University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/74521

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

RANK 3 PERMUTATION GROUPS WITH

A RLGULAR NGRNAL SUBGROUZ.

by

```
RAYMOND IIILL
```

A Thesis submitted for the Degree of Doctor of Philosophy at the University of Warwick.

> University of Nottinghan, Scptember, 197Σ.

ABS'RACT

A (p, n) group G is a pormutation group (on a sci Ω) which posscsses a resular normal elementary abciian subgroup of order $p^{\text {mi }}$. The set Ω may be identified with a vector space V on which G_{0}, the stabilizer of a point in G, acts as a subgroup of inc general linear group $G L(n, p)$. By a line or a subset Δ of V, we mean the intersection of Δ with a^{\prime} one-dimensional subspace of V. The main result (Theorci: 2.ラ.2) concerns (*)-groups, the term we give to rank 3 (p,n) groups in which the stabilizer of a point is doublytransitive on the lines of a suborbit. The essence of the problem is that of finding those subgroups of PGL (n, p) which have two orbits on the projective space PG ($n-1, p$) and act doubly - transitively on one of them.

The notion of rank of a permutation group is discussoci in l.l, while in 1.2 we outlinc D.G.Higman's combinȧoriai treatment of rank 3 groups.

Associated with each permutation group having a recuinion subgroup is a cortain S-ring, an algebraic structure which is basic to our theory. In 2.1 we define parametors of a rank 3 S-ring which coincide with those of any associated rank 3 group. Hence (*) - group with given parameters may be classified by finding all S-rinss iith the same parameters and then finding the associated (*) - groups. To assist in this task the concepts of uro residual S-ring and the automorphism group oi an S-ring are introduced. Also of great valuo is Tamaschke's notion of the dual S-ring, which is adapted to our u, us in 2.2.

In 3.1 we see how the imposition of conditions of transitivity on a suborbit or a ranic 3 (p, n j group leads to information about the parametcrs. In 3.3 tinc various relations connecting the parancters of a (*) Group are combined to yield specific scts of paramecios, all of which are found in $\$^{4} 4$ to admit rank 3 S-rines. From results concerning the uniqueness of these S-rincss certain finitc simple groups are charactoriscd as their automorphism groups, and the proof of the main theorem is completed. A number of results are obtained as by-products in $\S\{$, notably the answer to a question raised by Wielandt and a new representation of the simple group $\operatorname{PSL}(3,4)$ as a subgroup of $\operatorname{PO}^{-}(6,3)$, leading to an interesting presentation of a recently-discovered balanced block design.

[^0]
PABLE OF CONTENTS

S1．INTRODUCTION

1．1 Permutation groups
1．2 Rank 3 groups－Higman designs • • • ．シ
I．3（ p, n ）groups • • ．．．．．．IE
§2．S－RINGS
2．1 Definition and basic results ．．．． 17
2.2 Dual S－rings ．．．．．．．． 21

2．3 S－rings over $V(n, p)$ ．．．．．．． 25
S3．PARAMETERS OF RANK $3(0, n)$ GROUPS
3．1 Rank $3(p, n)$ groups with high transitivity of G_{o} on a suborbit

3．2 Residual S－rings and extensions ．．．． 37
3．3 Possible parameters of（＊）－groups ．．．i_{3}
§4．CLASSIFICATION OF（＊）－GROUPS
4．0 General remarks；orthosonal groups ．．．シラ
4.1 （＊）－groups of degree p^{2} ．．．．．．
$4.2(*)$－groups of degree $\mathrm{p}^{k_{2}}$ ．．．．．． 6 j
4.3 （＊）－groups of degrec 3^{5} ．．．．．． 42

4．4 The 3^{6} case ．．．．．．．．．．．．．．．．
S5．RANK $3(p, n)$ GROUPS WITII A BALANCED SYMMETRIC DESICN ICL
REFERENCES ．．．．．．．．．．．．． 100

PREFACE

The author wishes to express his thanks to Professor J.A.Green for the invaluable adivice and encouragement he has given durins the preparation of this work. Me would also like to thank Mrs. Angela Fullerton for hor excellent typing of the manuscript. The Financial support of the Science Rescarch Council is gratofully acknowledged.

B I. INTRODUCTION. In this section we introduce most
of our notation and some of the results to be uscd iatcr on.

§ 1.1 Jermutation Groups.

Let Ω be a finite set of arbitrary elements winich we call points and denote by lower case Greek lettcrs. A permutation on Ω is a l-1 mapping of Ω into itself. We denote the imare of the points $\alpha \varepsilon \Omega$ under the permutation g by $(\alpha) g$, or by αg where confusion will not arise. We define the product gh of two permutations f and h on Ω by $(\alpha) g h=(\alpha g) h$ hence reading products from left to right. With respect to this operation ine set of all permutations of Ω is a group, the symacticic group on Ω, denoted by $S(\Omega)$. By a permutation moun G on Ω we mean a subgroup of $S(\Omega)$. For such a grown, we define an equivalence relation \sim on ρ as follows: for any two points α and β of $\Omega, \alpha \sim \beta$ if $\beta=\alpha g$ for some geG. The equivalence classes of \sim on \mathcal{L} are callec the orbits of G on Ω. If G has just one orbit G is said to be transitive on Ω.

For any element $\alpha \in \Omega$ we let G_{α} denote the subgroup $\{\mathfrak{f} \in G \quad \alpha s=\alpha\}$ of G, called the stabilizcr of α.

The following theorem is basic to the theory of permutation groups.

Theorem 1.I.1. Let G be a permutation group on 2. If $\alpha \varepsilon \Omega$ and \triangle is the orbit containing α, tion the order $|\Delta|$ of Δ is equal to the index $\left|G: G_{\alpha}\right|$ of G_{α} in G. iroof

No define $a \operatorname{map} \theta$ from the sct of right cosets of a_{α} in G to the set Δ by

$$
\left(G_{\alpha} g\right) \theta=\alpha_{g}
$$

It is casy to show that θ is well-defined and is a bijecrion.
G is said to be k-transitive on \mathcal{L} if for every wwo ordered li-tuples $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and $\left(\beta_{1}, \ldots, \beta_{k}\right)$ of points of $\int L\left(\right.$ with $\alpha_{i} \neq \alpha_{j}, \beta_{i} \neq \beta_{j}$ for $i \neq j$) there exists $g \in G$ such that $\alpha_{i} g=\beta_{i}, i=1, \ldots, k$. Thus 1-transitivity is the same as transitivity. The next theorem follows vasily from the definition.

Theorem 1.1.2. Let G be transitive on δ and $\alpha \varepsilon \Omega$. Then G is $(k+1)-t r a n s i t i v e$ on Ω if and only if G_{α} is l-transitive on $\Omega-\alpha$.

The notion of rank is designed to deal with those transitive groups which are not 2 -transitive; we say G has rankr on Ω if G is transitive on Ω and G_{α} has r orbits (including $\{\alpha\}$). Thus the rank 2 groups are precisely the 2 -transitive sroups. The orbits of \hat{u}_{α} and their orders are called suborbits of G and subcerecs or G respectively. We deduce from the following loma that the rank and subdegrees of a transitive permutation group are woll-defined.

Leman 1.1.3. Let G be a permutation group on \bar{L}. Let $\alpha \varepsilon \Omega$ and $s \varepsilon G$. Then
(i) $G_{\alpha g}=s^{-1} G_{\alpha} g$
(ii) If \triangle is an orbit of G_{α} then $\Delta_{S}=\left\{S_{3}: \delta_{\varepsilon} \Delta\right\}$ is an orbit of $G_{\alpha_{S}}$.

Proof

(i) If $h \in g^{-1} G_{\alpha} S$, then $h=s^{-1} \mathrm{~kg}$ for some $k \varepsilon G_{\alpha}$. Now $\left(\alpha_{g}\right)_{g^{-1}}{ }_{k}=\alpha k g=\alpha_{s}$ inc. $\quad h \in G_{\alpha G}$
Thus $\quad g^{-1} G_{\alpha} s \leq G_{\alpha g} \quad$ and similarly $s \quad G_{\alpha g^{s}} s^{-1} \leq G_{\alpha}$.
Hence $\quad g^{-1} G_{\alpha} s=G_{\alpha_{S}}$.
(ii) is a straightforward consequence of (i).

If G is transitive on Ω, l.l.3(ii) shows that the rank and subdegrecs of G are independent of the choice of α.

Diagram 1 shows how transitivity and rank each cover the range of nontrivial transitive permutation groups.

Since the representation of a group G on the rishi costs of a subgroup $H((H x) G=H x g$ for $x, g \in G)$ is transitive, all abstract groups appear at least once in this table. We see that soluble groups generally nave a lower degree of transitivity than non-abelian simple groups. The doubly transitive soluble groups were found by Huppert in 1957 [14], the only 3-transitive anon g those being S_{3} and S_{4}.

Diagram 1.

S_{n} is n-transitive on n points, while A_{n} is
($n-2$)-transitive on n joints; for if $\left(\alpha_{1}, \ldots, \alpha_{n-2}\right.$) and $\left(\beta_{1}, \ldots, \beta_{n-2}\right)$ are ordered $(n-2)$-tuples, one of the two permutations

$$
\left(\begin{array}{ccccc}
\alpha_{1} & \cdots & \alpha_{n-2} & \alpha_{n-1} & \alpha_{n} \\
\beta_{1} & \cdots & \beta_{n-2} & \beta_{n-1} & \beta_{n}
\end{array}\right),\left(\begin{array}{llll}
\alpha_{1} & \cdots & \alpha_{n-2} & \alpha_{n-1}
\end{array} \alpha_{n}\right)
$$

is even. The only other known 4 -transitive groups are tine Mathicu groups $M_{11}, M_{23}($ intransitive $), M_{12}$ and $\because_{2} 4_{1}$ (5-transitive).

Groups of low rank are of interest since all hon
finite simple groups occur as such. Indeed the classical finite simple groups all have representations of rank ≤ 5, while 13 of the 18 sporadic finite simple groups (known in 1970) have rank 3 representations.
\$ 1.2 Rank 3 Groups - IIigman Designs.
Permutation groups of rank 3 received little attention until 1964 when D.G. Higman [10] tackled them from a combinatorial point of view. Higman's treatment was not applicable to rank 2 groups, but he later [12] generalized some of the work to groups of arbitrary rank ≥ 3. Ne will now describe how Higman associated with each rank 3 group a certain block design, having the given group as a collineation group. For the rest of S le, we suppose that $|\Omega|=n$ and that G is a rank 3 permutation group on i_{-} with subdegrees k and ℓ. For $\alpha \varepsilon \Omega$, let $\triangle(\alpha)$ and $\Gamma(\alpha)$ denote the orbits of length k and ℓ respectively of G_{α}. By 1.1.3(ii) we may suppose that
(1.2.1): $\quad \Delta\left(\alpha_{g}\right)=\Delta(\alpha) \mathbb{g}$, for all $\alpha \varepsilon \Omega, g \varepsilon G$

Now let $\quad \lambda=\left|\Delta(\alpha)_{\cap} \Delta(\beta)\right|$ for $\beta \varepsilon \Delta(\alpha)$
and $\quad \mu=\left|\triangle(\alpha)_{n} \Delta(\gamma)\right|$ for $\gamma \in \Gamma(\alpha)$.

Lemma 1.2.2. $\quad \lambda$ and μ are independent of the choice of $\beta \varepsilon \Delta(\alpha)$ and $\gamma \varepsilon \Gamma(\alpha)$.

Woof. Let $\beta_{1}, \beta_{2} \in L(\alpha)$.
Then $\beta_{1} S=\beta_{2}$ for some $g \varepsilon G_{\alpha}$.
$\left(\Delta(\alpha) \cap \Delta\left(\beta_{1}\right)\right)_{s}=\Delta(\alpha)_{s} \cap \Delta\left(\beta_{1}\right)_{s}$
$=\Delta\left(\alpha_{g}\right) \wedge \Delta\left(\beta_{1} \mathfrak{g}\right)$ by (1.2.1)
$=\Delta(\alpha) \wedge \Delta\left(\beta_{2}\right)$.
Hence $\left|\Delta(\alpha)_{\wedge} \Delta\left(\beta_{1}\right)\right|=\mid \Delta(\alpha) \wedge \Delta\left(\beta_{2}\right)^{\prime \prime} \cdot$ This
shows that λ and similarly μ are well-defincd.

Thus with a rank 3 group G we associate a block design \mathcal{S}, with parameters (k, l, λ, μ), whose points are the clements of Ω and whose blocks are the sets $\Delta(\alpha)$, one for each $\alpha \varepsilon \Omega$. Vic call B a first ligan design. Dy a second Higman design we mean the design 领' whose points are again the points of Ω and whose blocks are the sets $\alpha \cup \Delta(\alpha)$, one for each $\alpha \varepsilon \Omega$. (1.2.1) shows that G is a collineation group or these designs. Both kinds of Higman design are symmetric partially-balanced incomplete block designs (symmetric since the number of points is the same as the number of blocks; partially-balanced'since the number of points in the intersection of any 2 blocks is one of two fixed intocersj. In a symmetric balanced incomplete block design, the muinizer of points in the intersection of any 2 blocks is a consuare: so we see that:
(1.2.3): A first Iligman design is balanced $\Longleftrightarrow \mu=\lambda$. (1.2.4): A second Higman design is balanced $\Leftrightarrow \mu=\lambda_{\tau}$.

Iİgman showed that certain relations hold among the parameters (k,l, $\lambda, \mu):$

Lemma 1.2.5. (Lemma 5 of [10])

$$
\mu 2=k(k-1-\lambda) .
$$

Proof. Fix an element α of Ω. lice count the number N of ordered pairs (β, γ) with $\beta \neq \alpha$ and $\gamma \varepsilon \Delta(\alpha) \wedge \Delta(\beta)$. There are k clements β in $\Delta(\alpha)$ for each of which
$\Delta(\alpha) \wedge \Delta(\beta)=\lambda$, and there are ℓ elements β in $\Gamma(\alpha)$ for each of which $|\Delta(\alpha) \wedge \Delta(\beta)|=\mu$.

Hence

$$
N=\lambda k+\mu \ell .
$$

On the other hand we have k choices for γ and for each of these we have k-l choices for β.

Hence $\quad \lambda k+\mu \ell=k(k-1)$ and the result follows.

As in $\S 29$ of $[22]$ we denote by G^{*} the (complex) permutation representation of G, and let f_{1}, \ldots, f_{s} denote the degrees of the irreducible constituents of G^{*}. Ii follows from 32 of [22] that if G has rank 3 , then $s=3$ and we may take $f_{1}=1$. By considering the eigenvalues or the incidence matrix of the block design B associated with G, Higman showed that

$$
\begin{aligned}
\text { (1.2.6): } & \left\{\begin{array}{l}
f_{2} \\
f_{3}
\end{array}\right\}=\frac{2 k+(\lambda-\mu)(k+\ell) \mp r d(k+\ell)}{\mp} \text { 2 Vd } \quad \text { if }|G| \text { is even } \\
& \text { while } f_{2}=f_{3}=k \text { if }|G| \text { is odd. } \\
& \left(d=(\lambda-\mu)^{2}+4(k-\mu)\right) .
\end{aligned}
$$

From this lligman immediately derived further numerical conditions on the parameters:

Lemma 1.2.7. (Lemma 7 of [10])
If $|G|$ is even then either
I $k=l, \mu=\lambda+I=k / 2$ and $f_{2}=f_{3}=k$, or
II $d=(\lambda-\mu)^{2}+4(k-\mu)$ is a squarc, and
(i) if n is even, $\sqrt{\text { d }}$ iivicies $2 k+(\lambda-\mu)(k+\ell)$
and $2 \sqrt{d}$ does not, while
(ii) if n is odd, $2 \sqrt[V]{ }$ divides $2 k+(\lambda-\mu)(k+\ell)$.

Onc way of finding rank 3 groups is to find block designs with parameters satisfying the conditions of Lemmas 1.2 .5 and 1.2 .7 and then see if the pointsof the design admit a rank 3 collincation group. Since we have $l_{\text {: }}$ parameters for a Higman design and only 2 conditions on them, it makes sense to try to classify rank 3 groups satisfying conditions which give further information avout the parameters (prefarably, two more relations). As a simple example, we will now find all primitive rank 3 groups in which G_{α} is 2-transitive on both $\triangle(\alpha)$ and $\Gamma(\alpha)$. We first give necessary and sufficient conditions on the parameters for a rank 3 group to be primitivc.

Lemma 1.2.8. Suppose G is a rank 3 group with $k \leq \ell$.
Then G is primitive if and only if $\mu \neq 0$ if and only if $\lambda \neq k-1$.

Proof. See p.148 of [10].

The following lemma of IIgman (see (2.6) of [11]) whots how the double transitivity of G_{α} gives information ajout the parameters.

Lema 1.2.9. Suppose G is a primitive rank 3 group on \hat{y} with Δ and Γ chosen so that $k \leq \ell$.
(i) If G_{α} is 2-transitive on $\Delta(\alpha)$, then $\lambda=0$
(ii) If G_{α} is 2-transitive on $\Gamma(\alpha)$, then $\mu=k-k+1$.

Proof. (i) Let $\beta \varepsilon \Delta(\alpha)$. Since $G_{\alpha, \beta}$ is transitive on $\Delta(\alpha)-\beta$

$$
\Delta(\alpha)-\beta \leq \Delta(\beta) \text { or } \Delta(\alpha)-\beta \leq \Gamma(\beta)
$$

and hence $|\Delta(\alpha) \wedge \Delta(\beta)|=0$ or k-l respectively.
But $\lambda \neq k-1$ by 1.2 .8 , and so we have $\lambda=0$. (ii) is proved similarly.

Theorem 1.2.10. Suppose G is a primitive rank 3 group in which G_{α} is 2-transitive on both Δ and Γ. Then $|\Omega|=5$ and $G \cong D_{10}$, the dihedral group of order 10 .

Proof. Choose Δ and Γ such that $k \leq \ell . \quad$ By 1.2 .9 , $\lambda=0$ and $\mu=k-\ell+1$. Since $\mu>0$ by 1.2 .8 , we must have $\mu=1$ and $k=\ell$, whence $k=k(k-1)$ by 1.2.5.

This gives $k=2$ and the parameters are thus (2,2,0,1). By l.l.I, G is a subgroup of S_{5} of order $5.2=10$. Since S_{5} contains no elements of order 10 , the only possibility is that G is isomorphic to $D_{10^{\circ}}$. It is casily checked that the representation of D_{10} on the cosets of a subgroup of order 2 has the required form.

In Table 2 we list some investigations carried out in recont years which have yielded more interesting rank 3 groups.
TABLE 2.

Conditions	Possible degrec and parametors	Groups	Proved by
G_{α} is 2-transitive on Δ and $\mu=1$.	(1) $5,(2,2,0,1)$ (2) $10,(3,6,0,1)$ (3) $50,(7,12,0,1)$ (4) $3250,(57,3192,0,1)$	$\begin{aligned} & D^{D 10} \\ & A_{5} \text { or } S_{5} \\ & U_{3}(5) \text { or }\left[U_{3}(5)\right] C_{2} \end{aligned}$ -No known groups	D.G.Higman obtained the parametcrs and groups in [10],1964. He showed that the list of groups for (1), (2), (3) is complete in [11] 1966.
G_{α} is 2-transitive on Δ and rank 3 on I. $(\mu>1)$	$\begin{aligned} & \text { (1) } 16,(5,10,0,2) \\ & \text { (2) } 100,(22,77,0,6) \\ & \text { (List may not be } \\ & \text { connlete) } \end{aligned}$	$\left[\mathrm{v}_{16}\right] \mathrm{A}_{5} \text { or }\left[\mathrm{V}_{16}\right] \mathrm{S}_{5}$ $\text { HS or [HS]C } \mathrm{C}_{2}$	Margaret S. Smith (1969-70)
G_{α} is isomorphic to PSL(2,q), where $\mathrm{k}=\mathrm{q}+\mathrm{l} \text { and }$ $\varepsilon=\frac{a^{2}+q}{2}$	$\begin{aligned} & (1) 16,(5,10,0,2) \\ & (2) 56,(10,45,0,2) \end{aligned}$	$\begin{aligned} & {\left[v_{16}\right] A_{5}} \\ & \operatorname{PSL}(3,4) \end{aligned}$	Stephen Montague [16],1970.

Some of the notation in Table 2 requires explanation. The notation for the classical groups is standard, U meaning unitary and PSL projective special lincar. By [H] we mean a semidirect product of $I I$ by $K . \quad V_{16}$ donotes an elementary abelian subgroup of order $16 . \quad$ HS denotes the Higman-Sims simple group, which was discovered in 1967 [13] as a rank 3 extension of the Nathieu group in 22°

We leave Table 2 with the observation that a classification of rank 3 groups in which G_{α} has rank 3 on both Δ and would be of interest, for the new simple group of NaLaughlin has such a representation.

The primitive soluble rank 3 groups have recently been classified by Foulser $[i]$ and Dornhoff [5]. They are of the form $[V] G_{\alpha}$ where V is an elementary abelian regular normal subgroup of G and one of the following holds.
(i) $V=q^{n}$ and G is isomorphic to a subgroup of the group of semilinear transformations on the field $G F\left(q^{n}\right)$. In this case G_{α} has a simple structurc, being a subgroup of a metacyclic group.
(ii) G_{α} is an imprimitive linear group with a subgroup of index 2 given by Huppert's classification of doubletransitive soluble groups.
(iii) G has one of the degrees $7^{2}, 13^{2}, 17^{2}, 19^{2}, 23^{2}, 29^{2}$, $31^{2}, 47^{2}, 3^{4}, 7^{4}, 2^{6}$ or 3^{6}.

We also shall be concerned with rank 3 groups winich
contain a reģular normal elementary abelian subgroup, and our main task will be an attompt to rind such groups which have a high degree of transitivity on a suborbit. The problen is more fully stated in $S 1.3$.
$\$ 1.3$ (D, n) Grouns.
Before defining a (p, n) Group, we briefly describe groups which have a regular normal subgroup. By a regular group G we mean a transitive group on a set Ω in which $G_{\alpha}=\{1\}$ for every $\alpha \varepsilon \Omega$.

Suppose G is a permutation group on λ and that G has a normal regular subgroup H. Ne distinguish a point α of Ω and associate with every point w of Ω that uniquely determined permutation $h \varepsilon H$ for which $(\alpha) h=w$. By virtue of this bijection of Ω onto H we can regard G as a permutation group on H; to the permutation $S \varepsilon G$ corresponds the permutation $\binom{h}{(h) g}$, where $(h) g$ is unicuely specified by the formula

$$
(\alpha)(h) g=(\alpha) h g
$$

Thus, for each h εH,

$$
\begin{align*}
& (h) k=h k, \quad \text { for } k \varepsilon H \\
& (h) g=S^{-1} h g, \quad \text { for } g \varepsilon G_{\alpha} \tag{1.3.0}
\end{align*}
$$

Since the distinguished point α of Ω corresponds to I in H we now write G_{1} instead of G_{α}. The structure of G is siven by:

Theorem 1.3.1. If G contains a regular normal subgroup H, then G is isomorphic to the semi-direct product $[H] G_{1}$. Proof. Since H is regular, $H \wedge G_{i}=\{1\} . \quad$ Ey l.l.I, $|G|=|H|\left|G_{1}\right|$ and so $G=H G_{1}$. Since H is normal in G, the result follows.

Thus the action of G on $I I$ is determined by that of Ii and G_{1}, and by $(1.3 .0)$ we know that I acts in its rogular representation (i.c. on itself by right multiplication) while G_{1} acts automorphically on H.

If a permutation group G contains a regular normal elementary abelian subgroup H of order p^{n} (for some prime p) then, for brevity, we call it a (p, n) group.

A well-known theorem due to Galois (See c.g. [22], p.20) tells us that any primitive soluble group is a (p, n) group for some prime p and integer n. As we mentioned in $S 1.2$, all primitive soluble rank 3 roroups have already been classified. We therefore venture the question: arc there any interesting non-soluble rank 3 (p, n) groups?. Of course a (p, n) group is soluble if and only if G_{1} is soluble. is we observed in \mathbb{S}. 2 , high transitivity generally corresponds to non-solubility, and so we will impose conditions of high transitivity of G_{1} on a suborbit Δ. (Bccausc we have identificd Ω with H, we now have $H=\{l\} \cup \Delta \cup \Gamma$ in $a \operatorname{rank} 3(p, n)$ group). Since G_{1} acts automorphically on H, the stabilizer $G_{l, h}$ of a furthor point h also stabilizes $h^{\text {t }}$ for all integers t. We therefore definc an equivalence relation on a suborbit Δ by $h_{1} \sim h_{2}$ if $h_{1}=h_{2}^{t}$, for somc t with $0<t<p$, and we call the equivalence classes the lincs of Δ. We denote the linc containing h by lla, and the set of lines of Δ by Δ. $\operatorname{ror}(p, n)$ groups it is nore natural to consider the transitivity of G_{1} on Δ rather than on Δ. The main theorem we shall prove is:

Thoorom 1.3.2. Suppose G is a prinitive rank 3(p,n) group in which G_{1} is 2 -transitive on the lines of a suborbit. Let D denote the central subgroup $\left\{g \varepsilon G_{1}:(h) g=h^{t}\right.$ for all $h \varepsilon I$, some integer $t\}$ of G_{1}. Then the degree of G, the parameters of G, and G_{1} / D are respectively

Notes. (1) This result, which will follow from various results in the sequel, will shortly be restated, in perhaps a more natural way, in terms of lincar groups.
(2) Assuming the existence of an automorphism group satisfying the hypotheses of the theorem, we will show that there exists a unique block design having cach of the above sets of parameters. The groups listed arise from the full automorphism groups of these designs and, in some cases, suitable subgroups also have the required propertics. In case (viii) the full automorphism group does not have the required transitivity propertics but is nevertincless worthy of study since it gives rise to an interesting representation of the simple group $\operatorname{PSL}(3,4)$.

* For (.), (i) only, the geiups listai are in fust (og mit bia
(3) It seems unlikely that possibility (ix) occurs, but our methods appear to be insufficient to confirm tins for $p \neq 2$. However they give an algorithm for finding all possible sets of parameters of such (p, n) groups for a given integer n, and the lower bound on n can be increased as far as one is prepared to go (the manipulations become increasingly arduous as n increases).

The next leman shows how rank $3(p, n)$ groups fall into two types.

Lemma 1.3.3. Suppose G is a rank $3(p, n)$ group with suborbits $\{1\}, \Delta$ and Γ, and parameters (k, $, \lambda, \lambda, \mu$). Then either
(i) $|\underline{h}|=p-1$, for all $h \varepsilon \Delta$, in which case $k=(p-1)|\leq|$ (|내 denotes the number of points in the line \underline{h}, $|\triangleq|$ the number of lines in $\triangleq)$
or (ii) $k=\ell$ and $|\underline{h}|=\frac{p-1}{2}$ for all $h \varepsilon \Delta$, in which case $k=(p-1) / 2 \cdot \mid \Delta 1$

Proof. Suppose (i) is not true. Then there exists h $\varepsilon \Delta$ and an integer t such that $h^{t} \varepsilon \Gamma$. By the transitivity of G_{γ} on Γ any element of Γ has the form $\left(h^{t}\right)$ for some $g \varepsilon G_{1}$. But $\left(h^{t}\right)_{g}=\left((h)_{g}\right)^{t}$ and $(h)_{g} \varepsilon \Delta$. Thus $\Gamma=\left\{h^{t}: h \varepsilon \Delta\right\}$. The map from Δ to Γ given by $h \rightarrow h^{t}$ is a bijection, and hence (ii) holds.

Definition 1.3.4. For reasons which will become apparent in 52.1 we say that a rank $3(p, n)$ group is rational or irrational according as (i) or (ii) is satisfied in 1.3.3.

It is perhaps casier to visualize (p, n) groups if we translate to the language of lineargroups over vector spaces. The regular normal elementary abelian subgrour H, written additively, can be regarded as the vector space $V(n, p)$ of dimension n over the field GF(p) of p clements. G_{i} can then be resarded as a subgroup of the seneral linear sroup GL(n,p). We now write G_{o} instead of G_{1}, its orbits on $V(n, p)$ being $\{0\}, \Delta$ and Γ. The group D of Mincorem 1.3.2 consists of scalar multiples of the identity matrix, and if G is rational, then $G_{0}=G_{0} / D$ is a subgroup of $\operatorname{PGL}(n, p)$ acting on the projective space $P G(n-1, p)$ with two orbits \triangleq and Γ (It is easy to see that the lines defined on page 13 can now be regarded as the points of $P G(n-1, P)$). Since the irrational groups arising in Theorem l.3. 2 are not of sreat interest (they will be classified in $\S(3.1)$ the essence of the theorem can be restated as:

Theorem 1.3.5. A subgroup of $\mathrm{PGL}(n, p)$ acting on the projective space $P G(n-l, p)$ with two orbits, double transitive on onc of them, is one of the groups given by (iii)...(ix) of Theorem 1.3.2.

In the next section we consider (p,n) groups from yet another point of view - that of S-rings.
32. S-RINGS.

3 2.1 Dofinition and basic results.
The theory of S-rings (after I.Schur, who introduced them in [17], 1933) is useful in the investigation of those permutation groups which contain a regular subgroup of the same degree.

As in [22] we begin our discussion of S-rings by defining an S-module over a group H. Let Cll denote the group ring of H over the field C of complex numbers i.e. CH is the set of formal linear combinations $\eta=\sum_{h \varepsilon H} c_{h} h\left(C_{h} \in C\right)$ with the obvious multiplication defined by that in H. Those ring elements $\eta=\Sigma C_{h} h$ for which the coefficients C_{h} have only the values O and l are called simple quantities. Suppose $\tau_{1}, \ldots, \tau_{r}$ are simple quantities of $C H$ such that $\sum_{i=1}^{r} \tau_{i}=\sum_{h \in H} h$. Then the subset of CH spanned by the τ_{i} (i.e. the set of linear combinations r red
$\sum_{i=1} c_{i} \tau_{i}, \quad c_{i} \varepsilon C$) is called an S-module over H with basis $\left\{\begin{array}{l}i=1 \\ \tau_{1}, \ldots, \tau_{r}\end{array}\right\}$.

We shall be particularly interested in the following kind of S-module. Let G be a permutation group containing a regular subgroup H (not necessarily normal) and, as in S l.3, identify the points of Ω with those of H Let $\Delta_{1}, \ldots, \Delta_{r}$ be the orbits of G_{1} on H and, for $i=1, \ldots, r$, let $\hat{\Delta}_{i}$ denote the simple quantity $\sum h$ of the group ring CH . Then $\left\{\hat{\Delta}_{1}, \ldots, \hat{\Delta}_{r}\right\}$ is a basis for an S-module over H, called by Wiclandt the transitivity module of G_{1} over H and denoted by $C\left(H, G_{1}\right)$.

Definition 2.1.1. An S-ring over His an S-module over H which is at the same time a subring of the group ring $C I I$, and which in addition contains the identity element l as well as every quantity $\sum c_{h} h^{-1}$ whencver it contains $\sum c_{h} h$.

Given any subset Δ of II we let $\hat{\Delta}$ denote the simple quantity $\sum_{h \in \Delta} h$ of $C H$.

Definition 2.1.2. An S-ring 8 over ll is called primitive if $K=I$ and $K=H$ are the only subgroups of H for which $\hat{K} \& \&$ holds.

S-rings are fundamental to the study of permutation groups which have a regular subgroup in view of the following important theorem of Schur.

Thoorem 2.1.3. Suppose G is a permutation group containing H as a regular subirroup. Then the transitivity module $C\left(H, G_{1}\right)$ is an S-ring over H.

Proof. See pp. 61-63 of [22].

With the help oif this theorem we will be able to get information about possible groups G solely through consideration of the subgroup H.

Let δ be an S-ring with basis $\tau_{1}, \ldots, \tau_{r}$. We call r the rank of $\&$ and the integers n_{1}, \ldots, n_{r}, where n_{i} is the number of group elements whose formal sum is τ_{i}, the subdegrees of \& . It is clear that when \& is a transitivity module $C\left(H, G_{\gamma}\right)$, the rank and subdegrees of $\&$ and of the permutation group G coincide. Furthermore we have

Theorem 2.1.4. (24.12 of [22]). A permutation group G with regular subgroup H is primitive if and only if $C\left(H, G_{\eta}\right)$ is a primitive String.

When $\bar{\tau}=\Sigma c_{h}{ }^{h}$ is a simple quantity in CH, we define τ^{m} to be the simple quantity $\sum c_{h_{2}} h^{m}$.

Definition 2.1.5. If δ is an STring in which $\tau_{i}^{m}=\bar{\tau}_{i}$ for every simple basis quantity τ_{i} and for all integers much that $(m,|H|)=1$, then $\&$ is called (by Tamaschke [14]) a rational String.

If 8 is a transitivity module associated with a rank $3(p, n)$ group G then it is easy to see that $\&$ is rational if and only if G is rational in the sense of definition 1.3.4. We now give a necessary and sufficient condition for a rank 3 S-module over an elementary abelian group to be a rational string.

Theorem 2.1.6. Let $\&$ be an S-module over an elementary abelian p-sroup H with simple basis quantities $1, \hat{\Delta}$ and $\hat{\Gamma}$. ($H=\{1\} \cup \Delta, \Gamma$). Then \& isarational string if and only if the following three conditions hold.

$$
\begin{gathered}
\text { (i) }|\Delta \wedge \Delta x|=\text { some fixed integer } \lambda \text { for all } x \varepsilon \Delta . \\
(\Delta x \text { denotes the subset }\{\text { ax: a } \varepsilon \Delta\} \text { of } H) \\
\text { (ii) }|\Delta \wedge \Delta y|=\text { some fixed integer } \mu \text { for all y } \varepsilon ? . \\
\text { (iii) If } x \varepsilon \Delta \text {, then } x^{t} \varepsilon \Delta \text { for } t=1, \ldots, p-1 .
\end{gathered}
$$

Proof. Suppose $\&$ is a rational String. Let $k=|\Delta|$, $\ell=|\Gamma|$. Since \& is a ring, there are integers λ and μ such that $\hat{\Delta} \hat{\Delta}=\lambda \hat{\Delta}+\mu \hat{\Gamma}+k .1$. For any $x \varepsilon \Delta$,

$$
\begin{aligned}
\lambda & =|\{(a, b) \varepsilon \Delta x \Delta: a b=x\}| \\
& =\left|\left\{a \varepsilon \Delta: a^{-1} x \varepsilon \Delta\right\}\right|=|\Delta \wedge \Delta x|, \text { since } \varepsilon \Delta
\end{aligned}
$$

implies $\mathrm{a}^{-1} \varepsilon \Delta$ if $\&$ is rational. Thus (i), and
similarly (ii), hold. (iii) follows immediately from the fact that $\&$ is rational.

Conversely suppose (i), (ii) and (iii) hold. To prove $\&$ is an String it is sufficient to show that $\hat{\Delta} \hat{\Delta}, \hat{\Gamma} \hat{\Gamma}$ and $\hat{\Delta} \hat{\Gamma}$ belong to X. Using the reverse argument to that in the first part of the proof, it is easily shown that $\hat{\Delta} \hat{\Delta}=\lambda \hat{\Delta}+\mu \hat{\Gamma}+k . l$ and similarly that
$\hat{\Gamma} \hat{\Gamma}=(\ell-k+\lambda+1) \hat{\Delta}+(\ell-k+\mu-1) \hat{\Gamma}+\ell .1$ and
$\hat{\Delta} \hat{\Gamma}=(\ell-k+\lambda+1) \hat{\Delta}+\mu \hat{\Gamma}$. This completes the proof.
The next lemma shows that λ and μ correspond with the intersection numbers of a rank $3(p, n)$ group G when $\delta=c\left(H, G_{1}\right)$.

Lemma 2.1.7. If G is a rank $3(p, n)$ group with parameters (k, ℓ, λ, μ) then $\lambda=\left|\Delta_{n} \Delta_{x}\right|$ where $x \varepsilon \Delta$ and $\mu=\left|\Delta_{n} \Delta y\right|$ where y $\varepsilon \Gamma$.

Proof. By definition $\lambda=' \Delta(\alpha) \wedge \Delta(\beta) \mid$, for $\beta \varepsilon \Delta(\alpha)$. Hence $\lambda=|\Delta(\alpha) \wedge \Delta(\alpha) g|$, where $g \varepsilon G_{1}$ with $\alpha_{g}=\beta$. If G is $a(p, n)$ group over H we take $\alpha=1$ and regard $\Delta=\Delta(1)$ as a subset of H. H acts regularly on itself. Thus, if $\mathbf{x} \varepsilon \Delta, \mathbf{x}: 1 \rightarrow x$ and $\lambda=|\Delta \wedge \Delta x|$. The required value of μ is obtained in the same way.

For a rational rank 3 String \& over II we have now defined a set of parameters (k, ℓ, λ, μ) which are the same as
those or a rank 3 group G when $8=C\left(H, G_{1}\right)$. It follows from the equation $\hat{\Delta} \hat{\Delta}=\lambda \hat{\Delta}+\mu \hat{\Gamma}+i s .1$ (in proof of 2.1.6) that $k^{2}=\lambda k+\mu \ell+k$, which shows that Higman's relation of Lemma 1.2.5 holds for a rational rank 3 S-ring \& without any assumption that $\&$ is a transitivity module.

§ 2.2 Dual S-rings.

0. Tamaschke [19 and 20] has carried out an extensive ring-theoretical investigation of the class of s-rings over H which lie in the centre of the sroup ring $C H$ - he calls them contral S-rings. We will be interested only in abelian groups H, over which S-rings are automatically central. Of great value to us will be Tamaschke's notion of the dual S-ring and also his numerical relations connecting the subdegrees and character degrees of a permutation group which has a regular subgroup.

Rather than discuss the dual of an S-ring over H in full generality, we will make a definition more convenient for our particular use; that is, when H is an elementary abelian p-group. It is easy to check that Tamaschke's definition is the same as ours for such a group.

For the rest of this section H denotes an elementary abelian p-group of order p^{n}, and S an S-ring over H with simple basis quantities $\tau_{1}, \ldots, \tau_{r}$. We write $H=H_{1} \times \ldots H_{n}$ where H_{i} is a cyclic group of order p gencrated by h_{i}. The set it of (complex) characters of H can be identified with a group, which is isomorphic to H, in the following way. Ve
definc characters x_{1}, \ldots, x_{n} by $\left(h_{j}\right) x_{i}=w$ if $i=j$ $=1$ if i $\neq j$, where
w is a primitive pth. root of unity. The set of characters of H can then be written $H^{T_{i}}=\left\{x_{1}^{i_{1}} \ldots x_{n}{ }^{i_{n}}\right.$: $\left.i_{k}=0,1, \ldots, p-1\right\}$ where $\left(h_{l}^{j_{1}} \ldots h_{n}^{j_{n}}\right) x_{l}^{i_{1}} \ldots x_{n}^{i_{n}}=w^{i_{1} j_{1}+\ldots i_{n} j_{n}}$. With multiplication defined by $\left(x_{l}^{i_{1}} \ldots x_{n}^{i_{n}}\right)\left(x_{l}^{j_{1}} \ldots x_{n}^{j_{n}}\right)=$ $x_{1}^{i_{1}+j_{1}} \ldots x_{n}^{i_{n}+j_{n}}$, it is easy to check that $H^{\#}$ is an elementary abelian group of order p^{n} generated by x_{1}, \ldots, x_{n}. A character x in $H^{\text {f }}$ can be defined to act on the ring CH by $\left(\Sigma c_{h} h\right) x=\Sigma c_{h}(h x)$, and in particular x acts on the simple basis quantities $\tau_{1}, \ldots, \tau_{r}$ of \& . We definc an equivalence relation on $H^{\#}$ by $x \sim \psi$ if and only if $\left(\tau_{k}\right) x=\left(\tau_{k}\right) \psi$ for $k=1, \ldots, r$. Let T_{1}, \ldots, T_{r} be the cquivalence classes of \sim, and lot $\tau_{k}^{\#}$ be the simple quantity $\hat{T}_{k}=\Sigma_{x \in T_{l}} \times$ of $C H^{\#}$. Then $\tau_{1}^{\#}, \ldots, \tau_{r}^{\#}$ generate
 From Theorem 1.lo of [19] wo obtain

Theorem 2.2.1. If $\&$ is an S-ring of rank r over an elementary abelian group H, then:
(i) the dual S-module $\&^{\#}$ is an S-ring over $H^{\#}$.
(ii) $\&$ is isomorphic to \& .
(iii) $r=r^{\#}$ i.e. rank $X=r a n k \ell^{\#}$.
(iv) the map $\& \mapsto 8^{\neq}$is a bijection from the set of S-rings of rank r over $I I$ to itsclf (identifying $\|^{\neq}$ with H).

Definition 2.2.2. $S^{\vec{T}}$ is called the dual $\operatorname{s-rinc}$ to \mathbb{S}. Tamaschke showed that interesting numerical relations hold between the subdegrees, n_{1}, \ldots, n_{r}, of a central string and those, $n_{1}^{\bar{\Pi}}, \ldots, n_{r}^{\#}$, of its dual:

Theorem 2.2.3. (c.f. 2.18 of [19]) Let $\&$ be a central String of rank r over a group H. Then
(a) the rational numbers $q=|H|^{r-2} \frac{r}{11} \frac{n_{i}}{n_{i}^{\text {mi }}}$ and

$$
q^{\#}=|H|^{r-2} \prod_{i=1}^{r} \frac{n_{i}^{\#}}{n_{i}} \quad \text { arc both integers. }
$$

(b) if $\&$ is also rational in the sense of definition 2.1.5, q and q are both squares.

Corollary 2.2.4. (c.f. 2.20 of [19]) If $|\mathrm{H}|$ is a power of a prime p and $\&$ is rational, then q and q arc not only squares but also powers of p.

Proof. Observing that $\mathrm{qq}^{\#}=|\mathrm{H}|^{2(r-2)}$, the result follows immediately from 2.2.3.

Suppose now that G is a group with regular subgroup H and transitivity module $C\left(H, G_{1}\right)$. Let D_{1}, \ldots, D_{S} be the different irreducible representations appearing in the permutation representation $G *$ of G. Let ρ_{i} be the character corresponding to D_{i}, f_{i} the degree of D_{i}, and c_{i} the multiplicity of D_{i} in $G^{*}(i=1, \ldots, s)$. By Theorems 28.8, 29.3 and 29.4 of [22], if $C\left(H, G_{1}\right)$ is central, then every $c_{i}=1$ and s is equal to the rank r of $C\left(H, G_{1}\right)$. Moreover Tamaschke has proved:

Theorem 2.2.5. (c.f. 7.6 of [20]) Suppose $C\left(H, G_{1}\right)$ is a contral S-ring over H with basis $\tau_{1}, \ldots, \bar{U}_{2}$. Then the basis $\tau_{1}^{\#}, \ldots, \tau_{r}^{*}$ of $X^{\#}$ coincides with the set of characters $\rho_{1}, \ldots, \zeta_{r}$ in their action on H.

Corollary 2.2.6. If $C\left(H, G_{1}\right)$ is central, the subdegrees of $C\left(H, G_{1}\right)$ are f_{1}, \ldots, f_{r}.

We now see that Corollary 2.2.4 represents an improvement (when $8=C\left(I I, G_{1}\right)$) on the following more general theorem of Frame.

Theorem 2.2.7. (c.f. 30.1 of [22]) Let G be a transitive group of degree n with subdegrees n_{i}, and let f_{i}, e_{i} be the degrees and multiplicities respectively of the absolutely irreducible constituents of the permutation representation G^{*} of G.
(A) If all the $e_{i}=1$, then the rational number $q^{\prime}=n^{r-2} \prod_{i=1}^{r} \frac{n_{i}}{f_{i}} \quad$ is an integer.
(B) If the irreducible constituents of G^{*} all have rational characters, then q^{\prime} is a square.

By 2.2.6, if 8 of Theorem 2.2 .3 is a central transitivity module $C\left(H, G_{1}\right)$, then q of 2.2 .3 is the same as q' of 2.2.7. Let us now see how Tamaschke's theory ties in which that of Higman's for the particular case of rational rank $3(p, n)$ groups.

Lcmma 2.2.8. Suppose G is a rank 3 group with regular subsroup H. Let q be that integer given by Theorem 2.2.3 with $\mathcal{S}=\mathrm{C}\left(\mathrm{H}, \mathrm{G}_{1}\right)$. Let C be as in l.2.7. Then if $\mathrm{C}\left(\mathrm{H}, \mathrm{G}_{1}\right)$ is central, $\mathrm{d}=\mathrm{q}$.

Proof. Since $q=q^{\prime}$ if $C\left(H, G_{1}\right)$ is central,

$$
\frac{d}{q}=\frac{d}{a}=\left[(\lambda-\mu)^{2}+4(k-\mu)\right] \frac{f_{2} f_{3}}{\mid H / k \ell} .
$$

Using the values of f_{2} and f_{3} given by 1.2 .6 ,

$$
\frac{2 k+1}{|H|} \quad \text { if }|G| \text { odd, for then } \lambda=\mu=\frac{k-1}{2} \text { by }
$$

$$
\text { Corollary } 1, p .148 \text { of }[10] \text {. }
$$

$$
=\frac{k+\ell+1}{|H|} \quad \text { in either case }
$$

$$
=1 .
$$

Immediately from 2.2 .4 and 2.2 .8 we get

Corollary 2.2.9. If G is a rational rank $3(p, n)$ sroup, then d is the souare of a power of p.

S 2.3 S-rings over $V(n, n)$.

Since we will find it more convenient to write an elementary abelian p-group I additively and regard it as the vector space $V=V(n, p)$, we now convert our notation. To avoid confusion of + signs when we look at the group ring $C V$,

$$
\begin{aligned}
& \frac{d}{q}=\frac{(k+\ell)\left(k^{2}+\ell k-\mu \ell-k \lambda\right)-k^{2}}{|H| k \ell} \text { if }|G| \text { is cven, } \\
& \frac{(\lambda-\mu)^{2}+4(k-\mu)}{|I I|} \\
& \text { if }|G| \text { is odd. } \\
& =\frac{(k+\ell)(k+\ell k)-k^{2}}{|1| k \ell} \quad \text { if }|G| \text { even, using 1.2.5, }
\end{aligned}
$$

we use $\dot{+}$ or $\dot{\sum}$ for formal sums, reserving + for vector addition in the additive group V. Dy an S-ring over V we simply mean an s-ring over an elementary abelian p-group with the notation changed as just described. The group If of characters of II may now be regarded as the dual space $V^{\#}$ in its usual meaning; i.c. $V^{\#}$ is the space of lincar maps from V to $G F(p)$. If we let the standard basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$ in V correspond to the generators h_{1}, \ldots, h_{n} of H, we define a basis x_{1}, \ldots, x_{n} in $V^{\#}$ by $\left(\varepsilon_{j}\right) x_{i}=\delta_{i j}$ (instead of $\left(h_{j}\right) x_{i}=w_{i j}$, as before; $S_{i j}$ denotes the 'Kronccker delta'). A dual S-ring over $V^{\text {\#is }}$ now defined in exactly the same way as in § 2.2.

Far the rest of this section G denotes a (p, n) sroup in which the regular normal elementary abelian subgroup is written additively as V. Thus G is the semidirect product $[V] G_{o}$ as described in $\left\{1.3, G_{o}\right.$ being the stabilizer of O and regarded as a subgroup of $G L(n, p)$. The transitivity module is now written $C\left(V, G_{0}\right)$.

Let \& be any S-ring over V with simple basis quantities $\tau_{I}, \ldots, \bar{\tau}_{r}$, An element G of $G L(n, \hat{p})$ acts on $C V$ in the obvious way: $\left(\underset{v \in V}{\dot{\sum}} c_{v} v\right) s=\dot{\Sigma} c_{v}((v) g)$. If $\left(\tau_{i}\right)_{s}=\tau_{i}$ for $i=1, \ldots, r$, we say that s is an automorphism of \& , and define Aut \& to be the full automorphism group of $\&$ in $G L(n, p)$. If G is $a(p, n)$ group, $G_{o} \leq \operatorname{Aut}\left(c\left(V, G_{0}\right)\right)$. On the other hand, for any s-ring $\&$, we have $\& \leqslant c(v, A u t \&)$ with equality if and only if 8 is the transitivity module of some (p, n) group of the same rank. Thus the rank $3(p, n)$
groups with given parameters (k, ℓ, λ, μ) are given by those Strings 8 , with the same parameters, for which $\&=c(V$, fut 8$)$.

We now show that an STring over V and its dual have the same automorphism group. If $G_{o} \leq G i(n, p)$, let $G_{o}{ }^{\prime}$ connote the group of matrices $\left\{A: A^{\prime} \varepsilon G_{0}\right\}$ (A' denotes the transpose of A. Of course G_{0}^{\prime} is isomorphic to G_{0}.

Theorem 2.3.1. (i) If $\&$ is an String over V, then fut \&
 $C\left(V, G_{o}\right)$ is isomorphic to $C\left(V, G_{0}^{\prime}\right)$. In other words the dual to $C\left(V, G_{o}\right)$ is that $S-r i n g$ generated by simple quantities $\hat{\Delta}_{1}^{F}, \ldots, \hat{\Delta}_{\sigma}^{F}$ where the $\Delta_{;}^{\#}$ are the orbits of G_{0}^{\prime} on $V^{\#}$.

Proof. (i) Let $\alpha=\Sigma d_{j} \varepsilon_{j} \varepsilon V, x=\Sigma z_{i} x_{i} \varepsilon V^{\#}$, and A ε fut \& . Suppose $\left(a_{i j}\right)$ is the matrix of A with respect to the basis $\varepsilon_{1}, \ldots, \varepsilon_{n}$. Then

$$
(\alpha)\left(x A^{\prime}\right)=(\alpha A) x \quad \ldots(1),
$$

for $(\alpha)\left(x A^{\prime}\right)=\left(\sum d_{k} \varepsilon_{k}\right)\left(\sum a_{i j} z_{j} x_{i}\right)=\sum a_{i j} d_{k} z_{j} \delta_{i k}$ $=\sum a_{i j} d_{i} z_{j}=\Sigma a_{i j} d_{i} z_{k} S_{j k}=\sum a_{i j} d_{i} z_{k} \varepsilon_{j} x_{k}$ $=\left(\Sigma a_{i j} d_{i} \varepsilon_{j}\right)\left(\Sigma z_{k} x_{k}\right)=(\alpha A) x$.

Suppose $\hat{\Delta}_{i}=\dot{\Sigma}_{\alpha \varepsilon \Delta_{i}} \alpha$ is a simple basis quantity of $\bar{\delta}$. Since $\Lambda \varepsilon$ fut $\&,\left(\hat{\Delta}_{i}\right) A=\hat{\Delta}_{i}$. By (I), $\left(\hat{\Delta}_{i}\right) X A^{\prime}=\left(\hat{\Delta}_{i}\right) x$, for all i, x. Hence $x^{\prime} \sim\left(\sim\right.$ for all $x \varepsilon V^{\#}$, where \sim is as in the definition of the dual String (See p.22), and it therefore follows that $A^{\prime} \varepsilon$ fut $\delta^{\#}$.

Thus, if $A \varepsilon$ fut $\hat{\delta}$, A' ε fut δ^{\mp}; but by the same token, if $A^{\prime} \varepsilon$ fut $8^{\ddagger}, A=A^{\prime \prime} \varepsilon A u t 3^{\#+\pi}=A u t 8$. Hence $A \in$ fut $\&$ if and only if $A^{\prime} \varepsilon$ Alt $\&^{\dagger}$, and $A \longmapsto\left(A^{-1}\right)^{\prime}$ gives the required isomorphism. (ii) is proved similarly.

By Corollary 2.2.6 the orbit lengths of, G_{o}^{\prime} on $V^{\#}$ are f_{1}, \ldots, f_{r}. We often have $\left\{f_{1}, \ldots, f_{r}\right\}=\left\{n_{1}, \ldots, n_{r}\right\}$ and indeed $C\left(V, G_{0}\right)$ isomorphic to its dual $C\left(V^{\#}, G_{0}{ }^{\prime}\right)$, though we will sec in $\$ 4$ that tins is not always the case.

We conclude this section with a diagram to illustrate the different ways in which we can now look at a rank 3 (p, n) roup.

3 3. PARAMETLRS OF RANK 3 (p, n) GROUPS.

83.1 Rank $3(p, n)$ groups with high transitivity of G_{0} on

 a suborbit.In this section we prove some results analogous to l.2.9, showing how the imposition of conditions of transitivity on the suborbits of a rank $3(p, n)$ group gives information about the intersection numbers λ and μ.

As in $\$ 2.3$, we regard the regular subgroup of a (p, n) group G additively as the vector space V. Thus $G=[V] G_{o}$, where G_{o} is regarded as a subgroup of $G I(n, p)$. If $\alpha \varepsilon V$ and $g \varepsilon G_{0}$, we let αg denote the vector $(\alpha) g$ of V. To avoid confusion of notation, thercfore, we write the elements of $[V] G_{0}$ as ordered pairs (α, g), where (α, g) : $\beta \longmapsto(\alpha+\beta) g$, for $\alpha, \beta \varepsilon V, g \varepsilon G_{0}$. Multiplication is given by $(\alpha, g)(\beta, h)=\left(\alpha+\beta g^{-1}, g h\right)$.

Lemma 3.1.1. If $x \in \operatorname{GL}(n, p)$, then $[V] G_{o}$ and $[V x]_{x}{ }^{-1} G_{o} x$ are isomorphic as permutation groups on V and $V x$ respectively $(V x=\{\alpha x: \alpha \varepsilon V\})$.

Proof. It is a trivial verification that $(\alpha, g) \rightarrow\left(\alpha x, x^{-1}{ }_{g x}\right)$ gives the required isomorphism.

If G_{o} has orbits $\Delta_{I}, \ldots, \Delta_{r}$ on V, then $x^{-1} G_{o} x$ has orbits $\Delta_{1} x, \ldots, \Delta_{r} x$ on $V x$. Since we are interested in finding permutation groups only up to isomorphism we can use 3.1.l
to obtain the Δ_{i} in some canonical form.
Ne now consider our main prollem, mentioned in $\oint 1.3$;
that of finding the rank $3(p, n)$ groups G in which G_{0} is doubly transitive on the lines of a suborbit. ife will now dispense with the case where G is irrational (sec definition 1.3.4).

Theorem 3.1.2. Suppose G is an irrational rank 3 (p, n) group with suborbits Δ and Γ, and suppose that G_{o} is doubly transitive on \triangleq. Then G is isomorphic to the cyclic sroup C_{3} of order 3 or the dihedral group D_{10} of orier 10.

Proof. Since G is irrational, $V=0{ }_{\nu} \Delta{ }_{\nu}$, where

$$
\Gamma=\{t \alpha: \alpha \varepsilon \Delta\} \quad \text { for some } t \varepsilon G F(p)=0
$$

Case 1. $n=2 . \quad$ Then $G_{0} \leqslant G L(2, p)$ and G_{0} is 2-transitive on the $\left(p^{2}-1\right) /(p-1)$ lines in \triangle. By Theorems 1.1 .1 and l.l.2, $\left|G_{0}\right|$ is divisible by $(p+1) p$ and in particular p divides $\left|G_{0}\right|$. Since $G L(2, p)$ has order $\left(p^{2}-1\right)(p-1) p, G_{0}$ must contain a Sylow p-subgroup P of $G L(2, p)$. Bccause Sylow subgroups are conjugate, by Lemma 3.12 we may take p to be any sylow p-subsroup of $G L(2, p)$. Wetake $P=\left\{\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right)$: a $\varepsilon \operatorname{GF}(p)\}$. Then the vectors $(0,1),(1,1), \ldots,(p-1,1)$ all belong to the same orbit of P and therefore of G_{0}. Hence there exist field elements $b_{1}, \ldots, b_{\frac{p-1}{}}^{2}$ and $c_{1}, \ldots, c_{\frac{p-1}{2}}^{2}$ such that

$$
\begin{array}{ccc}
\Delta=\left\{b_{1}(1,0),\right. & c_{1}(0,1), & \ldots, \\
c_{1}(p-1,1) \\
\vdots & \vdots & \vdots \\
\frac{b_{\frac{p-1}{}}^{2}}{}(1,0), & c_{\frac{p-1}{2}}(c, 1), & \ldots, \\
\left.c_{\frac{p-1}{2}}(p-1,1)\right\}
\end{array}
$$

By Lemma 2.1.7, $\lambda=\left|\Delta_{\wedge} \Delta+\alpha\right|$ for $\alpha \varepsilon \Delta$, and $\mu=\left|\Delta_{\wedge} \Delta+\beta\right|$ for $\beta \in \Gamma$. We choose a and b in $G F(p)$ such that $\alpha=a(1,0) \varepsilon \Delta$ and $\beta=b(1,0) \varepsilon \Gamma$. In this case both λ and μ are greater than or equal to $\frac{(p-1)}{2} p$, for the elements of Δ of the form $c_{i}(x, 1)$ belong to both $\Delta+\alpha$ and $\Delta+\beta$. Since $k=\ell$, by $1.2 .5, \mu=k-1-\lambda$. Hence $\left(p^{2}-1\right) / 2=k=$ $\mu+\lambda+1 \geq p(p-1)+1$, and this cannot occur for any prime p.

Case 2. $n>2$. Assuming such a group G exists, then by restricting the action of G_{0} to any 2 -dimensional subspace of V we get the conditions of Case 1 and hence a contradiction.

Case 3. $n=1$. Since $G L(1, p)$ is cyclic of order $p-1$, the only possibilities arc $(p-1) / 2=1$ or 2 and hence $p=3$ or 5 . Thus $G=\left[C_{3}\right]$ l or $\left[C_{5}\right] C_{2} ;$ inc. G is isomorphic to C_{3} or D_{10}. The rational groups satisfying the hypotheses of Theorem 1.3.2 are of rather more interest, and we will be occupied with them for most of the sequel. For short we define a (*)-group to be a rational rank $3(p, n)$ group in which G_{0} is doubly transitive on the lines of a suborbit. Our problem now, therefore is to classify primitive ($*$)-groups, or, puling it another way, to prove Theorem l.j.5. Ie make a start in:

Thcorem 3.1.3. Let G be a (*)-group with parameters (k, ℓ, λ, μ). Then $\lambda=r(k /(i)-1)-1)+p-2$, wherc either (i) $r+1=p$ and G is imprimitive or (ii) $r+l$ divides $p-1$. Proof. As usual, G_{0} is regarded as a subgroup of $G L(n, p)$ acting on $V=V(n, p)$. We may assume that the group S of all scalar matrices is contained in G_{0}, for $G_{o} S$ has the same orbits as G_{0} and hence the parameters of $[V] G_{0}$ and of $[V] G_{o} S$ are the same. Let $\alpha_{1} \varepsilon \triangle$. By 2.1.7, $\lambda=\left|\Delta n_{n} \Delta+\alpha_{1}\right|$. The vectors $2 \alpha_{1}, 3 \alpha_{1}, \ldots,(p-1) \alpha_{1}$ lie in $\quad \Delta \wedge \Delta+\alpha_{1} ;$ so $\lambda \geq$ p-2. Supiose $\lambda \neq p-2$. Then there exists α_{2} in Δ such that α_{1} and α_{2} are lincarly indepencient and $\alpha_{1}+\alpha_{2} \varepsilon \Delta$. We let $\langle\alpha, \beta, \gamma, \ldots\rangle$ denote the subspace of V spanned by the vectors $\alpha, \beta, \gamma, \ldots$. It is now more convenient to look at the lines of Δ. Let $\triangleq=\left\{\underline{\alpha}_{1}, \underline{\alpha_{2}}, \ldots, \underline{\alpha_{m}}\right\}$ where $m=k /(p-1)$. Suppose $\left\langle\underline{\alpha_{1}, \alpha_{2}}\right\rangle \cap \underline{\Delta}\left\{\underline{\alpha_{1}}, \underline{\alpha_{2}}, \underline{\alpha_{1}+t_{1} \alpha_{2}}, \ldots, \underline{\alpha_{1}+t_{1}} \alpha_{2}\right\}$, where $t_{1}=1$ and $t_{i} \varepsilon \operatorname{GF}(p) \backslash 0, i=2, \ldots, r$. The integer r is independent of the choice of α_{1} and α_{2} since G_{0} is 2 -transitive on \triangle. The double transitivity of G_{0} on \triangleq also implies that for euch $i \geqslant 2$, therc exists $S_{i} \varepsilon G_{o}$ such that $\left(\underline{\alpha_{1}}\right) g_{i}=\underline{\alpha_{1}}$ and $\left(\underline{\alpha_{2}}\right) g_{i}=\underline{\alpha}_{i}$. Since $S \leq G_{0}$, we may assume $\left(\alpha_{1}\right) g_{i}=\alpha_{1}$ and $\left(\alpha_{2}\right) g_{i}=a_{i} \alpha_{i}$ for some $a_{i} \varepsilon G F(p) \backslash 0$. Hence $\left(\alpha_{1}+t_{j} \alpha_{2}\right) s_{i}=\alpha_{1}+t_{j} a_{i} \alpha_{i}$. We will show that

$$
\begin{align*}
\Delta_{\wedge} \Delta+\alpha_{i}= & \left\{\alpha_{i}+t_{j} a_{i} \alpha_{i}: i=2, \ldots, m ; j=1, \ldots, r\right\} \cup \\
& \left\{a \alpha_{1}: a=2, \ldots, p-1\right\} \tag{1}
\end{align*}
$$

and hence that $\lambda=r(m-1)+p-2$ as required. Let the right hand side of (1) be the set X. It is easy to see that X is contained in $\Delta_{\wedge} \Delta+\alpha_{1}$ and that the given elements of X are all distinct. Supposc $\alpha \varepsilon \Delta_{\wedge} \Delta+\alpha_{1}^{\prime}$. If α is a scalar multiple of α_{1} then $\alpha \varepsilon X$. Suppose $\alpha=\alpha_{1}+b \alpha_{i}$ for some $i>1, b \varepsilon \operatorname{GF}(p) \backslash 0$. Then $(\alpha) g_{i}^{-1}=\alpha_{1}+a_{i}^{-1} b \alpha_{2} \varepsilon$ $\Delta \wedge\left\langle\alpha_{1}, \alpha_{2}\right\rangle$. Hence $a_{i}^{-1} b=t_{j}$ for some $j \in\{1, \ldots, r\}$. Hence $b=a_{i} t_{j}$ and $\alpha=\alpha_{1}+a_{i} t_{j} \alpha_{i} \varepsilon X$. Thus (I) is true and since $m=k /(p-1)$ we have proved the first part of the theorem.

It remains to prove the asscrtions about the integer r. Let L be the subsroup of G_{0} which fixes α_{1} and also $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ as a sct. Let L_{1} be the subgroup which fixcs every point of $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$. Then L / L_{1} is isomorphic to a subgroup of $\left\{\left(\begin{array}{ll}1 & 0 \\ a & b\end{array}\right): a \varepsilon \operatorname{GF}(p), b \varepsilon \operatorname{Gr}(p) \backslash 0\right\}$ and therefore has order dividing $p(p-1)$. Since G_{0} is 2-transitive on $\triangleq, L / L_{1}$ acts transitively on $\left\{\underline{\alpha_{2}}, \underline{\alpha_{1}+t_{1} \alpha_{2}}, \ldots, \underline{\alpha_{1}+t} \underline{\alpha_{2}}\right\}$. Hence, by l.l.1, $r+1$ divides $p(p-1) \ldots(2)$.

By definition, $\lambda \leq k$, which in this case implies that $r(m-1)+p-2 \leqslant m(p-1)$ and hence that $r \leq p-1$. Now $r=p-1$ if and only if $\lambda=k-1$, in which case G is imprimitive by 1.2.8. If $r<p-I$, then p cannot divide $r+1$ and we deduce from (2) that $r+1$ divides $p-1$. This completes the proof.

Before continuing our treatment of (*)-groups, we first consider some situations where even more stringent conditions of transitivity are imposed. Let G bc a linear group acting transitively on some subset \triangle of $V(n, p)$. Then we say that G is ncar-2-transitive on Δ if G_{α} is transitive on Δ, $\underline{\alpha}$ for any $\alpha \varepsilon \Delta$ ($\underline{\alpha}$ denotes the set $\{\alpha, 2 \alpha, \ldots,(p-1) \alpha\})$ ie. if the orbits of G_{α} on Δ arc $\{\alpha\},\{2 \alpha\}, \ldots,\{(p-1) \alpha\}$, and Δ, $\underline{\alpha}$. Clearly if G is near-2-transitive on Δ, then G is 2 -transitive on Δ. \therefore. C c fine G to be near-3-transitive on \triangle if G_{α} is near-2transitive on $\Delta \backslash \underline{\alpha}$ for any $\alpha \varepsilon \Delta$.

Theorem 3.1.4. Suppose G is a primitive rank 3 (p, n) group in which G_{0} is near-2-transitive on a suborbit. Then G is isomorphic to C_{3} or D_{10}, or $\lambda=p-2$.

Proof. If G is irrational we deduce from 3.1.2 that G is isomorphic to C_{3} or D_{10}. So we suppose that G is a primitive rational (p, n) group. By 2.1.7, $\lambda=|\Delta \wedge \Delta+\alpha|$ for $\alpha \in \Delta$. Clearly $\Delta \wedge \Delta+\alpha$ contains $\{2 \alpha, \ldots,(p-1) \alpha\}$. Suppose also that β belongs to $\Delta_{n} \Delta+\alpha$, but that β does not belong to $\underline{\alpha}$. Let δ be any element of $\Delta \underline{x}$. Since G_{o} is near-2-transitive, there exists $s \in G_{o}$ such that $\alpha S=\alpha$ and $\beta \xi=\delta$. Since $\beta-\alpha \varepsilon \Delta,(\beta-\alpha) S=\delta-\alpha \varepsilon \Delta$. Hence $S \varepsilon \Delta_{\wedge} \Delta+\alpha$ for all $S \varepsilon \Delta \backslash \alpha$. Therefore $\lambda=k-1$, which by l.2.8 implies that G is imprimitive - a contradiction. Hence no such β exists and $\lambda=p-2$.

Theorem 3.1.5. Suppose G is a primitive rank 3 (p, n) group in which G_{0} is near-3-transitive on \triangle. Then $G=C_{3}$ or D_{10}, or $\lambda=p-2$ and $\mu=2$.

Proof. By Theorem 3.1.4, it is necossary to prove only the assertion about μ when G is rational. Ey 2.1 .7 , $\mu=\left|\Delta_{n} \Delta+\gamma\right|$ for $\gamma \varepsilon \Gamma$. G is primitive; so by 1.2.8, $\mu \neq C$. Let $\alpha \varepsilon \Delta \cap \Delta+\gamma$. Then $\alpha-\gamma \varepsilon \Delta$ and, since G is rational, $\gamma-\alpha$ is also in Δ. But $-\alpha$ lies in Δ if G is rational, and so $\gamma-\alpha \varepsilon \Delta_{n} \Delta+\gamma, \quad \gamma-\alpha$ and α are distinct, for otherwise $\gamma=2 \alpha$ and $\gamma \varepsilon \Gamma$ while $\alpha \varepsilon \Delta$. Hence $\mu \geq 2$. Suppose $\mu>2$. Then there exists $\beta \varepsilon \Delta_{\Lambda} \Delta+\gamma$ with $\beta \neq \alpha$ or $\gamma-\alpha$. Let δ be any element of $\Delta \backslash\{\alpha, \gamma-\alpha\}$. Since G_{0} is near-3-transitive on Δ, therc exists $g \varepsilon G_{o}$ such that $\alpha_{G}=\alpha,(\gamma-\alpha) s=\gamma-\alpha$, and $\beta_{G}=\delta$. Then $(\gamma-\beta) g=(\gamma-\alpha) g+\alpha g-\beta g=\gamma-\delta$. Thus $\gamma-\delta \varepsilon \Delta$ and hence $\delta \varepsilon \Delta_{n} \Delta+\gamma$ for all $\delta \varepsilon \Delta$. Hence $\mu=k$ which, by Corollary 3, p. 149 of [10], is a contradiction to the primitivity of G. Thus $\mu=2$ as required.

It is not dificicult to classify all groups satisfying the hypotheses of Theorem 3.I.5 (without having the possibility of some group of large order as in (ix) of 1.3.2). They are given by cases (i), (ii), (vi) (for $p=2$ only) and (vii) of Theorem 1.3.2. We do not give a proof of this assertion now since it will follow later when we find all (*)-groups in which $\mu=2$.

Another subclass of (头)-froups is given by:

Theorem 3.1.6. Suppose G is a primitive rank $3(p, n)$ group in which G_{0} is 3 -transitive on the lines of a suborbit. Then $n \leq 2$ or $\lambda=p-2$.

Proof. If G is irrational, then $n \leq 2$ by Theorem 3.1.2. Suppose G is rational and $\lambda \neq p-2$. As in Theorem 3.1.4, there exist linearly indepencent α and β such that $\alpha-\beta \varepsilon \Delta$. Supiose there cxists γ belonging to \triangle but not to $\langle\alpha, \beta\rangle$. Since G_{0} is 3 -transitive on \triangle, there exists $g \varepsilon G_{0}$ such that $\alpha_{g}=a \alpha, \beta g=b \beta,(\alpha+\beta) g=c \gamma$, for some $a, b, c \varepsilon \operatorname{GF}(p)$. Eut $c \gamma=(\alpha+\beta) g=\alpha \mathfrak{g}+\beta \mathrm{g}=a \alpha+b \beta \quad \varepsilon\langle\alpha, \beta\rangle$ contradicting the choice of γ. Hence \triangle is contained in $\langle\alpha, \beta\rangle$. It follows from Proposition 23.7 of [22] that if G is primitive then the elements of Δ generate $V(n, p)$. Hence $n \leq 2$ and the theorem is proved.

Finally we prove a lemma about the intersection numbers of rational rank 3 (p, n) groups in general, which though very simple, serves a useful purpose in immediately showing that cortain sets of parameters (which satisfy the HigmanTamaschke conditions) cannot admit S-rings of the desired type.

Lemma 3.1.7. Let G be a rational rank 3 (p, n) Group with parameters (k, ℓ, λ, μ). If $p=2$, then λ and μ are both even. If $p \neq 2$, then λ is odd and μ is even.
proof. $\quad \lambda=\left|\Delta_{n} \Delta+\alpha\right|, \alpha \varepsilon \Delta$. Suppose $\beta \in \Delta_{\wedge} \Delta+\alpha$, $\beta \not \approx \underline{\alpha}$. Then since G is rational, $\alpha-\beta$ also belongs to $\Delta_{\wedge} \Delta+\alpha$. Because $\beta \notin \underline{\alpha}, \beta$ and $\alpha-\beta$ are distinct. Hence $\Delta \Lambda \Delta+\alpha$ contains $p-2$ points of $\underline{\alpha}$ and the remaining points occur in pairs. Hence λ is odd if p is odd, even if $p=2$. $\mu=\left|\Delta_{\wedge} \Delta_{+} \gamma\right| \gamma \gamma \Gamma$. If $\beta \varepsilon \Delta_{\wedge} \Delta+\gamma$, then $\gamma-\beta$ belongs to $\Delta_{\wedge} \Delta+\gamma$ and since $\beta, \gamma-\beta$ are distinct, the points of $\Delta \cap \Delta+\gamma$ occur in pairs. Thus μ is even for any prime p.

S3.2 Residual Strings and Extensions.
We saw in § 2 that corresponding to a rank $3(p, n)$ group G is an string $X=C\left(V, G_{0}\right)$ with the same parameters. We recall that if $\&$ has basis $0, \hat{\Delta}, \hat{\Gamma}$, where $V=0, \Delta u \Gamma$ then $k=|\Delta|, \ell=|\Gamma|, \lambda=\left|\Delta_{\wedge} \Delta+\alpha\right|$ for $\alpha \varepsilon \Delta$, and $\mu=\left|\Delta_{n} \Delta+\gamma\right|$ for $\gamma \varepsilon \Gamma$. The notion of a residual string \& of $\&$, which is well-defined only when $\&$ is rational and λ is as in 3.1.3, will be useful for two reasons: (1) as we shall see in $\S 4$, we can prove the uniqueness of an String with given parameters by proving (a) that the residual String ℓ_{1} is unique and (b) that' δ, has a unique extension (an String $\&$ is called an extension of \mathcal{S}_{1} if \mathcal{S}_{1} is the residual of \&); (2) we obtain further restrictions on the possible parameters of a (*)-group in the next theorem, in which also the residual is defined.

Thcorem j. a.I. Let G be a $(*)$-sroup with suborbits $0, \triangle$ and Γ, and let $\&$ be the corresponding transitivity module, regarded as an S-ring over $V=V(n, p) . \quad i \operatorname{ly} 3.1 .1$, we may assume ($0, \ldots, 0,1$) belongs to \triangle. Let
$\Delta_{1}=\left\{\left(a_{1}, \ldots, a_{n-1}\right) \varepsilon V(n-1, p):\left(a_{1}, \ldots, a_{n}\right) \varepsilon \Delta\right.$, some $\left.a_{n} \varepsilon \operatorname{GF}(p)\right\} \backslash\{0\}$. Let Γ_{1} be the set $V(n-1, p)-\left(\Delta_{1} \cup 0\right)$ and \mathcal{B}_{1} the S-module with basis $0, \hat{\triangle}_{1}, \hat{\Gamma}_{1}$. 'Then \hat{X}_{1} is either (i) a rank 2 S-ring over $V(n-1, p)\left(i f \Gamma_{1}\right.$ is empty) or (ii) a rank 3 S-ring over $V(n-1, p)$ with parameters $k_{1}=(k-p+1) /(r+1), \quad \ell_{1}=p^{n-1}-1-k_{1}$,
$\lambda_{1}=[\mu(p-r-1)+(r+1)(\lambda-2 p+2)] /(r+1)^{2}, \mu_{1}=\mu p /(r+1)^{2}$, where r is given by the value of λ obtained in Theorem 3.1.3. Ne call δ_{1} the residual S-ring of $\&$, and S an extension or 8_{1}.
proof. Suppose (i) is not true. By Theorem 2.1.6, it is sufficient to prove that λ_{1} and μ_{1} are well-defined; i.c. that $\left|\Delta_{1}, \Delta_{1} \alpha\right|$ is dependent only on whether α belonss to Δ_{1} or Γ_{1}. Define a map $\theta: \Delta,\left(\underline{0}, \ldots,(0, \perp) \rightarrow \Delta_{1}\right.$ by $\left(\left(a_{1}, \ldots, a_{n}\right)\right) \theta=\left(a_{1}, \ldots, a_{n-1}\right)$. From the definition or r in the proor of $3.1 . j\left(t a k i n t \alpha_{1}=\left(a_{1}, \ldots, a_{n}\right)\right.$, and $\left.\alpha_{2}=(0, \ldots, 0,1)\right)$ we get $\left|\left(a_{1}, \ldots, a_{n-1}\right) \theta^{-1}\right|=r+1$. Since (i) is not true there exists $\xi=\left(x_{1}, \ldots, x_{n-1}\right) \varepsilon \Gamma_{1}$. Ey definition of $\Delta_{1},\left(x_{1}, \ldots, x_{n-1}, z\right) \varepsilon \Gamma$ for all $z \varepsilon G F(p)$. Now $\mu_{1}=\left|\Delta_{1}, \Delta_{1}+\xi\right|=$ the number or ordered pairs $\left(\alpha_{1}, \beta_{1}\right)$ in $\Delta_{1} \times \Delta_{1}$ such that $\alpha_{1}+\beta_{1}=\xi$. Let $x=\left\{\left(x_{1}, \ldots, x_{n-1}, z\right)\right.$: $z \varepsilon \operatorname{GP}(p)\}$, a subsct of Γ, and $\operatorname{let} N=\{(\alpha, j) \varepsilon \Delta x \Delta: \alpha+\} \varepsilon x\}$.
 there are μ pairs $(\alpha, \beta) \varepsilon \Delta x \Delta$ with $\alpha+\beta=\left(x_{1}, \ldots, x_{n-1}, z\right)$. IEnce $|\mathrm{Sl}|=\mu \mathrm{p}$. On the other hand, for cach of the μ_{1} pairs $(\alpha \theta, \beta \theta) \varepsilon \Delta_{1 \times} \Delta_{1}$ satisfying $\alpha \theta+\beta \theta=\xi$, the $(r+1)^{2}$ pairs in $(\alpha \Theta) \theta^{-1} \times(\beta \dot{\theta}) \theta^{-1}$ are all in r. Sinco every pair $(\alpha, \vec{\rho})$ in M lies in $(\alpha \theta) \theta^{-1} \times\left(j, \theta^{-1}\right.$, we get $|N|=(r+1)^{2} \mu_{1} . \quad$ Thus $\mu_{1}=\mu p /(r+1)^{2}$.

We now find λ_{1}. Let $\eta=\left(y_{1}, \ldots, y_{n-1}\right) \cdot \varepsilon \Delta_{1}$
and definc $Y=\left\{\left(y_{1}, \ldots, y_{n-1}, z\right): z \quad \varepsilon G H(p)\right\}$;
$N=\{(\alpha, \exists) \varepsilon \Delta \times \Delta: \alpha+\beta \in Y\}$. $\because \in$ calculate $|N|$ in two dificerent ways. Since $(0, \ldots, O, 1) \varepsilon \Delta$, there are $r+1$ elements z of $\operatorname{GF}(p)$ such that $\left(y_{1}, \ldots, y_{n-1}, z\right) \varepsilon \Delta$. Hence $|N|=(r+1) \lambda+(p-r-1) \mu$. On the other hand, ror each of the λ_{1} pairs $(\alpha \theta, \beta \theta)$ in $\Delta_{1}, \Delta_{1} \operatorname{satisfying} \alpha \theta+\beta \theta=\eta$, the $(r+1)^{2}$ pairs in $(\alpha \theta) \theta^{-1} \times(\beta \theta) \theta^{-1}$ are all in N. The only other pairs in N are the $2(r+1)(p-1)$ pairs (α, β) in which α or β belongs to ($0, \ldots, 0,1$). Thus $|N|=\lambda_{1}(r+1)^{2}+2(r+1)(p-1)$ and hence $\lambda_{1}=(\mu(p-r-1)+$ $+(r+1)(\lambda-2(r-1)) /(r+1)^{2}$. (As a check, we can deduce this value of λ_{1}, given $\mu_{1}=\mu_{p} /(r+1)^{2}$, from the equation $\left.\mu_{1} \ell_{1}=k_{1}\left(k_{1}-1-\lambda_{1}\right)\right) . \quad \mu_{1}$ and λ_{1} are well-defincd since they have been determined independently of the choice of ξ in Γ, and η in $\Delta 1$ respectively.

Combining this theorem with some carlier results, we get further restrictions on λ.

Thcorem 3.2.2. Suppose G is a (米)-group of derree p^{n}. Then one of the following holds: (i) G is imprimitive (ii) $\lambda=p-2$ or (iii) $n=2$.

Proof. Let $\mathcal{B}=C\left(V, G_{0}\right)$ and let δ_{1} be the residual of $\&$. Casc 1: \mathcal{X}_{1} has rank 3. By 3.2.1, $(r+1)^{2}$ divicics $\mu \mathrm{p}$, for μ_{1} is an integer. Suppose G is primitive and $r \neq 0$. Tinen by 3.1.3, r+l divides $p-1 \ldots(a)$, and hence $r+1$ does not divide p. Thus $(r+1)^{2}$ divides μ. Since λ_{1} is an integer, 3.2.1 and (a) imply that $r+1$ divides $\lambda-2(p-1)$. Honce $r+1$ divides $\lambda=r(m-1)+p-2$, where $m=k / p-1, \ldots$ (b). Now \triangleq is the union of ($0, \ldots, 0,1$) with disjoint sets $(\underline{\alpha}) e^{-1}, \underline{\alpha} \varepsilon \triangleq_{1}$, cach containing $r+1$ elements $(\theta$ is as in the proof of 3.e.l). Hence r+l divides m-1. From this and (b), we infer that $r+1$ divides $p-2 \ldots$ (\quad). Lut (a) and (c) sive a contradiction to $r \neq 0$. Thus $r=0$ and $\lambda=p-2$ if G is primitive.

Casc 2: $\quad S_{1}$ is a rank 2 s-ring; i.e. $\Delta_{1}=V(n-1, p) \backslash a$, and $k_{1}=p^{n-1}-1$. Dy 3.2.1, $k=\left(p^{n-1}-1\right)(r+1)+p-1$. Thus $m=\left(p^{n-1}-1\right)(r+1) /(p-1)+1 \quad \ldots(e)$. $\tilde{\sim}=p^{n}-1-k=\left(p^{n-1}-1\right)(p-r-1)$. By 3.1.3, $\lambda=r(m-1)+p-2$. μ can now be computed from the formula $\mu \ell=k(k-1-\lambda)$, and it turns out that $\mu=(r+1)$ m. Substituting the above values of parameters k, λ, λ, μ in $' d=(\lambda-\mu)^{2}+4(k-\mu)^{\prime}$ gives $d=(m+p-2-r)^{2}$. Using (e) we obtain

$$
(p-1)^{2} d=p^{2}\left(p^{n-2} r+p^{n-2}+p-r-2\right)^{2} \quad \ldots(r)
$$

By E.2.9, d is a p-power. If $n>2,(f)$ implies that $p^{n-2} r+p^{n-2}+p-r-2$ is divisible by p. Since $r \leq p-1$, we must have $r=p-2$. But then $\mu=k$, which implies that G is imprimitive. If $n=1$, then $r+1=p$; otherwisc the right-hand side of (f) is not an integer. This again leads only to imprimitive sroups with $\lambda=k-1$. we are left with the possibility that $n=2$. In that case
$(p-1)^{2} d=p^{2}(p-1)^{2}$ and hence $d=p^{2}$. This gives no restriction on the choice of $m=r+2$, and in our next theorem, which classifies all rational rank 3 S-rings over V(2,p), we will sec that for any m with $1 \leq m \leq \frac{p+1}{2}$, there is a rank 3 S-ring for which the residual is defincd.

We will find all (*)-groups with $n=2$ in $\$ 4.1$ by appealing to a theorem of Dickson (p. 213 of [15]) which classifies all subgroups of lisL($2, \mathrm{p}$).

The following is an immediate corollary to 3.2 .1 and 3.2.2.

Corollary 3.2.3. Suppose G is a primitive ($*$)-group of degree p^{n} and \& the corresponding $S-r i n g$. Then, if $n \geqslant 2$, the resiciual s-ring has parameters $\left(k-p+1, p^{n-1}-p-k-2\right.$, $\mu p-\mu-p, \mu p)$.

Theorem 3.2.4. For any integer m with $1 \leq m \leq(p+1) / 2$, there is a rational rank 3 S-ring over $V=V(2, p)$ with paramoters

$$
(k, l, \lambda, \mu)=\left(m(p-1),(p+1-m)(p-1), p+m^{2}-3 m, m(m-1)\right)
$$

Moreover, any rational rank 3 ziring over V has these
parameters for some m.

Proof. The result will follow if we show that any partition of the lines of V into two sets \triangle and $!$ gives an $S-r i n g$, with simple basis quantities $0, \hat{\Delta}, \hat{\Gamma}$, having the above parameters. For $m=|\triangleq|=1$ this is trivially verified. Suppose $m \geq 2$ and let \triangleq be any set of m lines of V. We must show that $\lambda=|\Delta \wedge \Delta+\delta|$ is independent of δ in Δ. Ne may choose a basis $\{\alpha, \beta\}$ of V such that

$$
\Delta=\left\{\underline{\alpha}, \underline{\beta}, \underline{\alpha}+t_{1} \beta, \ldots, \underline{\alpha+}, \underline{\beta}\right\}
$$

and

$$
\lambda=|\Delta \wedge \Delta+\alpha|
$$

Clearly

$$
\left|\Delta_{\wedge}(\underline{\alpha}+\alpha)\right|=p-2
$$

while

$$
\left|\Delta_{\wedge}(\underline{\beta}+\alpha)\right|=r=m-2
$$

It is easy to show that, for each $i=1, \ldots, m-2$, the vector $a\left(\alpha+t_{i} \beta\right)+\alpha(a \varepsilon G F(p) \backslash 0)$ belongs to Δ ir and only if $a=-1$ or $a=t_{j} /\left(t_{i}-t_{j}\right)$ for some $j \varepsilon\{1, \ldots, i-1, i+1, \ldots, m-2\}$. Hence

$$
\lambda=p-2+m-2+(m-2)^{2}=p+m^{2}-3 m
$$

In a similar way we can show that

$$
\mu=m(m-1)
$$

Hence, by $2.1: 6$, the S-module with basis $0, \hat{\Delta}$ and $\hat{\Gamma}$ $(\Gamma=V(2, p) \backslash(0 \vee \Delta))$ is an $S-r i n g$.

33.3 3ossible parametcrs of (*)-sroups.

We now have scveral conditions which must be satisried by the parameters of a (\because)-group. For convenience we collect them together below, adapting them to get ecquations (A) ... (F). The rest of the scction will be devotcd to the task of finding all integer solutions of thése cquations. Suppose G is a primitive (*)-group of degrec p^{n} and parameters $k, l, \lambda, \mu, d, f_{2}, f_{j}$ defined as in $\$$ I.2. Then

$$
\mathrm{p}^{\mathrm{n}}=k+l+1 \quad \ldots(\mathrm{~A})
$$

By 2.2.8 and 2.2.9, there exists a positive integer t such that
and

$$
\begin{array}{cc}
p^{2 t}=p^{n} k \ell / f_{2} f_{3} & \ldots(B) \\
p^{2 t}=(\lambda-\mu)^{2}+4(k-\mu) & \ldots(C) .
\end{array}
$$

By 1.2.5, $\mu \ell=k(k-l-\lambda)$, which becomes, using (A):

$$
\mu\left(p^{n}-k-1\right)=k(k-1-\lambda) \quad \ldots(D) .
$$

Eliminating k from (C) and (D) we can rearrange ferms to get:

$$
\begin{align*}
{\left[\mu^{2}+2 \mu\left(-p^{t}-\lambda-3\right)\right.} & \left.+\left(\lambda+p^{t}\right)\left(\lambda+2+p^{t}\right)\right]\left[\mu^{2}+2 \mu\left(p^{t}-\lambda-3\right)\right. \\
& \left.+\left(\lambda-p^{t}\right)\left(\lambda+2-p^{t}\right)\right]=16 \mu\left(p^{n}-p^{2 t}\right) \tag{E}
\end{align*}
$$

By 3.2.2,

$$
\begin{equation*}
\lambda=\mathrm{p}-2 \text { or } \mathrm{n}>2 \tag{F}
\end{equation*}
$$

For $\lambda=p-2,(E)$ becomes:

$$
\begin{aligned}
{\left[\mu^{2}+2 \mu\left(-p^{t}-p-1\right)+\right.} & \left.\left(p-2+p^{t}\right)\left(p+p^{t}\right)\right]\left[\mu^{2}+2 \mu\left(p^{t}-p-1\right)+\right. \\
& \left.\left(p-2-p^{t}\right)\left(p-p^{t}\right)\right]=16 \mu\left(p^{n}-p^{2 t}\right) \quad \ldots\left(E^{\prime}\right) .
\end{aligned}
$$

Lemma 3.3.1. If $\lambda=p-2, p^{2 t-1}$ divides μp^{n}.

Proof. The rosult is clear for $2 t-1 \leq n$, so we suppose $2 t-1>n$. Then, by (L$), \mathrm{p}^{2 \mathrm{t}-\mathrm{n}}$ divides $\mathrm{k} \ell$, and since
$k+2+1=p^{n}, p^{2 t-n}$ divides either k or ℓ.
(i) If $p^{2 t-n}$ divides k, then by (D) $p^{2 t-n}$ divides μ and hence $\mathrm{p}^{2 t}$ divides $\mu_{\mathrm{p}}{ }^{n}$.
(ii) If $p^{2 t-n}$ divides ℓ, then by (A) $p^{2 t-n}$ divides $p^{n}-k-1$ and so by (D)

$$
\mathrm{p}^{2 t-n} \text { divides } k-1-\lambda=k-p+1
$$

Hence

$$
p^{2 t-n} \text { divides }\left(p^{n}-k-1\right)+(k-p+1)=p^{n}-p
$$

Hence $2 t-n \leq 1$ and $p^{2 t-1}$ divides p^{n}.
In both cases (i) and (ii) we deduce that $p^{2 t-1}$ divides $\mu \mathrm{p}^{\mathrm{n}}$.

Lemma 3.3.2. p^{t} divides $\mu^{2}-2(p+1) \mu+p(p-2)$.
Proof. Dy 3.3.1, $p^{2 t-1}$ divides the left-hand side of (E'). Hence p^{t} divides at least one or the two factors in this expression. Whichever this factor is, the result follows.

We let y be that integer given by:

$$
\mu^{2}-2(p+1) \mu+p(p-2)=y p^{t} \quad \ldots(G)
$$

(i') and (G) give

$$
\left(y-2 \mu+2 p-2+p^{t}\right)\left(y+2 \mu-2 n+2+p^{t}\right)=16 \mu\left(p^{12-2 t}-1\right) \ldots(H) .
$$

Lemma 3.3.3. If $\lambda=p-2$, then (i) $\mu \leq k /(p-1)$,
(ii) $\mu \leq p^{t}-p+2$.

Proof. (i) $\mu=|\Delta \wedge \Delta+\gamma|$ where $\gamma \varepsilon \Gamma$. Suppose $\alpha \varepsilon \Delta_{\wedge} \Delta+\gamma$. Then $\alpha=\beta+\gamma$, some $\beta \varepsilon \Delta$. Suppose also that
$a \alpha \in \Delta_{\wedge} \Delta+\gamma$ for some $1 \neq a \varepsilon \operatorname{GF}(p)-0 . \quad$ Then $a \alpha=\delta+\gamma$, some $\delta \varepsilon \Delta$. Hence $(a-1) \alpha=\delta-\beta$ belongs to $\Delta \wedge \Delta+\delta$. Lut since $\lambda=p-2$,

$$
\Delta, \Delta+S=\{2 S, \ldots,(p-1) S\}
$$

and so α is a multiple of δ. Hence $\gamma=a \alpha-\delta$ is also a multiple of δ, giving a contradiction to $\gamma \varepsilon \Gamma$. We have thus shown that at most one point of each line of Δ lies in $\Delta_{n} \Delta+\gamma, \gamma \in \Gamma$. i.c. $\mu \leq k /(p-1)$. (ii) From (C) and (F),

$$
p^{2 t}=(p-2-\mu)^{2}+4(k-\mu)
$$

Using (i),

$$
p^{2 t} \geq(p-2-\mu)^{2}+4(p-2) \mu=(p-2+\mu)^{2} .
$$

Hence $\mathrm{p}^{\mathrm{t}} \geq \mathrm{p}-2+\mu$ and (ii) is proved.

Note. The left-hand side of (G) factorizes into lincar factors (in μ) with integer coefficients if and only if $4 \mathrm{p}+1$ is a square, which is truc if and only if $\mathrm{p}=2$. This seems to be the reason why the case $p=2$ is casier to deal with, and our next theorem shows that we can find all possible parameters of (*)-groups when $p=2$.

Theorem 3.3.4. Let G be a primitive (*)-group of degrec 2^{n}. Then the parameters of G are (5,10,0,2).

Proof. By 3.3.2, 2^{t} divides $\mu(\mu-6)$. Eut by $3.3 .3, \mu \leq 2^{t}$. Hence

$$
\mu=2^{t}, 2^{t-1}, 2^{t-1}+6 \text { or } 6 .
$$

If $n=2, k=1$ and hence G is imprimitive．Hence $n>2$ and $\lambda=0$ by 3．2．2．（E＇）becomes：

$$
\left.\begin{array}{rl}
{\left[\mu^{2}+2 \mu\left(-2^{t}-3\right)+2^{t}\left(2+2^{t}\right)\right]\left[\mu^{2}\right.} & \left.+2 \mu\left(2^{t}-3\right)-2^{t}\left(2-2^{t}\right)\right]= \\
& 16 \mu\left(2^{n}-2^{2 t}\right) \ldots(E ⿱ 一 ⿻ 口 ⿰ 丨 丨 土 刂
\end{array}\right)
$$

Case 1．$\mu=2^{t}$ ．By（C）$\mu=k$ ，which sives a contradiction to G primitive by Corollary 3，p．l49 of［10］．
Case 2．$\mu=2^{t-1}$ ．（E＂）sives

$$
\left(2^{t-2}-1\right)\left(7.2^{t-2}-5\right)=8\left(2^{n}-2^{2 t}\right) .
$$

The only possibility is that $t=2$ which yields $n=4, \mu=2$ ， $k=5$ and $\ell=10$ ．
Case 3：$\mu=2^{t-1}+6$（i＇l）gives

$$
2^{n}\left(2^{t-2}+3\right)=9\left(2^{4 t-9}-2^{3 t-6}+5 \cdot 2^{2 t-5}\right) .
$$

If $t \geq 3$ ，comparing the highest power of 2 dividing each side，$n=2 t-5$ ．Then

$$
2^{t-2}+3=9\left(2^{2 t-4}-2^{t-1}\right)+5
$$

Clearly the right－hand side is greater than the left for $t>3$ ， while $t=3$ leads to $\mu=10, k=1$ ，contradicting $\mu \leq k$ ． lutting $t=1$ or 2 gives an imncdiate contradiction．

Case 4．$\mu=6 . \quad$（E＇1）gives

$$
3 \cdot 2^{n-2 t+3}=2^{2 t-2}+1
$$

Clearly we can have only $n=2 t-3$ ，which implies $2 t-2=1$ ， contradicting the fact that t is an integer．This completes the proof．

It often hapisens that $2 t=n$ for rank $3(p, n)$ groups
（it follows from（ E ）that $2 t=n$ if and only if $\{k, l\}=\left\{f_{2}, f_{j}\right\}$ ，
bearing in mind that $k+\ell=f_{2}+f_{3}$). We find that for (*) $-g r o u p s$ in which $n=2 t$ ar $n=2 t+1$ our equations are easier to manipulate:

Theorem 3.3.5. A necessary condition for the existence of a primitive ($*$) -group with $p \neq 2, \lambda=p-2$ and with (i) $n=2 t$ or (ii) $n=2 t+1$ is respectively that (i) $4 p^{t}+4 p+1$ is a square or $t=1$, or (ii) $4 p^{t+1}+4 p+1$ is a square.

Proof. Consider first a polynomial in H of the following form.

$$
P(\mu)=\left(\mu^{2}+a \mu+b\right)\left(\mu^{2}+c \mu+d\right)-c \mu
$$

If $\mu(\mu)$ is the product $\left(\mu^{2}+x \mu+b\right)\left(\mu^{2}+y \mu+d\right)$ of two scond-degree polynomials then, comparing coefficients of powers of μ,
(1) $a+c=x+y$,
(2) $b c+a d-e=b y+d x$,
(3) ac $=x y$.

Solving (1) and (2) for x and y, and using (3), it is found that $P(\mu)$ is such a product if and only if $e=0$ or $e=(c-a)(b-d) . \quad$ Taking $\rho(\mu)$ to be the left hand side minus the right hand side of equation (X) gives the condition

$$
I G\left(p^{n}-p^{2 t}\right)=0 \quad \text { or } \quad 16\left(p^{n}-p^{2 t}\right)=16 p^{2 t}(\lambda+1)
$$

With $\lambda=p-2$, the second condition is equivalent to $n=2 t+1$. Thus $n=2 t$ or $2 t+1$ is a nccessary and sufficient condition for (E^{\prime}) to have the form $i(\mu) R(\mu)=0$ where Q and R are second-degree polynomials. If $n=2 t,\left(氵^{\prime}\right)$ becomes:

$$
\begin{aligned}
& \mu^{2}+2 \mu\left(-p^{t}-p-1\right)+\left(p-2+p^{t}\right)\left(p+p^{t}\right)=0 \\
& \mu^{2}+2 \mu\left(p^{t}-p-1\right)+\left(p-2-p^{t}\right)\left(p-p^{t}\right)=0
\end{aligned}
$$

If $n=2 t+1$, then

$$
\begin{aligned}
& \mu^{2}+2 \mu\left(p^{t}-p-1\right)+\left(p-2+p^{t}\right)\left(p+p^{t}\right)=0 \\
& \mu^{2}+2 \mu\left(-p^{t}-p-1\right)+\left(p-2-p^{t}\right)\left(p-p^{t}\right)=0 .
\end{aligned}
$$

Solving these equations, if $n=2 t$ then

$$
\mu=p+1+p^{t} \pm\left(4_{x} p^{t}+4 p+1\right)^{1 / 2}
$$

or

$$
\mu=p+1-p^{t} \pm\left(-4 p^{t}+4 p+1\right)^{1 / 2},
$$

while if $n=2 t+1$ then,

$$
\begin{aligned}
& \mu=p+1-p^{t} \pm\left(-4 p^{t+1}+4 p+1\right)^{1 / 2} \quad \text { or } \\
& \mu=p+1+p^{t} \pm\left(4 p^{t+1}+4 p+1\right)^{1 / 2}
\end{aligned}
$$

Lemma 3.3.3 tells us which signs we must take. If $n=2 t$, $\mu=p+1+p^{t}-\left(4 p^{t}+4 p+1\right)^{1 / 2}$
or $\mu=2$ and $t=1$ (we discount $\mu=0$ since G is primitive). If $n=2 t+1$,

$$
\mu=p+1+p^{t}-\left(4 p^{t+1}+4 p+1\right)^{1 / 2} .
$$

Corollary 3.3.6. Let G be a primitive (*)-group with $p>2$, $\lambda=\mathrm{p}-2$ and either (i) $\mathrm{n}=2 \mathrm{t}$ or (ii) $\mathrm{n}=2 t+1$. Then the parameters (k, ℓ, λ, μ) of G are respectively:
(i) $\left(1 / 2\left(p^{t}+1\right)(x-3), \frac{1}{2}\left(p^{t}+1\right)\left(2 p^{t}-x+1\right), p-2, p+1+p^{t}-x\right)$, where $x^{2}=4 p^{t}+4 p+1$, or
(ii) $\left(\frac{1}{2}\left[p^{t}(x-2 p-1)+x-3\right], p^{2 t+1}-1-1, p-2, p+1+p^{t}-x\right)$, where $x^{2}=4 p^{t+1}+4 p+1$.

Proof. The values of μ were found in 3.3.5. is is obtained from (C) and then ℓ from (A).

Note. It can be shown that the sets of parameters of 3.3.6 satisfy all the numerical conditions we have found. Thus, for $n=2 t(t>1)$ or $n=2 t+1$, the condition of 3.3.5 that $4 p^{s}+4 p+1$ is a square, $s=t$ or $t+1$, is 'sufficient' in the sense that our present knowledge will yield no stronger necessary condition. Indecd we shall see that for all known cases when $4^{5}+4 p+1$ is a square, a rank 3 S-ring exists with the appropriate parameters.

We now turn our attention to the question: when is $4 p^{5}+4 p+1$ equal to x^{2}, for some integer x ? Ve observe that there are solutions $s=2, x=2 p+1$ for all p and that t cannot be even and greater than 2 , for if so,

$$
\left(2 p^{5 / 2}\right)^{2}<4 p^{5}+4 p+1<\left(2 p^{5 / 2}+1\right)^{2}
$$

Unfortunately, the general problem seems to be intractible by known number-theoretic means. It is interesting that a problem of exactly the same nature was encountered by Nontague [16] in his search for rank 3 extensions of $\operatorname{PSL}(n, q)$. His condition was that

$$
p^{s}+p^{s-1}+\ldots+p+1=x^{2}
$$

for some integer x. He used a computer to show that for $p \leq 12,000$ and $1+p+\ldots+p^{s} \leq 10^{9}$, the only solutions are $(p, s)=(3,4)$ and $(7,3)$. Without resorting to such means, we can get a similar result by finding what x has to be modulo p^{s}. In our case, for example we get:

Lemma 3.3.7. The only inteser solutions (p, s, x) of

$$
4 p^{s}+4 p+1=x^{2}
$$

with p an odd prime and $s \leq 10$ are $(p, 2, \pm(2 p+1)$) for any p and ($3,3, \pm 11$).

Proof. Case $s=1: \quad \mathcal{E}_{\mathrm{p}+1}=\mathrm{x}^{2}$ and so $x= \pm 1$ modulo p. i.e. $x= \pm\left(a_{p+1}\right)$, some integer a, and hence $a^{2} p+2 a=8$ which is easily seen to have no solution with p prime.

Case $s=2: \quad x= \pm(2 p+1)$ gives two solutions for every p. There cannot be more than 2 solutions for a given p, so we are done in this case.

Case $s=3:$

$$
\begin{equation*}
x^{2}=4 p^{3}+4 p+1 \tag{1}
\end{equation*}
$$

$x= \pm(a p+1)$ for some integer a. Equating coefficients of p in (1), $a \equiv 2$ modulo p. Hence

$$
x= \pm\left(b p^{2}+2 p+1\right)
$$

some integer b. Equating coefficients of p^{2} in (l) gives $b=-2$ modulo p. Hence

$$
x= \pm\left(c p^{3}-2 p^{2}+2 p+1\right)
$$

Equating coefficients of p^{3} in (1) gives $c=4$ modulo p. We see that x^{2} is greater than $4 p^{3}+4 p+1$ unless $(p, c)=(3,1)$, which yiclds the solutions

$$
(p, s, x)=(3,3, \pm 11) .
$$

As we remarked earlier, we need consider only odd s for $s>2$.

Case $s=5:$ As for $s=3$,

$$
x= \pm\left(a p^{5}-10 p^{4}+4 p^{3}-2 p^{2}+2 p+1\right)
$$

where $a=28$ modulo p. It is easy to sce that x^{2} is greater than $4 p^{5}+4 p+1$ for any such a and p.

Cases $s=7$ and $s=9$ are eliminated in similar fashion.

Corollary 3.3.8. Let G be a primitive (\because)-group with $\lambda=p-2$ and either $n=2 t$ or $n=2 t+1$. Then the degree p^{n} of G is p^{2} (any odd prime p), $p^{4^{4}}$ (any prime p), 3^{5} or 3^{6}, or $n \geq 21$. The respective sets of parameters are as in cases (iii), (vi), (vii), (viii) and (ix) of Theorem l.3.2.

Proof. (a) $\mathrm{p}>2$. (i) $\mathrm{n}=2 \mathrm{t}$. If $\mathrm{x}^{2}=4 \mathrm{p}^{\mathrm{t}}+4 \mathrm{p}+1$, for an integer x, then by 3.3.7,

$$
(p, t, x)=(p, 2,2 p+1) \text { or }(3,3,11),
$$

(we take the positive values of x since, by 3.3.6, x must be greater than 3 for k to be positive). (ii) $n=2 t+1$. If $x^{2}=4 p^{t+1}+4 p+1$, for an integer x, then by 3.3.7,

$$
(p, t, x)=(p, 1,2 p+1) \text { or }(3,2,11)
$$

Lat by 3.3 .6 the former gives $\mu=0$, and since G is primitive we discard this. For the latter solution, 3.3 .6 gives the required parameters with $\mathrm{p}^{\mathrm{n}}=3^{5}$.
(b) $\mathrm{p}=2$. By 3.3.4 we get the $\mathrm{n}=4$ case only with parameters as required.

We now return to the general case (n not necessarily $2 t$ or $2 t+1$) and show that for low t we get no further (*)-groups. We need the following lemma.

Lemma 3.3.9. In a (*)-group, with $p>2, \mathrm{n}$ is greater than or equal to $2 t-2$.

Proof. This is immediate from 3.3.1 and 3.3.2, p being the highest power of p dividing μ.

Thcore: 3.3.10. Sup;ose G is $a(*)$-group with $\lambda=p-2$. Then if $n \leq 12$ the only possible sets of parameters are those siven by 3.3.8.

Proof. By 3.3.4 it is surficient to consider $p>2$ and by 3.3.9 to considicr only $t \leq 7$.

Given t, our method is to find μ modulö ${ }^{t}$ by means of Lemma 3.3.2. Lemma 3.3.3 then gives the possible values of μ. It is then not difficult to check whether the resulting parameters fulfil conditions (A)...(F). Thus we have an alcorithm for finding possible parameters with given n (or t). We have worked this through for $t \leq 7$, though we give details up to only $t=5$, which amply demonstrates our method.

Dy 3.3.2,

$$
\mu^{2}-2(p+1) \mu+p(p-2)=0 \operatorname{modulo} p^{t}
$$

Thus $\mu=0$ or 2 modulo p. We consider the two cases separately.

Case_1: $\mu=2$ modulo p. The following table gives possible values of μ obtained from the above congruence.

t	$\frac{\mu\left(\operatorname{modulo} p^{t}\right)}{1}$	$a, a=2 \bmod p$
2	$a p+2, a=3 \bmod p$	0 if $p=3,3$ if $p>3$
3	$a p^{2}+3 p+2, a=-2 \bmod p$	$p-2$
4	$a p^{3}-2 p^{2}+3 p+2, a=4 \bmod p$	1 if $p=3,4$ if $p>3$
5	$a p^{4}+4 p^{3}-2 p^{2}+3 p+2, a=-10 \bmod p$	-1 if $p=3$,
		0 if $p=5,4$ if $p=7$
		$p-10$ if $p>7$.

הe now find which of these values of μ lead to parameters satisfying our conditions.
$\mathrm{t}=1:$ By (C$), \mathrm{k}=2(\mathrm{p}-\mathrm{l})$ and hence

$$
(k, \ell, \lambda, \mu)=\left(2(p-1),(p-1)^{2}, p-2,2\right) .
$$

$t=2:$ If $p=3$ and $\mu=2$, thon by (C), $k=22$ which gives $(1,2, \lambda, \mu)=(22,220,1,2)$.

If p is prime >3, then $\mu=3 p+2$, which, being odd, we discard by Lemma 3.1.7.
$t=3: \quad \mu=p^{4}-2 p^{3}+3 p+2$.
irom (G) wo get

$$
y=p^{3}-4 p^{2}+8 p-6
$$

(II) becomes

$$
(p-3)\left(p^{3}-2 p^{2}+3 p\right)=\mu\left(p^{n-6}-1\right)
$$

Clearly the only possibility is $p=3, n=6$. This gives

$$
(1, \ell, \lambda, \mu)=(112,616,1,20) .
$$

$t=4:$ If $p=3$, we again get $\mu=20$. From (C) , $k=1570$. rrom

$$
\mu \ell=k(k-1-\lambda),
$$

$\ell=121088 . \quad$ Hence

$$
k+h+1=124659^{\prime}=3^{8} \cdot 19 \neq 3^{n} \text {, any } n .
$$

If $p>3, \mu$ is odd and the case is dismissed as for $t=2$.
$t=5: \mu$ is odd in $p=5$ or 7. Suppose $p=3$. As in the $\mathrm{t}=4$ case we get $\mu=20, \mathrm{k}=14692, \mathcal{L}=10805967$ and hence

$$
k+l+1=3^{9} .61 \neq 3^{n}, \text { any } n .
$$

For $p>7$ we get a contradiction by proceeding as in the $t=3$ casc.

Cases $t=6$ and 7 can be resolved in a similur way,
und wo could continue indefinely in this way.

Case 2: $\quad \mu=0$ modulo p. Since the method is exactly the same as in Case 1 , we omit the details, mercly pointing out that for $t \leq 7$, only $t=2$ yiclds possible parameters, these being as in case (vi) of 1.3.2, with $\mu=p^{2}-p$.

G 4. CLASSIFTCATION OF (只)-GROUPS.

3 4.0 General hemarks; urthogonal Groups.

In $\$ 3$ we showed that a primitive (*)-group has degrec $p^{2}, p^{4}, 3^{5}, 3^{6}$, or p^{n} with $n>12$. In S^{4} we will complete the proof of our main theorem, 1.3 .2 , by finding all primitive ($*$)-groups having parameters as given by Theorems 3.2.4 and 3.3.10. By Theorem 3.2.2 either $\lambda=p-2$ or $n=2$, and these two cases require different treatments. In 54.1 we find (*)-groups of derree p^{2}, and in $4.2,4.3$ and 4.4 those of degree $p^{4}, 3^{5}$ and 3^{6} respectively.

For each of the last three degrees our method will
follow the same pattern. We will first prove the existence and uniqueness of an S-ring with the given parameters by
(1) proving the existence and uniqueness of the residual s-ring $\&_{1}$,
(2) constructing an extension $\&$ in a unique way. The final step is
(3) to find the automorphisin group Aut 8 (defined in (3 2.3) of 8 .

Then the semidirect product $[V]$ Aut. 8 is a (*)-group if Aut \& has two orbits on $V-0$ and is doubly-transitive on the lines of one of them. It turns out that these conditions are fulfilled except for degree 3^{6} and even then Aut $\&$ is a group of some interest.

Ve now look at steps 1 and 2 more closcly, outlining Our method of proof. We denote by $A(p), B$, and C those parameters, given by 3.3 .10 , of (*)-groups of degree p^{4}, 3^{5} and 3^{6} respectively. The residual S-ring has parameters given by Corollary 3.2.3. Denoting these parameters by $A_{1}(p), B_{1}$ and C_{1} respectively we list below, the parameters of s-rings (corresponding to (K)-groups) and their residuals.

	degree	k	λ	μ
	$p^{4}(p)$	$\left(p^{2}+1\right)(p-1)$	$p-2$	$p(p-1)$
$A_{1}(p)$	p^{3}	$p^{2}(p-1)$	$p^{2}(p-2)$	$p^{2}(p-1)$
B	3^{5}	11.2	1	2
B_{1}	3^{4}	10.2	1	6
C	3^{6}	56.2	1	20
C_{1}	3^{5}	55.2	37	60

In $\{4.2$ we will sec that there is a unique s-ring having parameters $A_{1}(p)$ and that an cxtension $\&$ (assuming it admits a suitablc automorphism group) with parameters A(p) is unique. We show in $\$ 4.3$ that $A(3)$ admits a unique s-ring without any assumption about its automorphism sroup. But $B_{1}=A(3)$ and hence the residual in the p^{4} case is also unique. It follows from 1.2.6 and 2.2.6 that an S-ring with parameters C_{1} is tho dual to an S-ring with parameters B, and hence is unique. In $S l_{1} L_{1}$ we show that the extension is unique under certain assumptions about its automorphism sroup.

Orthoconal Grouns.
Since orthogonal groups over finite fields will arisc in 54.2 and in 54.4 , we five a bricf description of them herc. The discussion will concern only ficlds of charactcristic not equal to 2 .

Let $V=V(n, F)$ denote a vector space of dimension n over the field F. We call a map Q from $V x V$ into F a quadratic form over V if
(i) $(\alpha, \beta) Q=(\beta, \alpha) Q$ for $\alpha, \beta \varepsilon V$.
(ii) $(a \alpha, \beta) Q=a(\alpha, \beta) Q$ for $a \varepsilon F, \alpha, \beta \varepsilon V$.
(iii) $(\alpha+\beta, \gamma) Q=(\alpha, \gamma) Q+(\beta, \gamma) Q$ for $\alpha, \beta, \gamma \in V$.

We say that an element g of $G L(n, F)$ is an isometry of V with respect to Q if

$$
\left(\alpha_{g}, \beta g\right) Q=(x, \beta) Q
$$

for all α and $\beta \varepsilon V$. The group of isometries of V with respect to Q is called the orthoconal group of Q. If $\alpha_{1}, \ldots, \alpha_{n}$ is a basis of V then the matrix A, whose i, j th cocfficient is $\left(\alpha_{i}, \alpha_{j}\right) Q$, is called the matrix of Q with respect to this basis. Q is said to be non-singular if A is. If we change basis via $\beta_{j}=\Sigma s_{i j} \alpha_{i}$, then the matrix of Q with respect to $\beta_{1}, \ldots, \beta_{n}$ is $S ' A S$, where S is the nonsingular matrix with coefficients $s_{i j}$ •

Theorem 4.0.1. Let $V=V(2 n, p)$ and suppose Q is a nonsingular quadratic form over V. Then a basis may be chosen for V such that Q has matrix
$A_{1}=\left[\begin{array}{lllllll}0 & 1 & & & & & \\ 1 & 0 & & & & & \\ & & \ddots & & & & \\ & & & 0 & 1 & & \\ & & & 0 & & \\ & & & & & 0 & 1 \\ & & & & & 1 & 0\end{array}\right] \quad$ or $\quad A_{2}=\left[\begin{array}{lllllll}0 & 1 & & & & & \\ 1 & 0 & & & & & \\ 1 & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & 1 & & \\ & & & & & 1 & \\ & & & & & 0 & -9\end{array}\right]$
where g is a non-square. The two forms are not equivalent; we call them forms of type 1 and 2 respectively, and the corresponding orthogonal groups are denoted by $0^{+}(2 n, p)$ and $0^{-}(2 n, p)$.

Given any quadratic form with matrix B there is a nonsingular matrix S such that $B=S$ 'AS where A is one of the matrices A_{1} and A_{2} of 4.0.1. Hence
$\operatorname{det} B=\operatorname{det} \lambda(\operatorname{det} S)^{2}$. Wut $\operatorname{det} A_{1}=(-1)^{n}$ while det $A_{2}=S \cdot(-1)^{n}$, and so a quadratic forminis of type 1 or 2 according as the determinant of its matrix is a square or a non-squarc.
:Ie shall be mainly concorned with the lattor of the two types. We state some facts about $0^{-}(n, p)$ in the next theorem. A vector α of V is called isotropic (with respect to Q if $(\alpha, \alpha) Q=0$.

Theorem 4.0.2. Let Q be a quadratic form of type 2. Then
(i) the number of isotropic vectors is $\left(p^{n}+1\right)\left(p^{n-1}-1\right)+1$. (ii) the order of $\mathrm{PO}^{-}(2 n, p)$ is $\mathrm{p}^{\mathrm{n}(\mathrm{n}-1)}\left(\mathrm{p}^{2}-1\right)\left(\mathrm{p}^{4}-1\right) \ldots$ $\left(p^{2 n-2}-1\right)\left(p^{n}+1\right)$.
($\mathrm{PO}^{-}(2 n, p)$ denotes the projective orthogonal group; in this case it is $0^{-}(2 n, p)$ factored out by the subgroup $\{I,-I\}$, where I is the identity matrix).

The proofs of results mentioned above may be found in $[1]$ or $[4]$.
$\$ 4.1$ (*)-groups of desrec p^{2}.
In Theorem 3.2.4 we found that rank 3 S-rings exist over $\mathrm{V}(2, \mathrm{p})$ for any k wich is a multiple of $\mathrm{p}-1$, and in 3.2.2 that, unlike the case $n \neq 2$, the imposition of an automorphism group doubly-transitive on \triangleq leads to no further restrictions on the parameters. The reason is that residual S-rings are well-defined for all rational rank 3 S-rings over $V(2, p)$, and they are all the same, for there is only one rational S-ring over $V(1, p)$. We must therefore adopt a different approach for this casc. Since Dickson las essentially determined all subgroups of $\operatorname{PGL}(2, p)$, wo simply consider all possibly doubly-transitive representations of these.

Theorem l.1.1. Suppose G is a primitive (H $^{\text {(}}$-group of degree p^{2} 。

Then G_{o} / Z is isomorphic to one of
(i) the dihodral group $D_{2(p-1)}$ for any prime $p \neq 2$.
(ii) the symmetric group S_{3}, with $p=5$.
(iii) the alternating sroup A_{5}, with $p=7$.
(Z denotes the centre of $G L(2, p)$; i.c. the scalar multiples of the identity matrix).

Proof. We first show that p is not 2 and that p docs not divide $\left|G_{o}\right|$.

$$
\text { If } p=2 \text {, then } k+\ell=3 \text { and assuming } k \leq \ell \text {, wo have } k=1
$$ and hence $\mu=0$, contradicting G primitive.

Supiose p divides $\left|G_{0}\right|$. Then there is an orbit of G_{o} on Ω containing plincs. Hence $|\triangleq|=1$ and $|\Gamma|=p$. But then $\Delta_{J} C$ is a subsipace of V and hence G is imprimitive - a contradiction. Since PGL(2,p) has order $p\left(p^{2}-1\right)$ it follows that $\left|G_{o} / Z\right|$ divides $p^{2}-1$.

We first consider the spocial cases $|\triangleq| \leq 2$. If $|\Delta|=1$, then G is imprimitive. If $|\triangle|=2$ we choose a basis for $V(2, p)$ such that $\hat{=}=\{(\underline{1,0}),(\underline{C, 1})\}$. This case is special because there are elements of $\operatorname{PGL}(2, p)$ which fix both lines of \triangle but not the romaining lines of $P G(1, p)$. If $\&$ is the s-ring with simple basis quantities $0, \hat{\Delta}, \hat{\Gamma}$, with \triangle as above, then

$$
\text { Aut } \&=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right): a, b, c, d \varepsilon \operatorname{GF}(p)\right\}
$$

It is casily checked that $[V] G_{0}$, with $G_{0}=A u t \&$, is a (*)-group and that G_{o} / Z is isomorphic to the dihedral group $D_{2}(p-1)$ with generators and relations

$$
\begin{array}{r}
\left\langle A=\left(\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right) \text { modulo } Z, B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { modulo } Z:\right. \\
B^{-1} A B=A^{-1} \text { modulo } Z>
\end{array}
$$

where a is a generator of the multiplicative group $G F(p)-0$.
We now examine the complete list of subgroups of $\operatorname{PSL}(2, \mathrm{p})$ found by Dickson (See lluppert's book [15], p.213). By Dickson's Theorcm, the only subgroups of $\operatorname{PSL}(2, p)(p \neq 2)$ with order dividing $p^{2}-1$ are
(I) cyclic groups of order z, where z divides ($\bar{\mp}$ I)/2.
(2) dihedral groups of order $2 z$, with z as in (1).
(3$) \Lambda_{4}$, if $p>3$.
(4) S_{4}, if $\mathrm{p}^{2}-1=0$ modulo 16 and $\mathrm{p}>3$.
(5) A_{5}, if $\mathrm{p}^{2}-1=0$ modulo 5.

Ne wish to find subgroups of $\operatorname{l口G}(2, \rho)$ which have two orbits on $\mathrm{L}^{\prime} \mathrm{G}(1, \mathrm{p})$ and which are 2 -transitive on one of them. Such a subgroup must bc one of (1) to (5) or contain such a group with index 2. It is not difficult to show case by case that the latter possibility does not occur, though we omit the details. We now consider 2-transitive representations of groups (1) to (5).

Case (1) Since a transitive abclian group is regular (Scce.s. 4.4 of [22]), the only doubly-transitive cyclic groups are C_{1} and C_{2}. We have already considered $|\underline{\Delta}|=1$ or 2, and so no $(\neq)-g r o u p s$ arise from this case.

Case (2) ae have already seen how $\mathrm{D}_{2}(\mathrm{p}-1)$ gives (k) -groups for all primes $p \neq 2$, with $|\triangle|=2$. Suppose $D_{2 z}$ acts 2-transitively on a set \triangle with $\lceil\triangle \mid>2$. by 9.6 of $[22]$, $D_{2 z}$ is primitive on \triangleq and hence by 8.8 of [22], the normal cyclic subgroup of order z is transitive. But by 4.4 of [22], transitive abelian groups are regular, and hence $|\triangle|=z . \quad$ By Theorem 2.l.l, $z(z-1)$ divides $2 z$, and so z is less than or equal to 3.' Ge have already dealt with $|\triangle| \leq 2$, and we need consider only $z=3$. Now D_{6} acts transitively on Γ, whore $|\triangle|+|\Gamma|=p+1$. Hence $|\Gamma|$ is a divisor of 6 , and it is easy to sec that the only possibility is that $r=5$ and $|\triangle|=|\underline{\Gamma}|=3 . \quad$ We may choose a basis of $V=V(2,5)$ such that

$$
\triangleq=\{(1,0),(\underline{0,1}),(\underline{1,1})\} .
$$

we indeed get a $(*)-$ group in this case with

$$
G_{0}=\left\langle\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 4 \\
1 & 1
\end{array}\right)\right\rangle
$$

and G_{0} / Z is isomorphic to D_{6} (ic. to S_{3}).

Case (3) A_{4} is 2-transitive only on 4 letters. Hence

$$
|\Delta|=4 \text { and }|\Gamma| \text { divides }\left|A_{l_{4}}\right|=12
$$

Since $|\Delta|+|\Gamma|=p+1$, we can have only $p=7$. With

$$
\triangleq=\{(\underline{1,0}),(\underline{0,1}),(\underline{1,1}),(\underline{1,3})\},
$$

we get a (*)-group $[V] G_{0}$, where G_{0} / Z is isomorphic to A_{4}. G_{0} is generated by $\left(\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right)$ and $\left(\begin{array}{ll}1 & 1 \\ 2 & 6\end{array}\right)$.

Case (4) Again the only possibility is $p=7$ with \triangle as in case (3). But G_{0} of (3) is the largest subgroup of PGL(2,7) which stabilizes \triangle. Otherwise there would be a matrix $\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right)$ in $G L(2,7)$ which fixes $(1,1)$ and $(1,3)$. Clearly there is no such matrix.

Case (5) Suppose G_{0} / Z is isomorphic to A_{5}. Now A_{5} acts 2-transitively on 5 or 6 letters. Hence

$$
|\Delta|=5 \text { or } 6, \text { and }|\underline{\Gamma}| \text { is a divisor of } 60 .
$$

Also

$$
|\Delta|+|\Gamma|=p+1 \text { and } p^{2}-1=0 \text { modulo } 5
$$

The only primes satisfying these conditions are
(a) $p=11$, with $|\Delta|=|\Gamma|=6$
(b) $p=19$, with $|\Delta|=5,|\underline{I}|=15$.

Suppose (a) occurs. The element $A=\left(\begin{array}{cc}0 & 1 \\ 10 & 3\end{array}\right)$ of $G L(2,11)$
has order 5, and so by Lemma 3.1.1 we may assume that A belongs to G_{0}. The orbits of A on $P G(1, p)$ are

$$
\begin{aligned}
& \underline{\Delta}_{1}=\{(\underline{1,0}),(\underline{0,1}),(\underline{1,8}),(\underline{1,1}),(\underline{1,7})\} \\
& \underline{\Delta}_{2}=\{(\underline{1,3}),(\underline{1}, \underline{1}),(\underline{1,5}),(\underline{1,10}),(\underline{1,9})\}, \\
& \underline{\Delta}_{3}=\{(\underline{1,2})\}, \quad \Delta_{4}=\{(\underline{1,6})\}
\end{aligned}
$$

We may assume $\triangle=\Delta_{1} v \Delta_{3}$ or $\triangle=\Delta_{1} \triangle_{4}$. If G_{0} is 2 -transitive on \triangleq, then G_{0} contains an clement which maps ($\underline{1,0)}$ to ($\underline{(1,1)}$ and ($\underline{0,1}$) to (1,0); ie. G_{0} contains a matrix $B=\left(\begin{array}{ll}0 & a \\ 1 & 0\end{array}\right)$ for some a $\varepsilon G F(p)-0$. If $\triangle=\Delta_{1} \cup \Delta_{3}$, then \triangleq contains the lines $(\underline{1, a}),(\underline{0, a})$, ($\underline{7, a}$) and ($2, n$); ie. the lines ($1, a$), ($1,7 a$), (1,8a) and (1,6) belong to \triangle. But this is not true for any a. Vo get a similar contradiction if $\triangle=\Delta_{1} \cup \Delta_{4}$. Hence (a) cannot occur.

In the same way it can be shown that (b) cannot occur cither. This completes the proof of Theorem 4.l.l.

$$
\text { S } 4.2(\%) \text {-groups of degree } p^{4} .
$$

In this section we find (*)-groups with parameters Alp) as defined in $S 4.0$. We will prove

Theorem 4.2.1. Let $\&$ be an String which admits a (*)-group G with parameters $A(p)$. Then a basis may be chosen for $V(4, p)$ such that

```
(i) for p = 2, \Delta = ((1,0,0,0), (0,1,0,0), (0,0,1,0),
    (0,0,0,1), (1,1,1,1)}
```



```
    wherc c}\mp@subsup{c}{}{2}-4\mathrm{ is a non-square in Gr (p), and }\frac{Aut&}{Z}\mathrm{ is
    isomorphic to
    (i) the symmetric sroup }\mp@subsup{S}{5}{}\mathrm{ for p = 2
(ii) [PO-}(4,p)]\mp@subsup{C}{2}{}, the projective orthogonal group of second,
    type extended by a cyclic sroup or order 2, for p & 2.
(Z denotes the centre of Gl(4,p)).
```

proof of (i). :Ue first prove the uniqueness of an s-ring with parameters $A(2)=(5,10,0,2)$. The S-ring is primitive since μ is not equal to 0 or k. by 23.7 of [22], the elements of \triangle generate $V=V(4,2)$. Hence we may choose a basis of V such that the vectors ($1,0,0,0$) , ($0,1,0,0$), $(0,0,1,0)$ and ($0,0,0,1$) belong to Δ. Let α be the remaining vector of Δ. If $\alpha=(1,1,0,0)$, then α belongs to $\Delta \wedge \Delta+(1,0,0, C)$, contradicting $\lambda=0$. Similarly α cannot be any other vector with cxactly two zero coordinates. If $\alpha=(1,1,1,0)$, then $\Delta_{n} \Delta_{+}(1,1,0,0)$ contains four vectors, contradicting $\mu=2$. Similarly α cannot be any other vector with exactly one zero coordinate. Hence the only possibility is $\alpha=(I, l, l, l)$. It is easily seen that with this α, any permutation of the five elements of \triangle acts as a lincar transformation, and hence Aut $\&$ is isomorphic to S_{5}.
:e will prove Theorem 4.2 .1 for $p \neq 2$ by a sequence of lemmas (l to lo). The uniqueness of the residual B-ring is used to obtain the first three coordinates of the clements of Δ. Then by using the transitivity properties of the automorphism group and the fact that the dual S -ring also has rank 3 , we determine the fourth coordinates. Dy Lemma 3.1.1, we wish to find \triangle only up to change of basis. Assuming the existence of an S-ring with the required parameters, by suitable changes of basis we 'home in' on some unique canonical set which can casily be checked to yield an S-ring with the required parameters. Before starting the proof we prove a general lemma which will be useful.

Lemma 4.2.2. Suppose \& is a rational rank 3 S-ring over $V(n, p)$ in which $\lambda=p-2$. If $\underline{\alpha}, \underline{\beta}$ and \underline{Y} are distinct lines of Δ, then α, β and γ are lincarly independent vectors.

Proof. If falsc, there are non-zero elements a and b of GF (p) such that $\gamma=a \alpha+b \beta$. , Dut then $\Delta \wedge \Delta+a \alpha$ contains γ as woll as $p-2$ scalar multiples of α. This contradicts $\quad \lambda=p-2$.

Lemina 1. Let G be a (*)-group with parameters $A(p)$. Then we may choose a basis of V such that
(i) $\triangleq=\{(\underline{0}, 0,0,1),(\underline{x}, \underline{y}, 1, f(x, y)): x, y \varepsilon \operatorname{GF}(p)\}$, where f is a function from $\operatorname{Gr}(p) \times \operatorname{GF}(p)$ to $\operatorname{GF}(p)$,
(ii) $G_{o, \alpha}$ is isomorphic to a subgroup of k, where $\alpha=(0,0,0,1)$ and \therefore is the group $\left\{\left(\begin{array}{ll}A & \circ \\ a & \circ \\ \mathrm{O}\end{array}\right): A \in \operatorname{GL}(2, p), a, b, c \in \operatorname{GF}(p), c \neq 0\right\}$

Proof. (i) We choose a basis for V such that $\alpha=(0,0,0,1) \varepsilon \Delta$ The residual $\mathrm{S}-\mathrm{ring}$ is imprimitive, having parameters

$$
A_{7}(p)=\left(p^{2}(p-1), p^{2}-1, p^{2}(p-2), p^{2}(p-1)\right),
$$

in which $\mu_{1}=k_{1}$. Hence we have

$$
\Delta_{1 \wedge}\left(\Delta_{1}+\gamma\right)=\Delta_{1}
$$

for any $\gamma \in \Gamma_{1}$, and so

$$
\left(\Gamma_{1}, v 0\right) \cap\left(\Gamma_{1}, 0\right)+\gamma=\Gamma_{1} v 0
$$

for any $\gamma \varepsilon \Gamma_{1}$. Hence $\Gamma_{1} \nu$ is a 2-dimensional subspace of $V(3, p)$. By a suitable choice of basis, we may suppose

$$
\Gamma_{1 \cup} \cup=\{(x, y, 0): x, y \in G F(p)\}
$$

Hence

$$
\Delta_{1}=\{(x, y, z): x, y, z \varepsilon \operatorname{Gr}(p), z \neq 0\}
$$

and therefore

$$
\Delta=\left\{(\underline{0,0,0,1})^{\prime},(\underline{x, y, 1, f(x, y)})\right\}
$$

where f is a map from $\operatorname{GF}(p) \times \operatorname{GF}(p)$ to $\operatorname{GF}(p)$. f is a welldefined function since if (x, y, l, s) and (x, y, l, t) belong to Δ with $s \neq t$, then

$$
(x, y, 1, s)=(x, y, 1, t)+(0,0,0, s-t),
$$

giving a contradiction to $\lambda=p-2$, by Lemma 4.2.2.
(ii) $G_{o, x}$ is isomorphic to a subgroup of Aut \mathcal{S}_{t}, where \& denotes the residual s-ring of $\&$. The i-th row of a matrix of dut \mathcal{S}_{1}, regarded as a vector, lies in the same ordit as ($0, \ldots, 1, \ldots 0$), where the l is in the i-th place. Since ($1,0,0$) and ($0,1,0$) belong to Γ_{1}, while $(0,0,1)$ belongs to Δ_{1}, the result follows.

Lemana 2. A basis can be chosen such that $f(x, y)=0$ if and only if $x=y=0$.

Proof. We make use of the dual S-ring $8^{\#}$, which was derined in \S 2.2. Recall that $\hat{\Delta}$ denotes the formal sum $\dot{\Sigma} \delta$. If ϕ and ψ are elements of the dual space $V^{\#}$, then it is not difficult to see that since. $\&$ is rational, $(\hat{\Delta}) \phi=(\hat{\Delta}) \psi$ if and only if ϕ and ψ take the same number of zeros on a complete set X of line representatives of Δ. In our case we take

$$
X=\{(0,0,0,1),(x, y, 1, f(x, y)\}: x, y \in \operatorname{GF}(p)\}
$$

Since $8^{\#}$ has rank 3 , an element of $V^{+\pi} 0$ takes one of two rixcd values on $\hat{\Delta}$. We define x_{1}, \ldots, x_{4} as in $\$ 2.3$ by

$$
\epsilon_{j} x_{i}=\delta_{i j}
$$

where $\varepsilon_{j}=(0, \ldots, l, \ldots 0)$, the I being in the $j-$ th place. Now x_{3} takes one zero on x, while x_{1} takes $p+1$ zeros on x. We use a counting argument. Consider the following subset of $V^{\#}$.

$$
Y=\left\{i x_{1}+j x_{2}+k x_{3}+x_{4} ; \quad i, j, k \varepsilon \operatorname{GF}(p)\right\}
$$

The total number of zeros taken by Y on X is p^{4}. Hence we must have $p^{3}-p^{2}$ elcments of Y each taking $p+1$ zeros, and p^{2} clementsof Y each taking one zero. Suppose .
$i_{1} x_{1}+i_{2} x_{2}+i_{3} x_{3}+x_{4}$ takes just one zero. Then
transforming in V by

$$
\left[\begin{array}{llll}
1 & 0 & 0 & i_{1} \\
0 & 1 & 0 & i_{2} \\
0 & 0 & 1 & i_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

we may assume that x_{4} takes just one zero; i.e. exactly onc of the $f(x, y)$ is zero. Suppose $f(a, b)=0$. Then transforming in V by

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-a & -b & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

we may suppose that $f(x, y)=0$ if and only if $x=y=0$. (Note that neither of the above two transformations changes the form of X).

Lemma 3. $G_{o, \alpha}$ contains a subgroup P of order p^{2}.
Proof. Since G is a (*)-group, $G_{o, \alpha}$ is transitive on \leq - $\underline{\alpha}$. But $|\triangle-\underline{\alpha}|=p^{2}$ and so by I.l.l, p^{2} divides the order of $G_{o, \alpha}$.

Lemma 4. A sylow p-subgroup S of K is non-abctian of exponent p and order ρ^{3}. S is isomorphic to $\left\langle A, B, C: C A C^{-1}=A, C B C^{-1}=A E, B A B^{-1}=A, A^{p}=B^{p}=C^{p}=1 ン\right.$ 。 (K is as in Lemma 1).
Proof. We take $S=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]: a, b, c \quad \varepsilon \operatorname{GF}(p)\right\}$.
Since S is a Sylow p-subsroup of $\operatorname{GL}(3, p)$ it is certainly
a Sylow p-subgroup of K . Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad, \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad, \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

It is a trivial verification that the given relations hold. The exponent is p (for $p \neq 2$), since

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right]^{p}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
p a & 1 & 0 \\
d & p c & 1
\end{array}\right]
$$

where $d=p b+\frac{p(p-1)}{2} a c$.

Lemma 5. If S is as in Lemma 4, then the subgroups of S of order p^{2} are

$$
1_{t}=\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
b & t a & 1
\end{array}\right]: \quad a, b \quad \varepsilon G F(p)\right\}
$$

for $t=0,1, \ldots, p-1$, and

$$
\begin{aligned}
& \cdots, p-1, \text { and } \\
& P_{\infty}=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & 1
\end{array}\right]: a, b \in \operatorname{Gr}(p)\right\}
\end{aligned}
$$

Proof. Since S has exponent P , any subgroup of order r^{2} is elementary abclian. Suppose pas generators $A^{i} I_{B}{ }^{i}{ }_{C} C^{i}{ }^{3}$ and $A^{j} I_{B}{ }^{j} C_{C}{ }^{j}$, with A, B and C as in Lemma 4 . Using the relations given in Lemma 4 , we find that these two generators commute if and only if

$$
i_{2 / i_{3}}=j_{2 / j_{3}}
$$

Hence $p=\left\langle\Lambda, B^{i} C^{j}\right\rangle$, for some i and j, not both zero. It easily follows that

$$
P=P_{t} \text {, whore } t=j / i \text { if } i \neq 0 ; t=\omega \text { if } i=0
$$

Lemma 6. Go, α contains a subgroup of the form

$$
\left\{\left[\begin{array}{cccc}
1 & 0 & 0 & h(x, y) \\
0 & 1 & 0 & g(x, y) \\
x & y & 1 & f(x, y) \\
0 & 0 & 0 & 1
\end{array}\right]: x, y \varepsilon \operatorname{GF}(p)\right\}
$$

where f, g and h are functions from $\operatorname{GF}(p) \times \operatorname{GF}(p)$ to $G F(p)$.

Proof. Dy Lemmas $1,3,4$ and 5, we may assume that p (of Lemma 3) consists of matrices, of the form $\left[\begin{array}{lll}A & & \hat{i} \\ 0 & 0 & 0\end{array}\right]$ in, where the matrices A comprise a subgroup Q of $G L(j, p)$, with

$$
O_{1}=P_{0}, P_{1}, \ldots, P_{p-1} \text { or } P_{\infty} .
$$

Now P_{t} is conjugate to P_{S} for t and s nonzero, for

$$
U^{-1} p_{t} U=p_{s},
$$

where $U=\left[\begin{array}{ccc}t & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s^{-1}\end{array}\right]$.
It is therefore sufficient to consider $\operatorname{cases} Q=P_{o}, P_{1}$ or P_{∞}.
(i) $Q=P_{0} \cdot \quad$ Then

$$
P=\left\{\left[\begin{array}{cccc}
1 & 0 & 0 & h(x, y) \\
x & 1 & 0 & g(x, y) \\
y & 0 & 1 & f(x, y) \\
0 & 0 & 0 & 1
\end{array}\right\}: x, y \in \operatorname{GF}(p)\right\}
$$

By Lemma 2, ($0,0,1,0) \varepsilon \Delta$, and so the third row of any matrix in G_{0} may be regarded as a vector in Δ. H is generated by matrices

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & b_{1} \\
1 & 0 & 1 & c_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } B=\left[\begin{array}{llll}
1 & 0 & 0 & a_{2} \\
1 & 1 & 0 & b_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, }
$$

for some $a_{1}, b_{1}, c_{1}, a_{2}, b_{2} \varepsilon G F(p)$. The group P is elementary abelian, and so $A B=B A$. This implies that

$$
a_{1}=a_{2}=0 .
$$

We now get

$$
\left.\begin{array}{l}
\Lambda^{i}= \\
1
\end{array} \begin{array}{lllc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & i b_{1} \\
i & 0 & 1 & i c_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Hence (i,O,l,iç) $\varepsilon \Delta$ for all i $\varepsilon \operatorname{GF}(p)$. But any three such vectors are linearly dependent, contradicting $\lambda=p-2$, by Lemma 4.2.2.
(ii) $Q=P_{1}$: as in (i) we get a contradiction. Thus $Q=P_{\infty}$, and P has the required form.

Lemal 7. Δ is as in the statement of Theorem 4.2.1 and the group $O^{-}(4, p)$ is contained in Aut s, where Δ is the S-ring with basis quantities $0, \hat{\Delta}$ and $\hat{\Gamma}$.

Proof. By Lemma $6, G_{o}$ contains a subsroup generated by

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & b_{1} \\
1 & 0 & 1 & c_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{2} \\
11 & 1 & 0 & b_{2} \\
0 & 1 & 1 & c_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The third row of the matrix $A_{13}{ }^{y}$ is ($x, y, l, f(x, y)$), where

$$
f(x, y)=x y a_{2}+\frac{y(y-1)}{2} b_{2}+y c_{2}+\frac{x(x-1)}{2} a_{1}+x c_{1}
$$

and since $(0,0,1,0)$ belongs to \triangle, a set of line representatives of Δ is

$$
x=\{(0,0,0,1),(x, y, 1, f(x, y)): x, y \in \operatorname{Gr}(p)\}
$$

The vectors with $y=0$ in X are

$$
\left\{\left(x, 0,1, \frac{a_{1}}{2} x^{2}+x\left(c_{1}-\frac{a_{1}}{2}\right)\right)\right\}
$$

If $a_{1}=0$, then any three of these are linearly dependent and so we must have

$$
\begin{gathered}
a_{1} \neq 0 . \\
\text { Since } f\left(1-\frac{2 c_{1}}{a_{1}}, 0\right)=0 \text { we have by Lemma } 2,
\end{gathered}
$$

$$
a_{1}=2 c_{1} .
$$

Now consider those vectors in x with $x=k y$ some $k \varepsilon G F(p)$. $f(k y, y)=y^{2}\left(k a_{2}+\frac{b_{2}}{2}+\frac{k^{2} a_{1}}{2}\right)+y\left(-\frac{b_{2}}{2}+c_{2}\right)$.

As above, we require the coefficient of y^{2} to be non-zero and that of y to be zero. Hence

$$
b_{2}=2 c_{2} \text { and } k^{2} a_{1} / 2+k a_{2}+b_{2} / 2 \neq 0 .
$$

This last inequality holis for all k if and only if

$$
a_{2}^{2}-a_{1} b_{2} \text { is not a square in } \operatorname{cir}(p) .
$$

Writing a, b and c for c_{1}, c_{2} and a_{2} respectively, we now have

$$
\Delta=\left\{(x, y, z, w): w z=a x^{2}+b y^{2}+c x y\right\}
$$

where $c^{2}-4 a b$ is not a square.
Consider the quadratic form Q defined by

$$
\left(\left(x_{1}, y_{1}, z_{1}, w_{1}\right),\left(x_{2}, y_{2}, z_{2}, w_{2}\right)\right) Q=2 a x_{1} x_{2}+2 b y_{1} y_{2}+c x_{1} y_{2}
$$

$$
+c x_{2} y_{1}-w_{1} z_{2}-w_{2} z_{1}
$$

The matrix of Q is

$$
\left[\begin{array}{cccc}
2 a & c & 0 & 0 \\
c & 2 b & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Since det $A=c^{2}-4 a b$ is a non-square, Q is a quadratic form of type 2. Hence Δ consists precisely of the nonzero isotropic vectors of $(2 . \quad$ If we choose a basis for V such that the matrix of Q is

$$
\left[\begin{array}{cccc}
2 & e & 0 & 0 \\
e & 2 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

where $e^{2}-4$ is a non-square, then we get Δ as in the statement of Theorem 4.2.1.

Thus $C^{-}(4, p)$ is containcd in the automorphism group or \dot{B}, the S-ring with basis $0, \hat{\Delta}, \hat{\Gamma}$. So also is Z, the contre of $\operatorname{GL}(4, p)$. The semi-direct product [V]Z. $\mathrm{C}^{-}(4, \mathrm{p})$ is not a (+) -group, for the orbits of $Z . \mathrm{C}^{-}(4, p)$ on $V(4, p)$ are

$$
\begin{aligned}
& \Delta=\{\alpha:(\alpha, \alpha) Q=0\} \\
& \Gamma^{\prime}=\{\alpha:(\alpha, \alpha) Q \text { is a square }\} \text { and } \\
& \Gamma^{\prime \prime}=\{\alpha:(\alpha, \alpha) Q \text { is a non-square }\}
\end{aligned}
$$

We shall see in Lemma 10 that $Z .0^{-}(4, p)$ is contained in Aut 8 . as a subgroup of index 2 and that $0^{-}(4, p)$ has an outer automorphism which maps vectors of Γ^{\prime} to vectors of $\Gamma^{\prime \prime}$.

Lemma 8. $\quad\left|\frac{\text { Aut } 8}{2}\right| \leq 2\left(p^{2}+1\right) p^{2}\left(p^{2}-1\right)$
Proof. This will follow from Theorem l.l.l if we show that the stabilizer of three lines of \triangle in Aut $\&$ has at most order 2. We choose a basis of V such that Δ is as in the statement of 4.2.1. Suppose Zg is an clement of $\frac{\text { Aut } 8}{2}$ which
 may choose the coset representative g such that

$$
\begin{aligned}
(0,0,1,0) \mathrm{g}=(0,0, a, 0),(0,0,0,1) \mathrm{g} & =(0,0,0, b) \text { and } \\
(1,0,1,1) \mathrm{g} & =(1,0,1,1)
\end{aligned}
$$

for some a and b in $\operatorname{GF}(p) \backslash 0$. Then

$$
(1,0,0,0) g=(1,0,1-a, 1-b)
$$

and

$$
S=\left[\begin{array}{cccc}
1 & 0 & 1-a & 1-b \\
h & i & j & k \\
0 & 0 & a & 0 \\
0 & 0 & 0 & b
\end{array}\right]
$$

for some h, $i, j, k \varepsilon G F(p)$. Using the fact that the vactor $\left(x, y, l, x^{2}+y^{2}+e x y\right) g$ is isotropic for all x and y in $\operatorname{Gif}(p)$, it is straightforward, though tedious, to show that

$$
a=b=1, j=k=0, \text { and }(h, i)=(0,1) \text { or }(-1, e)
$$

Since we have only two solutions for the matrix g, the proof is completed.

Lemma 9. There is an clement s of $\operatorname{Gr}(\mathrm{p})$ (for $\mathrm{p} \neq 2$) such that both $-s$ and $1+4 s$ are non-squares.

Proof. If $p \neq 2, s \mapsto-s$ and $s \rightarrow 1+4 s$ are both bijcctions of $\operatorname{GF}(\mathrm{p})$ onto $\mathrm{GF}(\mathrm{p})$. Since exactly half of the non-zero elements of $G F(p)$ are squares, for the lemma to be false we require that for any $t \varepsilon G F(p)$,
-t is a square if and only if $4 t+1$ is a non-square ...(1)
Suppose $p \neq 5$. Then $-t=4 t+1$ if $t=-1 / 5$, contradicting (1), and so the lemma is true for $p \neq 5$. If $p=5$, then we may take $s=3$.

Lemma 10. $\frac{\Lambda u t 8}{Z}$ is isomorphic to an extension of $\mathrm{PO}^{-}(4, \mathrm{n})$ by a cyclic group of order 2.

Proof. We have already shown that $\frac{\text { Aut-S }}{2}$ contains $\mathrm{PO}^{-}(4, \mathrm{p})$. By Theorem 4.0.2, $P^{-}(4, p)$ has order $p^{2}\left(p^{2}+1\right)\left(p^{2}-1\right)$ and if we show that Aut $\&$ contains an element of $\operatorname{PGL}(4, p)$ not lying in $\mathrm{PO}^{-}(4, \mathrm{p})$, then the result will follow by Leman 8 . Ue now find it convenient to change the basis of V so that the matrix of Q is

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
1 & -25 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

where s is chosen such that $-s$ and $45+1$ are non-squares. Since $\operatorname{det} A=1+4 s, Q$ is indeed equivalent t'o our carlicr form. Now consider the element Zg of $\operatorname{PGL}(4, \mathrm{p})$, where

$$
s=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
s & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -s
\end{array}\right)
$$

Then

$$
(x, y, z, w) s=(s z, x+y, z,-s w) .
$$

Hence if $\alpha=(x, y, z, w)$, then

$$
(\alpha, \alpha) Q=2\left(x^{2}-s y^{2}+x y-w z\right)
$$

whereas

$$
\left(\alpha_{s}, \alpha g\right) Q=-2 s\left(x^{2}-s y^{2}+x y-w z\right)
$$

Since -s is a non-square, g does not bclons to $\mathrm{PO}^{-}(4, \mathrm{p})$. But if $(\alpha, \alpha) Q=0$, then $(\alpha g, \alpha$ g $=0$, and hence $g \varepsilon$ Aut $\dot{\gamma}$.

This compaetes the proof of Theorem 4.2.1.
Let \& be the S-ring given by 4.2.1. We will show that for all primes p (including 2), the permutation group $\frac{\text { Aut } \&}{Z}$ acting on \triangleq is isomorphic to $P \Gamma L\left(2, p^{2}\right)$ acting on $P G\left(1, p^{2}\right)$. We first define the group $\Gamma \Gamma\left(2, p^{2}\right)$.

By a semi-linear transformation of a vector space V over a field F we mean a bijection T from V onto V such that for
some automorphism t of r, we have for all $\alpha, \beta \varepsilon V$, a ε,

$$
(\alpha+\beta) T=\alpha T+\beta T, \quad(a \alpha) T=a t(\alpha T)
$$

It is show in (10.6.9) of [18] that the set of somilincar transformationsof V is a group, denoted by $\Gamma L(V)$, containing the group of linear transformations GL(V) as a normal subgroup, and that $\Gamma L(V) / G L(V)$ is isomorphic to the 'automorphism group of F. We let $\operatorname{P\Gamma L}(V)$ denote the group $\frac{\Gamma L(V)}{Z}$, where Z denotes the group of lincar maps of the form

$$
\alpha T=a \alpha
$$

for all $\alpha \varepsilon V$, some a εF.
If F is $G F\left(p^{2}\right)$, then its automorphism group has order 2. Hence the order of $P l^{2} L\left(2, p^{2}\right)$ is $2\left(p^{2}+1\right) p^{2}\left(p^{2}-1\right)$.

Theorem 4.2.3. Let \& be as in 4.2.1. Then $\frac{\text { Aut } 8}{Z}$ acting on \triangleq is isomorphic to $P \Gamma L\left(2, p^{2}\right)$ acting on $P G\left(1, p^{2}\right)$.

Proof. (i) $p=2$. Since $P^{P} P^{2}(2,4)$ acts on 5 points of ${ }^{2} G(1,4)$, and has the same order as the symmetric group S_{5}, we must have the required isomorphism.
(ii) $p \neq 2$. We let Q be the quadratic form over $V(4, p)$ with matrix as in the proof of Lemma 10. Now the polynomial $x^{2}-x-s$ is irreducible over $G F(p)$, since $l+4 s$ is a non-square. Thus

$$
G F\left(p^{2}\right)=\{a \lambda+b: a, b \in \operatorname{GF}(p)\}
$$

where λ is the primitive ($\left.p^{2}-I\right)-$ th root of unity in $G F\left(p^{2}\right)$, satisfying the equation

$$
\lambda^{2}-\lambda-s=0
$$

:ic have

$$
\Gamma L\left(2, p^{2}\right)=\left[G L\left(2, p^{2}\right)\right]\langle\tau\rangle
$$

Where τ is the map which sends (α, β) to $\left(\alpha^{p}, \beta^{p}\right)$ for all $(\alpha, \beta) \in V\left(2, p^{2}\right)$.
:Ne get a permutation isomorphism θ as follows.
$\theta: \triangle \rightarrow P G\left(1, p^{2}\right)$ is defined by
$\theta:(\underline{0,0,0,1}) \rightarrow(\underline{1}, 0)$
and $\left(x, y, 1, x^{2}-y^{2} s+x y\right) \rightarrow(y \lambda+x, 1)$,
for all $x, y \in \operatorname{GF}(p)$, while

$$
\theta:\left[\operatorname{PO}^{-}(4, p)\right] C_{2} \rightarrow \operatorname{PiLL}\left(2, p^{2}\right)
$$

is given by its action on the following generators (the 4×4 and 2×2 matrices should be read modulo the centres of $G L(4, p)$ and $G L\left(2, p^{2}\right)$ respectively).

$$
\begin{aligned}
& \theta:\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
s & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -s
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow \tau \quad\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \rightarrow \tau\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}
\end{aligned}
$$

We omit the straightforward verification that 6 is a permutation isomorphism.

We now consider certain subgroups of the two isomorphic groups above. From now on our discussion holds only for
$p \neq 2$. By $\mathrm{SL}\left(2, \mathrm{p}^{2}\right)$ we mean the sroup of lincar transformations of $V\left(2, p^{2}\right)$ which have detcrminant 1 , and by $\operatorname{PL}\left(2, p^{2}\right)$ the quotient of this group by the suberoup of scalar matrices. By $P \Omega^{-}(4, p)$ we mean a cortain normal subgroup of index 2 in $\mathrm{PO}^{-}(4, \mathrm{p})$. The precise definition may be found in [1] or [+]. It is well known that $\operatorname{PSL}\left(2, p^{2}\right)$ and $1 / \Omega-(1, p)$ are isomorphic groups (Sce c.g. [1]). The restriction of θ above to $\operatorname{PSL}\left(2, p^{2}\right)$ gives such an isomorphism. We now see how the larger groups on each side of the isomorphism correspond. One might expect the outer automorphisms of $\mathrm{PO}^{-}(4, \mathrm{p})$ and $\operatorname{PGL}\left(2, \mathrm{p}^{2}\right)$ to correspond; this is not in fact the case. From the definition of θ we sce that $(\tau) \theta^{-1}$. belongs to $\mathrm{PO}^{-}(4, \mathrm{p})$, whereas θ maps the outcr automorphism of $\mathrm{PO}^{-}(4, \mathrm{p})$ to $Z\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1\end{array}\right)$, which belongs to $\operatorname{PGL}\left(2, \mathrm{p}^{2}\right)$. We thus have the following isomorphisms:

We now prove some further facts of interest about our S-rings with parameters $\Lambda(p)$.

A Steiner system. $S(t, k, v)$ denotes a block design which has v points, k points lying in each block, with any set of t points lying in exactly one block.

Theorem 4.2.4. If $\&$ is as in 4.2.1, then Aut 8 is an automorphism group of the Steincr system $S\left(3, p+I, p^{2}+1\right)$.

Proof. As the points of the design we take the clements of Δ, where Δ is as in 4.2.1. As blocks we take subsets of \triangle generated by three lincs, i.e. the blocks are the sets $\Delta \wedge\langle\alpha, \beta, \gamma\rangle$, for distinct $\underline{\alpha}, \underline{\beta}, \underline{\gamma} \varepsilon \triangle$. Since \triangle admits a 3-transitive automorphism group G_{o}, G_{o} act transitively on the blocks and hence each contains the same number of points. The block containing ($0,0,1,0$) , $(0,0,0,1)$ and $(1,0,1,1)$ is $\left\{(\underline{0}, 0,0,1),\left(\underline{x}, 0,1, x^{2}\right): x \in \operatorname{GF}(p)\right\}$.

Hence $k=p+1$ and we have the roquired design.
The number of blocks in the design is $p\left(p^{2}+1\right)$ which we observe is the same as the number of points of Γ. We show in our next theorem that the representation of Aut $\&$ is the same in each case.

Theorem 4.2.5. The permutation representations of Aut $\&$ on Γ and of Aut $\&$ on the blocks of the associated Steiner system are isomorphic.

Proof. (i) $p=2$. Recall that in this case we may take

$$
\Delta=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,1,1)\}
$$

The blocks of $S(3,3,5)$ are simply all subsets of threc vectors (for $p=2$, vectors and lines are the same thing). We define a map \varnothing from the set of blocks to Γ by

$$
\text { (B) } \varnothing=\sum_{\alpha \varepsilon B} \alpha
$$

for each block B. By the lincarity of Aut $\&$ on V, it
follows that the action of Aut 8 on the two sets is the same.
(ii) $p \neq 2$. In this case Γ is the set of non-isotropic lines under $\mathrm{PO}^{-}(4, \mathrm{p})$. For each $\underline{\alpha} \varepsilon \underline{\Gamma}$, we let $\alpha \underset{\sim}{\text { denote }}$ the set

$$
\{\beta \varepsilon \vee:(\alpha, \beta) Q=0\}
$$

Then α^{\perp} is a three-dimensional subspace such that

$$
v=\langle\alpha\rangle+\alpha^{\perp}
$$

Let $\quad \Gamma^{\perp}=\left\{\alpha^{\perp}: \alpha \varepsilon \Gamma\right\}$. Since $\mathrm{PO}^{-}(4, p)$ and its outer automorphism preserve zero scalar products, Aut \& has the same action on Γ as on Γ^{\perp}. It can easily be shorm that for a quadratic form over $V(3, p)$ there are $p+1$ isotropic lines. Hence under Q restricted to $\alpha^{\perp}, \alpha^{\perp}$ contains $p+1$ isotropic lines and these must form a block of the Steiner system. The result now follows.

We conclude this subsection with a conjecture. !ic have proved that an S-ring \& with parameters $A(p)$ is unique under certain assumptions about Aut \& . Looking at small primes suggests that such assumptions are unnecessary. Nore generally we can show that an'S-ring with parameters $A(p)$ is unique provided the following combinatorial result holds.

Conjecture 4.2.6. Let G be a permutation of the non-zero elements $\{1, \ldots, p-1\}$ of $G F(p)$, with $(1) \theta=1$. Then a necessary and sufficient condition for the set

$$
X=\{(1, x,(x) \theta): x=1, \ldots, p-1\}
$$

to have the property that any three vectors of X are linearly independent is that $(x) \theta=x^{-1}$ for all $x \varepsilon G F(p) \backslash 0$.

34.3 (*)-groups of degrec 3^{5}.

Theorem 4.3.1. There is a unique S-ring \& over V(5,3) having parameters $B=(22,220,1,2)$. $\frac{\text { Aut } Z}{Z}$ is isomorphic to the dathieu group M_{11}, and $[V] Z . M_{I 1}$ is a (*)-group.

The proof is broken down into Lemmas 1,2 and 3.
Lemma 1. The residual S-ring 8_{1} over $V(4,3)$ with parameters B_{1} is unique.

Proof. We found in $\$ 4.0$ that the residual s-ring $\&$, has parameters

$$
B_{1}=(20,60,1,6)=A(3)
$$

In 54.2 we showed that an S-ring $\&$ with parameters $A(p)$ is unique for all p, with the assumption that $\&$ admits a suitable automorphism group. For $p=3$, we prove the uniqueness without such an assumption. Suppose

$$
v(4, p)=0 \vee \Delta_{1} \vee \Gamma_{1}
$$

where δ_{1} has basis quantities $0, \hat{\Delta}_{1}$ and $\hat{\Gamma}_{1}$, By Lemmas 1 and 2 of $\$ 4.2$ (which did not assume knowledge of Aut \&), a basis of $V(4, p)$ may be chosen such that

$$
\underline{\Delta}_{i}=\{(\underline{0}, 0,0,1),(\underline{x}, y, 1, f(x, y)): x, y \in \operatorname{GF}(3)\}
$$

where f is a function from $\operatorname{GF}(3) x \operatorname{GF}(3)$ to $G F(3)$, which has the property that
(1) $\quad f(x, y)=0$ if and only if $x=y=0$.

Let $x_{1}, x_{2}, x_{3}, x_{4}$ generate $V^{\#}$ as in $\S 2.3$, and let

$$
x_{1}=\{(0,0,0,1),(x, y, 1, f(x, y)): x, y \in G F(3)\}
$$

be a set of line representatives of Δ_{1}. χ_{1} takes four zeros on X_{1}, while x_{3} takes one zero. Hence, as in Lemma

2 of $S 4.2$, every element of V takes either onc or four zeros on X_{1}. It follows from (I) that $x_{3}+x_{4}$ and $2 x_{3}+x_{4}$ take a total of eight zeros and hence take four each. Thus

$$
\{f(x, y): x, y \in \operatorname{GF}(p)\}=\{0,1,1,1,1,2,2,2,2\} \ldots(2)
$$

with $f(0,0)=0$. Suppose $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ satisfy

$$
f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)=1
$$

Transforming by

$$
\left[\begin{array}{llll}
x_{1} & y_{1} & 0 & 0 \\
x_{2} & y_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}
$$

we may suppose that

$$
f(1,0)=f(0,1)=1
$$

(Note: when we transform in V, i.e. change basis, we must make sure that the form of X_{1} remains the same, only the unknown $f(x, y)$ undergoing any change). We now have in Δ_{1} the elements $(0,0,1,0),(0,0,0,1),(1,0,1,1)$ and $(0,1,1,1)$. But

$$
2(0,0,1,0)+2(1,0,1,1)=(2,0,1,2),
$$

and so by Lemma $4.2 .2,(2,0,1,2)$ belongs to Γ_{1}. Hence $f(2,0)=1$, and similarly $f(0,2)=1$. We now have four of the $f(x, y)$ equal to 1 , and by (2) the remaining $f(x, y)$ must all be equal to 2. Thus $\Delta_{1}=X_{1} \cup 2 X_{1}$, where

$$
\begin{aligned}
& x_{1}=\{(0,0,1,0),(0,0,0,1),(1,0,1,1),(2,0,1,1), \\
& (0,1,1,1),(0,2,1,1),(1,1,1,2),(2,2,1,2),(1,2,1,2), \\
& (2,1,1,2)\}
\end{aligned}
$$

i.e. Δ_{1} consists of those points (x, y, z, w) satisfying

$$
w z=x^{2}+y^{2}
$$

Lemma 2. An String \& over $V(5,3)$ with parameters B is unique.
proof. By Lemma 1 there are elements $a_{i j}$ in $\operatorname{GF}(p)$ such that a set of line representatives of Δ is

$$
\begin{aligned}
x= & (0,0,0,0,1) \\
& (0,0,0,1,0) \\
& (0,0,1,0,0) \\
& \left(1,0,1,1, a_{10}\right) \\
& \left(2,0,1,1, a_{20}\right) \\
& \left(0,1,1,1, a_{01}\right) \\
& \left(0,2,1,1, a_{02}\right) \\
& \left(1,1,1,2, a_{11}\right) \\
& \left(2,2,1,2, a_{22}\right) \\
& \left(1,2,1,2, a_{12}\right) \\
& \left.\left(2,1,1,2, a_{21}\right)\right\}
\end{aligned}
$$

Transforming in V by

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -a_{10} \\
0 & 1 & 0 & 0 & -a_{01} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

we may suppose

$$
a_{10}=a_{01}=0
$$

Now X_{1} takes five zeros on X, while X_{4} takes two zeros. Since the dual STring has rank 3 , every element of V takes two or five zeros on X. Now

$$
(X) x_{5}=\left\{1,0,0,0,0, a_{20}, a_{02}, a_{11}, a_{22}, a_{12}, a_{21}\right\}
$$

Hence x_{5} takes five zeros and so just one more $a_{i j}$ is zero.
be may suplose a_{20} is non-zero; for if $a_{20}=0$ we transform by

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Transforming by

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

if necessary, we may suppose that

$$
a_{20}=1
$$

He now have

$$
(x) x_{3}+x_{4}+x_{5}=\left\{1,1,1,2,2,0,2+a_{02}, a_{11}, a_{22}, a_{12}, a_{21}\right\}
$$

Since exactly one of the unknown $a_{i j}$ is zero, $x_{3}+x_{4}+x_{5}$ takes two zeros on X, and so we must have

$$
a_{02}=2,
$$

Hence just one of $a_{11}, a_{22}, a_{12}, a_{21}$ is zero, and we consider these four cases separately, making use of the fact that the following sets have two or five zeros.

$$
\begin{aligned}
\text { (i) }(x) x_{1}+x_{5} & =\left\{1,0,0,1,0,0,2,1+a_{11}, 2+a_{22}, 1+a_{12}, 2+a_{21}\right\} \\
\text { (ii) }(x) x_{2}+x_{5} & =\left\{1,0,0,0,1,1,1,1+a_{11}, 2+a_{22}, 2+a_{12}, 1+a_{21}\right\} \\
\text { (iii) }(x) x_{4}+x_{5} & =\left\{1,1,0,1,2,1,0,2+a_{11}, 2+a_{22}, 2+a_{12}, 2+a_{21}\right\}
\end{aligned}
$$

Case 1. $\quad a_{11}=0 . \quad B y$ (ii), $a_{22}=a_{12}=a_{21}=1$ or 2 . By (i), the latter holds to give five zoros in (X) $x_{1}+x_{5}$. But then (X) $x_{2}+x_{5}$ has just one zero. Hence this case can not occur.

Case 2. $\quad a_{22}=0 . \quad$ Transforming by

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

we get case 1 and hence a contradiction.
Case 3. $\quad a_{12}=0$. As in case 1 we get

$$
a_{21}=a_{11}=a_{22}=2
$$

This does not lead to a contradiction.

Case 4. As in Case 2, we can change basis to get case 3 .
Hence we may choose a basis for V such that an S-ring \& over $V(5,3)$ with parameters B has simple basis quantities 0 , $\hat{\Delta}$ and $\hat{\Gamma}$, where $\Delta=X, 2 X$, with

$$
\begin{aligned}
x=\{ & (0,0,0,0,1),(0,0,0,1,0),(0,0,1,0,0), \\
& (1,0,1,1,0),(2,0,1,1,1),(0,1,1,1,0), \\
& (0,2,1,1,2),(1,1,1,2,2),(2,2,1,2,2), \\
& (1,2,1,2,2),(2,1,1,2,0)\}
\end{aligned}
$$

Lemma 3. Let $\&$ be the S-ring over $V(5,3)$ with parameters B. Then $\frac{A u t, 8}{Z}$ is isomorphic to the Mathieu group M_{11}.

Proof. Let $\alpha=(0,0,0,0,1)$. The stabilizer (Aut 8) . $_{\alpha}$ is isomorphic to a subgroup of Aut ℓ_{1}. Given an automorphism A_{1} of $S_{1}\left(A_{1}\right.$ represented by a matrix in $G L(4,3)$), we must find whether we can choose $a, b, c, d, e \varepsilon G F(3)$ such that

$$
A=\left[\begin{array}{lllll}
& & & & a \\
& & A_{1} & & b \\
& & & & c \\
0 & 0 & 0 & 0 & e
\end{array}\right]
$$

is an automorphism of \& . For example, consider the matrix

$$
A_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

of Aut \mathcal{S}_{1}. If Λ_{1} 'extends' to A, then since the third and fourth rows of A may be regarded as elements of Δ, we have (we take Δ as given by Lemma 2)

$$
c=0 \quad \text { and } \quad d=0 .
$$

Now $(1,0,1,1,0) A=(0,1,1,1, a)$ belongs to Δ and so

$$
a=0
$$

Also $(0,1,1,1,0) A=(1,0,1,1, b)$, and so

$$
\mathrm{b}=0
$$

Since $(2,0,1,1,1) A=(0,2,1,1, e)$, we have $e=2$.

It is easy to check that the matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

does indeed fix \triangle as a set, and hence belons to Aut \& . We can show similarly that the matrices of

$$
\text { Aut } S_{1}=\left[\operatorname{PO}^{-}(4,3)\right] C_{2}
$$

which extend as above are precisely those lying in $p \Omega^{-}(4,3)$. Hence (Aut \&) $\underset{\underline{\alpha}}{ }$ is isomorphic to $p \Omega^{-}(4,3)$, and thercfore has order 10.9 .8 , acting sharply 3 -transitively on the ten points of $\underline{\Delta}$ - $\underline{\alpha}$.

It will now follow that Aut \& is sharply 4-transitive on \triangle if we find an element of sut 8 which docs not fix ($0,0,0,0,1$). In finding such an element we also demonstrate a technique which we have found very useful for finding automorphisms of a given S-ring over a vector space. Because of the desired high transitivity of Aut $\&$, it is likely that there is an automorphism which fixes several points or \triangle. In this case we guess that there is a matrix $i 3$ in Aut $\&$ satisfying

$$
\begin{aligned}
& (0,0,0,1,0) B=(0,0,0,1,0),(0,0,1,0,0) B=(0,0,2,0,0) \\
& (1,0,1,1,0) B=(1,0,1,1,0) \text { and }(0,0,0,0,1) B=(0,1,1,1,0)
\end{aligned}
$$

Suppose

$$
(0,1,1,1,0) \dot{B}=\alpha
$$

for some $\alpha \in \Delta$. Now

$$
\begin{array}{r}
(0,2,1,1,2)=2(0,1,1,1,0)-(0,0,0,1,0)-(0,0,1,0,0)+ \\
\\
2(0,0,0,0,1)
\end{array}
$$

and hence

$$
(0,2,1,1,2) B=2 \alpha+(0,2,1,0,0)
$$

$(0,2,1,0,0)$ belongs to Γ, and since $\mu=2$, we have

$$
\left|\Delta{ }_{n} \Delta+(0,2,1,0,0)\right|=2
$$

In fact, $\Delta_{n} \Delta+(0,2,1,0,0)=\{(1,0,2,2,2),(2,2,2,1,1)\}$
Hence $\alpha=(1,0,2,2,2)$ or $(2,2,2,1,1)$. We now know the action of B on five independent vectors and hence can find its matrix. With the latter value of α, it turns out that B does not belong to Aut \& . Dut with the former we get

$$
B=\left(\begin{array}{lllll}
1 & 0 & 0 & 2 & 0 \\
1 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

which is easily checked to stabilize Δ as a set and hence belongs to Aut \& .

We now have that $\frac{A u t \&}{Z}$ is sharply 4 -transitive on the eleven points of \triangleq, and hence has order 11.10.9.8 $=7920$. The fact that $\frac{A u t \&}{Z}$ is isomorphic to the Mathieu group $M_{1 l}$ follows from Theorem 5.8.1 of [8], where it is shown that M_{11} is the only 4-transitive group on 11 letters, in which the stabilizer of 4 points has odd order. Alternatively we can show that $\frac{A u t \&}{Z}$ is M_{11} by means of the characterization of $M_{1 l}$ as the automorphism group of the Steiner system $S(4,5,11)$ (See [23]). This Steiner system with automorphism group Aut \& arises in this case as in Theorem 4.2.4. The points are those of \triangleq, the blocks those subsets Δn^{W}, where W is any 4-dimensional subspace of $V(5,3)$ having four linearly independent vectors in Δ.

The proof of Lemma 3, and hence of Theorem 4.3.1, is now completed.

From the 3 -transitive group $P \Omega^{-}(4, p)$ on 10 points of
$P G(3,3)$, we have constructed a 4-transitive group on 11 points of $P G(4,3)$. We now consider the more seneral situation: given a subsct Δ_{1} of $V(n-1, p)$ admitting a linear group t-transitive on $\underline{\Delta}_{i}$, does there exist a subset Δ of $V(n, p)$ admitting a subgroup of $G L(n, p)$ which is $(t+1)-$ transitive on \triangleq and such that $(0, \ldots, O, 1)$ ' ε ' Δ and

$$
\Delta_{1}=\left\{\left(x_{1}, \ldots, x_{n-1}\right):\left(x_{1}, \ldots, x_{n}\right) \varepsilon \Delta, \text { some } x_{n} \varepsilon \operatorname{GF}(p)\right\} \backslash\{0\} ?
$$ (c.f. definition of the residual S-ring). We call Δ an extension of Δ_{1}.

Theorem 4.3.2. Let Δ_{1} be that subset \triangle of $V(4, p)$ given by Theorem 4.2.1. Then
(i) for $p=2$, there is an infinite sequence of extensions.
(ii) for $p=3$, we can extend twice only.
(iii) for $p>3$, extensions do not exist.

Proof. (i) $p=2:$ for any $n \geq 2$, let \triangle be the set

$$
\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1),(1,1, \ldots, 1)\}
$$

Any permutation of the $n+1$ points of Δ acts linearly on Δ.
Thus we can extend indefinitely, getting automorphism groups
$S_{5}, S_{6}, S_{7}, \ldots$ acting on $V(n, 2)$ for $n=4,5,6, \ldots$
(ii) $p>2:$ If there is a subgroup of $\operatorname{PGL}(5, p)$ acting 4-transitively on $p^{2}+2$ points, then $\left(p^{2}+2\right)\left(p^{2}+1\right) p^{2}\left(p^{2}-1\right)$
divides the order of $\operatorname{PGL}(5, \mathrm{p})$. This implics that

$$
p^{2}+2 \text { divides }\left(p^{5}-1\right)\left(p^{2}-1\right)\left(p^{3}-1\right)
$$

and hence that

$$
p^{2}+2 \text { divides } 3^{2}(2 p-17)
$$

This is clearly not true for $p>3$, but is for $p=3$.
Indeed we have already seen that an extension exists for $p=3$;
we get M_{11} acting 4-transitively on 11 points of $1 \cdot G(4,3)$. It can be shown in a similar way (we omit the lengthy proof) that a further extension exists: a sct of 12 points of $P G(5,3)$ acted on 5-transitively by the liathieu group N_{12}. This representation of ${ }^{11} 12$ was constructed in a different way by Coxeter [2]. It can be shown that there is no further extension to a 6-transitive group on 13 points.

Let $G=[V] G_{o}$, where G_{o} is the subgroup of $G L(n, p)$ as given by the above extensions. We give the ranks $r(p)$ of such permutation groups G below

n	$=$	4	5	6	7	8	9	10	\cdot	\cdot
$r(2):$		3	4	4	5	5	6	6	\cdots	\cdot
$r(3):$	3	3	4							
$r(5):$	3									
$r(7):$	3									
\vdots	\vdots									

We look at the case $(p, n)=(3,6)$ more closely. It is not difficult to find the orbits of H_{2} on $\mathrm{PG}(5,3)$; there are three of them, containing 12,132 and 220 points. Hence $[\mathrm{V}(6,3)] \mathrm{Z} . \mathrm{M}_{12}$ is a rank 4 group with subdegrees $1,24,264$ and 440. Ve now consider the corresponding S-ring and its dual. Recall that if the S-ring $\&$ is the transitivity module $c\left(V, G_{0}\right)$, then its dual $\&^{\#}$ is $C\left(V^{\#}, G_{0}^{\prime}\right)$, where G_{0}^{\prime} consists of the transposes of matrices in G_{o} (Sce Theorem 2.3.1) The following diagram gives the orbit lengths of M_{12}, M_{11} and $\operatorname{PSL}(2,11)$ in their actions as $\frac{G_{o}}{Z}$ and $\frac{G_{o}^{\prime}}{Z}$ on the lines of $V(6,3)$ and $V(6,3)$ \# respectively.

The orbit lengths on the left were found directly by finding the orbits of G_{0} on $V(6,3)$. Those on the right could be obtained similarly by finding the orbits of G_{0}^{\prime} on $V(6,3)^{\frac{\pi}{\pi}}$. However, it is easier to find them by means of the results of Tamarchke (2.2.3 and 2.2.4). Consider first the rank 4 group $[V] Z . M_{12}$ Let the n_{i} and f_{i} be as defined in 2.2.7. Then $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}=\{1,24,264,440\}$

By Theorems 2.2.4 and 2.2.6

$$
3^{12} \cdot \frac{24 \cdot 264 \cdot 4_{40}}{f_{2} f_{3} f_{4}} \text { is the square of a } 3 \text {-power, }
$$

where

$$
f_{2}+f_{3}+f_{4}=2^{4}+264+440
$$

It is easy to show that the only possibility is

$$
\left\{f_{2}, f_{3}, f_{4}\right\}=\left\{n_{2}, n_{3}, n_{4}\right\}
$$

The action of the subgroup M_{11} of M_{12} is obtained by fixing a line in the orbit \triangle (See diagram). Since $[V(5,3)] Z . M_{11}$ is a rank 3 group with subdegrees $1,22,220$, we have by 2.2.4,

$$
3^{5} \cdot \frac{22 \cdot 220}{f_{2} f^{f}} \quad \text { is the square of a } 3 \text {-power }
$$

where

$$
f_{2}+f_{3}=242
$$

The only possibility is

$$
\left\{f_{2}, f_{3}\right\}=\{110,132\}
$$

(This could also be obtained from Higman's formula (1.2.6)). We may assume that f_{2} and f_{3} for this case are f_{2} and f_{3} of the rank 6 group $[V(6,3)] \mathrm{Z} . \mathrm{M}_{11}$. It can now be shown, using 2.2.4, that for this group

$$
\left\{f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}=\{24,132,132,110,330\}
$$

Hence we get the line orbit lengthsas in the diagram. Similarly, the subgroup of $M_{l l}$ isomorphic to PSL(2,11) has orbits as shown.

The permutation group $[V(G, 3)] Z . M_{11}$ is of particular. interest for several reasons.
(1) It gives rise to nine distinct permutation representations of $M_{1 l}$, including the 3 -transitive representation of degree 12.
(2) It gives one of the few examples we know of an S-ring over a vector space in which the subdegrees of $S^{\prime \prime}$ are different from those of $\ell^{\#}$.
(3) It gives an answer to the following question raised by Wielandt (p.93, [22]): in a permutation group, if the n_{i} are all different, does it follow that the f_{i} are all different? In this case $\left\{n_{1}, \ldots, n_{6}\right\}=\{1,2,22,44,220,440\}$,
while

$$
\left\{f_{1}, \ldots, f_{6}\right\}=\{1,24,132,132,110,330\}
$$

S 4.4. The 3^{6} case.
In this section \& will denote an S-ring over $V(6,3)$
with parameters

$$
c=(2.56,2.308,1,20),
$$

and $\&_{1}$ its residual. In $S 4.0$, we saw that $\&_{1}$ has parameters

$$
c_{1}=(2.55,2.66,37,60)
$$

Theorem 4.4.1. An S-ring 8 , over $V(5,3)$ with parameters C_{1} is unique. $\frac{\text { Aut } \delta_{1}}{Z}$ is isomorphic to the Mathieu group M_{11}.

Proof. We proved earlier (Theorem 4.3.1) that an S-ring over $V=V(5,3)$ with parameters

$$
B=(22,220,1,2)
$$

is unique. It is isomorphic to the transitivity module $C\left(V, G_{0}\right)$ where G_{0} / Z is isomorphic to the group M_{11}. By (1.2.6) the corresponding rank 3 group $G=[V] G_{0}$ has

$$
\left\{f_{1}, f_{2}, f_{3}\right\}=\{1,110,122\}
$$

and by 2.2.6, these are the subdegrees of $C\left(V, G_{0}\right)^{\#}$. Hence if δ_{1} has parameters $C_{1}, \mathcal{S}_{1}^{\#}$ has parameters B and so is isomorphic to $c\left(V, G_{0}\right)!$ Thus $\mathcal{S}_{1}=\mathcal{S}_{1}^{\# \#}$ is unique and by 2.3.1, $\frac{\text { Aut } \delta_{1}}{Z}$ is isomorphic to $\frac{\text { Aut } 8_{1} \#}{Z}$, i.e. to M_{11}. From the uniqueness of the residual s-ring S_{1}, no doubt a unique extension could be constructed as in Theorem 4.3.1. However, this would be an arduous task with $|\triangle|$ so large as 56 , and since we will construct an S-ring with parameters C by other means, we will content ourselves with the following more modest result about the uniqueness of Aut $\&$

Theorem 4.4.2. Suppose 8 is a rank 3 S-ring over V(6,3) with parameters C and basis $0, \hat{\Delta}, \hat{\Gamma}$. If $\&$ admits an automorphism group G_{0} transitive on Δ and such that the minimal normal subgroup of $\frac{G_{0}}{Z}$ is simple, then G_{0} / z is isomorphic to either $\operatorname{PSL}(3,4)$ or $[\operatorname{PSL}(3,4)] C_{2}$.

Note. Suppose $G=[V] G_{0}$ is $a(*)-g r o u p$ with parameters C. Then G_{0} / Z is 2-transitive on \triangle. Let N / Z be a minimal normal subgroup of G_{o} / Z. By a Theorem of Burnside (12. 4 of [22]) every non-regular minimal normal subgroup of a doubly transitive group is elementary abelian and hence has degree p^{n} for some prime p. But in our case the degree of G_{0} / Z on \triangle is 56 , which is not a prime power, and so N / Z is non-regular and hence primitive and simple. Since primitive groups are transitive this shows that the (*)-group G will be given by Theorem 4.4.2. In fact the theorem shows that (*)-groups with parameters C do not exist and this is why we woaken the conditions on Aut \& so as to trap an S-ring with the required parameters.

Proof of 4.4.2. The stabilizer of a point of \triangle in G_{o} / Z is isomorphic to a subgroup of $\frac{A u t \delta_{1}}{Z}$ which by 4.4 .1 is isomorphic to M_{11}. By Theorem l.l.l we get
(A): 56 divides $|N / Z|$ divides $|G / Z|$ divides 56.11.10.9.8. M. Hall has shown that any unknown simple group of order less than $1,000,000$ must have one of twenty-one possible orders, and condition (A) ensures that $|N / Z|$ can be none of these. The only known simple groups whose order satisfics (A) are
(1) the Nathieu group Ni_{2} of order 56.11.10.9.3.
(2) the alternating group A_{7} of order 56.5 .9 .
(3) the alternating group A_{8} of order 56.10.9.4.
(4) the projective special lincar group of dimension 3 over GF(4), denoted by PSL(3,4), of order 56.10.9.4.

Case (1). If N / Z is isomorphic to M_{22}, then the stabilizer $(N / Z) \simeq(\alpha \varepsilon \Delta)$ has order 11.10 .9 .8 and hence is isomorphic to M_{11}, being a subgroup of the same order. But it is known that M_{1} is not a subgroup of M_{22}, and so this case cannot occur.

Case (2). By examination of the character table of A_{7}, wo find that no set of permutation characters and subdegrees of this group fulfils the conditions of Frame's Theorem, 2.2.7, for A_{7} to have a transitive representation on 56 points.

Case (3). A8 does have a representation on 56 points, namely its natural action on the unordered triples of 8 symbols. But the stabilizer of a triple contains an element of order 15 , which gives a contradiction, since M_{1} g contains no elements of order 15.

Case (4). Suppose N / Z is isomorphic to $\operatorname{PSL}(3,4)$. From Frame's result (2.2.7) and examination of the character table of $\operatorname{PSL}(3,4)$ we find that the only possible representation of PSL(3,4) on 56 points is one of rank 3 with subdegrees 1,10 , 45 and associated character degrees $f_{1}, f_{2}, f_{3}=1,20,35$. We will see later that this case occurs.

Now consider possible orders of G_{0} / Z satisfying (A).
(a) Suppose $\left|G_{o} / Z\right|=56.11 .10 .9 .8$. Let $\alpha \varepsilon \Delta$. Then $\left(G_{0} / Z\right)_{\underline{\alpha}}$ is isomorphic to $N_{1} 1$, and $(N / Z)_{\underline{\alpha}}$ is a proper normal subgroup of $\left(G_{o} / Z\right)_{\alpha}$, contradicting the simplicity of M_{1}.
(b) Suppose $\left|G_{0} / Z\right|=56.11 .10 .9 .4$. Then $\left(G_{o} / Z\right)_{\alpha}$ is isomorphic to a subgroup of M_{11} of index 2, again contradicting the simplicity of M_{1}.
(c) There remain only the possibilities that G_{0} / Z has order 56.10.9.8 or 56.10.9.4 and hence is isomorphic to $\operatorname{PSL}(3,4)$ or an extension of this group by C_{2}.

In our next theorem we exhibit an S-ring satisfying the hypotheses of Theorem 4.4.2. This result arose out of a suggestion by B. Fischer that since the number of isotropic lines of $V(6,3)$ under $0^{-}(6,3)$ is ll2, the desired suborbit \triangleq might consist of half of the isotropic lines.

Theorem 4.4.3. There exists an S-ring \& with parameters C, whose automorphism group is isomorphic to $[\operatorname{PSL}(3,4)] C_{2}$.

Proof. Since the details of the proof run into many pages we give only an outline. By Theorem 4.0.2, the orthogonal group $0^{-}(6,3)$ has 224 isotropic points(i.c. 112 isotropic lines). Let I denote the set of isotropic points. We guess that under the action of some subgroup M of $0^{-}(6,3)$, I splits into two orbits each with 112 points, and that one of these orbits, Δ, gives a simple basis quantity $\hat{\Delta}$ for a rank 3 S-ring $\&$ over $V(6,3)$. Since we require that M be transitive on 56 lines we may assume M contains an element of order 7.

Step 1: Find an element of order 7 lying in an orthogonal group $0^{-}(6,3)$.

Let T be the element

$$
\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
2 & 2 & 2 & 2 & 2 & 2
\end{array}\right]
$$

of $\operatorname{GL}(6,3)$. Thas order 7. We will find a quadratic from Q with matrix A such that T is an isometry with respect to Q (these terms were defined in $\$ 4.0$). By taking various pairs α, β of basis vectors and using

$$
(\alpha T, \beta T) Q=(\alpha, \beta) Q
$$

we get equations connecting the coefficients of A which can be solvedito give, for example

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

A has determinant 1 and so by 4.0 .1 the quadratic form Q with matrix A has type 2.

Step 2: Find the set I of isotropic vectors of $0^{-}(6,3)$; i.e. vectors (x_{1}, \ldots, x_{6}) which satisfy

$$
\sum_{i=1}^{6} x_{i}^{2}+2 \sum_{i=1}^{5} x_{i} x_{i+1}=0
$$

We list them as orbits of the 7-cycle T; i.e. in subsets $x_{1}, x_{2}, \ldots, x_{32}$ of the form

$$
\left\{\alpha, \alpha T, \alpha T^{2}, \ldots, \alpha T^{6}\right\}
$$

in such a way that $X_{1} v X_{2} \cup \cdots v X_{16}$ is a complete set of line representatives of I. We then have"

$$
\underline{I}=x_{1} \cup \cdots v x_{16}
$$

We take, for example,

$$
\begin{aligned}
& x_{1}=\{(2,1,0,0,0,0),(0,2,1,0,0,0),(0,0,2,1,0,0) \\
& \quad(0,0,0,2,1,0),(0,0,0,0,2,1),(2,2,2,2,2,1),(2,1,1,1,1,1)\}
\end{aligned}
$$

and $X_{17}=\left\{2 \alpha: \alpha \in x_{1}\right\}$, and so on.

Step 3: Find all possible \triangle.
We consider subsets of I which are unions of precisely 8 of the $16 \underline{x}_{i}$. Since we require that $\hat{\Delta}$ be a simple basis quantity for a rank 3 S-ring with $\lambda=1, \Delta$ satisfics the condition given by 4.2.2, that
(1) if α and β are linearly independent vectors in Δ, then $\alpha+\beta$ does not belong to Δ.
The possible sets \triangle for which (1) holds are obtained with little difficulty. For example, if we suppose X_{1} above is a subset of Δ, then the X_{i} which contain the isotropic vectors

$$
(2,1,0,2,1,0)=(2,1,0,0,0,0)+(0,0,0,2,1,0)
$$

and

$$
(2,1,0,1,2,0)=(2,1,0,0,0,0)+(0,0,0,1,2,0)
$$

cannot be subsets of Δ. By repeated use of this sort of argument we find that there are just four different unions of
eight \underline{X}_{i} which satisfy (l), and it is readily seen that these are equivalent under suitable changes of basis (which leave the set I unchanged). We thus get an essentially unique set Δ with

$$
|\Delta \cap \Delta+\alpha|=1, \quad \text { for all } \alpha \varepsilon \Delta
$$

A set of line representatives of Δ is

$$
\begin{aligned}
& X=\{(2,1,0,0,0,0),(0,2,1,0,0,0),(0,0,2,1,0,0), \\
& (0,0,0,2,1,0),(0,0,0,0,2,1),(2,2,2,2,2,1),(2,1,1,1,1,1), \\
& (2,0,1,0,1,0),(0,2,0,1,0,1),(2,2,1,2,0,2),(1,0,0,2,0,1), \\
& (2,0,2,2,1,2),(1,0,1,0,0,2),(1,2,1,2,1,1), \\
& (1,1,2,0,0,0),(0,1,1,2,0,0),(0,0,1,1,2,0),(0,0,0,1,1,2), \\
& (1,1,1,1,2,2),(1,2,2,2,2,0),(0,1,2,2,2,2) \text {. } \\
& (1,1,0,2,0,1),(2,0,0,2,1,2),(1,0,1,1,0,2),(1,2,1,2,2,1), \\
& (2,0,1,0,1,1),(2,1,2,0,2,0),(0,2,1,2,0,2), \\
& (1,1,0,2,0,2),(1,2,2,1,0,1),(2,0,1,1,0,2),(1,0,1,2,2,1), \\
& (2,0,2,0,1,1),(2,1,2,1,2,0),(0,2,1,2,1,2), \\
& (1,1,1,2,0,0),(0,1,1,1,2,0),(0,0,1,1,1,2),(1,1,1,2,2,2), \\
& (1,2,2,2,0,0),(0,1,2,2,2,0),(0,0,1,2,2,2), \\
& (1,1,2,2,0,0),(0,1,1,2,2,0),(0,0,1,1,2,2),(1,1,1,2,2,0), \\
& (0,1,1,1,2,2),(1,1,2,2,2,0),(0,1,1,2,2,2), \\
& (2,1,1,0,1,2),(1,0,2,2,1,2),(1,2,1,0,0,2),(1,2,0,2,1,1), \\
& (2,0,1,2,1,0),(0,2,0,1,2,1),(2,2,1,2,0,1)\}
\end{aligned}
$$

Since we find also that

$$
|\Delta \wedge \Delta+\gamma|=20
$$

for all $\gamma \in \Gamma$, where $\Gamma=V(6,3) \backslash \Delta_{u} O$, it follows from 2.1.6 that $0, \hat{\Delta}, \hat{\Gamma}$ generate an S ring with parameters C.

Step 4: Find fut \& .
We already know that, by our construction, the matrix T belongs to fut 8 . By means of a more complex version of the technique described in the proof of Lemma 3 of $\$ 4.3$, we find also the following matrices belonging to tut \& .

$$
\begin{aligned}
& A=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 2 & 0 & 0 \\
1 & 2 & 0 & 1 & 1 & 1 \\
1 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right] \\
& C=\left[\begin{array}{llllll}
0 & 2 & 0 & 1 & 2 & 0 \\
2 & 0 & 0 & 1 & 2 & 0 \\
2 & 1 & 1 & 0 & 2 & 0 \\
1 & 2 & 0 & 1 & 1 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 2 & 2 & 1
\end{array}\right] \quad D=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 2 & 0 \\
2 & 0 & 0 & 0 & 2 & 0 \\
0 & 1 & 1 & 2 & 1 & 0 \\
0 & 2 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 2 & 2 & 0 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Let G_{0} be the subgroup $\langle T, A, B, C, D\rangle$ of $G L(6,3)$, and let $\alpha=(2,1,0,0,0,0)$. Then

$$
G_{0, \underline{\alpha}}=\langle A \cdot B, C, D\rangle
$$

Go is transitive on \triangle and has rank 3 with subdegrees $1,10,45$, for the orbits of $G_{0, \alpha}$ on $\underline{\Delta}$ are $\{\underline{\alpha}\}, \underline{\Delta}_{2}$ and $\underline{\Gamma}_{2}$, where a set of line representatives of Δ_{2} is

$$
\begin{aligned}
& \{(0,0,0,2,1,0),(1,0,0,2,0,1),(0,0,0,2,2,1) \\
& (2,0,0,2,1,2),(2,1,0,1,2,2),(0,1,0,2,0,2),(0,0,0,0,1,2), \\
& (1,1,0,2,0,2),(2,2,0,1,0,2),(0,2,0,1,2,1)\} .
\end{aligned}
$$

We see that

$$
\Delta_{2}=\{\delta \varepsilon \Delta:(\delta, \alpha) Q=0\}
$$

while

$$
\Gamma_{2}=\{\delta \varepsilon \Delta:(\delta, \alpha) Q \neq 0\}
$$

Let $\beta=(0,0,0,2,1,0)$ and $\delta=(1,0,0,2,0,1)$. The orbits of $\langle B, C, D\rangle$ on $\underline{\Delta}_{2}$ are $\{\underline{\beta}\}$ and $\underline{\Delta}_{2} \backslash \underline{\beta}$, and those of $\langle C, D\rangle$ on $\underline{\Delta}_{2}$ are $\{\underline{\beta}\},\{\underline{\delta}\}$ and $\underline{\Delta}_{2} \backslash\{\underline{\beta}, \underline{\delta}\}$. By Theorem l.l.l, the order of G_{o} / Z is 56.10.9.8. By Theorem 4.1.1 the order of $\frac{\text { Aut } \&}{\mathrm{Z}}$ is a divisor of 56.11.10.9.8. If $\frac{\text { Aut \& }}{\mathrm{Z}}$ contains an element of order ll, then the group is doubly transitive on
 a point in Δ_{2} to one in Γ_{2}. Hence G_{0} is the full automorphism group Aut $\&$ of 8 .

Step 5: Identify Aut \& .
To identify the group G_{o} / Z we first consider the stabilizer of the point $\underline{\alpha}$. We observed earlier that one of the orbits $\underline{\Delta}_{2}$ of G_{0} on Δ consists of those lines of Δ which are orthogonal to $\underline{\alpha}$. We see also that the vectors of Δ_{2} span a 4-dimensional subspace $\left\langle\Delta_{2}\right\rangle$ of $V(6,3)$. We can show by 2.1 .6 that $\hat{\Delta}_{2}$ is a simple basis quantity for a rank 3 S-ring over $V(4, p)$ with parameters $A(3)$. Since we have already proved the uniqueness of such an S-ring, the results of $\$ 4.2$ imply that

$$
\left(G_{o} / Z\right)_{\underline{\alpha}} \text { is isomorphic to } \operatorname{PGL}(2,9) \text {. }
$$

It is shown in [16] that a rank 3 extension of this group with subdegrees $1,10,45$ is unique and isomorphic to $[\operatorname{PSL}(3,4)] C_{2}$. This completes our proof.

Note: We have shown that PSL(3,4) acts on 56 points of $P G(5,3)$ as a rank 3 permutation group with parameters $(k, \ell, \lambda, \mu)=(10,45,0,2)$.

Since $\mu=\lambda+2$, the associated second Higman design (defined on Page 6) is balanced. This gives solutions for design numbers 51 and 52 (listed as having no known solutions) in M. Hall's table (p. 294 of [9]). Since the publication of Hall's book, the above rank 3 representation of $\operatorname{PSL}(3,4)$ on 56 pointshas been found independently by wales [21] and Montague [16]. Our construction gives the further information that the 56 points may be chosen in $P G(5,3)$ on which $\operatorname{PSL}(3,4)$ acts as a subgroup of $\mathrm{PO}^{-}(6,3)$. It seems likely that the geometry of this situation might be explored to good effect.

8 5. Rank 3(p, n) groups with a balanced symmetric block design.

This section was motivated by the following remark of D.G. Higman (p.153, [10$]$): "It would be interesting to determine rank 3 groups, in addition to the symplectic groups, whose associated designs are balanced symmetric; at present we know only the orthogonal groups $O_{2 m+1}(q)$, $m \geq 2, q$ odd" We found a further example of such a group in $\mathbb{S} 4.4$ with parameters $(10,45,0,2)$. In $\$ 5$ we search for rank 3 (p, n) groups with balanced block designs. The results of Higman and Tamaschke are sufficient to restrict the possible sets of parameters to two infinite series, for which we will exhibit corresponding series of rank 3 (p, n) groups.

We recall the following results about the parameters (k, ℓ, λ, μ) of a rank $3(p, n)$ group (See 1.2.5, 1.2.7 and 2.2.9).
(a) $k+\ell+1=p^{n}$
(b) $\mu \ell=k(k-1-\lambda)$
(c) $\mathbf{d}=(\lambda-\mu)^{2}+4(k-\mu)$
(d) $d=p^{2 r}$, some integer r.
(e) p^{r} divides $2 k+(\lambda-\mu)(k+l)$, but $2 p^{r}$ does not.

We saw in $\mathbb{S} 1.2$ that the first lligman design is balanced if $\lambda=\mu$, the second if $\lambda+2=\mu$.

Theorem 5.1. Suppose G is a rank 3 (p, n) group.
(i) If the first Higman design of G is balanced (i.e. $\lambda=\mu$) then $p=2$ and
$(k, \ell, \lambda)=\left(2^{r-1}\left(2^{r} \pm 1\right), 2^{2 r-1} \mp 2^{r-1}-1,2^{r-1}\left(2^{r-1} \pm 1\right)\right)$.
(ii) If the second Higman design of G is balanced (i.e. $\lambda=\mu-2$) then we get parameters for the same designs as in (i) with Δ and Γ interchanged.

Proof. (i) With $\lambda=\mu$, (c) becomes

$$
d=4(k-\mu)
$$

and so (d) gives

$$
p=2 .
$$

Hence, from (c) and (d)

$$
\mathbf{k}-\mu=2^{2 \mathbf{r}-2}
$$

From (e), we see that
2^{r} divides $2 k$ but does not divide $4 k$,
and hence we get

$$
\begin{equation*}
k=a 2^{r-1} \tag{f}
\end{equation*}
$$

and

$$
\mu=2^{r-1}\left(a-2^{r-1}\right) \quad \ldots(g)
$$

for some odd integer a.

$$
\begin{aligned}
& \text { (a), }(b),(f) \text { and }(g) \text { give } \\
& \quad(a-1)(a+1)=2^{n-r+1}\left(a-2^{r-1}\right) \quad \ldots(h)
\end{aligned}
$$

Hence 2^{n-r} divides a-1 or $a+1$, and since k is strictly less than $2^{n}-1$, we have

$$
a=2^{n-r} \pm 1 \quad \text { or } \quad a=2^{n-r+1}-1
$$

If $a=2^{n-r+1}-1$, then (h) gives

$$
2^{r-1}=1 \text {; i.e. } r=1
$$

But then

$$
k=2^{n}-1
$$

contradicting (a), for ℓ is strictly positive. Hence

$$
a=2^{n-r} \pm 1
$$

and (h) implies that

$$
\mathrm{n}=2 r .
$$

(f) now gives

$$
k=2^{r-1}\left(2^{r} \pm 1\right)
$$

while (g) gives

$$
\mu=\lambda=2^{r-1}\left(2^{r-1} \pm 1\right)
$$

(ii) is proved similarly.

We now show that Theorem 5.1 is the best result possible by showing that for each set of parameters given by it, there is a group satisfying the hypotheses. We consider orthogonal groups over the field GF(2) of 2 elements (in $\$ 4.0$, we discussed orthogonal groups only for $p \neq 2$).

Let V be the vector space $V(2 r, 2)$. We define quadratic forms over V as in Chapter 8 of [3]. There are two of them up to change of basis, denoted by Q_{0} and Q_{1}, and defined as maps from V to $\mathrm{GF}(2)$ as follows. For $\alpha=\left(x_{1}, x_{2}, \ldots, x_{2 r}\right)$

$$
(\alpha) Q_{0}=x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{2 r-1} x_{2 r}
$$

and

$$
(\alpha) Q_{1}=(\alpha) Q_{0}+\mathbf{x}_{1}^{2}+\mathbf{x}_{2}^{2}
$$

We define the orthogonal group $0^{(i)}(2 r, 2)$ to be the group

$$
\left\{T \varepsilon G L(2 r, 2):(\alpha T) Q_{i}=(\alpha) Q_{i}\right\}
$$

for $i=0$ and 1. Let $G^{(i)}(2 r)$ be the semi-direct product $[V(2 r, 2)] 0^{(i)}(2 r, 2)$. Then $G^{(i)}(2 r)$ is rank 3 with suborbits

$$
\{0\}, \Delta^{(i)}=\left\{\alpha:(\alpha) Q_{i}=1\right\}, \Gamma(i)=\left\{\alpha:(\alpha) Q_{i}=0, \alpha \neq 0\right\}
$$

It is not difficult to show that

$$
\left|\Delta^{(0)}\right|=2^{r-1}\left(2^{r-1)}\right.
$$

while

$$
|\Delta(1)|=2^{r-1}\left(2^{r}+1\right),
$$

and hence that $G^{(0)}(2 r)$ and $G^{(1)}(2 r)$ are two series of rank 3 groups having parameters asgiven by Theorem 5.l.

These rank 3 representations were found independently by Rudvalis [not yet published], who has also made some further observations of interest. He showed that the first and second Higman designs of $\mathrm{G}^{(0)}(2 r)$ are respectively equivalent to the second and first Higman designs of $G^{(1)}(2 r)$. Thus, for each r, the two designs are essentially the same having an automorphism group which contains both $j^{(0)}(2 r, 2)$ and $0^{(1)}(2 r, 2)$. Rudvalis shows that these two groups (as subgroups of $G L(2 r, 2)$) generate the symplectic group $\operatorname{Sp}(2 r, 2)$. Hence $[V] \operatorname{Sp}(2 r, 2)$ is an automorphism group of the rank 3 design, although it acts doubly transitively on the points of the design. This gives an example of a design associated with a rank 3 S-ring 8 in which the automorphism group of the design is larger than Aut \& .

REFERENCES

1. ARTIN, E., Geometric Algebra, Interscience, New York, 1957.
2. COXETER, H.S.M., Twelve points in PG(5,3) with 95040 self-transformations', Proc. Roy. Soc. (A) 247, 279-293 (1958).
3. DICKSON, L.E., Linear Groups, Dover, New York, 1958.
4. DIEUDONNÉ, J., La Géométrie des Groupes Classiques, Berlin/Göttingen/Heidelberg; Springer, 1955.
5. DORNHOFF, L., 'The rank of primitive solvable permutation groups', Math. Zeit. 109, 205-210 (1969).
6. FOULSER, D.A., Solvable primitive permutation groups of lom rank', Trans. Am. Math. Soc. 143, 1-54 (1969).
7. FRAME, J.S., 'The degrees of the irreducible components of simply transitive permutation groups', Duke Math. J. 3, 8-17 (1937).
8. HALL, M., The Theory of Groups, Macmillan, New York, 1959.
9. HALL, M., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967.
10. HIGMAN, D.G., 'Finite permutation groups of rank 3', Math. Zeit. 86, 145-156 (1964).
11. HIGMAN, D.G., 'Primitive rank 3 groups with a prime subdegree', Math. Zeit. 91, 70-86 (1966).
12. HIGMAN, D.G., 'Intersection matrices for finite permutation groups ', Journal of Algebra 6, 22-42 (1967).
13. HIGMAN, D.G. and SIMS, C.S., 'A simple group of order 44,352,000', Math. Zeit. 105, 110-113 (1968).
14. HUPPERT, B., 'Zweifach transitive, auflösbare Permutationsgruppen', Math. Zeit. 68, 126-150 (1957).
15. HUPPERT, B., Endliche Gruppen I, Berlin-Heidelberg-New York, Springer, 1967.
16. MONTAGUE, S., 'On rank 3 groups with a multiply transitive constituent', J. Alg. 14, 506-522 (1970).
17. SCHUR, I., 'Zur Theorie der einfach transitiven Permutationsgruppen', S.B. Preuss. Akad. Wiss., Phys.Math. K\&. 598-623 (1933).
18. ScotT, W.R., Group Theory, Prentice-Hall, New Jersey, 1964.
19. TAMASCHKE, O., 'Zur Theorie der Permutationsgruppen mit regulärer Untegruppe I', Math. Zeit. 80, 328-352 (1963).
20. TAMASCHKE, O., 'Zur Theorie der Permutationsgruppen mit regularer Untergruppe II', Math. Zeit. 80, 443-465 (1963).
21. WALES, D., 'Uniqueness of the graph of a rank 3 group', Pac. J. Math. 30.1, 271-277 (1969).
22. WIELANDT, H., Finite Permutation Groups, Academic Press, New York, 1964.
23. WITT, E., 'Die 5-fach transitiven Gruppen von Mathieu', Abhandl. Math. Sem. Univ. Hamburg 12, 256-264 (1937).

[^0]: §5 is devoted to rank $3(p, n)$ groups in which the transitivity condition on G_{0} is replaced by the condition that the associated block design is balanced.

