Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance

Tools
- Tools
+ Tools

Liu, Guosheng, Holub, E. B., Alonso, Jose M., Ecker, Joseph R. and Fobert, Pierre R. (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant Journal, volume 41 (Number 2). pp. 304-318. doi:10.1111/j.1365-313X.2004.02296.x ISSN 0960-7412.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1111/j.1365-313X.2004.02296.x

Request Changes to record.

Abstract

The Arabidopsis genome contains six NPR1-related genes. Given the pivotal role played by NPR1 in controlling salicylic acid (SA)-mediated gene expression and disease resistance, functional characterization of other family members appears to be justified. Reverse genetics was used to analyze the role of one NPR1-like gene, which we called NPR4. The NPR4 protein shares 36% identity with NPR1 and interacts with the same spectrum of TGA transcription factors in yeast two-hybrid assays. Plants with T-DNA insertions in NPR4 are more susceptible to the virulent bacterial pathogen Pseudomonas syringe pv. tomato DC3000. This phenotype is complemented by expression of the wild type NPR4 coding region. As determined by the parasite reproduction, the npr4-1 mutant is more susceptible to the fungal pathogen Erysiphe cichoracearum, but does not differ markedly from wild type in its interaction with virulent and avirulent strains of the oomycete Peronospora parasitica. In leaves of wild-type plants, NPR4 mRNA levels increase following pathogen challenge or SA treatment, and decrease rapidly following methyl jasmonic acid (MeJA) treatment. Transcripts of the pathogenesis-related (PR) genes PR-1, PR-2, and PR-5 are only marginally reduced in the npr4-1 mutant following pathogen challenge or SA treatment. This reduction of PR gene expression is more pronounced when leaves are challenged with the bacterial pathogen following SA treatment. Expression of the jasmonic acid-dependent pathway marker gene PDF1.2 is compromised in npr4-1 leaves following application of MeJA or a combination of SA and MeJA. These results indicate that NPR4 is required for basal defense against pathogens, and that it may be implicated in the cross-talk between the SA- and JA-dependent signaling pathways.

Item Type: Journal Article
Subjects: S Agriculture > SB Plant culture
Divisions: Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- )
Journal or Publication Title: Plant Journal
Publisher: Wiley-Blackwell Publishing Ltd.
ISSN: 0960-7412
Official Date: January 2005
Dates:
DateEvent
January 2005Published
7 December 2004Available
21 October 2004Accepted
28 July 2004Submitted
Volume: volume 41
Number: Number 2
Number of Pages: 15
Page Range: pp. 304-318
DOI: 10.1111/j.1365-313X.2004.02296.x
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access (Creative Commons)

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us