
http://wrap.warwick.ac.uk

Original citation:
Ronak, Bajaj and Fahmy, Suhaib A. (2015) Minimising DSP block usage through multi-
pumping. In: International Conference on Field Programmable Technology (FPT),
Queenstown, New Zealand, 7-9 Dec 2015

Permanent WRAP url:
http://wrap.warwick.ac.uk/74989

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/74989
mailto:publications@warwick.ac.uk

Minimizing DSP Block Usage
Through Multi-Pumping

Bajaj Ronak∗ and Suhaib A. Fahmy†
∗School of Computer Engineering

Nanyang Technological University, Singapore
Email: ronak1@ntu.edu.sg

†School of Engineering, University of Warwick, UK

Abstract—Resource sharing in the mapping of an algorithm
to an architecture allows the same resource to be scheduled
for different uses in different cycles, generally at the cost of
increased schedule length. Multi-pumping is a method whereby
a resource is clocked at a frequency that is a multiple of the
surrounding circuit, thereby offering multiple executions per
global clock, and therefore sharing in the same clock cycle. This
concept maps well to FPGA architectures, where hard macro
blocks are typically capable of running at higher frequencies than
standard logic. While this technique has been demonstrated for
multipliers, modern DSP blocks are more complex with multiple
computational nodes. In this paper, we apply multi-pumping to
minimise DSP block usage, while taking advantage of the multiple
nodes they support. The proposed approach uses, on average,
39% fewer DSP blocks, at a cost of 19% more LUTs and 7%
more registers.

I. INTRODUCTION

As FPGAs have evolved from platforms for implementing
glue logic to advanced platforms for high speed compu-
tation, their architecture has gained more suitable features
for algorithm implementation. Applications including digital
signal processing, automotive, computer vision, and high-
performance computing have driven the advancement in archi-
tecture. Embedded hard blocks implement often-used functions
directly in silicon, thus consuming less area and power, and
running at a higher clock speed than the equivalent function in
logic. On modern devices, these include memory blocks, DSP
blocks, embedded processors, and more.

The simplified architecture of the DSP48E1 primitive in
modern Xilinx FPGAs is shown in Fig. 1. Inputs A, B, C, and
D are of different wordlengths: 30 bits, 18 bits, 48 bits, and 25
bits respectively. The DSP48E1 consists of three sub-blocks:
a 25-bit pre-adder, a 25×18-bit multiplier, and a 48-bit ALU.
These sub-blocks can be combined in different ways to per-
form up to three different operations using one DSP primitive.
Internal pipeline registers allow the DSP blocks to achieve high
throughput. Fig. 2 shows the maximum achievable frequency
with use of different sub-blocks, for different pipeline depths.
Maximum throughput can be achieved using three pipeline
stages if the pre-adder sub-block is not used. All four pipeline
stages are required when using pre-adder sub-block.

Hard blocks are typically a limited resource in most
FPGAs, and hence resource sharing should be applied where
possible to allow designs to make use of these resources.
Traditionally, operations scheduled in non-overlapped time
schedules can be mapped to the same hardware resource in
the binding stage. The same hardware is re-used by adding
multiplexers at the inputs and de-multiplexers at the outputs.

+/-

+ -
D

/

/

/

/

18

30

25

48

/
48

B

A

D

C

P

Multiplier
25x18

Pre-adder
25-bit

X

/
48 A:B

ALU
48-bit

INMODE OPMODE ALUMODE

Fig. 1: DSP48E1 primitive structure.

One of the major disadvantage of the traditional resource shar-
ing is it generally increases schedule length. Multi-pumping is
another technique that reduces DSP block utilisation, without
increasing schedule length. This takes advantage of the fact
that DSP blocks can typically be run at a much higher
frequency that the rest of the datapath, and therefore, if clocked
at a multiple frequency of the surrounding circuit, multiple
operations can be scheduled in the same clock cycle. In [1], the
authors demonstrated the technique by mapping two multiply
operations onto a single multi-pumped DSP block per global
clock. However, using only the multiplier in the DSP block
leaves the other blocks unused, and hence, requires all adders
to be implemented in logic.

The DSP blocks in modern Xilinx FPGAs can run at a
frequency of close to 500 MHz on a Virtex 6 [2], while large
circuits typically only have a frequency of 150–250 MHz. This
means multi-pumping is feasible. In this paper, we present
an automated tool that generates synthesisable RTL from a
high-level description of a complex mathematical function.
It minimises DSP block utilisation by multi-pumping DSP
blocks including the pre- and post-adders. To the best of
our knowledge, this is the first work in which multi-pumping
has been applied to embedded DSP blocks, mapping multiple
operations onto a single DSP block.

II. RELATED WORK

A significant amount of research has been done on resource
sharing at RTL level as well as in high-level synthesis [3], [4],
[5]. [3] proposed an algorithm combining temporal partitioning
and resource sharing to obtain a resource efficient implementa-
tions. [4] proposed five heuristics for global resource sharing,
minimising connection and functional resources. [5] combined
module selection and resource sharing to minimise area achiev-
ing minimum throughput requirements. A method to reduce
resource usage by determining a pattern of operations, which
is then used for efficient binding was proposed in [6].978-1-4673-9091-0/15/$31.00 c©2015 IEEE

2 3 4

200

300

400

500

#Pipeline Stages

M
ax

F
re
q
(M

H
z)

mul
add-mul
mul-add

add-mul-add

Fig. 2: Maximum frequency of a DSP48E1 for different blocks
used, with different number of pipeline stages.

The concept of multi-pumping has been applied previ-
ously in other areas. A common example is Double-Data-
Rate (DDR) memories, that allow read/write data at double
the system clock frequency. It has been extensively used in
designing register files [7], and multi-port memories [8]. A
white paper by Xilinx [9] used multi-pumped DSP blocks
with lower input data rates than the DSP block throughput.
However, this has not been incorporated in the Xilinx Vivado
HLS tool. Canis et al. applied multi-pumping to reduce DSP
block utilisation [1] in an open-source high-level synthesis tool
for Altera FPGAs, LegUp [10]. Our work differs because we
consider the DSP blocks as fully featured blocks supporting
different configurations of functions rather than just multipli-
ers as in that work. This offers more opportunities to take
advantage of multi-pumping since multiple operations can be
multi-pumped.

III. MULTI-PUMPED DSP BLOCK ARCHITECTURE

We have designed multi-pumped DSP blocks (mpDSPs),
based on the Xilinx DSP48E1 primitive, exploiting the full
set of sub-blocks. We assume the mpDSP runs at double
the speed of surrounding logic, requiring two clock domains.
Theoretically, an application with lower frequency require-
ments could offer 4× multi-pumping, however, the overheads
incurred by the data multiplexers and the increased complexity
of identifying sharing possibilities in the schedule would mean
diminished benefits.

A block diagram of the mpDSP is shown in Fig. 3. Clk2
is aligned with and exactly twice Clk1 . Clk1Follower follows
the system clock (Clk1), and is fed to the multiplexer select
signal to choose between inputs to the DSP48E1 primitive.
We do not use Clk1 directly to avoid possible hold-time
violations [9].

The three sub-blocks: pre-adder, multiplier, and ALU can
be enabled/disabled, depending on the logic to be mapped to
the mpDSP. In our mapping of operations to DSP blocks,
the multiplier is always used and is always enabled. All
four pipeline stages of the DSP48E1 primitive are enabled to
achieve maximum frequency for Clk2 . In configurations for
which the ALU block is used, two extra registers are added to
align the C input of the DSP48E1 primitive.

The mpDSP has a maximum of 8 inputs and 2 outputs, if all
three sub-blocks are utilised. If a configuration does not utilise
either the pre-adder or ALU sub-blocks, the corresponding
inputs are held at zero in the instantiation of the mpDSP,

+/-

+ -
D

X

CONFIG

A
LU

M
O
D
E

O
P
M
O
D
E

IN
M
O
D
E

A1

B1

B2

A2

D1

D2

C1

C2

Clk1
Follower

O1

O2

Clk1 Clk1Clk2

Fig. 3: Multi-pumped DSP Block Architecture.

and these are then optimised away by the vendor tools. The
configuration of each mpDSP is fixed by setting the INMODE,
OPMODE, and ALUMODE signals according to which blocks
are required. At each positive edge of the system clock (Clk1),
inputs I1 (A1, B1, C1, D1) and I2 (A2, B2, C2, D2) arrive
at the multiplexers. For the first half of the system clock,
Clk1Follower passes the I1 inputs to the DSP48E1 primitive.
The I2 inputs are selected in the second half of the system
clock. The latency of the mpDSP is equivalent to 3 system
clock cycles, after which the outputs corresponding to both
sets of inputs arrive at O1 and O2.

When all four inputs are used, the mpDSP block utilises
102 LUTs, 147 registers, and 1 DSP48E1 primitive. It can
run at a maximum system clock frequency of 235 MHz. The
maximum frequency for a design using mpDSPs is calculated
as min(fClk1, fClk2/2). On more modern devices where the
DSP block can reach 700 MHz, this translates to a 350 MHz
system clock which is highly respectable.

IV. IMPLEMENTATING MULTI-PUMPING

We adapt the tool presented in [11] to generate RTL
implementations utilising mpDSP blocks. The tool takes a text
file description of the algorithm, and generates synthesisable
RTL implementations that map to DSP blocks. The first step
extracts a dataflow graph from the description. This is then
partitioned into sub-graphs, such that each sub-graph can be
mapped to one of the possible DSP48E1 configurations. In
this DSP dataflow graph (DDFG), each node either represents
a DSP48E1 primitive configuration or an add/sub operation,
which is then implemented using FPGA logic. These add/sub
nodes are those in the original dataflow graph that cannot be
mapped to a DSP block in combination with a multiplication
operation. The DDFG is then scheduled to maximise multi-
pumping. The scheduled DDFG is translated to an mpDSP
Dataflow Graph (mpDDFG) for RTL generation with the extra
balancing registers required to align inputs to nodes in the
mpDDFG. Here, we discuss the multi-pumping optimised
scheduling used.

A. DSP Dataflow Graph (DDFG) Scheduling

Multi-pumping can be maximised if an even number of
DSP blocks with the same configuration are scheduled in
the same schedule time (ST). The schedule is determined
in two stages. We first determine a schedule which results
in the minimum number of mpDSPs, which is the primary
optimisation goal. If there are multiple schedules with the same

Algorithm 1: DDFG scheduling for multi-pumping
def mpSchedule(ddfg):

Data: DSP Dataflow Graph (ddfg)
Result: Scheduled ddfg

begin
asap(ddfg)
alap(ddfg)

flexiNodes = [] #list of nodes with mobility>0
fixedNodes = [] #list of nodes with mobility=0
#for each dsp node n in ddfg
for n in ddfg:

nmobility = talap − tasap

if nmobility>0:
flexiNodes.append(n)

else:
fixedNodes.append(n)

allSchedules = generateAllSchedules(flexiNodes)
minMpDSPs = len(ddfg) #minimum mpDSPs required

#discard invalid schedules and calcualte mpDSPs required for each
valid schedule
for schedule in allSchedules:

if isValid(schedule):
schedule[numMpDSPs] = calcNumMpDSPs(schedule)
if minMpDSPs>schedule[numMpDSPs]:

minMpDSPs = schedule[numMpDSPs]
else:

continue
else:

allSchedules.remove(schedule)

if len(allSchedules)>1:
numBR = [] #list of number of balancing registers required for
each schedule
for schedule in allSchedules:

numBR.append(estimateBR(schedule))
schDDFG = allSchedules.index(min(numBR))

else:
schDDFG = allSchedules[0]

schDDFG += fixedNodes
return schDDFG

mpDSP usage, we choose the one that consumes fewer extra
registers to balancing pipeline stages.

Firstly, the ASAP and ALAP schedules of the DDFG are
determined to compute the mobility of each node. This is the
measure of flexibility with which the node can be scheduled
in different STs; the difference between the ALAP and ASAP
STs. Nodes with zero mobility are those which must be
scheduled in a particular ST to maintain data dependencies.
Nodes with non-zero mobility can be exploited to arrive at a
schedule which maximises opportunities for multi-pumping.

Nodes with non-zero mobility and all possible schedules
are generated, taking into account these mobilities. This ex-
haustive list of schedules ignores dependencies. The next step
is to discard schedules that do not satisfy dependencies. For
the remaining valid schedules, we calculate the mpDSP block
requirement for each schedule. We also keep track of the
minimum number of mpDSPs required (minMpDSPs) among
all the schedules. Since the primary goal is to minimise usage
of DSP48E1 primitives, we select all schedules that require
minMpDSPs blocks and discard others. This can result in
multiple schedules with the same mpDSP consumption. To
resolve this tie, we estimate the number of pipeline balancing
registers required for each schedule. These are required to
ensure that dataflows through the graph are correctly aligned.
The schedule requiring the minimum number of balancing
registers is then selected as the final schedule. If multiple
schedules are equivalent at this point, the first is chosen. The
algorithm is detailed in Algorithm 1.

Although this approach results in an optimised schedule,

TABLE I: Resource usage and maximum frequency for multi-
pumped DSP block.

Sub-blocks used DSPs LUTs Eq LUTs Reg Freq (MHz)

Mul 1 45 241 51 235
Pre adder-Mul 1 70 266 51 230
Mul-ALU 1 69 265 147 227
Pre adder-Mul-ALU 1 102 298 147 229

the exhaustive search does not scale well to large dataflow
graphs. However, for our benchmark set, with dataflow graphs
of up to 34 nodes, the algorithm is able to generate the best
schedule in a reasonable time of a few seconds.

V. EXPERIMENTAL STUDY

To explore the effectiveness of the proposed multi-pumping
technique and to compare against multiplier-only multi-
pumping, we implemented a number of benchmark multiply-
add flow graphs. Our benchmark suite include the mibench2
filter, quadratic spline, and the Savitzky-Golay filter from [12];
the ARF, EWF, horner bezier, and motion vector from [13];
and 3 polynomials of varied complexity from the Polynomial
Test Suite [14]. These benchmarks represents computational
kernels within a larger application. We run the adapted tool
on an Intel Xeon E5-2695 running at 2.4 GHz with 16 GB
RAM. All implementations target the Virtex 6 XC6VLX240T-
1 FPGA found on the ML605 development board, and use
Xilinx ISE 14.6.

Multi-pumping results in a trade-off between DSP blocks
and LUT usage. As DSP blocks and LUTs cannot be compared
directly, and to understand overall resource usage, we compare
the area in terms of equivalent LUTs, where LUT eqv =
nLUT + nDSP × (196). 196 is the ratio of the number of
LUTs (150720) to the number of DSP blocks (768) on the
target device. This gives a proxy for overall area consumption.

Table I shows the resource usage and maximum frequency
for mpDSPs. Each row represents a combination of sub-blocks
used. The number of LUTs required increases as more sub-
blocks are used since more multiplexers are required at the
inputs. Configurations using the ALU sub-block require 2 extra
48-bit registers to balance the C input of the DSP48E1. Using
an mpDSP results in a reduction of one DSP48E1 primitive
at the cost of an increase in LUT and register usage, however
the increase in LUT usage is always less than the equivalent
LUT usage of a DSP block (196), hence always resulting in
an equivalent LUT improvement with extra register utilisation.
The maximum frequency achieved by all configurations is
largely the same.

We implement three different scenarios to understand the
benefits of multi-pumping full DSP blocks. The first (Original)
does not use multi-pumping but maps efficiently to DSP
blocks, as described in [11]. The second (MulOnly MP) multi-
pumps only multipliers (similar to the method proposed in
[1]). The third (MP) is the proposed multi-pumping of full
DSP blocks.

Table II shows the resource utilisation and maximum
frequency for all three approaches, along with the geometric
mean across all benchmarks. Compared to Original, MulOnly
MP results in an average reduction in DSP block usage of 45%
(33–50 %), at a cost of increased LUT and register usage of

TABLE II: Resource usage and maximum frequency for 10 benchmarks. Frequency in MHz.

Benchmarks Original MulOnly MP MP
DSPs LUTs Eq LUTs Regs Freq DSPs LUTs Eq LUTs Regs Freq DSPs LUTs Eq LUTs Regs Freq Runtime (ms)

Mibench2 6 214 1390 451 473 3 589 1177 832 230 3 366 954 596 236 83
SG Filter 6 96 1272 269 473 4 443 1227 591 236 5 88 1068 191 234 69
Horner Bezier 8 298 1866 704 473 4 778 1562 1139 228 4 470 1254 932 228 99
Quad Spline 13 269 2817 667 473 7 613 1985 1027 228 8 351 1919 683 232 179
ARF 16 740 3876 1588 473 8 1506 3074 2231 194 8 1070 2638 2167 219 2155
EWF 8 1160 2728 1898 451 4 1935 2719 2729 229 4 1474 2258 2256 228 172
Motion Vector 12 435 2787 1290 460 6 1816 2992 2437 218 6 741 1917 1976 232 65
Poly1 5 103 1083 238 473 3 279 867 414 233 4 65 849 190 236 51
Poly2 6 191 1367 401 473 4 366 1150 662 236 4 181 965 410 236 70
Poly3 12 241 2593 661 473 7 1081 2453 1425 218 10 227 2187 497 236 133

Geo Mean 8.5 280 2005 652 469 4.7 769 1753 1128 225 5.2 333 1479 697 232 128

Impv (%) 1 1 1 1 1 -10.5 57 16 38 3

2.8× and 1.7× respectively. The significant increase in LUTs
and registers is due to DSP blocks being used for multiplication
only and all add/sub blocks being implemented in LUTs.
Despite this significant increase, multi-pumping results in an
average reduction in equivalent LUTs of 13%, and achieves al-
most half the maximum frequency of the Original (225 MHz).
With an overall target design frequency in the range of 150-
250 MHz, this suggests multi-pumping is feasible.

Considering MulOnly MP as the baseline, MP utilises
10.5% more DSP blocks due to limited possibilities for multi-
pumping. However, as full DSP blocks are multi-pumped,
add/sub blocks are included, significantly reducing resource
consumption. MP utilises 57% fewer LUTs and 38% fewer
registers compared to MulOnly MP, with an improvement in
average maximum frequency of 3%. Compared to Original,
MP results in a 39% reduction in DSP block usage with an
increase of 19% and 7% in LUTs and registers respectively,
effectively saving 26% equivalent LUT area. This represents
DSP block savings comparable to MulOnly MP with signifi-
cantly less impact on LUTs and registers.

The last column of Table II shows the time taken to
generate synthesisable RTL from the high-level description for
MP, averaged over 100 executions. Runtimes vary from 51 ms
to 2.2 s, with an average of 128 ms across all benchmarks,
which is reasonable for a small step of the design flow.

As discussed earlier, multi-pumping is feasible only if
the maximum frequency requirement of the full system is
in the range of 150–250 MHz for our target device. Here,
we are focused on the area efficient implementation of a
computationally intensive inner loop of a larger system. As
the DSP48E1 primitive in the Virtex 6 can run at a maximum
frequency of 473 MHz (Fig. 2), implementations with multi-
pumping achieve a maximum frequency of up to 236 MHz
(half of the maximum frequency of DSP48E1 primitive) in
the system clock domain. As shown in Table II, most multi-
pumped implementations achieve this frequency requirement,
within a margin of 2–4%.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated the concept of multi-pumping ap-
plied to the DSP blocks in modern Xilinx FPGAs. Since these
blocks can run at high frequencies, we clock them at double
the system clock, and allow two DSP block functions to share
a single primitive. Crucially, we multi-pump multiple nodes to
fit the capabilities of these DSP blocks, resulting in average
equivalent LUT area usage 26% lower than designs without

multi-pumping. We intend to explore this idea further by
exploiting the dynamic reprogrammability of the DSP blocks
as in [15] to increase opportunities for multi-pumping, while
also developing a more efficient scheduling approach.

REFERENCES

[1] A. Canis, J. H. Anderson, and S. D. Brown, “Multi-pumping for re-
source reduction in FPGA high-level synthesis,” in Design, Automation
Test in Europe Conference Exhibition (DATE), March 2013, pp. 194–
197.

[2] Xilinx Inc., UG479: 7 Series DSP48E1 Slice User Guide, 2013.
[3] J. Cardoso, “Novel Algorithm Combining Temporal Partitioning

and Sharing of Functional Units,” in IEEE Symposium on Field-
Programmable Custom Computing Machines, March 2001, pp. 31–40.

[4] S. Memik, G. Memik, R. Jafari, and E. Kursun, “Global resource sharing
for synthesis of control data flow graphs on FPGAs,” in Proceedings
of Design Automation Conference, June 2003, pp. 604–609.

[5] W. Sun, M. Wirthlin, and S. Neuendorffer, “FPGA Pipeline Synthesis
Design Exploration Using Module Selection and Resource Sharing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, pp. 254–265, 2007.

[6] J. Cong and W. Jiang, “Pattern-based Behavior Synthesis for FPGA
Resource Reduction,” in Proceedings of ACM/SIGDA Symposium on
Field Programmable Gate Arrays, 2008, pp. 107–116.

[7] H. Yantir, S. Bayar, and A. Yurdakul, “Efficient Implementations
of Multi-pumped Multi-port Register Files in FPGAs,” in Euromicro
Conference on Digital System Design (DSD), Sept 2013, pp. 185–192.

[8] C. E. Laforest, M. G. Liu, E. R. Rapati, and J. G. Steffan, “Multi-ported
Memories for FPGAs via XOR,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 2012,
pp. 209–218.

[9] R. P. Tidwell, XAPP706: Alpha Blending Two Data Streams Using a
DSP48 DDR Technique, Xilinx Inc, 2005.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “LegUp: high-level synthesis
for FPGA-based Processor/Accelerator systems,” in Proceedings of the
International Symposium on Field Programmable Gate Arrays (FPGA),
2011, pp. 33–36.

[11] B. Ronak and S. Fahmy, “Mapping for maximum performance on
FPGA DSP blocks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, 2016.

[12] S. Gopalakrishnan, P. Kalla, M. Meredith, and F. Enescu, “Finding
linear building-blocks for RTL synthesis of polynomial datapaths with
fixed-size bit-vectors,” in Proceedings of IEEE/ACM International Con-
ference on Computer-Aided Design, Nov 2007, pp. 143–148.

[13] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communications sys-
tems,” in Proceedings of International Symposium on Microarchitecture,
Dec 1997, pp. 330–335.

[14] “[Online] Polynomial Test Suite,” http://www-sop.inria.fr/saga/POL/.
[15] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA

DSP block based soft processor for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 7, no. 3, pp. 19:1–19:23,
2014.

