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THIRD CASE OF THE CYCLIC COLORING CONJECTURE∗

MICHAEL HEBDIGE† AND DANIEL KRÁL’‡

Abstract. The Cyclic Coloring Conjecture asserts that the vertices of every plane graph with
maximum face size Δ∗ can be colored using at most �3Δ∗/2� colors in such a way that no face is
incident with two vertices of the same color. The Cyclic Coloring Conjecture has been proven only
for two values of Δ∗: the case Δ∗ = 3 is equivalent to the Four Color Theorem and the case Δ∗ = 4
is equivalent to Borodin’s Six Color Theorem, which says that every graph that can be drawn in the
plane with each edge crossed by at most one other edge is 6-colorable. We prove the case Δ∗ = 6 of
the conjecture.
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1. Introduction. One of the most well-known open problems on coloring planar
graphs is the Cyclic Coloring Conjecture, which was made by Borodin in 1984 [4] (the
conjecture is sometimes thought to have also been made by Ore and Plummer in the
1960’s, though no evidence exists). The conjecture asserts that every plane graph
with maximum face Δ∗ has a cyclic coloring with at most �3Δ∗/2� colors, i.e., its
vertices can be colored with at most �3Δ∗/2� colors in such a way that no two vertices
incident with the same face get the same color. The case Δ∗ = 3 of the conjecture
is equivalent to the Four Color Theorem, which asserts that every planar graph is
4-colorable and which was proven in [2, 3]; a simpler proof was given in [21]. The only
other known case of the conjecture is Δ∗ = 4, which is known as Borodin’s Six Color
Theorem [4, 6]. This case of the conjecture is equivalent to the following statement:
every graph embedded in the plane in such a way that each edge is crossed by at most
one other edge is 6-colorable.

There has been a substantial amount of work on the conjecture both focused on
proving upper bounds for particular values of Δ∗, which are summarized in Table 1,
and on establishing general bounds. The work on general bounds [5, 8, 19] culminated
with currently the best known general bound �5Δ∗/3� due to Sanders and Zhao [22].
Amini, Esperet, and van den Heuvel [1], extending the work from [10, 11], proved
that the conjecture holds asymptotically in the following sense: for every ε > 0, there
exists Δ0 such that every plane graph with maximum face size Δ∗ ≥ Δ0 has a cyclic
coloring with at most

(
3
2 + ε

)
Δ∗ colors.

There has been no new exact results on the conjecture for more than 30 years. In
this paper, we resolve another case of the conjecture, proving the following.

Theorem 1. Every plane graph with maximum face size at most six has a cyclic
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Table 1

The known upper bounds for the Cyclic Coloring Conjecture.

Value of Δ∗ 3 4 5 6 7 8 9 10
Upper bound 4 6 8 9 11 13 15 17
Source [2, 3, 21] [4, 6] [8] here [13] [23] [5] [22]
Conjecture 4 6 7 9 10 12 13 15

coloring using at most nine colors.

The proof of Theorem 1 is based on a discharging argument involving 103 dis-
charging rules and 193 reducible configurations. Despite the high complexity of the
argument, we are able to present a proof of the reducibility of all configurations and
the analysis of the final amount of charge for all vertices and for all faces except those
of sizes five and six, where we had to resort to computer assisted techniques to analyze
the final amount of charge (Lemma 11). We have prepared three different programs
to verify the correctness of the proof of this lemma and we have made one of the
programs available at http://www.ucw.cz/∼kral/cyclic-six/. We have also uploaded
its source code to arXiv as an ancillary file.

Before presenting the proof of our main result, we would like to mention two
closely related conjectures; additional related results can also be found in a recent
survey by Borodin [7]. One is the conjecture of Plummer and Toft [20], studied,
e.g., in [9, 14, 15, 16], asserting that every 3-connected plane graph with maximum
face size Δ∗ has a cyclic coloring using at most Δ∗+2 colors. The other conjecture is
the Facial Coloring Conjecture from [17], which was studied, e.g., in [12, 13, 17, 18].
This conjecture asserts for every positive integer � that every plane graph has an �-
facial coloring with at most 3�+1 colors, i.e., a vertex coloring such that any vertices
joined by a facial walk of length at most � receive different colors. If the Facial Coloring
Conjecture holds for a particular value of �, then the Cyclic Coloring Conjecture holds
for Δ∗ = 2�+1. Unfortunately, the only proven case of the Facial Coloring Conjecture
is the case � = 1, which is equivalent to the Four Color Theorem. Still, partial results
towards the proof of the Facial Coloring Conjecture give the best known upper bound
for the case Δ∗ = 7 of the Cyclic Coloring Conjecture [13].

2. Notation. We follow the notation standard in the area of planar graph color-
ing. All graphs considered in the following are plane graphs that could have parallel
edges but do not have loops. A vertex of degree k is referred to as a k-vertex, a vertex
of degree at most k as a ≤ k-vertex, and a vertex of degree at least k as a ≥ k-vertex.
The degree of a face is the number of vertices incident with it and we use a k-face,
a ≤ k-face, and a ≥ k-face in the analogous meanings. Two vertices are facially ad-
jacent if they are incident with the same face and the facial degree of a vertex is the
number of vertices facially adjacent to it. In a 2-connected plane graph, each face is
bounded by a cycle, and proper connected subgraphs of this cycle are referred to as
facial walks. Finally, a cycle C in a plane graph G is separating if it does not bound
a face either inside or outside.

When describing configurations in plane graphs, we will often describe 5-faces
and 6-faces in the following way: a k-face v1v2 · · · vk, k ∈ {5, 6}, will be represented
by a string of length 2k + 2 characters starting with P: or H: if k = 5 or k = 6,
respectively. The (2i+ 1)th position will represent the type of the vertex vi and the
(2i + 2)th position will represent the type of face sharing the edge vivi+1 (indices
modulo k). The types of vertices and faces are encoded using the notation given in
Tables 2 and 3, respectively. In both cases, we can use wildcards to represent several

http://www.ucw.cz/~kral/cyclic-six/
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Table 2

The vertex type representation.

Type Description
t a 3-vertex such that its neighbor not on the face is a ≥ 4-vertex
o a 3-vertex such that its neighbor not on the face is also a 3-vertex
v a 4-vertex v contained in a 3-face vv′v′′ such that neither v′ nor v′′ is on the described

face and both v′ and v′′ are ≥ 4-vertices
u a 4-vertex v contained in a 3-face vv′v′′ such that neither v′ nor v′′ is on the described

face and v′ and v′′ are a 3-vertex and ≥ 4-vertex
w a 4-vertex v contained in a 3-face vv′v′′ such that neither v′ nor v′′ is on the described

face and both v′ and v′′ are 3-vertices
4 a 4-vertex
5 a 5-vertex
6 a ≥ 6-vertex

Table 3

The face type representation assuming the faces share an edge vivi+1.

Type Description
t a 3-face vivi+1w such that w is a 3-vertex and its remaining neighbor is a ≥ 4-vertex
O a 3-face vivi+1w such that w is a 3-vertex and its remaining neighbor is a 3-vertex
x a 3-face vivi+1w such that w is a ≥ 4-vertex
Q a 4-face
P a 5-face
H a 6-face

Table 4

The vertex type wildcards.

Wildcard Represented types Description
3 t and o a 3-vertex
x all but t and o a ≥ 4-vertex
+ 5 and 6 a ≥ 5-vertex
* all any type of a vertex

Table 5

The face type wildcards.

Wildcard Represented types Description
3 t and O a 3-face with the tip being a 3-vertex
T t, O and x a 3-face
F Q, P and H a ≥ 4-face
* all any type of a face

types of vertices and faces as given in Tables 4 and 5. Since a minimal counterexample
to Theorem 1 cannot contain a 3-face and a ≤ 5-face sharing an edge, we will consider
configurations where every 3-face shares edges with 6-faces only.

The (most generic) 6-face configuration described as H:3Q5*oO4Po*3* and the
5-face configuration described as P:v*w******* can be found in Figure 1. When
drawing faces, we will represent 3-vertices with circles, 4-vertices with squares, and 5-
vertices with pentagons (as shown in Figure 1). Finally, if the description of a face ends
with one or more stars, we often omit these stars. In particular, the configurations
depicted in Figure 1 can also be described as H:3Q5*oO4Po*3 and P:v*w.

3. Overview of the proof. We consider a minimal graph with maximum face
size at most 6 that has no cyclic coloring with at most 9 colors; the minimality is
measured as the minimality of the sum of the numbers of vertices and edges. Such
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Fig. 1. The most generic face configurations described by H:3Q5*oO4Po*3* and by P:v*w*******.

a minimal graph is further referred to as a minimal counterexample. It is easy to
show that a minimal counterexample is 2-connected, it has no parallel edges, and its
minimum facial degree is at least 9. In particular, the minimum degree of a minimal
counterexample is at least 3. In addition, a minimal counterexample cannot contain
a separating cycle of length at most 6. Also observe that a minimal counterexample
does not contain a 3-face that shares an edge with a ≤ 5-face.

We exclude the existence of a minimal counterexample (and thus prove Theo-
rem 1) using the discharging method. We fix a minimal counterexample and assign
each k-vertex k − 4 units of charge and each k-face k − 4 units of charge. Euler’s
formula implies that the sum of the amounts of the initial charges is −8. We then
apply the set of discharging rules described in section 5. Based on these rules, some
of the vertices and faces send charge to incident elements in such a way that the total
sum of the charges is preserved. However, we show that a minimal counterexample
cannot contain any of the configurations described in section 4, so-called reducible
configurations, and using this we show that the final amount of charge of any vertex
and any face is nonnegative. Since the amount of charge was preserved, this is im-
possible and hence excludes the existence of a counterexample to the Cyclic Coloring
Conjecture for Δ∗ = 6, which finishes the proof.

4. Reducible configurations. In this section, we identify configurations that
cannot appear in a minimal counterexample. To avoid an excessive use of wildcards,
when we say that a certain configuration with the description containing v is reducible,
we actually mean that the configurations with v replaced with u and w are also re-
ducible. Likewise, the configurations with description containing u are reducible with
u replaced with w. For example, when we have established that the configuration
P:v*3P3 is reducible (the configuration is depicted in Figure 3), we have established
that the configurations P:u*3P3 and P:w*3P3 are also reducible.

4.1. Simple greedy reductions. The reducibility of most of the configurations
will be established in the following way: we consider a minimal counterexample G
containing the configuration, possibly add some edges, and then contract one or more
connected subgraphs to obtain a graph G′ with maximum face size at most six. These
subgraphs will be identified by the capital letters A, B, etc. and the resulting vertices
of G′ will be denoted by wA, wB , etc. If one or more loops appear because of the
contraction, they get removed.

By the minimality of G, there exists a cyclic coloring of G′ using at most nine
colors. Most of the vertices of G will keep the colors they are assigned in G′. Two
or more vertices of each subgraph X = A,B, . . . will get the color assigned to wX in
G′ while the others remain uncolored. The obtained coloring is then completed by
coloring the noncolored vertices in a specific order. This order is chosen in such a
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v1 v2 v3
v4

v5 v6

v′5 v′6

v7 = v0

u3 u2
u1

u′
3

u′
2 u′

1

1 4 5 2 3

Fig. 2. Notation used in Lemma 3.

way that each vertex is facially adjacent to vertices with at most eight different colors
when it is supposed to be colored. Hence, the coloring can be completed to obtain a
cyclic coloring of G.

Clearly, the vertices of the component X that get the color of wX cannot be
facially adjacent. The next two lemmas will guarantee that certain pairs of the vertices
of a subgraph X are not facially adjacent.

Lemma 2. If two vertices u and u′ of a minimal counterexample G are joined by
a path of length k ∈ {2, 3} that is not a facial walk, then u and u′ are not facially
adjacent.

Proof. Let v0 · · · vk be the path between u = v0 and u′ = vk. Suppose that u and
u′ are facially adjacent. Since the maximum face size of G is at most six, there is a
facial walk w0 · · ·w� such that u′ = w0, u = w�, and � ∈ {0, 1, 2, 3}. Since v0 · · · vk is
not a facial walk, the closed walk v0 · · · vkw1 · · ·w�−1 (note that vk = w0) contains a
separating cycle of length at most k+ � ≤ 6. However, G contains no separating cycle
of length at most six.

Lemma 3. If two vertices u and u′ of a minimal counterexample G are joined by
a path v0v1v2v3v4, u = v0, and u′ = v4, such that v1v2v3 is a facial walk and v2v3v4
is a facial walk of another face, then u and u′ are not facially adjacent.

Proof. If u and u′ are facially adjacent, there is a facial walk v4 · · · vk for k ∈
{4, 5, 6, 7} such that vk = u (and so vk = v0). If k ≤ 6, then the closed walk
v0v1 · · · vk−1 would contain a separating cycle of length at most k ≤ 6, which is
impossible. Hence, we will assume that k = 7 in the rest of the proof, i.e., u and u′

are the opposite vertices of a 6-face. Let v4v
′
5v

′
6v7 be the other facial walk between u′

and u on this 6-face, let v1v2v3u1 · · ·u� be the face containing the facial walk v1v2v3,
and let v2v3v4u

′
1 · · ·u′

�′ be the face containing the facial walk v2v3v4. By symmetry,
we can assume that one side of the separating cycle v0v1 · · · v6 contains the face
v1v2v3u1 · · ·u� on one side and the face v2v3v4u

′
1 · · ·u′

�′ and the vertices v′5 and v′6 on
the other side. See Figure 2 for the illustration.

Let H be the subgraph of G on the side of the cycle v1v2 · · · v7 with the face
v1v2v3u1 · · ·u� such that the path v1v2v3 is replaced with the edge v1v3, and let H ′ be
the subgraph of G on the side of the cycle v1v2v3v4v

′
5v

′
6v7 with the face v2v3v4u

′
1 · · ·u′

�′

such that the path v2v3v4 is replaced with the edge v2v4. Note that the maximum
face size of both H and H ′ is six. The minimality of G implies that both H and H ′

has facial colorings with at most nine colors. The colors used by the two colorings are
denoted by 1, 2, . . . , 9.

By symmetry, we can assume that the color of v1 is 1, that of v4 is 2, and that
of v7 is 3 in both the colorings. Moreover, we can assume that the color of v2 in H ′

is 4 and that of v3 in H is 5. If the color of one of the vertices v5 and v6, say vi, is
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P:3Q4P3
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A

B

B

9
13

10
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P:3Q4*3P3
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4

A
A

A

9 9

P:3Q3

1 2

A

A

9
11

9

P:3Q4Q3

1

2

3

A

A

12 10
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P:v*3P3

1
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A

A

B

B

12
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9

9

P:v*w

1 2

3

4

A

A

B

B

12

9
9

11

11

P:w*3*3

1

23

4

5

A

A

B

B

12

9

11

12
9

9

P:u*3*w (1)

1
2

3

4

5

6

A

A

B

B

12

9

11

12
9

9

P:u*3*w (2)

1

2

3

4

5

6

A

A

B

B

11

12

11

11

P:3*o*3*3

1

2

3

4

A

B

C

A

B

C

Fig. 3. The 11 reducible configurations related to 5-faces; note that there are two ways that
the configuration with the description including u can look like. All the depicted configurations are
reducible in the simple greedy way. Also note that in the last configuration the vertices wA, wB,
and wC in the reduced graph are incident with the same face and thus they get distinct colors.

different from the colors of u1, . . . , u�, we permute the colors of the vertices of H in
such a way that the color of vi is 4, the color of v11−i is 6, and the colors of u1, . . . , u�

are among 6, . . . , 9. If the color of both the vertices v5 and v6 appear among the colors
of u1, . . . , u�, we permute the colors of the vertices of H ′ in such a way that the colors
of v5 and v6 are 6 and 7 and the colors of u1, . . . , u� are among 6, 7, and 8. We now
permute the colors of the vertices of H ′. If the color of one of the vertices v′5 and v′6,
say v′j , is different from the colors of u′

1, . . . , u
′
�′ , we permute the colors of the vertices

of H in such a way that the color of v′j is 5 and the color of v′11−j is 8 and the colors
of u′

1, . . . , u
′
�′ are among 6, . . . , 9. If the color of both the vertices v′5 and v′6 appear

among the colors of u′
1, . . . , u

′
�′ , we permute the colors of the vertices of H ′ in such a

way that the colors of v′5 and v′6 are 8 and 9 and the colors of u′
1, . . . , u

′
�′ are among

6, 8, and 9. It is easy to verify that the colorings of H and H ′ form a cyclic coloring
of G.

Our proof uses 186 reducible configurations with their reducibility established in
the way that we have just described. The 11 such configurations related to 5-faces
can be found in Figure 3 and the 175 configurations related to 6-faces in Figures 4–12.
In each of the configurations, the edges of the minimal counterexample that get con-
tracted are depicted by bold, and the edges that are added and get contracted (if they
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Fig. 4. Configurations related to 6-faces that are reducible in the simple greedy way—part 1.
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Fig. 5. Configurations related to 6-faces that are reducible in the simple greedy way—part 2.

exist) are bold and dotted. The vertices that get the color of the vertex corresponding
to the contracted component are marked by capital letters. The numbered vertices
are those that do not keep the colors and their numbers give the order in that they
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Fig. 6. Configurations related to 6-faces that are reducible in the simple greedy way—part 3.
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Fig. 7. Configurations related to 6-faces that are reducible in the simple greedy way—part 4.
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Fig. 8. Configurations related to 6-faces that are reducible in the simple greedy way—part 5.

are colored. It is straightforward to verify that all the involved vertices are at distance
at most six (and therefore they are distinct), the vertices with the same capital letter
satisfy the conditions of one of Lemmas 2 and 3, and each numbered vertex is facially
adjacent to vertices with at most eight different colors when it gets a color. To assist
with the verification of the letter, the facial degrees of the vertices to be colored are
displayed very near to them.

One more comment on the configurations depicted in Figures 3–12 is in place. We
always assume that the unconstrained faces around the considered face have size six.
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Fig. 9. Configurations related to 6-faces that are reducible in the simple greedy way—part 6.
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Fig. 10. Configurations related to 6-faces that are reducible in the simple greedy way—part 7.
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Fig. 11. Configurations related to 6-faces that are reducible in the simple greedy way—part 8.

Note that if their size is five or less and this results in the absence of a vertex in one
or more of the pairs A, B, etc., the counting argument for the greedy coloring would
still work. Instead of saving one color because of the facially adjacent pair of vertices
with the same color, we would save one color because the face size of the incident
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Fig. 12. Configurations related to 6-faces that are reducible in the simple greedy way—part 9.

face is smaller. Let us give an example. If the face that is supposed to contain the
vertices labeled with A, B, C, 3, 4, and 2 (like in the last configuration in Figure 3)
is a 5-face, we might not insert the bold dotted edge, which would result in the face
containing only the vertices labeled with A and C in addition to those labeled with
2, 3, and 4. However, the facial degrees of the vertices labeled with 2, 3, and 4 are
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Fig. 13. The reducible configurations from Lemma 5.

11, 10, and 10, respectively, and hence the greedy coloring argument would still work.
So, the assumption that all the unconstrained faces around the considered face have
size six does not affect the completeness of our arguments.

4.2. List coloring argument. The reducibility of four configurations in our
proof was established using arguments involving list coloring. In list coloring, each
vertex of a graph is assigned a list of available colors, and a proper vertex coloring
such that each vertex receives a color from its list is sought (a proper vertex coloring is
a coloring such that no two adjacent vertices receive the same color). To demonstrate
the concept, we start with a (very simple) auxiliary lemma, which is used in most of
our reductions.

Lemma 4. Let G be a graph with vertices α, β, γ, and δ such that all the pairs
of vertices are adjacent except for the pair α and β. Suppose that each of the vertices
α and β is assigned a list of two colors and each of the vertices γ and δ is assigned a
list of three colors. The vertices of the graph G can be properly colored such that each
vertex receives a color from its list.

Proof. We distinguish two cases. If there is a color contained in the lists of both
vertices α and β, color both vertices α and β with this color and then color the vertices
γ and δ (in this order) with any colors from their lists not assigned to any of their
neighbors. On the other hand, if the lists of the vertices α and β are disjoint, their
union contains four colors and thus it contains a color not in the list of the vertex δ.
Let x be this color. By symmetry, we can assume that x is contained in the list of α.
We color the vertex α by x, the vertex β by any color from its list, the vertex γ by
any color from its list different from the colors of α and β, and finally the vertex δ by
any color from its list different from the colors of β and γ. Since x is not contained in
the list of δ, the color assigned to δ is different from x and the coloring that we have
obtained is proper.

Lemma 4 is used to establish the reducibility of the configurations in the next
lemma.

Lemma 5. The configurations H:3T**oQ3, H:*T3***oQ3, and H:3T****oQ3 are
reducible.

Proof. The configurations from the statement of the lemma are depicted in Fig-
ure 13. We follow the notation from subsection 4.1. Suppose that a minimal coun-
terexample contains one of the configurations. As in subsection 4.1, we contract the
subgraphs depicted in bold, obtain a coloring of the new graph, and assign the colors
to the vertices labeled with A based on the coloring we obtained (note that the pair
of such vertices is not facially adjacent by Lemma 2). We next uncolor the vertices



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THIRD CASE OF THE CYCLIC COLORING CONJECTURE 541

10
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H:3Q4Po*3P
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B
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Fig. 14. The configuration from Lemma 6.

labeled with α, β, γ, and δ (if they are colored). The facial degrees and the facial
adjacencies to the pairs of vertices with the same color yield that there are at least
two colors not assigned to the facial neighbors of α, at least two colors not assigned
to the facial neighbors of β, at least three colors not assigned to the facial neighbors
of γ, and at least three colors not assigned to the facial neighbors of δ. Since the
vertices α and β are not facially adjacent by Lemma 2, we can complete the coloring
to a cyclic coloring by Lemma 4.

We finish this subsection with a more involved list coloring argument. Since this
argument applies only to the configuration considered in the next lemma, we present
the argument in the specific setting of the considered configuration only.

Lemma 6. The configuration H:3Q4Po*3P is reducible.

Proof. Suppose that a minimal counterexample G contains the configuration
H:3Q4Po*3P. Add the dotted edge depicted in Figure 14 and contract the two sub-
graphs formed by bold edges. By the minimality of G, the obtained graph has a cyclic
coloring with at most nine colors. All the vertices keep their colors and the vertices
labeled with A and B get the colors of the vertices corresponding to the contracted
subgraphs. Note that the vertices to be colored with the same color are not facially
adjacent by Lemmas 2 and 3. We are now left to color the vertices α, β, γ, δ, and
ε. Observe that all the pairs of these five vertices are facially adjacent except for the
pair α and β, which is not facially adjacent by Lemma 2.

From the facial degrees and the facial adjacencies to the vertices with same color,
we derive that there are at least two colors available for each of the vertices α and γ,
at least three colors available for each of the vertices β and δ, and at least four colors
available for the vertex ε. Let Z be a set formed by four colors available for ε.

If there is a color that can be assigned to both α and β, then we color both α and
β with this color and the remaining vertices in the order γ, δ, and ε. Assume now
that there is no color available to both α and β. Since there are at least five colors in
total available to α or β, one of these colors, say x, is not contained in the set Z.

If x is available for the vertex α, we color α with this color and color the remaining
vertices in the order γ, δ, β, and ε. So, we can assume that the color x is available
for the vertex β. We start with coloring the vertices α, γ, and δ (in this order) with
arbitrary available colors. If neither γ nor δ is colored with the color x, we color β
with x. Otherwise, we color β with an arbitrary color that is available for β and that
has not been assigned to γ or δ. In both cases, the vertex ε has a facial neighbor
colored with x and we can complete the coloring to a cyclic coloring of G.

4.3. Special arguments. In this subsection, we establish reducibility of three
additional configurations using ad hoc arguments.
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Fig. 15. The configurations from Lemma 8.

Lemma 7. The configuration H:o3o is reducible.

Proof. Let G be a minimal counterexample and let uvw be a 3-face of G such
that all the three vertices u, v, and w are 3-vertices. Note that the facial degree of
all the three vertices u, v, and w in G is 9. Contract the triangle uvw to a single
vertex, color the obtained graph G′ by the minimality of G, and assign the vertices
of G except for u, v, and w the colors they are assigned in G′.

If one of the vertices u, v, and w, say w, is facially adjacent to two vertices of
the same color, we can color the three vertices in the order u, v, and w greedily.
So, we assume that none of the vertices u, v, and w are facially adjacent to two
vertices of the same color. Let Xuv be the colors of the two vertices incident with
the 6-face containing the edge uv that are not the neighbors of u or v. We use Xuw

and Xvw in the analogous way with respect to the other two 6-faces sharing the edges
with the 3-face. The assumption that none of the vertices u, v, and w are facially
adjacent to two vertices of the same color implies that the sets Xuv, Xuw, and Xvw

are disjoint and they do not contain a color of any neighbor of the vertices u, v, and
w. We can now complete the coloring by assigning the vertex u an arbitrary color
from Xvw, the vertex v an arbitrary color from Xuw, and the vertex w an arbitrary
color from Xuv.

Lemma 8. The configurations H:3*3T4Po*3 and H:3Po*4T3*3 are reducible.

Proof. We proceed in a way similar to the simple greedy reductions from subsec-
tion 4.1. We consider a minimal counterexample G that contains one of the configura-
tions H:3*3T4Po*3 and H:3Po*4T3*3, which are depicted in Figure 15. We start with
inserting the dotted edge and contracting the three subgraphs formed by bold edges.
By the minimality of G, we obtain a cyclic coloring of the new graph, which gives the
coloring to all the vertices of G except the ones contained in the contracted subgraphs.
The vertices labeled with A, B, and C get the colors of the vertices corresponding
to the contracted subgraphs (each of the three pairs of these vertices is not facially
adjacent by Lemma 2). However, the vertices x and y may have the same color.

If the vertices x and y have different colors, we color the remaining vertices
greedily in the order given by the numbering in Figure 15. If the vertices x and
y have the same color, we uncolor the vertex x. Note that the vertices labeled by 3
and 4 are still facially adjacent to two pairs of vertices with the same color (one of the
pairs contains the vertex y). We now color the six uncolored vertices greedily in the
order given by the numbering in Figure 15 with the vertex x being colored between
the vertices labeled by 2 and 3.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THIRD CASE OF THE CYCLIC COLORING CONJECTURE 543

Table 6

The T -rules.

T:3H3x3Hx 10/60 T:3H3x4P* 10/60 T:*P4O4P* 32/60
T:3Hot4P* 1/60 T:xH3x4P* 13/60 T:*P4t4H* 26/60
T:xHot4P* 20/60 T:3H3x4H* 8/60 T:*P4O4H* 31/60
T:3HoO4P* 20/60 T:xH3x4H* 10/60 T:*H4t4H* 26/60
T:xHoO4P* 29/60 T:3H3x+** 14/60 T:*H4O4H* 30/60
T:3Hot4H* 10/60 T:xH3x+** 12/60 T:*Q4t+** 22/60
T:xHot4H* 20/60 T:*Q4t4Q* 8/60 T:*Q4O+** 24/60
T:*HoO4H* 20/60 T:*Q4O4Q* 16/60 T:*P4t+** 31/60
T:3Hot+** 20/60 T:*Q4t4P* 17/60 T:*P4O+** 32/60
T:xHot+** 30/60 T:*Q4O4P* 24/60 T:*H43+** 31/60
T:*HoO+** 30/60 T:*Q4t4H* 17/60 T:**+t+** 36/60
T:3H3x4Q* 22/60 T:*Q4O4H* 23/60 T:**+O+** 32/60
T:xH3x4Q* 26/60 T:*P4t4P* 26/60 T:**xxx** 20/60

Table 7

The P -rules.

P:3Q3H* 40/60 P:xPoPx 40/60 P:xPtHx 20/60 P:3H3H+ 14/60
P:xQ3H* 20/60 P:3PtH3 12/60 P:4PoHx 18/60 P:4H3H4 20/60
P:3PtP3 12/60 P:3PtH4 18/60 P:+PtH3 12/60 P:4H3H+ 26/60
P:3PtPx 10/60 P:3PtH+ 20/60 P:+PoHx 24/60 P:+H3H+ 32/60
P:xPtPx 20/60 P:*PoH3 18/60 P:3HtH3 12/60 P:**+** -12/60
P:3PoP3 20/60 P:3PoHx 20/60 P:3HoH3 20/60 P:**u** 4/60
P:3PoPx 24/60 P:4PtH3 18/60 P:3H3H4 16/60 P:**w** 20/60

Table 8

The H-rules.

H:3TtH3 20/60 H:3QtH* 24/60 H:+P3P+ 20/60 H:*H3H* 20/60
H:3TtH4 30/60 H:3QoH* 30/60 H:3P3H3 20/60 H:*T5T* -24/60
H:3TtH+ 36/60 H:xQtH* 30/60 H:3PtHx 22/60 H:*T6T* -40/60
H:xTtH* 30/60 H:xQoH* 36/60 H:3PoHx 24/60 H:*T+Q* -24/60
H:xToH3 40/60 H:3P3P3 24/60 H:4PtH* 20/60 H:*T+P* -18/60
H:xToH4 30/60 H:3PtPx 24/60 H:4PoH3 24/60 H:*T+H* -18/60
H:xToH+ 24/60 H:3PoPx 28/60 H:4PoHx 22/60 H:*F+F* -12/60
H:*QtP* 40/60 H:4PtPx 20/60 H:+PoH* 26/60 H:**u** 7/60
H:*QoP* 20/60 H:4PoPx 24/60 H:+PtH* 14/60 H:**w** 20/60

5. Discharging rules. The discharging rules are listed in Tables 6, 7, and 8
using the encoding we now describe. There are three basic types of discharging rules:
T -rules, P -rules, and H-rules. The T -rules are described by strings of nine characters
starting with T:. If a 6-face v1v2 · · · v6 matches the description given by the rule, i.e.,
the vertices vi, i ∈ {1, 2, 3, 4}, correspond to the (2i + 1)th characters and the faces
sharing the edges vivi+1, i ∈ {1, 2, 3}, correspond to the (2i + 2)th characters, then
the 6-face v1v2 · · · v6 sends the prescribed amount of charge to the face sharing the
edge v2v3. The face sharing the edge v2v3 with the 6-face will always be a 3-face.
Moreover, at most one of the T -rules will apply to any pair of a 6-face and a 3-face
sharing an edge.

The P -rules and H-rules are described by strings of seven characters starting with
P: and H:. If a face f matches the description given by the rule, then the face f sends
the prescribed amount of charge to the second vertex (the one corresponding to the
fifth character). In particular, the P -rules apply to 5-faces and the H-rules to 6-faces.
If the prescribed amount of charge is negative (this happens in one of the P -rules
and in four of the H-rules), the face f receives the corresponding amount of charge.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

544 MICHAEL HEBDIGE AND DANIEL KRÁL’

Finally, if the charge sent by f goes to a 4-vertex, the 4-vertex resends all of the
received charge to the 3-face incident with it (this is the case for the last two P -rules
and the last two H-rules). As in the case of T -rules, at most one of the P -rules and
H-rules applies to any pair of a face and an incident vertex.

In the next two lemmas, we analyze the final amount of charge of vertices and
3-faces.

Lemma 9. Let G be a 2-connected plane graph with maximum face size six and
v a vertex of G. If the minimum facial degree of G is at least nine and G does not
contain a 3-face incident with three 3-vertices, then the final amount of charge of v
is nonnegative.

Proof. Since the minimum facial degree of G is at least nine, the minimum degree
of G is at least three. If v is a 3-vertex, then one of the cases depicted in Figure 16
holds and the vertex v receives at least one unit of charge in total from the incident
≥ 5-faces. Since 4-vertices do not send out or receive any charge except for that they
immediately resend to 3-faces, we assume from now on that v is a ≥ 5-vertex.

Let t be the number of 3-faces incident with v, q be the number of 4-faces, and p
be the number of ≥ 5-faces. Suppose that v is a 5-vertex. The vertex v sends 12/60
to each incident ≥ 5-face f by the rules P:**+** and H:*F+F* unless one of the two
other faces incident with v that shares an edge with f is a 3-face. The amount of
charge sent is increased by 12/60 for each 6-face sharing an edge with a 3-face and
a ≤ 4-face incident with v (see the rules H:*T5T* and H:*T+Q*), and is increased by
6/60 for each 6-face sharing an edge with a 3-face and ≥ 5-face incident with v (see
the rules H:*T+P* and H:*T+H*). So, each 3-face incident with v increases the amount
of charge sent from v to a 6-face that shares an edge with it by 6/60 units and each
4-face incident with v can increase the amount of charge sent from v to a 6-face that
shares an edge with it by 6/60 units (this happens only if the other face incident with
v that shares an edge with the 6-face is a 3-face). Since each 3-face and 4-face shares
an edge with at most two faces incident with v, we conclude that the 5-vertex v sends
out at most (12t+ 12q+ 12p)/60 ≤ 1 unit of charge and its final amount of charge is
nonnegative.

Suppose that v is a d-vertex, d ≥ 6. The calculation is the same except that each
6-face sharing edges with two 3-faces incident with v gets 40/60 units of charge from
v instead of 24/60 units (the rule H:*T6T* applies instead of H:*T5T*). Hence, the
additional amount of charge sent out can be up to 28/60 units per incident 3-face
instead of 12/60 units as in the previous case. This yields that v sends out at most
(28t + 12q + 12p)/60 units of charge. Since a 3-face can share an edge only with a
6-face, we get that t ≤ p. Consequently, the d-vertex v sends out at most

28t+ 12q + 12p

60
≤ 20t+ 12q + 20p

60
≤ t+ q + p

3
=

d

3
≤ d− 4

units of charge and its final amount of charge is nonnegative.

Lemma 10. Let G be a 2-connected plane graph with maximum face size six, and
let v1v2v3 be a 3-face of G that does not share an edge with a ≤ 5-face. If the minimum
facial degree of G at least nine and G does not contain H:o3o, H:3T4T, or H : o34Q,
then the face v1v2v3 receives at least one unit of charge using the T -rules, P -rules,
and H-rules.

Proof. All possible configurations around 3-faces in a graph satisfying the assump-
tion of the lemma are depicted in Figure 17. The picture also contains the amounts of
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Fig. 16. Charge received by 3-vertices. The degrees of vertices are encoded using the notation
for configurations.
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Fig. 17. Charge received by 3-faces. The degrees of vertices are encoded using the notation for
configurations.
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charge received by such 3-faces and it can be verified that the final amount of charge
of the 3-face is always nonnegative.

The analysis of the final amount of charge of 5-faces and 6-faces turned out to
be too complex. So, we had to verify that the final amount of charge of such faces
is nonnegative with the assistance of a computer. We have prepared three computer
programs and we have made one of them available at http://www.ucw.cz/∼kral/
cyclic-six/; the program is also available on arXiv as an ancillary file.

Lemma 11. Let G be a 2-connected plane graph with maximum face size six, and
let f be a d-face of G, d ∈ {5, 6}. If G contains none of the reducible configurations,
its minimum facial degree is at least nine and there is no ≤ 5-face sharing an edge
with a 3-face, then the difference between the amount of charge sent out by f and
received by it is at most d− 4 units.

Lemmas 9, 10, and 11 together with the absence of any of the reducible configura-
tions in a minimal counterexample exclude the existence of a minimal counterexample
for Theorem 1; this finishes the proof of Theorem 1.

Acknowledgment. The authors would like to thank Jakub Sliačan for discus-
sions related to the computer assisted proofs contained in this paper.
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[9] H. Enomoto, M. Horňák, and S. Jendrol’, Cyclic chromatic number of 3-connected plane

graphs, SIAM J. Discrete Math., 14 (2001), pp. 121–137.
[10] F. Havet, J. van den Heuvel, C. McDiarmid, and B. Reed, List colouring squares of planar

graphs, in Proceedings of EuroComb’07, Electronic Notes in Discrete Mathematics 29, 2007,
pp. 515–519.

[11] F. Havet, J. van den Heuvel, C. McDiarmid, and B. Reed, List colouring squares of planar
graphs, manuscript.
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