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Abstract. The non-linear dynamic behaviour of two three-wave systems in plasma
with two waves in common has been studied, including the possibility of negative
energy waves and also the effect of linear damping or growth and frequency mis-
match. Depending on the various initial conditions solutions of different types have
been discussed. It has also been shown that one of the triplets can be stabilized by
the other one against explosive instability depending on the relative strength of the
coupling factor.

1. Introduction
The coherent wave–wave interaction is an important aspect of weakly non-linear
theory in plasmas and non-linear optics. For example, they can cause the filamenta-
tion and anomalous absorption of laser beams in laboratory plasmas or generate
auroral radio emissions in space plasmas (Chian and Rizzato 1994; Chian et al.
1994). For non-linear optics these can produce the second harmonic, amplification,
frequency up-conversion as well as phase conjugation of optical signals (Shen 1984;
Yariv 1989).
The case of two three-wave interacting systems has been studied either in the

form of four waves with two of them common to both triplets or in the form of
five waves with only one common to both triplets in the absence of dissipation and
frequency mismatch (Walters and Lewak 1977; Romeiras 1983).
Recently, Domier and Luhmann (1993) have shown that frequencies and wave

numbers of finite-amplitude Alfvén waves in a magnetized plasma satisfy the cri-
terion for four-wave resonance, which opens up the possibility of many new low-
frequency non-linear phenomena in magnetized laboratory, astrophysical and
upper-atmosphere plasmas where Alfvén waves abound. Chian et al. (1996) have
considered the dynamical effects introduced by the presence of frequency mismatch
without dissipation in two coupled three-wave interactions with two waves in com-
mon and showed numerically that its trajectory may undergo a transition to chaos
as the mismatch is varied for a particular initial condition. Pakter et al. (1997)
extended the problem and analysed numerically both regular and chaotic dynam-
ics for a whole set of initial conditions. Krasnosel’skikh et al. (1998) considered
the interaction of three Langmuir waves and one ion-acoustic wave at the exact
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resonance condition in the dissipative region, but without any frequency mismatch
and studied both decay and modified decay instabilities.
Though recently some work has been done mainly numerically in the case of four-

wave interaction they either included dissipation or frequency mismatch but not
both. Basu (1999) studied analytically the interaction of four electrostatic waves in
a plasma medium in the presence of dissipation or growth and frequency mismatch.
Depending on various initial conditions, solutions of different types were discussed.
The non-linear dynamic behaviour has been studied here for two three-wave

systems with two waves in common, including the possibility of negative energy
waves and also the effect of linear damping or growth and frequency mismatch.
The phenomena of explosive instability are of interest in high-power laser devices

and also in the development of plasma turbulence and plasma heating (Kerst and
Raether 1976). Explosive energy release during disruption of the Earth’s plasma
sheet can lead to magnetosphere substorms.
The solutions obtained here describe the time behaviour of the wave amplitudes.

Depending on various initial conditions, various periodic and soliton-type solutions
are discussed. It has also been shown that one of the triplets can be stabilized by
the other one against explosive instability, depending on the relative strength of
the coupling factor, whereas the converse is not possible.

2. Formulation of the system
For the non-linear interaction of two triplets with two waves in common, the
resonance conditions are assumed to be of the form

k3,4 = k1 ∓ k2, ω3,4 ≈ ω1 ∓ ω2.

This type of coupling is known to occur in plasmas for interactions involving:

1. electromagnetic, Langmuir and ion-acoustic waves;

2. Alfvén, fast and slow magnetohydrodynamic waves;

3. Langmuir waves and negative energy ion beam waves.

Following Pakter et al. (1997) the system of coupled mode equations in the
presence of dissipation and frequency mismatch under consideration are:

s1

(
de1

dt
+ ν1e1

)
= σe2e3e

iδ−t − τe∗
2e4e

iδ+t

s2

(
de2

dt
+ ν2e2

)
= −σe1e

∗
3e

iδ−t − τe∗
1e4e

iδ+t

s3

(
de3

dt
+ ν3e3

)
= −σe1e

∗
2e

−iδ−t

s4

(
de4

dt
+ ν4e4

)
= τe1e2e

−iδ−t,




(2.1)

where si is the sign of the energy of the ith wave.
σ and τ are the time-independent interaction kernels determined by the specific

physical system. In the presence of dissipation the coupling coefficients σ and τ are
complex.
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Let them be

σ = σeiα, τ = τeiβ . (2.2)

The frequencies and wave numbers for the two sets of triplets satisfy the relations

ω3,4 = ω1 ∓ ω3 − δ∓, k3,4 = k1 ∓ k2, (2.3)

where δ∓ are small linear frequency mismatches for each of the two triplets where
modes 1 and 2 are common to the two interacting triplets. Following previous works
(Basu 1999; De et al. 1981) the following transformations are introduced:

ei = εAi exp(iReωit), i = 1, 2, 3, 4

Ai = ũi exp(iϕi), ũi = |Ai|, vi = Imωi.
(2.4)

Considering renormalization the system of equations (2.1) becomes

s1

(
du1

dt
+ ν1u1

)
= εu2u3 cos(φ− − θα) − εru2u4 cos(φ+ − θβ) (2.5)

s2

(
du2

dt
+ ν2u2

)
= −εu1u3 cos(φ− + θα) − εru1u4 cos(φ+ − θβ) (2.6)

s3

(
du3

dt
+ ν3u3

)
= −εu1u2 cos(φ− + θα) (2.7)

s4

(
du4

dt
+ ν4u4

)
= εru1u2 cos(φ+ + θβ) (2.8)

dφ−
dt

= −δ− + ε

[(
u1u2

s3u3
+

u1u3

s2u2

)
sin(φ− + θα) − u2u3

s1u1
sin(φ− − θα)

]

+ εr

[(
u2u4

s1u1
− u1u4

s2u2

)
sin(φ+ − θβ)

]
, (2.9)

where φ̇− = φ̇1 − φ̇2 − φ̇3,

dφ+

dt
= −δ+ − ε

[
u2u3

s1u1
sin(φ− − θα) +

u1u3

s2u2
sin(φ− + θα)

]

+ εr

[(
u2u4

s1u1
+

u1u4

s2u2

)
sin(φ+ − θβ) − u1u2

s4u4
sin(φ− + θβ)

]
, (2.10)

where φ̇+ = φ̇1 + φ̇2 − φ̇4.
The coupling factor r is a measure of coupling strength between the sets of two

triplets and is given by r = τ/σ.
To solve the system of equations (2.5)–(2.8), the method of perturbation (Coffey

and Ford 1969) has been used to separate the secular motion from the rapidly
fluctuating motion (for details see Basu 1999 and references therein).
Using the expansions

ui = yi + εE1
i (ȳ, φ−, φ+) + ε2E2

i (ȳ, φ−, φ+) + · · ·

ψ̇∓ = −δ∓ + εb1
m(ȳ) + ε2b2

m(ȳ) + · · · m = 1, 2
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φ− = −ψ− + εG1
m(ȳ,Φ−,Φ+) + ε2G2

m(ȳ,Φ−,Φ+) + · · ·

φ+ = −ψ+ + εG1
m(ȳ,Φ−,Φ+) + ε2G2

m(ȳ,Φ−,Φ+) + · · ·

the following system of equations are obtained from different orders.
From the first-order terms one obtains

a0
i + νiyi = 0, a1

i = 0, b1
i = 0, i = 1, 2, 3, 4 (2.11)

E1
1 = − y2y3

s1δ1−
sin(ψ− − θα + η1−) + r

y2y4

s1δ1+
sin(ψ+ − θβ + η1+)

E1
2 =

y1y3

s2δ1−
sin(ψ− + θα + η2−) + r

y1y4

s2δ2+
sin(ψ+ − θβ + η2+)

E1
3 =

y1y2

s3δ3−
sin(ψ− + θα + η3−), E1

4 = −r
y1y2

s4δ4+
sin(ψ+ + θβ + η4+)




(2.12)

where

tan ηi− =
νi

δi−
, tan ηi+ =

νi

δi+
i = 1, 2, 3, 4

G1
1 =

y1y2

s3y3δ−
cos(ψ− + θα) +

y1y3

s2y2δ−
cos(ψ− − θα)

+ r

[
y2y4

s1δ+y3
cos(ψ+ − θβ) − y1y4

s2y2δ+
cos(ψ+ − θβ)

]
(2.13)

G1
2 = − y2y3

s1y1δ−
cos(ψ− − θα) − y1y3

s2y2δ−
cos(ψ− + θα)

+ r

[
y2y4

s1y1δ+
cos(ψ+ − θβ) +

y1y4

s2y2δ+
cos(ψ+ − θβ)

− y1y2

s4y4δ+
cos(ψ+ + θβ)

]
. (2.14)

The second-order terms of a2
i (i = 1, 2, 3, 4) can be obtained from the ψ-independent

part of the following system of equations:

a2
1 +

∂E1
1

∂ψ−
G1

1 +
∂E1

1

∂ψ+
G1

2 =
1
s1

(
E1

2y3 + E1
3y2

)
cos(ψ − θα)

− y2y3

s1
G1

1 sin(ψ− − θα)+
r

s1
y2y4G

1
2 sin(ψ+ − θβ)

− r

s1

(
E1

2y4 + E1
4y2

)
cos(ψ+ − θβ)

and the similar equations for other ai (i = 1, 2, 3, 4).
Using the relation

ẏi = a0
i + εa1

i + ε2a2
i + · · ·
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the following system of equations are obtained for the wave amplitudes:

ẏ1 + ν1y1 = y1y
2
2

{
cos(η1−/2 − θα)

2s1s3δ−δ1−
− sin(η3−/2 + θα)

2s1s3δ3−
+

sin θα

2s1s3δ−

+ r2

[
sin(θβ + η4+/2)

2s1s4δ4+
+

cos(η1+/2)
2s1s4δ+δ1+

]}

+ y1y
2
3

[
sin(η2−/2 + θα)

2s1s2δ2−
+

cos(η1−/2 − θα)
2s1s2δ−δ1−

+
sin θα

2s1s2δ−

]

− r2y1y
2
4

[
cos(η1+/2)
2s1s2δ+δ1+

+
η2+/2

2s1s2δ2+

]
− y2

2y2
3

2y1

cos(η1−/2)
s2
1δ−δ1−

− r2 y2
2y2

4

2y1

cos(η1+/2)
δ+δ1+

(2.15)

ẏ2 + ν2y2 = y2y
2
1

{
sin(η3−/2)
2s2s3δ3−

− cos(η2−/2)
2s2s3δ−δ2−

+ r2

[
sin θβ

2s2s4δ+
+

sin(η4+/2)
2s2s4δ4+

− sin(η2+/2 − θβ)
2s2s4δ4+

]}

+ y2y
2
3

[
sin(η2−/2 − θα)

2s1s2δ1−
+

cos(η2−/2 + θα)
2s1s2δ−δ2−

− sin θα

2s1s2δ−

]

− r2y2y
2
4

[
sin(η1+/2)
2s1s2δ1+

+
sin(η2+/2)
2s1s2δ2+

]
− y2

2y2
3

2y2

cos(η2−/2)
δ−δ2−

− r2 y2
1y2

4

2y2

sin(η2+/2)
δ+δ2+

(2.16)

ẏ3 + ν3y3 = y3y
2
1

[
cos(η3−/2)
2s2s3δ−δ3−

− sin(η2−/2)
2s2s4δ+δ2+

]
+

y2
1y2

2

2y3

cos(η3−/2)
δ−δ2−

+ y3y
2
2

[
sin(η1−/2 − θα)

2s1s3δ1−
− sin θα

2s1s3δ−
− cos(η3−/2 + θα)

2s1s3δ−δ3−

]
(2.17)

ẏ4 + ν4y4 = y4y
2
1r2

[
cos(η4+/2 + θβ)

2s2s4δ+δ4+
+

sin(η2+/2 − θβ)
2s2s4δ2+

− sin θβ

2s1s3δ+

]

− r2 y2
1y2

2

2y2

cos(η4/2)
δ+δ4+

+ y4y
2
2r2

[
sin(η1+/2 − θβ)

2s1s4δ1+
− sin θβ

2s1s4δ+
− cos(η1+/2 + θβ)

2s1s3δ−δ3−

]
. (2.18)

3. Solutions of the coupled mode equations
To make the non-linear equations tractable analytically it is assumed that all the
damping or growth terms are equal. The system of equations from the second-order
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terms become:

Ẋ1 = X1X2

{
cos(ηk−/2 − θα)

s1s3δ−δk−
− sin(ηk−/2 + θα)

s1s3δk−
+

sin θα

s1s3δ−

+ r2

[
sin(θβ + ηk+/2)

s1s4δk+
+

cos(ηk+/2)
s1s4δ+δk+

]}

+ X1X3

[
sin(ηk−/2 + θα)

s1s2δk−
+

cos(ηk−/2 − θα)
s1s2δ−δk−

+
sin θα

s1s2δ−

]
− X2X3

cos(ηk−/2)
δ−δk−

− r2X1X4

[
cos(ηk+/2)
s1s2δ+δk+

+
sin(ηk+/2)
s1s2δ2+

]
− r2X2X4

cos(ηk+/2)
δ+δk+

(3.1)

Ẋ2 = X1X2

{
sin(ηk−/2)
s2s3δk−

− cos(ηk−/2)
s2s3δ−δk−

+ r2

[
sin(ηk+/2)
s2s4δk+

+
sin θβ

s2s4δ+
+

sin(ηk+/2 − θβ)
s2s3δk−

]}

+ X2X3

[
sin(ηk−/2 − θα)

s1s2δk−
+

cos(ηk−/2 + θα)
s1s2δ−δk−

− sin θα

s1s2δ−

]
− X1X3

cos(ηk−/2)
δ−δk−

− r2X2X4

[
sin(ηk+/2)
s1s2δ+δk+

+
sin(ηk+/2)
s1s2δk+

]
− r2X1X4

sin(ηk+/2)
δ+δk+

(3.2)

Ẋ3 = X3X1

[
cos(ηk−/2)
2s2s3δ−δk−

− sin(ηk−/2)
s2s4δ+δk+

]
+ X1X2

cos(ηk−/2)
δ−δk−

+ X3X2

[
sin(ηk−/2 − θα)

s1s3δk−
− sin θα

s1s3δ−
− cos(ηk−/2 + θα)

s1s3δ−δk−

]
(3.3)

Ẋ4 = X4X1r
2

[
cos(ηk+/2 + θβ)

s2s4δ+δk+
+

sin(ηk+/2 − θβ)
s2s4δk+

− sin θβ

s1s3δ+

]

− r2X1X2
cos(ηk+/2)

δ+δk+

+ X4X2r
2

[
sin(ηk+/2 − θβ)

s1s4δk+
− sin θβ

s1s4δ+
− cos(ηk+/2 + θβ)

s1s3δ−δk−

]
(3.4)

where

xi = Xi exp(−2νt), τ =
1
4ν

(1 − e4νt), y2
i = xi

tan ηk− =
ν

δk−
, tan ηk+ =

ν

δk+
, νi(i = 1, 2, 3, 4) = ν

ηi−(i = 1, 2, 3, 4) = ηk−, ηi+(i = 1, 2, 3, 4) = ηk+

1
δk−

=
1√

1 + ν2/δ2
−

and
1

δk+
=

1√
1 + ν2/δ2

+

.




(3.5)
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4. Constants of motion and the wave solution (special cases)
By suitable choices of ν, ηk−, ηk+, θα and θβ from (3.1)–(3.4), the following constants
of motion are obtained:

X4 = r2X3, X1X2X
2
3 = Q2

X2(1 − δk−)
s1s3δ−δk−

+
X1

s2s4δ+δk+
=

√
(1 − r4)[PX3 − R],


 (4.1)

where P,Q and R are arbitrary constants and could be determined from the initial
conditions. Equation (4.1) can be considered to be the Manley–Rowe relations that
imply conservation of wave energy of the interacting waves.
The solution of the amplitude X3 is given by (for r < 1)

Ẋ3 = P
√

(1 − r4)
[
X4

3 − 2
R

P
X3

3 +
R2

P 2
X2

3 − Q′2

P 2s1s2s3s4

]1/2

, (4.2)

where Q′2 = 4Q2(1 − δk−)/δ−δ+δk−δk+, whereas for (r > 1) X3 is given by

Ẋ3 = P
√

(r4 − 1)
[

−X4
3 + 2

R

P
X3

3 − R2

P 2
X2

3 +
Q′2

P 2s1s2s3s4

]1/2

, (4.3)

where Q′2 = 4Q2(1 − δk−)/δ−δ+δk−δk+.
The solutions of (4.2) and (4.3) can be found in terms of Jacobian elliptic func-

tions; however, the character of the solutions would mainly depend on the nature
of the roots, the ordering of the roots in magnitude and the relative strength of the
coupling factor.

5. Analysis of the solution
Case 1: r < 1

When all s′
j are of the same sign, (4.2) can be written as

Ẋ3 = P
√

(1 − r4)
[
X4

3 − 2
R

P
X3

3 +
R2

P 2
X2

3 − Q′2

P 2

]1/2

Ẋ3 = P
√

(1 − r4)[(X3 − α1)(X3 − α2)(X3 − α3)(X3 + α4)]


 (5.1)

and is thus formally equivalent to the equation for a non-linear oscillator subject
to the potential π(X3), where π(X3) is given by

(
dX3

dτ

)2

+ π(X3) = 0

and the solution for X3(τ) only exists in the region where π(X3) > 0.
In Fig. 1 the bounded solution of the coupled mode equation corresponds to X3

oscillating between A and D and the explosive instability corresponds to X3 lying
on the portion D∞ of the curve. Also, from Fig. 1 for the instability to occur one
requires X3(0) > α3, so that a threshold exists for the onset of the instability.
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Figure 1. Schematic picture of π(X3) corresponding to (5.1) with four real roots.

When (5.1) has two real and two complex roots it can be written as (all sj are of
the same sign)∫ z

b

dx

[(t2 + a2)(t2 − b2)]1/2
=

1√
a2 + b2

nc−1

(
z

b
,

a2

a2 + b2

)
0 < b < z.

The solution for X3 is given by

X3 =
q + panc{[aP

√
(1 − r4)/(p − q)](τ − τ0)|k}

1 + anc{[aP
√

(1 − r4)/(p − q)](τ − τ0)|k}
, k2 =

a2

a2 + b2
. (5.2)

In the case of one of the waves common to both triplets being negative (either s1

or s2) (5.1) becomes

Ẋ3 = P
√

(1 − r4)
[
X4

3 − 2
R

P
X3

3 +
R2

P 2
X2

3 +
Q′2

P 2

]1/2

. (5.3)

Equation (5.3) can be written in the form∫ z

0

dx

[(t2 + a2)(t2 + b2)]1/2
t =

1
a
sc−1

(
z

b
,
a2 − b2

a2

)
b < a.

Following Milne-Thomson (1950, p. 27, the details are given in the appendix), the
solution of (5.3) is given by

X3 =
q + pasc{[aP

√
(1 − r4)/(p − q)](τ − τ0)|k}

1 + asc{[aP
√

(1 − r4)/(p − q)](τ − τ0)|k}
, k2 =

a2 − b2

a2
, (5.4)

where τ0 is given by

τ0 =
p − q

aP
√

(1 − r4)
sc−1

[
q − X3(0)

a(X3(0) − p)

∣∣∣∣k
]
. (5.5)

In the present case

p + q =
σ − µ

ρ − λ
, pq =

λσ − µρ

ρ − λ
, µ = ab, σ = cd, a + b = −2λ, c + d = −2ρ
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a = −λ ±
√

(λ2 − µ), b = −λ ∓
√

(λ2 − µ)

σ =
R2

2P 2
+

1
2

√
R4

P 4
+ 4Q′2, µ =

R2

2P 2
− 1

2

√
R4

P 4
+ 4Q′2

ρ = − R

2P

R2 +
√

R4/P 4 + 4Q′2√
R4/P 4 + 4Q′2

, λ =
R

P

R2 +
√

R4/P 4 + 4Q′2√
R4/P 4 + 4Q′2

.

The solution (5.4) is generally periodic with a period of oscillation

4k

ω
where ω =

aP
√

(1 − r4)
p − q

.

The solution for the other wave amplitudes can be obtained from (5.4) and the
conservation laws (4.1). They are also periodic with the same period. The amplitudes
of all four waves become infinite when

sc

[
aP

√
(1 − r4)

p − q
(τ − τ0)|k

]
= −1

a
(5.6)

and the explosion time τ∞ is given by

τ∞ = τ0 +
1
ω

sc−1

(
−1

a
, k

)
.

The growth rate is the reciprocal of the explosion time

Γgrowth =
1
τ∞

.

The effects of the frequency mismatch and the dissipation νi are to introduce
threshold values to the initial amplitudes for the explosion to occur and to increase
explosion time.

Case 2: r > 1
When the si (s1 or s2 are of different signs) (4.3) becomes

Ẋ3 = P
√

(r4 − 1)
[

−X4
3 + 2

R

P
X2

3 − R2

P 2
X2

3 +
Q′2

P 2

]1/2

. (5.7)

In the case where (5.7) has two real α1, α2 (α1 > α2) and two complex roots, it can
be written as

Ẋ3 = P
√

(r4 − 1)
[
(X3 + α2)(α1 − X3)

(
X2

3 − 2α3X3 + α4

)]1/2
. (5.8)

The bounded solutions of the coupled mode equations correspond to X3 oscillating
between A and B on the curve shown in Fig. 2. No explosive solution occurs.
Depending on the assignment of the roots to the values α1, α2, α, ᾱ (complex),

where X3 > α2, α, ᾱ, from (5.7) the solution for X3 is given by

X3(τ) =
q + pb cn[P

√
(r4 − 1)(a2 + b2)1/2(τ − τ0), k]

1 + b cn[P
√

(r4 − 1)(a2 + b2)1/2(τ − τ0), k]
, (5.9)

where the constant τ0 is defined as

τ0 =
1

P
√

r4 − 1
cn−1

[
q − X3(0)

b(X3(0) − p)
, k

]
, k2 =

b2

a2 + b2
.
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A B

Figure 2. Schematic picture of the potential π(X3) of (5.8) with two real and two complex
roots.

The solutions for the other wave amplitudes can be obtained from (5.9) and the
conservation laws (4.1).
The solution (5.9) is generally periodic with a period of oscillation 4K/γ, where

K is the complete elliptic integral of the first kind:

K(k) =
∫ π/2

0

dθ

(1 − k2 sin2 θ)1/2
.

6. Soliton solution
For a different choice of ν, ηk−, ηk+, θα and θβ from (3.1)–(3.4), the following
constants of motion are derived:

X4 = r2X3, X1X2X3 = Q2
1

X1

s2s4δ+δk+
+

X2(1 − δk)
s1s3δ−δk−

= R1,


 (6.1)

where Q1 and R1 are arbitrary constants.
Using (6.1) in (3.3), one obtains

Ẋ3 = R1X3

(
X2

3 − 4Q2
1P1

R2
1

X3

)1/2

. (6.2)

The solution to (6.2) is given by

X3 =
4P1Q

2
1/R2

1{
1 −

[
c1 −

(
2P1Q2

1/R1

)
τ
]}2 , (6.3)

where

P1 =
(1 − δk−)

s1s2s3s4δ−δ+δk−δk+
, c2

1 = 1 − 4P1Q
2
1

R2
1X3(0)

.

The solution (6.3) represents a soliton, X3, which is limited to a maximum value
4Q2

1P1/R2
1(1−c2) and tends to zero for large times even for large negative values of

time τ . Similarly for the other wave amplitudesX1,X2 andX4. The decrease of the
amplitudes after the maximum corresponds to the collapse of the waves. This type
of soliton solution was obtained in the case of three-wave interactions (Weiland and
Wilhelmsson 1977; De et al. 1981).



Three-wave interactions with dissipation and frequency mismatch 11

7. Constants of motion and wave solution (general case)
For the general case, when all vi’s are different using numerical calculation, in-
dividual wave amplitudes have been plotted against time for the system of equa-
tions (3.1)–(3.4), where all the variables are in normalized form. It has been shown
that though in the absence of dissipation or growth the solutions of the wave amp-
litudes are unstable (Fig. 3), the inclusion of dissipation can make the amplitudes
stable (Fig. 4). Also, it has been shown that only the increment of the value of the
frequency mismatch helps to stabilize the wave amplitudes (Fig. 5).

t

yj(t)

0.01 0.02 0.03 0.04

1

2

3

4

5

0

Figure 3. All νs are zero, ∆ω− = 0.01, ∆ω = 0.03 and r < 1.

t

yj(t)

0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4. All νs are non-zero (0.15, 0.25, 0.3, 0.35), ∆ω = 0.03, ∆ω− = 0.01, r < 1.

8. Solutions for two coupled three-wave interactions with one triplet
unstable

Next, the case has been considered where one triplet is unstable (first) when viewed
as an isolated three-wave interaction but the other triplet (second) is not. From (4.2)
if r < 1 the solution is divergent, but from (4.3) if r > 1, which could be interpreted
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t

yj(t)

0.02 0.04 0.06 0.08 0.1

0.1

0

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5. All νs are zero, ∆ω = 0.25, ∆ω− = 0.2 and r < 1.

t

yj(t)

0.01 0.02 0.03 0.04

0.2

0

0.4

0.6

–0.2

–0.4

Figure 6. Amplitude against time, where the first triplet contains one negative energy wave.

as the second triplet being stronger than the first, no divergent solution occurs.
The significant conclusion is that even though one triplet is explosively unstable
by itself, the presence of the second (stronger) triplet can stabilize the solutions,
whereas the converse does not happen. In the weakly turbulent case it has been
shown that the wave system will be unstable if any explosive triplet exits (Coppi
et al. 1969). This is not true for the coherent waves.
The different wave amplitudes are plotted against time for the general case with

r > 1 where the first triplet contains a negative energy wave. The wave amplitudes
are found to be stabilized due to the presence of the second triplet (Fig. 6).
Next, different wave amplitudes are plotted against time when the second wave

triplet contains a negative energy wave; the unstable solutions were obtained
(Fig. 7).
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t

yj(t)

1

0

2

3

4

5

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Figure 7. Amplitude against time, where the second triplet contains one negative energy
wave.

9. Conclusion
Depending on certain initial conditions, a periodic solution in terms of the Jacobian
elliptic function are obtained. The period of oscillation, growth rate and the explo-
sion time have been calculated. It has been shown that the effect of the dissipation
and frequency mismatch were to introduce a threshold value and to increase the
time of explosion. Depending on different initial conditions periodic, soliton-type
and shock-like solutions were obtained. It was found that in the coherent case for
two waves triplets, if one is explosively unstable by itself the presence of the second
one can stabilize the solutions depending on the relative strength of the coupling
factor, while in the incoherent case this does not happen. The coupling constants
contain all the information necessary for studying how the efficiency of the wave
coupling depends on the plasma parameters. The growth rate, explosion time and
threshold value of the excited waves for such a system can be obtained by direct
application of my theory. Also, the effects of dissipation and frequency mismatch
on these parameters can be calculated.

Appendix
Considering the integral of the type (Akhiezer 1990)∫

dz√
f(z)

(A 1)

where f(z) = a0(z2 + 2λz + µ)(z2 + 2ρz + σ) and the coefficients a0, λ, µ, ρ and σ
are real.
If λ = ρ then let z +λ = t and f(z) = a0(t2 +α)(t2 +β), where α and β are real.

But if λ �= ρ let z = (pt+ q)/(t+1). Considering there should not be any term with
a square power of t, the following two relations would derive p and q:

pq + λ(p + q) + µ = 0, pq + ρ(p + q) + σ = 0,
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where p and q are the roots of the quadratic equation

X2 +
µ − σ

λ − ρ
X − λσ − µρ

λ − ρ
= 0.

Denoting the roots of the polynomial z2 + 2λz + µ by a and b, and the roots of
z2 + 2ρz + σ by c and d, where µ = ab, 2λ = −a − b, σ = cd, 2ρ = −c − d.
Equation (A1) turns into integrals of the following types:

I. z =
√

(a2 − t2)(b2 − t2) II. z =
√

(a2 − t2)(t2 − b2)

III. z =
√

(a2 − t2)(b2 + t2) IV. z =
√

(t2 − a2)(b2 + t2)

V. z =
√

(t2 + a2)(t2 + b2) (a and b are positive numbers).

If t2 < b2, let t = bx and k2 = b2/a2, which gives

z = ab
√

(1 − x2)(1 − k2x2),

where as if t2 > a2, let t = a/x, which gives

z =
a2

x2

√
(1 − x2)(1 − k2x2).

As z varies in [−1, 1] in both cases setting z = sn(u; k), where u is in the interval
[−K,K] and

K =
∫ π/2

0

dφ√
1 − k2 sin2 φ

.
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