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Abstract

This paper provides a theoretical model which highlights the role of heterogene-
ity of information in the emergence of temporal aggregation (clustering) of defaults
in a leveraged economy. We show that the degree of heterogeneity plays a critical
role in the persistence of the correlation between defaults in time. Specifically, a
high degree of heterogeneity leads to an autocorrelation of the time sequence of de-
faults characterised by a hyperbolic decay rate, such that the autocorrelation func-
tion is not summable (infinite memory) and defaults are clustered. Conversely, if
the degree of heterogeneity is reduced the autocorrelation function decays exponen-
tially fast, and thus, correlation between defaults is only transient (short memory).
Our model is also able to reproduce stylized facts, such as clustered volatility and
non-Normal returns. Our findings suggest that future regulations might be directed

at improving publicly available information, reducing the relative heterogeneity.
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1 Introduction

The hedge fund (HF) industry has experienced an explosive growth in recent years. The
total size of the assets managed by HFs today stands at US$2.13 trillion (Eurekahedge,
2014)). Due to the increasing weight of HF's in the financial market, failures of HFs can
pose a major threat to the stability of the global financial system. The default of a
number of high profile HFs, such as LTCM and HFs owned by Bear Stearns (Haghani,
2014)), testifies to this. At the same time, poor performance of HFs—a prerequisite for
the failure of a HF—is empirically found to be strongly correlated across HF's (Boyson
et al., 2010), a phenomenon known as “contagion”. The findings of Boyson et al.| (2010)
support the theoretical predictions of [Brunnermeier and Pedersen (2009), who provide
a mechanism revealing how liquidity shocks can lead to downward liquidity spirals and
thus to contagion]| The presence of contagion in the HF industry increases its potential
to destabilize the financial market, contributing to systemic risk. Our work takes a
step forward in this direction, by establishing a direct link between the heterogeneity
in the quality of information about the fundamentals and a stronger form of contagion
identified with the temporal aggregation of defaults, i.e. clustering of defaults. Using the
definition of |Andersen and Bollerslev| (1997) clustering is determined by the divergence
of the sum (or integral in continuous time) of the autocorrelation function of the default
time sequence, and therefore, the presence of infinite memory in the underlying stochastic
process describing the occurrence of defaults.

In order to study the correlation of default events in time, we develop a simple dynamic
model with a representative noise trader and heterogeneous risk averse HF's which trade
a risky asset. In the absence of HF's the demand of the noise trader leads the price of
the asset to revert to its fundamental value. The HFs know the fundamental value of
the asset, but each one with a different precision. Consequently, when the price of the
asset is lower than its expected value, all HF's take a long position, but the difference
in precision and risk aversion leads them to different levels of optimal demand. The
HF's are liquidated (default) when their returns are low and their wealth drops under a
given threshold. Furthermore, this heterogeneous demand behaviour leads to a different
expected value of the waiting times between defaults across HFs. We assume, and later
verify, that each HF defaults, on average, at a constant rate, which depends on the

quality of information available to it. Consequently, the default of each HF follows a

LOther works which study the the causes of contagion in financial markets include [Fostel and Geanako-
plos| (2008]); (Geanakoplos| (2010al), [Kodres and Pritsker| (2002) and Kyle and Xiong (2001)).



Poisson process. We show (Theorem 1) that the aggregation (mixing) of these elementary
processes, in the limit of a continuum of HF's, leads to qualitatively different statistics
on the aggregate level. Specifically, we show that the aggregate PDF exhibits a heavy-
tail and thus, is scale-invariant (self-similar), a well-known characteristic of power-law
behaviour. Furthermore, we prove that if the variance of the aggregate PDF diverges,
then due to the self-similarity property of the aggregate PDF and the non-negligible
probability assigned to long waiting-times, the time series of defaults after aggregation
possesses infinite memory and therefore defaults are clustered (Theorem 2). We also solve
the model numerically in order to test the validity of our theoretical assumptions about
the Poisson character of defaults on the microscopic level and to study the properties
of the aggregate PDF in a market with a finite number of traders. The simulations
indeed vindicate the assumption of defaults occurring according to a Poisson process,
when each HF is studied individually. We also establish that the intensity (expected
rate of defaults) of the Poisson process, describing the default of each of the HFs, is a
function of the quality of information about the fundamental value of the risky asset.
Finally, numerical simulations attest to the fact that for a high degree of difference in the
quality of information among HF's, the variance of the aggregate PDF tends to infinity. In
this case, the comparison between the theoretical prediction of the asymptotic behaviour
of the autocorrelation function of defaults and the numerical findings, reveals that our
theoretical predictions are valid even in a market with a finite number of HFs and the
clustering of defaults is confirmed. Our results show that the extent of heterogeneity,
quantified by the difference in the precision of the information available between the best
and worst informed HF, is a determinant factor for the clustering of defaults, and as such,
the presence of systemic risk. The latter suggests that future regulations should also aim
to increase publicly available information, in order to help decrease the heterogeneity in
the behaviour of HFs.

The mechanism that leads to contagion is closely related to the “Leverage cycle”
introduced by (Geanakoplos| (1997 [2003)), which consists in the pro-cyclical increase and
decrease of leverage, due to the interplay between equity volatility and leverage. Even
though this insight is useful for understanding the mechanism leading to contagion, in
our model we are able to highlight the critical role of heterogeneity in determining the
temporal structure of defaults, which is only of secondary importance in the works of

Geanakoplos. Specifically, |Geanakoplos (2010b)) argues that:

... It is interesting to observe that the kind of heterogeneity influences the

amount of equilibrium leverage, and hence equilibrium asset prices, and equi-



librium default. ...Thus, when the heterogeneity stems entirely from one-

dimensional differences in opinion, equilibrium leverage entails no default. ..
Also in |Geanakoplos| (2010a)) the author continues,

... Of course the asymmetric information revolution in economics was a tremen-
dous advance, and asymmetric information plays a critical role in many lender-
borrower relationships; sometimes, however, the profession becomes obsessed
with it...In my model, the only thing backing the loan is the physical col-
lateral. Because the loans are no-recourse loans, there is no need to learn

anything about the borrower. All that matters is the collateral.

This framework has been extended, allowing the study of the Leverage cycle for an
arbitrary number of periods in two recent papers by Thurner et al| (2012) and Poledna
et al| (2014). Thurner et al| (2012) argue that the leverage cycle, in this expanded
framework, is the driving force for the emergence of fat tails in the return distribution
and clustered volatility, while Poledna et al.| (2014)) study the effectiveness of regulations
under the Basel II accord. The general setup of our model is closely related to these
two papers, as it focuses on the effects of heterogeneity in HF behaviour in a leveraged
economy. However, it differs with the aforementioned papers in two ways: first, in our
model, HFs are represented by risk-averse agents, who maximise a function of their
expected rate of profit, and, moreover, the demand heterogeneity stems from the different
quality of information available to each HF concerning the fundamental value of the risky
asset. In contrast, in [Thurner et al.| (2012)) and |Poledna et al| (2014]) the behaviour of
the HF's is not micro-founded, HFs are risk-neutral, and the heterogeneity is related
to an “aggression parameter”, which is assumed to differ across HFs. Secondly, while in
Thurner et al.|(2012)) and Poledna et al.| (2014) HF's receive funds from two sources (loans
from a bank and from fund investors), in our model funds only come in the form of loans
offered by a bank.

The structure of the rest of the paper is as follows. Section [2| presents the economic
framework that we use. In Sec. [3] we analyse the theoretical predictions of our model and
Sec. {] discusses the numerical results and points out regulatory implications. Finally,

Sec. |p| provides a short summary with concluding remarks.



2 Model

We study an economy with two assets, one risk-free (cash C') and one risky, two types
of agents and a bank. The risky asset exists in a finite quantity equal to N and can be
viewed as a stock. These two assets are held by a representative noise trader and K types
of hedge funds (HF's). Finally, there is also a bank which extends loans to the HF's, using
the risky asset owned by the HF's as collatera]ﬂ

The demand d™ of the representative mean-reverting noise-trader for the risky asset,
in terms of cash value, is assumed to follow a first-order autoregressive [AR(1)] process
(Xiong, 2001} Thurner et al., 2012} [Poledna et al., [2014]).

logdj* = plogd}*, + x¢ + (1 — p) log(VN). (1)

p € (0,1) is a parameter controlling the rate of reverting to the meanf} y, ~ N (0,02),
and V' is the fundamental value of the risky asset.

HFs are represented by risk-averse agents, whose performance depends on their rate
of return, a standard measure of performance in the HF industry. For example, Fig.
shows the ranking of the 100 top large HFs as reported by Bloomberg (2013)E|.

The utility function of HF 5 is given by

U(r) =1 — eor = 1 — =W =WL)/wi, (2)
where rf is the rate of return of HF j over the course of a single time period, th is the
wealth of the same HF at time ¢ and a > 0 is the Arrow-Pratt-De Finetti measure of
relative risk aversion. In this way, the HFs have constant relative risk aversion (CRRA)
and their absolute risk aversion is decreasing with increasing wealth (DARA). Hence, in
order for a HF to increase its rate of return it turns to a riskier behaviour the higher its
wealth is, for given investment opportunities.

The HFs are initially endowed with the amount of risk-free asset Wy. They are

2Herein the risk-free interest rate as well as the risk premium on lending is set to 0. We also assume
that the bank is infinitely liquid.

3An AR(1) process of the form x; = § + prs_1 + x¢, with § € R, [p| < 1 and x4 ~ N(0,0?) is
characterized by: Elz;] = 6/(1 — p), Var[z:] = E[(z; — /(1 — p))*] = 02/(1 — p?), while the normalised
auto-covariance function is Cov[xs, x14s|/Var[x:] = p® and thus, for p € (0,1) the auto-covariance is a
decreasing function of the lag variable s (Kirchgassner and Wolters|, 2008, pp. 30-31). Given that the
expected value of z; and the auto-covariance function are time-independent, the stochastic process is
wide-sense stationary.

4Returns are for the first 10 months in 2013 ended on Oct. 31.
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Figure 1: The rank of the 100 top performing large HF's as a function of the rate of
return. A number of the HFs had the same rate of return and therefore, were equally
ranked.



assumed to have information about the fundamental value of the risky asset and invest
into it by taking advantage of the mispricing caused by the noise trader’s behaviour.
Specifically, HF j receives a private noisy signal ‘N/] = V + ¢; about the fundamental

value of the risky asset, where the noise term ¢; is assumed to follow a Normal distribution

with mean 0 and variance ajz.

difference in the quality of information about the fundamental value of the risky asset

Here the source of heterogeneity has to do with the

available to each HF, quantified by s; = 1/0;2. Otherwise, the HFs are identical, given
that they are all characterised by the same coefficient of risk aversion. When the demand
for the risky asset cannot be met with the cash held by a HF at a given time step, the HF
requests a loan from the bank. The bank extends the loan to the HF, provided that the
HF does not become more leveraged than a limit \,,., set by regulators. Here leverage
is defined as the ratio of assets held to the HF’s net wealth. In this way a constraint is

imposed on the demand of the HF for the risky asset, given its wealth

D zpt
Wy

< )\maz~ (3)
Consequently, the maximum demand for the risky asset is
Dg,max = )\mCLZlJWtj/pt' (4)

Furthermore, we allow the HFs to take only long positions, i.e. to be active only
when the asset is underpriced. We do this in order to highlight that, even with this
strategy which is inherently less risky than short selling, the clustering of defaults, and
thus systemic risk, is still present and is directly linked to the heterogeneity in the quality
of the information available to HFs, as we explain below{]]

Therefore, the optimal demand is

D! = argmax {IE [U(ri)ﬂ;}} } (5)

Diego,D! ..

t,max

To solve the optimisation problem, given that the constraint is imposed on the demand

itself rather than the budget, we solve the unconstrained problemﬁ and then cap the

SSimilar results are obtained in the presence of short selling.
In order to fascilitate analytical tractability, we assume that V/o < 1.



demand by equation (4), to obtain
Df = min {m Wy, D o } (6)
a b

where m =V — p; is the mispricing signal, given the fundamental value V. Without loss
of generality in the following we set a = 1.

HFs at each period pay management fees. Specifically, the managers receive a per-
centage of the wealth (standard management fee) and the realised profits (performance

fee) of the previous period[f]7 according to
Mj =~ [W_, + 10max (W, — W/ ,,0)], (7)
where v < 1. The wealth of a HF evolves according to
Wtj = Vth—l + (pe — ptfl)Dg—l - Mtj (8)

When the wealth of a HF falls below W, < Wy, the HF is assumed to be liquidated
and goes out of business. After T, time-steps the bankrupt HF is replaced by an identical
one. Finally, our model determines the price of the risky asset by a standard market

clearance condition
K

Di'(p) + > Di(p) = N, (9)

J=1

where D*(p;) = d™ /p;.

3 Difference in the quality of information and default

statistics

Here we focus on the causes of the temporal aggregation of HF defaults. As has already
been mentioned in Section [I, the default clustering can be characterised by the auto-
correlation function C(t'), with ¢’ being the time-lag variable. If defaults are clustered,
then C'(t') decays such that the sum of the autocorrelation function over the lag variable
diverges (Baillie, [1996; Samorodnitsky|, 2007)). Thus,

"In practice, HFs’ management fees are paid quarterly or monthly, with a typical structure 2% of
the net asset value and 20% of the net profits per annum, for the standard management fee and for the
performance fee, respectively (Goetzmann et al.| [2003; Investopedial, 2015).



Definition 1. Let C(t') denote the autocorrelation of the time series of defaults, with t'
being the lag variable. Defaults are clustered iff
Y o)~ /OO C(t)dt' — . (10)
=0 0
A default of a HF is a point event occurring after a length of time (number of periods)
at which the wealth of the HF drops below a threshold value W,;,. After a default
event an identical HF is reintroduced. Therefore, any default event of a specific HF, is
independent of any subsequent one. Let {Tf =12, .. } denote the sequence of waiting
times between defaults of the jth HF. Due to the independence of defaults and the
stationarity of the stochastic process governing the behaviour of the representative noise
trader, Tij can be viewed as a sequence of independent and identically distributed random
numbers in N, . Hence, the sequence {Tf } consists an ordinary discrete renewal process
(Beichelt], 2010, p. 24, 155). Intuitively, we would expect that each HF, on average,
defaults at a constant rate p/, which, in turn, should depend only on the quality of the
information about the fundamental value of the risky asset available to it, since: (a)
HFs differ only in the precision of the information they have and otherwise are identical,
and (b) the statistical properties of the economy as described in Section [2| are time-

independent. If the assumption of a constant mean rate of default holds, the probability

of T =7, 7 € N, is given by a geometric probability mass function (PMF)

P(r)=p'(1-p), (11)

where p’ denotes the probability of default of the jth HF.

Our goal is to study the existence of systemic risk in the market and its relation with
the difference in the quality of information available to each HF. A series of questions
then arises: what are the statistical properties of default events on a macroscopic level?
Does the market, when viewed as a whole, possess similar statistical properties to the
individual HF's or is it fundamentally different? Are the defaults of the HFs correlated
showing structure in the time series of defaults?

To answer these questions we study the aggregate distribution of times between de-
faults. To facilitate analytical treatment in the following we will treat 77 as a continuous

variable. In this limit, the renewal process becomes a Poisson process, and the geometric



PMF tends to an exponential probability density function (PDF)EL
P(r;7 > 1) ~ i exp(—7). (12)

Evidently, the aggregate PDF f’(T) we seek to obtain is a result of the mixing of the
Poisson processes governing each of the HFs. In the limit of a continuum of HF's the

aggregate distribution is

P(r) = /OOO pexp(—pt)p(p)dp, (13)

where p(u) stands for the PDF of p given that the quality of the information about the
fundamental value s; that each HF receives is itself a random variable in Rﬂ. We can
then show that if the PDF p(u) admits a power series expansion in a neighbourhood of

1t = 0 then the aggregate PDF P(7) decays asymptotically (7 > 1) as a power-law.

Theorem 1. Consider an exponential density function P(T;u), parametrized by pn € R .

If p is itself a random variable with a density function p(p), and p(p) in a neighbourhood

of 0 can be expanded in a power series of the form p(u) = p* > cpp® + Rui1 (), where
k=0

v > —]H then the leading order behaviour for T — oo of the aggregate probability function

defined by equation , 18 P(T) o 7 @R where k is the order of the first non-zero

term of the power series expansion of p(u) for p — 04 (exhibits a power-law tail).

Proof. The aggregate density can be viewed as the Laplace transform L [.] of the function

o(p) = pp(p), with respect to p. Hence,

B(r) = £ [o() (7) = / " 6() exp(—pr)d. (14)

To complete the proof we apply Watson’s Lemma (Debnath and Bhattal, [2007, p. 171) to
the function ¢(u), according to which the asymptotic expansion of the Laplace transform

of a function f(u) that admits a power-series expansion in a neighbourhood of 0 of the

8This limit is valid for 7 > 1 and p’ <« 1 such that 7p/ = pJ, where p7 is the parameter of the
exponential PDF [see equation (12)] (Nelson| [1995).

9The distribution function of the random parameter p is also known as the structure or mizing
distribution (Beichelt, [2010).

0Since p(u) is a PDF it must be normalisable and thus, a singularity at g = 0 must be integrable.

10



form f(u) = p* > bpp® + Ryyi(p), with v > —1 is
k=0

(v+k+1) 1
L,f Z et l) e 0 (—TMH) . (15)

Given that ¢(u) for p — 0y is

n

S(i) = 1Y epn® + Rosa (), (16)
k=0
we conclude that
P(7) ﬁ +0 <ﬁ) : (17)
O

Corollary 1. If0 < k+v < 1, then the variance of the aggregate density diverges (shows

a fat tail). However, the expected value of T remains finite.

An important aspect of the emergent heavy-tailed statistics stemming from the het-
erogeneous behaviour of the HF's, is the absence of a characteristic time-scale for the oc-
currence of defaults (scale-free asymptotic behaviouIEI). Thus, even if each HF defaults
according to a Poisson process with intensity p(s)—which has the intrinsic character-
istic time-scale 1/u(s)—after aggregation this property is lost due to the mixing of all
the individual time-scales. Therefore, on a macroscopic level, there is no characteristic
time-scale, and all time-scales, short and long, become relevant.

This characteristic becomes even more prominent if the density function p(u) is such
that the resulting aggregate density becomes fat-tailed, i.e. the variance of the aggregate
distribution diverges. In this case extreme values of waiting times between defaults will
be occasionally observed, deviating far from the mean. This will leave a particular “geo-
metrical” imprint on the sequence of default times. Defaults occurring close together in
time (short waiting times 7) will be clearly separated due to the non-negligible proba-
bility assigned to long waiting times. Consequently, defaults, macroscopically, will have

a “bursty” or intermittent, character, with long quiescent periods of time without the

HIf a function f(z) is a power-law, i.e. f(x) = cz?, then a rescaling of the independent variable of
the form x — bx leaves the functional form invariant (f(z) remains a power-law). In fact, a power-law
functional form is a necessary and sufficient condition for scale invariance (Farmer and Geanakoplos)
2008). This scale-free behaviour of power-laws is intimately linked with concepts such as self-similarity
and fractals (Mandelbrot}, [1983).

11



occurrence of defaults and “violent” periods during which many defaults are observed
close together in time. Hence, infinite variance of the aggregate density will result in the
clustering of defaults.

In order to show this analytically, we construct a binary sequence by mapping time-
steps when no default events occur to 0 and 1 otherwise. As we show below, if the
variance of the aggregate distribution is infinite, then the autocorrelation function of the
binary sequence generated in this manner, exhibits a power-law asymptotic behaviour
with an exponent 8 < 1. Therefore, the autocorrelation function is non-summable and

consequently, according to Definition (1| defaults are clustered.

Theorem 2. Let T;, i € N, be a sequence of times when one or more HFs default.

Assume that the PDF of waiting times between defaults P(7), for 7 — oo, behaves (to
leading order) as P(1) o 77% Consider now the renewal process Sp, ZT Let
Y(t) = 1pg (Sm), where 14 : R — {0,1} denotes the indicator function, satzsfymg

1 : z€A
1a =
0 : z¢A

If the variance of the density function P(7) diverges, i.e. 2 < a < 3 [see Corollary 1],

then the autocorrelation function of Y (t),

E Ve Yiprvr] = B[V E Vi 4o

2 )
Oy

C(t) =
where ty, ' € R and o3 is the variance of Y (t), for t — oo decays as
C(t') ot (18)

Proof. Assuming that the process defined by Y'(¢) is ergodic we can express the autocor-

relation as,

C(t') o< lim _ZYth“’ (19)

K—oo K

Obviously, in equation for Y;Y;.14 to be non-zero, a default must have occurred at
both time ¢ and t. The PDF P(7) can be viewed as the conditional probability of

observing a default at period ¢ given that a default has occurred t — 7 periods earlier. If

12A detailed exposition of the proof is given in Appendix A.

12



we further define C'(0) = 1 and P(0) = 0, the correlation function can then be expressed

in terms of the aggregate density as follows:

ZCt — 7)P(7) + 0y o, (20)

where 4y o is the Kronecker delta. Since we are interested in the long time limit of the
autocorrelation function we can treat time as a continuous variable and solve equation (20))
by applying the Laplace transform L£{f(r fo 7) exp(—s7)dr, utilising also the

convolution theorem. Taking these steps we obtaln

Cls) = — (21)
1—P(s)

where P(s f1 7) exp(—s7)dr, since P(0) = 0. After the substitution of the Laplace
transform of the aggregate density in equation , one can easily derive the correlation
function in the Fourier space F{C(t')} by the use of the identity (Jeffrey and Zwillinger,
2007, p. 1129),

F{C{t")} x C(s = 2mif) + C(s — —2mif). (22)
to obtain (Procaccia and Schuster, |1983)),
fe 3, 2<a<3

[log(f)l,  a=3 . (23)

const., a>3

<1

F{C#)} "o

Therefore, for a > 3 this power spectral density function is a constant and Y; behaves as
white noise. Consequently, if the variance of P(7) is finite, then Y; is uncorrelated for
large values of t'.

Finally, inverting the Fourier transform when 2 < a < 3 we find that the autocorre-

lation function asymptotically (' > 1) behaves as
Ct) <t 2<a<s3. (24)

]

In this Section we have shown that when the default statistics of HF's are individually

described by (different) Poisson processes (due to the heterogeneity in the quality of

13



information among HFs about the fundamental value of the risky asset) we obtain a
qualitatively different result after aggregation: the aggregate PDF of the waiting-times
between defaults exhibits a power-law tail for long waiting-times. As shown in Theorem
, if the relative population of very stable HFs approaches 0 sufficiently slowly (at most
linearly with respect to the individual default rate p, as u — 0), then long waiting-times
between defaults become probable, and as a result, defaults which occur closely in time
will be separated by long quiescent time periods and defaults will form clusters. The latter
is quantified by the non-integrability of the autocorrelation function of the sequence of
default times, signifying infinite memory of the underlying stochastic process describing
defaults on the aggregate level. It is worth commenting on the fact that the most stable
(in terms of defaults) HFs are responsible for the appearance of a fat-tail in the aggregate
PDF.

In Section 4] below we will provide evidence that the individual default rate of each
HF is an increasing function of the quality of information at hand about the fundamental
value of the risky asset. This is due to the fact that the demand for the risky asset
is inversely proportional to the uncertainty about its fundamental value. Consequently,
poorly informed HF's are on average the least leveraged and therefore, the least prone to
bankruptcy due to downward fluctuations of the price of the risky asset induced by the

representative noise trader.

4 Numerical simulations

In order to investigate the relevance of the conclusions we drew in the previous Section in
a more realistic setting, i.e. with a finite number of HF's, we turn to numerical simulations
of the model described in Section 2|

4.1 Choice of Parameters

In all simulations we consider a market with KX = 10 HF's, each one faced with an uncer-
tainty about the fundamental value of the risky asset 032.. The inverse of the uncertainty
s; =1/ 0]2- defines the quality of information available to each HF, and it is uniformly dis-
tributed in the interval [10, 100], unless stated otherwise. The maximum allowed leverage
Amax 18 set to 5. This particular value is representative of the mean leverage across HFs
employing different strategies (Ang et al., 2011). The remaining parameters are chosen
as follows: 0™ =0.035, V =1, N =103, vy =5 x 107*, Wy = 2, Wpin = 0.2 and p = 0.99

14



(Thurner et al.; 2012)). Bankrupt HF's are reintroduced after 7, periods, randomly chosen

according to a uniform distribution in [10, 200].

4.2 Results

As discussed in Section [3, one would intuitively expect each HF j to default with a
constant probability p/. At the same time, successive defaults of a HF are uncorrelated,
since our model does not involve any memory of defaults taking place at earlier times,
in the sense that the representative bank does not penalise a HF for going bankrupt
and continues to provide credit after a HF is reintroduced and, furthermore, the risk-
premium is always fixed at 0. Thus, the PMF for the waiting times between defaults
7, was predicted to follow a geometric distribution [see equation (11))], which can be

approximated by an exponential density function for 7 > 1.

107

10}

Pi(r)

107 £

10

T % 10*

Figure 2: The PDF of waiting times between defaults 7 for specific HF's, having differ-
ent information quality s; = 1/0% = {20, 40,60, 80,100} (black diagonal crosses, blue
downright triangles, red upright crosses, magenta diamonds and cyan upright triangles,
respectively). The results were obtained simulating the model for up to 10% time-steps
and averaging over 3 x 10? different initial conditions. In each case, we perform an
exponential fit (black solid lines). Note the log-linear scale.

15



In Fig. [2l we show the density function P7(7), of waiting times 7 between defaults, for
a number of HFs with s; = 1/07 = {20,40,...,100} on a log-linear scalelﬂ. We observe
that P’(7) can be well described by an exponential function for all HFs, as indicated
by the fits shown with black solid lines for the various values of s;. Therefore, we have

verified that on a microscopic level
PI(7) ~ i exp [—p/7] . (25)

Moreover, as clearly shown in Fig. , the rate of default 47, corresponding to the
slope of the straight lines, is a monotonically increasing function of s;. This is better
illustrated in Fig. , where we show the mean default rate (mean number of defaults per
unit time) as a function of s;. Counter-intuitively, the probability of default increases
the better the quality of the available information becomes. This can be understood as
follows: A HF that knows the fundamental value with higher precision tends to become
rapidly heavily leveraged. For this reason, a better informed HF is more susceptible to
(downward) fluctuations of the price of the risky asset, and therefore is prone to sell (meet
a margin call) in a falling market, leading eventually to its default.

Let us now shift our attention to the aggregate statistics. In Fig. [l we present the
numerically obtained aggregate distribution using a logarithmic scale on both axes. The
numerical results were obtained by averaging over 4 x 10? simulations, each with a different
realisation of s; values, sampling from a uniform distribution in the interval [10, 100]. We
observe that for sufficiently large waiting times 7 the distribution decays according to a
power-law (black solid line), P(7) ~ 7~% with a ~ 7/3. We conclude that Theorem [1] is
applicable even in the case of a finite number of HF's.

Even more, the variance of the aggregate density diverges. Therefore, according to
Theorem [2] the default time sequence is expected to exhibit infinite memory and thus,
defaults to be clustered. Indeed, as shown in Fig. [5] the autocorrelation function decays

for long lags as C(t1) ~ P = 13 (red solid line), in reasonably good agreement

with the theoretical prediction of equation (24). Consequently, >  C(t') — oo proving
=0

that defaults, on the aggregate level, are clustered.

13The use of a logarithmic scale for the vertical axis transforms an exponential function to a linear
one.
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Figure 3: The mean default rate i/ as a function of s;. The results were obtained
simulating the model for up to 10® time-steps and averaging over 3 x 10? different initial
conditions.
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Figure 4: The aggregate PDF of waiting times between defaults (blue downright triangles)
obtained on the basis of 4 x 10? simulations of the model with s; for each HF randomly
chosen according to a uniform distribution in [10, 100], for up to 10® time-steps each. For
7> 1, the aggregate distribution follows a power-law P(7) oc 7%, with a ~ 7/3 (black
thick line).
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Figure 5: The autocorrelation function C(t) of the binary representation of default events
Y (t)) (blue diagonal crosses) as a function of the lag variable. The analytical prediction
C(t') ~ t''/* given by equation is also shown (red solid line).
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4.3 Regulatory implications: Better information for all

An intriguing question relates to the relationship between the degree of heterogeneity,
identified with the differnece between the extreme values of the uncertainty 032- about the
fundamental value of the risky asset across all HF's, and the presence of systemic risk,
i.e. clustering of defaults. Would more public (and accurate) information help suppress
the clustering of defaults and therefore mitigate systemic risk?

To answer this question, we decrease the heterogeneity by improving the quality of
information and compare this with the results presented in the previous section. Specifi-

cally, we assume that the s; now lies in the interval [10%, 10%] rather than [10,100].

107

107

10

Figure 6: The aggregate PDF of waiting times between defaults assuming that s; €
[10,100] (blue downright triangles) and s; € [10%,10%] (red circles) obtained on the basis
of 3 x 10? simulations of the model for up to 10® periods each using double logarithmic
scale. To illustrate the exponential decay of the aggregate PDF for s; € [10%, 10*] we also
show the corresponding aggregate density using a logarithmic scale on the vertical axis
(inset).

In Fig. |§| we compare the aggregate density function obtained for s; uniformly dis-
tributed in [10,100] (blue downright triangles)—also shown in Fig. [d}—and [10%, 10
(red circles), using double logarithmic scale. Evidently, the power-law tail observed for

s; € [10,100] for 7 > 1 ceases to exist when the quality of information for each HF is
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high, i.e. s; € [103,10*]. To better illustrate the exponential decay of the aggregate den-
sity for s; € [10%,10%] for sufficiently long waiting times between defaults we show P(7)
using a logarithmic scale on the vertical axis. Therefore, when all agents have a better
quality of information, the aggregate density ceases to have a fat-tail and all moments of

the aggregate PDF are finite.
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Figure 7: The autocorrelation function of the binary sequence of defaults computed
numerically by averaging over 3 x 10? simulations of the model. In each simulation
s; is sampled from a uniform distribution in [103,10%] (red circles) and [10,100] (blue
downright triangles). The autocorrelation function corresponding to s; € [103,10%] is
also shown in the inset using a logarithmic scale on the vertical axis to help demonstrate
the exponential decay in the case of better informed HFs.

It follows then from Theorem [2, the memory of the underlying stochastic process in
the case of s; € [10%,10%] is finite and thus, defaults are not clustered. To confirm the
theoretical prediction, which is exact in the case of a continuum of HFs, we numerically
calculate the autocorrelation function of the sequence of defaults. The results are shown
in Fig. , where the autocorrelation function corresponding to s; € [10,100] and s; €
[103,10%] are shown with blue downright triangles and red circles, respectively. Clearly,
the decay of the autocorrelation function when HF's are better informed decays far more

rapidly. In fact, as it is shown in the inset, the autocorrelation function for s; € [10%,10%]
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falls exponentially (short memory). Therefore, the integral of the autocorrelation function

converges, and defaults are no longer clustered.

4.4 Non-normal returns and volatility clustering

The deviation from Gaussianity of the distribution of logarithmic returns in finance and
the existence of infinite memory in the time series of absolute returns has been reported
in numerous studies—see Teyssiere and Kirman| (2007) and references therein. In the
following we show that our model can replicate both of these stylized facts. In Fig. [8 we
show the PDF of logarithmic returns r = log p;+1 — log p;. The numerical results (black
downright triangles) were fitted with a Gaussian (blue solid line). Clearly, the Normal

distribution fails to describe the numerical results.

22 T T T T T

20

18
16

14

P(r)
s 5

=] \S] EEN @) [ere)
T
1

o
=
W

-0.1 -0.05 0 0.05 0.1
T

Figure 8: The PDF of the logarithmic returns computed numerically (black downright
triangles). The results were obtained by averaging over 3 x 10? simulations of the model up
to 10® periods. In each simulation s; is sampled from a uniform distribution in [10,100].
The best fit with a Gaussian distribution is also shown (blue solid line).

Finally, in Fig. @ we present the numerically computed autocorrelation function R(t')
of the absolute value of logarithmic returns in double logarithmic scale. For large values of

the lag variable ', the autocorrelation function behaves as a power-law, i.e. R(t') ~ ¢,
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Fitting R(t') for ¢ > 300 we find that v = 0.497 + 3 x 1073. It is worth noting that the
value of the exponent from empirical studies is found to be 0.2 < v < 0.5, (Farmer and
Geanakoplos, [2008; [Poon and Granger, |2003)), (Teyssiere and Kirman, 2007, p. 292).
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Figure 9: The autocorrelation function of the absolute logarithmic returns as a function
of the lag variable (blue downright triangles). Asymptotically the function behaves as a
power-law. Fitting R(t') for ¢ > 300 (red solid line) we find that the absolute value of
the exponent of the power-law is |v| = 0.497 £ 3 x 1073,

5 Conclusions

The rapid growth of an opaque HF industry in the last two decades constitutes a systemic
risk because a synchronised failure of such investment institutions can destabilise global
financial markets. Despite this widely recognised fact very few studies have been devoted
to the subject. Our work makes a contribution in this direction. We relate the hetero-
geneity in available information among different HFs with the emergence of clustering
of defaults. The economic mechanism leading to the clustering of defaults is related to
the leverage cycle put forward by Geanakoplos and collaborators, according to which the

presence of leverage in a market leads to the overpricing of the collateral used to back-up
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loans during a boom, whereas, during a recession, collateral becomes depreciated due to
a synchronous de-leveraging compelled by the creditors. However, this feedback effect
between collateral and leverage, as shown here, is a necessary, yet not a sufficient condi-
tion for the clustering of defaults and, in this sense, the emergence of systemic risk: the
extent of heterogeneity between HFs also plays a crucial role.

Specifically, we have shown that a large difference in the quality of information avail-
able to HF's is an essential ingredient for defaults to be clustered. The mechanism for
the clustering of defaults has a statistical nature. The heterogeneity among HFs, in
our model realised as asymmetric information across HFs, leads to the co-existence of
many time-scales characterising the occurrence of defaults. This manifests itself in the
emergence of scale-free (heavy tailed) statistics on the aggregate level. We show, that
this scale-free character of the aggregate survival statistics, when combined with large
fluctuations of the observed waiting-times between defaults, i.e. infinite variance of the
corresponding aggregate PDF', leads to the presence of infinite memory in the default
time sequence. Consequently, the probability of observing a default of a HF in the future
is much higher if one (or more) is observed in the recent past, and as such, defaults are
clustered.

Interestingly, it is the most stable HFs responsible for the appearance of a fat-tail
in the aggregate PDF, since poorly informed HFs have the lowest demand for the risky
asset, and consequently, are on average the least leveraged. As a result, the HFs faced
with the highest uncertainty about the fundamental value of the risky asset are the ones
which are the least prone to go bankrupt due to downward fluctuations of the price of
the risky asset induced by the representative noise trader.

An immediate consequence of our findings can be epitomized as follows: regulating
leverage in order to mitigate the pro-cyclical expansion and contraction of credit supply,
identified with the “leverage cycle”, might prove inadequate. Geanakoplos correctly em-
pasises the importance of collateral, in contrast to the conventional view, according to
which the interest rate completely determines the demand and supply of credit, and thus,
is the only “important variable”. Heterogeneity, per se, is another destabilising factor in
the economy. Therefore, future regulations should also take this into account, addressing

heterogeneity of information as a source of systemic risk.
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Appendix A

As already stated in Section , Theorem , assuming that the process defined by Y'(¢t) =

Ljo,q (Sm) is ergodic, the auto-correlation function can be expressed as a time-average

C(t') x lim —ZYthH, (A1)
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Figure 10: The probability of observing a default at #', assuming a default occurred at 0
can be expressed by P(r =t').

The right-hand side (RHS) in equation is proportional to the conditional prob-
ability of observing a default at time ¢', given that a default has occurred at time ¢ = 0.
Therefore, we can express C/(t') in terms of the aggregate probability P(7 = t') (of waiting
' time-steps for the next default to occur, given that one has just been observed).

As schematically illustrated in Fig. [10|

C(1) = P(1), (A.2)
C(2) = P(2) + P(1)P(1)

= P(2) + P(1)C(1), (A.3)
Ct)=P{t)+ Pt —1)C(1) +... P()C(t' —1). (A.4)

If we further define C'(0) = 1 and P(0) = 0, then equation (A.4) can be written more
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compactly as
t/

C(t') =) _C(t' = 7)P(r) + by, (A.5)

=0
where dy o is the Kronecker delta.

We are interested only in the long time limit of the autocorrelation function. Hence,
we can treat time as a continuous variable and solve equation by applying the
Laplace transform L£{f(T fo 7) exp(—s7)dr, utilising also the convolution the-
orem (Procaccia and Schuster, 1983), (Schuster and Just|, 2006, pp. 79-83). Taking these

steps we obtain

1
O(s) = ———, A.6
= (A6)
where P(s) = £ {P } fo 7)exp(—s7)dr. We will assume that P(7) oc 77¢

for any 7 € [1,00), i.e. the asymptotlc power-law behaviour (7 > 1) will be assumed to

remain accurate for all values of 7. Under this assumption,

= ) AT T E[l,00),
P(T)_{ 0, 7el0,1). (A7)

where A =1/ [[*77%dr = a — 1. The Laplace transform of equation (A.7) is,
f)(s) = (a—1)E,(s), (A.8)

where E,(s) denotes the exponential integral function defined as,

E.(s) = /100 exp (—st)t~%dt /; Re(s) > 0. (A.9)

The inversion of the Laplace transform after the substitution of equation in equa-
tion (A.6)) is not possible analytically. However, we can easily derive the correlation func-
tion in the Fourier space (known as the power spectral density function) F{C(¢)}(f) =
\/7 J° C(t') cos(27 f)dt' by the use of the identity (Jeffrey and Zwillinger, 2007, p. 1129),

FlOW)} = \/LZ_W (C(s — 2mif) + C(s — —2mif)]. (A.10)

relating the Fourier cosine transform F {g(¢)} (f), of a function g(t), to its Laplace trans-
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form ¢(s), to obtain,

1 1 1
=7 (1 = V)E@i 1= (a= 1)Ea(—2if7r)> (A-11)

From equation (A.11]) we can readily see that as f — 04 (equivalently ' — o0), C(f) —
co. To derive the asymptotic behaviour of C(f) we expand about f — 0, (up to linear

order) using

2im f 1

E,(2ifn) = ai®t (27)* ! f*7I T (~a) —5+t— O(f?) (A.12)
to obtain
L iv2m(a—2)f
Cif) = Ar2(a — 1) f2 4 (20t we(if)* — a(2im)ef*) T(2 — a) (A13)
iv2m(a—2)f

* A2(a — 1) f2 + (20t 7o (—if)* — a(—2im)ofo) (2 — a)

After some algebraic manipulation, for f — 0 equation (A.13)) yields
C(f) = Af*, (A.14)

where ) ,
2072 (a — 2)?m° 2 sin (%) (1 — a)

4= @-1)

(A.15)

Therefore, for 2 < a < 3 we see that the Fourier transform of the correlation function
behaves as,

C(f) oc f72. (A.16)

If a = 3, then the instances of the Gamma function appearing on the RHS of equa-
tion (A.13) diverge. Therefore, for a = 3 we need to use a different series expansion
around f — 0,. Namely,

Es(2mif) = % — 2inf + 7 f*(2log(2im f) + 2y — 3) + O (f°) , (A.17)

where 7 stands for the Euler’s constant. The substitution of equation (A.17)) into equa-
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tion (A.11)) leads to

C(f)=-— Re{ [2log(mf) — 27+ 3 — log(4)]/[\/%(2z'7rf log(7 f)
+ 7w f(2iy + 7 +i(log(4) — 3)) — 2) (A.18)

x (m(3i — 2iy + ) f — 2im flog(2m f) — 2)] }

which simplifies to

O11) =( = 8722 = 201 (~6ou(m) g (167°)
— 2ylog (47 f%)) + (127* + 7*) log(m f) + 9(3 — 47) log(27 f))
+4flog(f) +6f(2y — 3 +log(4) + 2log(r)) log?(f)
+ 6 (71og(16) + (log(27) — 3) log (47%) ) log(f) + 4f log(2m)((log(2) — 3) log(2)
+ log(m) log(47)) — 4log (27 f)) — 4v°w* f*(log(64) — 9) — 2y(w* f(f (7* + 27 + 1210g*(2))

—4)+4) + 7 f (f (27 — 7*(log(4) — 3) + log(8) log(16)) — 12) — 8log(27 f) + 12)
/ (mvwf? log () (log (4 f) + 2y — 3) + 7 F(f (472 + * + (log(4) — 3)

+4v(log(4) —3)) — 4) + 4)2>.
(A.19)

As f — 0 we have,

C(f) ~ [log(f)] (A.20)
Finally, if a > 3, then equation (A.11) for f — 0 tends to a constant, and thus, Y;

behaves as white noise. Consequently, if the variance of 13(7') is finite, then Y; is for large
values of ¢’ is uncorrelated.

To summarize, the spectral density function for f < 1 is,

fo3, 2<a<3
c(h)’S" S g, a=3 (A.21)

const., a>3
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The inversion of the Fourier (cosine) transform in equation (A.21)) yields,

Ct)xt” )i 2<a<3At'>1. (A.22)

29



References

Andersen, T. G., Bollerslev, T., 1997. Heterogeneous information arrivals and return
volatility dynamics: Uncovering the long-run in high frequency returns. The Journal
of Finance 52 (3), 975-1005.

Ang, A., Gorovyy, S., van Inwegen, G. B., 2011. Hedge fund leverage. Journal of Financial
Economics 102 (1), 102 — 126.

Baillie, R. T., 1996. Long memory processes and fractional integration in econometrics.
Journal of Econometrics 73 (1), 5 — 59.

Beichelt, F., 2010. Stochastic processes in science, engineering and finance. CRC Press.

Bloomberg, 2013. 100 top-performing large hedge funds. Accessed: 2014-8-22.
URL http://media.bloomberg.com/bb/avfile/rE4PZiFROHhI

Boyson, N. M., Stahel, C. W., Stulz, R. M., 2010. Hedge fund contagion and liquidity
shocks. Journal of Finance 65 (5), 1789-1816.

Brunnermeier, M. K., Pedersen, L. H., June 2009. Market Liquidity and Funding Liquid-
ity. Review of Financial Studies, Society for Financial Studies 22 (6), 2201-2238.

Debnath, L., Bhatta, D., 2007. Integral transforms and their applications. Chapman &
Hall/CRC.

Eurekahedge, 2014. The eurekahedge report. Accessed: 2014-10-27.
URL https://www.eurekahedge.com/news/14_0ct_Eurekahedge_Report_online.

asp
Farmer, J. D., Geanakoplos, J., 2008. Power laws in economics and elsewhere.

Fostel, A., Geanakoplos, J., 2008. Leverage cycles and the anxious economy. American
Economic Review 98 (4), 1211 — 1244.

Geanakoplos, J., 1997. The economy as an evolving complex system II. Vol. 28. Addison-
Wesley Reading, MA.

Geanakoplos, J., 2003. Liquidity, default, and crashes endogenous contracts in general.
In: Advances in economics and econometrics: theory and applications: eighth World
Congress. Vol. 170.

30


http://media.bloomberg.com/bb/avfile/rE4PZiFR9HhI
https://www.eurekahedge.com/news/14_Oct_Eurekahedge_Report_online.asp
https://www.eurekahedge.com/news/14_Oct_Eurekahedge_Report_online.asp

Geanakoplos, J., 2010a. The leverage cycle. In: NBER Macroeconomics Annual 2009,

Volume 24. National Bureau of Economic Research, Inc, pp. 1-65.

Geanakoplos, J., 2010b. Solving the present crisis and managing the leverage cycle (Aug),
101-131.

Goetzmann, W. N., Ingersoll, J. E., Ross, S. A., Aug. 2003. High-Water Marks and Hedge
Fund Management Contracts. The Journal of Finance 58 (4), 1685-1718.

Haghani, S., 2014. Modeling hedge fund lifetimes: A dependent competing risks frame-

work with latent exit types. Journal of Empirical Finance.

Investopedia, 2015. Two and twenty. Accessed: 2015-1-19.
URL http://www.investopedia.com/terms/t/two_and_twenty.asp

Jeffrey, A., Zwillinger, D., 2007. Table of Integrals, Series, and Products. Table of Inte-

grals, Series, and Products Series. Elsevier Science.

Kirchgassner, G., Wolters, J., 2008. Introduction to Modern Time Series Analysis.
Springer.

Kodres, L. E., Pritsker, M., 04 2002. A Rational Expectations Model of Financial Con-
tagion. Journal of Finance 57 (2), 769-799.

Kyle, A. S., Xiong, W., 08 2001. Contagion as a Wealth Effect. Journal of Finance 56 (4),
1401-1440.

Mandelbrot, B. B., 1983. The fractal geometry of Nature. W. H. Freeman and Company,
New York.

Nelson, R., 1995. Probability, Stochastic Processes, and Queueing Theory: The Mathe-

matics of Computer Performance Modeling. Springer.

Poledna, S., Thurner, S., Farmer, J. D., Geanakoplos, J., 2014. Leverage-induced systemic
risk under Basle II and other credit risk policies. Journal of Banking & Finance 42 (C),
199-212.

Poon, S.-H., Granger, C. W., 2003. Forecasting volatility in financial markets: A review.
Journal of economic literature 41 (2), 478-539.

31


http://www.investopedia.com/terms/t/two_and_twenty.asp

Procaccia, 1., Schuster, H. G., 1983. Functional renormalization-group theory of universal

1/f noise in dynamical systems. Phys. Rev. A 28, 1210.

Samorodnitsky, G., Jan. 2007. Long range dependence. Found. Trends. Stoch. Sys. 1 (3),
163-257.

Schuster, H., Just, W., 2006. Deterministic Chaos: An Introduction. Wiley.

Teyssiere, G., Kirman, A. P., 2007. Long memory in economics. Springer Berlin Heidel-

berg.

Thurner, S., Farmer, J. D., Geanakoplos, J., 2012. Leverage causes fat tails and clustered
volatility. Quantitative Finance 12, 695,707.

Xiong, W., 2001. Convergence trading with wealth effects: an amplification mechanism

in financial markets. Journal of Financial Economics 62 (2), 247-292.

32



