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Hierarchical Relaxed Partitioning System for
Activity Recognition

Faisal Azhar, Student Member, IEEE and Chang-Tsun Li, Senior Member, IEEE

Abstract—A hierarchical relaxed partitioning system (HRPS)
method is proposed for recognizing similar activities which have
a feature space with multiple overlaps. Two feature descriptors
are built from the human motion analysis of a 2D stick figure
to represent cyclic and non-cyclic activities. The HRPS first
discerns the pure and impure activities, i.e., with no overlaps and
multiple overlaps in the feature space respectively, then tackles
the multiple overlaps problem of the impure activities via an
innovative majority voting scheme. The results show that the
proposed method robustly recognises various activities of two
different resolution data sets, i.e., low and high (with different
views). The advantage of HRPS lies in the real-time speed, ease
of implementation and extension, and non-intensive training.

Index Terms—Hierarchical Relaxed Partition, Decision Tree,
Model, Activity Recognition

I. INTRODUCTION

Human activity recognition is important due to potential ap-
plications in video surveillance, assisted living, animation, etc
[1] [2]. In general, a standard activity recognition framework
consists of feature extraction, feature selection (dimension
reduction) and pattern classification. Feature extraction can
be broadly categorized into the holistic (shape or optical
flow) [3]–[6], local feature (descriptors of local regions) [7]–
[10] and model-based (prior model) or model-free (no prior
model) approaches. Techniques such as Principal Component
Analysis (PCA) [11] or Linear Discriminant Analysis (LDA)
[12] are commonly used to select the most prominent features.
Decision tree (DT) [3] or Support Vector Machines (SVMs)
[2] are used for efficient classification.

Recognizing similar activities in real-time speed still re-
mains a challenge for numerous human activity recognition
methods (see Section II). The local feature and holistic ap-
proaches are computationally expensive and require intensive
training while the model-based/model-free approach is effi-
cient but less accurate. Therefore, the robust and efficient
implicit body model based approach for significant body point
(SBP) detection described in [13] is used for feature extraction.
In this context, we extend the work in [14] to extract the leg
frequency, torso inclination, leg power and torso power. Also,
the SBP detection method is augmented to extract features
(similar to [6]) that extract variations in the movement of
different body parts at different directions, i.e., up, down, right,
and left, during an activity. These features are used to create
two feature descriptors.
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Most researchers use off-the-shelve classifier such as SVM
and DT but with a trade-off of performance. For example,
SVM struggles due to the lack of generalized information,
i.e., each test activity is compared with the training activity of
one subject [6]. On the other hand DT imposes hard constraint
that lead to separation problems when the number of categories
increases or when categories are similar, i.e., a lack of clear
separation boundary [15]. Similar to DT, hierarchical methods
[16], [17] are also used at lower levels for feature-wise classifi-
cation. The Relaxed Hierarchy (RH) method in [15] focuses on
building high-level class hierarchies and look into the problem
of class-wise partitioning. To achieve high accuracy while
being fast the RH [15] uses a relaxed constraint, i.e., postpone
decisions on confusing classes, to tackle the increased number
of categories but still remains inadequate to accurately discern
similar categories. The Hierarchical Strategy (HS) method in
[18] uses the RH and groups together easily confused classes
to improve the classification performance. RH and HS have
only been applied to the spatial domain. We are motivated from
the work of RH and HS to perform class-wise partitioning for
recognizing similar activities accurately.

We propose a hierarchical relaxed partitioning system
(HRPS) (see Section III for details) that classifies and orga-
nizes activities in a hierarchical manner according to their type,
i.e., pure activities (easily separable) and impure activities
(easily confused). Subsequently, it applies relaxed partitioning
to all the easily confused activities by postponing the decisions
on them until the last level of the hierarchy, where they are
labelled by using a novel majority voting scheme (MVS).
As opposed to a conventional multi-class classifier as in [18]
that can distinguish between only two similar activities, i.e.,
two classes overlapping simultaneously, the proposed MVS
is able to discern between three or more similar activities,
i.e., three classes overlapping concurrently. Thus, making the
HRPS more robust and suitable for identifying activities in
real world scenarios.

The major contributions of this work are: (a) Feature de-
scriptors that represent changes in figure shape characteristics
during an activity, (b) Expert knowledge at the root node to
split activities into two groups, i.e., significant and no signif-
icant translation, (c) HRPS with a novel MVS to efficiently
recognise similar activities.

This paper is organized as follows. Section II reviews related
methods. Section III and Section IV present the foundation of
HRPS and its application to activity recognition, respectively.
Experiments are shown in Section V.
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II. LITERATURE REVIEW

A. Holistic and local feature approaches

Several human activity recognition methods, e.g., [3], [7],
[8], [19]–[24] verified on the benchmark data sets (see [25]
for data sets) struggle in correctly classifying similar activities
of the Weizmann data set. The methods in [3], [5], [6],
[10] that are able to correctly classify similar activities of
the Weizmann data set are either computationally expensive
or require intensive training or need to learn a large set of
features. Also, these methods require tuning of parameters
with respect to the data set. Therefore, they require extensive
re-training for new activities. The bag of words or bag of
feature based methods [7], [8] have high computational cost,
requires intensive training and confuses similar activities.

B. Model-free and Model-based approaches

In model-free methods no prior model is used to determine
the SBPs. For example, the method in [14] creates a one-star
(a shape that is formed by connecting the centre of mass of a
human silhouette contour to the extreme boundary points) by
using a local maximum on the distance curve of the human
contour to locate the SBPs which are at the extremities. It uses
two motion features, i.e., leg frequencies and torso angles,
to recognise only the Walk and Run activities. A two star
method [26] extends [14] by adding the highest contour point
as the second star. It uses a 5D feature descriptor with a hidden
Markov model (HMM) to detect the fence climbing activity.
The method in [23] extends [26] by using the medial axis [27]
to generate the junction points from which variable star models
are constructed. It is compared with [14] and [26] on the fence
climbing activity, and evaluated on the Weizmann data set. In
[28], multiple cues such as the skin colour, principal and minor
axes of the human body, the relative distances between convex
points, convex point curvature, etc., are used to enhance the
method in [14] for the task of posture estimation. It does
not provide quantitative results, and uses a non-standard and
non-publicly available data set. Thus, it requires extensive
further work to validate and apply it to activity recognition.
The method in [24] assumes that SBPs are given and uses
the chaotic invariant for activity recognition on the Weizmann
data set. It uses the trajectories of SBPs to reconstruct a phase
space, and applies the properties of this phase space such as
the Lyapunov exponent, correlation integral and dimension, to
construct a feature vector, for activity recognition. The above-
described distance curve based methods are sensitive to the
silhouette contour, occlusion, resolution, etc., which affects
their accuracy for activity recognition. The method in [23]
and [24] confuse similar activities while only two features of
the method in [14] are not sufficient for recognizing more than
two similar activities.

In model-based methods a pre-define body model is use to
determine SBPs. The model-based method in [29] uses the
Poisson equation to obtain the torso, and negative minimum
curvature to locate extremities which are labelled as SBPs
using a 2D body model. An 8D feature descriptor from the
articulated model is used with the HMM to recognise six
activities. In [30], the dominant points along the convex hull of

a silhouette contour are used with the body ratio, appearance,
etc., to fit a predefined model. It is extended in [31] for activity
recognition. These methods are evaluated on non-standard and
publicly unavailable data sets. The method in [32] uses the
convex hull with a topological body model to identify the
SBPs. However, it is designed to be used for surveillance
purposes. In [13] implicit body models are used with the
convex hull of a human contour to label SBPs. It tracks the
SBPs by using a variant of the particle filter. This method
works in real-time by fitting the knowledge from the implicit
body models. It outperforms most of the cutting edge methods
that use the distance curve method. Thus, we are motivated to
extend and apply it for activity recognition.

III. FOUNDATION OF PROPOSED METHOD-HRPS
Methods like Decision Tree (DT) and Random Forest (RDF)

assume that at each node the feature-space can be partitioned
into disjoint subspaces, however as mentioned in [15] this
does not hold when there are similar classes or when there
are a large number of classes. In this case, finding a feature-
space partitioning that reflects the class-set partitioning is
difficult as observed in [15]. Therefore, similar to [15], [18]
the goal of this work is to establish a class hierarchy and
then train a classifier such as simple binary classifier at each
node of the class hierarchy to perform efficient and accurate
classification. This allows us to define different set of rules
for classifying different types of activities. This is important
as different feature sets are useful for discerning different types
of activities [33].

Let us demonstrate the concept of creating a Hierarchical
Relaxed Partitioning System (HRPS) using a simple example
with three overlapping classes (A, B and C) that represent
similar categories as shown in Fig. 1(a). It can be seen from
Fig. 1(a) that it is not possible to clearly distinguish between
only two overlapping classes by using the Relaxed Hierarchy
(RH) method as it assumes that only two classes overlap
simultaneously. This is because now the overlap is among three
classes concurrently, i,e., the overlap between the two classes
A and B also contain some overlap with the third class C.
Similar phenomena occurs for B and C, and A and C classes.
In addition, a combined overlap occurs, i.e, A ∩ B ∩ C ̸= ∅.
Hence, the RH method is not capable of tackling the multiple
overlaps class separation problem.

The proposed HRPS method addresses this deficiency in the
RH method by splitting the set of classes K = A′∪B′∪C ′∪X ,
where X = XAB∪XBC∪XAC and XAB = A∩B−A∩B∩C,
XBC = B ∩ C − A ∩ B ∩ C, XAC = A ∩ C − A ∩ B ∩ C
and XABC = A ∩ B ∩ C. X contains samples from two or
more overlapping classes. First, at each level of the hierarchy
the clearly separable samples of each class are partitioned into
the A′ or B′ or C ′ as shown in Fig. 1(b)-(d).

A′ = A−XAB −XAC −XABC (1)

B′ = B −XAB −XBC −XABC (2)

C ′ = C −XAC −XBC −XABC . (3)

Next, the overlapping samples of each class as shown in
Fig. 1(e) are partitioned into A or B or C via a majority voting
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(a) (b) (c) (d) (e)

(f)
Fig. 1. (a) Example of three classes to illustrate multiple overlaps class
separation problem, (b)-(e) Hierarchical relaxed partitioning system: (b), (c)
and (d) Partition non-overlapping samples from class A, B and C respectively,
(e) Remaining overlapping samples of all the three classes discerned using
the majority voting scheme (see Section IV-B for details), and (f) the
corresponding class hierarchy structure.

scheme (see Section IV-B). The class hierarchy structure for
HRPS method is shown in Fig. 1(f). Note that at each level
one class is partitioned from the remaining group of easily
confused classes [1] [18].

IV. HRPS FOR ACTIVITY RECOGNITION

We present HRPS for the Weizmann data set [34] containing
multiple similar activities such as Walk, Run, Side, Skip,
etc. that can easily confuse the activity recognition methods
in the literature. Application of HRPS to the Multi-camera
Human Action Video (MuHAVi) data set [35] containing
similar activities e.g., walk , run, turn, etc., is also described
in order to establish its generality, i.e., adaptability to work
on a different data set. The work flow of the proposed activity
recognition is shown in Fig. 2.

A. Feature extraction

Distinguishing between the cyclic and non-cyclic activities
is vital for activity recognition [36]. Thus, we augment our
earlier work in [13] to build two feature descriptors Di, i =
1, 2. The 2D stick figure shown in Fig. 3 (a) is used to describe

D1 = [V1 V2 V3 V4 V5] (4)

for cyclic activities, while the 2D stick figure shown in Fig. 3
(b) is utilized to build

D2 = [V6 V7 V8 V9 V10 V11 V12 V13] (5)

(a) (b) (c)
Fig. 3. Feature extraction. (a) 2D stick figure analysis for cyclic activities, (b)
The upper and lower body analysis based on the arm and feet movement, and
(c) Process of acquiring D1 for the cyclic activities. The SBPs are labelled
as Head (H), Front Arm (FA), Back Arm (BA) and Feet (F).

for non-cyclic activities. The Vi, i = 1, 2, ..., 13 represents
the feature elements of the descriptors as explained later. In
Fig. 3, the SBPs are labelled as the Head (H), Front Arm
(FA), Back Arm (BA) and Feet (F). Each SBP abbreviation
can be considered as a vector which has a 2D position, e.g,
FA = (xFA, yFA), F = (xF , yF ). Here, the superscripts
denote the abbreviations of SBP.

The 2D stick figure motion analysis method in [14] uses two
motion based features, i.e., the leg power and torso inclination
angle, to discern between the Walk and Run activities. This
method is suitable for only classifying the cyclic activities with
less inter-class similarity, i.e., the activities are not similar to
each other. Therefore, we propose two more features, i.e., the
torso angle and torso power, to strengthen the method in [14].
Given the global angle from contour moments V6 = θ(t) at
time t, centre (xc, yc), and SBPs from [13], we extend the
method in [14] to acquire D1 which contains four motion
based features, i.e., the leg cyclic frequency (V1) and leg
power (V2), and the torso inclination angle V3 = ϕ(t) =
|90 − (θ(t)3.14/180)| and torso power V4 for the cyclic
activities. The foot point xF > xc is used for computing

θleg(t) = tan−1(
xF − xc

yF − yc
). (6)

The computed torso angle V3 = ϕ(t) and leg angle θ(t)leg
are converted into radians. A highpass digital filter Y (ejw) is
applied to θ(t)leg .

Y (ejw) = b(1)− b(2)e−jw (7)

Here, b(1) = 1, b(2) = −0.9 as in [14]. The filtered leg angles
θ(t)leg are then autocorrelated in order to emphasise the major
cyclic components. The discrete Fourier transform (DFT) is
applied to the autocorrelated leg angles to quantify the leg
frequency V1 and magnitude expressed as leg power V2 in
decibels [14] as shown in Fig. 3(c). The proposed activity
recognition system also applies the high pass digital filter
Y (ejw) to the torso angle V3 (in radians) in order to remove
the low frequency components in contrast to [14] where this
filter is only applied to the leg angle θ(t)leg . This high
pass filter helps to remove the noise (which appears as large
peaks in the low frequency) produced by the autocorrelation
process. Next, the autocorrelation and DFT steps in Fig. 3(c)
are performed on the filtered torso angle to compute a new
feature, i.e., the torso magnitude expressed as torso power V4
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Fig. 2. The main components and work flow of the proposed human activity recognition.

in decibels. The change in direction of movement or position
is incorporated as

V5 = min(xt+1
c − xt

c) (8)

∀ t ∈ [1, N −1], where N is the total number of frames, min
gives the minimum value. A positive and negative value of
V5 respectively indicate whether subject moved in the same
direction or changed the direction (turn around) of movement
during an activity.

The feature descriptor D2 characterises the upper body
(torso and arms) and lower body (legs) movements as a
proportion of the mean height µh at different directions during
an activity as shown in Fig. 3 (b) for the non-cyclic activities.
The inter-frame displacement (movement) of the front and
back arms are described as

V7 = max(|xFA
t+1−xFA

t |)/µh, V8 = max(|yFA
t+1−yFA

t |)/µh

(9)

V9 = max(|xBA
t+1−xBA

t |)/µh, V10 = max(|yBA
t+1−yBA

t |)/µh

(10)
∀ t ∈ 1, [N − 1],max gives the maximum value. The features
V7, V8, V9, and V10 do not contain information with respect
to the actual positioning of the front and back arm SBPs,
i,e., where the arm displacement is being taken place. This
information is represented as

V11 = min(yFA
t ), V12 = min(yBA

t ), ∀ t ∈ [1, N ] (11)

which uses the vertical position of the front and back arms to
represent their maximum height (as the minimum y location
of the front and back arms). The variation in the lower body
movement due to the leg can be represented by computing
the maximum inter-frame horizontal displacement between the
two feet as

V13 = max(|xF
t+1 − xF

t |)/µh, ∀ t ∈ [1, N − 1]. (12)

TABLE I
ACRONYMS FOR ACTIVITIES.

Type Activities (α)

1 Walk
2 Run
3 Skip
4 Side
5 Jump
6 Turn

Type Activities (β)

7 Jump-in-place-on-Two-Legs/Pause Jump
8 Bend
9 One Hand Wave
10 Two Hand Wave
11 Jack
12 Standup
13 Collapse
14 Kick
15 Punch
16 Guard-to-Kick
17 Guard-to-Punch

B. Classification: HRPS for the Weizmann data set

The Weizmann data set contain ten activities, i.e., Walk
(α1), Run (α2), Skip (α3), Side (α4), Jump (α5), Jump-
in-place-on-two-legs or Pause Jump (β7), Bend (β8), One
Hand Wave (β9), Two Hand Wave (β10) and Jack (β11) (see
Table I). In [37], a binary decision tree splits the activities into
still and moving categories at the root node in order to obtain
better classification. Therefore, motivated by [37], we add an
expert knowledge at the root node level 1 to automatically
split the above-mentioned ten activities in two groups, i.e.,
significant translation (α) and no significant translation (β) by
using

α = w1Iw > xc or xc > w2Iw
β = w1Iw < xc or xc < w2Iw

(13)

as shown in level 2 of Fig. 4. Iw is the frame width and
Ih is the frame height. The weights w1 and w2 have been
empirically determined as 0.25 and 0.75 respectively. These
weights allow us to define a range that is used to determine
whether the subject’s initial position xc is within or outside
this range by using Eq. (13). When the subject’s initial position
is outside this range the subject is likely to perform an activity
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Fig. 4. Hierarchical relaxed partitioning system for the Weizmann data set.
∆i, i = 1, 2, ..., 10 are the decision rules, and Xα and Xβ are the unassigned
impure cyclic and non-cyclic activities, respectively, with significant multiple
overlaps.

with siginificant movement/translation across the frame, other-
wise the subject might perform an activity with no significant
translation. Thus, based on Eq. (13) most cyclic activities,
i.e., Walk (α1), Run (α2), Skip (α3), Side (α4) and Jump
(α5), which have significant translation of the subject and
repetitive nature are grouped together under α. The cyclicity
of activities with significant translation is captured by using
Eq. (6) to compute the leg cyclic frequency (V1) as explained
in Section IV-A. The activities, i.e., the Pause Jump (β7), Bend
(β8), One Hand Wave (β9), Two Hand Wave (β10) and Jack
(β11), which have no significant translation of the subject are
grouped under β.

A HRPS with 8 levels is created with decision rules ∆i,
i = 1, 2, ..., 10 as shown in Fig. 4. The decision rules
∆i, i = 1, 2, ..., 5 for cyclic activities are learned by using
Algorithm Cyclic Activity Learning Algorithm (CAL) on the
training data set that contains the activities performed by eight
subjects. The last subject is used as the testing data set in
a leave-one-out cross validation approach to determine the
performance of the HRPS for cyclic activities. Algorithm CAL
postpones decisions on those samples of an activity that are
closer to the samples of all the remaining activities by updating
the decision rules ∆i, i = 1, 2, ..., 5 according to variable
adjustment κ. In [13], SBPs were accurately detected by using
implicit body models (IBMs) that are based on the human
kinesiology and anthropometric studies, and observed human
body characteristics. This inspired us to define decision rules
∆i, i = 6, 8, ...10 that are fixed based on the human kinesi-
ology (torso flexion or extension V6) [38] and anthropometric
studies (upper body motion V7, V8, V9, V10 and leg motion
V13) [39], and individual arm location V11 and V12), observed
human body characteristics and experimental cues for non-
cyclic activities. The Pause Jump (β7) is a cyclic activity with
no significant translation but has repetitive nature. Thus, it
is first separated using Eq. (14) from the non-cyclic activities,
i.e., Bend (β8), One Hand Wave (β9), Two Hand Wave (β10),
Jack (β11). This knowledge will assure an increase in the
accuracy and reliability of the activity classification.

∆6 =

{
β7 if |90− V6| < 9
∆7 Otherwise. (14)

A full flexion of the vertebra in the Bend (β8) activity

Cyclic Activity Learning Algorithm (D1)

Input: Training sequences S1, ..., SM

Corresponding labels y1, ..., yM
Feature descriptor D1 = [V1 V2 V3 V4 V5]

Output: Decision rules ∆i, i = 1, 2, ..., 5

1- For each activity, determine the mean µi and standard
deviation σi of feature elements Vi, i = 1, ..., 5 from K
training subjects/samples as

µi =
∑K

k=1 V
k
i /K , σi =

√
1/K

∑K
k=1(V

k
i − µi)2.

2- Learn decision rules as one standard deviation on either
side of the mean

∆i = µi − σi < Vi < µi + σi, i = 1, 2, ..., 5.

3- Update decision rules by using a variable adjustment κ
to separate clearly separable samples, i.e., pure samples, of an
activity from the samples of all the remaining activities

∆i = µi − σi + κ < Vi < µi + σi + κ, i = 1, 2, ..., 5

4- Accumulate impure samples of an activity that are closer
to the samples of all the remaining activities in Xα.

causes a large increase in the torso angle [38]. Based on the
experimental observation in Section V-A most training subjects
have a torso angle variation greater than 9 degrees, thus,

∆7 =

{
β8 if |90− (V6180/3.14)| > 9
∆8 Otherwise. (15)

The Jack (β11) activity which involves a large upper body and
lower body movement is determined based on large arm and
feet displacement by using

∆8 =

 β11 if V7 or V8 > 15/µh and V9 or V10 > 15/µh

and V13 > 20/µh

∆9 Otherwise.
(16)

where µh = 68 pixels for the Weizmann data set. The human
head is one-eighth the human height, i.e., 0.125. Hence, a 15
pixel movement equates to 15/68 = 0.22 that is almost twice
of the height of the human head.

The individual arm motion in the Two Hand Wave (β10) and
One Hand Wave (β9) activities is discerned using the location
information. In the Two Hand Wave (β10) activity there will
be significant movement of both arms while in the One Hand
Wave (β9) activity there will be significant movement of only
one arm. Therefore, the Two Hand Wave (β10) and One Hand
Wave (β9) activities are described below:

∆9 =

 β10 if V13 < 20/µh and V8 ≥ 5/µh and
V10 ≥ 5/µhand V11 ≤ 55 and V12 < 50

∆10 Otherwise.
(17)
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Fig. 5. Proposed majority voting scheme for the unassigned impure activities
Xα and Xβ using the mean D̄i, i = 1, 2.

∆10 =

 β9 if V13 < 20/µh and V8 or V10 ≤ 8/µh

and V11 ≤ 55 and V12 > 50
Xβ Otherwise.

(18)
Majority Voting Scheme
The justificiation for using the proposed MVS is based on

the fact that it’s design and accumulated voting criteria is better
suited to recognise three or more similar activities, i.e., three
classes overlapping simultaneously (see Section III for details).
Also, the current state-of-the-art methods, i.e., RH and HS
(using the conventional multiclass classifier) can distinguish
between only two similiar categories/activities.

The HRPS postpones decisions on those samples of an ac-
tivity that are closer to samples of all the remaining activities,
so that they trickle to the bottom where they are captured at
the second last level (see Fig. 4). These unassigned activities
are supplied to a novel majority voting scheme (MVS) for
classification at the last level of the HRPS. The key idea of
this scheme is to accumulate votes based on the rank, assigned
weight and frequency (mode) value in order to deduce more
accurate decisions for the unassigned activities in Xα and Xβ

(see Fig. 4).
As shown in Fig. 5, given the mean feature descrip-

tors, i.e., D̄1 = [V̄1 V̄2 V̄3 V̄4 V̄5] and D̄2 =
[V̄5 V̄6 V̄7 V̄8 V̄9 V̄10 V̄11 V̄12], of the known activities of the
training data set, the goal is to label an unknown impure activ-
ity (which contain significant overlaps in the feature space) by

extracting the feature descriptors, i.e., D1 = [V1 V2 V3 V4 V5]
and D2 = [V6 V7 V8 V9 V10 V11 V12 V13], in order to
calculate the rank, weight and mode as shown in Fig. 5.
D1 and D2 are used for cyclic and non-cyclic activities,
respectively. V1 − V13 represent each feature element of the
feature descriptors. The label for the unknown impure activity
is determined as follows.

• Step 1: Compare each feature element of the feature
descriptor, i.e., D1 or D2, of one unknown impure activity
with the respective mean feature elements of the feature
descriptor, i.e., D̄1 or D̄2, for each of the known activities
in order to enumerate three closest known activities per
mean feature element.

• Step 2: Assign a score (rank) ν = 3, 2, 1 to the three
activities enumerated in Step 1 based on their closeness
to each of the mean feature elements of D̄1 or D̄2. Next,
arrange them in the descending order of their ranks.

• Step 3: Allocate a weight ω = 3, 2, 1 to the three ranked
activities in Step 2 based on their strength of closeness
to the mean feature elements of D̄1 or D̄2.

• Step 4: Find the three known activities that occur most
frequently (i.e., mode ϖ) per mean feature element of
D̄1 or D̄2.

• Step 5: Calculate the final score to find the label of
the unknown activity. The known activity of the train-
ing data set whose rank, weight, and mode yield the
maximum score with respect to the unknown activity
is assigned as the label for the unknown activity, i.e.,
Label=max(ϖ + ν + ω). This metric has been selected
based on empirical analysis on the training data set to
obtain an optimal decision.

Fig. 5 also shows how the label for an unknown impure
activity, e.g., Walk, is determined using the MVS. According
to Step 1, each feature element of unknown activity is com-
pared with the mean feature elements to enumerate the three
closest known activities as Side, Jump and Walk. In Step 2,
their rank value is computed with respect to their closeness
per mean feature element. In Step 3, the weights associated to
each activity is found to represent the strength of closeness of
these activities to the unknown activity. In Step 4, the known
activities that occur most frequently are counted per mean
feature element. In Step 5, the final scores for each known
activity is calculated as an accumalation of the rank, weight
and mode values. The known activity with the maximum score
is the correct label for the unknown activity.

C. Classification: HRPS for the MuHAVi data set

The generality of the proposed HRPS method is further
validated by applying it with the same feature descriptors Di,
i = 1, 2 and expert knowledge on the MuHAVi dataset [35].
The MuHAVi data set contains eight activities, i.e., Walk (α1),
Run (α2), Turn (α6), Standup (β12), Collapse (β13), Kick
(β14), Punch (β15) and Guard-to-kick or Guard-to-punch
(β16/β17) (see Table I). As in Section IV-B the root node
is split into α and β activities by using Eq. (13). A HRPS
with 7 levels is created with decision rules ∆i, i = 11, ..., 19
as shown in Fig. 6. Algorithm CAL is used on the 7 training
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Fig. 6. Hierarchical relaxed partitioning system for the MuHAVi data set. ∆i,
i = 11, 12, ..., 19 are the decision rules, and Xα and Xβ are the unassigned
impure cyclic and non-cyclic activities, respectively, with significant multiple
overlaps.

samples of the MuHAVi data set to learn the decision rules
∆i, i = 11, 12, 13 for the Walk (α1), Run (α2) and Turn
(α6) cyclic activities respectively. The last sample is used as
the testing data in a leave-one-out procedure to determine the
performance of the HRPS.

Similar to Section IV-B we define decision rules ∆i, i =
14, ..., 19 that are fixed based on the human kinesiology [38],
anthropometry [39] and body characteristics for non-cyclic
activities. Let the reference global angle V6 = θ(t) in Stand
posture be 90o. Then, based on biomechanical analysis [40]
of human spine the maximum flexion of torso is 60o, i.e.,
(90− 60 = 30 or 90 + 60 = 150), which causes a significant
change in posture. Thus,

∆14 =

{
∆15 if 30 ≥ V6 ≥ 150
∆17 Otherwise (19)

is used to determine whether a transition occurred ∀ t ∈ [1, N ]
frames of the activity video. The transition ∆15 includes
Standup (β12) and Collapse (β13) activities which contain
significant change in posture while the non-transition ∆16

contain Kick (β14), Punch (β15) and Guard-to-kick or Guard-
to-punch (β16/β17) which do not have significant change in
posture. The decision rules for the Standup (β12) and Collapse
(β13), i.e., ∆15 and ∆16, respectively are defined as

∆15 =

 β12 if 30 ≥ V6 ≥ 150, at t = 1
and 65 ≤ V6 ≤ 125, ∀ t ∈ 2, N

∆16 Otherwise
(20)

∆16 =

 β13 if 65 ≤ V6 ≤ 125, at t = 1
and 30 ≥ V6 ≥ 150, ∀ t ∈ 2, N

Xβ Otherwise
(21)

The range 125 − 65 = 60o [40] is selected as it corresponds
to the flexion and extension range of the human body while
maintaining a somewhat Stand posture. The decision rules ∆17

to ∆19 are defined based on the empirical analysis of the body
characteristics in [13]. Hence, for the Kick (β14) and Punch
(β15) activities.

∆17 =

{
β14 if 2 ≤ 90− V6 ≤ 15
∆18 Otherwise. (22)

∆18 =

{
β15 if 90− V6 > 15
∆19 Otherwise. (23)

Note that in Punch (β15), the arm moves across the body in
a diagonal manner and as a result the angle of the body from
the vertical is quite large. The Guard-to-punch and Guard-to-
kick are considered as one class because both primarily have
a guard activity with minimal movement of the arms and legs.
In Guard-to-kick or Guard-to-punch (β16/β17), the human
remains in the Stand posture with the least angle of the body
from the vertical. Hence,

∆19 =

{
β16/β17 if 90− V6 < 2
Xβ Otherwise. (24)

The unassigned impure activities Xα and Xβ are given a label
by using the MVS (see Section IV-B).

V. EXPERIMENTAL RESULTS

We have used two standard publically available data sets
i.e., Weizmann and MuHAVi, with a standard leave-one-out
cross validation method to ensure a correct comparative study,
i.e., with same environment and data set. The Weizmann data
set [34] contains low resolution videos 180 × 144, imperfect
silhouettes and 10 Routine activities performed by 9 subject.
In contrast, the MuHAVi data set [35] contains high resolution
videos 720× 576, perfect silhouettes and 9 Routine and non-
routine activities of two actors with two samples with two
different views (Camera 3 and Camera 4), i.e., in total eight
samples, per activity. The activities and their acronyms are
shown in Table I.

The main challenges of the Weizmann data set are as
follows: (a) low resolution videos make it challenging to detect
body parts, (b) rapid limb movements make it difficult to track
body parts in self occlusion, and (c) very similar activities are
difficult to recognise. The main challenges of the MuHAVi
data set are as follows: (a) rapid change of posture including
mild-to-severe occlusion makes it difficult to detect and track
body parts, and (b) similar activities and activities with similar
postural changes are difficult to recognise. In addition, both
the data sets contain background illumination variation and
subjects of different height and built. Therefore, the proposed
HRPS method has been verified on two extremely challenging
data sets.

A. Feature descriptors evaluation

The 3D scatter plots of the selected features are shown in
Fig. 7 and Fig. 8 to visualize the distribution of the activities
of the input data set. It can be seen from Fig. 7 (a) that the
Walk activity has the least leg frequency (most blue circles
are between 2-3 Hz) and the Run activity has the maximum
leg frequency (green pentagons lie between 4-6 Hz onwards).
Similarly, it can be seen in Fig. 7 (b) that the torso power
of the Walk activity is much less than the remaining cyclic
activities. In Fig. 7 (c) it can be seen that the torso angle of
most of the Run (green pentagons), Jump (purple diamonds)
and Skip (light blue square) activities is greater than the Walk
(blue circles) and Side (red stars) activities. It can be observed
from Fig. 7 (c) that the Walk activity has the least torso angle
(blue circles between 0-0.05 radian) while the torso angle for
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Fig. 7. 3D scatter plots of the selected features that show the distribution of the cyclic activities for the input Weizmann data set.
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Fig. 8. 3D scatter plots of the selected features that show the distribution of the activities for the input Weizmann and MuHAVi data sets.

the Side (red stars) activity is concentrated between 0.05-0.1
radian.

The Fig. 8 (a) shows the 3D scatter plots of the selected
features for the Bend, Jack, One Hand Wave and Two Hand
Wave activities of the Weizmann data set. It can be seen that
the Jack activity has the maximum displacement of the feet
as a proportion of the mean height of the subject. Also, it
can be seen that in the Two Hand Wave (light blue square)
activity both front and back arm have minimum position in
pixels, and is well separate from the One Hand Wave (red star)

activity. The Fig. 8 (b) shows the 3D scatter plots of a selected
feature for the Guard-to-Punch or Guard-to-Kick, Kick and
Punch activities of the MuHAVi data set. It can be seen that
the Guard-to-Punch or Guard-to-Kick has the least variation in
the angle of the body from the vertical and the Punch has the
maximum angle of the body from the vertical. The angle of
the body from the vertical for the Kick activity lies in between
the Guard-to-Punch or Guard-to-Kick and Punch activities.

In Fig. 9, we illustrate the ability of some of the features
from Di, i = 1, 2 to discern various human activities of the
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Significance of the extracted features for discerning activities. Error bars show 95% confidence intervals on selected features with two standard
deviation as an error metric. (a)-(e) Weizmann data set and (f) MuHAVi data set.

Weizmann and MuHAVi data sets. The error bars show 95%
confidence intervals on selected features with two standard
deviations as an error metric. Although the leg frequency, i.e.,
V1, of the Walk (α1) and Run (α2) activities is dissimilar
based on the speed of the leg movement, anomalies like some
subjects walking faster causes misclassification. However, it
can be seen from Fig. 9 (a) that the torso angle V3 = ϕ(t)
provides a good separation to discern the Walk (α1) and
Run (α2) activities. Similarly, the newly introduced torso
power feature V4 provides a reasonable distinction between
the Side (α4) and Pause Jump (β7) activities as shown in
Fig. 9 (b). In Fig. 9 (c), the global angle V6 = θ(t) provides
clear separation between the Pause Jump (β7) and Bend (β8)
activities while in Fig. 9 (d) the torso angle V3 = ϕ(t)
provides sufficient discerning ability between the Bend (β8)
and Jack (β11) activities. It can be observed from Fig. 9 (e)
that the distance between the legs, i.e., V13, gives a very good
separation among the Jack (β11), One Hand Wave (β9) and
Two Hand Wave (β10) activities. Finally, in Fig. 9 (f) the
global angle V6 = θ(t = 1) easily discern the Standup (β12)
and Collapse (β12 = 3) activities. Thus, the Di, i = 1, 2
acquires meaningful information. However, there is slight
overlap in the confidence intervals of some of the features, e.g.,
Fig. 9 (a), (b) and (d). This illustrate the importance of using
HRPS to postpone decisions on such samples that lie closer
to the samples of another activity. Also, for these samples the
MVS is better suited because it takes into account multiple
criteria based on the average values of all the feature elements
obtained from the training data set to assign a label to an
unknown activity. As stated in [6] the average features provide
more generalized information about the movement pattern of
the body during an activity.

B. Classification evaluation

The confusion tables for the HRPS method on the Weiz-
mann and MuHAVi data set are shown in Fig. 10 (a) and (b)
respectively. We obtained a mean classification accuracy of
96.7% for ten activities of the Weizmann data set (see Table II
and details below for significance in comparison to other
methods). This shows that our method robustly recognises
activities that have significant multiple overlaps in the feature
space. In particular, our method recognises four activities, i.e.,
Run (α2), Side (α4), Jump (α5) and Pause Jump (β13), out
of the six cyclic activities with a mean classification accuracy
of 100%. Thus, our method robustly discerns similar cyclic
activities. It obtains a mean classification accuracy of 94.5%
for all the six cyclic activities, i.e, Walk (α1), Run (α2),
Side (α4), Jump (α5), Skip (α3) and Pause Jump (β13). The
decomposition of the Walk (α1) into the Run (α2) and Jump
(α5) activities is reasonable due to similar motion. Also, the
Skip (α3) and Jump (α5) activities are similar in the way the
subject bounces across the video. The non-cyclic activities,
i.e., Bend (β14), Jack (β11), Two Hand Wave (β10) and
One Hand Wave (β15) are robustly classified with a mean
classification accuracy of 100%. This proves that the decision
rules based on human kinesiology and body characteristics
work well. We obtained a mean classification accuracy of
100% for eight activities of the MuHAVi data set as shown
in Fig. 10 (b). The results demonstrate that the proposed
HRPS method can robustly distinguish various activities in
two different (low and high) resolution data sets. It also shows
that our method performs well under different views, i.e.,
Camera 3 and Camera 4, for the MuHAVi data set. A high
accuracy on the Standup (β12), Collapse (β13), Kick (β14),
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(a)

(b)

Fig. 10. Confusion table (see Table I for α and β). (a) Weizmann data set
and (b) MuHAVi data set.

Punch (β15) and Guard-to-kick or Guard-to-punch (β16/β17)
activities demonstrates the importance of decision rules based
on human kinesiology and body characteristics.

Fig. 11 (a) shows the HRPS’s classification performance
with respect to the training subjects of the Weizmann data set.
It can be seen that the classification accuracy of the proposed
method is about 70% with only one training subject. However,
as the number of training subjects increase the classification
accuracy also improves. The best performance is achieved with
eight training subjects. The classification performance with
respect to the training samples of the MuHAVi data set is
shown in Fig. 11 (b). It can be seen that the classification
performance increases steadily till it reaches 100% with seven
samples used for training.

Table II compares the HRPS with relevant state-of-the-
art methods (see Section II) for activity recognition on the
Weizmann data set. It shows that our method outperforms the
methods in [7], [8], [23], [24] in terms of accuracy. Saad et
al. [24] only deals with nine activities. The method in [5]–[8]
and [10] are not real-time since they require intensive training
for learning the vocabulary. Zhuolin, et al. [3] required both
shape and motion features to achieve 100% accuracy. On a
similar basis, i.e., using motion features, they obtain 88.89%
accuracy while our method obtains 96.7%. Their method is

(a) (b)
Fig. 11. Classification performance. (a) Weizmann data set and (b) MuHAVi
data set.

TABLE II
COMPARISON ON THE WEIZMANN DATA SET.

Method Accuracy% Real-time Intensive training Year

Michalis, et al. [5] 100 No Yes 2014
Marlon, et al. [22] 96.7 Yes No 2014
Mahbub, et al. [6] 100 No No 2014
Ma, et al. [10] 100 No Yes 2013
Romain, et al. [8] 82.79 No Yes 2013
Zhuolin, et al. [3] 100 Yes Yes 2012
Saad, et al. [7] 95.75 No Yes 2010
Elden, et al. [23] 93.6 Yes No 2009
Saad, et al. [24] 92.6 - No 2007

Our method 96.7 Yes No 2014

reported to be fast but requires intensive training and uses op-
tical flow which is usually computationally expensive. Hence,
these methods are not suitable for real-world applications. In
contrast, our method operates in real-time, avoid intensive
training, and it is simple to implement and extend for new
activity categories (i.e., for each new category new features can
be added to the HRPS). This makes it more suitable for real
world applications. The model-free method in [14] recognises
only two activities, i.e., Walk and Run with 97% accuracy.
On similar activities, i.e., Walk (α1), Run (α2), and Jump
(α5), the method in [29] has mean classification accuracy of
82.4% while we obtain 92.7% mean classification accuracy.
Although, the method in [41] can work in real-time, it achieves
only 90.32% on the Weizmann data set.

In Table III, our HRPS method is compared with recent
methods on the MuHAVi data set. Our method achieved better
recognition rate than most of the methods and works in real-
time with no intensive training. On both data sets our method
is comparable to the method in [22].

In order to avoid blaming heavy training for high accuracy
of the HRPS one can either perform another experiment with a
new data set or alternatively use the HRPS trained on one data
set to recognize same activities present in the other data set.
The alternative approach might be more appropriate because
a heavily trained HRPS on one data set will not work well for
another data set due to overfitting. If the HRPS works well then
one cannot blame heavy training for its high accuracy. The
alternative approach also allows to verify whether the decision
rules learned on one data set are generic enough to recognize
same activities of another data set. Table IV shows result of
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TABLE III
COMPARISON ON THE MUHAVI DATA SET.

Method Accuracy% Real-time Intensive training Year

Alexandros, et al. [42] 100 Yes No 2014
Marlon, et al. [22] 100 Yes No 2014
Alexandros, et al. [41] 97.1 Yes No 2013
Abdalrahman, et al. [43] 98.5 No No 2011
Sanchit, et al. [35] 97.8 Yes No 2010
Martinez, et al. [44] 98.4 No Yes 2009

Our method 100 Yes No 2014

TABLE IV
RECOGNITION ACCURACY OF HRPS ON SAME ACTIVITES WITH

DIFFERENT TRAINING DATA SET.

Training dataset Testing data set Activity Accuracy %

Weizmann MuHAVi Walk 100
Run 100

MuHAVi Weizmann Walk 100
Run 100

recognizing the Walk and Run activities of the MuHAVi data
set using the HRPS trained on the Weizmann data set, and vice
versa. The 100% recognition accuracy shows that the proposed
HRPS is generic and heavy training cannot be blamed for its
high accuracy.

C. Computational Complexity

The feature extraction of our HRPS method computes
convex hull using the Sklanskys algorithm which has a com-
putational complexity of O(N), where N in the number of
convex points. The contour moments algorithm is based on
the Green theorem which has a computational complexity of
O(L), where L is the length of the boundary of the object.
The particle filter with N = 100 particles has an approximate
complexity of O(N). DFT has O(N log N) complexity.

The optical flow Lucas-Kanade method has a time com-
plexity of O(n2N + n3), where n is the number of warp
parameters and N is the number of pixels. k-mean clustering
is O(nkdi) complex, where n is the number of d-dimensional
vectors, k the number of clusters and i the number of iterations
needed until convergence. The computational complexity of
the expectation maximization algorithm for Gaussian mixture
models (GMMs) is O(iND2), where i is the number of
iterations performed, N is the number of samples, and D is
the dimensionality of the state. Time complexity of principal
component analysis (PCA) is O(p2n + p3), where n is the
number of data points and each point is represented with
p features. Locality Preserving Projection (LPP) algorithm
is O((n + k)m2 + (n + d)n2), where n is dimensions, m
is data points, d is dimension of subspace, and k is the
number of nearest neighbour. For k nearest neighbor search,
the complexity is O((n+ k)m2). The complexity of singular
value decomposition (SVD) is O(n3). A standard decision
tree has a time complexity of O(MN2), where M is the size
of the training data and N is the number of attributes. Time
complexity of support vector machine (SVM) is O(n3), where

n is number of pattern. Hidden Markov model (HMM) has a
time complexity of O(NTT , where N is state paths and T is
the length of paths.

The method in [3], [5], [7] and [6] uses optical flow method.
The method in [3] and [5] respectively use k-means and
GMMs for clustering. Also, the method in [43] uses k-means
clustering. The method in [7] and [5], uses PCA for dimension
reduction. The method in [10] uses LPP. The method in [3]
uses decision tree, the method in [22] uses SVM or k nearest
neighbour, and the method in [23] and [44] uses HMM for
activity recognition.

On Intel (R) Core (TM) i7 2.93 GHz with 4 GB RAM and
Windows 7, the feature extraction in OpenCV 2.4.6 takes 0.031
and 0.071 seconds per image frame on the Weizmann and
MuHAVi data sets respectively. The classification in MatLab
takes 0.183 seconds for all activities. Marlon, et al. [22]
method takes 4.85 and 2859.29 seconds for feature extraction
on the Weizmann and MuHAVi data sets, respectively. This
demonstrates that the HRPS method works in real-time.

VI. CONCLUSIONS

In the light of the inadequacy of existing activity recogni-
tion methods, we proposed a hierarchical relaxed partitioning
system (HRPS) to efficiently and robustly recognise activities.
Our method first discerns the pure activities from the impure
activities, and then tackles the multiple overlaps problem of
the impure activities via an innovative majority voting scheme.
The results proved that our method not only accurately dis-
cerns similar activities, but also obtains real-time recognition
on two (low and high) resolution data sets, i.e., Weizmann
and MuHAVi respectively. It also performs well under two
different views of the MuHAVi data set. These attributes
make our method more suitable for real-world applications
in comparison to the state-of-the-art methods.
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