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Abstract

This paper focuses on the use of interest rates as a tool for hedging against the

default risk of heterogeneous hedge funds (HFs) in a leveraged market. We assume

that the banks study the HFs survival statistics in order to compute default risk

and hence the correct interest rate. The emergent non-trivial (heavy-tailed) statis-

tics observed on the aggregate level, prevents the accurate estimation of risk in a

leveraged market with heterogeneous agents. Moreover, we show that heterogeneity

leads to the clustering of default events and constitutes thus a source of systemic

risk.
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1 Introduction

The recent financial crisis has naturally drawn much attention to the functioning of

financial markets both from a policy making and from an economic modeling perspective.

This paper focuses on two of the potential sources of instability of the financial markets,

namely heterogeneity of the economic agents and leverage, and thus aims to contribute

to both of the relevant literatures.

The role of leverage has been studied in a number of papers which develop theoretical

models to explain the mechanism through which leverage is affected by volatility and the

emergence of a positive relationship between leverage and asset prices. An example is

Geanakoplos (2001) who suggest that bad news raises tail volatility and decreases expec-

tations and, as a result, the leverage level. In such an environment there are two effects

that tend to decrease prices; lower expectations and lower leverage.1 Leverage is high

during normal and good times and low during bad times, such as during a crisis, which

lends empirical support of these findings. This pro-cyclicality of leverage is documented

by Adrian and Shin (2008), among others. Lastly, an empirical study by Molina (2005)

tries to capture, not only the relationship between leverage and the probability of default,

but also the feedback effect which arises between them. This is achieved by relating the

default probability and the credit rating and examining the impact of firm’s leverage on

the credit rating. Here it was found that the positive effect of leverage on the probability

of default is three times stronger than it is if the endogeneity of leverage is ignored. This

finding highlights the importance of the feedback mechanism in a leveraged economy.

The present paper builds on two recent papers by Thurner, Farmer, and Geanakoplos

(2012) and Poledna, Thurner, Farmer, and Geanakoplos (2014) which study the effects of

leverage in an economy where the key actors are heterogeneous investors who are called

hedge funds (HFs) and a bank. Thurner et al. (2012) show that leverage causes fat tails

and clustered volatility. Under benign market conditions HFs become more leveraged as

this is then more profitable. High levels of leverage are correlated with increased asset

price fluctuations that become heavy tailed. The heavy tails are caused by the fact that

when a HF reaches its maximum leverage limit then it has to repay part of its loan by

selling some of its assets. Poledna et al. (2014) use a very similar framework to test three

regulatory policies: (i) imposing limits on the maximum leverage, (ii) similar to the Basle

II regulations, and (iii) a hypothetical perfect hedging scheme in which the banks hedge

against the leverage-induced risk using options. They find that the effectiveness of the

policies depends on the levels of leverage. They also show that the perfect hedging scheme

reduces volatility in comparison to the Basle II scheme but that none of the schemes are

able to make the system much safer on a systemic level. These two papers provide a

basis for studying both the effects of leverage and heterogeneity on prices within the

1See also Brunnermeier and Pedersen (2007), Geanakoplos (2009), and Geanakoplos (1996).
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same framework and in this way allow a test of the effectiveness of policies like the one

proposed in Basel II. Our model extends this framework in two directions.

Firstly, it provides a microfounded explanation of the behaviour and the source of

heterogeneity of the HFs. In both of these papers agents’ heterogeneity has to do with

their demand for the risky asset. More specifically the HFs are risk neutral and have

different demand of the asset given the same information and the same wealth. The

characteristic which makes them heterogeneous, is called “aggression” and aims to capture

the different responses of the agents to a mispricing signal. Given that the agents are risk

neutral it is impossible to provide a rigorous explanation for the difference in aggression.

In this paper we establish a model where the agents are risk averse with Constant Relative

Risk Aversion (CRRA) and their heterogeneity stems from the difference in the precision

of the mispricing signals that they receive from the market.2 Interestingly, we find that

the better informed agents are not necessarily characterised by the lowest default rate.

Second, in our work, the bank does not charge a constant interest rate but rather uses

the interest rate as a tool to hedge against the default risk. The rate it charges depends on

a historically observed default rate. We show that the failure function (the distribution

of waiting times to default) of the heterogeneous HFs is different when observed on the

micro and the aggregate level. Within our model we find that the banks systematically

underestimate risk. Moreover, we show that there is a heterogeneous effect of hedging

on the market and present rigorous results for the connection between heterogeneity and

clustering of defaults, constituting systemic risk.

New computational tools have allowed economists to expand the rational representa-

tive agent framework and to study how the interactions of heterogeneous agents can give

rise to emergent properties of systems that are able to replicate the empirical trends seen

in asset prices, asset returns and their distributions (Lux, 1995, 1998; Lux and March-

esi, 1999; Iori, 2002). In Levy (2008), spontaneous crashes are a natural property of a

market with heterogeneous investors who are inclined to conform to their peers, under

the condition that the strength of the conformity effects is large compared to the degree

of heterogeneity of the investors. In other papers, such as Chiarella (1992) and Lux

(1995), heterogeneity has to do with the different beliefs and trading rules of the agents

(fundamentalists and chartists) which can result to asset price fluctuations and market

instability. The seminal work by Brock and Hommes (1997) discusses “rational roots to

market instability” in a framework where heterogeneous agents have adaptive behaviour

that depends on their investment strategy. Brock, Hommes, and Wagener (2009) discuss

the fact that hedging instruments can play a destabilising role in a financial market with

agents with heterogeneous expectations. Hedging instruments are represented by Arrow

2Other sources of heterogeneity can include the investors’ time horizon (LeBaron, 2002), boundedly
rational price expectations (Brock and Hommes, 1998) or expectations about future states of the world
(Sandroni, 2000)
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securities which are added in an asset pricing model holding heterogeneous beliefs. The

main finding of this work is that this addition may destabilise the price dynamics and

increase volatility.

The remainder of the paper is organized as follows. In Section 2 we present the model.

Section 3 presents and discusses the main results. In the last Section we summarize the

main points of the paper and draw some conclusions.

2 Model

The model presented here is based on the recent models on leverage with heteroge-

neous agents proposed by Thurner et al. (2012) and Poledna et al. (2014). These models

describe an economy with two assets, one risk-free (cash C) and one risky, three types

of agents and a bank. The risky asset exists in a finite quantity equal to N and can be

viewed as a commodity or an option. These two assets are held by a representative noise

trader and n types of hedge funds (HFs). In addition, a representative fund investor (FI)

holds risk-free asset and invests in the risky one indirectly through the HFs. Finally,

there is also a bank which lends money to the HFs, using the risky asset owned by the

HFs as collateral.

Our model extends the models of Thurner et al. (2012) and Poledna et al. (2014) in

two directions. First, it provides a microfounded explanation of the behaviour and the

source of heterogeneity of the HFs. In Thurner et al. (2012) and Poledna et al. (2014) the

heterogeneity is a result of the HFs having different “aggression” parameters. Here, given

the same wealth and mispricing signal, different HFs had a different demand of the risky

asset although no explanation was given for the cause of this difference. In our model the

HFs have CRRA utility functions and differ in the precision of the mispricing signal that

they receive. In our work we assume that the banks rationally estimate the interest rate

to charge on the loans that they extend. In Thurner et al. (2012) there was no interest

charged while in Poledna et al. (2014) the banks instead hedge by using options without

explicitly computing default risk. Our model instead allows the bank to use interest rates

as a tool for hedging against the risk of default of the HFs.

The representative noise trader’s demand for the risky asset in terms of the cash

value dntt of the asset at discrete time t depends on a chartist (destabilising) component,

a fundamentalist (stabilising) component and a noise component. In this way the price

of the asset weakly mean reverts around the fundamental value V which depends on

economic fundamentals. More specifically dntt is given by

log dntt = ρ log dntt−1 + σntχt + (1− ρ) log(V N), (1)

where ρ ∈ (0, 1) is the relative weight between the fundamentalist and chartist compo-
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nents and E[log pt] = log V , where pt is the price of the risky asset at t. 3 As it is obvious

from the above the closer ρ is to 0 the more stable the price behaviour will be. Here σnt

is the variance of the price variations for the noise traders with χt is a Gaussian random

variable with mean 0 and variance 1.

The representative FI is assumed to be a boundedly rational investor who seeks to

invest in the risky asset but does not have any information about the fundamental value

of the asset and invests through the HFs. The FI has a chartist behaviour and invests or

withdraws money from the HFs based on the latter’s historical performance, a benchmark

return rb and a parameter b which controls the amount withdrawn or invested. In this

way the investment inflow or outflow at time t, from the FI to HF j is given by the

following rule:

F j
t = max

[
−1, bj(rp,jt − rb)

]
×max

[
0, Dj

t−1pt + Cj
t−1 − L

j
t−1it

]
(2)

where Lt−1 is the total loan amount at t − 1, it the interest rate charged at t, Cj
t−1

is the amount of the risk-free asset held by the HF at t − 1 and rp,jt is a measure of

the HF performance. Eq (2) ensures that FI withdrawals do not exceed the maximum

wealth of the HF and that investments are proportional to the fund performance relative

to an (industry) benchmark. Here rp,jt is an exponential moving average of the HF’s

instantaneous rate of return rjt ,

rp,jt = (1− γ)rp,jt−1 + γrjt (3)

where γ ∈ (0, 1) and rjt is the rate of return of the HF j, i.e.

rjt =
Dj
t−1(pt − pt−1)

W j
t−1

(4)

The HFs’ performance depends on their rate of return over time, i.e. their annual

percentage return, a standard measure of fund performance. HFs are represented by risk

averse agents whose utility depends on their rate of return rjt and their utility is given

by:

U = 1− e−αr
j
t ≡ 1− e−α(W

j
t −W

j
t−1)/W

j
t−1 (5)

where α > 0, is the Arrow-Pratt-De Finetti measure or relative risk aversion. In this way,

the HFs have constant relative risk aversion (CRRA) and their absolute risk aversion is

decreasing when wealth increases (DARA). This captures the fact that more wealthy HFs

3Similar types of demand have been discussed extensively in relation to exchange rate expectations in a
series of papers by of Frankel and Froot (for example see (Frankel and Froot, 1987)); and in relation
to Stock Markets in Brock and Hommes (1998) and Boswijk, Hommes, and Manzan (2007). Also see
Hommes (2006) for a detailed review.
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find it the more difficult to increase their rate of profit and, in order to achieve this, turn

to more risky behaviour.

The HFs are spawned with the same endowment W0 and have information about

the fundamental value of the asset, taking advantage of the misprising caused by the

noise trader’s behaviour. Each HF receives a private noisy signal Ṽ = V + εj about the

fundamental value of the risky asset, where the noise term ε is assumed to follow a normal

distribution with mean 0 and variance σ2
j . In this way, the maximization with respect to

the expected rate of return yields that the demand for the risky asset of the jth HF with

signal precision measured by the variance σ2
j is given by

Dj
t =

m

ασ2
j

Wt, (6)

where m is the mispricing signal V − pt, given the fundamental value V . Here the source

of heterogeneity has to do with the differences in the precision of the signal for the (same)

fundamental value. Otherwise the HFs are identical. Without loss of generality in the

following we set α = 1.

When the demand for the risky asset cannot be met with the cash held by a HF at

a given time step, the HF requests a loan from the bank. The bank extends the loan

to the HF provided that the HF does not become more leveraged than a limit λmax set

externally. Here leverage is defined as the ratio of assets held to the HF’s net wealth. In

this way a constraint is imposed on the demand of the HF for the risky asset, given its

wealth,
Dtpt
Wt

≤ λmax (7)

Consequently, the maximum demand for the risky asset is Dt = λmaxWt/pt.

In order to calculate the appropriate interest rate we assume that the banks use a

historical measure of the time between defaults τ of a HF, specifically E[τ ;λ?], conditional

that the leverage of the defaulting HF just before default was λ?. Using this table the

banks can “look up” an instantaneous probability of default, or hazard rate, for a HF with

leverage λ(t) as h = 1/E[τ ;λ(t)]. If the HFs were identical this procedure for computing

h would be exact if the bank only received information on the leverage of the HF and not,

for example, on the time that it has been trading. However, if the HF failure function

is exponential this remains exact in the case of identical HFs, irrespective of whether or

not the bank has information on how long the HF has been active. In this fashion, the

banks construct a look-up table for Nλ = (λmax − 1)/δλ different values of the leverage

of borrowers, where δλ is an arbitrary bin width chosen by the banks.

In order to estimate the the mean time between defaults for an arbitrary value of

leverage banks perform linear-log interpolation on their data for E[τ ;λ(t)] to obtain a
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continuous function 〈τ(λ)〉. 4

Within this scheme the banks infer that an overnight interest rate that would exactly

compensate for default risk would be given by

it = 1/〈τ(λ)〉 (8)

The heterogeneity in the HFs, which is unknown to the bank, renders this only an ap-

proximation to the necessary rate to hedge default risk for any given HF with a particular

signal precision σ2
j . Nonetheless, it is probably a more precise risk assessment procedure

than is feasible for banks, in practice, given the extremely long historical datasets than

can be simulated in our computational model to be used by the bank to construct their

look-up table for default risk.

The wealth of a HF evolves according to

W j
t = W j

t−1 + (pt − pt−1)Dj
t−1 + F j

t . (9)

When the wealth of a HF falls below Wcr � W0, the HF is assumed to be liquidized and

goes out of business. After Tr time-steps the bankrupt HF is replaced by an identical

one. As a final note, the price of the risky asset is determined by the market clearance

condition

dntt (pt) +
n∑
j=1

Dj
t (pt) = N. (10)

2.1 Choice of Parameters

In all simulations we consider a market with 10 HFs, each one receiving a signal

with precision βj = 1/(σj)2 uniformly distributed in the interval [5, 50]. The remaining

parameters are chosen as follows: ρ = 0.99, σnt = 0.035, V = 1, N = 103, rb = 5× 10−3,

γ = 0.1, W0 = 2 and Wcr = 0.2. Bankrupt HFs are reintroduced after Tr time-steps,

randomly chosen according to a uniform distribution in [10, 200].

3 Results and Discussion

Herein, we focus on the survival statistics of the hedge-funds to assess the effects

of hedging in a heterogeneous leveraged market, as well as, the ability of the banks

to correctly put a price on the default risk. As already mentioned, from the Bank’s

perspective, HFs are indistinguishable since the heterogeneity is related to the private

signals received by the HFs. Consequently, banks, at best, can differentiate between

4Banks interpolate using linear-log interpolation because they anticipate that the mean time between
defaults for different levels of leverage can vary across many orders of magnitude.
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HFs having a different level of leverage. Here we assume that information on collateral

encumbrance (leverage) would have to be disclosed to the bank. However, information

on the leverage cannot, by itself, be used to distinguish between the heterogeneous HFs

since any allowed leverage value can (and, ultimately, will) be accessed by each HF.

Nonetheless different HFs will contribute differently to the aggregate default statistics

for any leverage value. These are recorded by the bank for the purposes of computing

their look-up table for default risk.

To simplify our analysis we study the survival statistics independent of the leverage

level of HFs. However, at least qualitatively, our findings hold even when performing

independent statistics for different values of leverage as the Bank is assumed to be doing

in the model. This simplification, allows us to obtain much finer statistics for each of the

HFs, and more importantly, treat the problem analytically.

In Fig. 1 we show the failure density function (FDF) P (τ), that is the distribution

of waiting times τ between defaults, for each of the hedge funds with β = 1/(σ)2 =

{5, 10, 15, . . . , 50} and λmax = 5 on a log-linear scale. We observe that the decay of the

FDFs can be well described by exponentials, as indicated by the fits shown with black

solid lines for all values of β. Therefore, microscopically

P (τ) ≈ µ(β) exp [−µ(β)τ ] . (11)

The exponentially distributed waiting times between defaults indicate that HFs default

at approximately a steady rate µ, which depends on β.

However, as mentioned above, statistical analysis on an individual level is not pos-

sible by the bank. Consequently, even a bank that is perfectly informed concerning

the history of defaults can only infer the distribution of waiting times on the aggregate

level. This aggregate distribution will be the weighted sum of the individual exponentials

corresponding to HFs with a different β. Hence, the aggregate distribution will be

P̃ (τ) =
n∑
j=1

w(βj)µ(βj) exp
[
−µ(βj)τ

]
, (12)

where w(βj) is the statistical weight corresponding to the jth fund with signal precision

βj.

In Fig. 2 we present the numerically obtained aggregate distribution using logarith-

mic scale on both axes. The numerical results were obtained by averaging over 2 × 102

simulations, each with a different realization of βj values, sampling from a uniform dis-

tribution in [5, 50]. We observe that for sufficiently large waiting times τ the distribution

decays according to a power-law (black solid line), τ−ν with ν u 3. The non-exponential

(algebraic) asymptotic decay of the aggregate distribution is a result of the mixture of

a large number of exponential decays with different default rates µ corresponding to the
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Figure 1: The distribution of waiting times between defaults τ for each HF, having
different precision σ: (a) β ≡ 1/σ2 = {5, 10, 15, 20, 25} (black diagonal crosses, blue
downright triangles, red upright crosses, magenta diamonds and cyan upright triangles,
respectively) and (b) β = {30, 35, 40, 45, 50} (with the same color notation). The results
were obtained simulating the model for up to 108 time-steps and averaging over 2× 102

different initial conditions, with the maximum allowed leverage set to λmax = 5. In each
case, we perform an exponential fit (black solid lines). Note the log-linear scale.
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continuously distributed β. The emergence of the power-law tail on the aggregate level

has profound implications on the ability of the bank to correctly assess the default risk,

as the slow decay of the FDF shifts the observed mean time between defaults to greater

values. In other words, the aggregation performed of the heterogeneous agents results

into an underestimation of default rates, as the riskier HFs are “shadowed” by the more

stable ones.

10
2

10
3

10
4

10
5

10
6

10
7

10
−10

10
−8

10
−6

10
−4

τ

P̃
(τ

)

Figure 2: The aggregate distribution of waiting times between defaults (blue downright
triangles) obtained on the basis of 2×102 simulations of the model with a signal precision β
received by each HF randomly chosen according to a uniform distribution in [5, 50], for up
to 108 time-steps each. For τ � 1, the aggregate distribution follows a power-law P̃ (τ) ∝
τ−ν , with ν = −3 (black thick line). For comparison, the analytical approximation given
by Eq. (14) is also shown (red line). The parameters and ε were determined numerically
µmax = 7.2× 10−4, ε = 1.2× 10−3.

To be able to theoretically quantify the error (underestimation) of the estimated

risk caused by the aggregation of the heterogeneous agents, in the following we derive

an analytical model for the numerically obtained distribution P̃ (τ) presented in Fig. 2.

Given that the signal precision is sampled from a continuous distribution, the individual

default rates vary also continuously from a minimum value µmin to a maximum value

µmax, corresponding to the most stable and unstable HF respectively. Therefore, the sum

10



in Eq. (12) becomes an integral over µ

P̃ (τ) =

∫ µmax

µmin

f(µ)µe−µτdµ, (13)

where f(µ) is the distribution of µ given the uniform distribution of β. We can infer

the distribution f(µ) observing that if we allow µmin → 0 and µmax →∞, then Eq. (13)

coincides with the Laplace transform of µf(µ). Moreover, given that asymptotically

P̃ (τ) ∝ 1/τ 3, it follows that f(µ)µ = L−1
[
τ−3
]
∝ µ2, where L−1 denotes the inverse

Laplace transform. Hence, f(µ) ∝ µ. Introducing further the dimensionless parameter

ε = µmin/µmax in Eq. (13) we find

P̃ (τ) =
2e−τ(µmax+εµmax)

τ 3 (µ2
max − ε2µ2

max)

× {eτµmax [τεµmax (τεµmax + 2) + 2]

− [τµmax (τµmax + 2) + 2] eτεµmax} . (14)

In the limit of an infinitely heterogeneous market, with µmax � µmin, (ε� 1) we can

expand Eq. (14) to leading order in ε to obtain,

P̃ (τ) =
4

τ 3µ2
max

−
[

4e−τµmax

τ 3µ2
max

+
4e−τµmax

τ 2µmax

+
2e−τµmax

τ

]
+O(ε2). (15)

Hence, for τ � 1, the slowest decaying term in Eq. (15) dominates and the distribution

will converge to

P̃ (τ) ∝ τ−3, (16)

as expected. The analytical approximation given by Eq. (14) is presented in Fig. 2 with

ε ≡ µmin/µmax = 1.2 × 10−3 and µmax = 7.2 × 10−4 determined numerically (red solid

line). As illustrated in Fig. 2, the analytical approximation is in reasonable agreement

with the exact (numerical) FDF.

From Eq. (14) we deduce that the interest rate charged by the bank on the basis of

the aggregated statistics is approximately

i =
1

〈τ〉
=

(1 + ε)µmax

2

ε�1
≈ µmax

2
. (17)

Therefore, the default risk of the more stable funds will as a result be overestimated,

whereas the default risk of the more unstable ones will be underestimated. Consequently,

banks will always be overcharging the less likely to default HFs and undercharging the

riskier ones. The ε dependence of the interest rate reflects the dependence of the mag-

nitude of the error on the extent of the market heterogeneity. In the limit of infinite

heterogeneity ε � 1, the default risk of the most unstable HF in the market will be un-
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λmax Bank losses Interest
5 (1± 2)× 10−3 (1.2± 0.8)× 10−4

10 (9± 3)× 10−3 (2.0± 1.3)× 10−3

15 (7± 4)× 10−3 (3.2± 0.4)× 10−3

Table 1: The mean amount of bank losses and interest payments per time-step. Evinde-
tely, the interest rate charged to the HFs does not cover for the losses due to bankrupties.

derestimated 50%, as suggested by Eq. (17). Another source of error for the estimation

of the default risk is the slow convergence of the calculated sample mean of the waiting

times to default, used by the bank as a proxy for the default rate, to the true mean,

due to the presence of the heavy tail. It is worth mentioning that the overcharging of

the more stable HFs does not cover for the loss caused by undercharging the riskier ones

as observed in Table 1, where the bank losses and interest payments per time-step are

presented.

1 25,000 50000
0

1

Figure 3: A binary (coarse-grained) representation of the wealth time series St as observed
on the aggregate level. The binary sequence is contructed by mapping the active phase
of each HF to 0 (Wt > Wcr) and the default events to 1 (Wt < Wcr). We observe the
clustering of the default events.

Consequently, due to the presence of heterogeneity in the market and despite the

fact that the assumption made by the banks is valid on the micro-level (constant rate

of default), the emergent non-trivial survival statistics on the aggregate level hinders

hedging against default risk.

Another important effect of the emergent heavy-tail statistics stemming from the het-

erogeneity of the market, is the absence of a characteristic time-scale for the occurrence

of defaults (scale-free asymptotic behaviour). Thus, despite the fact that on the micro-

scopic level there exists a well defined characteristic time-scale for each HF µ, on the
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aggregate level this quality is lost due to the mixing. The ramifications of the absence of

a characteristic time-scale to the clustering of defaults and consequently to the systemic

risk run deeply.

To gain insight and facilitate analytical treatment, we employ a coarse graining of

the wealth time-series, mapping the phases of activity (Wt > Wcr) to 0 and bankruptcy

events (Wt ≤ Wcr) to 1. In Fig. 3(a) we present a segment of the binary sequence St

generated by the dynamics after coarse-graining. We observe indeed that the blue vertical

lines corresponding to defaults form clusters.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

t
′

R
(t

′
)

Figure 4: The autocorrelation function of the binary representation of default events
S(t)) (blue diagonal crosses). The analytical prediction given by Eq. (23) is also shown
(red solid line).

The quantification of clustering can be achieved by the autocorrelation function R(t′),

with t′ being the time lag. Following Schuster and Just (2006), the autocorrelation of St

can be expressed as

R(t′) =
t′∑
τ=0

R(t′ − τ)P̃ (τ) + δm,0, (18)

where δm,0 is the Kronecker delta. We define P̃ (0) = 0 and C(0) = 1. Since we are inter-

13



ested in the long time limit of the autocorrelation function we can pass on to the contin-

uous time and solve Eq. (18) by Laplace transformation L{f(t)} =
∫∞
0
f(t) exp(−st)dt,

utilizing also the convolution theorem. Taking these steps we obtain,

R(s) =
1

1− P̃ (s)
. (19)

The correlation function in the Fourier space F{R(t′) then is,

F{R(t′)} =
1

2
|R(s→ 2πif)−R(s→ −2πif)| (20)

Assuming that P̃ (τ) ∝ τ−3 and substituting in Eq. (19) and Eq. (20) we obtain.

F{R(t′)} = | log(f)|. (21)

Finally, inverting the Fourier transform we obtain the autocorrelation as a function of

the time lag t′.

R(t′) ∝ 4Si(t)− π
t′

, (22)

where Si(t′) denotes the sine integral. For t′ � 1 Eq. (22) decays as

R(t′) ∝ 1

t′
. (23)

In Fig. 4 we show the numerically determined autocorrelation function. For comparison,

the analytical result given by Eq. (23) is also plotted (red line). We observe that the

asymptotic theoretical prediction is in reasonably good agreement with the numerical

results.

Finally, to assess the effect of interest on the default risk, we calculate the ratio of

default rates of each HF in the presence of interest rate over the corresponding with

the interest rate fixed at 0. The results are presented in Fig 5. As can be seen, the

introduction of interest rate for high maximum allowed leverage values enhances the

probability of default for HFs with signal precision above a critical value βcr ≈ 25 and,

conversely, renders HFs with lower signal precision less likely to default. Thus, the impact

of interest in a heterogeneous market is itself heterogeneous.
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Figure 5: The ratio of the default rate with interest rate being charged µ′ over the
corresponding one with the interest rate fixed at zero µ, as a function of the precision
signal β = 1/σ2 for three different maximum allowed leverage λmax = {5, 10, 15} values
(black, red and blue lines, respectively. As observed the presence of interest rate has a
heteregoneous effect on the individual default risk, which also depends on λmax.
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4 Conclusions

We analyse the use of interest rates as a tool of hedging the default risk of heteroge-

neous hedge funds. We assume that the heterogeneity of the agents stems from the HFs’

different quality of the mispricing signals they receive. We study the survival statistics

of the HFs, which might be used by a bank in order to charge an interest on the loans

that it extends to the HFs. We show that the failure function of the HFs is qualitatively

different when observed on the micro and the aggregate level. Specifically, the failure

function of all HFs decays exponentially on the micro-level, indicating a constant default

rate. On the contrary, the aggregated distribution of waiting times between defaults, in

the limit of an infinite level of heterogeneity in the market, tends to a power-law, with an

exponent such that the variance becomes infinite (heavy-tail). As a result, we show that

the default risk associated with the more unstable HFs will always be underestimated

and the converse is true for the more stable ones. Furthermore, we show that there is

a heterogeneous effect of hedging on the market, which is enhanced with increasing val-

ues of the maximum allowed leverage. Namely, the HFs which are less likely to default

become even more creditworthy when an interest rate is charged, while the default rate

of the less stable HFs increases when loans are costly. We also show that the scale-free

property of the emergent statistics on the aggregate level is intimately connected with

the clustering of defaults and, consequently, systemic risk.
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