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On the fundamental group of an orbit space

By M. A. ARMSTRONG
University of Birmingham

(Received 9 September 1964)

O. Introduction. Let K be a connected simplicial complex, finite or infinite, its poly-
hedron ((2), page 45) being the spaceX. Then X is connected. Suppose further that X is
simply connected. For any group G of simplicial transformations of X, H will denote
the normal subgroup generated by elements which have a non-empty fixed-point set.

The aim of this paper is to show that the fundamental group of the orbit space X IG
is isomorphic to the factor group GIH. Path-connectedness of the orbit space is of
course ensured by the path-connectedness of X, as a connected polyhedron, and the
continuity of the natural mapping from X to X/G.

As a particular example of this situation, consider a Fuchsian group F acting on
the upper half-plane U in such a way that Ulr is compact, as in (3). A fundamental
region for I' may be obtained in the form of a convex non-Euclidean polygon with
a finite number of sides and all its vertices in U, consequently U may be triangulated
in such a way that F acts simplicially. Further, if I'has orbit genus g then it is defined
by generators Xv Xa, .•. , Xr,

aI' s; ...,ay, by,
and the relations X'['i = 1 (i = 1, ... ,r),

g

XIX2 .. · z; II (aibiailbil) = 1.
i-I

The generators Xv •.• , z, are elliptic transformations and each leaves fixed exactly one
point of U, whereas the ai,bi (j = 1, ... ,g) as hyperbolic elements cannot have any
fixed points in U. Let r1 be the normal subgroup of I' generated by the elements
Xl' •.. , xr; then viewing U (r as a closed surface S exhibits the classical result
111(8) ~ r/rl·

In section Iwe derive necessary and sufficient conditions for the action of G on X
to 'induce' a triangulation of X/G, and show further that these conditions are always
satisfied after at most two barycentric subdivisions of K. Throughout sections 2 and 3
K is assumed subdivided in accordance with the requirements of section 1, allowing
the use of an edge-path lifting procedure to establish an isomorphism between GIH
and the' edge group' of the induced triangulation.

Related problems have been considered by Fox in (I).

I am grateful to Prof. A. M.Macbeath for providing the motivation for this work,
and for many helpful suggestions.

Notation. The natural mapping or projection from X = JKJ to X/G will be denoted
by p, for XEX the point p(x) of XIG being written z. Letters a, b, c, d, v will be reserved
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for vertices (or O-simplexea), the occurrence of the letter e always denoting a I-simplex.
The stabilizer ofxEX, i.e. {gEG: g(x) = x}, will be written stab (x).

1. Induced triangulation of the orbit space. Ability to triangulate the orbit space
XIG in such a way that p becomes a dimension-preserving simplicial mapping will lead
to great simplification in the proof of our main result. In this section we investigate
the conditions which must he imposed on the action of G on X in order to make
possible such a triangulation.
By means of the projection p: X -+XIG we may define an abstract complex K IG as

follows:
(i) The vertices of KIG are the orbits (projections) of the vertices of K.
(ii) The orbits ao, ... ,ak span a simplex of KIG if and only if there exist vertices

ao' ... ,ak of K, with p(ai) = tlt for 0 ~ i ~k, spanning a simplex of K.
There is a natural mapping PI:X-+IKIGI; suppose xeX with carrier (aO ... ak);

k
represent x as Aoao+ ...+Akakwhere 0 < At ~ I for 0 ~ i ~k, and ~ Ai = 1; then p

i-O 1
maps x to the point Aop(ao) + ...+AkP(ak) of IKIGI. Moreover, for any geG, xeX, We
have PI(g(X)) = PI(X), so that Pt induces a map

1r:XIG-+ IKIGI

for which, given ~eXIG and any point XEp-t(~), 1r(~) = Pt(x).
The situation is best represented diagrammatically

x :K.
pi ~1

XG--,- __ KG
Y

Example 1. Take K to be a 2-simplex, vertices ao, at>a2, together with all its faces.
Let Ghe the cyclic group Zsgenerated by the permutation (aOal a2) of the vertices of K,
then the elements of G determine simplicial maps IKI-+ IKI hy linearity inside each
simplex. The space X/G is homeomorphic to a disc, whereas IKIGI consists only of
a single point and therefore 1r is not 1-1.

Example 2. Suppose K is the 2-dimensional complex illustrated and G the cyclic
group Zs generated by the permutation (aOa2a4) (al aSa5) viewed as a rotation of K
which fixes as.

This map 1r is obviously onto, and since our projection map p is open will he continuous
if and only ifPI is continuous. However, PI was constructed as a simplicial map from
K to KIG, ensuring its continuity.
If 1r was a homeomorphism we could regard the spaces XIG, IKIGI and the maps

P,Pl as essentially the same. In this case the action of G on X will be said to induce,
via the triangulation K of X, a triangulation KIG of XIG.
In general 1r need not be 1-1.



On the fundamental group of an orbit space 641
Now to say that ifFis 1-1 means, for x,geXjG, that ifF(x) = ifF(9) implies x = g, or

equivalently that for x, ye XPl(X) = Pl(y) shall imply p(x) = p(y). In this example
ifFcannot possibly be 1-1, for consider the points

•
x = Aao+(I-A)a1}

(O<A<I).
y = (I-A)al +Aa2

Then x and y cannot be in the same orbit, but

PI(X) = Ap(ao) + (1- A)p(a1) = (1- A)p(al) + Ap(a2) = PI(y)·

These two simple examples point respectively to the following two conditions, which
will be shown to be separately necessary and together sufficient for ljr to be a
homeomorphism.

CONDITION 1. Given any L-eimple» (aiaj) of K no element of G is allowed to map ai
on aj.

Nece88ity. Suppose geG with g(ai) = aj then p(ai) = p(aj). Consider any point
x = Aat+(I-A)aj where 0 < A < 1, then

Pl(X) = Ap(a;) + (1- A)p(aj) = p(ai) = PI(ai).

However, since g is a simplicial transformation, we cannot have ai' a vertex, and x, a
non-vertex, in the same orbit. Thus p(x) '*' p(ai), and !frcannot be 1-1.

CONDITION 2. Given two simplexes (ao ... akb) and (ao ... akC) of K with b and c in the
same orbit, then there exists an element g* eG such that

g*(ai) = ai (0 ~ i ~k),
g*(b) = c.

Neces81:ty. ~uppose ifFis a homeomorphism and g(b) = c. Consider points

k le
X = L Aia.+p}J, y = L Aiai+jtC,

i=O i=O

where 0 < Ai' p, < 1 and ~Ai +p, = 1. Then

PI(X) = ~AiP(ai)+p,p(b) = ~AiP(ai)+'up(c) = Pl(Y)·

But!fr is 1-1, therefore we must have p(x) = p(y), showing the existence of g* EG with
g*(x) = y. Remembering that, since ifFis assumed to be a homeomorphism, Condition 1
is satisfied, then clearly g* does all that is required.

THEOREM 1. If Oondition« 1 and 2 are satisfied then ljr is a homeomorphism-
Proo], (a)!fr is 1-1.
Consider any two points x, ye X, say

x = Aoao+ ...+A"ak, Y = !lobo+ ...+ IL,b"

where 0 < Ai' /1i ~ 1 and
le t
L Ai = L #j = 1.
i=O j=O
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Suppose PI (X) = PI(Y); then ~AiP(aJ = ~#jp(bj)' Condition 1 ensures that

p(a;) * p(a)}
(i *});

p(bi) * p(bj)

therefore t = le, and we may re-order, if necessary, so that #i = Ai' p(ai) = p(bi) for
o :( ".:( k. In view of this there exist in G elements rh satisfying (Ji(ai) = hi for
0:('::( k. Consider the sequences of vertices ao, ... ,a,,; bo, ... ,hk• If go(ai) = bi for
(I :( i :(k there is nothing to prove since then go(x) = y. Otherwise there exists a first
integer rl such that (lo(arJ * br.; let (lo(arJ = cri' Now (lr/aT.) = br.; therefore arl, brl
and cr. are all in the same G-orbit so that there exists g E G with g(crJ = b,i ' Applying
Condition 2 to the simplexes (bo ... br.-l br.), (bo ... br.-1 cr.), we have the existence of an
element g:' E (J which satisfies

g:'(bi) = b, (0:( 'i :( rI-I),

g~(Cr.) = br•·

Therefore g:'go(a,.) = b, for 0 :( i :(r2 -1, rl < r2•

) g.r,

If now r 2 -- L = k the proof is complete, otherwise we repeat the above argument.
Clearly the process terminates after at most k steps, and by successively applying
Condition 2 at each step we provide an element g EG such that g(ai) = bi for 0 ~ i :(le,
i.e. g(x) = y, giving p(x) = p(y) as required.

(b) Ijr is an open mapping.
We have already seen that ifF is onto, continuous and 1-1, giving PI: IKI--;.-IK/GI to

be a dimension-preserving simplicial mapping. Hence the restriction of PI to any
simplex, indeed to the closure of any simplex, of K is a homeomorphism. This means
that Ijr-l restricted to the closure of any simplex of KIG is continuous, and reference
to the two well-known Propositions 1'3'3, 1·10·4of (2) for the finite and infinite cases
respectively shows Ijr-l to be continuous and hence completes the argument.

The group () is equally well a group of simplicial transformations of K(r), the rth
derived complex of K.

THEOREM 2. The action of G on K(2) will alwaY8 8ati8fy Oonditions I and 2.
Proof. (a) We show, first, that the action of G on K(l) always satisfies Condition 1

(when it must certainly satisfy this condition' on' K(2». For suppose (ab) is a I-Simplex
of K(l); then a, b are the barycentres of simplexes (J"a' (J"b of K and we order so that 0'

is a face of (J"a' written (J"b < (J"a' Then given gEG, since it is simplicial and preserve:
dimension, it cannot possibly map a to b.
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(b) It remains only to deal with Condition 2. In view of the above we know that
Condition 1is satisfied on K(I), ensuring that no element of G permutes the vertices of
a simplex ofK(1). Given two simplexes (ao'" akb), (ao'" akc) ofK(2)regard ao, ... , ak' b,c
as the barycentres of simplexes 0"0' ""O"k'O"b'O"c of K(l). Then we may re-order, if
necessary, so that

0"0 < 0"1 < ... < O"j < O"c < O"j+1 < ... < O"k'

Suppose then that band c are in the same orbit, with g(b) = c, when certainly 'I: = j.
If now band c are not the leading vertices of the two given simplexes, O"b and O"c are
both faces of O"k; but since g is simplicial on K(l), g(O"b) = a; implying a permutation of
the vertices of o"'c and contradicting our previous remark. In the case where band c
are the leading vertices we have

But g(O"b) = O"c and O"k < O"b together imply g(O"k) < O't' then O'k < a, and Condition 1
on K(1) must give g acting as the identity on O'k' and hence as the identity on 0',: for
o ~ i ~k: Therefore g(a,;) = ai for 0 ~ i ~k and g itself has the properties of the
required g*.

Theorems 1 and 2 allow us to assume from now on an induced triangulation K IG
of X/G.

2. Edge-paths and their lifting properties. An edge-path in a complex L is defined
as a sequence of vertices aio' ail' ... ,ai,.' with r ~ 0, in which each successive pair span
a l-simplex of L. Given subsets S, S of X, X/G withp(S) = S we say that Slifts S.
For reasons which will become apparent in the next section we are interested in

lifting edge-paths in K/G to edge-paths in K; all results derived here will be given as
Lemmas.

LEMMA 1. Any edge-path in KIG with initial vertex ao may be lifted to an edge-path
in K which begins at any point of p-1(aO)'

Proof. Consider in K/G any I-simplex e with vertices a andti we first show that this
can be lifted to a I-simplex e in K having as a vertex any specified vertex aep-1(a).
Certainly e may be lifted to some l-simplex eo in K which has as a vertex some point
aoep-1(a). Then there exists gEG with g(ao) = a; but g is a dimension-preserving
simplicial mapping and therefore maps eo to a l-simplex e which has a as a vertex;
then clearly p(e) = e.

Suppose now the given edge-path in KIG is aOa1'" ak' where a'i-tai span the
I-simplex ei (1 ~ i ~k). If aOep-l(aO) is to be the initial point of the lifted path, lift
et to et having a vertex at ao; this determines the second vertex at of et and at ep-l(at).
Now lift €2 to e2 'on' al; clearly this process may be continued and terminates after
precisely k steps. The lifted path is seen to have the same number of vertices as the
original.
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This path-lifting procedure is not unique.
By an admissible operation on an edge-path aioa;l ... air we mean its replacement by

the edge-path:

for some 0 ~ n ~ rand h e stab (ain).

LEMMA 2. If two edge-paths in K have common .first vertex and project to the same
edge-path in K IG, then one may beobtained from the other by afinite number of admis8ible
operations.

Proof. Let the two paths in K be

(ao = a~ = a~),
a}a~+l span
a~a7+1 span

e}}
e~
t

(0 ~ i ~k-l),

with common projection

it = UOul •••uk' where u/ii+1 span ei for 0 ~ i ~k - 1.

Assuming El and E2 to be distinct there will be a first integer rl such that a~+1 =+= a2
• r.+1·Then erl lifts to two distinct l-simplexee e~l and e~.which have a common vertex;

reference to Conditions 1 and 2 provides an element h, e stab (aU satisfying

hi) 2'l(a,,+1 = U,,+l'

It is admissible to replace El by

Erl = aoa} ... a:.hrl (a~l+l)... hrl (a!).

Ifnow Erl = Ea the proof is complete; otherwise there will be a first integer ra > r1 for
which hrl(a~I+l) =F a'~I+lwhen we repeat the above argument. In this way we obtain
a tinite sequence of paths

E1,Er1,E,., ... ,Ern = E2 (n < k).

each one being obtained from its predecessor by an admissible operation.

It is clear that ifEl andE2are edge-paths in K which are obtainable from one another
by a finite number of admissible operations then:

(a) p(El) = p(E2);

(b) there exists hEH which maps the end-point of El to that of E2•

An allowable operation on edge-paths is defined as follows. If three consecuti-ve
vertices aia,ak span a 2-simplex of a complex L, the triple may be replaced in an edge_
path by the pair aiak, or conversely the pair may be replaced by the triple. It is also
allowable to replace a triple aiaiai by the single vertex ai• or conversely to alter at to
atbai providing ai' b span a Lsimplex of L.

LEMMA 3. Let 13 = uOb1 ... bk_1Uk' o = UOC1 .. • cl-lUk be homotopic edge-paths in KIG
which lift to paths B = aobl ••• bk, C = aOc1 ••• c, in K. Then there exists an edge-path D
in K which projects to fj, and an element h e H which maps ct to the end-point of D.
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Proof. Since jj is homotopic to 0, it may be obtained from 0 by a finite number N

of allowable operations. Consider the first allowable operation on (J; we cannot always
lift this to a corresponding allowable operation on 0, for example, 6i-16iai+1 may well
span a 2-simplex in KIG without Ci-ICiCi+1 spanning one in K. However, we can at
least lift our operation to an allowable operation on a path which is obtained from 0
by an admissible operation. There is no loss of generality in assuming that this first
allowable operation involves ao, since if Band 0 coincide as far as bf" = e,. we merely
refer to Lemma 2 and define D to coincide with 0 as far as c,..

(1) If the operation replaces a06) 62 by a062, lift the 2-simplex (a06162) to a 2-simplex
in K which has (aOcl) as a side, say (aOcl v). Clearly this is possible (refer to the corre-
sponding argument for I-simplexes given inproof of Lemma 1).Then Conditions I and
2 provide hI E stab (Cl) which maps c2 to V; an admissible operation on 0 gives the path
aoclh1(c2) ••• hl(c,), on which we operate allowably to obtain aOhl(c2) ••• hl(ct)·

c

c;

B

b,'--------- B

Conversely if a06l is replaced by aOv61> lift the 2-simplex (aOv61) to a 2-simplex in K
which has (aOcl) as a side, say (aOvcl). Here we may directly operate allowably on 0
to give aOvcI c2 ••• Ct.

(2) Suppose 62 = ao and the operation replaces a06l62 by ao; then if C2 = ao we may
directly operate allowably on 0 to give aOcSc4 ••• C,. If c2 =1= ao then Conditions I and 2
imply the existence of hI E stab (Cl) with hl(c2) = ao· An admissible operation on 0
gives aOcl aOhl(ca) ... hl(c,), on which we operate allowably to obtain aOhl(ca) ..• hl(c,).
Conversely, and finally, ifao is altered to aovao, lift the l-simplex (l1ov) to a l-simplex

in K which has ao as a vertex, say (aov). Operating allowably on 0 we 'lift' the initial
operation to give aovaOcl c2 ... Ct.
The allowable operations in KIG give us a sequence of paths {J,fEl> ..• ,fEN = B. By

repetition of the above process we obtain in K a lifted sequence

0= Eo,El' ... ,EN = D

together with group elements hI' ... ,hN ofH (some of which may be the identity) where
hi maps the end-point of Ei-1 to that of Ei for I ~ i ~N. Our construction ensures
p(D) = ii, and the required group element h e H is simply hN ... h2hl•

As a direct corollary of Lemmas 2 and 3 we have
LEMMA 4. With the same hypotheses as jor Lemma 3 there exists h e H satisjying

h(c,) = bk·
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3. Main result. We are now in a position to prove

THEOREM 3. 1T1(X/G) ~ G/H.
Proof. As in the previous section we assume' compatible' triangulations K, KIG

of X,X/G.
Take as base-point in X/G any vertex a of the induced triangulation; since x/a is

path-connected this choice is arbitrary. Let 1T1(K/G, a) denote thc edge-group of
homotopy classes of edge loops on a and 1T1(X/G,a) denote the fundamental group of
X/G = IKIGI based at a; then 1T1(KIG,a) ~ 1T1(X/G, a) «2), page 237). In view of this
we are able to restrict ourselves to looking at edge loops on a. Choose a vertex
a Ep-l(a) as base point in X; again the choice is arbitrary.
We set up a mapping ¢:G~1Tl(K/G,a) as follows: given YEG, join a to g(a) by an

edge-path E in K; thenp(E) is an edge loop on a in KIG. Define ¢(g) = {p(E)}, where
{ }denotes the homotopy class of the edge loop under consideration. Since X = IKI
is simply connected any two edge-paths joining a to g(a) must be homotopic and there-
fore, by the eontinuity of p, project to homotopic edge loops in X/G. Consequently
the above definition is independent of the choice of E and ¢ is well defined.
Given an element C1.E:1T1(K/G,a), choose any representative edge loop; then by

Lemma 1this may be lifted to an edge-path in K beginning at a. The final point of
this path must belong to the G-orbit of a and therefore there exists goE G which maps
this final point to a. Then ¢(Yo) = a, showing ¢ to be onto.
The map ¢ is a homomorphism; let Yl' Y2 be any two elements of G and consider

¢(gagl)' Join a to Yl(a), g2(a) by edge-paths El>E2 respectively; then E2 followed by
Y2(E1) is an edge-path joining a to g2g1(a). By definition

¢(g2g1) = {p(Eag2(E1))} = {p(E2)}· {P(EI)} = ¢(g2)' ¢(Yl)'
as required.

Finally, we show that the kernel of this homomorphism is H.
(a) H s;: ker e. Any generator of H must fix a vertex of K, Condition 1 being

satisfied for the action of G on K. If b is a vertex of K and g(b) = b, join a to b by an
edge-path C, then the path consisting of 0 followed by g(O) in reverse joins a to g(a)
and projects to a null-homotopic loop in K /G. Thus since the stabilizer of any vertex
of K is contained in the kernel of ¢' by our earlier remark we must have H s;: ker 1>.

(b) ker e s;: H. Suppose ¢(k) = 1, where kEG and 1 here denotes the unit of
1T1(K/G,a); joinato k(a) byanedge-pathCinK; thenG = p(C) is a loop ona homotopic
to the constant path fj at a. Applying Lemma 4with B as the constant path at a, there
exists hEH such thath(k(a» = a; thus hk e stab (a) and therefore k e H. This completes
the proof of Theorem 3.
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TRANSVERSALITY FOR PIE~NISE LINEAR MANIFOLDS
by M .A. ARMSTRONG and E •C • ZEEMAN

'~eprove three transversality theorems in the
piecewise linear category. For the standard de~initions
and properties o~ this category see [12]. All maps
considered will be piecewise linear, all manifolds compact,
and all submanifolds locally flat (which is always the case
for codimension ~ 3 by [11]). We say M is a proper

• •submanifold of Q if the boundary M c Q and the interior
o 0M c Q..

The main result of this paper (Theorem 1) says that
i~ M, P are proper submanifolds of Q then we can ambient
isotop M until it is transversal to P.

Perhaps we should straightway pOint out some inherent
difficulties. We do not assume that P has a normal bundle
in Q (or, equivalently, a normal microbundle). As yet the
existence of normal bundles in the piecewise linear category
is an open question. Haefliger and Wall [5] have proved that
normal bundles exist in the stable range, but Hirsch [6]
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has shown that normal disk bundles do not always exist
in the unstable range, and this gives weight to the
conjecture that normal bundles also may not always
exist.

If P did have a normal bundle in Q, then one
could slide M along the fibres until it was transversal.
This essentially is the geometrical idea behind Thorn's
original transversality theorem [8] for smooth maps, and
behind Williamson's extension [10] to piecewise linear maps.

However, we are interested in the case where P may
not have a normal bundle, and therefore we do not assume
anything about normal bundles. Also we are primarily
interested in ambient isotoping embeddings to be transversal,
rather than homotoping maps, although in Theorem 2 we do
deduce a result about maps.

Given M, P c Q, if we want to isotop M transversal
to P, then the following method of attack at once suggests
itself. Choose a triangulation K of Q in which M and P
appear as subcomplexes. •Let K denote the dual cell
complex of K, and attempt to isotop M into the m-skeleton

•of K. But this is not always possible, because if it
were one could infer that M always had a normal disc bundle
in Q contradicting Hirsch's result [6].
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Therefore we cannot isotop M into the m-skeleton
litof K. Instead we have to isotop M step by step so as

to be transversal to each simplex of K. In other
words our proof is by bare hands - the subtlety lying
in the interplay between the linear and the piecewise
linear. If one uses only the piecewise linear structure,
then one runs into a difficulty illustrated by the
following example.
The folded disc : let D be a folded disc crossing an
interval I in Euclidean 3-space (E3) as shown in
Figure 1.

Fi_ggre 1

This picture is piecewise linearly homeomorphic to a
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standard linear disc in E3 together with a
perpendicular line through its centre, consequently
D and I are transversal in E3. If we now multiply
by an extra dimension, we obtain D x I crossing I x I
transversally in E4. However, on tilting I x I
upwards a little keeping I x 0 fixed the transversality
is destroyed, since the intersection of D x I with
I x I becomes three concurrent lines and is no longer
a manifold. With this example in mind it is easy to
manufacture the following more disheartening situation.

q Sm-1, p-1Let 6 be a q-simplex and S spheres crossing
transversally in its boundary. Let nm, nP be discs
formed by jOining the spheres to two points in general
position in the interior of 6q• Then nID and nP may
cross transversally at all interior points, yet fail
to be transversal at their boundaries.

So as not to meet with this kind of difficulty
in the inductive step of our proof, we shall introduce
the notion of M being transimplicial to the triangulation
K of the ambient manifold Q. Being transimplicial is
roughly the opposite of being a subcomplex. It is not
a piecewise linear invariant, but rather is a technical
deVice introduced for the purposes of proof; it uses
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not only the piecewise linear structure but also the
local linear structure of K, and consequently is a
stronger property than transversality. With this
extra structure we are able to produce (transimplicial)
Theorems 4 and 5 that have our main (transversality)
result, Theorem 1, as a corollary.

The same techniques are used in Theorem 2 to
extend the result from embeddings to maps : any map
f:M -+ Q is homotopic to a map g transversal to the

-1submanifold P of Q, and the cobordism class of g P
depends only on the homotopy class of f. It should be
noted that in the analogous differential setting [8],
the set of all transversal maps is open in the function
space, whereas this is not true in piecewise linear
theory (we have no derivatives to "control" local
movement). This defect accounts for our more directly
geometrical approach.

V.Te should point out that although Theorem 5 is
a relative transimplicial theorem, we have no corresponding
relative transversality theorem. This omission is
discussed at the end of the paper.

Our third main result, Theorem 3, can be thought
of as an existence theorem for quotient regular
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neighbourhoods (analogous to quotient vector bundles) -
the inherent difficulty here being that in a regular
neighbourhood there are no convenient fibres to play
with. More precisely, given manifolds MeP c Q, we
produce a fourth manifold N in Q that cuts P transversally
along M.

r----·-----------··-···-· _..-....._-..-_....
i Q i
I
I

IN:
I i I
i-------··---71- ..- _._P_j

/ i I
M : I

I J--..-------_ .. ---.------

Fi__g__ure2

At the end of the paper we show how this result can
be used to construct induced regular neighbourhoods,
and Whitney sums. However, we are unable to prove any
uniqueness theorems for these constructions.

We should like to acknowledge an unpublished
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paper by V. Poenaru and one of us, which contained
incomplete proofs of some of the results below.

Contents.
The Main Theorems.
(p, g)-disc fiberings.
Transimplicial maps.
Proofs of Theorems 1, 2 and 3.
The t-shift of an embedding.
Proofs of Theorems 4 and 5.
Relative transversality?
Tubes.
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THE MAIN THEOREMS

Firstly we give a precise definition of what
we mean by transversality. Let M, P be two proper
submanifolds of the manifold Q. Denote by En
n-dimensional Euclidean space and by En the closed

+
half space obtained by restricting the first coordinate
to be non-negative.
Definition 1. The submanifolds M, Pare transversal

o 0 • •at the p0tni x E M n P (respectively M n p) if there
is a coordinate neighbourhood h:Eq ~ Q (h:E~ ~ Q) of
x in Q such that h-1M, h-1p are two linear subspaces
of Eq (E~) in general position.

M and Pare transversal if they are transversal
at all points of M n P.

It follows immediately that if M, P are transversal
in Q, then M n P is a proper submanifold of dimension
m + p - q, which is locally flat in both M and P.
Theorem 1. If Q is a manifold with proper
§ubmanifolds M and P. then M can be ambient isotoped
transversal to P by an arbitrarily small ambient isotopy
of Q.

We want an analogous definition and theorem for
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maps. For simplicity we confine ourselves to closed
manifolds, although there are similar results for
bounded manifolds.
Definition 2. (i) Let M, P, Q be closed manifolds,
with P a submanifold of Q. Let f:M ~ Q be an embedding;
we say that the embedding f is transversal to P if fM
and P are transversal as submanifolds.
(ii) Now suppose f:M ~ Q is an arbitrary piecewise
linear map. We say that the map f is graph-transversal
to P if its graph

rf:M ~ M x Q
is transversal to M x P as an embedding. Two properties
follow at once.
A) If f:M ~ Q is an embedding that is transversal to
P as an embedding, then it is graph-transversal to P
as a map. In other words graph-transversality is a
generalisation.
B) If f:M ~ Q is a map that is graph-transversal to
P then f-1p is a locally-flat submanifold of M of
codimension q - p. This is because the homeomorphism
rf:M ~ (rf)M maps f-1p onto (rf)M () (M x p), which is
a locally flat submanifold of dimension
m + (m + p) - (m + q) by the remark above.
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Theorem 2. Given closed mani~olds M, p, Q with
P c Q, and given a map f:M ~ Q, then there exists
an arbitrarily close homotopic map g that is

-1graph-transversal to P. The inverse image g P
is a locally flat submanifold of M of codimension
9 - P, and the cobordism class {g-1pl depends only
on the homotgpy class [~l.
Remark. All our results in this paper concern
manifolds; a subsequent paper by one of us will deal
with polyhedra [2]. In particular a stronger definition
of transversality for maps will be given in [2], and a
strengthened version of Theorem 2 proved.
Theorem 3. Given manifold~ MeP c Q, both inclusions
being proper. then there exists a fourth manifold N,
contained in Qo that intersects P transversally in M.
Remark. N will not be a proper submanifold of Q,
because in general the boundary N t Q. However it will
be proper in the neighbourhood of M, and so the definition
of transversality of Nand P makes sense.

We proceed now with the business o~ setting up
s~ficient machinery to prove Theorems 1, 2 and 3.
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Cp. g)-DISC FI~ERINGS

The ideas introduced in this section will be
of'fundamental importance throughout the rest of' the
:paper. Let X, Y, Z be polyhedra, and let Dn denote
a standard n-dimensional disc with centre O.
;Q§f'inition ...1. A map g:Y ~ Z will be said to be
locally a q-disc fibering at y E Y, or more brief'ly
F(q) atx, if'there exists a neighbourhood N of'gy
in Z and an embedding W:N x Dq ~ Y onto a neighbourhoOd
of'y, such that the diagram

P1.
N x Dq - 11

wJ P
g •ZY

is commutative. Here Pi denotes projection onto the
first factor, and i the inclusion of'N in Z.
Dof'inition 4. The pair of maps X ~-4-Y J_> Z is
said to be locally a (p, q)-disc fibering at x E X ,
abbreviated to FCR. g) at x, if'there exists a
neighbourhood N of gfx in Z, embeddings ~:N x DP ~ X ,
W:N x Dq ~ Y onto neighbourhoods of x, fx respectively,
and a map k:nP, 0 ~ Dq, 0 such that
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P 1xk q pj.
N x D ---·~N x D ---,N

cpl
1x -

Ii
J.

...--.----+ Z
g

cOnuIlutes.
Note- (i) We can choose cp so that cp(gfx, 0) = x.

(ii) There is a natural generalisation to
sequences of maps of greater length.

(iii) If the pair X -f_-",y -'~Z is F(p, q) at
x E X, then the composi tion X -g~.-,>Z is
F(p) at x.

(iv) The same diagram shows that the pair f, g
is also F(p, q) at all points in some
neighbourhood of x.

We prove three basic lemmas.
Lemma ~ (Restriction) •
.:::.Su.::::;p~p~o::.se~X~-+Y=---+.;.....:Z::.....:i:.::s::...;::F~(..£;p:..l,......,;;:g,",,)-..::::a_t;...::::X-._;E;...,;.;:X.!_Vi;.;;.,V'h...e_r;;....e=.,·...Ig..f_X~E~Z,o ,

-1 -1a subpolyhcdron of Z. Let Yo = g Zo,~o = f Yo·
ThelLXo.! IX<4 Y 0 ..rl¥.o~z,.....;,i,::.s..;a;::.;l::.:s;;;..o:~F:..l(..p:..l!:....;;g~)...;:;;a..:;.t_x:.:.:...
Proof. By restriction.
Lemma 2. (Glueing).
Given X __!_.Y -~ Z, let Zi i = 1, ••• I t be lLub'p"o..bY.h.~

t9! Z, and suppose U Zi is a nei,ghl2_ourhood_of' _gfx in Z.
i=1

-1 I -1 - .p I"~Yi = g Zi,_$i = g ~iL-Xi = f' Yi ~fi ~Xi·
'fj1en X ..-~yLz is FCp z q) at x if and only if eac~

:ri SilCi--->Yi---"Zi is FCp, g) at x.
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Proof'.- Given that X-.!_·-+y-.L.z 1s F(p, q) at x ,
1'i g.

restriction shows each Xi -----. -~Yi --~ Zi to be F(p, q)

at x.
Conversely, suppose we are given for each i a

neighbourhood Ni of gfx in Zi' embeddings ~i:Ni x nP ~ Xi'
*i:Ni x nq ~ Yi and a mnp ki:nP, 0 ~ nq, 0 such that

1xki p~
Ni x nP ----,>Ni ~Dq-_'i~

Cl) i I \jT 11. 1.1

~. ---,::---.x.~ f'1-- -r Yi'- gi -~Zi

commutes.
Triangulato Z so that g1'x is a vertex and each

Ni 1s a subcomplex. §Let Ie = Bt(g1'x, Z), then each
simplex A E K is contained in some Ni. Consider a
concwisc expansion

gfx = 10 / K:1.,/ ••• /'Km = K
each Ki being n cone, vertex gf'x.

Let Ki,E denote the cone Ki shrunk by E, and
~, ni the discs DP, Dq shrunk by E.

§ Let v be a vertex of'a compl.exK; we denote the
open, closed star of v in Ie by st(v, K), B't(v, K)
respecti veLy ,
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We shall defi:n.o,inductively 0;:), j, a number

€j > 0, ' -:, . ~j:K. e nP ~ X, 'f ·K xn<l ~yemo edua ng a x €j j. j'€j €jJ, j

and 1') 0 ~ nq sucha map k:De ' e ' 0 that
j j

~.
J ~

X ----.f'.---.- ..--..:> y --- ..~ Zg

commutes.
Bogin, for j = 0, with eo = 1 and ~o = ~ilgfx x DP,

Wo = *. Igfx x D<l, k = k., for some chosen i.
1 1

(1Nithoutloss of generality we may assume
k(~) C Di for all e such that 0 ~ € ~ 1, for if not
proceed as follows. Choose~, 0 < ~ ~ 1, ouch that
D~ is contained in the star of the origin in some
triangulation of DP with respect to which k is simplicial.
Then k(D~€) C D~ for nIl e E [0, 1]. Let A:nP ~ ~ be
the shrilikingmap, and replace k, ~o by kA and ~o(1 x A)
rospectively. )

Inductive ~to~, j ~ j + 1.

Suppose Kj+1 = Kj U A, let L = Kj n A Qnd p:A ~ L be
a retraction. Choose r such that A c Nr• Given a E A,
u E nP, v E D<l,define ~r,a:DP ~ X and Wr,a:nq ~ y
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by
<pr,a(u) = q>r(a, u)

\jfr,a(V)= "'r(a, v) •
Now q>r(L x nP) is a neighbourhood of
moreover ~. maps ( Le x nP into

J t j
ej

gfx x o to x.

x in f-1g-1L, and
f-1g-1L

Also "'r(L x nq) ne ighbourhood of fx in -1 andis a g L,
'¥j maps L€ x Dq into -1

{ €j
g L

J
gfx x o to fx.

Therefore there is a positive €, € ~ ej, such that
~j(Lg x ~) C 't'r(Lx riP)

'lj(Lg x Di) C "'r(L x nq).

Choose then €j+1 = g and define

4'lj+1(z, u ) = {4'lj(Z, u ) on Kj,e x ~

q> <p-1 ~j (p z, u ) on A x ~.r,z r,pz g ~
'l'j+1(z, v ) = {'I'j(Z, v) on Kj,e x D~

"'r,z"';~pZWj(pz,v) on Ag x n~.
In both cases we huve agreement on the overlap, becuuse
here pz = z. OUr map ~j+1 is piecewise linear on
A x nP because it is the composition
e _"0 ~nx1 _"0 1x<:D· X 1xco.:1 _"0 proj ...."0 't'A Xlr ... r-·~A xL xlr __ J_).A x -·''_",A xLx.u- .~A Xl)"'" ~X.e e e e € e e' g
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Similarly ror ~j+1·
We arc left to show thc commutativity of

DP .J..~~--~A x Dq l:?_;__> A
e e e e

le
I
J,

-g-4) z.x --T---~ Y --

For the right hand square, if a E Ae' v ED;, then
gWj+1(a, v) = gWr,a*~~paWj(pa, v)

E g'Jr (Dq)r,a
= a
= Pi (a, v).

In the left hand square, ror a E Ae' u E D~, wc have
= wj+1(a, ku) = Wr,aW~~pa~j(pa, ku)

= 1ir ,1,-1 ~ (1 x k)(pa, u)'t'r,a'l'r,paj
-1 (= *r,a*r,pa r <Dj pa, u) by inductive

= ,I, ,I,-1 f -1 {l ( )'l'r,a~r,pa ~r,pa~r,a j+1 a, u
hypothesi

W
j
+1(1 xk)(a, u )

-...",-'0, _~' ...... ,"'.' • __ .• _.._'

since

= r~. 1(a, u) since
,J+

commutes,

~r,pa i*r,pa
..If ~

X--r--"'Y
p kr q
D ---~D commutes.

..;,
X--~Y

This completes the inductive step j ~ j + 1.
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Eventually, at the end of the induction, we
obtain a commutative diagram

reI
'"--.,.---~ zg ,

where e = em. Since Ke is a neighbourhood of gt'x
in Z, thia shows that X -~ ..-.,y ..~- Z is F(p, q) at x,
and so completes the proof ot' Lemma 2.
Lemma 3. (Composition).
It'X ..t'__,.y .~-~ Z is .F(p. g) at x E X and Z ,l}.w ia F(nl
at gt'x, then XJ.:,.yJt,.z1.'l ....w~F(n +tl.t n +g__, n) at x.
Proof. We have a neighbourhood N' of gt'x in Z,
embeddings ~', v' and a map k which give rise to a
commutative diagram -

N' x nP-~~.-> N' x nq _~~_'Nt

~tl *'1
X -"'-r" ---.~y --g~Z

Choose a neighbourhood N of hgt'x in Wand an embedding
e:N x nn ~ Z onto a neighbourhood of gf'x in N' such that

1'T x nl1 ~JL1.._~N

.L
Cl

I

Z -.. -----.-~ Wh
commutes.
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and

*:N x Dn x Dq ~ Y by
wet, u, v) = w'(c(t, u), v)
~:N x Dn x DP ~ X by
~(t, u, v) = ~'(e(t, u), v).

Def'ine

Then

~1 wI e1
X '._-_ .._-'--r- ..'--'_'"Y _ ......_. --g--'--~Z

le
I....

--·-·~W
h

commutes as required.
.Q2!'ollary. With the snme hYpotheses, X _!=zY _~K)w

~ F(n + p. n + g) at x.
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~1§1!!'LICIAL MAPS

Let Q be a manifold, and K a triangulation
of Q. If A is an a-dimensional simplex of K, let

AL = lk(A, K)
denote the link of A in K. Then § ALA = st(A, K).
Let v be a vertex of A, and

sA:ALA -+ vLA
denote the simplicial map defined as the join of

AA -+ v to the identity on L •
Let M be another manifold, and f:M -+ Q be a

map. Given a point x of M, let A be the unique
osimplex of K such that fx E A.

Def'inition 5. We say that the map f is transimplicial
t.oK a~ if the pair

f-1ALA_!._.~ALA ~~-; VLA

is F(m + a - q, a) at x. If this is the case for all
x E M, we say f is !£_ansimplicial to K_•.
Note 1. Our definition is independent of the choice
of v (by an application of the composition lemma).

We denote the join of two complexes K and L by KL.
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Note 2. The restriction and glueing lemmas of
the previous section show that equivalent to
Definition 5 is : for every principal simplex AB E K,

-1 f sAthe pair f AB ---:>AB -----»vB is F(m + a - q, a) at x ,
Note 3. Often it will be convenient to use the idea
of a submanifold (i.e. the image of an embedding rather
than the embedding itself) being transimplicial to a
triangulation. The definition is the obvious one.
Given a manifold Q, submanifold H, and triangulation
K of Q, we say M is transimplicial to K at x E M if
the pair

A A sA AM n AL c AL ~vL
ois F(m + a - q, a) at x, where x E A, A E K, and we

use the above notation.
Note 4. The concept is designed to cut out the
folding phenomenon described in our introduction.
We illustrate below a non-transimplicial embedding of
a 2-disc in 3-dimensions. The disc lies in the star of
a 1-simplex, and has a fold running dovnl to a point
in the 1-simplex.
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The embedding ~ ~ails to be transimplicial at x,
because i~ it were, then the composition sAf would
be F(e), i.e. would be an embedding; but it is not
an embedding because it is three-to-one where the ~old
gets ~lattened down.

Notice that if we move the ~old point into
the interior o~ a 3-simplex, then the embedding does
become transimpllcial. In ~act this is the geometric
idea behind our main proof'. Given an embedding M ~ Q
and a triangulation K of'Q, we cannot isotop M into the

Ii'm-skeleton o~ K (by Hirsch's result [6]), but
nevertheless VIe shall show that we can push the worst
~old and kink points into top dimensional simplexes,
and so make H transimplicial to K.
Note 5. To prov~ the theorems in this paper we need
only consider transimplicial embeddings rather than
transimplicial maps. However, maps are just as easy
to handle us embeddings at this stage, and several of
the more general results that we prove ~or maps will be
useful in [2].

1"cIl}JIla4. (openne ss)
If f is transimulicial to K at X_E M, then f i_~
transimpli£ta,l.~ K at eacp'~oint in some neighb2£rhood
of x.
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Proof.~.- _. Using the previous notation, the pair
-1 A f A sA Af' AL _··>AL --->vL

is F(rn + a q, a) at x. By the openness of disc
f'iberings, there is a neighbourhood U of x in 11 such that
this pair is F(rn+ a - q, a) at all pOints of'U. Let

o
Y E U and suppose fy E B, B E Kj then A is a face of B

and consequently BLB C ALA; let B = AC. By restriction
. -1 B f' B sA Bthe pa i r- f BL---~ BL ._-) veL is P(m + a - q, a) at s ,

But sve:vCLB ~ VLB is F(b - a) at sA:ry, and

sVCsA = sB:BLB ~ VLB. Therefore by the corollary to
Lemma 3

-1 B f' B sB Bf' BL -.__.._-;> BL --4 vL
is F(rn + b - q, b) at y, completinG the proof'.
Lemma_...2:.
For a&., subdivision K' of KJ f transimpli..cial to Kt .t_mJ)lies
f'transimplicial to K.
!:_roof. oGiven x E M, suppose f'xE A', where A' E K' and
o 0A' c A, A e K. Let v' be a vertex of A', v a vertex of
A, L' = lk(A', K') and L = lk(A, K). Then sA:AL ~ vL
induces a linear (i.e. each simplex is mapped linearly)
map ~:v'L' ~ vL which makes the following diagram co~~ute

At
f'-1A t L' __!.. ...,.At L' --.~....-.-~v'L '

n n
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Since f'is transirnplicial to Kt the pair
f'-1AtL, ~ A'L' ~ v'L' is F(rn + a' - q, a') at x.

If'we show that ~ is F(a - a') at v', then
f-1AI., ( )-+ AI., ~ vL is F rn+ a - q, a by composition, and
so the lemma follows. Therefore it remains to show
that A is F(a - a') at v'.

K is contained in some Euclidean space E.
Let F be the decomposition space of E consisting of'
all a-planes parallel to A, and let g:E ~ F be the
natural map. Then g embeds vL in F because A is
joinable to L. Similarly g' embeds v'L' in Ft, where
g':E ~ F' is the natural map onto the decomposition
space of all at-planes parallel to At. We have a
commutative diagram

~v 'L' .-----..~vL
I19

IJ. -~F

where j..l.is the natural map. Since j..l.is linear it is
F(a - a') everywhere.

Let N = g(vL), Nt = g'(v'L'). Then N' is a
neighbourhood of g'v' in j..l.-1Nbecause AfL' is a
neighbourhood of x in AL. Therefore j..l.:N'~ N is
F(a - at) at g'v' by restriction. Therefore
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X:v'L' ~ vL is F(a - a') at v', and the proof of
Lemma 5 1s complete.

Let P be a proper submanifold of Q, and let
K be n triangulation of the pair 8, P; in other
words K is a triangulation of Q in which P appears as
a subcomplex K1.
Lemma 6. (Consistency)
If M if? a pro_l)~rsubmanifold of Q__that_j._stransimplicinl

-
io K. then M 1s transveros[11to.~

oProof. Given x E M n P, suppose x E A, A E K1•
Let L = Ik(A, K), L1 = Ik(A, K1) and v be a vertex of A.
Since M is transimplicial to K we have, with the Usual
notation, a comnutative diagram:

1xk projectionN x D .-.-----". IT x D.;; ------.--- ) N

M n AL-·_·_) .AL
c

~c
---A' .... -.,~ vL
s

Let Ni = N n vL1•
Since Q, P is a locally flat manifold pair, we can
choose N such that N, Ni is an unknotted ball pair.
The above left hand square can be rewritten:

N x D _._1_~~_~N x D.

cpl lw
M "'- _._ -. ..> Q

C
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Since M is 10CD..llyflnt in Q, we know that N x kD is
locally flat at (v, 0) in N x D::d and therefore that
kD is locally fl3.t at 0 in Dt;;' Meanwhile N1 is locally
flat at v in N. Therefore N x kD and N1 x D* are
t.raneve; ..-'salat (v, 0) in N x D:~. Taking the ima.ge
tmder \jr we deduce that 11 and P are transversal at x

in Q. This is true for all x E M n P, and so M, Pare
tI'aasversal.

We shall require triangulations of our manifolds
that possess a certain local linearity property.
Defini tiop~ A combinatorial manifold K, of
dimension Cl, is called Brouwer if:

oFor each A E K there is a linear embedding
st(A, K) _.ECl.

(ii) For each A E K there is a linear embedding
St(A, K), st(A, K) _. E;, EQ-1.

(i)

Notcs~ 1. If only (ii) holds we say K is Brouwer a.t
the b oundal'lL:.

2. Not every combinatorial manifold is Brouwer,
see Cairns [4].

3. Any subdivision of a Brouwer manifold is
Brouwer.

The following lemma is due, in a sharpened form,
to ~~itehead [9].
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Lemmo. 1.

(a) ~ combinatorial manifold K has a Brouwer
subdivision Kt.

(b) If'K is alre~ Brouwer at the bOJll1dar'y,we ca~
choose Kt such that it = i.

Proof. Ca) Choose an atlas of'q-simplexes
f'.:11-+ K, 1 flit i ~ r, that cover K in the sense that~

every point has Bornef'il1as a closed neighbourhood.
Now produce Kt by subdividing so that all the f'.are

~

simultaneously simplicial (using [12] Theorem 1) •

(b) If K is already Brouwer at the bOlli~dary,we can
confine our attention to a subatlas not meeting K that

•covers every simplex not meeting K. In ordel" to make
the subatlas simplicial, it is not necessary to
subdivide any simplex on the boundary.

The main bur~en of this paper will be to prove
the following two theorews.
~oreI!l L~. If'f':M -+ Q is an embedding between closed
manifolds, and K aAY triangulation of Qz then f c~_be
ambient isotoped, by an arbitrarily small ambient isotopy,
to an embeddin_g_g that is _tr.fll1S im,p_licial to K.

This theorem is in fact true for maps (see [2]).
We now give a relative version.
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Theorem 5.
EFd J a Brouwer tri2-ngu~2~i on o..f..tll.e_p_0..Rt""1.d.a..r~ ~L.P,:"
Let 1':M ~ Q 1;>ea J2roJ?.erembe_dding such that f I i1 iJ?.

transimplicio.l to J. _Jhen _ther~ ~s~s .an extension

of J to a Brouwer trignaul_~tL0F K of' Q, Pt and an

arbi trari]..l small ambient_ is_otoM keel2ing Q fixed

~~ing f into an embeddina g that ....is ~r~plicja~

:t.<?_.•,K:...
Remark....... -- Let K be an arbitrary extension of J to a

Brouwer triangulation of' Q, P. Then although f'1~~1is

transim~licial to J, it may well happen that f is not

transim:Qli cial to K at )toints of' 11. For example, let D

be a disc properly embedded in a tetrahedron T as shown

in Figure 4. Then D is transimplicial to T, but the

fold ensures that D is not tr~nsimplicial to T at

the boundary point x.
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In our proo~ of Theorem 5, we get round this difficulty
by using a collaring technique to conotruct a particular
extension K relative to which such folds are straightened
out.

Before proving these transimplicial results, we
Give applications in the form of proofs of our
transversality theorems.
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PROOF OF THEOREM 1.____....... ;.0;;...._ • ___

We are given proper subm'J.nif'oldsU, P of'Q,
and have to ambient isotop 11transversal to P.

By Lemma 7, it is possible to choose a
Brouwer triangulation of the pair Q, P. Apply
Theorem 4 to ambient Ls otop 11 transimplicial to J,

and extend this ambient isotopy from Q to the whole
of'Q by [7] Addendum (2.2). Suppose the effect of
this isotopy has been to move ~ to ~1 C Q, then
J:i:1. is transimplicial to J. We are now in 0. position
to apply Theorem 5. This provides:
(a) an extension of'J to a Br-ouwer- triangulntion

K of'the pair Q, P.
(b) an arbitrarily small ambient isotopy which

moves M:1. transimplicial to K whilst lceeping Q
fixed.

Reference to Lemma 6 shows that the composition of'
our two isotopies produces the required result.
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PROOF OF TliEOREr,: 2.-- - --

We are given closed manifolds M, and P c Q,
together with a map f:1~ -+ Q which we want. to homntnp

graph-transversal to P. The graph rf:M -+ M x Q is an
embedding. Choose Brouwer triangulations K1 of M and
K2 of Q, P, and let K3 be a subdivision of the cell
complex K1 x K2 triangulating M x Q, M x P. Using
Theorem 4, ambient isotop rf into an embedding F that
is transimplicial to K3•
Lemma 8.------ ....--
~~_n_.£.h_oose, F so thE.l1._the_~£2.,mJ?ositj.o~.

M -~ ..~H x Q ....R;-:!.M.......~_ .. c_.~ ...... _.....

i.s a home_omorph;i~m, ~htte J21 is t~.J2.rojection •.
The proof' of this lemma is postponed, it can

be found directly following the proof of Theorem 4.
Meanwhile, let e = bhF)-1, the inverse

homeomorphism. Define G = (e x 1 )F:M -+ M x Q, and
let g denote the composition

M ~M x Q.-P~Q.

Then g is homotopic to f and G = rg, the graph of g.
The triangulation K3 of M x Q is really a

homeomorphism t :K3 -+ M x Q. Let K deno t e the
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triangulation
(e x 1)t:K3 ~ M x Q.

Then since e x 1 maps M x P to itself, K is also 0.

triangulation of'1-.1 x Q, 1.1 x P. Now F is transimplicial
to the triangulation 1\.3' and since we have applied the
homeomorphism e x 1 to bo~~ embedding and triangulation,
we deduce that G is transimplicial to K. Theref'ore by
Lemma 6 we know G is transversal to M x P. Hence g is
graph-transversal to P, because rg = G, and consequently
g-1p is a locally f'lat submanifold of M of codimension
Cl - p.

It remains to sho-v the invariance of the cobordism
class {g-1p}. There were two choices involved in the
above construction namely those of'triangulation and
isotopy. Let K*, g* arise from different choices. Then
g, g* are connected by a homotopy h:U x I ~ Q sny.

The graph
rh:M x I ~ M x I x Q

is a proper embedding, whose restriction to the boundary
rg u rg*:o(M x I) ~ o(M x I x Q)

is transimplicial to the Brouwer triangulation K uK ..,.,'
of oeM x I x Q). By Theorem 5 extend K u K* to a
triangulation of' :1:1 x I x Q, l~ x I x P and ambient isotop
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rh, keeping the boundary fixed, to a transimplicial
embedding H, say.

By Lemma 6 H is transversal to M x I x P, and
so H-1(M x I x p) is an (m + 1 + P - q)-dimensional

-1 (-1)submanifold of H x I with boundary g P u - gill P ,

the minus sign referring to orientation. In other
words g-1p and g:1p are cobordant. If f. is homotopic
to f then the same g will do for both, and so the
cobordism class {g-1pJ depends only upon the homotopy
class [f].
~mark.

There is a small but subtle point here. If.,
f happened to be already graph-transversal to P we
could not infer that r-1p E {g-1pl, because f might
not be transimplicial to any triangulation, and so we
could not use the relative transimplicial Theorem 5,
as in the proof above. Nor do we have a relative
transversal theorem to use instead (see the end of
the paper).
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]0 are given manifolds M ~ P c Q, with both
inclusions proper', and need to construct a :lperpelldiculo.r;'
manifold N. Begin os for Theorem 1, combining the
results of Theorems 4 and 5 to obtain a triangulation
J of P and an cmb Lcrit isotopy of P moving fir to 71i1,7
wher-e M1 is transimplicial to J. By l~] Corollary (2.3)
extend the ambient isotopy of P to give an ambient
isotopy of' the whole of Q. Extend J to a triangulation
K of ~, this is possible since P is proper and locally
flat in Q (sec [3]). Let K' denote n first derived of
K mod J.

For each simplex A f_': J, let
LA = tsimplexes l3~ .i~' : AB c;: K' a.id B II J = ~l.
Define

the joins being made linearly inside the simplexes of K.
Note firstly that the dimension of X is m + q - p.
X need not be a manifold, however we shall show that it
is a manifold "noar" M1•
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·'1
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oFor x ~ Mi, suppose x ~ A, A E J, and write
LP = lk(A, J), LQ = lk(A, X'). Let v be 0 vertex of A.
Since Mi is transimplicial to J, the pair

r \ p. P sA, PHi .: JIL c, AL -------~' vL
is E'Cm + a -p, a) at x , This implies that

X I, llli Q c ALQ _ .s:__~vL~
is also F(m + a - p, a) at x. So os not to interrupt
the main line of argument, we ask the reader to
temporarily accept this implication; a proof '!Ji11be
give a following Lemma 12. ~Yehave therefore a

('neighbourhood Dq-a of v in vL~ and an embedding of
Dq-a x Dffi+a-P= nm+q-p o.rto a neighbourhood of x in X.
Consequently t.here is a neighbourhood Ni of IV!1 in X
(for example take n second derived neighbourhood)
which is 211. (m + q - p) - manifold £ladtransimp1icia1
to Ie' • By I,Ci ';.~G

- (i" io tpanevoI'sal to P in Q,.o "1

By construction Ni I. P = }.11 • Now I'everse the original
ambient isotopy of Q to obtain the required manifold N.
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THE t~S1iIFTOF AN EMBEDDING.

For the proof of Theorem 4 we shall use a
sequence of special local moves (first introduced
in [12J Chapter 6) called t-shifts. The parameter
t concerns dimension, and the construction involves
choice of local coordinate systems (i.e. replacing
the piecewise linear structure by local linear
structures) and choices of points in general position.

Suppose f:M ~ Q is a proper embedding between
manifolds. By Lemma 7, we can find triangulations
K1, K2 of M, Q such that f:K1 ~ K2 is simplicial
and K2 Brouwer. If K~2), K~2) denote the barycentric
second derived complexes of Ki, K2, then f:K~2) ~ K~2)
remains simplicial.

Let Ti be a t-simplex of Ki such that
o 0T1 C M, and let T2 = fT1• Take a simplicial neighbourhood
of T2 modulo its bOUIldary in K~2) (i.e. this consists
of all closed simplexes of K~2) which meet the interior
of T2) and call the resulting q-bal1 B2• Let
B1 = f-1B2, this is an m-ball (it is in fact the
corresponding simplicial neighbourhood of T1 mod ~1
in K~2». For i = 1, 2 let Ti denote the barycentre
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o~ Ti, and let Si = Bi• Then the polyhedron
...

IBil = TiSi, although o~ course as a complex Bi
""is a subdivision of TiSi•

Denote by fT:B1 ~ B2 the restriction of f,
... ...

Thus fT is the join of the two maps T1 ~ T2, 81 ~ 82•
The idea is to construct another embedding gT:B1 ~ B2
that agrees with ~T on the boundary B1, and is ambient
isotopic to fT keeping the boundary :82 fixed. 1Ne shall
give the explicit construction below; it will be
apparent that gT can be chosen arbitrarily close to
fT' and the ambient isotopy made arbitrarily small.

Define a new embedding of M in Q by

{
f on M - B1
gT on B1•

Then g is ambient isotopic to f. We call the move

g =

f ~ g a local t-shift with respect to the triangulation

K2•

Construction o~ the local shift Choose a linear
embedding h of it(T2, K2) in Eq (this is possible since
K2 is Brouwer), then h embeds B2 linearly in Eq•

Let X denote the combinatorial q-ball hB2
""

y = X, and v = hT2• Choose a pOint W E Eq near v
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which satisfies:
(i)

(ii)
(iii)

W E st(v, X)
wand Yare joinable
w is in general position with respect
to the vertices of X.

Define a homeomorphism j:X ~ X as the join of the
identity on y to the map v ~ w. Thus h-1jh is a
homeomorphism of the ball B2 which keeps its boundary
fixed. Define gT = h-1jhfT• Then gT is ambient
isotopic to fT keeping B2 fixed in view of:
Al~ander's Lemma~ Any homeomorphis~ of a ball
keeping the boundary fixed is isotopic to the identj.tz
keeping the boundary f~xed.

Suppose we now let T1 run over a sequence of
"interior" t-simplexes of K1, then the corresponding
balls {Bi} overlap only in their boundaries, on
which the {gTl agree with f, and therefore with each
other. Consequently the resulting embeddings, and
ambient isotopies, may be combined to give an embedding
g ambient isotopic to f. 'Ne call f -+ g a global t-shi...fi
or, more briefly, at-shift.

We shall want to perform a succession of t-shifts,
one for each value of t, dim K1 ~ t ~ O. But after



- 40 -

the first shift the resulting embedding will no
longer be simplicial with respect to K1, K2•
However, in the construction of a shift, our initial
assumption that f be si~plicial was a luxury rather
than a necessity, and the construction can be adapted
as follows. Suppose r > t, e:K1 ~ K2 simplicial,
and that we perform an r-shift e ~ f. Then given a
t-simplex T1 E K1 :
(a) f maps T1 linearly onto a t-simple~c T2 E K2•
(b) If B2 is as above, and if B1 ~ f-1B2, then

-1 • •B1 is an m-ball and f B2 = B1• ...
(c) fT:B1 ~ B2 is the join of B1 ~ B2 to T1 ~ T2•
Property (a) is satisfied because the r-shift does
not move the (r -1)-skeleton, and properties (b) and
(c) follow from property (i) of w in each local r-shift.

With the amount of structure contained in (a),
(b) and (c) we can construct a local t-shift f ~ g
exactly as before. Only one minor modification is
needed, and that is in property (iii) for the point w:
for this choose subdivisions such that B1 ~ B2 ie
simplicial, let X, be the corresponding subdivision of
X, and choose w in general position with respect to
the verticos of X'. The remainder of the construction
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is unaltered.
In this way we cnn construct t-shifts for all

t, m = dim K1 ~ t ~ 0, in descending order, because
for each t-simplex, the prececding higher dimensional
shifts preserve the structure (a), (b) and (c).



- 42 -

PROOF OF THEOREM J±.:.

Let X be a combinatorial q-ball, with boundary
Y, linearly embedded in Eq, and srn-1 an (m-1)-sphere
in Y. Suppose that Y is joinable to the interior
point w of X; in other words X and wY have the snme
underlying polyhedron. 'Nehave the f'ollowing two
lelTlQas.
Lem.'!la9.
If'Srn-1.._is h Sm-1 i_ transimplicial to Y _at]/, t en w s
transimplicial to X a~.
Ler.lI!l.a10.

If'Srn-1 is a subcornplcx of'Y. and if'w is in general
p_osition with respect t~the vertices of'X, then
wsm-1 is transimplicial to X nt all interior pOints
of'x.
~oof' of'9. (See Figure 6)

oSuppose YEA, A E Y.
Let v be a vertex of A, L = lk(A, X), L1 = lk(A, Y)
and s the simplicial map AL ....vL. We know that
Sm-1 n AL1 c AL1 s is F(rn + a)--..!)vL1 a - q, at y:
i.e. there is a neighbourhood N1 of v in VL1 and a
commutative diagram
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where ~1 embeds N1 x D~, N1 x D~+a-q as neighbourhoods
or y in AL1, sm-1 n AL1 respectively. Since w is
joinable to Y, every ray radiating rrom w meets Y in
a unique point. The same is true ror points near w.
Thus any ray near wyand parallel to wy also meets Y
in a unique point. Thererore given a neighbourhood V
or y in Y, there exists a neighbourhood U or y in X
such that projection parallel to wy gives a map
r:U ~ V. Now choose V, U sufficiently small so that

( 11) aV c ~1 N1 x D1 and U c AL. Derine e:u ~ D1 as the
conposition

aThen s x 8:U ~ vL x D1 is piecewise linear and onto
aa neighbourhood of v x 0 in vL x D1" Moreover, s x e

is an embedding, ror suppose u1, u2 have the same
image under s x 8. Since su1 = su2 the interval
u1u2 is parallel to A. Thererore the interval
(ru1)(ru2) is also parallel to A and of the same length,

-1 -1consequently the points ~1 ru1, ~1 rU2 have the same
afirst coordinate in N1 x D1" Since 6u1 = 8u2, they also
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have the sa~e last coordinate. Thererore they are
equal, giving rU1 = ru2, and so u1 = u2• ThuB s x e
is an embedding as required.

aChoose neighbourhoods N or v in vL, D or 0

in D~, Dm+a-q of 0 in D~+a-q such that
N x Da c (s x e) U, and
DIn+a-q C Da •

Define cp:Nx Da ~ AL by cp= (a x 6)-1 IN x Da• By

construction

comtlutea, shmving wsm-1 tranaimplicial to X at y.
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?£~~-2f 10. (Sec rigure 7) Since w is in general
position it must lie in the interior of a principal
simplex of X, hence trivially wSm-1 is transimplicial

m-1 _Lto X at w. Given an interior point x of wS- , x F W,
osuppose that x E A where A is a simplex of X (we may

assume dimA < Cl, otherwise the lemma is again trivial).
Let L = lk(A, X). We need to show that

wSm-1 n AL c AL_!'--vL
is F(m +a - Cl, a) at x. Denote by [A] the linear
subspace of ECl spanned by A. Then w i [A], by the
general position of w. Let [wx] meet Y in y, where

oY E e, e E Y. Again using the general position of w,
we infer that [A] and [e] together span E'1• Therefore
[wA] n e is a convex linear cell, containing y in its
interior, of dimension (a + 1 + c - '1). Call this cell E.

Fi_guI'e~
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Let L1 = lk(C, Sm-1), L2 = lk(C, Y). Then
EL1, EL2 are respectively m + a - q, a - balls"

Let p:C ~ [E] denote orthogonal projection,
ond V be the neighbourhood (p-1E)L2 of y in Y. Let
-p:V ~ EL2 be the join of p to the identity on L2•
As in the proof of the previous lemma any ray parallel
and sufficiently close to wx meets Y in a unique point,
and therefore there exists a neighbourhood U of x in X
such that projection parallel to wx gives a map
r:U ~ V. We can choose U sufficiently small so that
U c AL. Let e be the composition-U _E-." V ._p_...,) EL2 •
Then 6 is a projection in a direction complementary to
the projection

c . BU _···_-+AL ---'>-vL"
Therefore the product

s x 6:U ~ vL x EL2
is a piecewise linear embedding onto a neighbourhood
of v x y in vL x EL2" Choose neighbourhoods N of v in
vL, Dm+a-q of y in EL1, na of y in EL2, such that
nID+a-q c nO.and N x DO. c (s x eju, Define 'if:NxDa ~ M
by 'iF = (s x 6)-1 IN x na. By construction we have a
commutative diagram
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N x DIrl+a-q -··~N x Dn _J?rojn "N

'it : 'it I
wsI:l'::1 () .AL c:_._; ~

le
s ..1..--------~ vL

and therefore the proof of Lemua 10 is complp.t.e.
We shall also need:

Lemma 11. Let M, Q be closed ~anifol~s~~~ ~~
an embedding. Suppose B2 is a ~~J~ntained in ~ such
Ql_§_tl.B2,_B2 n flU is Cl. (q, ..r;U-ball..12air. Le.,i
B1 = f-~B2 n fll), Ilndlet K be a triangqlation of Q, }j2.

Then if x is a~int of B1 such that both
tlB1 :B..1....::..B29~

o 0 0

f 1M - B1 :M..=....B1 ~ Q. - B2
arc transimplicj._alto K at x,_ then -r is transimplicia_l
to K at x..:.,

~oof. A straightforvvnrd applicntion of the glucing
lemma. (Of course in saying f1B1:B1 ~ B2 is transimplicial
to K, we mean that it is transimplicial to the subcomplex
of K triangulating B2; similarly for the statement about

oflM - B1• Where no confusion can arise this abbreviation
will be constantly used.)
Inductive £roof of Theo~m L~.

Recall the statement of Theorem 4. We are given
an enbedding f:M ~ Q between closed manifolds, together
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with a triangulation K of Q, and we have to ambient
isotop f to g such that g is transimplicial to K.

Choose a triangulation K1 of M and a subdivision
K2 of K so that f:K1 ~ K2 is simplicial and K2 1s
Brouwer. Let K; denote the t-skeleton of K1, and
K~2) the barycentric second derived of K2• We shall
produce inductively a sequence of eobeddings of M in Q

f = gm+1' go' •••, go = g
such that
(i) gt is transimplicinl to K~2) at points of

K1 - Kt-1 and
1 '

(ii) gt is anbient isotopic to gt+1 by an arbitrarily
small ambient isotopy.

Application of Lemma 5 shows that the final embedding g
is transimplicial to K.
Bezinning of induction: Apply a local m-shift to f,
with respect to K2, for each m-sioplex of K1• Define
g to be the embedding which results from the globalm
m-shift. Then (ii) is satisfied. Let A1 be an ~-simplex
of K1 and A2 = fA1• It is sufficient to show that gm
is transi~plicial to K~2) at points of 11• Recall the
local m-shift process. Using the notation of the
previous section, we have
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-1 . ". ,..gm = h Jhf:A1A1 ~ A2S2•
By Lemma 10, jhfA1 is transimplicial to X at all interior
points. Therefore, since the property of being
transimplicial is preserved under an isomorphism, gmA1
is transimplicial to K2(2) at points of g 11 as required.m
Inductive step: Assume that, as a result of r-shifts
for m ~ r > t, we have

gm' •••, gt+1
satisfying (1) and (ii).

Apply a local t-shift to gt+1' with respect to
1\.2' for each t-simple;::of 1\.1' and def'ine gt as the
embedding resulting from the global t-shift. Again (ii)
is Lnraed IntcLy satisfied, and in proving (i) it is
sufficient to examfne the ef'fect of'a local shif't, sny
that associated with T1 E K1• We again use the notation
of the previous section. Then:

We claim that gt
(a) K1-

(b)

ogt = gt+1 on M - B1, and
-1gt = h jhgt+1:B1 ~ B2•

is transimplicial to K~2) at points of
tK1, and

By the inductive hypothcsis and restriction,
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is transi1l1plicial to K~2) at points of IC1 - K~. It
remains to sho\'!

gt:B1 -+ B2
transioplicial to K~2) at all points except those of

T1 •
For then (b) is autoDatically taken care of, and

(a) follows at once by application of Lenna 11. Our
aim is accomplished using Lonnes 9 and 10. By Le~na 10,
jhgt+1B1 is transioplicial to X', and therefore to X,

-1at all interior points. Conscque~tly h jhgt+1B1 = gtB1
is transimplicial to K~2) at all points in its interior.
Before the move we SGe by rcstriction that hgt+1B1 is
transinplicial to Y except at points of hgt+1T1•
Therefore, since j keeps Y fixed, Lemon 9 shows
jhgt+1B1 transimplicial to X at all points of
jhgt+1(B1 - T1). Consequently gtB1 c B2 is transimplicial
to K~2) at points of gt(B1 - T1), and the induction is
completo.
!:F_o.o:tO:.;:t::....=L;.;:c;;;;!ll:;:;;EJa__ .;;.8.

Let us recall and si~plit:y the statement of
Lenma 8. Vie are given two closcd rnnifolds M, Q. Let
e denote the set of embeddings c:M -+ 11x Q with the
property that the composition

e I>ro;nM --··7M x Q .. - v ~ M
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is a hODooDorphisn. In particular if f:M ~ Q is un
arbi tpory map , then its graph rf' E~. Let K1, K2 be
Brouwer triangulo.tions of III, Q and let K3 be a simplicial
subdivision of the convex linear cell conplex K1 x K?"
Thc:m Lemma 8 follows fron:

*Lerl!'1a8. Given e E~, there_,exi.!?_t.s.e' E ~

!r.;;~?liCial_t_q_J<j ~nd~!:ll?_ientisotC?.l?J.rcto e."
Proof. By Theoren 4 we can ambient isotop e to e'--. .--.-

transinplicial to K3" The only thing left is to nake
sure e' E ~, and this is achieved by taking care over
the t-shifts. The ambient isotopy e to e' consists of'
a f'inite sequence of'10CRI shif'ts

e~e ~e ~ ~e =e'.1 2 """ r
We proceed by induction on the number of'local shifts.
This begins trivially since e E e. Suppose we have

\C'mnnaged to ensure e. E e, and consider the local shif't
1

Ci ~ ei+1• It takes place inside a ball AL, where
A E K3, K3 Bone subdivision of K3, and L = lk(A, K3).
Since K3 is a subdivision of'K1 x K2, there exist
simplexes A1 E K1, A2 E K2 such that

AL c st(A1, K1) x st (A2, K2).
luso, Since K1, K2 are both Brouwer, we can choose linear
enbeddings h1:st(A1, K1) ~ Em, h2:st(A2, K2) ~ Eq• We
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shall use the linear embeddincr
11 = hi x h2:.AL -+ EIJ x Eq

in order to construct the shi~t.
...In detail, if X = h(l~) nnd v = hA, then X = vi.

oChoose w in general position in X sufficiently near v
such thnt X = wX. Define j:X -+ X by mnpping v -+ w,
keeping X fixed, 2nd joining linearly. Use
h-1 jh:.AL-+ i'ili to define the shi~t ei -+ e1+1,

Now let Mo = e1"1(1~) C H, and let Z = heiMO•
Then Z is an o-cell, and Z C X, Z c X, Z = vZ, Let
~:En x Eq -+ Em denote the projection, Then since
ei E e, ~ embeds Z as an m-cell in

7tZ = (7tv)( ~Z) •

l~m.6 , and

We now choose w sufficiently close to v such that

As a consequence, although ei110f. ei+1MO' nevertheless
the projection M x Q -+ M will map both eiMO and ei+1MO
honeomorphicnlly onto the snnc m-cell in M. Then
ei+1 E ~, and the inductivc step is complete,

We end this section by filling the gap le~t in
the proo~ of TheorcD 3, For this we need:
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~r_1L!Ct 1 2 •

of E 2 v the~Y.£.I'_"tc:::opposi te F_, and 1:'!_ a _s_u]:>r.1tln!_fol_dsi: F.
J..-L1L is transi.;~J?li_ciD.lto! nt a.E..,oJll.tx, then vY~ _i.§..

.tl'ansimpli.£j.alto Ent Z:-.!.

Proof.- By exactly the SG.:JCtechnique as was used
for LC:-.l!:1a9.
~o_llD.ry. Let F, G be simplexes, and W a subnapifold
of F~_+..f_W is transinuliciQ_l to F, thon CV! is
transioJ2..1ic_i.§\1to GF at paints of W.

Proof. Join successively to the vertices of C,
applying the leDDa at each stop.

Recall the proof of Theoren 3. With the previous
notation, we neoded to show that :for any point x E M1,

X () A1.5 c .ALQ s >-vLQ
is F(n + a - p, n) at x.

Given B E LQ, write AB = CF where F = AB n J

and C is the face of AB opposite F. Since M1 is
transimplicial to J, wc havo by restriction M1 () F

transimplicio.l to F. But X n AB = C(M1 n F) and so by
the Corollary above X () Jill is transimplicial to Jill at
x. In other words

X n AB c AB -·~vB
is F(m + a - p, n) at x. Therefore by glueing (Lemoa 2)
over all B E LQ, we have the desired result. This
completes thc proof of Theorem 3.
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PROOF OF THE_OREU 2__.

It is necessary to do a considerable amount o~
preparatory work.
Collars.

Let Q be a nani~old with boundary. A collar
cQ o~ Q is an embedding

cQ:Q, x I -+ Q
such that c(x, 0) = x ~or all x E Q. Any conpact
nani~old has a collar5 and any two collars are anbient
isotopic keeping the boundary rixed ([12], Theorem 13).

Given a proper embedding ~:M -+ Q then by [12],
Lemma 24 we can choose collars cM' cQ or M, Q that are
.s"oJllJ2.atib_lewith r, that is to say the f'oLLow lng df.agr-am
cODrlutes

I '14 --> 11x

1 I' 1~l(f' M)x11
..j, CQ
x I .-- ...~-- -_ .... _.,. Q •

In particular i~ P is a proper submani~old o~ Q, then
we can choose conpatible collars, that is to say
cp = cQ1P x I.

Suppose we are now given a collar cQ or Q and
a triangulation J o~ the boundary Q. If Q1 denotes

-----~-
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the innge of c~, thon we can extend J to a triangulation
'1.J

of the collar ~, in a canonical way, as follows. J x I
is a convex linear cell complex, which has a canonical
simplicial subdivision, (J x I)' say, obtained by
starring in order of decreasing dinension all sio9lexes
A x 1, A E J. The resulting triangulation

cQ(J x I)' ~ Q x I Q1
is called the canonical extension of J to the collar.
The canonical extension is functorial in the f'ollowing
sense. Let P be a proper subnanif'old of'Q, and suppose
we are given coopatible collars cQ' cp and n triangulation
J of' Q, P. If Q1' P1 denote the images of' cQ' cP' then
the canonical extension of J to Q1 is a triangulation
of' the pair Q1' P1 and the restriction to P1 is the
canonical extension of the restriction of'J to P.

Let P be a _l2!'o.E..ersubno.nif'old0[_ Q._.

Give~a tria~lption J of.RI P then there exist~Qn
extension of J to a triangulatiop~of £, P. Further4
jf J. is Br2.B!Lerthen K can be_~n to 1>e Brouwer.
Proof'. Choose compatible collars cQ' cP' let Q1' P1
denote their images, and let Q2 = Q - Q1' P2 = P - P1'
Let (J x I)' be the canonical extension of'J to Q1 and
let J' denote the subcomplex triangulating the inside
of' the collar, Q2'

----------



- 56 -

Choose any triangulation L o~ Q2' P2. Then
both J' and i triangulate Q~,and 60 they have a common

c;,.

subdivision, say J" = L' (see [12] Lemma 4). These
subdivisions extend uniquely to subdivisions (J x I)",
L' o~ (J x I)', L without introducing any more vertices.
Identi~ing JII = i', the union K = (J x I)" U L' gives
a triangulation o~ Q, P and provides the required
extension of J.

Finally, i~ J is Brouwer then so is the canonical
extension to the collar. Therefore K is Brouwer at the
boundary, and so by Lemma 7(b) we can choose a Brouwer
subdivision K' that also extends J.
Eylative t-shi~ts.

In proving Theorem 5 we shall need to be more
precise in our t-shi~t process; recall the considerable
choice available ~or the position of the point w. The
necessary accuracy is expressed in the following lemma.

Let M, Q be manifolds and K a triangulation of Q.
Given a map f:liI -+ Q let

T~ = {x E M:~ is transimplicial to K at xl.
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keInpljl-_14.Suppose :fJl~_.g is_a prcmer emQ_e_ddingL
K a Br~~ triapgylation of Q.., and K..(:.? __a_se~
~erived of K. Let_K1 be a triangulation of MJ and K2
a subdivision of K(2) such that f:K1 ~K2 is sim~licial.

ob.~t_Tbe a t-sim_plex of K1 such that T c ll..b and:!.._....K
the associated local t-shift made in the local linear
~t}'Uct..ur.£.....Q.f'K. If the ..§_hiftis suffi<?l_entlysmall then
~ c T~.

Remarlh The proof of Lemma 14 is long, and more
complicated than our corresponding work in the proof
of Theorem 4. The difficulty is that we are in a
situation where the glueing lemma is no longer applicable.
Proof _of LeElma 14.

oSince f is a proper embedding we know fT c Q.
Define, as before, B2 to be a simplicial neighbourhood
of fT modulo its boundary in K~2), and B1 = f-1B2• Now

fBi c B2 c it(fT, K2)

c st(u", K(2» for some vertex u" E i{(2)
c "st(u, K) ofor some vertex U E K.

Therefore the problem is localised both with respect to
K and K2• Using the Brouwer property of K choose a
linear embedding

h:st(U, K) _.Eq•
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Then 11automatically embeds B2 linearly in Eq• The
local shift may now be defined as before; in parti~ular
we write

Remar-k,-------

ro = ~1:f-1st(u, K) ~ Eq, and
go = jhf:f-1sr(u, K) ~ Eq.
The above construction explains our reason

for calling this section "relative t-shifts". We are
t-shifting f with respect to the triangulation K2, but
with the reservation that we do so relative to the local
linear structure of K.

Suppose f is transimplicial to K at x E H, we want
to ensure that g is also. If x ~ B1, the result is
trivial because a neighbourhood of x is not moved by the

oshift. Also if x E B1, application of Lemma 10 as in
the proof of Theorem 4 shows g transimplicial to K~2) ,
and therefore to K, at x.

Therefore there remains the case x E 131; here fx = B~
oLet A be the simplex of K such that fx E A, and let

LA = lk(A, K). Then J~A c st(u, K). Define Ea = [hA],
the linear subspace of Eq spanned by hA, and Eq-a = Eq//Ea,
the decomposition space whose points are a-dimensional
linear subspaces of Eq parallel to Ea. Let'~:Eq ~ Eq-a

• q abe the naturel projection and ~:E ~ E the orthogonal
projection (see Figure 8).
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Since f is transirnplicial to K at x, the pair
ff-1ALA ._ _Q___,. Eq _~ __~Eq-a

is F(rn + a - q, a) at x. Therefore ir y = rox, z = ~y,
there is a neighbourhood N of z in Eq-a (which we may
take to be a simplex), and embeddings ~, * onto
neighbourhoods or x, y in f-1ALA, Eq respectively,
such that the rollowing diagram commutes

projn-=-----'---~.,N

Call Ea "the vertical". Given two points Y1' Y2 E Eq,
let a(Y1' Y2) denote the angle that the vector Y1Y2 makes
with the vertical. More precisely

a(y1,y 2) = tan-1 ( d(~ l' '1tY i) )
d(~ Y1' ~ Y2)

o ~ a ~ 1t/2

where d denotes Euclidean distance.
Sublemma 1 • There exists 0.0 > 0 such that given an~ two
distinct E Nand a thenpoints x1'~2 any Y E D •

.9J..1(_x1, Y) , ",(x2, Y» ;) 0.0•
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~l
I

N

Figure 8

Proof. We chose N to be a simplex and we can regard
a aD as a simplex, therefore N x D is a convex linear

cell. Let J be a simplicial subdivision of N x Da such
that ~:J ~ Eg is linear.
Q?se (i): Suppose (x1, y), (x2, y) both lie in a
simplex S E J. Then their images ~(x1' y), ~(x2' y) lie
in *(S n (N x y», which is a convex linear cell in Eg•
This cell is embedded in Eg-a by ~ (because ~*:N x Da ~ N
is the proj~ction), and thererore it makes an angle
as > 0 (independent or y since ,Is is linear) with the
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vertical. Let aO = min(as:S e J). Then
a(*(x1, y), *(X2, y)) ~ as ~ aO'

Case (ii): (xi' y) and (x2, y) do not lie in tbe

same simplex o~ J. Since WeN x y) ~ N is a homeomorphism,
the vector x1x2 c N li~ts under ~-1 to an arc, I say,
in *(N x y) which joins *(x1, y) to *(x2, y). Then I
consists o~ a ~inite number o~ linear segments each one
of which makes an angle greater than or equal to aO with
the vertical. Therefore the vector joining the ends of I
also makes an angle ~ aO with the vertical. This completes
Sublemma 1, and we now continue with the proof of Lemma 14.

As before we denote the combinatorial ball hB2 by
X, and its boundary by Y. Recall the homeomorphism
j:X ~ X, defined by moving fOT = v to a suitable point
w = goT in general position with respect to the vertices
of X, and joining linearly to Y. Extend j by the identity
to the whole of Eq•
~ublernma 2. Given aO > O. there exists e > 0 such t~
if d(fOTL-go~) < e then for all Y1'_¥2 E Eq

ili1 u2L~ao ~a(jY1 ,...l12) > o.
Let S be a simplex of X. Since jlS is linear,

there exists eS > 0 such that if j moves ~OT less than
eS' then any vector in S changes direction by less than aO'
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Let B = mine Bs:8 E X) • Suppose now that j moves
~OT by less than B. Given Y1' Y2 in Eq, the vector
Y1Y2 consists of a ~inite number of segmenta, each one
lying either in aome simplex of X or in Eq - X.
Therefore j(Y1Y2) is an arc, consisting of a finite
number of linear segments each making an angle leas
than aO with Y1Y2. Therefore the vector (jy1)(jY2)
joining the ends of this arc alao makes an angle less
than ao with Y1Y2. But Y1Y2 makea an angle ~ aO with
the vertical, and therefore (jy1)(jY2) makes an angle
> 0 with the vertical. This completes Sublemma 2.

We now make our local shift within the B given
by 8ublemma 2; it remains to show thia ensurea g
transimplicial to K at x. To do this it is sufficient
to construct a commutative diagram

N. x D!+a-q _1x~ N. x D: __l)roj.~,N.
! I

cP*! W*1
1

J.-1 A qg JU.. ----------- ~ Ego

I
1
le
-t

___ --:;'_Eq-a
7t

which we now proceed to do. Let U = jW(N x Da); aince
jy = y, U is a neighbourhood of Y in Eq• Define

a6:U ~ D as the composition
U ~-w(N x Da) ~t-N x Da ~_L Da•
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../

Figure 9
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Then the product 7C x 8:U -+ Eq-a x Da is piecewise
linear and onto a neighbourhood of (z, 0). We claim
that it is an embedding; for given Y1 J Y2 E U with
eY1 = eY2' then a(y1, Y2) > 0 by Sublemmas 1 and 2,

th ~ . hb h d N o~ z in Elq-aus ~Y1 F ~2. Choose a nelg our 00 • ~ ,

and a disc neighbourhood D: of 0 in Da such that
N;;! x D: c (~ x 8)U. Define W* = (7C x 8)-1:Ni.(x D: -+ Eq•
We have therefore produced the right hand half of our
diagram. Since k:Dm+a-q, 0 -+ Da, 0 is an embedding,
choose D!+a-q as a disc neighbourhood of 0 in k-1D;
and define k* = kID~+a-q:D~+a-q -+ D:. Finally we need
to define ~*. It is elementary to check that

W*(1 x k*)(N. x D!+a-q) c goALA ,
therefore since go is an embedding we can define

-1 ( ) m+a-q -1 A~;:, = go W* 1 x k:;c :N:,,I x D. -+ go AI., •

We have not finished the proof of Lemma 14 yet

exists I:: > 0,
X E :81 n T~.
x' E :81 n Tf

K

such that if

. fgiven x E B1 n TK, then there
d(foT, goT) < I:: then

so far we have shown that,

Notice thnt I:: depends upon x. Suppose that
and x, x' lie in the interior of the same

simplex S E K1•
Sublemma 3. The same g will do for x'.
Proof. Choose neighbourhoods V, V' of x, x' in
st(S, K1), such that linear translation by the vector xx'
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maps V into V'. Let A:V, x ~ V', x' denote this linear
translation. Since rO maps st(S, K1) linearly into Eq,
there are linear translations A', A" or Eq, Eq-a

respectively such that the diagram
r0 q 7C q-a

V, x -·-~E -~E

fA !A' lA"
I i
t f; J.
'" 0 '/. 7C q-aV', x' --··)E q·-~E

is commutative. Recall the commutative diagram
N x nm+a-q _ 1xk_.) N x Da _._I>F_<?~I_l~ N

I
Ier>

expressing the ract that f is transimplicial to K at x.
We can choose N, Dm+a-q such that im cp c V (replacing
them by subballs if necessary); note that this replacement
does not alter the angle ~o or Sublemrna1. Now replace
the three vertical arrows by ACP, A'1jF, A" respectively,
and we have an expression or the transimpliciality or
r to K at x'. Again ~O is unaltered. Thercrore the 8

of Sublernma2 is unaltered. This completes the proor
of Sublernma3, and we now conclude the lennna.

B1 is covered by the interiors or a rinite number
of simplexes of K1; for each of these choose an 8 by
Sublemmas 2 and 3, and select the minimum such 8.
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Therefore if d(fOT, goT) < € then B1 n Ti c B1 n T~.
In other words if the shift is sufficiently small
T~ c T~. This completes thc proof of Lemma 14.

Proof of Theorem 5.
Recall the statement of Theorem 5. We arc

given a manifold-pair Q, P, a Brouwer triangulation J

of the boundary' Q9 P and a proper embedding f:M ~ Q
such that flM is transimplicial to J. We have to
extend J to a Brouwer triangulation K of Q, and ambient
isotop f to g keeping Q fixed, so thnt g is transimplicial
to K.

First choose compatible collars cQ' cp of Q, P.
*Then choose collars cu' CQ, of H, Q compatible with

II;f:M ~ Q. By [12] Theorem 13 ambient isotop Co to CC-)
IJ "OJ

keeping Q fixed, and suppose that this ambient isotopy
carries f to g. The result is that cM' cQ are now
compatible with g.

Intuitively what we have done so far is unfold
M near the boundary, and get rid.of the sort of kinks
that arc illustrated in the diagram of the Remark after
Theorem 5. More precisely, we shall describe this
unfolding in transimplicial terms, as follows.

Extend the triangulation J to the collars
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by the canonical extension, which is Brouwer, and
then extend further over the rest of the manifolds
by Lemma 13 to give a Brouwer triangulation K of Q, P.
We claim that g is transimplicial to K at pOints of M
(notice that before the unfolding we only knew that
flM was transimpllcial to 3 at points of M). To prove
this claim we use the compatibility of the collars
cM' cQ with g, because it then suffices to show that

(gl~) x 1:i x I ~ ~ x I
is transimplicial at points of r~ x 0 to the canonical
triangulation (3 x I)I of Q x I. Now we can use the
fact that glM = flM, which is transimplicial to 3.
Given x E M = M x 0, suppose fx E A, A E J = J x O.
Let v be a vertex of A, L = lk(A, K), L1 = lk(A, J).
By the transimplicielity of riM we have a commutative
diagram

N x nm+a-q

cpl
~

f-1AL1

Let U = [",(Nx na)x I]

I
r 1

·-~--~AL1
BA Je

.---.--.---~vL
1

n AL, and let r:Q x I ~ Q be the
projection. Define 6:U ~ na as the composition

U _.E_.-> ",(Nx De) ~- ..N x na proj_~:.Da•
Then sA x 8:U ~ vL x Da is a piecewise linear map onto
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a neighbourhood of (v, 0).
because given u1 I u2 such
u1u2 is parallel to A, and

Moreover> it iR Rn em'hedding
A Athat s u1 = s u2, then

so is (vu1)(vu2), implying
that eU1 ~ 6u2• Therefore, choosing discs NJl:C vr.,
D: C Da such that N'* x D: C (sA x e)u, we can define

,I, (A )-1 a~* = s x e :N* x D* ~ AL.
The required diagram for the transimpliciality of
(fIM) x 1 at x can now be built up in the usual fashion.
Theref'ore g 1s transimplicinl to K at points of M.

There remains to isotop g transimplicial on the
interior (keeping Q f'ixed) as follows. By Len~a 4 g
is transimpliciul to K at all paints in some open
neighbourhood U of'M. Let K(2) be the second barycentric
derived of K. Choose a triangulation K1 of M and a
subdivision K2 of K(2) such that
(a) g:K1 ~ K2 is simplicial, and
(b) if V is the closed simplicial neighbourhood of'

*1 in K1, then V C U.
Now perform the t-shifts of Lemma 14 in order of decreasing

odimension for all simplexes T E K1 such that T c M-V.
Then, as in the proof' of Theorem 4, we see that g becomes
transimplicinl to K2, and therefore to K, at all points
of M-V. By Lemma 14 g remains transimplicial to K
at points of V.
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The proof of Theorem 5 is complete.
!k_mark. The significance of Lemma 14 in the above
proof should now be apparent. At the last stage we

.had an embedding g transimplicial to K at paints of M.
If we had just haphazardly made interior shifts of g
with respect to some subdivision of'K, then we may well
have introduced new folds at boundary points, and so lost
the transimplicial property there.
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RELATIVE TRANSVERSALITY?

We were able to prove relative transimpliciality
(in Theorem 5) but not relative transvcrsality. We
tried the procedure

transversal transimplicial isotop transversal
on the ~=-=> on the ~.:-~transimplicial '> on the
boundary boundary on the interior,

interior

and although the second two steps are given by Theorem 5

and Lemma 6, we failed to achieve the first step.
Essentially it is a passage from local to global, because
transversality is local but transimpliciality is global,
in the sense that an atlas is local while a triangulation
is global. It is true that given oanifolds 11c Q, it is
possible to triangulate Q so that M is transimplicial as
follows: triangulate Q anyhow, ambient isotop M
transimplicial, and then apply the inverse isotopy to move
both M and the triangulation back. But the question is
whether it is possible to have another manifold as a
subcomplex at the same time.
Conjecture 1 Given two transversal submanifolds of ~
then it is possible to triangulate Q so that one is a
subcomple~ and the othe~rpnsim~licial~
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Conjecture 1 would supply the missing step to prove:
Conjecture 2 (Relative Transversality) If M, Pare
~roper submanifolds of Q such th~~ M, P arc transvers~~
J.nQ, then M can be ambient isotoped transversal to P
!t_eepingQ fixed.
A special case of Conjecture 2, which in fact turns out
to be equivalent to Conjecture 2 is:
Conjec~ure 3 Sm-1 Sp-1 c sq-1Tran~crsal spheres ,
can be spanned by transversal discs nm, nP c nq•

Joining linearly to interior points is no good, because
if we join them to the same point the discs fail to be
transversal at that point, and if we join them to separate
pOints, they :fail to be transversal at the boundary
(by the folded disc phenomenon). Conjecture 2 would imply:
Conjecture 4 1:! H, Q are closed and f, g:M ~ Q are
homotopic maps transversal to P, then f-1p, g-1p ~
cobordant.
Summarisi::1g:

Conjecture 1 ~Conjecture 2(=-~Conjecturc 3 =9Conjccture 4.
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TUBES

Definition. We use the word ~ as an abbrev1at,10Il

for the term "abstract regular neighbourhood", which
is rather a mouthf'ul. mLet M be closed. Define a
t-tube on M to be a manifold Tm+t together with a
proper (locally flat) embedding e:M ~ T such that T ~ eM.
In other words T is a regular neighbourhood of a
homeomorphic copy of M. Vve call t the dimension of the
tube.

Two tubes are homeomor~hic if there exists a
homeomorphism h making a commutative diagranl

~~1

M .> Ih
~l

T2
Let Jt(M) denote the sot of home omaI'J;> hy

00

Jt(M).t-tubes on M, and let 'lM) = .z
0

Remarks.

classes of

1. Tubes arc the natural analogue in piecewise linear
theory of vector bundles in differential theory. The
existence and uniqueness of regular neighbourhoods show
that any proper embedding M c Q determines a unique
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element of :J q-m(M), which we call the normal tube.
2. The important thing about tubes is that, like
tubes in ordinary life, they arc not fibored. In fact
Hirsch's example is a 3-tube on 84 that cannot be fibered.
In some sense the lack of fibering is more "geometrical"
because the tube is more homogeneous.
3. In the stable range, t ~ m + 2 Hnefliger and Wall [5]

have shown that any tube can be fiborcd with t-discs, and
so]t(M) coincides with Kiop(M) of piecewise linear
microbundle theory.
4. Tho collapse T "':"oM determines a homotopy equivalence
~:T ~ M such that ~o = 1. However ~ is not natural, not
unique, and not in general a fibering. The non-naturality
of ~ reveals itself, when it turns out to be no good for
defining induced tubes.
5. There is a trivial tube 0 E Jt(M) containing M x nt,
and a Suspension 0t(M) ~ ~t(M) given by product with I,
which stabilises in the stable range. To examine the
structure of .:r(l'I) more thoroughly we define below subtubes,
quotient tubes, induced tubes and Whitney sums.
6. The concept of tube generalises to polyhedra other
than manifolds, to give a theory totally different from
vector bundle theory, even in the stable range.
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Subtubes
Call e1:M -+ T1 a subtube of'e:M -+ T if'T1 is a proper
(locally f'lat) submanif'old of T such that T ........,.Tiand
the diagram

is aommutative. Call two Bubtubes Ti, T2 c T transversal
if Ti, T2 intersect transversally in eM. Notice that
in this case t = t1 + t2• We call the class of T2 the
suotient tube T/Ti•
Corollary to Theorem 3. Quotient tubes exist.
QUestion. Are thez..unigue?
We can question not only whether two such T2's are
unique up to homeomorphism, but whether they are unique
up to ambient isotopy, keeping T1 fixed.
Proof' of'Corollary. Given eM c Ti c T, Theorem 3
furnishes a manifold P intersecting T1 transversally in
eM. So far P is not proper. Triangulate everything
and let N be a second derived neighbourhood of'T1 in.T.
Then N is a tube, and T1 a subtube because N ~T1. Also
N n P is a subtube because N -~(N n p) U T1~ N n P,
and N ()P cuts T1 transversally. By uniqueness of
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regular neighbourhoods, there is a homeomorphism
N ~ T keeping T1 rixed, and throwing N n Ponto T2, say.
We have shown T2 exists.
~otient normal tubes. Suppose we are given proper
embeddings hf c pp c Qq, wh6reM is closed. Derine
the quotient normal tube on 11 to be the quotient tube
T~Tp where Tp' TQ are regular neighbourhoods of'Iv! in
P, Q such that Tp is a subtube of TQ• Notice that
dim(T~Tp) = q - p.
Induced tubes•
Given a map f':M1 ~ M2 between closed manifolds and a
tube e2:M2 ~ T2 on the target, def'ine the induced tube
on M1 to be the quotient normal tube of

rr 1xe2M1 ---·-'>M1 x M2-'-'---'--~M1 x T2•

Notice that the induced tube has the same dimension
as the given tube. By the above, induced tubes exist,
but we do not know if they are unique.
Remark. Normally induced objects are defined
categorically. For example ir rr:v2 ~ M2 is a vector
bundle then the induced vector bundle is the pull-back of

v2
I

l?t
f ,..

M1_.._-_._.-_...~ M2 •
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However in the case of tubes ~ is non-natural, and
consequcatly the pull-back is not in general a manifold.
\Vbat is natural is the embedding e1 :M1 ~ T1 of a tube
on the source of f, but the push-out of

M1
is again not in general a manifold. Therefore neither
pull-backs nor push-outs give induced tubes, and we
have to work for them.
Whi tney.sums.
Given tubes e1:M ~ T1 and e2:M ~ T2 on the same manifold
M, define the \¥hitney sum T = T1 ffi T2 to be the quotient
normal tube of

d' 1 e1xe21.1 _.. lagsm~ 'I nil' T T
.~---- 7 "! X .a .-~ 1 x 2 •

Notice that t = t1 + t2, and so the Whitney sum gives a
product 'Jt1 x Jt2 ~ ~t1+t2 Again we have existence,
but uniqueness is unsolved.
~~~ions. (i) Can T1, T2 be embedded transversally
in T1 $ T2?
(ii) Is the Whitney sum homeomorphic to the tube induced
from e1:M ~ T1 by ~2:T2 ~ M, and vice versa?
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TRANSVERSALITY FOR POLYHEDRA
by M.A. ARMSTRONG

Some transversality results for piecewise
linear manifolds were announced and proved in [1], [2].
In this paper the notion of transversality will firstly
be extended so as to be applicable to subpolyhedra of a
piecewise linear manifold, and then a transversality
theorem for polyhedra will be proved using the
techniques developed in [2]. Transversality can be
considered as a refinement of general position, and in
this respect the result given below is an improvement on
one of Zeeman's general position theorems ([7]Chapter 6).
At each point in a polyhedron there is a natural local
product structure, and the transversality of two
subpolyhedra requires not only minimality of the dimension
of their intersection, but also that their local product
structures tie together nicely in the ambient manifold.

It will be assumed, without further mention, that
all spaces have a piecewise linear structure, and that all
maps are pieceWise linear. The standard reference is [7].
Any polyhedra considered will always be compact. However,
the ambient pieceWise linear manifold is allowed to be
compact or non-compact, and bounded or unbounded.
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The main theorem may be stated as follows.
Let Q be a piecewise linear manifold and X, Y compact
subpolyhedra, both of codimension ~ 3 in Q. If the

ointersection X n Y is contained in the interior Q, then
X can be ambient isotoped transversal to Y by an
arbitrarily small ambient isotopy of Q that keeps the

•boundary Q fixed. The codimension restrictions ensure,
by Lickorish's theorem on unknotting cones [5J, that
the embeddings X c Q, Y c Q are locally quite respectable
at interior points of Q.

The approach will be to avoid the inhomogeneity
of X and Y bY deducing the theorem from a stronger result
about maps between manifolds. To simplify the present
discussion, assume that Q is closed (i.e. compact and
without boundary). Let K be a triangulation of Q, and
let M denote a compact manifold. It will be shown that
any map :f:M~ Q can be ambient isotoped "transimplicial"
to K by an arbitrarily small ambient isotopy of Q.
Notice that this procedure does not alter the image of
the map, but merely changes its position in Q. Consider
now the situation X, Y c Q. Coat X in a regular
neighbourhood M, and collapse M to X in some way to produce
a map M ~ Q which has X as its image. Then ambient

,i
Ii
I1J
II
'~
::1

~:1

1
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isotoping this map transimplicial to some triangulation
of Q in which Y is a subcomplex, has the effect of
moving X transversal to Y.

In the above sketch use has been made of rather
more than just the piecewise linear structure of Q -
namely of the local linearity of a particular triangulation.
There is an obstruction to a direct proof using only
piecewise linearity, and the difficulty may be indicated
as follows. Let Bq be a q-ball and Sq-1 its boundary.
Suppose X, Y c Sq-1 are transversal polyhedra of codimension
) 3. Then it is natural to ask if X and Y can be spanned
in Bq by transversal cones. If this were possible, then

I~.

by use of Lickorish's cone theorem, one could proceed
immediately to a proof of the previous transversallty

, 1

; !

theorem. However, if X and Yare joined to the same point
in the interior of Bq the result is transversality
everywhere except at this point, and if they are joined to
different points then transversality may well be lost at
the boundary. This last phenomenon is exhibited in detail,
for X and Y spheres, in the introduction to [2].

A transversality theorem for maps, which is
stronger than that given in [2J, will also be deduced.
More precisely, let M, Q be closed manifolds and P a closed
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locally flat submanifold of Q. Then given a map
f:M ~ Q, there is an arbitrarily close ambient isotopic
map that is transversal to P. Notice it is not assumed
that P has a normal bundle (equivalently a normal
microbundle) in Q.

Familiarity with [2] is recommended, though
principal definitions and results will be recnlled where
necessary.

i
I
:1
.:t-,
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THE MAIN THEOREMS

Our first job is to give a sensible definition
of transversality for two polyhedra in a manifold. We
shall keep a couple of restrictions in mind - that our
definition be free from particular triangulations of
the manifold and polyhedra, and that it agree with the
following standard version if we are dealing with closed
submanifolds of a closed manifold. tWe shall use D to
denote at-disc.
Definition 1. If Qq is a closed manifold and Mm, pP

closed submanifolds, then M and Pare transversal at the
point Z E MoP if there is an embedding

h:Dm+p-q x Dq-m x r;q-p ---+ Q

onto a neighbourhood of Z in Q, such that
h-1M = Dm+p-q x v x Dq-P
h-1p = Dm+P-q x Dq-m x w

where v, ware determined by h-1z E Dm+p-q x v x w.
M and Pare transversal in Q if they are transversal at
each point of their intersection.

Let X be a polyhedron. We shall associate with
each point x E X an integer I(X, x), called the intrinsic
dimension of X at x, as follows.

,
u
Hr-

,
I

:
"

i
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Definition 2. I(X, x) is the largest integer t for
which there is a polyhedron V, and an embedding

f:Dt x V -+ X
°tthat embeds D x V onto a neighbourhood of x in X.

Examples
1. If X is a manifold of dimension n, then

rex, x) =
o

[
n if x lies in the interior X,
n - 1 if x lies in the boundary X.

Let X, x be as illustrated, then reX, x) = 1.
Here V is the cone on three points.

2.

I'

t-ske1eton of X [8].

Remarks
1. The set of points of X with intrinsic dimension

~ t is what E.C. Zeeman has called the intrinsic

2. The set of points of X with intrinsic dimension t
forms an open t-manifold.
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So as not to interrupt progress towards the
main theorems, any further discussion or intrinsic
dimension is postponed until the next section. In
particular Definition 2 will be reformulated more
elegantly there.

Suppose now we have X, Y c Q. The manifold Q
may be compact or non-compact, and with or without
boundary. The subpolyhedra X, Y will always be compact.
The codimension of X c Q is the dimension of Q minus
that of'X. We shall restrict ourselves to the case

oX 0 Y c Q. If boundary intersection points are allowed
the situation is more complicated, and we have no
corresponding result to Theorem 1 below. Thererore we

I(X, z) = t,
I(Y, z) = s.

f,
I
~.!
'.!
1,
I
i

leave discussion of this case until the end of the paper.
Let z be a point or X n Y and suppose

Definition 3. The polyhedra X, Yare transversal at z
if'there is an embedding

h:Dt+s-q x nq-t x nq-s ~ Q

onto a neighbourhood of z in Q, and subpolyhedra V c nq-t,
w c nq-s such that

h-1X = nt+s-q x V x nq-s,

h-1y = nt+s-q x nq-t x w.
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X and Yare transversal in Q if they are transversal
at each point of their intersection.

In the case where X and Yare closed manifolds,
t, s become their respective dimensions, V, W each
reduce to a single pOint, and so the definition agrees
with that given earlier. Figures 1a and 1b illustrate
transversality and non-transversality situations
respectively.

We are now in a position to state our main result.
, i

Theorem 1. Let Q be a piecewise linear manifold and
X, Y compact subpolyhedra, both of

ocodimension ? 3 in Q. If X 0 Y c Q,
then X can be ambient iaotoped transversal
to Y by an arbitrarily small ambient isotopy

•of Q that keeps Q fixed.
Our second theorem concerns maps. Let Mm, pp C Qq

be closed manifolds. Given a map f:M ~ Q let
rr:M ~ M x Q denote its graph. In [2] the notion of
graph transversality was introduced - f is graph transversal
to P if rfM and M x P are transversal as submanifolds of
M x Q - and it was shown that arbitrarily close to any
map there is a homotopic graph transversal map, provided
P is locally flat in Q. We now give a stronger definition
and·result.
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Let x be a point of' M such th.at t'x E P.

The map f: is transversal __'t.~J? atJC..if there is a
corrnnutative diagram

nq-p x nm+p-q
I

lV 1
~M- __ -

~l
--f'- -----._--} Q

where W, ~ are cmbeddings onto neighbourhoods o~ x, f:x

~-1p = ~w-1x x nP

(~being Drojcction nq-p x nm+p-q ~ nq-p).

such that

f: is transvel:s~l to P if' it is transversal at all such
points x.

We see straightway f'rom the def'initions that,
if' f' is either Graph transversal or transversal to P,

-1then f P is a closed locally f'lat 6ubmanif'old of' H of
codirnension q - p.

;Let.M, Q be closed manif'olds, an<Ll'_..§l.locall_x.
fla t cJ.:_oscdsubm1l_ni:f2_I_d__~ __~_~_ a_E!_a.J2,
f.:1:1 ~ Jk_ it cap. be ambJ_ent iso_t_OJ_)~dto s:
maJ2..thai- is transve real to_ P bL,1£l ..arbi.1.:r;>,gj)...l.
ILmalJ.~El~~t_0.p_y of'9...

We shall not be able to verifY:

Theorem 2.

~~jecture. If f, g:M ~ Q are homotopic maps, both
transversal to P, then f-1p and g-1p are cobordant manifolds.
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INTRINSIC DIMENSION

We now investigate more fully the notion of
intrinsic dimension introduced earlier, and prove
some useful lemmas. Firstly we give two new definitions
that are equivalent to Definition 2.

Given a polyhedron X and a point x of X, +et K
be a triangulation of X in which x is a vertex and
define the link of X in X by

link(x, X) = link(x, K).
Up to piecewise linear homeomorphism, this definition
is independent of the choice of K. For, since any two
triangulations have a common subdivision, it is enough
to consider an arbitrary subdivision K' of K and prove
link(x, K), link(x, Kt) homeomorphic. This last is
easily accomplished using the standard technique of
pseudo radial projection. That is to say one can obtain
a piecewise linear homeomorphism

link(x, Kt) ~ link(x, K)
as the linear extension of the radial projection from x
(itself not piecewise linear) on the vertices.
Definition 2a leX, x) is the largest integer t such
that link(x, X) is a t-fold suspension. To say link(x, X)
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is a t-f'old suspension means there is a polyhedron VI

and a homeomorphism
link(x, X) ~ St-1*W,

t-1 ( )where :II denotes linear join and S a t-1 -sphere.
Notice that st-1 is itself' a t-f'old suspension - for W
take the empty polyhedron.

Alternati vely, let J- be the piccewi se linear
structure of X - i.e. SiS a maximal f'amily of'piecewise
linearly related triangulations - and for each K E ~

let d(K, x) be the dimension of the simplex of'K that
has x in its interior.
Def'inition 2b I(X, x) = max d(K, x).

'J-
Consider now the equivalence of'our three def'initions.

It is evident that:
(1) If'there is a triangulation of X in which x lies
in the interior of a t-simplex, then link(x, X) is a
t-f'old suspension.
(2) If'link(x, X) is a t-fold suspension, then
I(X, x) ~ t in the sense of'Definition 2.
Therefore to complete the equivalence it is enough to
prove -
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Lemma 1 If there is a polyhedron V and an embedding
f:Dt x V -+ X

°tthat embeds D x V onto a neighbourhood of x, then there
is a triangulation of X such that X lies in the interior
of a t-simplexo
Proof. We can assume that Dt is at-simplex h,t. Choose

x is a vertex of X',

triangulations of V, X - for brevity we denote them by
the same letters. Let (~t x V)' be a simplicial subdivision
of ~t x V, and X' a subdivision of X, such that

-1if v E V is the projection of f x, then
~t x v is a subcomplex (~t x v)' of (6t x V)',

(iii) f is simplicial.
Choose a point y of stir[f-1x, (6t x v)'] in general
position with respect to the vertices of (6t x v)'. Then
y is joinable to link[f-1x, (~t x V)'] in the linear
structure of (6t x V)', and in

y '"link[f-1x, (6t x V)']

(t )

(ii)

f-1x lies in the interior of a t-simplex. Therefore, using
f, we may replace 'St"E:l'r (x, X ') by Y * link [r-1X 1 (~t x V)' ]
and so obtain a new triangulation of X with the required
property.

For the remainder or this section it will be most
convenient to work with Definition 2a.
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Let Iso(W c Sn) denote the set of'ambient isotopy
classes of'embeddings of a polyhedron W in the n-sphere
Sn. Then suspension induces a map

Z:lso(vV c Sn) _..Iso( ZW, Sn+1).
Using the relative regular neighbourhoods of Hudson and
Zeeman [4] it is not hard to show that
(a) Z is injective, and
(b) by Lickorish's result [5] on unknotting cones Z is
bijective if the codimension n-dim W is ~ 3.
(In [5] Theorem 5 it is shown that if'W unknots in Sn,
then ZW unknots in Sn+1. Using the argument given there
as a model the reader will ha~e little difficulty in
verifying (a) and (b).)
Consequently one has by induction:
Theorem The map

zt:Iso(W c Sn) _..Iso(~tW c Sn+t)
induced by t-fold suspension. is bijective if n-dim VI! ~ 3.

We now use this to prove:
Lemma 2 Let Q be 8 manifold. X a subpolyhedron of

ocodimension ~ 3. and x a point of X satisfying x E Q

and leX, x) = t. Then there 1s a f?ubpol_yhedronV c nq-::"
and an embedding

f:nt x nq-t _..Q,

QntO a neighbourhood of x in Q, such that f-1X - nt x V.
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Proof. Consider the pair
link(x, X) c link(x, Q)

- defined, up to homeomor-phf.em, from some triangulation
of Q in which X is a subcomplex and x a vertex. Now

q-, 0link(x, Q) is a I-sphere since x E Q, and link(x, X)

is a t-fold suspension since I(X, x) = t. Therefore by
the above theorem it is possible to find a homeomorphism

St-1*sq-t;, St-1*w ~ link(x, Q), link(x, X)

where W c sq-t:, This extends conewise to an embedding
Dt*sCl-t~' nt.w ~ Q, X

onto neighbourhoods of x. It is now routine to produce
the required product structure from the join alrendy
obtained.

The next lemma and its corollary are due jointly
to H.R. Morton and the author. Denote piecewise linear
homeomorphism by =.
Lemma 3 Let X. Y be polyhedra and suppose

~rX ; ~Dy for r < n.
Then X is a suspension,
Proof. If r = 0 then for any n > 0 and any Y the result
is certainly true. Proceed by induction on r. Suppose
r > 0 and assume that for any n > r - 1 and any Y

~r-1X == ~Ily ·-_-)X a suspension.
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Now ~rX = ~ny means we have a homeomorphism
h:Sr-1*X ~ Sn-1cy.

r-1Choose a point z E S ,then
link(z, ~rX) = link(z, Sr-1) ;;:X = ~r-1X.

Consider now z, = hz E ~lly. Our de~inition o~ link
wae arranged so as to be invariant under piecewise
linear homeomorphism, and so

link(z, ~rX) = link(z', ~lly).

There arise three cases:
(i) z' E Sn-1 when link(z', ~ny) ~ link(z', Sn-1) :;:y

f: ~n-1y.
(ii) z' E Y when link(z', zlly) '" Sn-1 (:link(z', x)

= Zn link(z', Y).
(iii) Finally, if z' is neither in the suspension ring,

nor.in Y, it must lie on a unique ray joining say
x E Sn-1 to y E Y. Thus
link(z', ~rly) = SO * link(x, Sn-1) tIC link(y, Y)

'"~n link(y, Y).
There~ore by induction X is seen to be a suspension in
each case.
Corollary ~X ~ ZY --:;:>X= Y.
Proof~ Desuspend X and Y as far as possible to give

X = ~rX', and

y = zily'
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where X', y' arc not suspensions. By the lemma we

must have r = n, and therefore ~rX' = ~ry'. It is
enough to show X, = Y'. Again induct on r, the
induction beginning trivially for r = o. Suppose r > 0;
as above choose a point z on the suspension ring of
~rX' and consider its image in Zryl• Since X, is not
a suspension we see, again by use of the lemma, that
only case (1) can occur. Therefore Zr-1X' = ~r-1y',
which implies X, = y' by induction. This completes
the proof. The corollary itself will not be used here,
but it does not appear to be well known and so seems
worth mention.
Lerruna4 If' I'Xz xl on then- t and iY: ED.

r(X x Dnz x x ~l = t + n.
link(x x y, X x nn) is homeomorphic toProof.

Zn link(x, X). tAlso link(x, X) = Z W, where W is not
a suspension, since reX, x) = t. Therefore
I(X x Dn, x x y) ~ t + n, and application of Lemma 3

shows we must have equality.
Remark. It is not always true that if I(X, x) = t
and I(Y, y) = s then r(X x Y, x x y) = t + s. For
example take X = Y = n1 and let x, y be end points. Then
I(X, x) = 0 = I(Y, y) but I(X x y , x x y) = 1.
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Lemma 5 Let Mz. P be manifolds and X c M, Yep
cosubpolyhedra both ofkdimension ~). If z is an inter~or

l?oint of M x P that lies in .0,1 x Y) n (X x p) I then
M x Y and X x P are transversal at z.
Proof. Project z into M, P so obtaining points
X E X, Y E Yj i.e. z = x x Y E M x P. Suppose
I(X, x) = t and I(Y, y) = s. By Lemma 2 there are
embedd1ngs

nm-tx ,

m-t ....'O-sonto neighbourhoods of x, y where V c nand W C!r •

The product of these gives rise to an embedding
h:Dt x DS x Dm-t x nP-s ~ M x P

onto a neighbourhood of z, and certainly
h-1(M x y) Dt x DS nm-t W,= x x
h-1(X x p) = nt x DB x V x nP-s•

The proof is completed by observing that, due to Lemma 4,
I (M x Y, z ) = m + s, and

I(X x P, z) = t + p.
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TRANSIMPLICI~~

A detailed discussion o~, and motivation ~or,
the ideas introduced brie~ly below can be found in [2].

Let M, Q be compact mani~olds, ~ a map o~ M
into Q, and K a triangulation of Q. Consider a point
x of M and suppose A is the simplex o~ K such that

ofx E A. Choose a vertex v of A, and let L be the link
of A in K, and s:AL ~ vL the simplicial map defined as
the join of A ~ v to the identity on L.
Definition 5 The map f:M ....Q is transimplicial to..!
at the point x E M if there exists a neighbourhood N
of v in vL, and a commutative diagram

N x Dm+a-q _1.~~> N x na ..._R_I'0_j~_?!.10n._,N

I*1.J,
f-1AL .,--

n
f ·----+vLs

where a is the dimension of A and W, ~ are embeddings
onto neighbourhoods o~ x, ~x respectively. We say f
is transimplicial to K if it is so at all points of M.
Remarks
1. The definition is independent of the choice of v.
2. If f is transimplicial to K at x e M, then f is
transimplicial to K at all points in some neighbourhood
of x (sce [2] Lemma 4).
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3. Let Kt be a subdivision o~ K. I~ ~ is transimplicial

to Kt at x E 11, then l' is also transimplicial to K at x

(see [2] Lemma 5).
Our main chore will be to prove:

.tl"'jan_g_1.lJ.g_tion..2f. Q... ,Nw_ map f :It_-::_~alt$ a,!1l_bi..e_r:t_t_isoto.l2,ed

1.0 a new ma.r:_.K_.tpat iJ3.._1:.£.£r-:.s im,El.i_qJ~l__12_lC_ ~ t a»_..1?.9.l..l1.!_s_o.1-
_10

a_Jh__..1.hq:~_~J!!.bient isoto~ _can be chosen arbi t.La'wL__s,ma_l)...L.

ap-d E_a_d~ to ~.£I?___Q_ fixed.

Coroll-_ar,x

Lc~p_j:l!l-._a_np_ie~~._i_s_o!.oJ2..e_urf._T...s._imJ2lic_i§l_l_~o_K__bx..~...2£.1?_i_traril.Y

.~~all ambjent isot<?P.L.2~ Q_.

For the case where f' is an embedding, a proof of the

corollar,v has been given in [2].
Bef'ore proving Theorem 3 wc shall apply it to obtain

proof's of' our polyhedral and map transvcrsality theorems.

The importance of transimplicial maps for our purposes is

contained in the following two lcrrunas.

o
both of codimension ~ 3 such that X n x.s: Q. ,and K.1!.

.:trian~lati~n of Q in which Y is a s~_comJ2le:i£.._1:.~~!~

§;,_...rEllml,ll_~..n£.i__g!J.p_o1!rh.o2...cL.£.t'_lL,i_ll...'laE!_n_df':11 .":.iL~2..
E..e_~l'_ll_c_tion:._oJ:.1!..2..~J;_~J_._~Jl_cniff is transimp_12-_c_iaj. t.o_lh

.t1l~.sublL<?.~Xh~~-1"'Land y_ a1:..c_transversal ~in_Q....
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Proof.
Z E. X" 'Y o..ncl. Z 0LetlA be the eLmp Lex of K such that ~ E A.

Therefore, with the notation introduced enrlier, we have
a commutative diagram

N x D-a1 _!.?<k_i> N x Da _g~ojec~!~ N

0/' cpi...
v

f-1AL --·---f-----·-7 AL

n
----i_~vLs

z = SZwhere ~, ~ are embeddings onto neighbourhoods of~, ~.
Let K1 be the subcomplex of K that triangulates Y, and
L1 = link(A, K1). The commutativity of the left hand square
implies

That of the right hand square implies
-1 acp Y = (N n vL1) x D •

Therefore it is enough to check that N x kD..a~ and
(N n vL1) x Da are transversal at the interior point
-1 2 a~ ~ of N x D. However, due to the codimension restrictions

this is ensured by Lemma 5.
Lemma 7 Let Mo P c Q be closed ma~ifoldso with P locally
flat in Q. and let Ie be to"'. triangulation of Q. in which P is
a subcomplex. If f:M _.Q is transimplicial to Kt then f is
transversal to P.

ofx EA.

-1Let x E f P, and A be the simplex of K such that
Again consider the diagram

Proof.
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n
-----------------~vL •s

Suppose P appears as the subcomplex Ki of K, and let
L1 = link(A, K1). Now P is locally flat in Q, therefore
we can choose N so that (N, N n vLi) is an unknotted
(q - a, p - a) ball pair. Thus there exists an unknotting
homeomorphism

h •.Dq-P x DP-a, p-az x D -+ N, n n vL1
where Z E nq-p• The diagram

q-p p-aD x D
wCh x 1 )1

._j,

M ---

x Dm+a-q -- 1x1x~ __) Dq-P x DP-a x Da

II cp(h xi)
'"-------- -----x:--- .-----------------':;.Q

commutes, and exhibits the transversality of f to P at x.
Proof of Theorem 1

Recall the statement of the theore'1l. We are given
a manifold Q together with subpolyhedra X and Y, both of

ocodimension ~ 3, such that X nYc Q. The thesis is that
we can ambient isotop X transversal to Y by an arbitrarily
small ambient isotopy of Q that keeps Q fixed.

First observe that it is enough to consider the
case where Q is compact. For otherwise we can work entirely
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inside a regular neighbourhood of X u Y in Q. Suppose
then that Q is compact, and choose a triangulation K of
Q in which Y is a subcomplex. Let M be a regular
neighbourhood of X, then M is a manifold and collapses
to X. Collapse M to X in some way, thus defining a map
f:M ~ Q such that fM = X. Apply Theorem 3 to this map,
then refer to Lemma 6. The proof of Theorem 1 is complete.
Proof of Theorem 2

Let M, P c Q be closed manifolds and suppose P
is locally flat in Q. We are given a map f:M ~ Q and
want to ambient isotop it transversal to P by an arbitrarily
small ambient isotopy of Q.

Choose a triangulation K of Q in which P appears as
a subcomplex. Apply the Corollary to Theorem 3 to ambient
isotop f transimplicial to K, then by Lemma 7 this ambient
isotopy produces the required result.



- 24 -

!::_SHIFTS

It Vlill be necessary to wor-k wi th triangulations
tha t have a particular property. Le t Eq dono to
Euclidean q-space, Eq the closed half spRce of points+

di d Eq-1with non-neg~tivo last coor nate, an the subspace
of points with last coordina t.o zero.
Definition Let K bo a combinatorial manifol~ of
dimension q. Then K is called a Brouwer manifold if:

oFor each v E K there is a linear embod~ing
'S'"ta'r(v, K) -+ ECl.

(ii) For each v E K there is a linear embedding
S"t'a'r( v, K), 'S"t'ar( v , K) -+ E;, Eq-1•

(i)

Remarks
1. Not all combinatorial manifolds arc Brouwer, sec

Cairns [3].

2. Any subdivision of a Brouwer manifold is Brouwer.
The following lemma is due, in a sharpened form,

to Whitehead [6]. An alternative proof, given by Zeeman,
can be round in [2].
Lemma 8 Apy combinatorial manifold has a Brouwer
subdivision.

In proving Theorem 3 we shall ambient Isotop our
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map by means of a seg_uenceof special shifts applied
to its image. The shifts constructed below arc a
variation of those first introduced in [7] Chapter 6.

Let H, Q be compact manifolds, and suppose we
nre given a map f:H -+ Q together with a Brouwer
triangulation K of Q. Let K" denote a second derived
of K. Choose a subdivision K1 of K" and a triangulation
J of M such that f:J -+ K1 is simplicial. We call A E K1

o 0an interior simplex of K1 if A c K1• Let A be an
interior simplex of K1 that lies in fJ, let K1 be the
barycentric first derived of K1 and A the barycentre of
A. Let

W = s:tar(A, K1)
= A * link(A, K1).

Since A is an interior simplex, link(A, K1) is a q-spherc.
oChoose a vertex z of K such that

W - A n *1 c star(z, K).
We can find such a vertex z since A is an interior simplex
of some subdivision of a second derived of K. Using the
Brouwer property of K, let

A:star(Z, K) -+ Eq

be a linear embedding. Thus A embeds W linearly in Eq.
We denote the complex AW by V. Choose a point v near
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,.
~A in V such that:
(i) v is joinable to V in the linear structure o~ Eq, and
(ii) v is in general position with respect to the vertices

of V.
Let ~:V ~ V be the homeomorphism defined as the join of
the identity on V to the map ~A~ v. Finally, define
a homeomorphism

by
hA (x) = {X if x E Q - W,

~-1~~(x)if x E W.
Then hA is ambient isotoJ;>icto the identity keeping

o
Q - W fixed in view of:
Alexander's Lemma Any homeomorphism of a ball that
keeps the boundary fixed is isotopic to the identitx
keeping the boundary ~ixed.

We call the move f ~ hAf a local shift of f in
the triangulation K. Notice that K entered into the
construction when wo chose ~, i.e. our shift has been
made with respect to the local linear structure of K.

Now let A vary over all interior t-sirnplexesof
~J, and for each simplex construct a corresponding
homeomorphism hA. The {star(A, K1)1 overlap only in
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their boundaries on which the {hA} agree as the identity.
Therefore we may combine these homeo~orphisms to give
a new homeomorphism

.that is the identity on Q. The provious local ambient
isotopies can also be combined, showing ht to be ambient
isotopic to the identity keeping Q fixed.

We call the move f ~ htf a t-shift of f in the
triangulation K (with respect to J, K1). It is cloar
that, by judicious choice of v in each local shift, we
can make htf arbitrarily close to f, and the ambient
isotopy arbitrarily small.
Lemma 9 Using the above notation, hAr is transimplic~

-10to K at all points of f W.
In fact we shall prove a stronger result, namely that
hAf is transimplicial to K1 at these points.
Proof. Vieconsider ~ as a homeomorphism Eq ....Eq,
extending it by the identity outside V, and we write g
for the map

Let J' be a first derived of J such that f:J' ....K' is1
simplicial. Then g is simplicial from f'-1Wc J' to
v * v. 0Suppose x is a point of'H such that f'xE W, and



- 28 -

olet B be the simplex of V for which gx E B. Choose a
vertex u or B, let L = link(B, V) and s be the usual
simplicial map BL ~ uL. Now ~ is a linear embedding.
Therefore, in order to show hAr transimplicial to K1
at x, it is enough to produce a commutative diagram

N x nm+b-q __'!2<k -~.N x Db projection >N

wI ~! n, ,
g-1~ ~ -~uL

g s
where b = dimB, N is a neighbourhood of u in uL, and
W, ~ are embeddings onto neighbourhoods or x, gx
respectively.

In the particular case gx = v there is no problem
eince, by general position, v lies in the interior or a
principal simplex of V.

Suppose now gx ~ v. oLet x E C, where C is a
simplex or J', and let gC = D. Then D is the linear
join in Eq or v to some simplex of V. By the general
position or v in V, we may infer that D n B is a convex
linear cell (hcncef'orth abbreViated to "cell") or dimension
(d + b - q). Let E = [g-1(D n B)] n C, a cell of dimension
(d + b - q) + (c - d) = (c + b - q). Let F be the
(q - b)-cell through x that is perpendicular to E in C.

IIIConsider now a simplex, C say, of J' that has C as a race.
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.... * *gC ... (of'Let = D , when D will be a f'aceof D course
it ~; D) .may happen that D = Corresponding to E we

(c* q)-cell * [g-1(D';' B) ] ':<have a + b - E = n n C •

*Now although E is not necessarily perpendicular to F
*in C , it certainly has the property that any (q - b)-cell

::Cparallel to F in C , and suf'ficiently close to F, meets
it in exactly one point. Therefore, for some neighbourhood
U of x in star(O, J' ), we can obtain a well defined map

-1 PlC

Pi :U ~ g B by projecting each U n c parallel to F

onto ~.; to E'l. Sincethe corresponding E . Return now we
def'inedF perpendicular to E in C, we know that the
linear subspaces [B], [gF] of'Eq, spanned by B, gF
respectively, are complementary. Let P2:E'l ~ [B] be
projection parallel to [gF]. Our constructions of'P1~ P2

ensure that
gp1 = P2g·

Finally, define
~ = sg x p1:U n g-1star(B, V) ~ uL x g-1B,
~ = s x P2:star(B, V) ~ uL x [B].

One can check that ~ and ~ are both piecewise linear
embeddings onto neighbourhoods of'(u, x) and (u, gx)

respectively. Choose ball neighbourhoods
N of u in uL
nm+b-q of x in g-1B
bD of gx in B
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such that
N x Dm+b-q c image or a,

N x Db C image of (3, and
gDm+b-q C Db •

Hence the rollowing diagram commutes
N x Dm+b-q 1xg ~N x Db projecti~ N

a-11 (3-1 1 (1

g-1BL --g-----~ BL ----8 --)uL •

il'hiscompletes the proof' of'Lemma 9.

Suppose now that our map r is initially ~ransimplicial
_1° m{~\to K at some points of' f Q c M, and let ~ denote

the set of' such points. We would like to make our local
shi?t so that the new map hAf is also transimplicial to
K at these points.
Lemma 10 If our local shif't is made small e~ugh

T(f) c.JJ.hAfl .._
A corresponding lemma was proved in [2] under

the assumption that f was an embedding. The crucial
and main part of that proof applies equally well here find
we shall not repeat it, but simply give the ref'erence
when necessary.

Before proving Lemma 10 we do a little preparatory
wor-k, Suppose x is a point or M such that fx E star(z, K).
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Let Z be the complex
~[s£ar(z, K)] cEq,

oand B the simplex of Z such that ~fx E B. We denote
by Eb the linear subspace of Eq spanned by B, by Eq-b
the orthogonal subspace through Af'X, and by P the
projection Eq ~ Eq-b parallel to Eb.
~emma.J_1
diaN§.!!!

'" m+b-q 1xk ~'< x Db pr_~~.ection~N~~N x D -----.--4 N ,

'1'1
(A.f)-1S't'iir(B,

* bY!_here_N is a neip;hbourh...9.9_dot:..ADL1P._J~_~.~d ~ <l!

~_~__eE1..b~..d.§.ing~~~_~.i.£h~rh_()o~_ of_ x, Af1i.:..

o
---}

B

Af'X
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Proof. Choose a vertex u of B, let L = link(B, Z)
and s be the natural simplicial map BL ~ uL. Suppose
X E T(f), then since ~ is a linear embedding we have
a commutative diagram

N x Dm+b-q _~ xk .,. N x Db projectio~N

~l ~l
(Af) -1 BL =vr=>: BI,

n
-._.-------------.~uL ,

B

where N is a neighbourhood of u in uL, and ~, ~
embeddings onto neighbourhoods of x, Af'X. Now PluL
is an embedding of uL in E~-b, and Ba embeds N onto a
neighbourhood N* of ~fx in Eq-b• Also

plBL = (PluL)s:BL ~ uL.

c

Therefore the following diagram commuteB and completes
half our proof:

.;: m+b-q 1xk .;.N x D _.._.--,. N
I

(pIN)-\1i
\iI

N x Dm+b-q -~N,
~I

,,-,
------4 Eq-b.

P

An argument in the opposite direction is equally
straightforward.
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Proor or Lemma 10. Let x be a pOint of M that lies
in T(r). If rx 1= W, the local shift has no erfect on
r in et neighbourhood or x, and so the lemma is trivial.

oSecondly, ir rx E W, then by Lemma 9 we know
X E T(hAr) •

It remains to consider the case fx E W. For
this we shall use Lemma 11 and the notation introduced
there. Thus we have a commutative diagram

N x Dffi+b-q_1 xk ~N x Db _L!'Eject!~n-~ N

Notice now that in the case under consideration ~~fx • ~fx.
We again write g for

IJ.M: f-1S't'ar( z , K) -+ Eq•

Let

Define

I = ~(N x Db) cEq,
1* = jJ.I.

* ba map 61:1 -+ D as the composition
I*<--~- I ~--<p----- N x Db ___I>_!'_~~~cti<?~_»Db.

We now make reference to the proor of Lemma 14

in [2] where it is shown that, if the local shirt is made
'"small enough (i.e. if v is chosen near enough ~), then

a. = p x 61: 1* -+ Eq-b x Db
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is an embedding onto a neighbourhood of (gx, 61gx).

Moreover, this can be simultaneously ensured for all
points of T(f) n f-1~~.
Remark. It is in proving these facts that our careful
use of the linear structure of K, in making the local
shift, plays a vital role.

Define 62:*(N x nm+b-q) ~ nm+b-q as the
composition

*(N x nm+b-q) .~. N x Dm+b-q project~ nm+b-q•
We claim that

pgy ~ pgy' (since ~ is an embedding).

( m+b-q) q-b m+b-q
" = pg x 62: * N x D ~ E x D

is an embedding onto a neighbourhood of (gx, 62x).
For let y~y' be points of *(N x nm+b-q) such that

62y = 62Y',

then 61GY = 61GY' (by commutativity in the previous diagram)
and therefore

Finally, choose new disc neighbourhoods,

Nile of gx in Eq-b
nm+b-q of 6 x in nm+b-q* 2
b bD. of 61gx in D

such that
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* m+b-qN x D* c image of (3

N* x Db c image of a., andlie

kDm+b-q b
>:< c D,:c.

Our construction ensures commutativity in:
N* x D!+b-q 1xk --* N* x D~ --~~ N*

(3-11 a.-11 n
-1-( z) ~ Eq q-bg star B, ---~Eg P •

Remembering that g and hAf differ only by "A., a second
application of Lemma 11 completes the proof.

L(r) = L - Lr - L.

Proof of Theorem 3
We are given f:M ....Q together with a triangulation.K of Q, and want to ambient isotop f, keeping Q fixed,

to a new map g that is tr:msimplicial to K at all points
of g-1Q..

rFor any triangulation L of Q, let L denote its
r-skeleton and

Suppose the dimension of fM is n , Using Lemma 8, subdivide
K in some way to give a Brouwer triangulation L. We shall
ambient isotop f to a map g that is transimplicial to L,

_1°and therefore to K, at points of g Q. Let L" be a
second derived of L. Choose a triangulation J1 of M and a
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subdivision L1 of'L" such that f':J1 ~ L1 is simplicial.
Perf'orm an n-shif't of'f'in L with respect to J1, L1•
Then by Lemma 9 we know

f'-1L1(n - 1) c T(hnf').
Choose subdivisions J2, L2 of'J1, L1 so that hnf'becomes
simplicial, and apply an (n - 1)-shif't to hnf' in L with
respect to J2, L2• By Lemmas 9 and 10 we can ensure

(hnf')-1L2(n - 2) c T(hn_1hnf').
Repeat this procedure, working in order of decreasing
dimension. Arter precisely (n + 1)-steps we obtain a
subdivision L 1 of'L and a mapn+ ... h f':M ~ Qn
such that
(a) (h1 ••• hnf')-1Ln+1 c T(g)
Cb) g is ambient isotopic to f'keeping Q f'ixed.
Theref'ore the proof of'Theorem 3 is complete.
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In this final section we shall complete our
definition of transversality so as to include the case
where X and Y intersect at points of Q. To do this
we follow an idea of Zeeman [8] and make the notion of
intrinsic dimension "ambient".

Suppose X C Q and consider a point x E X. We
define the ambient intrinsic dimension of x, written~...............~=_ .....'_.4. __ .-~....._ .....__......__ -.._

l(X c Q, x), as follows.
~finition 6 I(X c Q, x) is the largest integer t
for which there is a polyhedron V c nq-t, and an embedding

f:Dt x Dq-t -+ Q

onto a neighbourhood of x in Q such that f-1X t= D x V.

". )"
. . .

'--__;_../'



Consider now the situation X, Y c Q.
pOint of X n Y n Q, and suppose

r(x c Q, z) == t,
I(Y c Q, z) = s.

Let z be a
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1. r(X c Q, x) ~ rrx, x).

2. As for the notion of intrinsic dimension, two
equivalent definitions (based on links and triangulations)
can be given.
3. In the above illustration rex, x) = 1, r(x c Q, x) == o.

o4. Suppose q-dim X ~ 3 and that x E Q. Then Lemma 2
of this paper shows rex, x) = r(x c Q, x).

~!inition 1 The polyhedra X, Yare tran_s~~~J __~J..~.
if there is an embedding

h:Dt+s-(q-1) x D(q-1)-t x n1 x n(Q-1)-S ~ Q

onto a neighbourhood of z in Q, and subpolyhedra
Vc n(q-1)-t x n1, W c D1 x D(q-1)-s

such that
:= nt+s-(q-1)x n(q-1)-tx oxn(q-1)-S,
:=Dt+s-(q-1)xV x n(q-1)-S,
= nt+s-(q-1) x n(q_-1 )-t x w.

oTransversality at points of X n Y n Q is defined exactly
as before, and again we say simply that X and Yare
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transversal in Q i~ they are transversal at all points
o~ their intersection.
~~jecture Let Q be a mani~old and X, Y compact
subpolyhedra, both o~ codimension ~ 4 in Q. Then X
can be ambient isotoped transversal to Y by an arbitrarily
small ambient isotopy o~ Q.
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EXTENDING TRIANGULATIONS

by M.A. ARMSTRONG.

The results given below are useful in
piecewise linear (PL) topology. They do not seem
to be well known, or to have appeared previously
in the literature.

Let Q be a compact PL-manifold, and M a
proJter compact PL-submanifold of Q. To say M is a
proper submanifold means that the boundary M = M n Q.
Recall that a triar.gulation of M is a combinatorial
manifold K together with a homeomorphism k:K ~ M;
where no confusion can arise k is usually omitted.
A triangulation L of Q is said to extend K if, in
the diagram

K ·--~·--)M
I

S' n
""L --l-~Q ,

the induced map s:K ~ L is simplicial. Recall also
the notion of local unknottedness. The submanifold
M is said to be locally unknotted in Q if, for so~e
triangulation K of M and extension L of Kover Q,
the closed star ball pair

(star (av, L) , e[sta:r (v, K)])
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is unknotted for each vertex v e K. The choice of K
and L is irrelevant, since if this ie true for a
particular pair K, L, it is true for any subdivisions
Kt, Lt and consequently for any other choice. Of
course, by [1], local knotting can only occur in
codimension 2, and possibly in codimension 1, depending
on the validity or otherwise of the PL Schonflies
conjecture.
Thegrem. Eyery triangulation of M can be extended
oyer Q if and only if M is locally unkPOtted in Q.
Corollary 1. A~y triangulation of the boypdary of
a compact EL-manifold can be extended to a triangulation
of the whole manifold.
Corollary 2. If M, instead Qf being proper in Q, 1a
contained in the interior of Q. and if the codimension
is ? 3, then a~y triangulation of M can be extended
over Q.

As an example of a non-extendable triangulation
in codimension 2, consider the cone on a knotted PL-sphere
pair (Sn+1, Sn-1). This is a ball pair (Bn+2, Bn) in
which Bn 1s logally knotted at the cone point. Triangulate
nB as an n-simplex, and suppose this triangulation can be

extended to Bn+2. Then the ball pair consisting of the
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n nclosed star of B in this extension, and B itself,
is unknotted, contradicting the local knottedness of
the pair (Bn+2, Bn).

Proofs of the theorem and its corollaries
will follow a couple of elementary lemmas.
Lemma 1. Let Y be a compact polyhedron. W a compact
subpolyhe4ron of V. and K a triangulation of W, Then
there is a derived K(r) of K that can be extended to
a triangulation of V.
Proof. Since the embedding of W in V is PL, some
subdivision Kt of K can be extended to a triangulation
L of V. By [2] Lemma 4, there is an rth derived K(r)
of K that is isomorphic to some subdivision Kit of Kt •
Finally, by the Corollary to Lemma 3 of [2J, there is
a subdivision Lt of L that extends K(r) •
Lemma 2. Let (X. y) and (X1L-X1) be two unknotted
PL-ball pairs. Then any PL-homeomorphism

h:X1..J.L.X1 '_!1 -+ X u Y. Y

can be extended to a PL-homeomorphism
ii:x1'_Y1 -+ X, Y.

This result occurs as Lemma 18 in [2J.
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Proof of the Theorem

Ca) Suppose M is locally flat in Q. Given a
triangulation K of M there is, by Lemma 1, an rth
derived that can be extended over Q. Now any derived
of a finite complex is obtained by a finite number of
stellar subdivisions - each such being the result of
starring some simplex at an interior point. Theref'ore
(by induction on the number of stellar subdivisions)
it is sufficient to prove that if aK is obtained from
K by a single stellar subdivision, and if aK can be
extended over Q, then K can be extended over Q.

Let aK be obtained by starring the simplex
A E K at the interior point A. It is convenient to
divide up the proof into two cases.

Firstly suppose M, Q closed. Let J be an
extension of ~K over Q, i.e. in

aK_k._~M c Q~i_..J
the induced map s:aK ~ J 1s simplicial. Some further
notation is needed; let F be the subcomplex sCaK) of J,

,..
and u the vertex sA. Take a first derived J' of J mod F
(the reason for working in J', rather than in J, will
appear later) and define
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-X = star (u, J'),
Y = star (u, F).

Then, since M is a proper locally unknotted submanif'old
of'Q, the pair (X, Y) is an unknotted ball pair. It is
in f'act a cone pair with vertex u, and the idea behind
the remainder of'this proof' is simply to replace this
pair by a suitable new cone pair - this replacement will
have the ef'f'ectof'straightening out s[Star (A, K)] so
that s looks linear.

To make this precise, let v be a vertex of'sA
and

B = X u star (v, J' ) .

Then B is seen (Figure 1) to be the union of'two balls
star (v , J')

X - star (v, J' )

glued along the common f'ace link (v, X), and consequently
is a ball. Construct a new complex L as follows. Embed
J Ii 1· E l'd En En+1 hnear Y In some uc lean space C ,c oose a
point w E En+1 - En, and def'ine

L = (J' - B) u (w • B)

where * denotes linear join. It remains to produce a
suitable homeomorphism I:L ~ Q.



s

\,,

...
"-
"
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To arrange consistency of notation with Lemma 2,
let

Xi = w • QC star (v, X) ], and
Yi = w • [y star (v, y) ]

see (Figure 2) • Again using local unknottedness, (X, Y)
is an unknotted, and therefore locally unknotted, sphere
pair. Thus

(S't"ar (v , X), star (v , y))

is an unknotted ball pair, and so the complementary pair
in (X, Y) is alsounknotted. Consequently (Xi' Y1) is
exhibited as the cone on an unknotted ball pair, and is
therefore itself unknotted.

Notice that:
(i) X1 is a subcomplex of L.
(ii) There is a natural isomorphism

o 0f:L - Xi ~ J' - X (0 denotes interior)
defined as the linear extension of the vertex map that
sends w ~ v and fixes all other vertices.
Remark. (i) and (ii) follow because

'S'tar (v, J') ()star (u, J') = star (v, 'S't'a'r (u, J')).
This equality need not be satisfied in the initial
extension J (one only has to draw star (u, J) a little
concave as in Figure 1). However, since A is a simplex
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of K, certainly the equality is satisfied with J'
replaced by F. Therefore in deriving J so as to
ensure the above, it is not necessary to subdivide
simplexes of F.

Let g:Y1 ~ ~ (A, K) be the isomorphism
-1defined as the linear extension of s f on the vertices.

Then f and the composition
g - sY1 --.-.~star (A, K) --.., Y

together define a PL-homeomorphism h:X1 u Y1, Y1 -+ X u Y, Y.
By Lemma 2, this may be extended to h:X1, Y1 -+X, Y.
Finally, define I:L -+ Q by

oIlL - X1 = jf, and
i Ix, = jii.

Then, by construction, l:L -+Q extends k:K ~ M.
Now consider the general case where M, Q are

allowed to have boundary. The proof goes through exactly
as before, except that the e~ressions for L, X1 and Y1
are rather more complicated since A may well meet the
boundary of K. Let:

L = (J' - B) u (w. [B- star (v, B) - star (u ,B)])
X1 = w * [x - star (v, X) - star (u, x)]
Y1 = w * [t - star (v, t) - star Cu, i)].

oOf course if A c K these expressions reduce to those
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given previously. Figure 3 illustrates the case where
v is a boundary vertex of F, and shows the necessity
of the removal of star (v, B) from B in the definition
of L. The further removal of star (u, B) is relevant
when A c K. Again one can check that (X1' Y1) is an
unknotted ball pair, and construct I:L ~ Q precisely as
above. This completes the first part of the proof.
(b) Conversely, suppose M is locally knotted in Q.
To complete the theorem one needs a triangulation of M
that cannot be extended over Q.

Let x be a point at which M is locally knotted
in Q. Then it is enough to produce a triangulation of M
in which

(i) oif x E M, then x lies in the interior of
an m-simplex,

or (ii) if x E M, then x lies in the interior of
an (m-1)-simplex.

For let K be such a triangulation, and assume K can be
extended to a triangulation L of Q. Let A be the simplex
of K that has x in its interior, and let K', L' result
from K, L by starring A at x. Then
(link(x, L'), link(x, K')) = A * (link(A, L), link(A, K))
and therefore is an unknotted sphere (ball) pair for
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o •
X E M CM), contradicting the local knotting of M in
Q at x.

Triangulations of the required type can be
constructed directly as follows. Suppose firstly

o m 0x E M, and let f: Il -+ M be an embedding of an m-simplex
onto a neighbourhood of x. Choose a subdivision 6' and
a triangulation 1:1 -+ M such that l-1x is a vertex of L,
and the induced map s:6' -+ L is simplicial. Let B
denote the subcornplex S6' of L. A new complex K may
now be constructed by embedding L in a Euclidean space
En c En+1, choosing a point Z E En+1 - En, and defining

K = (L - B) u z • B.
oChoose a point y E 6 in general position with respect

to the vertices of 6', and let g:z * B -+ 6 be the join
-1 •of z -+ y to s on B. Finally, define k:K -+ M by

k = 1 on L - B, and
k = fg on z * B.

Then k-1x lies in the interior of an m-simplex of K, as
required.

If x E M, the construction generalises in the
obvious manner. Choose an embedding f:6ID -+ M onto a

-1 •neighbourhood of x such that f M is a principal face
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m-1 mA of 6. Proceed now as above, except that of course
B is replaced by

• °m-1B - sA
and y is chosen in 6m-1 in general position with respect
to (Am-1),.

The proof of the theorem is now complete.
Proof of Corollary 1

Let M be the manifold in question. Add!.'.collar
to M and denote the resulting manifold by Q. Then M is
a proper locally unknotted submanifold of Q and so the
theorem is applicable. Therefore any triangulation of.M can be extended to a triangulation of Q, and of course
M must appear as a subcomplex.

Proof of Corollary 2
Suppose K is a given triangulation of M, and let

oN be a relative regular neighbourhood of M mod M in Q.
By [1] M is locally unknotted in N. First apply the
theorem to extend Kover N, then apply Corollary 1 to the

omanifold Q - N to complete the extension.

Two questions have been neglected in this paper:
(a) If M is locally knotted in Q, which triangulations

of M are extendable over Q?
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(b) When is it possible to extend triangulations
for polyhedra?

Information on both of these will be given in a
subsequent paper by E.C. Zeeman [3].

I would like to thank Professor Zeeman for his
encouragement during this work, and for poi~ting out a
gap in an earlier version.
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.AP:p_END I X 1

The following remarks were omitted from (1).

1. Suppose X is not simply connccted~ and let ~ be the

universal cover of X. Theil G call be liftcC:;_to El. group (l

of homeomorphisms of X in such 0. W8.y t.hnt er. is an extension

of 'JC1(X) by G, the quotients X/a aad X/G arc homeomorphic,

and (} acts siir.2}liciallyOil So:1l8 triangulation of ~.

Thus, if the geometry of thE) situction allows one to

recognise G, then 'JC1(X/G) co.nbe found by applying the

thoorem of (1) to the pair ~,~.

2. Tho.t G act simplicic.lly all some tr-LariguLa tion of Xis

of course a s~vere r~striction. One would like to prove the

result of (1) under' somovha t FIco-kcphypotheses, especially

since the only theorem known about triangulating group

act Lo.is requires X to be a compr.c t polyhedron., and G a

finite group of piecerrisc linear homeomorphisms. However,

OUl' theorem is not true; 111 complete generrli ty. Por

cxnmple consider the reals acting on the real line by

addi tion, then X/C is a point and G-/H is isomorphic to

the raals. This example suggests that a discontinuity



condition is necessary on the pair X,G. Suppose then that

X is a simply connected topologicnl spacc , and G a properly

discontinuous group of homeomorphisms of X. Let l" be the set

of points of X that have non-trivial stabilizer in G. The

proof given in (1) depended on a p£'.thlifting procedure.

It can be modified to denl with this situation if one can

verify that given n p2.th in X/G there is £l. homotopic path

th[lt meets F/G in only a finite set of poiIltS.



~',_problem i~:) sugge::s tcd below. .,..._yositi v.: coLu tion to

it is enough to provide Q ;)ro()f of Conjecture 1 of (2) ~ and

t.ncr-er'or-c of rel,". ti ve trcmsvcrGf.li ty. ~)uch 3. solu t i on wouLd

aLe o show t.hc un I qucnc s s of quotient ncr-ne I tubes.

PL-bo.lls, both inclusions being pr-oper- ~ r.~J.dboth pairs

unk.io t.t ed , bc PL-bnlls that

satisfy;

(d) .
]~)5 () B3 and this common

.
intersection is a tube on B1•

(A picture is provided overlenf.)




