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TiNi shape memory alloy has been recently investigated for use in 

micro actuators because of the high power to volume ratio. Conventional 

sputtering methods, such as RF and DC sputtering and magnetron sputtering, 

have previously been used by other workers in order to deposit TiNi thin films. 

As-deposited films produced by these methods are amorphous, and are then 

crystallised typically by annealing at 500°C for 1 hour in order to exhibit the 

shape memory effect. These deposition methods have invariably used alloyed 

targets to grow thin films. In this thesis, an Ion Beam Sputter Deposition 

(IBSD) method has been used by which argon ions are used to bombard non

alloyed targets. The thin films grown by this technique demonstrate the 

characteristics of the shape memory effect. Films have been characterised by 

electrical resistivity, resistance and thermal measurements, giving physical 

properties in excellent agreement with those quoted in the literature. 

Compositional and density measurements were done by X-ray reflectometry 

and were consistent with equi-atomic composition and nominal density for 

TiNi. In addition thermal modelling was used to investigate implications of 

heating and cooling rates for microactuator operation. Finally, a novel 

fabrication process is proposed, combining ion beam milling and Focused Ion 

Beam (FIB) trepanning for the process of micro actuator production. 
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1 Introduction 

This thesis describes the production and properties of shape memory alloy thin 

films, for micro actuators in microelectromechanical systems (MEMS), 

fabricated by an ion beam sputter deposition method. This chapter outlines the 

project, and introduces MEMS and the shape memory effect, shape memory 

alloys, and applications of shape memory alloy. This chapter finishes with a 

section describing the motivation for conducting this work. 

1.1 Background to this work 

1.1.1 Micro Electro Mechanical Systems (MEMS) 

The micro actuators and MEMS have transformed the conventional field of 

sensors and actuators in general. MEMS can be usually described as follows: 

1. mechanical microstructures, 

2. microsensors, microactuators 

3. electronics integrated on a silicon chip. 

MEMS research and development has progressed rapidly since 1988, when the 

electrostatic micromotor the size of a human hair was demonstrated[I]. MEMS 

are not only about the miniaturisation of present mechanical systems but they 
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also create a new paradigm for the design of mechanical devices and systems. 

The telecommunication industries, for example, have taken specific advantage 

of miniaturisation of mechanical systems[2]. MEMS in general, are becoming 

increasingly important in modem technology. The miniaturisation of 

mechanical systems has lead to progress and new opportunities in many areas 

of science and technology. 

MEMS have allowed micro actuators to perform physical functions. For 

instance, shape or volume changes are caused by phase transformations 

resulting in the shape memory effect. Researchers have fabricated 

micro actuators used in micropumps and microvalves, which can be operated by 

the shape memory effect. 

Fig.l.l shows the design of a shape memory alloy (SMA) microvalve, which 

was published in 1999[3]. TiNi SMA microdevices were fabricated from a thin 

sheet of equi-atomic Ti-Ni, which was made by melting Ti and Ni in a high 

frequency induction furnace followed by final cold-rolling to reduce the 

thickness to 100 /-lm. The polymethylmethacrylate substrate was fabricated by 

laser cutting as mechanical micromachining to establish the pressure chamber. 

The TiNi sheets, which were heat-treated for 530°C for 1.8 ks, have been 

preformed by laser cutting to consist of a circular array of double-beam 

bending elements. 
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SMA sheet 

Polyimide 
Membrane 

t,--------,-t ----Pi 

Fig.l.l : Design of SMA microvalve and operation model. 

Pi denotes inlet pressure[3] 

Consequently, problems of fabrication, bonding and assembly for 

micro actuators in MEMS research have also been of increasing importance. 

1.1.2 Microfabrication strategies 

Microfabrication is concerned not only with removing material physically by 

micro machining or micromilling. Microfabrication also involves deposition of 

materials such as in thermal processing, sputtering and chemical vapour 

deposition as shown in Fig.l.2. 



Thin film 
process 

{

Thermal process 
Physical 
process 

: Sputtering . 
Ion 

process 

~~~~:{PlaSma C\:'D . 

LaserCVD 
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Vacuum evaporation 
Laser 
Molecular beam epitaxy 
Ion plating 

Activated reactive evaporation 
Ionized cluster 

beam deposition 

Fig.l.2 : Thin film deposition process[4] 

Sputtering systems generally consist of RF and DC sputtering, magnetron 

sputtering and ion beam sputtering, which will be introduced in detail in 

Chapter 2. Thin films have been deposited by sputtering systems. 

1.2 Shape memory alloys 

Recently it has been widely published that SMAs have great potential for use 

as microactuators[5,6,7]. SMA materials have a number of desirable properties 

that make them strong candidates for microactuator applications. The 

properties of these materials in bulk form have been extensively investigated 

and reviewed in the literature[8]. More recently, attention has turned to the 

production and characterisation of these materials in thin film or wire form in 

order to exploit their potential as actuators in MEMS[9], in biomechanical 

systems[10] and in micromechatronics[ 11]. 
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1.2.1 Shape memory effect 

According to L.M.Schetky[12], in order for an alloy to exhibit the shape 

memory effect, it must have a crystal structure that can shift into the 

configuration known as martensite when it is subjected to a certain temperature 

or stress and then shift out of it. 

If the recovery of shape is restrained, a proportional force or displacement will 

be available for doing work or gripping another object. An example is shown 

below in Fig.I.3, which shows the effect of temperature on shape memory 

alloys. If the rod is made from a shape memory alloy, and the rod is designed to 

deform above temperature A~ a straight rod is heated to the "betatizing" 

temperature and then quenched. The rod now contains martensite phase. After 

the rod was deformed below the martensitic tr~sformation temperature, the 

rod returns to the original shape when heated above the austenite 

transformation temperature. 
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Initial Shape Additional Cold Shape after Betatizing Position at Room ;!::".!'Od" Position or Hot siWpfu;g and'Ouenching Temnerature 

No Martensite Now Contain. Marten.it. Martensite under Stress No Martensite 

~ None ~ B::~ t ~~ 
'-J 

~ ( ( '::~t ] :{ 
Fig.1.3 : Temperature effect for shape memory alloy by L.M.Schetky[12] 

1.2.2 TiNi shape memory alloys 

The shape recovers almost perfectly in more than ten alloys. However, because 

of performance and cost, only two - TiNi and eu - Zn - Al - are used in 

practice. TiNi shape memory alloy thin film was first produced by Sekiguchi et 

a/[13], using a vacuum deposition method. The shape memory effect was 

verified in 1983. Many workers have found TiNi to be especially suitable. This 

alloy resists corrosion and components made from it have a long lifetime, 

Industrial applications that require reliable switching mechanisms generally use 

TiNi. This alloy is also stable within the human body and TiNi has been used 

extensively in medical applications. 

SMA actuators have several advantages over other methods of microactuation, 
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• 

based on piezoelectric, electrostatic or bimetallic principles. These include high 

work output per unit volume, high power to mass ratio and the capability of 

being driven without high applied electric fields. Table.l.l shows a comparison 

of TiNi shape memory alloy thin films with magnetic, electrostatic and 

piezoelectronic actuators. The energy output per unit volume is very high 

compared with other actuators. The value is a factor of 10 larger than a DC 

magnet motor, when compared to TiNi shape memory alloy. 

Maxunwn work Drive conditions/ Scalability 
Principle energy ~~sity biocompatibility (shrinkability) (icm· 

DC magnet motor 0.9 B=1.5T Poor Yes 

Micro-electrostatic 0.4 E=300V~m·1 Good 
No 

Piezoelectric(pVDF) 4.8*10-4 E=30V~m·1 Good No 

Shape memory alloy 10.4 P=I.4Wmm·] Good 
(TiNi) Yes 

Table.l.l : A comparison of SMA with piezoelectric, 

electrostatic, and bimetal actuators[ 14] 

Power/weight 

Low 

High 

High 

High 

Other desirable features such as biocompatibility and scalability to small 

dimensions can also be exploited. SMA materials can provide extremely large 

forces, movements intermediate between those of piezo devices and 

electrostatic micro actuators, or a combination of both force and displacement if 

mechanically biased by a suitable spring. However, in common with all 

thermal actuator devices, the efficiency of SMA actuators will be relatively low 

(- 5%) as the material must be heated above an austenite transformation 

temperature to recover the original, undeformed, martensitic state shape. 
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Moreover, the speed of response will be relatively slow due to the need to cool 

the material to revert to the deformed martensite structure. 

1.2.3 Application of shape memory alloys 

Shape memory alloys have been exploited in mechanical applications, which 

need a precise mechanical response to small repeated temperature changes. A 

micro valve produced by TiNi shape memory alloy, is shown in Fig.l.4 below 

as a typical example. 

Fig.1.4: Silicon micromachined proportional valve by MicroFlow,Inc[15] 

This shape memory alloy actuated silicon microvalve is designed to provide 

either proportional flow or pressure control of gasses, using the shape memory 

properties of sputtered TiNi films. Microvalves can be produced as individual 

devices or as entire valve arrays on a silicon manifold by using standard 

integrated manufacturing processes, such as ion beam deposition, 
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photolithographic patterning, and chemical etching. The strips are deformed in 

tension as the valve normally closes through the force of an integral bias spring 

due to the one way shape memory effect. When the aIloy is heated by passing a 

small current through it, the material recovers its original shape above an 

austenite transformation temperature. When the force lifts the silicon poppet 

off the valve seat, gas can flow. 

1.3 Motivation and purpose of this work 

This thesis will be devoted to investigating TiNi shape memory alloy thin films 

fabrication by an ion beam sputter deposition method. The main achievements 

of the work are the growth and characterisation of TiNi SMA thin films on 

unheated substrates using non-alloyed targets by ion beam sputter deposition. 

Potential applications in MEMS and biomedical systems will be emphasised 

throughout. This thesis consists of 7 chapters : the first two chapters describe 

the historical and theoretical background, chapters 3 to 7 then describe 

experimental data relating to thin films grown by an IBSD method. 

Chapter 2 will describe the historical background of ion beam sputtering, 

showered ion beam equipment, and factors such as sputtering yield and angle 

of incidence effects for sputtering phenomena. Comparison with DC and RF 

sputtering, generally used for deposition of thin films in industry, will be 

described in the last section of this chapter. Ion beam sputter deposition allows 

thin film growth to occur in a clean environment of a high vacuum system. Due 
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to containment of the plasma in the discharge chamber, ions can reach the 

target without colliding with residual gas atoms. 

In chapter 3, the SIB source, which was used in this work, will be characterised 

in respect of current density and beam profile properties. Current density was 

investigated in both manual and automatic modes of operation at various 

distances from the ion source, and effects of variations in accelerator grid 

voltage quantified. Beam profile measurements were made using various grid 

types, and effects of grid type on current density evaluated. The specific grid 

type required to optimise operating conditions for thin film deposition, was 

determined from the data presented in this chapter. 

Chapter 4 follows on from chapter 3 by relating deposition rates to sputtering 

yields from targets of AI, Ti and Ni. Relationships between film thicknesses 

and beam voltage and current will be established. For Ti and Ni, deposition 

rates were investigated separately. In this deposition set-up (with 2 cm 

separation from target to substrate), the deposition rates of Ti and Ni were 

identical within the experimental error. Targets consisting of eight 45 0 sectors, 

alternating between Ti and Ni, were consequently prepared for thin film 

deposition. 

TiNi thin films were deposited on unheated substrates at typical deposition 

rates of "" 0.5 J,unlh. In chapter 5 the TiNi thin films were characterised by 

electrical resistivity and resistance measurements and compared with values 
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quoted in the literature. The resistivity of the TiNi SMA thin films was 1 ~.m. 

Phase transformation temperatures, namely As, Aft Ms and R-phase, are 60 °C, 

85 °C, 50 °C and 62 °C, respectively. Good agreement was found with values 

quoted for equi-atomic TiNi in the literature. The compositions of TiNi thin 

films were also consistent with equi-atomic TiNi, which was shown by X-ray 

reflectometry. 

In chapter 6, the TiNi shape memory thin films were characterised by 

measurements of temperature - time profiles in order to evaluate thermal 

parameters influencing micro actuator operation and behaviour and to measure 

phase changes indicative of the shape memory effect. Here an alternative 

strategy to that of differential scanning calorimetry (DSC) is adopted by 

maintaining constant heating power and measuring the rate of change of 

temperature corresponding to the specific heat capacity change. Non -contact 

measurement was made, by infrared focal plane array camera thermal imaging. 

Thermal imaging could readily identify the phase transitions characterising the 

shape memory effect. 

Chapter 7 begins by describing the effects of dimensional scaling of TiNi shape 

memory alloy structures for microactuator devices. Speed of response for such 

shape memory alloy structures will then be calculated. Production of micro

parts by focused ion beam (FIB) trepanning techniques is then introduced and 

implications for SMA microdevices explored. This chapter ends with some 

suggestions for future work and the overall conclusions of the thesis. 
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2 APPARATUS AND PRINCIPLES OF ION BEAM DEPOSITION 

TECHNIQUES 
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2 Apparatus and principles of ion beam deposition techniques 

2.1 Showered ion beams and the Kaufman ion source 

Fig 2.1 shows a schematic diagram of the showered ion beam sputter apparatus. 

This consisted of a Kaufman type ion source (Fig. 2.2 (a» contained within a 

discharge chamber (Fig 2.2(b» evacuated by the vacuum system illustrated in 

Fig. 2.2 (c). The ion source contains a refractory metal cathode made from 

tungsten wire, behind a set of grids to focus the ion beam. The diameter of 

these grids was three centimetres. The source could produce beam currents 

ranging from a few mill i-amperes to several amperes. 

Fig. 2.2 (c) shows the diffusion pump .. This was backed by a rotary pump 

which reduced the pressure to 2xlO-2 Torr (2.7 Pa) in about 5 minutes. The 

diffusion pump then lowered the pressure to 8xlO-s Torr (0.01 Pa) in a further 

10 minutes. The working gas (usually argon) was then introduced into the 

discharge chamber and the ion source was operated at pressures of typically 

5x 1 0-4 Torr (0.07 Pa). Penning and Pirani gauges were used to monitor the 

conditions inside the apparatus. The ion beam energy ranged from 500 to 2000 

e V. This energy, the working pressure and the beam flux were all easily 

controlled and quantified by a computer (shown in Fig. 2.2 (b». With reference 

to Fig.2.1 (b), energetic electrons from the cathode struck the argon atoms 

within the ion source. These ions were formed into small beamlets when they 
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passed through the holes in the screen grid. The ions in these beamlets were 

attracted to the negative acceleration grid. They passed through this negative 

grid without striking it, due to the alignment of the holes in the two grids, and 

they were directed toward the target. Beam divergence was prevented by 

"neutralising" the positively charged argon ion beam with electrons from the 

neutaliser filament. The number density of these electrons was equal to the 

number density of the Ar+ ions. Energetic electrons were constrained by the 

magnetic field whilst low energy background electrons could reach the anode. 
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Fig.2.1 Schematic diagram of showered ion beam equipment 

(a) showered ion beam system, (b) showered ion beam source 
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(a) 

(b) 

Fig. 2.2 : Showered ion beam apparatus (University of Warwick) 

(a) Kaufman type ion source, (b) Showered ion beam unit 
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(c) 

Fig. 2.2: Showered ion beam apparatus (University of Warwick) 

(c) Diffusion pump 

2.2 Principles of ion beam sputtering 

2.2.1 General overview of ion beam sputtering 

Grove first observed the phenomenon of sputtering in a DC gas charge tube in 

1852[16]. He found that the cathode surface within the discharge tube was 

sputtered by energetic ions in the gas discharge, and that cathode materials 

were deposited on the inner wall of the tube. 

Five years after Grove's work, vacuum evaporation methods were developed. 

These techniques were popularised by Faraday and, until the 1960s, they 
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remained the main methods by which thin films were fabricated[17]. 

The first descriptions of sputtering on the atomic scale were made early in this 

century. These workers observed evaporation from hot objects such as a 

cathode filaments. In the past three decades, sputtering techniques have 

developed rapidly. In addition, the theory of collision cascade has been 

developed, which can treat problems both analytically and numerically[18, 19]. 

By 1960, the configured broad beam ion source had been developed from work 

on electric propulsion in the US space program. These experiments had led to 

the Kaufman ion source, which contains a hot filament cathode and neutraliser. 

Alternatively, the electron emission from either the cathode or neutraliser can 

be supplied from a hollow cathode[20] with a separate gas flow. The working 

gases used for hollow cathodes in industrial applications have been either 

argon or xenon. 

In the early 1970's, early applications for industrial uses were published in the 

USA. Several papers emphasised the simple removal of material (etching) and 

deposition using an ion beam[21]. In the 1980's, ion beam processing became 

concerned with etching and deposition using reactive ion beams. Reactive 

gases such as nitrogen and oxygen were frequently used. In another particularly 

interesting application[22], a composite beam of 1200 eV hydrogen and argon 

ions bombarded a graphite target. Films of diamond-like carbon were thus 

deposited on silicon substrates, produced by ion beam sputter deposition. These 
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films could be used for making novel electronic devices. Sputtering methods 

are now becoming the norm for a wide range of applications where thin films 

are required. 

At the present time, sputtering has found broad usage not only in surface 

analytical techniques, where it can be used as a tool for depth profiling[23], but 

also in the fabrication of thin films and semiconductors. 

2.2.2 Mechanism of sputtering 

In early 1900's, two theoretical models were proposed to explain the sputtering 

process. The thermal vaporisation theory, where the target surface is heated 

enough to be vaporised due to the bombardment of energetic ions, was 

proposed by Hippel and Blechschmidt[24] in 1926. They based their work on 

experimental observations of the Kundsen cosine emission distribution (see 

Fig.2.3). The alternative momentum transfer theory, where the momentum of 

the incident particles are transferred to and release the target surface atoms, 

was first proposed by Stark in 1908 and Compton in 1934. Detailed studies by 

Wehner in 1956[25], including the observation of spot patterns in single crystal 

sputtering, suggested that the most important mechanism is the momentum 

transfer process. At present sputtering is believed to be caused by a collision 

cascade in the surface layers of a solid. 

The mechanism of the sputtering process is shown in Fig.2.4. Electrically 

accelerated ions such as Ar+, with kinetic energies between tens of eV and 10 
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keY, are uni-directionally orientated and projected onto the workpiece surface 

under high vacuum (1.3xl0-4 Pa). Furthermore, as shown in Fig.2.4, when 

sputtered atoms have kinetic energies several tens of electron volts more than 

those of ordinary evaporated atoms, atoms on the surface can be knocked out 

from the target. 

-90 ..(i0 -30 o 30 60 90 

Angle of incident (deg) 

Fig. 2.3 : Angle of incidence and sputtering yield 

Ar+ ions collide with the nuclei of atoms of the workpiece and knock out or 

sputter, the surface atoms. This processing is therefore called ion sputter 

etching or ion sputter machining. The penetration depth of an impinging 10 

ke V argon ion is estimated to be several nanometers, or about ten atomic layers. 

Ions with higher energies, e.g. 100 keY, can penetrate further through the 

atomic lattice and become interstitial or substitutional atoms in the surface 

layer. This kind of deep penetration process is widely used for ion implantation, 
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m which impurities of atomic SIze are injected m semiconductor wafer 

processing. 

Incident Ion 

Sputtered Atom •.......... 

Target Surface ••• , ••• 
G Ion Implantation 

Fig. 2.4 : Mechanism of sputter machining 

2.3 Sputtering phenomena 

Sputtering is described as the removal of atoms from a solid target surface due 

to energetic particle bombardment. For quantitative sputtering, the sputtering 

yield, ion energy and angle of incidence effects all need to be measured. 

2.3.1 Sputtering yield 

The sputtering yield (S) is the most important quantitative value for sputtering. 

This is defined as the mean number of atoms that are removed from the surface 

of a solid target by each incident ion. It is given by 

Atoms removed s== Incident ions 
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The sputtering yield depends upon both the incident ion and the target surface. 

It is influenced by the energy and incident angle of the particles, and also by 

the crystal structure and orientation of the target. 

Several methods exist to measure the sputtering yield. Usually the total 

sputtering yield is determined by monitoring the decrease in the mass, or the 

thickness of the target. This is often measured by weight loss experiments 

using a quartz crystal oscillator micro-balance (QCOM)[26]. This QCOM 

technique is highly sensitive and can be operated under vacuum. 

2.3.2 Ion energy 

The ion energy is defined by the difference in electric potential between two 

parallel electrodes in the ion source. Moreover, that energy is the amount of 

energy which accelerates the ions causing them to impinge on a target in 

processing. 

Typical sputtering yields from low energy ions were measured by Stuart and 

Wehner[27]. In this low energy region (tens of eV), a threshold energy exists 

for sputtering. The threshold energy was first observed by Hull (1923)[28]. He 

found that the thorium-tungsten (Th-W) thermionic cathode in gas rectifier 

tubes was damaged by bombardment with ions when the bombarding ion 

energy exceeded a critical value, in the order of20 - 30 eV[29]. At higher ion 
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energies of 10 - 100 ke V, the incident ions embed themselves below the surface. 

The sputtering yields are not then governed by scattering from the surface, but 

by scattering within the target. Above 10 ke V, the sputter yields decrease due to 

energy dissipation of the incident ions deep in the target. This is called 

channelling. Sputtering yields reach maximum values in the ion energy region 

around 10 keV[30]. 

2.3.3 Angle of incidence effects 

In 1942, Fetz studied the variation of the sputter yields with the angle of the 

incident ions. Wehner then considered this topic in detail[31,32]. Metals such 

as gold (Au), silver (Ag), copper (eu) and platinum (Pt) which have high 

sputtering yields show a very slight angle effect. However, iron (Fe), tantalum 

(Ta) and molybdenum (Mo) having low sputtering yields show a very 

pronounced angle effect. The yield increases with the incident angle and 

reaches a maximum at angles between 60 0 and 80 o. It then decreases rapidly 

for larger angles. An angular distribution has also been reported by T. 

Hoffmann et al[33]. 

Typical angular distributions are shown in Fig.2.5. At lower energies much 

more material was ejected at large angles to the surface normal than in the 

direction normal to the target surface. The angular distributions of sputtered 

atoms, released by incident ions normal to the surface, were investigated by 

Seeliger and Sommermeyer[34]. Their ion beam was in the high energy region 

around 10 ke V. Their experiments suggested that the angular distribution was 
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described by Knudsen's cosine law, which supported the thermal evaporation 

model. However, Wehner and Rosenberg[35] measured the angular distribution 

of sputtered atoms released by lower energy (100 eV to 1000 eV) Hg+ 

(mercury) ions in a low pressure environment as shown Fig.2.5. At higher ion 

energies, the distribution approached a cosine distribution. Molybdenum (Mo) 

and iron (Fe) shown a greater tendency to eject to the sides than nickel (Ni) or 

platinum (Pt). At energies above 10 keY the distribution became grater than 

cosine function. 

The angular distribution is affected principally by the sputtering mechanism 

and it is important in several applications including secondary ion mass 

spectrometry (SIMS), sputter deposition, and sputter etching. Angular 

distributions are studied in detail by using ion beam sputtering systems[36]. 
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Hg+lon 
MoTarget 
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I 150eV I 
Fig. 2.5 Angular distributions of sputtered particles from polycrystalline targets[35] 

2.4 Principle of ion beam deposition 

As described above, sputtering is the phenomenon where atoms are ejected 

from the target by a beam of irradiating ions. These sputtered ions are then 

deposited onto a nearby substrate. Three techniques have been developed : RF 

and DC sputtering, Magnetron sputtering, and ion beam sputtering. 

2.4.1 RF and DC sputter deposition 

In 1933, Robertson and Clapp[37] observed that the glass surface of a RF 

discharge tube was sputtered during discharge. Maissel and Davidse later 

identified the thin film deposition technique of insulating targets by RF 

sputtering[38,39]. 
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RF and DC sputtering are plasma-based sputter vapour deposition techniques. 

The electrodes in these systems consist of a cold cathode and anode. The front 

surface of the cathode is covered by the target material which will be deposited, 

and the substrate is located over the anode. Generally, the chamber is filled 

with argon gas to a pressure of 0.1 Torr (13.3 Pa). In the DC sputtering system 

as shown in Fig.2.6 (a), the argon ions, which were produced by glow 

discharge, are accelerated to the cathode, and the target is sputtered, and a thin 

film is consequentially deposited onto the substrate. In DC sputtering systems, 

sputtering of insulating targets is impossible, because the surface of the target 

becomes charged positively. However, it is possible to maintain the glow 

discharge for an insulating target, when the target is supplied with a voltage at 

radio frequency (RF). This is the RF sputtering system as shown in Fig.2.6 (b). 

In modern industries, the RF sputtering system is an important technique in the 

deposition of thin films. Applications of thin films are widespread, and this 

technique has successfully brought about the development of new materials. 

Unfortunately, however, the deposition speed of thin films by this method is 

rather slow. It cannot be quantitatively compared because of equipment 

dependence. The deposition rates of thin films by RF sputtering methods are 

typically an order of magnitude less than comparable vacuum deposition 

techniques. This disparity led to the widespread use of the latter technique. At 

this point it was a large problem to utilize sputtering on an industrial scale. 
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Fig. 2.6 : DC and RF sputtering systems, (a) DC sputtering, (b) RF sputtering 
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2.4.2 Magnetron sputter deposition 

Penning[40] (1935) first studied low pressure sputtering in a system where a 

transverse magnetic field was superimposed on a DC glow discharge. This low 

pressure sputtering was a promising technique for the production of thin film 

devices. A wide variety of thin films can be made with little film contamination 

and a high deposition rate. 

At the beginning of the 1960's, Gill and Kay proposed an inverted magnetron 

sputtering system[ 41]. The pressure of the sputtering gas was demonstrated to 

be as low as 10-5 Torr (1.3 mPa), two orders of magnitude below conventional 

sputtering systems. From the 1970's, magnetron sputtering was also widely 

utilised for various thin films coating processes in functional materials for 

silicon integrated circuits[42]. The magnetron sputtering method was then 

further developed by three groups such as Kirov et al[43], Hosokawa et al[44] 

and Thornton et al[45]. They solved the problem of slow deposition speed and 

they improved the technique. They recognised that the sputtering method was 

the most suitable method for the fabrication of thin films. 

Two types of magnetron sputtering systems for thin film deposition, are widely 

used, the cylindrical type and the planar type. Since a permanent magnet is 

embedded in the cathode target, the magnetic field can be several hundred 

Gauss. 
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Thomton[ 46] defined magnetron sputtering as a system where the region 

around the cathode is filled with electrons; these electrons being constrained by 

an electric field and a magnetic field. As a result, many ions are made in the 

vicinity of the cathode. These ions then collide with the cathode and sputter 

material from it. 

Usually, some of the ions that are produced beyond the magnetic field collide 

with a wall of the chamber. This reduces the efficiency of the sputtering 

process. If the gas pressure is low, more of the electrons reach the anode 

without colliding with gas particles. Fewer ions are therefore produced. In 

order to raise the efficiency of the ionisation, when the gas pressure is high, the 

sputtered atoms collide with gas molecules in the chamber. Then sputtered 

atoms would not reach the substrate and the efficiency of the process would 

decrease. However, the magnetic field mitigates this effect. High efficiency is 

achieved by constraining the primary electrons to paths close to the cathode 

surface with applied magnetic fields. Ionisation efficiency is improved and 

higher sputtering rates results[47]. 

Magnetron sputtering equipment (as shown in Fig.2.7) generally comprises a 

flat target and substrate. The magnetron sputtering apparatus is similar to the 

equipment used for RF and DC sputtering. However, a permanent magnet is 

situated behind the cathode so that approximately parallel magnetic field lines 

are produced. Generally, the temperature rise of the substrate on which thin 



Chapter2, Apparatus and principles of ion beam deposition techniques 46 

films are deposited is similar to that found in RF and DC sputtering. The 

lowest temperatures found for magnetron sputtering has been about 80°C. The 

temperature rise is mainly due to the impact of secondary electrons. Generally, 

the magnetron system can operate at a pressure of a few millitorr with plasma 

densities of 1011 ions cm-3
• The electromagnetic wave, which is right-hand 

circularly polarised wave relative to the magnetic field direction, can transfer 

energy to electrons. Electrons describe curved paths in the electric and 

magnetic fields. 

Magnetron sputtering is a powerful technique for optical thin film coatings 

over large areas. Examples include the coating of architectural glass, or roll 

coating of temperature sensitive material. High-quality optical layers of most 

materials can be deposited by this method[48]. Magnetron sputtering can be 

done at high vacuum. A clean environment is essential where semiconductor 

devices are fabricated. 



Chapter 2, Apparatus and principles of ion beam deposition techniques 47 

substrate -----. 

. . 

~ 
Vacuum 

Vacuum Chamber 

Anode 

· ~ Electric field : · ... Plasma 
• • • • • • 

i 
Gas 

High Voltage 
Solenoid Magnet 

Fig. 2.7 : Planar magnetron sputtering system[ 49] 

2.4.3 Ion beam sputter deposition 

All the previous methods relied on vapour deposition from the gas phase. This 

led to problems such as scattering of the sputtering atoms and contamination of 

the film by gas molecules. To prevent this, IBSD techniques were developed. 

Ions were produced in an ion source and accelerated onto a target. 

It is possible to evacuate the region around the target and substrate to below 

10-4 Torr (0.01 Pa) if the vacuum pump has a large displacement. Few 

sputtering atoms are then scattered by residual gas and there is little 

contamination of the thin film by gas molecules. 
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Chopra and Randlett[50] pioneered the deposition of thin films by ion beam 

sputtering. They used the von Ardene type of duoplasmatron ion sources, in 

which an arc discharge was maintained to create the ions for the sputtering 

process. 

The broad Kaufman type ion source was developed for the thin film 

applications. This can produce a satisfactory etching rate in many materials. In 

most applications, the background pressure is below 5xlO-s Torr (6.7 mPa) [51], 

and thin films are therefore produced in a clean environment. If the energy of 

the sputtered atoms is greater than the surface barrier potential they collide 

with a target located opposite and adhere more firmly than in the usual vapour 

deposition. It is possible to simply adjust the alloy composition by adding 

material to the target or removing it. The ion beam technique also features 

independent control of incident ion energy and flux. 

2.5 Summary 

In this chapter, three types of techniques namely RF and DC sputtering, 

magnetron sputtering and ion beam sputtering are compared. Reference has 

been made to key factors, including the sputtering yield, ion energy and the 

incident angle of the ion beam. The next chapter describes how the Kaufman 

source was characterised, and optimised for fabrication of thin films by IBSD. 
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3 SIB SOURCE CHARACTERISATION 
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3 SIB source characterisation 

3.1 Introduction 

Ion beam sputtering techniques need to deposit atoms homogeneously to glow 

thin films of uniform depth. It is important that the grain size is uniform 

throughout the area and thickness of the film. Difficulties are caused by, for 

example, residual gas or beam current instability. The SIB source operated at a 

pressure of 0.05 Pa in this experiment. The beam profile and current density 

were carefully examined. Both these characteristics are critical in the 

deposition of thin films. 

The investigation considered the effects of various SIB operational parameters, 

as well as the geometry of the extraction grids, on the current density. Careful 

note was also made of the beam profiles, and how they varied with the total 

extraction current. 

Current measurement was made usual cylindrical detector alignment as a 

Faraday cup. Fig.3.1 indicates how the X-Z movement of the Faraday cup 

allowed measurements to be made at various distances from the source. 
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Ion beam source 

x 
Faraday cup 

z 
Fig. 3.1 : Movable directions of Faraday cup 

3.2 Current density 

A Faraday cup of aperture 1.0 cm was mounted on a linear translator vertically 

beneath the ion source, and on its axis of symmetry. Measurements of the 

current density were made by varying the following: 

1. beam voltages in the range 500 - 1500 V, 

2. beam current from 5 - 25 rnA, 

3. accelerator grid voltages of 100,300 and 500 V, 

4. and extractor grid to Faraday cup separation (z) of 5 - 20 cm. 
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3.2.1 Current density as a function of distance from the ion source 

The source was operated in both automatic mode (ion source parameters preset 

for Ar+ by the manufacturer) and manual mode (where the ion source 

parameters were independently controllable). The measurements indicated in 

Table.3.1 were produced as follows: 

1. auto mode (accelerators grid 300 V); 

2. auto mode with neutraliser (accelerators grid 300 V); 

3. manual mode (accelerators grid 100 V); 

4. manual mode (accelerators grid 300 V); 

5. manual mode (accelerators grid 500 V). 

As expected, the measured beam current drifted with time. This was attributed 

mainly to filament aging. The drift was as much as 0.5 % min- t when 

uncompensated. The source conditions were constant. However, it could be 

easily corrected for by adjusting the filament current. This resulted in a 

negligible variation over a processing run. 

A typical set of data, taken for 20 rnA beam of 1000 e V ions, is given in 

Table.3.l. For given operating conditions, an increase of around 50 % in 

current density was obtained with beam neutralisation on as compared with 

beam neutralisation off, at a given source-sample separation. 
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Mode 
Current Density (rnA/cui) 

Auto Manual 
Z(cm) 300eV 300 eV* 100eV 300eV 500eV 

5.0 1.77 1.92 2.89 1.88 1.50 
7.5 0.82 1.19 1.78 1.01 0.74 
10.0 0.55 0.74 1.21 0.61 0.45 
12.5 0.30 0.44 0.70 0.38 0.29 
15.0 0.20 0.29 0.39 0.25 0.20 
17.5 0.l2 0.21 0.31 0.20 0.l6 
20.0 0.l2 0.l6 0.25 0.l7 0.l5 

Table.3.1 : Measured current density from 3 cm Kaufman-type 

SIB source under various operating conditions (* with neutraliser) 

3.2.2 Effect of accelerator voltage on current density 

Fig.3.2 shows the variation of current density as a function of accelerator 

voltage for various source-to-detector separations between 5 and 20 cm. The 

beam voltage and current were 1000 V and 20 rnA respectively, and the source 

was controlled manually. The current density was affected by the accelerator 

voltage ; variations in the region 0.1 % - 0.5 % per volt were noted. However, 

the use of a stabilised PSU ensured that any drift was negligible. 
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Fig. 3.2: Relationship between the current density and accelerator voltage at 

various distances below ion source with 1000 eV, 20 rnA Ar+ ions 

(manual mode control) 

Fig.3.3 shows the relationship between the current density and total current of a 

1000 eV, Ar+ ion beam, at various distances below the ion source. The source 

was in automatic mode with the accelerator grid at a potential of 300 eV. The 

current density decreases with distance from the source. Clearly, it increases 

with the beam current, although this increase is not linear. 



ChapterJ, SIB source characterisation 55 

2 

1.8 1000 eV, Acc Vol 300 V 
+ 

,-. 1.6 
N 

+Scm 
e .7.Scm 
~ 1.4 

.... 10cm g 1.2 
.0 XU.Scm + 
'r;; 1 

'" 15 cm 1:1 
~ 

Q .... 0.8 e17.S cm • 1:1 + ~ +20cm r.. 0.6 r.. • .... = 
U 0.4 

A + X 
0.2 

~ '" + 
0 

0 5 10 15 20 25 

Beam Current (rnA) 

Fig. 3.3 : Relationship between the current density and total current of a beam 

of 1000 e V AI+ ions at various distances below the ion source, (automatic mode 

accelerator grid potential of 300 V) 

3.3 Beam profile 

3.3.1 Beam profile variations with various grid types 

One dimensional profiles of the SIB beam were made when a 5 mm diameter 

Faraday cup was moved perpendicular to the beam direction. The source was 

operated under identical conditions to those used for sample production. Three 

different types of extraction grid were used : 



Type 1 grid : "uniform coverage" 

Type 2 grid : "focused" 

Type 3 grid: "collimated" 
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and the effect of extraction optics on both the ion current density and the beam 

profile was investigated. Typical beam profile data are shown in Fig.3.4 for 

total extraction currents in the range 10 - 25 rnA at a source-sample separation 

of 5 cm when a type 3 grid is installed. The data from Fig.3.4 indicate that the 

axis of symmetry of the beam can shift when the extracted current is changed 

and that it need not necessarily remain precisely aligned with the geometrical 

axis of the source. For thin film deposition, it is important to align the 

geometrical axis of the source precisely for maximum current density on the 

target. Clearly the area of approximately uniform beam density decreases 

significantly when the current density is itself increased. The beam spreads 

decrease with increase of beam current as shown in Fig.3.5. Table.3.2 gives the 

measured beam diameter for 90 % ~d 80 % uniformity at typical distances 

below the source for Type 1 and Type 2 grids. Source operating conditions 

were 1000 V and 20 rnA total current in both cases. 
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Distance Type 1 grids Type 2 grids 
below ion diameter (em) diameter (em) 
source 
(cm) 90% 800/0 90% 80% 

5.0 0.85 1.15 0.70 1.10 
7.5 1.05 1.40 0.80 1.15 

10.0 1.40 2.00 0.85 1.20 
12.5 1.85 2.95 0.80 1.25 

Table.3.2 : Relationship between beam diameter for 90 % and 80% unifonnity 
and vertical distance below sources for Type 1 and type 2 grids 

3.3.2 Effect of grid type on current density 

The effect of grid optics on current density as a function of source-sample 

distance is shown in Fig.3.6. The "focused" Type 2 optics delivers significantly 

greater current densities (by up to a factor of 2) at short and intennediate 

distances. However, this perfonnance is lost at greater distances as the beam 

diverges. The "unifonn coverage" Type 1 arrangement produce slightly higher 

values compared with the "collimated" Type 3 grid at short distances on 

account of the steeper "top-hat" beam profile of the fonner. The data of 

Table.3.2 also indicate that the fonner arrangement is to be preferred in tenns 

of beam profile. 



3.4 Summary 
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Fig.3.6 : Effect of grid type on current density 

Ion beam technology is in widespread use in both materials processing and 

analysis. For such applications it is desirable to know the extent of beam non-

uniformities because ion beams are rarely spatially uniform[52]. Ion beam 

spread, caused by charge repulsion, is a common problem in all area of low-

energy ion beam work[53]. In IBSD experiments, beam divergence results in 

reduced current density on the target[54]. 

In this work the beam divergence was increased by a decrease of beam current, 

which half-angle from the beam perpendicular axis was 5 o. This value found a 

good agreement with the minimum half-angle of 5 - 8 0 typically with 90 -
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95 % of the beam within the divergence angle from the beam centre line[20]. 

Consequently, the beam profile and current density characteristics of the SIB 

source used in this work needed to be thoroughly evaluated. The neutraliser 

inhibited beam spread and increased the current densities by typically 50 %. 

Decrease of accelerator voltage was also effective to increase current densities, 

and separation of target and ion source should be minimised in order to 

increase current density. 

These experiments clearly identified stable SIB operating conditions that were 

later required for IBSD. 
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4 ION BEAM SPUTTER DEPOSITION 
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4 Ion beam sputter deposition 

4.1 Introduction 

When TiNi alloy films are used for actuation purposes, it is important that the 

temperature hysteresis of the B2-R transformation is small and that thermal 

response is good. Generally, in order to grow TiNi alloy thin films, a pre

alloyed target has been used[55]. However, it is very difficult to control the 

TiNi composition, because films deposited by sputtering with such a TilNi pre

alloyed target show Ti depletion and Ni enrichment. The difference in 

composition can cause a change of transformation temperature or structure of 

the TiNi films causing a change in film properties. 

Generally, as-deposited TiNi alloy thin films grown by conventional sputtering 

methods such as RF and DC sputtering, and magnetron sputtering are 

amorphous. Typically the TiNi alloy films need annealing at 500°C for 1 hour 

to crystallise. Alternatively, if the substrate temperature is kept over 200 DC, 

shape memory effect can be exhibited[55]. Smy et a/[56] have calculated 

energy distributions of sputtered species at the substrate in magnetron 

discharge processes using Monte Carlo simulations, which suggest that < 1 % 

of the flux ofTi atoms sputtered at 10 mTorr (1.33 Pa) have energies exceeding 

1 e V. In contrast, average energy of Ti and Ni neutrals in IBSD is likely to be 

around 15 - 20 eV[57]. Kinetic energies could be dependant on working gas 
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pressure, however the values for IBSD are possibly more than 10 times bigger 

than the calculated values for magnetron sputtering. However, Turner et al [58] 

obtained average kinetic energies of approximately - 10 e V at chamber 

pressures of 10 mTorr (1.33 Pa). Differences in energy distribution of 

depositing atoms would be assumed to playa significant role in accounting for 

the differences observed in the nature of TiNi films deposited by conventional 

sputter deposition and by IBSD. 

Chapter 2 introduced IBSD as a method of producing thin films. In this study, 

the Kaufman type source was operated under high vacuum « l.3xlO-3 Pa). 

Sputtered atoms were deposited onto substrates of silicon and glass. Thin films 

of, for example, aluminium, titanium and nickel, less than 5 Jlm thick, were 

produced by IBSD. These films were estimated by the deposition rate and 

sputtering yield. Non-alloyed, segmented, targets are proposed in order to 

readily control the composition of the TiNi alloy by adjusting the relative areas 

ofTi and Ni. 

4.2 Arrangement of apparatus for IBSD 

The schematic diagram of the geometrical set-up is shown in Fig.4.1. 125 rnA 

of 1500 e V argon ions were drawn from the Kaufman source and used to 

sputter-deposit thin films (<2 Jlm) onto substrates of glass and silicon. A 0.5 cm 

aperture was located 5 cm vertically below the Kaufman type source. The 

target was inclined at 45 0 to the vertical to maximise the sputtering yields and 
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mounted 2 cm away from the substrate. Targets of aluminium, titanium and 

nickel 50 J.lm thick were used. 

O.Scm 

Cover 

FigA.l : Geometrical set-up for deposition 

4.3 Target and substrate temperature as a function of sputtering 

The equilibrium temperature during film deposition was measured at the target 

and substrate positions with a K-type thermocouple and shown as a function of 

time in FigA.2. The beam voltage and beam current are 1250 eV and 25 rnA, 

respectively. Under the operating conditions used, the target and substrate 

reached equilibrium temperature of 220 °C and 170 °C respectively after 30 -
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40 min. As described in Chapter 2, by the magnetron sputtering deposition 

method, temperatures at the substrate of 80°C are reached in a high vacuum of 

10-5 Torr (1.3xlO-3 Pa). Substrate temperatures by ion beam sputter deposition 

are thus much higher than by magnetron sputtering. The temperature rise is 

mainly caused by the impact of secondary electrons. In magnetron sputter 

deposition, the temperature rise of the substrate is small because many 

electrons collide with residual gas molecules and lose energy before they reach 

the substrate. 
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Fig 4.2: Target and substrate temperature as a function of sputtering time 
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4.4 Operating conditions for thin film deposition by ion beam sputtering 

4.4.1 Sputtering yield from targets of AI, Ti and Ni 

In thin film deposition, the sputtering yield is the most important quantitative 

value for sputtering. Table. 4.1 shows the relationship between the sputtering 

yields of various materials and various beam energies by irradiated Ar+ 

ion[59,60]. The sputtering yields increase with the beam voltage and the values 

depend on the material. Fig.4.3 shows the relationship found by other workers 

between the sputtering yield[59,60] and atomic number for 600 eV Ar+ ions. 

The sputtering yield gives the removal rate of surface atoms by ion 

bombardment. The atomic numbers of aluminium, titanium and nickel are 13, 

22 and 28, respectively. However, the sputtering yields do not increase with the 

mass of materials. In the low energy region, the sputtering rate increases 

periodically in order of atomic number up to a maximum for univalent metals 

of the Ib group such as copper (eu), silver (Ag) and gold (Au). The sputtering 

yields vary periodically with atomic number ; yields increase consistantly as 

the d-shells are filled. The deposition rate, however, is not only dependent on 

the sputtering yield. The deposition rates of different materials, sputtered under 

identical conditions, are related to the sputtering rates. However calculations of 

the deposition rates directly from the yield values are extremely difficult. The 

effects of secondary electrons are one of several complications. The values, 

shown in Table. 4.1, should be regarded only as a general guide. 



Chapter 4, Ion beam sputter deposition 67 

300eV 600 eV 1000 eV 2000 eV 
Al 0.65 1.24 2.0 2.0 
Ti 0.33 0.58 - 1.7 
Ni 0.95 1.52 2.1 -

Table. 4.1 : Sputtering yields of various materials for Ar+ ions[59,60] 
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Fig.4.3 : Relationship between sputtering yield and atomic number for Ar+ 

(Selected elements are labelled) [59,60] 
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4.4.2 Relationship between film thicknesses, beam voltages and beam current 

Optimum sputtering conditions were determined by varying the source 

operating voltage from 1000 to 1500 V and total ion current from 5 to 35 rnA. 

Deposition rates were obtained by measuring film thicknesses with a stylus 

profilometer for total sputtering times up to 180 minutes. The film thickness 

for aluminium deposited onto silicon, is plotted in Fig.4.4 as a function of 

source operating voltage and relative position on the substrate. Aluminium 

targets were selected for these trials as they were inexpensive and furthermore, 

the sputter yield lies intermediate between that ofNi and Ti. Results for Al are 

therefore expected to be indicative of deposition rates for Ti and Ni. Silicon 

substrate are convenient because they are easy to polish. The total source 

current was 25 rnA. This corresponded to a current density of - 1 rnA cm-2 at 

the target. Position along the length of the substrate was defined relative to the 

foot of the perpendicular to the target plane from the centre of the ion beam 

bombarded area. Fig.4.5 illustrates the maximum aluminium film thickness on 

substrate as a function of beam voltage. At an incident ion energy of 1250 e V, 

the film thickness on the substrate is maximum. At greater energy, the film 

thickness falls with beam voltage. Fig.4.6 shows the maximum titanium film 

thickness on silicon substrate as a function of total beam current at a beam 

voltage of 1300 V. The rate of deposition increases with beam current at a 

given operating voltage. As the beam voltage increases, there is a steady 

increase in deposition rate up to around 1250 V. Beyond this operating voltage 

of 1250 V, there is a progressive decrease in the rate of deposition. Furthermore, 
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the unifonnity of coverage of the substrate is best at around 1250 V. Clearly, 

above 1250 V, the deposition rate actually decreases even though the total 

power to the system increases. This operating voltage was therefore used for 

subsequent film deposition. The deposition rate was also shown to increase 

steadily with total beam current; however, in order to maintain relatively low 

substrate temperatures, a maximum beam current of 25 rnA was used 

throughout this investigation. 

1.6 _---------------------, 

1.4 

0.2 

-+-1000 V 
_1100 V 

-*-1250 V 

o L-______________________________________ __ 

-20 -15 -10 -5 o 5 

Position on glass substrate (mm) 

Fig.4.4 : Film thickness as a function of source operating voltage 

and position on the substrate 
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FigA.5 : Relationship between maximum aluminium film thickness on silicon 

substrate and source operating voltage 
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FigA.6 : Relationship between maximum titanium film thickness on silicon 

substrate and total beam current 
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4.5 Titanium-Nickel (TiNi) Alloys 

4.5.1 TiNi thin film 

TiNi alloy thin films have been investigated for possible use in many 

applications such as micro pump[61], micro arm[62] and micro robot 

gripper[63,64], etc. Generally, a low vacuum of around 0.8 Pa is used in order 

to deposit TiNi alloy films by magnetron sputtering. The transformation 

temperature of a TiNi thin film changes by 100°C per percent change of the 

composition. In short, control of composition within 0.1 % in the range of 50.0 

- 50.5 at % Ni[65] is required in order to maintain the accuracy of the 

transformation temperature. The technology, which produces the alloy, must be 

capable of this degree of control. In this study, it is demonstrated that ion beam 

sputtering, under high vacuum, has the necessary levels of control. 

4.5.2 Target ofTilNi 

Deposition rates for nickel and titanium were measured separately and under 

identical conditions in order to determine the relative areas required in a 

composite target for deposition of TiNi. Glass microscope slides (30 mm x 15 

mm), washed with acetone and cleaned in an ultrasonic bath in methanol 

solution, were used as substrate. The long edges were oriented parallel to the 

plane of the diagram in Fig.4.1. The position along the length of the substrate 

was defined relative to the foot of the perpendicular to the target plane from the 
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centre of the ion beam bombarded area. 

FigA.7 compares the measured film thickness following deposition onto glass 

substrates for a sputtering time of 30 minutes. The beam voltage and the total 

beam current were 1250 eV and 25 rnA, respectively. The thicknesses of 

deposited Ti and Ni films were then measured by stylus profilometer. Within 

the experimental errors, the deposition rates were uniform over - 70 % of the 

substrate area, for the geometry and source operating conditions used. 
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FigA.7 : Film thickness for Ti and Ni as a function of position 

Consequently, to deposit stoichiometric TiNi, TilNi targets in the form of 

sectored disks of diameter 4 cm were fabricated, as shown in Fig.4.8. They 
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have eight 45 0 sectors alternating between Ti and Ni. The target used was a 

composite of 99.9 % nickel foil segments (50 Jlm thick), mounted on a 4 cm 

diameter 99.6+ % titanium foil disc (50 Jlm thick)[66]. 

o Ti film 
• Ni film 

FigA.8 : Schematic of 8-sector TilNi target 

(Equal areas of Ti and Ni were used) 

4.5.3 TiNi thin films produced by SIB 

FigA.9 shows the relationship between thickness of the deposition and the 

relative position for TiNi film deposited onto an unheated glass substrate for a 

total deposition time of 180 min and a target/substrate separation of 2 em. The 

deposition rate was about - 0.5 Jlm hr-I
, for incident ions of energy of 1250 eV 

and current 25 rnA. The deposited films were observed to have a mirror finish , 

excellent adhesion to the substrate and appeared featureless when examined 

under an optical microscope. 
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Thin films of TiNi were produced by IBSD from a composite target. The 

operating conditions were optimised to produce uniform coverage and a low 

rise in the substrate temperature. 

The measured deposition rates (0.5 J.lm hr-I) were sufficiently high for typical 

applications. Within the experimental error, the rates measured for Ti and Ni 

separately were identical as shown in Fig.4.7. This information was used to 

develop segmented TilNi targets. However the associated temperature rise of 

170°C was significant. 

Above a critical pressure of 25 mTorr (2.3 Pa), Smy et a/[56] commented that 
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pure diffusion conditions apply for titanium with consequent thennalization of 

kinetic energy. The thennal equivalent of the average kinetic energies involved 

in the IBSD process is of the order lOs K so such large differences can be 

expected to have considerable effect on film growth conditions[67]. 

In the next chapter, the TiNi thin films deposited by IBSD will be characterised 

by electrical resistivity measurement, resistance measurement and x-ray 

reflectometry. 



Chapter 5, Characterisation ofTiNi shape memory alloy thin films 76 

5 CHARACTERISATION OF TINI SHAPE MEMORY ALLOY THIN FILM 
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5 Characterisation of TiNi shape memory alloy thin films 

5.1 Introduction 

This chapter reports on the growth of TiNi shape memory alloy thin films by 

ion beam sputter deposition (IBSD) using the Kaufman-type source, for 

micro actuator applications. TiNi thin films are deposited on unheated glass 

substrates by IBSD. The films were characterised by electrical resistivity 

measurements and x-ray reflectometry. R-phase and martensitic 

transformations were seen without high temperature annealing. The production 

of TiNi thin films having shape memory properties has been of particular 

interest. They are usually prepared by DC or RF magnetron 

sputtering[68,69,70]. The shape memory properties are compared with those of 

films prepared by DC and RF magnetron sputtering. 

5.2 Properties of TiNi shape memory alloys 

5.2.1 Crystal structure ofmartensitic phase 

Fig.5.1 shows a simplified model of the shape memory effect mechanism. The 

martensite type transformation can be accurately defined as "lattice 

transformation by shearing deformation based on the cooperation motion of 

atoms"[71]. Fig.5.2 shows the relationship between the resistance curve and 
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transformation temperatures for TiNi. Single crystal parent phase TiNi is 

cooled to a temperature below Me (T< Me). The martensite phase then appears 

and the TiNi is then deformed. The original shape is recovered by reverse 

transformation upon heating to a temperature above Ae. On heating, the 

transformation phase for TiNi at T>As is B19' martensite transformation to the 

parent phase (B2). This has a monoclinic structure (M-phase). At~<T<Ae. the 

transformation phase is M-phase and B2, then heating up above Ae. the 

transformation phase becomes B2. On cooling, at T>Ms' the transformation 

phase is B2, then, the transformation phase is M-phase and B2 at Mr<T<Ms. 

Below Me. the transformation phase becomes M-phase. 

Heat up (T> AJ 

____ ~ ________ Cool down 

(T<M.) 

(a) Parent phase (b) Martensite phase 

-+
Deformation 

Elasticity 
deformation 

(T<M.) ______ t-t.__ 

(c) Deformed martensite phase 

Fig.5.1 : Mechanism of shape memory effect[72] 
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B19' B19'+B2 B2 

M-phase 

M-phase 

B19' B19'+B2 B2 

Temperature 

Fig. 5.2 : Diagram of resistance curve and transformation temperature for TiNi 

5.2.2 Shape memory effect 

" Shape memory alloy is unique material, which recovers its original shape from 

the deformation when it is heated above the martensite temperature. Fig.5.3 

shows three stress-strain curves. Diagram (a) shows normal metallic material. 

When the elastic region is permanently exceeded, it is deformed when 

unloaded. The original shape can be recovered in the shape memory alloy of 

(b), when it is heated up. At low temperatures below the martensite temperature, 

large strains remain. These strains disappear when it is heated above the 

austenite start temperature (AJ. Diagram (c) indicates super elasticity 

materials; the original "shape is recovered after unloading, when it is deformed. 

This phenomenon is observed in the high-temperature range above the 

austenite temperature. 
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In the shape memory effect, the strain which the sample exhibits below As, 

disappears after heating above Ar, and, in the superelasticity effect, the strain 

which the sample gave above Ar, disappears on removal of the stress. The 

shape recovery originates from the reversible transformation. Therefore, it is an 

essentially identical phenomenon, and both effects only differ between 

methods for inducing the reversible transformation. In most alloys, which show 

shape memory effect, the superelasticity effect also occurs. Therefore, perfect 

shape recovery in the superelasticity effect is based on the crystallographic 

reversibility of the transformation, as is transformation in the shape memory 

effect. Fig.S.4 shows the relationship between the critical stress for slip and 

temperature in regions where shape memory effect and superelasticity are 

observed. If the stress for slip is above line (A), slip never recovers upon 

heating or unloading. If the stress is below line (B), the superelasticity effect 

should not appear. In Fig.S.4, shape memory and superelasticity effects can 

occur in the region between lines (A) and (B). 
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Elasticity 
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Strain (%) 

(a) Nonnal metal 

Load 
-~ 

Load -
~ 

Unloading 

Strain (%) Strain (%) 

(b) Shape memory alloy (c) Super elastic alloy 

Fig.5.3 : The stress-strain curve of shape memory alloy 

and super-elastic alloy[73] 
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Fig. 5.4 : Schematic diagram representing the region of shape memory effect and 

superelasticity in temperature-stress coordinates; (A) represents the critical stress for the 

case of a high critical stress and (B) represents the critical stress for a low critical 

stress[55] 
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5.2.3 Electrical and thermal characterisation of TiNi 

Generally, the electrical resistance of metals increases almost linearly with 

temperature. Though, in case of the TiNi alloy, the general tendency is the 

same, near the transformation temperature unique behaviour caused by the 

martensitic transformation is shown. Differential scanning calorimetry (DSC) 

is used to determine the difference in power input as a function of temperature 

to both sample and a standard. In order to equalise the temperature of sample 

and standard, the DSC adjusts the power input for a given heating or cooling 

rate. A convenient rate for heating or cooling is 10 ± 0.5 °C/min. In the case of 

the shape memory alloy, it is possible to obtain transformation temperatures 

from the DSC data. 

Fig.5.5 shows the transformation sequence, comparing resistance and DSC 

curves. Fig.5.5 (a) is an idealised resistance versus temperature curve that can 

be used to determine transformation temperatures for SMA materials. Fig.5.5 

(b) can also be used to determine transformation temperature. The electrical 

resistance begins to increase at the ~ temperature on the electrical resistance -

temperature curve, when the sample is cooled from above Ar- This temperature 

coincides with the onset of the first peak in the DSC cooling curve. These 

changes are attributed to a first order transformation with ~ indicating the start 

temperature of the R- phase change, ie onset of the transformation to the 

rhombohedral phase. The second peak in the DSC curve shows the change 

from the R- phase to the B19' phase. This corresponds to a decrease in 
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electrical resistance, which is the Ms temperature, namely, the beginning of the 

R~B 19' phase transformation. 

(a) 

Temperature 

~ 

Heating 

Fig.5.5 : Schematic diagram of electrical resistivity versus temperature curve 

(a) and DSC curve (b) ofa TiNi shape memory alloy[55] 

5.3 Deposition of TiNi shape memory alloy thin films 

TiNi thin films have previously been deposited by several techniques. These 

include vacuum vapour deposition, DC and RF sputtering and laser ablation. 

According to Ikuta et al[74], TiNi thin film deposition presents several 

problems s,:!ch as control of composition of the target and contamination during 

processing. 
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The phase transformation temperature of TiNi shape memory alloy is 

extremely sensitive to the composition of the alloy. As the proportion of nickel 

rises from 50 % to 50.5 %, the rate of transformation temperature rises by 100 

°C / %[65]. During deposition of TiNi thin film, the sample can become 

contaminated due to wall-bombardment in the chamber. Contamination could 

also occur due to the pressure of the working gas. 

It is likely that in thin film deposition, DC and RF magnetron sputtering 

techniques will be applied more for commercial use. The deposition rate by DC 

and RF magnetron sputtering is greater than other deposition techniques. 

However, after thin film deposition, high temperature annealing is needed. 

Generally an annealing temperature of 500 - 550°C must be maintained for 20 

- 30 minutes in order for the alloy to exhibit the shape memory effect. 

5.3.1 Annealing temperature of TiNi shape memory alloy deposited by 

magnetron sputtering 

Various authors have investigated the use of conventional DC magnetron and 

RF magnetron sputtering to deposit TiNi thin films. In order to exhibit SMA 

properties it is found that films grown by magnetron sputtering must be 

deposited on substrates at elevated temperature or subjected to post-deposition 

annealing. Amorphous TiNi is formed in the as-deposited state and typically 

annealing must be carried out at 500 - 550°C for 10 - 60 minutes in order to 
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exhibit the shape memory effect. A major drawback for microsystems 

applications is that these processes are largely incompatible with directly 

integrating SMA thin film growth with other MEMS fabrication technologies. 

Annealing temperatures and annealing times, as quoted by various authors, are 

shown below in Table.5.l. From Table.5.l, annealing temperatures of 450 -

500°C and annealing times around 1 hour have been commonly used. 

According to K. R. C. Gisser[75], the shape memory effect was observed after 

deposition by magnetron sputtering on substrates heated to - 460°C. 

Magnetron sputtering 

Annealing Tem~erature Annealing Time 

K.R.C.Gisser 540 ·C 20-30 min 

S.Miyazaki 450 ·C 1 h 
E.Quandt 700 ·C 1 h 

YNakata 450-500 'C 10 min 

Table.5.1 : Annealing temperatures and times using magnetron sputtering 

quoted by various authors[75,77,76,78] 

5.3.2 Conditions for IBSD, compared with magnetron sputtering 

Control of the film quality is compromised because the magnetron sputtering 

takes place at relatively high chamber pressures of typically 10 - 200 mTorr 

(1.3 - 26 Pa), and it is limited became the current density and voltage cannot be 

independently controlled except by varying the working gas pressure. In 

contrast, IBSD using a Kaufman type source operates with much lower 

chamber pressures in the 0.05 - 0.5 mTorr (6.5 - 65 mPa) range. This allows 
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independent control of energy and current density of the bombarding ions with 

consequent improvement in film quality. 

Conditions such as working pressures used by various authors, are introduced 

below. In Table.5.2, deposition rates by magnetron sputtering are 2 - 10 J.U11I'h. 

These rates are 4 - 20 times bigger than those for ion beam sputter deposition. 

The deposition rate, however, is dependent on the pressure of the working gas. 

Under the condition of same current and voltage, the deposition rate could be 

increased with a working pressure below 17 Pa[79]. In ion beam sputtering, the 

working pressure is lower than that for magnetron sputtering, but the sputtering 

rate is much smaller than that of magnetron sputtering. However, under high 

vacuum as used for ion beam sputtering deposition, sputtered atoms suffer 

much less scattering by the residual gas atoms. For example, T.Smy et al[56] 

investigated the change of kinetic energy of titanium atoms with change of 

pressure of gas during magnetron sputtering. The power and range of gas 

pressures of the gas are 100 Wand 5 - 25 mTorr (0.65 - 3.15 Pa), respectively. 

With increase in gas pressures where average number of scattering events rises, 

and the distribution of kinetic energy of sputtered atom enlarges toward the 

limiting form, the fraction of kinetic energy of particles for titanium decreases 

dramatically. Additionally, increase of gas pressure causes a decrease in kinetic 

energy of sputtered atoms, which could influence thin film grown 

characteristics. 
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Magnetron sputtering 

Argon Pressure Deposi ti on rate Cathode Power 
D.S.Grummon 0.73 (Pa) 2.34-3.31 (Ilmlh) 619-644 (W) 

K.R.C.Gisser 0.27 (pa) 2 (Ilmlh) 

P.Krulevitch 1.1 (pa) 2 (Ilmlh) 

H.Holleck 0.4 (Pa) 6.7 (JlmJh) 300 (W) 

E.Quandt 0.4 (pa) 10 (Ilmlh) 300 (W) 

Ion beam sputtering 

K.Tsuchiya 0.05 (pa) 0.5 (Ilmlh) 

Table.5.2 : Argon pressure, deposition rate and cathode power 

using magnetron sputtering by various authors, compared with ion beam sputtering 

deposition[80,75,81,82,76] 

5.4 TiNi thin film characterisation by X-ray reflectometry 

The SMA films were characterised by x-ray reflectometry using grazing 

incidence x-ray analysis (GIXA). Effects observable in GIXA include 

fluorescence, diffraction, evanescent wave propagation, specular reflection and 

diffuse scatter[83,84], all of which yield information on surface and sub-

surface properties ( as shown in Fig.5.6). The GIXA software program, which 

was produced by Bede Science Instruments Ltd. in the UK, has worked on the 

principles of calculating the electric field inside the materials then multiplying 

the appropriate cross-section for scattering or fluorescence. 
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Fluorescence 
Asymmetric Diffracted Beam 

Evanescent Wave 

Fig.5.6 : Effect observable from grazing-incident X-ray scattering 

5.4.1 Physical principles of X-ray reflectometry 

The intensity as a function of angle in grazing incidence X-ray scattering 

measurements offers statistical information about the surface. Refractive index 

n of materials for X-rays is given by : 

n =1-8 -iP 

where 8 and P are the real and imaginary parts of the refractive index n of the 

material. 8 and p are dependant on the X-ray wavelength and the composition 

of the material being examined. However, the values of 8 and p are both small, 

ranging from approximately 10-8 for hard X-rays (A.~0.01 nm) to approximately 

10-2 for very soft X-rays (A.~1 0 nm)[84]. The index of complex refraction takes 

the effect of absorption into consideration. Total external reflection will occur 

below a certain critical angle 9c• In this region, the X-ray beam penetrate a 
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small distance into the scattering material. Typically, the critical angle for total 

reflection of X-rays is a fraction of a degree. When the observed intensities 

agree with the theoretically calculated spectrum, the value of thickness, density 

and roughness of each layer in the film are obtained. Reflection-factor R 

defined as the ratio of the intensities of the reflected and incident X-rays, and is 

calculable from the reflection-coefficient r as : 

The reflection coefficient is given by the Fresnel expression: 

where kj (perpendicular wave vector in data)) is given by: 

k _(27r)( 2 20)1/2 . - - n· -cos 
J A. J 

where nj is the index of refraction of component j. Layered materials can be 

also analyzed using the above formalism. X-rays are reflected and transmitted 

at each interface. For interference between X-rays reflected at the various 

interfaces, frequently called Kiessing fringes, the fringes are seen in a 

reflection factor[85]. Extraction of layer densities and thicknesses are 

optimised by fitting a model from the reflectivity measurements. The 

parameters of the simulation model included the order of the layer and 

approximate composition, thickness, etc. Then, the reflection factors are 

calculated, and are compared with the experimental measurements. This 
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calculation is repeated until the calculated values approximate closely enough 

to the measured reflectivity values. 

5.4.2 Characterisation of TiNi thin films 

Measurements of specular reflectivity curves for TiNi films deposited on 

silicon substrates were made using copper Ka radiation. The experimental data 

was fitted to the distorted wave Born approximation theory by varying the 

simulation parameters. The film was modelled as a homogenous layer of 

thickness 1500 nm with a 30 nm surface contamination layer having reduced 

normalised density. Table.5.3 gives the composition and density parameters 

required to give best fit at the critical angle to the data of Fig.5.7 (a), using a 

two layer model. The vertical axis shows the x-ray intensity in counts sec-I and 

the horizontal axis shows the angle of reflection in seconds of arc. The data is 

consistent with near equi-atomic composition of the TiNi film. The extreme 

sensitivity of the technique to changes in composition is also indicated in 

Fig.5.7 (a), where the simulation has been run for situations when the nickel 

comprises 25 % and 75 % of the surface (30 nm) layer. Effects of changes in 

film density are illustrated in Fig.5.7 (b). Normalised to the theoretical density 

of TiNi, the simulation has been run for densities of 0.5, 0.75 and 1.0 of the 

theoretical value. Best fit to the experimental data, according to Fig.5.7 (b), is 

obtained for a normalised density of 1.0. 
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Layer Composition (x) Normalised Density Thickness (run) 

Substrate Si 1.0 1.0 substrate 
SMA film Ti(x)Ni(l-x) 0.5 1.0 1500 

Surface layer Ti(x)Ni(l-x) 0.5 0.98 30 

Table.5.3 : Parameters used to fit the x-ray reflectometry data in Fig.5.7 
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Fig. 5.7 (a): X-ray intensity versus angle of reflection for grazing angle 

reflection from TiNi film, where the best fit to the experimental data was 

obtained by varying the composition for a fixed normalised density of 1.0 
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Fig.5.7 (b) : X-ray intensity versus angle of reflection for grazing angle 

reflection from TiNi film. Best fit to the experimental data is obtained by 

varying the normalised density for a fixed equi-atomic composition 

5.5 Electrical Characterisation of TiNi thin films 

5.5.1 Resistivity of TiNi thin films 

Room temperature resistivities for TiNi thin films were measured at various 

points on glass substrates using the four-point probe method and average 

values were obtained. The data plotted in Fig.5.8 correspond to the film 

thickness measurements of Fig.4.9 and show resistivity values of around 1 

1l0 .m over areas of uniform thickness of deposition. Average film thicknesses 

were - 1.5 Ilm over 20 mm regions of the substrate. Table.S.4 shows resistivity, 

composition and film thickness for TiNi shape memory alloy, which were 
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measured by various authors. Resistivities were measured by K.Ikuta[86] and 

M.Kohl[87] at room temperature of 20°C. According to Table.SA, those 

resistivities for TiNi shape memory alloy are around 1 J.lQ.m, dependant on 

composition. 

6 

5 I. Resistivity 1 

• 
• • 

1 • • 
o 

-20 -15 -10 -5 o 5 

Position on glass substrate (mm) 

Fig.S.8 : Resistivity of TiNi film versus relative position 

Resistivity (Jln In) Composition (at.%Ni) Film Thichness (Jlm) 

H.Holleck 0.84 54 10 

K.Ikuta 1.2 51.7 -
A.D.Johnson 0.06-0.1 - 20 

M.Kohl 1.24 49.6 8 

Table.SA : Resistivity, composition and film thickness for TiNi shape memory 

alloy by various authors[82,86,69,87] 

10 



Chapter 5, Characterisation of TiNi shape memory alloy thinfilms 94 

5.5.2 Resistance of TiNi thin films 

The behaviour of film resistance as a function of temperature during thermal 

cycling from room temperature to 165°C is shown in Fig.5.9. On heating, the 

line of best fit to the data points gives a temperature coefficient of resistance 

for the TiNi film of 4. 7x 1 0.3 
/ °C, compared with tabulated values of 3 .8x 1 0-3 

/ 

°C for pure titanium and 6.0x 1 0-3 
/ °C for pure nickel. A change in slope of the 

resistance- temperature characteristic from 9.8xlO-3 n / °C below 50°C to 3.2 

10-3 n / °C above 100°C is indicative of the austenitic transition with the 

austenite start (As) and austenite finish (Ar) temperatures estimated as 60°C 

and 85 °C respectively. Upon cooling, the onset of the rhombohedral (R-phase) 

transformation and martensitic transformation (Ms) occur at 62°C and 50 °C, 

respectively. 
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Fig.5.9 : Resistance ofTiNi film during thermal cycling 
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Table.5.5 shows transformation temperatures and composition for TiNi shape 

memory alloy measured by various authors. E.Quandt, Y.Q.Yang and 

K.Kuribayashi used magnetron sputtering to deposit those TiNi thin films, and 

E.Makino used vacuum evaporation to produce TiNi thin film. The 

transformation temperatures are significantly different with considerable 

dispersion. Differences in the transformation temperatures could be due to 

annealing temperature and age-treatment in Ni-rich thin films as suggested by 

S.Miyazaki et al[77]. They investigated transformation temperatures in sputter 

deposited TiNi thin films and concluded they are strongly influenced by age-

treatment in Ni-rich thin films. 

A, (0 C) At C) M,(o C) MtC) Composition 

E.Quandt 24 32 7 -38 46at.%Ni 

Y.Q.Yang 16 28 2 - 51.6at.%Ni 

E.Makino 60-70 - 30-40 - 44-50at.%Ni 

K.Kuribayash· 45.4 51.8 4.6 4.7 52-56at.%Ni 

Table.5.5 : Transformation temperature and composition for TiNi shape 

memory alloy by various authors[76,88,89,90] 

The electrical properties of TiNi sheets and thin films prepared by cold rolling 

and sputter deposition with thicknesses ranging from 160 to 8 J..UTl have been 

reported by Kohl et al[91]. They investigated the thickness dependence of 

transformation temperatures for TiNi in sheet form down to 20 Jlm. The 

temperature of the R-phase transition was found to be independent of thickness, 

however Ms showed a significant reduction at a thickness below 45 J..UTl which 
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was attributed to a grain size effect. A plot of transfonnation temperature 

versus Ni content, which is shown in Fig.5.l 0, for film thicknesses of 1 - 2 ~m, 

shows agreement with the R-phase transitions observed in the present work for 

50 at.%Ni. Agreement is also found with values quoted by Gyobu et al[65], 

relating to 10 ~m sputter deposited TiNi films, for both R-phase and Ms 

temperatures at equi-atomic composition. 
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Fig.5.l0 : Start temperatures of B2¢:>R transfonnation of TiNi alloy films crystallised 

by holding at 773 K for 3.6 ks, plotted against Ni content[65] 

(The point is corresponding to Fig.5.8) 
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5.6 Summary 

Thin films of TiNi shape memory alloy were produced by the IBSD method. 

The deposited TiNi films were characterised by measuring film resistance as a 

function of temperature and electrical resistivity of the films. The resistance

temperature curves indicated Martensitic, Austenitic and Rhombohedral phase 

changes associated with the shape memory effect. In contrast with films grown 

by magnetron sputtering, these films exhibit shape memory properties without 

high temperature annealing and can be deposited onto unheated substrates. The 

electrical resistivities showed excellent agreement with published data. The 

films were also characterised by GIXA and the experimental data were 

compared with theoretical simulation. The results indicated that the SMA films 

were of near equi-atomic composition and of density close to the theoretical 

value for TiNi. 
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6 THERMAL CHARACTERISATION OF TINI SMA THIN FILMS 
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6 Thermal characterisation of TiNi SMA Thin films 

6.1 Introduction 

In this investigation, TiNi SMA samples, which had been grown by ion beam 

sputter deposition, were characterised by temperature-time profile 

measurements. This was done in order to obtain values of thermal parameters 

influencing microactuator operation and behaviour and to measure phase 

changes indicative of the shape memory effect. For the derivation of thermal 

parameters, large samples of area of 1 - 5 cm2 were prepared. Thermal 

equilibrium and non-equilibrium temperature measurements were made on 

these samples by both direct thermocouple contact and by thermal imaging. 

Generally, phase transformation temperatures have been measured in TiNi 

shape memory alloys by using Differential Scanning Calorimetry (DSC). 

Measurement of transformation temperatures by DSC is highly reliable and 

repeatable. TiNi shape memory alloy thin films with lateral dimensions of less 

than a millimetre will be required for numerous applications. Transformation 

temperatures for such micro components cannot be easily measured. As an 

alternative method, samples were also prepared using simple lithographic 

techniques for characterisation of response times by the non-contact 

measurement technique of thermal imaging. 
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6.2 Thermal modelling 

Observations of phase changes in TiNi SMA thin films using Differential 

Scanning Calorimetry (DSC) have been reported in the literature by several 

. authors including, for example, Busch et al[68]. In the bulk material, changes 

in specific heat capacity of approximately a factor of five occur[92] as the 

material undergoes a phase transition. This change is readily observable as the 

power increase or decrease required to maintain constant rate of change of 

temperature in DSC measurements. Here an alternative strategy is adopted. The 

heating power is kept constant and the rate of change of temperature is 

measured. Direct electrical Joule (fR) heating is used to heat the sample by 

passing current from a constant current source through the film and the thermal 

behaviour described by a simple model as shown schematically in Fig.6.l. 

KA~T 

• • • • • + 
t I i i I 

! ; I ! mCpd(L\T)/dt i ! 

I > I > I 

~x I ~ 
, 
; 

1 .- .- .- .- .-

kA ~T/L\x 

Fig.6.1 : Heat flow during heating of SMA thin film by electrical current 

The balance of input power with radiated heat, heat loss by conduction and 

useful heat in raising the temperature of the sample is expressed by : 
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Equation 6.1 

where P is the total electrical power dissipated in the sample; 

m is the sample mass; 

Cp is the sample specific heat; 

i1T is the temperature rise above ambient temperature; 

K is the radiative heat transfer coefficient; 

A is the sample surface area; 

k is the thermal conductivity of the substrate; 

and i1x is the substrate thickness. 

From Eq.6.1 an approximate five-fold increase/decrease in d(i1T)/dt is implied 

for a five-fold decrease/increase in Cpo Phase changes in the TiNi SMA films 

should thus be measurable by observing the rate of increase or decrease of film 

temperature as a function of time for constant power input provided that the 

thermal mass of the film is not swamped by the thermal mass of the sensor. 

Maximum rates of heating can also be calculated from Eq.6.1 and, under 

steady-state conditions, d(i1 T)/dt = 0 and the radiative heat transfer coefficient 

can be obtained as K = P/(MT) if negligible heat is lost by conduction. 

Measurements of the radiative heat transfer coefficient enable rates of cooling 

to be predicted and hence realistic maximum cycling times for TiNi SMA 

microactuators estimated. 
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Idealised temperature and temperature gradient versus time relationships for 

the endothermic and exothermic phase transitions to be expected during 

thermal cycling of SMA materials are shown in Fig.6.2 (a) and 6.2 (b). For 

constant input power, an endothermic reaction will produce an arrest in 

temperature rise of the sample due to the heat required to drive the reaction. 

Conversely, an exothermic reaction will produce an arrest in temperature fall 

due to heat liberated during the phase change. For example, modelling the 

temperature rise as an exponential increase, Fig.6.2 (a) shows the effect to be 

expected on the temperature profile and on the gradient due to an endothermic 

phase transition. Fig.6.2 (b) models the temperature fall as an exponential 

decrease and shows the effect of an exothermic phase transition on the 

temperature profile and gradient. 
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Fig.6.2 (a) : Effect of endothermic phase change during sample heating 
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Fig.6.2 (b) : Effect of exothermic phase change during sample cooling 
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To detennine the optimum spectral window for measuring temperature profiles 

by thennal imaging, the black-body radiation spectrum was calculated for the 

temperature region of interest and shown in Fig.6.3. Equi-atomic TiNi SMA 

exhibits a martensitic to austenitic phase change on heating at around 60°C, 

which is endothennic, and on cooling exhibits an austenitic to martensitic 

transfonnation, often with a rhombohedral phase also being observed, which is 

exothermic and occurs over a temperature range of approximately 70°C - SO°C. 

At 60°C the black-body spectrum peaks at around 8 J.l.m and predicts a radiated 

power of approximately 0.5 W cm-2 J.I.ffi-I
• 
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Fig.6.3 : Black-body radiation spectrum for A. from 1 - 20 J.I.ffi 



Chapter 6, Thermal characterisation ofTiNi SMA and micro device scaling 1 05 

6.3 Thermal characterisation of TiNi shape memory alloys 

6.3.1 Radiative heat transfer coefficient 

TiNi samples of area 1.3 cm2 and 3.9 cm2 deposited on glass substrates were 

heated using input power ranging from 6 m W to 2.2 W and the maximum 

temperature rise above ambient determined for each power setting. Under 

steady-state conditions, and assuming no heat lost by conduction, the radiative 

heat transfer coefficient for TiNi can be obtained as: 

P 
K=

AIlT 
Equation.6.2 

Values ofK are plotted versus heating current I in Fig.6.4 (a) and 6.4 (b). The 

solid lines show the least-squares fit to the data points and are extrapolated to 

zero heating current. The data is consistent with a value of K of 30 W m-2 °C-I 

for small temperature rises; i.e. where the effect of heat loss by conduction can 

be assumed to be negligible. A steady increase with temperature in the value of 

K calculated from Eq.6.2 is to be expected and can be attributed to (a) 

increasing heat losses by conduction as the temperature rise above ambient 

increases, and (b) increasing heat losses by radiation as predicted by the black-

body spectrum. An apparent increase in K of around 20 W m-2 °C-I over the 

temperature range observed agrees well with calculated heat losses by 

conduction through the glass substrate assuming a temperature differential of 

100°C and the thermal conductivity of glass to be 1 W m-I °C-I. Consequently, 
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for the device scaling calculations presented in section 7.2 of Chapter 7, K= 30 

W m-20C-1 is taken to be a realistic assumption in evaluating radiative heat 

losses. 
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Fig.6.4 (a) : Radiative heat transfer coefficient 

as a function of heating current for 3.9 cm2 sample 
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6.3.2 Temperature - time profiles measurements 

A typical temperature versus time profile for the large area samples is shown in 

Fig.6.S, measured by miniature K-type thermocouple with a resolution of± 0.1 

°C. The expected profile of an endothermic phase transition is seen at 

approximately 60°C signalling the austenite start (~) temperature. This is 

consistent with best estimates obtained from resistance versus temperature 

measurements of thin-film samples prepared under identical conditions2
• 

Correction of the observed temperature for radiative heat loss effects as 

calculated in section 6.3.1 was attempted, but had the effect of increasing the 

noise level of the data due mainly to the limited resolution of the temperature 

measurements. In Fig.6.5, error bars associated with the temperature gradient 

data are calculated from the standard deviation of the points about the baseline 

gradient and, for clarity, temperature gradients below 40°C have been scaled 

by x 0.1. 
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Fig.6.S : Endothennic phase change during sample heating 

6.3.3 Thennal Imaging 

-'", 

U 

Temperature measurements have been made by thenna! imaging with an 

infrared focal plane array camera having a mercury-cadmium-telluride (MCT) 

imaging array manufactured by Cedip[93]. The MCT array was equipped with 

a split Stirling cooler which maintained the temperature to within 0.1 °C and 

operated in the 3 - S J.1m spectral band. Although not precisely matched to the 

peak of the black-body spectrum at 60°C, estimates of integrated power 

radiated at this temperature confinned that the detector would have ample 

sensitivity. Image data digitised at 12 bits and 128 x 128 pixels was captured at 

1 frame/second during sample heating and cooling. The maximum detector 
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frame rate for the system is 300 frames/second. The infrared field-of-view of 

0.84 mrad corresponded to a spatial resolution of 390 Jlm with the image 

forming lens used. Temperature profiles across regions of interest were then 

derived from the thermal images and displayed as mean or peak temperatures 

as a function of time. 

Fig.6.6 (a) shows a typical temperature versus time plot during sample heating 

with the gradient of the temperature profile. The profile shows the onset of the 

endothermic B 19' ~ B2 phase transition at approximately 54°C with 

completion at approximately 59 °C. A typical temperature versus time plot 

during sample cooling is shown in Fig. 6.6 (b), together with the gradient of the 

temperature profile. The profile shows the onset of the exothermic B2 ~ B19' 

phase transition at approximately 67°C with completion at approximately 54 

°C. 
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Fig.6.6 (a) : Endothermic phase change during sample heating 
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Fig. 6.7, Fig. 6.8 and Fig. 6.9 show thermal images obtained between 11 and 13 

sec during heating. Fig.6.7 (a) shows the thermal image and Fig.6.7 (b) shows 

temperature profiles across user-specified lines in the image. Average, 

maximum and minimum temperatures are shown across lines 1, 2 and 3 

appearing on the image in Fig. 6.7. Average temperatures differ by a few 

degrees between the locations selected, with higher temperatures recorded new 

the points of electrical contact. 

In the plot of average temperature versus time, which is shown in Fig.6.1 0, rate 

of change of temperature dT/dt increases significantly between 58°C and 60 

°C and is plotted in the lower curves for each of the selected lines in the image. 

The temperature at which dT/dt increases shows excellent agreement with the 

austenite start temperature (As) as determined by the resistance measurements 

described in section 5.5.2. Also, for the corresponding minimum and maximum 

temperatures, which are shown in Fig.6.11 and Fig.6.l2, very similar rates of 

change of temperature were also observed in the 1 ° -12 second time interval. 

With reference to Fig.6.l0, Fig.6.11 and Fig.6.l2 the rates of change of 

temperature dT/dt increase by around a factor of 5 at temperatures that are in 

broad agreement with As. According to Dautovich et al[94], the specific heat 

for bulk TiNi decreases by approximately a factor of 5 on heating through As. 

The data in Fig.6.l0, Fig.6.11 and Fig.6.l2, therefore shows the expected 

agreement with changes in specific heat. 
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Fig. 6.7 : Thermal image by non contact at 11 sec for heating 

«a) thermal image (b) temperature at lines) 
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Fig. 6.8 : Thermal image by non contact at 12 sec for heating 

«a) thermal image (b) temperature at lines) 
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Fig. 6.9 : Thermal image by non contact at 13 sec for heating 
((a) thermal image (b) temperature at lines) 
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6.5 Summary 

TiNi SMA thin films grown by an ion beam sputter deposition process have 

been characterised by thermal measurement. Thermal imaging using an 

infrared focal plane array camera has also been described. A simple model 

describing electrical heating of thin film structures is used to interpret 

temperature-time profiles and identify the material phase transitions 

characterising the shape memory effect. The austenite transformation 

temperature ofTiNi SMA films was observed by non-contact measurements. 

An analysis of thermal parameters allows effects of dimensional scaling to be 

predicted. The analysis indicates that SMA thin films appear to offer distinct 
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advantages over alternative mechanisms for implementing integrated 

micropositioning and microactuator devices. In the next chapter, heating and 

cooling speed for micro actuators will be discussed, and a FIB (focused ion 

beam) trepanning technique having potential for fabrication of micro actuator 

devices will also be described. 
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7 TINI MICROACTUATORS : TECHNOLOGY, FURTHER WORK AND 

CONCLUSIONS 
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7 Tini microactuators : technology, further work and conclusions 

7.1 Introduction 

In this chapter, dimensional scaling implications for achievable heating and 

cooling rates of TiNi microactuators will be considered. Also in this chapter, 

recommendations for future work will be described; namely for the fabrication • 

and assembly of complex actuator, micro parts, which require dimensional 

tolerances, alignment and placement on the nanometer scale, will be described. 

For this purpose, a focused ion beam trepanning technique will be evaluated. In 

addition, future further work and the conclusions of this thesis will be 

presented in the final section. 

7.2 Device scaling 

7.2.1 Introduction 

A prime concern in considering the integration of SMA microactuators in 

MEMS and micro optical electro mechanical systems (MOEMS) devices is the 

area, time and power trade-offs in scaling structures utilising the shape memory 

effect to micrometre dimensions. For example, area considerations will affect 

radiative heat loss (and heat loss by conduction if the structure is bonded to a 

substrate as opposed to free-standing) which in turn will affect speed of 

response. Speed of response will be dictated by cooling time, which will be 

dependent on the surface area to volume ratio and for a given area will 

determine the maximum thickness of the structure. Furthermore, maximum 
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permissible power dissipation will determine heating rate and so on. 

7.2.2 Effect of scaling 

Fig.7.1 illustrates the effect of scaling the lateral dimensions (with equal length 

and width) of the structure and has been calculated for uniform thickness of 5 

!lm, with power input P as parameter. As described in chapter 6, for the device 

scaling calculations, the radiative heat loss coefficient is estimated for the 

purpose of evaluating radiative heat losses. The vertical axis shows maximum 

rate of temperature increase assuming only radiative heat losses and with K = 

30 W m·2 °C-I• For instance, a 100 Jlffi structure powered by drive circuitry 

delivering 10m W would experience an initial temperature rise of ~ lOs °C S·I 

and a 10 !lm structure powered by drive circuitry delivering 1 m W would 

experience an initial temperature rise of ~ 106oC S-I. 
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Fig. 7.1 : Relationship between device lateral dimension, heating power 

and maximum heating rate[95] 

The limitations on high-speed operation of SMA micro actuators, however, are 

determined by the rate of cooling which is a function of the surface area to 

volume ratio (i.e. scales with device thickness) and is calculated, assuming no 

heat loss by conduction, according to : 

d(~T) = KA~T 
dt mCp 

Equation. 7.1 

The value Cp for TiNi[92] is assumed to be 490 J kg-loCI. The parameters 

appearing on the plot of Fig.7.2 relate to a structure having lateral dimension 
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(with length equal to width) of 100 J.lIl1 at a temperature LlT above ambient of 

50°C and shows the effect of varying the thickness of the structure on cooling 

rate. The magnitude of the maximum cooling rate is shown in °C S·I on the 

right-hand scale. In addition the left vertical axis shows values for MxCp and 

KALl T in units of Joel and Watts respectively. Over a fixed area, heat loss by 

radiation is constant and heat capacity is inversely proportion to thickness. For 

instance, cooling rates for structures of thickness 10 Jlm are approximately 50 

°C S·I while those for 1 Jlm thickness are approximately 500°C S·I. 
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Fig.7.2 : Relationship between film thickness and maximum cooling rate[95] 
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7.2.3 Summary 

The effects of scaling characteristic dimensions for TiNi SMA thin films, with 

input power as a parameter, on the heating and cooling rates of those films 

have been investigated. The cooling rates of TiNi SMA films are dependent 

only on the film thickness. In the simple model adopted, for a decrease in film 

thickness of a factor of 10, the cooling rate increases approximately a factor of 

10. Cooling rate is independent of the area of the structure and depends only on 

thickness, which imposes an upper frequency limit on the operation of 

microactuators employing SMA devices in the absence of assisted or forced 

cooling. 

7.3 Focused ion beam trepanning 

7.3.1 Introduction 

SMA thin films for micro devices and micro actuators can call for very 

complicated geometries[3]. In the fabrication of microactuators, 

micromachining techniques ranging from chemical etching to cold rolling have 

been investigated to produce structures with dimensions down to a few 

hundred ofmicrometres[91]. However, these sizes may have to be reduced still 

further for applications in the field of MEMS. Micro-components with typical 

dimensions in the 1 - 100 J.U11 range and having dimensional tolerances of order 

0.1 J.lffi have been called for. Examples include ultra-thin plates, beams, shafts 

and cantilevers. In this section, a novel combination of micro machining 

operations to produce self supporting nickel, stainless steel and mu-metal 
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plates with thicknesses down to 1 J.l.m has been used for fabricating more 

complex micro-parts such as disks, gears and cogs by direct writing using 

focused ion beam (FIB) trepanning with a resolution of 50 nm, as shown 

schematically in Fig. 7.3. 

SIB 
AI+ 1000eV, 1-2 mAlcm2 

ij,20-30min 

FIB 
Ga+ 50 keY 

MICROPARTS 
1-100 J.Ull 

SOnm 

BEARINO 
DISK 
ROD 
COO 
TURBINE ETC. 

Fig. 7.3 : Micromachining strategy 

The samples were inspected in situ during microfabrication by using the 

inherent scanning ion microscope (SIM) capabilities, using secondary electrons 

or ions. This can also be used for inspection during micro-part assembly. The 

FIB system allows imaging at a resolution comparable with the bcam diameter. 

Off-line inspection at higher resolution was achieved with a conventional 

scanning electron microscope (SEM). A further objective of the investigation 

was to explore methods of forming rudimentary 3-D structures. 
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7.3.2 Focused ion beams 

Fig.7,4 shows a schematic diagram of a focused ion beam column utilising a 

LMIS (liquid metal ion source). Focused ion beams have been drawn from 

liquid metal ion sources, such as Ga, In and Au-Si. The apparatus can generate 

ion beams of diameter 50 nm - 50 J.Lm with current densities of 1 - lOA cm-2 

and beam energies of < 40 ke V. The pressure in the ground target chamber 

should be maintained below 10-8 mbar. 

c:7 0= Blanking 
C7 ";:;;::J Plates 

c::;J c:::::J 

Lens 0 0 
Stack 0 0 
00 
L::::J !:::=:l 

o 0 
Deflection 

~;£/ Plates 

Target_ 

Fig.7,4 : Schematic of FIB column 

7.3.3 Production of micro-parts by FIB 

High aspect ratio micro-parts have been fabricated by process such as 

Lithographie Galvanoformung Abformung (LIGA). However, LIGA required 

an injection moulding step which is problematical for numerous materials of 

interest in MEMS, specifically SMA materials. 
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An alternative "direct-write" technique is therefore investigated here. Initial 

attempts to fabricate ultra-thin «1 J.lm) self-supporting metallic plates by 

showered ion beam milling met with only limited success due to difficulties in 

controlling the process. Fig.7.5 shows the geometrical setup for the production 

of micropart blanks. The currents I, and 12 were measured with I, - lmA and 

current 12 detected on mill-through with 0.01 J.lA. resolution. Mill-through times 

were found to vary widely under nominally identical processing condition. 

Consequently, it was essential to thoroughly investigate how the current 

incident on the sample varied with the source and vacuum chamber operating 

conditions. As discussed in Chapter 3, the effect of a variation in current 

density, the dependency of the beam profile on the total extraction current and 

the effect of extraction grid geometry on the current density in the milling 

process were studied. These factors are very important for ultra precision 

control in milling of thin foils in general, and will be applied in future work for 

preparation of SMA ultra thin foils. For instance, in SMA ultra thin foils, the 

dependence of phase transformation temperatures on composition and grain 

size are of considerable interest. 

Foils of aluminium, nickel, stainless steel, and mu-metal with nominal 

thicknesses in the range 5 - 25 J.lm (± approx 10 %) were obtained from 

Goodfellow, Cambridge[66]. They were used as the starting point in the 

preparation of micro-part blanks in the form of ultra-thin, self-supporting plates 

with thicknesses of - 1 J.lffi. The samples were generally of good surface finish, 

as observed by optical microscopy prior to SIB micromachining. Trials using 
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aluminium produced a mill-through time of 33 ± 6 mins for 5 pm samples and 

40 ± 6 mins for 6 ~m samples when bombarded with of 1000 eV Ar+ ions in a 

25 rnA beam with a source to sample separation of 5 cm. Both sets of data were 

consistent with a milling rate of 0.15 pm min-I. Similar results were obtained 

for 9 ~m and 12.5 ~m thickness of aluminium and various thicknesses of 

nickel, stainless steel and mu-metal. In all cases, end-point detection of mill-

through was by registering an increase of 0.01 ~ in the Faraday cup current 12 

above the background noise level of 0.01 ~A. 

I ~~~~~p. I o 

Foil 

12 'Faraday Cup 

Fig.7.5 : Geometrical setup for milling of micro-parts blank 

As described above, SIB micromachining or sputter deposition offers material 

removal rates or deposition rates of order 0.1 ~m rnA-I cm-2 min-I. In 

comparison, FIB micromachining gives selective area material removal over 
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areas comparable with the probe size at rates of order 1 J.UIl3 nA'l sec'l, 

(Selective area deposition by FIB is also possible, generally by decomposition 

of a gas phase precursor material, with similar deposition rates). Control of 

material removal and deposition with nanometer precision in both lateral 

direction and depth can thus be achieved. 

FIB micromachining was carried out both at the University of Warwick and at 

the Central Microstructure Facility of the Rutherford Appleton Laboratory. 

Designs were produced by commercially available CAD software. An example 

is the gearwheel shown in Fig.7 .6. Designs could be scaled prior to FIB 

micromachining provided that all pixels to be written by FIB were defined in 

the bit-map image file. The boundaries of the dark regions were trepanned 

repetitively under computer control until the sample was penetrated. Support 

struts were left at the 0 0, 135 0 and 225 0 positions in order to hold the 

microstructure until it was ready for release. On locating the structure relative 

to an assembly directly below, controlled FIB milling of the support struts 

allows the micro-part to drop into position. A nickel component produced from 

the gearwheel design is shown at a different orientation and just prior to release 

in the SEM micrograph (Fig.7. 7). The scale bar is 10 J.UIl and the gearwheel 

diameter is approximately 8 J..lm. 



Chapter 7, Tini micro actuators : technology, further work and conc/usions 129 

o 

Fig. 7.6 : CAD schematic of gearwheel 

Fig.7.7 : FIB micromachined gearwheel 
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7.4 Future work 

7.4.1 Out-of-plane 3-D microstructures 

3-D microfabrication was investigated by exploiting the locked-in stress in 

ultra-thin plates. The technique holds promise for "programming" the 

remembered shape for SMA microdevices. The controlled release technique 

described above involves gradually milling through the support struts in cyclic 

fashion to ensure that the structure drops free. If the milling sequence leaves a 

single point of attachment, the structure can "pop-up" out of plane at an 

orientation and angle determined by the geometry of the support strut. 

The sequence is illustrated schematically in Fig.7.8. Uniform milling around 

the periphery of the disk occurs in steps 1 and 2. In step 3 there is less than the 

full 360 0 trepanning and this leads to the disk tilting out of plane in step 4 

when the right hand support strut is removed. Fig.7.9 shows how the angle of 

tilt can be controlled by the aspect ratio of a notch along one side of a 

rectangular flap. An aspect ratio < 1 constrains the angle of tilt to < 90 0, an 

aspect ratio equal to 1 gives a tilt of 90 0 and an aspect ratio> 1 allows a tilt> 

90 o. It is proposed that such structures could be microwelded in position by 

sputter deposition and this is the subject of further investigation. 

Fig.7.10 is an SEM micrograph that shows an example of the phenomenon. 

The scale bar is 50 J..Lm and the disk diameter is approximately 10 J..Lm. Two 

disks have been cut through and allowed to drop; two have been "hinged" at 
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different orientations and allowed to pop out of plane at specific angles, in this 

instance, of around 70 o. An artifact strategically placed in the vicinity of these 

structures aids rapid detection by the SEM! 

No.1 

No.2 

No.3 

No.4 

Fig.7.8 : FIB trepanning 
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Fig.7.9 : Control of the "pop-up" process 

Fig.7.IO: SEM of 3-D out-of plane structures 
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7.4.2 Summary 

The feasibility of ion beam micro machining microstructures for TiNi SMA 

micro actuators in MEMS applications has been investigated. Highly 

controllable material removal rates have allowed fabrication with nanometre 

scale precision in both depth and lateral dimensions. Preliminary problems of 

3-D microfabrication have been addressed and methods have been proposed for 

realising 3-D structures by exploiting stresses in ultra-thin self-supporting foils. 

Approaches to microstructure assembly have been presented which form the 

basis for further investigations. 

7.5 Conclusions 

This thesis has been devoted to fabricating TiNi shape memory alloy thin films 

by an IBSD method. The main achievements of the work have been the growth 

of TiNi SMA thin films on unheated substrates using non-alloyed targets by 

IBSD. Potential applications in MEMS have been emphasised throughout. 

As described in this thesis, TiNi thin films have been deposited by IBSD and 

were characterised by X-ray reflectometry, electrical resistivity and resistance 

measurements. In the characterisation of TiNi SMA films by X-ray 

reflectometry, the composition was confirmed as being near equi-atomic. 

Transformation temperature ofTiNi SMA films namely As> Af> Ms and R-phase, 

were estimated as 60 °C, 85 °C, 50 °C and 62 °C, respectively, and electrical 

resistivity was around 1 J.lQ.m. Those values were in excellent good agreement 
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with values quoted for equi-atomic TiNi in the literature. 

The chamber pressure during IBSD has also been discussed, in comparison 

with DC and RF, and magnetron sputtering in Chapter 2 and Chapter 5. 

Incorporation of impurities during film grown are shown in IBSD, and the 

density of TiNi films must be low from X-ray reflectometry data. In this thesis, 

the TiNi films were deposited on to unheated substrates. In conventional 

deposition methods such as DC and RF, and magnetron sputtering, as

deposited films are amorphous if the substrate temperature is kept below 200 

°C, and annealing is needed to produce crystallisation after deposition. 

Furthermore, the transformation temperature of a TiNi thin film changes by 

100 °C per percent change of the composition. In this work, the TiNi 

composition was controlled by the relative areas of Ti and Ni in segmented 

non-alloyed targets. Eight sectored TilNi targets were found to be appropriate 

to provide adequate compositional control. Free-standing TiNi SMA thin films 

have been investigated for use as microactuators, however, such films are very 

difficult to anneal and exhibit residual strain. One approach to producing free

standing films would be to deposit TiNi onto copper or Kapton as a sacrificial 

substrate by IBSD in polycrystalline or single crystal form and then to remove 

the substrate by chemical etching. 

In chapter 6, an alternative strategy to DSC measurements, that of maintaining 

constant heating power and measuring the rate of change of temperature 

corresponding to the specific heat capacity change was adopted. Non-contact 
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measurements were made, by infrared focal plane array camera thermal 

imaging. Thermal imaging could readily spatially resolve the phase transitions 

characterising the shape memory effect at different places. 

In Chapter 7, the scaling of TiNi shape memory alloy structures for 

micro actuator devices were described. Speed of response for such shape 

memory alloy structures was then calculated. Cooling rates of TiNi SMA films 

of 1 pm thickness having lateral dimension (with length equal to width) of 100 

J.1m by radiative heat losses were approximately 500°C S-I. Productions of 

micro-parts by focused ion beam (FIB) trepanning techniques was then 

introduced, and implication for SMA microdevices explored. This technique 

can be employed for fabrication of complex TiNi structures as an alternative to 

photolithography or LIGA processes. TiNi SMA thin films would be 

compatible with integrated CMOS (Complementary Metal-Oxide Silicon) due 

to the low temperature deposition conditions. 
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