. Consider G' n H. This is a

p'-group. Further, defining f = 3 h/]G'nH| and
heG'nH
6= 2 h, we have 0 € kGf, since G' n Hc G'. By Lemma L4,
heG'
M = kGo c kGf. Hence M = Mf and by Lemma 3, N = Nf.

Now as G'P A G, N(G'P) c kG.N(G'P) c N(G). Thus
N(G'P)f
rad(k(G'P)f)

N(G'P)

IR

N(G'P/G' n H) by Lemma 1.

R

N(P), for @' = (G' n H)P'. Thus
dim N(G'P) = dim N(P)
= |P| - 1.
Now by Theorem 1, G'P is a Frobenius group with kernel
G' n H,
Suppose now that G is not p-nilpotent. By Lemma9, G has

p-length one and so has a normal series G o K 5> H o {1} such
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that G/K and H are p'-groups and XK/H £ P, a Sylow p-subgroup
of G. Choose the series such that (G:XK) is maximal.

By Lemma 5, G/H € J. Now G/H is not abelian, for if it were
G would be p-nilpotent. Hence by Lemma 8,

(G/H)' = Z(X/H) 2 2(P). So G'H = H.2(P). Now @' c K and
(G:XK) is maximal prime to p. Hence (X:G') is a power of p. e
therefore have G' > H and then G' = H.Z(P).

Define £ = 3 h/|H|, 6 = 32 h. By Lemma L,
heH heG'

M = kGo < kGf. Therefore M = Mf. By Lemma 3, N = Nf. Now as
N(K)f

K A G, N(K) c N(G) and so N(K)

rad(kKf)

114

rad(k(X/H)) by Lemma 4.

n

N(P).

Thus dimkN(K) = |P| - 1. By Theorem 1, K is a Frobenius
group with kernel H. This is case (4).

(b). Suppose (1) holds. By Theorem 2. we have that N = M.
Hence G € J. If (3) holds we come to the same conclusion.

Suppose (2) or (4) hold. In the former case put K = G.

Write f = 3 h/|G'nH|.
heG'nH

Dim N(G'P)f = dim N(G'P/G' n H)
dimkN(P)

|P| - 1

dimkN(G'P) by Theorem 1.
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Thus N(G'P) = N(G'P)f.
kG.N(G'P)

By [12] Lemma 6, N(G)
= kKG.N(G'P)f
N(G)f.

n

Hence M = Mf = M(G/G' n H), by Lemma 1. Now in case (2),

G/G' n H= (H/G' n H) x P e J, while in case (4),
G/G' n H = G/H € J. In each case write
T = 2 a and 0 = 2 h. Thenby Lemna—;
ac(G/G'nH)" heG'

—W(GAG A H) e k(G/G' A H)5. If 6 is the oencnicel -mep—Lrem—ko
~40-1(6/8' A-H); 6(c)= . Thus-U(G)} c 6~ (U(G/G" n H)) c kic.
In-faet M(G)=kie;,—LforpHG'}. Hence

kG.M = kG.kGo = kGo = M and G € J. This proves the theorem.

ey & ¢ M(GICPH) - B (6/cnm)T | ik Has

disncion (€1 G . Conschn £ Go. bCo ¢ MCC). Mo RGo
Loy oliremacin CC:C 7. Bk M(G)¥ M(C/CINH) Lona

R D Clne
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Section II.
A Basis for the Radical of the Centre

The purpose of this section is to use some concepts of
J. A. Green [6] and A. Rosenberg [8] to exhibit a canonical
k-basis for the radical of the centre of a group algebra. We
use the notation of the preceding section. As an example we will
take the general linear group.

Let H< K € G and {ti} be a transversal for H in K.

Definition. (kG)H = {0 € XG; o = o for all h e H}.

(kG)H is a subalgebra of kG. We have
(kG)H > (kG)g o (kG)q = A.

Definition. Ty x is the map from (kG)H to (kG)K given by
9
t.
P. (a) =3a *. T is clearly independent of the choice of
H,K s H,K

the transversal.

Definition. (kG)H g = InTy o = Ty K((kG)H) and
9 4 14

Ay = (KG)y g-
The various properties posessed by these entities are
indicated in [6]. In particular we have:
Lemma {.([6] Lemma 4h) If D, H € K < G then

(1) (kG)D’G c (m)K’G

(11) (k@) c 2 (k@)
HX ™ yex  'HD,D

(1i1) (x@)y ..(kG) c 3 (ka) .
H,K D,K < ek 'HK\D,K
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Definition. Let D € G and let I' be any collection of
subgroups of G all contained in K. Then D' denotes the set of
proper subgroups of D,

(k@)n = 2 (kG),, and
r Hel H

kG = G .
(k6)p,x = 2 (kG)g g
From Lemma 1. we see that (kG)D. g 1s an ideal of (kG)D g+ The
H ?
factor algebra (kG)D,G/(kG)D',G is denoted by W(D,G).
For the remainder of this section D will be a p-subgroup of G
end H its normaliser in G. Let R be any conjugacy class of G

and S the corresponding class sum in A. Define o(S) to be the

sum of all the elements in R n CG(D), if such elements exist,

zero otherwise. Since the class sums form a basis for A, ©
can be extended linearly to A.
Lemma 2.([{8] Lemma 3.3) o is a homomorphism from A(G) to A(H).
Keroc is spanned by the class sums S with R n CG(D) = ¢.

We use Rosenberg's definitions of the defect group of a

class and of & block:

Definition., Let R be the conjugacy class of G containing the
element x. A Sylow p-subgroup of CG(x) is celled a defect
group of R.

Definition. Let e be a primitive central kG idempotent. A
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defect group of the block kGe is a p-subgroup D of G such
that e € Ap, e £ Ap,.

By [8] 5.2, the defect group of a block is determined up to
conjugacy. The defect group of a class is obviously
determined up to conjugacy. We shall also speak of the defect
group of a class sum in the natural way.

By [6] page 142 we see that (kG)D,G is spanned by the
class sums wlth defect groups contained in D.

Lemma 3. o gives rise to an isomorphism

Tt : WD,G) ———> W(D,H).
Proof. 0 may be restricted to (kG)D,G' From Lemma 2. we see
that keroc n (kG)D,G is spanned by those class sums S whose
defect groups are in D'. So we have a monomorphism

W(D,G) ————> A(H). Now [8] Lemma 3.4 tells us that the
image of this map is spanned by the class sums of A(H) with
defect group D. Now by [8] Lemma 4.4 these classes form an
algebra which must be isomorphic to the algebra
(kH)D’H/(kH)D.’H = W(D,H). Hence the result follows.

Lemma L. radW(D,G) = (Ap n M + AD.)/AD,.
Proof. (AD nM+ AD')/AD' is a nilpotent ideal of W(D,G) and
is therefore contained in rad W(D,G).

Let x € A, such that x + Apy € radW(D,@). For every one

dimensional representation ¢ of AD over k such that
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@(AD,) = 0 we have ¢(x) = 0.

Let e <ee €, be the primitive central kG idempotents

1’
corresponding to those blocks with defect groups not
containing any conjugate of D. Put
r
y= 2 xe, . Let ey correspond to a block with defect group
i=1

C. xe; € Ap.A; © Apr by Lemma 41(iii). Hence y € A -

Let ¢ be a one dimensional representaticn of A over k. If

®(Ayr) = 0 then ¢(y) = 0 = ¢(x). Hence ¢(x-y) = 0. Suppose
¢(Ap1) £ 0. Then by [8] Lemma 3.2, ¢ belongs to exactly one of

the blocks kGe;, that is for exactly one 1 we have ¢(ei) =1,
while for all other j we have ¢(ej) = 0. Thus

o(y) = o(x)o(e;) = ¢(x) and ¢(x-y) = 0. x-y is therefore in the
kernel of every irreducible k-representation of A and so

x-y € M. So we have

Let 1 be a complete set of pairwise non conjugate

p-subgroups of G. For each D in 1 let np be the number of

conjugacy classes of G with defect group D, and m the number
of blocks of G with defect group D.

Lemma 5. (i) For each D, dim radW(D,G) = np - my.

(i11) M= 3 (A, N M - Ay n M) as a disjoint sum of
Den D D
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vector spaces.

Proof. (i). Since np, my and W(D,@) are unchanged when passing

to H = NG(D), we may assume D A G.

Dim W(D,G) = npy. Let W(D,@) contain sy primitive central

idempotents. As W(D,G) is an abelian algebra it is easy to see
that dimkradW(D,G) = np - 8p. Now by (8] 4.4 a primitive

central idempotent of kG lies in the algebra
Ap = Apy = W(D,G) if and only if it corresponds to a block of

kG with defect group D. Moreover an idempotent is primitive
in A if and only if it is primitive in AD - AD' . Hence

sD = mD and the result follows.
(ii). pim,M = 3 npn - 2 m
" pen ¥ Den P

3 dim_radw(D,G)
pen K ’

- ai ' .
Dindimk(AD nM)-a mk(AD n M)

Since (AD1 nu- AD; nM)n (AD2 M- Ay 0 M) = ¢ for

D, Z D, € 2, the result follows.
Un account of this result we may choose a basis for M
consisting of elements of form

X = ixasa + ngSB, where the 5, are class sums having a

common defect group D, say, the S‘3 8ll have defect groups
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properly contained in D and some A Z 0. x has a well
defined defect group D. e call such a basis a canonical
basis for M.

To apply Lemma 5. to find M, one need only consider those D
which are defect groups of a block. For if D € 1 is not the
defect group of a block, W(D,G) is nilpotent. Let
e, ... se, be the primitive central idempotents of ki
corresponding to blocks of defect group containing D. Then
from the proof of lLemma L. we see that the elements

§ SZei; S a class sum with defect group D | form a basis for

One might hypothesize that A(G) = & W(D,G), since the
Denn

corresponding identity is true for representation algebras.
This hypothesis is false, however, because W(D,G) can be a
nilpotent algebra, whereas A(G) cannot have a nilpotent direct
summand.

Example.

We 1llustrate these results for the case G = GLn(q), q = pr,
k of characteristic p.

Let m be the p' part of the exponent of G, £ a primitive
m'th root of 1 in the complex field C and x a primitive m'th
root of 1 in k. Extend the map 6: £ -+ x to an isomorphism

between the groups of m'th roots of 1 in C and in k. For any
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matrix A in G write d(A) = 671 (detA). It is known that G has
exactly g-1 ordinary irreducible characters of defect zero,
Pos eee 1P oo related by ¢i(A) = @O(A)(d(A))i. See for
example [4] page 49 . Here ¢, is the Steinberg character of
G (see L10]).

A complete set of representatives for conjugacy classes of
defect zero in G consists of matrices

A = C1

Cs
| , ¢, a1l aifferent, where C, is the
companion matrix of an irreducible polynomial of degree my
over GF(q). An elementary calculation shows that
m, m,
lcg(a)] = (g '=1)...(a "=1).
As before we write A for the centre of kG and M for the

radical of A; We find A. N M - AD' n M for each element D of

D
a complete set Q of non conjugate p-subgroups of P, the
Sylow p-subgroup of G.

(1). D= {1}. Let ®ys +e+ sWy_o be the linear characters of

q
Z(CG) corresponding to Pps e 2@

EJ__ x ¢1(A)

wi(A) = ICG(A)| ¢1(1)

a#3(B=1) (1) ... (1) (=) T(a(a))}

q-2° By definition

(@ '=1)eu.(a T=t)giR(m1)
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Hence the linear characters wi of A obtained by taking the
above expression modulo p are given by

V(&) = (<1)B(1 )2 (deta)/(-1)7
(detA)i.

Now AD N M consists of those elements of A.D in the kernel-s
of every y;, as one sees from (8] L.4. For each p € GF(q)*,

the multiplicative group of GF(q), let Rp .o Rp be the

1 n
o)

conjugacy classes of elements of G with defect zero and
ces 39 the corresponding class sums

P
n
P

determinant p, and Sp ’
1

in A. Consider the elements Sp - Sp s 3 A1, p € GF(q)*.

1 J
These are all in the kernel of every wi and are therefore in
AD N M. Since they are linearly independent, they span a

subspace of Ap of co-dimension g-1. However the wi are all
linearly independent and therefore span a subspace of AD of

the same * dimension. Hence we have a basis for Ay 0 M.

(2). Let {1} < D < P and let e be the sum of the central
kG idempotents for blocks of defect zero. G has no blocks of
defect group D ([4] page 19 ). Hence for any class sum S with
defect group D, S(1-e) is & basis element for
AD nM- AD' n M.

(3). Let D = P. Let P be the set of upper unitriangular
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matrices. H = NG(P) consists of upper triangular matrices

and C;(P) of matrices of form a| 1 B
108
O 1], o £ 0. Call this
matrix aI.zB.

The H-conjugacy classes in CG(P) are of two types:

(1) R, = {aIl, a € GF(q)*,

(ii) R& = {aI.zB; B € GF(q)*l, a € GF(qg)*. Call the

corresponding class sums S  and S&. Now N(H) has basis

{al - aI.zB; a,8 # 0}. Hence the algebra A(H)P - A(H)P.

spanned by these class sums has radical with basis the

elements T, = S  + S&; a £ 0. The elements T, + A(H)P. thus

give a basis for radwW(P,H).

1"

Let U, U& be the conjugacy class sums in kG "containing"

the elements al, aI.zB respectively. Let e be as in (2). From
Lemmas 3. and u..we see that the elements Sa + S& + AP' form
a basis for radW(P,G) and the elenents(Sa + S&)(1-e), a £ 0
form a basis for AP nM- AP' n M. This completes the

canonical basis for M.
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Section III.

Radicels of Group Algebras of p-soluble Groups

As before, p denotes a fixed prime, G a finite group and k
an algebraically closed field of characteristic p. In this
section we give an algorithim for determining N(G) in the
case when G is p-soluble. /e calculate the radical explicitly
for the case of p-length one and make some remarks on the
exponent of the radical.

If M is a left kG module, ®(M) denotes the Frattini
submodule of M. ®(M) = N(G).M is the smallest submodule L of
M such that M/L is completely reducible. See [4].

1. Useful Lemmas

Lemma 1. Let H be a normal p'-subgroup of G and L an
irreducidble kH module. Write E = End,4(L%), F = rad E and

N = N(G). Then, using the natursl action of F on LG,
o(L%) = N.1% = F.1% and for a11 i, NT.LY = F1.18.

Proof. We may take L = kHe for some primitive kH idempotent e,
and LG = kGe. Write 1 = e + e, + «.. + €., & sum of

primitive kH idempotents.

kG = kGe @ kGe,, @ oo @ kGen as left kG modules. Hence

2
o(1%) = N.1% = Ne = kG.Ne

kGeNe + kGezNe + ee. + kGenNe as left
kG modules, where the sum is not necessarilly direct.

Now e kGe = HonkG(kGei, kGe) under the map
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a-+ @ € HomkG(kGei, kGe) such that ¢(b) = ba for all b in

kGei. We use this fact to show that Ne = kGeNe.
Let £ and fi be the primitive central kH idempotents

corresponding to e and ey respectively. Denote by NG(f) the

group of elements of G commuting with £ and by T, Ti left

transversals for NG(f) and NG(fi) respectively in G. Then

F= 3 £8 ana Fi = 2 fig are central kG idempotents. Also
geT geT;

Ff = £ and Fifi = fi. Now if £ and fi are not ccgugate in G,
FiF = 0. Hence eikGe = eifiFikGFfe = 0.

Suppose f and fi are conjugate in G, say f = fig. Now
eigr = (eifi)g = eig. Hence eig and e are in the same kH
block kHf. Since k has characteristic p and p)|H| we may use
ordinary representation theory to deduce that kHe = kHeig.
Thus kGe = kGeig = kGei. We claim that in this case,
eiNe = eikGeNe. For there is an a in eikGe such that the.-ap
¢: kGe; —» kGe given by ¢(x) = xa is an isomorphism. Hence
there is a b in ekGe; such that ¢-1(y) = yb for y in kGe.

1¢ is the identity map on kGe,, and ¢_1¢(x) = xab.

Now ¢~
Hence e; = eiab = gb, as a € eikGe. Now let ¢ € eiNe. Then
bc € eNe and ¢ = e;c = abe = a(bec) € e kGeNe. Thus

eiNe c eikGeNe. Since the reverse inclusion is obvicus, we

have equality.
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Hence kGeiNe = kGeikGeNe c kGeNe.

Therefore Ne = kGeNe = (kGe)(eNe). Now by [3] 54.6 we know

that eNe and F are anti-isomorphic as rings. Hence

N.L

¢ - F.LG. Thus our result holds for i = 1.
Suppose Nj.LG = F'j.LG for all j < i, that is
Ne = kGe(eNe)9 (1)
Multiplying (1) on the left by N gives
NIt = (Ne)J+1 (2)
Multiplying (1) on the right by Ne gives
(Ne)(Ne) = kae(eNe)I*?. (3)
Hence Ni*le = (Ne)l*', taking (2) with j = i,

= (Ne)l(Ne)

(Nle)(Ne), taking (2) with j = i-1,

kGe(eNe )1, taxing (3) with j = 1.

Therefore Ni+1.LG = Fi+1.LG. Hence the result follows by

induction.

Definition. If H A G and L is a kH module, the stabiliser

S

of L in G, Ni.L

= S(L) of L in G is defined by S = {g € G; L8 = L}.

S is a subgroup of G containing H.

Lemma 2, In the situation of lLemua 41, if S is the stabiliser

¢ _ ken(s) .15 for all i » o.

Proof. First we prove the well known result that

Ende(LG) = EndkS(LS) as rings.

Let 819 oo 284 be a left transversal for H in S and
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g1, cee gy & left transversal for H in G.
s

LS - ® gy ® L may be embedded naturally as a kS submodule of

1

¢ -

_s@s

gy ® L and L may be embedded naturally as a kH submodule

of LS.

Let © € End ((L°) and define ¢: End, (L%) ---> Eng,,(1%)

by putting ¢(6) = 6' such that
3'(81 ® 1) = gie(l), leel, i=1, ... ,n and extending
linearly to LG.

Let g € G. There is a j such that £8y = gjh, h e H.

Hence 6'(g(g; ® 1)) = 0'(g; ® hl)
gje(hl)
gjhe(l)
gg;6(1)

5 G-
86'(81 @ 1). So 8' e Ende(L ).

Let ¥ Endks(LS). Clearly 6' + ¥' = (6 + ¥)'.

6'v'(g; ® 1) = 6'(g;¥(1))
= 816'*(1)
= g,0%(1), as 6'| , = O,
gi *( ) LS
= (6*)'(81 ® 1). So06'y' = (6y)' and ¢ is a
homomorphism.

Let 6 € kergp. As 6' = 0, 6" g = 6 = 0. Hence kerp = 0.
L
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Finally, let ¥ e Ende(LG). Denote by x; the projection
from LY onto g; ® L, 1 =1, ... ,n. If j < s,

xi*'gj®L € Ho‘kH(gj ® L, g ® L). Now as g; ® L is for all i

an irreducible kH module, HonkH(g;j L, g; ® L) = k if

gj ® L = gy ® L, = 0 otherwise. Now gj ® L = g; ® L if and

only if i < s, so if i > s we have xiwl = 6. Thus

gj®L
S
L L
' —
6'(g; ® 1) = g;6(1)

gs¥(1)
v(g; ® 1) for all i and 1.

Hence 6' ¥ € Imp. ¢ is therefore the required isomorphism.

Under this isomorphism, 6 and ¢(6) have the same action on

1.6 _ Gyyi 2
L. Thus N .LY = (radEnde(L )) 2g; ® L, by Lemma 1,
1

n Gy\i
fgj(radEnde(L )L

n Syy\i
fgj(radEndks(L )L

c k6N(s)*.15 by Lemma 1.
The reverse inclusion is proven similarly. Hence the result
follows.
Lemma 3. Let Q be a normal p-subgroup of the finite group G
and let ©: kG —> k(G/Q) be the natural homomorphism. Then
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N(G) = 87 (N(a/Q)).

Proof. As Q is a p-group, N(Q) = { 2 aph; 3oy = 0}, so
heQ

ker6 = kG.N(Q) c N(G). Now N(G) is the intersection of the
kernels of all the irreducible representations of kG. Since
ker6 c N(G), every such representation may be regarded as a

representation of k(G/Q). The result therefore follows.

2. p-Soluble Groups

We use these results to give an "algorithm" for determining
the radical of the group algebra of a p-soluble group G with
p-length n. We assume the radical is known for all groups
with p-length less than n.

G has p-series {1} € N, < P, ee. <P, SN, =G Ni/Pi is
the maximal normal p'-subgroup of G/Pi and Pi/Ni—1 the
maximal normal p-subgroup of G/Ni_1.

et 1 =e, + ... + en be a decomposition of 1 into a sum of

1

primitive XN, idempotents. Let the irreducible kNo module

0

G

Li = kNoei have stabiliser Si in G. L1 = kGei.

kG = ekGe1 aLiG as left kG modules. Therefore
i i
G Sy
N = ?N.Li ekG.N(si)Li
i
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So we must determine Q(Li 1) for every i.

Consider the series {1} < M; < ... < Q, € M, = S; obtained
from the p-series of G by intersecting each term with Si'
My = Ng n §; = Njy. Now if some p-factor Q;/M; , is trivial,
Si has p-length less than n and its radical is known. So
suppose no p-factor is trivial, in particular Q1 > MO.

S,
Now E = End g (L, 1y ¥ B, a twisted group algebra over
i

(Si/NO)*, the opposite group to Si/N,. For see [2] page 162
for a more general version of the same result. Moreover we
see from Remark 5. on page 155 of the same paper that there
is & group T with a cyclic central p'-subgroup K and a kK
idempotent £ such that

(i) B = kTf as algebras and

(ii) (T/K)* = §/NO.

T has a p-series {1} < K <R, < K, < ... <R <K =T,

1 1 n n

mi/mo, (Ri/K)* = Qi/MO. Now let U be a Sylow

n

where (Ki/K)*

p-subgroup of R As K is central in R1, U is unique and

4
therefore characteristic in R1. Hence U A T.

T/U has p-length less than n, for a p-series for T/U is
obtainable by factoring the p-series for T by U. Hence we can
find N(T/U). By Lemma 3. we can find N(T) and therefore

radB = N(T)f and radE. However by Lemma 1.
S
i

i

S,
¢I>(Li 1) = rade.L, '. Hence we can find N(G).
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In fact, by a well known result which we will now indicate,
we only need to find N(Pn) :
Definition. Let R be a ring and P a subring of R. 4(R,P) = 0
means that every exact sequence of R modules splitting as
P modules splits over R.
Theorem. ([13] page 28.) In the above notation, suppose that
d(R,P) = 0 and that R is a free P module with basis {ui}
such that u;P = Puy for every i and the map o: p - p' given
by wp = p'ui is an automorphism of P for every i. Then
RadR = R.radP.
Lemma 4. Let H be a normal subgroup of the finite group G of
index prime to p. Then N(G) = kG.N(H).
Proof. From page 373 of [7] we have that d(kG, kH) = 0. For
a basis of kG over kH we just take a transversal for H in G.
The hypotheses of Villamayor's theorem are now clearly
satisfied.

3. Groups with p-Length Cne

The above method does not appear to enable us to find the
radical of kG explicit ly. However we can do this if G has
P-length one.

Let G have p-length one and p-series
{1} < Ny <P, &N, = 6. N(G) = kG.N(P, ), and F, is p-nilpotent.
e may therefore assume that G is p-nilpotent. Changing the
notation somewhat, let G = HP be a p-nilpotent group with

Sylow p-subgroup P and normal p-complement H. Let
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1 = €4 + cee0 + € be a decomposition of 1 as a sum of
primitive kH idempotents. Put L; = kHe; and let Lj have
stabiliser Si = HQ,i in G. Here Qi is a Sylow p-subgroup of Si
and we may as well take P O Qi’

Sil

S
_ i
Now E = Endksi(Li ) = Hom, ,,(Lj, L,

i H) as k-spaces, via

S
the map 6 € E » GIL € Homp (L, Ly iIH), for 6 is completely
i

S
determined by its action on Li' Since L; i|H = ® g Li’
a€Qy

we have E = ¢ HonkH(Li, ae Li)‘ (1)
qui

Now we know from [9] that there is a unique kSi module X

such that XlkH = Ly. Let X afford the representation p on §,.
For each q € Q, the map Tq: Ly -=—->a® L; given by
4
Tq(l) =qg®p(a M), 1¢ L;, is a kH homomorphism. For if

a® p(a™)(n1)
qQ® p(q'1h)1 by definition of p,

h € H, Tq(hl)

a e pla'ng)p(a™

g.a"'hg ® p(a7")1 as q"'hg € §,

h.Tq(l). Thus as HonkH(Li, qae® Li) = K, Tq
gives a k-basis for it. {Tq; q e 9} is therefore a k-basis
for the right hand side of (1). E therefore has k-basis

fnq; q € Q}, where Mq is defined by
p:



1 - t
n4(a" ® 1) = a'n(1 @ 1)
= q¢'ae® p(a ).
Now "qnq' = nq'q’ Hence E = kQ*, Q* being the opposite

group to Q, and radE has basis {n1 - Mg a€Q - {111.

Define n(q,1) =1 ® 1 - a® p(a™ 1)1, 1 € L;. Let W be a set

of basis elements for Li'

S
Theorem 1. A basis for <I>(Li i) consists of the elements

n(a,1); a € Q - {1}, 1 eW.

Proof. These elements are clearly linearly independent. Now
. S4 Sy S

as Q(Li ) = radE.L; ~, o(Ly ) is spanned by the elements
(ny -mg)(a' ®1); a€Q - {1}, ¢' €4, 1 eW. But

(ny -ng)(g"®1)=q"@1l-4q'qe (a1

-n(q', p(q')1) + n(a'a, p(qa')1). Thus

(ny, - nq)(1 ® 1) = n(q,1). Since m(q,1) is linear in 1, the
result follows.

Now N(G) = = N(¢).L,®
i
Sy
=3 kG_Q(Li ), which can be calculated.
i

Definition. The exponent of N(G) is the least integer n such

that N(G)® = 0.
~V(G)
W2 are now in a position to deduce the exponent of .& for

the case of p-length one.
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Theorem 2. If G has p-length one and P is a Sylow

p-subgroup of G then N(G) and N(P) have the same exponent.
Proof. Ve may assume G to be p-nilpotent and use the
previous notation.

Let © be the canonical homomorphism kG — kP and
consider the idempotent e = h2Hh,/|H| of kG. The elements

(1 - x)e; x € P span a two sided ideal I of kG, and clearly
6(I) = N(P). Since I and N(P) have the same dimension, they
are isomorphic as algebras and so I is nilpotent. Thus
I c N(G).

Let N(G)® = 0. Then I® c N(G)® = 0 anda N(P)® = 6(1®) = 0.

Suppose conversely that N(P)® = 0. We have that

N(G)® 2 N(e)PL, @

S.
? kG.N(Si)nLi 1 by Lemma 2,

S, S.
§ kG.{radEnd g (L; ~)}"L; * by Lemma 1.
1

Now as N(Q;) < N(P), N(@ )" = 0 for all i. Hence
N(Qi*)n = 0, applying an anti-isomorphism. Since
Sy Sivin
Endksi(L1 ) = kQ;* we have {radEndkSi(Li )I® = 0 for all i
and therefore N(G)® = 0.

Ve now give two examples to show that nothing can be
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salvaged from Theorem 2, even in the case of p-length 2.

Example 1. Take p = 2 and G the symmetric group on four

symbols. G is generated by elements a = (1234), b = (412)(34)
and ¢ = (123). A Sylow 2-subgroup of G is P = <&, b>, which
is dihedral of order 8. We show that N(P)u = 0 but

N(G)* £ o.

Jennings in [5] has investigated the exponent of the
radical for a p-group, and shown that it is the same as the
length of the R-series of the group. The R-series is a series
of subgroups defined by

Ry = P

( ) 9reafesé
ha) -
<[Ri_1,P], R[i/p] >, where [i/p] denotes the leest

Ry
greoaten

integer not less than i/p and R[i/pﬁp) denoted the group

generated by the p'th powers of the elements of R[i/p]' It is

easily seen that for P = <a, b; a"L = b2 =1, baba = 1> we
1. Hence N(P)“ = 0.

_ _ 2
have R1 =Py, Ry = R3 = <a™> and Ru

2
Consider the idempotent e =1 + ¢ + c2 of kG and write

U = kGe. Since kG = kGe @ kG(1-e), U is a direct summand of

kG. Define the descending Loewy series of U,

_ i

greatest completely reducible factor of U; ( see [1]). Let n

be the exponent of N(G). N(G)® = 0, so n » r. We show that



37.

r> 4.

U, being a direct summand of kG, is a direct sum of
principal indecompcsable kG modules. Now U has dimension 8,
and each principal indecomposable kG module has dimension
divisible by 8 ([3] 84.15). Hence U is indecomposable. But
then U has a unique maximal submodule U, = N.U ([3] 54.11).
One easily sees that N(P)e is a submodule of U, and as N(P)e
has dimension 7 it is maeximal in U. Hence u, = N(P)e.

Write @ = <a2, b> A G.

N(P) = k{1+x; x € P - {11}

kP.N(Q) + ki{1+al.
Hence U, = kP.N(Q)e + ki1+ale. Now as Q A G, N(Q) c N(@g).
Therefore U, = N(G).U, > N(Q).U,
= kP.N(Q)%e + N(Q)(1+a)e.
N(Q)2 has basis 1+8%+b+ba’. So N(Q).U1 has basis
{(1+8%+b+va’)e, (1+a+b+ba)ae, (1+a2)(1+a)e, (14+b)(1+a)e}.

Thus U, /N(Q).U, has basis {x, = (1+a)e, X, = (1+a°)e,

Xy = (1+b)e }. Here the bar refers to the coset of the
element with respect to N(Q).U1.

By using the relations ca = a3bc2, cb = a2bc and ca2 = be
it can easily be calculated that in the representation p

afforded by the module U1/N(Q).U1,
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pla) =100 ple) =100
111
001, 111].

Now as U1/U2 is the greatest completely reducible factor of
U1, it is the greatest completely reducible factor of
U1/N(Q).U1. An easy calculation shows that U1/N(Q).U1 has no
one dimensiopgal submodules. As i1t has a one dimensional
factor module, it is not completely reducible. Now the
submodule k{x,, x3} has no one dimensional submodules and so

is irreducible. Therefore the only possibility is that

Up/N(Q).U, = kix,, x3}.

Uy, = N(Q).U, + k(1+a%)e + k(1+b)e
= kP.N(Q)ze + N(Q)(1+a)e + k(1+8%)e + k(1+Db)e.
U3 = N(G).U2 ) N(Q).U2

= kP.N(Q)e + N(Q)%(1+a)e + N(Q)(1+a°)e +
N(Q)(1+b)e. N()> = 0. Hemce N(Q).U, is two dimensional,

being equal to kP.N(Q)Q.
Suppose U, = 0. We know from Exercise 1. on page 598 of [3]
that U has a unique minimal submodule of dimension 1. Hence

U, has dimension 1. This contradicts the fact that

3
Us 5 N(Q).U,. Hence U, # 0 and so N(&)* £0.

Example 2. Let Q be the quaternion group:

Q =<4, j, k, d; 1j =k, 1% = 32 = k2 = a4, d@? = 1>. Consider
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the group ¢ = < Q, b, ¢, ¢ 'ic = J, c-1jc = k, b 1iv = 1-1,

b'1jb = k'1, p1ep = c'1, vl = ¢ = 1>. G 1s an extension

of Q by S the symmetric group on 3 letters. e take p = 2.

39
G has Sylow 2-subgroup P = < Q, b>. The R-series of P is
Ry =P, Ry = Ry = <i>, R, = Rg = Rg = R, = <&, Rg = 1.
Hence N(P)® = 0, N(P)7 # 0. We show that N(G)' = 0.
First we compute the powers of N(Q).
N(Q) has basis {1+x; x € Q - {11}.
N(Q)% has basis {1+d, 1+1™1, j+i~1, kek~1, 1+i+j4k].

1 1 q+dekax1}.

N(Q)? has basis [{1+d+i+i™!, 1+d+jes”
N(Q)u has basis {o = 1+d+1+i°1+j+j_1+k+k_1}.
N(Q)? = o.

These are easily checked.

Let 6 be the canonical map k¢ —> k(G/Q). By Lemma 3,

N(@) = 0”1 ((G/Q)). We must therefore find the radical for

G/Q = S3.
.Sz has character table 1 (12) (123)
g |1 1
Z, |1~ 1

Now for p = 2, S3 has two p-regular conjugacy classes and
therefore two distinct modular irreducible characters ([ 3]
83.5 ). g, is irreducible mod 2, being a linear character, and
;B is irreducible mod 2 by [3] 86.3. Hence the irreducible
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representations of k83 have dimensions 1 and 2 and N(SB)’
the intersection of their kernels, has dimension
6 - 12 - 22 = 1, and basis element e = (1+(12))(1+(4123) + (132))
Write E = (1+b)(1+c+c2). Then 6(E) = e and
N(G) = kE + ker®é
= kE + kG.N(Q).

Now N(G)7 is a sum of "words" of form

m1 I].,1 mr nr
kE '(kero) ... E "(kere) *, where 3 m;+n; = 7. We show that
i

every such word is zero.

Since Q A G, kG.N(Q) = N(Q).kG and therefore the above word

is contained inlerO% where 1 = 2 n, . Hence for this word to
i

be non zero we must have 1 < 5. Moreover E2 = 0, hence we must

have m, = 0 or 1 and my =1 for i £ 0.

Now EiE Ei(1+b)(1+c+02)

E(14017 +ejebe i~ +cPkive®cT)

E(o+1+d). Therefore E(kero)E has basis E(o+i+d).
However EB(4+1i+j+k)E = 3EiE = EiE mod 2. Therefore

E(kero)2E = E(ker6)E. This means that any word containing a
section E(kero)E can be replaced by a longer word. From these
remarks we see that the only possible non zero word is

E(kero )%E(kere )°E. But

E(kero )°E(ker6)%E = E(o+1+d)(ker)2E
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c E(kere)uE
= ECE

Ezo = 0, for o is central in kG. Hence

N(e)' = o.
In conclusion we note that more complicated examples exist
for p # 2. There seems to be no obvious way of generalizing

Theorem 2.
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PART B

PERMUTATION REPRESENTATIONS OF SYMPLECTIC GROUPS

Introduction.

In this part we consider multiply transitive permutation
representations c¢f some projective symplectic groups.

Many non abelian simple groups have multiply transitive
permutation representations, and it was at one time thought
that this was true for all non abelian simple groups. The
first counter example, PSU(4,L), was pointed out by Parker
in [10]. A proof of this result for the same group in its
guise of PSp(L,3) was given by Huppert in [6]. Here we
generalise the result considerably and give an infinite
class of simple groups with no multiply transitive
permutation representations, namely the groups PSp(L,q), q a
prime power greater than 2., In fact we show that, modulo an
almost proven conjecture of J. A. Green quoted in §L4, the
groups PSp(2r+1,q), r > 1, have no multiply transitive
representations, excepting for each r at most a finite
number of prime powers q.

There seems no reason why the methcds used should not apply
to a much wider class of Chevalley groups, except that the

complexity of the calculaticns would increase prohibitively.
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We begin with introductory sections on groups with B-N
Pairs, Chevalley groups and symplectic groups. The results
quoted here can be found in [1], [2] and [11]. Section 4
lists a few isolated results we need and in section 5 we
prove the main theorem.

1. Groups with BN-pairs.

Let G be a finite group with subgroups B and N.

Definition. (B,N) is a BN-pair for G if the following 3

conditicns hcld:

(1) @ = <B, N >

(ii) H=Bn N A N.

Write W = N/H, the eyl group of the BN-pair. If w € W,
w = an for some n, € N. For conv enience we write Bw for the
coset an.

(1ii) There is a set R of involutory generators of W such
that (a) if r €e R and w € W then

rBwB ¢ BwB u BrwB and BwBr ¢ BwB u BwrB,
(b) if r € R, rBr £ B.

For any subset J of R, define WJ as <J> and GJ as BWJB c G.

Theorem 4.([11] Prop. 2.2 )
(a) G; is a subgroup of @ and in particular G = Gy = BWS.

(b) If w, w' € W such that BwB = Bw'B then w = w'.

(¢) If J, J' c R such that G; = Gy then J = J'.

J'
(d) Every subgroup of G containing B is of form GJ for some
J c R.
(e) Each subgroup G; is self normalising.
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The GJ are called pardgbolic subgroups of G. The map J - GJ

gives a lattice isomorphism between the subsets of R and

the pardbolic subgroups of G.

Theorem 2.([11] Prop. 2.5 ) Let G, < G and write B, = B n G,,
N1 = NN G,. Suppose that HB1 = B. Then there is a subset J

1

of R such that HG1 = G1H =G

J.
As examples of groups with BN-pairs we have the Chevalley
groups. e now give a very brilef discussion of them.

2. Chevalley Groups.

For a fuller explanation of the results indicated here we
refer the reader to [2] and the bibliography of that article.

Let L be a simple Lie algebra of rank 1 over the complex
field, having root system I, ordered as usual. Let I* be the
set of positive roots and 3 the set of fundamental roots of L.
L has a C-basis {bi} with the property that

[by, bj] = iaijkbk’ a4 g integers. Let K be a finite field

of characteristic p and size q. Then we can define a Lie
algedbra LK over K by taking as a K-basis for LK elements

¢; with multiplication [c,, cj] = iaijkck‘ Here we take the

@4y modulo p. The Chevalley group L(q) is a certain finite

subgroup of the automorphism group of L.,.
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For each r € I, t € K, L(q) contains an element x,(t). The
xr(t) generate L(q). X, = {xr(t); t € K} is a subgroup of
L(g) naturally isomorphic to K¥, the additive group of K,
and known as a root subgroup of L(q). Writing [a,b] for the

commutator a'1b'1ab, we have the Chevalley Commutator

Formula
. i3
[xs(u),xr(t)] =1 jgo xir+js(cijrs('t) uY). Here r and s are
9
ir+jsell

independent roots and C is #1, 2, or 3, depending on the

ijrs
root system of the Lie algebra L. The product is taken in

increasing order of rocts.

U= 1 +Xr, product taken over roots in increasing order,
rell

is a Sylow p-subgroup of G. If m = |IY|, [U| = 4.

Write B = NL(q)(U)' U has an abelian complement H in B
such that [H| = (q-1)Y/d for a certain integer a depending on
L and q. H normalises each root subgroup.

For each r € I, write n, = X,(1)x_n(-1)x,(1). Then if

N = <H, n,; refl>, H=Bn N AN and N/H 2 W, the Weyl group
of the Lie algebra L. For each w in W choose n. in N such

that nw € W,
L(q) has BN-pair (B,N) with Weyl group which we may take to

be W. The involutory generators are the fundamental
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reflections W. T € z.
Theorem 3.(Chevalley) L(q) is simple except for Aw(z), A1(3),
B,(2) and a,(2).
3. Symplectic Groups.

Throughout this part we write G* for the symplectic group
sp(2¥*',q) and G for the projective symplectic group

t, D prime. We may look on G in any

Psp(2"*1,q), r 51, ¢ =
of three ways, as convenient.
(1) @* is the subgroup of GL(2r+1,q) consisting of all

matrices A satisfying A'JA = J, where

J=J01 o0 Q]
"'100 o e s 0
0
T 04
[ 0 -10

Factoring this group by its centre, the group of scalar

matrices in G*, gives G.

221‘ 2k " n
la] = q o, (¢“°-1)/d, a4 = (2,9-1). "Uncapped" matrices
kg2

will denote elements of G.
(2) Let V be a 2™*1 qimensional vector space over GF(q) with
basis {x,} and symplectic form b:
b(xi,xj) =1 1if j = i+, 1 odd
-1 if i1 = j#+1, J odd

0 otherwise.
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G* is the group of linear transformations of V commuting
with o.

From V we derive a 2r+1

-1 dimensional projective space P
as usual. G* has a natural action on the points of P, and
the permutation group on P so produced is the projective
symplectic group G.

The equivalence of (1) and (2) is fairly obvious. The
following equivalence is not obvious, but we have not the

space to prove it here.

(3) G is isomorphic to the Chevalley group Czr(q). So G

22r oT
has a BN-pair with |B| = ¢ (g-1)° .
We can be more explicit for r = 1: 02 has fundamental roots
P1, Py and positive roots p1, Pos Py+Po and 2p1+p2. For the

corresponding elements xr(t) of Cz(q) we may write

x, () =]10¢to0 x, (t) =1 000
1 04 00 2 0100
001 0 001 t
0-t 0 11, 0004],
(t¢) =]100¢t|] =x (t) =1 t00
o, +2, 01 00| 2P1P2 04 00
0t410 0010
0001], 0001
and x_,(t) = (x,(t))'. We also have H as the set of "matrices"
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A 0 O
R
0 0 p O
0 0 o, A, p e GF(q)*.
. 2 2
The Weyl group W of C2 is <w1, Woi WU o= WU o= (w“wz)l'lL = 1>.

Here Yy (P1) = =Dy Wy (P2) = 2P1 +Po»
Wz(p1) = P1 +P27 Wz(Pz) = =Py
Y. Little Lemmas.

For convenience we collect in thls section various
unconnected results and definitions which we require.
Lemma 4. Let A € K = GL(m,q) have the following form:

A = C1

Cr , each C; € GL(mi,q), Cy>» Cj for i £ j are not

conjugate in any linear group and Ci has order ry dividing

m
q i—1 but not dividing q1—1 for any 1 < m; . Then

By
lcx(a)] = I (@ =1).

This well known lemma may be obtained using Schur's lemma
and Theorem 7.3 on page 187 of [6].

Lemma 2.([9]) Let K be an algebraic group over the finite
field k. If x € K denote by X(Q) the element obtained by

raising all the cocrdinates of x to the q'th power. Then the
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map f: x - x-1x(Q) is a surjective map of K into itself.
Lemma 3.([13]) Let a group K have a k-ply transitive
Permutation representation on a set 1, L the subgroup of K
fixing some k points and U a subgroup of L such that for
every G-conjugate V of U contained in L, V is conjugate to U
in L. Then NK(U) acts k-ply transitively on the points of
f1 fixed by U.

Definition. If U is a subgroup of a group K, U is called
bPronormal in K if for all g € K, U and U€ are conjugate in
<u, Uu8s,

Evidently, if U is pronormal in K, Lemma 3. shows that
NK(U) acts k-ply transitively on the points fixed by U.
Lemma L. Let a group K have a k-ply transitive permutation
representation of degree n on a set 1. Let L be the subgroup
of K fixing some k points and U a subgroup of L fixing
exactly m points. Then
* N (U)] < |N, (U) Im(m—1)...(m-k+1 ). Equality holds if and only
every subgroup V of L conjugate to U in G is conjugate to U

in L. In this case
. . nin-1)...{n-kK+
** (K:Ng(U)) = (L:N,(V)) Rasr ok
Proof. * simply results from the fact that N (U) acts as a

permutation group on the points of f fixed by U, and NL(U) is
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the subgroup of NK(U) fixing some k points.

** ig a restatement of * in the case when equality holds,
and is seen to be a formula for the number of subgroups of K
conjugate to U. Each such subgroup is contained in exactly
Cﬁ subgroups of X fixing k points. There are CE subgroups of
K fixing k points, each one of which contains at least
(L:NL(U)) K-conjugates of U, and exactly that many
K-conjugates of U if the condition stated in the Lemma holds.
Hence the result follows.

Lemrua 4. is equivalent to Lemma 3. The fact that the right
hand side of ** is an integer is often a useful restriction
on m.

Lemmg 5. Let K have a doubly transitive permutation
representation of degree n on a set £, let a, B € 11, let KaB
be the subgroup of K fixing a and B and let p be a prime
dividing both n-1 and }KGBI . If Q is a Sylow p-subgroup of
Kyp then q = OP(NK(Q)), that is Q is the maximal normal
p-subgroup of its normaliser.

Proof. Let P = OP(NK(Q)) and suppose q§ fixes exactly m points
of 1. N = NK(Q) is doubly transitive on these m points and
as P A N, I acts either trivially or transitively on them

4 (modp). So P, being a p-group,

"
1]

([12] 9.9). Now m = n



53.

cannot act transitively on m points. Hence P acts trivially
on them, which means P c Kaa' But KaB n OP(N) = Q. Hence

P = Q.

Lemma 6. Let K = K

1
representation p of degree n on a set fl. Then either

x K, have a doubly transitive permutation

kerp > Kﬁ, kerp > K5, or n = 2.
Proof. Suppose not. K1 and K2, being normal in K, act
transitively on 2. Let a, B € 1. Take g € K1 with ga = B.
Consider KOL n K2. If h e Ka n X,,

hg = hgoa = gha as h € K2,

= ga = B. Hence h € kerp. Therefore

Ka N K2 c kerp and similarly Ka N K1 c kerp. We may therefore
assume K n K, = K, n K, = {1}. But then
IKﬁl = (K1:Ka nK)=n= |K,|. Hence |K| = n°. However
n—-||X|. Therefore n = 2.

We now look at the doubly transitive permutation
representations of metacyclic groups.
Lemma 7. Let N = <y,sa; yb =a% =1, aya'1 = y4 have a doubly
transitive permutaticn representation of degree m on a set I'.
Then either (i) m = 2 and the kernel of the representation is
<y, a2> or

(ii) m|b, m-1|c, m is a prime power, y® is in the

kernel and y is transitive on T.
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Proof. Let p be the representation. p(<y>) A p(N) is a
normal subgroup of a multiply transitive group so acts
either trivially or transitively on I'. If p(y) = {1}, the
abelian group N/<y> acts doubly transitively on I'. Hence
m = 2 and we have case (1).

Suppose p(<y>) is transitive on I'. As <y> is abelian, it
acts regularly on I'. Hence m|b and ym € kerp. Now
lp(N)| divides mc and m(m-1)||p(N)|. Hence m-1|c. m is a
prime power by [12] 41.3.
Lemma 8. Let a group K have a permutation representation on
a set f] and let I' be an orbit of some y € K. Let s be a power
of a prime s, such that s divides the order of y and let 2
have order s. Then if y" fixes any point of I' it fixes all

points of I', while otherwise sOIIPI.

i

Proof. Let yu fix a € T and let 8 € I'. For some i, y a = B.

Hence yuB = yuyia

- yiyua

= yia = B.
Suppose y® fixes no points of I'. y" permutes the points of

I'y soI is a union of y" orbits, each of which has length

divisible by s,. Hence sOIIPI.
Lemma 9, If K = SL(2,q) has a doubly transitive representation
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of degree m on a set I' then either

(1) m = g#1 or

(ii) g =2 and m =2, gq=3andm=2 or 3, q =4 and
R=6orq=9and m = 6.
Proof. Let o € I'. K has an irreducible character 4 of degree

m-1 such that 1K K = 1K + % as complex characters. For each
o

€ in K, Z(g) is a rational integer not less than -1.
Exaemination of the character table of SL(2,q), for which we
refer the reader to [8], yields the result.

We note that this result could have been proven by the
methods we use in section 5.
Theorem 4. ([3]) In the notation of §2, let Z be the set of
fundamental roots of L and J,K 3. Define the subgroup WJ

of W to be the group generated by the fundamental reflections
W

for the roots in J and define Gy = BW B. Write ¥y = 1WJ

G
1
Gy

6: ¥ = 2 a;¥; ~» x = 2 asx; 18 an isometry between the
J J

. Then the mapping

and X3y

complex vector spaces generated by the WJ and the X7 In fact
the scalar product (xj,xg) = number of (G;,Gg) double cosets
in G = number of (WJ,WK) double cosets in W = (tJ,wK).

We finish with some arithmetical lemmas.
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Lemma {0. For all integers u > 1, (q-1)% < q%+1-2¢4"7,

equality holding if and only if u =1 or 2 or q = 2.

Proof. g-1 = gq+1-2, so the result holds for u = 1. Suppose it
holds for u. (g-1)% < g%+1-2¢"71.
(q_1)u+1 < qu+1+q_2qu_ u_1+2qu-1

= qu+‘l + _zqu_(qu_zqu-’l _q+2)

4t 1-2q%-(g-2)(q*'1). Hence the result
follows.
Lemma 1{. For all integers i and j, (qi-1,q9-1) = q{¥+3)_4
and(2q1-1,qj—1)|23/(i’j)-1.
Procf. If ilj, qi-1lq9-1. Hence al1?3)1|(at=1,q9-1).
Choose a and b > 0 such that ai-bj =ﬁ(i,j), b minimal. Since
(qai—1)—q(i’j)(qu—1) = q(i’j)-1 we have
(qi—1,qj-1)|q(i'j)-1. This proves the first part.

Write a' = j/(i,j)-a, b' = i/(i,j)-b. Then
-a'i+b'j = ai-bj = (1,j). Since b was minimal we have b' > 0
and a' > 0. Now
(2aqai-1)—2aq(i’j)(qu-1) = 2&q(i’j)-1 and
q(i,j)(za'qa'i_1)_28'(qp'3_1) = 2a'-q(i’j). Hence
(2qt-1,q3-1) ] (28¢(1r3) 1, 22" g(12d))
I cava' y 23/(1,3)_4 g required.
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Consider the ring z[x]. This is a unique factorisation
domain, so the statement "f, g € Z[x] are coprime" may be
defined to mean "f and g have no irreducible factors in
common". Write <f,g> for the ideal generated by f and g.
Definition. If £ and g in Z[{x] are coprime, (f,g) is the
unique positive integer generating the Z-ideal Z n <f,g>.

The above ideal is clearly non zero. (f,g) is the least
positive integer which can be written in the form
uf+vg, u,v € Z[xj.

If k is an odd integer write ¢ = @(x) for the cyclotomic
polynomial for 2k, the monic polynomial in Z[x] whose
complex roots are the primitive 2k'th roots of 1. Evidently
olx+1 . Write 41 = ov.

Lemina 12. ¢ and ¥ are coprime and (¢,¥) divides 1, the
product of the distinct primes dividing k. If q € Z*, the

set of positive integers, (¢(q),¥(q)) and (¢(q),2k) divide 1.
Proof. If ¢ and ¥ were not coprime they would have a common
factor £ in Z{x], f #£ +# . If £ had degree zero it would be an
integer dividing xk+1, contradiction. If f had positive
degree it would have a root in C, tne complex field. Then ¢
and y would have a common root in C which they do not.

Let {pi} be the distinct primes gividing k and write
ki = k/pi. For each i, Ql(xk+1)/(x i+1)
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ki (py-1) Ky ky
Hence ¢ |x - ... =X “4#1. By substitutihg x * = -4 in

. Ky Ky
this polynomial we see that ((x5+1)/(x *+1),x +1)|p1. Hence
k.
(Q,X 1+1)|Pi-

k.
Now vln(x 141) and one easily proves that

(f,gh)l(f,g)(f h) for any £, g and h € Z[x]. Hence

(¢,W)|H(¢, +1)IU p; as reguired.
i

This clearly implies that (e(q),¥{(q))l1.
Now let s be a prime dividing (¢(q),2k). We must show

321 9(q). Let s' be a prime dividing k and write k' = k/s'
¢|(xk+1)/(xk'+1). Now if q is even, ¢(q) is odd, so s £ 2.

[ t
If q is odd, q5_=_q___=—+4med—A%T—Henee 2/ (¥+1)/(d* +1) and

we agaln have s £ 2. Therefore s|k. Write k' = k/s.

d“= ¥ = -1(mod s)-aaé-—k——a.—e—e&d—;—ee—q———q—-(—med—e)

k'

Write q = us-1 .
9(a) | (E+1 )/ (' +1) =3 & (1)t
| N
Now ¢ 1 = (us—)?

= (-1) " 1us+(-1)' (moa s2). Hence

8- " s-1
3 qk 1(-1)i 3 (-ius+l) (mod 82)
i=0 i=0

2)

-us.3s(s-1)+s (mod s

s (mod s2). Therefore sfp(q).

Finally we have the following conjecture of J. A. Green:
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Conjecture I. Let L(g) be a Chevalley group with BN-pair
(B,N) and let the complex character SBG have irreducible
constituents 1G’ Xqs coe 9 Xpe Then r 1s independent of q and
there exist fixed polynomials f1, cee fP independeat of q,
with rational coefficients and constant coefficient zero,
such that degy; = fi(q) for each i.

This conjecture is true for many groups of low rank and has
been proven in part for the general case. The proof proceeds
by exploiting the isomorphism between the group algebra of
the Weyl group and the CG-endomorphism algebra of the module
corresponding to 1BG.
Corpllary. Let L be a fixed Lie algebra. In the above
notation, except for a finite number of values of g the
degrees of the characters Xi* i>1, are not coprime to q.
Proof. Write f;(x) = gi(x)/D, D an integer and g; € z[x]. 1f
q does not divide D, fi(q) and q will not be coprime, for f,
has constant coefficient zero.

5. The Main Theorem.

Our object is to prove the following theorem:

Theorem A, (i) If Conjecture I holds then, excepting for each

r at most a finite number of values of g, PSp(2¥*1,q) has no

multiply transitive permutation representations for r > 1.
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(i1) Psp(l4,q) has no multiply transitive permutation

representations for q > 2, regardless of I.
We prove these results in a number of stages. Write

G* = Sp(2T*,q) and 6 = Psp(2¥*!,q) as bvefore, r » 1, and
suppose G has a multiply transitive permutation
representation p on a set 2 with |2] = n. G* has an action on
1 via the map G* » G, which it will at times be convenient to
consider. Let o € 1 and let Ga be the subgroup of G fixing a.
(A) If q = p? and pfn then G, is a maximal parabolic subgroup
of G.
Proof. Consider G as a Chevalley group. G has a BN-pair and as
an we may take the Sylow p-subgroup U of G to be contained in
Ga' Writing Ba =Bn Ga we have B O HBa > HU = B. Hence, by
Theorem 2. of §1, HGa is a parabolic subgroup of G. Now Ga’
being the stabiliser of a point in a'multiply transitive
G-set, is maximal in G. Thus either HGa = Ga or HG, = G. In
the first case we have the required result. In the second
case, H acts transitively on 2. Now H normalises each root
subgroup Xr and if r > 0, Xr cUc Ga. For each B € fl there is

an h € H such that ha = 8. Then

-xh h _
Xr =X, G = Gﬁ‘ X, therefore acts trivially on Q. But

in the cases we are considering G is simple. Hence p is

faithful, contradiction.
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Note that this result holds for arbitrary L(q).
(B) pln.
Proof. If pfn, G, = Gy for some maximal J c R, the set of
involutory generators of the Weyl group W. Now the number of
(Ga,Ga) double cosets is 2, so by Theorem 4, the number of
(WJ,WJ) double cosets is 2. Vie show this is false. The

structure of the Weyl group of C is given in [7].

2r+1

For Cl’ the Weyl group W may be considered as a
permutation gI‘OU.p on the 21 pOintS 1 ’ * e e ’1’ -1 '] s s e ,—lo The
fundamental reflections Wiy oes ,W, are given by

w (1 i+1)(-1 -i-1), 4 € i < 1,

i
wl = (1 —1)-

Thus |W| = 211!
Write J

Wy j # i> and W, = WJi. We must prove that the

number of (wi,wi) dcuble cosets is more than 2.

i

Now W, is the symmetric group on {1, «.. ,1} and IWll =1!.
(1 -1) ¢ %, ana (1 -1)W;(1 -1) is symmetric on {-1,2, ... ,1}.

Hence W, n Wi(1 1) is symmetric on {2, ... ,1} and has order

Thus |w1(1 -1)w1|

Wy 1271wy w071
(11)%/(1-4)!
1.1!
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So W =¥, u W (4 —1)"Nl if and only if
2121 = 1141.1!. Hence 2% = 141, which 1s 1 = 1. But this is
not one of our cases. Hence there are more than 2
(Wl,Wl) double cosets.

Now let i< 1. Wi = <Wyy eee ,w1_1>x<wi+1, e+ sWy> has
order i!2t=i(1.1)1. (4 —1) £ W, and clearly
W, n wi(1 1)) 2 (1-1)122"1(1-1)!. Hence

[1021=3(1-1)11%/0 (1-1) 1221 (2=1) 1]

1.atel-1(1a4):,

W, (4 = )iy |

Hence W = Wi v wi(1 -1)Wi if and only if
211! = (i+1)!21'i(1—1)!. It may easily be shown that if 1 > 1

this does not happen. Thus (B) is proven.
2r r
(C) n||B| = q2 (q--1)2 , except for each r at most a finite

number of prime powers q, if Conjecture I holds.

Proof. In the notaticn of Conjecture I we have

G . .
15 = 16¥X4+ -+- +Xp» Xy irreducible. We can also write

1a G 13+%, where Z is an irreducible character. Z has degree
a

n-1 £ 0 (mod p). If every Xy has degree divisible by the prime

P, £ is not among the Xy» 80O the scalar product
(1 G 1 G) = 1. This means that BG_ = G B = G. Hence
Bra /77 a a

n = (G:Ga)IIBI. By the corollary to I this situation occurs
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almost always if I holds, so we have the result.

Later we shall show that I holds for r = 1.

r
(D) For some ¢ =1 or 2, n = ¢ (mod(q2 +1)/4).
r+1
Proof. Write GL for GL(2F*',q), T for GL(2r+1,q2 ) and

2r+1

- r+1
G for Sp(2r+1,q2 ). Let x be a primitive g -1'th root of

21:'+1 21‘-1
1 in GF(q ) and & = x¢ . Write X for the diagonal

matrix in GL such that X

(xij) with Xy 4 = 0 if 4 £ 3,
r
i 2" +1i-1 r
_ .4 _q 2" _
X2i+1,21+1 =X, X2i,21 = % . Put X2 ' - Y. Then

i i-q
= = 4 - y=4
Y = (Yij) with Y21+1,2i+1 = g%, Y21,21 = Z . Thus

o
YeGTanda YY * = 4. Now if A is the element of GL defined
by Ay jo =1, 1€ 1% 2T+ o,
=1, A = -1,
2r+1 "1 ,2 2r+1 ,1

Aij = 0 otherwise, we see that A € G and axa~t = x4,

From Lemma 2, there is a B in G such that A~ = ~'8{(2),

Put x = BXB™', y = BYB™' and a = BAB™', Then
X(Q) = B(Q)x(Q)B-(Q)
= B(Q)AXA'1B'(Q), as X(Q) - Xq‘,
= BXB~' = x. Hence x € GL. Similarly y and a are in GL.

Therefore y and a are in GL n G = G*.
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r

2 T+
Write N = <y,a>. We have yq o2 a2 =1, aya'1 = yq.

r
Let b be any integer not divisible by (q2 +1)/d. Then

cg*(yb) G* N CGL(yb)

1}

G* n <x>, by Lemma 1,
= <y>. For if s is an integer, x° € @* if and only if
X® € G, which happens if and only if s is divisible by
a2 -1, if and only if X° e <v>.
From Theorem 7.3 on page 187 of [6] we see that
N = Ng, %)
In this secticn we consider the action of G* on fl.

r
Let s be a prime power dividing (q° +1)/d and write s = soe,

8y prime. Now s, is prime to (G*:<y>), so the Sylow
8y-subgroup of <y>, which is cyclic, is a Sylow so-subgroup of
G*, If S = <yb>, the unique subgroup of <y> of order s, then
S 1is the unique subgroup of order s in any Sylow so-subgroup
of G* which contains S. Hence S is pronormal in G*.

Let T be the set of points fixed by S. If IPSI = mg,

either m, =0, m, =1 orm, > 2. In the last case we know

s
from Lemma 3. that NG*(S) acts doubly transitively on Tg,
which means that N acts doubly transitively on PS.

Consider the following four possibilities:



65.

(1) mg = 0.

(2) m, = 1. By Lemma 8, y fixes exactly one point of f.

(3) mg = 2 and y fixes I . y fixes no other points of 0.

(4) m_ = 1+2i, ig rﬂ and y acts transitively on I'_. y
s 8

fixes no point of 1.
We see from Lemma 7. that these are the only possibilities,

If (1) holds we have from Lemma 8. that soln. But |B| and

(q2r+1)/d are coprime, sol(q2r+1)/d and n||B| almost always,
contradiction ( for the remainder of the proof we are
assuming that n||B]|).

If (2) holds it is clear that m .= 1 for every prime power
8'. Now let A be an S orbit of f of length greater than one.
Suppose sf|A|l. Then |A] = sof for some f < e. Now

r
bs
y 0 has order soe-f and fixes all points of the orbit A, a
contradiction, since an element of order a power of 8y fixes

only one point of 1. Hence s||a|.

Je therefore have s|n-1 for all prime powers s dividing
2f 2T

(a© +1)/4, so (q° +1)/d|n-1.
If (3) holds, it holds for every s and similar reasoning

r
shows that (q2 +1)/d|n-2.
Suppose (4) holds, and suppose first that mg = 2 for all s.
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2

We see that y~ fixes exactly 2 points of 2. Therefore for

r
every prime power s dividing (q2 +1)/d, the correspcnding

subgroup S fixes the same 2 points. Similar reasoning to

r
case (1) gives that (g° +1)/d|n-2.

Now suppose that for some s, m_ = 1421 > 2. Take a prime

s
oT .
power s' dividing mg. Then s'|(q© +1)/d and m, = 1+29 for
some j. Ps and Ps. are each y-orbits of f{l. Ve have two cases:
(1) I'g = Tgr. Then solms and as soln-mS by Lemma 8, soln,
contradiction.

(ii) rg n v = ¢. Write {a,b] for the least common

m m_,
multiple of a and b. Now y ° fixes the points of Ty and y S

img,mge}
fixes the points of Fgevy 80y fixes the points of

Fs v Ps'. It follows that no odd prime divides the order of

ims,mS'} ims’ms'}
y » for otherwise y would have to fix only the
points in one y-orbit, which it does not. We must have

2{111 o0 !I r
y ° ¥ -1, since ulqz + .

oF i .
Thus g +1 ]2{1+2%,1+2}. As q > 2 we have

r R . .
< 2,280+ _ Si4J43 o 52845 ponce 2F < 2pr45 and r < 3.

22
= Zs o9 i j :
r=3: g +#|2{1+27,142%}, 1,5 < L,

€2.9.47. Thus q = 2, q8+1 = 257, which gives no
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solutions.
r=2: q9+1|2i1+zi,1+2j}, i,j &3
£ 2.5.9. Hence q = 2 or 3, q9+1 =17 or 82 ,

giving no solutions.

r = 1: q2+1|2i1+21,1+231, i, < 2,

€ 2.3.5. Thus q = 2 or 3. But in each of these
cases, q2+1 is not divisible by two odd primes, ccntradiction.

e have therefore proven (D).

(E) We may reduce to the following possibilities:

(a) r=1, (i) g=3 n=6
(ii)Q=Ll-,n=18
(iii) @ = 5, n = 40
(iv) ¢ = 8, n = 196
(v) @ =11, n = 550
oT+1
(b) n =g s, P 3 1, any q.
2r+1a
(e) n = 2q , some a > 1, I > 1, any q.
- o - _ ot
Proof. n = ¢ (mod (q° +1)/d), ¢ =1 or 2, ¢ = p~, p prime.

22?

Write n = qlp™Pm, 1 < 1 < 2°7, 0 < b < t, p/m and

1 =12"-35,1¢<1<2 0< j< 2", Now

2T e
1/4 -4 (mod (q“ +1)/4). Hence

r . .
m= nq-lz qub = c(—1)lqapb. Write

*m = k(a2 +1)/a+(~1) eqdp®| (q=1)2 /a.
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e have to consider various separate cases.
(1) 1 even. Then k € 0.

(1) k = 0. As pfa-1, b = j = 0. m = (-1 )¢ = ¢,

1 r+1
n = cq = cq212 . If ¢

2 this is case (c).

Suppose ¢ = 1, a = 31 > 1. We show we have a contradiction.

r+9 2T
n-{ = qa2 4|1 (q2k-1 ). Now by Lemma 11,
k=1

r+1 r

(q -1,97 -1

(22 -1,¢%) = 2827 70k) 4 ang (¢22°-1,¢%2 1) = 4. 1t
follows that unless k = 2%, (a®2 +1,0%%~1) = 4. Also
q2r+1—1 = (q2r+1)(q2r—1) and (qa2r+1.q2r-1) = d,

r r
(q82 +1,9° +1) = d. Hence

qa2r+1| dzr, contradictiog. So we in fact have a = 1 and
case (b).

(i1) k < 0. Since m > 0 we have
q2r+1 < cdqub < cdqj*1/p. Thus p < cd/qzr'j'1. This gives
P=3 j=2T4, c=d=28and b = t-1.

r r
om = -(q° +1)+La? /3

r r r
(¢ -3)/3|(a-1)% . Now (q-1,9% -3) = (a-1,2) = 2. Thus

r r r r r
(q® -3)/3]22 . 32 < ¢® < 3.22 4+3. The only solution is

/
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r=1, q=3. Thenm =1 and n = 3°. But n-1 = 26/|PSp(L,3),
contradiction.
(2) Suppose 1 is odd. Then as m > 0, k > 0.

(1) k = 1.

r - . r r r
q®  +1-cdgdp® < (g-1)2 < 42 2"

r . r
-1 < cdqub < cdqd*'/p. Thus p < cd/(2q2 '2"3).

+1-2q , by Lemma 10.

Hence 2q2
r r r
Hence j = 2¥-1 and dm = q° +1-cdq® “1521(q-1)% . Now
(g=1,dm) = (q—1,2-cdpb). Hence we have
r
dm| (capP-2)2 .
r
Now cdp® » 2, else dm > (gq-1)% . We have two cases.
(a) cdp? = 2.

oT 2T 4 T
dm = g9° +1-2q | (g-1)¢ . From Lemma 10. we have r = 1 or

r=1:dam = q®+1-2q = (a-1)%. 1 = 21-3 = 1. n = q(a-1)%/ap".

If ap® = 1, n-1 = q(q-1)%-1|le|, ena
|G| = qu(q-1)2(q+1)2(q2+1). Now g°#1|n-2, so (q2+1,n—1) =1.
Also (n-1,q) = (n-1,9-1) = 1. Hence n—1|(q+1)2. But
(n-1,q+1) = (5,a0+1)|5, so a(q-1)?]|25. This is false for any
prime power greater than 2, s0 this case does not occur.

It follows that dpb =2, n= %Q(q—1)2-
n-1 = $a(g-1)%-11q"*(a-1)%(a+1)%(o%+1)/a. Therefore, as
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n-1 = 3(q°+1)(q-2), we obtain

a-2|2g*(q-1)%(q+1)%/d . Now (g-2,a-1) = 1 and (q-2,q+1)]3.
Hence g-2|2.3°. q = 3,4,5,8 or 11. These are case (a).

g =2:m=1 and i = 12r—j = u2r+1, u even.

n = 2u2r+1/pb, p° = 1 or 2. This gives cases (b) and (c)
again.

r r r
(b) cd,pb > 2. dm = ¢° +1—cdq2 _1pb < (cd.pb)2 . Hence

r r
q2 -1(q-cdpb) < (cdpb)2 . If g = cd.pb we have p = ¢ = 2,

r

b =t-1, d =4. Then n = 2qp2 +1q_1, u even,
T+

= anz as before.

If q > cdpb it is easy to see that g = 5cdpb/u. Hence

r r r r
a® /5 < (cap®)? and q < cap?.5'/2 . Hence 5/i < s1/27,

We have r = 4 or 2.
q2+1-cdqpb|(q-1)2. Now
(a+1-cagp®, (a-1)2) = (2q-caap®,(a-1)?%) = (2-cap®,(a-1)°).

r = 1: dm

Hence q2+1-cdqpb|cdpb-2. q2+3 < Cdpb(Q+1):

b

cdp® » g-1+4/(g+1). Thus either p = ¢ = 2, pP

= %q, m = 1 and

n=2o0orp=3c=4-=2, pb = g/3 and m = %-q2/6. Each of

these cases is clearly impossible.

r = 2: dm = q%+1-cdq3pb|(q—1)u. Now

(q*+1-cad3p®, (a-1)%) = (4a>-6a%+ha-cad’s®, (a-1)")
|4g2-6g+li-cdq®p®. Therefore
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q_u‘+1-cdq3pb < cdqub-hq2+6q-u and

qu+uq2—6q+5 < cdqub(q+1). Hence cdp

equality, withp=¢ =2, 4 =1, pb = 5%q. Then m = 1,

b > q. As dm > 0 we have

l=40r3, i=10or9 andn =2 or 2q8. The first is plainly
impossible, the second is covered by (c).

. 21' J b 21'
(1i) kX > 1. Then dm = k(g° +1)=-cda’p 1(q-1)° . As in (i) we

. r oT 2T b
have j = 2°-=1. Now dm = (k-1)(q" +1)+q (gq-cdp” )+1. Hence

b

g < cdp”. We must have p = 3, ¢ = 4 = 2, pb = q/3. Then

r r r r
2m = 2(q2 )-ug® .o/3 2(q® +3)/3|(a1)% .

2t oF 2F
(q° +3,9-1)|4. Hence 2(q° +3)|3.4° . Thus r = 1, q = 3.
m =(32+3)/3 = L4 and m|2%/2, contradiction.

This completes the proof of (E). We now consider separately
the cases r =4 and r > 1.
Proof of Theorem A(ii). We have to show first that the above
values of n give contradictions for r = 1 and secondly that
n||B| for r = 1.
(F) A1l the cases of (E) give contradictions for r = 1.
Proof. (a) (1) ¢ = 3, n = 6. |PSp(L,3)| = 263“5. But
|36| = 6! = 2h325. Hence we have a contradiction.

(iii) and (v) we do together.

la| = 253253, q = 5

26325211“61, q =11. Let a,p € 2, a £ B.
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la,1 = 27325713, q = 5
273211761, q = 11.
laggl = 273.5%, q = 5
Let ¢ be a Sylow q-subgroup of GaBand let @ fix exactly m

~)
points of f. (Ga:NG (Q)) = (GaB:NG (Q))(n-1)(m-1) is
a apg
integral, so, by Sylow's Theorem,
(G 2Ny (Q)) =1 o0r6, q=5
ap Gra[3 ’

1’ q_=110

Consider q = 11. m 11k, k < 50, and by integrality

11k-1]550-1. There is no such k. Hence q = 11 may be ignored.
Consider q = 5. m = 5k, k < 8, and by integrality
5k-1 |40-1 or 6(L4L0-1). Hence k = 2 and (GaB:NG (Q)) = 6.
af

IN;(Q) |

ING (Q)|m(m—4) by Lemma L.
ap

2353.10.9 = 2%325%, We show this is not the case.

Q] = 53, U] = 5u. Hence we may take Q as a normsl
subgroup of U with cyclic factor group. U' < Q.
From the Chevalley Commutator Formula, or by matrix

calculati X LX < X
e

(X . Commutators of other root subgroups of

,X ]:X
Py D, +Po 2P, +D,

U are tri . ' = .
vial. Hence U X§1+p2X2P1+pz
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Q= <xp1(t1)xp2(t2),U'>, tyrty € GF(q), not both zero.

v
(1) Suppose t, #Z 0. Then Q' = X2p1+P2 and

'y =
CQ(Q ) = X?1+p2X2p1+p2. Both these groups are characteristic

X = N .
2p1+p2) n NG(xp1+p2 2p1+p2) T T B&Y

in Q. Hence NG(Q) < Ng(X
By the Commutator Formula, B < N. Thus if w € W, Bn B c N
if and only if n, € N.
_1—
nWX2p1+p2nw = Xw(2p1+p2) by [2] page 214
X2p1+P2 if and only if w(2p1+p2) = 2Dy +Dy)
Wy ( in the notation of $3). But

if and only if w
_1 -—
n n = = « Thus N = B. But
W2XP1+P2 w2 o +p) oy

IB| = 235u, SO ING(Q)I | 235h, contradiction.

(2) Suppose t, = 0. Then @ = X . As before

X X
1 Ps P1+P2 2P1+P2
NG(Q) D> B. Routine calculation shows that
NG(Q) = B U Bn, B. Thus ING(Q)I = |B|(1+qN0, where N_is the
1
number of positive roots of 02 transformed by w1 into
negative roots ([2] page 220). In this case N = 1. Thus
ING(Q)I = %.5“(5-1)“(5+1) = 233.5“, contradiction.
(11) @ = 4, n = 18. |a| = 2°3%5%17, |6 | = 275247 ana
_ nle2
G'Bl—25.
Let P be a Sylow 5-subgroup of GaB and suppose P fixes m

e
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points of 1. m = 3 or 8. By Sylow's Theorem,
(@ .:N, (P)) =1 or M. Now
ap GaB
(GG:NGQ(P)) = (GGB:NGQB(P))(n-1)/(m-1) is integral. Hence

m = 3 and (G__,:N (P)) =2L".
g

ap Ga
ING(P)I = ING (P)|m(m=1) = 2“3.52. We show this is false.
ap
Since G = G* = SP(L,L4) we may work with matrices in G*.

A Sylow 5-subgroup of G* is generated by elements

& = [A OJ b::[I20]
0 I, 0 A_], where A e SL(2,4) has order 5.
b4

Using Lemma 1 we see that ICGL(M,M)(abZ)l = (4%-1)2, In fact

the centraliser consists of elements C 0:]
0 D_, such that

C,D € CGL(2,u)(A)’ which is generated by an element of order
15 with determinant a primitive cube root of 1. Such an
element is in G* if and only if C,D e SL(2,4). Hence
2

ICqu(ab®)| = 52. Thus [C4(P)| = 5° ana G4(P) = P.

The only elements of P with the same eigenvalues as a are
a,b,a"1 and b~'. Thus if g € NG(P), gag'1 = a,b,af’1 or b1
and there are the same choices for gbg'1. Using the fact that

gag™! and gbg™! generate P we see that (Ng(P):P) < 8. This
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is a contradiction.
(iV) q_ = 8, n = 196.

la| = 212345,724 3, le_| = 21035 43 ana |6 | = 21933, we

ap
work in Sp(4,8) and apply Lemma 5, taking p = 3. Let Q be a

Sylow 3-subgroup of G and P a Sylow 3-subgroup of G. P is

generated by elements a = 0:}
A , Where

A € SL(2,8) has order 9. The argument used in the
preceeding case shows that CG(P) = P. Now CG(aibj) =
unless 1 =0, j =0 or i = j. Clearly Q, being a subgroup of
P of order 27, must contain elements other than the elements
al, bl and (ab)l. Hence Cg(Q) = Q.

If g € Ng(Q), g € NG(CG(Q)) Ny(P). Hence P A NG(Q). This

contradicts Lemma 5.

(b) n = g%, any q.

Let o € 1. If U is a Sylow p-subgroup of G, G = UGa‘ We may
take the elements of U as left coset representatives for Ga
in G.

Choose 6 € GF(q)*, the multiplicative group of GF(q), of
maximal order such that h = |1 )

6
6~1| is in some G,. Such a

6 exists because (q-1)2/d||Ga|. Now h € H normalises U, so if
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u €U, h(ug ) = (nun‘1)hGa = unuf4)aa. Thus the number of
points of N fixed by h is ICU(h)I.

A general element of U is

u = xp1(t1)xpz(t2)1p1+p2(t3)x2p1+p2(tu) and one checks that

huh™' = xp1(6 t1)xp2(6 t,)x 2( t3)x

(t, ). Here
D, +P o U

2D, +P
t1’ LI 3 ,tL*‘EGF(q)o
Now either 62 #1 and h fixes exactly q points or 8° = 1

2 21 1t is clear that q = 3. We

and h fixes q2 points. If ©
do this case later.

Suppose 6° # 1 and write S = <h>., By Lemma 4,
INg(S)| < INp(S)la(g-1), L = Gug» B #a €10,

q-1)2(q+1)/d. But h is centralised

~

< [Llq(g-1) = q

by the elements A 00
00
00ado0 1
000a '| of G, A e SL(2,q), a £ 0. Thus
1Cg(8)1 > (a~1)IPsL(2,q)| = a(a-1)%(a+1)/d. Also
10 00
04 00
00 01
0 0 -1 0| normalises S. Thus

INg(s) > a(a-1)%(a+1)/d, contradiction.
We now dispose of @ = 3. h fixes 9 points. Hence
INg(8)| < ILl.9(9-1) = 223223 = 2932,
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Now h is centralised by elements A 0
0 B of G,
A,B € SL(2,3). Thus [C4(S)| » $ISL(2,3)|?
= #(3.2.4)2
= 2532. As before

ING(S)I > 2532, contradiction.

The case PSp(L4,3) was first studied by Parker in [10].

(e) n = 2q93, any q. As n||G| we have a = 1.

n—1 = 2q*-1](q-1)2(g+1)%(q%+ )/a. But as
n-2 = 2(q*—1) = 2(a-1)(a+1)(a?+1) we have
(a-1,n-1) = (g#1,n-1) = (g°+1,n~1) = 1. Hence n-1 |1/4,
contradiction.

We have now proven (F). We now have to show that n||B| for
r = 1. This involves proving that if 1BG = 1G+x1+ cee +Xps

x; irreducible, then pldegxi, iz1.
For the Weyl group W of C2 we have subgroups W{p } = <w1>,
1

wipzf = <wp>, Wy = W = <w,,wy>, w¢ = {1}. Using the notation
of Theorem 4. of §4, write ¢1 for wip ? etc.
1
W has conjugacy classes Cj; = {11, C, = f(W1W2)%}:
Co = {w,wy,wow, |, Cy = {w1,w2w1w2} and C) = {woy,wowow, }. e

have for the characters wJ:
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<
N

© F F
o
n

0
0

0 0 0

The entries in the following table are the scalar products

of these characters:

Vg ¥y ¥y ¥y

v21111

v, 1 3 2 u
o1 2 3 u
vo |1 4 L4 8

A similar table is valid for Xzr Xy X5 and X¢, by
Theorem 4. Using it, we see that
Xy = 1(}: Xq = 1(}‘*“?*‘4’9 Xo = 1G+<P+‘V' and

Xg = 1BG = 1G+2¢+¢+¢'+x, where o¢,¥,¥' and x are irreducible

characters. Now x = X¢-X1-X2+Xz- Hence
de = (G:B)-(G:G -(G:G +(G:G). Now
g X ( )=( iP1}) ( ing) ( )

G = . B B| = q|B|. Also
1P1} B u an1B As before, | nw1 | alB|

[B| = qu(q—1)u/d. Hence
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deg x = (a+1)%(a%+1)-2(q#+1)(%+1 )+ = o*.

Consider GIP e Using (3) of £3 we may write
2

n = ( - 2
W, xp2(1)x_p2( 1)xp2(1). by page 214 of [2],
=110 00 Moreover we see from §3 that B is contained
01 00
00 01 in the subgroup of "matrices" in G with
00—1 0 .
first column /1
0
0
0/ . Hence G =B uBn B is contained in
ipzi w

2
this subgroup, fixing the point P = /14
0
0
0/ of projective 3-space

P. Since G is maximal, G{P ] is the whole subgroup. As
2

{p,]
1G G = 1G+¢+v', G has rank 3 action on the points of P.
ipgf
The orbits of Gy} on P comsist of the point P, the a+q?
2

points # P on the orthogonal hypeprplane to P and the q3 points

outside this hyperplane. We shall use the results of Higman in
[5] to obtain the degrees of the characters ¢ and y'.

In Higman's notation, k = q+q2, 1= q3, k < 1. We wish to
calculate the Higman parameters A and u.

Lemma ([5] Lemma 5.) pl = k(k-A-1).
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In our case pg- = (q+q2)(q+q2-k—1). Hence
q2|q—h-1. Since A < k = g+@2, A = q2+q-1 or A\ = g-1. In the
former case u = 0. But as GinI is maximal in G, the rank 3
representation of G is primitive. By [5] page 149,u0 # 0.
Therefore A\ = g-1 and u = gq+.

Write D = (A=p)2+li(k-u) = 22+4(a%-1) = L4q°. For the degrees
f2 and f3 of ¢ and ¥' we have in some order

[2k+(l-u)(k+1); D(k+1)]/(;2VD)

f2,f3

i%q2+%q(1+q+q2). Thus as q > 2, p|f2,f3. We therefore
have that p divides the degrees of the irreducible non
trivial constituents of 1BG. This completes the proof of

Theorem A (ii).
Proof of Theorem A (i). If G = PSp(2**1,q), » > 1, has a
multiply transitive permutation representation of degree n
on a set ], then excepting for each r at most a finite

I+ o+ o
number of prime powers q, n = q or 2q , & integral.
We eliminate these cases, discarding as we go a finite
number of prime powers.

Write k = 2T—~1. q®_1||a|. Similar reasoning to that on

‘'page 63 shows that G* contains an element

Z:[y 0
0 I , ¥ € Sp(2k,q) of order qk+1. If b is an integer
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]
such that xb has order not dividing qzk -4 for any k' < k

then CG,(xb) consists of elements | y° 0
0 z
z € SL(2,q). Write C = CG*(x).
N = NG*(<x>) = <C,a>, where a = | A 0
0 12

2k

relations a<* = 1, axa~! = x9.

Write N = H x K, where H = <x,a> and K 2 SL(2,q). We
consider the action of G* on fl with regard to the orbits of N.

» t integral,

satisfies the

In the notation of §4 let ¢ be the cyclotomic pclynomial

for 2k and write xk+1 = p¥y. Let 1 be the product of the

distinct prime divisors of k. Put 1q = (¢(q),¥(q)). By

Lemza 12, lqll and (¢(q),2k)|1.

Write z = xv(Q). z has order ¢(q). Let Il be the set of

prime powers dividing ¢(q) and coprime to 2k. If u is the

product of the maximal prime powers in II, we have that

<zb> be the

(¢)/1]u. Let s = 5,° € I, s) prime and let § =
unique subgroup of <x> of order s.

If k' < k, (s,q2k'-1)I(Qk+1,q2k'-1). Now
(a%*1,q%" 1) = 2Uk") 4 ang
(g¥-1,q%5" 1) = qU5s2")y = q(0K' )y, Hence

(41,07 '~1) = o{&+k")1qly(q). Thus

(8,q2k'-1)|(¢(q),t(q)) = lq. Since s,(lq we have sfq

k'

-1 .
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Therefore CG,(S) = C, Ngu(S) = N.

8y 1s coprime to 140 88 lqlk, so s, is coprime to
(@%:<2>). A Sylow sy-subgroup of <z> is therefore a Sylow
8,-subgroup of G*. As on page 6L we deduce that S is
pronormal in G*.

Let I', be the set of points of 2 fixed by S. If I | = mg

then either m, = 0, m, =1 or m, > 2. In the last case

s
N = Ng4(S) 1s doubly tramsitive on T_.

Consider the following four possibilities:
0

(1) mg
(2) m, = 1. By Lemma 8, x fixes exactly one point of Q.

(3) x fixes the points of PS. x fixes no other points of 1.

R, =2 or q#1, any q,
3andq=3,
6andg_=L|., or
63ndq=9.
Mg
(4) m, is a prime power, ms-1|2k, x ° fixes the points of

rs and x acts transitively on PS. x fixes no point of 9.
We see from Lemmas 6,7,3 and 9 that these are the only

bossibilities.
If (1) holds, we have from Lemma 8 that the S-orbits of 0

each have length divisible by 8ps 80O soln. As 8¢ is coprime to
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IB] and n||B| we have a contradiction.

If (2) holds then for all s' e II mg: = 1. By the argument
of page 65 we have that s'|n-1 for all such s'. Hence u|n-1
and ¢(q)/1[n-1.

If (3) holds, it holds for every s' e II and mg =M ¢ = m
for all s,s' € II. By the same sort of reasoning we have
¢(a)/1|n-m with m taking one- of the values mentiocned in (3).

If (4) holds then it holds for all s' € II. Suppose first
that every m, = 2. x2 must fix exactly 2 points of 1, so for
each s, the corresponding subgroup S fixes the same 2 points.
Hence we get ¢(q)/1|n-2.

Suppose now some mg > 2. If m, =MWy =W for all s € Il we
get ¢(q)/1|n-m as before. If in this case m is a prime power
coprime to 2k then m € II and so m|n-m. Therefore m|n,
contradiction. Hence m|{2k. Since m divides the order of y,
¢(qa), as well we get m|(9(q),2k)|1. Hence m is a prime
dividing k.

Finally, suppose that for some s,s' e I, m £ mg+. The
x-orbits Ps and PS, are disjoint. Now we know that

m m_,

x 8 fixes the points of PS and x ° fixes the points of rs,.

Hence xims’ms'; fixes the points of I'  u I'jy. The order of
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Ims’ms' ;
x is therefore divisible by no prime powers s € II,

and therefore divides (q®+1)/u. Thus ulims,ms'i. Since
¢(q)/1|u we have ¢(q)/l|ims,ms'}. Now m_ and m_: are bounded

8 ]
r+1

in terms of r, for ms-1|2k =2 -2. Therefore only a finite

number of prime powers q can satisfy the relation
¢(Q)/1|Ims,ms.} for each r. We ignore these primes. In fact
it is easily shown that the only case we are dismissing is
Psp(8,2).

We have deduced that ¢(q)/l|n-m, where m may take one of the
following values:

(i) m = 1,2 or g+,

(ii) m is a prime dividing k,

(i1i) m=2and q=2, m=3and q=3, m=6and q = 4 or

m=6 and q = 9.

2r+1

8 But q

2r+1

2r+1
Now n = ¢q or 2q

q% (mod ¢(q)/1). Also

if r > 2 it is easily seen that the degree of the polynomial

¢(x), the number of coprime residues mod 2k, is greater than

2. Hence the relation q2 =m (mod ¢(gq)/1), where m is one of

the above numbers, is satisfied for at most a finite number

of primes q for each r. This disposes of the case

I+
n=gq except for the case r = 2.

3. So

If r =2, plx) = x°~x+1 and 1
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q2 -1 (mod ¢(q)/1). Clearly only a finite number of prime

powers satisfy the relation gq-1 = m (mod ¢(q)/1). This case is

therefore disposed of as well. In fact we can agaln show that

we are only dismissing PSp(8,2).

r+1a

Finally, let n =2¢° &, n-1]]G|, so

r

2" ok
n-1| T (@“*-1). But by Lemma 11,
k=1

I+ r+
(2¢%  8-1,q%q)|22/(2,27708) ) | honce

T+ 2T r+1
2¢° 84|  (22k/(2Kk,2 a)--1). Clearly only a finite

k=4
number of prime powers q can satisfy this equation.

The proof of Theorem A is now complete.
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