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Abstract xviii

The majority of drugs are prescribed on the premise that their desired and undesired

effects are well characterised. However, the mechanisms underlying these effects can be

elusive and are of interest to the pharmaceutical industry in terms of rational drug design.

G protein-coupled receptors are a significant class of drug target that are capable of in-

fluencing multiple signalling processes, and downstream effects, simultaneously through a

variety of effectors, such as G proteins or β-arrestins. The effector activated by a given

receptor is often a function of the ligand. This is termed functional selectivity and can

contribute to adverse drug effects. Understanding functional selectivity in a mammalian

setting is hindered by cross-talk between many competing signalling components. The Sc.

cerevisiae pheromone response can be modified to isolate individual mammalian receptor-

G protein interactions. Therefore, this simple organism represents an excellent tool to

study functional selectivity. Further, the simplicity of this organism allows this pathway

to be mathematically modelled. By applying mathematical models to mammalian GPCR

signalling in yeast it is possible to extract experimentally inaccessible quantitative param-

eters underlying functional selectivity. This interdisciplinary approach to pharmacological

mechanisms is an example of systems pharmacology. Here a systems pharmacology ap-

proach is applied to adenosine receptor signalling in yeast with a view to understanding

the contribution of the ligand, receptor and G protein to functional selectivity.

The first stage of this process was expression and characterisation of adenosine A1R,

A2AR, A2BR and A3R subtypes in yeast. Here, the A1R and A2R subtypes were shown

to be functional in yeast, but the A3R response was limited. The A1R signals through

G proteins representing the inhibitory Gαi family in yeast, while the A2AR and A2BR

signal through both inhibitory and stimulatory G protein equivalents. Here ligand bias

is quantified but further extended to describe adenosine receptor selectivity. Further, the

yeast system was used to inform novel fluorescent compound development. Fluorescent

ligand-binding rates would ultimately inform modelling studies.

A minimal mathematical framework was developed to described A1R signalling in yeast.

Ordinary differential equation models recreate dynamic cellular processes. Here an ODE

model was applied to experimental time course data to predict rate constants throughout

the yeast G protein cycle in the presence of the mammalian A1R. This model predicts

that G protein subtype influences the ligand-receptor-G protein interactions of the A1R in

yeast. Further modification of the system and fluorescent technologies may help validate

these predictions.
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Introduction

1.1 Systems Pharmacology Approaches

Systems pharmacology applies systems biology approaches to understand the precise mech-

anisms through which drugs bring about their desired and adverse effects. Cellular and

multicellular behaviour is governed by many complicated and interconnected signalling

networks. The intricate workings of these networks, and the effects of drugs throughout

these systems is difficult to assess experimentally. However, knowledge of the full range

of effects of a given drug, and the underlying mechanisms, would be invaluable to rational

drug design and development (Agoram and Demin, 2011; Sorger et al., 2011).

Systems biology integrates mathematical modelling and experimental techniques to gain

insight into data that could not be achieved through either approach alone. However, this

is a very broad field and systems biology can be divided into two approaches. - “top-

down” and “bottom-up”. “Top-down” approaches tease a plethora of patterns from large

datasets to elucidate whole networks and their interactions on an organism or tissue level.

In contrast, “bottom-up” approaches consider individual mechanisms in a pathway and

how they contribute to a system-level response on molecular or cellular level. Basically,

“top-down” approaches are used to generate hypotheses while “bottom-up” approaches are

used to test mechanistic frameworks (Zou et al., 2013). While systems biology is “bottom-

up”, or “top-down”, systems pharmacology is considered “middle-out” in that it combines

traditional systems biology methods for a single purpose; to understand drug action on a

molecular, cellular, organism and population level (Figure 1.1) (Berger and Iyengar, 2011;

Vicini and van der Graaf, 2013).

1
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Figure 1.1: Systems Pharmacology is an emerging interdisciplinary approach that com-
bines and integrates mathematical modelling and experimental methods to elucidate drug
action on a system level. Unlike Systems Biology, which can be classed as ”top-down”
or ”bottom up” Systems Pharmacology combines multiple data sources to predict drug
mechanisms at molecular, cellular, organism and population levels. Figure adapted from

(Sorger et al., 2011)

The explosion in “-omics” technologies have greatly influenced drug development. Tran-

scriptomics, proteomics and metabolomics have been used to elucidate the full range of

drug effects and hint at potential mechanisms of action throughout a cell, tissue or organ-

ism. Systems pharmacology also embraces pharmacodynamic/pharmacokinetic (PK/PD)

approaches. These use mathematical models to describe the interactions between a drug

and various tissues throughout an organism (Gabrielsson et al., 2010).

However, the emphasis of systems pharmacology still remains the direct effect of a drug

on the plethora of cell signalling networks and how these accumulate to a system level

response (Schrattenholz and Soskić, 2008; Bai et al., 2014). This thesis uses an interdis-

ciplinary approach to understand the effect of a drug on multiple cell signalling processes

through a single drug target.
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1.1.1 Cell signalling and pharmacology

Cell signalling cascades are highly complex systems in which a signalling molecule binds

a primary messenger or receptor. This, in turn, activates effectors that produce second

messengers, small molecules that transmit and amplify a signal in specific cellular and sub-

celular locations, regulating various cellular processes. Pharmacological agents elicit their

effects through influencing cellular behaviour. For instance, nitric oxide (NO) activates

the effector guanylate cyclase. This converts guanine triphosphate (GTP) to the second

messenger cyclic guanine monophosophate (cGMP). The increase in cytosolic cGMP af-

fects various proteins, including kinases and ion channels that cause vasodilation and a

decrease in blood pressure (Kukovetz et al., 1987). Historically, this pathway has been the

target of nitroglycerine, which is converted to NO in vivo. More specific activation of this

pathway has been achieved by targeting the negative regulator of cGMP signalling, phos-

phodiesterase (PDE). This prevents the metabolism of cGMP to GMP and has vasodilatory

effects throughout the body. Indeed, the PDE5 inhibitor sidenafil, better known as Viagra,

was designed for cardiovascular and blood pressure disorders but is noted for its effects on

arousal (reviewed by Thatcher et al. (2004)).

Transcription is also a key process that can be influenced by cell signalling processes

and a prominent drug target. Steroid hormones such as testosterone, cortisol and thyroxine

bind to intracellular receptors. These receptors consist of a ligand-binding domain, a DNA-

binding domain and multiple activation sites distributed throughout the molecule. Steroid

receptors are ligand-dependent transcription factors that translocate to the nucleus and

bind DNA directly to activate hormone-responsive genes (reviewed by Falkenstein et al.

(2000))

Steroid hormones and small molecules, such as cortisol and NO, can directly influence

intracellular processes. However, many ligands cannot permeate the cell membrane and

must rely on their interaction with cell-surface receptors to mediate their effects. Ligand-

gated ion channels regulate the flow of ions across the cell membrane. A notable example

of this class of receptor is the nicotinic acetylcholine receptor. This receptor is essential for

transmission of signal across synapses in both the central and peripheral nervous systems

and has also been implicated in addiction (Dajas-Bailador and Wonnacott, 2004; Leslie

et al., 2013). This pentameric receptor undergoes conformational changes in response to the

endogenous ligand acetylcholine. This results in an influx of Na+ and hyper polarisation

of the cell membrane. Once this polarisation exceeds a threshold an action potential is

created that propagates down the nerve cell to the next synapse (Leonard and Bertrand,

2001).



Chapter 1: Introduction 4

Transmembrane proteins are a common way to access cell-signalling machinery from the

cell surface. Conformational changes in response to ligand binding affect their interactions

with cytosolic proteins, transducing signal from the extracellular to the intracellular do-

mains. Receptor-tyrosine kinases (RTKs) are a major drug target for a number of diseases

(Robinson et al., 2000). A notable example of an RTK is the insulin receptor. Insulin is a

protein hormone that cannot cross the cell surface but has key roles in glucose homeosta-

sis and has been implicated in type-II diabetes. The insulin receptor has an extracellular

α-domain linked to a transmembrane β-domain. Insulin binding promotes dimerisation

of the α-subunits, bringing two β-subunits together. These transmembrane domains are

tyrosine kinases that also contain multiple phosphorylation sites. The newly-associated

β-subunits cross-phosphorylate each other inducing conformational changes that recruit a

plethora of effector molecules. Downstream effects include activation of glycogen-synthase

and membrane trafficking of glucose transporters (Avruch, 1998). Other notable examples

of RTKs include the inteferon and interleukin receptors that are targets for immunological

and inflammatory disorders (Robinson et al., 2000).

This thesis focuses on a particular class of cell surface receptor, the G protein-coupled

receptor (GPCR), and its interactions with various cellular effectors as a function of lig-

and. By applying simple mathematical models to experimental data the aim is to better

understand the kinetics of the drug-GPCR-effector interaction.
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1.2 G protein-coupled receptors

GPCRs represent the largest class of cell-surface receptors. There are predicted to be

around 800 human GPCRs alone, capable of binding a wide range of extracellular ligands;

including photons, ions, amines, small molecules, peptides and pheromones (Fredriksson

et al., 2003). GPCRs influence a myriad of intracellular effectors, influencing cellular be-

haviour in response to the bound ligand. The ubiquitous nature of GPCRs underlies their

therapeutic importance as defects in GPCR signalling have been implicated in metabolic,

degenerative and sensory disorders. Additionally, this class of receptor represents a key

point of access through which to manipulate the intracellular processes of the cell. Cur-

rently, it is estimated that 30% of prescription drugs target this class of receptor (Correll

and McKittrick, 2014).

1.2.1 GPCR structure

Rhodopsin was the first crystallised GPCR and has served as an excellent model for this

receptor family (Palczewski et al., 2000). GPCR structures are highly conserved, consisting

of 7-transmembrane (TM) α-helical domains connected by alternating intracellular and

extracellular loops (ECL and ICL respectively) (Figure 1.2). The N-terminus projects

into the extracellular space, the roles and length of which can vary between receptors.

Typically, this region contains lipid modification sites and signalling sequences essential for

membrane localisation. The ECL regions are also highly variable between receptors but

have a prominent role in ligand recognition and binding, particularly ECL2 (Olah et al.,

1994; Avlani et al., 2007).

The 7-TM domain consists of 7 membrane-spanning amphipathic α helices and is highly

structurally conserved between GPCRs. The extracellular portion of these regions also

serve in ligand binding. However, ligand binding significantly alters the conformation of

these α-helices. In many GPCRs, the conformation of the TM region is maintained by an

ionic lock between a E/DRY motif of TM3 and a glutamate residue within TM6. Ligand

binding to the extracellular surface induces a 30◦ rotation of TM3 away from TM6. This, in

turn, alters the positioning of the IC loops, particularly IC3 thus affecting the interactions

of the receptor with cell signalling components (Bockaert and Pin, 1999; Ballesteros et al.,

2001).
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Figure 1.2: GPCR structure and activation A. The crystal structure of rhodopsin,
the model GPCR. PDB ID 1F88 (Palczewski et al., 2000). B. The secondary structure
of GPCRs. GPCRs consistent of 7-TM α-helices consisting of 20-28 hydrophobic residues,
flanked by alternative intracellular and extracellular loops. The C-terminus has roles in
GPCR trafficking while the extracellular loops and upper transmembrane domains have
roles in ligand binding. The intracellular loops and N-terminus interact with cell-signalling
machinery with roles in signal transduction and receptor internalisation. C. Helix arrange-
ments of GPCR activation. The activation of rhodopsin viewed from the cytosolic face.
Shown are TM1 - TM7 and the intracellular (IC) loops. An ionic lock between TM3 and
TM6 holds the GPCR in an inactive conformation. During receptor activation TM3 ro-
tates approximately 30◦ away from TM6 affecting the the positioning of the ICL regions.

Figure adapted from (Bockaert and Pin, 1999).
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1.2.2 GPCR families

Traditionally, GPCRs have been classified into six broad families (A-F) based on N-terminal

sequence homology (Attwood and Findlay, 1994). Family A receptors are the largest fam-

ily of GPCRs with 701 members (Kroeze et al., 2003). These receptors are also known

as rhodopsin-like receptors due to their similarity to rhodopsin, the prototypical GPCR

(Palczewski et al., 2000). This family is quite diverse and includes receptors that bind

small molecules including nucleotides and biogenic amines such as dopamine and serotonin.

Typically, the ligand-binding site is located between the TM domains of these receptors

(Lebon et al., 2011; Chien et al., 2010). However, it has also been shown that the ECL

regions have significant roles in ligand binding this class of receptor (Peeters et al., 2011,

2012).

Family B receptors, also known as secretin-like receptors, are characterised by their

enlarged N-termini, consisting of 60-80 amino acids, that contribute to the binding of

peptide hormones. Members of this family include the glucagon-like peptide-1 (GLP-1),

glucagon and corticotrophin-releasing factor (CRF) receptors that have roles in paracrine

signalling throughout the body (Laburthe et al., 2006).

Family C receptors include the metabotropic gluatamate receptors (mGluRs). Similar

to family B GPCRs, a large N-terminus is a defining feature of this family. The N-terminus

of family C GPCRs consists of two lobes connected by a hinge region. This “Venus fly-trap”

domain binds ligands such as Ca2+ and glutamate and shares structural similarities with

the periplasmic binding proteins of bacteria (O’Hara et al., 1993).

Family D and E receptors are not present in mammalian cells. Family D receptors

include the fungal mating pheromone receptors discussed in further detail later in this

thesis. Family E receptors represent cAMP receptors in organisms such as Dictystelium

discoidem that are crucial in nutrient sensing and chemotaxis.

Class F GPCRs include the frizzled/ smoothened receptors. This family responds to

secreted glycoproteins known as Wnts to influence cell fate, proliferation and differentiation.

Thus these receptors have been heavily implicated in embryonic growth and development

(Dirnberger and Seuwen, 2007).

A group of Class B receptors have been reclassified as new GPCR subtype, the adhesion

receptors (Fredriksson et al., 2003). These receptors are noted for the N-terminal adhesin-

like motifs that are rich in proline residues and glycosylation sites. These extremely large

N-termini can be 200-2800 amino acids in length and are known as “mucin-like” stalks.

Receptors from this family, such as the CD97 antigen receptor, have been noted their roles

in cell-to-cell adhesion (Bjarnadóttir et al., 2007).
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1.3 GPCR signalling

1.3.1 G protein-mediated signalling

A GPCR is defined by two features: their structure and their interaction with G proteins.

G proteins are highly conserved binary switches that regulate a variety of cellular processes

(Figure 1.3). Their state is dependent on the bound guanine nucleotide. Inactive G proteins

are bound to a molecule of guanine diphosphate (GDP). G protein activation requires

nucleotide exchange such that GDP is lost and GTP is bound. This process is driven by

the differences in cellular abundance between GDP and GTP but can be accelerated by

guanine exchange factors (GEFs). G protein inactivation is driven by GTP hydrolysis.

This can be achieved through the intrinsic GTPase activity of the G protein or accelerated

by GTPase activating proteins (GAPs) (Randazzo and Kahn, 1994; Bos et al., 2007).

G protein 
GTP	
   P P P

G protein 

GDP	
   P P

Active 

Inactive 

Nucleotide 
exchange 

GTP 
hydrolysis GAP GEF 

Figure 1.3: Schematic of the G protein cycle. Inactive G protein is bound to a
molecule of GDP. G protein activation occurs through nucleotide exchange of GDP for
GTP. This can happen spontaneously or be accelerated by GEFs. The active G protein
reverts to its inactive state through GTP hydrolysis. This occurs through the GTPase

activity of the G protein but can be accelerated by GAPs.

G proteins exist as both monomeric and multi-subunit complexes. Monomeric G proteins

include the Ras superfamily. Defects in Ras signalling have been implicated in a range of

human cancers. The Ras superfamily can be further subdivided into the Rab, Ras, Ran,

Rho and Arg subfamilies (Papadaki et al., 2002). Each of these act as molecular switches in

signal transduction pathways. While Ras proteins can act to transduce signal in response to

GPCRs, this is usually via a number of effectors and second messengers. However, GPCRs

directly couple to and signal through heterotrimeric G proteins consisting of a Gα subunit

and a Gβγ dimer (Figure 1.4).
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Gα 
Gβ 
Gγ 

Figure 1.4: The crystal structure of a Gαβγ complex. The Gαt subunit (purple)
was crystallised with its cognate Gβγ dimer (red and blue respectively). Gα binds guanine
nucleotide and also couples to the GPCR. The Gα and Gγ also contain lipid modification
sites essential to membrane tethering and localisation. PDB ID 1GOT (Lambright et al.,

1996).

The Gα defines both the state and functional role of the Gαβγ complex. When inactive

the Gα is bound to a molecule of GDP. Activation of a GPCR results in changes in the

conformation of the IC loops. This in turn alters the conformation of the Switch I, II and

III regions of the Gα, exposing the nucleotide binding site to the cytosol (Sprang, 1997).

The bound GDP is lost and replaced by GTP, which is around 30-100-fold more abundant

in the cell. The now active Gα dissociates from the Gβγ. Depending on the organism and

pathway either the Gα or the Gβγ can propagate downstream signalling (Figure 1.5).
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Figure 1.5: The G protein cycle. An inactive GPCR is coupled to a GDP bound
G protein consisting of a Gα and a Gβγ dimer. Receptor activation, for example from
ligand binding, promotes nucleotide exchange on the Gα such that GDP is lost and GTP
is bound. The active G protein can dissociate and either the Gα or Gβγ can propagate
downstream signalling depending on the organism and pathway. GTP hydrolysis by the
intrinsic GTPase activity of the Gα, or greatly accelerated by RGS proteins, promote G

protein deactivation and reassociation.

Negative regulation of signalling is essential to proper cellular function. This is achieved

at the G protein level through hydrolysis of the GTP to GDP due to the intrinsic GTPase

activity of the Gα subunit. The GDP-bound Gα reassociates with the Gβγ, reforming the

heterotrimeric G protein complex.

The GTPase activity of the Gα is relatively slow but can be greatly accelerated by

regulator of G protein signalling (RGS) proteins (Dohlman et al., 1995). Despite a great

deal of structural complexity RGS proteins are centred around the RGS-fold. Through

this fold they interact directly with the active Gα state and carry out two functions; they

accelerate the rate of GTP hydrolysis by the Gα and expedite GDP dissociation. RGS

proteins have proven to be an effective negative regulator of signalling. In cases where the

Gα propagates signalling the RGS can compete with effectors for the Gα-GTP, reducing

downstream signalling (reviewed by Ross and Wilkie (2000); Willars (2006)).
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1.3.2 Gα propagated signalling

The Gα subunit defines the G protein and largely determines the downstream signalling

pathways activated. This G protein couples to a GPCR via its C-terminus (Figure 1.6).

There are thought to be 16 Gα subunits in mammalian cells that can be broadly classified

into four main families based on sequence homology, Gαs, Gαi, Gαq and Gα12. Examples

of these families and their common roles are shown in (Table 1.1).

Gαs 
Gβ 
Gγ 

β2-adrenergic receptor 

Figure 1.6: Crystal structure of a GPCR-G protein complex. The crystal struc-
ture of the active β2-adrenergic receptor coupled to its native G protein containing Gαs.
The specificity of GPCR G protein interaction is largely determined by the C-terminus
of the Gα. This interaction has been highlighted with a dotted line. PDB ID 3SN3

(Rasmussen et al., 2011).

Table 1.1: A summary of Gα families and their common roles.

Gα family Family members Common role

Gαs Gαs and Gαolf Stimulate adenylate cyclase

Gαi Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαt, Gαgust Inhibit adenylate cyclase

Gαq Gαq, Gα11, Gα14, Gα15 and Gα16 Stimulate Phospholipase C-β activity

Gα12 Gα12 and Gα13 Rho family GTPase signalling
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The stimulatory G protein Gαs largely interacts with, and activates, the effector adeny-

late cyclase. This enzyme is responsible for the conversion of adenosine triphosphate (ATP)

to cyclic adenosine monophosphate (cAMP). cAMP is a versatile secondary messenger

within the cell capable of interacting with multiple signalling molecules to regulate pro-

cesses in the majority of cell types (Edwards et al., 2012). For instance, cAMP activates

protein kinase A (PKA), which phosphorylates a range of proteins to influence glycogen

synthesis or the activation of Ca2+ channels and modulation of muscle contraction (Taussig

and Zimmermann, 1998; Gancedo, 2013).

In direct contrast to Gαs, the inhibitory Gαi proteins inhibit adenylate cyclase reducing

the intracellular concentration of cAMP. However, it must be noted that Gαt subtype

mediates phototransduction through activation of phosphodiesterases (PDEs) (Sokal et al.,

2003). Gαi has also been implicated in the activation of inwardly-rectifying K+ channels

and can influence the activity of phospholipase C (PLC) (Peleg et al., 2002; Lei et al., 2003;

Lüscher and Slesinger, 2010).

PLC produces inositol trisphosphate (IP3) and diacylglycerol from phospholipid phos-

phatidylinositol 4,5-bisphosphate (PIP2). DAG and IP3 bind and activate protein kinase

C and Ca2+ channels of the sarcoplasmic reticulum respectively. PLC exists in several

isoforms and the Gαq family stimulate PLCβ to increase cytoplasmic Ca2+ concentrations

(Berridge, 1993; Wettschureck, 2005; Berridge, 2009).

Finally, the Gα12 family of G proteins are known to interact with Rho GTPases. Rho

GTPases are small monomeric G proteins that are highly conserved throughout Eukary-

ota. Like Gα, Rho GTPases are binary switches whose state is determined by the bound

nucleotide. When GTP bound, Rho GTPases are noted for their effects in cytoskeletal

organisation, morphology and polarity in a range of cell types (Perez and Rincón, 2010).
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1.3.3 Gβγ propagated signalling

There are estimated to be 5 Gβ and 12 human Gγ subunits in mammalian cells (Gautam

et al., 1998; McCudden et al., 2005). While encoded by separate genes these proteins are

synthesised and trafficked together and seldom found separately . The Gβ subunit contains

a WD-40 (tryptophan-aspartic acid) tandem repeat region that folds into a propellor-like

tertiary structure. This region is a defining feature of the Gβ subunit and a benchmark

through which potential Gβ subunits can be identified (Mos et al., 2013). The Gγ subunit

contains C-terminal lipid modification sites key to membrane localisation. It has also been

suggested that this subunit plays a significant role in GPCR coupling (Chinault and Blumer,

2003).

The Gβγ dimer can act as negative regulator of G protein signalling. Indeed, by blocking

the nucleotide binding site of the Gα subunit, Gβγ prevents spontaneous nucleotide ex-

change and G protein activation. However, Gβγ is also a signal propagator in its own right.

It has long been known that Gβγ activates G protein-regulated inward rectifier K+ (GIRK)

channels to trigger cell hyperpolarisation in vivo (Logothetis et al., 1987). This subunit has

been shown to regulate a variety of kinases including extracellular signal-regulated kinases

(ERK), janus kinases (JNK) and MAPK such as p38 (reviewed by McCudden et al. (2005)).

It has also been reported that the specific Gβγ combinations can selectively activate various

signalling pathways (Logothetis et al., 1987; Wolfe et al., 2003).
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1.4 GPCR Pharmacology

1.4.1 Receptor activation and GPCR ligands

The two-state receptor model predicts that the receptor population exists in an equilibrium

between the R and R* state (Kenakin, 2004). Ligands are capable of selectively binding,

altering and stabilising different receptor states, thus shifting this equilibrium (Figure 1.7).

Agonists interact with the receptor to induce and stabilise the R* state. This in turn

recruits and activates signalling molecules such as G proteins. The extent of downstream

signalling following receptor activation defines the nature of the agonist. Full agonists

interact with a receptor’s orthosteric site to stimulate the maximal level of signal for a

given system. Partial agonists only induce a fraction of this response. The two-state model

predicts that this is likely to be due to the the differences in the R:R* equilibrium induced

by agonists and partial agonists.
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Figure 1.7: The effect of ligands on concentration-response curves. The two-state
receptor model assumes a dynamic equilibrium between active (R) and inactive receptors
(R*). Different ligands influence this equilibrium. A. Agonists and partial agonists push
the equilibrium towards the R* state. Antagonists and inverse agonists stabilise the R
state. B. Competitive antagonists shift agonist concentration-response curves rightwards.
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In contrast, antagonists shift the equilibrium closer to the R state. Antagonists can be

classified as competitive or non-competitive. Competitive antagonists bind the orthosteric

site, preventing agonist binding. However, this interaction is transient and can be overcome

by increasing agonist concentration (Figure 1.7). Non-competitive antagonists typically

bind a site distinct from the orthosteric site, or covalently modify and permanently alter

the orthosteric site, thus preventing generation of of the R* state.

Receptors can exist in the R* state in the absence of ligand. This spontaneous activation,

and consequent downstream signalling, is termed constitutive activity and has been a useful

tool in the targetting and study of GPCRs. Constitutively active mutant (CAM) variants

of GPCRs can be generated that mimic the active receptor state (Ladds et al., 2005a).

Most CAMs contain modifications that disrupt the ionic lock, particularly on TM6 and

its interface with ICL3. This has provided an excellent experimental system to study the

active state of a range of GPCRs, their structure and their implications for downstream

signalling (Kobilka and Deupi, 2007).

Constitutive receptors are also of significant therapeutic interest. A number of patholo-

gies, such as retinitis pigmentosa and hyperthyroidism have been linked to spontaneous

generation of CAMs in vivo (Hwa et al., 1997). In these cases inverse agonists have great

therapeutic potential. These ligands selectively bind and stabilise the R state. This mani-

fests itself as a reduction in downstream signalling and therefore basal response. This has

the potential to correct elevated signalling for undesirable CAMs. Inverse agonists also

provide an avenue to reduce downstream signalling and second messenger concentrations

through endogenous constitutively active GPCRs (Chalmers and Behan, 2002).

1.4.1.1 Allosterism

Secondary ligand binding sites known as allosteric sites exist across many receptor families,

including GPCRs (De Smet et al., 2014). This allows a given receptor to simultaneously

bind multiple ligands, the interactions of which can profoundly alter both receptor state

and interactions with downstream signalling pathways (Wootten et al., 2013). There are

multiple classes of allosteric ligand. One such class is the positive allosteric regulator

(PAM). PAMs do not elicit any response through a receptor on their own but have coop-

erative effects when combined with agonists. Through binding the allosteric site, PAMs

alter the orthosteric binding site to increase its affinity for specific agonists. This man-

ifests as a leftwards shift in the agonist concentration response curve and an increase in

signalling (Christopoulos and Kenakin, 2002). PAMs have been discovered and developed

for a number of GPCRs, including the adenosine A1, M2-muscarinic and calcium-sensing

GPCRs (Hill et al., 2014; Christopoulos, 2014). In contrast, negative allosteric modulators

decrease the affinity of orthosteric sites for endogenous agonists, reducing ligand sensitivity
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and downstream signalling (Kenakin, 2004). Allosteric compounds can also have multi-

ple mechanisms of action though the ability to bind the orthosteric site. Hence, these

compounds exhibit intrinsic agonist or antagonist activity in the absence of an orthosteric

ligand (Jarvis et al., 1999; Knudsen et al., 2007). The ability to influence agonist selectiv-

ity presents an attractive opportunity to fine-tune downstream signalling. This has led to

the development of biopic ligands that can simultaneously occupy and influence both the

orthosteric and allosteric sites (Valant et al., 2012).

1.4.1.2 Dimerisation and bivalent ligands

Thus far this study has considered GPCRs as monomeric complexes. Indeed, some GCPRs

such as the β1-adrenergic receptor have been shown to solely act as monomers. However, the

related β2 adrenergic receptor forms homodimeric complexes (Lohse, 2010). This is far from

an isolated case. Many GPCRs form homodimeric, heterodimeric or higher order complexes

though interactions between the TM domains (Milligan et al., 2007; Rivero-Müller et al.,

2013) Oligomerisation has many advantages for GPCRs, particularly for trafficking and

membrane localisation. Dimerisation can occur in the endoplasmic reticulum, allowing

complexed receptors to be transported to the membrane together (reviewed by Milligan

(2009)). Indeed, dimerisation is essential for Class C GPCR function where one protomer

binds ligand while the other binds and activates a G protein (Romano et al., 1996; Bai

et al., 1998; Okamoto et al., 1998; Zhang et al., 2014).

The presence of GPCR oligomers presents both pharmacological challenges and oppor-

tunities. Higher order complexes complicate ligand-binding and pharmacology, especially

where one protomer can allosterically influence the other (Rozenfeld and Devi, 2010; Hill

et al., 2014). However, the development of bitopic ligands allows specific targeting and ac-

tivation of particular GPCR dimers. These compounds contain two distinct ligand domains

connected by a short linker domain that can simultaneously activate multiple binding sites

across the dimer (Narlawar et al., 2010; Valant et al., 2012, 2014)
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1.4.2 Receptor internalisation

The duration and localisation of a receptor is key to proper signalling. Consequently, the

spatial and temporal regulation of GPCRs is tightly controlled in the cell through expres-

sion, trafficking and internalisation. Defects in the latter process lead to overexpression of

a receptor at the cell surface, excess signalling and a number of disease states. In the case

of the protease activated receptor-1 (PAR-1) GPCR, defects in receptor trafficking have

been linked to cancer (Marchese et al., 2008). Internalisation varies between receptors and

organisms, but the C-terminal tail of the GPCR is a key, conserved feature of this process

(Wolfe and Trejo, 2007; Croft et al., 2013).

GPCR internalisation can be agonist dependent or constitutive. Agonist-bound receptor

complexes have a high affinity for G protein-coupled receptor kinases (GRKs). There are at

least 7 GRKs in mammalian cells that phosphorylate key serine and threonine, but rarely

tyrosine, residues on the C-terminus and ICL3 region of the receptor. The phosphorylated

GPCR can then engage with a family of proteins known as β-arrestins (Lefkowitz, 2005).

This small family consists of β-arrestins-1-4. Confusingly, β-arrestins 2 and 3 are also known

as β-arrestins 1 and 2 (Shenoy and Lefkowitz, 2011). β-arrestins consist of structurally

distinct N and C-termini flanking a core of 12 polar residues (Hirsch et al., 1999). The

core binds binds the phosphorylated residues of the GPCR, exposing the C-terminus of the

β-arrestin to the cytosol. This allows the arrestin to perform two functions; inhibition of G

protein signalling and to serve as a scaffold for other protein complexes. Typically, the C-

terminus binds clathrin and various adaptor proteins, such as AP-2 or the dynamin GTPase,

required for clathrin-mediated endocytosis. The GPCR can remain in the endosome for

rapid recycling to the cell surface. This allows for quick desensitisation and response to

the ligand. Indeed, GPCRs such as the β2-adrenergic receptor are capable of signalling

from the endosome (Shenoy et al., 2006). Alternatively, the receptor can be targeted for

lysosomal or proteasomal degradation (Marchese et al., 2008; Correll and McKittrick, 2014)

(Figure 1.8).
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Figure 1.8: GPCR interactions with β-arrestins and internalisation. The C-
terminus active, agonist-bound GPCR serves as a substrate for GRKs. GRKs phospho-
rylate specific serines and threonines, enabling β-arrestin recruitment. β-arrestins inhibit
G protein activation while serving as a scaffold for internalisation machinery. The inter-
nalised GPCR can be held in the endosome for rapid receptor recycling or targeted for
degradation. β-arrestins can also trigger signalling in various kinases in response to an

active GPCR. Figure adapted from Correll and McKittrick (2014)

However, β-arrestin-independent mechanisms of internalisation exist. Some GPCRs,

such PAR-1, can directly interact with the AP-2 adapter protein to shuttle back and

forth between the endosome and plasma membrane independent of ligand (Paing et al.,

2004). GPCRs, such as the M3-muscarinic receptors can also internalise through clathrin-

independent mechanisms (Scarselli and Donaldson, 2009).

1.4.3 β-arrestin signalling

Historically, β-arrestins have been viewed as negative regulators of GPCR signalling and

as scaffolds for clathrin-mediated endocytosis. However, β-arrestins also serve as scaffolds

for a range of kinases and are becoming increasingly prominent as signalling molecules in

their own right. The specificity of this scaffold varies between receptors. The most well-

characterised β-arrestin signalling pathways are mitogen activated protein kinases (MAPK)

pathways, particularly the extracellular signal-regulated kinases (ERK) pathways activated

by the β-adrenergic receptor (reviewed by Shenoy and Lefkowitz (2011)). Here, the agonist-

bound GPCR recruits β-arrestin-2. This forms a scaffold for the endocytotic machinery

and for the MAPK kinase kinase (MAPKKK) Raf-1. This phosphorylates the MAPK ki-

nase (MAPKK) MEK-1 that activates the MAPK ERK1/2. Phosphorylated ERK1/2 can

then activate a range of downstream effectors. However, the MAPK pathway activated is

receptor specific. For instance, the angiotensin II GPCR triggers the sequential phospho-

rylation of Ask1, MKK4 and JNK through β-arrestins (Charest et al., 2005). The activity
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of β-arrestins as signalling scaffolds is not limited to MAPK pathways. β-arrestins have

also been shown to have both inhibitory and stimulatory effects on PI3K and downstream

effects on IP3 signalling. These signalling scaffolds have also been reported to interact

with phosphodiesterases, counteracting cAMP generation and influencing downstream G

protein-mediated signalling (DeFea, 2011).

1.5 GPCR signalling bias

Some GPCRs, such as the neurotensin receptor, couple to and activate a single G protein

(Gαi) to influence downstream signalling (Mustain et al., 2011). However, many GPCRs

are promiscuous, binding and activating multiple effectors. Such non-selective pathway

activation through a single drug target can greatly contribute to adverse effects. However,

the ligand bound to a GPCR can preferentially activate various signalling pathways. This is

thought to be through the existence and stabilisation of multiple active receptor states, each

with a different affinity for a given signalling effector. This could manifest as preferential

activation of G proteins over β-arrestins. This ability to control downstream signalling

through ligand alone is termed bias, functional selectivity or agonist-directed trafficking

(Figure 1.9). This has signifiant implications for the pharmaceutical industry in terms of

rational drug design and reduced adverse effects (reviewed by Shonberg et al. (2014)).

An excellent example of G protein/ β-arrestin signalling bias is the µ-opioid receptor

(MOR). This GPCR is a powerful target for pain and exploited by analgesics such as

morphine. Like many GPCRs, the MOR is capable of signalling through multiple path-

ways, both G protein dependent and G protein-independent. The analgesic properties of

morphine arise through Gα12 activation (Pradhan et al., 2010, 2012). However, adverse

drug effects include addiction, nausea and inflammation at high sustained doses. β-arrestin

knockout mouse models (Raehal, 2005) show greater sensitivity to morphine with reduced

adverse effects. This suggests that the adverse effects of MOR ligands are due to unwanted

activation of the β-arrestin mediated signalling. Consequently, ligands have been developed

that bias MOR signalling through G protein-dependent pathways with reduced adverse ef-

fects (Chen et al., 2013; DeWire et al., 2013). Thus, ligand bias has significant implications

for rational drug design and is of significant interest to the pharmaceutical industry.
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Figure 1.9: GPCR signalling bias. Many GPCRs are capable of signalling through
multiple effectors, G proteins and β-arrestins to regulate a variety of downstream processes.
In these cases, the bound ligand can directly influence the signalling pathway activated.

This is termed bias, functional selectivity or agonist-directed trafficking.

Ligand bias is not limited to preferentially signalling via G protein-dependent or G

protein-independent mechanisms. Many GPCRs are capable of selective G protein acti-

vation in response to ligand. An excellent example of this is the GLP-1R. The GLP-1R

responds to the peptide hormone GLP-1 to influence blood glucose homeostasis in vivo.

Consequently, the GLP-1R is an attractive target for the treatment of Type-2 diabetes.

This receptor is capable of signalling through Gαs and Gαi and can both stimulate and

inhibit adenylate cyclase. Weston et al. (2014) demonstrated that the preferential activa-

tion of Gαs and Gαi is a function the ligand, varying between GLP-1 and its degradation

product. Further, they hypothesise that this bias is a negative feedback mechanism for

rapid termination of signal.
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1.6 Modelling GPCR pharmacology

The precise mechanisms underlying bias are unclear. X-ray crystallography has produced

a multitude of active and inactive receptor structures with remarkably consistent TM helix

arrangements (Palczewski et al., 2000; Tsuchiya et al., 2002; Park et al., 2008; Chien et al.,

2010). This would appear to favour the two-state model of activation. While it is hypoth-

esised that multiple active receptor conformations exist these models only account for the

receptor and not the effector; G protein or β-arrestin. Consequently, the contribution of

the effector is ignored. This study aims to understand the kinetic contribution of the lig-

and, the GPCR and the effector in determining signalling bias. However, this information

is not easily accessible experimentally. Systems pharmacology, and by extension systems

biology, combine experimental and theoretical approaches to elucidate details not avail-

able through either method alone. Here, mathematical models are applied to experimental

data to understand the changes in ligand binding, receptor activation and downstream sig-

nalling. Fortunately, GPCRs are extremely well characterised and there are a number of

mathematical models available for use.

1.6.1 Structural models

There are approximately 130 crystal structures of GPCRs solved to date and this num-

ber is growing rapidly. Consequently, there is a vast amount of structural information

available to inform mathematical models. For example, homology modelling uses a known

crystal structure as a template for a receptor whose structure is unknown. The amino

acid sequence, and potential transmembrane domains, are aligned and mapped onto the

equivalent regions and residues of a known structure (Tuccinardi et al., 2006). This allows

for a range of predictions to be made about the unknown structure including its poten-

tial docking interactions with ligands and other proteins (Córdova-Sintjago et al., 2012).

This approach has generated a model of the active adenosine A1 receptor using the crystal

structure of the active, ligand-bound, adenosine A2A receptor. This model was used to

predict the ligand binding characteristics of a range of novel agonists (Knight et al., in

preparation). However, homology modelling has a number of limitations. The selection of

the correct template is crucial and can be difficult or counterintuitive. Additionally, the

template structure may require editing before a homology model can be developed. While

the TM domains are largely conserved, the ECL and ICL regions of GPCRs are highly

variable and and conformationally flexible. The conformation of the ECL regions in par-

ticular has significant implications for the ligand binding pocket. These limitations present

difficulties in generating an accurate homology model (Costanzi, 2012, 2013).
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Even after the generation of a successful homology model, consequent mechanistic in-

formation is lacking. The best a homology model can do is predict whether two molecules

can dock in a given conformation. How they interact is often elusive. Structural studies,

whether generated by homology modelling or X-ray crystallography, can be extended by

more complex modelling techniques. An example of this is molecular dynamics simulation.

These models can provide atomistic levels of data on a protein structure and its potential

conformational changes and movements as a function of time. The potential interactions

between different residues and atoms are stored in a force field that dictates both the com-

plexity and progression of the simulation. However, this method is incredibly expensive

in terms of both time and raw computational power. Consequently, the majority of sim-

ulations are in the nano to µ-second range and are limited to a small subset of molecules

(Linderman, 2009). To date there are no molecular dynamics studies that include the lig-

and, the receptor and the G protein. While molecular dynamics modelling could potentially

be used to identify the functional unit of functional selectivity, computational expense lim-

its its feasibility at this time. However, simpler modelling techniques can be employed to

understand the kinetics of bias.

1.6.2 Equilibrium models

Equilibrium models typically use one or more simple equations to evaluate a system at

steady state. These models can be fitted to experimental data through algorithms such

as least squares regression to estimate a number of parameters. These approaches are

an essential part of modern pharmacology. For example, the logistic equation has been

used extensively to quantitate the features of sigmoidal concentration-response curves in

response ligands. These include basal ligand-independent signal, the maximum level of

signal (Emax) and EC50 (the ligand concentration required to elicit half maximal response,

a measure of sensitivity) (Goutelle et al., 2008). This model is an excellent system to explore

and compare ligands and basic details of their mechanisms. Comparing Emax allows for full/

partial agonism to be determined while the basal allows the level of constitutive activity to

be measured. While this model is extremely useful, it can be limited. For example, the EC50

is a measure of sensitivity on a system level. This includes contributions from the ligand,

the GPCR and the effector that cannot be distinguished by this equation. However, slightly

more complex equilibrium models that describe systems at steady-state can separate these

processes (Motulsky and Christopoulos, 2004). This has advantages when studying ligand

bias.
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1.6.2.1 The Operational Model of Pharmacological Agonism

Black and Leff (1983) revolutionised quantitative pharmacology with the development of

the operational model of pharmacology (hereby referred to as the operational model). This

model assumes a very simple reaction scheme where a ligand binds a receptor with an affinity

KA. The active, ligand-bound, receptor (LR) then triggers downstream signalling to bring

about a response with a signal transduction coefficient, KE (Figure 1.10). However, the

efficiency of signal transduction is also dependent on the concentration of active receptor.

Consequently, a new term was used to define the efficiency of downstream signalling. This

is known as efficacy or τ and is calculated as
[LR]

KE
. This reaction scheme was evaluated at

steady state, where all reactions are at equilibrium.

Response = Basal +
Emax −Basal · τn · [A]n

τn · [A]n + ([A] +KA)n
(1.1)

Here n represents the slope of the exponential phase of the concentration-response curve

or the proportionality of response between Basal and Emax. Generally it is assumed

that the response is linearly proportional to ligand concentration in this range and n is

constrained to 1.

KA 
Response 

KE 

L 

R 

LR 

Figure 1.10: The Operational Model of Pharmacological Agonism. Ligand (L)
binds receptor, with an affinity KA to form and active ligand receptor (LR) complex.
This complex can then induce downstream signalling with a signal transduction coefficient
KE . However, the efficiency of signal transduction is also dependent on the amount of

LR available. Consequently, efficacy or τ , determined as
[LR]

KE
, is used as a measure of

downstream signalling efficiency.

This simple model is extremely powerful. Its simplicity allows it to be applied to any

system where a drug binds a target to induce a quantitative signalling response. When

applied to GPCR signalling, KA represents ligand binding and τ is essentially a black

box containing both G protein activation and all downstream signalling. This distinction

between ligand binding and downstream signal allows this model to be used to quantitate

bias. Rajagopal et al. (2011) used this model to develop a method to directly compare and

quantify signalling bias between different signalling pathways for various ligands targeting

a single receptor.
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Since its publication in 1983 the operational model has had profound effects on pharma-

cology. Indeed, it has been adapted to new ligands, new applications and even to include

allosterism as evidenced by the collected works of Prof. Terry Kenakin and Prof. Arthur

Christopoulos (Christopoulos and Kenakin, 2002; Kenakin, 2004; Kenakin et al., 2012;

Christopoulos, 2014; Shonberg et al., 2014). Thanks to their efforts, this model remains

a central tenet of GPCR pharmacology. However, this model does have some significant

limitations. This model effectively separates EC50 into KA and τ , splitting a system level

response into ligand binding and downstream signal transduction.

EC50 =
KA

1 + τ
(1.2)

As KA and τ represent two intrinsically linked, but potentially unknown, variables one

cannot be accurately calculated without knowledge of the other. While this does not affect

the calculation of bias factors as described by Rajagopal et al. (2011) it does hinder the

usefulness of this model in looking at the contribution of the ligand, receptor and G protein

to functional selectivity. However, more complicated models can overcome this limitation

as outlined below.

1.6.3 Ordinary differential equation models

Biochemical reactions and pathways are highly dynamic processes in which concentrations

of various species are continuously changing with respect to time and position. The simplic-

ity of equilibrium models is both their greatest strength and greatest weakness. While they

are extremely versatile their predictions can be ambiguous, such as the KA and τ values of

the operational model. However, differential equation models study non-equilibrium pro-

cesses that might be important. The most basic form of differential equation is the ordinary

differential equation (ODE), a deterministic model that describes the change of a variable

with respect to time. These models are well-suited for modelling biochemical processes,

such as signal transduction pathways, and are relatively easy to construct. For example,

the reaction scheme of Figure 1.11 denotes a simple pathway with a series of interacting

components. Each interaction has an intrinsic rate of activity. Here A is converted to B

with a rate of K1, B becomes C with a rate of K2, C inhibits A with a rate of K3 and A is

continuously generated with a rate of K4.
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Figure 1.11: A basic biochemical reaction scheme. In this simple scheme, A is
converted to B. B becomes C which inhibits A. A is automatically generated. Each of

these processes has an intrinsic rate, K.

The laws of mass action dictate that a reaction, with a single mechanistic step, is a

product of the concentration of the reactants and the intrinsic reaction rate. By assuming

mass action kinetics an expression, ν, can be generated for each reaction.

ν1 = [A]·K1 (1.3)

ν2 = [B]·K2 (1.4)

ν3 = [C]·K3 (1.5)

ν4 = K4 (1.6)

ODEs can then be built using positive or negative forms of these expressions depending

on whether the species of interest is being generated or depleted.

d[A]

dt
= ν4 − ν1 − ν3 (1.7)

d[B]

dt
= ν1 − ν2 (1.8)

d[C]

dt
= ν2 − ν3 (1.9)

These simple deterministic models can be extended to include spatial regulation of the

species being modelled. This can be achieved through either modelling two forms of a given

species, each representing a different compartment, as implemented by Croft et al. (2013),

or by extending the differential equation model to include two dimensions of movement,

space and time. These are known as partial differential equations. A further extension of

this model type is to include a term for stochasiticity that draws its parameters from a
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probability distribution. The consequent stochastic model never reproduces the same data

twice and better represents the inherent complexity, variability and unpredictability of

biological systems. Despite these extensions, the simple ODE model remains an extremely

powerful tool in quantitatively exploring GPCR pharmacology (Linderman, 2009).

1.6.3.1 Ordinary differential equation models of GPCRs

A notable example of a GPCR ODE model is the cubic ternary complex model (Weiss et al.,

1996). This model was designed to be thermodynamically complete, containing a distinct

number of receptor states and interconversions between them, each with an associated rate

constant. Here the receptor can exist in R or R* conformation. Each of these conformations

can also bind a G protein (G) or agonist (A). The ability of this model to include an inactive

GPCR binding a G protein touches upon an outlying question in GPCR pharmacology:

does the receptor precouple to a G protein?

RG 

ARG AR*G 

R*G 

R R* 

AR AR* 

βKact 

βKG 

βδγKG αKact 

γKact 

δαβKact 

αγδKact 

αKA 
KA 

KG 

Kact 

γKA 

Figure 1.12: The cubic ternary complex model. This model describes the conver-
sion of a GPCR between inactive (R) and active (R*) states. This model also incorporates
association with the G protein (G) both prior to and following agonist (A) binding. Here
KA, KG and Kact represent the equilibrium constants of agonist binding, G protein recruit-
ment and receptor activation respectively. α, β, γ and δ are thermodynamic constants that
influence the interactions between individual components. Figure adapted from Linderman

(2009).

If an endogenous GPCR is removed from a simple system there is a significant increase

in the basal level of signal (Davey, 1998). This would suggest that the GPCR can act

as a negative regulator of signalling and must couple to the G protein while inactive.

Indeed, studies using fluorescent proteins suggest that GPCRs and G proteins precouple

(Galés et al., 2005; Nobles et al., 2005). However, the traditional collision-coupling model

suggests a transient interaction between an active GPCR and G protein with a reaction-

diffusion based mechanism (Tolkovsky and Levitzki, 1978; Brinkerhoff et al., 2008). The

cubic ternary complex model includes both collision-coupling and precoupling. By setting
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the rates of R and G association to zero, this model condenses to a collision-coupling

mechanism. However, while this model describes the kinetics of receptor activation and G

protein recruitment it does not include the G protein cycle. Thus, it would require extension

to make predictions of downstream signalling. Shea et al. (2000) used this approach to

suggest that collision coupling alone can be used to explain experimentally observed trends.

However, the authors also accepted that this study does not completely eliminate pre-

coupling as a precursor to agonist binding and downstream signalling.

Kinetic ODE models are very powerful tools when combined with experimental ap-

proaches. However, the cubic ternary complex model contains 24 reactions between 8

different species governed by 4 thermodynamic parameters and 3 kinetic rate constants in

various combinations. All to describe one ligand binding one receptor to activate one G

protein. The promiscuity of GPCRs and crosstalk between competing signalling compo-

nents hinders the application of these models to mammalian systems. This limitation can

be circumvented by turning to much simpler experimental systems.

1.7 Unravelling complexity: Yeast as a model system

Unicellular yeast G protein signalling pathways are highly conserved with those of mam-

malian systems. While the mechanisms are consistent, yeast signalling pathways contain

far fewer components. This, combined with an experimental robustness, low cost and an

inherent genetic tractability result in an excellent experimental system with which to mod-

ify, dissect and explore cellular processes (Ladds et al., 2005b). The resulting findings and

hypotheses can then be applied to equivalent mammalian systems.

The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to

study the mechanisms of GPCR signalling. Sc. cerevisiae has two GPCR signalling path-

ways; a glucose-sensing pathway and a pheromone-response pathway. There is very little

interaction between these two processes. Thus, either of these pathways can serve as an

model to study a G protein signalling cascade in isolation. The pheromone-response path-

way in particular has proved to be exceptionally useful in this regard. For example, RGS

proteins were first discovered in Sc. cerevisiae leading to the identification of RGS proteins

in mammalian cells (Chan and Otte, 1982a,b; Dohlman et al., 1995).
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1.7.1 Saccharomyces cerevisiae pheromone response

When undergoing vegetative growth Sc. cerevisiae cells exist in a haploid state with either

an a or α mating type. The mating types share the same G protein signal transduction

machinery but express different GPCRs (Figure 1.13). a-cells are defined by the expression

of STE3 that responds to the peptide pheromone a-factor, while α-cells respond to the α-

factor pheromone via STE2. Pheromone binding the relevant GPCR causes the activation

of a heterotrimeric G protein consisting of GPA1 (the Gα) and the STE4-STE18 Gβγ

dimer. Negative regulation of the G protein cycle is achieved through the intrinsic GTPase

activity of GPA1 and the prototypical RGS protein SST2. Negative regulation at the

receptor level is achieved through the yeast casein kinases 1 and 2 (YCK1 and YCK2 ).

Active STE2 recruits YCK1 and YCK2 to promote receptor ubiquitination, internalisation

and ultimately destruction (Roth and Davis, 1996).

In Sc. cerevisiae the Gβγ is the effector, triggering signal transduction through binding

STE20 and activating a MAPK cascade. Here, STE11, STE7 and STE12 are sequentially

phosphorylated. However, in this pathway the STE11 STE7 and FUS3 are complexed

with the STE5 scaffold protein. Scaffolding the MAPK cascade ensures proper membrane

localisation of signaling components and has implications for regulation. The scaffold limits

the number of proteins each MAPK can activate, thus limiting amplification of signal (Shao

et al., 2006; Chen and Thorner, 2007; Thomson et al., 2011). Once phosphorylated FUS3,

now FUS3PP, dissociates from the MAPK scaffold to activate a number of downstream

targets to prime the cell for mating.

FUS3PP binds and activates the STE12 transcription factor to activate a number of

pheromone-responsive genes, including the agglutinin FUS1 required for cell fusion, SST2

and the STE2 or STE3 GPCRs depending mating type. BAR1 expression is also under the

control of the pheromone-response-pathway. This protease is secreted to the extracellular

space where it breaks down the ligand, terminating the signal (MacKay et al., 1988).

FUS3PP also activates the cyclin inhibitor FAR1 and CDC28 to initiate G1-phase cell

cycle arrest, an essential step required to ensure haploidy and efficient mating (Tyers

and Futcher, 1993). FUS3PP also phosphorylates the formin BNI1 to induce cytoskele-

tal reorganisation and cell polarisation. The cell begins to grow towards the source of the

pheromone through the development of a projection known as a shmoo. The shmoo of one

mating partner meets one of the opposite mating type, forming a new diploid cell. These

cells undergo sporulation under conditions of nutrient starvation until resources become

less scarce (Merlini et al., 2013).
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Figure 1.13: The Saccharomyces cerevisiae pheromone response Haploid Sc.
cerevisiae cells exist as either the α or a mating type that express the STE2 or STE3
GPCR, respectively. The active receptor activates a heterotrimeric G protein consisting of
GPA1 and a STE4 STE18 Gβγ dimer. Free Gβγ recruits STE20 and activates a scaffolded
MAPK cascade consisting of STE11, STE7 and FUS3. Phosphorylated FUS3 dissociates
from the scaffold and activates a range of effectors to induce changes in gene expression,

cell cycle arrest, cell polarisation and movement.

1.7.2 Yeast transplant strains

The Sc. cerevisiae pheromone response has done much to elucidate the mechanisms of

G protein signalling. The expression of a single yeast GPCR in a simple pathway has

limited implications for our understanding of mammalian receptor pharmacology and bias.

However, the yeast pheromone response is capable of responding to mammalian GPCRs.

For example, the neurotensin receptor is capable of interacting with GPA1 and promotion

of signal through this pathway (Leplatois et al., 2001). While, this artificial interaction can

elucidate receptor level effects, the information gained on mammalian G protein signalling

in response to ligand is limited. The yeast pheromone response can also signal through

mammalian G proteins, such as the Gαs. This approach was used to functionally couple

the β2-adrenergic receptor to this pathway (King et al., 1990). While the GPCR G protein

interaction is closer to a mammalian system, the efficiency of signal transduction in yeast

is greatly reduced relative to the endogenous GPA1 (Price et al., 1996).
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Mammalian GPCRs can be expressed and coupled to the yeast pheromone response while

maintaining a mammalian receptor-G protein interaction through the use of transplant G

proteins. A number of studies have shown that the specificity of the GPCR G protein

interaction is determined by the C-terminus of the Gα, particularly the last 5 residues

(Brown et al., 2000; Ladds et al., 2003; Sunahara et al., 2012).

A series of transplant strains have been generated in Sc. cerevisiae and the fission yeast

Schizosacchromyces pombe where the Gα has been removed and replaced with a counterpart

that contains the 5 C-terminal amino acids of a mammalian Gα. These have been used to

study individual mammalian GPCR G protein interactions in isolation (Olesnicky et al.,

1999; Brown et al., 2000; Ladds et al., 2003). The Sz. pombe pheromone response shares

many basic similarities with that of Sc. cerevisiae but there are key mechanistic differences

between them. Most notably, the Sz. pombe pheromone response utilises the Gα as an

effector that stimulates an unscaffolded MAPK cascade (Hoffman, 2005).

Transplant Sc. cerevisiae strains have been far more extensively used to study mam-

malian GPCRs. To date, Sc. cerevisiae has been used to study a wide range of mammalian

GPCRs including the β2-adrenergic (King et al., 1990) µ-opioid (Lagane et al., 2000), va-

sopressin (Erlenbach et al., 2001b) and C5a receptors (Klco et al., 2005). The Frizzled

receptors deserve particular note as it was the yeast pheromone response that was used

to identify its interactions with various G proteins (Dirnberger and Seuwen, 2007; Nichols

et al., 2013). Of the various transplant yeast systems available, the strains developed by

Brown et al. (2000) have been widely used to study GPCR mediated signalling in multi-

ple G protein backgrounds. Here they developed a panel of yeast strains containing one

of eleven G protein transplants, each representing an individual isolated mammalian G

protein (Table 1.2). These strains were initially validated using somatostatin, serotonin,

purinergic, melatonin and adenosine A2B receptors where mammalian pharmacology was

faithfully replicated. Since their creation, these strains have been to study a wide range

of GPCRs. These include the nicotinic (Wise et al., 2003), muscarinic (Erlenbach et al.,

2001a; Stewart et al., 2010) and adenosine receptor families in addition to Family B GPCRs

such as GLP-1 (Stewart et al., 2009; Peeters et al., 2011, 2012; Bertheleme et al., 2013,

2014; Weston et al., 2014).

However, these receptors have been extensively characterised in mammalian systems.

The yeast transplant system of Brown et al. (2000) has proven to be particularly powerful

in studying orphan GPCRs that have no known ligand or function. Consequently, they are

extremely difficult to study in a mammalian setting. Expressing an orphan GPCR in a

series of yeast transplant strains and treating them with millions of compounds using high

throughput screening technology can elucidate which G protein signalling pathways may

be activated by a given ligand. Indeed, this approach was used to identify ligands and roles

for GPR41, GPR43 and GPR55 (Brown, 2002; Brown et al., 2011).
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Table 1.2: Gα transplants and their C-terminal residues. Strains developed by
Brown et al. (2000)

Gα transplant C-terminal residues

GPA1 KIGII

GPA1/Gαq EYNLV

GPA1/Gα12 DIMLQ

GPA1/Gα13 QLMLQ

GPA1/Gα14 EFNLV

GPA1/Gα16 EYNLV

GPA1/Gαo GCGLY

GPA1/Gαi1/2 DCGLF

GPA1/Gαi3 ECGLY

GPA1/Gαz YIGLC

GPA1/Gαs QYELL

The Sc. cerevisiae transplant strains are an excellent tool to study mammalian phar-

macology. The simplicity of the yeast system, the availability of the strains developed by

Brown et al. (2000) and the ability to isolate mammalian receptor G protein interactions

presents an opportunity to model signalling bias. However, it must be noted that the yeast

system has one crucial limitation when studying GPCR signalling bias. Yeast do not signal

through β-arrestins. Instead receptor internalisation is mediated through ubiquitination.

Consequently, studies of functional selectivity in the yeast system are strictly limited to

G-protein bias.

1.7.3 Models of yeast signal transduction

The yeast pheromone response is a model pathway upon which our knowledge of GPCR sig-

nalling has been constructed. Consequently, this pathway has been very well characterised

experimentally and computationally. Thus, there is a wide array of data and theoretical

frameworks available with which to model G protein bias in the Sc. cerevisiae transplant

system. This includes a number of ODE models of the yeast G protein cycle.

The most influential of these studies was conducted by Yi et al. (2003). Here, they

developed a fluorescence resonance energy reporter (FRET) reporter system to study G

protein signalling dynamics. This technique exploits pairs of fluorescent proteins to mea-

sure the rate at which two proteins dissociate or associate. A FRET pair was generated

where GPA1 was fused to cyan fluorescent protein (CFP) and STE18 was fused to yellow

fluorescent protein (YFP). The rate at which this FRET pairing moved beyond a certain

radius was measured as a change in fluorescence in response to ligand. This led to the de-

velopment of an ODE model that was fitted to the experimental data of the FRET reporter

strains. This study, and the calculated rate constants, laid the foundation for a number of

other theoretical studies.
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One such model is that of Hao et al. (2003) (Figure 1.14). This model represents one

of the first examples of combining mathematical and experimental approaches to the yeast

system. Here a simple model was devised to explore the RGS protein, SST2, and its effects

on GαGTP hydrolysis. This model consists of GDP and GTP-bound Gα, free Gβγ and the

heterotrimeric G protein in addition to SST2. Typically, RGS proteins accelerate GαGTP

hydrolysis, desensitising the system to G protein activation and therefore ligand. This

model allows SST2 activation to promote its own internalisation and destruction. This

would manifest as a desensitisation of the system and positive feedback on a pathway level.

This prediction shows good agreement with experimental data, an excellent example of the

systems biology approach. However, the model of Hao et al. (2003) does not include any

signalling processes downstream of the G protein cycle. Yildirim et al. (2004) extended this

model to include downstream transcriptional responses including up regulation of SST2,

GPA1, STE18 and β-galactosidase.

LR 

GGDPαβγ 

GGDPα 

L R + 

GGTPα Gβγ + 

RGS ϕ 

Figure 1.14: The Hao model of yeast GPCR signalling. The ligand (α-factor)
binds to the STE2 receptor (R) to form LR. LR catalyses the conversion of GGDPαβγ to
the GαGTP and Gβγ effector. Gβγ induces activation of the RGS. The RGS can potentiate
its own degradation (φ denotes a null set) or catalyse the conversion of GαGTP to GαGDP .
This can combine with Gβγ to reform the inactive GGDPαβγ. Figure adapted from Hao

et al. (2003).

Despite this extension by Yildirim et al. (2004) the actual processes of downstream

signalling were summarised into single non-linear terms. A more comprehensive ODE

model was generated by Kofahl and Klipp (2004). This ambitious study attempted to

accurately recreate the temporal dynamics of 35 individual species in the Sc. cerevisiae

pheromone response through 47 separate reactions governed by 47 individual parameters

(Figure 1.15). Many of these parameters were derived from Yi et al. (2003). This model

contains receptor activation, the G protein cycle, the MAPK scaffold formation, MAPK

signalling and activation of FAR1 as cells enter cell cycle arrest and prepare to mate. To

date, the detail of this model has not yet been surpassed, although Shao et al. (2006) used

a derivation of this model to study the dynamics of the MAPK scaffold.
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Figure 1.15: The Kofahl and Klipp model of yeast GPCR signalling. A detailed
reaction scheme showing every interaction within the Sc. cerevisiae pheromone response
considered by this model. These can grouped into scaffold formation, receptor activation,
G protein cycle, the MAPK cascade, repeated FUS3 phosphorylation, preparation for
mating by cell cycle arrest and changes in gene expression. φ denotes degradation or loss

of a species. Figure adapted from Kofahl and Klipp (2004).
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While this model represents a powerful tool to study the Sc. cerevisiae pheromone

response on a system level it does have a number of limitations. For example, there is no true

gene expression alteration in this model. BAR1 and SST2 are pheromone responsive genes,

under the control of the STE12 transcription factor. However, in this model, latent BAR1

is activated by a FUS3PP:STE12active complex. Similarly, active SST2 is generated from

inactive SST2 by FUS3PP. These terms were designed to mimic the effects of transcription

but do not replicate transcription itself.

The interaction between the receptor and the G protein in this model shares both a

strength and a weakness with earlier models. Ligand activates the receptor, but does not

dissociate. However, the active receptor does not bind and activate the G protein. G

protein activation simply has the concentration of active receptor influence the rate of

reaction without actively participating (i.e. the GPCR concentration is not increased or

decreased by this reaction). This precludes a great deal of mechanistic detail. Consequently,

this model cannot distinguish between receptor G protein-binding and G protein-activation

and how these separate processes may be affected by different ligands. However, this

also allows this model to accommodate both pre-coupling and collision coupling without

including them directly.

The Smith et al. (2009) model of the yeast pheromone response has much more compre-

hensive G protein cycle, reminiscent of the cubic ternary complex model, that includes both

pre-coupling and collision coupling as mechanisms for G protein activation (Figure 1.16).

While this model was developed to describe the Sz. pombe pheromone response it uses

parameters and initial conditions from the Hao et al. (2003); Yi et al. (2003); Kofahl and

Klipp (2004) studies of the Sc. cerevisiae pathway. This model, where Gα is the effector,

qualitatively replicates a counterintuitive feature of the Sz. pombe pheromone response.

RGS proteins are negative regulators of signalling. Deletion of RGS results in an increased

Emax and an increased sensitivity to ligand, as observed with SST2 in Sc. cerevisiae (Hao

et al., 2003). However, in Sz. pombe RGS deletion results in a decreased Emax and an

increased sensitivity to ligand. The Smith model predicts that this is the result of the

Gα entering an inert state after activation of the MAPK cascade despite still being GTP

bound. This would result in a refractory period where signalling cannot occur. This model

can qualitatively recreate this effect in Sz. pombe. This model can also be modified to

reproduce trends in the Sc. cerevisiae system by using Gβγ as an effector, albeit with

reduced sensitivity to ligand (Smith et al., 2009).
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Figure 1.16: The Smith model of Sz. pombe GPCR signalling. This reaction
scheme details the model of Smith et al. (2009). This model uses both collision and pre
coupling where ligand (L) can bind a receptor (R) bound or unbound to the inactive G
protein (Gαβγ). Gαβγ dissociates to GαGTP and Gβγ. GαGTP interacts with an effector
to promote downstream signalling before entering and inert GTP-bound state. Gα or
GαGTP are hydrolysed to GαGDP through intrinsic GTP hydrolysis or under the influence

of the RGS. GαGDP then reassociates with Gβγ to form the inactive Gαβγ.

1.7.4 Adenosine receptors

It is a central tenet of systems biology that a mathematical model is only as good as the

predictions it can make. As we have observed with the operational model, these predictions

can be limited by lack of experimental information or unknown parameters. Thus, the

modelling of signalling bias presented here must be based on an appropriate receptor.

Ideally, this receptor would have been well characterised in both yeast and mammalian

systems. The range of pharmacological tools available for this receptor are also crucial.

For instance, the ability to measure ligand binding rates would greatly inform modelling

studies. A member of a receptor family would also be advantageous to this thesis due to

the inherent opportunities to expand the modelling studies.

The adenosine receptors are a small family of class A GPCRs, consisting of the A1, A2A,

A2B and A3 receptor subtypes. These receptors all respond to the purinergic nucleoside

adenosine. Adenosine has an extremely wide tissue distribution and equally varied roles

across throughout the body. Consequently, the adenosine receptors influence a variety of

processes. However, the roles, tissue distribution and pharmacology of these receptors differ

greatly.
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1.7.4.1 The Adenosine A1 receptor

The adenosine A1 receptor (A1R) has a wide tissue distribution but prominent roles in the

central nervous system (CNS) and cardiovascular system. This is a predominantly Gαi/o-

coupled GPCR, inhibiting adenylate cyclase with downstream effects on PKA in response to

ligand, but can also regulate other effectors. For example, ERK phosphorylation has been

reported in response to the A1R, a β-arrestin mediated process (Gracia et al., 2013). The

A1R interacts with voltage-dependent K+ channels in the cardiovascular system and has

consequently been a target for supra ventricular bradycardia. This receptor also modulates

neurotransmitter release throughout the brain, notably in the cerebellum, hippocampus

and forebrain. Thus the A1R has presented an attractive target for sleep disorders (Verzijl

and IJzerman, 2011).

Due to its therapeutic relevance to cardiovascular and cerebral disorders a wide range of

selective A1R ligands have been developed. These include agonists, allosteric modulators

and antagonists. A1R agonists are typically derivatives of adenosine while theophylline

based compounds such as xanthines are antagonists. Caffeine is an extremely widely con-

sumed A1R antagonist globally and this has had a direct impact on clinical trials targeting

this receptor. Poor patient compliance through the consumption of tea, coffee and choco-

late, can affect the pharmacology and efficacy of the compound being trialled (Ribeiro and

Sebastiao, 2010).

Crucially this receptor has been well characterised in both mammalian cells and yeast

in response to a number of ligands. Stewart et al. (2009) in particular used both experi-

mental systems to demonstrate Gαi/o-coupling and evidence, but not direct quantification,

of signalling bias. Studies of A1R ligands have been far more extensively characterised

in mammalian cells and a vast database exists to validate predictions generated in yeast

(Sharman et al., 2011).

There has also been significant interest in the development of fluorescent A1R ligands.

By covalently attaching fluorophores to agonists and antagonists ligand binding can be

observed in real time on a single cell or population level. There have been a range of

A1R selective agonists created over the years but only one has been commercially available

during this project (Briddon et al., 2004; Middleton et al., 2007; Baker et al., 2010; Kozma

et al., 2013). This tool has profound implications for modelling GPCR pharmacology and

improving the accuracy of their predictions. Indeed, a significant part of the data presented

here aids the development of novel fluorescent compounds with Dr. Jennifer Hemmings and

Prof. Martin Lochner of the University of Bern, Switzlerland.

Due to its extensive characterisation, functional expression in the yeast system and

range of pharmacological tools available, the A1R is an excellent candidate to develop and

implement a model of ODE bias. However, the other adenosine receptor subtypes are

pharmacologically diverse and also of significant interest.
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1.7.4.2 The Adenosine A2A receptor

In contrast to the A1R, the A2AR is a primarily Gαs coupled receptor, however Gαolf and

Gαq coupling has been reported with downstream effects on adenylate cyclase and PLC-β.

The A2AR has also been reported to activate Gαi in mammalian systems when dimerised

with the A1R (Casadó et al., 2010). Like the A1R, it has a broad tissue distribution with

a particular presence in platelets, cardiac muscle, blood vessels and peripheral nerves. It is

also located within the striatum and olfactory bulb of the CNS (Lynge and Hellsten, 2000;

Sheth et al., 2014). Consequently, the A2AR has received therapeutic interest for coronary

dilation and Parkinson’s disease via agonists and antagonists respectively. The A2AR also

has a role in angiogenesis, a vital step in tumour formation and is an attractive target for

anticancer drugs (Sachdeva and Gupta, 2013).

This receptor receives particular attention for its high constitutive activity, due in part

to its lack of ionic lock. Mutagenesis studies have identified regions crucial to constitutive

activity that can be applied to other GPCRS. Two studies identified key residues responsible

for GPCR thermostability and constitutive activation, demonstrating a negative correlation

between the two (Bertheleme et al., 2013, 2014). Encouragingly, these studies exploited the

yeast transplant system. However, these studies used a GPA1/Gαi transplant G protein

that may not have an equivalent mammalian interaction with the A2AR.

To date, the A2AR is the only adenosine receptor with a solved crystal structure in both

the presence and absence of ligand (Lebon et al., 2011; Xu et al., 2011) (Figure 1.17). These

structural studies have suggested a roles for TM3, TM5 and TM7 in receptor activation that

are shared amongst all GPCRs (Lebon et al., 2011). These structures have had particular

relevance for the other adenosine receptors and has served as a template for the generation

of homology models.

1.7.4.3 The Adenosine A2B receptor

In contrast to the A1R and A2AR, the A2BR is a low affinity receptor that is normally dor-

mant under physiological extracellular adenosine concentrations. Consequently, the A2BR

is activated in high stress conditions in vivo such as adenosine release from cells undergoing

apoptosis. Its tissue distribution is restricted to gastrointestinal, cardiovascular and mast

cells with a particular role in immuno- and inflammatory disorders including asthma and

chronic obstructive pulmonary disease. However, the A2BR is the least characterised of the

adenosine receptor subytpes (Jacobson, 2009).
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Like the A2AR, the A2BR is known to activate adenylate cyclase and PLC-β through

Gαs and Gαq respectively but has also been reported to signal through MAPK cascades.

The A2BR has also been shown to functionally couple to the yeast system. Indeed this was

one of the first receptors to be used in the system developed by Brown et al. (2000) and

functional couplings have been reported in the strains representing Gαq, Gαo, Gαi1 , Gαi3,

Gαs, Gα14 and Gα16. However, this receptor has been more extensively studied using the

GPA1/Gαi3 strain (Peeters et al., 2011; Liu et al., 2014). To date there is little evidence

that the A2BR couples to Gαi in vivo.

A 

B 

Figure 1.17: The crystal structure of adenosine-bound A2aR. PDB ID 2YDO
(Lebon et al., 2011). A2AR represented as ribbon structure. Ball and stick representation
of adenosine shown in red. A. ”Side-on” view of receptor. B. ”Top-down” view of receptor.
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1.7.4.4 The Adenosine A3 receptor

The adenosine A3 receptor (A3R) is a primarily Gαi and Gαq coupled GPCR. In addition

to inhibition of adenylate cyclase and activation of PLC-β this receptor has also been

reported to signal through MAPK. ERK1/2 and WNT signalling pathways. Like the other

adenosine receptor subtypes, the A3R has a broad tissue distribution and a myriad of roles.

It is known to be expressed throughout the immune and cardiovascular systems in addition

to the CNS. Consequently, this receptor has been implicated in a number of inflammatory

and immune disorders including asthma, glaucoma and hypoxia (Antonioli et al., 2014).

Its activity in the CNS has presented an attractive target for Parkinson’s disease whereas

its involvement in MAPK mediated apoptosis has potential for an anticancer treatment

(Jacobson and Gao, 2006; Wagner et al., 2010).

The A1R and A2AR have comparable high affinities while the A2BR is a low affinity

receptor. The A3R is an intermediate affinity receptor. However this receptor was the last

to be discovered and studies of the A3R are still in their infancy. Regardless, there has

been a great deal of attention paid to this receptor and, while the crystal structure of this

structure is still unknown, many homology and structural models of the A3R have been

generated (Cheong et al., 2013). To date no studies have reported functional expression of

the A3R in the yeast system. The presents an attractive goal for this study of adenosine

receptor pharmacology in Sc. cerevisiae.

1.8 Aims

This study aims to understand the contribution of the ligand, the receptor and the G

protein to functional selectivity of the A1R in yeast. To achieve this, this study aims to:

• Express and characterise all four adenosine receptor subtypes.

Determine G protein coupling in yeast.

Examine bias and receptor selectivity of adenosine receptor agonists.

• Screen novel adenosine receptor agonist

Screen precursor compounds to inform novel fluorescent agonist development in col-

laboration with Dr. Jennifer Hemmings (University of Bern).

• Model G protein signalling bias of the A1R in yeast

Develop a minimal ODE model of G protein signalling in yeast guided by existing

theoretical frameworks. Apply this model to experimental data to predict the contri-

bution of the ligand, receptor and G protein to signalling bias.



Chapter 2

Materials and Methods

2.1 Materials

2.1.1 General laboratory reagents

Analytical grade laboratory reagents were purchased from Sigma-Aldrich Co. Ltd. (Poole,

Dorset, UK) and Merck BDH Laboratory Supplies (Poole, Dorset, UK)

2.1.2 Molecular Biology Reagents

Restriction enzymes, T4 DNA ligase and Taq DNA polymerase (from Thermus aquaticus)

were supplied by Life Technologies Ltd. (Paisley, Scotland, UK). Bacterial alkaline phos-

phatase and FastStart high fidelity enzyme blend were purchased from Fermentas (York,

UK) and Roche Diagnostics Ltd (Lewes, East Sussex, UK) respectively. All oligonucleotides

were synthesised by Sigma-Alrich Co. Ltd. (Poole, Dorset, UK).

2.1.3 Ligands

Adenosine was purchased from Sigma-Aldrich Co. Ltd. (Poole, Dorset, UK). 5’-N-Ethyl

carboxyamidoadenosine (NECA), 2-chloro-N6-cyclopentyladenosine (2CCPA), CGS21680,

di-propylcyclopentylxanthine (DPCPX), SLV-320 and PD81723 were purchased from R&D

Systems (Bristol, UK). CAS200623 was purchased from CellAura (Nottingham, UK). All

compounds with a JH prefix were synthesised by Dr. Jennifer Hemmings (University of

Bern, Switzerland).

2.1.4 Photographic Supplies

DNA gels were visualised using a G:Box iChemi gel documentation system with GeneTool

analysis software (Syngene, Cambridge, UK).

40
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2.1.5 Growth media

Luria broth, yeast extract (YE) and agar were supplied by Life Technologies Ltd. (Paisley,

Scotland, UK). All components of Amino Acid (AA) selective medium (detailed in Ta-

ble 2.3) were purchased from Sigma-Aldrich Co. Ltd. (Poole, Dorset, UK) Plates and liquid

media for the selective growth of yeast were made using AA media. Rich (YE) medium

containing (250 µg/ml) adenine, leucine and uracil was used for non-selective growth of

yeast. The following media were made by dissolving the reagents in reverse osmotically

filtered (RO) water. Plates were made by supplementing liquid media with 1.5 % (w/v)

agar.

Table 2.1: Yeast extract medium (YE) (per litre)

Yeast extract 5 g
Glucose 30 g

Table 2.2: Selective medium (AA) (per litre)

Yeast nitrogen base (without amino acids) 6.7 g

Glucose 20 g

Amino acid mix 1.5 g

Selection amino acid mix 0.5 g

2.1.6 Bacterial Strain

Escherichia coli (E. coli) strain DH5α (E. coli ; genotype: supE44 hsdR17 endA96 thi-1

relA1 recA1 gyrA96 ) was used for amplification of plasmids. Strain supplied by Stratagene

(Cambridge, UK).

2.1.7 Saccharomyces cerevisiae strains

Standard nomenclature has been used to describe the Sc. cerevisiae strains used in this

thesis (Table 2.5). Gene deletions at the yfg locus are denoted yfg∆. Gene integrations at

specific loci, for example the ADE2 adenine biosynthesis gene, are denoted as yfg∆::ADE2.

Creation of strains with a MMY prefix are described in Olesnicky et al. (1999) and Brown

et al. (2000). Strains with a SC prefix are unique to this thesis.

his3, leu2, trp1 and ura3 were deleted to allow histidine, leucine, tryptaphan and uracil

to be used as nutritional markers for selection respectively. can1 encodes arginine permease
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Table 2.3: Amino acid mix

L-alanine 2 g
L-arginine 2 g
L-asparagine 2 g
L-cysteine 2 g
L-glutamine 2 g
L-glutamate 2 g
L-glycine 2 g
L-isoleucine 2 g
L-lysine 2 g
L-phenylalanine 2 g
L-proline 2 g
L-serine 2 g
L-threonine 2 g
L-tryptophan 2 g
L-tyrosine 2 g
L-valine 2 g
myo-inositol 2 g
para-amino benzoic acid 0.4 g

Table 2.4: Select amino acid mix (components as required)

Adenine 2 g
L-histidine 2 g
L-leucine 4 g
Uracil 2 g
L-methionine 2 g

and has been deleted to prevent basic amino acid transport into the cell, thus maintaining

the appropriate nutritional markers (Whelan et al., 1979).

The gpa1 locus has been deleted to prevent expression of GPA1, the Gα endogenous

to this pathway. Genes encoding GPA1 transplants, with the 5 C-terminal amino acids

replaced with those of mammalian G proteins, were integrated into these strains using a

tryptophan selection marker to allow mammalian GPCRs to signal through this pathway

(Brown et al., 2000).

These strains are ∆ste2 to prevent expression of the native GPCR, STE2, that signals

through this pathway. Yeast cells can also switch mating type and express the GPCR

STE3, which also signals through the MAPK pathway of the pheromone response. Thus,

these strains are MATa deficient to prevent mating type switching. The gene encoding

the endogenous RGS protein, sst2, has been deleted to increase the sensitivity of the yeast

system to receptor activation (Brown et al., 2000; Yildirim et al., 2004).
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Sc. cerevisiae enters cell-cycle arrest in response to pheromone. This is under the

control of FAR1, which interacts with cyclin-dependent kinases to bring about cell-cycle

arrest in response to the MAPK FUS3 (Tyers and Futcher, 1993). far1 has been deleted

and his3 placed under the control of the pheromone-responsive fus1 promoter. his3 encodes

imidazoleglycerol-phosphate dehydratase - a key step in the histidine biosynthesis pathway.

Thus HIS3 expression, and therefore growth in histidine deficient media, can be used as a

transcriptional reporter of pathway activation. Alternatively, β-galactosidase has also been

placed under the control of the fus1 promoter and integrated into these strains. This allows

β-galactosidase to be used as a quantitative measure of pathway activation.

The ADORA1 gene, encoding the adenosine A1 receptor, has been integrated at the ura3

locus in the SC195, SC197, SC199 and SC222 strains using the pRS306GPD expression

factor. A C-terminal A1R
GFP fusion was cloned into the pRS306GPD expression vector

and integrated into the ura3 locus of MMY22, MMY23, MMY24 and MMY25 to create

SC209, SC211, SC213 and SC215 respectively.
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Table 2.5: Sc. cerevisiae strains. Standard names of Sc. cerevisiae strains and their
corresponding genotypes as used in this study. Strains with a MMY prefix are described

in Brown et al. (2000) and used under license from GlaxoSmithKline, Stevenage, UK.

Strain Genotype

MMY9 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ

MMY11 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R

MMY12 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1

MMY14 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαq(5)

MMY16 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gα16(5)

MMY19 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gα12(5)

MMY20 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gα13(5)

MMY21 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gα14(5)

MMY22 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαo(5)

MMY23 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαi1/2(5)

MMY24 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαi3(5)

MMY25 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαz(5)

MMY28 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαs(5)

SC195 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαi1/2(5) URA3::ADORA1

SC197 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαi3(5) URA3::ADORA1

SC199 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαz(5) URA3::ADORA1

SC209 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαo(5) URA3::ADORA1-GFP

SC211 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαi1/2(5) URA3::ADORA1-GFP

SC213 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαi3(5) URA3::ADORA1-GFP

SC215 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαz(5) URA3::ADORA1-GFP

SC222 MATa, his3 leu2 trp1 ura3 can1 gpa1∆::ADE2 far1∆::ura3∆ sst2∆::ura3∆ fus1::FUS1-HIS3

LEU2::FUS1-lacZ ste2∆G418R TRP::GPA1/Gαo(5) URA3::ADORA1
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2.1.8 Plasmids and Constructs

Table 2.6 lists the DNA constructs used in this thesis.

Table 2.6: Names of DNA constructs used in this thesis.

Name Construct (Selection) Source

JD1778 pKS-pREP-MCS-GFP G. Ladds (unpublished)
JD2131 pREP3xr-adenosine A2A receptor R. Forfar, PhD thesis, 2007
JD2226 pKS-pREP-mcs-A1R-GFP R. Forfar, PhD thesis, 2007
JD2227 pKS-pREP-mcs-A2AR-GFP R. Forfar, PhD thesis, 2007
JD3706 p426GPD-A1R Stewart et al. (2009)
JD3736 p426GPD GlaxoSmithKline
JD3748 p426GPD-A2AR This study
JD3756 pcDNA3.1+-adenosine A2B receptor cDNA.org
JD3775 p426GPD-adenosine A2B receptor This study
JD3785 p426GPD-A1R

GFP This study
JD3818 p426GPD-A2AR

GFP This study
JD3823 pRS306-STE2 leader C. Weston (unpublished)
JD3825 pKS-pREP-mcs-A2BR

GFP This study
JD3826 p426GPD-A2BR

GFP This study
JD3830 p426GPD-STE2 leader C. Weston (unpublished)
JD3831 pRS306 Dowell and Brown (2009)
JD3865 pcDNA3.1+ adenosine A3 receptor cDNA.org
JD3883 pRS306-adenosine A3 receptor This study
JD3885 pRS306-STE2 leader-adenosine A3 receptor This study
JD3887 p426GPD-adenosine A3 receptor This study
JD3889 p426GPD-STE2 leader-adenosine A3 receptor This study
JD3932 pRS306-GPD-CYC1 G. Ladds (unpublished)
JD3954 pRS306-GPD-CYC1-A1R This study
JD3984 pRS306-GPD-CYC1-A1R

GFP This study

2.2 Experimental Methods

2.2.1 Cloning techniques

Standard techniques were used to manipulate DNA (Sambrook et al., 1989). Restriction

digests were performed according to manufacturer’s recommendations. DNA fragments

were analysed by electrophoresis on 1 % (w/v) agarose gels stained with 0.5 µg/ml ethid-

ium bromide. DNA fragments were recovered from agaorse gels using the QIAquick Gel

Extraction Kit (Qiagen, West Sussex, UK).

2.2.2 Transformation of Escherichia coli

Chemically competent E. coli DH5α cells were produced and transformed by heat shock

with plasmid DNA as described by Sambrook et al. (1989).
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2.2.3 Transformation of Saccharomyces cerevisiae

Sc. cerevisiae was transfomed with circularised plamid DNA, or linear DNA fragments

for integration, using the lithium acetate/ single straded DNA/polyethylene glycol method

described by Gietz and Schiestl (2007).

2.2.4 Polymerase Chain Reaction (PCR)

Taq DNA polymerase (Life Technologies Ltd, Paisley, Scotland, UK) was used to amplify

products for analysis. Amplication of DNA fragments for cloning was performed using the

FastStart high fidelity polymerase blend (Roche Diagnostics Ltd). All polymerases were

used according to manufacturers recommendations.

2.2.4.1 PCR amplification of DNA for cloning

50µl PCR reactions were prepared using 1µg of sense and antisense primer, 10-50 ng tem-

plate DNA and 0.2 mM of deoxyribonucleoside triphosphates (dNTPs) consisting of dATP,

dCTP, dGTP and dTTP (purchased from Fermentas, Hanover, MD, USA). PCRs typically

consisted of 30 cycles of a 0.5min, 94◦C denaturation step and a 1 min annealing step

at 94◦C. Extension was performed at 72◦C for 1 min per 1kbp of template DNA. Final

extension was achieved through a 7 min incubation at 72◦C.

2.2.4.2 Screening Plasmid DNA from bacterial cells

A single bacterial colony was suspended in 100 µl water and stored at 4◦C. 1 µl of this

suspension was used as the template in a 10 µl PCR reaction.

2.2.5 Double-stranded DNA sequencing

Sanger sequencing was outsourced to GATC Biotech (London, UK) to check no mutations

were introduced during PCR and DNA manipulation.
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2.2.6 Cloning strategies

Directional cloning strategies for the constructs developed in this thesis are summarised in

the following schematics.

pKS-pREP-mcs-A1R-GFP 

Sense primer 
JO3017 

Antisense primer 
JO3018 

PCR amplification  
using FastStart polymerase 

Ligate 

A1RGFP ORF 

p426GPD 

EcoRI XhoI 

URA3 AmpR 

GPD 

JD3785 URA3 AmpR 

A1RGFP ORF 

GPD 

EcoRI XhoI 

A1RGFP ORF 

XhoI EcoRI  
restriction digest 

XhoI EcoRI  
restriction digest 

Figure 2.1: Cloning A1R
GFP into the p426GPD expression vector. A1RGFP was

amplified from the pKS-pREP-mcs-A1RGFP vector by PCR. This product was digested by
EcoRI and XhoI before ligation into EcoRI XhoI cut p426GPD expression vector. Cloning

was confirmed by PCR, restriction digest and sequencing.
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pREP3xr-A2AR 

Sense primer 
JO2998 

Antisense primer 
JO2999 

PCR amplification  
using FastStart polymerase 

Ligate 

JD3748 URA3 AmpR 

A2AR ORF 

p426GPD 

BamHI EcoRI 

URA3 AmpR 

GPD 

GPD 

BamHI EcoRI 

A2AR ORF 

A2AR ORF 

BamHI EcoRI 
restriction digest 

BamHI EcoRI 
restriction digest 

Figure 2.2: Cloning A2AR into the p426GPD expression vector. The A2AR was
amplified from the pREP3xr-A2AR vector by PCR. This product was digested by BamHI
and EcoRI before ligation into BamHI EcoRI cut p426GPD. Cloning was confirmed by

PCR, restriction digest and sequencing.

pcDNA3.1+-A2BR 

Sense primer 
JO2990 

Antisense primer 
JO2991 

PCR amplification  
using FastStart polymerase 

p426GPD 

BamHI EcoRI 

URA3 AmpR 

GPD 

Ligate 

JD3775 URA3 AmpR 

A2BR ORF 

GPD 

BamHI EcoRI 

A2BR ORF 

A2BR ORF 

BamHI EcoRI 
restriction digest 

BamHI EcoRI 
restriction digest 

Figure 2.3: Cloning A2BR in the p426GPD expression vector. The A2BR was am-
plified from the pcDNA3.1+-A2BR vector by PCR. This product was digested by BamHI
and EcoRI before ligation into BamHI EcoRI cut p426GPD. Cloning was confirmed by

PCR, restriction digest and sequencing.
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pKS-pREP-mcs-A2AR-GFP 

Sense primer 
JO2998 

Antisense primer 
JO3018 

PCR amplification  
using FastStart polymerase 

Ligate 

A2ARGFP ORF 

p426GPD 

BamHI XhoI 

URA3 AmpR 

GPD 

JD3818 URA3 AmpR 

A2ARGFP ORF 

GPD 

BamHI XhoI 

A2ARGFP ORF 

BamHI XhoI  
restriction digest 

BamHI XhoI  
restriction digest 

Figure 2.4: Cloning A2ARGFP into the p426GPD expression vector. The
A2ARGFP was amplified from the pKS-pREP-mcs-A2ARGFP vector by PCR. This prod-
uct was digested by BamHI and XhoI before ligation into BamHI XhoI cut p426GPD.

Cloning was confirmed by PCR, restriction digest and sequencing.
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Figure 2.5: Cloning A2BRGFP in the p426GPD expression vector. The A2BRGFP

was amplified from the pKS-pREP-mcs-A2BRGFP vector by PCR. This product was di-
gested by BamHI and XhoI before ligation into BamHI XhoI cut p426GPD. Cloning was

confirmed by PCR, restriction digest and sequencing.
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Figure 2.6: Cloning A3R in the p426GPD expression vector. The A3R was excised
from pcDNA3.1+-A3R by BamHI XbaI digest. The product was gel purified and ligated
into BamHI XbaI cut p426GPD. Cloning was confirmed by PCR and restriction digest.
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Figure 2.7: Cloning STE2-A3R into the p426GPD expression vector. The A3R
was excised from pcDNA3.1+-A3R by BamHI XhoI digest. The product was gel purified
and ligated into BamHI XhoI cut p426GPD-STE2 expression vector in frame with the

STE2 leader sequencing. Cloning was confirmed by PCR and restriction digest.
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Figure 2.8: Cloning A1R into the pRS306GPD integration vector. The A1R
was amplified from p426GPD-A1R by PCR before digestion by BglII and EcoR1. The
product was ligated into BamHI EcoRI cut pRS306GPD integration vector. Cloning was

confirmed by PCR, restriction digest and sequencing.
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Figure 2.9: Cloning A1R
GFP into the pRS306GPD integration vector. The

A1RGFP was amplified from p426GPD-A1RGFP by PCR before digestion by XhoI and
EcoRI. The product was ligated into XhoI EcoRI cut pRS306GPD integration vector.

Cloning was confirmed by PCR, restriction digest and sequencing.
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2.2.7 Pharmacological assays in yeast

Yeast were routinely cultured on AA plates containing 1.5% (w/v) agar lacking the relevant

selectable marker. Prior to treatment, yeast cells were incubated in appropriate liquid AA

media for 16 hours at 30 ◦C. Cells were diulted 1:10 in the same media and cultured for 8

hours at 29 ◦C. Cell density was adjusted to an optical density at 600nm (OD600) of 0.02 as

determined by a photospectrometer. 100 µl cells were treated with 1 µl of the appropriate

compound stock in a clear 96-well plate at 29 ◦C. Where possible compound stocks were

prepared in DMSO. Where compounds were not soluble in DMSO cells were also incubated

with 1 % (v/v) DMSO.

2.2.7.1 β-galactosidase assays

Yeast cells were treated as described in section 2.2.7 for 16 hours at 29 ◦C. β-galactosidase

assays were performed using a method adapted from Dohlman et al. (1995). 20 µl yeast

cells were transferred to clear 96-well plates and incubated with 260 µl Z-buffer (Table 2.7)

containing 2.25mM O-nitrophenyl-β-D-galactopyranoside (ONPG, a chromogenic reporter

for β-galactosidase; purchased from Sigma-aldrich Co. Ltd.) for 90 minutes at 29 ◦C.

Reactions were halted by addition of 70 µl 2M sodium carbonate. Plates were analysed

using a Mithras LB940 microplate reader (Berthold Technologies, Harpenden, UK). β-

galactosidase activity was detected by OD430. The strains are ∆far1 and incapable of cell

cycle arrest induced by the pheromone-response. Consequently, these cells grow throughout

treatment. Cell density was measured by OD620. To compensate for variability in cell

number and bleed through through overlapping absorption spectra, β-galactosidase activity

(mU) was calculated as
OD430 −OD620

OD620
.

Table 2.7: Z buffer

NaPO4 (pH 7.0) 0.1 M
KCl 10 mM
MgSO4 1 mM
β-mercaptoethanol 50 mM
(v/v) chloroform 0.5 %
(w/v) SDS 0.005 %

2.2.7.2 Growth assays

Yeast cells were cultured for 16 hours in the appropriate liquid AA media for 16 hours at

29 ◦C. Cells were diluted 1:10 in liquid AA media lacking histidine and cultured for 24

hours. Cells were again diluted 1:10 in liquid AA media lacking histidine and cultured

at at 29 ◦C for a further 6-8 hours. Cell density was adjusted to OD600 = 0.02 in the
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same media and incubated with the appropriate concentration of ligand, or 1 % (v/v)

DMSO, in a 96-well plate. Growth was quantified by OD620 in a Mithras LB940 microplate

reader (Berthold Technologies, Harpenden, UK) at appropriate intervals. Alternatively,

growth was quantified using the fluorescent substrate fluorescein di-β-D-Glucopyrnaoside

(FDGlu; purchased from Sigma-Aldrich Co. Ltd, Poole, Dorset, UK). FDGlu is converted

to fluorescein by exoglucanase that is secreted by dividing cells (Dowell and Brown, 2009;

Weston et al., 2014). Fluorescein signal was detected using a Mithras LB940 or TECAN

Infinite M200 microplate reader (TECAN Ultra Evolution, Reading, UK) using excitation

and emission wavelengths of 485 nm and 535 nm respectively. Data was expressed as

percentage basal signal to compensate for differences in relative fluorescent units between

the two machines.

2.2.8 Fluorescence microscopy

Cells were cultured in AA for 12-16 hours, washed in phosphate buffered saline (PBS)

and briefly sonicated. 2µl was transferred directly to a solid AA pad, containing 2 % w/v

agarose, on a CoverWellTM imaging chamber (Grace Bio-Labs, Oregon, USA). A coverslip

was placed over the cells on the agar pad and sealed with a Vaseline, Lanolin and Paraffin

equal parts by weight mixture (VALAP) to prevent drying of the cells. Images were obtained

using a True Confocal Scanner Leica TCS SP5 microscope (Leica Microsystems Ltd., Milton

Keynes, UK) or a DeltaVision system wide-field deconvolution microscope as described by

Ladds et al. (2005a) and Croft et al. (2013).

2.2.8.1 Image analysis

Image acquisition and subsequent deconvolution of images from the DeltaVision microscope

were performed using softWoRx (applied precision) software. Deconvolution was performed

with the following settings; Ratio = conservative, Number of cycles = 8 and Noise filtering

= high. All other image processing was performed using the open source software ImageJ

(http://rsb.info.nih.gov/ij/).

2.2.9 Flow cytometry

Cells were cultured in AA for 12-16 hours, washed in PBS and briefly sonicated. Upto 30,000

particles were analysed for fluorescence intensity per sample using a Beckton, Dickson and

Company (BD) LSR II flow cytometer (BD Biosciences, Oxford, UK). To measure GFP

constructs, excitation was achieved using a 488 nm laser, and emission detected using a

530/30 nm band pass filter with a 505 nm long pass filter. For the fluorescent ligand

CAS200623, excitation was achieved using a 488 nm laser and emission detected using a

575/26 nm band pass filter with a 550 nm long pass filter.
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2.3 Computational methods

2.3.1 Statistical methods

Data were analysed using Graphpad Prism software version 6.0e for Mac OS X (GraphPad

Software Inc., San Diego, CA, USA). Statistical differences were assessed using one-way

ANOVA with Bonferroni’s or Dunnett’s multiple comparison tests or Student’s T-test as

appropriate. A probability (P) < 0.05 was considered significant.

2.3.2 Non-linear regression of simple models

Equilibrium models were implemented in Graphpad Prism. This software is able to fit sim-

ple models to experimental data through non-linear regression and to perform simulations

based on a steady-state.

Non-linear regression of the logistic equation (2.1) was used to determine Basal (unstim-

ulated level of signal), Emax (maximum level of signal), LogEC50 (the ligand concentration

required to induce half maximal response, a measure of system sensitivity to ligand or po-

tency) and n. n is known as the Hill Slope and represents the proportionality of response

to drug concentration between Basal and Emax. Generally, it is assumed that a response

is linearly proportional to drug concentration in this range and n is constrained to 1.

Response = Basal +
Emax −Basal

(LogEC50 − [A])n
(2.1)

The operational model of pharmacological agonism (Black and Leff, 1983) effectively

splits potency into two new parameters; ligand binding affinity (KA) and efficacy (τ , a

measure of G protein activation and downstream signal transduction). This model was

applied to experimental concentration-response curves through non-linear regression.

Response = Basal +
Emax −Basal · τn · [A]n

τn · [A]n + ([A] +KA)n
(2.2)

EC50 =
KA

1 + τ
(2.3)
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2.3.2.1 Bias plots

The method of Rajagopal et al. (2011) was used to quantify ligand bias in the yeast sys-

tem. τ and KA were calculated through non-linear regression of the operational model of

pharmacological agonism using Graphpad Prism. ∆
τ

KA
was calculated for each ligand in

each yeast strain. NECA was used as a reference ligand to compensate for experimental

and system bias.

∆log
τ

KA
= log

τ

KA ligand
− log

τ

KA reference
(2.4)

∆∆
τ

KA
, a measure of ligand bias, was determined as the difference in ∆

τ

KA
for a given

ligand between two yeast strains.

∆∆log
τ

KA
= ∆log

τ

KA pathway1
−∆log

τ

KA pathway2
(2.5)

2.3.2.2 Schild analysis

Schild analyses were performed to elucidate competitive antagonism (Schild, 1947, 1949).

Dose ratios (DR) were calculated by comparing the EC50 of agonist concentration-response

curves with and without various concentrations of antagonist (2.6).

DR =
ECagonist

50

ECantagonist
50

(2.6)

Schild plots were created by plotting Log(DR-1) against Log [Antagonist] M in Graphpad

Prism. Linear-regression or non-linear regression of the exponential equation were applied

to concentration response curves as appropriate.
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2.3.3 Systems of ordinary differential equations

Ordinary differential equation (ODE) models were constructed from biological reaction

schemes by assuming the laws of mass action kinetics. These models were written and

implemented in Matlab 2012a (Mathworks, Cambridge, UK). The models of Kofahl and

Klipp (2004) and Smith et al. (2009) were implemented as described by the authors. Models

constructed here assumed initial inactive receptor and G protein concentrations of 160nm,

except Kofahl and Klipp (2004) that specific a receptor concentration of 1.6µM. Systems of

ODEs were solved using the in-built ODE23s solver and a step size of 0.001 hours. A second-

order Runge-Kutta algorithm was chosen to reduce computational time. Concentration-

response curves were created from simulated time course data at 16 hours, consistent with

the experimental data presented here, unless stated otherwise. The model of Smith et al.

(2009) was equilibrated through 14 hours simulation in the absence of ligand. Equilibrium

was assumed for all other models implemented here and no equilibration performed prior

to addition of ligand.

2.3.3.1 Model analysis

Structural identifiability analysis was performed to determine whether a given model output

is the result of a unique combination of parameters. If so the framework is termed globally

and structurally identifiable and was an essential prerequisite of all models developed here.

This was determined using the GenSSI toolbox for Matlab 2012a (Chis et al., 2011a).

Parameter sensitivity analysis was performed by individually increasing and decreasing

each rate constant, K, 106 fold and performing 16 hour timecourse simulations. In these

simulations all other parameters were constrained to the values as implemented by Kofahl

and Klipp (2004) and experimentally determined by Yi et al. (2003) . Each species of the

model was plotted as a function of time to assess the influence of a given rate constant

throughout the simulated pathway. Concentration-response curves were calculated using

the solutions of a 16 hour simulation, consistent with the experimental studies presented

here.

2.3.3.2 Model fitting

Multivariate fitting to experimental time course data was performed using the Potter’s

Wheel toolbox for Matlab (Maiwald and Timmer, 2008; Raue et al., 2009). This platform

allows models to be input directly or through a graphical user interface where individual

species, K and their respective values are defined by the user. Potter’s wheel then optimises

specific parameters to decrease the distance between experimental data points and the

model prediction, χ2 (Maiwald et al., 2012). When fitting the time course data of multiple
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ligand concentrations χ2 < 300 was considered an acceptable fit. When fitting the data of

a single ligand concentration χ2 < 8 was considered a reasonable fit.



Chapter 3

Establishing the System:

Expression and Characterisation of

Adenosine Receptors in Yeast

3.1 Background

The adenosine receptor family are a pharmacologically diverse class of GPCRs that re-

spond to the purinergic nucleoside adenosine. The adenosine A1 and adenosine A3 recep-

tors typically inhibit adenylate cyclase activity through activation of the inhibitory Gαi/o

proteins. In contrast, the adenosine A2A and A2B receptors stimulate adenylate cyclase

through the stimulatory Gαs proteins. The pharmacology of these receptors has been well-

characterised in mammalian cells. Consequently, they have generated significant interest

as a clinical target for a diverse range of conditions including sleep apnoea, Parkinson’s

disease and cardiopulmonary arrhythmia (reviewed by Jacobson and Gao (2006)). To date,

the A1R, A2AR and A2BR have been functionally expressed in Sc. cerevisiae strains con-

taining transplant Gα subunits (Brown et al., 2000; Stewart et al., 2009; Peeters et al.,

2011; Bertheleme et al., 2013). These G proteins contain the 5 C-terminal residues, and

therefore GPCR coupling specificity, of mammalian counterparts. However, no functional

studies of the A3R in yeast have been reported.

The focus of this study is to model A1R pharmacology in yeast to estimate the contri-

bution of the ligand, receptor and G protein to mammalian functional selectivity. In this

chapter the yeast system is established and validated as a paradigm for adenosine recep-

tor pharmacology. These receptors are expressed in the transplant yeast strains and their

signalling in response to a number of ligands compared.

58
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3.2 Characterisation of the Adenosine A1 Receptor in Yeast

The A1R was one of the first receptors successfully expressed in, and functionally coupled

to, the yeast G protein transplant strains (Brown et al., 2000). In recent years, yeast has

been used to learn a great deal about A1R pharmacology. Stewart et al. (2009) showed

that the A1R functionally couples to GPA1/Gαo, GPA1/Gαi1/2 and GPA1/Gαi3. These

represent inhibitory G proteins that inhibit adenylate cyclase in a mammalian setting. In-

deed, Stewart et al. (2009) showed that the pharmacology of the A1R in yeast, in response

to a range of agonists and antagonists, is in good agreement with mammalian cAMP ac-

cumulation assays. Further, Peeters et al. (2012) expressed a range of A1R mutants in

the MMY24 (GPA1/Gαi3) strain to elucidate the significance of the extracellular loops

in agonist binding and allosterism. Thus, there is a wealth of data available to validate

experimental and computational studies of this receptor in yeast.

The A1R was expressed in the panel of GPA1 transplant yeast strains under the control

of the constitutive glyceraldehyde phosphate dehydrogenase (GAPDH ) promoter using the

p426GPD vector. These strains contain β-galactosidase under the control of the FUS1

promoter. This is activated by STE12, a transcription factor downstream of the yeast

pheromone response. Brown et al. (2000) and Stewart et al. (2009) used β-galactosidase

as a transcriptional reporter to assess A1R pharmacology in yeast. Thus, this established

method is ideal to investigate adenosine receptor pharmacology in yeast. 8-16 colonies of

each transformed strain were isolated and incubated with the potent, non subtype-selective

agonist 5’-N-ethylcarboxyamidoadenosine (NECA) for 16 hours and β-galactosidase activity

determined using the chromogenic substrate ONPG. (Figure 3.1). Consistent with previous

studies (Brown et al., 2000; Stewart et al., 2009; Peeters et al., 2012) significant activity was

detected in the GPA1/Gαo, GPA1/Gαi1/2 and GPA1/Gαi3 strains (P < 0.05, Student’s

T-test). However, a previously unreported coupling of the A1R to GPA1/Gαz was also

observed.
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Figure 3.1: Expression and coupling-profiles of the A1R in yeast. The A1R
was expressed in a panel of yeast strains using the p426GPD vector selected for uracil
biosynthesis. n = 8 - 16 colonies were picked and incubated with either the agonist NECA,
or 1 % DMSO for 16 hours. Cells were assayed for β-galactosidase activity (mU). Significant
responses were determined by Student’s T-test. P < 0.05 was considered significant. ***P

< 0.0005.

Figure 3.1 shows that the responding strains have varying levels of β-galactosidase ac-

tivity in response to 100µM NECA (GPA1/Gαo = 2.8±0.1 mU, GPA1/Gαi1/2 = 24.1±0.6

mU, GPA1/Gαi3 = 11.2±0.4 mU and GPA1/Gαz = 4.4±0.1 mU). The differing levels of

signal between strains may be indicative of G protein-coupling. Strains that demonstrated

a significant response to NECA (P < 0.05) were isolated for further pharmacological char-

acterisation in response to a number of ligands.



Chapter 3: Establishing the System: Expression and Characterisation of
Adenosine Receptors in Yeast 61

3.2.1 β-galactosidase assays to investigate A1R pharmacology

To validate the pharmacology of the A1R in yeast concentration-response curves were

constructed for a range of ligands; NECA, adenosine, 2-chloro-N6-cyclopentyladenosine

(2CCPA) and the A2R selective ligand CGS21680. Each strain was incubated with the

ligand for 16 hours at 30◦C. Cells were lysed and β-galactosidase activity determined.
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Figure 3.2: β-galactosidase concentration-response curves of the A1R in
yeast. A. The chemical structures of 5’-N-ethylcarboxyamidoadenosine (NECA), adeno-
sine, 2-chloro-N6-cyclopentyladenosine and CGS21680. B. The A1R-GPA1/Gαo, A1R-
GPA1/Gαi1/2, A1R-GPA1/Gαi3 and A1R-GPA1/Gαz strains were incubated with var-
ious concentrations of NECA, 2CCPA, adenosine and CGS21680 for 16 hours at 30◦C.
Cells were assayed for β-galactosidase activity (mU). Data is represented as the mean of

triplicate repeats ± S.E.M fitted with the logistic equation.
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Concentration-response curves, such as Figure 3.2 yield a myriad of information. NECA

elicits the highest response in A1R-GPA1/Gαo, A1R-GPA1/Gαi1/2, A1R-GPA1/Gαi3 and

A1R-GPA1/Gαz. Thus, NECA was assumed to be a full agonist in all strains. Encour-

agingly, the A2R-selective agonist CGS21680 only induces a response through the A1R at

very high concentrations. Observations such as these can be useful, but much quantitative

insight can be gained through the application of simple mathematical models such as the

logistic equation. This was fitted to the experimental data of Figure 3.2 by non-linear

regression to determine Basal, Emax and pEC50. These parameters were compared by

One-Way ANOVA and a P < 0.05 considered significant.

The pEC50 of NECA is remarkably conserved between strains but the Emax varies signif-

icantly (Table 3.1). For NECA, this is highest in the GPA1/Gαi1/2 strain and progressively

lower for GPA1/Gαi3, GPA1/Gαz and GPA1/Gαo (Emax = 25.8±0.6, 19.5±0.4, 5.8±0.2

and 2.5±0.1 respectively), further suggesting differences in G protein-coupling efficiency

between strains.

Adenosine yields consistent potency values between yeast strains that are lower than

those of NECA (Table 3.1). This is in agreement with mammalian data (IJzerman et al.,

2014a). The adenosine Emax values do not significantly differ from those of NECA. This

suggests that adenosine is also a full agonist against A1R-GPA1/Gαo, A1R-GPA1/Gαi1/2,

A1R-GPA1/Gαi3 and A1R-GPA1/Gαz. However, 2CCPA shows more variable trends be-

tween strains.

2CCPA elicits a higher potency than NECA or adenosine in all strains, consistent with

mammalian data. While the rank order of 2CCPA Emaxs remains A1R-GPA1/Gαi1/2 >

A1R-GPA1/Gαi3 > A1R-GPA1/Gαz >A1R-GPA1/Gαo their statistical differences from

NECA vary between strains. In A1R-GPA1/Gαi1/2 there is no significant difference be-

tween 2CCPA and NECA Emax, suggesting that 2CCPA is a full agonist in this strain.

However, the 2CCPA Emax is significantly lower than that of NECA for all other strains

Table 3.1. This would suggest that 2CCPA is a partial agonist of the A1R in GPA1/Gαo,

Gαi3 and Gαz backgrounds. This may suggest partial agonism as a function of the G

protein. But, statistical differences in Emax do not necessarily translate to physiological

differences. For example, the NECA, adenosine and 2CCPA Emax values are 19.5±0.4,

16.5±0.5 and 14.4±0.3, respectively, in A1R-GPA1/Gαi3. This relative consistency may in

fact render 2CCPA a full agonist in this strain. The same may be true of A1R-GPA1/Gαo

and Gαz given the low magnitude of response and the difficulties in distinguishing between

Gαi subtypes in vivo

Regardless, 2CCPA has a consistently higher pEC50 but lower maximal signal than

adenosine and NECA in all strains . pEC50 is a measure of system sensitivity to ligand,

while Emax denotes the downstream signalling in response. This suggests that the system

is more sensitive to 2CCPA but has a reduced ability to respond. This hints at a distinction
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between ligand binding and G protein activation. Indeed it is possible to separate pEC50

into ligand binding and signal transduction using the operational model of pharmacology

(Black and Leff, 1983).

This equation effectively splits potency into two new parameters, ligand binding affinity

(KA) and a signal transduction coefficient known as efficacy (τ). In the yeast system τ is

a measure of G protein activation and downstream signalling. The operational model of

pharmacology was applied to the data of Figure 3.2 by non-linear regression to obtain pKA

and logτ values (Table 3.1).

Table 3.1: Pharmacological parameters of the A1R. The logistic equation and the
operational model of pharmacological agonism were applied to the data of Figure 3.2 by
non-linear regression. pEC50 = −Log EC50 (potency), Emax = maximum level of signal,
pKA = −Log KA (ligand binding affinity) and τ = efficacy. N.D. = not determined due
to insufficient response. Significant differences were assessed by One-Way ANOVA with
Dunnett’s multiple comparisons test. P < 0.05 was considered significant. *P < 0.05, **P

< 0.005, ***P < 0.005 compared to NECA in the same strain.

Strain Ligand pEC50 Emax pKA logτ

GPA1/Gαo NECA 5.2±0.1 2.5±0.1 4.4±0.1 0.9±0.1
Adenosine 4.8±0.1 1.9±0.1 4.5±0.2 0.4±0.1*
2CCPA 6.6±0.2 1.2±0.1* 6.5±0.2*** −0.2±0.0***
CGS21680 2.9±0.8* 1.5±0.5 N.D. N.D.

GPA1/Gαi1/2 NECA 6.0±0.1 25.8±0.6 4.4±0.1 1.5±0.1
Adenosine 5.6±0.1 23.5±0.7 4.6±0.2*** 0.9±0.1*
2CCPA 6.7±0.1* 20.9±0.4 6.1±0.1*** 0.6±0.1***
CGS21680 3.2±0.1*** 23.5±3.6 N.D. N.D.

GPA1/Gαi3 NECA 5.8±0.1 19.5±0.4 5.1±0.1 0.7±0.1
Adenosine 5.7±0.1 16.5±0.5* 5.1±0.1 0.4±0.0
2CCPA 6.7±0.1** 14.4±0.3** 6.4±0.1*** 0.2±0.1
CGS21680 3.7±0.2*** 8.6±1.0*** N.D. N.D.

GPA1/Gαz NECA 5.5±0.1 5.8±0.2 4.4±0.3 1.2±0.3
Adenosine 4.8±0.2 3.9±0.3** 4.3±0.2 0.3±0.1*
2CCPA 6.3±0.2 2.9±0.2*** 6.1±0.2** −0.2±0.1**
CGS21680 2.9±0.5** 2.9±1.5 N.D. N.D.

Interestingly, the pKA values for each ligand do not significantly differ between each

Gα transplant (P < 0.05, one-way ANOVA). This predicts that the G protein does not

affect the affinity of the A1R to ligands. However log τ varies considerably between strains.

For the most part, A1R-GPA1/Gαo and A1R-GPA1/Gαz have lower log τ values than the

A1R-GPA1/Gαi strains. This may indicate that the observed differences in Emax are the

result of lower signal transduction capacity. This could be the result of the efficiency of

G protein-coupling and downstream signalling, whereby the A1R couples most strongly

to GPA1/Gαi1/2. Further, the efficiency of G protein-induced signalling is progressively

lower for GPA1/Gαi1/2 > GPA1/Gαi3 > GPA1/Gαz > GPA1/Gαo as indicated by logτ

(Table 3.1).
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3.2.2 Investigating G protein bias in the A1R

Functional selectivity has been investigated, with regard to G protein bias, for the A1R

in yeast (Stewart et al., 2009). However, while concentration-response curves of different

ligands have been compared for different G proteins, to our knowledge the degree of bias has

never been directly quantified for the A1R in yeast. Rajagopal et al. (2011) developed an

excellent method for quantifying signalling bias, between G proteins or between G proteins

and β-arrestins (reviewed by Shonberg et al. (2014)). This method uses a reference ligand

to compensate for bias as a result of assay or experimental system differences. NECA

is a consistent full agonist for all strains tested and was used as the reference ligand in

calculating bias. By subtracting this value for that from the another pathway a normalised

value for bias can be calculated.

Bias plots were created comparing the A1R signalling bias for GPA1/Gαo, GPA1/Gαi1/2,

GPA1/Gαi3 and GPA1/Gαz relative to each other (Figure 3.3). Consistent trends between

the ligands were observed in terms of bias. Adenosine is biased GPA1/Gαo = GPA1/Gαi3

> GPA1/Gαi1/2 > GPA1/Gαz. 2CCPA is similar, but shows a significant bias between

GPA1/Gαo and GPA1/Gαi3 such that GPA1/Gαo > GPA1/Gαi3 > GPA1/Gαi1/2 >

GPA1/Gαz. These measurements of G protein signalling bias of the A1R are not pos-

sible in mammalian systems due to the difficulties in distinguishing between different Gαi

in vivo.
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Figure 3.3: Calculating A1R bias in yeast. A normalised measure of bias, was
calculated using the method of Rajagopal et al. (2011) and the data of Figure 3.2 and
parameters of Table 3.1. NECA was used as the reference ligand to compensate for system
bias. Data represents mean ± S.E.M of triplicate repeats. A. A1R-GPA1/Gαo vs. A1R-
GPA1/Gαi3. B. A1R-GPA1/Gαo vs. A1R-GPA1/Gαi1/2. C. A1R-GPA1/Gαo vs. A1R-
GPA1/Gαz. D. A1R-GPA1/Gαi3 vs. A1R-GPA1/Gαz. E. A1R-GPA1/Gαi3 vs.A1R-

GPA1/Gαi1/2. F. A1R-GPA1/Gαi1/2 vs. A1R-GPA1/Gαz.
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3.2.3 Growth assays to investigate A1R Pharmacology

Thus far our studies of A1R pharmacology in the yeast system have exploited the FUS1> β-

galactosidase reporter. However, the transplant yeast strains also contain HIS3 under the

control of the FUS1 promoter (FUS1>HIS3 ). HIS3 encodes imidazoleglycerol-phosphate

dehydratase - a key step in the histidine biosynthesis pathway. This allows growth in his-

tidine deficient media to be used as a transcriptional reporter of pathway activation. This

has many advantages over β-galactosidase such as sensitivity. The yeast growth assay has

previously been shown to yield higher potencies than β-galactosidase assays (Dowell and

Brown, 2009). This is particularly advantageous when expressing receptors such as GLP-

1 in yeast, which have been shown to have weak β-galactosidase activity in response to

ligands (Weston et al., 2014). Another advantage is β-galactosidase assays typically re-

quire cell lysis and normalisation to cell density to be effective. However, growth assays

require a single measurement of cell density, i.e. OD600. This assay has successfully been

exploited by drug screening programmes and pharmacological investigation of a variety of

receptors (Brown, 2002; Brown et al., 2011; Peeters et al., 2011, 2012; Liu et al., 2014).

Alternatively, many studies use a Fluorescein-Di-β-D-glucopyranoside (FDGlu) to quantify

growth (Brown et al., 2011; Bertheleme et al., 2013; Weston et al., 2014). FDGlu is pro-

cessed to fluorescein by Exg1p, a yeast exoglucanase that is ubiquitously and constitutively

expressed during cell division (Dowell and Brown, 2009). Thus, fluorescein concentration,

and therefore fluorescence, are a direct indication of cell density. FDGlu overcomes several

limitations of growth assays compared to simple measurements of OD600. As cells settle

on the bottom of the plate, the pathlength and refractive index are altered, affecting the

reliability of absorbance measurements. Fluorescence does not have the same limitation.

FDGlu provides the means to measure growth without having to resuspend the cultures

and provides a means to obtain timecourse data. Therefore FDGlu was chosen to quantify

growth in our transplant yeast strains in response to adenosine receptor activation.

A1R transplant strains were cultured in AA-Ura overnight and subcultured in histidine

deficient media (AA-Ura-His) for a further 24-48 hours, as described by Weston et al.

(2014), to histidine starve the yeast cells. This was intended to significantly reduce the

rate of growth in unstimulated cells. Cells were then incubated with NECA, adenosine,

2CCPA or CGS21680 and 20µM FDGlu for 16 hours at 30◦C. Fluorescence was detected

using a TECAN Infinite M200 microplate reader (excitation wavelength = 485nm, emission

wavelength = 535nm, Figure 3.4).
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Figure 3.4: Histidine starvation of A1R expressing yeast transplants. Respond-
ing A1R strains identified in Figure 3.1 were cultured in AA-Ura overnight and subcul-
tured into AA-Ura-His for 24-48 hours. Cell density was then adjusted to OD600 = 0.02
and cells incubated in AA-Ura-His containing the approriate concentration of ligand and
20µM FDGlu for 16 hours at 30◦C.Fluorescence was detected using a TECAN Infinite
M200 microplate reader (excitation wavelength = 485nm, emission wavelength = 535nm).
A. A1R-GPA1/Gαo measured at 14 hours. B. A1R-GPA1/Gαi1/2 measured at 14 hours.

C. A1R-GPA1/Gαi3 measured at 12 hours. D. A1R-GPA1/Gαz

The growth data of Figure 3.4 is a remarkable contrast to the β-galactosidase data of

Figure 3.2. Concentration-response curves could only be determined for A1R-GPA1/Gαz

and here the signalling window (the relative difference between basal and maximum signal)

is greatly reduced compared to Figure 3.2. However, the GPA1/Gαz yielded higher poten-

cies in a growth assay relative to β-galactosidase assay (pEC50 = 7.1±0.3, 6.7±0.2, 8.2±0.2

and 5.5±0.2 for NECA, adenosine, 2CCPA and CGS21680 respectively). Interestingly all

compounds in the A1R-GPA1/Gαz transplant act as full agonists in this assay. The lack

of significant response in the A1R-GPA1/Gαo, A1R-GPA1/Gαi1/2 and A1R-GPA1/Gαi3

strains is inconsistent with their β-galactosidase activity in response to the same ligands

(P > 0.05, one-way ANOVA).
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3.2.3.1 Using 3-amino triazole to generate concentration-response curves for

A1R growth assays

Figure 3.4 suggests that histidine starvation is insufficient to generate concentration-response

curves for the A1R in yeast by growth assay. However, Peeters et al. (2011) successfully cre-

ated concentration-response curves by growth assay for the A1R in the GPA1/Gαi3 strain

using 7mM 3-amino-triazole (3-AT). 3-AT is a competitive inhibitor of imidazoleglycerol-

phosphate dehydratase, the HIS3 gene product and a rate limiting step in the histi-

dine biosynthesis pathway. This greatly reduces basal growth, allowing the formation of

concentration-response curves as MAPK signalling in yeast increases HIS3 expression, over-

coming the 3-AT inhibition. Therefore, 3-AT affects the rate at which the cells grow. A

timecourse experiment was performed to assess the effect of yeast cell growth in response

to NECA and 3AT. The A1R transplant strains were cultured in AA-Ura overnight at 30◦C

and then subcultured in AA-Ura-His for 8 hours. Cell density was adjusted to OD600 =

0.02 and cells incubated with the appropriate concentration of ligand, 7mM 3-AT and 20µM

FDGlu. Fluorescence was measured every 15 minutes for 20 hours.
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Figure 3.5: Growth timecourse assays of A1R expressing yeast cells. Respond-
ing A1R strains identified in Figure 3.1 were cultured in AA-Ura overnight at 30◦C and
subcultured in AA-Ura-His for 8 hours. Cell density was adjusted to OD600 = 0.02 and
cells incubated in AA-Ura-His containing the appropriate concentration of NECA, 7mM
3-AT and 20µM FDGlu. Fluorescence was measured every 15 minutes for 20 hours using a
TECAN Inifinte M200 microplate reader (excitation wavelength = 485nm, emission wave-
length = 535nm). A. A1R-GPA1/Gαo. B. A1R-GPA1/Gαi1/2. C. A1R-GPA1/Gαi3. D.

A1R-GPA1/Gαz. Data represents mean of tripicate repeats ± S.E.M.



Chapter 3: Establishing the System: Expression and Characterisation of
Adenosine Receptors in Yeast 69

In contrast to Figure 3.4, all strains respond to NECA in a concentration-dependent man-

ner in the presence of 3AT. The timecourse data of Figure 3.5 suggests that the A1R trans-

plant strains reach stationary phase at different times. Therefore, the optimal time to calcu-

late concentration-response curves varies. For A1R-GPA1/Gαo and A1R-GPA1/Gαi1/2 this

occurs at 14 hours when the difference between stimulated and unstimulated growth is high-

est. Concentration-response curves were created for A1R-GPA1/Gαi3 and A1R-GPA1/Gαo

at 12 and 16 hours respectively (Figure 3.5). Non-linear regression of the logistic equation

to Figure 3.5 yielded pEC50, Emax and basal growth in response to NECA (Table 3.2).
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Figure 3.6: NECA growth concentration-response curves of A1R expressing
yeast cells. A. Concentration-response curves were constructed from the timecourse data
of Figure 3.5 at 14, 14, 12 and 16 hours for A1R-GPA1/Gαo, A1R-GPA1/Gαi1/2, A1R-
GPA1/Gαi3 and A1R-GPA1/Gαz respectively. B. A1R-GPA1/Gαo, A1R-GPA1/Gαi1/2,
A1R-GPA1/Gαi3 and A1R-GPA1/Gαz were incubated with various concentrations of
NECA for 16 hours, lysed and assayed for β-galactosidase activity. Data represents the

mean of triplicate repeats ± S.E.M and were fitted using the logistic equation.

Table 3.2: Basal, potency and Emax of A1R strains in response to NECA. The
logistic equation was applied to the data of Figure 3.6 to obtain basal levels of signalling,
potency, a measure of sensitivity to ligand, and maximum signal Emax. β-galactosidase

activity (mU) has been included for comparison.

Strain Basal pEC50 Emax Basal pEC50 Emax

Growth Growth Growth mU mU mU

GPA1/Gαo 96±10 7.2±0.1 327±10 0.21±0.1 5.53±0.1 2.40±0.1

GPA1/Gαi1/2 105±10 7.7±0.1 292±10 0.17±0.4 6.00±0.1 19.15±0.6

GPA1/Gαi3 103±10 7.8±0.1 320±10 0.19±0.1 6.13±0.1 11.95±0.2

GPA1/Gαz 97±10 7.0±0.1 406±10 0.26±0.1 5.55±0.1 3.39±0.1

A1R-GPA1/Gαz shows a similar pEC50 value for NECA with 3-AT relative to histidine

starvation alone (7.0±0.1 compared to 7.1±0.3 respectively). With 7mM 3-AT, poten-

cies are consistently 15-fold higher for growth assay relative to β-galactosidase activity in

all strains (Table 3.2). Interestingly, there is a split between the strains with regard to

potency. A1R-GPA1/Gαo and A1R-GPA1/Gαz have remarkably similar potencies, as do

A1R-GPA1/Gαi1/2 and A1R-GPA1/Gαi3 which share higher pEC50 values. This trend
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is consistent with their respective β-galactosidase data and may represent functional se-

lectivity. However, Emax is far more consistent between strains for growth than for β-

galactosidase activity.

3.2.3.2 Pharmacological characterisation of the A1R by growth assay

Having established the necessity of 3-AT to perform growth assays for A1R activity in the

yeast system, growth was explored as an avenue to elucidate the pharmacology of NECA,

adenosine, 2CCPA and CGS21680. Yeast cells were incubated in AA-Ura-His containing

the appropriate concentration of ligand and 7mM 3-AT. 20µM FDGlu was used to quantify

growth by fluorescence (Figure 3.7). The resulting concentration-response curves were fitted

using the logistic equation (Table 3.3).
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Figure 3.7: Concentration-response curves for A1R growth assay in yeast. Yeast
transplant strains expressing the A1R were incubated in AA-Ura-His containing 7mM 3-
AT, 20µM FDGlu and the appropriate concentration of ligand. Fluorescence was measured
at the appropriate time to construct a concentration-response curve. A. A1R-GPA1/Gαo

measured at 14 hours. B. A1R-GPA1/Gαi1/2 measured at 14 hours. C. A1R-GPA1/Gαi3

measured at 12 hours. D. A1R-GPA1/Gαz measured at 16 hours.

There are clear differences between the growth assay data of Figure 3.7 and the β-

galactosidase data of Figure 3.2. The β-galactosidase data suggests that adenosine and

2CCPA are partial agonists, although Emax relative to NECA varied between strains. How-

ever, growth assay data suggests that NECA, adenosine and 2CCPA are full agonists and

that strain differences in Emax are not as pronounced as the β-galactosidase data of Fig-

ure 3.2. This feature is likely to be a consequence of the assay. The Emax of the system

is determined by the stationary phase and nutritional availability of the culture. Thus, it
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Table 3.3: Pharmacological parameters of the A1R growth assay. The logistic
equation (2.1) was applied to the data of Figure 3.7 by non-linear regression. pEC50 =
−Log EC50 (potency) and Emax = maximum level of signal. Equivalent β-galactosidase

data (mU) has been included for comparison.

Strain Ligand pEC50 Emax pEC50 Emax

Growth Growth mU mU

GPA1/Gαo NECA 6.8±0.1 2.6±0.0 5.2±0.1 2.5±0.1
Adenosine 6.0±0.1 2.7±0.1 4/8±0.1 1.9±0.1
2CCPA 7.3±0. 2.4±0.0 6.6±0.2 1.2±0.1

GPA1/Gαi1/2 NECA 8.13±0.1 2.8±0.1 6.0±0.1 25.8±0.6
Adenosine 7.1±0.1 3.0±0.1 5.6±0.1 23.5±0.7
2CCPA 8.8±0.1 2.8±0.1 6.7±0.1 20.9±0.4

GPA1/Gαi3 NECA 7.6±0.1 2.7±0.1 5.8±0.1 19.5±0.4
Adenosine 6.9±0.2 2.6±0.1 5.7±0.1 16.5±0.5
2CCPA 8.6±0.1 2.6±0.1 6.7±0.1 14.4±0.3

GPA1/Gαz NECA 7.4±0.2 2.1±0.1 5.5±0.1 5.8±0.2
Adenosine 6.5±0.1 2.3±0.1 4.8±0.2 3.9±0.3
2CCPA 7.7±0.1 2.2±0.0 6.3±0.2 2.9±0.2

is likely that the cells are reaching their maximum rate of growth and therefore stationary

phase at lower ligand concentrations. This may present difficulties differentiating partial

and full agonists.

pEC50 values vary between strains by growth assays. However, pEC50 values are higher

for all ligands and strains in growth assays relative to β-galactosidase assays. The values

of Table 3.3 are consistent with mammalian studies (IJzerman et al., 2014a). However,

this increase in sensitivity could be the result of limits on signalling windows imposed

by the stationary phase of the culture. Signalling hits maximum levels at lower ligand

concentrations because pathway and signalling capacity have reached the limits of the

system with regard to growth. This could result in increased pEC50 values.

There are clear differences in A1R pharmacology between the two transcriptional re-

porters. Growth appears to be more sensitive and yield potency values closer to mammalian

systems. However, all ligands tested behave as full agonists according to growth assay and

Emax is broadly similar between A1R strains. In contrast, β-galactosidase assays are less

sensitive but show clearer differences between G protein subtypes and full/ partial agonism.

Given that the aim of this study is to model functional selectivity between ligands and G

protein subtypes in yeast, we elected to continue with β-galactosidase assays as the primary

method to explore adenosine receptor pharmacology in yeast.
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3.2.4 Characterisation of a C-terminal A1R
GFP fusion protein

Thus far we have explored the pharmacology of the A1R in yeast and have identified a series

of responding and non-responding strains. We have shown that β-galactosidase Emax varies

significantly between strains. However, expression and trafficking of the A1R to the cell

membrane could vary between strains and influence signalling profiles. This could manifest

in the observed variation in Emax. Fusing a protein of interest with the Aequoria victo-

ria-derived green fluorescent protein (GFP) allows protein localisation to be measured in

real-time. Thus we sought to use a fluorescent A1R
GFP construct to assess differences in

receptor expression and localisation between responding and non-responding strains. C-

terminal GPCR-GFP fusion constructs have been powerful tools to study the trafficking

and internalisation of a range of receptors without affecting ligand binding or signal trans-

duction. This includes the adenosine receptor family (Bevan et al., 1999; Niebauer and

Robinson, 2006; Sitaraman et al., 2002; May et al., 2011).

Previously, a C-terminal A1R
GFP fusion construct, linked by a single isoleucine residue,

was created to explore adenosine receptor trafficking in the fission yeast Sz. pombe (Forfar,

PhD Thesis). This study showed that while the A1R does not function in Sz. pombe, it is

trafficked to the cell membrane. As this construct was readily available, it was cloned into

the p426GPD expression vector and expressed in the panel of Sc. cerevisiae yeast transplant

strains. 8-16 colonies of each strain were isolated and screened for β-galactosidase activity

in response to 100µM NECA. These responses were compared to those induced by DMSO

alone by Student’s T-test where a P < 0.05 was considered significant.
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Figure 3.8: Determining A1R
GFP coupling in yeast. A. A C-terminal A1RGFP

fusion construct was expressed in a panel of yeast strains using the p426GPD vector selected
for uracil biosynthesis. n = 8 - 16 colonies were picked and incubated with either the
full agonist NECA, or 1 % DMSO for 16 hours. Cells were lysed and assayed for β-
galactosidase activity (mU). Significant responses were determined by Student’s T-test
(***P < 0.0005). B. Responding and non-responding strains were imaged using a Leica
SP5 confocal microscope. ImageJ was used to compensate for background fluorescence.
Single cells, representative of the fluorescent population, have been selected to demonstrate

receptor localisation.

Consistent with the A1R, the A1R
GFP only upregulated β-galactosidase activity in re-

sponse to NECA in four strains; GPA1/Gαo, GPA1/Gαi1/2, GPA1/Gαi3 and GPA1/Gαz

(Figure 3.8A). However, the level of upregulation in the GPA1/Gαo and GPA1/Gαz has

increased considerably (6.1±0.0 mU and 15.6±0.2 mU for compared to 2.8±0.1 and 4.4±0.1

for A1R-GPA1/Gαo and A1R-GPA1/Gαz respectively. The order of response (GPA1/Gαi1/2

> GPA1/Gαi1/2 > GPA1/Gαi1/2 > GPA1/Gαi1/2) is shared by the A1R and A1R
GFP .

Given this similarity, the GFP fluorophore can be used to determine if differences in max-

imal activity are the result of receptor localisation.

Responding and non-responding strains were imaged by confocal microscopy to deter-

mine receptor localisation (Figure 3.8B). Clear membrane localisation was observed in re-

sponding and non-responding strains alike as were consistent patterns. This suggests that

the level of response is not a consequence of receptor trafficking.
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3.2.4.1 Measuring cell-to-cell variation in A1R
GFP flow cytometry

Even in a genetically identical population, cell-to-cell variation can arise. Indeed, pheno-

typic variability confers an adaptability to a genetically limited population and may in fact

be selected for in yeast (Neildez-Nguyen et al., 2007; Zhang et al., 2009). Our expression

system may further contribute to this variability. The copy number of the constitutive

p426GPD could vary amongst a population thus promoting differences in receptor expres-

sion. It is possible that the differences in Emax may be due to differences in receptor

expression across a population. Flow cytometry assesses the fluorescence of thousands of

individual cells in a matter of seconds allowing a larger scale investigation of population

level effects than traditional microscopy (Hawley et al., 2004). This approach was used

to explore the expression of A1R
GFP in the GPA1/Gαo, GPA1/Gαi1/2, GPA1/Gαi3 and

GPA1/Gαz strains (Figure 3.9).
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Figure 3.9: Flow cytometry of A1R
GFP in yeast. Responding A1R and A1RGFP

strains were analysed using a LSRII flow cytometer. 3x104 cells were analysed and fluores-
cence intensity in the GFP channel quantified for each cell. The graphs show fluorescence
intensity vs. side scatter (a measure of cell width). Thresholds were set using the equiv-
alent A1R expressing strains. Cells with fluorescence below the threshold are shown in

black. Cells with GFP fluorescence above the threshold are shown in green.

Table 3.4: A1R
GFP flow cytometry. The percentage of the population showing de-

tectable fluorescence, the average fluorescence units (FU) of the responding populations
and the average FU of the total populations were calculated from Figure 3.9 using FACS-
Diva software. Data collected from 3x104 cells per sample. Error bars represent S.E.M.

Strain Percentage Average FU x 104 Average FU x 104

Fluorescent Fluorescent Population Total Population

GPA1/Gαo 14.8 16.3±0.5 2.9±0.1
GPA1/Gαi1/2 8.6 7.7±0.3 1.1±0.1
GPA1/Gαi3 11.3 11.3±0.3 1.8±0.1
GPA1/Gαz 7.5 12.9±0.5 1.4±0.1
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Figure 3.9 shows the presence of a mixed population of fluorescent and non-fluorescent

cells. 14.8%, 8.6%, 11.3% and 7.5% of the A1R
GFP -GPA1/Gαo, A1R

GFP -GPA1/Gαi1/2,

A1R
GFP -GPA1/Gαi3 and A1R

GFP -GPA1/Gαz populations, respectively, show detectable

fluorescence respectively (Table 3.4). The variation between the strains is inconsistent with

their respective levels of signal (Figure 3.8). Similarly, the differences in average fluorescence

per cell, in both the responding and total populations, do not reflect the signalling profiles

in response to NECA. Taken together, these data suggest that differences in expression

level do not account for differences in signalling in the A1R
GFP strains despite the high

variability in expression across a population.

3.2.4.2 Pharmacological characterisation of the A1R
GFP

To further examine the effects of the GFP fluorophore on the A1R and downstream sig-

nalling, β-galactosidase activity concentration-response curves were generated for the re-

sponding strains of Figure 3.8. The logistic equation and the operational model of phar-

macological agonism were applied to these data.
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Figure 3.10: β-galactosidase concentration-response curves of the A1R
GFP in

yeast. Yeast cells expressing A1RGFP were incubated with various concentrations of
NECA, 2CCPA and adenosine for 16 hours at 30◦C. Cells were lysed and assayed for β-
galactosidase activity(mU). Data is represented as the mean of triplicate repeats ± S.E.M
fitted with the logistic equation. A. A1R-GFP-GPA1/Gαo. B. A1R-GFP-GPA1/Gαi1/2.

B. A1R-GFP-GPA1/Gαi3. D. A1R-GFP-GPA1/Gαz.
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Table 3.5: Pharmacological parameters of the A1R
GFP . The logistic equation and

the operational model of pharmacological agonism were applied to the data of Figure 3.10
by non-linear regression. pEC50 = −Log EC50 (potency), Emax = maximum level of signal,
pKA = −Log KA (ligand binding affinity) and τ = efficacy. Significant differences were
assessed by One-Way ANOVA with Dunnett’s multiple comparisons test. *P < 0.05, **P

< 0.005, ***P < 0.005 compared to NECA in the same strain.

Strain Ligand pEC50 Emax pKA logτ
mU

GPA1/Gαo NECA 5.9±0.1 5.8±0.1 4.1±0.1 1.8±0.1
Adenosine 5.8±0.2 3.9±0.2*** 5.3±0.1*** 0.3±0.1***
2CCPA 6.6±0.1* 3.4±0.1*** 6.2±0.1*** 0.1±0.1***

GPA1/Gαi1/2 NECA 5.8±0.1 26.1±0.5 4.4±0.1 1.4±0.1
Adenosine 4.8±0.1*** 23.5±0.7** 3.8±0.2* 0.9±0.1*
2CCPA 6.6±0.1** 17.2±0.4*** 6.2±0.1*** 0.3±0.1***

GPA1/Gαi3 NECA 5.7±0.1 23.4±0.2 5.1±0.0 1.0±0.1
Adenosine 5.3±0.1 20.1±0.5** 4.2±0.1*** 1.0±0.1
2CCPA 6.8±0.1*** 17.8±0.3*** 6.1±0.1*** 0.5±0.1*

GPA1/Gαz NECA 5.7±0.1 16.0±0.4 4.4±0.1 1.5±0.1
Adenosine 5.5±0.1 11.8±0.6** 5.0±0.1* 0.4±0.1***
2CCPA 6.5±0.2* 7.4±0.4*** 6.2±0.2*** −0.1±0.1***

The data of Table 3.1 and Table 3.5, for the A1R and A1R
GFP respectively, are remark-

ably similar. pEC50 and pKA are consistent between the A1R and A1R
GFP . However, Emax

is increased for A1R
GFP in the GPA1/Gαo and GPA1/Gαz strains relative to their A1R

counterparts. This effect is present, although less pronounced for the GPA1/Gαi3 strain.

Here the pharmacology of the A1R
GFP is broadly similar in the presence of GPA1/Gαi1/2

and GPA1/Gαi3. However, the increased Emax in GPA1/Gαo and GPA1/Gαz may be due

to reduced internalisation of the receptor.

Internalisation is a key regulatory process in GPCR activation and signalling. In Sc.

cerevisiae, STE2 activation leads to phosphorylation of critical residues at the receptor tail

by the yeast casein kinases YCK1 and YCK2 (Hicke et al., 1998). The phosphorylated

receptor is then ubiquitinated and targetted for clathrin mediated internalisation and lyso-

somal degradation (Roth and Davis, 1996). While a A2ARGFP fusion protein has been

shown to internalise slowly in yeast (Butz et al., 2003; Niebauer et al., 2004; Niebauer

and Robinson, 2006) it has not been shown that this process is is extended to A1R
GFP .

This can be measured through fluorescence microscopy. Unfortunately, GFP is sensitive

to photobleaching preventing the generation of timecourse data. To circumvent this all

A1R
GFP strains were treated with 1% (v/v) DMSO or 100 µM NECA for 16 hours and

imaged using a Deltavision widefield microscope (Figure 3.11). Clear membrane localisa-

tion of the receptor is maintained after NECA treatment, suggesting that A1R
GFP is not

internalised in yeast after 16 hours exposure to NECA. Therefore, it is possible that the

lack of internalisation is influencing differences in Emax between the A1R and A1R
GFP .
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Figure 3.11: Testing internalisation of A1R-GFP in yeast by widefield mi-
croscopy. The responding A1R-GFP strains of Figure 3.8 were cultured overnight in
AA-Ura in a shaking incubator at 30◦C. Cells were subcultured in AA-Ura for a further
6-8 hours. Cell density adjusted to OD600 = 0.02 and cells incubated in AA-Ura contain-
ing 1% (v/v) DMSO or 100µM NECA for 16 hours at 30◦C. Cells were imaged using a
DeltaVision widefield microscope (excitation = 488nm and emission = 535nm). Images

were deconvolved using SoftWorxRx and processed in ImageJ.



Chapter 3: Establishing the System: Expression and Characterisation of
Adenosine Receptors in Yeast 78

3.3 Characterisation of the Adenosine A2A Receptor in Yeast

The adenosine A2A receptor (A2AR) has gained attention as a therapeutic target in recent

years due to its intrinsic constitutive activity. Unlike the other adenosine receptors the

crystal structure of the A2AR has been solved (Figure 1.17). Consequently, there is a great

deal of structural, in addition to pharmacological, information available about this receptor.

In contrast to the A1R, the A2AR is primarily Gαs-coupled, mediating its activity

through activation of adenylate cyclase (reviewed by Jacobson (2009)). However, it has

been reported that the A2AR can influence PLC-β through Gαq (Sheth et al., 2014). The

A2AR has been shown to signal in yeast through the endogenous G protein, GPA1, or

the MMY24 GPA1/Gαi3 transplant strain used here (Price et al., 1996; Bertheleme et al.,

2013, 2014). Interestingly, the A2AR has not been shown to signal through chimeric Gαs

subunits in yeast. We sought to expand our studies to include signalling bias and ligand

specificity in the A2AR. The A2AR was cloned into the p426GPD vector, under the control

of the constitutive GAPDH promoter and transformed into the panel of yeast transplant

strains. 8-16 colonies of each strain were screened for β-galactosidase activity in response

to 100µM NECA. Responses were compared to DMSO by Student’s T-test and a P < 0.05

considered significant (Figure 3.12).
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Figure 3.12: Expression of the adenosine A2AR in yeast. The A2AR was expressed
in a panel of yeast strains using the p426GPD vector selected for uracil biosynthesis. n = 8
- 16 colonies were picked and incubated in AA-Ura containing either 100µM NECA, or 1 %
DMSO for 16 hours. Cells were lysed and assayed for β-galactosidase activity. Significant

responses were determined by Student’s T-test compared to DMSO alone (*P < 0.05).
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Constitutive activity is the defining feature of the A2AR. This is recreated in yeast

through enhanced basal activity. Basal activity is higher in all A2AR transformed strains

than the untransformed basal (0.5±0.2 mU). Statistically significant responses to NECA

were detected for the GPA1/Gαs and GPA1/Gαi1/2 transplant strains. Interestingly, the

basal level of signal is higher in the responding strains (basal = 3.4±0.2 mU, 14.5±0.2

mU and 11.4±1.3 mU for ”non-responding”, A2AR-GPA1/Gαi1/2 and A2AR-GPA1/Gαs

strains respectively). This higher basal in the responding strains could be the result of

precoupling, whereas the lower basal of the non-responding strains may represent a more

transient interaction between the receptor and the G protein. The novel discovery of

a A2AR-GPA1/Gαs coupling in yeast is encouraging given the known role of the A2AR

in stimulating adenylate cyclase in mammalian cells. Also, consistent with other studies

significant activity in response to ligand was observed in a GPA1/Gαi strain (Bertheleme

et al., 2013, 2014). However, in contrast to Bertheleme et al. (2013, 2014) who have shown

activity in GPA1/Gαi3, we observe A2AR-mediated activation of GPA1/Gαi1/2 in response

to NECA. The physiological significance of these interactions is unclear as, to the best

of our knowledge, the A2AR has not been shown to interact with Gαi proteins without

heterodimerisation with the A1R (Casadó et al., 2010).

A C-terminal A2ARGFP variant was created to ensure that receptor localisation was

consistent between responding and non-responding strains. This construct was transformed

into the panel of strains using the p426GPD vector and cells imaged by confocal microscopy

(Figure 3.13). Consistent membrane localisation of A2ARGFP between strains was observed

in all strains tested.

Gαo Gαi1/2 Gαi3 Gαz GPA1 Gαq Gα12 Gαs 

5µm 

Figure 3.13: Localisation of the A2ARGFP in yeast. The A2AR was C-terminally
tagged with GFP and cloned into the p426GPD vector. This was transformed into the
panel of yeast strains and imaged using a True Confocal Scanner Leica TCS SP5 micro-
scope. Images were processed and background fluorescence compensated for using ImageJ

software.



Chapter 3: Establishing the System: Expression and Characterisation of
Adenosine Receptors in Yeast 80

The physiologically significant A2AR-GPA1/Gαs coupling was characterised in response

to a number of ligands. This strain was incubated in AA-Ura containing various concentra-

tions of NECA, adenosine, 2CCPA and CGS21680 for 16 hours at 30◦C. Cells were lysed

and β-galactosidase activity determined. Concentration-response curves were generated for

NECA and CGS21680 (pEC50 = 6.5±0.2 and 4.7±0.1, Emax = 19.2±0.6 mU and 24.9±0.8

mU for NECA and CGS21680 respectively) but could not be constructed for adenosine or

2CCPA (Figure 3.14).
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Figure 3.14: A2AR-GPA1/Gαs concentration-response curves in yeast. A2AR-
GPA1/Gαs was incubated with a concentration range of NECA, adenosine, 2CCPA and
CGS21680. Cells were lysed and β-galactosidase activity determined. Data represents the

mean of quadruplicate repeats ± S.E.M fitted using the logistic equation.

Adenosine is the endogenous ligand of the A2AR. Therefore, a response should have

been observed. However, the basal level of signal fluctuated greatly in this strain (basal =

13.09±2.3 mU). This is likely to be the result of cell-to-cell variation. Here we express the

A2AR using the p426GPD expression vector. As observed with p426GPD-A1R
GFP , not all

cells in a population will express the receptor to the same level and some may not express

the receptor at all (Figure 3.9). Also the constitutive activity of the A2AR can contribute

to the basal noise in signalling and downstream responses, including transcription of β-

galactosidase. As the receptor equilibrium lies closer to the active receptor state there is

increased signalling through the pheromone response pathway. Consequently, the effect

of cell-to-cell variation on ligand-independent signalling becomes more pronounced. 3-

AT reduces the growth of cells lacking signalling downstream of an active receptor, as was

observed for the A1R. 3-AT was explored as a tool to prevent proliferation of low-responding

cells to limit variability in the A2AR-GPA1/Gαs strain.
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3.3.1 Optimisation of 3-AT to generate β-galactosidase concentration-

response curves in A2AR-expressing yeast

NECA and adenosine concentration-response curves were generated for A2AR-GPA1/Gαs

with varying concentrations of 3-AT (Figure 3.15).
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Figure 3.15: Effect of 3-AT on the adenosine A2AR β-galactosidase activity
in yeast. A2aR-GPA1/Gαs was incubated in AA-Ura-His containing the appropriate
concentrations of 3-AT and ligand for 16 hours at 30◦C. Cell density was determined by
OD620. Cells were lysed and β-galactosidase activity measured. A. OD620 and B. β-
galactosidase activity in response to NECA. C. OD620 and D. β-galactosidase activity in
response to adenosine. Data represents the mean of triplicate repeats ± S.E.M fitted with

the logistic equation.

3-AT reduced basal growth in these cells, as indicated by the decreasing OD620 (Fig-

ure 3.15C and D). However, 3-AT did not appear to affect basal β-galactosidase activity

(mU) but did result in the emergence of higher Emax. This creates a signalling window in

which concentration-response curves can be constructed. 5mM 3-AT appears to generate

the optimum signalling window and was used for all future experiments on the A2AR. In-

terestingly, Bertheleme et al. (2013, 2014) generated growth concentration-response curves

for the A2AR in the yeast transplant system in the presence of 10mM 3-AT. However, they

utilise the GPA1/Gαi3 transplant strain. As we observed in the validation of the A1R, and

as described by Weston et al. (2014), the GPA1/Gαs transplant strain used here has an

elevated basal level of β-galactosidase activity. This fundamental difference between the

GPA1/Gαi3 and GPA1/Gαs strains may explain this discrepancy.
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3.3.2 Pharmacological characterisation of the A2AR in yeast using 3-AT

Having established the 5mM optimal concentration of 3-AT for generating concentration

curves for the A2AR in yeast, the A2AR-GPA1/Gαs and A2AR-GPA1/Gαi1/2 strains were

characterised in response to NECA, adenosine, 2CCPA and CGS21680 (Figure 3.16).
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Figure 3.16: Pharmacology of A2AR in GPA1/Gαs and GPA1/Gαi1/2 trans-
plant strains. Yeast cells were cultured in AA-Ura-His containing the appropriate concen-
tration of ligand and 5mM 3-AT for 16 hours at 30◦C. Cells were lysed and β-galactosidase
activity determined. Data represents the mean of triplicate repeats ± S.E.M fitted with

the logistic equation. A. A2AR-GPA1/Gαs. B. A2AR-GPA1/Gαi1/2.

Table 3.6: Pharmacological parameters of the A2AR. The logistic equation and the
operational model of pharmacological agonism were applied to the data of Figure 3.16 by
non-linear regression. pEC50 = −Log EC50 (potency), Emax = maximum level of signal,
pKA = −LogKA (ligand binding affinity) and τ = efficacy. N.R. = no response. Significant
differences to NECA in the same strain were assessed by One-Way ANOVA with Dunnett’s
multiple comparisons test. *P < 0.05, **P < 0.005, compared to NECA in the same strain.

Strain Ligand pEC50 Emax pKA logτ

GPA1/Gαs NECA 6.5±0.2 19.2±0.6 5.9±0.2 0.5±0.1
Adenosine 5.2±0.8 15.0±0.6** 5.6±0.2 0.0±0.3
2CCPA 5.0±0.2 17.9±1.2* 4.7±0.3 −0.1±0.1
CGS21680 4.7±0.2* 24.9±0.8 4.9±0.1 −0.3±0.0

GPA1/Gαi1/2 NECA 4.4±0.5 23.0±4.7 3.3±0.2 1.0±0.2
Adenosine N.R. N.R. N.R. N.R.
2CCPA N.R. N.R. N.R. N.R.
CGS21680 4.3±0.2 28.1±1.7 2.8±0.1 1.6±0.1*
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The behaviour of the A2AR varies between the GPA1/Gαs and GPA1/Gαi1/2 strains.

NECA and CGS21680 induced a response in both strains but only A2AR-GPA1/Gαs re-

sponded to adenosine and 2CCPA. NECA is the most potent ligand tested (pEC50 =

6.5±0.2) and shows strong activity in this strain. CGS21680 may be a full agonist in

this strain but has a reduced potency relative to NECA (pEC50 = 4.47±0.2). Adenosine

and 2CCPA are both partial agonists of the A2AR in the GPA1/Gαs strain. In contrast,

adenosine and 2CCPA do not elicit a response in the A2AR-GPA1/Gα1/2 strain. CGS21680

exhibits broadly similar pharmacology for the A2AR in GPA1/Gαi1/2 and GPA1/Gαs back-

grounds but pKA and logτ values differ. Taken together this data suggests that G protein

subtype influences the pharmacology of the A2AR. Bias plots could not be created to ex-

plore this effect further due to the need for a reference ligand and the poor response of

NECA in the A2AR-GPA1/Gαi1/2 strain.

NECA, adenosine, 2CCPA and CGS21680 elicit responses in the A2AR-GPA1/Gαs strain

and all A1R strains tested. In the yeast system, these receptors share the same cell signalling

machinery with the exception of the the 5 C-terminal amino acids of GPA1. This allows

the use of the Rajagopal et al. (2011) method to create bias plots to describe the selectivity

of these compounds for the A1R relative to the A2AR. To our knowledge, this is the first

time this method has been used to study the selectivity of ligands for different receptor

subtypes. The selectivity of adenosine, 2CCPA and CGS21680 were calculated for A1R-

GPA1/Gαi1/2 relative to A2AR-GPA1/Gαs using NECA as a reference ligand. The bias plot

of Figure 3.17 demonstrates that adenosine and 2CCPA are biased towards A1R activation

while CGS21680 is a A2AR selective ligand.
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Figure 3.17: Bias plots to quantify A1R/A2AR ligand selectivity. The method of
Rajagopal et al. (2011) was used to calculate ligand selectivity using the data of Figure 3.2
and Figure 3.16 and parameters of Table 3.1 and Table 3.6. NECA was used as the

reference ligand. Data represents mean ± S.E.M of triplicate repeats.
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3.4 Characterisation of the Adenosine A2B Receptor in Yeast

Validation of adenosine receptor subtypes in yeast were extended to include the A2BR. Like

the A2AR, the A2BR is primarily coupled to stimulatory G proteins such as Gαs in mam-

malian systems but has been shown to couple to inhibitory G protein transplants in the

yeast system (Brown et al., 2000; Peeters et al., 2012; Liu et al., 2014). The A2BR is known

to be a low affinity adenosine receptor, requiring high concentrations of ligand to induce a

response. These concentrations are far higher than basal adenosine concentrations and are

typically associated with pathophysiological conditions (Jacobson, 2009). Consequently,

the A2BR has been implicated in stress and immunological responses. However, the tissue

distribution of the adenosine receptors overlap considerably, particularly in skeletal muscle

and the cardiovascular system (Lynge and Hellsten, 2000). It is likely that the pharmacol-

ogy and physiology of the A1R and A2BR are tightly linked. Consequently, this receptor

warrants further investigation.

The A2BR was cloned into the p426GPD expression vector and expressed in the panel

of yeast transplant strains. 8-16 colonies were picked and screened for activity in response

to a 100µM NECA by β-galactosidase assay (Figure 3.18). Responses were compared to

DMSO alone by Student’s T-test and a P < 0.05 considered significant
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Figure 3.18: Expression of the adenosine A2BR in yeast. The A2BR was expressed
in a panel of yeast strains using the p426GPD vector. n = 8 - 16 colonies were picked and
incubated with either the full agonist NECA, or 1 % DMSO for 16 hours. Cells were
lysed and assayed for β-galactosidase activity. Significant responses were determined by

Student’s T-test (***P < 0.0005, **P < 0.005, *P < 0.05).

Significant upregulation of signal in response to NECA were detected in yeast expressing

GPA1/Gα12, GPA1/Gαi3 and GPA1/Gαs. The A2BR-GPA1/Gα12 response is limited

(1.3±0.3 mU) and may not be physiologically relevant. However, the A2BR responses to

100µM NECA, via GPA1/Gαi1/2 and GPA1/Gαs, were much higher (32.3±0.9 mU and

22.2±1.3 respectively). Previous studies have shown the A2AR and the A2BR couple to the

GPA1/Gαi3 transplant in yeast (Peeters et al., 2011; Bertheleme et al., 2013, 2014). Here
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no significant activity was observed for either of these receptors in this strain. However,

activity was detected via the A2AR and A2BR in the GPA1/Gαi1/2 strain.

A C-terminal A2BRGFP fusion protein was created to ensure proper receptor trafficking

and membrane localisation. This construct was cloned into the p426GPD vector and ex-

pressed in the panel of transplant strains. Individual colonies were picked and imaged by

confocal microscopy. Figure 3.19 shows membrane localisation of the receptor is shared by

in both responding and non-responding strains alike.

Gαo Gαi1/2 Gαi3 Gαz GPA1 Gαq Gα12 Gαs 

5µm 

Figure 3.19: Localisation of the A2BRGFP in yeast. The A2BR was C-terminally
tagged with GFP and cloned into the p426GPD vector. This was transformed into the
panel of yeast strains. Cells were imaged using a True Confocal Scanner Leica TCS SP5

microscope. Images were processed using ImageJ software.

Due to the similarity of the A2AR and the A2BR coupling profiles in yeast the A2BR-

GPA1/Gαi1/2 and A2BR-GPA1/Gαs strains were selected for further characterisation (Fig-

ure 3.20). Quantitative insight into these concentration-response curves was gained through

non-linear regression of the logistic equation and the operational model of pharmacological

agonism (Table 3.7).

The A2BR induces a higher Emax in GPA1/Gαi1/2 than in GPA1/Gαs (32.4±1.7 com-

pared to 24.6±0.9). This may indicate a more efficient G protein coupling in the A2BR-

GPA1/Gαi1/2 transplant. This is reflected in largely reduced logτ values for A2BR-GPA1/Gαs.

Consistent with this, adenosine is a full agonist of the A2BR in the GPA1/Gαi1/2 strain

but a partial agonist against GPA1/Gαs based on their responses relative to NECA. In

contrast to the A2AR, NECA, adenosine, 2CCPA and CGS21680 show similar potencies

for both A2BR strains (Table 3.7). Consistent with observations of the A1R in yeast, all

ligands show a 15-fold reduction in potency for the A2BR relative to mammalian systems

(IJzerman et al., 2014b), confirming the reduced sensitivity of the yeast β-galactosidase

assay relative to mammalian systems.

The lack of plateau in the 2CCPA and CGS21680 presented difficulties in fitting the op-

erational model. The operational model requires a full sigmoidal curve for accurate fitting.

However, the operational model variants exist where a reference Emax of a full agonist is

included to circumvent this limitation (Motulsky and Christopoulos, 2004). Here, NECA

was assumed to be approaching its upper plateau. Consequently, the operational model

values presented here are estimates that should be used with some caution. The similarity

in A2BR potencies in the GPA1/Gαi1/2 and GPA1/Gαs strains is reflected by consistent

pKA values for all ligands. However, logτ values are reduced in A2BR-GPA1/Gαs. This
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suggests that the G protein transplant does not affect binding in the A2BR but does affect

signal transduction. However, while these predictions are consistent with Figure 3.19 this

is speculative without more data points for fitting. However, bias plots may alleviate this

problem. As bias plots use ∆∆
τ

KA
, and the inherent ambiguity of the operational model,

this method is appropriate for the study of bias in the A2BR. To confirm this a bias plot

was constructed to compare the activity of adenosine, 2CCPA and CGS21680 in the A2BR

strains (Figure 3.21). No significant bias was detected between strains for any ligand (P >

0.05, Student’s T-test).
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Figure 3.20: β-galactosidase concentration-response curves of the A2BR in
yeast. Yeast cells were incubated in AA-Ura containing NECA, adenosine, 2CCPA or
CGS21680 for 16 hours at 30◦C. Cells were lysed and β-galactosidase activity determined.
A. A2BR-GPA1/Gαi1/2/ B. A2BR-GPA1/Gαs. Data represents the mean of triplicate

repeats ± S.E.M fitted with the logistic equation.



Chapter 3: Establishing the System: Expression and Characterisation of
Adenosine Receptors in Yeast 87

Table 3.7: Pharmacological parameters of the A2BR. The logistic equation (2.1)
and the operational model of pharmacological agonism were applied to the data of Fig-
ure 3.20 by non-linear regression. pEC50 = −Log EC50 (potency), Emax = maximum level
of signal, pKA = −Log KA (ligand binding affinity) and τ = efficacy. Significant differences
to NECA in the same strain were assessed by One-Way ANOVA with Dunnett’s multiple
comparisons test. *P < 0.05, **P < 0.005, ***P < 0.005 compared to NECA in the same

strain.

Strain Ligand pEC50 Emax pKA log τ

GPA1/Gαi1/2 NECA 4.8±0.1 34.7±1.3 4.1±1.0 0.8±0.1
Adenosine 4.4±0.0* 33.0±0.8 3.5±0.1 0.9±0.1
2CCPA 3.8±0.1*** 28.5±5.1 3.3±0.3 0.4±0.2
CGS21680 2.7±0.1*** 28.1±1.7 3.2±0.2 0.4±0.1

GPA1/Gαs NECA 4.8±0.1 24.6±0.9 4.2±0.1 0.6±0.1
Adenosine 4.3±0.8 17.5±0.6** 3.8±0.1 0.3±0.1
2CCPA 4.1±0.1 7.5±0.5*** 4.4±0.1 3.5±0.1***
CGS21680 2.2±0.6*** 14.7±0.7*** 3.4±0.1 −0.2±0.1
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Figure 3.21: Calculating A2BR bias in yeast. Bias plots were constructed from
Table 3.7 as described by Rajagopal et al. (2011). NECA was used as the reference ligand.

Error bars represent S.E.M.

Bias plots were also used to describe the selectivity of adenosine, 2CCPA and CGS21680

for the A2BR compared to the A1R and A2AR. As no bias was detected for any ligand be-

tween the A2BR strains the physiologically relevant A2BR-GPA1/Gαs strain was compared

to A1R-GPA1/Gαi1/2 and A2AR-GPA1/Gαs (Figure 3.22). These bias plots demonstrate

that adenosine and 2CCPA are A1R selective ligands but selectively activate the A2AR

compared to the A2BR. In contrast, CGS21680 is a A2R biased ligand with a preference

for the A2AR overall. This is consistent with studies of mammalian systems (Verzijl and

IJzerman, 2011).
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Figure 3.22: Bias plots to quantify A2BR ligand selectivity. Bias plots were
constructed from Table 3.1, Table 3.6 and Table 3.7 as described by Rajagopal et al.

(2011). NECA was used as the reference ligand. Error bars represent S.E.M.
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3.5 Characterisation of the Adenosine A3 Receptor in yeast

To date, there have been no reported studies of the A3R in yeast. The A3R, like the A1R,

is a primarily Gαi-coupled receptor involved in regulating the immune response (Anto-

nioli et al., 2014). Given the similarity of the A1R and A3R G protein-coupling profiles

we sought to express and characterise the A3R in yeast. The A3R was cloned into the

p426GPD expression vector and expressed in the panel of yeast transplant strains. 8-

16 colonies were isolated and screened for β-galactosidase activity in response to 100µM

NECA. No significant increase in β-galactosidase activity was detected for any strain (P

> 0.05, Student’s T-test, Figure 3.23). As growth is a more sensitive reporter of receptor

activity than β-galactosidase in the yeast system, each isolate was rescreened for activity

in response to 100µM NECA by growth assay. The assay was performed with and without

3-AT. Once again no significantly responding strains were identified (P > 0.05, Student’s

T-test, Figure 3.23).

It is entirely possible that the lack of A3R responses to NECA in yeast were the result

of inadequate trafficking from the endoplasmic reticulum to the cell surface. Membrane

localisation of GPCRs are determined by the N-terminus of the receptor. For instance, the

N-terminus of STE2 contains membrane localisation sequences and lipid modification sites

essential to membrane expression. Previously, Wedlock et al. (1993) used the STE2 leader

sequence to express the human thyroid peroxidase enzymes at the yeast cell membrane.

This approach has since been applied to functionally express mammalian GPCRs in the

yeast transplant strains (Ladds et al., unpublished data). A p426GPD expression vector

was created that contained an in-frame STE2 leader sequencing immediately preceding the

multiple cloning site (Figure 3.24).
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Figure 3.23: Expression of the adenosine A3R in yeast. A. The A3R was expressed
in a panel of yeast strains using the p426GPD vector and selected for uracil biosynthesis.
8 - 16 colonies were picked and incubated with either the full agonist NECA, or 1 %
DMSO for 16 hours. A. Cells were lysed and screened for β-galactosidase activity. B.
Cells were cultured in AA-Ura-His containing 20µM FDGlu and 100µM NECA or 1%
(w/v) DMSO. Fluorescence was measured after 16 hours (excitation wavelength = 485nm,
emission wavelength = 535nm). C. Cells were cultured in AA-Ura-His containing 20µM
FDGlu, 1mM 3-AT and 100µM NECA or 1% (w/v) DMSO. Fluorescence was measured

after 16 hours (excitation wavelength = 485nm, emission wavelength = 535nm).



Chapter 3: Establishing the System: Expression and Characterisation of
Adenosine Receptors in Yeast 91

M S D A A P S L S N

STE2 – leader sequence 
A3R 

Figure 3.24: A STE2-A3R fusion construct for expression in yeast. A schematic
representation of the A3R containing the N-terminal amino acids of STE2 required for

membrane localisation.

The A3R was cloned into this construct to create an N-terminal STE2 leader-A3R fusion

protein (STE2-A3R, Figure 3.24). This construct was transformed into the panel of yeast

transplant strains. 8-16 colonies were isolated and screened for activity in response to

NECA by both β-galactosidase assay and growth assay. Upregulation of β-galactosidase

activity in response to NECA was not detected for any strain. However, significant, but

marginal, responses were detected by growth assay in the GPA1/Gα13 transplant strain in

the presence of 1mM 3-AT (Figure 3.25, *P<0.05).
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Figure 3.25: Functional screening of STE2-A3R construct. The A3R was ex-
pressed in a panel of yeast strains using the p426GPD vector containing the STE2 leader
sequenceand selected for uracil biosynthesis. 8 - 16 colonies were picked and incubated
with either the full agonist NECA, or 1 % DMSO for 16 hours. A. Cells were lysed and
screened for β-galactosidase activity. B. Cells were cultured in AA-Ura-His containing
20µM FDGlu and 100µM NECA or 1% (w/v) DMSO. Fluorescence was measured after
16 hours (excitation wavelength = 485nm, emission wavelength = 535nm). C. Cells were
cultured in AA-Ura-His containing 20µM FDGlu, 1mM 3-AT and 100µM NECA or 1%
(w/v) DMSO. Fluorescence was measured after 16 hours (excitation wavelength = 485nm,

emission wavelength = 535nm). *P < 0.05.

Weak responses were detected for the STE2-A3R in GPA1/Gα13 only in the presence

of 3-AT, suggesting a weak interaction between the A3R and the yeast transplant system.

While the physiological significance of this interaction is unclear this stain may provide a

platform to study receptor level effects. Time course data were generated for the STE2-

A3R in these strains in response to NECA, 2CCPA and adenosine in the presence of 3-AT

(Figure 3.26) to identify an optimal signalling window in which to generate concentration

response curves.
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Figure 3.26: STE2-A3R-GPA1/Gα13 timecourses. STE2-A3R-GPA1/Gα13 cells
were incubated in AA-Ura-His containing the appropriate concentration of ligand, 1mM
and 3-AT and 20µM FDGlu. Fluorescence was measured every 15 minutes for 20 hours
using a TECAN Infinite M200 microplate reader (excitation wavelength = 488nm, emission
wavelength = 535nm). Data represents mean ± S.E.M. of triplicate repeats. A. NECA.

B. Adenosine. C. 2CCPA.

The time course data of Figure 3.26 suggest weak responses to NECA in this strain.

However, this response was too weak to construct a dose-response curve at any timepoint.

No significant responses could be detected in this strain for adenosine or 2CCPA (P >

0.05 one-way ANOVA). This study of the A3R indicates that this receptor does not func-

tion sufficiently in the yeast system to generate any pharmacologically meaningful data.

Consequently, studies of this receptor were not pursued any further.
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3.6 Summary

The ultimate aim of this study is model mammalian GPCR pharmacology to understand

the contribution of ligand, receptor and G protein to function selective. The adenosine

receptor family, particularly, the A1R was chosen for this purpose due to demonstrated

functional selectivity in yeast and mammalian systems.

A crucial first step of this project was the expression characterisation of the A1R, A2AR,

A2BR and A3R subtypes in yeast. The A1R signalled in strains containing GPA1/Gαo,

GPA1/Gαo and GPA1/Gαo that represent inhibitory G proteins. This is consistent with the

known roles of the A1R in mammalian cells. For the first time a potential A1R-GPA1/Gαz

interaction was reported. Functional selectivity of the A1R was explored by applying simple

mathematical models to the concentration-response curves of a number of ligands. This

suggested that the G protein subtype influenced the signal transduction efficiency of the

A1R but not necessarily the ligand binding affinity.

Studies were extended to include the A2AR and A2BR subtypes. In mammalian cells

these are primarily Gαs coupled. Here, these receptors were functionally expressed in

the GPA1/Gαs transplant strain. However, functional coupling of these receptors to

GPA/Gαi1/2. These have not been reported in mammalian systems but similar GPA1/Gαi3

couplings have been reported in yeast. For the first time, A1R/A2R selectivity has been

directly quantified using the method of Rajagopal et al. (2011). While originally designed

to describe signalling bias, the similarity of these strains allows it to be used to describe

receptor selectivity.

Unfortunately, the A3R response was not robust enough to provide any pharmacolog-

ically meaningful information. Consequently, studies of this receptor were pursued no

further.



Chapter 4

Compound screening and

characterisation in yeast

4.1 Introduction

Fluorescent technologies have revolutionised pharmacology and molecular biology. Fluo-

rescent ligands have proven to be particularly powerful. Traditionally ligand binding has

been determined in vivo and in vitro using radiolabelled compounds. However, these ap-

proaches are typically high cost, low speed and technically demanding (Lohse et al., 2012).

In contrast, fluorescent compounds are non-invasive and allow ligand binding and local-

isation to be quantified on both single-cell and population levels. Thus fluorescent A1R

selective compounds would greatly advantageous from both pharmacological and compu-

tational standpoints. Fluorescent ligands would allow quantification of ligand binding in

real-time. Ligand binding rates would allow us to overcome a limitation of the operational

model of pharmacological agonism and improve our parameter estimation studies. A range

fluorescent A1R-selective agonists have been synthesised and characterised (Macchia et al.,

1998, 2002; Briddon et al., 2004; Baker et al., 2010; Dale et al., 2012; Kozma et al., 2013).

The need for ligand-binding data and the existence of fluorescent agonists were pow-

erful incentives to use the A1R to understand functional selectivity. However, only one,

CAS200623, was available during this study in limited quantities and at great expense

(Middleton et al., 2007). Dr Jennifer Hemmings and Prof Martin Lochner (University of

Bern, Switzerland) were seeking to develop and synthesise novel A1R-selective fluorescent

ligands. Here, yeast has been demonstrated as an excellent system to study A1R/A2R

selectivity in the absence of cross-talk. Indeed, these strains were initially developed as

a drug-screening platform (Brown et al., 2000). Our desire for easy access to fluorescent

ligands led to a collaboration with Dr Jenniifer Hemmings and Prof Martin Lochner. Here,

the compounds they synthesised were screened and characterised in the yeast system. The

data generated was used to guide fluorescent agonist development.

95
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4.1.1 The linker region: N6 purine substituents

The majority of fluorescent adenosine receptor agonists consist of three regions; a ligand

domain, a linker domain and a fluorophore (Figure 4.1). The ligand domain is typically

based on NECA or adenosine in the case of agonists or a xanthine-core for antagonists.

A range of fluorophores have been tested including BODIPY, FITC or TAMRA which

fluoresce in the red, green and yellow channels respectively (Jacobson et al., 1987; Middleton

et al., 2007; Kumar et al., 2011; Kozma et al., 2013).

Ligand Adaptor Fluorophore 

Figure 4.1: Fluorescent agonist schematic. Fluorescent adenosine receptor agonists
typically consist of a ligand domain that binds the receptor, based on agonists such as
adenosine or NECA and a fluorophore. To prevent the large fluorophore affecting ligand
binding a linker domain, such as a hydrocarbon chain, connects the fluorescent group to

the ligand.

The majority of published A1R fluorescent ligands have their fluorophore covalently

attached to the N6 region of the purine moiety (Figure 4.2, reviewed by Kozma et al. (2013)).

Previously, this attachment has been achieved using a hydrocarbon chain of varying lengths

and these compounds have been shown to have good activity in the A1R and A3R subtypes

(Baker et al., 2010; May et al., 2010). The N6-region has also been associated with adenosine

A1R selectivity (Shearer et al., 2009; Colca, 2012). For instance, 2CCPA and R-PIA contain

covalent N6 modifications and have higher potencies at the A1R than other adenosine

receptors (IJzerman et al., 2014a). These compounds contain N6-conjugated cyclopentyl

and phenyl groups respectively.

In this study Dr Hemmings synthesised a range of fluorescent agonist precursors contain-

ing covalently attached N6-cyclopentyl, -azabicyclo and -adamantyl regions (Figure 4.2).

Here, these compounds were screened and characterised in yeast. Those with good A1R

activity and selectivity were to be further modified by Dr Hemmings through attachment

of the fluorophore.
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Cyclopentyl Adamantyl Azabicyclo 

Figure 4.2: N6 substituents tested. N6 substituents, such as the cyclopentyl group
of 2CCPA, have been shown to confer a degree of A1R selectivity. A number of N6

substituents were added to adenosine receptor ligands by Dr. Jennifer Hemmings. Purine
group included to show site of attachment.

4.1.1.1 Investigating N6-cyclopentyl substituents as adenosine receptor ago-

nists

JH109 JH114 

Figure 4.3: N6-cyclopentyl agonists structures. JH109 and JH114 are derived from
adenosine and NECA respectively.

The first compounds tested were N6-cyclopentyl substituents. JH109 and JH114 are based

on adenosine and NECA respectively (Figure 4.3). These compounds were tested for ac-

tivity in our panel of A1R-expressing strains; GPA1/Gαi1/2, GPA1/Gαi3 and GPA1/Gαz.

GPA1/Gαo was omitted from this study due to its low response to adenosine and 2CCPA

(Chapter 3). Each of these strains were incubated with a concentration range of JH109 and

JH114 in AA-Ura for 16 hours at 30◦C. Transcriptional responses were then determined

by β-galactosidase assays (Figure 4.4). Non-linear regression of the operational model of

pharmacological agonism and the logistic equation were used to calculate pEC50, Emax,

pKA and τ (Table 4.1).
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Figure 4.4: N6-cyclopentyl agonist pharmacology of the A1R in yeast. Yeast cells
were incubated in AA-Ura containing an appropriate concentration of ligand for 16 hours
at 30◦C. Cells were lysed and β-galactosidase activity determined. Data represents mean
± S.E.M of triplicate repeats fitted with the logistic equation. A. A1R-GPA1/Gαi1/2. B.

A1R-GPA1/Gαi3. C. A1R-GPA1/Gαz.

Table 4.1: Pharmacological parameters of the A1R in response to N6 cy-
clopentyl agonists. The logistic equation and the operational model of pharmacological
agonism were applied to the data of Figure 4.4 by non-linear regression. pEC50 = −Log
EC50 (potency), Emax = maximum level of signal, pKA = −Log KA (ligand binding affin-
ity) and τ = efficacy. NECA and adenosine values have been included for comparison. *

P < 0.05, *** P < 0.0005, Student’s T-test relative to precursor compound.

Strain Ligand pEC50 Emax pKA logτ

GPA1/Gαi1/2 NECA 6.0±0.1 25.8±0.6 4.4±0.1 1.5±0.1
JH114 6.5±0.1* 25.5±0.7 4.8±0.5 1.6±0.5
Adenosine 5.6±0.1 23.5±0.7 4.6±0.2 0.9±0.1
JH109 6.2±0.1* 21.6±1.1 5.5±0.1* 0.7±0.1

GPA1/Gαi3 NECA 5.8±0.0 19.5±0.4 5.1±0.1 0.7±0.1
JH114 6.3±0.1*** 22.0±0.4 4.7±0.3 1.6±0.2*
Adenosine 5.7±0.1 16.5±0.5 5.1±0.1 0.4±0.0
JH109 5.8±0.1 17.1±0.4 5.3±0.1 0.4±0.1

GPA1/Gαz NECA 5.5±0.1 5.8±0.2 4.4±0.3 1.2±0.3
JH114 6.8±0.1 5.5±0.2 3.8±0.3 0.8±0.2
Adenosine 4.8±0.2 3.9±0.3 4.3±0.2 0.3±0.1
JH109 5.1±0.1 3.8±0.2 5.0±0.2 0.1±0.1
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The data of Figure 4.4 and Table 4.1 show JH109 and JH114 are more potent than

adenosine and NECA respectively in all A1R strains tested. No significant increases in

Emax for JH109 or JH114 relative to their precursor compounds were observed (P > 0.05,

Student’s T-test). Consistently, there is a modest increase in pKA (P > 0.05, Student’s T-

test). There was no appreciable increase in logτ for JH109 or JH114 compared to adenosine

and NECA respectively in A1R-GPA1/Gαi3 or A1R-GPA1/Gαz. Taken together these data

suggest that N6-cyclopentyl modifications increase A1R ligand sensitivity. However, there

were differences in pKA and logτ for JH109 and JH114 in the A1R strains compared to their

respective precursors (Table 4.4). Bias plots were constructed for these compounds in the

A1R strains using NECA as a reference compound. These suggest that JH109 exhibits a

bias of GPA1/Gαi1/2 > GPA1/Gαi3 > GPA1/Gαz whereas JH114 is biased GPA1/Gαi1/2

= GPA1/Gαi3 > GPA1/Gαz for the A1R in yeast (Figure 4.5).
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Figure 4.5: A1R bias for N6-cyclopentyl agonists. Bias plots were prepared for
the data of Table 4.1 as described by Rajagopal et al. (2011). NECA was used as the
reference compound to compensate for system bias. A. A1R-GPA1/Gαi1/2 vs. A1R-
GPA1/Gαi3. B. A1R-GPA1/Gαi1/2 vs. A1R-GPA1/Gαz. C. A1R-GPA1/Gαi3 vs. A1R-
GPA1/Gαz. *P < 0.05, **P < 0.005, ***P < 0.0005, one-way ANOVA with Dunnett’s

multiple comparison test compared to NECA bias.
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The subtype specificities of JH109 and JH114 were further explored using the yeast

transplant system. As the physiological significance of A2AR and A2BR GPA1/Gαi1/2

couplings in yeast is unclear, the A2R-GPA1/Gαs strains were chosen for novel compound

characterisation. The A2AR-GPA1/Gαs and A2BR-GPA1/Gαs strains were incubated with

JH109 or JH114 in AA-Ura for 16 hours at 30◦C and β-galactosidase activity determined

(Figure 4.6). pEC50, Emax, pKA and logτ were calculated through non-linear regression

of the logistic equation and the operational model of pharmacological agonism respectively

(Table 4.2).
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Figure 4.6: N6-cyclopentyl agonist pharmacology of the A2AR and A2BR in
yeast. A2AR and A2BR expressing yeast strains were incubated in AA-Ura-His or AA-Ura,
respectively, containing an appropriate concentration of ligand for 16 hours at 30◦C. A2aR
expressing cells were also incubated with 5mM 3-AT. Cells were lysed and β-galactosidase
activity determined. Data represents the mean of triplicate repeats ± S.E.M fitted with

the logistic equation. A. A2AR-GPA1/Gαs. B. A2BR-GPA1/Gαs.

Table 4.2: Pharmacological parameters of the A2AR and A2BR in response to
N6 cyclopentyl agonists. The logistic equation and the operational model of pharmaco-
logical agonism were applied to the data of Figure 4.6 by non-linear regression. pEC50 =
−Log EC50 (potency), Emax = maximum level of signal, pKA = −Log KA (ligand binding
affinity) and τ = efficacy. N.R. denotes no response. NECA and adenosine values have
been included for comparison. Student’s T-test relative to precursor compound where P

< 0.05 was considered significant. *** P < 0.0005

Strain Ligand pEC50 Emax pKA log τ

A2AR-GPA1/Gαs NECA 6.5±0.2 19.2±0.6 5.9±0.2 0.5±0.1
JH114 5.3±0.3 19.5±1.1 4.6±0.4 0.3±0.1
Adenosine 4.2±0.1 15.0±0.6 5.6±0.2 0.0±0.3
JH109 N.R. N.R. N.R. N.R.

A2BR-GPA1/Gαs NECA 4.8±0.1 24.6±0.9 4.2±0.1 0.6±0.1
JH114 3.5±0.3 12.1±0.1 4.2±0.1 −0.2±0.1***
Adenosine 4.3±0.8 17.5±0.6 3.8±0.1 0.3±0.1
JH109 N.R. N.R. N.R. N.R.

JH109 yielded no detectable response via the A2AR or the A2BR. However, JH114 in-

duced a response via these receptors but with reduced potency, Emax, pKA and logτ relative

to NECA (Table 4.2). Taken together, these data suggest that N6-cyclopentyl moeities in-

crease the A1R selectivity of purinergic agonists compared to their NECA and adenosine

precursors in yeast.
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4.1.1.2 Investigating N6-azabicyclo compounds as adenosine receptor agonists

JH52 JH56 

JH62 JH202 JH272 

Figure 4.7: N6-azabicyclo structures. JH52 uses adenosine as a ligand domain. JH56
also includes a 5’ covalent modification to the ribose group. JH62, JH202 and JH272 use
NECA as a ligand domain with various N6-azabicyclo regions. Compounds synthesised by

Dr. Jennifer Hemmings, University of Bern, Switzerland.

Further to our investigation of N6-cyclopentyl substituents, Dr. Hemmings synthesised a

series of N6-azabicyclo compounds as potential fluorescent A1R agonist precursors (Fig-

ure 4.7). These compounds were tested for activity in the A1R-GPA1/Gαi1/2, A1R-

GPA1/Gαi3 and A1R-GPA1/Gαz yeast strains. Each of these strains were incubated

with a concentration range of JH52, JH56, JH62, JH202 and JH272 in AA-Ura for 16

hours at 30◦C. Transcriptional responses were determined by β-galactosidase assay (Fig-

ure 4.8). One-way ANOVA showed no significant upregulation of signal in response to any

N6-azabicyclo agonist (P>0.05).

Despite the lack of A1R-mediated signalling, the A2AR and A2BR strains were assayed for

activity in response to the N6-azabicyclo ligands. A2AR-GPA1/Gαs and A2BR-GPA1/Gαs

were incubated with JH52, JH56, JH62, JH202 and JH272 in AA-Ura for 16 hours at 30◦C

and β-galactosidase activity determined (Figure 4.9). Once again no significant upregula-

tion of signal in response to ligand was detected (P>0.05, one-way ANOVA with Dunnett’s

post-test). Due to the lack of significant activity in any strain tested this class of compound

was not developed or studied any further.
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Figure 4.8: N6-azabicyclo agonist pharmacology of the A1R in yeast. Yeast cells
were incubated in AA-Ura containing an appropriate concentration of ligand for 16 hours
at 30◦C. Cells were lysed and β-galactosidase activity determined. Data represents mean
± S.E.M of triplicate repeats fitted with the logistic equation. A. A1R-GPA1/Gαi1/2. B.

A1R-GPA1/Gαi3. C. A1R-GPA1/Gαz.
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Figure 4.9: N6-azabicyclo agonist pharmacology of the A2AR and A2BR in
yeast. Yeast cells were incubated in AA-Ura containing an appropriate concentration
of ligand for 16 hours at 30◦C. Cells were lysed and β-galactosidase activity determined.
Data represents mean ± S.E.M of triplicate repeats fitted with the logistic equation. A.

A2AR-GPA1/Gαs. B. A2BR-GPA1/Gαs.

4.1.1.3 Investigating N6-adamantyl agonists

Previously, N6-adamantyl adenosine receptor agonists have been shown to have good A1R

selectivity over the A2AR, A2BR and A3R in rats (Daly et al., 1986; Gao et al., 2003). A se-

lective partial A1R agonist containing an N6-adamantyl agonist (CVT-3619/ GS-9667) has

also undergone clinical trials but has been discontinued due to inadequate pharmacokinetics

(Shearer et al., 2009; Colca, 2012). Consequently, N6-adamantyl nucleosides show promise

as fluorescent ligand precursors. A range of N6-adamantyl agonists were synthesised by Dr.

Hemmings and provided for screening in yeast (Figure 4.10).

JH66 JH95 

JH97 JH209 

Figure 4.10: N6-adamantyl structures. JH66 and JH95 are N6-adamantyl sub-
stituents of adenosine and NECA respectively. JH97 also contains a 5’ modification of the
ribose group. JH209 is derived from JH95 but contains a hydroxyl group on the adamantyl
region. Compounds synthesised by Dr. Jennifer Hemmings, University of Bern, Switzer-

land.
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The N6-adamantyl agonists of (Figure 4.10) were tested for activity in strains represent-

ing A1R-GPA1/Gαi1/2, A1R-GPA1/Gαi3 and A1R-GPA1/Gαz. Each of these strains were

incubated with a concentration range of JH52, JH56, JH62, JH202 and JH272 in AA-Ura

for 16 hours at 30◦C. Transcriptional responses were determined by β-galactosidase assay

(Figure 4.11). pEC50, Emax, pKA and τ were determined through non-linear regression of

the logistic equation and the operational model of pharmacology (Table 4.3).
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Figure 4.11: N6-adamantyl agonist pharmacology of the A1R in yeast. Yeast cells
were incubated in AA-Ura containing an appropriate concentration of ligand for 16 hours
at 30◦C. Cells were lysed and β-galactosidase activity determined. Data represents mean
± S.E.M. of triplicate repeats fitted with the logistic equation. A. A1R-GPA1/Gαi1/2. B.

A1R-GPA1/Gαi3. C. A1R-GPA1/Gαz.
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Table 4.3: Pharmacological parameters of the A1R in response to N6-
adamantyl agonists. The logistic equation and the operational model of pharmaco-
logical agonism were applied to the data of Figure 4.11 by non-linear regression. pEC50 =
−Log EC50 (potency),Emax = maximum level of signal, pKA = −Log KA (ligand binding
affinity) and τ = efficacy. N.R. denotes no response. JH66 and JH95 are derivatives of
adenosine and NECA respectively. Therefore, NECA and adenosine have been included
for comparison. * P < 0.05, ** P < 0.005, *** P < 0.0005, Student’s T-test or one-way
ANOVA with Dunnett’s multiple comparison test as appropriate, relative to precursor

compound

Strain Ligand pEC50 Emax pKA logτ

A1R-GPA1/Gαi1/2 Adenosine 5.6±0.1 23.5±0.7 4.6±0.2 0.9±0.1
JH66 4.8±0.1** 25.4±1.0 3.0±1.1 1.8±1.1
NECA 6.0±0.1 25.8±0.6 4.4±0.1 1.5±0.1
JH95 5.4±0.0** 26.9±0.3 4.2±0.3 1.2±0.3
JH97 N.R. N.R. N.R. N.R.
JH209 4.0±0.1*** 25.7±6.1 3.5±0.1** 1.0±0.1*

A1R-GPA1/Gαi3 Adenosine 5.7±0.1 16.5±0.5 5.1±0.1 0.4±0.0
JH66 4.8±0.1** 17.6±0.6 4.2±0.1** 0.5±0.1
NECA 5.8±0.0 19.5±0.4 5.1±0.1 0.7±0.1
JH95 5.3±0.1** 19.0±0.7 4.6±0.1* 0.7±0.1
JH97 N.R. N.R. N.R. N.R.
JH209 4.2±0.1*** 18.1±0.9 3.7±0.1* 0.5±0.1

A1R-GPA1/Gαz Adenosine 4.8±0.2 3.9±0.3 4.3±0.2 0.3±0.1
JH66 4.4±0.1 2.8±0.2* 4.1±0.2 −0.2±0.1*
NECA 5.5±0.1 5.8±0.2 4.4±0.3 1.2±0.3
JH95 4.9±0.1* 4.5±0.2* 4.5±0.2 0.4±0.1
JH97 N.R. N.R. N.R. N.R.
JH209 3.4±0.6* 2.8±0.3** 3.8±0.3 −0.1±0.2*

The behaviour of the N6-adamantyl agonists is remarkably consistent between the G

protein transplant strains (Figure 4.11). In particular the potency of these compounds for

the A1R appears to be largely G protein-independent in yeast (Table 4.3). Differences in

Emax between strains is consistent with all other compounds tested and is likely to be a

consequence of G protein-coupling efficiency. Trends in logτ would agree with this.

JH66 and JH95 are derivatives of adenosine and NECA respectively. These compounds

show a reduced potency compared to their precursors (Table 4.3). This is in direct contrast

to the N6-cyclopentyl agonists JH109 and JH114 that show increased potency relative to

adenosine and NECA respectively. This may be the result of steric hinderence as the op-

erational model predicts variation in ligand sensitivity (pKA) but not necessarily efficacy

(logτ). The lack of structural information regarding the A1R makes this difficult to de-

termine. However, JH209 is a modified form of JH95 containing an adamantyl-hydroxyl

group. This compound shows reduced potency relative to JH95. The 5’-modified JH97

shows no response in any A1R strain tested (Figure 4.11).

Bias plots were constructed to investigate the influence of G protein subtype on N6-

adamantyl agonist pharmacology (Figure 4.12). These compounds do little to bias signal

between GPA1/Gαi1/2 and GPA1/Gαi3. However, JH95 promotes a slight bias towards

GPA1/Gαi3 through the A1R in yeast. Consistent with all other compounds tested, N6-

adamantyl agonists promote GPA1/Gαi bias relative to GPA1/Gαz.
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Figure 4.12: A1R bias for N6-adamantyl agonists. Bias plots were prepared for the
data of Table 4.3 as described by Rajagopal et al. (2011). NECA was used as the reference
ligand to compensate for system bias. A. A1R-GPA1/Gαi1/2 vs. A1R-GPA1/Gαi3. B.
A1R-GPA1/Gαi1/2 vs. A1R-GPA1/Gαz. C. A1R-GPA1/Gαi3 vs. A1R-GPA1/Gαz. P <
0.05, *** P < 0.0005 one-way ANOVA with Dunnett’s multiple comparison test compared

to NECA bias.

The A2AR-GPA1/Gαs and A2B-GPA1/Gαs strains were used to elucidate the subtype

specificity of the N6-adamantyl agonists. Strains were incubated with a concentration range

of JH66, JH95, JH97 or JH209 for 16 hours in the appropriate media. Cells were lysed and

β-galactosidase activity determined (Figure 4.13).
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Figure 4.13: N6-adamantyl agonist pharmacology of the A2AR and A2BR in
yeast. A2AR and A2BR expressing yeast strains were cultured in AA-Ura and AA-Ura-His,
respectively, containing an appropriate concentration of ligand for 16 hours at 30◦C. A2AR
expressing cells were also incubated with 5mM 3-AT. Cells were lysed and β-galactosidase

activity determined. A. A2AR-GPA1/Gαs. B. A2BR-GPA1/Gαs.

No significant increase in signal was detected in response to JH66, JH95 or JH209 in

A2AR-GPA1/Gαs or A2BR-GPA1/Gαs (one-way ANOVA, P>0.05). However, JH97 up-

regulated signal in A2AR-GPA1/Gαs at high concentrations (β-galactosidase activity =

16.3±0.9 in response to 100µM JH97 compared to 10.7±0.3 for DMSO alone). JH97 con-

tains an aromatic group covalently attached to the 5’ region of the compound. This may

suggest that 5’-modifications of the nucleotide region of adenosine receptor agonists can

influence A2AR selectivity in yeast.
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4.1.2 CAS200623: an established fluorescent compound

In our efforts to develop novel fluorescent compounds an existing ligand was characterised in

yeast. CAS200623 is a commercially available fluorescent adenosine receptor agonist. This

compound uses NECA as a ligand domain and a BODIPY (630/650) fluorophore connected

by a hydrocarbon chain (Baker et al. (2010), Figure 4.14). CAS200623 has already been

established in mammalian systems as an agonist to the A1R and the A3R (Briddon et al.,

2004; May et al., 2010, 2011; Baker et al., 2010). Indeed, cAMP accumulation assays

have demonstrated that CAS200623 inhibits adenylate cyclase in A1R-transfected cell lines

(Middleton et al., 2007). However, the potency of CAS200623 was lower than that of NECA

in this study (pEC50 = 9.44 and 8.47 M for NECA and CAS200623, respectively). To our

knowledge, no fluorescent adenosine receptor agonists, including CAS200623, have been

tested in yeast.

BODIPY (630/650) 

NECA 

Ligand Linker Fluorophore 

Figure 4.14: CAS200623 structure. NECA is covalently linked to a BODIPY fluo-
rophore via an extended hydrocarbon chain. Chemical structure derived from Middleton

et al. (2007) and Baker et al. (2010).

A1R-GPA1/Gαi1/2, A2AR-GPA1/Gαs, and A2BR-GPA1/Gαs were used to establish the

pharmacology and selectivity of CAS200623 in yeast. These strains were incubated with

concentration-response curves of CAS200623 for 16 hours in the appropriate media and

β-galactosidase activity determined (Figure 4.15).

CAS200623 induces high signal in the A1R and A2AR in yeast (β-galactosidase activ-

ity = 29.0±0.8 and 16.8±0.1 for the A1R and A2AR respectively in response to 100µM

CAS200623). However, this compound has a low potency for these receptors in yeast

(pEC50 = 4.5±0.1 and 4.4±0.1 for the A1R and A2AR respectively). The A2BR showed a

modest response to 100µM CAS200623 (β-galactosidase activity = 4.5±0.1 mU). However,

the A2BR is known to be a low affinity receptor compared to the A1R and A2AR. Given the

low potency of of CAS200623 for these receptors, a low response in A2BR-GPA1/Gαs is

unsurprising. Taken together, these data suggest that CAS200623 is a low potency agonist

with poor A1R/A2R selectivity in yeast.
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Figure 4.15: CAS200623 pharmacology in yeast. Yeast strains were cultured in
AA-Ura overnight in a shaking incubator at 30◦C. Cells were subcultured in AA-Ura and
allowed to grow for a further 6 - 8 hours. Cell density was adjusted to OD600 = 0.02
and cells incubated in AA-Ura containing an appropriate concentration of ligand or 1%
DMSO. A2AR-GPA1/Gαs was maintained in AA-Ura-His and supplemented with 5mM
DMSO upon agonist treatment. Cells were lysed and β-galactosidase activity determined.

A. A1R-GPA1/Gαi1/2. B. A2AR-GPA1/Gαs. C. A2BR-GPA1/Gαs.

CAS200623 clearly interacts with the A1R given the transcriptional responses observed in

the presence of a high concentration of ligand. The A1R
GFP construct provides an excellent

tool to assess the specificity of ligand bindingas 8.6% of the population are expressing the

fluorescent receptor to a detectable level (Figure 3.9). Therefore, flow cytometry can be used

to assess fluorescent ligand binding across a mixed population and elucidate the specificity

of A1R/A1R
GFP binding by CAS200623.
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Cells were incubated in AA-Ura overnight in a shaking incubator at 30◦C. Cultures

were centrifuged at 2000RPM for 5 minutes and the pellet washed with ice cold PBS before

sonication to ensure measurement of single cells and not aggregates. Cells were incubated

with 100µM CAS200623 and fluorescence measured periodically. Cells transformed with

p426GPD alone were supplemented with 1% (v/v) DMSO and used as a gating control for

fluorescence due to GFP or the red fluorescent ligand (Figure 4.16).
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Figure 4.16: Flow cytometry of CAS200623 in yeast. GPA1/Gαi1/2 transformed
with p426GPD-A1R, p426GPD-A1RGFP or p426GPD alone were cultured in AA-Ura
overnight in a shing incubator at 30◦C. Cells were harvested by centrifugation at 2000RPM
for 5 minutes and washed in ice-cold PBS before sonication. Cells were incubated with
100µM CAS200623 and fluorescence measured in 30,000 cells periodically. Cells trans-
formed with p426GPD alone were used as a gating control to set thresholds. Cells below
this threshold are shown in black, cells showing fluorescence in response to ligand are shown

in red and those showing GFP fluorescence are shown in green.

The flow cytometry data of Figure 4.16 shows a distinct subpopulation of red fluorescent

cells emerge with CAS200623 treatment in all strains tested. This subpopulation represents

5.5±0.7%, 2.6±0.1% and 4.1±0.2% of the A1R, A1R-GFP and vector alone populations

respectively. This suggests that the ligand is binding to the yeast cell surface regardless of

receptor expression. Consistent with this there is little correlation of red fluorescence with

A1R
GFP fluorescence. Figure 4.16 also suggests 8.2±0.3% of the A1R

GFP populations are

expressing the fluorescently-tagged receptor.

Taken together, these data suggest that CAS200623 non-specifically binds to the yeast

cell surface. Whether the yeast cell wall, a cellular feature mammalian cells lack, is a

contributing factor remains unclear.
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4.1.2.1 Development of novel fluorescent compounds

In yeast, CAS200623 activates the A1R, A2AR and A2BR and non-specifically binds the

yeast cell surface. However, cyclopentyl and adamantyl modifications of the N6 region of

the purine affect A1R/A2R selectivity of adenosine receptor agonists. Consequently, N6-

modifed adenosine receptor agonists were used as a basis for novel fluorescent compounds.

A small amount of JH282 and JH294 were kindly created and provided by Dr. Jennifer

Hemmings. JH282 and JH294 both use NECA as the ligand domain but contain N6-

cyclopentyl and N6-adamantyl groups respectively. Both of these compounds contain a

TAMRA fluorophore connected to the ligand by a 4C hydrocarbon chain (Figure 4.17).

Fluorophore Ligand Linker 

Fluorophore Ligand Linker 

A 

B 

Figure 4.17: Novel fluorescent compound structures. A. JH282 and B. JH294 are
derived from JH114 and JH95 respectively. Both compounds use TAMRA as a fluorophore.

JH282 and JH294 were assayed for activity and selectivity using the A1R-GPA1/Gαi1/2,

A2AR-GPA1/Gαs and A2BR-GPA1/Gαs strains. Cells were incubated in the appropri-

ate media containing a concentration range of JH282 or JH294 for 16 hours at 30◦C.

β-galactosidase activity was used as a measure of pathway activation (Figure 4.18). No

significant upregulation of signal was detected in the A2BR-GPA1/Gαs strain in response

to either JH282 or JH294 (P > 0.05 one-way ANOVA). However, JH282 appeared to show

full agonism against the A1R and A2AR. Non-linear regression of the logistic equation and

the operational model of pharmacological agonism was used to explore the pharmacology

of this compound (Table 4.4).
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Figure 4.18: Novel fluorescent compound pharmacology in yeast. Yeast strains
were s incubated in AA-Ura containing an appropriate concentration of ligand. A2AR-
GPA1/Gαs was maintained in AA-Ura-His and supplemented with 5mM DMSO upon
agonist treatment. Cells were lysed and β-galactosidase activity determined. Data rep-
resents the mean of triplicate repeats ± S.E.M fitted with the logistic equation. A1R-

GPA1/Gαi1/2. B. A2AR-GPA1/Gαs. C. A2BR-GPA1/Gαs.

Table 4.4: Pharmacological parameters of the A1R and A2AR in response to
JH282. The logistic equation and the operational model of pharmacological agonism
were applied to the data of Figure 4.18 by non-linear regression. pEC50 = −Log EC50

(potency), Emax = maximum level of signal, pKA = −Log KA (ligand binding affinity)
and τ = efficacy. NECA and JH114 have been included for comparison. **P < 0.005,

JH282 compared to NECA as determined by Student’s T-test.

Strain Ligand pEC50 Emax pKA logτ

A1R-GPA1/Gαi1/2 NECA 6.0±0.1 25.8±0.6 4.4±0.1 1.5±0.1
JH114 5.4±0.0 26.9±0.3 4.2±0.3 1.2±0.3
JH282 4.8±0.1** 30±2.8 3.3±0.1** 1.6±0.1

A2AR-GPA1/Gαs NECA 6.5±0.2 19.2±0.6 5.9±0.2 0.5±0.1
JH114 5.3±0.3 19.5±1.1 4.6±0.4 0.3±0.1
JH282 4.9±0.1** 21.3±1.0 3.7±0.2** 0.7±0.1
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Consistent with CAS200623, the hydrocarbon linker and fluorophore reduce the potency

of JH282 in both the A1R and A2AR relative to its JH114 and NECA precursors. Emax is

relatively well conserved between JH282 and its precursor JH114. This is accompanied by

a 10-fold reduction in pKA in both the A1R and A2AR suggesting differences in sensitivity

to ligand (Table 4.4). This may also explain why no response was detected for JH294.

N6-adamantyl modifications reduce potency for the A1R. It is possible that the addition of

the fluorophore (and associated hydrocarbon chain) has further reduced potency beyond

the limits of detection in yeast. To explore this further concentration-response curves were

constructed for JH282 and JH294 by growth assay in AA-Ura-His supplemented with 7mM

3-AT (Figure 4.19). Cell density was quantified by OD620 using a Mithas LB940 microplate

reader to avoid the fluorescent ligand interfering with the fluorescein signal from FDGlu.

No increase in cell density was observed for any strain for JH294.

Here, yeast has been used to inform and guide fluorescent compound development. The

resulting compound, JH282, shows promise as a novel fluorescent agonist despite its low

potency in yeast. Studies with this compound, and the development of others, are ongoing.
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Figure 4.19: Novel fluorescent compound screening by growth. Yeast strains
were cultured AA-Ura-His containing an appropriate concentration of ligand and 7mM
3AT for 16 hours at 30◦C. Cell density was determined by OD620.A. A1R-GPA1/Gαi1/2.

B. A2AR-GPA1/Gαs. C. A2BR-GPA1/Gαs.
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4.2 Antagonism of the A1R

Our pharmacological investigation of the adenosine A1R pharmacology and novel agonists

was extended to include their interaction with adenosine receptor antagonists. Compet-

itive antagonists bind the orthosteric site, stabilising the inactive receptor confirmation

and preventing agonist binding. At sufficient concentrations the agonist can displace the

antagonist. This manifests itself in a rightward shift in the concentration-response curve

(Figure 1.7B).

There are a range of adenosine receptor antagonists available with caffiene being the most

widely consumed globally. The majority of A1R antagonists are xanthines based around

a theophylline core (Figure 4.20), a product of adenosine metabolism in vivo. Many have

entered clinical trials for a range of pathologies including heart failure and renal impairment

(Hocher, 2010; Sachdeva and Gupta, 2013). However, these trials are typically met with

little success due to complications from a range of factors, including off-target effects and

poor patient compliance due to caffeine intake from tea, coffee and chocolate (Ribeiro

and Sebastiao, 2010). Here a range of A1R agonists are characterised in the presence of

antagonists in the yeast system.

Theophylline Caffeine DPCPX SLV-320 

Figure 4.20: Adenosine receptor antagonist structures. A1R antagonists such as
caffeine are based around a theophylline core. This thesis exploits dipropylcyclopentylx-
anthine (DPCPX) and SLV-320 as pharmacological tools. These potent antagonists also

contain a theophylline core.

4.2.1 Biphasic antagonism with established agonists

Initial studies of A1R agonism focussed on the full agonist NECA in the presence of

the potent antagonist dipropylcyclopentylxanthine (DPCPX) (Figure 4.20). The A1R-

GPA1/Gαi1/2 strain was used due to its strong response (Figure 4.21). DPCPX induces

a rightward shift in the concentration-response curves of the full agonist NECA but does

not significantly affect Emax (P<0.05, one-way ANOVA). The nature of the agonist antag-

onist interaction was further explored by Schild analysis. This analysis assumes that the

shift in pEC50 is linearly proportional to the antagonist concentration. For a competitive

antagonist, binding the same site as an agonist, this results in a linear Schild plot of unity
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slope. However, while the pEC50 of NECA is linearly proportional to the concentration of

DPCPX, linear regression yields a non-unity slope. This suggests that DPCPX does not

compete with NECA for a single site.
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Figure 4.21: Simultaneous treatment of A1R-GPA1/Gαi1/2 with NECA and
DPCPX. The A1R-GPA1/Gαi1/2 strain was incubated in AA-Ura containing the appro-
priate concentration of NECA and DPCPX for 16 hours at 30◦C. Cells were lysed and
β-galactosidase activity determined. Data represents mean ± S.E.M. of triplicate repeats
fitted with the logistic equation. A. NECA concentration-response curves in the presence
of DPCPX. B. A Schild plot constructed from the NECA DPCPX concentration-response

curves.

This study was extended to include adenosine, a full agonist in this strain. Here there

is no significant change in Emax (P > 0.05, one-way ANOVA) and Schild analysis yielded

a slope that does not significantly deviate from unity (0.85 ± 0.18). While this may sug-

gest that DPCPX is a competitive antagonist of adenosine, the behaviour of 2CCPA is an

interesting contrast. Here, Emax increases significantly as a function of DPCPX, a coun-

terintuitive finding for an antagonist (P < 0.05, one-way ANOVA). Consistent with NECA

and adenosine, Schild analysis yielded a linear relationship between 2CCPA and DPCPX.

However, non-linear regression suggested a non-unity slope (Figure 4.22, Table 4.5). tre-

ftab:SC13DPCPX). This suggests that competitive antagonism is insufficient to describe

the relationship between 2CCPA and DPCPX in the A1R-GPA1/Gαi1/2 yeast strain.
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Figure 4.22: Simultaneous treatment of A1R-GPA1/Gαi1/2 with adenosine or
2CCPA and DPCPX. The A1R-GPA1/Gαi1/2 strain was incubated in AA-Ura contain-
ing the appropriate concentration of agonist and DPCPX for 16 hours at 30◦C. Cells were
lysed and β-galactosidase activity determined. Data represents mean ± S.E.M. of tripli-
cate repeats fitted with the logistic equation. A. Adenosine and DPCPX. B. 2CCPA and
DPCPX. C. Schild plots were contructed from the adenosine and 2CCPA concentration-

curves in the presence of DPCPX.

Table 4.5: Pharmacological parameters of DPCPX in combination with NECA,
adenosine or 2CCPA in A1R-GPA1/Gαi1/2. Emax and for agonist alone and antago-
nised yeast strains were determined by non-linear regression of the logistic equation. pEC50

values were used to perform a Schild analysis. Slope was determined by linear regression.
Statistical deviation of the antagonist Emax from the agonist alone, or the comparison of
slope to unity, were determined by one-way ANOVA. P < 0.05 was considered significant.

*P<0.05, **P<0.005 and ***P<0.005.

Ligand Agonist Antagonised Schild
Emax Emax Slope

NECA 29.3±1.2 30.9±0.9 0.83±0.03**
Adenosine 22.9±1.1 30.1±0.2* 0.85±0.18
2CCPA 15.6±0.7 32.5±0.9*** 0.73±0.04**
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The A1R-specific antagonist SLV-320 (Figure 4.20) was used to assess if non-competitive

antagonism of NECA, or the biphasic interaction with 2CCPA, is a DPCPX-specific effect.

A1R-GPA1/Gαi1/2 was incubated with agonist and SLV-320 simultaneously for 16 hours.

Cells were lysed and β-galactosidase activity determined (Figure 4.23). Consistent with

DPCPX, SLV-320 has no significant effect on NECA or adenosine Emax (P > 0.05, one-way

ANOVA) and Schild analysis yields non-unity and unity slopes for NECA and adenosine

respectively. Once again, 2CCPA shows a significant increase in Emax in this strain in the

presence of antagonist (P > 0.05, one-way ANOVA) and a Schild plot with a non-unity

slope. Taken together, this suggests that non-competitive antagonism is not limited to

DPCPX.
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Figure 4.23: Simultaneous treatment of A1R-GPA1/Gαi1/2 with NECA, adeno-
sine or 2CCPA and SLV-320. The A1R-GPA1/Gαi1/2 strain was incubated in AA-Ura
containing the appropriate concentration of agonist and SLV-320 for 16 hours at 30◦C.
Cells were lysed and β-galactosidase activity determined. Data represents mean ± S.E.M.
of triplicate repeats fitted with the logistic equation. A. NECA and SLV-320. B. Adeno-
sine and SLV-320. C. 2CCPA and SLV-320 D. Schild plots were constructed from the

adenosine and 2CCPA concentration-curves in the presence of SLV-320.

The yeast transplant system presented an attractive opportunity to explore this ap-

parent non-competitive antagonism as a function of G protein. Consequently, the A1R-

GPA1/Gαi3 strain was treated with NECA, adenosine or 2CCPA in the presence of various

concentrations of DPCPX or SLV-320 (Figure 4.24).
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Table 4.6: Pharmacological parameters of SLV-320 in combination with NECA,
adenosine or 2CCPA in A1R-GPA1/Gαi1/2. Emax and for agonist alone and antago-
nised yeast strains were determined by non-linear regression of the logistic equation. pEC50

values were used to perform a Schild analysis. Slope was determined by linear regression.
Statistical deviation of the antagonist Emax from the agonist alone, or the comparison of
slope to unity, were determined by one-way ANOVA. *P < 0.05, **P < 0.005 and ***P <

0.005.

Ligand Agonist Antagonised Schild
Emax Emax Slope

NECA 25.0±0.7 34.2±1.1** 0.63±0.05**
Adenosine 25.8±0.8 29.3±1.0* 0.78±0.11**
2CCPA 19.6±0.5 31.7±0.7*** 0.50±0.06**
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Figure 4.24: Simultaneous treatment of A1R-GPA1/Gαi3 with NECA, adeno-
sine or 2CCPA and DPCPX or SLV-320. The A1R-GPA1/Gαi3 strain was incubated
in AA-Ura containing the appropriate concentration of agonist and antagonist for 16 hours
at 30◦C. Cells were lysed and β-galactosidase activity determined. Data represents mean
± S.E.M. of triplicate repeats fitted with the logistic equation. A. NECA, B. 2CCPA and
C. adenosine concentration response curves in the presence of DPCPX and SLV-320. D.

Schild analyses for DPCPX and SLV-320.
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In contrast to A1R-GPA1/Gαi1/2, A1R-GPA1/Gαi3 shows a significant increase in NECA

Emax in response to both DPCPX and SLV-320 (P>0.05, one-way ANOVA). Schild analysis

also yields non-unity slopes for NECA in response to either antagonist (Table 4.7). 2CCPA

shows remarkably similar behaviour. However, while adenosine does shows a significant

increases in Emax in the presence of either antagonist (P>0.05, one-way ANOVA), Schild

analyses yield slopes that do not significantly deviate from unity (Table 4.7).

Table 4.7: Pharmacological parameters of DPCPX or SLV-320 in combination
with NECA, adenosine or 2CCPA in A1R-GPA1/Gαi3. The data of Figure 4.24 was
fitted with the logistic equation to determine Emax and pEC50. The highest Emax of the
antagonised concentration-response curves was compared to the Emax of the appropriate
agonist alone curve. pEC50 values were used to calculate dose ratios (DR). The slope of
the resulting Schild plot was determined by linear regression and compared to unity by
one-way ANOVA. *P < 0.05, **P < 0.005 and ***P < 0.005. Error bars represent S.E.M.

Antagonist Ligand Agonist Antagonised Schild
Emax Emax Slope

DPCPX NECA 18.8±0.5 27.4±0.5** 0.71±0.01**
Adenosine 18.9±0.6 30.4±1.2* 0.83±0.04
2CCPA 16.7±0.5 36.1±1.1*** 0.61±0.15***

SLV-320 NECA 14.6±0.4 19.8±0.9** 0.55±0.07**
Adenosine 13.5±0.5 25.2±3.0* 0.88±0.09
2CCPA 15.7±0.7 26.1±0.7*** 0.54±0.03***

Both adenosine and NECA Emax increases in the presence of DPCPX or SLV-320 in

A1R-GPA1/Gαi3, but not A1R-GPA1/Gαi1/2. This may be a consequence of maximal

signalling through the A1R when expressed from a plasmid. We have observed that all

strains, bar GPA1/Gαi1/2, show a significantly higher Emax via a C-terminal A1R
GFP

fusion protein in comparison to the unmodified A1R. In these experiments, the highest

observed β-galactosidase activity was 26±0.5 mU. Thus, it is possible that no increase in

Emax was observed for A1R-GPA1/Gαi1/2 in the presence of antagonist as this system is

already signalling at maximum in response to agonist alone. A1R-GPA1/Gαi3 shows a

lower signal in response to NECA than A1R-GPA1/Gαi1/2. This suggests that this strain

is not inducing the maximum level of β-galactosidase signal for these strains. Consequently,

one would predict that A1R-GPA1/Gαz, a low-activity strain, would demonstrate biphasic

antagonism for NECA, adenosine and 2CCPA. Therefore, this strain was incubated with

combinations of agonist and antagonist for 16 hours and β-galactosidase activity determined

(Figure 4.25)
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Figure 4.25: Agonist - antagonist interactions against A1R-GPA1/Gαz. The
A1R-GPA1/Gαz strain was incubated in AA-Ura containing the appropriate concentration
of agonist and antagonist for 16 hours at 30◦C. Cells were lysed and β-galactosidase activity
determined. Data represents mean ± S.E.M. of triplicate repeats fitted with the logistic
equation. A. NECA, B. 2CCPA and C. adenosine concentration response curves in the

presence of DPCPX and SLV-320. D. Schild analysis for SLV-320.
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Table 4.8: Pharmacological parameters of DPCPX or SLV-320 in combination
with NECA, adenosine or 2CCPA in A1R-GPA1/Gαz. Emax and for agonist alone
and antagonised yeast strains were determined by non-linear regression of the logistic
equation. pEC50 values were used to perform a Schild analysis. Slope was determined by
linear regression. Statistical deviation of the antagonist Emax from the agonist alone, or
the comparison of slope to unity, were determined by one-way ANOVA *P < 0.05, **P <

0.005 and ***P < 0.005.

Antagonist Ligand Agonist Antagonised Schild
Emax Emax Slope

DPCPX NECA 6.3±0.2 13.8±0.5*** N.D.
Adenosine 2.6±0.1 7.6±0.6** N.D.
2CCPA 3.0±0.2 5.4±0.3** N.D.

SLV-320 NECA 7.2±0.5 13.8±0.9** 0.72±0.08*
Adenosine 2.9±0.1 7.6±0.9* 0.44±0.03***
2CCPA 3.2±0.1 5.4±1.3*** 0.56±0.06**

Figure 4.25 shows that the Emax of NECA, adenosine and 2CCPA are significantly

increased by both DPCPX and SLV-320 (P < 0.05, one-way ANOVA) consistent with the

other A1R-expressing strains tested here. A rightward shift in the concentration-response

curve of these agonists was observed as a function of antagonist concentration. While

a Schild analysis was not possible for DPCPX in combination with any agonist, SLV-320

yielded a significantly non-unity slope with NECA, adenosine and 2CCPA (Table 4.8). This

suggests that, in this strain, none of these agonists have a purely competitive relationship

with DPCPX or SLV-320.

This biphasic antagonism of the A1R has been observed in number of previous studies

(Alexander et al., 2006; Stewart et al., 2009) with little attention drawn to the data. How-

ever, Gracia et al. (2013) performed the first comprehensive study of this phenomena. This

study used radioligand-binding and ERK phosphorylation assays to study the interaction

between agonists, such as R-PIA, and the antagonists DPCPX and caffeine. The data of

this study is remarkably consistent with our observed trends in yeast. ERK phosphory-

lation occurs as a direct result of β-arrestin recruitment and can be considered G protein

independent. However, GPCRs do not signal through β-arrestins in yeast. This suggests

that the biphasic antagonism of the A1R is a receptor level effect. This is supported by

consistent potentiation of signal across all G protein transplant strains.

To confirm that this is a receptor, and not yeast, specific effect these studies were re-

peated for the A2BR-GPA1/Gαs strain. SLV-320 had a limited effect on the agonist phar-

macology of the A2BR. However, DPCPX induces a rightward shift in the concentration-

response curves of NECA and adenosine (Figure 4.26). Further, Schild analysis yielded

straight lines with unity slope for NECA and adenosine. This suggests that the non-

competitive interaction of the agonists and antagonists is an A1R-specific effect.
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Figure 4.26: Agonist - antagonist interactions against A2BR-GPA1/Gαs. The
A2BR-GPA1/Gαs strain was iincubated in AA-Ura containing the appropriate concentra-
tion of agonist and antagonist for 16 hours at 30◦C. Cells were lysed and β-galactosidase
activity determined. Data represents mean ± S.E.M. of triplicate repeats fitted with the lo-
gistic equation. A. NECA and B. adenosine concentration-response curves in the presence

of DPCPX and SLV-320. C. Schild analysis of NECA and adenosine with DPCPX.

Schild analyses of A1R antagonism in yeast suggest non-cooperativity between agonist

and antagonist. This implicates multiple binding sites and suggests two hypotheses; dimeri-

sation or allosterism (Figure 4.27). Gracia et al. (2013) use a BRET reporter system to

confirm that the A1R does form homodimers in vivo and strongly suggest that the biphasic

response is a consequence of an interaction between two orthosteric sites across a dimer

(Figure 4.27A). However, no causal relationship is established experimentally and the con-

clusions of their study are premature without studying the effect in purely monomeric A1R

variants. There is currently no crystal structure available for the A1R and the dimerisation

interface is unknown. Consequently, it is impossible to assess if this effect is shared by

monomeric receptors.
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Figure 4.27: Potential mechanisms of biphasic antagonism of the A1R. A.
Dimerisation between two receptors and interaction between two orthosteric sites. B.
Allosteric antagonism. The potential orthosteric and allosteric sites are shown in blue and
purple respectively. The disulphide bridge linking the two sites are shown as a red line.

Figure adapted from Peeters et al. (2012).

An alternative hypothesis is allosteric antagonism (Kenakin et al., 2006). Like many

GPCRs, the A1R has both orthosteric and allosteric ligand binding sites. Allosteric antag-

onists can bind the orthosteric and allosteric site separately. Orthosterically bound ligand

acts as an antagonist while allosterically bound ligands promote agonist binding and re-

ceptor activation (Figure 4.27B). Peeters et al. (2012) performed an alanine scan of the

extracellular loops of the A1R. The pharmacology of the A1R mutants were established

using the MMY24 (GPA1/Gαi3) yeast strain. Extracelluar loop 2 (ECL2), in particular a

disulphide bridge between C80 of TM3 and C169 of ECL2, has been shown to be crucial to

allosterism of the A1R (Peeters et al., 2012). Thus, it is likely that the allosteric site of the

A1R is in ECL2 (Figure 4.27). Disruption of ECL2 also compromised orthosteric ligand

binding. Docking studies of an A1R homology model suggest that the orthosteric ligand

binding site lies within the TM domains with particularly strong interactions with TM3

and TM4 (Narlawar et al., 2010). This suggests that the orthosteric and allosteric sites are

closely associated. This is also supported by computational studies using bivalent ligands

consisting of linked orthosteric and allosteric domains (Narlawar et al., 2010). Given the

experimental data and lack of solely monomeric A1R variant, allosteric antagonism may be

easier to assess than dimerisation.
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Allosteric agents of the A1R have been established and characterised in mammalian

cells (May et al., 2010). One such compound is PD81723, which was originally identified

in an A1R antagonist screen but acts as an allosteric regulator of the A1R at sub-µM

concentrations. Consequently, PD81723 is widely considered to be an allosteric antagonist

(Bruns and Fergus, 1990; Jarvis et al., 1999). We hoped to exploit the dual pharmacology of

this compound to elucidate if the biphasic antagonism observed is the result of allosterism.

Peeters et al. (2012) used growth assays to assess A1R pharmacology in response to 1µM

PD81723. Preliminary studies used the same strain in the presence and absence of 7mM 3-

AT. In the presence of 7mM 3-AT no significant increase in pEC50 for NECA in presence of

1µM PD81723 was observed by growth assay (Figure 4.28A). However, the growth response

is greatly reduced at >10µM PD81723. β-galactosidase activity in response to NECA is

unaffected by PD81723 in the sub µM range but is greatly reduced by >10µM PD81723

(Figure 4.28B). When repeating this assay without 3-AT cell density was greatly reduced

in response to high concentrations of PD81723, suggesting that this compound is toxic

to yeast or inhibits their growth (Figure 4.28C). The detrimental effect of PD81723 on

yeast growth limits its usefulness as a pharmacological tool to study allosteric antagonism.

Consequently, these studies were pursued no further and the precise mechanism of biphasic

A1R antagonism remains a mystery.
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Figure 4.28: The effects of PD81723 on yeast. A1R-GPA1/Gαi3 cells were incubated
in AA-Ura-His containing appropriate concentrations of NECA and PD81723 and 7mM
3-AT for 16 hours at 30◦C. A. Cell density as determined by OD620. B. β-galactosidase
activity. C. Cells were incubated in AA-Ura-His containing the appropriate concentration

of NECA and PD81723 but lacking 3-AT. Cell density was determined by OD620.
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4.2.2 Investigating A1R antagonist pharmacology in the presence of novel

N6-substituted agonists

The N6-cyclopentyl substituents JH109 and JH114 were assessed for activity in yeast in

the presence of the antagonists DPCPX and SLV-320. The A1R-GPA1/Gαi1/2 and A1R-

GPA1/Gαz strains were selected for these studies. Potentiation of signal by antagonists

is difficult to see in the GPA1/Gαi1/2 due to the high activity of the A1R in this strain.

Activity is significantly lower for the A1R-GPA1/Gαz but the potentiation is more obvious.

Consequently, these strains were incubated with JH109 or JH114 in combination with

DPCPX or SLV-320 for 16 hours and β-galactosidase activity determined (Figure 4.29,

Figure 4.30)
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Figure 4.29: N6-cyclopentyl agonist and antagonist interactions in A1R-
GPA1/Gαi1/2. GPA1/Gαi1/2 transplant yeast cells expressing the A1R were incubated
with N6-cyclopentyl agonists and antagonists simulataneously for 16 hours at 30◦C. Cells
were lysed and β-galactosidase activity determined. Data represents the mean ± S.E.M of
triplicate repeats fitted with the logistic equation. A. JH109 and B. JH114 concentration-
response curves in the presence of DPCPX and SLV-320. C. Schild analyses for DPCPX

and SLV-320 in the presence of JH109 and JH114.
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Figure 4.30: N6-cyclopentyl agonist and antagonist interactions in A1R-
GPA1/Gαz. A1R-GPA1/Gαz transplant yeast cells expressing the A1R were incubated
with N6-cyclopentyl agonists and antagonists simulataneously for 16 hours at 30◦C. Cells
were lysed and β-galactosidase activity determined. Data represents the mean ± S.E.M of
triplicate repeats fitted with the logistic equation. A. JH109 and B. JH114 concentration-

response curves in the presence of DPCPX and SLV-320.

No significant increase in the Emax of the adenosine derivative JH109 was observed in

combination with SLV-320 or DPCPX in A1R-GPA1/Gαi1/2 (P > 0.05 one-way ANOVA,

Figure 4.29A). However, significant potentiation of signal was observed when JH114, derived

from NECA, was used in combination with these ligands. However, Schild analysis of

these data does not provide a straight line of unity slope. Similarly, in A1R-GPA1/Gαz no

significant in increase in Emax was observed for JH109 in combination with either antagonist

tested compared to agonist alone (Figure 4.30). This is in contrast to JH114, which does

show an increase in signal when used in combination with either antagonist in this strain.

Unfortunately, the low response of the this strain and limited shift in potency prevented

the accurate calculation of dose ratios. This prevented the construction of Schild plots.

In contrast to its adenosine precursor, the N6-cyclopentyl agonist JH109 does not appear

to share the biphasic antagonism seen in the presence of DPCX and SLV-320 in yeast. The

N6-adamantyl agonists JH66, JH95 and JH209 were used to further investigate the effect

of N6-substituents on biphasic antagonism in the A1R-GPA1/Gαi1/2 (Figure 4.31) and

A1R-GPA1/Gαz (Figure 4.32).
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Figure 4.31: Antagonising N6-adamantyl agonists in A1R-GPA1/Gαi1/2.
GPA1/Gαi3 transplant yeast cells expressing the A1R were incubated with N6-cyclopentyl
agonists and antagonists simulataneously for 16 hours at 30◦C. Cells were lysed and β-
galactosidase activity determined. Data represents the mean ± S.E.M of triplicate repeats
fitted with the logistic equation. A. JH66, B. JH95 and C. JH209 concentration-response

curves in the presence of DPCPX and SLV-320.

In A1R-GPA1/Gαi1/2 neither JH66, JH95 or JH209 promote a significant increase in

Emax in the presence of either antagonist compared to agonist alone (Figure 4.31, P > 0.05,

one-way ANOVA). This may suggest that these agonists directly compete with DPCPX and

SLV-320. However, Schild analysis was hindered by the low potency of these agonists in

yeast. Consequently, shifts in pEC50 could not be used to calculate a dose ratio and com-

petitive interaction cannot be established for JH66, JH95 or JH209 with either antagonist.
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Consistent with A1R-GPA1/Gαi1/2, neither JH66, JH95 or JH109 increase Emax in the

presence of DPCPX or SLV-320 relative to agonists alone (P < 0.05, one-way ANOVA).

However, the low potency of these ligands and reduced response of this strain prevented

the calculation of dose-ratios for Schild analysis. Consequently, how the N6-adamantyl

modifications of JH66 and JH95 affect the biphasic antagonism of their adenosine and

NECA precursors remains unclear. This effect warrants further study. For example, using

the A1R mutants of Peeters et al. (2012) that show compromised allosterism in the same

yeast background used here.
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Figure 4.32: N6-adamantyl agonist and antagonist interactions in A1R-
GPA1/Gαz. A1R-GPA1/Gαz transplant yeast cells expressing the A1R were incubated
with N6-cyclopentyl agonists and antagonists simulataneously for 16 hours at 30◦C. Cells
were lysed and β-galactosidase activity determined. Data represents the mean pm S.E.M
of triplicate repeats fitted with the logistic equation. A. JH66, B. JH95 and C. JH209

concentration-response curves in the presence of DPCPX and SLV-320.
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4.3 Summary

This study ultimately aims to combine experimental and theoretical approaches to under-

stand functional selectivity. However, dynamic experimental data is required to inform

theoretical studies. For instance, the operational model can only accurately distinguish

ligand-binding and downstream signalling if one of these parameters are already deter-

mined. Fluorescent ligands can be used to measure ligand-binding in real time. Indeed, the

existence of fluorescent ligands were a powerful driver for the selection of the A1R as a tool

to study functional selectivity. However, only one of these compounds were available in

limited availability at great expense. Fortunately, Dr Jennifer Hemmings and Prof Martin

Lochner (University of Bern, Switzerland) were looking to develop novel fluorescent A1R

agonists. Their need for an experimental system to test their compounds, our need for a

cheap and easy supply of fluorescent agonists and the development of these yeast strains

as a drug screening platform naturally led to the collaboration described here.

Covalent modification of the N6 position of the purine group have been shown to con-

fer subtype specificity in adenosine receptors. Dr Hemmings synthesised a range of ago-

nists modified to include N6-azabicyclo, -cyclopentyl and -adamantyl groups. Here, these

compounds were characterised in the yeast transplant system. N6-adamantyl substituents

exhibited total A1R/A2R selectivity while N6-cyclopentyl agonists showed increased A1R

potency relative to their precursor compounds. The operational model suggests these ef-

fects a consequence of ligand-binding rather than signal transduction. N6-cyclopentyl and

N6-adamantyl NECA derivatives were chosen for fluorescent-compound attached

Here, covalent attachment of fluorophores to purine nucleosides such as adenosine or

NECA reduces potency against the A1R. A commercially-available fluorescent agonist,

CAS200623, was screened for activity in A1R and A2R expressing yeast and shown to

have a low potency with poor A1R/A2R selectivity. Flow cytometry showed that this com-

pound binds to the yeast cell surface in cells not expressing an adenosine receptor. Further,

novel N6-cyclopentyl and N6-adamantyl fluorescent compounds were screened for activity

in yeast. The N6-cyclopentyl fluorescent agonist provided a robust response against the

A1R and A2AR in yeast, albeit with low potency.

Finally, this chapter explores biphasic antagonism of the A1R. Here, theA1R antagonists

DPCPX and SLV-320 increase Emax while shifting the concentration-response curve to the

right. This effect has been documented in mammalian systems through ERK1/2 phospho-

rylation and is faithfully reproduced here in yeast, a G protein mediated effect. Therefore,

biphasic antagonism is likely to be a receptor specific effect. This study hypothesises that

this may be a consequence of dimerisation or allosteric antagonism, a known pharmacolog-

ical characteristic of the A1R. However, this effect is not shared by N6-adamantyl agonists.

While the underlying mechanism remains unclear, the N6-adamantyl fluorescent precursor

compounds could represent a means to elucidate this.



Chapter 5

An interdisciplinary approach to

A1R pharmacology in yeast

5.1 Introduction

A systems pharmacology approach integrates experimental and computational methods

to investigate the action of drugs on a system level. Here we, and others, have demon-

strated that the Sc. cerevisiae transplant strains are an excellent platform to investigate

the pharmacology of GPCRs.

This study ultimately aims to understand functional selectivity of GPCRs with regard

to G protein bias with a particular focus on the kinetic contribution of the ligand, receptor

and G protein. Indeed, the operational model allows ligand binding and signal transduc-

tion efficiency, τ , to be estimated. However, τ is effectively a black box that, in this case,

describes the receptor-G protein interaction and all downstream responses up to the tran-

scriptional reporter. Thus, this model does not isolate the individual contributions of the

ligand, GPCR and G protein to functional selectivity. Indeed, to properly distinguish these

processes biological rate constants need to be estimated. Equilibrium models are effective

but limited. ODE models however, describe a biochemical reaction scheme with the desired

level of complexity. This includes the number of interacting species and the biochemical

parameters that govern this interaction.
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Here, a mathematical framework is developed to describe the pharmacology of the A1R

in different G protein backgrounds. By fitting a minimal ODE model to experimental data

generated in yeast it is possible to extract multiple kinetic parameters, i.e. rate constants,

simultaneously. However, before this can be achieved several considerations need to be

addressed. These include:

• Variability in the experimental system

• Ambiguity of model predictions

• Complexity of the model

Variability in the experimental system, at least with regard to receptor expression from

the p426GPD vector, is clear from the flow cytometry data of the A1R
GFP . However this

may be addressed by changing the expression system.

5.1.1 Refining the experimental system

Yeast is an excellent, robust system for the screening and characterisation of agonists

and antagonists. Clear differences were observed in adenosine receptor activity between

strains, particularly the A1R, when expressed from the p426GPD plasmid. However, flow

cytometry of C-terminal A1R
GFP fusion proteins suggest that receptor expression varies

between individual cells and that the majority of the population do not express the A1R

to a detectable level.

ODE models are deterministic. Those based on population data, such as β-galactosidase

assays, represent an average cell in that population. Variation in receptor expression, the

primary messenger of the pheromone response, therefore poses difficulties. This is especially

true if a proportion of the population do not express the receptor at all. Therefore, uniform

expression of the A1R across the population is essential for meaningful model predictions.

This may be influenced by an unequal distribution of a high copy number plasmid across a

population. The p426GPD expression vector uses the URA3 uracil biosynthesis selection

marker. URA3 has not been deleted in these strains but silenced through a single base

pair mutation (Olesnicky et al., 1999; Brown et al., 2000). Reversion is an issue with this

selection marker and may also contribute to variation in plasmid copy number and receptor

expression across the population (Chattoo et al., 1979).

Chromosomal expression ensures that each cell in a population has the same copy number

of a given gene and therefore expression is uniform between cells. Further, integration is

stable and not easily removed. Therefore reversion of the ∆URA3 genotype should not

affect receptor expression. Thus, chromosomal integration provides a convenient avenue to

refine the experimental system to increase its amenability to deterministic modelling.
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5.1.1.1 Characterisation of yeast strains chromosomally expressing the A1R

The A1R was cloned into the pRS306GPD expression vector under the control of the

constitutive GAPDH promoter. The construct was linearised by restriction digest and

integrated into the URA3 locus as described by Gietz and Schiestl (2007). The GPA1/Gαo,

GPA1/Gαi1/2, GPA1/Gαi3 and GPA1/Gαz strains were selected due to their response to

the A1R when expressed from a plasmid. 8-16 colonies were isolated and incubated with

100µM NECA for 16 hours. Cells were lysed and β-galactosidase activity determined

(Figure 5.1). The equivalent strains expressing the A1R from the p426GPD plasmid, using

the same promoter, were included for comparison.
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Figure 5.1: Screening yeast chromosomally-expressing the A1R for β-
galactosidase activity in response to NECA. The A1R was placed under the control of
the constitutive GAPDH promoter and integrated into the URA3 locus of the GPA1/Gαo,
GPA1/Gαi1/2, GPA1/Gαi3 and GPA1/Gαz transplant strains. 8-16 colonies were selected
and incubated with 100µM NECA for 16 hours. Cells were lysed and β-galactosidase activ-
ity determined. The equivalent strains expressing the A1R from the p426GPD expression
plasmid were included for comparison. Student’s T-test compared to DMSO alone control.

P < 0.05 was considered significant. *** P < 0.0005.

All strains assayed showed a significant upregulation of β-galactosidase activity in re-

sponse to NECA (P<0.05, Student’s T-test). Interestingly, the level of signal is higher

in the chromosomal-expression strains relative to their plasmid counterparts, including

GPA1/Gαi1/2 (β-galactosidase activity = 31.2±0.6 mU and 37.2±0.6 mU for the plasmid

and integrate strains respectively). This suggests that the observed Emax of the adenosine

receptors expressed via plasmid is not the overall maximum β-galactosidase activity of the

yeast transplant system. Concentration-response curves were created for NECA, adenosine

and 2CCPA using the integrated strains. To better distinguish them from their plas-

mid counterparts these strains will be referred to as A1R::GPA1/Gαo, A1R::GPA1/Gαi1/2,

A1R::GPA1/Gαi3 and A1R::GPA1/Gαz.
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Figure 5.2: Pharmacology of chromosomally-expressed A1R in yeast. The
integrate strains were incubated with NECA, adenosine or 2CCPA for 16 hours.
Cells were lysed and β-galactosidase activity determined. A. A1R::GPA1/Gαo. B.
A1R::GPA1/Gαi1/2. C. A1R::GPA1/Gαi3. D. A1R::GPA1/Gαz. Data represents the

mean of triplicate repeats ± S.E.M fitted with the logistic equation.

Table 5.1: Pharmacological parameters of chromosomally-expressed A1R. The
logistic equation the operational model were applied to the data of Figure 5.2 by non-linear
regression. pEC50 = −Log EC50 (potency), Emax = maximum level of signal, pKA = −Log
KA (ligand binding affinity) and τ = efficacy. Equivalent plasmid parameters have been
included for comparison. * P < 0.05, ** P < 0.005, *** P < 0.0005, Student’s T-test

comparing parameter for chromosomal-expression to plasmid counterpart.

Strain Ligand pEC50 Emax pKA logτ

A1R::GPA1/Gαo NECA 6.3±0.1* 27.4±0.5*** 4.4±0.1 1.9±0.3*
(Chromosomal) Adenosine 5.8±0.1** 26.4±0.1*** 4.2±0.5 1.5±0.5

2CCPA 6.9±0.1 23.9±0.4** 6.1±0.2 0.8±0.1**

A1R-GPA1/Gαo NECA 5.2±0.1 2.5±0.1 4.4±0.1 0.9±0.1
(Plasmid) Adenosine 4.8±0.1 1.9±0.1 4.5±0.2 0.4±0.1

2CCPA 6.6±0.2 1.2±0.1 6.5±0.2 −0.2±0.1

A1R::GPA1/Gαi1/2 NECA 7.3±0.1*** 39.7±0.7*** 4.8±0.5 2.6±0.6
(Chromosomal) Adenosine 6.8±0.1** 37.6±0.8*** 5.4±0.3 1.4±0.3

2CCPA 8.6±0.1*** 36.5±0.7*** 7.4±0.2** 1.2±0.2

A1R-GPA1/Gαi1/2 NECA 6.0±0.1 25.8±0.6 4.4±0.1 1.5±0.1
(Plasmid) Adenosine 5.6±0.1 23.5±0.7 4.6±0.2 0.9±0.1

2CCPA 6.7±0.1 20.9±0.4 6.1±0.1 0.6±0.1

A1R::GPA1/Gαi3 NECA 6.9±0.1** 41.7±0.9*** 4.1±1.0 2.8±0.6*
(Chromosomal) Adenosine 7.3±0.1** 41.3±0.6*** 5.2±0.6 2.1±0.6*

2CCPA 8.3±0.1*** 39.5±1.0*** 6.6±0.2 1.6±0.2**

A1R-GPA1/Gαi3 NECA 5.8±0.1 19.5±0.4 5.1±0.1 0.7±0.1
(Plasmid) Adenosine 5.7±0.1 16.5±0.5 5.1±0.1 0.4±0.1

2CCPA 6.7±0.1 14.4±0.3 6.4±0.1 0.2±0.1

A1R::GPA1/Gαz NECA 6.2±0.1** 25.7±0.6*** 4.4±0.1 1.8±0.1
(Chromosomal) Adenosine 5.7±0.1* 21.9±0.8*** 4.7±0.2 0.8±0.1**

2CCPA 6.7±0.1 20.2±0.3*** 5.9±0.1 0.6±0.1**

A1R-GPA1/Gαz NECA 5.5±0.1 5.8±0.2 4.4±0.3 1.2±0.3
(Plasmid) Adenosine 4.8±0.2 3.9±0.3 4.3±0.2 0.3±0.1**

2CCPA 6.3±0.2 2.9±0.2 6.1±0.2 −0.2±0.1**
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The data for the chromosomally-expressed A1R demonstrates considerable differences

from the strains expressing the receptor using the p426GPD vector (Figure 5.2). Notably,

Emax is significantly increased by chromosomal-expression for all ligands relative to their

plasmid counterparts. pEC50 is broadly consistent for NECA, adenosine and 2CCPA be-

tween plasmid and integrate GPA1/Gαo and GPA1/Gαz strains. However, this difference

between plasmid and integrated expression system pEC50 values is far more pronounced in

the GPA1/Gαi strains. Variation in pEC50 suggests that integration of the A1R increases

the sensitivity of these strains to NECA, adenosine and 2CCPA (Table 5.1). Interestingly,

pKA is remarkably conserved for all ligands between chromosomal-expression systems and

plasmid counterparts. However, logτ is greatly increased for the integrated strains. This

suggests that the ligand sensitivity of the system is unaffected by chromosomal integration

but the signal transduction efficiency of the population has increased.

However, at present the maximum level of β-galactosidase activity of these strains, re-

gardless of receptor or ligand, is unknown. It is entirely possible that the observed shift in

pEC50 for the A1R::GPA1/Gαi strains is due to signalling reaching the maximum limit of

either the experimental system or the β-galactosidase assay at lower ligand concentrations.

To eliminate the latter, the same samples were diluted 1:5 in AA-Ura and the assay re-

peated. Raw β-galactosidase activity, independent of cell density, was measured by OD430

(Figure 5.3). pEC50 and normalised responses for all ligands are preserved after sample

dilution but the OD430 Emax is reduced, suggesting that the assay itself is not limiting the

maximal signal (Table 5.2).
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Figure 5.3: A1R integrate pharmacology in yeast after dilution. The sam-
ples used to generate Figure 5.2 were diluted 1:5 in AA-Ura and the β-galactosidase
assay repeated. β-galactosidase activity, regardless of cell density, was quantified by
OD430. A. A1R::GPA1/Gαi1/2 and B. A1R::GPA1/Gαi3 before 1:5 dilution. C.
A1R::GPA1/Gαi1/2 and D. A1R::GPA1/Gαi3 after 1:5 dilution. E. A1R::GPA1/Gαi1/2

and F. A1R::GPA1/Gαi3 after 1:5 dilution normalised to cell density, quantified by OD620.
Data represents the mean of triplicate repeats ± S.E.M fitted with the logistic equation.

Table 5.2: Pharmacological parameters of the integrated A1R before and after
dilution. The logistic equation and the operational model were applied to the data of
Figure 5.3 by non-linear regression. pEC50 = −Log EC50 (potency) and Emax = maximum

level of signal.

Strain Ligand pEC50 Emax

A1R::GPA1/Gαi1/2 NECA 7.3±0.1 2.0±0.1
(Undiluted) Adenosine 6.8±0.1 1.9±0.1

2CCPA 8.6±0.1 19±0.1

A1R-GPA1/Gαi1/2 NECA 7.1±0.1 1.3±0.1
(Diluted) Adenosine 6.4±0.1 1.2±0.1

2CCPA 8.6±0.1 1.1±0.1

A1R::GPA1/Gαi3 NECA 6.9±0.1 2.1±0.1
(Undiluted) Adenosine 7.3±0.1 2.1±0.1

2CCPA 8.3±0.1 2.0±0.1

A1R-GPA1/Gαi3 NECA 6.5±0.1 1.1±0.1
(Diluted) Adenosine 5.9±0.1 0.9±0.1

2CCPA 7.5±0.1 0.9±0.1
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5.1.2 Dynamic ODE models require time course data

End-point data, such as concentration response curves, represent a measure that can be a

consequence of any number of time course profiles. For a truly quantitative fit, a model

must capture time course data and not just concentration response curves. An example of

this is the operational model of pharmacological agonism. While this is an excellent tool

to gain insight into end-point measurements it is still an equilibrium model designed to

capture data at steady state. Consequently, at best it can only accurately calculate ratios

of KA:τ , limiting its usefulness.

Due to their differences in pharmacology, but consistency in pEC50 with their plasmid

counterparts, time course data was generated for the A1R::GPA1/Gαi3 and A1R::GPA1/Gαz

integrates in response to NECA, adenosine and 2CCPA (Figure 5.4 and Figure 5.5 respec-

tively). Both strains produced sigmoidal time course profiles in the presence of all agonists.

These data suggest that, in these strains, β-galactosidase activity plateaus after 8-10 hours

incubation in ligand. Constructing concentration-response curves for the 12 hour data

points faithfully replicates the data of Figure 5.2 (Figure 5.4D and Figure 5.5D).
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Figure 5.4: β-galactosidase time courses of the A1R-GPA1/Gαi3 integrate
strain. Yeast cells expressing the A1R were incubated with AA-Ura containing ligand
for 0, 0.5, 1, 2, 4, 6, 8, 10 or 12 hours. Cells were lysed and β-galactosidase activity
determine. The A1R::GPA1/Gαi1/2 integrate, the highest responding strain, was incu-
bated with NECA to determine a maximal response. Data represents mean ± S.E.M. of
triplicate repeats fitted with the logistic equation. A. NECA. B. Adenosine C. 2CCPA
D. Concentration-response curves determined by β-galactosidase activity after 12 hours

incubation with ligand.
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Figure 5.5: β-galactosidase time courses of the A1R-GPA1/Gαz integrate
strain. Yeast cells expressing the A1R were incubated with AA-Ura containing ligand
for 0, 0.5, 1, 2, 4, 6, 8, 10 or 12 hours. Cells were lysed and β-galactosidase activity
determine. The A1R::GPA1/Gαi1/2 integrate, the highest responding strain, was incu-
bated with NECA to determine a maximal response. Data represents mean ± S.E.M. of
triplicate repeats fitted with the logistic equation. A. NECA. B. Adenosine C. 2CCPA
D. Concentration-response curves determined by β-galactosidase activity after 12 hours

incubation with ligand.

5.2 Model templates

Having established and further refined the experimental system for mathematical mod-

elling, the next step was to generate a novel framework specifically for fitting time course

experimental data. As many known initial conditions and parameters as possible would

be a significant advantage. For example, ODE models assume the laws of mass action

kinetics. Therefore, the initial species concentrations of the model will influence the pre-

dicted parameters. Fortunately, the Sc. cerevisiae pheromone response has been very well

characterised and the concentrations of various signalling components and the rates with

which they interact are already known (Blumer et al., 1988; Bardwell and Thorner, 1996;

Bardwell et al., 1996; Ferrell and Bhatt, 1997; van Drogen et al., 2001; Yi et al., 2003).

This information has been used to construct a number of models of the Sc. cerevisiae

pheromone response. Consequently, there are many model frameworks that can be used to

inform minimal model development here. The most notable and complete of these models

is that of Kofahl and Klipp (2004).
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5.2.1 The Kofahl and Klipp model of the Sc. cerevisiae pheromone

response

The Kofahl and Klipp (2004) model was designed to emulate the dynamic time course data

of the pheromone response, in its entirety, in the presence of 1µM α-factor pheromone.

Consequently, it is a rather large model consisting of 47 expressions denoting 47 interactions

between 35 signalling components. For the reader’s convenience, schematic of the receptor-

G protein cycles of model is repeated (Figure 5.6). While the rates of reaction are faithful

to experimental studies, this model uses a receptor concentration of 1.6 µM. This is 10-fold

higher than the elucidated value of 160nM (Bardwell et al., 1996). The reasons why the

authors deviated from the experimentally-determined value are unclear and represent a

weakness of this study as a quantitative model.
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Figure 5.6: The Kofahl and Klipp model of the Sc. cerevisiae pheromone
response. This model to be developed here is only concerned with receptor and G
protein-level aspects of this model. For simplicity, scaffold formation, MAPK cascade and
downstream effects have been condensed. The full reaction scheme is shown in Figure 1.15.

To explore the strengths and weakness of this framework, the Kofahl and Klipp model

was implemented in Matlab using the parameters and initial conditions specified by the au-

thors (Kofahl and Klipp, 2004). SST2 (the RGS) has been deleted to improve sensitivity to

ligand. A ∆FAR1 genotype prevents cell cycle arrest in response to ligand, allowing growth

to be used as a transcriptional reporter of pathway activation. Also, a ∆BAR1 genotypes

prevents proteolytic degradation of the endogenous yeast pheromone. This was to increase

the sensitivity of these strains to pheromone during their original development (Olesnicky

et al., 1999; Brown et al., 2000). Model variants were generated to mimic the ∆SST2 and

∆SST2∆FAR1∆BAR1 phenotypes through setting the initial SST2 activation rate and

initial BAR1 and FAR1 concentrations to zero.
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The Kofahl and Klipp (2004) model accurately recreates the dynamics of the G pro-

tein cycle in response to 1µM ligand (Yi et al. (2003), Figure 5.7A). The G protein cycle

terminates within 30 minutes. The rapid Gβγ dynamics may be a consequence of compe-

tition between the MAPK cascade and GαGDP ). However, the activation of the STE12

transcription factor is relatively prolonged, as one would expect of a process downstream

of the MAPK cascade that transduces and perpetuates signal in vivo (Figure 5.7B).
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Figure 5.7: Timecourses of the Kofahl and Klipp Sc. cerevisiae pheromone
response model. The Kofahl and Klipp model was implemented in Matlab as described
by the authors. Simulations were performed using the ODE23s solver with a time step
of 0.01 hours. Ligand concentration was 1µM. A. Evolution of the G protein cycle and
receptor dynamics in the unmodified model. B. The isolated Gβγ time course of the un-
modified model. C. Time courses of the model modified to replicate the ∆SST2 genotype.
D. Time courses of the model modified to replicate the ∆SST2∆FAR1∆BAR1 genotype

of the transplant strains.

Modification of the model makes interesting predictions of the G protein cycle in ge-

netically manipulated strains (Figure 5.7). As these dynamic studies were not repeated

using ∆SST2 or ∆SST2∆FAR1∆BAR1 phenotypes there are currently no experimental

data to validate this model variant. Consequently, these are only predictions and may not

reflect the true experimental situation. The ∆SST2 modification results in a prolonged

and amplified G protein cycle, with greater variation in the levels of Gαβγ and free G

protein subunits. This effect is further enhanced in the ∆SST2∆FAR1∆BAR1 model

(Figure 5.7D). This is a consequence of greater persistence of ligand in the absence of the

BAR1 protease. Further, Gβγ directly activates FAR1 to trigger cell cycle arrest in in vivo.

∆FAR1 strains have more free Gβγ to trigger downstream signalling. Consequently, the

predictions of the modified model variants, in the presence of 1µM ligand, are biologically

feasible.
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However, these simulations only represent a single ligand concentration. While dy-

namic studies of the modified yeast strains are elusive, concentration-response curves of the

∆SST2∆BAR1 phenotype have been reported (Hao et al., 2003). Here, as in this study,

β-galactosidase was used a measure of transcriptional activation via the FUS1 promoter.

Deletion of SST2 resulted in a rightward shift in the concentration-response curve (pEC50

= 8.1 compared to 6.3) and a marginal increase in Emax. Consequently, there is end-point

experimental data available to validate the modified model predictions.

While the Kofahl and Klipp model contains a term for the activated MAPK FUS3PP and

the transcription factor STE12, it does not contain a term for the pheromone-responsive

agglutinin FUS1. FUS1, and β-galactosidase in the yeast transplant strains, are directly

activated by STE12 under the influence of FUS3PP. Consequently, β-galactosidase tran-

scription can be approximated as the accumulation of FUS3PP or active STE12. The Kofahl

and Klipp model, and variants, were simulated for either 30 minutes or 16 hours, consistent

with the experimental data of Yi et al. (2003) and the experimental data presented here, re-

spectively.
∫ t
0 [STE12active]dt and

∫ t
0 [FUS3PP ]dt calculated using the trapezium rule (Fig-

ure 5.8). Interestingly, ∆BAR1∆FAR1 modification has little effect on the
∫ t
0 [FUS3PP ]dt

output over either time period.
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Figure 5.8: Concentration-response curves of the Kofahl and Klipp Sc.
cerevisiae pheromone response model. The Kofahl and Klipp model, ∆SST2
and∆SST2∆FAR1∆BAR1 variants were implemented in Matlab and simulated for ei-
ther 0.5 or 16 hours using the ODE23s solver and a variety of ligand concentration. The
FUS1>β-galactosidase transcriptional reporter was replicated integrating the upstream
STE12active and FUS3PP time courses using the trapezium rule. A.

∫ t

0
[FUS3PP ]dt over

30 minutes and B. 16 hours simulation. C.
∫ t

0
[STE12active]dt over 30 minutes and D. 16

hours simulation.
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The concentration-response curves of Figure 5.8 show some very interesting differences

from the data of Hao et al. (2003). After 30 minutes simulation, the time scale the model

was designed for, we show comparable shifts in the FUS3PP curve to the experimental

data (pEC50 = 6.7, 7.3 and 8.4 for the unmodified, ∆SST2 and ∆SST2∆BAR1∆FAR1

model variants respectively). However, Emax is progressively greater for ∆SST2 and

∆SST2∆BAR1∆FAR1. In contrast, STE12active Emax is consistent between model vari-

ants. However, STE12active is much more sensitive to ligand but shifts in the concentration-

response curve are much more limited in the model variants compared to the unmodified

framework. Taken together, this may suggest that over 30 minutes
∫ t
0 [FUS3PP ]dt is a

better estimate of transcriptional activation of β-galactosidase. Consequently, further dis-

cussion of this model will use this as measure of pathway activation.∫ t
0 [FUS3PP ]dt shows a leftward shift in pEC50 for ∆SST2 compared to the unmodified

model. However, deleting BAR1 alters the sigmoidal concentration-response curve such

that Emax is achieved at 10µM pheromone but the level of signal decreases with increasing

ligand. This trend is also replicated by STE12active. The unmodified model has two forms of

negative regulation at the receptor level - proteolytic degradation of the peptide ligand and

loss of the active receptor. Without BAR1 there is more ligand in the system, resulting in

a greater concentration of R∗. As the rate of internalisation is subject to the laws of mass

action kinetics, increased R∗ accelerates internalisation. This manifests as a decrease in

signal with increasing ligand. This is in contrast to experimental data generated in modified

Sc. cerevisiae cells lacking BAR1 (MacKay et al., 1988; Yi et al., 2003). Consequently, this

represents a weakness of the Kofahl and Klipp model.

While this model is an excellent framework to study the dynamics of the yeast pheromone

response there are a number of other limitations. Firstly, there is no term for spontaneous

receptor activation. Consequently, this model does not replicate signalling in the absence

of ligand. Another weakness of this model also represents a strength. There is no physical

interaction between the active receptor and the G protein. There is simply a term for [R∗] in

the rate of G protein activation. This allows the Kofahl and Klipp model to represent either

or both collision and pre-coupling mechanisms of G protein activation without including

either directly..

The Kofahl and Klipp model clearly represents an excellent tool to study the Sc. cere-

visiae pheromone response. The size and complexity of this model may also present some

difficulties in model fitting. Here, the aim is to build a simple model to fit to time course

data to understand the rate parameters governing functional selectivity. Of the 47 reac-

tions that build this framework only 11 detail receptor pharmacology, the G protein cycle

and interaction with effectors. Consequently, there is scope to minimise this model. The

theoretical studies of Smith et al. (2009) may provide the avenue to do so.
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5.2.2 The Smith model of the Sc. cerevisiae pheromone response

The Kofahl and Klipp model was designed to describe the Sc. cerevisiae pheromone re-

sponse in its entirety. In contrast the Smith et al. (2009) model of the Sz. pombe pheromone

response has a comprehensive G protein cycle and a minimised approximation of down-

stream signalling processes. This model draws inspiration from Kofahl and Klipp (2004)

and uses the same rate parameters and initial conditions, where applicable. However, Sz.

pombe uses GαGTP to stimulate downstream signalling in the pheromone response. This

model can be modified to use Gβγ to stimulate downstream signalling, thus replicating the

Sc. cerevisiae G protein cycle (Figure 5.9 (Smith et al., 2009)). Unlike the Kofahl and Klipp

model, this model can replicate ligand-dependent receptor activation and downstream basal

signalling. Consequently this model does not assume steady state and requires equilibration

prior to the introduction of ligand. It is also worth noting that while Kofahl and Klipp

(2004) use an excessive 1.6µM receptor concentration, this model uses an experimentally

verified 160nM.
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Figure 5.9: The Smith model modified for the Sc. cerevisiae pheromone re-
sponse. This model was originally developed for the Sz. pombe pheromone response
where GαGTP is the effector that activates downstream signalling. Here Gβγ has been
made the effector to approximate the equivalent Sc. cerevisiae system. Z1, Z2 and Z3

mimic the transcriptional response. φ denotes a null set, or species loss from the model.
Figure adapted from Smith et al. (2009).
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A key component of this model is the transcriptional delay. Here GβγEffector induces the

formation of Z1. This, in turn, catalyses the production of Z2. The results in the generation

of Z3. Each of these steps has an associated activation and degradation parameter, α.

Together, Z1, Z2 and Z3 serve to delay and amplify the transcriptional response to active

G protein, summarising the MAPK cascade of the Sz. pombe phermone response (Smith

et al., 2009; Croft et al., 2013)

This system of ODEs, (equation arrays (5.1) and (5.16)), was implemented in Matlab and

solved using the ODE23s solver to assess its suitability as a model template. Simulations

were performed for 14 hours before application of ligand for a further 16 hours, consistent

with the experimental and computational data described by Smith et al. (2009). A ∆RGS

phenotype was replicated by setting the initial RGS concentration to 0nM (Figure 5.10).

Transcriptional responses were mimicked using the species Z1, Z2 and Z3 to delay and

modulate the GβγEffector appropriately. Consistent with Smith et al. (2009) and Croft

et al. (2013), α was set as 1.5. Concentration-response curves were constructed by [Z3]

after 16 hours simulation with ligand (Figure 5.10).

ν1 = [L]· [R]·K1,K1 = 0.0025nM−1h−1 (5.1)

ν2 = [R]· [Gαβγ]·K2,K2 = 0.005nM−1h−1 (5.2)

ν3 = [LR]· [Gαβγ]·K3,K3 = 0.02nM−1h−1 (5.3)

ν4 = [L]· [Gαβγ]·K4,K4 = 0.005nM−1h−1 (5.4)

ν5 = [LRGαβγ]·K5,K5 = 50h−1 (5.5)

ν6 = [Gαβγ]·K6,K6 = 0.2h−1 (5.6)

ν7 = [GαGTP ]·K7,K7 = 0.05h−1 (5.7)

ν8 = [Gβγ]· [Effector]·K8,K8 = 10nM−1h−1 (5.8)

ν9 = [GβγEffector]·K9K9 = 1h−1 (5.9)

ν10 = [GαGDPP ]·K10,K10 = 1000h−1 (5.10)

ν11 = [Gβγ]· [GαGDP ]·K11,K11 = 1000nM−1h−1 (5.11)

ν12 = [Pi]·K12,K12 = 10h−1 (5.12)

ν13 = [GαGTP ]· [RGS]·K13,K13 = 500nM−1h−1 (5.13)

ν14 = [GαGTPRGS]·K14,K14 = 2.5h−1 (5.14)

(5.15)
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d[L]

dt
= −ν1 − ν4 (5.16)

d[R]

dt
= ν1 − ν2 (5.17)

d[LR]

dt
= ν1 − ν3 + ν5 (5.18)

d[RGαβγ]

dt
= ν2 − ν4 (5.19)

d[LRGαβγ]

dt
= ν3 + ν4 − ν5 (5.20)

d[Gαβγ]

dt
= ν11 − ν2 − ν3 − ν6 (5.21)

[GαGTP ]

dt
= ν5 + ν6 − ν7 − ν13 (5.22)

[GαGDPP ]

dt
= ν7 − ν10 + ν14 (5.23)

[GαGDP ]

dt
= ν10 − ν11 (5.24)

[Pi]

dt
= ν10 − ν12 (5.25)

[Gβγ]

dt
= ν5 + ν6 − ν8 + ν9 − ν11 (5.26)

[GβγEffector]

dt
= ν8 − ν9 (5.27)

[Effector]

dt
= ν9 − ν8 (5.28)

[RGS]

dt
= ν14 − ν13 (5.29)

[GαGTPRGS]

dt
− ν13 − ν14 (5.30)

d[Z1]

dt
= [GβγEffector]·α− [Z1]·α (5.31)

d[Z2]

dt
= [Z1]·α− [Z2]·α (5.32)

d[Z3]

dt
= [Z2]·α− [Z2]·α (5.33)

(5.34)
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Figure 5.10: Output of the Smith Sc. cerevisiae pheromone response model.
The Smith model was modified to make Gβγ the effector, as in Sc. cerevisiae and imple-
mented in Matlab. The system was equilibrated for 14 hours prior to addition of ligand.
Simulations were continued for 16 hours in the presence of ligand. The system was solved
using the ODE23s solver. A ∆RGS phenotype was recreated by setting the initial [RGS]
to 0. A. Time courses were performed using the unmodified model and B. ∆RGS vari-
ant in the presence of ligand. C. The Gβγ time courses of the modified model and D.
∆RGS variants. E. Concentration-response curves were constructed by [Z3] after 16 hours

simulation with ligand. (Figure 5.10).

The time course profiles of Figure 5.10 show different trends to the Kofahl and Klipp

model output (Figure 5.7). This may not be surprising given that the original Smith

model was developed to replicate end point concentration-response curves. Here, the ma-

jority of species in the model, including active G proteins, are activated quickly and persist

throughout the simulation. However, the basal transcriptional activation, prior to addition

of ligand, is greatly enhanced in the ∆RGS strain. Given the ability of this model to repli-

cate ligand-independent signalling it is hardly surprising that an elevated [Z3] is observed

during equilibration in the absence of a negative regulator.
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The Gβγ time courses contrast with that of Kofahl and Klipp (2004), and therefore

experimentally determined trends (Yi et al. (2003), Figure 5.10. Here, Gβγ is swiftly

generated within 10 minutes of ligand application, shows a slight decline before increasing

and persisting at approximately 0.4nM. However, the ∆RGS variant shows an increase in

free [Gβγ] which holds at approximately 4nM (Figure 5.10D). The concentration-response

curves of this model show a marginal leftwards shift in sensitivity in the ∆RGS variant

(pEC50 = 7.1 compared to 6.9) and a marginal increase in Emax (Figure 5.10E). This is

reminiscent, if not an exact match, to the equivalent experimental data where SST2 and

∆SST2 genotypes have been reported to have potencies of 6.3 and 8.1, respectively (Hao

et al., 2003).

The Smith model and the Kofahl and Klipp model also contrast in basal activity. Kofahl

and Klipp (2004) assume that there is no constitutive receptor or G protein activation.

Consequently, this model produces no output in absence of ligand and does not require

equilibration. However, Smith et al. (2009) have produced a much more comprehensive

G protein cycle containing signalling in response to spontaneous receptor and G protein

activation. This requires that the model be equilibrated for 14 hours to simulate endogenous

signalling processes prior to ligand application. While no detectable β-galactosidase activity

was observed for the A1R in Sc. cerevisiae, the A2AR is noted for its constitutive activity.

Though the Smith model has a far more comprehensive G protein cycle, it is far less

capable of recreating the time course profiles experimentally determined by Yi et al. (2003).

In contrast Kofahl and Klipp (2004) replicate the dynamic trends of the G protein cycle,

at least for 1µM ligand. However, Kofahl and Klipp contains many reactions, throughout

the pheromone response, that a minimal quantitative model of the G protein cycle can

dispense with. The Smith model condenses an equivalent MAPK cascade to three simple

equations. The strengths of these two model frameworks can be combined to greatly inform

novel model development.
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5.3 Model development

The aim of this study is to build and implement a minimal mathematical framework to

understand the kinetics of functional selectivity of the A1R in yeast. Through combining

the strengths of Kofahl and Klipp (2004) and Smith et al. (2009), the G protein cycle and

transcriptional delay respectively, we hope to create a simple representation of G protein

signalling in yeast based on the law of mass action kinetics.

5.3.1 General model assumptions

A central premise of systems biology is that a model is only as good as its assumptions.

Therefore assumptions represent compromises that can be the strength or Achille’s heel of

any given framework. The model developed here will focus on the receptor-ligand interac-

tion and downstream G protein cycle. The majority of these assumptions will be centred on

the initial conditions, particularly species concentrations. This is crucial given that ODE

models are subject to mass action kinetics where the rate of reaction is a product of an

intrinsic rate constant and the concentration of the reacting components.

While the receptor and G protein concentrations have already been determined for the

Sc. cerevisiae pheromone response, all strains used in this study have been genetically

modified. In particular the endogenous GPCR, STE2, has been deleted and replaced by

the A1R. Moreover, the A1R is under the control of a constitutive promoter at the URA3

locus. In contrast the STE2 receptor is under the control of a pheromone-responsive pro-

moter. Consequently, A1R expression levels could vary from that of STE2 in an unmodified

strain. However, in the absence of any data regarding receptor number, we are forced to

assumed an A1R concentration of 160nM, the experimentally determined endogenous STE2

concentration.

The Gβγ dimer, and the relevant loci, have been unmodified in this strain. Therefore

a Gβγ concentration of 160nM was assumed. The GPA1 gene, however, has been deleted.

GPA1, and GPA1 transplants have been integrated at the TRP1 locus under the control

of the endogenous GPA1 promoter. This leads to the assumption that GPA1 expression in

the transplant system is consistent with that of unmodified strains, i.e. 160nM. Credibility

is led to this assumption by the Western blots of Brown et al. (2000), who developed this

system, that indicate equal GPA1 expression in all strains.

The rate parameters determined by Yi et al. (2003) will be used as initial conditions for

model fitting. These parameters were determined using a FRET reporter system in which

GPA1 and STE18 have been deleted and fluorescently-modified variants integrated into

their respective loci under the control of their endogenous promoters. The fluorophores are

cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), derivatives of GFP,

and can interfere with protein-protein interactions thus influencing the results. Given that
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these parameters have been used to build more comprehensive models, and that we will

only be using these rates as initial conditions for fitting, these constants will be used to

directly inform the model. However, in the absence of an RGS, G protein-mediated GTP

hydrolysis is under the sole control of the RGS-fold of the Gα subunit. We will therefore

assume that GTP-hydrolysis and heterotrimeric G protein reformation are not influenced

by the receptor. Consequently, GTP-hydrolysis will be constrained to 14.4 nM−1 hour−1,

as determined by Yi et al. (2003) and implemented by Kofahl and Klipp (2004), Smith

et al. (2009) and Croft et al. (2013).

A further experimental consideration of the mathematical model being developed here

is is one of structural identifiability. This aspect of dynamic modelling is concerned with

uniqueness of solutions. Put simply, this means a given model output, fitted to experi-

mental data, can only be a consequence of a unique combination of initial conditions and

parameters (Chis et al., 2011b). If a model structure fits this description it is termed glob-

ally and structurally identifiable (Lockley et al., 2015). However, in the absence of global

identifiability, local identifiability can be achieved in which one can isolate the neighbour-

hood a parameter resides in. While not ideal for model fitting, local identifiability can be

useful (Raue et al., 2009, 2010). While mathematically intensive, there are a number of

user-friendly tools to perform structural identifiability analysis (Chis et al., 2011a; Ogung-

benro and Aarons, 2011; Maiwald et al., 2012). Here, structural identifiably was performed

as a the first step of model development. The GenSSI toolbox for Matlab was used due to

its availability and relative ease of use (Chis et al., 2011a).

There are ways to increase the identifiability of a mathematical model. The parameters

or species concentrations that can be measured directly are called observables. The more

observables available to inform a mathematical model, the greater its identifiability and the

more accurate its predictions (Anguelova et al., 2012). At present, the Sc. cerevisiae trans-

plant strains contain two potential measures of transcription, growth and β-galactosidase

activity. This study exploits the latter. But with a single observable, global and struc-

turally identifiability can be difficult to achieve. Minimising the model to its most basic

components can compensate for this. For example, no significant basal signal is produced

by the A1R in yeast. Therefore constitutive receptor and G protein activation can be sac-

rificed for the sake of simplicity. Further, not all parameters need to be fitted. Parameters

that are unlikely to vary as a function of ligand or G protein, such as those governing

downstream signalling and transcription, can be constrained to increase the likelihood of

global and structural identifiability.
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5.3.2 A simple model of G protein signalling in yeast

An ODE model of G protein signalling in yeast was constructed with structural identi-

fiability as a primary concern. At present this framework has only one observable, the

β-galactosidase transcriptional reporter. For this reason, the model must be minimal and

consist of the basic processes that we know happen and can potentially measure. Increased

complexity requires more observables for accurate model fitting. As no ligand-independent

signalling of the A1R is detectable by β-galactosidase assay, spontaneous receptor acti-

vation has been omitted. This simple model uses four processes that can eventually be

experimentally validated.

• Ligand binds the receptor to promote receptor activation. Fluorescent ligands could

be used to determine ligand binding rates in real time.

L + R − > R∗, K1.

• Active receptor activates a G protein that can be measured through FRET. However,

the FRET studies of Yi et al. (2003) only measure the rate at which GPA1 and STE18

move within/ beyond a certain radius. Consequently, a two step G protein cycle is

considered. The receptor G protein activation mechanism of Kofahl and Klipp (2004)

is employed to accommodate both pre coupling and collision coupling mechanisms of

receptor-dependent G protein activation.

Goff − > Gon, K2 · [R∗]

Gon − > Goff , K3

• Active receptor is internalised. Internalisation, or lack thereof, can be elucidated

using fluorescent ligand or fluorescent receptors.

R∗ − > φ, K4, where φ denotes a null set to which a species is lost.

Finally, Gon simulates a delayed transcriptional response using the delay system of Smith

et al. (2009). This delay is meant to be constrained and not subject to variation between

ligands or yeast strains. A schematic of these model is shown in Figure 5.11 and the

equations detailed in (5.35). GenSSI confirmed that this model structure is globally and

structurally identifiable.
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Figure 5.11: A simple model of G protein signalling in yeast. Here ligand activates
a receptor. The active receptor catalyses the activation of a G protein. Negative regulation
of this pathway is achieved through G protein deactivation or receptor internalisation. φ
denotes a null set or loss of a species from the model. Sequential activation of Z1, Z2 and Z3

is a simplification of the MAPK cascade and downstream transcription of β-galactosidase.
Parameters to be fitted are shown in green. Parameters to be constrained are highlighted

in blue.

ν1 = [L]· [R]·K1 (5.35)

ν2 = [R∗]· [Goff ]·K2 (5.36)

ν3 = [Gon]·K3 (5.37)

ν4 = [R∗]·K4 (5.38)

d[L]

dt
= −ν1 = −[L]· [R]·K1 (5.39)

d[R]

dt
= ν1 = −[L]· [R]·K1 (5.40)

d[R∗]

dt
= ν1 − ν4 = [L]· [R]·K1 − [R∗]·K4 (5.41)

d[Goff ]

dt
= ν3 − ν2 = [Gon]·K3 − [R∗]· [Goff ]·K2 (5.42)

d[Gon]

dt
= ν2 − ν3 = [R∗]· [Goff ]·K2 − [Gon]·K3 (5.43)

d[Z1]

dt
= [Gon]·α− [Z1]·α (5.44)

d[Z2]

dt
= [Z1]·α− [Z2]·α (5.45)

d[Z3]

dt
= [Z2]·α (5.46)

(5.47)
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This model was implemented in Matlab using receptor and inactive G protein (Goff )

concentrations of 160nM (Figure 5.12). Rate constants were assumed from Kofahl and

Klipp (2004) as shown below.

K1 = 0.072nM−1hour−1 (5.48)

K2 = 0.216nM−1hour−1 (5.49)

K3 = 14.4hour−1 (5.50)

K4 = 14.4hour−1 (5.51)

(5.52)
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Figure 5.12: The output of a simple model of G protein signalling. The model
described in (Figure 5.11) was implemented in Matlab and solved using the ODE23s solver.
The system was simulated over 16 hours and species Z3 used as a measure of pathway
activation. At t0 [R] = 160nM, [Goff = 160nM and all other species = 0. K1 = 0.072

nM−1 hr−1, K2 = 0.216 nM−1 hr−1, K3 = 1.44 hr−1 and K4 = 14.4 hr−1. α = 1.5.

Figure 5.12 show sigmoidal time course profiles that plateau after 3-4 hours simula-

tion. However, this model also shows a maximal level of signal at 100nM ligand before a

slight decrease in activity at higher concentrations. This is particularly noticeable on the

concentration-response curve produced by this model (Figure 5.12B). However, this is a

trend shared with Kofahl and Klipp (2004) and may be a consequence of internalisation

acting as the sole receptor-level negative regulator of signalling.

To understand the effect of each of these parameters on model output a parameter sensi-

tivity analysis was performed. Each rate constant was varied independently and simulations

performed for 16 hours using the ODE23s solver (Figure 5.13). All other parameters were

constrained. Time course profiles are shown for 1mM ligand so that the agonist is not the

limiting factor.
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Figure 5.13: Parameter sensitivity analysis of a simple model of G protein
signalling. The model described in (Figure 5.11) was implemented in Matlab and solved
using the ODE23s solver. The system was simulated over 16 hours and species Z3 used
as a measure of pathway activation. At t0 [R] = 160nM, [Goff = 160nM and all other
species = 0. K1 = 0.072 nM−1 hr−1, K2 = 0.216 nM−1 hr−1, K3 = 1.44 hr−1, K4 = 14.4
hr−1 and α = 1.5. These baseline simulations are shown as a black line. Each parameter
was individually adjusted and outputs compared. Time course profiles shown are for 1mM
ligand. Time courses profiles and concentration-response curves as a function of A. K1,

B. K2, C. K3 and D. K4.
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Figure 5.13 shows some particularly interesting relationships between the parameters

underlying the G protein cycle and the model output. K1, the ligand-binding rate largely

influences the pEC50 of the concentration-response curves but cannot increase it beyond 7.3.

This parameter also appears to enhance and prolong the peak in signal at an intermediate

ligand concentration.

The G protein-activation constant, K2 appears to influence the magnitude and delay of

the transcriptional response. This manifests as an increase in both pEC50 and Emax on the

model concentration-response curve. Unsurprisingly, the G protein-inactivation constant,

K3 has the opposite effect.

K4, the active receptor internalisation rate, negatively influences the delay in transcrip-

tion and magnitude of the response. This, in turn, decreases the Emax and pEC50 of the

concentration response curve. Reducing the receptor internalisation rate to ≤ 0.1 hr−1

abolishes the decrease in activity as the ligand concentration increases beyond Emax. This

confirms that this effect, also present in Kofahl and Klipp (2004), is an artefact of inter-

nalisation.

An important aspect of this model is the transcriptional delay. The intention is to

use this delay to form a ”black box” to estimate downstream signalling and transcription.

Consequently, α will be constrained for all ligands and strains modelled. The parameter

sensitivity analysis was extended to α to understand the significance of this parameter to

the model output. These simulations demonstrate that α simultaneously influences both

the magnitude and delay of the transcriptional response (Figure 5.14).



An interdisciplinary approach to A1R pharmacology in yeast 156

-10 -9 -8 -7 -6 -5 -4 -3
0.0

5.0×107

1.0×108

1.5×108

2.0×108

Log [Ligand] M

[Z
3]

 n
M

α

0 4 8 12 16
0.0

5.0×107

1.0×108

1.5×108

TIme (h)

[Z
3]

 n
M

α

-10 -9 -8 -7 -6 -5 -4 -3
0

50

100

150

Log [Ligand] M
P

er
ce

nt
ag

e 
m

ax
im

um
 s

ig
na

l

α

0 4 8 12 16
0

50

100

150

TIme (h)

P
er

ce
nt

ag
e 

m
ax

im
um

 s
ig

na
l

α

-10 -9 -8 -7 -6 -5 -4 -3
0

100

200

300

400

Log [Ligand] M

[Z
3]

 n
M

Kofahl and Klipp
10-6

10-5

10-4

10-3

10-2

10-1

1
10
102

103

104

105

106

K1
α A 

C 

B 

D 

Figure 5.14: Parameter sensitivity analysis of the delay equations. The model
described in (Figure 5.11) was implemented in Matlab and solved using the ODE23s solver.
The system was simulated over 16 hours and species Z3 used as a measure of pathway
activation. At t0 [R] = 160nM, [Goff = 160nM and all other species = 0. K1 = 0.072
nM−1 hr−1, K2 = 0.216 nM−1 hr−1, K3 = 1.44 hr−1, K4 = 14.4 hr−1 and α = 1.5. These
baseline simulations are shown as a black line. α was manually adjusted and outputs
compared. Time course profiles are shown for 1mM ligand. A. Time courses profiles and
B. concentration-response curves as a function of α. C. Time courses profiles and D.
concentration-response curves as a function of α where each curve has been expressed as

a percentage of its own maximum.

The influence of α on both the magnitude and delay of the time course data presents

a problem for model fitting. For a high ligand concentration, the EC50 occurs at approxi-

mately 4 hours. The response has also been scaled at a percentage of the maximum response.

In the absence of contrary data, this has been assumed to be the A1R::GPA1/Gαi1/2 Emax

(39.7 ± 0.7 mU). To independently manipulate the Emax and delay of the model time

course output the parameters of the delay were split as shown:

d[Z1]

dt
= α· [Gon] − β· [Z1] (5.53)

d[Z2]

dt
= α1· [Z1] − β1· [Z2] (5.54)

d[Z3]

dt
= α2· [Z2] − β2· [Z3] (5.55)

(5.56)
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K1, K2, K3 and K4 were constrained to 0.0072 nM−1 hr−1, 0.216 nM−1 hr−1, 1.44 hr−1

and 14.4 hr−1 respectively. Each α and β parameter were initially set to 1.5 and manipu-

lated independently. Simulations were performed to assess the affect of these parameters

on model output (Figure 5.15 and Figure 5.16).
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Figure 5.15: Parameter sensitivity analysis of the α delay rates. The model
described in (Figure 5.11) was implemented in Matlab and solved using the ODE23s solver.
The system was simulated over 16 hours and species Z3 used as a measure of pathway
activation. At t0 [R] = 160nM, [Goff = 160nM and all other species = 0. K1 = 0.072
nM−1 hr−1, K2 = 0.216 nM−1 hr−1, K3 = 1.44 hr−1, K4 = 14.4 hr−1, α = 1.5, β = 1.5,
α1 = 1.5, β1 = 1.5, α2 = 1.5, β2 = 0. These baseline simulations are shown as a black line.
A. α, B. α1 and C. α2 were individually adjusted, with all other parameters constrained,
and outputs compared. Time course profiles are shown for 1mM ligand. Also shown are

the same curves expressed as a percentage of their own maximum.
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Figure 5.16: Parameter sensitivity analysis of the β delay rates. The model
described in (Figure 5.11) was implemented in Matlab and solved using the ODE23s solver.
The system was simulated over 16 hours and species Z3 used as a measure of pathway
activation. At t0 [R] = 160nM, [Goff = 160nM and all other species = 0. K1 = 0.072
nM−1 hr−1, K2 = 0.216 nM−1 hr−1, K3 = 1.44 hr−1, K4 = 14.4 hr−1, α = 1.5, β = 1.5,
α1 = 1.5, β1 = 1.5, α2 = 1.5, β2 = 0. These baseline simulations are shown as a black
line. These baseline simulations are shown as a black line. A. β, B. β1 and C. β2 were
individually adjusted, with all other parameters constrained, and outputs compared. Time
course profiles are shown for 1mM ligand. Also shown are the same curves expressed as a

percentage of their own maximum.

α parameters influence the magnitude of the response with no appreciable effects on the

delay (Figure 5.15). This is clear when then the sigmoidal time course curves are expressed

as a percentage of its own maximum and overlap precisely. However, the β parameters

influence both the magnitude and delay of the transcriptional response (Figure 5.16). This

is encouraging as the β parameters can be used to set the delay while the α parameters can

be used to scale the response. Given that this model is globally and structurally identifiable

a unique combination of parameters can be determined to fit the transcriptional delay.
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This model framework was implemented in the Potter’s Wheel toolbox for Matlab. This

software uses the Levenberg-Marquart algorithm to fit ODE models to experimental data.

This uses a least squares regression approach to minimise the difference between the model

output and the experimental datapoint, χ2 (here χ2 < 300 is considered an acceptable

fit). However, this approach, while incredibly powerful, has a fundamental weakness. The

model will continue to fit while χ2 is decreasing, but an increase in χ2 forces the algorithm

to assume that a best fit has been achieved. This could also be result of the a local numerical

minima, and a better fit may exist that this model has not yet explored. Consequently, this

algorithm is reliant on initial conditions and starting parameter values. Fortunately, the

Sc. cerevisiae pheromone response has been very well characterised and the experimental

values of STE2-G protein interaction are already known. These parameters and species

concentrations were used as initial conditions for model fitting to the experimental time

course data of A1R::GPA1/Gαi3 (Figure 5.17).

The model was first fitted to the NECA time course data of the A1R::GPA1/Gαi3 strain.

The model shows good agreement with the experimental data (χ2=366.79). However, the

fit for 100nM NECA, an intermediate response, is somewhat less accurate. Regardless, this

fit makes some very interesting predictions (Table 5.3). In comparison to the initial val-

ues, experimentally validated for the endogenous GPCR in this system, the ligand binding

constant, K1, is remarkably low (0.072 −1hour−1 and 1.04e−5 hour−1, for initial and fitted

values respectively). In contrast the G protein activation rate, K2, is 213-fold higher than

the initial estimate (46.17 −1hour−1 compared to 0.216 nM −1hour−1). While G protein-

inactivation was constrained to 14.4 hr−1, the receptor internalisation rate is substantially

lower than that of the initial value (0.2 hr−1 and 14.4 hr−1, respectively). This is encour-

aging given the internalisation artefacts of Figure 5.14 and the trends in model output

shown through manipulation of the K4 parameter. With the exception of 100nM ligand,

the transcriptional delay shows good agreement with experimental trends (χ2 = 236.3).

Consequently, the α and β parameters were constrained for fitting to the time course data

of adenosine and 2CCPA.
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Figure 5.17: A novel model of G protein signalling yeast fitted to the experi-
mental time course data of the A1R::GPA1/Gαi3 integrate strain. The simple G
protein model of Figure 5.11 was implemented in Potter’s wheel using K1 = 0.072 nM−1

hr−1, K2 = 0.216 nM−1 hr−1, K3 = 1.44 hr−1, K4 = 14.4 hr−1. All α and β parameters
were initialised as 1.5. R and Goff were assumed to be 160nM, all other concentra-
tions were set to 0nM. The model was fitted to experimental time course data using the
Levenberg-Marquart algorithm. Resulting parameter sets were implemented and simulated
using the ODE23s solver for 12 hours. Equivalent logistic equation fits have been included
for clarity. A. NECA. B. Adenosine. C. 2CCPA. D. Concentration-response curves after
12 hours incubation with ligand.Data points represent mean ± S.E.M. of triplicate repeats.

Solid lines represent model output. χ2 < 300 was considered a good git.
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Table 5.3: Parameters of a simple G protein signalling ODE model fitted to the
time course data of the A1R::GPA1/Gαi3 strain. The rate constants shown were
used as initial conditions for fitting to the NECA time course data of (Figure 5.17). The α
and β constants were constrained and the parameter set used to estimate the parameters

underlying the equivalent adenosine and 2CCPA data.

K Initial NECA Adenosine 2CCPA

K1 (nM−1 hour−1) 0.072 1.04e−5 1.83e−6 0.0004
K2 (nM−1 hour−1) 0.216 46.17 3.02e−3 3.28
K3 (hour−1) 14.4 14.4 14.4 14.4
K4 (hour−1) 14.4 0.2 28.6 0.008
α 1.5 11.203 11.203 11.203
β 1.5 208.27 208.27 208.27
α1 1.5 24.362 24.362 24.362
β1 1.5 0.909 0.909 0.909
α2 1.5 0.100 0.100 0.100
β2 1.5 0.207 0.207 0.207

χ2 236.3 262.4 104.4

The model fits for adenosine, while acceptable (χ2 < 300), are less consistent with the

experimental data than those of NECA, as evidenced by a higher χ2 value (Table 5.3).

However, there is a much closer alignment between model output and the time course

of an intermediate adenosine concentration (1µM). The predicted rates of ligand-binding

and G protein-activation (1.83e−6 nM−1 hour−1 and 3.02e−3 nM−1 hour−1 respectively)

are substantially lower than their NECA counterparts. However, the internalisation rate

shows a two-fold increase relative to the experimentally known value for STE2 (28.6 hour−1

compared to 14.4 hour−1. Thus, this model suggests that receptor-level negative regulation

has a greater influence on adenosine in the A1R::GPA1/Gαi3 strain than NECA.
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This simple model of G protein-signalling yielded a good fit to the time course data of

2CCPA in this strain (Figure 5.17, Table 5.3, χ2 = 104.4). This predicts that ligand-binding

rates and G protein-activation rates are higher for 2CCPA than for NECA and adenosine.

The receptor internalisation rate is substantially lower than the experimentally determined

value for STE2 (Table 5.3) which may be consistent with predictions for NECA.

Taken together, this model predicts the ligand-binding, G protein-activation and receptor

internalisation are influenced by the ligand consistent with functional selectivity. To further

validate model output concentration-response curves were constructed from the simulated

time course data at 12 hours. Non-linear regression of the logistic equation was used to

compare the experimental concentration-response curves of A1R::GPA1/Gαi3 and those

generated using the simple model (Figure 5.17D, Table 5.3).

Table 5.4: Pharmacological parameters of the A1R::GPA1/Gαi3 endpoint con-
centration response curves and associated simple G protein model output. The
logistic equation was applied to the data of Figure 5.17D by non-linear regression. pEC50

= −Log EC50 (potency), Emax = maximum level of signal. pEC50 and Emax of the model
and experimental data were compared by Student’s T-test, *P < 0.05.

Ligand pEC50 pEC50 Emax Emax

Experimental Model Experimental Model

NECA 6.5±0.1 7.0±0.1* 101.9±1.2 98.3±0.1
Adenosine 5.9± 0.1 5.8±0.1 90.7±1.5 96.4±0.1*
2CCPA 7.5±0.1 7.9±0.1* 93.1±1.6 96.7±0.1

The endpoint data demonstrate significant differences between the NECA and 2CCPA

model pEC50 and equivalent experimental data. While the model Emax is consistent with

experimental data for these ligands it does deviate significantly for adenosine. Also, while

the χ2 values suggest that these are good fits, this model does not reproduce the plateau in

signal at intermediate concentrations of NECA and adenosine (100nM and 10nM respec-

tively). This may explain why this model does not accurately reproduce the concentration-

response curve. This suggests weaknesses in the model structure. However, this model

is fitted to time course data to infer dynamic processes throughout the ligand-receptor-G

protein cycle. This provides an opportunity to validate this model. At present G protein

activation cannot be measured directly in the yeast transplant strains. But these fitted

parameter sets can be used to simulate G protein activation in the A1R::GPA1/Gαi3 strain

in response to NECA, adenosine and 2CCPA (Figure 5.18).
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Figure 5.18: Predicted G protein activation time course profiles for the
A1R::GPA1/Gαi1/2 strain in a simple model of G protein signalling. The param-
eter sets of Table 5.3 were used to simulate changes in Gon. A. Simulations using the rates
of the Kofahl and Klipp model and fitted parameters of B. NECA, C. adenosine and D.

2CCPA.

The G protein activation profiles generated using the parameters of the Kofahl and

Klipp profile show a rapid increase in free Gβγ followed by a steady decline. For the

∆SST2∆FAR1∆BAR1 modification of the Kofahl and Klipp model the period of this

trend is 30 minutes (Figure 5.7). However, in the simple model developed here, the Gon

profile, as function of the same parameters, yields a similar trend but with a period of 4

hours for 1µM ligand (Figure 5.18A). This suggests a problem with the model structure.

This is more evident for the NECA, adenosine and 2CCPA Gon profiles (Figure 5.18B, C and

D, respectively). Here Gon is rapidly produced for all ligands and there is no appreciable

decline in concentration. This is in complete contrast to the experimental FRET data

generated by Yi et al. (2003), and recreated by Kofahl and Klipp (2004), where active

G protein persists for less than 30 minutes. While this may indeed be correct for the

A1R, a non-native GPCR, in the yeast system, this profile is counterintuitive as it implies

constant signalling through the pheromone-response pathway. Continuous signalling has

been associated with toxicity. Also the discrepancies between the the endpoint predictions

and experimental data for NECA, adenosine and 2CCPA shed doubt on the validity of this

model structure (Figure 5.4). Consequently this framework may need to be modified or

extended.
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5.3.3 Development of an extended model of G protein signalling

The extended period of the Gon time course using the Kofahl and Klipp parameters in the

simple model of G protein signalling may provide a means to improve this model structure.

This minimal model was intended to include the most basic and essential features of G

protein signalling in yeast for ease of fitting and structural identifiability concerns. However,

the models of Kofahl and Klipp (2004) and Smith et al. (2009) have the Gβγ interacting with

an effector to promote downstream signalling. Indeed, Gβγ is known to directly interact

with the MAPK cascade of the Sc. cerevisiae pheromone response. Consequently, this

scaffold will compete for free Gβγ. This may explain the observed difference in G protein

activation between the simple G protein model described here and the Kofahl and Klipp

STE4 STE18 time course output. To explore this further the minimal model was extended

to include a Gon-Effector interaction, as in Smith et al. (2009) and Croft et al. (2013)

(Figure 5.19). The resulting GonEffector complex then promotes downstream signalling via

Z1, Z2 and Z3. This new model will be referred to as the extended model.

R* R 

Goff Gon 

ϕ 

L 

k1 

k2 

k3 

k4 

z1 

z2 

z3 

ϕ 

α1 

ϕ 

ϕ 

α 

α2 

β1 

β1 

β2 

GonEffector 

Effector 

Effector 

k6 

k5 

Figure 5.19: A novel model of G protein signalling yeast including a Gβγ
Effector interactions. Here ligand binds an inactive receptor to form the active R* con-
formation. This can activate a G protein (Goff -> Gon) to trigger downstream signalling
via an interaction with an Effector. Negative regulation in this model can be achieved
through internalisation of R*, spontaneous G protein-inactivation or dissociation of Gon

from the GonEffector complex. Parameters to be fitted are highlighted in green. Parame-
ters to be constrained are highlight in blue. The extension to the previous model iteration,

the simple model, is highlighted with a red dotted line.
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ν1 = [L]· [R]·K1 (5.57)

ν2 = [R∗]· [Goff ]·K2 ν3 = [Gon]·K3 (5.58)

ν4 = [R∗]·K4 (5.59)

ν5 = [Gon]· [Effector]·K5 (5.60)

ν6 = [GonEffector]·K6 (5.61)

d[L]

dt
= −ν1 (5.62)

d[R]

dt
= −ν1 (5.63)

d[R∗]

dt
= ν1 − ν4 (5.64)

d[Goff ]

dt
= ν3 − ν2 (5.65)

d[Gon]

dt
= ν2 + ν6 − ν3 − ν7 (5.66)

d[Effector]

dt
= ν6 − ν5 (5.67)

d[Gon]Effector

dt
= ν5 − ν6 (5.68)

d[Z1]

dt
= [GonEffector]·α− [Z1]·β (5.69)

d[Z2]

dt
= [Z1]·α1 − [Z2]·β1 (5.70)

d[Z3]

dt
= [Z2]·α2 − [Z2]·β2 (5.71)

(5.72)

This model was implemented in GenSSI and structural identifiability analysis performed.

This demonstrated that this framework is globally and structurally identifiable, an essential

prerequisite of model development here. The parameters of Kofahl and Klipp (2004),

experimentally determined by Yi et al. (2003), were assumed and simulations performed

for 12 hours, consistent with the time course data generated here (Figure 5.20). The delay

parameters, α, β, α1, β1, α2 and β2, were assumed to be the rates determined using the

simple model of G protein signalling (Table 5.3).
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Figure 5.20: Output of the extended model of G protein signalling using the
parameters of the endogenous Sc. cerevisiae pheromone response. The pa-
rameters of Kofahl and Klipp (2004), experimentally determined by Yi et al. (2003), were
implemented in the model of Figure 5.19 and simulated in Matlab using the ODE23s solver.
A. Gon time course data as a function of ligand. B. Simulated transcriptional response,

[Z3]. C. Z3 concentration-response curves determined at 12 hours simulation.

Once again a biphasic simulated Gon response was observed with a peak in activity within

6 minutes and a decline in free active G protein over 4 hours (Figure 5.20). However,

the transcriptional response shows a marked change. Here, [Z3] peaks at 15 nM within

four hours with a steady decline to 4 nM over 12 hours. The resulting end-point curve

yields a pEC50 of 7.5 nM but with a low Emax of 3.9 nM. Clearly, the delay parameters

of the simple model are inappropriate for this extended variant. The experimental time

course data provides a means to remedy this. Experimental studies have shown that the

pEC50 for the Sc. cerevisiae pheromone response, under a ∆SST2 phenotype, is 8.1M. In

A1R::GPA1/Gαi3 2CCPA is a full agonist with a pEC50 of 8.3±0.1 M. If we assume that

α-factor is a full agonist of the Sc. cerevisiae pheromone response, and that 2CCPA is

eliciting the maximum response possible through this strain, an Emax concentration of this

agonist can be used to determine more appropriate delay parameters.
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The time course data for A1R::GPA1/Gαi3 incubated with 100µM 2CCPA was used

to fit the α, β, α1, β1, α2 and β2 parameters. K1, K2, K3 and K4 were constrained to

0.072, 0.216, 14.4 and 14.4 respectively, consistent with Yi et al. (2003). However, K5

and K6, which govern the Gon Effector association and GonEffector complex dissociation

respectively, have not been experimentally determined. These parameters were estimated

by Kofahl and Klipp (2004). Consequently, these parameters were also fitted using Potter’s

Wheel, as shown in Table 5.5. For time course data a single ligand concentration χ2 < 10

was considered an acceptable fit.
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Figure 5.21: Fitting the delay parameters of the extended model of G protein
signalling. The parameters of Kofahl and Klipp (2004), experimentally determined by Yi
et al. (2003), were implemented and constrained in the Potter’s Wheel toolbox for Matlab.
Initial α and β parameters were determined by fitting the simple model of G protein
signalling to experimental data. A. These parameters were then fitted to the experimental
time course data of A1R::GPA1/Gαi3 incubated with 100µM 2CCPA using the Levenberg-
Marquardt least squares regression algorithm. Here, χ2 < 10 was considered an good fit.
The resulting parameters were used to simulate B. time course and C. end-point data for

a range of ligand concentrations.
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The new fitted delay parameters of Table 5.5 show excellent agreement with the 2CCPA

time course data of A1R-GPA1/Gαi3 (χ2 = 4.1). This yielded a sigmoidal response that

plateaus at 8-12 hours (Figure 5.21A). To confirm that the profile of this response is con-

sistent between ligand concentrations, simulations were extended to generate multiple time

course profiles and concentration-response curves (Figure 5.21). At all ligand concentra-

tions tested this model produced a sigmoidal temporal response (Figure 5.21B). Consistent

with the ∆SST2 Kofahl and Klipp model variant, the pEC50 of the concentration-response

curve was 7.5±0.1 (Figure 5.21B). Taken together, this suggests that the parameters un-

derlying the delay equations are appropriate for this model structure and were constrained

at these respective values.

Table 5.5: Parameters of the extended model delay fitted to the time course
data of the A1R::GPA1/Gαi3 integrate strain incubated with 100µM 2CCPA.
The rate constants shown were used as initial conditions for fitting to the 2CCPA time
course data of (Figure 5.17). K1, K2, K3 and K4 were constrained. This parameter set

used to estimate an appropriate delay for this model structure.

K Initial Fitted

K1 (nM−1 hour−1) 0.072 0.072
K2 (nM−1 hour−1) 0.216 0.216
K3 (hour−1) 14.4 14.4
K4 (hour−1) 14.4 14.4
K5 (nM−1 hour−1) 6 3.76
K6 (hour−1) 300 339.27
α 11.20 12.71
β 208.27 1929.14
α1 24.36 0.31
β1 0.91 0.31
α2 0.10 1.91
β2 0.21 0.001

The effect of each parameter on this new model structure were assessed by individually

manipulating constants and comparing model output (Figure 5.22). Consistent with Kofahl

and Klipp (2004) and the simple model generated here, the ligand-binding constant, K1,

causes a rightward shift in the concentration-response curve and potentiation of signal at

intermediate ligand concentrations, an artefact of internalisation. The G protein activation

and inactivation constants, K2 and K3 respectively, have diametrically opposed effects.

Increasing K2 prolongs the time course response and increases the level of activity in time

course data. This manifests in a leftward shift in the concentration-response curves and

increased Emax. In contrast, K3 reduces maximal activity. The internalisation rate, K4,

shows a similar trend to K3 in that time course and endpoint responses decrease as this

constant increases. This is unsurprising given that these are negative regulators of this

pathway. While the aim is to constrain K5 and K6 in this extended model structure,

the parameter sensitivity analysis was extended to include these rates. Here K5 serves to

increase both the delay and the maximal response, while promoting leftward shifts in the

concentration-response curves, K6 has the opposite effect.
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Figure 5.22: Parameter sensitivity of the extended model of G protein sig-
nalling. The parameters of Kofahl and Klipp (2004), and delay parameters of Figure 5.21
were implemented in Matlab. Each parameter was individually manipulated and simu-
lations performed for 12 hours using the ODE23s solver. Timecourse and concentration-

response curves as a function of A. K1, B. K2,C. K3, D. K4, E. K5 and F. K6.
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Given that 2CCPA was the ligand used to fit the delay, these time course data were fitted

with the extended model using the initial conditions of Table 5.5. Once again this fit showed

good agreement with experimental data (χ2 = 37.3, Figure 5.23B). This predicted a high

ligand binding rate (20.74 nM−1 hour−1 compared to the 0.072 nM−1 hour−1 initial value)

and a two-fold increase in G protein activation (K2 = 0.52 nM−1 hour−1). Interestingly,

a low internalisation rate in response to 2CCPA has also been predicted by this model

(Table 5.6C).

Encouraged by this result, the extended model was fitted to the time course profiles

of NECA in the same strain. However, this yielded a far less satisfactory fit (χ2 > 300,

Figure 5.23A). As this is a regression based approach it is possible that the algorithm is

becoming trapped in a numerical minima. To circumvent this multiple initial conditions

were considered and all fits converged on the same parameters. These suggest a low ligand

binding affinity (K1 = 0.001 nM−1 hour−1) and 3.6-fold decrease in G protein activation

relative to the experimentally determined values for this pathway. Once again receptor

internalisation is low (K4 = 0.77 hour−1, Table 5.6).

Applying this model to the adenosine time course data yielded a poor fit with similar

trends to that of NECA (χ2 = 419.6, Figure 5.23B). Here, low receptor and G protein

activation rates are predicted (K1 and K2 = 0.0001 and 0.03 nM−1 hour−1 respectively.

Interestingly, the fitted internalisation rate is half that of NECA (K4 = 0.384). However,

despite this lower value, adenosine shows the same artefact of internalisation simulated for

NECA.

The model concentration-response curves yielded pEC50 values of 7.1±0.1, 6.1±0.1 and

7.6±0.1 compared to 6.5±0.1, 5.9±0.1 and 7.5±0.1 for NECA, adenosine and 2CCPA re-

spectively (Figure 5.23D). This may suggest that this model cannot replicate the time

course and endpoint data simultaneously for lower-affinity ligands. This study aims to

develop and ODE model to describe functional selectivity of the A1R in yeast. Thus, it

is essential this model fits data for all ligands in this system. Consequently, the model

structure was revisited.
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Figure 5.23: Fitting the extended model to the time course data of the
A1R::GPA1/Gαi3 strain. The parameters of Table 5.6 were used as initial conditions
for fitting the time course data of A. NECA, B. adenosine and C. 2CCPA using Potter’s
Wheel. D. The resulting parameters were used to simulate the concentration-response of
these compounds after 12 hours incubation. Points represent experimental data and the

solid line represents fitted model output. χ2 < 300 was considered a good fit.

Table 5.6: Parameters of an extended GPCR model fitted to the time course
data of the A1R::GPA1/Gαi3 integrate strain incubated with 2CCPA or NECA.
The rate constants shown were used as initial conditions for fitting to the 2CCPA time
course data of Figure 5.17. K4, K5, K6 and the delay α and β parameters were constrained.

K Initial NECA Adenosine 2CCPA

K1 (nM−1 hour−1) 0.072 0.001 1e−4 20.74
K2 (nM−1 hour−1) 0.216 0.06 0.03 0.52
K3 (hour−1) 14.4 14.4 14.4 14.4
K4 (hour−1) 14.4 0.77 0.38 2.06
K5 (nM−1 hour−1) 3.76 3.76 3.76 3.76
K6 (hour−1) 339.27 339.27 339.27 339.27
α 12.71 12.71 12.71 12.71
β 1929.14 1929.14 1929.14 1929.14
α1 0.31 0.31 0.31 0.31
β1 0.311 0.31 0.31 0.31
α2 01.91 1.91 1.91 1.91
β2 0.001 0.001 0.001 0.001

χ2 349.7 419.6 37.3
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5.3.4 Refining the model to include ligand dissociation

The extended model contains the basic components of G protein activation and signalling.

Ligand binds a receptor to form the active R* state. The R* then activates a G protein in

a simple two-stage mechanism. The active G protein interacts with an Effector to influence

downstream signalling. However, negative regulation of this pathway contains far fewer

steps. At the G protein-level negative regulation is achieved through G protein inactivation

or dissociation of the GonEffector complex. Termination of signalling at the receptor level

is controlled solely by R* internalisation. This may be responsible for the lack of flexibility

preventing accurate fitting to NECA time course data. The Kofahl and Klipp (2004) model

has a term for conversion of R* to the inactive R state. Ligand is not regenerated by this

reaction in this framework and is consequently lost. However, ligand can dissociate from

bound targets. This is exploited by in vitro radioligand binding assays that rely on the

ability of one ligand to displace another (Bylund and Toews, 2011). Consequently, the

extended model was developed further to allow a reversion from the R* to the R state with

regeneration of ligand, R* -> R + L, K7 (Figure 5.24). This model will be referred to as

the refined model. In Sc. cerevisiae the rate of receptor inactivation is 36 hour−1 (Yi et al.,

2003). Consequently, this value was used as the initial parameter for model validation and

fitting.
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z1 

z2 

z3 

ϕ 

α1 

ϕ 

ϕ 

α 

α2 

β1 

β1 

β2 

GonEffector 

Effector 

Effector 

k6 

k5 

L 

L 

k1 

Figure 5.24: A refined model of G protein signalling yeast including a Gβγ
Effector interactions. Here ligand binds an inactive receptor to form the active R*
conformation in a reversible reaction. R* can activate a G protein (Goff -> Gon) to trigger
downstream signalling via an interaction with an Effector. Negative regulation in this
model can be achieved through internalisation of R*, spontaneous G protein-inactivation or
dissociation of Gon from the GonEffector complex. Parameters to be fitted are highlighted
in green. Parameters to be constrained are highlight in blue. The extension to the previous

model iteration, the extended model, is highlighted with a red dotted line.
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ν1 = [L]· [R]·K1 (5.73)

ν2 = [R∗]· [Goff ]·K2 (5.74)

ν3 = [Gon]·K3 (5.75)

ν4 = [R∗]·K4 (5.76)

ν5 = [Gon]· [Effector]·K5 (5.77)

ν6 = [GonEffector]·K6 (5.78)

ν7 = [R∗]·K7 (5.79)

d[L]

dt
= ν7 − ν1 (5.80)

d[R]

dt
= ν7 − ν1 (5.81)

d[R∗]

dt
= ν1 − ν4 − ν7 (5.82)

d[Goff ]

dt
= ν3 − ν2 (5.83)

d[Gon]

dt
= ν2 + ν6 − ν3 − ν5 (5.84)

d[Effector]

dt
= ν6 − ν5 (5.85)

d[Gon]Effector

dt
= ν5 − ν6 (5.86)

d[Z1]

dt
= [GonEffector]·α− [Z1]·β (5.87)

d[Z2]

dt
= [Z1]·α1 − [Z2]·β1 (5.88)

d[Z3]

dt
= [Z2]·α2 − [Z2]·β2 (5.89)

(5.90)

This refined model was implemented in GenSSI, using the equations described above,

and found to be globally and structurally identifiable. The parameters of Kofahl and Klipp

(2004), and the delay fitted here as described in Table 5.6, were used to simulate this system

in Matlab with the ODE23s solver (Figure 5.25).
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Figure 5.25: Output of the refined model of G protein signalling including
ligand dissociation. The model schematic of (Figure 5.24) was implemented in Matlab.
R, Gon and Effector were initialised as 160nM. Z3 was set to 2.7nM. All other species were
initialised to 0. K1 = 0.072 nM−1hour−1, K2 = 0.216 nM−1hour−1, K3 = 14.4 hour−1,
K4 = 14.4 hour−1, K5 = 3.76 nM−1hour−1, K6 = 339.27 hour−1. K7 = 36 hour−1.
α =12.71, β = 1929.14. α1 =0.31, β1 = 0.31. α2 =1.91, β2 = 0.001. Simulations were
performed for 12 hours using the ODE23s solver. A. Gon and B. Z3 time course profiles as a
function of ligand. C. Z3 concentration-response curve determined at 12 hours simulation.

Figure 5.25 shows a rapid peak in [Gon] within 6 minutes and a steady decline in activity

over the next hour in response to 1µM ligand. This shorter period is much closer to exper-

imental data of Yi et al. (2003) than the previous model iterations and indicates a positive

step in model development. However, the transcriptional responses of this framework show

a greatly reduced Emax of 18.52nM for 100nM ligand for this parameter set. This is also

observed in the concentration response curves where activity peaks at 100nM and decreases

with increasing ligand concentration.
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While the improved G protein activation profile is encouraging, these simulations suggest

that the delay parameters are inappropriate for this extended model variant. Therefore new

α, β, α1, β1, α2 and β2 values were determined by constraining all other parameters and

fitting to the experimental time course data of A1R:GPA1/Gαi3 incubated with 100µM

2CCPA. This yielded a reasonable fit to the experimental data (Figure 5.26, χ2 = 6.5) and

the parameters are shown in Table 5.7.
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Figure 5.26: Fitting new delay parameters to the refined model extended to
include ligand dissociation. K1, K2, K3, K4, K4, K6 and K7 were constrained. All
other parameters were fitted to the experimental time course data of A1R::GPA1/Gαi3,
incubated with 100µM 2CCPA, using the Levenberg-Marquardt least squares regression
algorithm. The resulting parameters were used to simulate time course data for this ligand
concentration. Points represent experimental data and the solid line represents fitted model

output. For a single ligand concentration χ2 > 10 was considered a good fit.

Table 5.7: Parameters of the refined model delay fitted to the time course data
of the A1R::GPA1/Gαi3 integrate strain incubated with 100µM 2CCPA. The
rate constants shown were used as initial conditions for fitting to the 2CCPA time course
data of (Figure 5.17). K1, K2, K3, K4, K5, K6 and K7 were constrained. This parameter

set used to estimate an appropriate delay for this model structure.

K Initial Fitted

K1 (nM−1 hour−1) 0.072 0.072
K2 (nM−1 hour−1) 0.216 0.216
K3 (hour−1) 14.4 14.4
K4 (hour−1) 14.4 14.4
K5 (nM−1 hour−1) 3.76 3.76
K6 (hour−1) 339.27 339.27
K7 (hour−1 36 36
α 11.20 17.75
β 208.27 1859.57
α1 24.36 42.41
β1 0.91 0.93
α2 0.10 0.93
β2 0.21 0.12

This delay was constrained and the remaining parameters fitted to the experimental

time course data of A1R::GPA1/Gαi3 in response to multiple concentrations of NECA,

adenosine and 2CCPA (Figure 5.27, Table 5.8).
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Figure 5.27: The refined model of G protein signalling fitted to the time course
data of the A1R::GPA1/Gαi3 in response to NECA, adenosine and 2CCPA. The
refined model was implemented in Potter’s Wheel using the rates of Table 5.8. K1, K2,
K4 and K7 were fitted to the experimental data of Figure 5.4. All other parameters were
constrained. The fitted parameters were assumed by the ODE and simulated for 12 hours
using the ODE23s solver. Points represent experimental data and solid lines represent
equivalent simulations with fitted parameters for A. NECA B. adenosine and C 2CCPA.

D. Concentration-response curves as determined by model output after 12 hours.

Table 5.8: Parameters of the refined model of G protein signal fitted to the
time course data of the A1R::GPA1/Gαi3 in response to NECA, adenosine and
2CCPA. The rate constants shown were used as initial conditions for fitting K1, K2, K4

and K7 to the NECA, adenosine and time course data of (Figure 5.4). All other parameters
were constrained.

K Initial NECA Adenosine 2CCPA

K1 (nM−1 hour−1) 0.072 0.15 0.07 4.39
K2 (nM−1 hour−1) 0.216 0.09 0.07 0.09
K3 (hour−1) 14.4 14.4 14.4 14.4
K4 (hour−1) 14.4 0.14 0.07 0.14
K5 (nM−1 hour−1) 3.76 3.76 3.76 3.76
K6 (hour−1) 339.27 339.27 339.27 339.27
K7 (hour−1) 36 310 310 310

χ2 105.1 217.9 61.6
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Developing the model to include ligand dissociation has enabled a reasonable fit to the

NECA time course data (Figure 5.27A, χ2 = 105.1). The ligand binding rate, K1 is higher

than that of α-factor for STE2 (0.15 nM−1hour−1 and 0.072nM−1hour−1 respectively).

Interestingly, this model predicts the G protein activation rate, K2, in response to the

NECA-bound A1R in this strain is lower than the endogenous reaction of this system (0.09

nM−1hour−1 compared to 0.216 nM−1hour−1 respectively). This prediction is realistic

given that this is a non-native GPCR coupled to a modified cell-signalling system. Also

the R* internalisation rate, K4, is 100-fold lower than the experimental value for STE2 (Yi

et al., 2003). Again this could be expected as the A1R internalises through β-arrestins in

mammalian cells (Baker and Hill, 2006). Consequently, it may not couple as efficiently to

the yeast GPCR internalisation machinery as the endogenous STE2 and STE3 receptors.

Interestingly, the NECA dissociation rate (K7) is 8.6-fold higher than the initial value.

A good fit was achieved for the adenosine time course data generated in A1R::GPA1/Gαi3

(Figure 5.27B, χ2 = 217.9). This model predicts that the ligand binding rate of adeno-

sine is less than half that of NECA (0.07 nM−1 hour−1), but G protein activation is only

marginally reduced (K2 = 0.7 hour−1). Ligand dissociation rates are conserved for NECA

and adenosine. However, there is a two-fold decrease in adenosine induced R* internalisa-

tion compared to NECA (Table 5.8).

This model also fitted the 2CCPA time course data of this strain remarkably well and

predicts that only a single parameter differentiates the pharmacology of this ligand from

NECA in this strain, the ligand binding rate (Figure 5.27C, χ2 = 61.6). Here, K1 = 4.39

nM−1hour−1, a 29-fold increase on the equivalent value for NECA. Given that NECA,

adenosine and 2CCPA all appear to be full agonists of the A1R integrated into this strain

it is encouraging that this model predicts largely conserved G protein activation rates

between agonists but differences in ligand-binding.

Thus far, this model is capable of fitting the time course data of A1R::GPA1/Gαi3 for

multiple ligands. Here, ligand binding, G protein activation have been predicted to vary as

a function of ligand. To date, these parameters have not been experimentally determined or

computation inferred for the A1R in yeast and validation of these predictions is required.

However, this study aims to model functional selectivity of the A1R using yeast as an

experimental system. Consequently, this model must be able to fit the time course data of

multiple ligands in multiple strains. A1R::GPA1/Gαz only elicits a fraction of the response

of the equivalent GPA1/Gαi strains in response to NECA, adenosine and 2CCPA Figure 5.5.

This difference in pharmacology presents an opportunity to test the flexibility of this model.

The rates obtained by fitting of A1R-GPA1/Gαi3 strain (Table 5.8) were used as initial

conditions for fitting the respective time course profiles of A1R-GPA1/Gαz (Figure 5.28).

The delay parameters and rate of G protein hydrolysis (K3) were constrained. For fitting

multiple ligand concentrations χ2 < 300 was considered a good fit (Table 5.9).
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Figure 5.28: The refined model of G protein signalling fitted to the time course
data of the A1R::GPA1/Gαz in response to NECA, adenosine and 2CCPA.
This model was implemented in Potter’s Wheel using the rates of Table 5.8. K1, K2, K4

and K7 were fitted to the experimental data of Figure 5.5. All other parameters were
constrained. The fitted parameters were assumed by the ODE and simulated for 12 hours
using the ODE23s solver. Points represent experimental data and solid lines represent
equivalent simulations with fitted parameters for A. NECA B. adenosine and C 2CCPA.

D. Concentration-response curves as determined by model output after 12 hours.

Table 5.9: Parameters of the refined model of G protein signal fitted to the
time course data of the A1R::GPA1/Gαz strain in response to NECA, adenosine
and 2CCPA. The rate constants of Table 5.8 initial conditions for fitting K1, K2, K4 and
K7 to the NECA, adenosine and time course data of (Figure 5.5). All other parameters

were constrained.

K NECA Adenosine 2CCPA

K1 (nM−1 hour−1) 0.08 0.04 0.63
K2 (nM−1 hour−1) 0.03 0.02 0.02
K3 (hour−1) 14.4 14.4 14.4
K4 (hour−1) 0.14 0.07 0.14
K5 (nM−1 hour−1) 3.76 3.76 3.76
K6 (hour−1) 339.27 339.27 339.27
K7 (hour−1) 310 310 310

χ2 106.5 156.6 110.2
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This model yielded excellent fits to the time course data of NECA, adenosine and 2CCPA

in this strain (χ2 = 106.5, 156.6 and 110.2 respectively). Interestingly, it predicts that only

the ligand binding and G protein activation parameters (K1 and K2 respectively) vary

between NECA, adenosine and 2CCPA between A1R::-GPA1/Gαi3 and A1R::GPA1/Gαz.

However, K2 is remarkably well conserved for all ligands in this strain (0.03 0.02 and 0.02

nM−1 hour−1 for NECA, adenosine and 2CCPA respectively). Similarly, this parameter is

consistent for NECA, adenosine and 2CCPA in A1R::GPA1/Gαi3. This mirrors and rein-

forces differences in signal transduction efficiency suggested by the operational model for the

A1R in the GPA1/Gαi and GPA1/Gαz strains. In A1R::GPA1/Gαz ligand binding rates

are estimated to be 0.08, 0.04 and 0.063 nM−1hour−1 for NECA, adenosine and 2CCPA

respectively. This is consistently lower than the equivalent rates for A1R::GPA1/Gαi3.

Thus this model suggests that the G protein influences the ligand binding rates of NECA,

adenosine and 2CCPA, demonstrating functional selectivity of the A1R. Interestingly, re-

ceptor internalisation rates are conserved between yeast strains for all ligands. This would

predict that the G protein does not affect A1R internalisation in yeast. This model also pre-

dicts that neither G protein transplant or ligand affect dissociation of the agonist-receptor

complex in yeast.

Thus far, this model has made some interesting predictions of A1R pharmacology in

yeast. Here, G protein activation is reduced in A1R::GPA1/Gαz relative to A1R/GPA1/Gαi3

(Table 5.8 and Table 5.9). Indeed, the operational model predicts similar trends in signal

transduction efficiency from end point data but suggests that ligand binding affinities of

the A1R are not affected by the G protein in yeast. However, the refined model predicts

that the ligand binding rate is a function of G protein in yeast but ligand dissociation is

conserved for all ligands and strains. The changes in ligand binding rates suggest that this

model can be used to study functional selectivity. However, the dynamic predictions of

this model have to be experimentally validated and there is currently no dynamic data of

A1R pharmacology available. In the absence of a means to do so directly, opportunities to

challenge this framework further were sought.

A C-terminal A1R
GFP fusion construct has remarkably different pharmacology from the

unmodified A1R in yeast. When expressed from a plasmid the A1R
GFP shows a pEC50

consistent with its untagged counterpart but with an increased Emax. Experimental data

suggests that this may be a consequence of reduced internalisation (Figure 3.11, Niebauer

et al. (2004)). This model can be used to explore differences between the pharmacology

of the A1R and A1R
GFP variants described here. Reproduction of such trends by model

fitting would lend credibility to its predictions of functional selectivity in the A1R. However,

like the A1R, A1R
GFP requires chromosomal expression to be effectively modelled.
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5.4 Characterisation of chromosomal A1R
GFP yeast strains

The C-terminal A1R
GFP fusion construct was cloned into the pRS306GPD vector under

the control of the constitutive GAPDH promoter. This was linearised by restriction di-

gest and chromosomally integrated at the URA3 locus of the GPA1/Gαo, GPA1/Gαi1/2,

GPA1/Gαi3 and GPA1/Gαz strains. 8-16 colonies were selected and incubated with 100µM

NECA for 16 hours. Cells were lysed and β-galactosidase activity determined (Figure 5.29).

The equivalent strains expressing the A1R
GFP from the p426GPD plasmid, using the same

promoter, were included for comparison. For convenience, and to distinguish them from

their plasmid counterparts, the integrate strains will be referred to A1R
GFP ::GPA1/Gαo,

A1R
GFP ::GPA1/Gαi1/2, A1R

GFP ::GPA1/Gαi3 and A1R
GFP ::GPA1/Gαz.
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Figure 5.29: Screening A1R
GFP integrates for β-galactosidase activity in re-

sponse to NECA. The A1RGFP was placed under the control of the constitutive
GAPDH promoter and integrated into the URA3 locus of the GPA1/Gαo, GPA1/Gαi1/2,
GPA1/Gαi3 and GPA1/Gαz transplant strains. 8-16 colonies were selected and incubated
with 100µM NECA for 16 hours. Cells were lysed and β-galactosidase activity determined.
The equivalent strains expressing the A1RGFP from the p426GPD expression plasmid were
included for comparison. *** P < 0.0005, Student’s T-test compared to vehicle alone con-

trol.

In contrast to the A1R, A1R
GFP shows no significant difference in signal in response

to NECA between any G protein transplant strain (6.3±0.1, 6.3±0.2, 6.3±0.3 and 5.8±0.3

mU for GPA1/Gαo, GPA1/Gαi1/2, GPA1/Gαi3, and GPA1/Gαz respectively). While this

is consistent with the level of signal in the A1R
GFP -GPA1/Gαo plasmid strain, this is

significantly lower then the equivalent A1R and A1R
GFP chromosomally-integrated and

plasmid strains respectively. Concentration-response curves demonstrate reduced Emax for

NECA, adenosine and 2CCPA in all A1R
GFP chromosomal expression strains relative to

plasmid counterparts, but shared pEC50 (Figure 5.29). The operational model suggests this

is the result of reduced signal transduction efficiency in these strains and not necessarily

sensitivity to ligand (Table 5.10).
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Figure 5.30: A1R
GFP integrate pharmacology in yeast. The integrate strains

were incubated with NECA, adenosine or 2CCPA for 16 hours. Cells were lysed and β-
galactosidase activity determined. A. A1RGFP ::GPA1/Gαo. B. A1RGFP ::GPA1/Gαi1/2.
C. A1RGFP ::GPA1/Gαi3. D. A1RGFP ::GPA1/Gαz. Data represents the mean of tripli-

cate repeats ± S.E.M fitted with the logistic equation.

Table 5.10: Pharmacological parameters of the integrated A1R
GFP . The logistic

equation and the operational model were applied to the data of Figure 5.30 by non-linear
regression. pEC50 = −Log EC50 (potency), Emax = maximum level of signal, pKA =
−Log KA (ligand binding affinity) and τ = efficacy. Equivalent plasmid parameters have
been included for comparison. * P < 0.05, ** P < 0.005, *** P < 0.0005, Student’s T-test

comparing parameter for chromosomal-expression to plasmid counterpart.

Strain Ligand pEC50 Emax pKA logτ

A1R
GFP ::GPA1/Gαo NECA 5.6±0.1 6.4±0.2 4.1±0.1 1.5±0.1

(Chromosomal) Adenosine 5.7±0.1 3.9±0.1 4.8±0.2 0.1±0.1
2CCPA 6.3±0.2 3.4±0.2 5.8±0.2 −0.1±0.1

A1R
GFP -GPA1/Gαo NECA 5.9±0.1 5.8±0.1 4.1±0.1 1.8±0.1

(Plasmid) Adenosine 5.8±0.2 3.9±0.2 5.3±0.1 0.3±0.1
2CCPA 6.6±0.1 3.4±0.1 6.2±0.1 0.1±0.1

A1R
GFP ::GPA1/Gαi1/2 NECA 6.3±0.1* 6.2±0.1*** 4.8±0.1* 1.5±0.1

(Chromosomal) Adenosine 5.8±0.1** 5.1±0.1*** 5.0±0.1*** 0.7±0.1
2CCPA 7.1±0.1* 4.0±0.1*** 6.6±0.1*** 0.3±0.1

A1R
GFP -GPA1/Gαi1/2 NECA 5.8±0.1 26.1±0.5 4.4±0.1 1.4±0.1

(Plasmid) Adenosine 4.8±0.1 23.5±0.7 3.8±0.2 0.9±0.1
2CCPA 6.6±0.1 17.2±0.4 6.2±0.1 0.3±0.1

A1R
GFP ::GPA1/Gαi3 NECA 5.9±0.1 6.3±0.2*** 3.1±0.1*** 2.7±0.4***

(Chromosomal) Adenosine 5.4±0.1 5.4±0.1*** 4.7±0.1* 0.4±0.1*
2CCPA 6.7±0.1 6.7±0.1*** 6.2±0.1 0.1±0.1*

GA1R
GFP -PA1/Gαi3 NECA 5.7±0.1 23.4±0.2 5.1±0.0 1.0±0.1

(Plasmid) Adenosine 5.3±0.1 20.1±0.5 4.2±0.1 1.0±0.1
2CCPA 6.8±0.1 17.8±0.3 6.1±0.1 0.5±0.1

A1R
GFP ::GPA1/Gαz NECA 6.0±0.1 5.8±0.1*** 4.4±0.1 1.6±0.1

(Chromosomal) Adenosine 5.7±0.1 4.6±0.2*** 4.6±0.2 0.7±0.1
2CCPA 6.5±0.1 4.1±0.1** 5.8±0.1* 0.4±0.1*

A1R
GFP -GPA1/Gαz NECA 5.7±0.1 16.0±0.4 4.4±0.1 1.5±0.1

(Plasmid) Adenosine 5.5±0.1 11.8±0.6 5.0±0.1 0.4±0.1
2CCPA 6.5±0.2 7.4±0.4 6.2±0.2 −0.1±0.1
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β-galactosidase assays are a measure of a population level response. As we have observed,

A1R
GFP expression varies considerably across a population when expressed from a plasmid.

Flow cytometry was used to measure single cell fluorescence to ensure ubiquitous and

consistent expression of the chromosomally-expressed A1R
GFP receptor between the strains

(Figure 5.31).
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Figure 5.31: Flow cytometry of A1R
GFP yeast chromosomal integrates A1RGFP

integrate strains underwent single-cell analysis using a LSRII flow cytometer. 3x104 cells
were analysed and fluorescence intensity in the GFP channel quantified for each cell. The
graphs show fluorescence intensity vs. side scatter (a measure of cell width). Thresholds
were set using the equivalent A1R expressing strains. Cells with fluorescence below the
threshold are shown in black. Cells with GFP fluorescence above the threshold are shown

in green.

The data of Figure 5.31 suggests a contrast between the A1R
GFP chromosomal and

plasmid expression strains. While plasmid expressed receptor is clearly observed, only a

marginal increase in fluorescence was detected in A1R
GFP ::GPA1/Gαz with no significant

signal present in the A1R
GFP ::GPA1/Gαo, A1R

GFP ::GPA1/Gαi1/2 and A1R
GFP ::GPA1/Gαi3

strains. Clearly the strains express the receptor, as evidenced by their response to NECA,

but the ability of this modified receptor to transduce signal may be reduced. This is in con-

trast to the plasmid expression system where A1R
GFP typically yields a higher Emax than

the A1R. The operational model suggests that this is due to a higher signal transduction

efficiency across the population. This may be due in part to the high fluorescence values

of a proportion of the population. It is possible that the high expression level in these cells

overcomes the limited signal transduction efficiency. Further study is required to confirm

this.
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The difference between the A1R and A1R
GFP chromosomal-expression strains present

an attractive contrast to probe through mathematical modelling. By fitting the model to

time course data of the A1R
GFP , it may be possible to estimate why the pharmacology of

this receptor differs from the A1R when chromosomally-expressed in yeast.

5.4.1 Modelling A1R
GFP pharmacology in yeast

Confocal microscopy studies in Chapter 3 suggest that A1R
GFP is not internalised in re-

sponse to ligand when when expressed from a plasmid. Thus, it can be assumed that

the chromosomally-expressed receptor is not internalised in response to ligand in 16 hours

in yeast. Consequently, this rate can be initialised as 0. This would eliminate receptor

internalisation in the model but allow for very slow receptor loss to be accommodated.

To explore this further time course data were generated for the A1R
GFP integrated and

expressed in the GPA1/Gαi3 and GPA1/Gαz strains. The refined model of G protein sig-

nalling developed here was fitted to this data using Potter’s Wheel. The fitted parameters

of A1R described in Table 5.8 and Table 5.9 were used as initial estimates for fitting the

time course data of A1R
GFP ::GPA1/Gαi3 and A1R

GFP ::GPA1/Gαz, respectively.

Consistent with its unmodified counterpart, A1R
GFP ::GPA1/Gαi3 shows a sigmoidal

response to NECA, adenosine and 2CCPA that plateaus at 6-8 hours. However, signal

is reduced for all ligands against the A1R compared to A1R
GFP in this strain. This is

consistent with the concentration-response curves of Figure 5.2 and Figure 5.30. To explore

these differences the refined model was fitted to the time course data of Figure 5.32. Initial

parameters were assumed from the fitting of the model to the A1R::GPA1/Gαi3 strain.

However, confocal microscopy studies suggested no appreciable internalisation of A1R
GFP

in response to ligand. Studies of C-terminally modified A2ARGFP suggested internalisation

takes 48 hours in yeast the presence of ligand (Niebauer et al., 2004; Niebauer and Robinson,

2006). It is therefore possible that A1R
GFP internalises, albeit slowly. To allow for this,

the relevant rate, K4, was initially set to 0 but not constrained (Table 5.11).
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Figure 5.32: The refined model of G protein signalling fitted to the time course
data of the A1R

GFP ::GPA1/Gαi3 in response to NECA, adenosine and 2CCPA.
Time course data were generated by incubating cells in ligand for 0, 0.5,1, 2, 4, 6, 8 ,10 and
12 hours before lysis and determination of β-galactosidase activity. A1R::GPA1/Gαi1/2

was incubated with 100µM NECA as a positive control and assumed to represent the
maximal response of this system. This model was implemented in Potter’s Wheel using
the rates of Table 5.11. K1, K2, K4 and K7 were fitted to the experimental data. All
other parameters were constrained. The fitted parameters were implemented in the ODE
model and simulated for 12 hours. Points represent experimental data and solid lines
represent equivalent simulations with fitted parameters for A. NECA B. adenosine and C
2CCPA where χ2 < 300 was considered a good fit. D. Concentration-response curves as

determined by model output after 12 hours.

Table 5.11: Parameters of the refined model of G protein signal fitted to the
time course data of the A1R

GFP ::GPA1/Gαi3 in response to NECA, adenosine
and 2CCPA. The rate constants shown were used as initial conditions for fitting K1,
K2, K4 and K7 to the NECA, adenosine and time course data of (Figure 5.32). All other

parameters were constrained.

K NECA NECA Adenosine Adenosine 2CCPA 2CCPA
Initial Fitted Initial Fitted Initial Fitted

K1 (nM−1 hour−1) 0.150 0.075 0.071 0.029 4.390 4.390
K2 (nM−1 hour−1) 0.094 0.005 0.066 0.002 0.086 0.002
K4 (hour−1) 0 0.029 0 0.029 0 0.029
K7 (hour−1) 310 310 310 310 310 310

χ2 105.8 16.51 37.12
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The refined model shows a good fit to the experimental time course data of Figure 5.32

(χ2 = 105.8, 16.5 and 37.1 for NECA, adenosine and 2CCPA respectively). Interestingly,

there is a two-fold reduction in the predicted NECA and adenosine ligand-binding rate, K1,

compared to the A1R in this strain (Table 5.11). However, K1 has not changed between the

A1R and A1R
GFP in the presence of GPA1/Gαi3. Interestingly, ligand dissociation, does

not change between ligands or receptor variant in this strain (K7 = 310 hour−1). However,

the G protein activation rate, K2, is substantially lower in this model for the tagged-receptor

compared to its unmodified counterpart for NECA, adenosine and 2CCPA. This further

suggests that the C-terminal fluorophore interferes with the interaction of the integrated

receptor with the G protein. This is unsurprisingly given the extensive interactions between

the C-termini of GPCRs and the cell-signalling machinery. However, this region is also

responsible for recruiting the receptor-internalisation machinery of Sc. cerevisiae. This

model predicts that internalisation of A1R
GFP does occur in response to these ligands with

a rate of 0.029 hour−1. This is much lower than the predicted rates for the A1R in this

strain (0.14 hour−1 for NECA and 2CCPA, 0.07 hour−1 for adenosine). This would suggest

that the C-terminal modification of the A1R hinders, but does not necessarily abolish, the

internalisation of this receptor.

These model predictions were explored by repeating this study in the A1R
GFP ::GPA1/Gαz

strain. Time course data were generated in the presence of NECA, adenosine or 2CCPA.

Cells were incubated with ligand, lysed and β-galactosidase activity determined. Once

again, the A1R::GPA1/Gαi1/2 integrate strain was used a positive control and to calculate

percentage maximal signal (Figure 5.33).

The time course data of Figure 5.33 shows a sigmoidal response to NECA, adenosine

and 2CCPA that plateaus at 6-8 hours, consistent with all other strains tested. Similarly,

the maximum level of response is lower for A1R
GFP than for the unmodified counterpart

integrated into the GPA1/Gαz strain. The refined model was applied to these data using

Potter’s Wheel using the parameter set determined by fitting to the time course data of

the A1R-GPA1/Gαz strain (Table 5.12). Once again K4 was initially implemented as, but

not constrained to, 0. Ligand-binding, G protein activation and ligand-dissociation (K1,

K2 and K3 respectively) were fitted to the experimental data while all other parameters

were constrained.
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Figure 5.33: The refined model of G protein signalling fitted to the time course
data of the A1R

GFP ::GPA1/Gαz in response to NECA, adenosine and 2CCPA.
Time course data were generated by incubating cells in ligand for 0, 0.5,1, 2, 4, 6, 8 ,10
and 12 hours before lysis and determination of β-galactosidase activity. A1R::GPA1/Gαi12

was incubated with 100µM NECA as a positive control and assumed to represent the
maximal response of this system. This model was implemented in Potter’s Wheel using
the rates of Table 5.12. K1, K2, K4 and K7 were fitted to the experimental data. All
other parameters were constrained. The fitted parameters were implemented in the ODE
model and simulated for 12 hours using the ODE23s solver. Points represent experimental
data and solid lines represent equivalent simulations with fitted parameters for A. NECA
B. adenosine and C 2CCPA. D. Concentration-response curves as determined by model

output after 12 hours.

Table 5.12: Parameters of the refined model of G protein signal fitted to the
time course data of the A1R

GFP ::GPA1/Gαz in response to NECA, adenosine
and 2CCPA. The rate constants shown were used as initial conditions for fitting K1,
K2, K4 and K7 to the NECA, adenosine and time course data of (Figure 5.33). All other

parameters were constrained.

K NECA NECA Adenosine Adenosine 2CCPA 2CCPA
Initial Fitted Initial Fitted Initial Fitted

K1 (nM−1 hour−1) 0.075 0.075 0.035 0.035 0.627 4.390
K2 (nM−1 hour−1) 0.029 0.003 0.022 0.002 0.020 0.002
K4 (hour−1) 0 0.029 0 0.029 0 0.029
K7 (hour−1) 310 310 310 310 310 310

χ2 33.84 11.82 34.53
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Once again, the refined model achieves a good fit to the experimental time course data

of all ligands tested (Figure 5.33). Here, the model predicts that the binding of NECA

and adenosine is unaffected by the C-terminal modification of this receptor in this strain.

However, there is a 7-fold increase in the simulated 2CCPA-binding rate. But ligand disso-

ciation does not vary between ligands, or indeed strains, in this model (K7 = 310 hour−1).

Similarly, the A1R
GFP internalisation rate is remarkably consistent between ligands and

strains (K4 = 0.029 hour−1 for NECA, adenosine and 2CCPA in both GPA1/Gαi3 and

GPA1/Gαz). Once again this predicts that receptor loss is hindered by the C-terminal

GFP.

This model predicts that G protein activation is 10-fold lower in this model in response

to NECA, adenosine and 2CCPA for the A1R
GFP compared to the A1R (Table 5.12). This

once again predicts that C-terminal modification of the A1R interferes with G protein acti-

vation in yeast. However, these predicted values are consistent with equivalent parameters

for A1R
GFP ::GPA1/Gαi3. This may imply that the GFP-tag also hinders selective G pro-

tein activation, and therefore functional selectivity, of the A1R in yeast. However, without

further data this is speculation but is worthy of future study.

The minimal mathematical model described here is capable of fitting the time course

data of the A1R, and A1R
GFP in yeast in response to multiple ligands. Here, the C-terminal

modification is predicted to interfere with G protein activation and receptor internalisation

in both A1R::GPA1/Gαi3 and A1R::GPA1/Gαz. Indeed, the latter prediction is consistent

with experimental studies of an A2ARGFP variant. G protein-coupling is known to occur

through extensive contacts on the intracellular face of the GPCR. Thus, the reduced G

protein activation predicted here is reasonable. To date, adenosine receptor pharmacology

has never been modelled using ODEs in yeast. Thus, the predictions of this model require

validation but lend credibility to its use as a tool to study functional selectivity of the A1R

in yeast.



An interdisciplinary approach to A1R pharmacology in yeast 188

5.5 Summary

The aim of this study is to understand the contribution of the ligand, the receptor and the

G protein to functional selectivity of the A1R by applying mathematical models to exper-

imental data. Limitations in the operational model and a need to predict the biochemical

rate constants underlying functional selectivity required the use of ODE models. However,

these models are governed by mass action kinetics and uniform expression of the receptor

across the population is essential for meaningful model fitting. Consequently, the receptor

expression was changed from a variable, plasmid-based system to one of chromosomal inte-

gration. However, integration increased the maximum amount of signal relative to plasmid

counterparts.

A model framework was iteratively developed with structural identifiability as a key

concern. A structurally identifiable model ensures that a given fit to experimental data

can only be the result of a unique set of initial conditions and parameters. This demands a

minimal model with as many measurable processes as possible that fits specifically to time

course data. Here, a minimal model of the yeast pheromone response, guided by the studies

Kofahl and Klipp (2004) and Smith et al. (2009), was developed. This model was extended

to include a G protein-Effector interaction and ligand interaction to enhance its ability to

fit to time course data generated in yeast. Fitting this model to A1R::GPA1/Gαi3 and

A1R::GPA1/Gαz suggests that ligand binding, G protein activation and receptor internali-

sation of the A1R are indeed influence by the G protein in yeast. Thus, the model developed

here can describe functional selectivity in yeast. However, to date, no dynamic experimen-

tal or computations studies of the A1R in yeast have been reported. Consequently, these

predictions require validation. However, a C-terminal A1R
GFP fusion construct provided

the means to further challenge the flexibility and credibility of the model.

Here, A1R
GFP was chromosomally integrated in the yeast transplant strains. However,

this reduced Emax significantly relative to their plasmid counterparts. Further, the phar-

macology of the A1R
GFP was remarkably consistent between strains in contrast to the

A1R. The mathematical model described here was fitted to time course data generated

in A1R
GFP ::GPA1/Gαi3 and A1R

GFP ::GPA1/Gαz to try to understand the differences

between A1R and A1R
GFP while challenging this framework. These fits suggests that the

C-terminal fluorophore hinders both G protein activation and receptor internalisation. This

is consistent with our current understanding GPCRs and reinforces the usefulness of the

model developed here for understanding the contribution of the ligand, receptor and G

protein to functional selectivity



Chapter 6

Discussion

6.1 Overview

This ultimate goal of this study was to understand the contribution of the ligand, the

receptor and the G protein to functional selectivity through modelling mammalian GPCRs

in yeast. To do so this study aimed to:

• Establish and validate adenosine receptor pharmacology in yeast

• Use yeast as a screening platform to aid novel fluorescent compound development

• Develop a quantitative mathematical model of A1R signalling in yeast

The simple yeast system is an incredibly powerful tool to study mammalian GPCRs in

different G protein backgrounds. While the functionality of the A1R, A2AR and A2BR in

yeast has been previously reported (Brown et al., 2000; Stewart et al., 2009; Peeters et al.,

2011, 2012; Bertheleme et al., 2013, 2014), a crucial first step of the work presented here

was to establish the pharmacology of yeast in our hands.

Previously, the A1R has been shown to couple to, and signal through, G proteins con-

taining the C-terminal amino acids of Gαo, Gαi1/2 and Gαi3 in yeast (Stewart et al., 2009).

Here similar coupling-profiles were observed when the A1R was expressed from a plasmid.

Interestingly, we observed a previously unreported interaction between GPA1/Gαz and the

A1R. While this is an artificial interaction, given the nature of the transplant G protein,

this may have relevance for mammalian systems. Gαz is a cerebrally and pancreatically-

distributed member of the Gαi family (Kimple et al., 2005; Wettschureck, 2005; Hinton

et al., 1990). Similarly, the A1R has a wide tissue distribution but prevalent inhibitory

effects on adenylate cyclase in the brain. Consequently, this interaction could potentially

occur in mammalian systems.

189
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Concentration-response curves were constructed for the A1R in the strains expressed

GPA1/Gαo, GPA1/Gαi1/2, GPA1/Gαi3 and GPA1/Gαz. Both β-galactosidase and growth

in histidine-deficient media were used as transcriptional reporters of pathway activation.

Clear differences were observed between the transcriptional reporters for all ligands. β-

galactosidase activity showed significant differences in maximal activity between strains

but a 15-fold reduction in sensitivity to ligand relative to equivalent mammalian systems.

In contrast, growth showed greater sensitivity to ligands. However, all strains reached

comparable maximal levels of signal in response to all ligands tested. Therefore, all ligands

were full agonists by this assay and strain differences were difficult to assess. Consequently,

β-galactosidase activity was used as the primary measure of pathway activation.

The A2AR, A2BR and A3R were expressed in the yeast system. Significant activity was

observed in the GPA1/Gαi1/2 and GPA1/Gαs strains in response to both A2 receptors.

Interesting, the latter coupling is consistent with mammalian data but has never been

reported in yeast. While significant activity was observed for the A3R in yeast, the response

was too limited to be of any pharmacological use.

Here, the G protein background influenced receptor pharmacology. The preferential

activation of different cell-signalling pathways by ligands through a shared drug target

is termed bias and is of significant interest to the pharmaceutical industry (reviewed by

Shonberg et al. (2014)). For the first time ligand bias was directly quantified for adenosine

receptors in yeast. Given that strains only differ in their receptor and 5 C-terminal amino

acids of GPA1, this method was applied to as a single quantitative measure of receptor

selectivity. To our knowledge, this use of bias has never been reported.

Dr. Jennifer Hemmings and Prof. Martin Lochner of the University of Bern (Switzer-

land) were seeking to develop novel fluorescent, A1R-selective agonists. Indeed, fluorescent

agonists would greatly inform novel model development. Establishment of the experimen-

tal system as a platform to quantify receptor pharmacology, G protein bias and receptor

selectivity naturally led to a collaboration where novel agonists were screened and devel-

oped. Traditional fluorescent compounds consistent of a ligand domain covalently attached

to a fluorescent group through a linker. The group used for attachment was explored as a

means of controlling adenosine receptor selectivity. Consequently, Dr. Hemmings synthe-

sised a range of precursor ligands containing these groups prior to fluorophore attachment.

N6-cyclopentyl regions appeared to enhance A1R pharmacology while showing reduced ac-

tivity in the A2R in yeast. However, the N6-adamantyl compounds demonstrated A1R/A2R

selectivity, albeit with a reduced potency to the A1R relative to their precursor ligands.
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As N6-cyclopentyl modifications enhance A1R potency and receptor selectivity, these

compounds were further modified to contain fluorescent BODIPY moieties. However, the

N6-cyclopentyl fluorescent agonist showed a marked reduction in potency against the A1R

relative to its non-fluorescent precursor. Fluorescent N6-adamantyl agonists yielded no

response against the A1R. Low A1R potency was shared by CAS200623, a commercially

available fluorescent agonist that was used as a comparator. However, fluorescent studies

of this compound suggested non-specific binding of A1R and non-A1R expressing strains

alike.

Pharmacological characterisation of the A1R was extended to include antagonism. Typ-

ically competitive antagonists induce rightward shifts in the concentration-response curves

with a conserved maximal activity. Here, A1R antagonists increase the maximum signal

while shifting the concentration-response curve. This effect has been documented in mam-

malian cells, albeit through β-arrestin dependent assays (Gracia et al., 2013). The presence

of biphasic antagonism in yeast, that do not signal through β-arrestins, suggest this is a

receptor-level effect. While the underlying mechanism is unknown, it was interesting to

note that it does not extend to the novel N6-adamantyl agonists screened characterised

here.

Validation of adenosine receptor pharmacology in yeast, and compound screening, used

a plasmid expression-system. Studies of an in frame C-terminal A1R
GFP fusion construct

suggested significant variation in receptor expression across the population. However, a sig-

nificant objective here is to develop a quantitative mathematical framework to understand

functional selectivity in yeast. ODE models of biochemical pathways assume the laws of

mass action kinetics where the rate of reaction is a product of an intrinsic rate constant

and the concentrations of the reacting components. Therefore, uniform receptor expression

across the population is desirable. To this end, the A1R was chromosomally expressed

in the GPA1/Gαo, GPA1/Gαi1/2, GPA1/Gαi3 and GPA1/Gαz strains. Interestingly, the

maximal level of signal in these strains was increased relative to their plasmid counterparts.

The kinetic information gained from ODE model fitting is limited by structural iden-

tifiability, or the guarantee that a given model output can only be the result of a unique

combination of parameters and initial conditions. Consequently, structural identifiability

is an essential prerequisite of any mathematical framework developed here. The model

must be fitted to time course data to satisfy this criteria. Also, in the presence of a single

quantitative measure, the transcriptional reporter, the model must be as minimal as pos-

sible to ensure accuracy of fitting. Several increasingly complex iterations were developed

to achieve satisfactory model fits for all ligands. The final model variant required that

the G protein signalled via an effector and ligand dissociated from the receptor. Fitting

this model to A1R::GPA1/Gαi3 and A1R::GPA1/Gαz strains predicted largely consistent

ligand binding and receptor activation rates as a function of G protein, but that differences
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in pharmacology are driven by G protein-activation efficiency.

When chromosomally-expressed in yeast, the A1R
GFP shows a marked decreased in

maximum level of activity relative to plasmid counterparts, a direct contrast to the A1R.

The difference in pharmacology between these receptor variants presented an interesting

challenge through which to validate the model developed here. This framework was fitted

to the time course data of A1R
GFP ::GPA1/Gαi3 and A1R

GFP ::GPA1/Gαz. This predicted

that, while ligand binding is consistent between the A1R and A1R
GFP , the C-terminal

fluorophore may hinder G protein-activation and receptor internalisation in yeast. This

prediction is biologically valid given the known structures of, and interactions between,

GPCRs and G proteins.

6.2 Adenosine receptor pharmacology in yeast

The yeast strains here represent an incredibly powerful platform for drug screening. Their

fast growth, genetic amenability and experimental robustness lend themselves particularly

well to high-throughput screening processes in the drug discovery process. Indeed, this is

their primary function in the pharmaceutical industry in which they were developed.

However, this system, like all experimental tools have some significant flaws. Most

notably, the lack of β-arrestins. Typically, functional selectivity in GPCR signalling is

described with regard to activation of G protein or β-arrestin-dependent pathways. Indeed,

this form of functional selectivity is more intensively investigated (reviewed by Shonberg

et al. (2014)). This is due in part to the experimental assay system. For example, the

A1R, has been shown to signal through Gαi or activate ERK1/2 in a β-arrestin-dependent

manner. This has been shown through cAMP accumulation and ERK phosphorylation

assays respectively (Stewart et al., 2009; Gracia et al., 2013). Consequently, there are clearly

distinct experimental readouts of pathway activation. The vast differences between these

measures are also reflected in their downstream effects. For instance the µ-opioid receptor

induces analgesia through G protein signalling but also promotes osteochondritis through

β-arrestins (Raehal, 2005; Pradhan et al., 2010, 2012). This off-target effect is relatively

easy for the pharmaceutical industry to investigate. However, functional selectivity on a G

protein level is far more difficult to elucidate in a mammalian setting.
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Here, the A1R signals through G protein transplants representing Gαo, Gαi1/2, Gαi3

and Gαz in yeast. These are all Gαi family members that primarily inhibit adenylate

cyclase. Thus, they are nearly impossible to differentiate in mammalian signalling systems.

This represents a strength of the yeast system as differences between these families can be

approximated. However, the argument is frequently made that yeast are not mammalian

systems, the GPCR G protein interactions are still largely artificial and the amount of

information available is limited. Here some potentially artificial couplings of the A2R and

A3R subtypes were observed, through GPA1/Gαi3 and GPA1/Gα12 respectively, with no

equivalent data in mammalian systems. It is also possible that, due to restrictions in tissue

distribution, that the GPCR will never have the opportunity to signal through that subunit.

Thus, while structurally feasible, these interactions have no physiological basis. However,

the A1R has a sufficiently wide tissue distribution that this is not a particular issue for this

receptor.

However, the argument persists that the A1R in yeast is still a non-native GPCR and

downstream measures may not representative of a true mammalian system. Most cell-

signalling assays exploit cell lines. These lines are typically oncogenic and by definition

exhibit aberrant cellular behaviour. Consequently, one can counter that yeast are no more

or less valid than mammalian cell lines as an experimental system. However, we accept that

the yeast strains used here may be regarded as a predictive system of selective G protein

activation and mammalian validation is needed. Indeed, this approach was used by Weston

et al. (2014) whose studies of GLP-1 in yeast was conducted alongside the studies described

here. The A1R is known to signal through Gαo, Gαi1 and Gαi3 in vivo. The potential for

Gαz signalling in response to this receptor is unique to this study and requires mammalian

validation. Difficulties in distinguishing between mammalian Gαi subtypes may be over-

come using the experimental tools commonly associated with measuring cAMP. Cholera

toxin ADP-ribosylates Gαs, rendering it permanently GTP-bound thus promoting adeny-

late cyclase activity (Ribeiro-Neto et al., 1985). Similarly forskolin, directly interacts with

and activates adenylate cyclase (Sadana and Dessauer, 2009). The elevated intracellular

cAMP concentrations allow for measurements of Gαi-mediated inihibition of adenylate cy-

clase. However, Gαi family members are ADP-ribosylated by pertussis toxin, uncoupling

it from the receptor and preventing downstream effects on adenylate cyclase (Ribeiro-Neto

et al., 1985; Gancedo, 2013). Gαz is an exception to this rule. This G protein lacks the

ADP-ribosylation site and is considered to be pertussis-toxin insensitive (Hinton et al.,

1990). Thus, it may be possible to use pertussis toxin to confirm A1R-Gαz interactions in

vivo.
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Despite experimental limitations, the validation of the yeast system presented here

represents some interesting trends that may bear significance. Here, at least with re-

gard to β-galactosidase activity, the G protein subtype influences A1R pharmacology in

yeast. This is most notable in maximal activity where Emax is progressively lower for

GPA1/Gαi1/2 >GPA1/Gαi3 >GPA1/Gαz >GPA1/Gαo >. The differences in the maxi-

mal level of signal also extends to the pharmacology of individual ligands. NECA is a full

agonist of the A1R in all strains tested. However, while 2CCPA is a full agonist against

A1R-GPA1/Gαi3, it appears to be a high-affinity partial agonist in the other strains, when

expressing the A1R from a plasmid. 2CCPA has been established a full agonist in mam-

malian systems where the A1R can be potentially interacting with multiple G proteins.

Thus, this study in yeast would predict that 2CCPA is a G protein subtype-specific partial

agonist. This could be therapeutically relevant. Clinical trials of A1R-selective antagonists

have been largely unsuccessful. This has lead to the use of high-affinity partial agonists to

outcompete endogenous adenosine to reduce Emax. This study would predict that 2CCPA,

an A1R-selective partial agonist could be used reduce A1R-mediated activity in a receptor

subtype specific manner. This would be an interesting prediction to test in vivo.

6.3 Do adenosine receptors truly show functional selectivity?

This study represents the first attempt to directly quantify bias for adenosine receptors.

The ability of the yeast system to predict differences between members of the Gαi family

has particular advantages for the A1R. Indeed, differences in β-galactosidase activity were

observed between strains expressing this receptor. However, the potencies of the novel

and commercially available ligands characterised here are conserved between strains. This

may suggest that the differences in pharmacology are largely a consequence of G protein-

coupling efficiency in yeast. However, bias plots are constructed relative to NECA, that

would be subject to the same signalling-efficiency constraints as other ligands in each strain.

These plots suggest the commercially available and novel ligands characterised here show

little bias between Gαi1/2 and Gαi3, but significant bias between these G protein subtypes

and GPA1/Gαz. Thus, the A1R is subject to functional selectivity, but whether any Gαz-

mediated signalling has physiological relevance remains to be determined.
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Similarly, the A2R receptor subtypes signalled though GPA1/Gαi3 in yeast, an inter-

action with no documented equivalent in more complex systems. No previous A2AR Gαs

interaction has been reported in yeast. Interestingly, Bertheleme et al. (2013, 2014) have

used GPA1/Gαi3 to elucidate receptor level effects of A2AR mutants. A study based on

GPA1/Gαs would be much more physiologically relevant. However, there is a key difference

between that study and the data presented here. Bertheleme et al. (2013, 2014) used growth

in histidine-deficient media as a transcriptional reporter. Here, the A2AR-GPA1/Gαs inter-

action yielded significant responses to ligand by β-galactosidase assay only. The difference

in pathway measurement may explain why this physiologically-relevant interaction was

overlooked.

However, here we demonstrate that the the effect of G protein subtype on A2AR phar-

macology is far more pronounced than for the A1R. Here we show a marked reduction in

the potency of NECA in the A2AR-GPA1/Gαs strain relative to its GPA1/Gαi3 counter-

part. Adenosine and 2CCPA yielded no response in A2AR-GPA1/Gαi1/2. However, the

CGS21680 pharmacology is preserved between the two strains. This suggests that func-

tional selectivity does occur for this receptor. However, bias could not be directly quantified.

If the A2AR-Gαi interaction is preserved in a mammalian setting this does raise some inter-

esting questions. Could the A2AR-Gαi interaction be insensitive to the endogenous agonist

adenosine? Do non-native ligands such as NECA promote A2AR-Gαi signalling in vivo?

Could this effect be exploited for therapeutic benefit? However, these questions, while in-

teresting, are speculative and substantial research into the physiological significance of this

predicted coupling is required.

A similar G protein-coupling profile was observed for the A2BR as for the A2AR. The

existence of identical coupling profiles for both A2R receptor subtypes is encouraging and

may, to a small extent, validate the A2AR-GPA1/Gαi1/2 interaction described here. En-

couragingly, the A2BR was shown to signal via GPA1/Gαs in yeast by Brown et al. (2000)

when these strains were first developed and characterised. However, to our knowledge,

this is the first and last time this physiologically-significant interaction has been explored.

Further studies of this receptor in yeast relied on the GPA1/Gαi3 strain ((Peeters et al.,

2011; Liu et al., 2014)). Why the authors focussed on this strain is a mystery as no ex-

planation is provided in their publications. However, the data presented here suggests

that, despite a higher Emax for A2BR-GPA1/Gαi1/2, the G protein subtype does little to

influence pharmacology or bias.

Unfortunately, this study was not successfully extended to include the A3R and any

bias it may exhibit. As an emerging target for immunomodulatory disease it would have

been interesting to compare the pharmacology of this receptor to the similarly-coupled

A1R. Indeed, this would have greatly helped to elucidate whether the novel compounds

described here, particularly the N6-adamantyl agonists, are truly A1R-selective.
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6.4 N6-substituents and biphasic pharmacology

The yeast transplant strains used here were originally developed, and continue to be used,

as a high-throughput drug screening platform. Consequently, this study used this tool

to elucidate the A1R/A2R-selectivity of N6-substituted and fluorescent adenosine receptor

agonists. This is summarised in Figure 6.1.

Fluorescent compounds 

JH282 JH294 

CAS200623 

N6-azabicyclo series N6-cyclopentyl series N6-adamantyl series 

JH109 

JH114 

JH66 

JH95 

JH97 

JH209 

JH52 

JH56 

JH62 

JH202 

JH272 

Selectivity inactive 

A1R A1R/A2AR 

A2AR A1R/A2AR/
A2BR 

Figure 6.1: Adenosine receptor selectivity of N6-substituents and fluorescent
agonists. Compounds that promoted no response in any strain are highlighted in grey. Ag-
onists that are A1R or A2AR selective in yeast are highlighted in red and blue respectively.
Compounds highlighted in green are A1R and A2AR selective while those highlighted in

purple activated all strains tested.
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N6-substituted agonists we chosen as candidates for fluorescent compound development

due to their established role in adenosine receptor selectivity (Shearer et al., 2009; Colca,

2012). Indeed, N6-cyclopentyl modifications appear to increase A1R sensitivity while de-

creasing potency against the A2R subtypes in yeast, relative to their precursors. However,

this moiety is relatively two-dimensional. Larger three-dimensional adamantyl groups show

total A1R/ A2R selectivity at the expense of A1R potency. A1R sensitivity is further re-

duced by the addition of a hydroxyl group to the adamantyl region. This may imply steric

hindrance at the A1R. Docking and simulation studies of an A1R homology model are

currently underway to explore this further (Knight et al., in preparation).

However, the effect of N6-adamantyl agonists on A1R antagonism warrants further in-

vestigation. Here, antagonists such as DPCPX and SLV-320 increase the Emax of NECA,

adenosine and 2CCPA while promoting rightward shifts in the concentration-response

curve. Schild analyses suggest that these ligands are not solely competitive. Studies on

the A2BR receptor suggest that this is not a yeast-specific effect. This effect has also been

reported in mammalian cells by G protein and β-arrestin-dependent assays, suggesting that

this non-competitive interaction is a receptor-level effect. To date, only Gracia et al. (2013)

has tried to find the structure-activity relationship underlying this effect. They report

that dimerisation of the A1R forms homodimers and claim that biphasic antagonism is a

consequence of agonist and antagonist binding separate promoters. However, without sup-

porting data this is more speculation than hypothesis. Without an A1R crystal structure,

or knowledge of the dimerisation interface, monomer and dimer antagonism cannot be ex-

perimentally or theoretically compared. However, N6-adamantyl agonists show no increase

in Emax while shifting the concentration-response curve. Thus they may provide a tool to

explore the mechanisms of biphasic antagonism.

Schild analyses support the idea of multiple binding sites as a cause of biphasic an-

tagonism. Indeed, this could be down to interactions between two occupied orthosteric

sites across a dimer. However, this study favours allosteric antagonism as explanation for

this behaviour. PD81723 is commonly accepted to be an allosteric antagonist, capable of

binding both allosteric and orthosteric sites on the A1R to positively or negative regulate

signal, respectively, depending on ligand concentration. This study suggests that DPCPX,

SLV-320 and caffeine may also be allosteric antagonists. The behaviour of N6-adamantyl

agonists would support this theory. The interaction between ECL2 and TM3 of the A1R

has been shown to be essential to allosterism of the A1R (Peeters et al., 2012). This in-

teraction is in close proximity to the proposed A1R orthosteric site. The reduced potency

of N6-adamantyl-substituents may be due to steric hindrance around the orthosteric site.

If so, it may be possible that the bulky N6 group could deny antagonists access to the

allosteric site. However, without further information this is also speculation, not hypoth-

esis. But given the use of partial A1R agonists as negative regulators of signalling due to
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antagonist trial failure, the novel compounds characterised here may be able to directly

compete with antagonists in vivo and have therapeutic potential.

6.5 Yeast for screening fluorescent ligands

The N6-agonists described here were explored as precursors for fluorescent compound de-

velopment. NECA-based compounds were found to have higher potency against the A1R in

yeast that was increased by N6-cyclopentyl modifications. However, N6-adamantyl attach-

ments decrease A1R potency while promoting total A1R/A2R selectivity in yeast. Similarly,

the commercially available CAS200623 shows a reduced potency against the A1R relative

to its NECA precursor in yeast. Thus, the A1R-selective JH95 and the high potency JH114,

both based on NECA, were ideal candidates for fluorescent compound development. This

resulted in JH294 and JH282 respectively. JH282 was shown to be a weak full-agonist of the

A1R and A2AR, while JH294 showed no response in any strain tested. Given that extended

N6-modifications reduce potency against the A1R, and that JH95 is a weak full agonist, a

lack of response is unsurprising. The ability to perform these analyses with a limited stock

of agonist highlights a strength of the yeast system for compound screening, experimental

robustness and reproducibility.

However, these experiments highlight a weakness of yeast as a compound screening

system. CAS200623 was found to bind A1R-expressing and non-expressing cells alike. This

raises several questions. Is non-specific binding of this compound unique to yeast? Or is

non-specific binding a problem for this specific compound? The studies of Middleton et al.

(2007) and May et al. (2010) of similar fluorescent compounds on the A1R would suggest

that this is a yeast-specific effect. This is feasible given that yeast have a cell wall that

mammalian cells lack. This may non-specifically bind the fluorescent compound. This can

be elucidated through removing the yeast cell wall and repeating the binding experiments.

This could be complemented by flow cytometry of mammalian cells. Unfortunately, limited

compound stocks and supplier difficulties prevented these studies here. Regardless, non-

specific binding limited the usefulness of CAS200623 in modelling A1R pharmacology in

yeast.

However, it is possible that the fluorophore is responsible for non-specific binding of

yeast. The presence of a BODIPY region on CAS200623 guided the decision to include

a TAMRA group on the fluorescent compounds developed here. Binding studies of the

active and inactive JH282 and JH294, respectively, could help explain the contribution of

fluorophore to non-specific binding, if any. These studies are ongoing in both yeast and

mammalian cells. Further, this continuing collaboration is being extended to include a

range of ligand and fluorophore domains and their implications for specificity of adenosine

receptor binding and activation.
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6.6 Quantitative mathematical modelling

The ultimate aim of this study is to develop a quantitative mathematical model to describe

GPCR pharmacology in yeast. The A1R was intended to be a testbed upon which this

framework could be built. This was due to the proven functionality in yeast and the vast

array of tools to probe the pharmacological characteristics of this receptor. This model was

then to be extended to include other mammalian GPCRs. Here models were constructed

from biological reaction schemes and ODEs derived. The structural identifiability of the

model was confirmed, before implementation, as an essential requisite followed by parameter

sensitivity analyses. Fitting the model to experimental time course data yielded parameters

underlying G protein signalling that have to be experimentally validated (Figure 6.2).

x 0,θ( ) = x0 θ( )

d
dt
x t,θ( ) = N ⋅ v x(t,θ ),aθ( )

Model Scheme Equations 

L + R -> LR, k2 
LR -> L + R, k3 
LR -> ∅, k4 
R -> ∅, k5 
Gαβγ + LR -> GαGTP + Gβϒ + LR, k6 
GαGTP -> GαGDP, k7 
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Figure 6.2: Schematic representation of quantitative model development. Bio-
chemical reaction schemes are converted to ODE equations by assuming the laws of mass
action kinetics. The suitable of this model framework for model fitting is ascertained
through implementation and parameter sensitivity analysis. Structural identifiability is an
essential prerequisite of model fitting. Once this criteria is satisfied the model can be fitted
to experimental time course data. The resulting predictions can than be experimentally

verified.
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ODE models are subject to the laws of mass action kinetics. While the models pre-

sented here are globally and structurally identifiable, the reliability of their predictions are

intrinsically linked to the accuracy of their initial species concentrations. The yeast strains

presented here are a modified experimental system and the concentrations of receptor and

G protein are unknown. For example, the A1R is under the control of the constitutive

GAPDH promoter. The data used to generate this model, and those upon which it is

based, were derived from studies the the native GPCR, STE2, under the control of its

endogenous pheromone-responsive promoter. Consequently, receptor concentrations in the

models presented here may not be the 160nM that is used in the model. Similarly, the

GPA1 G protein has been deleted and transplant variants chromosomally-expressed from

the TRP1 locus. While this is under the control of the endogenous GPA1 promoter, epi-

genetic influences may affect GPA1 expression. Thus, the initial species concentrations

underlying this model need to be confirmed. Until these conditions are elucidated, the

predictions presented here are semi-quantitative at best. Quantitative Western blotting

and mass spectrometry studies are currently underway to elucidate the concentrations of

receptor and G protein in the yeast strains used here.

Despite this, a great deal has been learned from the model developed here. While not

necessarily quantitative without known initial species concentrations, the resulting predic-

tions are useful. The relative ratios of parameters estimated should be conserved. The

successive model iterations suggest that ligand dissociation, receptor internalisation and G

protein-effector interactions are essential to model fitting to yeast data. This led to the de-

velopment of the refined model fitted here. Fitting this model to experimental time course

data of A1R::GPA1/Gαi3 and A1R::GPA1/Gαz suggested that G protein subtype does in-

deed influence ligand-binding, receptor activation and downstream G protein signalling. In

particular, ligand binding and G protein activation were reduced in a GPA1/Gαz back-

ground relative to GPA1/Gαi3. However, this model suggested that ligand dissociation

and receptor internalisation are not affected by G protein. Knowledge of initial conditions

can translate these predictions to quantitative intrinsic parameters through more accurate

model fitting.

Once quantitative, the model predictions could be applied to mammalian systems. For

example, here we model A1R agonist pharmacology in GPA1/Gαi3 and GPA1/Gαz back-

grounds. Therefore these models can be merged to include both Gαi3 and Gαz signalling

(Figure 6.3). However, both these effectors result in inhibition of adenylate cyclase in vivo.

The yeast system has demonstrated that the GLP-1R can both positively and negative reg-

ulate adenylate cyclase activity through Gαs and Gαi respectively (Weston et al., 2014).

Thus, this model could be applied to a variety of mammalian GPCRs functional in yeast

with multiple G protein signalling outcomes (Figure 6.3).
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Figure 6.3: Merging multiple yeast models to approximate mammalian G pro-
tein signalling. Individual ligand-GPCR-G protein interactions can be isolated and mod-
elled using the yeast system. These predictions can be merged to approximate multiple
signalling processes in mammalian systems. GPCRs that signal through multiple G pro-
tein families in yeast and mammalian systems could also be vulnerable to this approach A.
Combining A1R models of GPA1/Gαi signalling in yeast to describe inhibition of adeny-
late cyclase in a mammalian setting. B. Combining GLP-1R models of GPA1/Gαi and
GPA1/Gαs signalling in yeast to describe inhibition and stimulation of adenylate cyclase

in a mammalian setting, respectively.
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6.7 Future work

6.7.1 Modelling the A2AR receptor

The A1R was selected as a tool for validation and development of a G protein signalling

model in yeast. On reflection, the A2AR may have represented a better choice. The A2AR

has also been extensively characterised and is vulnerable to the same pharmacological tools

as the A1R, including fluorescent ligands. At present, the framework presented here can-

not reproduce signal in the absence of ligand. The presence of significant basal signalling,

through constitutive receptor activation, could have increased the versatility of the model.

Also, the differences in A2AR pharmacology in the presence of GPA1/Gαs and GPA1/Gαi

may warrant further investigation. A A2A-Gαi interaction has yet to be demonstrated in

mammalian cells but, in yeast the A2AR::GPA1/Gαi1/2 strain did not respond to the en-

dogenous ligand adenosine. However, NECA and CGS21680 did elicit a response in this

strain. This demonstrates functional selectivity of the A2AR. Thus, a natural extension of

this study is to model A2AR-mediated signalling in yeast and further validation in mam-

malian systems.

6.7.2 Dynamic studies in yeast

A model is only as good as the predictions it makes. One obvious way to improve the pre-

dictions presented here is clarification of initial conditions throughout the modified yeast

pathway. Structural identifiability ensures accuracy of model fitting through the use of dy-

namic data. This study exploits a single transcriptional reporter as an observable measure

of pathway activation. Validation of model predictions, and structural identifiability, can

be further addressed by taking multiple dynamic measurements throughout the yeast path-

way. Fluorescent ligands, such as JH282, can be used to generated dynamic receptor-level

data such as binding and internalisation. This is assuming that this compound does not

non-specifically bind the yeast cell surface. A non-invasive method of measuring receptor

loss is key due to the effects of C-terminal GFP modifications on A1R pharmacology. Fur-

ther modification of the yeast pheromone-response can be used to generate dynamic data

throughout the pathway to validate and inform model predictions (Figure 6.4).

FRET studies exploit the interaction between fluorescent regions to quantify protein-

protein interactions. Here the emission wavelength of one fluorophore is the excitation

wavelength of its FRET partner. If the proteins are within a certain radius, one fluorophore

can be excited but the other detected. Consequently, the rate that these fluorophores sep-

arate can be quantified. Intra- and intermolecular FRET can be used as dynamic reporters

of protein state.
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Figure 6.4: Multiple dynamic measurements of G protein signalling in yeast.
Fluorescent ligands can be used to quantify ligand-binding and receptor internalisation.
Receptor and G protein-activation can be measured by intra- and intermolecular FRET

respectively.

Receptor activation states are determined by the orientation of the TM helices. Small

fluorescent regions, such as FlAsh, can used to label individual domains. This approach

has been used to measure receptor activation of the A1R and A2AR through rearrangement

of the α-helical domains (Hoffmann et al., 2005). These intramolecular FRET reporter

constructs have been obtained and are currently being investigated in yeast (Ladds et al.,

unpublished data).

Previously, G protein activation has been measured in yeast through intermolecular

FRET between YFP and CFP-modified GPA1 and STE18 (Gγ). Yi et al. (2003) have

kindly provided the G protein constructs used to develop these strains. Efforts to modify

and express these fluorescent G protein subunits in the yeast transplant system are under-

way. In time, these strains will be able to generate receptor, G protein and transcriptional-

level dynamic data. Thus, the yeast transplant strains would be a more versatile tool for

applying a systems pharmacology approach to a range of GPCRs.
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6.8 Concluding remarks

For the first time, an ODE model has been used to describe functional selectivity of the

A1R in yeast. This model predicts that the rates of ligand binding, G protein activation

and receptor internalisation are indeed a function of the G protein. However, further

experimental refinements are required to produce a truly quantitative model. For instance,

the concentrations of receptor and G protein need to be elucidated and the dynamic model

predictions can be tested through functional selectivity. Once this has been achieved, the

theoretical framework developed here could be used to investigate functional selectivity in

a range of GPCRs.
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