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Euler systems for modular forms over imaginary

quadratic fields

Antonio Lei, David Loeffler and Sarah Livia Zerbes

Abstract

We construct an Euler system attached to a weight 2 modular form twisted by a
Grössencharacter of an imaginary quadratic field K, and apply this to bounding Selmer
groups.
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1. Introduction

1.1 The main result

The main result of this paper is as follows. Let f be an elliptic modular newform of weight 2
that is not of CM type, and p > 5 a prime not dividing the level of f . Let K be an imaginary
quadratic field in which p is split, L a sufficiently large number field (containing K and the
Fourier coefficients of f), and P a prime of L above p at which f is ordinary (i.e. vP(ap(f)) = 0).

Then one can define two p-adic L-functions LP(f/K,Σ(1)) and LP(f/K,Σ(2)) (§6.1), which
are functions on the space of characters of the ray class group of K modulo fp∞ (for some integral
ideal f coprime to p and the level of f). In particular, one can evaluate these p-adic L-functions
at any algebraic Grössencharacter of K of conductor dividing fp∞.

Theorem (Theorem 7.4.2). Let ψ be a Grössencharacter of conductor dividing f and infinity-
type (−1, 0). Suppose that the L-values LP(f/K,Σ(1))(ψ) and LP(f/K,Σ(2))(ψ) are not both
zero, and the following technical conditions hold:

– αψ(p) 6≡ 1 mod P and βψ(p) 6= p, where α and β are the unit and non-unit roots of the

2010 Mathematics Subject Classification 11F85, 11F67, 11G40, 14G35
The authors’ research is supported by the following grants: Royal Society University Research Fellowship (Lo-

effler); EPSRC First Grant EP/J018716/1 (Zerbes).

http://www.ams.org/msc/


Antonio Lei, David Loeffler and Sarah Livia Zerbes

Hecke polynomial of f at p, and p is the prime of K below P;

– αψ(p)/p /∈ µp∞ ;

– p is unramified in the coefficient field L.

Then the Bloch–Kato Selmer group of the Gal(K/K)-representation VLP
(f)(ψ)(1) is finite.

Under some slightly stronger technical assumptions, we can extend this result as follows. We
define in §7.6 two groups Sel(K,T∨(1),Σ(i)), for i = 1, 2, which we call “critical Selmer groups”,
each of which contains the Bloch–Kato Selmer group. These critical Selmer groups can be viewed
as “analytic continuations” of the Bloch–Kato Selmer groups attached to twists of f which are
critical in the sense of Deligne. We show that for each i, if the value LP(f/K,Σ(i))(ψ) is non-
zero, then Sel(K,T∨(1),Σ(i)) is finite (Theorem 7.6.4). Morever, we obtain explicit bounds on
the orders of these Selmer groups in terms of the valuations of the corresponding L-values.

1.2 Relation to our earlier work

In [LLZ14] we proved a result on the finiteness of the strict Selmer group over Q attached to
the Rankin–Selberg convolution of two modular forms f, g, under rather strong “large image”
assumptions on f and g. The proof of this result relied on an Euler system constructed from
generalizations of the Beilinson–Flach classes in K1 of products of modular curves.

The Selmer groups we study in the present paper can also be interpreted in terms of Rankin–
Selberg convolutions: they are the Selmer groups over Q of the convolution of f with the theta-
series modular form arising from ψ. However, the main theorem of [LLZ14] does not apply
in this situation, as the Galois representation attached to a theta series will be of dihedral
type, and thus does not have large image. So we shall extend the Euler system by constructing
additional cohomology classes, corresponding to abelian extensions of K which are not abelian
over Q. In order to construct these classes, we use maps similar to those appearing in the
Taylor–Wiles method in modularity lifting theory, allowing us to patch together cohomology
groups arising from modular curves of different levels. This gives an Euler system over K for
the Galois representation of f twisted by ψ (Theorem 5.3.2); and applying the “Euler system
machine” of [Rub00] over K, rather than over Q, then gives a bound for the strict Selmer group
when the corresponding p-adic L-value is non-zero (Theorems 7.3.1 and 7.3.2).

The second new ingredient in this paper is that we bound the Bloch–Kato Selmer group,
rather than the (generally smaller) strict Selmer group. In order to obtain this stronger result,
we make use of an extra property of our Euler system classes: that they are in the Bloch–Kato H1

f

subspaces at the primes above p (which is a non-trivial condition since the Hodge–Tate weights
of our representation are not all > 1). We show in this paper how to modify the Euler system
machine to take into account this additional local input; this allows us to bound the Bloch–Kato
Selmer group (Theorem 7.4.2), and the two slightly larger groups we call “critical Selmer groups”.

1.3 Relations to other work

A number of previous works ([BD05], [How06], [Cas14]) have explored a rather different kind of
Euler system attached to modular forms over an imaginary quadratic field, arising from Heegner
points or Heegner cycles, and applied these to prove bounds for Selmer groups. Our approach
is somewhat different to these works, since the geometric input in our work comes from classes
in K1 of modular surfaces, rather than K0; in particular, the existence and non-triviality of our
classes is not reliant on any root number phenomena, so we can bound Selmer groups attached
to twists of f which are not necessarily self-dual.
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The existence of these two approaches raises the natural question of whether the specialization
of our Euler system to the self-dual twists coincides with the “big Heegner point” Euler system of
Howard and Castella. Sadly the methods of the present paper do not provide enough information
about these specializations to answer this question. We hope to return to this matter in future
work.

A third approach to the study of Selmer groups for modular forms over imaginary quadratic
fields is to be found in the work of Skinner and Urban [SU14]. Their approach relies on establishing
a lower bound on the size of the Selmer group, and then using the upper bounds given by Kato’s
Euler system over Q to show that this bound is sharp. This second step in their strategy is only
applicable when the Grössencharacter ψ is congruent modulo p to a character factoring through
the norm map to Q. However, in order to apply our methods we need precisely the opposite
assumption – our methods require that ψ is not congruent to any such character, since this
would violate the “non-Eisenstein” condition of Definition 4.1.2. Thus our upper bounds for the
Selmer group are complementary to the results of [SU14]1.

Acknowledgements

Although this paper has emerged as a follow-up to our previous paper [LLZ14], the CM setting
considered here was the original motivation for our study of Beilinson–Flach classes, based on
the conjectures about Euler systems advanced by the second and third authors in [LZ14]. We are
very grateful to Massimo Bertolini, Henri Darmon, and Victor Rotger for the suggestion (made
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in [BDR12] could perhaps be used in proving these conjectures, and encouraging us to pursue
this idea. We would also like to express our gratitude for all they have done to support our work
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cohomology of many Shimura varieties, rather than just one, was inspired by an earlier paper of
Bertolini and Darmon on the anticyclotomic Iwasawa theory of modular forms [BD05]. We are
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2. Asymmetric zeta elements

We begin by attending to some “unfinished business” from our earlier paper [LLZ14], proving
some norm-compatibility relations for motivic cohomology classes extending those of §3 of op.cit..

2.1 Definitions

Recall that in [LLZ14, §2.7] we have defined classes cΞm,N,j ∈ CH2(Y1(N)2 ⊗ Q(µm), 1), for
m > 1, N > 5 integers, j ∈ Z/mZ and c > 1 coprime to 6mN .

In the present work, it will be convenient to extend this construction, in a rather trivial way,

1The method of [SU14] gives lower bounds on the Selmer group in much greater generality, and it would be
an interesting project to compare these lower bounds with the upper bounds proved in this paper; we hope to
investigate this in a future work.
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to give elements of higher Chow groups of products Y1(N)×Y1(N ′). We thus make the following
definition:

Definition 2.1.1. For m > 1, N,N ′ > 5, j ∈ Z/mZ, and c > 1 coprime to 6mNN ′, we define

cΞ(m,N,N ′, j) ∈ CH2(Y1(N)× Y1(N ′)× Spec Q(µm), 1)

as the image of cΞm,R,j , for some R divisible by N and N ′ and having the same prime factors as
NN ′, under pushforward via the natural degeneracy map

Y1(R)2 → Y1(N)× Y1(N ′).

When m = 1 we omit m and j from the notation and write

cΞ(N,N ′) := cΞ(1, N,N ′, 1).

Note that cΞ(m,N,N ′, j) is independent of the choice of R, as a consequence of Theorem
3.1.2 of [LLZ14].

2.2 Norm-compatibility

In addition to the norm-compatibility relations proved in [LLZ14, §3], we shall need a few more
similar statements, describing the behaviour of the cΞ(m,N,N ′, j) for fixed m and N and varying
N ′, allowing both standard and “twisted” pushforward maps. In order to state these relations
we first introduce some notation.

Notation 2.2.1. We use the following notations.

– For d ∈ (Z/mZ)×, we let σd ∈ Gal(Q(µm)/Q) be the automorphism given by ζ 7→ ζd for
each ζ ∈ µm.

– For each d ∈ (Z/NZ)×, we let 〈d〉 denote the diamond bracket operator on Y1(N).

– The operator T ′` (for a prime ` - N) or U ′` (for ` | N) is the Hecke operator defined in
[LLZ14, §3.2], [Kat04, §2.9]. (These are the transposes of the more familiar Hecke operators
T`, U`.)

If N,N ′ > 1 and T, T ′ are Hecke correspondences acting on Y1(N) and Y1(N ′) respectively, then
the product of T and T ′ defines a correspondence on Y1(N) × Y1(N ′), which we shall write as
(T, T ′).

Theorem 2.2.2. Let m > 1, N,N ′ > 5 be integers, ` a prime, j ∈ Z/mZ, and c > 1 an integer
coprime to 6`mNN ′. Let pr1,pr2 be the two degeneracy maps Y1(`N ′)→ Y1(N ′), corresponding
to z 7→ z and z 7→ `z respectively.

(a) We have

(1× pr1)∗
(
cΞ(m,N, `N ′, j)

)
= {

cΞ(m,N,N ′, j) if ` | mNN ′,[
1− (〈`−1〉, 〈`−1〉)σ−2

`

]
· cΞ(m,N,N ′, j) if ` - mNN ′.

(b) (i) if ` | N , then

(1× pr2)∗
(
cΞ(m,N, `N ′, j)

)
= (U ′`, 1) · cΞ(m,N,N ′, `j);
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(ii) if ` - N but ` | N ′,then

(1× pr2)∗
(
cΞ(m,N, `N ′, j)

)
= (T ′`, 1) · cΞ(m,N,N ′, `j)− (〈`−1〉, U ′`) · cΞ(m,N,N ′, `2j);

(iii) if ` - mNN ′, then

(1× pr2)∗
(
cΞ(m,N, `N ′, j)

)
=
[
(T ′`, 1)σ−1

` − (〈`−1〉, T ′`)σ−2
`

]
· cΞ(m,N,N ′, j).

Remark 2.2.3. There is also a version of the above theorem with N varying instead of N ′,
i.e. describing the degeneracy (m,N`,N ′) 7→ (m,N,N ′). This can be deduced immediately from
the above theorem using the fact that the symmetry map Y1(N) × Y1(N ′) → Y1(N ′) × Y1(N)
interchanges cΞ(m,N,N ′, j) and cΞ(m,N ′, N,−j).

In the statement of the theorem we have excluded the case where ` | m but ` - NN ′; this is
not because it is any more difficult, but simply because the answer is more complicated to write
down – see Remark A.4.2 below.

The proof of Theorem 2.2.2 will be given in Appendix A below, as the proof requires the
consideration of certain auxilliary modular curves and cohomology classes which will not be used
elsewhere in the paper.

3. Euler systems in motivic cohomology

In this section, we’ll use the asymmetric zeta elements introduced above to construct a family of
motivic cohomology classes attached to a modular form and a Grössencharacter of an imaginary
quadratic field, indexed by ideals of the field, and satisfying a compatibility relation involving
Euler factors. However, this is not quite an “Euler system” in the strict sense, since our elements
for different n live in motivic cohomology groups of different varieties (rather than of one variety
over extensions of the base field).

3.1 Setup

Let K be an imaginary quadratic field, and ψ a Grössencharacter of K of infinity-type (−1, 0)
and some modulus f (not necessarily primitive, i.e. f need not be the conductor of ψ), taking
values in a finite extension L/K. We write χ for the unique Dirichlet character modulo NK/Q(f)
such that ψ( (n) ) = nχ(n) for integers n coprime to NK/Q(f).

Theorem 3.1.1 (see e.g. [Miy06, Theorem 4.8.2]). The formal q-expansion∑
a

ψ(a)qNK/Q(a),

where the sum is over integral ideals of K coprime to f, is the q-expansion of a Hecke eigenform

g ∈ S2(Γ1(N), χεK),

where N = NK/Q(f) ·disc(K/Q) and εK is the quadratic Dirichlet character attached to K. This
eigenform is new of level N if and only if ψ is primitive of conductor f.

3.2 Definitions: Hecke algebras

We now define a quotient of cohomology which describes the Galois representations attached to
twists of ψ by finite-order characters.
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Let n be an integral ideal of K, which we assume to be divisible by f, and let N = NK/Q(n) ·
disc(K/Q), which is a multiple of Nψ = NK/Q(f) · disc(K/Q). Let Hn be the ray class group of
K modulo n, and for l an ideal of K coprime to n, let [l] denote the class of l in Hn.

Let TN denote the subalgebra of EndZH
1(Y1(N)(C),Z) generated by the diamond operators,

the T` for ` - N , and the U` for ` | N . It will be convenient to use the notation T`, for ` | N , to
denote the same operator as U`, so we can say that TN is generated by the diamond operators
and the T` for all primes `.

Proposition 3.2.1. There exists a homomorphism φn : TN → OL[Hn] acting on the generators
as follows: for ` prime,

φn(T`) =
∑
l

[l]ψ(l)

where the sum is over the (possibly empty) set of ideals l - n of norm `; and

φn(〈d〉) = χ(d) εK(d) [(d)].

Proof. Each of the systems of eigenvalues obtained by specializing at characters ofHn corresponds
to a nonzero eigenform in S2(Γ1(N), L), so the morphism is well-defined.

Definition 3.2.2. Define

H1(ψ, n,OL) := OL[Hn]⊗TN ,φn H
1(Y1(N)(C),Z)∗,

where the lower star indicates that we use the covariant action of Hecke operators (rather than
the usual contravariant action).

We shall also need to discuss a quotient of motivic cohomology attached to ψ and another
eigenform (not necessarily CM), over a cyclotomic field Q(µm). To define this, let f be a cuspidal
modular form of weight 2 and some level Nf (not necessarily a newform) which is an eigenform
for all Hecke operators. Assume L is sufficiently large that the Hecke eigenvalues of f lie in OL,
so we have a morphism φf : TNf → OL.

Definition 3.2.3. We define

H3
mot(f, ψ,m, n,OL(2)) :=

OL[Hn] ⊗
(TNf⊗TN ,φf⊗φn)

H3
mot(Y1(Nf )× Y1(N)× Spec Q(µm),Z(2))∗.

(Again, the lower star signifies that we use the covariant rather than contravariant action of
Hecke correspondences.)

3.3 Definitions: degeneracy maps

Let us now consider two moduli n and n′ = nl, with l prime. Let N = NK/Q(n) · disc(K/Q) as
before, and N ′ = N ·NK/Q(l). Let ` be the rational prime below l, and let

Λn =

{
OL[Hn] if l | n,

OL[Hn][1/`] if l - n.

We also consider the formal double coset space

RN,N ′ = Z
[
Γ1(N)\GL+

2 (Q)/Γ1(N ′)
]
.

Elements of RN,N ′ induce correspondences Y1(N ′)→ Y1(N).
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Let TN denote the commutative subalgebra of RN,N generated by the Hecke operators Tn
and 〈d〉; then (by definition) TN surjects onto TN , so we may regard φn as a homomorphism
TN → Λn.

The space RN,N ′ is both a left TN -module and a right TN ′-module. We may regard the

degeneracy maps pr1 and pr2 as elements of RN,N ′ , corresponding to the matrices

(
1 0
0 1

)
and(

` 0
0 1

)
; if l is an inert prime (so N ′ = `2N) there is a third such map pr3 corresponding to(

`2 0
0 1

)
.

Definition 3.3.1. Let N n′
n denote the element of

Λn ⊗
TN ,φn

RN,N ′

given by the following formulae:

– If l | n, then

N n′
n = 1⊗ pr1 .

– If l - n and l is ramified or split in K/Q, then

N n′
n = 1⊗ pr1−

[l]ψ(l)

`
⊗ pr2 .

– If l - n and l = (`) is an inert prime, then

N n′
n = 1⊗ pr1−

[l]ψ(l)

`2
⊗ pr3 .

Proposition 3.3.2. For any A ∈ TN ′ , we have

N n′
n ·A = τ(φn′(A)) · N n′

n ,

where τ is the natural surjection OL[Hn′ ]→ OL[Hn].

In particular, N n′
n induces maps

H1(ψ, n′,OL)[1/`]→ H1(ψ, n,OL)[1/`]

and

H3
mot(f, ψ, n

′,OL)[1/`]→ H3
mot(f, ψ, n,OL)[1/`],

and the 1/` may be omitted when l | n.

Proof. When l | n this is immediate, since we have a commutative diagram of algebras

TN ′
φn′- OL[Hn′ ]

TN

σ

? φn- OL[Hn]

τ

?

where the left vertical map σ sends each generator of TN ′ to the corresponding operator in TN ;
and we have pr1 ·A = σ(A) · pr1 for all A ∈ TN ′ (i.e. pr1 commutes with all Hecke operators) so
we are done.
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When l - n, the same argument works if we replace TN ′ with the subalgebra T ◦N generated
by all the operators except U ′`. So we must only prove the equivariance property for U ′`, which
follows by a case-by-case check.

For instance, if l is a split prime and its conjugate l does not divide n either, then we have

N n′
n · U ′` = 1⊗ (pr1 ·U ′`)−

[l]ψ(l)

`
⊗ (pr2 ·U ′`)

= 1⊗ (T ′` · pr1−〈`−1〉 · pr2)− [l]ψ(l)

`
⊗ `pr2

=
(
φn(T

′
`)− [l]ψ(l)

)
⊗ pr1−φn(〈`−1〉)⊗ pr2

= [l]ψ(l)⊗ pr1−[ll]ψ(ll) ◦ pr2

= [l]ψ(l) · N n′
n .

The other cases (where l is split with l - n but l | n, or when l is inert or ramified) follow
similarly.

We extend the definition of N n′
n to any pair of moduli n | n′ in the obvious way, by composing

the above maps for each prime divisor l of n′/n, using the multiplication maps R[N,N ′] ⊗
R[N ′, N ′′]→ R[N,N ′′]. This is well-defined, since pr1 ·pr2 = pr2 · pr1 as elements of R(N,N`2),
and similarly for pr3, and Proposition 3.3.2 extends immediately to this case.

3.4 Definitions: classes

We are now in a position to construct our compatible family of motivic cohomology classes. Let
f,K,m, n, ψ be as before. Note that Nf and N = NK/Q(n) · disc(K/Q) are the levels of weight
2 cusp forms, so in particular they are both > 5.

Definition 3.4.1. Let c > 1 be an integer coprime to 6mNNf . Let cΞ
f,ψ
m,n be the image of the

element

cΞ(m,Nf , N) = cΞ(m,Nf , N, 1) ∈ H3
mot(Y1(Nf )× Y1(N)× Spec Q(µm),Z(2))

in the space

H3
mot(f, ψ,m, n,OL(2)) :=

OL[Hn] ⊗
(TNf⊗TN ,φf⊗φn)

H3
mot(Y1(Nf )× Y1(N)× Spec Q(µm),Z(2))∗.

3.5 Norm-compatibility

Theorem 3.5.1. The elements cΞ
f,ψ
m,n enjoy the following compatibility property. Let n | n′ be

two ideals of K divisible by f, and let A be the set of primes dividing n′ but not n. Suppose that
no prime in A divides m. Then

N n′
n

(
cΞ

f,ψ
m,n′

)
=

(∏
l∈A

Pl

(
[l]σ−1

l N(l)−1
))

cΞ
f,ψ
m,n

as elements of

H3
mot(f, ψ,m, n,OL(2))⊗OL OL

[
1

N(l) : l ∈ A
]
,

where Pl denotes the Euler factor of f ⊗ ψ at l, and σl ∈ Gal(Q(µm)/Q) is the element ζ 7→
ζNK/Q(l).
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Proof. It suffices to consider the case where n′ = ln for l a prime. As usual, write N = NK/Q(n) ·
disc(K/Q), and similarly N ′ = NK/Q(n′) · disc(K/Q).

If l | n, then N n′
n is the map induced by

1× pr1 : Y1(Nf )× Y1(N ′)→ Y1(Nf )× Y1(N)

and NfN and NfN
′ have the same prime factors, so we are done, by the first case of part (a) of

Theorem 2.2.2.

Hence we may assume that l - n. In this case we have ` - m, where ` is the rational prime
below l; and σl is the usual arithmetic Frobenius σ` at ` if l is split or ramified, and σl = σ2

` if l
is inert.

We now have eight cases to consider (since l may be ramified in K, inert, split with l - n, or
split with l | n, and ` may or may not divide Nf ). Each of these can be handled using different
cases of Theorem 2.2.2. We describe the argument in the case where l is split, l - n, and ` - Nf :

N ln
n

(
cΞ

f,ψ
m,ln

)
=

[
1⊗ (1× pr1)∗ −

ψ(l)[l]

`
⊗ (1× pr2)∗

]
cΞ(m,Nf , `N)

=

[
1⊗ (1−(〈`〉 × 〈`〉)∗σ−2

` )

− ψ(l)[l]

`
⊗ ((T` × 1)∗σ

−1
` − (〈`〉 × T`)∗σ−2

` )

]
cΞ(m,Nf , N)

=

[
1−ε`(f)

[ll]ψ(ll)

`
σ−2
`

− ψ(l)[l]

`

(
a`(f)σ−1

` − ε`(f)σ−2
` (ψ(l)[l] + ψ(l)[l])

)]
(1⊗ cΞ(m,Nf , N))

=

[
1− a`(f)σ−1

`

ψ(l)[l]

`
+ `ε`(f)σ−2

`

(
[l]ψ(l)

`

)2
]
cΞ

f,ψ
m,n.

The other cases, which are very similar, we leave to the reader.

Remark 3.5.2. In the remainder of this paper, we shall in fact only use the elements cΞ
f,ψ
m,n for

m = 1. We have worked with general m above since we intend to use the classes for m = pk in a
future work to study the Iwasawa theory of f over the Z2

p-extension of K.

4. Hecke algebras and Ihara’s lemma

We now collect some results on the Hecke action on the integral cohomology groups of modular
curves. Modulo minor modifications all of the results below can be found in [Wil95, Chapter 2].

We adopt the shorthand notation H1(Y1(N)) for H1(Y1(N)(C),Z).

4.1 Freeness results

Let N > 5 be an integer. Note that H1(Y1(N)) is a free Z-module, since for N > 5 the group
Γ1(N) has no torsion.

9



Antonio Lei, David Loeffler and Sarah Livia Zerbes

As above, let

TN ⊆ EndZH
1(Y1(N))

be the commutative Z-subalgebra generated by the operators 〈d〉 for d ∈ (Z/NZ)×, T` for primes
` - N , and U` for primes ` | N .

Remark 4.1.1. Note that there are “covariant” and “contravariant” actions of Hecke operators
on H1(Y1(N)); but the two actions are interchanged by the Atkin–Lehner involution, so the
subalgebras of EndZH

1(Y1(N)) generated by the two actions of Hecke operators are isomorphic.
We shall generally regard H1(Y1(N)) as a TN -module via the contravariant action of Hecke
operators; if we mean to regard it as a TN -module via the covariant action, we shall write it as
H1(Y1(N))∗ (lower star for pushforward).

Definition 4.1.2. A maximal ideal I of TN of residue characteristic p > 2 is said to be non-
Eisenstein if there exists a continuous and absolutely irreducible representation

ρI : GQ → GL2(TN/I)

such that for ` - Np we have

Tr ρI(σ
−1
` ) = T` mod I

and

det ρI(σ
−1
` ) = `〈`〉 mod I.

Given such an ideal, we write (TN )I for the I-adic completion of the localization of TN at I,
which is a finite-rank free Zp-algebra. Similarly, we write H1(Y1(N))I for the completion of the
homology group at I. As p ∈ I, this is a free Zp-module, and is isomorphic to the corresponding

étale cohomology group H1
ét(Y1(N),Zp)I ; in particular it has a (TN )I-linear action of Gal(Q/Q).

Proposition 4.1.3. Let I be a non-Eisenstein maximal ideal of TN . Then the maps

H1
c (Y1(N))I → H1(X1(N))I → H1(Y1(N))I

are isomorphisms.

Proof. This is essentially the Manin–Drinfeld theorem: we can always find a supply of primes
` such that 1 + ` − T` annihilates the boundary cohomology group H1(∂X1(N)), but non-
Eisensteinness guarantees that we can find some such ` with 1+ `−T` not in I, so it is invertible
after localizing at I.

We now invoke the following deep theorem of Wiles and others, originating in Mazur’s work
on the Eisenstein ideal:

Theorem 4.1.4. If I is a non-Eisenstein maximal ideal and p - N , then (TN )I is a Gorenstein
ring, and H1(Y1(N))I is a free (TN )I-module of rank 2. The same also holds if we replace Y1(N)
with Y (Γ) for any subgroup intermediate between Γ1(N) and Γ0(N).

Proof. See e.g. [Wil95, Theorem 2.1]. (The result is stated there in terms of the Hecke module
Hom(J1(N)[p∞],Qp/Zp)I , which is isomorphic to H1(X1(N))I , but the preceding proposition
shows that we may replace X1(N) with Y1(N).)

10
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4.2 Degeneracy maps

We now compare Hecke algebras and Hecke modules at different levels. Throughout this section,
N will be an integer > 5 and ` will be a prime not dividing N . We write Y1(N ; `) for the modular
curve of level Γ1(N) ∩ Γ0(`).

We begin by recalling some standard results:

Lemma 4.2.1 (Ihara). The map

(pr1)∗ ⊕ (pr2)∗ : H1(X1(N ; `))→ H1(X1(N))⊕2

is a surjection.

Lemma 4.2.2 (Wiles). For any odd prime p 6= `, and any r > 1, there is an exact sequence

H1(Y1(N`r; `r+1),Zp) - H1(Y1(N`r),Zp)
⊕2 - H1(Y1(N`r−1),Zp),

where the maps are respectively x 7→ ((pr1)∗x, (pr2)∗x) and (u, v) 7→ (pr2)∗(u)− (pr1)∗(v).

(We have stated these lemmas slightly differently from Wiles, who formulates Ihara’s lemma
in terms of morphisms of Jacobians, and Lemma 4.2.2 in terms of group cohomology with Qp/Zp
coefficients; for the formulations above see [DDT97, Lemma 4.28].)

Corollary 4.2.3. The following sequence is exact for any odd prime p 6= ` and any r > 1:

H1(Y1(N`r; `r+1),Zp)
(pr1)∗−

U`
`

(pr2)∗- H1(Y1(N`r),Zp)
(pr2)∗- H1(Y1(N`r−1),Zp).

Proof. By applying the matrix

(
1 −U`

`
0 1

)
to the middle term of the exact sequence of Lemma

4.2.2 we deduce the exact sequence

H1(Y1(N`r; `r+1),Zp)

(
(pr1)∗−

U`
`

(pr2)∗,(pr2)∗
)
- H1(Y1(N`r),Zp)

⊕2 (
(pr2)∗

0

)
- H1(Y1(N`r−1),Zp),

which implies the exactness of the desired sequence.

Lemma 4.2.4. The pushforward map

H1(Y1(N`r+1))→ H1(Y1(N`r; `r+1))

is surjective for any r > 0.

Proof. We prove the dual version of the statement: the cokernel of the pullback map

H1
c (Y1(N`r; `r+1))→ H1

c (Y1(N`r+1))

is torsionfree. This follows from the “modular symbol” isomorphism

H1
c (Y (Γ)) = HomΓ(Div0(P1

Q),Z),

valid for any torsion-free congruence subgroup Γ, which implies that we have an isomorphism
H1
c (Y1(N`r; `r+1)) = H1

c (Y1(N`r+1))∆, where ∆ is the kernel of (Z/`r+1Z)× → (Z/`rZ)×.

Remark 4.2.5. Compare Lemma 4.30(b) of [DDT97], which shows that the cokernel of the map
H1(X1(N),Zp)→ H1(XH(N),Zp) is Eisenstein for H any subgroup of (Z/NZ)×.

11
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Lemma 4.2.6 (Ribet, cf. [Wil95, Lemma, p492]). Let Σ be any finite set of primes not dividing
N , and let TX1(N) be the quotient of TN that acts faithfully on H1(X1(N)). Then the subalgebra
of TX1(N) generated by the diamond operators and the Tq for q /∈ Σ has finite index in TX1(N),
and this index is 1 if 2 /∈ Σ and a power of 2 otherwise.

In order to apply all of these results at once, we will need to localize at a non-Eisenstein
maximal ideal, after which there is no difference between H1 and H1, or between Y1(N) and
X1(N). We now define some Hecke algebras that we shall need.

Definition 4.2.7. For r > 1, let T◦N`r be the subalgebra of TN`r generated by the diamond
operators and the Tq for q 6= ` (including the operators Tq = Uq for q | N), but not U`..

We write T̃N for the ring TN [X]/(X2 − T`X + `〈`〉).

There is a commutative diagram

T◦N`
- TN

TN`

?

∩

λ2-- T̃N ,

?

∩

where the top horizontal arrow is the natural map, and the map λ is defined by λ(U`) = X.

Let I be a non-Eisenstein maximal ideal of TN of residue characteristic p - N`. We can regard
I also as a maximal ideal of T◦N . By Lemma 4.2.6, the morphism of completions (T◦N`)I � (TN )◦
is a surjection.

We can now proceed to the first main result of this section, which asserts the surjectivity of
an “`-stabilization” map.

Theorem 4.2.8. The map

β : (T̃N )I ⊗TN` H
1(Y1(N`))∗ → (T̃N )I ⊗TN H

1(Y1(N))∗

defined by

(pr1)∗ −
T` −X

`
(pr2)∗

is an isomorphism.

Proof. Firstly, we note that β is well-defined, since the map γ : H1(Y1(N`))∗ → (T̃N )I ⊗TN

H1(Y1(N))∗ defined by (pr1)∗ − T`−X
` (pr2)∗ satisfies γ ◦ U` = Xγ (cf. Proposition 3.3.2 above).

Moreover, β is an isomorphism after inverting p; and its source and target are both free (T̃N )I-
modules by Theorem 4.1.4, and in particular free Zp-modules, so β is injective.

It remains to check that β is surjective. This is essentially a lightly disguised form of Ihara’s
lemma. We do this by constructing a module for the (somewhat artificial) algebra T̃N (following
the argument used by Wiles to prove an analogous statement for ` = p, cf [Wil95, p490]): we let
T̃N act on the module H1(Y1(N))⊕2

∗ with TN acting via the covariant action and X acting by

the matrix

(
T` −〈`〉
` 0

)
. The map

(pr1)∗ ⊕ (pr2)∗ : H1(Y1(N`))∗ → H1(Y1(N))⊕2
∗

12
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is then a morphism of TN`-modules, and Ihara’s lemma (combined with Lemma 4.2.4) shows that
after localizing at I it is surjective. However, H1(Y1(N))⊕2

∗ is isomorphic to T̃N⊗TNH
1(Y1(N))∗,

and, unravelling the definitions, we find that the composite map is exactly β.

Our second result of this section concerns “`-depletion” of eigenforms of level divisible by `.
We first introduce a little more notation. Let r > 1. There is a map

φr : TN`r+1 → TN`r ,

which maps the 〈d〉 operators and the Tq for q 6= ` to themselves, and which maps U` to 0.

Theorem 4.2.9. For any r > 1, and any non-Eisenstein maximal ideal I of TN`r , the map

βr : (TN`r)I ⊗
(TN`r+1 , φ)

H1(Y1(N`r+1))∗ → (TN`r)I ⊗
TN`r

H1(Y1(N`r))∗

is a bijection.

Proof. As in the previous theorem, we first note that the map βr is well-defined (by the same
calculation as in Proposition 3.3.2), its source and target are free Zp-modules of finite rank, and
it is a bijection after inverting p. Thus βr is injective.

We now prove the surjectivity of βr. We know that

βr
(
H1(Y1(N`r+1))I

)
= H1(Y1(N`r))

(pr2)∗=0
I

by Corollary 4.2.3. So it suffices to show that the submoduleH1(Y1(N`r))
(pr2)∗=0
I spansH1(Y1(N`r))I

as a (TN`r)I-module, or equivalently as a Zp[U`]-module.

We prove this by induction on r. Let x ∈ H1(Y1(N`r))I be arbitrary. We want to write

x = a0 + U`a1 + · · ·+ U r` ar

for some a1, . . . , ar ∈ H1(Y1(N`r))
(pr2)∗=0
I . Equivalently, we want to find elements a1, . . . , ar ∈

H1(Y1(N`r))
(pr2)∗=0
I such that

(pr2)∗ (x− (U`a1 + · · ·+ U r` ar)) = 0.

However, we have

(pr2)∗ (x− (U`a1 + · · ·+ U r` ar))

= (pr2)∗(x)− `
[
(pr1)∗(a1) + · · ·+ U`r−1(pr1)∗(ar)

]
.

By the induction hypothesis, there exist b0, . . . , br−1 ∈ H1(Y1(N`r−1))
(pr2)∗=0
I such that (pr2)∗(x) =

b0 + · · ·+ U r−1
` br−1. (This statement is trivially true for r = 1, if we understand pr2 as the zero

map.) So if we can choose the ai such that (pr1)∗(ai) = `−1bi−1, we are done.

So it suffices to show that

(pr1)∗ : H1(Y1(N`r))
(pr2)∗=0
I → H1(Y1(N`r−1))

(pr2)∗=0
I

is surjective for all r > 1 (where, again, we understand the right-hand side as the whole of
H1(Y1(N`r−1))I if r = 1). This is immediate from Ihara’s lemma if r = 1; for r > 2 it follows
from Lemma 4.2.2.

Corollary 4.2.10. For any non-Eisenstein maximal ideal I of TN , the map

(TN )I ⊗
(TN`2 , φ)

H1(Y1(N`2))∗ → (TN )I ⊗
TN

H1(Y1(N))

13
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given by

(pr1)∗ − T`
` (pr2)∗ + 〈`〉

` (pr3)∗

is a bijection.

Proof. This follows directly from Theorem 4.2.8 and case r = 1 of Theorem 4.2.9: combining
these theorems gives the bijectivity of the above map after tensoring with T̃N , but T̃N is free of
rank 2 over TN and hence faithfully flat. Alternatively, a direct argument using Ihara’s lemma
and lemma 4.2.2 is given in [Wil95, (2.14)] (see also [DDT97, §4.5]).

4.3 Hida theory

We now prove an analogue of the above results in the case setting of Hida theory, where we
consider a limit over all p-power levels. Here p will be an odd prime not dividing N .

Definition 4.3.1. Let

H1
ord(Y1(Np∞)) = eord · lim←−

r>1

H1(Y1(Npr),Zp)∗,

where eord := limn→∞(Up)
n! is Hida’s ordinary projector.

Remark 4.3.2. Note that we are using the covariant action of the Hecke algebra here, and the
covariant action of Up coincides with the contravariant action of U ′p, so this is the same module
as the one denoted e′ord ·GESp(N,Zp) in [Oht00] and in our previous paper.

We let TNp∞ be the subalgebra of EndZp H
1
ord(Y1(Np∞)) generated by the 〈d〉 and Tn oper-

ators.

Definition 4.3.3. Let I be a characteristic p maximal ideal of the Hecke algebra TNpr , for r > 1.
We say I is p-ordinary if Up /∈ I. We say I is p-distinguished if it is ordinary and non-Eisenstein,
and the restriction of the Galois representation ρI to a decomposition group Dp at p satisfies

ρI |Dp ∼=
(
χ1 ∗
0 χ2

)
,

with χ1 and χ2 distinct characters of Dp.

The following theorem summarizes some of the major results of Hida theory:

Theorem 4.3.4. The module H1
ord(Y1(Np∞)) is a finite-rank free module over the Iwasawa

algebra Λ = Zp[[(1 + pZp)
×]] (with the module structure given by the diamond operators). The

algebra TNp∞ is a finite flat Λ-algebra, and its maximal ideals biject with the p-ordinary maximal
ideals of TNp.

If I is a p-distinguished maximal ideal, then (TNp∞)I is Gorenstein, and the (TNp∞)I-module
H1

ord(Y1(Np∞))I is free of rank 2.

Proof. For the first part of the theorem, we refer to §1 of [Oht00]. The finiteness and freeness of
H1

ord(Y1(Np∞)) over Λ is Theorem 1.3.5 of op.cit.; the fact that TNp∞ (denoted by e∗H∗(N ; Zp)
in op.cit.) is finite and flat over Λ is Theorem 1.5.7. Moreover, since TNp∞ is a finite flat algebra
over a complete local ring, its maximal ideals biject with the maximal ideals of the Artinian ring
TNp∞/J where J = (p,X) is the maximal ideal of Λ; Theorem 1.5.7(iii) of op.cit. shows that
TNp∞/J = eord · TNp/p, whose maximal ideals are precisely the p-ordinary maximal ideals of
TNp.
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For the statement on freeness, we refer to [EPW06, Proposition 3.1.1], where the result is
deduced from [Wil95, Theorem 2.1].

Proposition 4.3.5. If I is p-distinguished, then Theorems 4.2.8 and 4.2.9 hold with Npr in
place of N , for any r > 1.

Proof. The only ingredient of the proofs of the two theorems which required the assumption
p - N was the freeness result of Theorem 4.1.4. However, if I is p-distinguished, then we know
that H1(Y1(Np∞))I is free over (TNp∞)I by Theorem 4.3.4, and the control theorem (Theorem
1.5.7(iii) of [Oht00]) then implies that H1(Y1(Npr))I is free over (TNpr)I .

We also have a companion result relating forms of level prime to p and level divisible by p.

Proposition 4.3.6. Let I be a non-Eisenstein maximal ideal of T̃N of residue characteristic
p - N , such that X /∈ I. Then the ideal of TNp corresponding to I is ordinary and p-distinguished;

we have Tp −X ∈ p · (T̃N )I ; and the morphism β of Theorem 4.2.8 gives an isomorphism

(T̃N )I ⊗TNp H
1(Y1(Np))∗ → (T̃N )I ⊗TN H

1(Y1(N))∗.

Proof. This is clear by the same argument as Theorem 4.2.8. (The only subtle point is that I
is p-distinguished as an ideal of TNp; but it is ordinary since X /∈ I, and of the two characters
appearing in the semisimplification of ρ̃I |Dp , one is unramified at p and the other is the product
of an unramified character and inverse of the mod p cyclotomic character, so they are certainly
distinct.)

5. Euler systems in étale cohomology

We now use the Hecke algebra theory of the previous section to show that if we apply the p-adic
étale regulator map to the Euler system of §3 and localize at a suitably chosen prime ideal of
the Hecke algebra, the resulting family of classes – all living on different modular curves – can
be “massaged” into an Euler system in the more conventional sense, a family of classes in the
cohomology of one fixed Galois representation over varying extensions of the field K.

5.1 CM ideals of Hecke algebras

Let K,L, ψ, f be as in §3.1 above. We fix primes P | p | p of L, K and Q respectively, with p > 5,
p unramified in K, and (f, p) = 1.

For convenience we shall write E for the field LP, O = OL,P for its ring of integers, and
k = OL/P for its residue field.

Let us write ψP for the continuous E-valued character of K×\A×K,fin defined by

ψP(x) = x−1
p ψ(x).

Definition 5.1.1. Let n be any ideal of K divisible by f, and let N = NK/Q(n) · disc(K/Q) as
before. Let In be the maximal ideal of the Hecke algebra TN given by the kernel of the composite
map

TN
φn- OL[Hn] - OL

- OL/P,

where φn is as defined in §3.1 and the map OL[Hn]→ OL is the augmentation map.

Proposition 5.1.2. For any n as above, the ideal In is a non-Eisenstein maximal ideal in the
sense of Definition 4.1.2. If p is split and p | n, but p - n, then In is ordinary and p-distinguished.
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Proof. We can interpret ψP as a character of Gal(K/K) via class field theory.2 Then IndQ
K(ψP mod

P) is the unique semisimple Galois representation with values in TN/In ∼= OL/P satisfying the
trace and determinant condition of the ρI of Definition 4.1.2. By Mackey theory, this induced
representation is irreducible if and only if ψP and its conjugate are distinct modulo P.

If p is split, then ψP is ramified at p (its restriction to inertia at p is the inverse cyclotomic
character) but ψP ◦σ is not; hence these two characters are not even congruent locally at p. Thus
In is non-Eisenstein; and if p | n (so that p | N and φn(Up) = ψ(p) mod In) then it is ordinary
and p-distinguished.

If p is inert, then the restriction of ψP to O×K,p is the direct sum ω−1
2 ⊕ ω

−p
2 , where ω2 is the

Teichmüller character of (OK/p)
× ∼= F×

p2
. The characters ω2 and ωp2 are distinct, and they are

interchanged by the conjugation action of the Frobenius element of Dp/Ip. Hence IndQ
K(ψP mod

P) is irreducible as a representation of Dp, and in particular it is irreducible as a representation
of Gal(K/K).

Remark 5.1.3. If p is split, then Proposition 5.1.2 also holds if p | f, as long as we assume that
p - f and ψ|O×K,p is not congruent to the Teichmüller character modulo P.

5.2 Patching CM Hecke modules

We now apply the integral Hecke theory results of Section 4 to show that we can patch together
the modules H1(ψ, n,OL) after localizing at In, and identify them (non-canonically) with Galois
modules induced from abelian extensions of K. We continue to assume that n is an integral ideal
of K divisible by f.

Definition 5.2.1. Let H
(p)
n denote the largest quotient of Hn whose order is a power of p, and

let ΛP
n = O[H

(p)
n ].

The ring ΛP
n is a finite, flat, local O-algebra. We let

φPn : TN ⊗ Zp → ΛP
n

be the composition of the map φn defined above with the natural map OL[Hn]→ ΛP
n .

Definition 5.2.2. For each n as above, define

H1(ψ, n,P) := ΛP
n ⊗(TN⊗Zp,φPn )

H1
ét(Y1(N),Zp(1))∗,

where the lower star signifies that we consider H1
ét(Y1(N),Zp(1)) as a TN -module via the covari-

ant action.

Proposition 5.2.3. Suppose either that p is inert and (p, n) = 1, or p is split and (p, n) = 1.
Then the module H1(ψ, n,P) is free of rank 2 over ΛP

n .

Proof. Since ΛP
n is a complete local ring, and the preimage of its maximal ideal under φPn is

the ideal In, the map H1
ét(Y1(N),Zp(1)) → H1(ψ, n,P) factors through the completion at In.

However, since P is assumed to be non-Eisenstein, the completion of H1
ét(Y1(N),Zp(1)) at In

is free of rank 2 over the completed Hecke algebra TIn , by Theorem 4.1.4 (or Theorem 4.3.4,
respectively), so the tensor product is free over ΛP

n .

2We normalize the global Artin map A×K/K× → Gal(K/K)ab in the geometric fashion, so uniformisers map to
geometric Frobenius elements.
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Theorem 5.2.4. For any modulus n divisible by f, the module H1(ψ, n,P)[1/p] is isomorphic
as a ΛP

n [1/p]-linear representation of Gal(Q/Q) to the induced representation IndQ
K(n) (E(ψP))∗,

where K(n) is the largest abelian p-extension of K of conductor dividing n (i.e. the ray class field

corresponding to H
(p)
n ).

Proof. This statement is unaffected by enlarging L, so we may assume LP is sufficiently large

that all characters H
(p)
n → Q

×
p take values in LP. Then ΛP

n [1/p] = LP[H
(p)
n ] is a product of copies

of LP, indexed by the characters of H
(p)
n ; so it suffices to check that for η such a character, the

LP-vector space

LP ⊗ΛP
n ,η

H1(ψ, n,P)[1/p] (1)

is 2-dimensional and isomorphic to the η-isotypical component of IndQ
K(n) VLP

(ψ)∗, which is

IndQ
K VLP

(ψη)∗.

However, this vector space (1) is the maximal quotient of H1
ét(Y1(N), LP(1)) on which the

covariant Hecke operators act via the character of TN corresponding to the level N eigenform

gψη :=
∑

a:(a,n)=1

ψ(a)η(a)qN(a).

By the multiplicity one theorem, the corresponding quotient of H1
ét(Y1(N), LP) is 2-dimensional,

and realizes the Galois representation VLP
(gψη) attached to the complex conjugate eigenform

gψη. Since we have VLP
(gψη)(1) = VLP

(gψη)
∗ = IndQ

K(ψη)∗ we are done.

Proposition 5.2.5. Suppose either that p is inert, p - n, and l is a prime not equal to p; or that
p is split, p - n and l 6= p. Then the norm map

N ln
n : ΛP

n ⊗ΛP
ln
H1(ψ, ln,P) - H1(ψ, n,P)

is a bijection.

Proof. We assume first that (p, nl) = 1. Since both source and target of the map concerned are
free Zp-modules, and the map N ln

n is an isomorphism after inverting p, it suffices to check that
it is surjective. As before, let N = NK/Q(n) · disc(K/Q) and N ′ = NK/Q(nl) · disc(K/Q), and
let ` be the rational prime below l.

If l | n, then N ln
n is the map induced by (pr1)∗ : H1(Y1(N ′)) → H1(Y1(N)), and this is

evidently surjective. (Indeed, since ` | N , the map pr1 : Y1(N ′) → Y1(N) has degree either ` or
`2, neither of which is divisible by p, so (pr1)∗(pr1)∗ is even surjective.)

Hence we may assume l - n. There are three cases to consider. Firstly, if l is a ramified prime,
or if l is split and l | n, then ` | N and N ′ = `N . In this case, comparing Theorem 4.2.9 and
Definition 3.3.1, we see that N ln

n is the map deduced from the map β of Theorem 4.2.9 via base
extension along the map φn : TN → ΛP

n of Proposition 3.2.1 (mapping U` to ψ(l)[l]).

If l is a split prime and l - n, then ` - N , and we apply Theorem 4.2.8 instead. We extend the
map φn : TN → ΛP

n to T̃N by mapping X to ψ(l)[l]. Since this is also the image of U` under φln,
and T` −X maps to ψ(l)[l], the map β of Theorem 4.2.8 again gives rise to N ln

n .

Finally, if l = (`) is inert in K then we apply Corollary 4.2.10, and the calculation proceeds

similarly, using the fact that φn maps T` to 0 and 〈`〉 to −ψ(`)[`]
` .

If p is split, p | n, and l 6= p, then we argue similarly using Proposition 4.3.5 in place of
Theorems 4.2.8 and 4.2.9, using the fact that In is p-distinguished. If l = p and p | n, then the
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result is immediate from Ohta’s control theorem; and if l = p and p - n, we use Proposition
4.3.6.

Corollary 5.2.6. Let A be the set of ideals of K coprime to p and divisible by f. Then we may
find a family of isomorphisms

νn : H1(ψ, n,P)
∼=- IndQ

K(n)O(ψ−1
P )

of ΛP
n [Gal(Q/Q)]-modules, for all n ∈ A, with the property that for any two moduli n, n′ ∈ A

with n | n′, the diagram

H1(ψ, n′,P)
νn′
∼=
- IndQ

K(n′)O(ψ−1
P )

H1(ψ, n,P)

N n′
n

?
νn
∼=
- IndQ

K(n)O(ψ−1
P )

?

commutes.

Proof. Firstly, let (ni)i>1 be a sequence of ideals in A such that

– n1 = f,

– ni+1 = lini for all i > 1, where li is prime,

– every n ∈ A divides ni for some i� 0.

Let Ai be the finite set {n ∈ A : n | ni}. Since
⋃
i>1Ai = A, it suffices to show that for each

i > 1, there exists a system of isomorphisms νn for n ∈ Ai such that the compatibility diagram
commutes when n, n′ ∈ Ai. We shall prove this claim by induction on i.

We let νf be any choice of isomorphism

H1(ψ, f,P) ∼= IndQ
K(f)O(ψ−1

P ),

(which exists by Proposition 5.2.3 and Theorem 5.2.4). As A1 = {f}, this proves our claim for
i = 1.

Now suppose that νn is defined for all n | ni. Let ν ′ be any choice of isomorphismH1(ψ, ni+1,P) ∼=
IndQ

K(ni+1)O(ψ−1
P ) (which exists, again, by Proposition 5.2.3 and Theorem 5.2.4). There is a

unique a ∈ ΛP
ni such that the isomorphism H1(ψ, ni,P) ∼= IndQ

K(ni)
O(ψ−1

P ) induced by ν ′ is equal
to a · νni .

Since the morphism (ΛP
ni+1

)× → (ΛP
ni)
× is surjective, we can choose a lifting b of a to ΛP

ni+1
,

and define νni+1 = b−1ν ′.

We now define νn, for any n ∈ Ai+1, to be the morphism induced by νni+1 . This agrees with
the existing definition of νn for n ∈ Ai ⊂ Ai+1, and the diagram now commutes for all n, n′ ∈ Ai+1

as required.

5.3 Étale cohomology classes

We now bring the eigenform f back into the picture. We assume henceforth (largely for conve-
nience) that p - Nf .
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Recall the motivic cohomology space H3
mot(f, ψ,m, n,OL(2)) constructed above. The étale

regulator map

regét : H3
mot(Y1(Nf )× Y1(N)× Spec Q(µm),Z(2))

→ H1
(
Q(µm), H1

ét(Y1(Nf ),Zp(1))⊗Zp H
1
ét(Y1(N),Zp(1))

)
is compatible with correspondences, and therefore descends to a map

H3
mot(f, ψ,m, n,OL(2))→ H1

(
Q(µm), TO(f)∗ ⊗H1(ψ, n,P)

)
where TO(f)∗ is the quotient of H1

ét(Y1(Nf ),O(1)) defined as in [LLZ14], and H1(ψ, n,P) is as
defined above.

We now choose a set of isomorphisms {νn : n ∈ A} as in Corollary 5.2.6. By Shapiro’s lemma,
we have a canonical isomorphism

H1(Q, IndQ
K(n)O(ψ−1)) ∼= H1(K(n),O(ψ−1).

Definition 5.3.1. For c > 1 coprime to 6NfNψ, and n ∈ A, let

cz
f,ψ
n ∈ H1

(
K(n), TO(f)∗(ψ−1)

)
be the image of cΞ

f,ψ
1,n under the above map.

If n is an ideal coprime to p, but not divisible by f, we define cz
f,ψ
n as the image under

corestriction of cz
f,ψ
nf .

We first show that we may get rid of the factor c. Let ε = εf · χ · εK be the product of the
Nebentypus characters of f and gψ. Let us write Nψ = NK/Q(f) · disc(K/Q), which is coprime
to p.

We know that if n is divisible by f and c, d are two integers > 1 and coprime to 6NfN , where
N = NK/Q(n) · disc(K/Q) as usual, then

(c2 − ε(c)−1[c]−2)dz
f,ψ
n

is symmetric in c and d (cf. [LLZ14, Proposition 2.7.5(5)]).

Since p > 3 and p does not divide NfNψ, there exists some d > 1 such that d2 6= 1 mod p
and d = 1 mod NfNψ. We may also assume that d is coprime to 6N . We have ε(d) = 1, so

d2 − ε(d)−1[d]−1 is invertible in ΛP
n ; and if we define

zf,ψn = (d2 − ε(d)−1[d]−1)−1
dz
f,ψ
n ∈ H1(K(n), T ),

then zf,ψn is independent of d and we have cz
f,ψ
n = (c2− ε(c)−1[c]−2)zf,ψn for any valid choice of c.

Theorem 5.3.2. Let N = pNf f. Then the elements

{zf,ψn : (n,N ) = 1)}

form an Euler system for (T,K,N ) in the sense of [Rub00], where K is the composite of the K(n)
for all n coprime to N .

Proof. By Theorem 3.5.1 (and the compatibility of the étale regulator with correspondences),
these elements satisfy the Euler system compatibility relation.
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5.4 Local properties

We now show that the classes zf,ψn have good local behaviour. We recall the following definition,
due to Bloch and Kato [BK90]:

Definition 5.4.1. If V is any continuous Qp-linear representation of Gal(L/L), where L is a finite
extension of Q`, the Bloch–Kato Selmer subspace H1

f (L, V ) is defined as follows (cf. [BK90]):

– if ` 6= p, we define H1
f (L, V ) = H1(Lnr/L, V IL), where IL is the inertia subgroup of

Gal(L/L);

– if ` = p, we define H1
f (L, V ) = ker

(
H1(L, V )→ H1(L, V ⊗Bcris)

)
where Bcris is Fontaine’s

crystalline period ring.

For T ⊆ V a Gal(L/L)-stable Zp-lattice, we define H1
f (L, T ) and H1

f (L, V/T ) as the preimage

(resp. image) of H1(L, V ).

Notation 5.4.2. For convenience we will use the shorthand T := TO(f)∗(ψ−1
P ).

Proposition 5.4.3. Suppose that one of the following conditions holds:

(i) p is split in K/Q, and the polynomial

Pp

(
ψ(p)

p
X

)
does not vanish at any p-power root of unity.

(ii) p is inert in K/Q and vP(ap(f)) < 1
2 .

Then for any n coprime to N , and any prime v - p of K(n), we have

locv

(
zf,ψn

)
∈ H1

f (K(n)v, T ).

Proof. In case (i), to show that zf,ψn lies in the local H1
f , we compare it with the class zf,ψnp . We

know that zf,ψnp is a universal norm from the tower K(np∞)/K(np), which is a Zp-extension in
which no finite prime splits completely. Hence it is automatically in H1

f at all primes away from
p, by [Rub00, Corollary B.3.5]. However, we have

N np
n

(
zf,ψpn

)
= Pp

(
ψ(p)

p
[p]

)
zf,ψn .

If no root of Pp

(
ψ(p)
p X

)
is a root of unity of order dividing #H

(p)
n , the element Pp

(
ψ(p)
p [p]

)
is

a unit in ΛP
n [1/p]; but the action of ΛP

n [1/p] preserves H1
f , so we are done.

In case (ii), we use Corollary 6.7.9 of [LLZ14]. This shows that for f, g of level prime to p,

the class zf,g1 is in H1
f if there exist p-stabilizations α of f and γ of g such that vp(αγ) < 1 and

none of the elements {
αγ,

αδ

p
,
βγ

p
,
βδ

p

}
.

are equal to 1. We apply this with g = gψη for each character η of H
(p)
n ; then we have vP(α) < 1

2 ,
vP(β) > 1

2 , and vP(γ) = vP(δ) = 1
2 , so none of these four quantities can be a P-adic unit.

Remark 5.4.4. We take the opportunity to note that there is a small gap in the proof of Propo-
sition 6.6.2 of [LLZ14] (on which the cited corollary 6.7.9 relies). The argument actually only
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proves that zf,g1 is in H1
f if αfαg 6= 1, since zf,g1 = (αfαg − 1) norm

Q(µp)
Q zf,gp . It can actually

happen that αfαg = 1 (e.g. if f and g both correspond to elliptic curves with split multiplicative
reduction at p). However, we are interested in the case when f and g are the p-stabilizations of
eigenforms of level prime to p, in which case αfαg is a Weil number of weight 2, and thus cannot
be equal to 1.

We now consider the local properties of our Euler system at the primes of K above p. This
is very straightforward3 from the construction of the Beilinson–Flach elements.

Proposition 5.4.5. If (p, n) = 1, then we have

locw

(
zf,ψn

)
∈ H1

f (K(n)w, T )

for all primes w | p of K(n).

Proof. It suffices to check the result for n = 1 with ψ replaced by ψη, for each character η of

H
(p)
n . This is immediate from [LLZ14, Proposition 6.5.4] applied to the modular forms f and

gψη, which both have level coprime to p.

6. P-adic L-functions

We now collect some results on p-adic L-functions attached to f overK. We shall assume through-
out that f does not have CM by K, so the base-change of f to an automorphic representation
of GL2(AK) is cuspidal.

6.1 Definition of the L-functions

Let Ψ be any L-valued algebraic Grössencharacter of K, of some arbitrary infinity-type (a, b).
We write L(f/K,Ψ, s) for the L-function attached to the base-change of f to K twisted by Ψ.
Then the point s = 1 is a critical value of the L-function L(f/K,Ψ, s) if and only if one of the
following holds:

– we have a = b = 0 (region Σ(1));

– we have a 6 −1 and b > 1 (region Σ(2));

– we have b 6 −1 and a > 1 (region Σ(2′));

See Figure 1 below.

Remark 6.1.1. Our notation for the critical regions is taken from Definition 4.1 of [BDP13], but
our conventions are slightly different, since we work with L(f/K,Ψ, 1) rather than L(f/K,Ψ−1, 0).
Thus our Figure 1 is Figure 1 of [BDP13] rotated by 180◦ around the point (1

2 ,
1
2).

The regions Σ(3), Σ(3′), and Σ(4) in Figure 1 correspond to characters where the archimedean
Γ-factor L∞(f/K,Ψ, s) has a pole at s = 1, of order 1 for Σ(3) and Σ(3′), and of order 2 for
Σ(4). Since the completed L-function Λ(f/K,Ψ, s) = L(f/K,Ψ, s)L∞(f/K,Ψ, s) is holomorphic
on C and nonzero4 at s = 1 whenever the ∞-type of Ψ does not lie on the at line b = −a, it

3Straightforward, that is, modulo the rather deep fact that the étale regulator maps classes in the K-theory of a
smooth proper Zp-scheme to classes in H1

f .
4If a− b > 1 then s = 1 is in the region of convergence of the Euler product and thus the L-value is nonzero; the
case a− b < −1 follows from this via the functional equation. The remaining cases a− b = ±1 follow from a deep
global non-vanishing statement of Jacquet and Shalika [JS76].
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Figure 1. Infinity-types of Hecke characters of K

follows that L(f/K,Ψ, s) must vanish at s = 1 to order exactly 1 for Ψ ∈ Σ(3) ∩ Σ(3′) and to
order exactly 2 for Ψ ∈ Σ(4).

Remark 6.1.2. Beilinson’s conjecture [Bĕı84] predicts that the vanishing of the L-value L(f/K,Ψ, 1)
is related to the existence of classes in a motivic cohomology group H1

f (K,M∗f (ψ−1)), where Mf

is the motive of f . When (a, b) = (−1, 0) or (0,−1), the conjecture predicts that the motivic
cohomology group should be 1-dimensional, and spanned by the Beilinson–Flach classes. It seems
reasonable to expect5 that the construction of Beilinson–Flach classes can be generalized to any

5Since this paper was originally written, this predicted extension of the construction has been carried out in the
paper [KLZ14].
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(a, b) ∈ Σ(3) ∪ Σ(3′). When (a, b) ∈ Σ(4) the motivic cohomology should be 2-dimensional, and
Beilinson’s conjecture predicts the existence of classes in the group

∧2H1
f (K,M∗f (ψ−1)), but

constructing such classes appears to be beyond the reach of present techniques.

We now interpolate p-adically, where as above p is a prime > 5 unramified in K and not
dividing Nf . Let f be a modulus of K with (p, f) = 1. The ray class group Hfp∞ is a p-adic
analytic group, and algebraic Grössencharacters of K of conductor dividing fp∞ correspond
bijectively with locally algebraic Qp-valued characters of Hfp∞ .

Theorem 6.1.3. Assume (Nf , Nψ) = 1, where Nψ = NK/Q(f) · disc(K/Q) as usual, and let N
be an integer divisible by NfNψ and having the same prime factors as NfNψ. Let α, β be the
roots of the Hecke polynomial of f .

(i) Suppose f is ordinary at p and α is the unit root. Then there exists an element LP(f/K,Σ(1)) ∈
ΛE(Hfp∞) with the property that for Grössencharacters ψ of K of conductor dividing f and
infinity-type in Σ(1), we have

LP(f/K,Σ(1))(ψP) =
E(f, ψ, 1)(

1− β
α

)(
1− β

pα

) · iN

8π2〈f, f〉N
· L(f/K,ψ, 1),

where E(f, ψ, 1) is given by

E(f, ψ, 1) =

{∏
v|p(1− p−1βψ(v))(1− α−1ψ(v)−1) if p is split,

(1− p−2β2ψ(p))(1− α−2ψ(p)−1) if p is inert.

(ii) Suppose p is split in K. Then there exists an element LP(f/K,Σ(2)) ∈ Frac ΛE(Hfp∞) with
the property that for Grössencharacters ψ of K of conductor dividing f and infinity-type
(a, b) ∈ Σ(2), we have

LP(f/K,Σ(2))(ψP) =
E(ψ, f, 1)(

1− ψ(p)
ψ(p)

)(
1− ψ(p)

pψ(p)

) · 2a−bib−a−1b!(b− 1)!Na+b+1

(2π)1+2b〈gλ, gλ〉N
· L(f/K,ψ, 1),

where the factor E(ψ, f, 1) is given by

E(ψ, f, 1) = (1− p−1ψ(p)α)(1− p−1ψ(p)β)(1− ψ(p)−1α−1)(1− ψ(p)−1β−1),

and gλ is the CM eigenform of level Nψ and weight 1 − a + b > 3 corresponding to the
Grössencharacter λ = ψ| · |−b of ∞-type (a− b, 0).

We give a brief sketch of the proof below, since it will be important for our purposes to
know how these L-functions are related to the p-adic Rankin–Selberg L-functions considered
in [LLZ14]. We shall not need to consider the case i = 2′ explicitly, since complex conjugation
interchanges the critical regions Σ(2) and Σ(2′).

6.2 The case i = 1

We consider the formal q-expansion

Θ =
∑

a:(a,fp)=1

[a]qN(a) ∈ Λ(Hfp∞)[[q]].

We can regard this as a q-expansion with coefficients that are functions on the formal scheme
W = Spf Λ(Hfp∞) parametrizing characters of Hfp∞ .
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We choose an integer N coprime to p and divisible by Nf and by Nψ = NK/Q(f) ·disc(K/Q).

For each α ∈ 1
NZ/Z, we can consider the family Ξord,p

α (Σ(1),−) of q-expansions over W given by

Ξord,p
α (Σ(1), ω) = eord

[
Eα(ω−1

Q , 0)Θ(ω)
]
,

where Eα(φ1, φ2) is the family of p-depleted Eisenstein series over Spec Λ(Z×p )2 defined in §5 of
[LLZ14], and ωQ denotes the measure on Z×p obtained by composing ω with the map Z×p ↪→
(OK × Zp)

× → Hfp∞ .

This defines a measure Ξord,p
α (Σ(1)) on Hfp∞ with values in the finite-dimensional E-vector

space S2(Γ1(N) ∩ Γ0(p), E)ord. We define the p-adic L-function LP(f/K,Σ(1)) ∈ ΛE(Hfp∞) by

LP(f/K,Σ(1)) =

〈
(f∗)(p),Ξord,p

1/N (Σ(1))
〉
N,p〈

(f∗)(p), (f∗)(p)
〉
N,p

,

where 〈, 〉N,p denotes the Petersson scalar product at level Γ1(Nf ) ∩ Γ0(p) (normalized to be
conjugate-linear in the first variable and linear in the second), f∗ denotes the complex conjugate
of f , and (f∗)(p) its ordinary p-stabilization (whose Up-eigenvalue is pβ−1). It is clear by con-
struction that the p-adic Rankin–Selberg L-value DP(f, gψ, 1/N, 1) considered in our previous
work is given by

DP(f, gψ, 1/N, 1) = LP(f/K,Σ(1))(ψP).

On the other hand, the specialization of the family Θ at a finite-order character η of Hf is the
p-stabilization of the classical weight 1 theta series corresponding to η. Applying Proposition 5.4.2
of [LLZ14] gives a formula for LP(f/K,Σ(1))(η) in terms of the critical L-value L(f/K,ψ, 1),
which simplifies to the formula stated in the theorem above.

Remark 6.2.1. Computing the value of LP(f/K,Σ(1)) at a finite-order character η which may
be ramified at the primes above p is clearly possible in principle, but the calculations involved
are unpleasant and messy. See [PR88] for a closely related computation.

6.3 The case i = 2

In this case we replace Θ by the p-adic family of ordinary theta series indexed by Λ(Hfp∞), given
by the formal q-expansion

ggg =
∑

(a,fp)=1

[a]ψ(a)qN(a) ∈ Λ(Hfp∞)[[q]].

We can write any character of Hfp∞ uniquely in the form λµ where λ factors through Hfp∞ and
µ factors through the norm map Hfp∞ → Hp∞ → Z×p . We define a measure on Hfp∞ , with values
in p-adic ordinary modular forms of tame level N , by

Ξord,p
α (Σ(2), λµ) = eord [Eα(µ− 1,−1− λQ − µ) · f ] .

Note that the weight-character of Ξα(λµ)ord,p at p is 1 − λQ, which is the same as that of the
specialization ggg(λ) of the family ggg at λ. The theory of p-adic interpolation of Petersson products
thus gives us a p-adic L-function LP(f/K,Σ(2)) ∈ Frac ΛE(Hfp∞) satisfying

LP(f/K,Σ(2))(λµ) =

〈
ggg(λ)∗,Ξ1/N (λµ)ord,p

〉
〈ggg(λ), ggg(λ)〉

.

On the one hand, it is clear by construction that LP(f/K,Σ(2))(ψP) is the quantityDP(gψ, f, 1/N, 1)
appearing in [LLZ14].
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On the other hand, if we evaluate LP(f/K,Σ(2)) at a Grössencharacter ω = λµ of infinity-
type (a, b) lying in Σ(2) and having conductor prime to p, then the infinity-type of λ is (a− b, 0),
while µ = | · |b. Thus ggg(λ) is the p-stabilization of the classical ordinary CM form gλ of level
N and weight k = 1 − a + b > 3. Applying [LLZ14, Proposition 5.4.2] with f ,g, and j replaced
by gλ, f , and 1 + b, we obtain a formula for LP(f/K,Σ(2))(λµ) in terms of the critical L-value
L(f/K, λ, 1 + b) = L(f/K,ψ, 1) which simplifies to the one given above.

6.4 Relation to the Euler system classes

In [LLZ14, §6.10], following [DR14], we defined – for any two modular forms f, g of weight 2,
CM or otherwise, with f ordinary – a vector ηur

f ⊗ ωg ∈ Fil1 DdR(VE(f)⊗ VE(g)).

In our situation, we thus have vectors ηur
f ⊗ ωgψ (if f is ordinary) and ηur

gψ
⊗ ωf (if p is split),

both lying in the space Fil1 DdR(K ⊗Qp, V
∗), where V = VE(f)∗(ψ−1) as before.

Theorem 5.6.4 of [LLZ14], which is a very slight variation on the main theorem of [BDR12],
now gives the following:

Theorem 6.4.1. If f is ordinary, then

LP(f/K,Σ(1))(ψP) = − E(f, ψ, 1)(
1− β

α

)(
1− β

pα

) 〈logp,V (zf,ψ1 ), ηur
f ⊗ ωg

〉
,

and if p is split, then

LP(f/K,Σ(2))(ψP) = − E(ψ, f, 1)(
1− ψ(p)

ψ(p)

)(
1− ψ(p)

pψ(p)

) 〈logp,V (zf,ψ1 ), ωf ⊗ ηur
gψ

〉
.

7. Bounding Selmer groups

7.1 Big image results

In this section, we collect some results we will need regarding the image of Gal(K/K) acting on
the representation T = TO(f)∗(ψ−1

P ) and V = T [1/p]. Let Kab be the maximal abelian extension
of K.

We impose the following assumption on f , which will be in force for the remainder of this
paper:

Assumption 7.1.1. The modular form f is not of CM type.

Under this assumption, it has been shown by Momose [Mom81] that there is a number field
F ⊆ L, a quaternion algebra B/F , and an embedding B ↪→ M2×2(L), such that for any prime
P of L, the image of GQ in AutVLP

(f)) ∼= GL2(LP) contains an open subgroup of the group

{x ∈ (B ⊗F FP)× : norm(x) ∈ Q×p }

(where FP denotes the completion of F at the prime below P, and norm is the reduced norm
map of B).

We now impose a restriction on the prime P:

Assumption 7.1.2. The quaternion algebra B is unramified at P, so (B ⊗F FP)× = GL2(FP).

Remark 7.1.3. Note that B is split over the field generated by the Fourier coefficients of f ; so if
f has rational coefficents, B must be the split algebra and this assumption is automatic. In any
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case, the set of primes ramified in B is finite, and it has been shown [GGJQ05] that the primes
ramifying in B are a subset of the primes dividing 2Nf disc Q(f).

Proposition 7.1.4.

(i) The representation V is irreducible as a representation of Gal(K/Kab).

(ii) There exists an element τ ∈ Gal(K/Kab) (the derived subgroup of Gal(K/K)) such that
V/(τ − 1)V is 1-dimensional.

(iii) There exists an element γ ∈ Gal(K/Kab) such that V γ=1 = 0.

Proof. Because of our two assumptions above, Momose’s theorem shows that there is an LP-basis
of VLP

(f) such that the image of Gal(Q/Q) in GL2(LP) with respect to this basis contains an

open subgroup of GL2(Zp). The subgroup Gal(K/K) is open, so its image also contains an open
subgroup of GL2(Zp). However, the derived subgroup of an open subgroup of GL2(Zp) is an open
subgroup of SL2(Zp), so the image of Gal(K/Kab) contains an open subgroup of SL2(Zp).

This certainly implies that V is irreducible restricted to Gal(K/Kab). Moreover, it implies

that the image of Gal(K/Kab) in AutLP
(V ) contains an element of the form

(
1 x
0 1

)
with x 6= 0;

since Gal(K/Kab) acts trivially on the one-dimensional representation LP(ψ)∗, it follows that a
τ as in (ii) exists.

Finally, the existence of a γ as in (iii) is rather obvious: we may find y ∈ Z×p with y 6= 1, but

y sufficiently close to 1 that

(
y 0
0 y−1

)
is in the image of Gal(K/Kab).

If we impose an additional assumption on f then we have stronger results:

Notation 7.1.5. We say f has big image at P if the image of Gal(Q/Q) in the group AutTO(f)
contains a conjugate of SL2(Zp).

By a theorem of Ribet [Rib85], since we are assuming that f is not of CM type, it has big
image at almost all primes of L.

Proposition 7.1.6. Suppose that f has big image at P. Then

(i) T/PT is irreducible as a representation of Gal(K/Kab).

(ii) There exists τ ∈ Gal(K/Kab) such that T/(τ − 1)T is free of rank 1 over O.

(iii) We have

H1(Ω/K, T ⊗Zp Qp/Zp) = H1(Ω/K, T ∗(1)⊗Zp Qp/Zp) = 0,

where Ω is the smallest extension of K containing K(1)K(µp∞) and such that Gal(K/Ω)
acts trivially on T .

(iv) The O-module H1(K,T ) is free.

Proof. For p > 2 the group SL2(Zp) has no normal subgroups of index 2. Thus the intersection
of the image of Gal(K/K) with the conjugate of SL2(Zp) inside AutTOL,P(f) must be the whole
of SL2(Zp). As SL2(Zp) is equal to its commutator subgroup, we deduce that the image of
Gal(K/Kab) in AutT also contains a conjugate of SL2(Zp). Thus (i) is obvious, and for (ii) we

can take τ to be any element mapping to

(
1 1
0 1

)
.
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We now prove (iii). Let γ ∈ Gal(K/Kab) be such that γ maps to −1 ∈ SL2(Zp). Then the
subgroup S of G = Gal(Ω/K) generated by the image of γ is in the centre of G and satisfies
H0(S, T ⊗Qp/Zp) = H1(S, T ⊗Qp/Zp) = 0, and similarly for T ∗(1). Via the inflation-restriction
exact sequence the required vanishing follows.

Lastly, we check the freeness statement. From the cohomology long exact sequence arising

from 0 → T
×$- T → T/PT → 0, where $ is a uniformizer of OL,P, we have a surjection

H0(K,T/PT )� H1(KΣ/K, T )[P]; but we know that H0(K,T/PT ) = 0, so H1(K,T ) is torsion-
free and thus free.

7.2 Selmer groups: definitions

We now recall the definitions of some Selmer groups we will need. For this section (only), K may
be any number field, and T any O-linear representation of Gal(K/K) unramified at almost all
primes. Let T∨ = HomO(T,E/O) be the Pontryagin dual of T .

Definition 7.2.1 (cf. [Rub00, Definition 1.5.1]). Let Σ be a finite set of places of K. We define

SelΣ(K,T∨(1)) = ker

(
H1(K,T∨(1))→

⊕
v/∈Σ

H1(Kv, T
∨(1))

H1
f (Kv, T∨(1))

)
,

and

SelΣ(K,T∨(1)) = ker

(
SelΣ(K,T∨(1))→

⊕
v∈Σ

H1(Kv, T
∨(1))

)
.

When Σ is the empty set, we simply write Sel(K,T∨(1)) for Sel∅(K,T∨(1)) = Sel∅(K,T∨(1)),
the Bloch–Kato Selmer group. We write Σp for the set of primes of K above p.

7.3 Bounding the strict Selmer group

Let us use the notation

zf,ψ ∈ H1(K,T )

for the image of zf,ψ1 under evaluation at the trivial character of H
(p)
1 .

Theorem 7.3.1 (Selmer finiteness). Suppose that either

– p is split in K and Pp

(
ψ(p)
p

)
6= 0;

– or p is inert in K and vP(ap(f)) < 1
2 .

If zf,ψ 6= 0, then SelΣp(K,T
∨(1)) is finite.

Proof. This follows by applying Theorem 2.2.3 of [Rub00] to our Euler system.

Suppose we are in the inert case. Let Σ be the set of primes of K dividing N , where N = pNf f
as before. Via Theorem 5.3.2 we have an Euler system for (T,K,N ) in which the base class over
K is non-torsion. Moreover, Rubin’s hypothesis Hyp(K,V ) is satisfied by Proposition 7.1.4. Our
K does not contain a Zp-extension, but by Proposition 5.4.3 every class in our Euler system is in
H1
f away from p, so we may use the modified version of Theorem 2.2.3 assuming the condition

(ii’)(b) in §9.1 of op.cit.; the element γ called for in this case is supplied by Proposition 7.1.4; it
is clear that TGK(1) = 0, so the modified version of Rubin’s Theorem 2.2.3 applies and we deduce
that SelΣp(K,T

∨(1)) is finite.
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When p is split we proceed slightly differently: for each n coprime to N , we replace zf,ψn with
the element

ẑf,ψn := N np
n

(
zf,ψnp

)
.

Our assumption that Pp

(
ψ(p)
p

)
6= 0 implies that ẑf,ψ 6= 0 if and only if zf,ψ 6= 0. Moreover,

each class ẑf,ψn is a universal norm from the Zp-extension K(np∞)/K(n), and is therefore in H1
f

locally away from p. We now proceed as before.

(Alternatively, we can replace K with the compositum K′, of K and K(p∞); the ẑf,ψn extend
to an Euler system for (T,K′,N ), and we can now apply Rubin’s theorem 2.2.3 in its original
form.)

We now give a bound for the fine Selmer group.

Theorem 7.3.2 (Bound for Selmer). Suppose that the modular form f has big image at P, and
one of the following hypotheses holds:

– p is split in K and no root of Pp

(
ψ(p)
p X

)
is a p-power root of unity;

– p is inert in K and vP(ap(f)) < 1
2 .

If zf,ψ is non-torsion, then we have the bound

`O
(
SelΣp(K,T

∨(1))
)
6 indO

(
zf,ψ

)
,

If p is split in K, but Pp

(
ψ(p)
p X

)
does have a root that is a p-power root of unity, then we

have

`O
(
SelΣp(K,T

∨(1))
)
6 indO

(
zf,ψ

)
+ vPPp

(
ψ(p)

p

)
.

Proof. We now apply Theorem 2.2.2 of [Rub00] rather than Theorem 2.2.3. The additional
hypothesis Hyp(K,T ) required in this theorem is supplied by Proposition 7.1.6, which also shows
that the quantities nW and n∗W appearing in Rubin’s statement are both zero in our setting.

The first statement corresponds to applying Rubin’s theorem to the Euler system for (T,K,N )
as in the proof of the previous theorem. By proposition 5.4.3, our slightly stronger assumption
on Pp in the split case implies that all the classes in this system are in H1

f away from p.

If Pp

(
ψ(p)
p X

)
does have roots that are p-power roots of unity, then we instead use the modified

Euler system ẑψn as in the previous proof. We have

indO

(
ẑf,ψ

)
= indO

(
zf,ψ

)
+ vPPp

(
ψ(p)

p

)
and this gives the weaker Selmer bound in this case.

Remark 7.3.3. If p is split and Pp

(
ψ(p)
p

)
= 0, then the statement of Theorem 7.3.2 is still true,

but vacuous (the upper bound is ∞). This should perhaps be understood as a “trivial zero”
phenomenon.

7.4 Bounding the Bloch–Kato Selmer group

We now show that the Euler system can also be used to bound the Bloch–Kato Selmer group
Sel(K,T∨(1)). Sadly we can only do this under very much more restrictive local hypotheses.
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Assumption 7.4.1. The following conditions are satisfied:

(i) p is split in K.

(ii) The modular form f is ordinary at p (i.e. vP(ap(f)) = 0).

(iii) We have αψ(p) 6= 1 mod P and βψ(p)
p 6= 1, where α and β are the unit and non-unit roots

of the Hecke polynomial of f at p.

(iv) We have αψ(p)
p /∈ µp∞ .

Theorem 7.4.2. Assume that f is not of CM type and Assumption 7.4.1 holds. Then, if zf,ψ 6= 0,
the Bloch–Kato Selmer group Sel(K,T∨(1)) is finite.

If in addition f has big image at P, then we have

`O
(
Sel(K,T∨(1))

)
6 indO

(
zf,ψ

)
.

Proof. This follows by applying a modified version of the Euler system machinery which is
summarized by Theorem B.2.2 in Appendix B below. So we must prove that the hypotheses of
that theorem are satisfied.

We need to show that for v = p, p, there is a subspace V +
v ⊆ V stable under the decomposition

groupDv satisfying the conditions of Corollary §B.1.5. Recall that, since f is ordinary, there exists
a unique one-dimensional unramified subrepresentation F+VE(f) ⊂ VE(f) stable under Dp. We
define V +

p by

V +
p =

(
VE(f)

F+VE(f)

)∗
(ψ−1

P ) ⊂ VE(f)∗(ψ−1) = V.

Meanwhile, we define V +
p = V . Then for each v, the space V +

v is the unique subrepresentation of
V |Dv such that V +

v has all Hodge–Tate weights > 1 and V/V +
v has all Hodge–Tate weights 6 0.

We set T+
v = V +

v ∩ T . I claim that H0(Kv, (T/T
+
v ) ⊗ k) = 0. For v = p this is selfevident,

since T+
p = Tp. For v = p, we know that T/T+

p is unramified, with geometric Frobenius acting

as ψ(p)−1α−1; by assumption this quantity is not congruent to 1 modulo p, so the H0 vanishes.

The hypothesis that V +
v has no cyclotomic quotient follows from the assumptions that

αψ(p)/p /∈ µp∞ (so in particular this quantity is not 1) and that βψ(p)/p 6= 1.

Finally, our classes zf,ψn for (n, p) = 1 have good reduction everywhere, by Propositions 5.4.3
and 5.4.5; this is where we use the assumption αψ(p)/p /∈ µp∞ . This completes the verification of

the additional hypotheses needed to apply Theorem B.2.2 to the Euler system {zf,ψn : n - N}.

7.5 Critical Selmer groups: motivation

Our final result on bounding Selmer groups will be an application of Theorem B.2.3 to bound
the Selmer group of T∨(1) with even weaker local conditions at p.

Before doing so, we shall briefly explain some ideas from the Iwasawa theory of f over the
Z2
p-extension of K; these ideas play no role in the proofs, but serve to motivate our choice of

local conditions. Recall the definitions of the regions Σ(i) in Figure 1.

Let us suppose that f is ordinary at p, so VE(f)|Dp has a one-dimensional unramified sub-
representation F+VE(f) (on which geometric Frobenius acts as multiplication by the unit root
of the Hecke polynomial). If Ψ is a Grössencharacter with infinity-type in Σ(1), and the local
L-factors of Mf (Ψ)(1) and its dual at p and p do not vanish at s = 1, then for v = p, p, we have

H1
f (Kv, VE(f)(Ψ)(1)) = H1(Kv,F

+VE(f)(Ψ)(1)).
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Meanwhile, whether or not f is ordinary, for Ψ ∈ Σ(2) we have

H1
f (Kp, VE(f)(Ψ)(1)) = 0,

H1
f (Kp, VE(f)(Ψ)(1)) = H1(Kp, VE(f)(Ψ)(1)),

and similarly for Σ(2′) with p and p reversed. In each of these critical regions, the Bloch–Kato
conjecture predicts that the Selmer group Sel(K,TO(f)(Ψ)(1) ⊗ Qp/Zp) is controlled by the
algebraic part of the critical L-value L(f/K,Ψ, 1); in particular, for a “generic” character in
these regions the Bloch–Kato Selmer group should be finite.

Passing to a direct limit over extensions of K contained in K(fp∞), we obtain three Selmer
groups Sel(K(fp∞), TO(f)(1)⊗Qp/Zp,Σ

(i)), which are Λ(Hfp∞)-modules interpolating the Bloch–
Kato Selmer groups for critical Ψ’s in the corresponding regions. These are the algebraic coun-
terparts of the three p-adic L-functions defined in the previous section.

The theorem of the next subsection should then be understood as follows. We shall show,
roughly, that if we specialize either of the groups Sel(K(fp∞), TO(f)(1) ⊗ Qp/Zp,Σ

(1)) and
Sel(K(fp∞), TO(f)(1) ⊗ Qp/Zp,Σ

(2)) at a character ψP of Hfp∞ corresponding to a Grössen-
character of conductor prime to p and infinity-type (−1, 0) – thus lying in Σ(3), rather than
any of the three critical regions – then this specialization is controlled by the value at ψ of the
corresponding p-adic L-function.

7.6 Critical Selmer groups: the theorems

Let T = TO(f)∗(ψ−1), as before, so that

T∨(1) =

(
VE(f)

TO(f)

)
(ψ)(1).

Throughout this section we continue to impose the assumptions 7.4.1. We shall define two Selmer
groups Sel(K,T∨(1),Σ(1)) and Sel(K,T∨(1),Σ(2)).

Definition 7.6.1. (i) The group Sel(K,T∨(1),Σ(1)) consists of all classes c ∈ SelΣp(K,T∨(1))
such that for v = p, p we have

locv(c) ∈ imageH1
(
Kv,F

+VE(f)(ψ)(1)
)
.

(ii) The group Sel(K,T∨(1),Σ(2)) consists of all classes c ∈ SelΣp(K,T∨(1)) such that locp(c) =
0 (with no condition on locp(c)).

Note that the Bloch–Kato Selmer group Sel(K,T∨(1)) is exactly the intersection of the groups
Sel(K,T∨(1),Σ(1)) and Sel(K,T∨(1),Σ(2)).

We now relate these Selmer groups to linear functionals on the local H1
f defined using the

Bloch–Kato logarithm map. Recall the vectors ηur
f ⊗ ωg and ωur

g ⊗ ωf appearing in §6 above. In

our situation, for g = gψ a CM form and p split, we have VE(gψ) ∼= IndQ
K(ψP); and thus

Fil1 DdR(VE(f)⊗ VE(g)) = Fil1 DdR(Kp, V
∗)⊕ Fil1 DdR(Kp, V

∗),

since V ∗ = VE(f)(ψP). Clearly we have

ηur
f ⊗ ωg ∈ Fil1 DdR(Kp, V

∗) = DdR(Kp, V
∗),

and ωf ⊗ ηur
g ∈ Fil1 DdR(Kp, V

∗).

Proposition 7.6.2. (i) The kernel of the linear functional λ1 : H1
f (Kp, V

∗)→ E given by

x 7→
〈

logKp,V (x), ηur
f ⊗ ωg

〉
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is H1
(
Kp,

(
VE(f)

F+VE(f)

)∗
(ψ−1)

)
.

(ii) The linear functional λ2 : H1
f (Kp, V

∗)→ E given by

x 7→
〈

logKp,V
(x), ωf ⊗ ηur

g

〉
is injective.

Equivalently, for i = 1, 2, the local condition defining Sel(K,T∨(1),Σ(i)) is the orthogonal
complement of the kernel of λi.

Proof. Our local assumptions at p imply that the Bloch–Kato logarithm is an isomorphism
of E-vector spaces from H1(Kp, V ) = H1

f (Kp, V ) to DdR(Kp, V ). The orthogonal complement
of ηur

f ⊗ ωg is the eigenspace of slope 2, which corresponds to DdR of the subrepresentation(
VE(f)

F+VE(f)

)∗
(ψ−1). Thus the kernel of λ1 is exactly the cohomology of this subrepresentation.

Likewise, our local assumptions at p imply that of 1-dimensional E-vector spaces

H1
f (Kp, V )

∼=-
(
Fil1 DdR(Kp, V

∗)
)∗
,

and ωf⊗ηur
g is a nonzero element of Fil1 DdR(Kp, V

∗), so the linear functional λ1 given by pairing
with this element is injective.

Applying Theorem B.2.3 gives the following:

Corollary 7.6.3. Let i ∈ {1, 2}. If λi
(
locp zf,ψ

)
6= 0, then the Selmer group Sel(K,T∨(1),Σ(i))

is finite.

If, in addition, f has big image at P, then we have

`O

(
Sel(K,T∨(1),Σ(i))

)
6 vPλi

(
locp zf,ψ

)
+ ci, (2)

where ci is the integer such that λi

(
H1
f (K ⊗Qp, T )

)
= P−νiO.

We now relate the right-hand side to an L-value. By Proposition 6.10.8 of [LLZ14], the
quantities c1 and c2 are bounded above in terms of the congruence ideals If and Igψ of f and gψ
respectively (cf. [LLZ14, Definition 6.10.4]). On the other hand, Theorem 6.4.1 tells us that

λ1(zf,ψ) = −E(f)E∗(f)

E(f, ψ, 1)
LP(f,Σ(1))(ψ),

and similarly

λ2(zf,ψ) = −
E(gψ)E∗(gψ)

E(ψ, f, 1)
LP(f,Σ(2))(ψ).

Substituting and deleting factors which are obviously in O×, we obtain:

Theorem 7.6.4. If f has big image at P, we have the bounds

`O

(
Sel(K,T∨(1),Σ(1))

)
6 vP

(
(1− p−1βα−1)

(1− p−1βψ(p))
LP(f,Σ(1))(ψ)

)
+ vP(If )

and

`O

(
Sel(K,T∨(1),Σ(2))

)
6 vP

(
(1− p−1ψ(p)ψ(p)−1)

(1− p−1ψ(p)α)
LP(f,Σ(2))(ψ)

)
+ vP(Igψ).
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Remark 7.6.5. The appearance of the factors vP(If ) and vP(Igψ) is a consequence of our nor-

malization of periods: the L-functions LP(f,Σ(i)) are defined by interpolating the quotient of
L-values L(f/K,ψ, 1) for ψ ∈ Σ(i) by Petersson norms (of f for i = 1, and of the appropriate

CM form gλ for i = 2). The congruence ideals If and Igψ are related to the quotients 〈f,f〉
Ω+
f Ω−f

,

where Ω±f are the canonical periods, and similarly for gψ; these are essentially the algebraic parts
of critical values of the adjoint L-function.

Appendix A. Proofs of the norm relations

In this appendix, we give the proof of Theorem 2.2.2.

A.1 Preliminaries

Recall the definition of the modular curve Y (m,N), for integers m > 1 and N > 5 with m |
N , given in [LLZ14, §2.1]. The curve Y (m,N) is an irreducible variety over Q, but it is not
geometrically connected if m > 3, since there is a surjective map Y (m,N) → Spec Q(µm)
with geometrically connected fibres (Definition 2.1.6 of op.cit.). When we take products such
as Y (m,N)2 or Y (m,N) × Y (m,N ′), we shall always understand the fibre product to be over
Spec Q(µm) (not over Spec Q).

For m,N as above, c > 1 an integer coprime to 6N , and j ∈ Z/mZ, let cZ(m,N, j) denote
the class in CH2(Y (m,N)2, 1) constructed in §2.6 of op.cit.. (We have made a slight change
of notation from op.cit.; in the notation of our previous work this class would be denoted by

cZm,N/m,j .)
Given integers N,N ′ > 5, both divisible by m, we define

cZ(m,N,N ′, j) ∈ CH2(Y (m,N)× Y (m,N ′), 1)

as the pushforward of cZ(m,R, j) along the natural degeneracy map Y (m,R)2 → Y (m,N) ×
Y (m,N ′), for some integer R divisible by N and N ′ and with the same prime factors as NN ′.
As in §2.1 above, this element is independent of the choice of R, by Theorem 3.1.1 of [LLZ14].

For ` prime, we write pr1, pr2 for the maps Y (m,N`)→ Y (m,N) given by z 7→ z and z 7→ `z,
as in the Y1 case above.

A.2 Norm relations for symmetric Z’s

Lemma A.2.1. We have

(pr1×pr2)∗ (cZ(m, `N, j)) =

{
(U ′`, 1) · cZ(m,N, `j) if ` | N ,[
(T ′`, 1)∆`−1 − (〈`−1〉, T ′`)∆`−2

]
· cZ(m,N, j) if ` - N ,

where ∆x, for x ∈ (Z/mZ)×, denotes the action of any element of GL2(Z/NZ)2 of the form((
y 0
0 1

)
,

(
y 0
0 1

))
with y = x mod m, and in the second case 〈`−1〉 denotes the action of the

element

(
` 0
0 `−1

)
∈ SL2(Z/NZ).

Proof. Consider the intermediate modular curve Y (m,N(`)) (notation as in [Kat04, §2.8]). Both
pr1 and pr2 factor through the natural projection α : Y (m,N`) → Y (m,N(`)), and we have a
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commutative diagram

Y (m,N`) ⊂

(
1,
(

1 j
0 1

))
- Y (m,N`)2

Y (m,N(`))

α

?
⊂

(
1,
(

1 j
0 1

))
- Y (m,N(`))2.

α× α

?

Let Cm,N(`),j be the image of the lower horizontal map. The pushforward of cg0,1/N` ∈ O(Y (m,N`))×

to O(Y (m,N(`)))× is given by

ϕ∗`
(
cg0,1/N

)
if ` | N , and by

ϕ∗`
(
cg0,1/N

)
·
(
cg0,“`−1”/N

)−1

if ` - N ; see [Kat04, §2.13]. Here ϕ` is the map Y (m,N(`))→ Y (m(`), N) given by z 7→ `z. Thus

(α× α)∗ (cZ(m,N`, j)) =

{(
Cm,N(`),j , ϕ

∗
`

(
cg0,1/N

))
if ` | N ,(

Cm,N(`),j , ϕ
∗
`

(
cg0,1/N

))
−
(
Cm,N(`),j , cg0,“`−1”/N

)
if ` - N .

Now let π1 and π2 be the degeneracy maps Y (m,N(`))→ Y (m,N), so that pri = πi ◦α. We
must study the image of the elements given above under pushforward by the map π1 × π2. We
claim that:

– If ` | N , then

(π1 × π2)∗
(
Cm,N(`),j , ϕ

∗
`

(
cg0,1/N

))
= (U ′`, 1) · cZ(m,N, `j). (3)

– If ` - N , then

(π1 × π2)∗
(
Cm,N(`),j , ϕ

∗
`

(
cg0,1/N

))
= (T ′`, 1) · cZ(m,N, `j) (4a)

and

(π1 × π2)∗
(
Cm,N(`),j , cg0,“`−1”/N

)
= (〈`−1〉, T ′`)σ−2

` · cZ(m,N, j). (4b)

For formulae (3) and (4a), we use the isomorphism ϕ` : Y (m,N(`)) ∼= Y (m(`), N) to write

(π1 × π2)∗
(
Cm,N(`),j , ϕ

∗
`

(
cg0,1/N

))
= (π′2 × π′1)∗

(
C′m,N(`),j , cg0,1/N

)
where C′m,N,j is the locus of points in Y (m(`), N) of the form (z, z+`j), and π′1, π

′
2 : Y (m(`), N)→

Y (m,N) are given by z 7→ z and z 7→ z/` respectively. However, one sees readily that under
1 × π′1, C′m,N(`),j maps isomorphically to its image in Y (m(`), N) × Y (m,N), and this image

coincides with the inverse image of Cm,N,`j under the map π′1 × 1. Hence

(π′2 × π′1)∗

(
C′m,N(`),j ,

(
cg0,1/N

))
= (π′2 × 1)∗(π

′
1 × 1)∗

(
Cm,N,`j , cg0,1/N

)
;

and the map (π′2 × 1)∗(π
′
1 × 1)∗ is the definition of the operator (U ′`, 1) or (T ′`, 1) in the cases

` | N or ` - N respectively.

For formula (4b), we note similarly that Cm,N,j maps isomorphically to its image Y (m,N)×
Y (m,N(`)); and if we temporarily write cZ(m,N, j, α), for α ∈ Z/NZ, for the analogue of

cZ(m,N, j) formed with cg0,α/N in place of cg0,1/N , then it is immediate from the definitions
that

(π1 × π2)∗
(
Cm,N(`),j , cg0,“`−1”/N

)
= (1, T`) · cZ(m,N, j, `−1),
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(since T` acts as (π2)∗(π1)∗). But we also have the relation

cZ(m,N, j, `−1) =

((
`−1 0
0 `−1

)
,

(
`−1 0
0 `−1

))
· cZ(m,N, j) = (〈`−1〉, 〈`−1〉)∆`−2 · cZ(m,N, j),

and T` = 〈`〉T ′` (see [Kat04, §4.9]), hence

(π1 × π2)∗
(
Cm,N(`),j , cg0,“`−1”/N

)
= (1, T`) · cZ(m,N, j, `−1)

= (1, T`) ·
(
〈`−1〉, 〈`−1〉

)
∆−2
` · cZ(m,N, j)

= (〈`−1〉, T ′`)∆`−2 · cZ(m,N, j)

as required.

Remark A.2.2. As we shall see in the following subsections, all of the norm relations we use
in both this paper and our previous paper [LLZ14] can be derived from Theorems 3.1.1 and
3.3.1 of [LLZ14] and the above lemma, using only elementary identities for Hecke operators and
pushforward maps.

A.3 Norm relations for asymmetric Z’s

We now state and prove a theorem which is the analogue of Theorem 2.2.2 for the elements

cZ(m,N,N ′, j).

Theorem A.3.1. Let m > 1, N,N ′ > 5 be integers with m | N and m | N ′, ` a prime, j ∈ Z/mZ,
and c > 1 an integer coprime to 6`NN ′.

(a) We have

(1×pr1)∗
(
cZ(m,N, `N ′, j)

)
=

cZ(m,N,N ′, j) if ` | NN ′,[
1−

((
`−1 0
0 `−1

)
,
(
`−1 0
0 `−1

))∗]
· Z(m,N,N ′, j) if ` - NN ′,

where in the latter case
((

`−1 0
0 `−1

)
,
(
`−1 0
0 `−1

))
is considered as an element of GL2(Z/NZ)×

GL2(Z/N ′Z).

(b) We have

(1× pr2)∗
(
cZ(m,N, `N ′, j)

)
=


(U ′`, 1) · cZ(m,N,N ′, `j) if ` | N ,[
(T ′`, 1)σ−1

` − (〈`−1〉, U ′`)σ
−2
`

]
· cZ(m,N,N ′, j) if ` - N but ` | N ′,[

(T ′`, 1)σ−1
` − (〈`−1〉, T ′`)σ

−2
`

]
· cZ(m,N,N ′, j) if ` - NN ′.

where in the second and third cases σ−1
` denotes any element of GL2(Z/NZ)×GL2(Z/N ′Z)

congruent to
((

`−1 0
0 1

)
,
(
`−1 0
0 1

))
modulo m.

Proof. Part (i) is immediate from Theorem 3.1.1 of [LLZ14] (we have only included it here for
completeness).

We will reduce part (ii) to properties of the “symmetric” zeta elements cZ(m,N, j). As usual,
let R be an integer divisible by N and N ′ and with the same prime factors as NN ′. We have a
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commutative diagram

Y (m, `R)2 - Y (m,N)× Y (m, `N ′)

Y (m,R)2

pr1×pr2

?
- Y (m,N)× Y (m,N ′)

1× pr2

?

where the horizontal arrows are the natural degeneracy maps; and the elements cZ(m,N, `N ′, j)
and cZ(m,N,N ′, j) are by definition the pushforwards of cZ(m, `R, j) and cZ(m,R, j) along
these horizontal maps.

If ` | N , then ` | R, so we may apply the first case of Lemma A.2.1 to deduce that

(π1 × π2)∗cZ(m, `R, j) = (U ′`, 1)cZ(m,R, `j).

The assumption that ` | N implies that U ′` commutes with the pushforward map Y (m,R) →
Y (m,N), so we are done in this case.

If ` - N , but ` | N ′, then the pushforward from Y (m,R) to Y (m, `N) commutes with U ′`, but
from level N` to level N we have the commutation relation (pr1)∗◦U ′` = T ′`◦(pr1)∗−〈`−1〉◦(pr2)∗.
Thus the pushforward of (U ′`, 1)cZ(m,R, `j) is

(T ′`, 1)cZ(m,N, `j)− (〈`−1〉, 1)(pr2×pr1)∗cZ(m, `N,N ′, `j).

Since ` | N ′ we can apply the previously-considered case to conclude that

(pr2×pr1)∗cZ(m, `N,N ′, `j) = (1, U ′`)cZ(m,N,N ′, `2j)

as required.

This leaves only the case ` - NN ′. Then ` - R, so the pushforward Y (m,R)2 → Y (m,N) ×
Y (m,N ′) commutes with (T ′`, 1) and (1, T ′`); and we are done by the second case of Lemma
A.2.1.

A.4 Norm relations for cΞ’s: proof of Theorem 2.2.2

We now deduce Theorem 2.2.2 from Theorem A.3.1. Let us begin by recalling the relation between
the classes Z(m,N,N ′, j) of the preceding sections and the classes cΞ(m,N,N ′, j) of Definition
2.1.1.

Recall the map tm : Y (m,mN) → Y1(N) × Spec Q(µm) defined in §2.1 of [LLZ14]. This
map commutes with the operators T ′` for ` - mN , U ′` for ` | N , and 〈d〉 for all d. Moreover, it

intertwines the action of

(
` 0
0 1

)
with the arithmetic Frobenius σ`. Moreover, for i = 1, 2 we

have pri ◦ tm = tm ◦ pri as maps Y (m, `mN)→ Y1(N)× Spec Q(µm).

It is immediate from the definitions that we have

cΞ(m,N,N ′, j) = (tm × tm)∗
(
cZ(m,mN,mN ′, j)

)
. (5)

Let us now recall the statement of the theorem.

Theorem A.4.1 (Theorem 2.2.2). Let m > 1, N,N ′ > 5 be integers, ` a prime, j ∈ Z/mZ, and
c > 1 an integer coprime to 6`mNN ′. Let pr1,pr2 be the two degeneracy maps Y1(`N ′)→ Y1(N ′),
corresponding to z 7→ z and z 7→ `z respectively.
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(a) We have

(1× pr1)∗
(
cΞ(m,N, `N ′, j)

)
=

{
cΞ(m,N,N ′, j) if ` | mNN ′,[
1− (〈`−1〉, 〈`−1〉)σ−2

`

]
· cΞ(m,N,N ′, j) if ` - mNN ′.

(b) The pushforward (1× pr2)∗ (cΞ(m,N, `N ′, j)) is given by the following formulae:

(i) if ` | N , then

(1× pr2)∗
(
cΞ(m,N, `N ′, j)

)
= (U ′`, 1) · cΞ(m,N,N ′, `j);

(ii) if ` - N but ` | N ′,then

(1×pr2)∗
(
cΞ(m,N, `N ′, j)

)
= (T ′`, 1) · cΞ(m,N,N ′, `j)− (〈`−1〉, U ′`) · cΞ(m,N,N ′, `2j);

(iii) if ` - mNN ′, then

(1× pr2)∗
(
cΞ(m,N, `N ′, j)

)
=
[
(T ′`, 1)σ−1

` − (〈`−1〉, T ′`)σ−2
`

]
· cΞ(m,N,N ′, j).

Proof. Using equation (5), part (a) of the theorem follows directly from Theorem A.3.1(a), and
many cases of part (b) follow from Theorem A.3.1(b): more precisely, all the cases where ` - m are
immediate, as are all the cases where ` | N , since in these cases the map (tm × tm)∗ intertwines
the relevant Hecke operators on Y (m,mN)×Y (m,mN ′) with those on Y1(N)×Y1(N ′)×Q(µm).

The only case that remains is (ii) with ` | N . In this case, we can argue that

(1× pr2)∗cΞ(m,N, `N ′, j) = (1× pr2)∗(pr1×1)∗cΞ(m, `N, `N ′, j)

= (pr1×1)∗(1× pr2)∗cΞ(m, `N, `N ′, j)

= (pr1×1)∗(U
′
`, 1)cΞ(m, `N,N ′, `j)

= (T ′`, 1)(pr1×1)∗cΞ(m, `N,N ′, `j)

− (〈`−1〉, 1)(pr2×1)∗cΞ(m, `N,N ′, `j).

Since ` | N ′, both of these terms can be calculated using previously-considered cases of the
present theorem: the first term is (T ′`, 1)cΞ(m,N,N ′, `j), by part (a), while the second term is
(〈`−1〉, U ′`)cΞ(m,N,N ′, `2j) by part (b)(i) (with the roles of N and N ′ interchanged).

Remark A.4.2. In the above theorem, we excluded the most awkward case, which is when ` | m
but ` - NN ′. We briefly indicate how to obtain a formula in this case as well. In this setting,
applying the argument of the final paragraph of the proof above shows that

(1× pr2)∗cΞ(m,N, `N ′, j) = (T ′`, 1)cΞ(m,N,N ′, `j)− (〈`−1〉, 1)(pr2×1)∗cΞ(m, `N,N ′, `j).

Proceeding inductively, interchanging the roles of N and N ′ at each step, we find that for any
h > 0 we have

(1× pr2)∗cΞ(m,N, `N ′, j) =

(T ′`, 1)
∑

16a6h
a odd

(〈`−1〉, 〈`−1〉)(a−1)/2
cΞ(m,N,N ′, `aj)

− (〈`−1〉, T ′`)
∑

26a6h
a even

(〈`−1〉, 〈`−1〉)(a−2)/2
cΞ(m,N,N ′, `aj)

+

{
(〈`−1〉h/2, 〈`−1〉h/2)(1× pr2)∗cΞ(m,N, `N ′, `hj) if h even,

−(〈`−1〉(h+1)/2, 〈`−1〉(h−1)/2)(pr2×1)∗cΞ(m, `N,N ′, `hj) if h odd.
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If we take h = vp(m), then cΞ(m, `N,N ′, `hj) = cΞ(`−hm, `N,N ′, j) etc, and we can now apply
the formulae in the ` - mNN ′ case previously studied.

Appendix B. Euler systems with crystalline local conditions

In this appendix we’ll prove some theorems which are slight variations on the results of [Rub00].
This section is the outcome of an email exchange with Karl Rubin and we are very grateful to
him for his patient explanations; any mistakes below are, however, ours.

B.1 Local properties of Kolyvagin classes

Let K be a number field, n an integral ideal of K, and K a pro-p extension6 of K containing K(q)
for every prime q - n. We consider a finite extension E/Qp with ring of integers O and residue
field k, and a finite-rank free O-module T with an action of Gal(K/K) unramified outside the
primes dividing n. For M ∈ O, let WM = T/MT .

Let c = {cF : K ⊂f F ⊂ K} an Euler system for (T,K, n) in the sense of [Rub00]. Recall the
construction – cf. [Rub00, §4.4] – of “Kolyvagin derivative” classes

κ[r,M ] ∈ H1(K,WM )

for each r ∈ RM , where RM = RK,M is the set of ideals of K defined in Definition 4.1.1 of
op.cit..

We shall not need the details of the construction here; let it suffice to note the following
property:

Proposition B.1.1 (cf. [Rub00, Proposition 4.4.13]). The restriction

resK(r)/K

(
κ[r,M ]

)
∈ H1(K(r),WM )

is the image modulo M of Dr

(
cK(r)

)
∈ H1(K(r), T ), where Dr is a certain element of the group

ring Z[Gal(K(r)/K)].

We are interested in the local properties of κ[r,M ] at primes of K not dividing r (but possibly
dividing p). Let v be a prime of K dividing n. We make the following assumption:

Assumption B.1.2. The following conditions are satisfied:

(i) There exists a subspace V + ⊆ V stable under GKv .

(ii) We have

H0(Kv, (T/T
+)⊗ k) = 0,

where T+ = T ∩ V +.

Remark B.1.3. Note that if assumption (ii) is satisfied, we automatically have the apparently
stronger result that H0(L, (T/T+) ⊗ k) = 0 for any finite Galois extension L/Kv of p-power
degree, since if H0(L, (T/T+) ⊗ k) were nonzero, it would be a finite-dimensional Fp-vector
space equipped with an action of the finite p-group Gal(L/Kv), so it would necessarily have
non-zero invariants under this p-group, contradicting our assumption (ii).

6This is perhaps not quite standard terminology: we mean that K is a possibly infinite extension of K which is a
union of finite extensions of p-power degree.
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Theorem B.1.4. Suppose T satisfies Assumption B.1.2, and the Euler system c has the property
that for every K ⊂f F ⊂ K, and each prime w | v of F , we have

locw (cF ) ∈ H1(Fw, V
+) ⊆ H1(Fw, V ).

Then for any nonzero M ∈ O and any r ∈ RM , we have

locv
(
κ[r,M ]

)
∈ H1(Kv,W

+
M ) ⊂ H1(Kv,WM ),

where W+
M is the image of T+ in WM .

(Note that W+
M = T+/MT+, since T+ is saturated in T .)

Proof. From the remark above, we know that for every K ⊂f F ⊂ K, and each w | v of F ,
we have an injection H1(Fw, T

+) ↪→ H1(Fw, T ), and the cokernel is torsion-free, so we have
H1(Fw, T

+) = H1(Fw, T ) ∩ H1(Fw, V
+). So our assumption on cF implies that locw (cF ) ∈

H1(Fw, T
+). Moreover,

⊕
w|vH

1(Fw, T
+) is stable under the action of Z[Gal(F/K)].

Consequently, locw
(
DrcK(r)

)
∈ H1(K(r)w, T

+) for each r and each prime w | v of K(r); and
thus

locw
[
resK(r)/K

(
κ[r,M ]

)]
∈ H1(K(r)w,W

+
M )

whenever r ∈ RM . This is equivalent to the statement that

π
(
locw

[
resK(r)/K

(
κ[r,M ]

)])
= 0,

where π is the map H1(K(r)w,WM )→ H1(K(r)w,WM/W
+
M ) induced by the projection WM →

WM/W
+
M .

Equivalently, we have

resK(r)w/Kv

[
π
(
locv

(
κ[r,M ]

)])
= 0

for each w | v, since π commutes with restriction. But the kernel of the restriction map

resK(r)w/Kv : H1(Kv,WM/W
+
M )→ H1(K(r)w,WM/W

+
M )

is H1
(
K(r)w/Kv, H

0(K(r)w,WM/W
+
M )
)
, and (again by the remark above) we know that the

space H0(K(r)w,WM/W
+
M ) is zero. Thus locv

(
κ[r,M ]

)
∈ ker(π) as required.

Corollary B.1.5. Suppose that V has a subspace V + preserved by the decomposition group
Dv at v, and satisfying the following conditions:

(i) the residue characteristic of v is p,

(ii) the representation V is de Rham,

(iii) for every embedding Kv ↪→ Cp, all Hodge–Tate weights of V + are > 1 and all Hodge–Tate
weights of V/V + are 6 0,

(iv) there is no nonzero quotient of V + on which GKv acts via the cyclotomic character,

(v) we have H0(Kv, (T/T
+)⊗ k) = 0, where T is a lattice in V and T+ = T ∩ V +.

Let c be an Euler system for (T,K, n) and suppose that for all K ⊂f F ⊂ K, and all w | v,
we have locw cF ∈ H1

f (Fw, T ). Then there is a power m of p such that for any nonzero M ∈ O
and any r ∈ RMm, we have

locv
(
κ[r,M ]

)
∈ H1

f (Kv,WM ),

where H1
f (Kv,WM ) is the image of H1

f (Kv, T ) in H1(Kv,WM ).
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Remark B.1.6. If a subrepresentation V + satisfying condition (iii) exists, it is unique. The exis-
tence of such a subspace is sometimes referred to as the “Panchishkin condition”.

Proof. Let us first show that H1(Kv, T
+) = H1

f (Kv, T ). Both sides are saturated in H1(Kv, T );

this is true by definition for H1
f (Kv, T ), and for H1(Kv, T

+) it is a consequence of the vanishing of

H0(Kv, (T/T
+)⊗k). So it suffices to check this after inverting p, i.e. to check that H1

f (Kv, V ) =

H1(Kv, V
+).

We recall the formula for the dimension ofH1
f of an arbitrary crystalline Galois representation:

dimE H
1
f (Kv, V ) = dimE

(
DdR(V )

Fil0 DdR(V )

)
+ dimE H

0(Kv, V ).

Comparing this formula for V and for V +, and noting that H0(Kv, V/V
+) = 0 (since we

are assuming the stronger statement that the H0 is trivial after tensoring with k), we see that
H1
f (Kv, V ) = H1

f (Kv, V
+), and moreover that

dimE H
1
f (Kv, V

+) = [Kv : Qp] dimE(V +) + dimE H
0(Kv, V

+).

By Tate’s local Euler characteristic formula, we have H1
f (Kv, V

+) = H1(Kv, V
+) if (and only if)

H2(Kv, V
+) = 0; but we are assuming that V + has no cyclotomic quotient, so this H2 is indeed

zero and the claim follows.

Now, by the previous theorem, for any r ∈ RM we have κ[r,M ] ∈ H1(Kv,W
+
M ). It is not

necessarily true that H1(Kv, T
+)→ H1(Kv,W

+
M ) is necessarily surjective; there is an obstruction

arising from the torsion in H2(Kv, T
+). To circumvent this, we argue as in Corollary 4.6.5 of

[Rub00]: one knows that if r ∈ RMm, we have κ[r,M ] = mκ[r,Mm]; and since the torsion subgroup
of H2(Kv, T

+) is finite, we may choose m such that the multiplication-by-m map

H2(Kv, T
+)[Mm]→ H2(Kv, T

+)[M ]

is the zero, from which it follows that κ[r,M ] ∈ H1
f (Kv,WM ).

B.2 Applications to Selmer groups

We now apply the results in the previous section to deduce variants of two of the main theorems
of [Rub00].

Definition B.2.1. LetK be a number field, n an integral ideal ofK, T anO-linear representation
of Gal(K/K) unramified outside n, and K a pro-p extension of K containing K(q) for all primes
q - n.

We say an Euler system c for (T,K, n) has everywhere good reduction if for all fields F with
K ⊂f F ⊂ K, we have cF ∈ Sel(F, T ).

We make the following supplementary hypothesis which we denote by “Hyp(γ)”: there exists
γ ∈ Gal(K/K) such that T γ=1 = 0 and γ acts trivially on the field K(1)K(µp∞ , (OK)×)1/p∞).
We write, as usual, Σp for the set of primes dividing p.

Theorem B.2.2. Let c be an Euler system for (T,K, n) with everywhere good reduction. Suppose
that Hyp(γ) holds, and that for every prime v | p, there exists a subrepresentation V +

v ⊆ V
satisfying the hypotheses of Corollary B.1.5.

Then:

(i) If Hyp(K,V ) is satisfied and cK /∈ H1(K,T )tors, then Sel(K,T∨(1)) is finite.

39



Antonio Lei, David Loeffler and Sarah Livia Zerbes

(ii) If Hyp(K,T ) is satisfied and p > 2, then we have

`O(Sel(K,T∨(1)) 6 indO(cK) + nW + n∗W

where nW and n∗W are as in [Rub00].

Proof. We shall argue as in the modified form of Theorems 2.2.2 and 2.2.3 of [Rub00] proved in
§9.1 of op.cit., where it is shown that Hyp(γ) and the assumption that the Euler system has good
reduction outside Σp may be used to dispense with the more usual assumption that K contains
at Zp-extension.

Corollary B.1.5 shows that under our hypotheses, and at the cost of possibly increasing M
by a finite factor, the Kolyvagin classes κ[r,M ] are in SelΣr(K,WM ) (not just in SelΣpr(K,WM )).
Hence Rubin’s proofs go through with Σpr replaced by Σr throughout, and we obtain the above
theorem.

We also have a version with modified local conditions at p, paralleling Rubin’s Theorem
2.2.10. We continue to suppose that Hyp(γ) holds, and that for all primes v | p of K, there exists
a subrepresentation V + ⊆ V satisfying the hypotheses of Corollary B.1.5.

Let us choose a nonzero E-linear functional λ on the space

H1
f (K ⊗Qp, V ) :=

⊕
v|p

H1
f (Kv, V ).

We write H1
λ(K ⊗Qp, T ) for the fractional O-ideal which is the image of H1

f (K ⊗Qp, T ) under
λ.

Let Selλ(K,T∨(1)) ⊆ Sel(K,T∨(1)) be the Selmer group with local conditions at v | p given
by the orthogonal complement of kerλ.

Theorem B.2.3. Let c be an Euler system for (T,K, n) with everywhere good reduction.

(i) If Hyp(K,V ) is satisfied and λ(locp cK) 6= 0, then Selλ(K,T∨(1)) is finite.

(ii) If Hyp(K,T ) is satisfied and p > 2, then we have

`O
(
Selλ(K,T∨(1))

)
6 `O

(
H1
λ(K ⊗Qp, T )

Oλ(locp cK)

)
+ nW + n∗W .

Proof. This follows from Theorem B.2.2 via exactly the same argument as Theorem 2.2.10 of
[Rub00] is deduced from Theorems 2.2.2 and 2.2.3 of op.cit..

Remark B.2.4. The correct context for these results is clearly that of the “Selmer structures” of
[MR04]. The results of op.cit. are only written up for K = Q, whereas in the present paper we
are interested in K a quadratic extension of Q, but the generalization is routine.

The results of the previous section show that if c has everywhere good reduction and the
hypotheses of Corollary B.1.5 hold, then the Kolyvagin system κκκ derived from c is a Kolyva-
gin system for the “Bloch–Kato Selmer structure” FBK , where FBK is given by the H1

f local
conditions at all primes (including v | p).

In the theory of [MR04] a major role is played by a quantity χ(T ) = χ(T,F) attached to
the representation T and the Selmer structure F (cf. Definition 5.2.4 of op.cit.). The module
of Kolyvagin systems is zero if χ(T ) = 0, free of rank one over O if χ(T ) = 1, and not even
finitely-generated over O if χ(T ) > 1.
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If we define FB to be the Selmer structure given by the canonical H1
f local condition at

primes away from p, and at p by some arbitrarily chosen subspace B of H1(K ⊗Qp, V ), then a
straightforward generalization of Theorem 5.2.15 of op.cit. shows that

χ(T,F) = dimE(V −) + dimE H
0(K ⊗Qp, V

∗(1))− dimE

(
H1(K ⊗Qp, V )

B

)
,

where V − is the minus eigenspace for complex conjugation acting on IndQ
K V . In our situation,

we have taken B = H1
f (K ⊗ Qp, V ), which has dimension 3; and since K is totally complex,

dimE(V −) = 1
2 [K : Q] dimE(V ) = 2. Thus we have χ(T,FBK) = 1, which explains why one

should expect “interesting” Kolyvagin systems with this local condition at p. Theorem B.2.2 can
then be seen as an instance of Theorem 5.2.2 of op.cit., suitably generalized to K 6= Q.
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GGJQ05 Eknath Ghate, Enrique González-Jiménez, and Jordi Quer, On the Brauer class of modular
endomorphism algebras, Int. Math. Res. Not. (2005), no. 12, 701–723. MR #2146605. Cited on
page(s) 26.

How06 Benjamin Howard, Bipartite Euler systems, J. Reine Angew. Math. 597 (2006), 1–25. MR
#2264314. Cited on page(s) 2.
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