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On the fundamental group of an orbit space

By M. A. ARMSTRONG
University of Birmingham

(Received 9 September 1964)

0. Introduction. Let K be a connected simplicial complex, finite or infinite, its poly-
hedron ((2), page 45) being the space X. Then X is connected. Suppose further that X is
simply connected. For any group G of simplicial transformations of X, H will denote
the normal subgroup generated by elements which have a non-empty fixed-point set.

The aim of this paper is to show that the fundamental group of the orbit space X /G
is isomorphic to the factor group G/H. Path-connectedness of the orbit space is of
course ensured by the path-connectedness of X, as a connected polyhedron, and the
continuity of the natural mapping from X to X/G.

As a particular example of this situation, consider a Fuchsian group I' acting on
the upper half-plane U in such a way that U/I' is compact, as in (3). A fundamental
region for I' may be obtained in the form of a convex non-Euclidean polygon with
a finite number of sides and all its vertices in U, consequently U may be triangulated
in such a way that I' acts simplicially. Further, if I" has orbit genus g then it is defined

by generators Xy Zay o ers &y
ayp by, ..., ay, by,
and the relations =1 (@E=1,..,7r),

g
2%y ... %, I1 (a;6;071071) = 1.
i1

The generators z,, ..., z, are elliptic transformations and each leaves fixed exactly one
point of U, whereas the a;,b; (j = 1,...,9) as hyperbolic elements cannot have any
fixed points in U. Let T'; be the normal subgroup of I" generated by the elements
x,,...,x,; then viewing U/I' as a closed surface S exhibits the classical result
m(8) = I'[Ty.

In section 1 we derive necessary and sufficient conditions for the action of G on X
to ‘induce’ a triangulation of X /@, and show further that these conditions are always
satisfied after at most two barycentric subdivisions of K. Throughout sections 2 and 3
K is assumed subdivided in accordance with the requirements of section 1, allowing
the use of an edge-path lifting procedure to establish an isomorphism between G/H
and the ‘edge group’ of the induced triangulation.

Related problems have been considered by Fox in (1).

I am grateful to Prof. A. M. Macbeath for providing the motivation for this work,
and for many helpful suggestions.

Notation. The natural mapping or projection from X = |K| to X/G will be denoted
by p, for x € X the point p(x) of X /G being written 2. Letters a, b, ¢, d, » will be reserved
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for vertices (or 0-simplexes), the occurrence of the letter e always denoting a 1-simplex.
The stabilizer of z€ X, i.e. {ge G: g(x) = x}, will be written stab (x).

1. Induced triangulation of the orbit space. Ability to triangulate the orbit space
X /@ in such a way that p becomes a dimension-preserving simplicial mapping will lead
to great simplification in the proof of our main result. In this section we investigate
the conditions which must be imposed on the action of G on X in order to make
possible such a triangulation.

By means of the projection p: X - X /G we may define an abstract complex K/ ag
follows:

(i) The vertices of K/G are the orbits (projections) of the vertices of K.

(ii) The orbits &, ..., &, span a simplex of K/G if and only if there exist vertices
g, -, of K, with p(a;) = &; for 0 < i < k, spanning a simplex of K.

There is a natural mapping p,: X - |K/G|; suppose xe X with carrier (a,...q,):
represent  as Ag@o+ ... + A,a;, where 0 < A; < 1 for 0 <4 < k, and Eo A; = 1; then p,
maps 2 to the point Ayp(a,) + ... + A, p(ay) of |[K/G|. Moreover, for any ge @, xe X, we
have p,(g(x)) = py(x), so that p, induces a map

U X|G—|K[G|
for which, given e X/G and any point e p~(2), Y(2) = py(z).
The situation is best represented diagrammatically
X K

[\

X6 o KG,

v

This map i is obviously onto, and since our projection map p is open will be continuous
if and only if p, is continuous. However, p, was constructed as a simplicial map from
K to K |G, ensuring its continuity.

If ¢ was a homeomorphism we could regard the spaces X/G, |K/G| and the maps
P, p, as essentially the same. In this case the action of G on X will be said to induce,
via the triangulation K of X, a triangulation K/G of X/G.

In general ¢ need not be 1-1.

Example 1. Take K to be a 2-simplex, vertices ay, a,, a,, together with all its faces.
Let G be the cyclic group Z; generated by the permutation (a,a,a,) of the vertices of K|
then the elements of G determine simplicial maps |K|— | K| by linearity inside each
simplex. The space X/G is homeomorphic to a disc, whereas |K/G| consists only of
a single point and therefore ¢ is not 1-1.

Example 2. Suppose K is the 2-dimensional complex illustrated and G the cyclic
group Z, generated by the permutation (aya,a,)(a,a3a5) viewed as a rotation of K
which fixes ag. a, a

ag a4
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Now to say that i is 1-1 means, for 2, € X/G, that (£) = () implies £ = §, or
equivalently that for x,ye Xp,(x) = p,(y) shall imply p(z) = p(y). In this example
¥ cannot possibly be 1-1, for consider the points

L

= Agg+(1-A
@ = A+ )a‘} (0<A<l).

Then « and y cannot be in the same orbit, but
P1(®) = Aplay) + (1 - A)p(ay) = (1-A)p(ay) + Ap(ay) = py(¥)-

These two simple examples point respectively to the following two conditions, which
will be shown to be separately necessary and together sufficient for ¥ to be a
homeomorphism.

Coxnprrion 1. Given any 1-simplex (a;a;) of K no element of G is allowed to map a;
on a;.
Necessity. Suppose geG with g(a;) = a; then p(a;) = p(a;). Consider any point
x= /\a¢+(1—/\)aj where 0 < A < 1, then
Pi(x) = Ap(a;) + (1= A)p(a;) = p(a;) = p(ay).

However, since g is a simplicial transformation, we cannot have a,, a vertex, and z, a
non-vertex, in the same orbit. Thus p(x) + p(a;), and ¢ cannot be 1-1.

CoxpitioN 2. Given two simplexes (ay ... a,b) and (a, ... a,c) of K with b and ¢ in the
same orbit, then there exists an element g* € G such that

g*¥a;) =a;, (0<1<k),
g*(b) =c.

Necessity. Suppose i is a homeomorphism and g(b) = ¢. (‘onsider points
k k
x= X Aa;+pb, y= 3 Aa;+pc,
i=0 i=0

where 0 < A;, 4 < 1 and ZA;+p = 1. Then
P(x) = TA;p(a;) +pp(d) = LA pla;)+ pp(c) = py(y)-

But ¢ is 1-1, therefore we must have p(x) = p(y), showing the existence of g* € & with
? *x) = 9. Remembering that, since ¥ is assumed to be a homeomorphism, Condition 1
1s satisfied, then clearly g* does all that is required.

TrEoREM 1. If Conditions 1 and 2 are satisfied then 1 is a homeomorphism.

Proof. (a) ¥ is 1-1.

Consider any two points z,y € X, say

T = Aglg+ ... + A 0, Y= poby+ ...+ 10,

¢
where 0 < A, 4, < 1 and A= =1
1=0 i=0

'L e
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Suppose p,() = p,(y); then X2A;p(a;) = Zu;p(b;). Condition 1 ensures that

p(a,;)aEp(aj)} (i + )
p(b;) *+ p(by) ’

therefore ¢ = k, and we may re-order, if necessary, so that Wi = A;, p(a;) = p(b;) for
0<i <k In view of this there exist in @ elements g, satisfying g:(a;) = b, for
0 <@ < k. Consider the sequences of vertices a,, ...,a;; by, ...,b,. If gola;) = b; for
0 <7 < k there is nothing to prove since then go(x) = y. Otherwise there exists a firss
integer r, such that Jolar) + b,; let go(a,) = ¢,,. Now g, (a,) = b, ; therefore @ b,
and ¢, are all in the same G-orbit so that there exists g€ G with g(c,) = b,. Applying
Condition 2 to the simplexes (b, ... b, 1b,,), (b ... b, ¢, ), we have the existence of an
element g* € (/ which satisfies

ghb;)=0b; (0<i<rn-1)

(J::(crl) = brl'

Therefore g gy(a,) = b, for 0 < i < r,—1, 7, < 1,

e~
— - T - 2
a
ro2 b,‘ 1 ch g
T —
e ~ \ C
b —_— ~
o2 ~

If now 7, - 1 = k the proof is complete, otherwise we repeat the above argument,
Clearly the process terminates after at most k steps, and by successively applying
Condition 2 at each step we provide an element g G such that g(a;) = b, for 0 < 5 < k,
i.e. g(x) = y, giving p(x) = p(y) as required.

(b) ¥ is an open mapping.

We have already seen that y is onto, continuous and 1-1, giving p,: |K| - |K /G| to
be a dimension-preserving simplicial mapping. Hence the restriction of p, to any
simplex, indeed to the closure of any simplex, of K is a homeomorphism. This meang
that y~1 restricted to the closure of any simplex of K/@ is continuous, and reference
to the two well-known Propositions 1:3:3, 1-10-4 of (2) for the finite and infinite cageg
respectively shows ¥~1 to be continuous and hence completes the argument.

The group G is equally well a group of simplicial transformations of K@, the rt},
derived complex of K.

THEOREM 2. The action of G on K® will always satisfy Conditions 1 and 2,

Proof. (a) We show, first, that the action of G' on K® always satisfies Condition 1
(when it must certainly satisfy this condition ‘on’ K®). Forsuppose (ab)is a 1-simplex
of K®; then a,b are the barycentres of simplexes o, o, of K and we order so that, oy
is a face of o, written o, < ,. Then given ge G, since it is simplicial and Preserveg
dimension, it cannot possibly map a to b.
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(b) It remains only to deal with Condition 2. In view of the above we know that
Condition 1 is satisfied on K®, ensuring that no element of G permutes the vertices of
asimplex of K®. Given two simplexes (@, ... @), (a4, ... a;¢) of K®regard a,, ...,a;,b,¢
as the barycentres of simplexes oy, ..., 0, 0,0, of K®. Then we may re-order, if
necessary, so that

g <0< ... <O; <0y <0y < ... <Oy

Op<07<...<0; <0< 0Tj <... <Oy

Suppose then that b and ¢ are in the same orbit, with g(b) = ¢, when certainly © = j.
If now b and ¢ are not the leading vertices of the two given simplexes, o, and o, are
both faces of o; but since g is simplicial on K®, g(0,) = o, implying a permutation of
the vertices of o, and contradicting our previous remark. In the case where b and ¢
are the leading vertices we have

Oy < ... < O < Ty,

0y < ... <0, <O,

But g(0,,) = 0, and o, < o, together imply g(o,) < o, then ¢}, < o, and Condition 1
on K(l) must give g acting as the identity on a,, and hence as the identity on o; for

< k. Therefore g(a;) = a, for 0 <4 < k and ¢ itself has the properties of the
requlred g*.

Theorems 1 and 2 allow us to assume from now on an induced triangulation K/G
of X/G.

2. Edge-paths and their lifting properties. An edge-path in a complex L is defined
as a sequence of vertices @i @y, s ey @y, With 7 > 0, in which each successive pair span
a 1-simplex of L. Given subsets S Sof X, X /G with p(S) = 8 we say that S lifts S.

For reasons which will become apparent in the next section we are interested in

lifting edge-paths in K /G to edge-paths in K; all results derived here will be given as
Lemmas.

Lemma 1. Any edge-path in K|G with initial vertex &, may be lifted to an edge-path
wn K which begins at any point of p~(8,).

Proof. Consider in K/G any 1-simplex ¢ with vertices & and b; we first show that this
can be lifted to a 1-simplex e in K having as a vertex any specified vertex a € p—(#).
Certainly ¢ may be lifted to some 1-simplex e, in K which has as a vertex some point
ay€p~1(@). Then there exists ge @ with g(a,) = a; but g is a dimension-preserving
simplicial mapping and therefore maps e, to ¢ 1-simplex e which has a as a vertex;
then clearly p(e) = é.

Suppose now the given edge-path in K/@ is 8,8, ...8,, where @, ;& span the
1-simplex ¢, (1 < ¢ < k). If a,e p~4(@,) is to be the initial point of the lifted path, lift
¢, to ¢, having a vertex at a,; this determines the second vertex a, of ¢, and a, € p~3(@,).
Now lift é, to e, ‘on’ a,; clearly this process may be continued and terminates after
precisely k steps. The lifted path is seen to have the same number of vertices as the
original.
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This path-lifting procedure is not unique.
By an admissible operation on an edge-path a; «; ...a; we mean its replacement by

the edge-path:

a;,a; .. a;, ka; )k, ,)... ka,;)

i
for some 0 < n < r and hestab (a; ).

Lemma 2. If two edge-paths in K have common first vertex and project to the same
edge-path in K |G, then one may be obtained from the other by a finite number of admissible
operations.

Proof. Let the two paths in K be

—aal  al
E, =a40;...4}

—al = a2
E, = aya? a2} (0 = = 2)
2= %0y ... O

alal span el
T+l P i} (OS’iS’C—l),

2
ajai,, span

with common projection
E-444,...8,, where &,8,,, span & for 0<i<k-1.

Assuming E, and , to be distinct there will be a first integer r, such that a! |, + a? 41
1 Y .

Then é, lifts to two distinct 1-simplexes ¢} and ¢} which have a common vertex:-
bl

reference to Conditions 1 and 2 provides an element %, estab (a},) satisfying

1 — 2
hrl(ar,—H) = Uy 13-

It is admissible to replace K, by

E, =aoai...ap b, (@7,1) ... b, (a}).

If now E, = E, the proof is complete; otherwise there will be a first integer r, > r, for
which &, (a7,,,) + a},, when we repeat the above argument. In this way we obtajn

a finite sequence of paths
E.E, . E,,..E =E, (n<k),

each one being obtained from its predecessor by an admissible operation.

Itis clear that if E, and E, are edge-pathsin K which are obtainable from one anothey
by a finite number of admissible operations then:

(@) p(E,) = p(B,);
(b) there exists k€ H which maps the end-point of E, to that of E,.

An qllowable operation on edge-paths is defined as follows. If three consecutive
vertices a,a, a, span a 2-simplex of a complex L, the triple may be replaced in an edge.
path by the pair a,a,, or conversely the pair may be replaced by the triple. It ig also
allowable to replace a triple a,a;a; by the single vertex a;, or conversely to alter ¢ ; to
a,ba, providing a,,b span a 1-simplex of L.

LEMM.A 3. Let B = 6051 cas Ek__lak, 0 = 6061 “ee ét_lak be homOtOpic edge'paths ":n K/G
which lift to paths B = agh, ... by, C = agc, ...c; in K. Then there exists an edge-pap, D
in K which projects to B, and an element he H which maps ¢, to the end-point of D,
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Proof. Since B is homotopic to 0, it may be obtained from C by a finite number N
of allowable operations. Consider the first allowable operation on C; we cannot always
lift this to a corresponding allowable operation on C, for example, ¢;_,¢;¢;,, may well
span a 2-simplex in K/G without ¢,_,c;c;,, spanning one in K. However, we can at
least lift our operation to an allowable operation on a path which is obtained from C
by an admissible operation. There is no loss of generality in assuming that this first
allowable operation involves &g, since if B and 0 coincide as far as b, = &, we merely
refer to Lemma 2 and define D to coincide with C' as far as c,.

(1) If the operation replaces @y¢, &, by @y8,, lift the 2-simplex (&,¢,¢,) to a 2-simplex
in K which has (a,¢,) as a side, say (@yc,v). Clearly this is possible (refer to the corre-
sponding argument for 1-simplexes given in proof of Lemma 1). Then Conditions 1 and
2 provide h, e stab (¢,) which maps ¢, to »; an admissible operation on C gives the path
agCyhy(cy) ... hy{c,), on which we operate allowably to obtain agh,(cy) ... By(c)).

A~

Conversely if 8,¢, is replaced by @,%¢,, lift the 2-simplex (8,92,) to a 2-simplex in K
which has (a,c,) as a side, say (ayvc;). Here we may directly operate allowably on C
to give ayve, ¢y ... ¢,

(2) Suppose &, = @, and the operation replaces @yC, 8, by 8,; then if ¢, = a, we may
directly operate allowably on C to give aycs¢, ... 6. If ¢; % a, then Conditions 1 and 2
imply the existence of h,estab(c,) with A,(c;) = @;. An admissible operation on C
gives agc; agh,(cs) ... by(c,), on which we operate allowably to obtain ayh,(c,) ... &,(c,).

Conversely, and finally, if &, is altered to &,98,, lift the 1-simplex (2,9) to a 1-simplex
in K which has a, as a vertex, say (¢yv). Operating allowably on C we ‘lift’ the initial
operation to give a,va4¢,¢; ... €.

The allowable operations in K/ give us a sequence of paths 0, EI, o B v = B. By
repetition of the above process we obtain in K a lifted sequence

C=EuE,...Ey=D

together with group elements A, ..., by of H (some of which may be the identity) where
k; maps the end-point of E,_, to that of E; for 1 < ¢ < N. Our construction ensures
p(D) = B, and the required group element ke H is simply hy ... hyhy.

As a direct corollary of Lemmas 2 and 3 we have

LEMMA 4. With the same hypotheses as for Lemma 3 there exists he H satisfying
h(cl) = bk'
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3. Main result. We are now in a position to prove
THEOREM 3. m(X/G) ~ G/H.

Proof. As in the previous section we assume ‘compatible’ triangulations K, K /G
of X, X/G.

Take as base-point in X /G any vertex @ of the induced triangulation; since X/ ig
path-connected this choice is arbitrary. Let m,(K/G,4) denote the edge-group of
homotopy classes of edge loops on & and 7,(X /@, &) denote the fundamental group of
X/G = |K/G| based at &; then 7 (K/G,8) ~ m,(X |3, &) ((2), page 237). In view of this
we are able to restrict ourselves to looking at edge loops on @. Choose a vertex
aep-1(d@) as base point in X; again the choice is arbitrary.

We set up a mapping ¢: G—>m(K/G,a) as follows: given ge G, join a to g(a) by an
edge-path E in K; then p(E) is an edge loop on d@ in K/G. Define ¢(g) = {p(E)}, where
{ } denotes the homotopy class of the edge loop under consideration. Since X = |K
is simply connected any two edge-paths joining « to g(¢) must be homotopic and there.-
fore, by the continuity of p, project to homotopic edge loops in X/G. Consequently
the above definition is independent of the choice of £ and ¢ is well defined.

Given an element aem (K/G, &), choose any representative edge loop; then by
Lemma 1 this may be lifted to an edge-path in K beginning at a. The final point of
this path must belong to the G-orbit of a and therefore there exists g e G which maps
this final point to a. Then ¢(g,) = «, showing ¢ to be onto.

The map ¢ is a homomorphism; let g, g, be any two elements of G and conside,
(gagy)- Join a to g,(a), g;(a) by edge-paths E,, E, respectively; then E, followed by
go(E,) is an edge-path joining a to g,94(a). By definition

B(g291) = {P(E19:(E))} = {p(E,)}. {p(E,)} = b(g2). H(91),

as required.
Finally, we show that the kernel of this homomorphism is H.

(¢) H < ker¢p. Any generator of H must fix a vertex of K, (londition 1 being
satisfied for the action of G on K. If b is a vertex of K and g(b) = b, join a to b by a5
edge-path C, then the path consisting of C followed by ¢(C) in reverse joins a to 9(a)
and projects to a null-homotopic loop in K/G. Thus since the stabilizer of any vertex
of K is contained in the kernel of ¢, by our earlier remark we must have H < ker b.

(b) ker¢p = H. Suppose ¢(k) = 1, where keG and 1 here denotes the unit of
m,(K|G,&); join a to k(a) by an edge-path C in K ; then ¢ = p(C)isaloopona homotop;e
to the constant path B at@. Applying Lemma 4 with B as the constant pathata, there
exists k€ H such that h(k(a)) = a; thus hkestab (a) and therefore k€ H. This completeg
the proof of Theorem 3.
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TRANSVERSALITY FOR PIECEWISE LINEAR MANIFOLDS

by M.A., ARMSTRONG and E.C. ZEEMAN

MWe prove three transversality theorems in the
plecewise linear category. For the standard definitions
and properties of this ecategory see [12]. All maps
considered will be plecewise linear, all manifolds compact,
and all submanifolds locally flat (which is always the case
for codimension » 3 by [11]). We say M is a proper
submanifold of @ if the boundary ﬁ - é and the interior
M c Q.

The main result of this paper (Theorem 1) says that
if M, P are proper submanifolds of @ then we can ambient
isotop M until 1t is transversal to P.

Perhaps we should straightway point out some inherent
difficulties. We do not assume that P has a normal bundle
in Q@ (or, equivalently, a normal microbundle). As yet the
exlistence of normal bundles in the piecewise linear category

is an open question. Haefliger and Wall [5] have proved that
normal bundles exist in the stable range, but Hirsch [6]



has shown that normal disk bundles do not always exlst
in the unstable range, and this gives weight to the
conjecture that normal bundles also may not always
exist.

If P 4id have a normal bundle in Q, then one
could slide M along the fibres until 1t was transversal.
This essentially is the geometrical i1dea behind Thom's
original transversality theorem [8] for smooth maps, and
behind Williamson's extension [10] to piecewise linear maps.

However, we are interested in the case where P may
not have a normal bundle, and therefore we do not assume
anything about normal bundles. Also we are primarily
interested in ambilent isotoping embeddings to be transversal,
rather than homotoping maps, although in Theorem 2 we do
deduce a result about maps.

Given M, P c Q, if we want to isotop M transversal
to P, then the following method of attack at once suggests
1tself. Choose a triangulation K of Q in which M and P
appear as subcomplexes. Let K' denote the dual cell
complex of K, and attempt to isotop M into the m-skeleton
of K*. But this is not always posslible, because if it
were one could infer that M always had & normal disc bundle

in Q contradicting Hirsch's result [6].
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Therefore we cannot isotop M into the m-skeleton
of K*. Instead we have to isotop M step by step so as
to be transversal to each simplex of K. In other
words our proof is by bare hands -~ the subtlety lying
in the interplay between the linear and the piecewise
linear. If one uses only the piecewise linear structure,
then one runs into a difficulty 1llustrated by the

following example.

The folded disc : let D be a folded disc crossing an
interval I in Euclidean 3-space (E3) as shown in

Fligure 1.

T,
S T
\\ \ \ / 'i_/ -
AN ‘\ /l //
\ \ ,/ /

//’ e .‘\\ /D

e N\ 7
o/
Figure 1

This picture is piecewise linearly homeomorphic to a
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standard linear disc in E3 together with a
rerpendicular line through its centre, consequently

D and I are transversal in E3. If we now multiply

by an extra dimension, we obtain D x I crossing I x I
transversally in Eu. However, on tilting I x I
upwards a little keeping I x 0 fixed the transversalilty
is destroyed, since the intersection of D x I with

I x I becomes three concurrent lines and is no longer
a manifold. With this example in mind it is easy to
manufacture the following more disheartening situation.
Let A% be a g-simplex and Sm-1, gP~1 spheres crossing
transversally in its boundary. Let Dm, DP ve discs
formed by joining the spheres to two points in general
prosition in the interior of Aq. Then D and pP may
cross transversally at all interior points, yet fail
to be transversal at their boundaries.

So as not to meet with this kind of difficulty
in the inductive step of our proof, we shall introduce
the notion of M being transimplicial to the triangulation
K of the ambient manifold Q. Being transimplicial is
roughly the opposite of being a subcomplex. It is not

a piecewise linear invariant, but rather is a technical

device introduced for the purposes of proof; it uses
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not only the piecewise linear structure but also the
local linear structure of K, and consequently is a
stronger property than transversality. With this
extra structure we are able to produce (transimplicial)
Theorems 4 and 5 that have our main (transversality)
result, Theorem 1, as a corollary.

The same techniques are used in Theorem 2 to
extend the result from embeddings to maps : any map
f:M » Q is homotopic to a map g transversal to the

'p

submanifold P of Q, and the cobordism class of g
depends only on the homotopy class of f. It should be
noted that in the analogous differential setting (8],
the set of all transversal maps is open in the function
space, whereas this is not true in piecewise linear
theory (we have no derivatives to "control" local
movement). This defect accounts for our more directly
geometrical approach.

Ve should point out that although Theorem 5 is
a relative transimplicial theorem, we have no corresponding
relative transversality theorem. This omission is
discussed at the end of the paper.

Our third main result, Theorem 3, can be thought

of as an existence theorem for gquotient regular
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nelghbourhoods (analogous to quotient vector bundles) -
the lnherent difficulty here being that in a regular
neighbourhood there are no convenient fibres to play

with. More precisely, given manifolds M c P c Q, we
produce a fourth manifold N in Q that cuts P transversally

along M.

@ .

Figure 2

At the end of the paper we show how this result can
be used to construct induced regular neighbourhoods,
and Whitney sums. However, we are unable to prove any
uniqueness theorems for these constructions.

We should like to acknowledge an unpublished
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paper by V. Poenaru and one of us, which contained

incomplete proofs of some of the results below.

Contents.
The Main Theorems.
(p, q)-disc fiberings.
Transimplicial maps.
Proofs of Theorems 1, 2 and 3.
The t-shift of an embedding.

Proofs of Thecorems 4 and 5.

Relative transversality?

Tubes,
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THE MAIN THEOREMS

Firstly we glve a precise definition of what
we mean by transversality. Let M, P be two proper
submanifolds of the manifold Q. Denote by g?
n-dimensional Euclidean space and by E? the closed
half space obtained by restricting the first coordinate
to be non-negative.
Definition 1. The submanifolds M, P are transversal
at_the point x e M n P (respectively M n P) if there
is a coordinate neighbourhood h:EY - Q (h=E3 -+ Q) of
x in @ such that h™'M, h™'P are two linear subspaces
of E4 (EE) in general position.

M and P are transversal if they are transversal
at all points of M n P.

It follows immediately that if M, P are transversal
in Q, then M N P is a proper submanifold of dimension

m+p - g, which 1s loecally flat in both M and P.

Theorem 1, I is a manifold with proper

manifo M and P M _ca ambient i 8)

a ersal to P an arbitrari 11 ambie o)
of Q.

We want an analogous definition and theorem for
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maps. For simplicity we confine ourselves to closed
manifolds, although there are similar results for
bounded manifolds.
Definition 2, (1) Let M, P, Q be closed manifolds,
with P a submanifold of Q. Let f:M - Q be an embedding;
we say that the embedding f is transversal to P if M
and P are transversal as submanifolds.
(1i) Now suppose f:M - Q is an arbitrary piecewise
linear map. We say that the map f is graph-transversal
to P if its graph

Tf:M » M x Q
is transversal to M x P as an embedding. Two properties
follow at once.
A) If f:M - Q is an embedding that is transversal to
P as an embedding, then it is graph-transversal to P
as a map. In other words greph-transversality is a
generalisation.
B) If £:M - Q is a map that is graph-transversal to
P then £ 'P is a locally-flat submanifold of M of
codimension g - p. This is because the homeomorphism
Tf:M - (Tf)N maps £ P onto (If)M n (M x P), which is
a locally flat submanifold of dimension

m+ (m+p) - (m+ q) by the remark above.
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Theorem 2. Given closed manifolds M, P, Q with
c and given a map f:M - Q, then there exists

an arbitrarily close homotopic mep g that is
reph-transversal to P. The inverse image g-12

is a loecally flat submanifold of M of codimension

-1

- a he cobordism a P n
n_th mo lass |f
Remark. All our results in this paper concern

manifolds; a subsequent paper by one of us will deal
with polyhedra [2]. In particular a stronger definition
of transversality for maps will be given in [2], and a

strengthened version of Theorem 2 proved.

Iheorem 3. Given manifolds M c P C both inclusion

ein r r, th there exists a fourth manifold N

gontained in 9, that intersects P transversally in M,
Remark. N will not be a proper submanifold of Q,

because in general the boundary N4¢ Q. However it will
be proper in the neighbourhood of M, and so the definition
of transversality of N and P makes sense.

We proceed now with the business of setting up

sufficient machinery to prove Theorems 1, 2 and 3.
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(p, gq)-DISC FIBERINGS

The ideas introduced in this section will be
of fundamental importancc throughout the rest of the
raper. Let X, Y, Z be polyhedra, and let p" denote
a standard n-dimensional disc with centre 0.

Definition 3. A map g:Y¥Y - Z will be said to be

locally a g-disc fibering at y € Y, or morec bricfly
F(g) at y, if there exists a neighbourhood N of gy
in Z and an cmbedding Yy:N x D2 5 Y onto a neighbourhooq

of y, such that the diagram

P1

N x D? ——— 1

ok

- — 7
Y =

is commutative. Here ps denotes projection onto the
first factor, and i the inclusion of N in Z,

Definition L. The pair of maps X =y £.,7 ig

said to be locally a (p, q)-disc fibering at x e X,

abbreviated to F(p, g) at x, if there exists a

neighbourhood N of gfx in Z, embeddings ¢:N x DP X,
y:N x D? -+ Y onto neighbourhoods of x, fx respectively

’
and a map k:Dp, 0 - Dq, 0 such that
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D1
N x Dp-—j—-x—lf—»N x D - ———N
3 \l!l i
! i
X -———F Y -ie— 2

commutes.
Note : (1) We can choose ¢ so that o(gfx, 0) = Xx.
(11) Therc is a natural generalisation to
sequences of maps of greater length.
(111) If the pair X —Y -E>z is F(p, q) at
x € X, then the composition X ==~ »Z is
F(p) at x.
(iv) The same diagram shows that the pair f, g
is also F(p, q) at all points in some
neighbourhood of X.
We prove three basic lemmas.
Lemma 1. (Restriction).
Suppose X > ¥ » 2 is F(p, q) at x € X, where gfx € 7o,
a subpolyhedron of Z. Let Yo = gf1zo,_§p = £ ly,.
Then Xo 2d%¥o,v, 1Yo, 7, 15 also F(p, q) at x.

Proof. By restriction.
Lemma 2. (Glueing).

given X —foy -7, et Zy i=1, +.:0 t be subpolyhedra

t
of 7, and supposc U 7, is a neighbourhood of gfx in 7.
i=1

- _1 — - -1 — -
Let Y, = g 2,5 8 = g[Yi,___xi =f Y, and £, = fl&i.
Then X-Eoy 8.7 18 F(p, g) at x if and only if each

g
"}"(i --——j—‘—-> Yiw-—i-—» VA

is F(p, q) at x.

i
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Proof.  Given that X -»—f-~-+§ -£ .7 1s F(p, q) at x,
i

restriction shows cach X; — + Y, 237, to be F(p, q)

i
at x.

Conversely, suppose we are given for cach i a
neighbourhood N, of gfx in Z, embeddings @, :N, x pP - Xy

ll;i:Ni x D2 > Y, and a map ki:Dp, 0 - Dq, 0 such that

i
1xk P
x DP —— “"“’Ni X Dq~--——---~~-aNi
]
@i’ W% }C
X, 3 ¥y e
i fi i 84 i

commutes.

Triangulate Z so that gfx is a vertex and each

Ni is a subcomplex. §Let K = st(gfx, 2), then each

simplex A € X is contained in some N,. Consider a
concwisc expansion

gfx:Ko/’Ki/'.../"Km=K

each Ki being a conc, vertex gfx.

Let K denote the cone Ki shrunk by €, and

i,e

Dg, Dg the discs DY, D® shrunk by e.

@ Let v be a vertex of a complex K; we denote the
open, closed star of v in K by st(v, K), st(v, X)

respectively.
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We shall define, inductively on j, a number

beadd K P oS ¥, K, 1 5 v
sj > 0, embecddings éj'kj,e. X D8 X, %5, 8 xDSj
J J J
and a map k:DY , 0 - pd , 0 such that
€ e
J J
1xk o] ps
k.,  xDP XX ,x.  xp¥—tmk,
A TR SAS TS ?'83
@,3 v e
J J i
v w w
X 7 > Y g Z

comnutes.

Begin, for j = 0, with eo = 1 and ® = ¢, |gfx x D¥,
Yy = Wilgfx x D%, k = k,, for some chosen i.

(Without loss of generality we may assunme
k(Dg) (ad Dg for zll € such that 0 < € € 1, for if not
procecd 2s follows. Choose A, 0 < A £ 1, such that
Dﬁ is contained in the star of the origin in some
triangulation of DP with respect to which k is simplicial.
Then k(Dﬁe) c DY for 211 & € [0, 1]. Let A:DP - DP be
the shrinking map, and replace k, ® by kA and ® (1 x 4)
respectively. )

Inductive step, J = J + 1.

Suppose Kj+1 = Kj U A, let L = Kj N A and p:A = L be
a retraction. Choose r such that A C Nr' Given a € A,

ued?, ve D%, define cpr,a:Dp = X and ¥, a:Dq - Y

9
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by
op o(@) = o,(a, u)

wr’a(v) = Wr(ay V).

Now @r(L x DP) is a neighbourhood of x in f-1g-1L, and
moreover &, maps ¢ L x D2 into f—1g—1L

j € €

J J
gfx x 0 to x.
Also wr(L x D3) is a neighbourhood of fx in g—1L, and
-1

Wj maps J Laj X ng intog 'L

gfx x 0 to fx.
Therefore there is a positive €, e < aj, such that
25(L, x DP) c o, (L x pP)
q qa
Wj(L8 x De) c wr(L x D).

Choose then 8j+1 = & and define

il

¢j+1(zs 'll) {‘53(2, U.) on Kj £ X Dg

P ¢’1

r, 297,02 j(pz, u) on A x DP,

€

v, ,(z, v) = er(z, v) on Kj x Dg

Jj+1 { €

In both casecs we have agreement on the overlap, because

-1 q.
Ve, 2Vr,pzY3(P2, V) on A, x Dg

here pz = z. Our map ®j+1 is piecewisc linear on

A X Dp because 1t is the composition

P 1% 5 1% proj P
A, xDP px1 A xL xDp LA xx X ,AexLxDp-———»é»AexDp.mR;x

-
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Similarly for Wj+1'
We arc left to show thc commutativity of
Ay % DP x| Ay X Dg -NEA_,AB

!
®j+1i IIIj+1{

i
Lc
|
4
Z

X - 3 Y e

For the right hand square, if a € Aa’ v € Dg, then

-1
g%5,4(2, V) = &¥p g¥r,pa¥;(P2s V)

e giy ,(0%)

= a

= pi(a, v).
Tn the left hand squarc, for a € A, U € DP, we have
(a, ku) = ¥, 7 (pa, ku)

r,a'r,pa j

3 +1
1
= Wr awr oa J(1 x k)(pa, u)

¥, (1K) (e, w) =

wr,paf'@ (pa, u) by inductive hypothesi

-1 ~1
= Wr,a?r,pa f¢r pa¢r a®J+1

N e e o

= Vr,a
(a, u)
k,

~1 o T~ ,p? X
= wr - Op,a J+1(a, u) since -—»D*  commutes,

This completes the inductive step § = J + 1.
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Eventually, at the end of the induction, we

obtain a commutative diagram

1xk Q P
K, x D8 I x x D% Pa_x_

& €
| ' ;
i ir v
X i a ¥ e 7 ’

r

where e = e Since K6 is a ncighbourhood of gfx
in Z, this shows that X-—gme wﬁmiz is F(p, q) at x,
and so completes the proof of Lemma 2.

Lemma 3. (Composition).

if X~-£+g-§—:z is F(p, g9) at x € X and L-ILW is F(n)

at_gfx, then x—£»Y-5$z Q4W<;§ F(n+p, n+g, n) at x.

Proof. We have a necighbourhood N' of gfx in Z,
embeddings ¢', ¥' and a map k which give rise to a
commutative diagram -
N' x pP -1 X K yv  p? _PL y
l ' f
o' ¥ c
! ! |

X 7 — Y -——-—-é——a Z .

Choose a neighbourhood N of hgfx in W and an embedding
e:N x D™ =+ 2 onto a neighbourhood of gfx in N' such that

N x DP Bt ..N

commutes.
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Define ¥:N x D® x D¥ =+ Y vy
lli(t, u, V) = \IJ'(G(‘t, u)’ V)
and p:N x D" x DP =+ X by

o(t, u, v) = 9'(e(t, u), v).
Then

n
N x D* x pP IxIxK, n o p® 4 DY Prod’ w « DRLPL,y

o | " eJ =
o ! 2 v
X -~-——?-~*w'Y - —-“§-~—az —e W
commutes as requircd.
Corollary. With the same hypotheses, X -gng heg Ly

is PM(n + p, n + g) at x.
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TRANSIMPLICIAL MAPS

Let Q be a manifold, and X a triangulation
of Q. If A i1s an a-dimensional simplex of K, let
LA = 1x(a, K)
denote the link of A in K. Then ° at® = S5%(4, KX).
Let v be a vertex of A, and
shiar? o vih
denote the simplicial map defined as the Join of
A =+ v to the identity on LA.
Let M be another manifold, and f:M - Q be a
map. Given a point x of M, let A be the unique
simplex of K such that fx € X.

Definition 5. We say that the map £ is transimplicial

to K at X if the pair

f—1ALA» f ;ALA 8

A
— VLA

is F(m + a - q, a) at x. If this is the case for all

X € M, we say f is transimplicial to K.

Note 1. Our definition is independent of the choice

of v (by an application of the composition lemma).

~

¥ We denote the Jjoin of two complexes K and L by KL.



- 20 -

Note 2. The restriction and glueing lemmas of

the previous scction show that equivalent to

Definition 5 is : for every principal simplex AB € X,
the pair £ AB -~f~>AB-§1A-->vB is F(m + & - g, a) at x.
Note 3. Often it will be convenient to use the idea
of a submanifold (i.e. the image of an embedding rather
than the embedding itself) being transimplicial to a
triangulation. The definition is the obvious one.
Given a manifold Q, submanifold M, and triangulation

K of Q, we say M is transimplicial to K at x € M if

the pair

A A SA

M n ALY ¢ A A

is F(m + a -~ ¢, a) at x, where x € K, A € K, and we

use the above notation.

Note L. The concept is designed to cut out the
folding phenomenon described in our introduction.

We illustrate below a non-transimplicial embedding of
a 2-disc in 3-dimensions. The disc lies in the star of
a 1-simplex, and has a fold running down to a point

in the 4-simplex.



T odngTd
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The embedding f fails to be transimplicial at x,
because if it were, then the composition sAT would
be F(C), i.e. would be an embedding; but it is not
an embedding because it is three-to-one where the fold
gets flattened down.

Notice that if we move the fold point into
the interior of a 3-simplex, then the embedding does
become transimplicial. In fact this is the geometric
idea behind our main proof. Givcen an embedding M - Q
and a triangulation K of Q, we cannot isotop M into the
m-skeleton of K* (by Hirsch's result [6]), but
nevertheless'we shall show that we can push the worst
fold and kink points into top dimensional simplexes,
and so make M transimplicial to K.
Note 5. To prove the theorems in this paper we need
only consider transimplicial embeddings rather than
transimplicial maps. However, maps are Jjust as easy
to handle as cmbeddings at this stage, and several of
the more general results that we prove for maps will be
useful in [2].

Lemma L. (Openness)

If £ is transimplicial to K at x ¢ M, then f is

transimplicial to K at each point in some nei ghbourhood

of x.
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Proof, Using the previous notation, the pair

A
A T oA 8 A

1

is P(m + & - q, a) at x. By the openness of disc

fiberings, there is a neighbourhood U of X in N such that
this pair is F(m + a - g, a) at all points of U. Let

¥ € U and suppose Ly € ﬁ, B eX; then A is a face of g
and consequently BLB c ALA' let B = AC. By restriction
the pair £ ipr® L p1B _i, vel® 1s F(m + a - q, a) at y,
But s'C:voL® - viB is F(b - a) at sify, and

SVCSA = sB:BLB - vLB. Thereforc by the corollary to

Lemma 3
B
e lpB L,mB .8 Lv®

is P(m + b - q, b) at y, completing thc proof.

Lemma 5.
For any subdivision K' of K, f transimplicial to X' implies

P transimplicial to K.

Proof, Given x € M, suppose fx € K', where A' € X' ang
A c K, A € K. Let v' be a vertex of A', v a vertex of
A, L' = 1k(A', K') and L = 1k(A, K). Then s®:al 5 vi
induces a linear (i.c. each simplex is mapped linearly)
map A:v'L' - vL which makes the following diagram commute
A'
A0 AL LR NS 1
N N I
-1 £ g
£ AL - > AL -—» VL .
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Since f is transimplicial to K' the pair

2 lA1L S ALY o v ds F(m + a' - q, a') at x.
If we show that A is F(a - a') at v', then
f-1AL -+ AL - vL is F(m + a - g, a) by composition, and

80 the lemma follows. Therefore it remalns to show
that A is F(a - a') at v'.

K is contained in some Euclidean space E.
Let I be the decomposition space of I consisting of
all a-planes parallel to A, and let g:E - F be the
natural map. Then g embeds vL in F because A is
Joinable to L. Similarly g' embeds v'L' in F', where
g':E - F' is the natural map onto the decomposition
space of all a'-planes parallel to A'. We have a

commutative diagram

viL?t . ~,?.\f.«9 vL

g! I
s .
P! ._..& BN

where b is the natural map. Since u is linear it is
F(a - a') everywhere.

Let N = g(vL), N' = g'(v'L'). Then N' is a
neighbourhood of g'v' in u'1N because A'L' is a
neighbourhood of x in AL. Therefore w:N' - N is

F(a ~ a') at g'v' by restriction. Therefore
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A:iv'L' = vL is F(a - a') at v', and the proof of
Lcmma 5 1s complete.

Let P be a proper submanifold of Q, and let
K be a triangulation of the pair 2, P; in other
words K is a triangulation of Q in which P appears ag
a subcomplex Ki.

Lerma 6. (Consistency)

If M is a proper submanifold of § that is tPanSimpliCial

to X, then M is transversal to P.

Proof. Given x € M n P, suppose x € K, A e K,.

Let L = 1k(A, K), Li = 1k(4, Ki) and v be a vertex op 4
Since M 1s transimplicial to K we have, with the usual

notation, a commutative diagram:

N x D 1X%E 1 « D*_P£9Q§E£19§ W N

Y A lc
M N AL ._....c,:_......> AT, ”.SI e —L VL R

where D = D2~ ang D, = D%, Let Ny = N n v, .

Since Q, P is a locally flat manifold pair, we can
choose N such that N, Nis 1is an unknotted ball pair,
The above left hand square can be rewritten:

¥ x D-2X¥,x x D,

X v

M - R Q .
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Since M is locaily flat in @, we know that N x kD is
locally flat at (v, 0) in N x D,, and therefore that
kD is locally flat at 0 in D,. Meanwhile N1 is locally
flat at v in N. Therefeore N x kD and N1 x D, are
transversal at (v, 0) in N x D,. Taking the image
under ¥ we deduce that M and P are transversal at x

in @, This is true for all x € M n P, and so lI, P are
traasversal.

We shall recquire triangulations of our manifolds
that possess a certain local linecarity property.

Definition 6. A combinatorial manifold K, of

dimension q, is called Brouwer if:
(1) For cach A € K there is a linear embedding
st(a, k) - B4,
(i1) For each A € K therc is a linear embedding
st(4, K), st(a, k) » B2, 8O,

Notes: 1. If only (ii) holds we say K is Brouwer at

the boundary.
2. Not every combinatorial manifold is Brouwer,
sce Cairns [L4].
3. Any subdivision of a Brouwer manifold is
Brouwer.
The following lemma is due, in a sharpened form,

to Whitehead [9].
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Lemma 7.

(a) Any combinatorial manifold K has & Brouwer

subdivision K'.

(b) If K is already Brouwer at the boundary, we can

choose XK' such that XK' = K.

Proof. (a) Choose an atlas of g-simplexes
fi:A -+ K, 1 €1 s r, that cover X in the sense that
every point has some fiA as a closed neighbourhood.
Now produce K' by subdividing so that all the fi are
simultaneously simplicial (using [12] Theorem 1).
(b) If X is already Brouwer at the boundary, we can
confine our attention to a subatlas not meeting K that
covers every simplex not meeting K. In order to make
the subatlas simplicial, it 1s not necessary to
subdivide any simplex on the boundary.

The main buruen of this peper will be to prove
the following two theoremns.

Theorem L. If f:M - Q is an embedding between closed

manifolds, and X any triangulation of Q, then f can be

ambient isotoped, by an arbitrarily small ambient isotopy,

to an embedding g that is transimplicial to XK.

This theorem is in fact true for maps (see [2]).

We now give a relative version.
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Theorenm 5. Let P be a proper submanifold of Q,

and J_a Brouwer trianguletion of the boundary Q, P.

Let f£:1 » Q be a proper embedding such that £|il is

transimplicial to J. Then there exists an extension

of J to a Brouwer trianguiation K of Q, P, and an

arbitrarily small ambient isotopy keeping Q fixed

carrying f into an embedding g that is transimplicial
to K.

Remark. Let K be an arbitrary extension of J to a

Brouwer triangulation of @, P. Then although £IM is
transimplicial to J, it may well happen that f is not
transimplicial to K at pointsof M. TFor example, let D
be a disc properly embedded in a tetrahedron T as shown
in Pigure 4. Then D is transimplicial to T, but the
fold ensures that D 1s not transimplicial to T at

the boundary point x.
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v

Figure :

In our proof of Theorem 5, we get round this difficulty
by using a collaring technigue to construct a particular
extension K relative to which such folds are straightened
out.

Before proving these transimplicial results, we
give applications in the form of proofs of our

transversality thcorems.
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PROOF OF THEOREM 1.

We are given proper submanifolds I, P of Q,
and have to ambient isotop M transversal to P.

By Lemma 7, it is possible to choosc a
Brouwer triangulation of the pair Q, P. Apply
Theorem L to ambient isotop 11 transimplicial to J,
and extend this ambient isotopy from @ to the whole
of Q by [7] Addendum (2.2). Suppose the effect of
this isotopy has been to move ¥ to 14 C @, then
ﬁi is transimplicial to J. We are now in a position
to apply Theorem 5. This provides:

(a) an extension of J to a Brouwer triangulation
K of the pair Q, P.

(p) an arbitrarily small ambient isotopy which
moves My transimplicial to K whilst keeping Q
fixed.

Reference to Lemma 6 shows that the composition of

our two isotopies produces the required result.
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PROCY OF THEOREL 2,

We are given closed manifolds M, and P < Q,
together with a map f:i - Q which we want to homoton
graph-transversal to P. The graph I'f:M - M x Q is an
embedding. Choose Brouwer triangulations K1 of M and
of @, P, and let K, be a subdivision of the cell

2 3
complex K1 X K2 triangulating M x Q, M x P. Using

K

Theorem 4, ambient isotop I'f into an embedding F that

is transimplicial to K3.

Lemma 8,

We can choose F so that the composition

M2 n x o Pi.y

PP ]

is a homeomorphism, wherc p, is the projection.
The proof of this lemma 1is postponed, 1t can

be found directly following the proof of Theorem .
Meanwhile, let ¢ = (psF)~', the inverse
homeomorphism. Define G = (ex 1)F:M - M x Q, and

let g denote the composition
M -G x g P2q,
Then g is homotopic to f and G = T'g, the graph of g.
The triangulation K3 of M x Q 18 really a

homeomorphism t:K3 -+ M x Q. Let K denote the
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triangulation

(e x 1)t:K, » M x Q.

3
Then since e x 1 maps M x P to itself, K is also a
triangulation of ¥ x @, M x P. lNow F is transimplicial
to the triangulation K3, and since we have applied the
homeomorphism € x 1 to both embedding and triangulation,
we deduce that G is transimplicial to K. Therefore by
Lemma 6 we know G is transversal to M x P. Hence g is
graph-transversal to P, beccause I'g = G, and consequently

1P is a locally flat submanifold of M of codimension

g
a -~ D.

It remains to shov the invariance of the cobordism
class {8—1P}. There werc two choices involved in the
above construction namely those of triangulation and
isotopy. Let K., g, arise from different choices. Then
g, g, are connected by a homotopy h:ll x I = Q say.

The graph

Th:eM x I - M x I x Q
is a proper embedding, whose restriction to the boundary
Tg U Igutd(M x I) » (M x I x Q)
is transimplicial to the Brouwer triangulation K v K,

of 3(M x I x Q). By Theorem 5 extend X U K, to a

triangulation of Il x I x Q, ¥ x I x P and ambient isotop
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T'h, keeping the boundary fixed, to a transimplicial
embedding H, say.

By Lemma 6 H is transversal to M x I x P, and
80 H—1(M x I xP)isan (m + 1 + p - q)-dimensional
submanifold of i x I with boundary g~ P u (- g3 P),
the minus sign referring to orientation. In other
words g~ P and g;1P are cobordant. If f, 1s homotopic
to £ then the same g will do for both, and so the
cobordism class {g'1P} depends only upon the homotopy
class [f].
Remark.

There is a small but subtle point here.. If
f happened to be already graph-transversal to P we

could not infer that £

P e {g~ 1P}, because f might
not be transimplicial to any triangulation, and so we
conld not use the relative transimplicial Theorem 5,
as in the proof above. Nor do we have a relative
transversal theorem to use instead (see the end of

the paper).
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PRJOE OF WINORE 3.

e are given manifolds M ¢ P € Q, with both
inclusions proper, and nced to construct a “'perpeadicular?
manifold N. Begin as for Theorem 1, combining the
results of Theorcms 4 and 5 to obtain a triangulation
J of P and an ambicent isotopy of P moving M to M1,
where M, is transimplicial to J. Dy [gﬁ Corollary (2.3)
extend the ambient isotopy of P to give an ambient
isotopy of the whole of 9. Extend J to a triangulation
X of @, this is possible since P is proper and locally

flat in Q (see [3]). Let XK' dcnote a first derived of

K mod J.
For each simplex A <« J, let

L, = (simplexes B ¢ &' i AB ¢ K' aud B J = 0}.

Define
X =11 (A f M1)LA ’

v

AGJ
the joins being made linearly inside the simplexes of K.
Note firstly that the dimension of X is m + g -~ p.

X need not be a manifold, however wec shall show that it

is a manifold "ncar" M1.
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Figure
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FPor x M1, suppose X = ﬁ, A e J, and write

1P = 1x(a, 7), 19 = 1k(a, K'). Let v be a vertex of A.
Since M1 is transimplicial to J, tﬁe pair

i, o a2 o arf S st
is *(m + a -p, a) at x. This implies that

o at® c ard S ye
is also F(m + a - p, a) at Xx. So as not to interrupt
the main line of argument, we ask the reader to
temporarily accept this implication; a proof will be
given following Lemma 12. "We have therefore a
neighbourhood D9"? of v in VLQ and an embedding of
p%™8  p™*a-P _ p™A7P ,,t0 a neighbourhood of x in X.
Consequently there is a neighbourhood N1 of M1 in X
(for example take a seccond derived neighbourhood)
which is 2an (m + ¢ - p) - manifold and transimplicial
to K'. By Luinx O ¢, is traneversal to r in Q.
By construction N1 (P = M1. Now reverse the original

ambient isotopy of Q to obtain the required manifold N.
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THE t-SHIFT OF AN EMBEDDING.

For the proof of Theorem 4 we shall use a
sequence of special local moves (first introduced
in [12] Chapter 6) called t-shifts. The parameter
t concerns dimension, and the construction involves
choice of local coordinatec systems (i.e. replacing
the piecewise linear structure by local linear
structures) and choices of points in general position.
Suppose £:M - Q is a proper embedding between
manifolds. By Lemma 7, we can find triangulations
K1, K2 of M, Q such that f:K1 - K2 is simplicial
and K2 Brouwer. If K§2), Ké2) denote the barycentric
second derived complexes of K1, K2, then f:ng) - Kéz)

remains simplicial.

Let T1 be a t-simplex of K1 such that
%1 c ﬁ, and let T2 = fT1. Take a simplicial neighbourhoog
of T, modulo its boundary in Ké2) (1.e. this consists

2
of all closed simplexes of Kéz) which meet the interiop

of T2) and call the resulting g-ball B,. Let
B, = £7'B,, this is an m-ball (it is in fact the
corresponding simplicial neighbourhood of T1 mod T1

in ng)). For 1 =1, 2 let T; denote the barycentre
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of Ti’ and let Si = Bi'

|B,| = T.8,, although of course as a complex B
i i~1 i

Then the polyhedron

is a subdivision of Tisi'

Denote by fT:B1 -» B2 the restriction of f,

Thus fT is the join of the two maps 51 - %2, S1 g 82.
The idea is to construct another embedding gT:B1 - B2
that agrees with fT on the boundary 31, and is ambient
isotopic to fi, keeping the boundary BZ fixed. We shall
glive the explicit construction below; it will be
apparent that Ep can be chosen arbitrarily close to
fT, and the ambient isotopy made arbitrarily small.
Define a new embedding of M in Q by
g = f on M - B1
{ gp on B1-
Then g is ambient 1sotopic to f. We call the move

f - g a local t-shift with respect to the triangulation

K2.

Construction of the local shift : Choose & linear

embedding h of 8t(T,, K,) in E® (this is possible since
K, is Brouwer), then h embeds B, linearly in Eq,

Let X denote the combinatorial q-ball th
Y = i, and v = haz. Choose a point w € E? near v
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which satisfics:
(1) w e st(v, X)
(1i) w and Y are joinable
(1ii) w is in general position with respect
to the vertices of I.
Define a homeomorphism J:X - X as the Join of the
identity on Y to the map v » w. Thus h™ jh is a
homeomorphism of the ball B2 which keeps its boundary
Tnr

fixcd. Define 8p = h™ Then gq is ambient

T.
isotopic to fy keeping 52 fixed in view of:

Alexander's Lemma. Any homeomorphism of a ball

keeping the boundary fixed is isotopic to the identity

keeping the boundary fixed.

Suppose we now let T1 run over a sequence of

"interior" t-simplexes of K,, then the corresponding

1
balls {B1} overlap only in their boundaries, on

which the {gT} agree with f, and therefore with each
other. Consequently the resulting embeddings, and
ambient isotopies, may be combined to give an embedding

g ambient isotopic to f. We call f - g a global t-shift

or, more briefly, a t-shift.
We shall want to perform a succession of t-shifts,

one for each value of t, dim K1 2t 2 0. But after
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the first shift the resulting embedding will no
longer be simplicial with rcspect to K1, K2.

However, in the construction of a shift, our initial
assumption that f be simplicial was a luxury rather
than a necessity, and the construction can be adapted
as follows. Suppose r > t, e:K1 - K2 simplicial,

and that we perform an r-shift e - f. Then given a

t-simplex T1 € K1:
(a) £ maps 'I‘1 linearly onto a t-simplex T, € K.
(b) If B, is as above, and if B, = £7'8,, then
- .
B1 is an m-ball and £ B2 = B1. X R
(c) fT=B1 - 32 is the Join of 51 - BZ to T1 - T2.

Property (a) is satisfied because the r-shift does

not move the (r -1)-skeleton, and properties (b) and

(¢) follow from property (i) of w in each local r-shift.
With the amount of structure contained in (a),

(b) and (c¢) we can construct a local t-shift £ - g

exactly as before. Only one minor modification is

needed, and that is in property (iii) for the point w:

for this choose subdivisions such that B% -+ Bé is

simplicial, let X' be the corrcsponding subdivision of

X, and choose w in general position with respect to

the vertices of X'. The remainder of the construction
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is unaltered.

In this way we can construct t-shifts for all
t, m = dim K1 2t 2 0, in descending order, because
for each t-simplex, the prececding higher dimensional

shifts preserve the structure (a), (b) and (c).
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PROOF OF THEOREM L.,

Let X be a combinatorial g-ball, with boundary

Y, linearly embedded in Eq, and Sm'1

an (m -1)-sphere
in Y. Suppose that Y is joinable to the interior
point w of X; in other words X and wY have the same
underlying polyhedron. We have the following two

lemnas.,

meag.
1

1r 5% 45 transimplicial to Y at y, then ws™ | is

transimplicial to X at y.

Lemma 10.

1£ ™ 15 a subcomplex of Y, and if w is in general

position with respect to the vertices of X, then

wSm'1A;§ transimplicial to X at all interior points

of X.

o}

Proof of 9. (See Pigure 6) Suppose y € A, A € Y.

Let v be a vertex of A, L = 1k(4, X), L1 = 1k(A, Y)

and s the simplicial map AL - vL. We know that

Sm'1 n AL1 c A‘L,Iw-s—wavL1 is F(m + a - q, a) at y:

i.e. there is a neighbourhood N1 of v in vL1 and a

commutative diagram
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n
m+a-q  1xc a proj
N1 X D1 s P N1 X D1 -2 N1
W .
s n AL, .S -3 AL, -2 5vL
1 1 1
where o, embeds N, x D?, N, x DT+a'q as neighbourhoods

Sm-1

of y in AL n AL1 respectively. Since w is

19
Joinable to Y, every ray radiating from w meets Y in
a unique point. The same is true for points near w.
Thus any ray near wy and parallel to wy also meets Y
in a unique point. Therefore given a neighbourhood V
of ¥y in Y, there exists a necighbourhood U of y in X
such that projection parallel to wy gives a map
r:U - V. Now choose V, U sufficiently small so that
Vo, (N, D;l) and U c AL. Define 08:U - D? as the
composition

U ~3--—>cp1(N1 x DY) «'—3—~N x DT PIoJ -I-1~->D
Then s x 9:U - vL x D? is piecewise linear and onto
a neighbourhood of v x 0 in vL x D?. Moreover, s x ©
is an embedding, for suppose uy, U, have the same
image under s x 6. Since su, = su, the interval
u,u, is parallel to A. Thereforc the interval
(ru1)(ru2) is also parallel to A and of the same length,

1 1

consequently the points @? ru1, m; ru, have the same

first coordinate in N1 X D?- Since 6u1 = euz, they also
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have the same last coordinate. Therefore they are

07 and so u =u

is an embedding as required.

equal, giving ru, = ru Thus 8 x 6

20

Choose neighbourhoods N of v in VL, D® of 0

in D?, D™ME=Q or o in Dﬁ“a"q such that

N x D% c (8 x 6)U, and
Define ¢:N x D2 o AL by ¢ = (8 x 6)‘1|N < D2, By
construction
n
N x ptte-a _IxC_ . p? Proi |y
! |

o ®! \c
- f y
WSm 1 Nn AL ._.....S:...._,__, Q‘: —_——-8 - v

1

commutes, showing ws™™ transimplicial to X at y.

e
. \\ /'7\
T =
ST - T
= T -
T Tk %) g
N b, x0®) R -
N ~ R I 4
N Tl L )'
. ‘ t / /////
.
\\\ ‘ ////
\_\‘ 5 //
“l

Figure 6
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Proof of 10. (Sec Figure 7) Since w is in general

position it must lie in the interior of a principal

m=-1 45 transimplicial

to X at w. @Given an interior point x of ws™

simplex of X, hence trivially wS
, X £ w,
suppose that x € A where A is a simplex of X (we may
assunic dimA < q, otherwise the lemma is again trivial).
Let L = 1k(A, X). We need to show that

| ws™ 1 n AL c AL -B-vi

is P(m +a - g, a) at x. Denotc by [A] the linear
subspace of EY spanned by A. Then w ¢ [A], by the
general position of w. Let [wx] meet Y in y, where

v € é, C €Y. Again using the general position of w,
we infer that [A] and [C] together span 52, Therefore
[wA] N C is a convex linear ccll, containing y in its

interior, of dimension (a+1+c-gq). Call this cell E.

/\ ,”/ -
P —~

-

y

E

AL e
04 \ .
\\\\\\\\\\jl Figure 7
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Let L, = 1k(C, s™-1y, L, = 1k(C, Y). Then

EL1, EL, are respectively m+a - q, a - balls.

2
Let p:C ~ [E] denote orthogonal projection,
aend V be the neighbourhood (p'1E)L2 of y in Y. Let

p:V - EL, be the join of p to the identity on L2.

2
As in the proof of the previous lemma any ray parallel
and sufficiently close to wx meets Y in a unique point,
and thercfore there exists a ncighbourhood U of x in X
such that projection parallel to wx gives a map

r:U - V., We can choose U sufficiently small so that

U c AL. Let 6 be the composition

U -2V -B5EL,.
Then 6 is a projection in a direction complementary to
the projection

U--Ss AL —-> VL,
Thercfore the product

8 x 6:U -» vL x EL2

is a piecewise linear cmbedding onto a neighbourhood
of v x ¥y in vL x EL2. Choose neighbourhoods ¥ of v in
vL, D"*®% of y in EL,, D® of y in EL,, such that
pP*8-2 = p? and N x D® < (sx 6)U, Define ¥:N xD® - AL
by ¥ = (8 x 6)—1|N « D%, By construction we have a

cormutative diagran
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n
N x DPe~2 .S,y « p* —RFeJ .y

Ilf: W{ lc

m\’1 c b 8 ~L
ws™ 1 AL —Senlhn e f s v

and thercfore the proof of Lemma 10 1s complete.
We shall also nced:

Lemma 11, Let M, Q be closed manifolds, and £:M = Q

an cmbedding. Supposc B2 is a g-ball contained in @ such

that (B,, B, 0_fM) is a (g, m)-ball pair. Let

B1 = filLBz n fi1), and let K be a triangulation of 9, B

2-

Then if x is a point of B1 such that both
ilB1i§1 > By _and

[« o

£y - B,:M - B,

arc transimplicial to K at x, then T is transimplicial

—-)Ql-Io32

to K at x.

Proof. A straightforward application of the glucing
lemma. (Of course in saying f|B1:B1 » B, is transimplicial
to K, we mean that it is transimplicial to the subcomplex
of K triangulating Bz; similarly for thc statement about

£IM - B Where no confusion can arise this abbreviation

1'
will be constantly uscd.)

Inductive proof of Theorem li.

Recall thc statement of Theorem 4. We arc given

an crbedding £:M - Q between closed manifolds, together
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with a triangulation K of Q, and we have to ambient
isotop f to g such that g is transimplicial to K.
Choose a triangulation K1 of M and a subdivision
K2 of X so that f:K1 - K2 is simplicial and K2 is
Brouwer. Let K: denote the t-skeleton of K1, and
k$?) the barycentric second derived of K,. We shall
produce inductively a sequence of embeddings of M in @
r= €ri1? Bnr 000 Bp = 8
such that
(1) g, is transimplicial to Kéz) at points of
K1 - K$-1, and
(i1) g, 1s ambient isotopic to g, , by an arbitrarily
small ambient isotopy.
Application of Lemma 5 shows that the final embedding g
is transimplicial to K.

Beginning of induction : Apply a local m-shift to f,

with respect to K2, for each m-sinplex of K Define

1‘
g to be the embedding which results from the global

m-shift. Then (ii) is satisfied. Let A, be an nm-simplex

1

of X, and A, = fA1. It is sufficient to show that €n

1 2

is transimplicial to Kéz) at points of i Recall the

10
local m-shift process. Using the notation of the

previous section, we have
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—1. ."o ~
g, = h~ nr:hhy -+ B8,

By Lemma 10, jth1 is transimplicial to X at all interior

il

points. Therefore, since the property of being
transimplicial is preserved under an isomorphisn, gmA1
is transimplicial to Kéz) at points of gnx1 as required,

Inductive step: Assume that, as a result of r-shifts

form2r > t, we have

€ o0 By
satisfying (1) and (ii).

Apply a local t-shift to 8ri1? with respect to
K2, for each t-simplex of K1, and define g, as the
embedding resulting from the global t-shift. Again (ii)
is immediatcly satisfied, and in proving (i) it is
sufficient to examine the effect of a local shift, say

that associated with T, € K We again use the notation

1 1°
of the previous section. Then:

o
g = 8y q ON M- B1, and
-1
By = B N8y ,41By = By

We claim that g4 is transinmplicial to ng) at points of

t

() X, - Ky, and

<]

(b) T

1
1.
By the inductive hypothesis and restriction,
gt:M - 51 -+ Q - ﬁz
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T (2) . t
is transimplicial to K2 at points of K, - K1. It
remnains to show
8yiBy 7 By
transimplicial to ng) at all points except those of
T1.
For then (b) is automatically taken carc of, and
(a) follows at once by application of Lemna 11. Our
aim is accomplished using Lermas 9 and 10. By Lemma 10,
jhg, 4B, is transimplicial to X', and therefore to X,
at all interior points. Conscquently h—1;jhgt+1B1 = gtB1
is transimplicial to K(z) at all points in its interior.

2
Before the move we sce by restriction that hgt+11'31 is

transimplicial to Y except at points of hgt+1T1.
Therefore, since J keeps Y fixed, Lemma 9 shows

jhgt+1B1 transinplicial to X at all points of

jhg, 4(B, - T,). Consequently g.B, © B, is transimplicial
to Kéz) at points of gt(f_’v1 - T1), and the induction is
completec.

Proof of Lcmma 8.

Let us recall and sinplify the statement of
Lenma 8. We are given two closcd nanifolds M, Q. Let
& denote the sct of embeddings c¢:M - M x Q with the

property that the conposition
n
M-S x g -RE, y
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is a homeomorphismn. In particular if £:M - Q is an
arbitrary map, then its graph I'f € 8. Let K,y K, be
Brouwer triangulations of M, @ and lect K3 bc a simplicial
subdivision of the convex linear cell conplex K1 X K2.
Then Lemma 8 follows frori:

* .
Lenma 8 . Given e € B, there cxists ¢' € ¥

transimplicial____t‘_q_ﬂK5 and amnbient isotopic to e,

Proof. By Theoren 4 we can ambient isotop e to e’
transimplicial to K3' The only thing left is to nmake
sure e' € @, and this is achieved by tcking carc over
the t-shifts. The ambient isotopy e¢ to e' consists of
a finite scquence of local shifts

e e, e, P e re = e'.
We proceed by induction on the number of local shifts.
This begins trivially since e € E. Suppose we have
nanaged to ensure e, € é, and consider the local shift
©1 7 Ci41°
Ae Ké, Ké
Since Ké is a subdivision of K1 X K2, there exist

It takes place inside a ball AL, where
some subdivision of Ky, and L = 1k(A, K%).

simplexes A1 e K1, A2 € K2 such that
AL < st(Ay, Ky) x st(A,, K,).
Also, since K1, K2 are both Brouwer, we can choose linear

cribeddings h,:st(4,, K,) - EY, h,:8t(A,, K,) » EL we
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shall use the lincar embedding

h=h, x haotAL » % » p2

!
in order to construct the shift.
In detail, if X = h(AL) and v = hA, then X = vX.
Choose w in general position in i sufficiently near v
such that X = wX. Define j:X - X by mapping v - w,
keeping X fixed, and joining linearly. Use

Tl

Jh:AL = AL to define the shift &y 7 €44
Now let My = e (AL) c ¥, and let 7 = he, M.

Then Z is an m-cell, and 2 < X, 2 c X, 2 = vZ. Let
n:EY x £ o gP denote the projecction. Then since
ei € E, ® embeds Z as an m-cell in Em, and

%% = (nv)(xZ).
We now choose w sufficicntly closec to v such that

xZ = (7w)(%Z).
As a consequence, although eiMo #£ ei+1M0, nevertheless
the projection M x Q@ - M will map both eiMO and ei+1M0
honcecomorphically onto the sanc m-cell in M. Then

¢ € EE, and the inductive step is complete,

i+1
We end this scction by filling the gap left in

the proof of Theorcrt 3. For this we nced:
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Lenna 12, Lect E be a einplex, I' a principal facc

of B, v _the vertci oppositc I', and 7 a subnanifold of F.

If W is transimplicial to F at a point x, then vW is

transimplicial to E at x.

Proof. By exactly thc samec technique as was used
for Lemma 9,

Corollary. Let P, C be simplexes, and W a subnanifold

of F. If W is transimplicial to F, then CW is

transinplicial to CP at points of W.

Proof. Join successively to the vertices of C,
applying the lenma at each stcepe.

Recall the proof of Thcorem 3. With the previous
notation, we nccded to show that for any point x € M1,

X n AL® c ALY —2—v10

is F(m + 2 - p, a) at x.

Given B e LQ, write AB = CF where FF = ABn J
and C is the face of AB opposite I'. Since M1 is
transimplicial to J, we have by restriction M1 nF
transimplicial to F. But X n AB = C(M1 n F) and so by
the Corollary above X N AB is transimplicial to AB at
X. In other words

X n AB € AB —2vB

is F(m + 2 - p, 2) at x. Thercefore by glueing (Lemma 2)
over all B € LQ, we have the desired rcsult. This

completes the proof of Theorem 3.



- 54 -

PROOF OF THEOREM 5.

It is nccessary to do a considerable anount of
preparatory work.
Collars,

Let Q be a nanifold with boundary. A collar

cQ of Q@ is an embedding

such that c(x, 0) = x for all x € Q. Any conpact
nanifold has a collar; and any two collars are anbient
isotopic keeping the boundary fixed ([12], Thcorem 13).
Given a propcr embedding f£:M - Q then by [12],
Lerma 24 we can choosec collars Cyps cQ of M, Q that are

compatible with £, that is to say the following diagran

cormutes
M ox I M —> M
é@wﬂ0w1 l £
¥ CQ
QA x I o et @ .

In particular if P is a proper submanifold of Q, then
we can choosc conmpatible collars, that is to say
CP = ché x I.

Supposc we are now givcn a collar cQ of Q@ and

a triangulation J of the boundary §. If Q1 denotes
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the inage of CQ’ then we can extend J to a triangulation
of the collar QV in a canonical way, as follows. J x I
is a convex lincar cell complex, which has a canonical
simplicial subdivision, (J x I)' say, obtained by
starring in order of decreasing dimension all simplexes
Ax 1, AeJ. The resulting triangulation
(JxI)'—*Qin-Q—'—-*Q,]

is called the canonical cxtension of J to the collar.

The canonical extension is functorial in the following
sense. Let P be a proper submanifold of Q, and suppose
Wwe are givcn conpatible collars cQ, cP and a triangulation

J of §, P. If Q,, P, denote the images of Cqs Cpo then

1
the canonical extension of J to Q1 is a triangulation

of the pair Q1, P, and the rcstriction to P1 is the

.1
canonical cxtension of the rcstriction of J to P.

Lemia 13. Lct P be a proper subnanifold of Q.

@Given a triangulation J of §, P then there cxists an

extension of J to a triangulation K of Q, P. Further,

if J is Brouwer then X can bc chosen to be Brouwer,
Proof. Choosc compatible collars Cns Cpo let Q,, Py
denote their images, and let Q, = ﬁ—:_ﬁr, P, = 5—:f§:.
Let (I x I)' be the canonical extension of J to Q, and
let J' denote the subcomplex triangulating the inside

of the collar, Qz.
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Choose any triangulation L of Qz, P2. Then
both J' and I triangulate 95, @nd so they have a common
subdivision, say J" = L' (see [12] Lemma 4). These
subdivisions extend uniquely to subdivisions (J x I)",
L' of (J x I)', L without introducing any more vertices.
Identifying J" = L', the union K = (J x I)" U L' gives
a triangulation of Q, P and provides the required
extension of J.

Finally, if J is Brouwer then so is the canonical
extension to the collar. Therefore K is Brouwer at the
boundary, and so by Lemma 7(b) we can choose & Brouwer
subdivision K' that also extends J.

Relative t-shifts.

In proving Theorem 5 we shall need to be more
Precise in our t-shift process; recall the considerable
choice available for the position of the point w. The
necessary accuracy is expressed in the following lemma.

Let M, Q be manifolds and K a triangulation of Q.
Given a map f:M - Q let

T§ = {x € M:f is transimplicial to K at x}.
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Lemma 1L. Suppose f:M - Q is & proper embedding,

K a Brouwer triangulation of Q, and K(z) a second

derived of K. Let K1 be a triangulation of M, and K2

a subdivision of K'?) such that £iK, 2 X, is simplicial,

Let T be a t-simplex of K, such that T c ﬁ, and £ = g

the associated local t-shift made in the local linear

Structure of K. If the shift is sufficiently small then

T§ c T%.

Remarik, The proof of Lemma 14 is long, and more
complicated than our corresponding work in the proof
of Theorem L. The difficulty is that we are in a

situation where the glueing lemma is no longer applicable.

Proof of Lemma 1.4.

Since f is a proper embedding we know fT c &.
Define, as before, B2 to be a simplicial neighbourhood
of £T modulo its boundary in K$2), and B, = £ 'B,. Now

fB, < B, st(fT, K,)

c st(u", K(z)) for some vertex u" e %(2)

c st(u, X) for some vertex u € K.
Therefore the problem is localised both with respect to
K and K2. Using the Brouwer property of K choose a
linear embedding

h:st(u, X) -~ B,
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Then h automatically embeds B? linearly in EY, The

local shift may now be defined as before; in particular

we write
£ = hf:f—13?(u, K) - E%, and
g, = Jnf:f7'5%(u, k) - EL
Remark. The above construction explains our reason

for calling this section "relative t-shifts". We are
t-shifting £ with respect to the triangulation K,, but
with the reservation that we do so relative to the local
linear structure of X.

Suppose f is transimplicial to K at x € M, we want
to ensure that g is also, If x £ B,, the result is
trivial because a neighbourhood of x is not moved by the
shift., Also if x € %1, application of Lemma 10 as in
the proof of Theorem L4 shows g transimplicial to Kéz),

and therefore to K, at x.

Therefore there remains the case X € E1; here fx = gx
[e]
Let A be the simplex of K such that fx € A, and let

LA

= 1k(A, K). Then AL® c 3%(u, K). Define E® = [nA],
the linear subspace of e spanned by hA, and g2 _ EQ//Ea,
the dccomposition space whose points are a-dimensional

linear subspaces of EZ parallel to E®. Let x:EY » g2-2

B
be the natural projection and =« :Eq -+ E? the orthogonal

projection (see Figure 8).
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Since f is transimplicial to K at x, the pair

£
£l 0 g2 T g2

is F(m + a - q, a) at x. Therefore if y = fox, zZ = %y,
there is a neighbourhood N of z in E™® (which we may

take to be a simplex), and embeddings ¢, V¥ onto

1

neighbourhoods of x, y in £ ALA, E? respectively,

such that the following diagram commutes

n
N x pR+a-a__ Ixk o p8 Proj .y

o '] y

et >gLd — -8
T, x

.

Call E* "the yertical". Given two points y,, ¥, € E°,
let a(y,, v,) denote the angle that the vector y,¥, makes

with the vertical. More precisely
a(y1 ,y2) = 'l.';a.l’.lm‘l <d(7ty1, 7W2) )
—_—
d('K y1’ S y2)

0 €a < x/2
where d denotes Euclidean distance.

Sublemma 1. There exists ao > 0 such that given any two

distinct points X9 ¥, SN and any y € D%, then

QS.LL(_X1 9_x.)_|_l(.xg r_Kl.LZ_.% .
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A\

N
S
gd-8
Figure 8
Proof. We chose N to be a simplex and we can regard

D® as a simplex, therefore N x p? is a convex linear
cell, Let J be a simplicial subdivision of N x p? such
that ¥:J » E? ig 1linear.

Case (i): Suppose (x1, ), (x2, ¥) both lie in a
simplex S € J. Then their images ¢(x1, V) W(Xz, y) 1lie
in ¥(S n (N x y)), which is a convex linear cell in EZ.
This cell is embedded in EY™2 by = (because 7y:N x D% - N
is the projection), and therefore it makes an angle

ag > 0 (independent of y since ¥|S is linear) with the
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vertical. Let a, = min(aS:S € J). Then

a(¥(xy, ¥), ¥(xy, ¥)) 2 0g > age

Case (ii): (x1, y) and (x,, y) do not lie in the

same simplex of J. Since V(N x y) 3 N 1s a homeomorphism,
the vector X4X, € N 1ifts under =1 to an arc, I say,

in V(N x y) which joins ¥(xy, y) to ¥(x,, ¥). Then I
consists of a finite number of linear segments each one
of which makes an angle greater than or equal to a, with
the vertical. Therefore the vector joining the ends of I

also makes an angle 2 a, with the vertical. This completes

0
Sublemma 1, and we now continue with the proof of Lemma 1.4,

As before we denotc the combinatorial ball h32 by
X, and its boundary by Y. Recall the homeomorphism
3:X = X, defined by moving foﬁ = v to a suitable point
W = gOT in general position with respect to the vertices
of X, and joining linearly to Y. Extend j by the identity
to the whole of EZ.
Sublemma 2. Given a, > 0, there exists & 2 0 _such that
if_gifoﬁi_SoT) < & then for all y,, ¥y, S_EE

i‘i&’q L Vo) 2 0y ==2a(dy,, J¥,) 2 0.

Proof. Let S be a simplex of X. Since j|S is linear,

there exists g > 0 such that if J moves fof less than

Eqs then any vector in S changes direction by less than aqe
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Let e = min(eg:S & X). Suppose now that j moves

foﬁ by less than e, Given Yy0 Yo in Eq, the vector

y1y2 consists of a finite number of segments, each one

lying either in some simplex of X or in E? - X,

Therefore j(y1y2) is an arc, consisting of a finite

number of linear segments each making an angle less

than a, with Yq95e Therefore the vector (Jy1)(jy2)

Joining the ends of this arc also makes an angle less

than @ with y1y2. But y1y2 makes an angle 2 @ with

the vertical, and therefore (jy1)(JY2) makes an angle

> 0 with the vertical. This completes Sublemma 2.

We now make our local shift within the & given

by Sublemma 2; it remains to show this ensures g

transimplicial to K at x. To do this it is sufficient

to construct a commutative diagram

n
N* < DI£+a"q- _1&1&_} N* % Di .PI.'.QJ.. N*
?
|

which we now proceed to do. Let U = j¥(N x D?);
J¥y =¥, U is a neighbourhood of y in EY, Define

6:U » D? as the composition
1
U ed y(¥ x D?) Yo x D7 LBTOL 12

gince
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Then the product ® x 6:U = E2® « D? is piecewise
linear and onto a neighbourhood of (z, 0). We claim
that it is an embedding; for given y, £ ¥, € Uwith
Oy, = 6y2, then a(y1, y2) > 0 by Sublemmas 1 and 2,
thus Y, £ TY,+ Choose a neighbourhood N, of z in Eq-a’
and a disc neighbourhood Di of 0 in D? such that
N, x D2 ¢ (% x 6)U. Define ¥, = (% x8)71:N, x D§ - EL
We have therefore produced the right hand half of our
diagram. Since k:D®"2"% 0 - p%, 0 is an embedding,
choose Dyt2~% as a disc neighbourhood of 0 in k_1D§
and define k, = k|D2+a-q:D$+a-q - Di. Pinally we need
to define ¢,. It is elementary to check that

va(1 x k) (N, x DI*879) ¢ g ath
therefore since 8o is an embedding we can define

P, = g61w*(1 X k*):N* X Drg+a-—q -+ g61ALA .

We have not finished the proof of Lemma 1L yet

so far we have shown that, given x € B1 N Tﬁ, then there
exists e > 0, such that if a(£,T, g,T) < & then
X € 31 n Tg. Notice that & depends upon X. Suppose that

x' e E1 n T§ and X, x' lie in the interior of the same

simplex S € K1.

Sublemma 3. The same € will do for x'.
Proof. Choose neighbourhoods V, V' of x, x' in

st(s, K1), such that linear translation by the vector xx'
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maps V into V'. Let A:V, x =+ V', x' denote this lincar

translation. Since fo maps st(S, K1) linearly into Eq,

there are linear translations A', A" of Eq» g8

respectively such that the diagram
big

vV, x ——-9--9Eq‘ X ,g%8
‘f A f?\' '7\"
! £ o i
V"; X' _~.Q.>E'Q..-'_7_‘_.; Eq-a

is commutative. Recall the commutative diagram

n
N x pta-a _Axk o pf _PTOJ .y
| | !
1P lw | c
N f S
f‘1(ALA) — 9 g% . -T2
expressing the fact that f is transimplicial to K at x.

D+8-0 such that imec V  (replacing

We can choose N, D
them by subballs if necessary); note that this replacement

does not alter the angle a, of Sublemma 1. Now replace

0
the three vertical arrows by Ae, A'V, A" respectively,
and we have an expression of the transimpliciality of
f to K at x'. Again a, is unaltered. Thercfore the e
of Sublemma 2 is unaltered. This completes the proof
of Sublemma 3, and we now conclude the lemma.

E1 is covered by the interiors of a finite number

of simplexes of K1; for each of these choose an & by

Sublemmas 2 and 3, and select the minimum such &€,
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, 7 A L g
Thercfore if d(fOT, goT) < & then é1 N TK c B1 N TK.
In other words if the shift is sufficiently small

T§ c T%. This completes the proof of Lemma 14,

Proof of Theorem 5.

Recall the statement of Theorem 5. We arc
given a manifold-pair Q, P, a Brouwer triangulation J
of the boundery Q, P and a proper embedding f:M - Q
such that £|M is transimplicial to J. We have to
extend J to a Brouwer triangulation K of @, and ambient
isotop f to g keeping & fixed, so that g is transimplicial
to K.

FPirst choose compatible collars Cqs © of @, P.

P

- c; of M, Q compatible with

%
f:M - Q. By [12] Theorem 13 ambient isotop c, to e

Then choose collars c

Q

4

keeping Q fixed, and supposec that this ambient isotopy
carries f to g. The result is that Cy cQ are now
compatible with g.

Intuitively what we have done so far is unfold
M near the boundary, and get rid of the sort of kinks
that arc illustrated in the diagram of the Remark after
Theorem 5. More precisely, we shall describe this
unfolding in transimplicial terms, as follows.

Extend the triangulation J to the collars
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by the canonical extension, which is Brouwer, and
then extend further over the rest of the manifolds
by Lemma 413 to give a Brouwer triangulation X of Q, P.
We claim that g is transimplicial to K at points of M
(notice that before the unfolding we only knew that
£|M was transimplicial to J at points of M). To prove
this claim we use the compatibility of the collars
Cypo CQ with g, because it then suffices to show that
(g]fE) x 1:M x I »Q x I
is transimplicial at points of M x 0 to the canonical
triangulation (J x I)' of § x I. Now we can use the
Tact that g|M = £|M, which is transimplicial to J.
Given x e M = M x 0, suppose fx € K, Aed=Jdx 0,
Let v be a vertex of A, L = 1k(4A, K), Ly = 1k(A, J).
By the transimpliciality of f£|M we have a commutative

diagram
n
N x pRta-a__ixk o p? ..Brod

4 Loa

f-1AL1 T > AL.] _.._,._E,-A..——‘-:b vL

.1
Let U= [W(NxD%)x I] n AL, and lct r:d x I = Q be the
projection. Define 6:U -+ D? as the composition
n
U -Z5y(N x D?) Vo v x DB BRI, pB,

A

Then s x 6:U - VL x D® is a piccewise linear map onto
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a neighbourhood of (v, 0). Moreover it is an embedding
because given u, # u, such that sAu1 = sAu2, then
u,u, is parallel to A, and so is (vu1)(vu2), implying
that 6u, £ 6u,. Thorefore, choosing discs N, c vIL,
Di c D? such that N, x Di c (sA x 6)U, we can define

v, = (SA x 6)-1:N* x Di - AL.

The required diagram for thce transimpliciality of
(£

M) x 1 at x can now be built up in the usual fashion.
Therefore g is transimplicial to K at points of M.

There remains to isotop g transimplicial on the
interior (keeping @ fixed) as follows. By Lemma L g
is transimplicial to XK at all points in some open
neighbourhood U of M. Let K(z) be the second barycentric
derived of K. Choose a triangulation K1 of M and a
subdivision K2 of K(2) such that
(a) g:X, » K

4 2
(b) if V is the closed simplicial neighbourhood of

is simpliciel, and

K1 in K1, then V < U.
Now perform the t-shifts of Lemma 14 in order of decrecasing
dimension for all simplexes T € K, such that = M- V.
Then, as in the proof of Theorem 4, we sece that g becomes
transimplicial to K2, and thercfore to X, at all points
of M - V. By Lemma 14 g remains transimplicial to K
at points of V.
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The proof of Theorcm 5 is complecte.
Remark. The significance of Lemma 14 in the above
proof should now be apparcnt. At the last stage we
had an embedding g transimplicial to K at points of M.
If we had just haphazardly made interior shifts of g
with respect to some subdivision of K, then we may well
have introduced new folds at boundary points, and so lost

the transimplicial property therc.
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RELATIVE TRANSVERSALITY ?

We were ablc to prove rclative transimpliciality
(in Theorem 5) but not relative transversality. We

tried the proccdure

transversal transimplicial isotop transversal
on the s on the —= transimplicial — on the
boundary boundary on the interior,
interior

and although the second two steps are given by Theorem 5
and Lemma 6, we failed to achieve the first step.
Essentially it is a passage from local to global, because
transversality is local but transimpliciality is global,
in the sense that an atlas is local while a triangulation
is global. It is true that given nanifolds Il ¢ Q, it is
Possible to triangulate Q so that M is transimplicial as
follows: triangulate Q anyhow, ambient isotop M
transimplicial, and then apply the inverse isotopy to move
both M and the triangulation back. But the question is
whether it is possible to have another manifold as a
subcomplex at the same time.

Conjecture 1 Given two transversal submanifolds of Q,

then it is possible to triangulate @ so that one is a

subcomplex and the other transimplicial.
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Conjecture 1 would supply the missing step to prove:

Conjecturec 2 (Relative Transversality) If M, P are

proper submanifolds of Q such that M, P are transversal

in @, then M can be ambient isotopcd transversal to P

keeping § fixed.

A special case of Conjecture 2, which in fact turns out

to be equivalent to Conjecture 2 is:

Conjecture 3 Transversal sphercs Sm—1, SP’1 c Sq'1

can be spanned by transversal discs Dm, pP < p,

Joining linearly to interior points is no good, beccause

if we join them to the same point the disecs faill to be
transversal at that point, and if we join them to separate
points, they fail to be transversal at the boundary

(by the folded disc phenomenon). Conjecture 2 would imply:

Conjecture L If M, @ arc_closed and £, g:M = Q are
homotopic maps transversal to P, thcn f’1P, g_1P are
cobordant.

Summarising:

Conjecture 1 =sConjecture 2¢=3Conjecture 3 = Conjecture 4.



TUBES
Definition. We use the word tube as an abbreviation

for the term "abstract regular ncighbourhood", which

is rather a mouthful. Lect Mm be closcd. Define a

t-tube on M to be a manifold Tm+t together with a

proper (locally flat) embedding e:M - T such that T “weM.
In other words T is a regular neighbourhood of a
homeomorphic copy of M. We call t the dimension of the

tube.

Two tubes are homcomorphic if therc exists a

homeomorphism h making a commutative diagran
/ 1
/ ;h
\N»
T
Let :]t(M) denote the set of homeomorphy classes of
o0
t-tubcs on M, and let AM) = 3 :W(M)-
0
Remarks.
1. Tubes arc the natural analogue in piecewise linear
theory of vector bundles in differential theory. The

existence and uniqueness of regular ncighbourhoods show

that any propcr embedding M c Q dctermincs a unique



- 73 -

element of J L™™(M), which we call the normal tube.

2, The important thing about tubes is that, like

tubes in ordinary lifc, they arc not fibered. 1In fact
Hirsch's examplc is a 3-tube on SL‘L that cannot be fibered.
In some sensc the lack of fibering is more '"geometrical
because the tube is more homogeneous.

3. In the stable range, t > m + 2 Haefliger and Wall [5]
have shown that any tube can be fibered with t-discs, and

80 iﬁ(M) coincides with Kzop(M) of piecewise linear
nicrobundle theory.
L. The collapse T ™y cM determines a homotopy equivalence

7:T - M such that m¢ = 1. However = is not natural, not
unique, and not in general a fibering. The non-naturality
of ® reveals itself, when it turns out to be no good for
defining induced tubes.

5. There is a trivial tube 0 € Dt(M) containing M x Dt,
and a suspension Ut(M) - Utzﬁ)‘given by product with I,
which stabilises in the stable range. To examine the
structure of J(}I) morc thoroughly we define below subtubces,
quotient tubes, induced tubes and Whitney sums.

6. The concept of tube gencralises to polyhedra other
than manifolds, to give a theory totally different from

vector bundle theory, even in the stable range.



Subtubes

1:M -~ T1 a subtube of e:M = T if T1

(locally flat) submanifold of T such that T\T1 and

Call e is a proper

the diagram

is ocommutative. Call two subtubes T1, T2 c T transveresal

if T1, T2 intersect transversally in eM. Notice that

in this case t = t, + t,. We call the class of T2 the

1 2
quotient tube T/T1-

Corollarx to Theorem 3. Quotient tubes exist.
Question. Are they unique?

We can question not only whether two such T2's are
unique up to homeomorphism, but whether they are unique
up to ambient isotopy, keeping T1 fixed.

Proof of Corollary. Given eM c T1 c T, Theorem 3

furnishes a manifold P intersecting T1 transversally in
eM. ©So far P is not proper. Triangulate everything
and let N be a second derived neighbourhood of T1 in.T.

Then N is a tube, and T, a subtube because N‘\,T1. Also

1
N N P is a subtube because N (N n P) v T,~NnP,

and N n P cuts T, transversally. By uniqueness of

1
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regular neighbourhoods, there is & homeomorphism

N - T keeping T, fixed, and throwing N n P onto T2, say.

1
We have shown T2 exists.

Quotient normal tubes. Supposc we are given proper

embeddings M c PP ¢ Qq, where M is closed. Define
the quotient normal tube on M to be the quotient tube

TQ/TP where Tp, T, are regular neighbourhoods of M in

Q

P, Q such that TP is a subtube of TQ. Noticc that

dim(TQ/TP) =q - D.

Induced tubes.

Given a map f:M1 - M, between closed manifolds and a

2
tube €5iM, » T, on the target, define the induced tube

on M1 to be the quotient normal tube of

1xe
re 2.
1 ~»~~>M1 X M2«- 7M1 X T2.

Notice that the induced tube has the same dimension

M

as the given tube. By the above, induced tubes exist,
but we do not know if they are unique.

Remark. Normally induced obJjects are defined
categorically. For example if I'I:V2 - M2 is a vector

bundle then the induced vector bundle is the pull-back of
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However in the case of tubes ® is non-natural, and
consequently the pull-back is not in general a manifold.
What is natural is the embedding e,l:M1 - T1 of a tube
on the source of f, but the push-out of

T

<
!
i
1
l

1

€4

M1 e e e 3 lv'Iz
is again not in general a manifold. Therefore neither
pull-backs nor push-outs give induced tubes, and we
have to work for them.

Whitney sums.

Given tubes e1:M - T1 and 62:M - T2 on the same manifold

M, define the Whitney sum T = T1 & T, to be the quotient

2

normal tube of
. e, xe
y -diagonal . A2, T, x Ty
Notice that t = t, + t,, and so the Whitney sum gives a
by th Eltget,
product J ' x J< -+ O . Again we have existence,
but uniqueness is unsolved.

Questions. (i) Can T,, T, be embedded transversally

in T1 (23] TQ?

(ii) Is the Whitney sum homeomorphic to the tube induced

from e1:M - T1 by 7\:2:T2 - M, and vice vecrsa?
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1.

12.
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TRANSVERSALITY FOR POLYHEDRA
by M.A. ARMSTRONG

Some transversality results for piecewise
linear manifolds were announced and proved in [1], [2].

In this paper the notion of transversality will firstly
be extended so as to be applicable to subpolyhedra of a
piecewise linear manifold, and then a transversality
theorem for polyhedra will be proved using the

techniques developed in [2]. Transversality can be
considered as a refinement of general position, and in
this respect the result given below is an improvement on
one of Zeeman's general position theorems ([7] Chapter 6).
At each point in a polyhedron there is a natural local
product structure, and the transversality of two
subpolyhedra requires not only minimality of the dimension
of their intersection, but also that their local product
structures tie together nicely in the ambient manifold.

It will be assumed, without further mention, that
all spaces have a piecewise linear structure, and that all
maps are piecewise linear. The standard reference is [7].
Any polyhedrsa consldered will always be compact. However,
the ambient piecewise linear manifold is allowed to be

compact or non-compact, and bounded or unbounded.



The main theorem may be stated as follows.

Let Q be a plecewise linear manifold and X, Y compact
subpolyhedra, both of codimension » 3 in Q. If the
intersection X n Y is contained in the interior a, then
X can be ambient isotoped transversal to Y by an
arbitrarily small ambient isotopy of Q that keeps the
boundary é fixed. The codimension restrictions ensure,
by Lickorish's theorem on unknotting cones [5], that

the embeddings X ¢ Q, Y <« Q are locally quite respectable
at interior points of Q.

The approach will be to avoid the inhomogeneity
of X and Y wy dedﬁcing the theorem from a stronger result
about maps between manifolds. To simplify the present
discussion, assume that Q is closed (i.e. compact and
without boundary). Let K be a triangulation of Q, and
let M denote a compact manifold. It will be shown that
any map f:M - Q can be ambient isotoped "transimplicial
to K by an arbitrarily small ambient isotopy of Q.

Notice that this procedure does not alter the image of

the map, but merely changes its position in Q. Consider
now the situation X, ¥ ¢ Q. Coat X in a regular
neighbourhood M, and collapse M to X in some way to produce

a map M -» Q which has X as its image. Then ambient
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isotoping this map transimplicial to some triangulation
of Q@ in which ¥ is a subcomplex, has the effect of
moving X transversal to Y.

In the above sketch use has been made of rather
more than just the piecewise linear structure of Q -
namely of the local linearity of a particular triangulation.
There is an obstruction to a direct proof using only
piecewise linearity, and the difficulty may be indicated
as follows. Let BY be a g-ball and 531 its poundary.
Suppose X, Y c s ape transversal polyhedra of codimension
> 3., Then it is natural to ask if X and Y can be spanned
in BY by transversal cones. If this were possible, then
by use of Lickorish's cone theorem, one could proceed
immediately to a proof of the previous transversality
theorem. However, if X and Y are joined to the same point
in the interior of B? the result is transversallty
everywhere except at this point, and if they are joined to
different points then transversality may well be lost at
the boundary. This last phenomenon is exhibited in detail,
for X and Y spheres, in the introduction to [2].

A transversality theorem for maps, which is
stronger than that given in [2], will also be deduced.

More precisely, let M, Q be closed manifolds and P a closed
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locally flat submanifold of Q. Then given a map

f:M - Q, there is an arbitrarily close ambient isotopilc
map that is transversal to P. Notice 1t is not assumed
that P has a normal bundle (equivalently a normal
microbundle) in Q.

Familiarity with [2] is recommended, though
principal definitions and results will be recalled where
necessary.

It 1s a pleasure to express my gratitude to
E.C. Zeeman for the help and encouragement he has given

me during this research.
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THE MAIN THEOREMS

Our first job is to give a sensible definition
of transversality for two polyhedra in a manifold. We
shall keep a couple of restrictions in mind - that our
definition be free from particular triangulations of
the manifold and polyhedra, and that it agree with the
following standard version if we are dealing with closed
submanifolds of a closed manifold. We shall use Dt to
denote a t-disc.

Definition 1. If Q% is a closed manifold and M", PP
closed submanifolds, then M and P are a ersal at e
in M P if there 1s an embedding
n:D™PTe , p27l  p2P g
onto a neighbourhood of z in Q, such that
n~ 'y = DP9 , v x D27P
h_1P = DP=A , pIM

where v, w are determined by n 1z e DMP4

X V X W,
M and P are transversal in Q if they are transversal at
each point of their intersection.

Let X be a polyhedron. We shall associate with

each point x € X an integer I(X, X), called the intrinsic

dimension of X at x, as follows.

i

i

T
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Definition 2. I(X, x) is the largest integer t for
which there is a polyhedron V, and an embedding
f:Dt x VX

that embeds Bt x V onto a neighbourhood of x in X.
Examples
1. If X is a manifold of dimension n, then

I(X, x) = {Ilif x lies in the interior i,

n-1 if x lies in the boundary X.

2. Let X, x be as illustrated, then I(X, x) = 1.

Here V is the cone on three points.

S

\ - :—:-__\_:

/ A -~ ’«}E*.____.-.._ :>
//'/)<

Remarks

1. The set of points of X with intrinsic dimension
€ t is what E.C. Zeeman has called the intrinsic
t-skeleton of X [8].

2. The set of points of X with intrinsic dimension t

forms an open t-manifold.
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So as not to interrupt progress towards the
main theorems, any further discussion of intrinsic
dimension is postponed until the next section. In
particular Definition 2 will be reformulated more
elegantly there.

Suppose now we have X, ¥ <« Q. The manifold Q
may be compact or non-compact, and with or without
boundary. The subpolyhedra X, Y will always be compact.
The godimension of X ¢ Q is the dimension of Q minus
that of X. We shall restrict ourselves to the case
XaYc é. If boundary intersection points are allowed
the situation is more complicated, and we have no
corresponding result to Theorem 1 below. Therefore we
leave discussion of this case until the end of the paper.

Let z be a point of X n Y and suppose

I(X, z) t,

(Y, z)

Definition 3. The polyhedra X, Y are iransversal at z
if there i1s an embedding

S.

n:pt+87a , p37t , p37S g
onto a neighbourhood of z in 5, and subpolyhedra V ¢ Dq_t,
W < DY™° such that
n~lx - pt+s-a x V x D378,

nly = p¥ts-a | pa-t | oy,




X and Y are transversal in Q if they are transversal
at each point of their intersection.

In the case where X and Y are closed manifolds,
t, s become thelr respective dimensions, V, W each
reduce to a single point, and so the definition agrees
with that glven earlier. Figures 1a and 1b illustrate
transversality and non-transversality situations
respectively.

We are now in a position to state our main result.

Iheorem 1. Let @ be a piecewise linear manifold and
X, Y compact subpolyhedra, both of
codimension >3 1p Q. IFX Y cQ.
then X can be ambient isotoped transversal

Y an arbitrari mall amblent isoto

of O that keeps 9 fixed,

Our second theorem concerns maps. Let Mm, PP ¢ Qq
be closed manifolds. Given a2 map f:M —= Q let
If:M - M x Q denote its graph. In [2] the notion of

graph transversality was introduced - f 1s graph transversal

to P 1f T'fM and M x P are transversal as submanifolds of

M x Q - and it was shown that arbitrarily close to any

map there 1s a homotopic graph transversal map, provided

P is locally flat in Q. We now give a stronger definition

and result.



Y
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Definition L. Let x be a point of M such that fx € P, |

The map f is transversal to P at x if there is a

commutative dlagram
pd-0 , pWp-a __Ixk ,p3-P  pP

|
'3 9 |
{ l |
M. |

g8

where ¥, ¢ are ecmbeddings onto neighbourhoods of X, £x

such that

p oy~ 1x x DP

Dm+p-q - Dq"P) .

o~

(= being projection DP x

£ is transversal to P if it is transversal at all such

points x.

We see straightway from the definitions that,
if £ is either graph transversal or transversal to P,
then f-1P is a closed locally flat submanifold of M of

codimension q¢ - p.

Theorem 2. Let M, Q be closecd manifolds, and P a locally

flat closcd submanifold of Q. Given a map

£ = Q, it can be ambient isotoped to a

map that is transversal to P by an arbitrarily I

small ambient isotopy of Q.

We shall not be able to verify:

Conjecture. If £, g:M - Q are homotopic maps, both

transversal to P, then f—1P and g—1P arc cobordant manifolds.
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INTRINSIC DIMENSION

We now investigate more fully the notion of
intrinsic dimension introduced earlier, and prove
some useful lemmas. Firstly we give two new definitions
that are equivalent to Definition 2.

Given a polyhedron X and a point x of X, let K

be a triangulation of X in which x is a vertex and

define the link of x in X by

link(x, X) = link(x, K).
Up to piecewise linear homeomorphism, this definition
is independent of the choice of K. For, since any two
triangulations have a common subdivision, it is enough
to consider an arbitrary subdivision XK' of K and prove
1ink(x, K), link(x, K') homeomorphic. This last is
easily accomplished using the standard technique of
pseudo radial projection. That is to say one can obtain
a piecewise linear homeomorphism

link(x, K') = link(x, K)
ag the linear extension of the radial projection from x

(itself not piecewise linear) on the vertices.

Definition 2a I(X, x) is the largest integer t such

that link(x, X) is a t-fold suspension. To say link(x, X)
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is a t-fold suspension means there is a polyhedron W

and a homeomorphism
link(z, X) - st Ve,

t-1

where * denotes linear join and S a (t-1)-sphere.

t-1 is itself a t-fold suspension - for W

Notice that S
take the empty polyhedron.

Alternatively, let '} be the piccewise linear
structure of X - 1.e. E&is a maximal family of piecewise
linearly related triangulations - and for each K € T
let 4(X, x) be the dimension of the simplex of K that

has x in its interior.

Definition 2b I(X, x) = m%f a(x, x).

Consider now the cquivalence of our three definitions,
It is evident that:
(1) If there is a triangulation of X in which x lies
in the interior of a t-simplex, then link(x, X) is a

t-fold suspension.

(2) If link(x, X) is a t-fold suspension, then
I(X, x) » t in the sense of Definition 2,
Therefore to complete the equivalence it is enough to

prove -
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Lemma 1 If there is a polyhedron V _and an embedding

£:D% x V 5 X
(o]

that embeds Dt x V onto a pneighbourhood of x, then there

a ia lation of X such that x lies in the interio

of a t-simplex.

Proof. We can assume that Dt is a t-sinplex At. Choose
triangulations of V, X - for brevity we denote them by

the same letters. Let (At x V)' be a simplicial subdivision

of AY

x V, and X' a subdivision of X, such that

(i) x is a vertex of X',

(11) 1if v € V is the projection of f_1x, then

At % v is a subcomplex (At x v)! of (At x V),

(iii) £ is simplicial.
Choose a point y of EEE?[f—1x, (At x v)'] in general
position with respect to the vertices of (ot « v)'. Then
v is joinable to link[f™'x, (A% x V)'] in the 1linear
structure of (At x V)', and in

v * 1ink[t 1%, (at x v)']

f—1x lies in the interior of a t-simplex. Therefore, using
f, we may replace star(x, X') by y'*link[f°1x, (At x V)']
and so obtain a new triangulation of X with the required
property.
For the remainder of this section it will be most

convenient to work with Definition 2a.
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Let Iso(W c S™) denote the set of ambient isotopy
classes of embeddings of a polyhedron W in the n-sphere
s™. Then suspension induces a map

5:Iso(W c 8%) - Iso(aw, s™)

Using the relative regular neighbourhoods of Hudson and
Zeeman [4] it is not hard to show that

(a) 2 is injective, and

(b) by Lickorish's result [5] on unknotting cones I is
bijective 1f the codimension n-dim W is 2> 3.

(In [5] Theorem 5 it is shown that if W unknots in SV,
then 2W unknots in Sn+1. Using the argument given there
as a model the reader will have little difficulty in
verifying (a) and (b).)

Consequently one has by induction:

Theorem The map

5¥iIso( < 8™ o Iso(stw ¢ st
induce t-fold nsion, is bi ive if n-dim W 2

We now use this to prove:
Lemma 2 Let @ be a manifo X a subpolvhedron
codimension = 3, and x a8 point of X satisfying x € é
and I(X, x) = t, Then there is a subpolyhedron V. C quz*

and an embedding
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Proof. Consider the pair
link(x, X) < link(x, Q)

- defined, up to homeomorphisn, from some triangulation
of @ in which X is a subcomplex and x a vertex. Now
link(x, Q) is a ::sphere since x é, and link(x, X)
is a t-fold suspension since I(X, x) = t. Therefore by
the above theorem it is possible to find a homeomorphism

sb1ug? ' stTuw L 1inx(x, @), link(x, X)

where W c Sq—t:‘ This extends conewise to an embedding

pbxs? %' plaw o g, x
onto neighbourhoods of x. It is now routine to produce
the required product structure from the join already
obtained.

The next lemma and its corollary are due jointly
to HE.R. Morton and the author. Denote pilecewise linear
homeomorphism by =.

Lemma 3 Let X, Y be polyhedra and suppose
Fxz 3™ forr <m,
Then X is & suspension.
Proof. If r = 0 then for any n > 0 and any Y the result
is certainly true. Proceed by induction on r. Suppose
r > 0 and assume that for any n > r - 1 and any Y

r-1i

2 X = sy ~3X a suspension.
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Now 3Tx = ™Y mcans we have a homeomorphism
n:sTlax o g tuy,
Choosc a point z &€ Sr-1, then
link(z, 3°X) = link(z, s T)y=x = 3T 'x,
Consider now z' = hz e 3”Y. Our definition of link
was arranged so as to be invariant under piecewise
linear homeomorphism, and so
link(z, 37X) 2 link(z', 37Y).
There arise three cascs:

- n-4y .
n-1 ) 3

(1) z' € 8% when 1ink(z', 3™Y) £ link(z', S %Y
z 381y,
(i1) 2' € Y when 1ink(z', 37Y) = s ' = 1ink(z', ¥)

3® 1ink(z', Y).

(iii) Pinally, if 2z' is neither in the suspension ring,

nor in Y, it must lie on a unique ray Jjoining say

x e s™7 to y € Y. Thus

1ink(z', %) 2 s¥ #1ink(x, s™7) * 1ink(y, ¥)

~ 3™ 1ink(y, Y).

Lh4

Therefore by induction X is seen to be a suspension in

each case.

Corollary 3X 2 2Y =X E ¥,
Proof. Desuspend X and Y as far as possible to give

X = 3'x', and

syt

Y

i
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where X', Y' arc not suspensions. By the lemma we

must have r = n, and thcrefore 3Tx! = sPyt, It is
enough to show X' = Y', Again induct on r, the
induction beginning trivially for r = 0. Suppose r > 0;
as above choose a point z on the suspension ring of

3TX' and consider its image in 3¥y'. Since X' is not

a suspension we see, again by use of the lemma, that

=1yt o 5T-1yr

only case (i) can occur. Therefore 2
which implies X' £ Y' by induction. This completes
the proof. The corollary itself will not be used here,
but it does not appear to be well known and so seems

worth mention.

Lemma U If I(X, x) =t and y € 5nl,then

I(Xx D'y x xy) =1t +n.

Proof. 1ink(x x y, X x D7) is homeomorphic to

5™ 1ink(x, X). Also link(xz, X) = 3'W, where W is not

a suspension, since I(X, x) = t. Therefore

I(Xx D%, xxy) 2t +n, and application of Lemma 3
shows we must have equality.

Remark, It is not always true that if I(X, x) = t

and I(Y, y) = 5 then I(X x ¥, X x ¥y) = t + s. For
example take X = Y = p! and 1let X, ¥ be end points. Then
I(X, x) =0=I(Y, y) but I(X x ¥, x x y) = 1.
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Lemma 5 Let M, P be manifolds and X c M, YcC P

CO
subpolyhedra both of dimension 2 3. If 2z is an interior
N

point of M x P that lies in (M x Y) n (X x P), then

M x Y and X x P are transversal at z.

Proof. Project z into M, P so obtaining points
xeX,yeyY; i.e. 2=Xxy €Mx P. Suppose
I(X, x) =t and I(Y, y) = s. By Lemma 2 there are
embeddings

£:p% x DY, P v o, X

g:DS X Dp-s, Ds

xW-=+P, Y
onto neighbourhoods of x, y where V © D™t ana w c DP8,
The product of these gives rise to an embedding
n:D% x D% x DY« DPP 4 M x P
onto a neighbourhood of z, and certainly
h-1(M xY) = D x D° x ™t W,
n1(x x P) = D% x D® x V x DP°E,
The proof is completed by observing that, due to Lemma L,
I(MxY, z)

I(X x P, 2z)

m+ 8, and

t +p.
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TRANSIMPLICIAL MAPS

A detailcd discussion of, and motivation for,
the ideas introduced briefly below can be found in [2].
Let M, Q@ be compact manifolds, £ a map of M
into Q, and K a triangulation of Q. Consider a point
x of M and suppose A is the simplex of K such that
fx € K. Choose a vertex v of A, and let L be the link
of A in X, and s:AL - vL the simplicial map defined as

the Join of A - v to the identity on L.

Definition 5 The map f:M - Q is transimplicial to X
at_the point x € M if there exists a neighbourhood N

of v in vlL, and a commutative diagram
N x ph+a-q -njfgwﬁ,N 9 Da projection > N

! !
Ih CP; ﬂ
-1 v
£ AL F » AL 3 > VL

where a is the dimension of A and V¥, ¢ are embeddings

onto neighbourhoods of x, fx respectively., We say f

is transimplicial to K if it is so at all points of M.
Remarks

1. The definition is independent of the choice of v.
2. If £ is transimplicial to K at x € M, then f is
transimplicial to K at all points in some neighbourhood
of x (sce [2] Lemma 4).
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3. Let KXK' be a subdivision of K. If f is transimplicial
to K' at x € M, then £ is also transimplicial to X at x
(see [2] Lemma 5).

Our main chore will be to prove:

Thcecorcm 3 Let M, Q be compact manifolds, and K a

triangulation of Q. Any map f:M — Q can be ambient isotoped

to a new map g that is transimplicial to K at all points of

10
g‘1g. The ambient isotopy can be chosen arbitrarily small,

and made to keep @ fixed.

Corollary If in addition Q is closed, any map f:M - Q

can be ambient isotoped transimplicial to K by an arbitrarily

small ambient isotopy of Q.

For the case where f is an embedding, a proof of the
corollary has been given in [2].

Before proving Theorem 3 wec shall apply it to obtain
proofs of our polyhedral and map transversality theorems.
The importance of transimplicial maps for our purposes is
contained in the following two lcmmas.

Lemma 6 Suppose Q is_a compact manifold, X, Y subpolyhecdra

both of codimension 2z 3 such that X n Yy c a, and K a

triangulation of @ in which Y is a subcomplez. Lct M be

a regular ncighbourhood of X in 9, and f:M - Q some

retraction of M onto X. Then if f is transimplicial to K,

the subpolyhedra X and Y are transversal in Q.
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ze XaY oand z o
Proof. LetAA be the simplex of K such that £ € A.

Therefore, with the notation introduced earlier, we have

a commutative diagram

N x p™o-% __D<k o pa projection
v ¢! N
-1 ‘ he

f AIJ - f r'd -AL S cld VL

z:_«fz
where V¥, ¢ are embeddings onto neighbourhoods of & -£x.

Let K1 be the subcomplex of K that triangulates Y, and
L, = link(A, K1). The commutativity of the left hand square
implies

o 1M = N x kDM,

That of the right hand square implies

oY = (N n vL,) x D°.

Therefore it is enough to check that N x kD™ ong

(N n vL1) x D® are transversal at the interior point
1

-1 Z .
@ £% of N x D%. However, due to the codimension restrictions
this is ensured by Lemma 5.

Lemma 7 Let M, P C O be closed manifolds, with P loeally

£lat in ©, and let K be & triangulation of Q in which P is
a _subcomplex, If £:M - 0 1s transimplicial to X, then £ is

transversal to P,
Proof. Let x € f-1P, and A be the simplex of K such that

o
fx € A. Again consider the diagram
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m+a-q __Jﬁk LN x Da projectioqm

NxD Lo T N
v ¢§ N
-3 v

f‘ AL e w,...f.... e A _AL ——— S S VL .

Suppose P appears as the subcomplex K1 of XK, and let
L, = link(A, K1). Now P 1is locally flat in Q, therefore
we can choose N so that (N, N n vL1) is an unknotted
(¢ - a, p - a) ball pair. Thus therc exists an unknotting
homeomorphism
n:d4P x P72 x DPT? 4N, W o VL,
2a-P
where z € D . The diagram

p47P  pP=® » p™aTd _________“1x1x_l_c_‘_> pdP » pP™? » p?

Y(h x1) i@(h x1)
4

M - ~_,,__~fr . SO

commutes, and exhibits the transversality of f to P at x.
Proof of Theorem 1

Recall the statement of the theorem. We are given
a manifold @ together with subpolyhedra X and Y, both of
codimension 2 3, such that X n Y c 5. The thesis is that
we can ambient isotop X transversal to Y by an arbitrarily
small ambient isotopy of @ that keeps Q fixed.

First observe that it is enough to consider the

case where Q 1s compact. For otherwise we can work entirely
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inside a regular nelghbourhood of X uY in Q. Suppose
then that Q 1s compact, and choose a triangulation X of
Q in which Y 1s a subcomplex. Let M be a regular
neighbourhood of X, then M is a manifold and collapses
to X. Collapse M to X in some way, thus defining a map
f:M - Q such that fM = X. Apply Theorem 3 to this map,
then refer to Lemma 6. The proof of Theorem 1 is complete.
Proof of Theorem 2

Let M, P c Q be closed manifolds and suppose P
is locally flat in Q. Ve are given a map f:M - Q and
want to ambient isotop it transversal to P by an arbitrarily
small ambient isotopy of Q.

Choose a triangulation K of @ in which P appears as
a subcomplex. Apply the Corollary to Theorem 3 to ambient
isotop f transimplicial to K, then by Lemma 7 this ambient

isotopy produces the required result.
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It will be necessary to work with triangulations
that have a particular propcrty. ITet EY denote
Euclidean g-space, E% the closcd half space of points
with non-negativc last coordinate, and Eq"1 the subspace
of points with last coordinatc zcro.

Definition Let K bc a combinatorial manifold of

dimension gq. Then K is called a Brouwcr manifold if:

(1) For cach v € K tncre is a lincar cmbedding
star(v, x) - EZ.
(ii) TFor each v € K there is a linear embedding
star(v, X), star(v, k) - £, BT,
Remarks
1. Not all combinatorial manifolds are Brouwer, sec
Cairns [3].

2. Any subdivision of a Brouwer manifold is Brouwer.

The following lemma is due, in a sharpened form,
to Whitehead [6]. An alternative proof, given by Zeeman,

can be found in [2].

Lemma 8 Any combinatorial manifold has a Brouwer
subdivision.

In proving Theorem 3 we shall ambient isotop our
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map by means of a sequence of speccial shifts applied
to 1ts image. The shifts constructed bclow arc a
variation of those first introduced in [7] Chapter 6.
Let M, Q be compact manifolds, and suppose we
arc given a map f:M - Q together with a Brouwcr
triangulation X of Q. Lect X" denote a sccond derived
of XK. Choose a subdivision K, of K" and a triangulation
Jd of M such that f:J - K1 is simplicial. We call A € K1
an interior simplex of K1 if K c %1. Let A be an
interior simplex of K, that lies in £J, let K; be the
barycentric first derived of K1 and A the barycentre of
A. Let
W = star(A, K1)
= A * 1ink(4, K1).
Since A is an interior simplex, 1ink(ﬁ, K;) is a g-spherec.
Choose a vertex z of K such that
W-AnN 1'{1 c star(z, K).
We can find such a vertex z sincc A is an interior simplex
of some subdivision of a second derived of K. Using the
Brouwer property of K, let
A:5tar(z, XK) - EY
be a linear embedding. Thus A embeds W linecarly in Eq,

We denote the complex AW by V. Choose a point v near
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M in V such that:
(i) v is joinable to V in the lincar structure of EZ, and
(i1) v is in gencral position with respect to the vertices
éf V.
Let pu:V » V be the homeomorphism defined as the join of
the identity on V to the map AA - v, Finally, define
a homeomorphism
h,:Q > Q
by
hA(x) = (xifx e q - W,

{h—1uk(x) if x € W,
Then hA is ambient isotopic to the identity keeping
Q - W fixed in view of:

Alcxander's Lemma Any homeomorphism of a ball that

keeps the boundary fixed is isotopic to the identity

keeping the boundary fixcd.

We call the move f - hAf a local shift of £ in

the triangulation K. Notice that K entered into the

construction when we chose A, i.e. our shift has becen
made with respect to the local linear structure of K.

Now let A vary over all interior t-simplexes of
£J, and for each simplex construct a corresponding

homeomorphism h,. The {Star(A, K;)} overlap only in
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their boundaries on which the {hA} agreec as the identity.
Thercforc we may combine thesc homcomorphisms to give
a ncew homeomorphism
hy:Q - Q

that is the identity on Q. The previous local ambient
isotopies can also be combined, showing ht to be ambient
isotopic to the identity keeping § fixed.

We call the move f - htf a t-shift of f in the
triangulation K (with respcct to J, K1). It is clecar
that, by judicious choice of v in each local shift, we

can make h f arbitrarily close to f, and the ambient

t
isotopy arbitrarily small.

Lemma 9 Using the above notation, h,f is transimplicial

to K at all points of 2w,

In fact we shall prove a stronger rcsult, namely that
hAf is transimplicial to K% at these points.
Proof. Ve consider UL as & homeomorphism E? - Eq,
extending it by the identity outside V, and we write g
for the map

ukf:f-1 star(z, K) » g%,
Let J' be a first derived of J such that f:J' - K; is

1

simplicial. Then g is simplicial from £f~'W c J' to

v * V. Suppose x is a point of M such that £x € W, and
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let B be the simplex of V for which gx € ﬁ. Choosc a
vertex u of B, let L = 1link(B, V) and s be the usual
simplicial map BL - ulL. Now A is a linear embedding.
Therefore, in order to show hAf transimplicial to K;
at x, it is enough to produce a commutativc diagram
¥ x po+b-a _Axk . .o pP _projection

>N
| |

‘JI; CP; n

g 1BL > BL -5 L

g s

where b = dimB, N is a neighbourhood of u in ul, and
¥, ¢ are embeddings onto neighbourhoods of x, gx
respeetively.

In the particular casc gx = v there is no problem
eince, by general position, v lies in the interior of a
principal simplex of V.

Suppose now gx £ v. Let x € 5, where C is a
gimplex of J', and let gC = D. Then D is the linear
join in E% of v to some simplex of V. By the general
position of v in V, we may infer that D N B is a convex
linear cell (henceforth abbreviated to "cell") of dimension
(4 +b -q). Let E = [g'1(D n B)] n C, a cell of dimension
(d+b-q) + (c-da =(c+Db-g). Let P be the
(@ - b)-cell through x that is perpendicular to E in C.

%
Consider now a simplex, C say, of J' that has C as a face.
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Let gC* = D*, when D will be a face of D* (of course

it may happen that D* = D). Corresponding to E we

have a (c* + b - q)-cell B = [g"1(D* nB)] nc.

Now although E* is not necessarily perpendicular to F

in C*, it certainly has the property that any (q - b)-cell
parallel to F in C*, and sufficiently close to F, meets

it in exactly one point. Therefore, for some neighbourhood
U of x in star(C, J'), we can obtain a well defined map

%
1B by projecting each U n C parallel to F

Py U > g~
onto the corresponding E*. Return now to EX. Since we
defined F perpendicular to E in C, we know that the
linear subspaces [B], [gF] of EY, spanned by B, gF
respectively, are complementary. Let 92:Eq -+ [B] ve
projection parallel to [gF]. Our constructions of 91, 02
ensure that
gpPy = Po8-
Finally, define

a = 8g x p,:UDN g-1star(B, V) = ulL x g'1

B,
B =8 x pyistar(B, V) - ul x [B].

One can check that a and B are both piecewise linear

embeddings onto neighbourhoods of (u, x) and (u, gx)

respectively. Choose ball neighbourhoods

N of u in ulL

Db of gx in B

of x in g-1B
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such that
N x DPP-9 ¢ image of a,
N x Db C image of B, and

gDm+b-q - bb.

Hence the following diagram commutes
m+b-q 1xg N x Db projectlon; N

N x D
i
a_1i 6'1 (
g 1BL = s BL . 5 ul .

This completes the proof of Lemma 9.

Suppose now that our map £ is initially tiransimplicial
to K at some points of 13 ¢ M, and let T(f) denote
the set of such points. We would like to make our local
shift so that the new map hAf is also transimplicial to

X at these points.

Lemma 10 If our local shift is made small emough
o(f) ¢ T(h,f).
Remark. A corresponding lemma was proved in [2] under

the assumption that f was an embedding. The crucial
and main part of that proof applies equally well here and
we shall not repeat it, but simply give the reference
when necessary.

Before proving Lemma 10 we do a little preparatory

work. Suppose X is a point of M such that fx € star(z, K).
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Let Z be the complex

A[star(z, ¥)] c Y,
and B the simplex of Z such that Afx € %. We denote
by E° the linear subspace of EZ spanned by B, by gd-P
the orthogonal subspace through AfXx, and by P the

projection E2 » E4® parallel to E°.

Lemma 11 x5 T(f) if and only if there_is a commutative
diagram
N* » Dm+b_g_._.1§k__, N* « Db projection . X
v| o l n
(re)~15Tar(B, 2) 55> B ——e e gd-P

whereJE:_ig_g‘neiggbourhood of AfX iqmgg?b, and ¥, ¢

are embeddings onto neighbourhoods of x, Afx.

? W
APx ///
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Proof. Choose a vertex u of B, let L = 1link(B, 2)
and s be the natural simplicial map BL - uL. Suppose
X € T(f), then since A is a linear embedding we have

a conmutative diagram
N x Dm¥b-q _Ixk SN x Db projection N

wj ﬂ! n
(MY%LWWW~~+md~m1~mw*%,

where N is a neighbourhood of u in ulL, and V¥, ¢
embeddings onto neighbourhoods of x, Afx. Now p|ul
is an embedding of ulL in Eq'b, and so embeds N onto a
neighbourhood N of Afx in EYP, Also

Pp|BL = (p|uL)s:BL - ul.
Therefore the following diagram commutes and completes

half our proof:

n* x pPP-a AxK y* , pP _Brojection ¥
-1 ! -1 ‘
¢o|m) 1x1 | (pIN)™ 'x1

N x Dm+b"q- .,J—E-IS-)N X Db <

!

vl : |

-1 R \'q_ 3 wq_-b
(Af)” 'BL AT E P BT

An argument in the opposite direction is equally

straightforward.
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Proof of Lemma 10, Let x be a point of M that lies

in T(f). If fx £ W, the local shift has no effect on
f in a neighbourhood of x, and so the lemma is trivial.
Secondly, if fx e'%, then by Lemma 9 we know
X € T(hAf).
It remains to consider the case fx € W. For
this we shall use Lemma 41 and the notation introduced

there. Thus we have a commutative diagram
N x p™*P-a _Ixk s, pP _DProjection .y

\lfl ¢ n

#)"'BL - s B2 — , 53D
(Af)” 'BL sg— > E 5 >ELTY,

Notice now that in the case under consideration pAfx = Afx.

We again write g for

uhf:f_1star(z, K) - EY,

Let
b q

I=0¢(NxD") cE?
#
I = ul.
* b :

Define a map 61:1 - D~ as the composition

%t 1 % wxDP .projection DP.

We now make reference to the proof of Lemma 14
in [2] where it is shown that, if the local shift is made
small enough (i.e. if v is chosen near enough hﬂ), then

a = px 6121* —>Eq—b xD.b
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is an embedding onto a neighbourhood of (gx, 61gx).
Moreover, this can be gimultaneously ensured for all

points of T(f) n e,
Remark. It is in proving these facts that our careful

use of the linear structure of K, in making the local
shift, plays a vital role.

Define 6,:¥(N x D™P7Y) o p™P=q o5 4ne
composition

V(N x
We claim that

Dm+b-q)éjL N x Dm+b-q projectiona:Dm+b—q

B = pg x 62:¢(N X Dm+b-q) R L !
is an embedding onto a neighbourhood of (gx, 62x).
For let y7#y' be points of V(N x Dm+b_q) such that
6,y = 6,5',

then 6,8y = 0,8y’ (by commutativity in the previous dlagram)
and therefore

gy # pgy' (since o is an embedding).

F;nally, choose new disc neighbourhoods

N of gx in gd-P

Df+b'q of 6.x in DTP-Q

2

b b
D, of 61gx in D

such that
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* -
N x DptPTd

st
N x Db c lmage of a, and

m+b-q

c Image of B
kD, C D .
Our construction ensures commutativity in:

%* - L ke
N pitP-a _Ixk ot pP X Ly

X
6—11 o l N
g-1star(B, Z) — g4 ___75_a;Eq—b.

Remembering that g and hAf differ only by A, a second

application of Lemme 11 completes the proof.
Proof of Theorem 3

We are given f:M - Q together with a triangulation
K of Q, and want to ambient isotop f, keeping Q fixed,
to a new map g that is transimplicial to X at all points
of g 3.

For any triangulstion L of Q, let LY denote 1its
r-skeleton and

L(r) = L - LY - L.

Suppose the dimension of fM is n. Using Lemma 8, subdivide
K in some way to give a Brouwer triangulation L. We shall
ambient isotop f to a map g that is transimplicial to L,
and therefore to K, at points of g"1§. Let L" be a

second derived of L. Choose a triangulation J, of M and a

1
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subdivision L, of L" such that £:J, » L, is simplicial.
Perform an n-shift of £ in L with respect to J1, L1.
Then by Lemma 9 we Kknow
-1
f L1(n - 1) cT(hnf).
Choose subdivisions J2, L2 of J1, L1 so that hnf becomes
simplicial, and apply an (n - 1)-shift to h f in L with
respect to J2, L2. By Lemmas 9 and 10 we can ensure
-1

() Lz(n -2) c T(hn_1hnf‘).
Repeat this procedure, working in order of decreasing
dimension. After precisely (n + 1)-steps we obtain a
subdivision Ln+1 of L and a map

g = h0h1 ec e hnf:M i Q
such that

-10°

(a) (h1 cee hnf) L, C T(g)
(b) g is ambient isotopic to f keeping Q fixed.

Therefore the proof of Theorem 3 is complete.
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Cn—a—

In this final scction we shall complete our
definition of transversality so as to include the case
where X and Y intersect at points of Q. To do this
we follow an idea of Zeeman [8] and make the notion of
intrinsic dimension "ambient".

Suppose X € Q and consider a point x € X. We

define the ambient intrinsic dimension of x, written

I(X cQ, x), as follows.

Definition 6 I(X cQ, x) is the largcst integer t

for which there is a polyhedron V c Dq“t, and an embedding

£:0% x DTt 5 g

onto a neighbourhood of x in Q such that £=1x - pt x V.
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Notes:
1. I(XcQ, x) € I{X, x).
2. As for the notion of intrinsic dimension, two
equivalent definitions (based on links and triangulations)
can be given.
3. In the above illustration I(X, x) =1, I(X c @, x) = 0.
4. Suppose g-dim X > 3 and that x € 3. Then Lemma 2
of this paper shows I(X, x) = I(X c @, X).

Consider now the situation X, ¥ € Q. Let z be a

point of X n Y n Q and suppose

I(X c Q, z) t,
I(Y c Q, Z) = 8,

Definition 7 The polyhedra X, Y are transversal at z

if there is an embedding
h:Dt+S-(q-1) x D(q—'l)"‘t x D x D(q-1)-s - Q
onto a neighbourhood of z in @, and subpolyhedra
v epla-t . p!  ycop! «pla-1)-e
such that
h_1Q _ Dt+s—(q—1)x D(q—1)—t
n~x = pt+e-(a-1) v, pla-1)-s,

x 0 x D(q*_Jl )-s,

n~ly = ptrs-(a-1)  pla-1)-t | .

Transversality at points of X n v n a is defined exactly

as before, and again we say simply that X and Y are
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transversal in Q if they are transversal at all points

of their interscction.

Conjecture Let @ bc a manifold and X, Y compact
subpolyhedra, both of codimension 2 4 in Q. Then X

can be ambient isotoped transversal to Y by an arbitrarily

small ambient isotopy of Q.
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EXTENDING TRIANGULATIONS
by M.A. ARMSTRONG.

The results given below are uscful in
plecewise linear (PL) topology. They do not seem
to be well known, or to have appeared previously
in the literature.

Let Q be a compact PL-manifold, and M a
proper compact PL-submanifold of Q. To say M is a
proper submanifold means that the boundary M = M n 4.
Recall that a triangulation of M is a combinatorial
manifold K together with a homeomorphism k:K — M;
where no confusion can arise k is usually omitted.
A triangulation L of Q is said to extend K if, in

the diagran

K —F—su

§
8! N
w

L ——Q,
the induced map s:K - L is simplicial. Recall also

the notion of local unknottedness. The submanifold

M is saild to be locally unknotted in Q if, for some

triangulation K of M and extension L of K over Q,
the closed star ball pair

(§¥§F (sv, L) , B[EEEF (v, K)])



is unknotted for each vertex v € K. The choice of K
and L is irrelevant, since if this is true for a
particular pair X, L, 1t 1s true for any subdivisions
K', L' and consequently for any other choice. Of
course, by [1], local knotting can only occur in
codimension 2, and possibly in codimension 1, depending
on the validity or otherwise of the PL Schonflies
conjecture.

Zheoren. Every triangulation of M cap be extended

if ang i a .

Corollapy 1. Any triangulation of the boundary of

m =ma an e n a atdi
of the whole manifold.
Qorollary 2. 1L M. instead of being proper ipn Q. 1§
contaiped Jin the interiop of 9. and if the codimension
is > 3, then anv triapeulation of M can be extended
over Q.

As an example of a non-extendable triangulation
in codimension 2, consider the cone on a knotted PL-sphere
pair (s™*1, s '), This is a ball pair (B™*2, 8®) in
which B” 1s docally knotted at the cone point. Triangulate
B" as an n-simplex, and suppose this triangulation can be

extended to Bn+2. Then the ball pair consisting of the
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closed star of B" in this extension, and B" itself,
is unknotted, contradicting the local knottedness of
the pair (B™2, %),

: Proofs of the theorem and its corollaries
will follow a couple of elementary lemmas.
Lemma 1. L e @& _compa olyh W_a act

u 1 on V, and K a trian at f W T

there is a derived K(r) of K that can be extended to
a _triangulation of V.

Proof. Since the embedding of W in V is PL, some
subdivision K' of K can be extended to a triangulation
L of V. By [2] Lemma 4, there 1s an rth derived K(r)
of K that is isomorphic to some subdivision K" of X'.
Finally, by the Corollary to Lemma 3 of [2], there is
a subdivision L' of L that extends K(r).

Lemma 2. Let (X, Y) and (x1&_x11_pe two unknotted

PL-bal ai Then a L,-ho m i
heX, WY, Y, 2X uY¥, ¥
an be en 0 a PL-homeom

giz1a_y1 - X, Y,

This result occurs as Lemma 18 in [2].



- -

Proof of the Theorem

(a) Suppose M is locally flat in Q. Given a
triangulation K of M there is, by Lemma 1, an rth
derived that can be extended over Q. Now any derived
of a finite complex is obtained by a finite number of
stellar subdivisions - each such being the result of
starring some simplex at an interior point. Therefore
(by induction on the number of stellar subdivisions)
it is sufficient to prove that if oK 1is obtained from
K by a single stellar subdivision, and if oK can be
extended over Q, then K can be extended over Q.

Let oK be obtained by starring the simplex
A € XK at the interior point A. It is convenient to
divide up the proof into two cases.

Pirstly suppose M, Q closed. Let J be an
extension of «K over Q, i.e. in

oK £ o) c qed g

the induced map s:0K - J 1is simplicial. Some further
notation is needed; 1let F be the subcomplex s(oK) of J,
and u the vertex sA. Take a first derived J' of J mod F
(the reason for working in J', rather than in J, will

appear later) and define
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X

star (u, J'),

Y = star (u, F),
Then, since M is a proper locally unknotted submanifold
of Q, the pair (X, Y) is an unknotted ball pair. It is
in fact a cone pair with vertex u, and the idea behind
the remainder of this proof is simply to replace this
pair by a suitable new cone pair - this replacement will
have the effect of straightening out s[star (A, X)] so
that s looks linear.

To make this precise, let v be a vertex of sA

and

B =X ystar (v, J').
Then B is seen (Figure 1) to be the union of two balls

star (v, J')

X - star (v, J')
glued along the common face link (v, X), and consequently
is a ball. Construct a new complex L as follows. Embed

J linearly in some Buclidean space " C En+1,vchoose a

n+1 - En, and define

point w € E
L=(J"-B)u(w®*B3B)
where * denotes linear join. It remains to produce a

suitable homeomorphism 1:L - Q.



>>

F‘sn.i



To arrange consistency of notation with Lemma 2,

let

X w ok [X - star (v, ﬁ)], and

1

Y w* [Y - star (v, ¥)]

1
see (Figure 2). Again using local unknottedness, (X, ¥)

is an unknotted, and therefore locally unknotted, sphere
pair. Thus

(star (v, X), star (v, 1))
is an unknotted ball pair, and so the complementary pair
in (X, ¥) is also unknotted. Conseguently (Xy5 Y1) is
exhibited as the cone on an unknotted ball pair, and is
therefore itself unknotted.

Notice that:

(1) X, is a subcomplex of L.
(ii) There is a natural isomorphism
o o]
f:L - X, > J' =X (° denotes interior)

defined as the linear extension of the vertex map that
sends w -» v and fixes all other vertices.
Remark. (i) and (ii) follow because

star (v, J') n star (u, J') = star (v, star (u, J')).
This equality need not be satisfied in the initial
extension J (one only has to draw star (u, J) a little

concave as in Figure 1). However, since A is a simplex



of K, certainly the equality is satisfied with J°
replaced by F. Therefore in deriving J so as to
ensure the above, it is not necessary to subdivide

simplexes of F.

Let g:Y, - star (A, K) be the isomorphism

1
defined as the linear extension of s—1f on the vertices.

Then f and the composition
v, -, 5tar (4, X) —">Y
together define a PL-homeomorphism h:}'(1 U Y1, Y1 X u Y, Y.
By Lemma 2, this may be extended to H:X1, Y1 -+ X, Y.
Finally, define 1:L - Q Dby

1|L - X, = Jf, and

1lx, = jh.
Then, by construction, 1:L - Q extends k:K - M.

Now consider the general case where M, Q are
allowed to have boundary. The proof goes through exactly
as before, except that the expressions for L, X1 and Y1
are rather more complicated since A may well meet the
boundary of K. Let:

L=(J"-B) u(we* [B- star (v, B) - star (u, B) 1)

X w* [X - star (v, X) - star (u, X)]

1 -
Y, =w s [¥Y - star (v, ¥) - star (u, ¥)].

[+
Of course if A c K these expressions reduce to those



N




given previously. Figure 3 illustrates the case where
v is a boundary vertex of F, and shows the necessity
of the removal of star (v, E) from B in the definition
of L. The further removal of star (u, B) is relevant
when A « K. Again one can check that (X1, Y1) is an
unknotted ball pair, and construet 1:L - Q precisely as
above. This completes the first part of the proof.
(v) Conversely, suppose M is locally knotted in Q.
To complete the theorem one needs a triangulation of M
that cannot be extended over Q.

Let x be a point at which M is locally knotted
in Q. Then it is enough to produce a triangulation of M
in which

(1) if x e M, then x lies in the interior of

an m-simplex,
or (ii) if x e M, then x lies in the interior of
an (m-1)-simplex.

For let K be such a triangulation, and aaesume K can be
extended to a triangulation L of Q. Let A be the simplex
of K that has x in its interior, and let KXK', L' result
from X, L by starring A at x. Then
(1ink(x, L"), link(x, K')) = A * (1ink(A, L), link(4, X))

and therefore is an unknotted sphere (ball) pair for
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x e M (i), contradicting the local knotting of M in
Q at x.

Triangulations of the required type can be
constructed directly as follows. Suppose firstly
X e ﬁ, and let f:Am -+ ﬁ be an embedding of an m-simplex
onto a neighbourhood of x. Choose a subdivision A' and

1x is a vertex of L,

a triangulation 1:L - M such that 1~
and the induced map s:A' - L is simplicial. Let B
denote the subcomplex sA' of L. A new complex K may
now be constructed by embedding L in a Euclidean space
" C En+1, choosing a point z e En+1 - En, and defining

K=(L-B) uz* B.

Choose a point y € Z in general position with respect

to the vertices of A', and let g:z * B - A be the join
of 2 5y tos”! on B. Finally, define k:K - M by
k=1o0onl -~ B, and
k =fgonz * B.
Then k™ 'x 1lies in the interior of an m-simplex of K, as
required.
If x € M, the construction generalises in the
obvious manner. Choose an embedding £:A" - ) onto a

neighbourhood of x such that £~ I is a principal face
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Am—1 of A". Proceed now as above, except that of course

B is replaced by
B - SZm—1 ,
and y is chosen in Zm—1 in general position with respect
to (a"77)".
The proof of the theorem 1is now complete.

Proof of Corollary 1

Let M be the manifold in question. Add ¢ collar
to M and denote the resulting manifold by Q. Then N is
a proper locally unknotted submanifold of Q and so the
theorem is applicable. Therefore any triangulation of
¥ can be extended to a triangulation of Q, and of course
M must appear as a subcomplex.

Proof of Corollary 2

Suppose K is a given triangulation of M, and let
N be a relative regular neighbourhocd of M mod M in a.
By [1] M is locally unknotted in N. First apply the
theorem to extend K over N, then apply Corollary 1 to the

o
manifold Q@ - N to complete the extension.

Two questions have been neglected in this paper:
(a) If M is locally knotted in Q, which triangulations

of M are extendable over Q%
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(b) When is it possible to extend triangulations
for polyhedra?
Information on both of these will be given in a
subsequent paper by E.C. Zeeman [3].
I would 1like to thank Professor Zeeman for his

encouragement during this work, and for pointing out a

gap in an earlier version.
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LPPENDIX 1

The following remarks were omitted from (4).
1. Suppose X is not simply conncected, and let X be the
universal cover of X. Theu G can be lifted to a group &
of homecomorphisms of X in such a way thot & is an extension
of 7,(X) by G, the quotients %/G aad X/G arc homecomorphic,
and ¥ acts simnlicially ou some triangulation of X.
Thus, if the geometry of the situction allows onc to
rccognise §, then ﬂ1(X/G) can be found by applying the
thecorem of (1) to the pair X,&.
2. That G act simpliciclly oa some triangulation of X is
of course a scvere rcstriction. One would like to prove the
result of (1) under somcwhat weaker hypotheses, especially
since the only theorem known about triangulating group
actioas requires X to be a comncet polyhedron, and G 2
finite group of piecewisc linear homeomorphisms. However,
our thcorem is not truc in complete generslity. For
example considcr the reals acting on the real line by
addition, then ¥/C is a point and G/H is isomorbhic to

the rcals. This exemple suggests that a discontinuity



condition is nccessary on the pair X,G. Suppose then that

X 1s a simply connected topological spacc, and G a properly
discontinuous group of homcomorphisms of X. Let I be the set
of points of X that have non-trivial stabilizer in G. The
proof given in (1) depended on a peth 1ifting procedure.

It can be modificd to deal with this situation if one can
verify that given a peth in X/G thcre is a homotopic path

that meets F/G in only a finite sct of poiats.



APPESDIX 2

A problem is suggested below. L sositive solution to

it is cuough to provide a prouf of Conjceturc 1 of (2), and
therefore of relntive transversality. Such a solution would
also show thc uniqucncss of quoticnt normal tubes.
Lhe 5 balls problci;: Let B1 o 32 c 33 e a triplc of
PL-balls, both inclusions bcing prover, ~ud both pairs
uikaotted. Iurther, let BM’B5 - B.3 be PL-balls that
satisfy:

(a) BM’B5 arc both transversal to B, in B3

(b} B NDL, =3B =B nB

are unknottcad

(¢) By c B,» By 3

U

n 2.3-. = T; N 7: . = f. and thi
I 3 Dq 3 J5 i B5 b N Bj n S common

tu
e

(a) =
intersection is a tubc on B1-

Cen wc ambicnt isotop BLL to B5 kgggigg_;EB“g,52”mﬂiKQQ?

(i picture is provided overleaf.)






