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ABSTRACT
A (p ,n) group G is a permutation group (on a
sct Q) which possecsses a regular normal clementary
abelian subgroup of order pn- The set (I may be
identified with a vector space V on which Go, the
stabilizer of a point in G, acts as a subgroup of <thc
general lincar group GL(n,p). By a line of a subsct

A of V, we mcan the intersection of A with a’

o
~~

one-dimensional subspacec of V. The main recsult (Thcorcs L.5.
concerns (%) - groups, the tecrm we give to rank 3 (p,n’
.groups in which the stabilizer of a point is doubly -
transitive on the lines of a suborbit. The esscnce ol

the problem is that of finding those subgroups of

PGL (n,p) which have two orbits on the projective spacec

ra (n-fl,p) and act doubly - transitively on one qf theme.

The notion of rank of a permutation group is discuszsscda
in 1.1, while in l.2 we outlinc D.G.Higman's combinatoricli

treatment of rank 3 groupse.

Associated with each permutation group having a reguiar
subgroup is a certain S - ring, an algebraic structure
which is basic to our theory. In 2.1 we define paramcici's
of a rank 3 S = ring which coincide with those of any
associated rank 3 group. Hence (*) - group with given
parameters may be classified by finding all S ~rings /ith
the same parametcrs and then finding the associated
(%#) = groupse To assist in this task the concepts of <tlic
residual S~ring and the automorphism group of an S-ring
are introduced. Also of grcat valuc is Tamdschke's
notion of the dual S~ring, which is adapted to our w.uo

in 2.2



In 3.1 we sce how the imposition of conditions
of transitivity on a suborbit of a rank 3 (p,nj group
lcads to information about the paramctecrs. In 3.3 thc
various relations connecting the paramcicrs of a (x) =
group are combined to yield specific scts of parameciss,
all of which are found in 84 to admit rank 3 S - rings.
From recsults concerning the unigueness of these S~ rings,
certain finitc simple groups are charactcri;ed as their
automorphism groups, and the proof of the main theorcm.
~is completed. A number of results are obtained as
by - products in §4, notably thec answer to a question
raised by Wielandt and a new recpresentation of the
simple group PSL(3,4) as a subgroup of PO (6,3), lecading
to an interesting presentation of a recently-discovered

balanced block design.

§5 is devoted to rank 3 (psn) groups in which the
transitivity condition on Go is replaced by the

condition that the associated block design is balancecd.
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5 1. INTRODUCTION. In this section we introducc niost

of our notation and some of the results to be uscd iater on.

§ 1.1 DYermutation Groups.

Let . be a finite set of arbitrary elements which
we call points and denote by lower case Greek letters.

A permutation on JL  is a 1-1 mapping of JL into itselfl.

We denote the image of the points & €)1 under the

permutation g by (a)g, or by ag where confusion will not

arise. We define the product gh of two permutations g
and h on J1 by (a)gh = (xg)h, hence reading products
from left to right. With respect to this operation the

set of all permutations of JL is a group, the syruinciric

group on JL , denoted by S({l). By a permutation croun

G on 5L we mean a subgroup of S({1). For such a group,
we define an equivalence reclation ~ on L as follows:
for any two points a and 3 of fL , &~ 3 if 3 = ag for somec

€ G, The equivalence classcs of ~ on jl are cailed

=]

the orbits of G on §) . If G has just one orbit G is

said to be transitive on fl .

For any element o € JL we let Ga denote the subgroup

{gcea ag = &} of G, called the stabilizcr of «.

The following theorem is basic to the thcory of

permutation groups.



Theorem 1l.1.1. Let G be a permutation group on - .

If xe N and A is the orbit containing «, tien the

order |4} of 4 is equal to the index lG:GaI of G, in G.

Proof
We define a map 6 from the sct of right cosets of Ga
in G to the sct & Dby
(Gag)O = g

It is casy to show that 6 is well-defined and is a bijccuion.

G is said to be k-transitive on JL if for every itwo

ordered k-tuples (a1,...,ak) and (31,...,Bk) of points ol
SL (with x Z aj, Bi # Bj fTor i # j) there exists g € G
such that %8 = Bi, i = 1,400k Thus l-transitivity is
the same as transitivity. The next thecorem follows casily

" from the definition.

Thecorem 1.1.2. Let G be transitive on JL and « € [ .

Then G is (k+l)-transitive on JL if and only if G, is

. . ~
li=transitive on J -0,

The notion of rank is designed to deal with thosc
transitive groups which are not 2-transitive; we say G
has rank r on JL ‘if G is transitive on . and Ga has r
orbits (including {a}). Thus the rank 2 groups are

-~

precisely the 2-transitive groups. The orbits of Gy ana

~

thedir orders are called suborbits of G and subdecsices of G

respectively. Ve deduce from the following lcmma that
the rank and subdegrees of a transitive permutation group

are well-dcefined.



. . ™
Lemma 1.1.3. Let G be a permutation group on . .

Let &« € JL and g € G. Then

(1) Gag=g G

(ii) Irf & is an orbit of G, then
A$={$g:584} is an orbit ofclch .

b

Proof

(i) If h e g G,&» then h = g—lkg for some k & G .

Now (ag)g-lk g = akg = ag

i.c. h € Gag

Thus g_lGag < Gch and similarly
g ags'l < Gy -

Hence g-lGag = Gch .

(ii) is a straightforward consequence of (i).

If G is transitive on JL , 1.1.3(ii) shows that the

rank and subdegrecs of G are independent of the choicec of .

Diagram 1 shows how transitivity and rank cach cover

the range of non-trivial transitive permutation groups.

’

Since the representation of a group G on the right
cosets of a subgroup H ((ix)g = Hxg for x,g €G) is
transitive, all abstract groups appear at least oncc in
this table, We see that soluble groups generally have
a lower degree of transitivity than non-abelian simple
groups. The doubly transitive soluble groups were found

s C

(@]

by Huppert in 1957 [i4], the only 3-trausitive amony ti

being S, and Sy.
2



Diagram l.
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Sn is n-transitive on n points, while An is

(n-2)~-transitive on n points; for if (a1,...,an_2) and

(B13.04,33 ) are ordered (n-2)-tuples, one of the two

n-2
,

permutations

o s 0 (04 \
?

%n-1
&51 eor Buls ooy By, Ksl cee Bo By Bn_l/)

is even. The only other known 4-transitive groups arc the
Mathi J e itive M and i,
Mathicu groups Mjq M23 (4-trans ), My, oy

(5-transitive).



Groups of low rank are of interest since all Lnown
Tinite simplec groups occur as such. Indeed the classical
finite simple groups all have representations of rank < 5,
while 13 of the 18 sporadic finite simple groups (known in

1970) have rank 3 representations.

§ 1.2 Rank 3 Groups - Iligman Designs.

Permutation groups of rank 3 received little atteantion
until 1964 when D.G. ligman [10] tackled them from a
combinatorial point of view. Higman's trcatment was not
applicable to rank 2 groups, but he later [l12] generalized
some of the work to groups of arbitrary rank > 3. We will
now describc how Iligman associated with each rank 3 group
a certain block design, having the  given group és a
collineation group. For the rest of 3 1.2, we supnosc that

If\l = n and that G is a rank 3 permutation group on .
with subdegrees k and £. For « € X , let £ (a) ana ;ﬂ(a)
denote the orbits of length k and £ respectively of Gy, *

By 1.1.3(ii) we may supposec that

(1.2.1): A (ag) = Aa)g. for all o €L, g € G

Now let N\ = 'A(oc)nA(B)) for B &€ /\lx)
and o= ‘[&(a)nég(Y)' for Y €[ () .
Lemma 1.2.2. .X and P arc independent of the choicec of

3 e Al@) ana Y &(x) .



Proof. Let 81 ,;32 EA(C(.) .
Then 318 = B2 for some g € G_ .

o
(A(x) A AB g

Al)g ~ ABi)g
Alag) A A(33g) by (1l.2.1)
Ale) o AGB2) -

! i
| Ala) ,, A(Bz) .  This

n

i}

lence !A(oc),\ A

shows that )\ and similarly { are well-defined.

Thus with a rank 3 group G we associate a block

ucsign y with parameters (k,£Z,\,l), whose points

are the clements of JL and whose blocks are the sets

Zﬁ(a), one for each o € J\L . Ve call X% a first [licman
; T . . \ . e
desien. By a second Higman design we mean the, design (3!

wilose points are again the points'dfjl and whose blocls
are the sets a , A (&), one for cach a & fL .

(1.2.1) shows that G is a collineation group of thcse
designs. Both kinds of Higman design are symmictric

partially-balanced incomplete block designs (symmetric

since the number of points is the same as the number of

blocks; partially-balanccdlsince the number of points In

the intersection of any 2 blocks is onc of two fixed integers)

In a symmetric balanced incomplete block design, the nuiber

of points in the intersection of any 2 blocks is a constanxy,

sO0 we see that:

(1.2.3): A first {ligman design is balanced <==> M

"
-

)
>
-
to

(1.2.4): A sccond lHigman design is balanced <=>

-



Ilizman showed that certain relations hold among the

parameters (k,£, %\ ,p):

Lemma 1.2.5. (Lemma 5 of [1J)

e = k(k - 1 = X\) .
Proof, Fix an element a of [} . We count the number

N of ordered pairs (3,Y) with 3 £ o and Y € Ala) A~ A(3) .

There are k elements B3 in A(x) for each of which

fzﬁ(a) A Z}(ﬁ)f = pﬁ, and there are £ clements 25 in ;ﬁ(a)
' |
for cach of which ]A(a) A ;A(B)l = L .
Ilence N = Ak + ue .

Cn the other hand we have Kk choices for Y and for each of

these we have k-1 choices for .

Hence A.k + p€ = k(k-1l) and the result follows.

As in 8 29 of [%] we denote by ¢ the (complex)
permutation representation of G, and let fl,...,fs aenote

the degrees of the irrcecducible constituents of G* . I
follows from 8 29 of [*] that if G has rank 3, then s = 3
and we may take fl = 1. Ey considcring the eigenvalucs

of the incidcncce matrix of the block design LR associated

with G, Higman showed that

(s -/
. 2 Pl (V=) (ks £) + Vd(k+£) ca ] . .
(1.2.6): 2 e { = < T : if |G| is even
while £, = £, = k if |G| is oad.
3

(d = ( A=p)? 4+ b(k-p)) .
From this Illigman immediately derived further numerical

conditions on the paramecters:



Lemma 1.2.7. (Lemma 7 of [t0])

If |G| is even then cither

= T :1{, or

3
IT 4d = (A—p)zﬁ-ﬁ(k-u) is a squarc, and

I k=4, 1= AN+1 = k/2 and £,
(i) if n is even, Vd civides 2k+(A=p) (k+4£)
and 2Vd does not, while v

(ii) if n is odd, 2Vd divides 2k+(\-u)(k+&) .

One way of finding rank 3 groups is to find block
designs with parameters satisfying the conditions of
Lermmas 1.2.5 and 1.2.7 and then see if the pointsof the
design admit a rank 3 collincation group. Since we have 4
parametcrs for a Higman design and only 2 conditions on
them, it makes sense to try to classify rank 3 éroups
satisfying conditions which give further information about
the parameters (preforably, two more relations). As a |
simple example, we will now find all primitive rank 3 groupns
in which Ga is 2-transitive on both A\(x) and [ﬂ(a).

We first give necessary and sufficient conditions on the

Paramecters for a rank 3 group to be primitive.

Lemma 1.2.8. Suppose G is a rank 3 group with k < £.

Then G is primitive if and only if p £ O
if and only if N\ # k-1.

Proof. See p.148 or [io].

The following lemma of Iligman (sece (2.6) of [ 11J) shows
how the double transitivity of qx gives information awvout thc

paramcters.



- . . . . N
Lenma 1.2.9. Suppose G is a primitive rank 3 group on J-=

with A and [' chosen so that k < £ .
(i) If Ga is 2-transitive on A{(®), then N= O

(ii) If G, is 2-transitive on M™(a), then b= k-£+1 .

Proof. (i) Let B € A(a). Since G, 5 is transitive on
¥t
Ala) - B

Ale) = B < AB) or Alx) -3 < [(3) .
and hence fA(a) A A =0 or k-1 respectively.
But \ # k-1 by 1.2.8, and so we have A = O .

(ii) is proved similarly.

Theorem 1,2.10. Suppose G is a primitive rank 3 group in

which G, is 2-transitive on both A and . Then

IfL‘ = 5and G ¥ D the dihedral group of order 1C,.

10’
Proof. Choose A and [ such that k < 4. By 1.2.9,
A =0 and P = k-£+1. Since U > O by 1.2.8, we must have
M =1 and kX = £, whence k = k(k-1) by 1.2.5.
This gives k = 2 and the parameters are thus (2,2,0,1).
By 1.1.1, G is a subgroup of S5 of order 5.2 = 1C.
Since S5 contains no elements of order 10, the only
Possibility is that G is isomorphic to DlO' It is casily
checked that the representation of DlO on the coscts of
a subgroup of order 2 has the required form.

In Table 2 we list some investigations carried out in

rccent years which have yielded more interesting rank 3

Zroups.

o
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Some of the notation in Table 2 rcquires explanation.
The notation for the classical groups is standard, U mcaning
unitary and PSL projective special linear. By (HIX we mcan
a semidircect product of I by K, Vl6 denotes an clementary
abelian subgroup of order 16. 1S denotes the Higman-Sims
simple group, which was discovered in 1967 f(3] as a rank 3
extension of the lMathiew group M22.
We leave Table 2 with the observation that a classiflication
of rank 3 groups in which Ga has rank 3 on both A and
would be of intcrest, for the new simple group of cLaughlin
has such a representation.
The primitive soluble rank 3 groups have recently becen
classified by Foulser [ (] and Dornhorf [ S ]. They are of
the form [V]Ga where V is an elementary abelian regular
normal subgroup of G and one of the following holds.
(i) V = g™ and G is isomorphic to a subgroup of the
group of semilinear transformations on the field GF(q’').

In this case Ga has a simple structurc, being a

subgroup of a metacyclic group.

’

(ii) Ga is an imprimitive linear group with a subgroup of
index 2 given by Huppert's classification of doublc-

transitive soluble groups.

(iii) G has one of the degrees 72, 132, 17%, 192, 252, 29?2,

312: 4727 341 74) 26 or 36°

~

Ve also shall be concerned with rank 3 groups which
contain a rcgular normal elecmentary abelian subgroup, and
our main task will be an attempt to find such groups which

have a high degrce of transitivity on a suborbit. The

S

problem is more fully stated in 8 1.3.
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5 1.3 (p,n) groups.

Lefore defining a (p,n) group, we briefly describe
groups which have a regular normal subgroup. By a rczular
group G we mean a transitive group on a set 4L in which
Gy = {1} for cvery o € J\ .

Suppose G is a permutation group on J. and that G
has a normal regular subgroup . We distinguish a point
o of [l and associate with every point w of [l that
uniquely determined permutation h € H for which (x)h = w.
By virtue of this bijection of L onto H we can regard G
as a permutation group on IH; to the permutation g € G
corresponds the permutation ((é;g), where (h)g is uniquely
specified by the formula

(x)(h)g = (a)hg .
Thus, for each h £ I,

(h)k hk, for k € H

it

(1.3.0)
(h)g -1y g

S g, for g € Ga
Since the distinguished point &« of L corresponds to 1
in H we now write Gq instead of Ga. The structurc of G 1is

given by:

Theorem 1.35.1. If G contains a regular normal subgroup I,

then G is isomorphic to the semi-direct product [H]G1.

Proof. Since Il is regular, H , Gy = {l}. By 1.1.1,
lal = |ulla;| and so G = HGy. Since il is normal in G,

the result follows.



Thus the action of G on II is determined by that of I
and G1)and by (1.3.0) we know that Il acts in its rcgular
representation (i.e. on itself by right multiplication) while
Gq acts automorphically on H.

If a permutation group G contains a regular normal
clementary abelian subgroup H eof order pn (for some prime p)

then, for brevity, we call it a (p,n) group.

A well-known theorem duec to Galois (See c.Ze [22], p.28)

tells us that any primitive soluble group is a (p,n) group
for some primec p and integer n. As we mentioned in S 1.2,

all primitive soluble rank 3 groups have alrcady been

classified. We therefore venture the question: arc therec
any interesting non-soluble rank 3 (p,n) groups?. Of course
a (py,n) group is soluble if and only if Gq is soluble. As

we observed in §41.2, high transitivity generally corresponds

to non-solubility, and so we will impose conditions of high

transitivity of Gy on a suborbit A ., (Because we have
identified JL with H, we now have H = {1} g Ay i in
a rank 3 (p,n) group). Since G acts automorphically on I,
the stabilizer Gl,h of a further point h also stabilizes ht
for all integers t. Ve therefore define an equivalence
relation on a suborbit A by hy ~ hpz if hq = h}, for somec

t with 0 < t < p, and we call the equivalence classes the
lines of A . We denote the linc containing h by h, and the
set of lines of A by A . For (p,n) groups it is more

natural to consider the transitivity of Gy on & rather

“than on A . The main theorcm we shall prove is:



Theorem 1.3.2. Suppose G is a primitive rank 3 (p,n) group

in which G; is 2-transitive on the lines of a suborbit.
Let D denote the central subgroup {g € Gq : (h)g = h' for all
h € lI, some integer t} of Gq. Then the degree of G, the
parameters. of G, and Gq/D are respectively
(i) 3, (1,1,0,0), the, cyclic group C3 *
(ii) 5 (2,2,0,1), Dig ¥
(iii) p? (any prime p), (2(p-1),(p-1)%,p-2,2), D2(p-l)

(iv) 52, (12,12,5,6), S
(v) 7¢, (24,24,11,12), Ay
(vi) plk (any prime p), ((p2+1)(p-1), p(p?-1)(p-1),p-2,
p(p-1), PP L(2,p%)
(vii) 52, (22,220,1,2), M4
(&iii) 36, (112,616,1,20), -
or (ix) pn, where p # 2 and n > 13 .
Notes. (1) This result, which will follow from various

results in the sequel, will shortly be restated, in perhaps

a morc natural way, in terms of linear groups.

(2) Assuming the existence of an automorphism group satisfying
the hypotheses of the theorem; we will show that there cxists

a unique block design having cach of the above sets of
parameters. The groups listed arise from the full
automorphism groups of these designs and, in somc cases,
suitable subgroups also have the required propertics. In

casce (viii) the full automorphism group does not have the
rcequired transitivity propertics but is mevertheless worthy

of study since it gives rise to an interesting represcentation

of the simple group PSL(3,%4).

I

x For () ,(7:) Or\\y , ke ?)*dai); bisk et ware  aw Tl (7', i k’l/?\.



(3) It scems unlikely that possibility (ix) occurs, but

our methods appear to be insufficient to confirm this for

p £ 2. Hlowever they give an algorithm for finding all
possible sets of parameters of such (p,n) groups for a given
integer n, and the lower bound on n can be increased as far
as one is prepared to go (the manipulations.become

increasingly arduous as n increases).

The next lemma shows how rank 3 (p,n) groups fall into

.

two types.

Lemma 1.3%.3%. Suppose G is a rank 3 (pyn) group with

suborbits {l}, AN and | s and para.aeters (k,ﬁ,A,H). Then

either
(1) ‘E = p=-1, for all h € A , in which case k = (p—l)}él
([h( denotes the number of points in the line h,
lé\ the number of lines infé )
or (ii) k = Eland lhl = Béi for all h € A , in which casc
k = (p-1)/2. | 2|
Proof. Suppose (i) is not true. Then there cxists h € A
and an integer t such that ht ¢ L By the transitivity

of G4 on r1 any eclement of [ has the form (ht)g for some
g € Gy, But (ht)g = ((h)g)t and (h)g € A . Thus
M= (n*: h €A} . The map from A to [ given by h —>nt

is a bijection, and hence (ii) holds.

Definition 1.3%.4. For reasons which will become apnarent

in 8 2.1 we say that a rank 3 (p,n) group is rational or

irrational according as (i) or (ii) is satisfied in 1.3.3.
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It is. perhaps casicer to visualize (p,n) groups if we
translate to the language of lincargroups over vector spaces.
The regular normal clecmentary abelian subgroup H, writtcn
additively, can be regarded as the vector space V(in,p) of
dimension n over the field GF(p) of p clements. G can
then be regarded as a subgroup of the general lincar group
GL(n,p). We now write Go instead of Gq, its orbits on
V(n,p) being {0}, A and [' . The group D of Thcorem
1.3.2 consists of scalar multiples of the identity matrix,
and if G is rational, then Go = GO/D is a subgroup of
PGL(n,p) acting on the projective space PG(n-1,p) with two
orbits’ £ and E (It is easy to see that the lines dcfined
on page 13 can now be recgarded as the points 6f PG(n-1,p)).
Since the irrational groups arising in Theorem 1l.3.2 arc not
of grcat interest (they will be classified in 8 3.1) the

essence of the thecorem can be restated as:

Theorem 1.3.5. A subgroup of PGL(n,p) acting on the

projective space I’G(n-1,p) with two orbits, double transitive
on onc of thcm, is one of thé groups given by (ididi)...(ix) of
Thecorem 1.3.2.

In the next scction we consider (p,n) groups from yct

another point of view - that of S-rings.



3 2., S-RINGS.

8 2.1 Definition and basic results.

The theory of S-rings (after I.Schur, who introduced
them in [17], 1933) is usceful in the investigation of those
permutation groups which contain a rcgular subgroup of the
same degree. .,

As in [22] we begin our discussion of S-rings by
defining an S-module over a group . Let CIl denote the
group ring of I over the field C of complex numbers
i.e. Cli is the sct of formal linear combinations

= & c¢c h (C_ €C) with the obvious multiplication

held 2 h

defined by that in H. Those ring elements n = & ¢, h for

which the coefficients Ch have only the values O and 1 are

called simple quantities. Suppose 'Tl,..., T, are simple

r
quantities of CH such that £ T, = & h . Then the subset

. i

i=1 heH
of CH spanned by the <y (i.e. the set of linear combinations

r
z c T c; € C) is called an S-module over H with basis

i=1
{TyoeeonT,) -

We shall be particularly interested in the following kind
of S-modulec. Let G be a permutation group containing a
regular subgroup H (not necessarily normal) and, as in 8 1.3,
identify the points of JL with those of H. Let {kl;...,élr

A
be the orbits of Gy on H and, for i = 1l,...,r, let ‘Si denote
the simple quantity £ h of the group ring CH. Then
~ N hea;

{ Al"""kr} is a basis for an S-module over II, callcd by

Wiclandt the transitivity module of Gy over H and denoted by

C(H,Gq ).



Definition 2.1.1. An S-ring over H 1is an S-module over H

which is at the same time a subring of the group ring CIl, and
which in addition contains the identity element 1 as well as
every quantity Z chh-l whenever it contains Z ch .

Given any subset A of II we let ,& denote the simple

quantity £ h of CH . e

heA
Definition 2.1.2. An S-ring .Z over Il is called primitive

, ~ X

if X = 1 and X = H are the only subgroups of H for which K € &

holds.

S~rings are fundamental to the study of permutation
groups which have a regular subgroup in view of the following

important theorem of Schur.

Thocorem 2.1.3. Suppose G is a permutation group containing
H as a regular sub:;roup. Then the transitivity module

C(H,G;) is an S-ring over H.
Proof. Sce pp. 61-63 of [22].

With the help of this theorem we will be able to get
information about possible groups G solely through consideration
of the subgroup .

Let X be an S-ring with basis ‘tl""’.tr' We call
r the rank of X and the integers ny,e-.yn, where n, is the
number of group clements whose formal sum is T ., the

1

subdegrees of X . It is clear that when .g is a transitivity

module C(H,G1), the rank and subdegrees of 2 and of the

permutation group G coincide. Furthermore we have



Theorem 2.1.%4. (24.12 of [x1]). A permutation group G with

v @

regular subgroup ! is primitive if and only if C(l,Gq) is a
primitive S-ring.

Wwhen <= L cyh is a simple quantity in CH, we define

‘Cm to be the simple quantity & chhm .

[

nl -_—

Definition 2.1.5. If 4 is an S-ring in which 'ti =

cvery simple basis quantity 'Ci and for all integers m such
that (m, lHl ) = 1, then & is called (by Tamaschke [19]) a

rational S-ring.

If & is a bransitivity module associated with a rank
3 (pyn) group G then it is casy to see that & is rational
if and only if G is rational in the sense of definition 1.3.4.
We now-give a necessary and sufficient condition for a rank 3
S-module chr an elementary abelian group to be a rational

S-ring. .

Theorem 2.1.6. Let X be an S-module over an elcmentary

abelian p-group H with simple basis quantities 1, 4& and fi
(n = {1} NN Then & is arational S-ring if and only
if the following thrce conditions hold.
(i) ]AAA x, = somc fixed integer /\ for all x € A .
( Ax denotes the subset {ax: a€ A} of H)
(idi) lA A A yl = some fixed integer B for all y € |,

l,n.. ’p-l-

(iid) If x € A , then xt £ A for t

Proof. Suppose 8 is a rational S-ring. Let k = \ A},
L= \7{. Since £ is a ring, there arc integers \ and W

A A

AN
such that A A = NA + b1+ k.1, For any x € /\ ,



>
"

\{(a:b) e AxA : ab = x}{
‘{a&:A:a-lx SA}I = [AﬂAx‘l,sinccaEA

I

implics a~t € A if X is rational. Thus (i), and
similarly (ii), hold. (iii) follows immecdiately from the
fact that & is rational.
Conversely suppose (i), (ii) and (iii)'ﬁéld. To prove
& is an S-ring it is sufficient to show that [l /:\X ’ Ir:‘f_/:l
A

and 8 m belong to K . Using the reverse argument

to that in the first part of the proof, it is casily shown

AN A ”~
that AA = AA + ! + k.1 and similarly that
mro= (f-k+)\+l)2+ (£—k+u—l)r1 + £.1 " and
AT = (£-ked+l)A + p T . This completes the proof.

The next lemma shows that \ and {4 correspond with the
intersection numbers of a rank 3 (p,n) group G when

/g = C(H,G1 ).

Lemma 2.1.7. "If G is a rank %3 (p,n) group with parameters

(k,£, ,p) then A = lA/\Ax\ where x € A and

b= laa Ayl wherey e T7.

Proof., By definition A\ = 1(&(&) A A(B)\, for 3 € A(w).
Hence A ; ll&(a) r\A(a)gl , where g € Gy with ag = 3 .

If G is a (p,n) group over H we take o = 1 and regard A = A1)
as a subset of M. H acts regularly on itself. Thus, if
x €A, x: 1 —>x and A = lA,\Axi. The required value of j
is obtained in the same way.

For a rational rank 3 S-ring X .over Il we have now

defined a set of parameters (k,£,\,l) which are the same as



those of a rank 3 group G when /g = C(H,Gq). It follows
from the equation.,a 3 = \NA + 9 ﬁ + X.1 (din proof of 2.1.6)
that k? = /\k + b€ + k, which shows that iligman's relation
of Lemma 1.2.5 holds for a rational rank 3 S-ring ‘8 without

any assumption that 2 is a transitivity module.

v

§ 2.2 Dual S-rings.

O, Tamaschke [ 19 and 22] has carried out an extensive
ring-theoretical investigation of the class of S-rings over 1l
which lie in the centre of the group ring CH ~ he calls then

central S-~rings. We will be interested only in abelian

groups:H, over which S-rings are automatically central. of
great value to us will be Tamaschke's notion of ghe dual S=-ring
and also his numerical relations connecting the subdegrces

and character degreces of a permutation group which has a
regular subgroup.

Rather than discuss the dual of an S-ring over H in full
generality, we will make a definition morc convenient for our
particular use; that is, when H is an elementary abelian
p-group. It is easy to check that Tamaschke's definition is
the same as ours for such a group.

For the rest of this scction I denotes an elementary
abelian p-group of order pn, and ,8 an S-ring over H with

T 1 - T
l’ooo’ L/r' Ve ertc }A—-H]X...XHn

simple basis quantities T
where Hi is a cyclic group of order p gencrated by hi' The

e

set I of (complcx) characters of H can be identified with

a group, which is isomorphic to !, in the following way. e



]

define characters XpaeeeaX by (hj)xi

n

14if i £ j, where

w is a primitive p th. root of unity. The set of

. 3 1 i
characters of H can then be written n¥ - {xl1...xn n,

. 3 Gy i i igd14ee-in]
i, = O,1,...,p-1} where (hl1...hnn)xl1...xnn = w nsn

. . . . . 11 ,in, Jﬂ jn) -
With multiplication defined by (xl e e e X )(xl oo e X =

n n
xi1+j1... xin+Jn , it is casy to check that II* is an
n

elementary abelian group of order p generatcd by XpreeenX o
A character x in H%can be defined to act on the ring CH by
(Z Chh)x = & ch(hx), and in particular x acts on the simple
basis quantitics 'Tl,...,'fr of K . We define an

equivalence reclation on H#by x ~ ¥ if and only if

(TI{)X = (Lk)* for k = l,...,r . Let Tl’ooo,Tr_q.- be
the cquivalence classes of ~ ,and lect szf be the simple
. A . o —_— —
quantity T, = & x of CH™ . Then T ;,..., U _# gencrate
XET ,
an S-module f{# ovgr II¥ , which we call the dual S-module to 2 .

From Thecorem 1,10 of [19] we obtain

Theorem 2.2.1. if & is an S-ring of rank r over an

elementary abelian group l, then:

. . w
(i) the dual S-module X is an S-ring over I .

(ii) A w is isomorphic to Q& .
(iii) r = ¥ i.e. rank .8 = rank ¥,
(iv) the map £ +—> X?*is a bijection from the set of

S-rings of rank r over II to itsclf (identifying II

With I'I) .
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Definition 2.2.2. ‘Y‘T is called the dual S-rine to 4.

Tamaschke showed that interesting numerical relations

hold between the subdegrecs, nl,...,nr, of a central S-ring

= 5+ .
and those, nI,...,nr y of its dual:
Theorem 2.2.3%. (c.f. 2.18 of [11]) Let X be a central
S-ring of rank r over a group H, Then
ir=2 I nj
(a) the rational numbers g = !Hl I - and
i=1 1j
r ne
q#.= 1”|r-2 T Hl arc both integers.
i=1 i

(b) if & is also rational in the sense of definition

2.1.5, q and q;* are both squares.

Corollary 2.2.4. (c.f. 2.20 of [11]) r lHl is a power

of a prime p and X is rational, then q and q:: arc not

only squares but also powers of p.

lz(r_z), the result follows

Proof. Observing that qq*':F = lH
immediately from 2.2.3.

} Suppose now that G is a group with regular subgroup H
and transitivity module C(H,Gq). Let Dy,...,D_ be the
different irreducible representations appearing in the
permutation representation G~ of G. Let '§i be the
character corresponding to D;> £, the degree of D.,, and ¢y
the multiplicity of D, in G" (i = 1,...,s). By Theorems 28.8,
29.3% and 29.4 of [%»], if C(H,Gy) is central, then cvery ¢, = 1

and s is equal to the rank r of C(H,Gq). Moreover

Tamaschke has proved:



Theorem 2.2.5. (c.f. 7.6 of [29]) Suppose C(H,Gq) is a

central S-ring over I with basis 'Ci,...,'tr. Then the

— — o i .
basis bl,..., b: of X7 coincides with the set of

characters ﬁl,..., Sr in their action on H.

Corollary 2.2.6. If C(H,Gq) is central, the subdegrces of

vt

+
C(Il’G'x) are fl,no',fro
We now sce that Corollary 2.2.4 represents an improvement
(when § = C(H,G1))on the following more general theorem of

Frame,

Theorem 2.2.7. (c.f. 30.1 of [22]) Let G be a transitive

group of degree n with subdegrees n,, and let fi, e, be the
degrces and multiplicities respectively of the absolutely

irreducible constituents of the permutation representation

+*

G of G .
(A) If all the e; = 1, then the rational number
- r
q' = n® 2 NI 2& is an integer.
i=1 fi

(B) If the irrcducible constituents of G~ all have
rational'characterSf then q' is a square.
By 2.2.6, if X  of Theorem 2.2.3 is a central
transitivity module C(i,Gq), then é of 2.2.3 is the same
as q' of 2.2.7. - Let us now scec how Tamaschke's theory

-ties in which that of Higman's for the particular case of

rational rank 3 (p,n) groups.

Lemma 2.2.8. Suppose G is a rank 3 group with regular

subgroup H. Let g be that integer given by Theorem 2.2.3

with A = C(H,Gy). DLet d be as in 1.2.7.  Then if

C(H,G1) is central, d = q -



Proof. Since q = q' if C€(II,Gq) is central,
£ f
d_4d _ Vo) 2 b{ken)] =22
g - g = C(h-p)% + 4(x-p)] BIEY

Using the values of f, and f3 given by 1.2.6,

d (k+£) (K% +Lk-pl-k)) - K°

o= TR if |G| is even ,

(A=p)2 4+ h(k-y)
{11

if |G| is odd

1. - 2 i
k4 £) (ke fX) - k if \Q] even, using l.2.5,

1|1k
2k+1 . k=1
o] if [Gl odd, for then M= K = > by
Corollary 1, p.148 of [10] .
= E—Lﬁ%TLAL in either case
= l .

Immcdiately from 2.2.4 and 2.2.8 we get

Corollary 2.2.9. If G is a rational rank 3 (p,n) group,

then d is the s:.uare of a power of p.

8 2.3 S-rings over V(n,p).

Since we will find it more convenient to writc an
elementary abelian p-group Il additively and regard it as the
vector space V = V(n,p), we now convert our notation. To

avoid confusion of + signs when we look at¢ the group ring CV,
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we use + or f for formal sums, reserving + for vector
addition in the additive group V. Ly an S-ring over V

we simply mean an S-ring over an elementary abelian p=~group
with the notation changed as just described. The group '
of characters of II may now be rcgarded as the dual space vF
in its usual meaning; di.c. v¥ is the space '60f lincar maps
from V to GF(p). If we let the standard basis EireeerE in

V correspond to the generators hl”"’hn of H, we define a

# (instead of (hj)x. = ng’

basis Xyyee00yx. 1
1? ’ n V i

n ij

denotes the 'Kronccker delta'). A dual

by (Ej)xi = 3
as before; S ij
S=ring over Vﬂas now defined in exactly the same way as in

8 2.2,

Fdr the rest of this section G denotes a (p,n) group in
which the regular normal elementary abelian subgroup is
written additively as V. Thus G is the semidirect product
[V]Go as described in 38 1.3, Go being the stabi;izer of O
and regarded as a subgroup of GL(n,p). The transitivity

module is now written C(V,Go).

Let X be any S-ring over V with simplc basis

gquantities -tl""’.tr” An tlement g of GL(n,p) acts on
CV in the obvious way: ( I cvv)g = cv((v)g). ifr
VvEV
(Tﬁ)g =T, for i = 1,...,r, we say that g is an automorphism

of _g s, and define Aut X to be the full automorphism group

Of'-g in GL(n,p). If G is a (p,n) group, G, < Aut(C(V,Go)).
On the other hand, for any S-ring £ , we have & < C(V,Autd )
with cquality if and only if X is the transitivity module of

some (p,n) group of the same rank. Thus the rank 5 (p,n)



groups with given parameters (k,£,\,L) arc given by those

- . ¢ . : 7,

S=rings .5 o, with the same parameters, for which & = C(V,Aut's).
WWe now show that an S-ring over V and its dual have

the same automorphism group. If 6, < GL(n,p), lect G

denote the group of matrices {A : A'EG } (A' denotes

the transpose of A). Cf course Gé is isomorphic to Go .

Theorem 2.3.1. (i) If & is an S-ring over V, then Aut %

is isomorphic to Aut X% . (ii) If G is a (pyn) group,
C(V,Go);F is isomorphic to C(V*F,Gé). In other words

the dual to C(V,GO) is that S-ring generated by simple

~ B AR *
quantitics A ,..., A where the A are the orbits
of G' on VT,
O .
Proof. (i) Let o = & dj€5 EV, x = L z.,x, €V, and

A € Aut g . Suppose (aij) is the matrix of A with respecct

to the basis Sl,...,En. Then
() (xA') = (aA)x o (1),

| Al = L € Z A X = Z .
for (o)(xaAm') ( d, k)( alJZJkl) aijdkzj gik
= = Z a,.d, o= & oa,
= aijdizj alelzk Sgk ; aljdizkejxk
= (T aijdisj)(L zkxk) = (xA)x .

Suppose gi = X & is a simple basis quantity of ,8 .

ocSAi
A N A

Since A € Aut 4 (Ai)A =N, - By (1), (A ) xa' = (A )x,
for all i, x. Ilence xA' ~ x for all x & V*:, where ~ 1is

as in the definition of the dual S-ring (See p.<4%), and it

therefore follows that A!' & Aut.g;#.



Thus, if A € Aut & , A' € Aut X" ; but by the same
b e 2
token, if A' € Aut £ , A = A'' € Aut 2FT = Aut K.

1.1

” -
llence A € Aut £ if and only if A' € Aut X~ , and A —> (A™ ")

gives the required isomorphism., (ii) is proved similarly.

By Corollary 2.2.6 the orbit lengths of:Gd on V;t are

fl,...,fr. We often have {fl,...,fr} = {nl,...,nr} and
indeed C(V,GO) isomorphic to its dual C(V“,GJ), though
we will sec in 8 4 that tnis is not always the casc.

Ve conclude this section with a diagram to illustrate

the different ways in which we can now look at a rank 3 (p,n)

group.
If G hss
- . o {\u’--u.\“h \ l,Jp,'\" l* I' . .
/’/ G-L \ hori»l // G‘ . ) GO RN 2 'GJ//?,
; e . addbively . .
buthuu I+ {1 . . B raticnal ~
on A // on \\‘ ) [P '\\ 7 on
/,- / A / \ ,/
L= g"EUAur‘ H—‘i'}u Aur‘ V(")io-"g‘?}uAur‘ /]’GQ’D—' (
| | é U.r
v ‘ v
G\ \\ CJ’@ \\
on . ~ O~ \
> -
Scrina & svewr .M c Seeian A siee V N
D AN v N

,g = 6(“,(:‘> - <|/&I{'\1> \ Ig: C(V)(j‘)) ~=<0/ E)F"



8 3. DPARAMETERS OF RANK 3 (p,n) GROUPS.

8 3.1 Rank 3 (p,n) groups with high transitivity of G, _on

a suborbit.

In this scction we prove scome results gpglogous to 1.2.9,
showing iow the imposition of conditions of transitivity on
the suborbits of a rank 3 (p,n) group gives information about
the intersection numbers A and .

As in 8§ 2.3, we regard the regular subgroup of a
(pyn) group G additively as the vector space V. Thus
G = [V]Go, where Go is regarded as a subgroup of GL(n,p).

If o € V and g € G, we let ag denote the vector (x)g of V.
To avoid confusion of notation, thercfore, we write the
elements of [V]Go as ordered pairs (a,g), where (x,g) :
3 —> (ax+3)g, for a,3 €V, g € G- Multiplication is given

by (a,g)(B,h) = (O(.+Sg-l, ch).

Lemma 3.1.1. If x € GL(n,p), then [v]ao and EVx]x'lGox

are isomorphic as permutation groups on V and Vx respectively

(vx = {ax : a € V}).
. . -1
Proof. It is a trivial verification that (a,g) — (ax, x ~gx)

gives the required isomorphism.
-1 .
If G has orbits [&l,...,[&r on V, then x "G _x has orbits

Alx»---,lﬁrx on Vx. Since we are intercsted in f{inding

permutation groups only up to isomorphism we can use 3.1l.1



to obtain the in in some canonical form.

We now consider our main problem, mentioned in 8 1.3;
that of finding the rank 3 (p,n) groups G in which G, is
doubly transitive on the lines of a suborbit. We will now

dispense with the case where G is irrational (sec definition

[

1.3.4).

Theorem 3.1.2. Suppose G is an irrational rank 3 (p,n)

group with suborbits A and F‘, and supposc that GO is
doubly transitive on JARS Then G is isomorphic to the
cyclic group C3 of order 3 or the dihedral group Dlo of

orucr 10,

Proof.' Since G is irrational, V = 0 , A F » Where

M ={ts : @ €A} for some t € GF(p) ~ O .

Case 1. n = 2. Then Go < GL(2,p) and Go is 2-transitive
on the (p?-1)/(p-1) lines in A By Theorems l.l.l1 and
l.1.2, iGO] is divisible by (p+l)p and in particular p
divides lGo\ . Since GL(2,p) has order (p?-1)(p-1)p, G,
must contain a Sylow p-subgroup P of GL(2,p). Because
Sylow subgroups are conjugate, by Lemma 3.1l we may take P
to be any Sylow p-subgroup of GL(2,p). WVetake P = {(i S) :
a € GF(p)}. Then the vectors (0,1), (l,l),...,(p-i,l) all
belong to the same orbit of P and therefore of Go. Hence

there exist field elcments bl""’bp—l and Cpresenc o
2 2
such that



A = {bl(l,O), Cl(oal)a eo 0 Cl(P'l)l))

b,_1(1,0), ¢ 1(6,1), wuey e 1 (p=1,1))

2 2 2
By Lemma 2.1.7, >\ =)A«A+ oc\ for o EA,andu:\A,\/_\+ ,3l
for B € r‘. We choose a and b in GF(p) such that
o = a(1,0) € A and B = b(1,0) € ' .  In this case both \
and U are greater than or cequal to (Q:E)p , for the elements
of A of the form ci(x,l) belong to&both A+ o and A+ 3.
Since k = £, by 1.2.5, L = k = 1 = X\ . Hence (p?-1)/2 = k =

oA+l 2 p(p-1) + 1, and this cannot occur for any prime p.

Case 2. n > 2. Assuming such- a group G exists, then by
restricting the action of Go to any 2-dimensional subspace of

V we get the conditions of Case 1 and hence a contradictiomn.

Casec_ 3. n = 1. Since GL(1,p) is cyclic of order p-l, the
only possibilities are (p-1)/2 = 1 or 2 and hence p = 3 or 5.
Thus G = [C3] 1 or [CSJCZ; i.e. G is isomorphic to C3 or DlO'
The rational groups satisfying the hypotheses of Thcorem
1.3.2 are of rather more inte}cst, and we will be occupied
with thém for most of the sequel. For short we define a
(®*)-group to be a rational rank 3{(p,n) group in which Go is
doubly transitive on the lines of a suborbit. Our problem

now, thercfore is to classify primitive (%)-groups, or,

putiing it another way, to prove Thcorem 1l.3.5. Ve make a

start in:



Theorem 3.1.3. Let G be a (%)-group with parameters

(k, 4, \,1). Then A= r(k/(p-1)-1) + p-2, wherc cither

(i) r+1 = p and G is imprimitive or (ii) r+l1 divides p-1.
Proof. As usual, Go is regarded as a subgroup of GL(n,p)
acting on V = V(n,p). We may assume that the group S of

all scalar matrices is contained in G » for GOS has the
samec orbits as GO and hence the parameters of [V]GO and of
[V]GOS are the same. Let al e A . By 2.1.7,

/\:lA,\A+OC

1" The vectors 204,301 5e+.,(p=-1)ay lie

in A A+ x5 so A 2 p-2. Suppose N\ #£ p-2. Then
there exists ®z in /\ such that a4 and o2 are lincarly
indepehdent and oq + %2 € A . We let <u,3,Y,...> denote

the subspace of V spanned by the vectors %, 3, Yyeee o It

is now more convenient to look at the lines of A .

Let A = {gl,gz,...,gm} where m = k/(p-1). Suppose

<oy 0> A = (&g e%p,0q +t1 %2 3000 %y +t, X2}, where tg; = 1

and ti € GF(p)N 0, i = 25440,r & The integer r is

indepcendent of the choice of xq and Xz since Go is 2-transitive

on A . The double transiti¥vity of G, on A also implies

that for each i 2 2, therc exists g, & G, such that

(gl)gi = a3 and (gg)gi = Qg . Since § < G, we may assume
(%q)g; = a3 and (xz)g; = a;x; for some a; & GIFr(p)NC .
Hence (aq + tjaz)gi = g + tjaiai . \le will show that



A/\ A + (X1 = {CX.1 +tJaiai H l= 2,...,[’1 ; J = l,...,r} v
{aCX.1 . a = 2,..-,p—l} s s 0 (l),
and hence that N\ = r(m-1) + p-2 as required. Let the

right hand side of (1) be the sct X. It is casy to sce
that X is contained in A AL ®4 and that the given elements
of X are all distinct. Suppose & € A, A+ d;} If o is a
scalar multiple of oy then a € X, Suppose & = &q + bai
for some i > 1, b € GIF(p)> 0. Then (a)g;l::a1+a;lba2 €

A A < ,a2 > lience allb = tj for some j € {lyeesyr)e
llence b = a,t. and a = a4 + a.t.x. € X. Thus (1) is true

i3 i3 1
and since m = k/(p-1) we have proved the first part of the
theorcn,
It remains to prove the asscrtions about the -integer r.

Let L be the subgroup of Go which fixes ®4 and also <wq ,X2>
as a sct. Let L be the subgroup which fixes every point of
<Llq o2 >, Then L/Lq is isomorphic to a subgroup of
{(i g) : a € GF(p), b € GF(p)~N 0} and therefore has order
dividing p(p-1). Since GO is 2=-transitive on é:, L/Lq acts
transitively on {Xz, Gy+t1%pseee g+t X2},  lence, by 1.1.1,
r+1 divides p(p-1) ... (2). l
By definition, ) < k, which in this case impliecs that
r(m-1) + p=-2 < m(p-1) and hence that r < p-1. Now r = p-1
if and only if )\ = k-1, in which case G is imprimitive by

1.2.8. If r < p-1, then p cannot divide r+l and we deduce

from (2) that r+1 divides p-1 . This completes the proof.



Before continuing our tireatment of (¥%)-groups, we
first consider somc situations where cven more stringent
conditions of transitivity are imposcd. Let G be a linear
group acting traynsitively on some subsct A of an,p).

Then we say that G is ncar-2-transitive on A if G, is

transitive on A~ for any & € A (o denoté's'the set
{a,20,00.,(p-1)}); d.c. if the orbits of G, on A arc
{a}, {2a},e..,{p-1)x}, and A ~ a. Clearly if G is
near-2-transitive on A y then G is 2-transitive on é .

“e define G to be near-3-transitive on zA if Ga is ncar-2-

transitive on AN« for any a € A .

Theorem 3.1.4. Suppose G is a primitive rank 3 (pyn) group
in which G° is near-2-transitive on a suborbit. Then G is
isomorphic to C3 or DlO’ or ~A = p-2.

Proof. If G is irrational we deduce from 3.1.2 that G

is isomorphic to C3 or DlO' 50 we suppose that G is a
primitive rational (p,n) group. By 2.1.7, ,X = }4} A A+ a‘

for a € A . Clearly A . A+ a contains {200ye0e,(p=1)a}.
Suppose also that 3 belongs to [&A A +x, but that 3 does

not belong to . Let S be any element of “Z. Since
Go is near-2-transitive, thcre cxists g € Go suci that ag = &
and Bg = S . Since 3-a € A , (B-A)g = §-x € A .

llence (b € A,\ A+x for all S e AN . Therefore ,\ = k-1,

which by 1.2.8 implies that G is imprimitive - a contradiction.

lience no such P exists and A = p=-2.



Theorem 3.1.5. Suppose G is a primitive rank 3 (p,n)

group in which Go is near-3-transitive on JANIEE Then G = C3
or DlO’ or A = p=-2 and P = 2.

Proof. By Theorem 3.1l.%, it is neccssary to prove only the
assertion about U4 when G is rational. By 2.1.7,

B = [AA A;+Yl for Y € . G is primitive; S§o by 1.2.6,

L £ C. Let 5 € AAA+Y. Then a=-Y € /\ and, since G is
rational, Y- is also in A\ . But - liecs in L& if

G is rational, and so Y-, € zﬁﬂzﬁ+Y. Y- and & are distinct,
for otherwise Y = 2% and Y € |  while ¢ € A . Hence

B> 2. Suppose U > 2. Then there exists 3 € AAéﬁ+Y with

g £ % or Y-o. Let S be any element of Ag\{a, Y-a}.
Since Go is near-3-transitive on JAN y there exists g € Go
such that ag = &, (Y-a)g = Y-&, and Bg = § . Then

(vy-B)g = (vy-a)g + aag - Bg = Y= S . Thus Y- & € A and
hence & € AAA+Y for all S e A . Ilence K = k which,
by Corollary 3, p.149 of [10], is a contradiction to the
primitivity of G. Thus K = 2 as required.

It is not difficult to glassify all groups satisfying

the hypotheses of Theorcm 3.1.5 (without having the possibility

of some group of large order as in (ix) of 1.3.2). They are
given by cases (i), (ii), (vi) (for p = 2 only) and (vii) of
Theorem l.3.2. We do not give a proof of this assertion now

since it will follow later when we find all (¥)-groups in

wiich U = 2.



Another subclass of (¥)-groups is given by:

Theorem 3.1.6. Suppose G is a primitive rank 3(p,n) group

in which Go is 3~transitive on the lines of a suborbit.

Then n £ 2 or A = p=-2.

Proof. If G is irrational, then n < 2 by Thcorem 3.1.2.
Suppose G is rational and \ #Z p-2. As in Theorem 3.1.4%,

there exist linearly independent o and B such that a-3 € A.
Suppose there cxists Y belonging to /\ but not to <a, B>
Since Go is 3-transitive on éj there cxists g € Go such that

%g = ax, Bg = b3, (x+p)g = cY, for some a, b, ¢ € GF(p).

But cvy (a+3)g = ag+3g = ax+bB3 € <x,3> contradicting the
choice:of Y. Hence A\ is contained in <x,3>. It

follows from Proposition 23.7 of [2%] that if G is primitive
then the elements of A generate V(n,p). Hence n < 2 and

the theorem is proved.

Finally we prove a lemma about the intersection numbers
of rational rank 3 (p,n) groups in general, which though
very simple, serves a useful purpose in immediately showing
that certain sets of parameters (which satisfy the Higman-

Tamaschke conditions) cannot admit S-rings ‘of the desired type.

Lemma 3,1.7. Let G be a rational rank 3 (p,n) group with

parameters (k,ﬁ,k,p). If p = 2, then X and § are both

even. If p # 2, then A is odd and | is even.
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Proof. >\ = A,\ A+oc‘i, a e A . Supr;ose g € A,\Awn,
3 £a ., Then since G is rational, -3 also belongs to
gl/\£§+a. Because 3 £ &, 8 and -3 are distinct. licnce

A AA +0 contains p-2 points of o and the remaining points
occur in pairs. Hence )\ is odd if P is odd, cven 1if p = 2.
" =1AAA-;-Y}, y e ['. If B € A A +Y, then Y-2 belongs

to A.A+Y and since 3, Y-3 arc distinct, the points of

A A A+Y occur in pairs. Thus P is even for any prime p.

8 3.2 Residual S-rings and Lxtensions.

We saw in 8 2 that corresponding to a rank 3 (p,n) group

G is an S-ring A= C(V,Go) with the same parameters. We
recall-' that if X has basis O,A, (2‘, where V = 0 ( A m
then kx = |A|, €= ||, X\ = (A A+x]| for « € A, and
o= IA,\ A+Yl for Y € [ . The notion of a residual S-ring )3,
of & » which is well-defined only when ,8 is rational and )\
is as in 3.1.3, will be useful for two rcasons: (1) as we
shall see in 8 4, we can prove the uniqueness of an S-ring
.With given parameters by proving (a) that the rcsidual S-ring

.8, is unique and (b) that'<ﬁ, has a unique c¢xtension

(an S-ring X is called an extension of X, if .Ql is the
residual of X ); (2) we obtain further restrictions on the

Possible parameters of a (%)-group in the next theorem, in

which also the residual is defined.



Theorem 5.2.1. Let G be a (%)=-group with suborbits G, A

and [ , and let'.g be the corresponding transitivity module,
‘regarded as an S-ring over V = V(n,p). by 3.1.1, we may
assume (G,...30,1) belongs to ANER Let
A-, = {(al,...,an_l) £ v(in-1,p): (al,...,an>€ A , somnic
a_ € GF(p)}~{0}. Lot M be the set V(n-1,p) ~( D5y 0)

, R ~ o
and 21 the S-module withh basis O, A1, F1. Then ,8‘ is
cither (i) a rank 2 S-ring over V(n-l,p) Gf |4 is cupty) or
(ii) a rank 3 S-ring over V(n-1l,p) with parameters |

(k=-p+1)/(r+l1), £y = pn-L-l—k1,

k4
A o= [plp-r=1) + (r+1)( A -2p+2)1/(r+1)%, pq = pp/(r+l)?,

where r is given by the value of A obtained in Thcorem 3.1.5.
e call 81 the residual S-ring of ‘X ' and.;g an cxtension

of 8{ .

’roof. Suppose (i) is not true. By Thecorem 2.1.6, it is
sufficient to prove that Aq and Yq are well-defined; i.c.
‘that l‘A,,\Aﬁal is dependent only on whether & belongs to A~1

or F’1. Define a map ¢ : A~(0,...,0G,1) —=A, by

((al,...,an))Q = (al,...,an_l). From the definition of r
in the proof of 3.1.3 (taking 04 = (al,...,an), and

-1 .
%z = (0,¢..,G,1)) we get (al,...,an_l)e \ = r+l. Since

(i) is not true therec exists S = (xl""’xn-l) £ F1. By
definition of A g, (xyseeesx _;12) € " for all z € GF(p).
Now Mg = “A;« A,*q: the number of ordered pairs (aq,34) in
Au»<A‘ such that ®q+84 = S . Let X = {(xl,...,xn_l,z):

z € GF(p)}, a subsct of rﬂ, and let M = {(x,3) €Axa: x+3 € X} .
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Ve calculate \Nl in two differcnt ways. for cach z & GI'(p),
there are P pairs (a,3) € A A with o+l = (xl,...,xn_l,z).
Ilence }n} = MUp. On the other hand, for cach of the {4
pairs (a6, 36) € A A, satisfying aé + 36 = % , the
(r+1)? pairs in (a@)é_lx.(ﬁG)G-l are all in M. Since
every pair (a,2) in M lies in (a0)9'1,<(pG)@71, we get
IM] = (r+1)%yuq. Thus Pq = pp/(r+1)? .

We now find X1. Let n = (yl,...,yn_l)'E f&‘
and define Y = {(yl,...,yn_l,z): z € GI'(p)J};
M= {(a,2) € AA 2 a+3 € Y} . We calculate lNi in two
diflercnt ways. Since (0y...,0,1) € A, there are r+l
elements z of GF(p) such that (yi,.--,yn_l,z) e A .
Hence 1Nl = (r+1)\ + (p-r-1)p. On the other hand, for cach
of the )\, pairs (x6, B6€) in A, « A, satisfying x6 + B = n
the (r+1)? pairs in (oc@)e'l X (',34;)9'1 are all in N. The
only other pairs in N are the 2(r+1)(p-1) pairs (x,2) in
wvhich « or B belongs to (0,...,0,1). Thus
]Nl = A1(r+1)2 + 2(r+1)(p-1) and hencec .X1 = (p(p-r-1) +
+ (r+1)( )\ =2(p=1))/(r+1)° . (As a check, we can deduce
this value of‘Aq, given {4 = ‘Up/(r+1)2, from the equation
e £y = k1(k1—l-A1)). L4 and A\q are well-definecd since they
have been determined independently of the choice of § in [41
and ™M in 131 respectively.

Combining this theorem with some carlier results, we

get further restrictions on X .
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Y - o . N n
hcorem 3.2.2. Suppose G is a (¥)-group of degrece p .

Then one of the following holds: (i) G is dimprimitive

(ii) N = p-2 or (iii) n = 2.

P

Proof. Let X = C(V,GO) and let g‘ be the residual of & .

Casc 1: 8| has rank 3. By 3.2.,1, (r+1)% divides Wp, for
Lq is an integer. Suppose G is primitive and r # O. Then

by 3.1.3, r+l divides p-1 ... (a), and hence r+l does not
divide p. Thus (r+1)? divides Pe Since ;X1 is an integer,
2.2.1 and (a) imply that r+l divides X-2(p-1). Ilence

r+l divides A\ = r(m~-1) + p-2, where m = k/p=-1, ... (b).

Now & i§ the union of (0,...,0,1) with disjoint sets

-1 - . :
y & € Aq, cach containing r+l elecments (@ is as in the

(x)&
proof of 3.2.1). Hence r+l divides m-1. From this and
(b), we infer that r+l1 divides p-2 ... (c¢). But (a) and

(¢) give a contradiction to r # C. Thus r = 0 and \ = p-2

if G is primitive.

Casc 2: B“ is a rank 2 S-ring; iee. A = Vin-1,p)~Q,

-1 R -
n=<_1. By 3.2.1, k = (p° l-l)(r+l) + p=1.

o]
jal
o
-
-

|

Thus m = (p" T-1)(r+1)/(p-1)'+ 1 ... (e) .

L can now be computed from the formula Ul = k(k-ld), and

it turns out that P = (r+l)m. Substituting the above
values of parameters k, Z,h,k in 'd = (N-p)? + 4(k-p):
gives d = (m+p-2-r)2. Using (e) we obtain

- -
(p-1)%d = pz(pn “r + p" 2 + p=r-2)° ces (L),



By 2.2.9, d is a p=-power. If n > 2, (f) implics that

n-2 n
P r + p

+ p-r-2 is divisible by p. Since r < p-1,

we must have r = p=2. But then P = k, which implies that

G is imprimitive. If n = 1, then r+l1l = p; otherwisc the
right-hand side of (f) is not an integer. This again leads
only to imprimitive groups with X\ = k-1. .&é arc left with

the possibility that n = 2. In that case

(p-l)zd = pz(p-l)2 and hence d pz. This gives no

resiriction on the choice of m = r+2, and in our next theorem,
which classifies all rational rank 3 S-rings over V(2,p),
we will see that for any m with 1 < m < Eéi , there is a
rank 3 S-ring for which the residual is definecd.

We will find all (%)-groups with n = 2 in S 4,1 by
appealing to a theorem of Dickson (p.213 of [IS]) which
classifies all subgroups of I'SL(2,p).

The following is an immediate corollary to 3.2.1 and

Se2e2,
Corollary 3.2.3. Suppose G is a primitive (%)=-group of
degree pn and X the corresponding S-ring. Then, if n > 2,

. -1
the residual S-ring has parameters (k-p+1, pn -p=-k-2,

Ep-k-p, HP).

Theorem 3.2.4. For any integer m with 1 < m < (p+1)/2,

there is a rational rank 5 S-ring over V = V(2,p) with

paranmncters
(k,£,0,8) = (m(p=-1), (p+l-m)(p-1), p+m?=-3m, m(m-1))

Moreover, any rational rank 3 S-ring over V has these



parameters for some n.

Proof. The result will follow if we show that any partition
. = . e s
of the lines of V into two sets zé and | gives an S-ring,

A A
with simple basis quantities 0, &, "', having the above

paramecters. For m = l@] = 1 this is trivially verified.
Suppose m 2 2 and let A be any set of m lines of V. Ve
ramust show that M= | A, A -i-Sl is independent of S din A .

We may choose a basis {®,B} of V such that

A = {a,3, Ot Byeee 2t B}

and
A= |AA A+l
Clearly | A a2+ a)| = p-2,
while - \AA(§_+a)l=r=m-2.
It is easy to show that, for each i = 1,...,m=2, the vector

a(a+tiB) +«a (a € GF(p) ~C) belongs to A if and only if
a = =1 or a = tj/(ti-tj) for some jE€{lyee.qi=lyi+l,...,m=2}.
Hence
A = p-2+m=2+(m-2)2 = p+rm?-3m .
In a similar way we can show that

b = m(m=-1) .

A ~

llence, by 2.1.6, the S-module with basis C, A and m

( M= v(2,p)~ (0 A )) is an S-ring.



3 3.3 Possible paramctcers of (¥)-croups.

We now have scveral conditions whicihh must be satisfied
by the parameters of a (¥)-group. For convecnience we
collect them togcther below, adapting them to get equations
(A) ... (F). The rest of the scction will be devoted to the
task of finding all integer..solutions of thcse cquations.

Suppose G is a primitive (¥%)-group of degrece p" and
parameters k,Z,A,p,d,ﬁg,fs defined as in 8§ 1.2. Then

pl =k + £ + 1 ees (A)
By 2.2.8 and 2.2.9, there exists a positive intcger t ;uch
that |

2t

p<t = pnkz/fzf (B),

3 ¢ o0
and p2% = (0\-)? + &(k-p) ... (C).

By 1.2.5, p€ = k(k-1-)\), which becomes, using (A):
L(pT-k-1) = k(k-1-)\) ... (D).
Eliminating k from (C) and (D) we can rearrange terms to get:

[uz+2u(-pt-k-3) + (X+pt)(X+2+pt)][pz+2p(pt-k-3)

2t)

+ (A-p%) (H+2-p%)] = 16p(p™-p oo (E)

By 3.2.2,

>\= p=-2 or n > 2 ees (M)
For )\ = p-2, (L) becomecs:
2 t t t 2 t
(pe+2p(-p =p=1) + (p=2+p )(p+p )Jlpé+2u(p -p-1) +
2t)

(p=2-p)(p-p¥)] = 16u(p™-p ee. (E').

Lomma 3.3.1. If X\ = p-2, p="1 divides pp” .

Proof. The result is clear for 2t-1 < n, 50 we supposec

2t-1 > n. Then, by (B), p‘?'t'-n divides k£, and since
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k+d+1l = p=, p2t-n divides cither k or £ .

t- N
(i) If p divides k, then by (D) 2t-n divides ¢ and

hence p2t divides ppn.

(ii) If p2t™™ divides £, then by (A) p°'"™ divides p -k-1 and
so by (D)

p2t"® divides k-=l-X\ = k-p+l . o
Hence

pZt“n divides (p"=k-1) + (k-p+l) = p =D
Hence 2t-n £ 1 and pzt-l divides pn .

. .. 2t-1
In both cases (i) and (ii) we deduce that p
divides up -
t A 2

Lemma 3.3.2. p divides p° - 2(p+l)u + p(p-2) .
Proof.. By 3.3.1, p’?'t—l divides the left-hand side of (E').

Hence pt divides at least one of the two factors in this
expression. whichever this factor is, the result follows.

We let y be that intcger given by:
t
(E') and (3) give

(yu2p+2p-2+pt)(ywzp-2p+2+pt) = 16p(pn'2t-1) eee (H) .

Lemma 3.3.3. If X = p-2, then (i) p < k/(p-1),

(ii) p < pt-p+2 -

Proof. (i) ¢ = IA« A+Y\ where Y € [ . Suppose o € A, A +Y.

3+Y, some 3 € A . Suppose also that

Then o«



aa & A _A+Y for some 1 £ a € GF(p)~ O. Then a% = § +7,
some § € A . llence (a=-1)a = § -3 belongs to A . A+S .

but since M\ = p-2,

A_ArS = {28...,(p-1)5}

and so o0 is a multiple of § . liecnce Y = at-$ is also
a multiple of § , giving a contradiction to Y € . we
have thus shown that at most onc point of each line of A
lies in A . A+Y, Y €[ icee B < k/(p=1) .
(ii) From (C) and (F),

p2t = (p-2-p)? 4 b(k-p) .
Using (i),

p - > (p-2-p)? + 4(p-2)p = (p-2+p)2 .

Hence pt > p-2+¢ and (ii) is proved.

Kote. The left-hand side of (G) factoriges into lincar
factors (in p) with intecger coefficients if and only if

4p+1 is a sqguare, which is truc if and only if p = 2. This -
sceins to be the rcason why the case p = 2 is casier to deal
with, and our next thecorem shows that we can find all possible

’

parameters of (*)~-groups when p = 2.

Theorecm %.3.4. Let G be a primitive (¥%)-group of degrec 2n.

Then the parameters of G are (5,10,0,2).

3.2, ot divides p(p=-6). fut by 3.3.3, U 5_2t.

n

Proof. By

Ilence



b= Zt, 2t—l, 2t-l+6 or 6 .

If n = 2, kX = 1 and hence G is imprimitive. llence n > 2

and N = O by 3.2.2.(E'") becomes:

t, - t
[p2sop(-2%-3) + ot (2+2%)Ilp? + 2u(2%-3) - 2%(2-2%)1 =
15
16p(2R-22%) ce. (BM)
Case 1. b= 2t. By (C) B = k, which gives a contradiction

to G primitive by Corollary 3, p.149 of [10].

t-1

Case 2. o= 2 (") gives

t- -
(2°72.1)(7.2%7%.5) = g(2"-2%%) |
The only possibility is that t = 2 which yields n = 4, g = 2,

Xk = 5 and £ = 10.

t-1.6. (") gives

L+ o - -
o g(ptt=9_p3t=6 | 5 ,2t-5,

Case 3. B o= 2
t-2
+

2" (2 3)

If t > 3, comparing the highest power of 2 dividing cach
side, n = 2t=-5, Then

t-2

=1 - -
2 + 3 = 9(22t ! t l) + 5 .

- 2
Clcarly the right-hand side is grcatexr than the left for t > 3,

while t = 3 leads to 4 = 16, k = 1, contradicting B < k.

Putting t = 1 or 2 gives an immediate contradiction.
Case 4. B o= 6. (") gives
3.2n-21:+3 - 22t-2+l
Clearly we can have only n = 2t-3, which implies 2t-2 = 1,
contradicting the fact that t is an integer. This completes
the proof.
It often happens that 2t = n for rank 3 (p,n) groups

(it follows from (B) that 2t = n if and only if {k,£} = {fo,fs},
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bearing in mind that k+/£ = f1+f3). We find that for
(%Q-groups in which n = 2t er n = 2t+1 our equations are

casier to manipulate:

Theorem 3.3%3.5. A necessary condition for the existence of

a primitive (¥)-greup with p # 2, M= p-2 and with (i) n = 2t

or (ii) n = 2t+1 is respecctively that (i) th+4p+l is a square
or t = 1, or (ii) 4pt+l+4p+l is a square.

Proof. Consider first a polynomial in W of the following
foprm.

P(u) = (Re+ap+b) (pl+cu+d) - cp .
If P(p) is the product (p?+xp+b)(pl+yp+d) of two sccond-degree
polynoﬁials then, comparing cocfficients of powers of {,
(1) a+c = x+y,
(2) bc+ad=-e = by+dx,
(3) ac = xy .
Solving (1) and (2) for x and y, and using (3), it is
found that P(Q) is such a product if and only if e = O or
e = (c=a)(pb=-d). Taking P(Q) to be the left hand side minus

the right hand side of equation (1) gives the condition

s 1
16(p™-p=%) = 0 or 16(p™-p=Y) = 16p2%(\+1) .
With )\ = p-2, the second condition is equivalent to n = 2t+1.
Thus n = 2t or 2t+1l is a ncccssary and sufficient condition

for (L') to have the form (p) R(K) = O where Q and R are

second-dcgree polynomials. If n = 2t, (X') becomes:
t t
w2 + 2p(=p -p=1) + (p-2+p )(p+p5': 0 or
t t t
wé 4+ 2u(p -p-1) + (p=2-p )(p-p ) = O .



If n = 2t + 1, then
t t
w2 4 2p(p -p=1) + (p-24p )(p+p ) = O or

we 29(-pt—p-l) + (p—2-pt)(p—pt) = 0 .

Solving these equations, if n = 2t then
b= p+l+pt + (4pt+4p+l)%‘
or o
b= pel-pty (4p+hps1)E
while if n.= 2t+1 then,
b= p+l-pti(-qpt+l+4p+l)%' or
po= p+l+pti(4pt+l+Qp+l)Li
Lemma 3.3.3 tells us which signs we must take. If n = 2t,

t I
b = p+l+p —(th+4p+lyi
or p = 2and t =1 (we discount U = O since G is primitive).

4
po= p+l+pt—(4pt+l+4p+l)Lo

Corollary 3.3.6. Let G be a primitive (¥%)=-group with p > 2,

A= p-2 and either (i) n = 2t or (ii) n = 2t+1. Then the
parameters (k,£,\,i) of G are respectively,
(i Ve t - L ( t t t
i) (A(p +1)(x-3), 4 (p"+1)(2p "=x+1), p-2, p+l+p =x),
where x° = th+4p+l, or

2t+1

- t
(ii) (4[p%(x-2p-1) + x-31, p -k-1, p-2, p+l+p =-x),

where x% = 4pt+l+4p+l .

Proof. The valucs of U were found in 3.3.5. k is obtained

from (C) and thenf from (A).
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dote. 1t can be shown that the scts of paramcters of
3.3.6 satisfy all the numcrical conditions we have found.
Thus, for n = 2t (t > 1) or n = 2t+1, the condition of
3.%.5 that 4p> + 4p + 1 is a square, s = t or t + 1, is
'sufficient' in the sense thal our present knowledge will
yield no stronger nccessary condition. Indeed we shall
sec that for all known cases when Ups + 4p + 1 is a square,
a rank 3 S-ring exists with the appropriate parameters.

We now turn our attention to the question: when is
4pS 4+ 4p + 1 equal to x°?, for some intcger x? We observe
that there are solutions s = 2, x = 2p+1 for all p and
that t cannot be even and greater than 2, for if so,

2 / 2
(ZPS/Z) < lips + 4p + 1 < (2p$’2+ 1)

Unfortunately, the general problem scems to be intractible
by known number-theorctic means. It is interesting that

a problem of exactly the same nature was encountercd by

Montague [!e¢] in his search for rank 3 cxtensions of

PSL(n,q). llis condition was that
ps + ps-'l 4+eee+ p+l = x°
for some integer x. Ile used a computer to show that for

p < 12,000 and 14p +..s+ pS < 109, the only solutions are

(p,s) = (3,4) and (7,3). Without resorting to such mcans,

we can get a similar recult by finding what x has to be

modulo ps. In our casec, for example we get:
Lemma 3.3.7. The only integer solutions (p,s,x) of
Zips + Qp + 1 = x2

with p an odd prime and s < 10 are (p,2, + (2p+l1l)) for any

p and (S,B,ill).



Proof. Casc s = 1: 8p+l = x® and so x = +1 modulo p.

i.e. x = + (ap+l), some intecger a, and hence ap+24 = 8

which is ceasily seen to have no solution with P prime.

Case s = 2: x = +(2p+1) gives two solutions for every p.

There cannot be more than 2 solutions for a given p, so

we are done in this casec.

Case s = 3:
x? = st + 4p + 1 e (1)
x = +(ap+1l) for some integer a. Equating coefficients of
P in (l),a = 2 modulo p. llence
x = + (bp? + 2p + 1),
some integer b. Equating coefficients of p? in (1) gives

b = -2 modulo p. Hence
X = + (cp3 - 2p2 + 2p + 1) .
Equating coefficients of p3 in (1) gives ¢ = 4 modulo p.
We sce that x? is greater than 4p3 + 4p + 1 unless
(pye) = (3,1), which yiclds the solutions
(pys,x) = (3,3,+ 11).

As we remarked earlier, we need consider only odd s

.

for s > 2.
Case s = 5: As for s = 3,
l* 2
x = i(ap5 - 10p + 4p3 - 2p~ + 2p + 1)
where a = 28 modulo p. It is easy to sce that x° is greater

than 4P5 + 4p + 1 for any such a and p.

Cases s = 7 and s = 9 are eliminated in similar fashion.



Corollary 3.3.8. Let G be a primitive (¥%)-group with
N = p=2 and cither n = 2t or n = 2t+1. Then the degrece
n 4 )

p of G is p2 (any odd prime p), p (any prime p), 3~ or

» or n 2 21. The respective scts of parameters arc as

“w

in cases (iii), (vi), (vii), (viii) and (ix) of Theorem 1l.3.2.

Proof. (a) p>2. (i) n = 2t. If x° = th + hp + 1,
for an integer x, then by 3.3.7,

(p,tyx) = (p,2,2p+1) or (3,3,11),
(we take the positive values of x since, by 5.3.6, x must
be greater than 3 for k to be positive).

4pt+l + 4p + 1, for an intecger x,

(ii) n = 2t+1. If x° =
then by 3.3.7,

(pytyx) = (py1,2p+1l) or (3,2,11).

Lut by 3.3.,6 the former gives | = O, and since G is primitive
we discard this. For the latter solution, 3.3.6 gives the
required parameters with pn = 35~

(b) p = 2. By 3.3.4 we get the n = 4 case only with
parameters as required.

We now return to the geqeral case (n not necessarily
2t or 2t+1l) and show that for low t we get no further

\
(%) -groups. We need the following lemma.

Lemma 3.3.9. In a (¥)-group, with p 22, n is grecater than

or equal to 2t-2.

Proof. This is immediate from 3.3.1 and 3.3.2, p being

the highest power of p dividing H.



Theorem 5.5.1G., Suppose G is a (¥)-group with \ = p~-2.

Then if n € 12 the only possible sets of parameters are

-—_

those given by 3.3.8.

I'roof. By 3.3.4 it is sufficient to consider p > 2 and
by 3.3.9 to consider only t < 7.

Given t, our method is to find U modulé"pt Dy means
of Lemma 3.3.2. Lemma 3.3.3 then gives the possible values
of H. It is then not difficult to check whether the
resulting paramcters fulfil conditions (A)...(F). Thus
we have an algorithm for finding possible parametcrs with
ziven n (or t). We have worked this through for t £ 7,
though we give details up to only t = 5, which amply
demonstrates our method.

By 3.3.2,

ué - 2(p+1)y + p(p=-2) = O modulo pt.
Thus £t = O or 2 modulo p. We consider the two cascs

scparately.

Case_1: M = 2 modulo p. The following table gives
nossible values of i obtained from the above congruencc.
t i (modulo pt) a (given by 3.3.3)
1 a, a = 2 mod p 2
2 ap+2, a = 3 mod p O if p=5, 3 if p>3
3 ap?+3p+2, a = -2 mod p p=-2
4 aP3—2p2+3p+2, a = 4% mod p 1 if p=3, & if p>3
5 apq+4p3-2p2+3p+2, a =-10 mod p -1 if p = 3,

O if p=5, 4 if p=7

p=-10 if p>7.



Wie now find which of these values of U lcad to parameters
satisfying our conditions.
t = 1: by (C), k = 2(p=-1) and hence

(i, £,0,1) (2(p-1), (p-1)%, p-2, 2).

t = 2: If p = 5 and & = 2, then by (C), k¥ = 22 which gives

(,2,0,0) = (22,220,1,2) . o
If p is prime > 3, then P = 3p+2, which, being odd, we
discard by Lemma 3.1.7.
t = 3: L=p = 2p
from (G) we get
Y = p - 4p2 + 8p - 6,

(I1) becomes

(P-B)(p3-2p2 + 3p) H(pn-6—l) .

Clcarly the only possibility is p 3, n = 6, This gives

(ky£,0p) = (112,6126,1,20).
t = 4: If p = 3, we again get U = 20. From (C), k = 1570.

1o
Lom

pl = k(k=1=X) ,

&
i}

121088. Hence
‘ 3 n
k+f+1 = 124659 = 3°.19 Z 3, any n.

If p >3, ¢ is odd and the case is dismissed as for t =

t = 5 W is odd if p = 5 or 7. Suppose p = 3. As in the

t = & case we get B = 26, k = 14692, £ = 10805967 and hence
k+£l+1 = 39.61 £ 30, any n .

For p > 7 we get a contradiction by proceeding as in the

-

t = 3 casec.

2.
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Cases t = 6 and 7 can be resolved in a similar way,
1
and we could continue indefiqgly in this way.

Case 2: L = O modulo p. Since the method is exactly
the same as in Case 1, we omit the details, merec¢ly pointing
out that for t < 7, only t = 2 yields possible paramcters,

these being as in case (vi) of 1.3.2, with y = p°-p.



8 4., CLASSIFICATION O (X)-GROUDS.

8 4.0 General Remarks; Orthogonal Groups.

In 8 3 we showed that a primitive (%)-group has
4

degrec p2, P > 35, 36, or p" with n > 12. In 8 4 we will
complete the proof of our main theorem, 1.3.2, by finding all
primitive (X)-groups having parameters as given by Thecorems
3.2.4 and 3.3.10. By Theorem 3.2.2 <ither |\ = p-2 or n = 2,
and these two cases reqjuire different trecatments. In 8 4.1

. 2 .
we find (%x)-groups of degree p~, and in 4.2, 4.3 and 4.4

5 and 36 respectively.

those of degree pq, 3
For cach of the last three degrees our method will
follow.the same pattern. We will first prove the existence

and uniqueness of an S-ring with the given paramecters by
(1) proving the existecnce and. uniqueness of the residual
S-ring ,21,
(2) constructing an extension X in a unique way.
The final step is
(3) to find the automorphi;m group Aut 2 (defined in
§ 2.3) of A .

Then the semidirect product (v] Aut .8 is a (¥)=-group if

Aut 3 has two orbits on V-0 and is doubly-transitive on
the lines of one of them. It turns out that these conditions
are fulfilled except for degrec 36 and even then Aut § is

a group of some interest.
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We now look at steps 1 and 2 more closely, outlining
our method of proof. e dcnote by A(p), B, and C those
paramcters, given by 3.3.10, of (¥)-groups of degrce pq,

35 and 36 respectively. The residual S-ring has parameters
given by Corollary 3.2.5. Denoting these parameters by
A,(p), By and C; respectively we list below.the parameters

of S-rings (corresponding to (X)-groups) and their

residuals.

degree kmw hY v
A(p) P4 (p?+1)(p-1) p-2 p({p-1)
A (p) p° p? (p-1) p?(p-2) p2(p-1)
B 52 11.2 1 2
B, » 5 10.2 1 6
c 36 56.2 1 20
Cq 3° 55.2 37 60

In S8 4.2 we will sec that there is a unique S-ring
having parameters A, (p) and that an cxtension —g (assuming
it admits a suitablc automorphism group) with parameters
A(p) is unique. We show in S 4.3 that A(3) admits a
unique S-ring without any assumption about its automorphism
group. But B; = A(3) and hence the residual in the p
case is also unique. It follows from 1.2.6 and 2.2.6
that an S-ring with parameters C; is the dual to an S-ring
with paramcters B, and hence is unique. In S 4,4 we show
that the extension is unigue under ccrtain assumptions

about its automorphism group.



Orthoronal Groups.

Since orthogonal groups over finite fields will arisc
in § 4.2 and in 8 4,4, we give a bricf description of them
here. The discussion will concern only fields of
characteristic not equal to 2.

Let V = V(n,F) denote a vector space ofs dimension
n over the field F. We call a map Q from VxV into F

a auadratic form over V 1if

(1) (@x,B)0 = (2,x)Q for c, B €V .
(i1) (ax,3)Q = a(a,3)Q for ac€F, x,3€V .
(iii) (a+3,Y)Q = (a,Y)Q + (2,Y)Q for a,3,YEV .
Ve say that an element g of GL(n,F) is an isometry
of V with recspect to Q if
(ag,38)Q = (x,3)Q
for all o« and 3 € V. The group of isomctries of V with

respect to ) is called the orthogonal group of Q. 1r

al,...,an is a basis of V then the matrix A, whose i, j th

cocfficient is (ai,aj)Q, is called the matrix of ¢ with

respoct to this basis. Q is said to be non-singular if

A is. If we change basis via Sj = Z sijai’ then the matrix

of ¢ with respect to Bl""’sn is S'AS, where S is the non-

singular matrix with coefficicnts sij .
Theorem 4,0.1. Let V = Vv(2n,p) and supposec Q is a non=
singular quadratic form over V. Then a basis may be chosen

for V such that Q has matrix



C 8 - N
Ay = o1 A = O 1 :
tos 10 | °r Az = 10 |
-' i .. i
01 | o1 |
10 ! 10 j
o1 10,
1 0O, O -
- J g %
where g is a non-square. The two forms arec not equivalent,

we call them forms of type 1 and 2 respectively, and the
corresponding orthogonal groups are denoted by 0 (2n,p)
‘and 0" (2n,p).

Given any quadratic form with matrix B there is a non-
singular matrix S such that B = S'AS where A is onec of
the matrices A; and Az of 4.0.1. llence
det B = det A(det S)2. But det Ay =(-1) while det A; = g.eo“,

' Fow neven .

and so a quadratic formAis of type 1 or 2 according as the
determinant of its matrix is a sjuare or a non=-squarc.

We shall be mainly conccrned with the latter of the
two types. We statc some facts about O-(n,p) in the next

thcorem. A vector a of V is called isotropic (with respect

to ¢) if (x,x)Q = O.

Thecorem 4.0.2. Let Q be a'quadratic form of type 2.

Then
: . . . n n-1
(i) the number of isotropic vectors is (p +1)(p -1) + 1.
‘ - - i
(ii) the order of PO~ (2n,p) is pn(n 1)(p2—l)(p “1)ess
(p2™"2.1) (p741).
(P07 (2n,p) denotes the projective orthogonal group; in
this case it is O-(2n,p) factored out by the subgroup {I,—I}»
where I is the identity matrix).

The proofs of results mentioned above may be found in

L1371 or [4].
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8 4,1 (#¥)-groups of degree p?.

In Thecorem 3.2.% we found that rank 3 S-rings cxist
over V(2,p) for any k which is a multiple of p-1, and in
3.2.2 that, unlikec the case n # 2, the imposition of an
automorphism group doubly-transitive on é} leads to no
further restrictions on the parameters. The rcason is that
residual S-rings arc well-defined for all rational rank 3
S-rings over V(2,p), and they are all the same, for therc
is only one rational S-ring over V(1,p). We must therefore
adopt a different approach for this case. Since Dickson
has essentially determined all subgroups of PGL(2,p), we

simply consider all possibly doubly-transitive representations

of these.

Theorem 4.1.1. Suppose G is a primitive (%)-group of degree

p.

Then GO/Z is disomorphic to one of

(i) the dihecdral group Do(p-l) for any prime p £ 2.

(ii) the symmetric group 53’ with p = 5.
(iii) the alternating group AS, with p = 7.

(z denotes the centre of GL(2,p); 4i.c. the scalar multiples

of the identity matrix).

Proof, wWe first slhiow that p is not 2 and that p docs not
divide|G_| .
o
If p = 2, then k+£ = 5 and assuming k < £, we have k = 1

U, contradicting G primitive.

and hence WU
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Supposc p divides iGo.' Then therc is an orbit of Go

on SL. containing p lincs. llence 'yé \: 1 and \El = Do
But then A, C is a subspace of V and hence G is
imprimitive - a contradiction. Since PGL(2,p) has order

p(p?-1) it follows that |G /4| divides p®-1 .

We first consider the speccial cases [éﬁ < 2. If
lél = 1, then G is imprimitive. it [éi = 2 we choose a
basis for V(2,p) such that A = {(1,0), (0,1)}. This case

is special because therc arc elements of PGL(2,p) which fix
both lines of é but not the remaining lines of PG(1l,p).

/) N A
If 5 is the S-ring with simple basis quantities 0,4, m,

with A as above, then

' Aut § = {(8 g), (2 8) : a,b,c,d € GF(p)} .

It is casily checked that (vl Go, with Go = Autk y is a

(¥)~group and that G /Z is isomorphic to the dihedral group

DZ(p-l) with generators and relations
10 . 01 ..
<A = (O a) modulo 2, B = (1 0) modulo Z:

’B-lAB = A7 modulo z >,
where a is a generator of the multiplicative group GF(p)~ O.
We now cxamine the complete list of subgroups of

PSL(2,p) found by Dickson (Sce illuppert's book (1$], p.213).
By Dickson's Theorem, the only subgroups of PSL(2,p) (p # 2)
with order dividing p?-1 are

(1) cyclic groups of order z, wherce z divides (p ¥ 1)/2.

(2) dihedral groups of order 2z, with z as in (1),

(3) AQ’ if p > 3.

0 modulo 16 and p > 3.

(4) s,, if p®-1

(5) Ag if p?-1 = C modulo 5.

1i



e wish to find subgroups of PGL(Zz,p) which have two
orbits on PPG(1l,p) and which are 2-transitive on onec of them.
Such a subgroup must be onc of (1) to (5) or contain such a
group with index 2. It is not difficult to show casc by
case that the latter possibility does not occur, though we
omit the dctails. We now consider 2-transitive

represcntations of groups (1) to (5).

Case (1) Since a transitive abelian group is regular
(Sce evg. 4.4 of [22]), the only doubly-transitive cyclic
groups are C4; and C;. We have already considcred

pél = 1 or 2, and so no (#«)-groups arise from this casc.

Case (2) ve¢ have alrecady secn how D2(p-l) gives (%)-groups
for all primes p ¥ 2, with [él = 2. Supjose D°z acts
2-transitively on a set A with Lél > 2. By 9.6 or [:x],

qu is primitive on A and hence by 8.8 of (2x], the normal

cyclic subgroup of order z is transitive. But by 4.4 of

(21], transitive abelian groups are regular, and hence

|&) = z. By Theorem 1.1.1, z(z-1) divides 2z, and so z
is less than or cqual to 3.° VYe have already dealt with
lél < 2, and we nced consider only z = 3. Now D, acts

transitively on f , Where Lé\+ l[ﬁ: p+1l. llence [El
is a divisor of 6, and it is easy to sec that the only
possibility is that p = 5 and (&) = |D|= 5. Ve may
choose a basis of V = V(2,5) such that

A = {(1,0), (0,1), (1,1))}.
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we indeced get a (#)=-group in this case with

2 0 G 1 c 4

and GO/Z is isomorphic to D6 (i.c. to 33)'

Case (3) Aq is 2-transitive only on 4 letters. Ilence
| &)= 4 ana (Tl divides [4,] = 12 .
Since \é\+[fl = p+l, we can have only p = 7. With

A = {(1,0), (c,1), (1,1), (1,3},

we get a (%)-group [V]GO, where G_ /% is isomorphic to Ay.

01

11
3 2) and (2 6) .

G, is gencrated by (

Case (&) Again the only possibility is p = 7 with A
as in case (3). But G of (3) is the largest subgroup of

PGL(2,7) which stabilizes A\ . Otherwise there would be a
matrix (g g) in GL(2,7) which fixes (1,1) and (1,3).

Clearly there is no such matrix.

Casec (5) Suppose GO/Z is isomorphic to AS. Now A5 acts
o-transitively on 5 or 6 letters. Hence
|A] = 5 or 6, and JIW is a divisor of 60.
Also
\él + LT! = p+1 and p?-1 = G modulo 5.

The only primes satisfying these conditions are

(a) p = 11, with |a| = [I'| =6

it
it

(b) p = 19, with {a| =5, (] = 15.

Supposc (a) occurs. The element A = (lo 5 of GL(2,11)



has order 5, and so by Lemma 3.l1l.1 we may assume that A

belongs to G_. The orbits of A on 2G(1l,p) arc

{(1,0), (Oyl)’ (178), (ljl)) (}_1_._7_)})

>
|

{(1,3), (1,4), (1,5), (1,16), (1,9)},

>
"

{(1,2)}, Ay = {(1,6))

>
W
il

WWe may assume é = él Y é3 or é = é 1 uélt .
If Go is 2=transitive on 4, then Go contains an clement
which maps (1,0) to (C,1) and (0,1) to (1,0); i.e. G

contains a matrix BB = ) for some a € GF(p)~0 . If

(
A = _Al ‘14}3’ then A contains the lines (1,a), (8,a),

(7,a) ﬁnd (2,2); 4di.e. the lines (l,a), (1,7a), (1,8a)

and (},6a) belong to ‘A.. But this is not truc for any a.
We get a similar contradiction if A = é}l u4}4 . lHence

(a) cannot occur.

In the same way it can be shown that (b) cannot occur

cither. This complctes the proof of Theorcm 4.1.1.

4
8 4,2 (%)-groups of degrece p .

In this section we find (¥%)-groups with parameters

A(p) as defined in S 4.0, Je will prove

Theorem 4.2.1. Let X be an S-ring which admits a (*)-group

G with paramcters A(p). Then a basis may be chosen for

V(4,p) such that
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(i) {(1,0,c,0), (u,1,c,0), (0,6,1,C),

H
o]
gt
o
I
[
1

(¢,c,0,1), (1,1,1,1))}

(ii) for p £ 2, AN {(x,y,z,w): WZ = x2+y2+exy],
. Aut B .
where c?-4 is a non-square in GF(p), and —BziL is

isomorphic to

(i) the symmetric group 55 for p = 2 e

(ii) [PO"(4,p)]C;, the projective orthogonal group of second
type extended by a cyclic group of order 2, for p £ 2.

(Z denotes the centre of GL(4,p)).

Proof of (i). We first prove the uniguencess of an S-ring

with parameters A(2) = (5,10,0,2). The S-ring is primitive
since P is not equal to O or k. By 23.7 of [xx], tho
clements of A  generate V = V(4,2). llence we may choose

a basis of V such that the vectors (1,0,0,0), (¢,1,0,0),
(¢,0,1,0) and (0,06,0,1) belong to A . Let & be the
remaining vector of A . If o« = (1,1,¢,0), then « belongs
to A A+ (1,0,0,0), contradicting A = 0. Similarly «
cannot be any other vector with cxactly two zero coordinates.
if &« = (1,1,1,0), then ZX/\Z§+ (1,1,0,0) contains four
vectors, contradicting Kt = 2. Similarly o cannot be any
other vector with exactly one zero coordinate. Hence the
only possibility is o« = (1,1,1,1). It is casily seen

that with this ®, any permutation of the five elements of

I\ acts as a lincar transformation, and hence Aut % is

isomorphic to SS'
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We will prove Theorcm 4.2.1 for p Z 2 by a scquence
of lemmas (1 to 10). The uniqueness of the residual
S=ring is uscd to oblain the first three coordinates of
the elements of A . Then by using the transitivity
propertics of the automorphism group.and the fact that the
dual 3-ring also has rank 3, we determine thd fourth
coordinatces. By Lemma 3.1.1; we wish to find JAN only
up to change of basis., Assuming the existence of an
S-ring with the requirced parameters, by suitable changes
of basis we 'home in' on some unique canonical set which
can casily be checked to yield an S-ring with the required
bParameters. Before starting the proof we prove a general

lemma which will be useful.

Lemma 4,2,2. Suppose 2 is a rational rank 3 S-ring over

V(n,p) in which ,X = p-2. If a, Q and Y are distinct
lines of A , then o, 3 and Y are lincarly independent

vectors.

Yroof, If falsce, there are non-zcro elements a and b of
GF(p) such that Y = ax + b3. , Dut then A A A+ ax
contains Y as well as p-2 scalar multiples of . This

contradicts X = p-2.

Lemma 1. Let G be a (i&)-group with paramecters A(p). Then
we may choose a basis of V such that

(i) A = {(0,0,0,1), (x.v,1,f(x,¥)): x,y € GF(p)},

where £ is a function from GF(p) x GF(p) to GF(p),



(ii) G, o

?

x = (0,0,0,1) and X is the group

is isomorphic to a subgroup of K, where

(o]

{(2 L O): A € GL(2,p), a,b,c € GF(p), ¢ £ o}

Proof. (i) We choose a basis for V such that oo = (0,06,0,1) € A
The residual S-ring is imprimitive, having barameters
Ay (p) = (p%(p-1), p?-1, p?(p-2), p?(p-1)),

in which g = k4. ilence we have

A (A +Y) = A

[IaY |

for any Y € r1, and so
UXVOBA(RUtaTY = r?uo

for any Y € r;. llence r:u 2 is a 2~dimensional
subspace of V(3,p). By a suitable choice of basis, we

may supposc

Ny o

{(x,y,0): x,y € GF(p)} .

it

Ilence

{(x,y,2): x,¥y,2 € GI'(p), 2z # 0}

u

A

and therefore

{(€0,0,0,1), (x,v,1,£(x,y))},

A

—

where £ is a map from GF(p) 4 GF(p) to GIF(p). f is a well-
defined function since if (x,y,1,s) and (x,y,1,t) belong to
A with s # t, then
(x,y,1,s) = (x,y,1,t) + (0,0,0,s=t),

giving a contradiction to A = p-2, by Lemma 4,2, 2,



(ii) Go,x is isomorphic to a subgroup of Aut.gt, where
QI denotes the residual S-ring of /& . The i-th row of

a matrix of Autlgl y regarded as a vector, lies in thc same

oruit as (Oyeeeyl,.e.0), where the 1 is in the i-th place.

Since (1,0,C) and (0,1,C) belong to fﬂ1, while (0,G,1) belongs

ER ]

to [&1, the result follows.

‘Lemina 2. A basis can be chosen such that f(x,y) = O if

and only if x = y = O.

Proof. We make use of the dual S-ring ,2#*, which was
defined in 8 2.2. Recall that Zx denotes the formal
suwmn Sé S . If 4 and ﬂ/ are elements of the dual space
wa tgé; it is not difficult to see that since -,g is
rational, (&)d = (A)Y if and only if 4 and Y take the
same number of zeros on a complcte set X of line representatives
of A . In our case wec take
x = {(0,0,0,1), (x,y,1,£(x,y)}: x,y € GF(p)}
Since Z#t has rank 3, an elcmcnt of V4¥'\ U takes onc of

~

two fixed values on A . Ve define xl,...,x4 as in 8 2.3

by

where ej = (OyeeeylyeesU), the 1 being in the j-th placec.

Now X _ takes one zero on X, while ><l takes p+1l zcros on X.

3
Ve use a counting argument. Consider the following subset
=
of VT .,

Y= {ix, + J%, ¢ KXy + Xy i,k € GF(p)}.



4
The total number of zeros taken by Y on X is p . lience
3 2 . . ) 2
we must have p”=-p  elecments of Y each taking p+1 zeros, and p
clementsof Y cach taking one zero. Suppose

llxl + 12x2 * 1313 +4X4 takes just onec zero. Then

transforming in V by

1 6 O il‘
¢ 1 0 12!
c o0 1 i !
5 !
i,C 0 0 1 ,

we may assume that ?(Q takes Jjust one zero; i.e. exactly
onc of the f(x,y) is zero. Suppose f(a,b) = O, Then
transforming in V by

(100
0

1 O O

(@)

-a -b 1 O

L0 0 0 1
we may supposc that £(x,y) = O if and only if x = y = O.

(Note that ncither of the above two transformations changes

the form of X).

Lemma 3. Go - contains a subgroup P of order p2.
]
Proof. Since G is a (%)=-group, G, o is transitive on Q - & .
?
But | A - g\ = p? and so by 1.1.1, p? divides the order
of G .
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Lemma &t

ex:onent p and order pD.

S

A Sylow p-subgroup S of K is non-abelian of

is isomorphic to

<a,B,c : cac™t = A, csc™t = ap, pas™t = A, AP=8PocP - 1.
(K is as in Lemma 1).
"1 ¢ o\[
Proof, Ve take S = ’a 1 0 : a,b,c € GF(p)}) .
(b ¢ %J L
Since S is a Sylow p=-subgroup of GL(3,p) it is certainly
a Sylow p-subgroup of K. Let
A= (1 0 ¢) , = 1 6 0f , ¢c= {1 0 ¢}
¢ 1 o] 1 1 © fo 1 o]
i
; ! !
1l O : 7 P
_ 1] L0 o 1] [0 1 1

It is a trivial verification that the given relations hold.

The cxponent is p (for p £ 2), since

1 o o)P 1 o o)
a 1 O = Epa 1 O/
b ¢ {j [ d pc 1]

pb + Ri%fllac .

where d

Lemma 5. If S is as in Lemma 4, then the subgroups of S

of order p2 are

1 ¢ o
», ={1ia 1 G| : a,b € GF(p)}
t :

(b ta 1

for t = O,l,ooc,p-l, ‘?rnd

1 0 O .
p oo [o 1 0] : ab e ar(p))
@

.a b 1)
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PYroof. Since S has cxponent p, any subgroup of ordecr p2
is eclementary abelian. Supnose [ has gcenerators
1,1, 1 Jp Jo J=

A TB 2C 5 and A B “c” , with A, 8 and C as in Lemma 4.
Using the relations given in Lemma 4, we find that thesec
two generators commute if and only if

torig = Y2/ .
Illence P = <A,BiCj>, for some i and j, not both zero. It
easily follows that

P = P,, where t = j/i if i £ 0; t = wif i = C.

t’
Lemma 6. G contains a subgroup of the form

5; (1 0 0 hix,y) | : X,y € GF(p) )2
iO 1 0 g(x,y)
Ix y 1 f(x,y)

!
0 0 o 1

where £, ¢ and h are functions from GF(p)x GF(p) to GF(p).

<

roofl. By Lemmas 1,3,%4 and 5, we mdy assume that P (of
V4
Lemma 3) consists of matriccs, of the form | A f} ,

%
0 0GO0C {1

where the matrices A comprise a subgroup Q of GL(3,p), with
O = P ,P . WP .
o= 10,11,.. ’lp—l or Pm

Now Pt is conjugate to PS for t and s non-zero, for

1

- J —_ J
U lt U = ls )
wherc U = (t o o 7.
G 1 ¢
[o 0 sl
It is therefore sufficient to consider cases C = 2 , P, or P



F = {1/1 C © h(x,y)\!
!x 1 0 g(x,y)

y O 1 f£(x,y)

o C O 1

! x,y € GF(p)}

-~
3y Lemma 2, (0,0,1,0) € A » and so the third row of any

matrix in Go may be rcgarded as a vector in A . P is

generated by matrices

A= (1 0 o aﬂ and B = 1 6 O az)
¢ 1 © b1} !l 1 O bz/
1 0 1 ¢y ¢ 0 1 G |
0 0 0 1} ' O G 0 1,
for some aj, by, c1, az, bz € GF(p). The group P is
elementary abelian, and so AB = DA. This impliés that
a; = az = 0O .

WVe now get

i 0 1 icq f

o O o© 1
Hence (1,0,1,ic7) € A for all i € GF(p). But any threc
such vectors are lincarly decpendent, contradicting N\ = p-2,

by Lemma 4.2.2.

(ii) Q = Py: as in (i) we get a contradiction.

Thus ¢ = QD, and P has the required form.



Lemma 7. Z& is as in the statement of Thcorem %.2.1 and the

group 0 (4,p) is contained in Aut 4 , where & is the S-ring
~ A

with basis quantities O,IA and P .

Proof, By Lemma 6, Go contains a subgroup gencrated by
A= (1 0 ¢ a) and B = [1 O O az)
C 1 O by U"l 0 bgt
1 0o 1 c1; ’O 1 1 02!
.0 0 O {J Lp c 0 v!

The third row of the matrix A*BY is (x,y,1,f(x,y)), where

f(x,y) = xyaz + Xi%fil bz + yc2 + Ei%fll aq + XCi

and since (6,0,1,0) belongs to A , a set of line

representatives of A is

X = {(0701011)’ (x,y,1,£(x,y)) : X,y € GF(P)} .

The vectors with y = 0 in X are
{«,0,1, = x? + x(¢q - Y )}
If a; = 0, then any three of these are linearly dependent
and so we must have
aq ;{ o .
201
Since f(1 =~ = , O) = 0 we have by Lemma 2,
1
a; = 2¢q1 .
Now consider those vectors in X with x = ky, somec k € GF(p).
b2 ](2a1 b
f(ky,y) = y%(kaz + — + ) + y(= — + c2) .

2 2 2

As above, we require the coefficient of y2 to be non-zero and

that of y to be zcro. lHence



b, = 2¢cz and Kk?a4/2 + kaz + bz/2 £ O .

This last inequality holds for all k if and only if

al - a;bz is not a square in GF(p).

Writing a, b and ¢ for ¢4, ¢z and a; respectively, we¢ now

have
| A = {(x,y,2,w) : wz = ax? + by? + exy},
where ¢? - 4ab is not a square.

Consider the quadratic form Q defined by

2axq4x2 + 2byiyz + CX1Y2

((x‘l 3Y1 121 2V ) , (x2 1 Y2:22,w2))Q

+ CX2Yq9 = Wq4Z2 = W2Z4.

The matrix of Q is

réa c O O
c 2b 0 O
o 0O 0 -1

!
!

0 ¢ -1 O
-—

N
Since det A = c®-4ab is a non-square, Q¢ is a quadratic
form of type 2. Hence ZX consists precisely of the non-
zero isotropic vectors of Q. If we choose a basis for V

such that the matrix of Q is

1

r2 e O Ow

1
|

o

e c O

i
o 0 0 -1
{
|
0o 0 -1 0J

where e?-4 is a non-square, then we get A as in the

statement of Theorem 4.2.1.
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Thus O-(Q,p) is containecd in the autoumorphism group
of £ , the S-ring with basis 0,A, [ . So also is %,
the centre of GL(4,p). The semi-direct product
(v]lz.c™(4,p) is not a (%X)-group, for the orbits of Z.C (4,p)

on V(4,p) are

{a : (a,a)q = 0}

>

e (o (x,0)Q is a squarc} and

{a¢ : (2,0)Q is a non=-squarc}

I
it

We shall sce in Lemma 10 that Z.0 (4,p) is contained in Aut X .
as a subgroup of index 2 and that O (%4,p) has an outcr

. . | i
automorphism which maps vectors of ™' to vectors or M.

Lemma 8. |é2%2L\ < 2(p?+1)p?(p?-1) !

Proof. This will follow from Theorem 1.1.1 if we show that
the stabilizer of three lines of 4§ in Aut X has at most
order 2. We choose a basis of V such that /A is as in the
statement of 4.2.1. Suppose Zg is an clement of ég%;§ which
‘fixes the lines (0,0,1,0), (0,0,0,1) and (1,0,1,1). We

may choose the cosect representative g such that

(0,0,0,b) and

(6,0,1,0)g = (0,0,a,0), (0,C,0,1)g
(1,0,1,1)g = (1,0,1,1),
for some a and b in GFF(p) NO. Then
(1,0,0,0)g = (1,0,1-a,1-b)

and



for some h, i, j, k € GI(p). Using the fact that the vector

(x,y,1,x%+y%+exy)g is isotropic for all x and y in GI'(p),

it is straightforward, though tedious; to show that
a=b=1, j =k =0, and (h,i1) = (0,1) or (-1,e) .

Since we have only two solutions for the matrix g, thec proof

v

is completed.

Lemma 9. There is an clement s of GF(p) (for p # 2) such

that both -s and 1l+4s arec non-squares.

Proof. If p # 2, s => -s and s —> l+k4s are both bijcctions
of GF(p) onto GF(p). Since cxactly half of the non-zecro
elements of GF(p) are squares, for the lemma to be false
we require that for any t € GF(p),

-t is a square if and only if 4t+1 is a non-square ...(1)
Suppose p £ 5. Then -t = 4t+1 if t = - 1/5, contradicting

(1), and so the lemma is true for p # 5. If p = 5, then

we may take s = 3,
Aut 3 . . . ,
Lemma 10. —_— is isomorphic to an extension of

Z
PO (4,p) by a cyclic group of order 2.

Proof, We have already shown that éE%£L contains PPO” (4,p).

By Theorem %4.0.2, PO (4,p) has order p?(p?+1)(p?-1) and if
we show that Aut X contains an element of PGL(Q,p) not
lying in PO (4,p), then the result will follow by Lemma 8.

/e now find it convenient to change the basis of V so that

the matrix of Q is



A= (2 1 0 0)
1l -2s5 0O O}

o o o -1l

|

L O -1 0

where s is chosen such that -s and 4s+1 are non-squares.

Since det A = l+k4s, Q is indeed equivalent to our carlicr
form, Now consider the element Zg of PGL(4,p), where
c= [0 1 0 o
s 1 C O
0 0 1 0O
.0 O O -=-s
Then
(x,¥,2,w)g = (s2,X+Y,Zy=5W).
Hence if o = (x,y,2z,w), then
(a,x)Q = 2(x®-sy?+xy-wz)
whereas‘

(g,xg)Q = =2s(x?-sy?+xy-wz) .
Since -s is a non-square, g docs not belong to PG (4,p).

But if (q,a)Q = G, then (ag,a@Q = 0, and hence g € Autug .

This compietes the proof of Theorem %.2.1.
Let X be the S-ring given by 4.2.1. We will show

that for all primes p (including 2), the permutation group

éB%JL acting on A is isomorphic to PI'L(2,p?) acting on

PG(1,p?). We first define the group PIi(2,p?).

By a semi-lincar transformation of a vector space V over

a field F we mean a bijection T from V onto V such that for



some automorphism t of [, we have for all o,3 € V, a € I,

(+3)T = oT + 3T, (ax)T = at(a?) .
It is shown in (10.6.9) of (18] that the set of scmilincar
transformationsof V is a group, denoted by ["L(V), containing
the group of linear transformations GL(V) as a normal subgroup,
and that FL(V)//GL(V) is isomorphic to the automorphism group
of F. We let PCL(V) denote the group E%§Xl y, where 2
denotes the group of lincar maps of the form
aT = ao

for all oo € V, some a € [ .

If F is GF(pz), then its automorphism group has order 2.
Hence the order of PPL(2,p?) is 2(p2+1)p?(p?-1).

Theorem 4.2.73. Let A be as in 4.2.1. Then ﬁE%JL

acting on A is isomorphic to PrL(2,p?) acting on PG(1l,p?).

Proof. (1) p = 2. Since P'L(2,4) acts on 5 points of
PG(1,4), and has the same order as the symmetric group SS’
we must have the required isomorphism.
(ii) p # 2. We let Q be the quadratic form over V(4,p)
with matrix as in the proof of Lemma 10, Now the poly-
nomial x°-x-s is irreducible over GF(p), since l+kis is a
non-square, Thus

GF(p2) = {adl +b : a,b € GF(p)} ,
where ) is the primitive (p?-1)-th root of unity in GF(p?),

satisfying the equation



We have
"L(2,p?) = [GL(2,p?)I<T>,
where T 4is the map which sends (o,3) to (ap,ﬁp) for all
(x,8) € V(2,p?) .
We get a permutation isomorphism & as follows.
© : & — ra(1,p?) is defined by o

6 : (C,0,0,1) ~ (1,0)

and (x,y,l,x?-y®s+xy) ~—> (XA +x,1),

for all x,y € GF(p), while

6 : [Po™(4,p)lce — PiL(2,p?)
is given by its action on the following gcnerétors (the 4x 4
and 2x 2 matrices should be read modulo the centres of

GL(Q,p) and GL(2,p?) respectively).

o : (o 1 0 o) 1 o o o)
s 1 00 A O] o 1 0 1 n o
o 0 1 o ™ [o J ’ 1 0 1 1 — Ll 1
LO © 0 -s 0 0 0 1]
1 0o o o 1 0 o o
1 -1 06 © 0 1 0 0 [0 ﬂ;
o 0o 1 o L o 0 0 1 "’>TL g
0o 0 0 1] L0 0 1 0

\ -
Ve omit the straightforward verification that & is a
permutation isomorphism.

Ve now consider certain subgroups of the two isomorphic

groups above. From now on our discussion holds only for



p £ 2. By SL(Z,pZ) we nmican the group of lincar transformations
of V(2,p?) which have determinant 1, and by P’SL(2,p?) the
aduotient of this group by the suburoup of scalar matrices.

By PJL-(Q,p) we mean a ccertain normal subgroup of index 2 in

PG (4,p). The precise definition may be found in 137 or

[+ 1], It is well known that PSL(2,p?) and yfl-(ﬁ,p) are
isomorphic groups (Sce c.g. [ 1 1). The restriction of 6

above to PSL(2,p?) gives such an isomorphism. We now sce

how the larger groups on cach side of the isomorphism
correspond. One might expect the outer automorphisms of

PO (4,p) and PGL(2,p?) to correspond; this is not in fact

the case. From the definition of @ we sce that ('T")G-l
belongs to PO (4,p), whereas © maps the outer automorphism
of PO-(Q,p) to Z(é g), which belongs to PGL(2,p?). We thus

have the following isomorphisms:

(ro™(4,p)lc, PrL(2,p?)
- — T o //’// \\\\\\
(P "(4,p)lc, Po~(4,p) —> PGL(2,p?) (PsL(2,p?)l<T>
~\\\\ ) ’//// \\\\\\ ’/////
PN T(4,p) PSL(2,p?)

We now prove sonc further facts of interest about our

S-rings with parameters A(p).

A Steiner system S(b,k,v) denotes a block design which

has v points, k points lying in each block, with any set of

t points lying in exactly one block.
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Theorem 4.2.4, If X is as in 4.2.1, then Aut 5 is an

automorphism group of the Steiner system S(3,p+l,p?+1).

Proof, As the points of the design we take the elements of é ’
where A is as in 4.2.1. As blocks we take subscts of A

senerated by three lincs, i.e. the blocks are the sets

A A <,B,Y>, for distinct o, 3, ¥ € A. Since A admits

a 3-transitive automorphism group Go’ G0 act transitively on
the blocks and hence each contains the same number of points.
The block containing (0,0,1,0), (0,0,0,1) and (1,0,1,1) is

{€0,0,0,1), (x,0,1,x%) : x € GF(p)} .

Hence k = p+1 and we have the rcquired design.

The number of blocks in the design is p(p?+1) which we
observe is the same as the number of points of ij We show
in our next theorem that the representation of Aut X is

the same in each case.

Theorem 4.2.5. The permutation representations of Aut X

on _F and of Aut £ on the blocks of the associatecd Steiner

system are isomorphic.

Proof. (i) p = 2. Recall that in this case we may take

A = {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,b,1,1)},
The blocks of S(3,3,5) are simply all subsets of three vectors
(for p = 2, vectors and lines are the same thing). We define
a map g from the set of blocks to r1 by

(B)ﬁ = EO’.
o €D

for each block B. By the lincarity of Aut £ on VvV, it



- 8¢ -

follows that the action of Aut 2 on the two sets 1s the

same.
(ii) p # 2. In this case l? is the sct of non-isotropic
lines under PO (4,p). For each o € fﬂ, we let aJ‘ denote
the set

(B e V: (ax,B)Q = 0} . H
Then a'L is a three-dimensional subspace such that

V=<a>+at.

Let F": {aJ': o E’“}. Since PO-(Q,p) and its outer

automorphism preserve zero scalar products, Aut X has the

. L : y
same action on I as on | . It can easily be shown

that for a quadratic form over V(3,p) there are p+l isotropic

+ contains p+1

lineSr; [lence under Q restricted to aJ', o
isotropic lines and these must form a block of the Steiner
system. The result now follows.

We concludebthis subsection with a conjecture. Ve have
proved that an S-ring J with parameters A(p) is unique
under certain assumptions about Aut £ . Looking at small
primes suggests that such assumptions are unnccessary. More

generally we can show that an'S—ring with parameters A(p) 1is

unique provided the following combinatorial result holds.

Conjecture 4.2.6. Let ¢ be a permutation of the non-zero

elements {1,...,p-1} of GF(p), with (1) = 1. Then a
necessary and sufficient condition for the set

X = {(1,%,(x)0) 2 x = L1,uu.,p-1)
to have the property that any three vectors of X are linearly

independent is that (x)o = x_l for all x € GF(p)~0 .
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§ 4.3 (¥)-groups of degrec 35.
Theorem 4.3.1. There is a unique S-ring £ over V(5,3)
el
having parameters B = (22, 220, 1, 2). é2%4i is isomorphic

to the Mathieu group M,;, and [V]Z.Mll is a (%)-group.

The proof is broken down into Lemmas 1, 2 and 3.
Lemma 1. The residual S-ring gl over V(4,3) with

parameters B4y is unique.

Proof. We found in 8 4,0 that the residual S-ring X, has
parameters

B, = (20, 60, 1, 6) = A(3).
In 8§ 4.2 we showed that an S-ring &£ with parameters
A(p) is unique for all p, with the assumption that A admits
a suitable automorphism group. For p = 3, we prove the
uniqueness without such an assumption. Suppose

Vik,p) =0, A, T

A A

where 4g| has basis quantities 0, A, and q . By
Lemmas 1 and 2 of § 4.2 (which did not assume knowledge of
Aut £ ), a basis of V(4,p) may be chosen such that

é_'. = {(an’oal)a '(ZEJ}’vlif(xvy)) i X,y & GF(S)}

where f is a function from GF(3) x GF(3) to GF(3), which has
the property that
(1) f(x,y) =0 if and only if x = y = 0 .
Let X,)xb’xs)x+ generate v¥ as in 8 2.3, and let
X; = {(0,0,0,1), (x,y,1,f(x,y)) : x,y € GF(;)}
be a set of line representatives of /. X, takes four

zeros on X, , while Xj takes one zero. llence, as in Lcmma
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2 of 8§ k.2, every element of v ¥ takes either one or four
zeros on Xj. It follows from (1) that X+ X4, and 2 X3 + X_
take a total of eight zecros and hence take four cach. Thus

{t(x,y) : x,y € GF(p)} = {0,1,1,1,1,2,2,2,2} ... (2)
'with £(0,0) = 0. Suppose (xq7,y7) and (xz,y2) satisfy

f(x1 ,Y1) = f(X2,Y2) =©| e

Transforming by

. -1
x3 yi1 O
x2 Yy2 O
0 0O 1
o o0 0

we may suppose that

| £(1,0) = £(0,1) = 1 .
(Note: when we transform in V, i.e. change basis, we must
make sure that the form of Xq remains the same, only the
unknown f(x,y) undergoing any change). We now have in A4,
the elements (0,0,1,0), (0,0,0,1), (1,0,1,1) and (0,1,1,1).
But

2(0,0,1,0) + 2(1,0,1,1) = (2,0,1,2),
and so by Lemma 4.2.2, (2,0,1,2) belongs to r: . Hence
£(2,0) = 1, and similarly £(0,2) = 1. WVe now have four of
the f(x,y) equal to 1, and by (2) the remaining f(x,y) must
all be equal to 2. Thus A, = Xq  2X;, where
X, = {(0,0,1,0), (0,0,0,1), (1,0,1,1), (2,0,1,1),
(0,1,1,1), (0,2,1,1), (1,1,1,2), (2,2,1,2), (1,2,1,2),
(2,1,1,2)}

i.e. zﬁ, consists of those points (x,y,z,w) satisfying

wz = x° + y® .
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Lemma 2. An S-ring 4 over V(5,3) with paramcters B is
unique.
Yroof. By Lemma 1 there are elements aij in GF(p) such

that a set of line represcntatives of A is
X = {(0,0,0,0,1)
(0,0,06,1,0)
(0,0,1,0C,0)
)
)
)
)

(l,(),l,l,alo

(2,0,l,l,a20

(O,l,l,l,aOl
(O,2,1,l,a02
(l,l,l,2,all)

)
)

(2,2,1,2,a22

(l,2,1,2,a12

(2,1,1,2,a21)}

Transforming in V by
/

1 O ¢] G -al0
0] 1 (¢ 9] —aol
0] 0 1 0] 0
o 0 o 1 ]
0] G (0] 0 1
N
we may suppose
a = a = O .

Now X, takes five zeros on X, while X4 takes two zeros.

F#*

Since the dual S-ring has rank 3, every element of V takes

two or five zeros on X. Now
(}\)Xg = {l,O,O,O,U,a20,aoz,all,azz,alz,azl}-

Hence Xy takes five zeros and so just one more aij is zcro.
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We may suppose 2,50

by

o O
o 1
0 O
0 0

Transforming by

1 o
0 1
0 o0
0 o
LO 0

if necessary, we may suppose that

2950

Ve now have

(X) Xg + Xy + Xg = {1,1,1,2,2,0,2 + a

Since exactly one of the unknown aij

¢

0

1

1

0

is non-zcro;

0

2

for if a,, = O we transform
[

0

O2’all’a22’a12’ale

1s 4ero, X3+ x4+ xs

takes two zeros on X, and so we must have

Hence just one of ajq a22’a12’a21 is zero, and we consider

these four cases separately, making use of the fact that the

following sets have two or fivec zeros.

(1) (X)x; + xg = {1,0,0,1,0,0,2,1+all,2+a22,l+a12,2+a21}

(ii) (X)x, + X5 = {1,O,O,O,l,l,l,l+all,2+a22,2+a12,1+a2l}

(iii) (X)zq + %g

{1’1’0113211’0r2+all,2+622,2+al2,2+a2l} .



Case 1. 0. By (ii), a,, = 83, = a,; = 1 or 2,

411 =
By (i), the latter holds to give five zcros in (X)'Xl + ‘XS.
But then (X)3<2 + XS has just one zcro. Hence this case can

not occur.

Case 2. g, = O. Transforming by

1 0 o o 0 o
0O 1 0 o0 o
6 ¢ 0 1 0O

¢ 0 1 0 O

¢ 0O ¢ 0 1

~ (¥

we gel case 1l and hence a contradiction.

Case 3. 312 = 0. As in case 1 we get
azl = gll = a22 = 2 .

This does not lead to a contradiction.

Case 4. As in Case 2, we can change basis to get casc 3.
Hence we may choose a basis for V such that an S-ring X
"over V(5,3) with parameters B has simple basis quantities 0,
Aand [:' s Where A= X v 2X, with
X = {(0,0,0,0,1), (0,0,0,1,0), (0,0,1,0,0),
(1,0,1,1,0), (2,0,1,1,1), (0,1,1,1,0),
(0,2,1,1,2), (1,1,1,2,2), (2,2,1,2,2),

(1,2,1,2,2), (2,1,1,2,0)}

Lemma 3. Let & ©be the S-ring over ¥(5,3) with parameters L.

Aut 2

Then — is isomorphic to the Mathieu group Mll'
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Proof., Let a = (0,0,0,0,1). The stabilizer (Aut £ )
is isomorphic to a subgroup of Aut X, . Given an automorphism
Ay of &, (A, represented by a matrix in GL(4,3)), wec must

find whether we can choosc a, b, ¢, d, e € GIF(3) such that

A = a\‘
b
Aq . )
d
0 000 e
is an automorphism of & . For example, consider the matrix
C ~N

A, =[O0 1 0 o©

of Auﬁ.g‘ . If A 'extends' to A, then since the third and
fourth rows of A may be regarded as elements of A, we
have (we take A as given by Lemma 2)
c =0 and d = 0 .
Now (1,0,1,1,0)A = (0,1,1,1,a) belongs to A and so
a =20

AlSO (O,l'l'l,O)A - (l,O,l,l,b), and SO

It is easy to check that the matrix

A={0 1 0 0 0)

1 o 0O O O




does indeed fix /A as a sct, and hencec belongs to Aut L .
We can show similarly that the matrices of

Aut £, = [POo~(4,3)]c.
which extend as above are precisely those lying in PAT(4,3).
Hence (Aut 4 )é is isomorphic to PS5 (4,3), and thercfore
has order 10.9.8, acting sharply 3-transitiVely on the ten
points of é ~Q .

It will now follow that Aut £ is sharply 4=-transitive
on é if we find an elcment of Aut £ which does not fix
(0,0,0,0,1). In finding such an element we also dcinonstrate
a technique which we have found very useful for finding auto-
morphisms of a given S-ring over a vecctor space. Becausec
of th; desired high transitivity of Aut £ , it is likely that
there is an autoéorphism which fixes several points of é .

In this case we guess that there is a matrix B in Aut
satisfying

(0,0,0,l,O)B = (0,0,0,lyo)’ (0,0,I,0,0)B = (0’0,2,0,0)

(1,0,1,1,0)B = (1,0,1,1,0) and (0,0,0,0,1)B = (0,1,1,1,0)
Supnpose
(0,1,1,1,0)8 = «,
for some a € A . Now

(0,2,1,1,2) = 2(0,1,1,1,0) - (0,0,0,1,0) - (0,0,1,0,0) +
2(0,0,0,0,1)
and hence
| (0,2,1,1,2)B = 20 + (0,2,1,0,0).
(0,2,1,0,0) belongs to |  , and since b = 2, we have

lA ,\A"" (0!211’0’0) = 2 .



In fact, A, A+ (0,2,1,0,0) = {(1,0,2,2,2), (2,2,2,1,1)}
Hence o = (1,0,2,2,2) or (2,2,2,1,1). We now know the
action of B on five independent vectors and hence can find
its matrix. With the latter wvalue of g, it turns out that
B does not belong to Aut L . Cut with the former wc get
B = [’1 0 0 2 0
1 o0 1 0o 2
¢ 0 1 0 o

O 0 ¢ 2 0

0O 1 1 1 o
-

which is easily checked to stabilize A as a set and

hence belongs to Aut 4.
Aut 8 . / e
We now have that —y— 1is sharply 4-transitive on the
eleven points of é , and hence has order 11.10.9.8 = 7920.
Aut £
Z
follows from Theorem 5.8.1 of [ % ],'wherc it is shown that Mll

The fact that is isomorphic to the Mathieu group Mll

is the only 4~transitive group on 11 letters, in which the

stabilizer of 4 points has odd order. Alternatively we can
show that ﬁE%ﬁL is Mll by mcans of the characterization of Mll

as the automorphism group of{the Steiner system S(4,5,11)
(see [23]). This Steiner system with automorphism group
Aut § arises in this case as in Theorem 4.2.4. The points
are those of é} y» the blocks those subsets A A w,'where W
is any 4~dimensional subspace of V(5,3) having four linearly
independent vectors in A .

The proof of Lemma 3, and hence of Theorem 4.3.1, is
now completed.

From the 3-transitive group PJL-(Q,p) on 10 points of



PG(3,3), we have constructed a 4-transitive group on 11
points of PG(4,3). WYe now consider the more ¢encral
situation: given a subset &, of V(n-1l,p) admitting a linear
group t-~transitive on éJ y does there exist a subset A of
V(n,p) admitting a subgroup of GL(n,p) which is (t+1l)-
transitive on 4 and such that (0,...,0,1) '€ A and

A, = {(x1,.00,x

(c.f. definition of the residual S-ring). We call A an

n__l):(x1 ,...,xn) €A, some x, € GFF(p)} ~{0}?

extension of A, .

Theorem 4.3.2. Let A, be that subset A of V(4,p) given

by Theorem 4.2.1. Then

(i) for p = 2, there is an infinite sequence of extensions.
(ii) for p = 3, we can extend twice only.

(iii) for p > 3, extensions do not exist.

Proof. (i) p = 2: for any n > 2, let A be the set
{(2,0,...0),(0,1,0,+¢.,0),00¢,(0,00.,G1),(1,1,...,1)}.

Any permutation of the n+l points of A acts linearly on A .
Thus we can extend indefinitely, getting automorphism groups
SS’ Sg» S7,... acting on V(n,2) for n = 4,5,6,44.
(ii) p > 2% If there is a subgroup of PGL(5,p) acting
b-transitively on p?+2 points, then (p?+2)(p?+1)p?(p?-1)
divides the order of PGL(5,p). This implics that

p?+2 divides (ps-l)(pa-l)(ps-l)
and hence that

pé+2 divides 3%(2p-17) .
This is clearly not true for p >.3’ but is for P = 3.

Indeed we have already seen that an extension exists for p = 3;



we get M;; acting betransitively on 11 points of 1’'G(4,3).
It can be shown in a similar way (we omit the lengthy proof)
that a further extension exists: a sct of 12 points of
PG(5,3) acted on 5-transitively by the Mathieu group “12'
This representation of Mlz was constructed in a different way
by Coxeter (2], It can be shown that there is no further
extension to a 6-transitive group on 13 points.

Let G = [V]Go, where Go is the subgroup of GL(n,p)

as given by the above extensions. We give the ranks r(p)

of such permutation groups G below

n = & 5 6 7 8 9 10 . ..
r(2): 3 4 4 5 5 6 6 ...
r(3): 3 3 4
r(s5): 3
r(7): 3

(3,6) more closely. It is not

We look at the case (p,n)

difficult to find the orbits of MN;, on PG(5,3); there are

three of them, containing 12, 132 and 220 points. lience
[V(6,3)]Z.M12 is a rank 4 group with subdegreces 1, 24, 264
and 440, Ve now consider the corresponding S-ring and its

dual, Recall that if the S-ring X is the transitivity

module C(V,Go), then its dual £% is C(V‘t,GJ ), where G

consists of the transposes of matrices in G, (Sce Theorem 2.3.1)

The following diagram gives the orbit lengths of Mlz’ Mll
Go G o .
and PSL(2,11) in their actions as - and — - on the lincs

of V(6,3) and V(6,3)4§ respectively.



G . G G !
7? line orbits under 7? line orbits under 7?
|
M), 12 132 220 12 132 | 220
é )
M, |111|2z 1o | _ =220 |12 | 66 66 |55 165
PsL(2,11) |1 11111 11 55 55|55 55 55 351 11,11 55 11 55|55 55 53 33

The orbit lengths on the left were found directly by finding
the orbits of G° on V(6,3). Those on the right could be
obtained similarly by finding the orbits of G' on v(6,3)F .
Ilowever, it is easier to find them by mecans of the results of
Tamachke (2.2.3 and 2.2.4). Consider first the'rank 4 group

(vlz.M Let the n; and f; be as defined in 2.2.7. Then

12°
{nl.nz,ns,nQ} = {1,24,264,440)

By Theorems 2.2.4 and 2.2.6

312.24.264.4Q0 is the square of a 3-power,

£, £, 1,

where

’

£, + £5 + £, = 2% + 264 + 440,

It is easy to show that the only possibility is

{fz’fB'f4} = {n2,n3,n4}
The action of the subgroup Mll of M12 is obtained by fixing
a line in the orbit A (See diagram). Since [V(S.B)JZ-MII
is a rank 3 group with subdegrees 1, 22, 220, we have by
2.2.4,

5 .
37.22.220 is the square of a 3-power,

f2f3



where

f2 + f3 = 242,
The only possibility is

{fz,fB} = {110, 132}.
(This could also be obtained from lligman's formula (1.2.6)).
We may assume that fz and f3 for this case gre f2 and f3 of
the rank 6 group [V(6,3)]Z.Mll. It can now be shown, using

2.2.4, that for this group

(£,:0500,, 05,05} = {24, 132, 132, 110, 530)

Hence we get the line orbit lengthsas in the diagram.
Similarly, the subgroup of M;; isomorphic to PSL(2,11) has
orbits as shown.

fhe permutation group [V(G,S)]Z.Mll is of particular.
interest for several reasons. '
(1) It gives rise to nine distinct permutation rcpresentations

of.Mll, including the 3-transitive representation of
degree 12,

(2) It gives one of the few examples we know of an S-ring
over a vector space in which the subdegrees of X are
different from those of’X‘*.

(3) It gives an answer to the following question raised by
Wielandt (p.93, [2x]): in a permutation group, if the

n; are all different, does it follow that the fi are

all different? In this case

{nl"°"n6} {l, 2, 22, 44» 220, 440}’

while

{fl""’f6} {la 241 132, 132v 110, 330}-
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8 4.4. The 36 case.

In this scction X will denote an S-ring over V(6,3)

with parameters
c = (2.56, 2.308, 1, 20),

and ¥4, its residual. In 8§ 4.0, we saw that _Q‘ has

parameters e

¢y = (2.55, 2.66, 37, 60).

Theorem 4.4.1. An S-ring ¥, over V(5,3) with paramcters

C; is unique. ég%gé— is isomorphic to the Mathieu group Miq.

Proof. We proved earlier (Theorem %4.3.1) that an S-ring
over V = V(5,3) with parameters

B = (22, 220, 1, 2)
is unique. It is isomorphic to the transitivity module
c(v, Go) where GO/Z is isomorphic to the group Mqq. By
(1.2.6) the corresponding rank 3 group G = [V]Go has
{fl,fz,f3} = {1, 110, 122},
and by 2.2.6, these are the subdegrees of C(V, Go)#z.

Hence if .2, has parameters Cq, 4gf$ has parameters B and

. / # & .
so is isomorphic to c(v, Go). Thus -8,: X' is unigue
#
and by 2.3.1, ﬁﬂ%rél is isomorphic to égﬁ?&—— y 1.€. to Myq.
From the uniqueness of the residual S-ring [, y nNO

doubt a unique extension could be constructed as in Theorecm
4,3,1., However, this would be an arduous task with lél

so large as 56, and since we will construct an S-ring with
parameters C by other means, we will content ourselves with

the following more modest result about the uniqueness of Aut P



Theorem 4.%4.2. Suppose X is a rank 3 S-ring over V(6,3)

A -
with parameters C and basis 0, A , [ . If £ admits an
automorphism group Go transitive on A and such that the

G

minimal normal subgroup of 7? is simple, then Go/z is

isomorphic to either PSL(3,4) or [PSL(3,4)]C; .

Note. Suppose G = [V]Go is a (¥)-group with .parameters C.
Then G_/Z is 2-transitive on a . Let N/Z be a minimal
normal subgroup of GO/Z. By a Theorem of Burnside (12.% of
(22]) every non-regular minimal normal subgroup of a doubly
transitive group is elementary abelian and hence has decgree pn
for some prime p. But in our case the degree of GO/Z on é
is 56, which is not a prime power, and so N/Z is non-regular
and hence primitive and simple. Since primitive groups are
iransitive this shows that the (¥)-group G will b; given by
Theorem 4.4.2, In fact the theorem shows that (¥)-groups
with parameters C do not cxist and this is why we woaken the
conditions on Aut .4 so as to trap an S-ring with the

required parameters.

Proof of 4.4.2. The stabilizer of a point of A in G_/Z is

isomorphic to a subgroup of A%;ﬁL which by 4.4.1 is isomorphic

to Myq. By Theorem 1l.1l.1 we get

(A): 56 divides |N/z| divides |G/z | divides 56.11.10.9.8.
M. Hall has shown that any unknown simple group of order less
than 1,000,000 must have one of twenty-onec possible orders,
and condition (A) ensures that lN/Zl can be none of these.

The only known simple groups whose order satisfics (A) are
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(1) the Mathieu group Mzz2 of order 56.11.10.9.8.

(2) the alternating group A5 of order 56.5.9. |

(3) the alternating group Ay of order 56.10.9. 4,

(4) the projective special linecar group of dimension 3

over GF(4), denoted by PSL(3,4), of order 56.10.9.4.

Case (1). If N/Z is isomorphic to Mz, then .the stabilizer
(N/Z),}; (o €A) has order 11.10.9.8 and hence is isomorphic
to My4, being a subgroup of the same order. But it is

known that M;4 is not a subgroup of Mz, and so this case

cannot occur.

Case (2). By examination of the character table of Ay we
find that no set of permutation characters and subdegrecs of
this group fulfils the conditions of Frame's Theorem, 2.2.7,

for A, to have a transitive representation on 56 points.

Case (3). A8 does have a representation on 56 points,
namely its natural action on the unordered triples of 8
symbols. But the stabilizer of a triple contains an element

of order 15, which gives a contradiction, since My, contains

no elements of order 15.

’

Case (4). Suppose N/Z is isomorphic to PSL(3,4). From
Frame's result (2.2.7) and examination of the character table
of PSL(3,4) we find that the only possible representation of
PSL(3,4) on 56 points is one of rank 3 with subdegrees 1, 10,
45 and associated character degrees fl, f2, f3 = 1, 20, 35.
We will see later that this case occurs.

Now consider possible orders of GO/Z satisfying (A).
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(a) Suppose \GO/Z\ = 56.11.10.9.8. Let ¢ € A .

Then (GO/Z)a is isomorphic to My, and (N/Z)a is a
proper normgl subgroup of (Go/z)a’ contradicting the
simplicity of M. -

(b) Suppose |G_/Z| = 56.11.10.9.4.  Then (G,/2),, is
isomofphic to a subgroup of M;4 of index 2, ;gain
contradicting the simplicity of Mjq.

(c) There remain only the possibilities that GO/Z has
order 56.10.9.8 or 56.10.9.4 and hence is
isomorphic to PSL(3,4) or an extension of this group
by C;.

In our next theorem we exhibit an S-~ring satisfying the
hypothéses of Theorem b, 4,2, This result arose out of a
suggestion by B. Fischer that since the number of.isotropic

lines of V(6,3) under 0 (6,3) is 112, the desired suborbit A

might consist of half of the isotropic lines.

Theorem 4.,4,3. There exists an S-ring &£ , with parameters C,

whose automorphism group is isomorphic to [PSL(3,4)]C,.

Proof. Since the details of the proof run into many pages we
give only an outline. By Theorem 4.0.2, the orthogonal

group 0 (6,3) has 224 isotropic points(i.c. 112 isotropic lines),
Let I denote the set of isotropic points. We guess that under
the action of some subgroup M of 0 (6,3), I splits into two
orbits each with 112 points, and that one of these orbits, A ,
gives a simple basis quantity 5; for a rank 3 S-ring A over

V(6,3). Since we require that M be transitive on 56 lines

we may assume M contains an element of order 7.
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Step 1: Find an element of order 7 lying in an orthogonal
group 0-(6’3)-
Let T be the element

~ -~
0 1 6 O o0 ©

O

0O 1 0o ©

0 0 0 0 0 1

\2 2 2 2 2 2
of GL(6,3). T has order 7. We will find a quadratic
from Q with matrix A such that T is an isometry with respect
to Q (these terms were defined in 3 4,0). By taking various
pairs &, B of basis vectors and using
(T, BTIQ = (a,B)Q

we get equations connecting the coefficients of A which can
be solvedito give, for example

A = (1 1 0 0 0 O0)

1 1 1 O O O

o 0 0 1 1 1

0 O 0 o0 1 %)

A has determinant 1 and so by 4.0.1 the quadratic form Q with

matrix A has type 2.

Step 2: Find the set I of isotropic vectors of G (6,3);

i.e. vectors (xl,...,x6) which satisfy



i=1 1 i
We list them as orbits of the 7-cycle T; i.e. in subsets

X of the form

l,Xz,... ,X32
{0, aT, aT?,... ,ocT6}
in such a way thatvxl‘lxz veee wu x16 is a complete set

of line representatives of I. We then havé
I=X)yeee yXpg o
We take, for example,
X, = {(2,1,0,0,0,0), (0,2,1,0,0,0), (0,0,2,1,0,0),
(¢6,0,0,2,1,0), (0,0,0,0,2,1), (2,2,2,2,2,1), (2,1,1,1,1,1)}

and X17 = {2a HI 0 2 Xl}, and so on.

Step 3: Find all possible A .
We consider subsets of I which are unions of precisely

8 of the 16 51' Since we require that a_ be a simple basis
guantity for a rank 3 S-ring with x =1, A satisfies the
condition given by 4.2.2, that

(1) if o and B are linearly independent vectors in A ,

then ®+B does not belong to A .

The possible sets QA for which (1) holds are obtained with
little difficulty. For example, if we suppose X; above is
a subset of Z& , then the Xi which contain the isotropic
vectors

(2,1,0,2,1,0) (2,1,0,0,0,0) + (0,0,0,2,1,0)

and
(2,1,0,1,2,0) = (2,1,0,0,0,0) + (0,0,0,1,2,0)
cannot be subsets of A . By repeated use of this sort of

argument we find that there are just four different unions of
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eight Ei which satisfy (1), and it is rcadily seen that
these are equivalent under suitable changes of basis (which
leave the set 1 unchanged). We thus get an essentially
unique set z& with
lA,\A+oc|=l, for all o € A,
A set of line representatives of A is
x = {(2,1,0,0,0,0), (0,2,1,0,0,0), (0,0,2,1,0,0),
(0,0,0,2,1,0), (0,0,0,0,2,1), (2,2,2,2,2,1), (2,1,1,1,1,1),
(2,0,1,0,1,0), (0,2,0,1,0,1), (2,2,1,2,0,2), (1,0,0,2,0,1),
(2,0,2,2,1,2), (1,0,1,0,0,2), (1,2,1,2,1,1),
(1,1,2,0,0,0), (0O,1,1,2,0,0), (0,0,1,1,2,0), (0,0,0,1,1,2),
(1,1,1,1,2,2), (1,2,2,2,2,0), (0,1,2,2,2,2),
(1,1,0,2,0,1), (2,0,0,2,1,2), (1,0,1,1,0,2), (1,2,1,2,2,1),
(2,0,1,0,1,1), (2,1,2,0,2,0), (0,2,1,2,0,2),
(1,1,0,2,0,2), (1,2,2,1,0,1), (2,0,1,1,0,2), (1,0,1,2,2,1),
(2,0,2,0,1,1), (2,1,2,1,2,0), (0,2,1,2,1,2),
(1,1,1,2,0,0), (0,1,1,1,2,0), (0,0,1,1,1,2), (1,1,1,2,2,2),
(1,2,2,2,0,0), (0,1,2,2,2,0), (0,0,1,2,2,2),
(1,1,2,2,0,0), (0,1,1,2,2,0), (0,0,1,1,2,2), (1,1,},2,2,0),
(0,1,1,1,2,2), (1,1,2,2,2,0), (0,1,1,2,2,2),
(2,1,»,0,1,2), (1,0,2,2,1,2), (1,2,1,0,0,2), (1,2,0,2,1,1),
(2,0,1,2,1,0), (0,2,0,1,2,1), (2,2,1,2,0,1)}
Since we find also that
lé&n A+ Yl = 20,
for all Y € ', where | = V(6,3)\ A, 0, it follows from

2.1.6 that 0,A, " generate an S-ring with parameters C.
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Step 4: Find Aut £ .

Wwe already know that, by our construction, the matrix
T belongs to Aut 3 . By means of a more complex version
of the technique described in the proof of Lemma 3 of 8 4.3,

we find also the following matrices belonging to Aut L .

A= (1 o 0o o o 0] ., B = (o 1 0 0 0 0)
01 0 0 0 0 1 0 0 0 0 O

2 1 11 0 2 2 2 2 2 0 0

0 0 0 2 0 O 0 001 0 0

1 2 0 1 1 1 0 0 0 2 2 0

1 2 0o 0 o 1] 0 0 0 0 o0 2]

c= (o 2 0o 1 2 o) , p= (11 0 0 2 0O
2 001 2 0 2 0 0 0 2 O

2 11 0 2 0 01 1 2 1 0

1 2 0 1 1 0 0 2 01 0 0

1 2 0 6 1 0 0 2 0 2 2 0

(2 0 0 2 2 1] 01 0 o 1 1l

Let G, be the subgroup <T,A,B,C,D> of GL(6,3), and let
a = (2,1,0,0,0,0). Then

= < . .
Go'g A.B,C,D>

Go is transitive on A and has rank 3 with subdegrees

1, 10, 45, for the orbits of G, , on A are {a}, 4, and [[ ,

"X

where a set of line representatives of A, is
{(0,0,0,2,1,0), (1,0,0,2,0,1), (0,0,0,2,2,1),
(2,0,0,2,1,2), (2,1,0,1,2,2), (0,1,0,2,0,2), (0,0,0,0,1,2),

(1’1,0’2,0,2)’ (2’2,0,1'0,2), (0'2’0’1'2’1)}.



We see that

{S$e A : (5,0)q = 0}

A,

while

N

Let 8 = (0,0,0,2,1,0) and §

{Se A : ($S,x)Q £ 0)

(1,0,0,2,0,1). The orbits

of <B,C,D> on A, are {E} and 49 ~ By and those of <C,D>
on A, are {3}, {§} and 4&-\{§,§,}. By Theorem 1.1.1, the

order of GO/Z is 56.10.9.8. By Theorem 4.1.1 the order of

AE%%L is a divisor of 56.11.10.9.8. ir é&%ﬁ& contains an

element of order 11, then the group is doubly transitive on
A ; but it can be shown that no element of (Autlg)a maps
a point in A, to one in [, . Hence G, is the full

automorphism group Aut § of & .

Step 5: Identify Aut £ .

To identify the group GO/Z we first consider the
stabilizer of the point «x. We observed earlier that one
of the orbits A, of G on A consists of those lines of A
which are orthogonal to . We see also that the vectors
of A, span a it-dimensional subspace < 4,> of V(6,3). We
can show by 2.1.6 that az_is a simple basis quantity for a
rank 3 S-ring over V(4,p) with parameters A(3). Since we
have already proved the uniqueness of such an S-ring, the
results of 8 4.2 imply that

(Go/z)a is isomorphic to PGL(2,9).

It is shown in [16] that a rank 3 extension of this group with
subdegrees 1,10,45 is unique and isomorphic to [PSL(3,4lCz.

This completes our proof.
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Note: We have shown that PSL(3,%4) acts on 56 points

of PG(5,3) as a rank 3 permutation group with parameters
(k,£,),p) = (10, 45, 0, 2).

Since U = \+2, the associated second Higman design (defined

on Page 6) is balanced. This gives solutions for design

numbers 51 and 52 (listed as having no known solutions) in

M. Hall's table (p.294 of [4 1). Since the publication

of Hall's book, the above rank 3 representation of PSL(3,4)

on 56 pointshas been found independently by Wales (21] and

Montague Civd. Qur construction gives the further

information that the 56 points may be chosen in PG(5,3) on

which PSL(3,4) acts as a subgroup of PO (6,3). It seems

likely that the geometry of this situation might be explored

to good effect.,



B 5. Rank 3(p,n) groups with a balanced symmetric

block design.

This section was motivated by the following remark
of D.G. Higman (p.153, [(0]): "It would be interesting to
determine rank 3 groups, in addition to the symplectic
groups, whose associated designs are balanced symmetric;
at present we know only the orthogonal groups 02m+l(q)’

m > 2, q odd" We found a further example of such a group
in 8 4.4 with parameters (10, 45, 0, 2). In 8 5 we search
for rank 3 (p,n) groups with balanced block designs. The
results of Higman and Tamaschke are sufficient to restrict
the possible sets of parameters to two infinite series, for
which we will exhibit corresponding series of rank 3 (p,n)
groups.

We recall the following results about the parameters
(x,£,),1) of a rank 3 (p,n) group (See 1.2.5, 1.2.7 and 2.2.9).
(a) kK + £ + 1 = pn
(b) pl = k(k=1-))
A-p)? + b4(k-p)

(d) 4 = pzr, some integer r.

(c) d

(e) p* divides 2k + (A-p)(k+#£), but 2pr does not.

We saw in 8 1.2 that the first Higman design is balanced if

M= i, the second if )+ 2 = U.

Theorem 5.1. Suppose G is a rank 3 (p,n) group.

(i) If the first Higman design of G is balanced (i.e. A=)

then p = 2 and
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2r-1 r-1 r-1, r-1

(ky£,0) = (2" 1(2%+1), 2 F 2.1, 2T (27T 1)).

(ii) If the second lligman design of G is balanced
(i.e. )= p=2) then we get parameters for the same

designs as in (i) with A and [ interchanged.

Proof. (i) with )\ = ¢, (c) becomes
d = 4(k-p),

and so (d) gives
p =2 .

Hence, from (c) and (d)
k-p = 22r—2 .

From (e), we see that

o¥ divides 2k but does not divide &k,

and hence we get

k=a2 * o0 (f)

and

1
N
-
—
o
!
o

b=
for some odd integer a.
(a), (b), (f) and (g) give
(a-1)(a+l) = 2n—r+1(a_2r-l) ees (h)
Hence 2n—r divides a-1l or a+l, and since k is strictly less

than 2n-l, we have

a=2"""4+1 or a-= oh=r+l _ g,
If a = 2P°F+l _ 1, then (h) gives
2r-1 =13 1.e. r =1 .
But then
k= 2"-1

contradicting (a), for £ is strictly positive. Hence
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and (h) implies that

(f) now gives
k = 25" 1(2T41)
while (g) gives
p=X=2"te i) .

(ii) is proved similarly.

We now show that Theorem 5.1 is the best result
possible by showing that for each set of parameters given
by it, there is a group satisfying the hypotheses. We
consider orthogonal groups over the field GF(2) of 2 elements
(in 8 4.0, we discussed orthogonal groups only for p # 2).

Let V be the vector space V(2r,2). We define quadratic
forms over V as in Chapter 8 of (3], There are two of them
up to change of basis, denoted by Qo and Qi1, and defined as

maps from V to GF(2) as follows. For a = (xl,xz,...,er)

(oc)Q0

X +x3:Xl*+ see + X

X1%2 or-1%2r

and
(x)Qy = (a)Qo + X8+ x2 .

We define the orthogonal group o(i)(zr,z) to be the group

{r € aL(2r,2) : (aT)Q; = (a)Q;}
for i = 0 and 1. Let G(i)(zr) be the semi~-direct product
[V(Zr,Z)]O(i)(Zr,z). Then G(i)(Zr) is rank 3 with suborbits
(1) i
{0}, A = {a: (oz,)Qi = 1}, (i) = {a: (a)Qi:=0’ a £ 0}.

It is not difficult to show that
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'ZX(U)\ _ 2r—l(2r_l) ,
while

,é&(l)l= 2r-l(2r+l)’
and hence that G(O)(2r) and G(l)(2r) are two series of
rank 3 groups having parameters asgiven by Theorem 5.1,

These rank 3 representations were found independently

by Rudvalis [not yet published], who has also made some
further observations of interest. He showed that the first
and second Higman designs of G(O)(Zr) are respectively
equivalent to the second and first Higman designs of G(l)(Zr).
Thus, for each r, the two designs are essentially the same
having an automorphism group which contains both 0(0)(2r,2)
and 0‘1)(2r,2). Rudvalis shows that these two groups (as
subgroups of GL(2r,2)) generate the symplectic group Sp(2r,2).
Hence [V]Sp(zr,z) is an automorphism group of the rank 3
design, although it acts doubly transitively on the points
of the design. This gives an example of a design associated
with a rank 3 S-ring & in which the automorphism group of

the design is larger than Aut £ .
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