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We show that the density of quadratic forms in nvariables over Zp that are isotropic is a

rational function of p, where the rational function is independent of p, and we determine

this rational function explicitly. When real quadratic forms in nvariables are distributed

according to the Gaussian Orthogonal Ensemble (GOE) of random matrix theory, we

determine explicitly the probability that a random such real quadratic form is isotropic

(i.e., indefinite). As a consequence, for each n, we determine an exact expression for the

probability that a random integral quadratic form in n variables is isotropic (i.e., has a

nontrivial zero over Z), when these integral quadratic forms are chosen according to the

GOE distribution. In particular, we find an exact expression for the probability that a

random integral quaternary quadratic form is isotropic; numerically, this probability of

isotropy is approximately 98.3%.
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2 M. Bhargava et al.

1 Introduction

An integral quadratic form Q in n variables is a homogeneous quadratic polynomial

Q(x1, x2, . . . , xn) =
∑

1≤i≤ j≤n

cijxixj, (1)

where all coefficients cij lie in Z. The quadratic form Q is said to be isotropic if

it represents 0, that is, if there exists a nonzero n-tuple (k1, . . . , kn) ∈ Zn such that

Q(k1, . . . , kn) = 0. We wish to consider the question: what is the probability that a random

integral quadratic form in n variables is isotropic?

In this paper, we give a complete answer to this question for all n, when inte-

gral quadratic forms in n variables are chosen according to the Gaussian Orthogonal

Ensemble (GOE) of random matrix theory [1]. In particular, in the most interesting case

n= 4, we show that the probability that a random integral quaternary quadratic form is

isotropic is given by

(
1

2
+

√
2

8
+ 1

π

)∏
p

(
1 − p3

4(p+ 1)2(p4 + p3 + p2 + p+ 1)

)
≈ 98.25845607%. (2)

More precisely, let D be a piecewise smooth rapidly decaying function on the

vector space Rn(n+1)/2 of real quadratic forms in n variables (i.e., D(x) and all its par-

tial derivatives are o(|x|−N) for all N > 0), and assume that
∫

Q D(Q) dQ = 1; we call such

a function D a nice distribution on the space of real n-ary quadratic forms. Then we

define the probability, with respect to the distribution D, that a random integral n-ary

quadratic form Q has a property P by

lim
X→∞

∑
Q integral, with property P D(Q/X)∑

Q integral D(Q/X)
, (3)

if the limit exists. Let ρD
n denote the probability with respect to the distribution D that

a random integral quadratic form in n variables is isotropic. If D = GOE is the distribu-

tion on the space of n× n symmetric matrices given by 1√
2
(A+ At), where each entry of

the matrix A is an identical and independently distributed real Gaussian—that is, the

GOE—then we use ρn := ρGOE
n to denote the probability, with respect to the GOE distri-

bution, that a random n-ary quadratic form over Z is isotropic.

We wish to explicitly determine the probability ρn that a random n-ary quadratic

form over Z, with respect to the GOE distribution, is isotropic, that is, has a nontrivial

zero over Z. To accomplish this, we first recall the Hasse–Minkowski Theorem, which
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Random Integral Quadratic Forms 3

states that a quadratic form over Z is isotropic if and only if it is isotropic over Zp for

all p and over R. For any distribution D as above, let ρD
n (p) denote the probability that a

random integral quadratic form, with respect to the distribution D, is isotropic over Zp,

and let ρD
n (∞) denote the probability that it is isotropic over R (i.e., is indefinite). Then it

is not hard to show (for the details, see Section 2) that ρn(p) = ρD
n (p) is independent of D,

and is simply given by the probability that a random n-ary quadratic form over Zp, with

respect to the usual additive measure on Z
n(n+1)/2
p , is isotropic over Zp. Moreover, we will

also show in Section 2 that the probability ρD
n (∞) that a random integral quadratic form

is isotropic over R is equal to the probability that a random real quadratic form (with

respect to the same distribution D) is indefinite.

For any distribution D as above, the following theorem can be proved using the

work of Poonen and Voloch [11] together with the Hasse–Minkowski Theorem:

Theorem 1.1. The probability ρD
n that a random (with respect to the distribution D)

integral quadratic form in n variables is isotropic is given by the product of the local

probabilities:

ρD
n = ρD

n (∞)
∏

p

ρn(p). (4)

�

See Section 2 for details. Hence, to determine ρD
n , it suffices to determine ρD

n (∞)

and ρn(p) for all p.

We treat first the probability ρn(p) that a random n-ary quadratic form over Zp

is isotropic. Our main result here is that, for each n, the quantity ρn(p) is given by a

fixed rational function in p that is independent of p (this even includes the case p= 2),

and we determine these rational functions explicitly. Specifically, we prove the following

theorem:

Theorem 1.2. Let ρn(p) denote the probability that a quadratic form in n variables over

Zp is isotropic. Then

ρ1(p) = 0, ρ2(p) = 1

2
, ρ3(p) = 1 − p

2(p+ 1)2
,

ρ4(p) = 1 − p3

4(p+ 1)2(p4 + p3 + p2 + p+ 1)
,

and ρn(p) = 1 for all n≥ 5. �

Our method of proof for Theorem 1.2 is uniform in n, and relies on establishing

certain recursive formulae for densities of local solubility for certain subsets of n-ary
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4 M. Bhargava et al.

quadratic forms defined by their behavior modulo powers of p. In particular, we obtain

a new recursive proof of the well-known fact that every n-ary quadratic form over Qp is

isotropic when n≥ 5. See Section 3 for details.

We turn next to the probability ρn(∞) = ρGOE
n (∞) that a real n-ary quadratic form

is isotropic over R. Closed form expressions for ρn(∞) for n≤ 3 were first given by Bel-

tran [5, (7)]; it is also known that 1 − ρn(∞) decays like e−n2(log 3)/4 as n→ ∞ (see [2, 3]).

In Section 4, we show how to obtain an exact formula for ρn(∞) for any given n.

More precisely, using the de Bruijn identity [4] for calculating certain determinan-

tal integrals, we express ρn(∞) as the Pfaffian of an explicit n′ × n′ matrix, where

n′ := 2�n/2�, whose entries are given in terms of values of the gamma and incomplete

beta functions at integers and half-integers. Indeed, let Γ denote the usual gamma

function Γ (s) = ∫∞
0 xs−1 e−xdx and let βt denote the usual incomplete beta function

βt(i, j) = ∫t
0 xi−1(1 − x) j−1dx. Then we have the following theorem giving expressions

for ρn(∞):

Theorem 1.3. Let n≥ 1 be any integer, and define n′ := 2�n/2�. When real n-ary quadratic

forms are chosen according to the n-dimensional GOE, the probability of isotropy over

R is given by

ρn(∞) = 1 − Pf(A)

2(n−1)(n+4)/4
∏n

m=1 Γ (m
2 )

, (5)

where A is the n′ × n′ skew-symmetric matrix whose (i, j)-entry aij is given for i < j by

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2i+ j−2Γ

(
i + j

2

)(
β 1

2

(
i

2
,

j

2

)
− β 1

2

(
j

2
,

i

2

))
if i < j ≤ n,

2i−1Γ

(
i

2

)
if i < j = n+ 1.

(6)

(Note that the second case in (6) arises only when n is odd.) �

Theorem 1.3 allows one to calculate ρn(∞) exactly in closed form for any given n.

In particular, it follows from the Pfaffian representation in Theorem 1.3 that ρn(∞) is a

polynomial in π−1 of degree at most 
n+1
4 � with coefficients in Q(

√
2) (see Remark 4.1). In

Table 1, we give the resulting formulae for ρn(∞) for all n≤ 8, and also provide numerical

approximations. (For any n> 8, we have ρn(∞) ≈ 1 to more than 10 decimal places!)

Combining Theorems 1.1–1.3, we finally obtain the following theorem giving the

probability ρn that a random integral quadratic form in nvariables has an integral zero.
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Random Integral Quadratic Forms 5

Table 1. Probability ρn(∞) that a random n-ary quadratic form over R from the

GOE distribution is isotropic, for n≤ 8

n ρn(∞) = ρn(∞) ≈

1 0 0

2
√

2/2 0.7071067811

3 1/2 + √
2 π−1 0.9501581580

4 1/2 + √
2/8 + π−1 0.9950865814

5 3/4 + (2/3 + √
2/12)π−1 0.9997197706

6 3/4 + 7
√

2/64 + (37/48 − √
2/3)π−1 0.9999907596

7 7/8 + (47/120 + 109
√

2/480)π−1 − (32
√

2/45)π−2 0.9999998239

8 7/8 + 9
√

2/256 + (2377/3840 − 53
√

2/480)π−1 − (32/45)π−2 0.9999999980

Theorem 1.4. Let D be any nice (i.e., piecewise smooth and rapidly decaying) distribu-

tion. Then the probability ρD
n that a random integral quadratic form in n variables with

respect to the distribution D is isotropic is given by

ρD
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if n≤ 3;

ρD
4 (∞)

∏
p

(
1 − p3

4(p+ 1)2(p4 + p3 + p2 + p+ 1)

)
if n= 4;

ρD
n (∞) if n≥ 5.

If D = GOE is the GOE distribution, then the quantities ρn(∞) = ρD
n (∞) are as given in

Theorem 1.3. �

In particular, when D = GOE, we have ρn = 0 for n= 1, 2, and 3, while for n= 4 we

obtain the expression (2) for ρ4. For n≥ 5, we have ρn = ρn(∞), and so the values of ρn are

as given by Theorem 1.3. Theorem 1.4 shows that n= 4 is in a sense the most interesting

case, as all places play a nontrivial role in the final answer.

It is also interesting to compare how the probabilities change if instead of the

GOE we use the uniform distribution U on quadratic forms, where each coefficient of

the quadratic form is chosen uniformly in the interval
[− 1

2 , 1
2

]
. While the quantities

ρU
n (∞) can easily be expressed as explicit definite integrals, it seems unlikely that they

can be evaluated in compact and closed form for general n in this case. Using numer-

ical integration, or a Monte Carlo approximation, we can compute ρU
n (∞) ≈ 0, 0.627,

0.901, 0.982, 0.998, and > 0.999 for n= 1, 2, 3, 4, 5, and 6, respectively. It is known that

1 − ρU
n (∞) decays faster than e−cn for some constant c > 0. This is a particular case of

[1, Theorem. 2.3.5] which applies to a large class of random matrices including both

 at U
niversity of W

arw
ick on February 1, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


6 M. Bhargava et al.

Table 2. Probability that a random integral quadratic form in n variables is

isotropic, for a general distribution D, for the uniform distribution, and for the GOE

distribution

n ρD
n ρU

n ρn

1 0 0 0

2 0 0 0

3 0 0 0

4 ρD
4 (∞)

∏
p

(
1 − p3

4(p+ 1)2(p4 + p3 + p2 + p+ 1)

)
≈ 97.0% ≈ 98.3%

5 ρD
5 (∞) ≈ 99.8% > 99.9%

≥ 6 ρD
n (∞) > 99.9% > 99.9%

those with uniform entries and the GOE. The actual rate of decay for the GOE is faster

as noted above, and we expect this also in the uniform case.

In particular, we have ρU
4 = ρU

4 (∞)
∏

p ρ4(p) ≈ 97.0%, which is slightly smaller

than the GOE probability ρGOE
4 ≈ 98.3%. We summarize the values of ρD

n , and provide

numerical values in the cases of the uniform and GOE distributions, in Table 2.

Let Nn(X) denote the number of integral n-ary quadratic forms that are isotropic

over Z whose coefficients are less than X in absolute value. Since the probabilities of

isotropy are equal to 0 for n≤ 3, the question arises as to how Nn(X) grows in these cases

as X → ∞. For n= 1, we have trivially N1(X) = 1 for any X > 0. For n= 2, it was shown by

Dörge [6] and Kuba [10] that X2 log X � N2(X) � X2 log X, and this was recently refined

to an exact asymptotic formula, N2(X) ∼ c2 X2 log X for an explicit positive constant c2,

by Dubickas [7]. For n= 3, it was shown by Serre [13] that N3(X) = O(X6/
√

log X), who

also conjectured that N3(X) > E X6/
√

log X for some positive constant E ; this conjecture

was recently resolved by Hooley [9]. In conjunction with these results for n≤ 3, the result

of Theorem 1.4 determines the rates of growth of Nn(X) for all n≥ 1, and indeed proves

the existence of main terms in the asymptotics of Nn(X) for all n �= 3. (Whether N3(X) ∼
c3 X6/

√
log X for some positive constant c3 remains an open question.)

This paper is organized as follows. In Section 2, we prove the product formula in

Theorem 1.1. The theorem is known in the case of the uniform distribution U (or indeed

any uniform distribution supported on a box) for any n≥ 4 by the work of Poonen and

Voloch [11], which in turn depends on the Ekedahl sieve [8]. To complete the proof of

Theorem 1.1, we first prove directly that both sides of (4) are equal to 0 for n≤ 3. For

n≥ 4, we prove that (4) is true for a general nice distribution D by approximating D by a

finite weighted average of uniform box distributions, where the result is already known.
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Random Integral Quadratic Forms 7

The condition that D is rapidly decreasing (as in the case of D = GOE) plays a key role

in the proof; indeed, we show how counterexamples to (4) can be constructed when this

condition does not hold.

In Section 3, we then prove Theorem 1.2, that is, we determine for each n the

exact p-adic density of n-ary quadratic forms over Zp that are isotropic. The outline of

the proof is as follows. First, we note that a quadratic form in nvariables defined over Zp

can be anisotropic only if its reduction modulo p has either two conjugate linear factors

over Fp2 or a repeated linear factor over Fp. We first compute the probability of each

of these cases occurring, which is elementary. We then determine the probabilities of

isotropy in each of these two cases by developing certain recursive formulae for these

probabilities, in terms of other suitable quantities, which allow us to solve and obtain

exact algebraic expressions for these probabilities for each value of n. We note that our

general argument shows in particular that quadratic forms in n≥ 5 variables over Qp

are always isotropic, thus yielding a new recursive proof of this well-known fact.

Finally, we prove Theorem 1.3 in Section 4, that is, we determine for each n the

probability that a random real n-ary quadratic form from the GOE distribution is indef-

inite. We accomplish this by first expressing, as a certain determinantal integral, the

probability that an n× n symmetric matrix from the GOE distribution has all positive

eigenvalues. We then show how this determinantal integral can be evaluated using the

de Bruijn identity [4], allowing us to obtain an expression for the probability of positive

definiteness in terms of the Pfaffian of an explicit skew-symmetric matrix A, as given in

Theorem 1.3.

We end this introduction by remarking that the analogues of Theorems 1.2

and 1.4 also hold over a general local or global field, respectively. Here, we define global

densities of quadrics as in [11, Section 4]; more general densities with respect to “nice

distributions” could also be defined in an analogous manner. Indeed, the analogue of

Theorem 1.1 holds (with the identical proof), where the product on the right-hand side

of (4) should be taken over all finite and infinite places of the number field (the densities

at the complex places are all equal to 1, since all quadratic forms over C are isotropic).

Theorem 1.2 also holds over any finite extension of Qp, with the same proof, provided

that when making substitutions in the proofs we replace p by a uniformiser, and when

computing probabilities we replace p by the order of the residue field.

2 The Local Product Formula: Proof of Theorem 1.1

Let D be any nice (piecewise smooth and rapidly decaying) distribution. Our aim in this

section is to prove the following three assertions from the introduction:
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8 M. Bhargava et al.

(a) ρD
n (p) is equal to the probability ρn(p) that a random n-ary quadratic form

over Zp, with respect to the usual additive measure on Z
n(n+1)/2
p , is isotropic

over Zp;

(b) ρD
n (∞) is equal to the probability that a random n-ary quadratic form over R,

with respect to the distribution D, is indefinite; and

(c) ρD
n = ρD

n (∞)
∏

p ρn(p) (i.e., Theorem 1.1 holds).

Items (a) and (b) are trivial in the case that D = U is the uniform distribu-

tion, or more generally when D is any distribution U(�a, �b) that is constant on a box

[�a, �b] := [a1, b1] × · · · × [an(n+1)/2, bn(n+1)/2] and 0 outside this box; here �a= (a1, . . . , an(n+1)/2)

and �b = (b1, . . . , bn(n+1)/2) are vectors in Rn(n+1)/2 such that ai < bi for all i.

Meanwhile, Theorem 1.1 for n≥ 4, in the case that D is the uniform distribu-

tion U, follows from the work of Poonen and Voloch [11, Theorem 3.6] (which establishes

the product formula for the probability that an integral quadratic form with respect

to the distribution D is locally soluble), together with the Hasse–Minkowski Theorem

(which states that a quadratic form is isotropic if and only if it is locally soluble). In

fact, the proof of [11, Theorem 3.6] (which in turn relies on Ekedahl’s sieve [8]) immedi-

ately adapts to the case where D = U(�a, �b) without essential change.

To show that Theorem 1.1 holds also when D = U(�a, �b) and n≤ 3, it suffices

to prove that in this case both sides of (4) are equal to 0. To see this, we may use

Theorem 1.2, which does not rely on the results of this section, and which states that the

probability that a random n-ary quadratic form over Zp is isotropic is equal to ρn(p) = 0,

1/2, or 1 − p/(2(p+ 1)2) for n= 1, 2, or 3, respectively. This immediately implies that the

right-hand side of (4) is zero. To see that the left-hand side of (4) is zero, we note that if

a quadratic form over Z is isotropic, then it must be isotropic over Zp for all p (the easy

direction of the Hasse–Minkowski Theorem). By the Chinese Remainder Theorem, the

(limsup of the) probability ρD
n that a random integral n-ary quadratic form is isotropic

with respect to the distribution D = U(�a, �b) is at most

∏
p<Y

ρn(p)

for any Y > 0. Letting Y now tend to infinity shows that ρD
n = 0 for n= 1, 2, or 3, that is,

the left-hand side of (4) is also zero.

Thus we have established items (a)–(c), for all n, in the case that D = U(�a, �b) is a

constant distribution supported on a box [�a, �b]. Clearly, (a)–(c) then must hold also for

any finite weighted average of such box distributions U(·, ·).
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Random Integral Quadratic Forms 9

To show that (a)–(c) hold for general nice distributions D, we make use of the

following elementary lemma regarding integration of rapidly decaying functions.

Lemma 2.1. Let f be any piecewise smooth rapidly decaying function on Rm. Then
∫

f(y)dy= lim
X→∞

1

Xm

∑
y∈Zm

f(y/X). (7)

�

Proof. For any N > 0, let fN(y) be equal to f(y) if |y| ≤ N, and 0 otherwise. Then fN is

piecewise smooth with bounded support, and so is Riemann integrable. Thus we have
∫

fN(y)dy= lim
X→∞

1

Xm

∑
y∈Zm

fN(y/X). (8)

Since f is rapidly decreasing, for any ε > 0 we may choose N large enough so that∫
|y|>N | f(y)|dy< ε and (1/Xm)

∑
y∈Zm, |y/X|>N | f(y/X)| < ε for any X ≥ 1. For this value of N,

the left-hand side of (8) is within ε of the left-hand side of (7), while for each X ≥ 1, the

expression in the limit on the right-hand side of (8) is within ε of the expression in

the limit on the right-hand side of (7). Since we have equality in (8), we conclude that

the left-hand side of (7) is within 2ε of both the lim infX→∞ and the lim supX→∞ of the

expression in the limit of the right-hand side of (7). Since ε is arbitrarily small, we have

proven (7). �

Note that Lemma 2.1 does not necessarily hold if we drop the condition that f

is rapidly decaying. For example, if f is the characteristic function of a finite-volume

region having a cusp going off to infinity containing a rational line through the origin

(and thus infinitely many lattice points on that line), then the left-hand side of (7) is finite

while the expression in the limit on the right-hand side of (7) is infinite for any rational

value of X.

Lemma 2.1 implies in particular that

lim
X→∞

1

Xn(n+1)/2

∑
Q integral

D(Q/X) = 1 (9)

for any nice distribution D.

Now any piecewise smooth rapidly decaying function can be approximated arbi-

trarily well by a finite linear combination of characteristic functions of boxes. Let D

be a nice distribution. For any ε > 0, we may find a nice distribution Dε that is a finite
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10 M. Bhargava et al.

weighted average of box distributions U(·, ·), such that

∫
|D(y) − Dε(y)|dy< ε. (10)

By Lemma 2.1, we then have

lim
X→∞

1

Xn(n+1)/2

∑
Q integral

|D(Q/X) − Dε(Q/X)| < ε. (11)

To show that ρD
n (p) = ρn(p), we note that

ρn(p) = ρDε

n (p) = lim
X→∞

∑
Q integral,isotropic/Zp

Dε(Q/X)∑
Q integral Dε(Q/X)

(12)

= lim
X→∞

∑
Q integral,isotropic/Zp

Dε(Q/X)

Xn(n+1)/2
(13)

= lim
X→∞

∑
Q integral,isotropic/Zp

D(Q/X) + E(X, ε)

Xn(n+1)/2
(14)

= lim
X→∞

∑
Q integral,isotropic/Zp

D(Q/X) + E(X, ε)∑
Q integral D(Q/X)

, (15)

where for sufficiently large X we have |E(X, ε)| < εXn(n+1)/2 by (11); here the first equality

follows because Dε is a finite weighted average of box distributions U(·, ·), the second

equality follows from the definition (3), and the third and fifth equalities follow from (9).

Letting ε tend to 0 in (15) now yields ρn(p) = ρD
n (p), proving item (a) for general nice

distributions D.

Analogously, we have

∫
Q isotropic/R

Dε(Q)dQ = ρDε

n (∞) = lim
X→∞

∑
Q integral,isotropic/R

Dε(Q/X)∑
Q integral Dε(Q/X)

(16)

= lim
X→∞

∑
Q integral,isotropic/R

D(Q/X) + E ′(X, ε)∑
Q integral D(Q/X)

, (17)

where again for sufficiently large X we have |E ′(X, ε)| < εXn(n+1)/2. By (10), the left-

most expression in (16) approaches
∫

Q isotropic/R
D(Q)dQ as ε → 0, while expression (17)

approaches ρD
n (∞) by definition (3). This thus proves item (b) for general nice distribu-

tions. In particular, we have also proven that

lim
ε→0

ρDε

n (∞) = ρD
n (∞). (18)
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Random Integral Quadratic Forms 11

Finally, we have in a similar manner:

ρDε

n (∞)
∏

p

ρn(p) = ρDε

n = lim
X→∞

∑
Q integral,isotropic/Z

Dε(Q/X)∑
Q integral Dε(Q/X)

(19)

= lim
X→∞

∑
Q integral,isotropic/Z

D(Q/X) + E ′′(X, ε)∑
Q integral D(Q/X)

, (20)

where again for sufficiently large X we have |E ′′(X, ε)| < εXn(n+1)/2. By (18), the leftmost

expression in (19) approaches ρD
n (∞)

∏
p ρn(p) as ε → 0, while expression (20) approaches

ρD
n by definition. We have proven also item (c) for general nice distributions, as desired.

3 The Density of n-ary Quadratic Forms Over Zp that are Isotropic:

Proof of Theorem 1.2

3.1 Preliminaries on n-ary quadratic forms over Zp

Fix a prime p. For any free Zp-module V of finite rank, there is a unique additive

p-adic Haar measure μV on V which we always normalize so that μV (V) = 1. All den-

sities/probabilities are computed with respect to this measure. In this section, we take

V = Vn to be the n(n+ 1)/2-dimensional Zp-module of n-ary quadratic forms over Zp. We

then work out the density ρn(p) (i.e., measure with respect to μV ) of the set of n-ary

quadratic forms over Zp that are isotropic.

We start by observing that a primitive n-ary quadratic form over Zp can be

anisotropic only if, either: (I) the reduction modulo p factors into two conjugate lin-

ear factors defined over a quadratic extension of Fp or (II) the reduction modulo p is a

constant times the square of a linear form over Fp. For if the reduced form has rank ≥ 3,

then, after setting some variables to zero we obtain a smooth conic. But a conic over a

finite field always has a rational point (see, e.g., [12, Chapter I, Corollary 2]); this lifts to

a Qp-point by Hensel’s Lemma. Note that if p= 2, this argument is still valid, provided

that we define the rank correctly, that is, it is not the rank of the corresponding symmet-

ric matrix, but rather the codimension of the singular locus in the ambient projective

space.

Let ξ
(n)
1 and ξ

(n)
2 be the probabilities of Cases I and II, that is, the densities of

these two types of quadratic forms in Vn. Then

ξ
(n)
0 = 1 − ξ

(n)
1 − ξ

(n)
2 − 1

pn(n+1)/2
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12 M. Bhargava et al.

is the probability that a form is primitive, but not in Case I or Case II. Let α
(n)
1 (respec-

tively, α
(n)
2 ) be the probability of isotropy for quadratic forms in Case I (respectively,

Case II). Then

ρn(p) = ξ
(n)
0 + ξ

(n)
1 α

(n)
1 + ξ

(n)
2 α

(n)
2 + 1

pn(n+1)/2
ρn(p),

implying that

ρn(p) = pn(n+1)/2

pn(n+1)/2 − 1

(
ξ

(n)
0 + ξ

(n)
1 α

(n)
1 + ξ

(n)
2 α

(n)
2

)
. (21)

3.2 Some counting over finite fields

Let η
(n)
1 (respectively, η

(n)
2 ) be the probability that a quadratic form is in Case I (respec-

tively, Case II) given the “point condition” that the coefficient of x2
1 is a unit. Similarly,

let ν
(n)
1 be the probability that a quadratic form is in Case I given the “line condition”

that the binary quadratic form Q(x1, x2, 0, . . . , 0) is irreducible modulo p. Note that it is

impossible to be in Case II given the line condition, but we may also define ν
(n)
2 = 0. Set

η
(n)
0 = 1 − η

(n)
1 − η

(n)
2 and ν

(n)
0 = 1 − ν

(n)
1 − ν

(n)
2 = 1 − ν

(n)
1 . The values of ξ

(n)
j , η

(n)
j , and ν

(n)
j are

given by the following easy lemma.

Lemma 3.1. The probabilities that a random quadratic form over Zp is in Case I or Case

II are as follows:

• Case I (all; relative to point condition; relative to line condition)

ξ
(n)
1 = (pn − 1)(pn − p)

2(p+ 1)pn(n+1)/2
; η

(n)
1 = pn−1 − 1

2pn(n−1)/2
; ν

(n)
1 = 1

p(n−1)(n−2)/2
.

• Case II (all; relative to point condition; relative to line condition)

ξ
(n)
2 = pn − 1

pn(n+1)/2
; η

(n)
2 = 1

pn(n−1)/2
; ν

(n)
2 = 0. �

Proof. Case I: there are (p2n − 1)/(p2 − 1) linear forms over Fp2 up to scaling; subtract-

ing the (pn − 1)/(p− 1) which are defined over Fp, dividing by 2 to account for conjugate

pairs and then multiplying by p− 1 for scaling gives (pn−1)(pn−p)

2(p+1)
Case I forms, and hence

the value of ξ
(n)
1 .

Similarly, the number of Case I quadratic forms satisfying the point condition

is (p2(n−1) − pn−1)(p− 1)/2. Dividing by the probability 1 − 1/p of the point condition

holding gives pn(pn−1 − 1)/2 and hence the value of η
(n)
1 .
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Random Integral Quadratic Forms 13

Lastly, the number of Case I quadratic forms satisfying the line condition

is p2n−3(p− 1)2/2; dividing by the probability ξ
(2)
1 of the line condition holding gives

p2n−1, and hence the value of ν
(n)
1 .

Case II is similar and easier: the number of Case II quadratic forms is pn − 1, of

which pn − pn−1 satisfy the point condition and none satisfy the line condition; the given

formulae follow. �

3.3 Recursive formulae

We now outline our strategy for computing the densities ρn(p) using (21), by evaluat-

ing α
(n)
j for j = 1, 2. If a quadratic form is in Case I, then we may make a linear change

of variables (using a change of coordinate matrix in GLn(Zp), which preserves density),

transforming it so that its reduction is an irreducible binary form in only two variables.

Now isotropy forces the values of those variables, in any primitive vector giving a zero,

to be multiples of p; so we may scale those variables by p and divide the form by p. Sim-

ilarly, if a form is in Case II, then we transform it so that its reduction is the square of a

single variable, then scale that variable and divide out. After carrying out this process

once, we again divide into cases and repeat the procedure, which leads us back to an

earlier situation but with either the line or point conditions, which we need to allow for.

All these transformations clearly preserve the property of isotropy.

To make this precise, we introduce some extra notation for the probability of

isotropy for quadratic forms which are in Case I or Case II after the initial trans-

formation: let β
(n)
1 (respectively, β

(n)
2 ) be the probability of isotropy given we are in

Case I (respectively, Case II) after one step when the original quadratic form was in

Case I, and similarly γ
(n)
1 (respectively, γ

(n)
2 ) the probability of isotropy given we are

in Case I (respectively, Case II) after one step when the original quadratic form was

in Case II.

Lemma 3.2.

1. α
(2)
1 = 0, and for n≥ 3,

α
(n)
1 = ξ

(n−2)
0 + ξ

(n−2)
1 β

(n)
1 + ξ

(n−2)
2 β

(n)
2 + 1

p(n−1)(n−2)/2

(
ν

(n)
0 + ν

(n)
1 α

(n)
1 + ν

(n)
2 α

(n)
2

)
.

2. α
(1)
2 = 0, and for n≥ 2,

α
(n)
2 = ξ

(n−1)
0 + ξ

(n−1)
1 γ

(n)
1 + ξ

(n−1)
2 γ

(n)
2 + 1

pn(n−1)/2

(
η

(n)
0 + η

(n)
1 α

(n)
1 + η

(n)
2 α

(n)
2

)
.

�
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14 M. Bhargava et al.

Proof. We have α
(2)
1 = 0 since a binary quadratic form that is irreducible over Fp is

anisotropic. Now assume that n≥ 3, and (for Case I) Q(x1, . . . , xn) (mod p) has two con-

jugate linear factors. Without loss of generality, the reduction modulo p is a binary

quadratic form in x1 and x2. Now any primitive vector giving a zero of Q must have its

first two coordinates divisible by p, so replace Q(x1, . . . , xn) by 1
p Q(px1, px2, x3, . . . , xn).

The reduction modulo p is now a quadratic form in x3, . . . , xn. If the new Q is identically

zero modulo p, then, after dividing it by p, we obtain a new integral form that lands

in Cases I and II with probabilities ν
(n)
1 and ν

(n)
2 , respectively, since it satisfies the line

condition; otherwise, we divide into cases as before, with the probabilities of being in

each case given by ξ
(n−2)
j .

The result for α
(n)
2 is proved similarly: without loss of generality the reduction

modulo p is a quadratic form in x1 only, we replace Q(x1, . . . , xn) by 1
p Q(px1, x2, . . . , xn),

whose reduction modulo p is a quadratic form in x2, . . . , xn. If the new Q is identically

zero modulo p, then, after dividing by p, we have an integral form that lands in Cases I

and II with probabilities η
(n)
1 and η

(n)
2 , respectively, since it satisfies the point condition;

otherwise, we divide into cases, with probabilities ξ
(n−1)
j . �

It remains to compute β
(n)
1 (for n≥ 4), β

(n)
2 (for n≥ 3), γ

(n)
1 (for n≥ 3), and γ

(n)
2 (for

n≥ 2). Since ξ
(1)
1 = 0, we do not need to compute β

(3)
1 or γ

(2)
1 , which are in any case unde-

fined.

Lemma 3.3.

(i) If n≥ 4, then β
(n)
1 = ν

(n−2)
0 + ν

(n−2)
1 β

(n)
1 ; also, β

(4)
1 = 0.

(ii) If n≥ 3, then β
(n)
2 = ν

(n−1)
0 + ν

(n−1)
1 γ

(n)
1 ; also, β

(3)
2 = 0.

(iii) If n≥ 3, then γ
(n)
1 = η

(n−2)
0 + η

(n−2)
1 β

(n)
1 + η

(n−2)
2 β

(n)
2 ; also, γ

(3)
1 = 0.

(iv) If n≥ 2, then γ
(n)
2 = η

(n−1)
0 + η

(n−1)
1 γ

(n)
1 + η

(n−1)
2 γ

(n)
2 ; also, γ

(2)
2 = 0. �

Proof. In Case I, the initial transformation leads to a quadratic form for which the

valuations of the coefficients satisfy

≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1

≥ 0 ≥ 0 ≥ 0 . . . ≥ 0
≥ 0 ≥ 0 . . . ≥ 0

≥ 0 . . . ≥ 0
. . .

...

≥ 0

(22)
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Random Integral Quadratic Forms 15

(In this and the similar arrays which follow, we put into position (i, j) the known con-

dition on v(cij), so the top left entry refers to the coefficient of x2
1 , the top right to x1xn

and the bottom right to x2
n.) Then β

(n)
1 (respectively, β

(n)
2 ) are the probabilities of isotropy

given that the reduction modulo p of the form in x3, x4, . . . , xn is in Case I (respectively,

Case II).

Similarly, in Case II the initial transformation leads to

= 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 0 ≥ 0 ≥ 0 ≥ 0 . . . ≥ 0

≥ 0 ≥ 0 ≥ 0 . . . ≥ 0
≥ 0 ≥ 0 . . . ≥ 0

≥ 0 . . . ≥ 0
. . .

...

≥ 0

(23)

and γ
(n)
1 (respectively, γ

(n)
2 ) are the probabilities of isotropy given that the reduction mod-

ulo p of the form in x2, x3, . . . , xn is in Case I (respectively, Case II).

(i) To evaluate β
(n)
1 we may assume, after a second linear change of variables, that

we have

≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1

≥ 0 ≥ 0 ≥ 1 . . . ≥ 1
≥ 0 ≥ 1 . . . ≥ 1

≥ 1 . . . ≥ 1
. . .

...

≥ 1

and that the reductions modulo p of both 1
p Q(x1, x2, 0, . . . , 0) and Q(0, 0, x3, x4, 0, . . . , 0)

are irreducible binary quadratic forms. Any zero of Q must satisfy x3 ≡ x4 ≡ 0 (mod p).

This gives a contradiction when n= 4, so that Q(x1, . . . , x4) is anisotropic, and β
(4)
1 = 0.

Otherwise, replacing Q(x1, . . . , xn) by 1
p Q(x3, x4, px1, px2, x5, . . . , xn) brings us back to the

situation in (22). Now, however, the line condition holds, so that Cases I and II occur

with probabilities ν
(n−2)
1 and ν

(n−2)
2 = 0 instead of ξ

(n−2)
1 and ξ

(n−2)
2 .

(ii) To evaluate β
(n)
2 , we may assume that the valuations of the coefficients satisfy

≥ 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 1 ≥ 1 ≥ 1 . . . ≥ 1

= 0 ≥ 1 . . . ≥ 1
≥ 1 . . . ≥ 1

. . .
...

≥ 1
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16 M. Bhargava et al.

and that the reduction modulo p of 1
p Q(x1, x2, 0, . . . , 0) is an irreducible binary quadratic

form. If n= 3 then Q is anisotropic, and β
(3)
2 = 0. Otherwise, replacing Q(x1, . . . , xn) by

1
p Q(x2, x3, px1, x4, . . . , xn) brings us back to the situation in (23) but with the line condi-

tion, so that Cases I and II occur with probabilities ν
(n−1)
1 and ν

(n−1)
2 instead of ξ

(n−1)
1 and

ξ
(n−1)
2 .

(iii) For γ
(n)
1 , we may assume that the valuations of the coefficients satisfy

= 1 ≥ 1 ≥ 1 ≥ 1 . . . ≥ 1
≥ 0 ≥ 0 ≥ 1 . . . ≥ 1

≥ 0 ≥ 1 . . . ≥ 1
≥ 1 . . . ≥ 1

. . .
...

≥ 1

and the reduction of Q(0, x2, x3, 0, . . . , 0) modulo p is irreducible. Any zero of Q now

satisfies x2 ≡ x3 ≡ 0 (mod p). When n= 3 this gives a contradiction, so Q(x1, x2, x3) is

anisotropic, and γ
(3)
1 = 0. Otherwise, replacing Q(x1, . . . , xn) by 1

p Q(x3, px1, px2, x4, . . . , xn)

brings us back to the situation in (22) but with the point condition, so that Cases I and II

occur with probabilities η
(n−2)
1 and η

(n−2)
2 .

(iv) Lastly, for γ
(n)
1 , we may assume that the valuations of the coefficients satisfy

= 1 ≥ 1 ≥ 1 . . . ≥ 1
= 0 ≥ 1 . . . ≥ 1

≥ 1 . . . ≥ 1
. . .

...

≥ 1.

If n= 2, then Q(x1, x2) is anisotropic, and γ
(2)
2 = 0. Otherwise, replacing Q(x1, . . . , xn)

by 1
p Q(x2, px1, x3, . . . , xn) brings us back to the situation in (23) but with the point

condition. �

3.4 Conclusion

Using Lemmas 3.1 and 3.3 we can compute β
(n)
j and γ

(n)
j for j = 1, 2 and all n: we first

determine β1 from Lemma 3.3(i), then β
(n)
2 and γ

(n)
1 together using Lemma 3.3(ii, iii), and

finally γ
(n)
2 using Lemma 3.3 (iv). The following table gives the result:

β
(n)
1 β

(n)
2 γ

(n)
1 γ

(n)
2

n= 2 − − − 0

n= 3 − 0 0 1/2

n= 4 0 (2p+ 1)/(2p+ 2) (p+ 2)/(2p+ 2) 1 − (p/(4(p2 + p+ 1)))

n≥ 5 1 1 1 1
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Random Integral Quadratic Forms 17

Now, using Lemma 3.2, we compute α
(n)
1 and α

(n)
2 :

α
(n)
1 α

(n)
2

n= 2 0 1/(2p+ 2)

n= 3 1/(p+ 1) (p+ 2)/(2p+ 2)

n= 4 1 − (p3/(2(p+ 1)(p2 + p+ 1))) 1 − (p3/(4(p+ 1)(p3 + p2 + p+ 1)))

n≥ 5 1 1

Finally, we compute ρn(p) using (21), yielding the values stated in Theorem 1.2.

Note that our proof of Theorem 1.2 also yields a (recursive) algorithm to deter-

mine whether a quadratic form over Qp is isotropic. Tracing through the algorithm, we

see that, for a quadratic form of nonzero discriminant, only finitely many recursive iter-

ations are possible (since we may organize the algorithm so that at each such iteration

the discriminant valuation is reduced), that is, the algorithm always terminates. In par-

ticular, when n≥ 5, our algorithm always yields a zero for any n-ary quadratic form of

nonzero discriminant; hence every nondegenerate quadratic form in n≥ 5 variables is

isotropic.

4 The Density of n-ary Quadratic Forms Over R that are Indefinite:

Proof of Theorem 1.3

4.1 Preliminaries on the GOE

We wish to calculate the probability ρn(∞) that a real symmetric matrix M from the

n-dimensional GOE has an indefinite spectrum. The distribution of matrix entries in

the GOE is invariant under orthogonal transformations. Since real symmetric matrices

can be diagonalized by an orthogonal transformation, the GOE measure can be written

directly in terms of the eigenvalues λ(M), yielding the distribution

P(λ(M) ∈ [λ + dλ)) = 1

ZGOE
n

|Δ(λ)|
n∏

i=1

e− 1
4 λ2

i dλi; (24)

here

Δ(λ) :=
∏

1≤i< j≤n

(λ j − λi) = det(ϕi(λ j)),

where (ϕi(λ j)) = (λi−1
j ) is a Vandermonde matrix, and the normalizing factor ZGOE

n is

given by

ZGOE
n = n!(2π)

n
2 2(n(n−1)/4+n/2)

n∏
j=1

Γ (
j
2 )

Γ ( 1
2 )

. (25)
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18 M. Bhargava et al.

See, for example, [1, (2.5.4)].

Note that the probability that the matrix M is indefinite is related to the proba-

bility p+
n that all its eigenvalues are positive by

ρn(∞) = 1 − P(positive definite) − P(negative definite) = 1 − 2p+
n , (26)

where the second equality follows by symmetry. Below we will calculate p+
n , and hence

obtain the value of ρn(∞).

4.2 de Bruijn’s identity

We recall a useful result from [4, Section 4] for calculating determinantal integrals of

the type we will need. As a generalization of an expression for the volume of the space

of symmetric unitary matrices, de Bruijn considered integrals of the form:

Ω =
∫

· · ·
∫

a≤x1≤···≤xn≤b

det
1≤i, j≤n

(ϕi(xj))dμ(x1) · · · dμ(xn). (27)

Recall that the Pfaffian of a skew-symmetric matrix A= (aij) is given by

Pf(A) =
∑

τ

sgn(τ )ai1, j1ai2, j2 · · · ais, js , (28)

where τ ranges over all partitions

τ = {(i1, j1), (i2, j2), . . . (is, js)}

of n= 2s where ik < ik+1 and ik < jk. The sign is of the corresponding permutation

τ =
[

1 2 3 4 · · · 2s

i1 j1 i2 j2 · · · js

]
.

The integral (27) may be rewritten as the Pfaffian of either an n× n skew-

symmetric matrix if n is even, or an (n+ 1) × (n+ 1) skew-symmetric matrix if n is odd.

More precisely, let n′ := 2�n/2�; then we have Ω = Pf(A), where A is the n′ × n′ skew-

symmetric matrix whose (i, j)-entry aij is given for i < j by

aij =

⎧⎪⎪⎨
⎪⎪⎩

∫b

a

∫b

a
sign(y − x)ϕi(x)ϕ j(y)dμ(x)dμ(y) if i < j ≤ n;

∫b

a
ϕ j(x)dμ(x) if i < j = n+ 1.

(29)
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Random Integral Quadratic Forms 19

The second case occurs only when nis odd. Note that this expression for Ω is valid in any

ordered measure space; below, we will use dμ(x) = e−x2/4dx, where dx is the Lebesgue

measure on R.

The Pfaffian form of the integral is found by expanding the determinant and

using a signature function to keep track of the signs and the ordering of the xi. This sig-

nature function of n variables can be broken up into a sum of products of two-variable

pieces (and a one-variable piece if n is odd) and thus the integral can be factorized into

a sum of products of two (and one) dimensional integrals which is recognized as of the

form (28) for a matrix with entries (29).

4.3 Calculation of ρn(∞)

For a matrix M from the GOE, the joint distribution of the eigenvalues

λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M) is given by

n!

ZGOE
n

1λ1≤λ2≤···≤λn|Δ(λ)|
n∏

i=1

e− 1
4 λ2

i dλi. (30)

The ordering in the domain of integration below means that we can replace |Δ(λ)| by

Δ(λ). It then follows that p+
n is given by the integral

p+
n = n!

ZGOE
n

∫
· · ·

∫

0≤λ1≤···≤λn≤∞
Δ(λ)

n∏
i=1

e− 1
4 λ2

i dλi

= n!

ZGOE
n

∫
· · ·

∫

0≤λ1≤···≤λn≤∞
det(ϕi(λ j))

n∏
i=1

e− 1
4 λ2

i dλi

= n!

ZGOE
n

Pf(A), (31)

where the last equality follows from the result of Section 4.2. Here, A= (aij), where for

i < j ≤ n we define

aij =
∫∞

0

∫∞

0
sign(y − x)xi−1yj−1 e− x2+y2

4 dxdy

= 2i+ j−2Γ

(
i + j

2

)(
β 1

2

(
i

2
,

j

2

)
− β 1

2

(
j

2
,

i

2

))
, (32)

and for n odd we also set ai,n+1 = 2i−1Γ ( i
2 ). Here the gamma and incomplete beta func-

tions are as defined in Section 1. From the resulting skew-symmetric matrix A, we may
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evaluate (31) to determine ρn(∞), yielding Theorem 1.3. Explicit values of ρn(∞) are dis-

played in Table 1 for n≤ 8.

Remark 4.1. It is easily shown that the matrix entries aij in Theorem 1.3 are of the form

x or x
√

π for x ∈ Q(
√

2), in accordance with whether i + j is even or odd. Let s = �n/2�, so

that A is a 2s × 2s matrix. Then after re-ordering the rows and columns we have

Pf(A) = ±Pf

(
A1

√
π A2

−√
π At

2 A3

)
= ±π s/2Pf

(
A1 A2

−At
2 π−1 A3

)

where A1, A2, and A3 are s × s matrices with entries in Q(
√

2). Since
∏n

m=1 Γ (m/2) = π s/2y

for some y∈ Q, it follows by Theorem 1.3 and the definition of the Pfaffian that ρn(∞) is

a polynomial in π−1 having coefficients in Q(
√

2) and degree at most 
s/2� = 
(n+ 1)/4�.

�
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