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Abstract

The demand for assets as prices and initial wealth vary identifies beliefs
and attitudes towards risk.

We derive conditions that guarantee identification with no knowledge ei-
ther of the cardinal utility index or of the distribution of future endowments
or payoffs of assets; the argument applies even if the asset market is incom-
plete and demand is observed only locally.

Key words: asset prices; beliefs; attitudes towards risk.

JEL classification: D80; G10.



1 Introduction

We consider an individual who trades in financial assets to maximise his
time-separable (subjective) expected utility over life-time consumption; and
we assume that we observe how his initial period demand for consumption
and assets varies with prices and wealth, while the the investor’s beliefs over
the stochastic path of future prices, asset payoffs and endowments remain
fixed and have finite support. We investigate conditions under which one
can identify the investor’s beliefs from his demand for assets.

The identification of fundamentals is of intrinsic theoretical interest; also,
it serves to formulate policy: here, imperfections, like market incompleteness,
are of interest, since it is imperfections that render interventions desirable.
Identification is essential in order to understand better paradoxes that arise
in classical consumption based asset pricing. In financial markets, prices are
thought to be determined by the joint probability distribution of payoffs and
idiosyncratic shocks to investors, as well as their risk-preferences. Deviations
of the prices of assets from these “fundamentals” are often attributed to the
beliefs of investors. Perhaps most famously, in Shiller (2015) unusual run-ups
in asset prices are described as “irrational exuberance”. In order to investi-
gate the extent to which asset prices are determined by fundamentals or the
beliefs of investors, it is necessary to identify these beliefs from market data.
It is an open question to what extent the beliefs of investors can actually
be deduced from their demand for consumption and assets. We investigate
this question under the strong assumption that demand is observable, but
we make few assumptions on the beliefs of the investor over asset payoffs and
his endowments or the structure of the asset market.

It is clear that, even in a two-period setting, beliefs cannot always be
identified. For example, if the investor has quadratic utility, his demand for
assets only depends on the first and the second moments of asset payoffs –
higher moments are irrelevant and, as a consequence, beliefs about higher
moments of the distribution cannot possibly be identified, while subjective
expected utility theory requires the individual to have beliefs over the joint
distribution of asset payoffs and endowments. More interestingly, if the in-
vestor has log-utility, the entire distribution matters for his utility; however,
if the investor does not have (labor) endowments beyond the first period, and
if there is a single, risky asset available for trade, the demand for this asset
only depends on the wealth of the investor and his discount factor, and beliefs
over the payoffs of the assets do not matter and cannot be identified. The
identification of beliefs may not be possible even when financial markets are
complete. Since the observation of the demand for assets is equivalent to the
observation of excess demand (but not necessarily consumption), the identi-
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fication of beliefs turns out to be impossible if the cardinal utility exhibits
constant absolute risk aversion.

In this paper, we derive conditions on fundamentals that ensure that
beliefs can be identified. If cardinal utility is analytic, it can always be iden-
tified from demand for period zero consumption. Our main result is that
identification is possible if the value functions across realisations of uncer-
tainty are linearly independent. In a two-period model, and in the presence
of a risk-free asset, beliefs over endowments and payoffs of assets can be
identified if marginal utility, u′(·) is not finitely mean-periodic: that is, if
for any K > 1, and any distinct (ek)

K
k=1, the functions (u′(ek + x))Kk=1 are

linearly independent. We characterise classes of utility functions with this
property. Moreover, we show that in this framework, if the payoffs of risky
assets separate uncertainty in the sense that for any two states some portfo-
lio of assets has different payoffs across these states, beliefs can be identified
whenever cardinal utility is not the product of the exponential function and
some periodic function. In conclusion, we argue that the analysis extends to
the case in which only aggregate demand or the equilibrium correspondence
are observable.

The identification of fundamentals from observable data can be posed,
most simply, in the context of certainty; there Mas-Colell (1977) showed
that the demand function identifies the preferences of the consumer, while
Chiappori, Ekeland, Kubler, and Polemarchakis (2004) extended the argu-
ment to show that aggregate demand or the equilibrium correspondence, as
endowments vary, also allow for identification. Importantly, the argument
for identification is local: if prices, in the case of demand, or endowments,
in the case of equilibrium, are restricted to an open neighbourhood, they
identify fundamentals in an associated neighbourhood. Evidently, the argu-
ments extend to economies under uncertainty, but with a complete system
of markets in elementary securities.

Identification becomes problematic, and more interesting, when the set
of observations is restricted. Under uncertainty, this arises when the asset
market is incomplete and the payoffs to investors are restricted to a subspace
of possible payoffs. Nevertheless, Green, Lau, and Polemarchakis (1979),
Dybvig and Polemarchakis (1981), Geanakoplos and Polemarchakis (1990)
and Kubler, Chiappori, Ekeland, and Polemarchakis (2002) demonstrated
that identification is possible as long as the utility function has an expected
utility representation with a state-independent cardinal utility index, and the
distribution of asset payoffs is known. Polemarchakis (1983) extended the
argument to the joint identification of tastes and beliefs; but, the argument
relied crucially on the presence of a risk-free asset and, more importantly,
did not allow uncertainty due to future endowments.
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It is interesting to note that the identification of preferences from the ex-
cess demand for commodities, that corresponds to the demand for elementary
securities in a complete asset market, is, in general, not possible, as shown in
Chiappori and Ekeland (2004) and Polemarchakis (1979). Here, restrictions
on preferences, additive separability and stationarity or state-independence,
allow for identification even in an asset market that is incomplete.

With a finite set of observation, Varian (1983) provided conditions nec-
essary and sufficient for portfolio choices to be generated by expected utility
maximisation with a known distribution of assets; which extends the char-
acterisation of Afriat (1967). For the case of complete financial markets,
Kubler, Selden, and Wei (2014) refined the argument to eliminate quantifiers
and obtain an operational characterisation. In the same vane, Echenique
and Saito (2015) extended the argument to case of subjective expected util-
ity where beliefs are unknown. Importantly, the identification that we derive
here is necessary for the convergence of preferences and beliefs constructed in
Varian (1983) or Echenique and Saito (2015) as the number of observations
increases.

A strand of literature in finance, inspired by Lucas (1978), most recently
Ross (2015) and earlier work by He and Leland (1993), Wang (1993), Dyb-
vig and Rogers (1997), Cuoco and Zapatero (2000) and Carr and Yu (2012)
focuses on supporting prices and observations for a single realisation of the
path of endowments or equivalently on equilibrium in an economy with a
representative investor. In particular, Ross (2015) provides a simple frame-
work where beliefs can be identified from asset prices. However, to obtain
his results he needs to assume that there is a single (representative) agent,
markets are complete and, importantly, the economy is stationary in levels
– that Borovicka, Hansen, and Scheinkman (2014) pointed out.

First, we consider a two-period version of the problem and give conditions
on fundamentals that ensure that beliefs can be identified; subsequently, we
indicate how the argument can be extended to a multi-period setting.

2 Identification

Dates are t = 0, 1, and, at each date-event, there is a single perishable good.
At date 0, assets, a = 1, . . . , A, are traded and they pay off at t = 1.

An individual has subjective beliefs over the joint distribution of asset-
payoffs and his endowments at t = 1 that, we assume, has finite support,
S.

Consumption at date 0 is x0, and it is xs at state of the world s = 1, . . . , S
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at date 1. The individual maximizes time-separable expected utility

U(x0, . . . , xs, . . .) = u(x0) + β
S∑
s=1

πsu(xs),

with the cardinal utility index, u : (0,∞) → R, concave and strictly mono-
tonically incresing.

Payoffs of an asset are ra = (ra,1, . . . , ra,s, . . . , ra,S)>, and payoffs of assets
at a state of the world are Rs = (r1,s, . . . , ra,s, . . . , rA,s). Holdings of assets
are y = (. . . , ya, . . .)

>.
At date 0, the endowment of the individual that, importantly, is observ-

able is e0, consumption is numéraire and prices of assets are q = (. . . , qa, . . .);
at state of the world s = 1, . . . , S, at date 1, consumption is, again, numéraire,
and the endowment is es; across states of the world, e = (e1, . . . , eS).

The optimisation problem of the individual is

maxx≥0,y u(x0) + β
∑S

s=1 πsu(xs)

s.t. x0 + qy ≤ e0,

xs −Rsy ≤ es, s = 1, ..., S.

The demand function for consumption and assets is (x0, y)(q, e0); it de-
fines the inverse demand function (q, e0)(x0, y), and the marginal rate of
substitution function

m(x0, y) = q(x0, y)

that, as a consequence, is observable.
Unobservable characteristics of an individual are the cardinal utility in-

dex, u : (0,∞) → R, the discount factor, β, and beliefs over the distribu-
tion of future endowments and and payoffs of assets, S ∈ N, (π,R, e) ∈
RS

+ × RAS × RS
+ with π = (. . . , πs, . . .) ∈ ∆S−1 a probability measure.

Given any (q̄, ē0) and a demand function (x0, y)(q, e0) on an open neigh-
bourhood of (q̄, ē0), suppose (x0, y)(·) solves the individual’s maximisation
problem, with (x0, . . . , xs, . . .)� 0.

Does the demand function identify the unobservable characteristics of the
individual? This is the question we address in this paper.

We are mainly concerned with the identification of beliefs. The following
result establishes a simple sufficient condition for the identification of the
cardinal utility index.

Proposition 1. If the cardinal utility index, u : (0,∞) → R, is analytic,
then, the demand function for consumption and assets identifies it.
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Proof. The demand for consumption and assets is defined by the the first
order conditions

βEπu
′(Rsy) = u′(x0)m(x0, y).

Successive differentiation with respect to consumption, x, yields 1

0 =
n∑
k=0

b(n, k)un+1−k(x0)m
k
x0

(x0, y), n = 1, . . . ,

with b(n, k) binomial coefficients.
Since b(n, 0) = 1, the system of equations identifies, sequentially,

un+1(x0)

u1(x0)
, n = 1, . . . .

If the cardinal utility index, u, is analytic, un+1(x̄0)/u
1(x̄0)), n = 1, . . .

identifies u up to an affine transformation.
Alternatively, u2(x0)/u

1(x0), over its domain of definition, also suffices
for identification.

With u(·) given, the unknown characteristics are ξ = (S, β, π,R, e). The
question of identification is whether, given some ξ that generates the observed
demand function, there is a different ξ̃ that would generate the same demand
for assets on the specified neighbourhood of prices and wealth.

While we do not provide a complete answer to this question, we can
find conditions on admissible beliefs and/or on cardinal utility that ensure
identification. First note that we must assume that there is a portfolio of
assets that has a positive payoff in all subsequent nodes. Probabilities of
nodes at which no asset pays cannot possibly be identified. Without loss of
generality, we take this to be a = 1; that is, we assume r1s > 0, s = 1, ..., S.

It turns out that the key to the identification of ξ lies in the assumption
that, for different states of the world, the functions u(es+Rsy) together with
the constant function2, are linearly independent for y ∈ RA. Recall that
functions, f1, ..., fn, are linearly independent on an open set B ⊂ Rm if there
are no α1, ..., αn so that

∑n
k=1 αkfk(x) = 0, for all x ∈ B. For the discussion

that follows it is useful to introduce the Wronskian matrix. For a family of
functions f : Rm → Rn, following the notation in Bostan and Dumas (2010),
define differential operators

∆k = (
∂

∂x1
)j1 . . . (

∂

∂xm
)jm , j1 + . . .+ jm ≤ k, k = 0, . . . , (n− 1);

1We use u′(·) and u1(·) interchangeably, and uk for derivatives ofhigher order.
2Note that this property is, at it should be, true for all possible affine transformations

of u(·).
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note that, for f : R → R, the operators are, simply, derivatives of or-
der k : ∆k = dkf/dxk. The (generalized) Wronskian matrix associated to
∆0, ...,∆n−1 is defined as

W =



∆0(f1) . . . ∆0(fi) . . . ∆0(fn)

...
...

...
...

...

∆k(f1) . . . ∆k(fi) . . . ∆k(fn)

...
...

...
...

...

∆n−1(f1) . . . ∆n−1(fi) . . . ∆n−1(fn)


;

Bostan and Dumas (2010) show that, if the functions f1, ..., fn are ana-
lytic, then, they and linearly independent if and only if the determinant of
at least one of the Wronsikians of f1, ..., fn is not identically equal to zero.

It is now possible to give necessary and sufficient conditions for identifi-
cation.

Theorem. Under the assumption that the cardinal utility index, u(·), is an-
alytic and that u(·) has non-vanishing derivatives of any order, the demand
function for consumption and assets identifies the unobservable character-
istics ξ if and only if, for any K ∈ N and any (es, Rs)

K
s=1 with (es, Rs) 6=

(es′ , Rs′) for all s, s′, the functions fs(y) = u(es + Rsy), s = 1, ..., K, along
with the constant function f0(y) = 1, are linearly independent.

Proof. To prove sufficiency suppose that, with the cardinal utility index u(·)
identified by Proposition 1, the characteristics ξ = (S, β, e1, R1, π1, . . . eS, RS,
πS) rationalize observed asset demand. Identification of beliefs is possible if
there are no other characteristics, ξ̃ = (S̃, β̃, ẽ1, R̃1, π̃1, . . . ẽS̃, R̃S̃, π̃S̃), that
rationalize the same demand.

Take K ≥ S to be the number of distinct (es, Rs) and (ẽs, R̃s), and collect
them in a vector (e1, R1, . . . eK , RK). Consider asset demand in a fictitious
problem of an investor with K states in the second period. The first order
condition with respect to the demand for any asset a can be written as

β

K∑
s=1

πsrasu
′(es +Rsy) = u′(x0)qa.

Since the functions f0, . . . , fK are linearly independent, there must exist ∆0,
. . . ,∆K−1 such that the resulting generalised Wronskian matrix is invertible.

6



Note that since the first column of the Wronskian, that is, the derivatives
of the constant function, are given by (1, 0, · · · , 0)>, the invertibility of the
Wronskian implies that there must be some asset a such that the matrix

W̃ =


∆0(ra1u

′(e1 +R1y)) . . . ∆0(raKu
′(eK +RKy))

...
...

...

∆K−1(ra1u
′(e1 +R1y)) . . . ∆K−1(raKu

′(eK +RKy))


is invertible. Successive differentiation of the first order conditions with re-
spect to this asset yields

β
K∑
s=1

πs∆n(rasu
′(es +Rsy)) = ∆n(u′(x0)qa), n = 0, . . . , k − 1.

Since W̃ is invertible there is a unique solution for π1, . . . , πK and β with∑
k πk = 1. But, if both the characteristics ξ and the characteristics ξ̃ gener-

ate the observed asset demand, there must be at least two distinct solutions
for π1, . . . , πK and β – one corresponding to ξ and the other one correspond-
ing to ξ̃. Therefore, there cannot be a second set of characteristics that
generates the same demand.

To prove necessity, note that linear dependence of f0, . . . , fK implies that
there exist α1, . . . , αK such that

∑
k αkraku

′(ek+Rky) = 0, for all a = 1, ..., A.
If S = K and observed asset demand is rationalized for some β and probabil-
ities π1, . . . , πS > 0 then, for any ε, the first order conditions can be written
as follows

−qa
β
u′(x0) +

S∑
s=1

(πs + εαs)rasu
′(es +Rsy) = 0, for all a = 1, . . . , A.

For sufficiently small ε > 0 we have that πs + εαs > 0 for all s and we can
define alternative probabilities π̃s = (πs + εαs)/(1 + ε

∑
k αk) and appropri-

ately adjusted β̃ = β(1 + ε
∑

k αk) that would rationalise the same demand
function.

In the Theorem, we require that for any distinct (es, Rs)
K
s=1 the func-

tions u(es +Rsy) and f0 are linearly dependent. If one poses restrictions on
possible (es, Rs) the Theorem obviously goes through if one requires linear
independence only for functions for which the es, Rs satisfy these restrictions.

The identification Theorem obviously raises the question whether there
are assumptions on fundamentals, either assumptions on utility or restrictions
on (es, Rs)

K
s=1 that guarantee independence as required.
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3 Assumptions on fundamentals

First, examples show that, even when the support of beliefs, (S,R, e), is
known, identification may not be possible. Note, that we are concerned with
the seemingly much more demanding case, where nothing is known about the
beliefs of the individual; nevertheless, it shall turn out that understanding
these simple examples provides the key to our general identification results.

1. Suppose there is a single risky asset, second period endowments are
zero, e = 0, and cardinal utility is logarithmic: u(x) = ln(x). A simple
computation shows that qy = (βe0)/(1 + β) : the individual invests a
fixed fraction of his wealth in the risky asset, and the demand for asset
is identical for all π; beliefs are not identified.

2. Suppose there is a single risk-free asset, there is uncertainty about
second period endowments, e 6= 0, and utility is CARA: it exhibits
constant absolute risk aversion, and u(x) = − exp(−x). Direct compu-
tation shows that the demand for the risk-free asset is

y =
1

1 + q

(
e0 − ln(q) + ln(β

S∑
s=1

πs exp(−es)

)
;

beliefs are not identified.

There are two obvious ways to solve the problem. One could make as-
sumptions on utility that rule out these cases; or, one could assume that
there are several assets available for trade; we shall consider both in detail.

It is useful to note that, with two risky assets, with log-utility, identifica-
tion might still be impossible.

3. Suppose there are two risky assets, there are no endowments, e = 0,
and u(x) = ln(x). Recall that ras is the payoff of asset a in state s. If,
for states s = 1, 2,

r11
r12

=
r21
r22

,

then r21/r11 = r22/r12, and the first order conditions that characterise
asset demand can be written as

q1
β
u′(x0) = (π1 + π2)

1

θ1 + θ2
r21
r11

+
S∑
s=3

πsr1su
′(xs),

q2
β
u′(x0) = (π1 + π2)

1

θ1
r11
r21

+ θ2
+

S∑
s=3

πsr2su
′(xs);

clearly, π1 and π2 cannot be identified separately.
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Motivated by this example and to simplify the exposition, we will from
now on focus on the case where a risk-free asset is available for trade. Un-
fortunately, the following example shows that identification might still be
impossible, case even if there is a risky and a risk-less asset.

4. Suppose there is a risk-free asset (asset 1) and a risky asset (asset 2).
Suppose e 6= 0, u(x) = − exp(−x) and

r21 = r22, e1 6= e2.

The first order conditions that characterise asset demand can be written
as

q1
β
u′(x0) =

S∑
s=1

exp(−(θ1 + θ2r2s))πs exp(−es),

q2
β
u′(x0) =

S∑
s=1

exp(−(θ1 + θ2r2s))r2sπs exp(−es);

beliefs, es and πs cannot be identified separately.

In fact, in the example, identification is impossible even if markets are
complete. As we mentioned earlier, existing results on the identification of
preferences from demand do not apply when only excess demand is observ-
able, which is the case here: since endowments are unknown, consumption is
not observable.

Building on these examples, we now consider two cases. First we assume
that there is both a risky and a risk-free asset available for trade and we give
conditions on admissible beliefs and cardinal utility that ensure identification.
We then consider the case where the is only a risk-free asset, and we give
conditions on cardinal utility.

We now present assumptions on fundamentals that guarantee that the
marginal utilities are linearly independent. First, assumptions on the asset
structure and, then, assumptions on the cardinal utility index.

3.1 A risky asset separates all uncertainty

In this subsection, we assume that there are two assets available for trade, a
risk-free asset (a= 1) and a risky asset (a = 2). It is without loss of generality
to focus on the case of a single risky asset. If there are several risky assets,
since we observe asset demand in a neighborhood, different portfolios of these

9



risky assets can be used to apply the following arguments and to identify
beliefs over the payoffs of all risky assets.

It is useful to first consider the situation where the risky asset defines all
uncertainty: that is, all admissible beliefs can be described as beliefs over
asset payoffs, and that there is a function from asset payoffs to individual
endowments3 In this case, the beliefs over the asset payoffs can be identified
without additional assumptions on cardinal utility.

We then relax this assumption, and merely require that the payoff of the
risky asset separates uncertainty: for all possible beliefs, Rs 6= Rs′ , if s 6= s′.
This assumption is strictly weaker since it could be the case that different
agents assign the same asset payoffs to a particular state but different con-
sumptions. Example 4 above implies that if the individual has CARA utility
identification is no longer possible. It turns out that ruling out CARA utility
(and a little more) ensures that the result is restored.

In what follows, and unless we indicate otherwise, we restrict attention to
cardinal utility indices that are analytic and have non-vanishing derivatives
of any order.

Proposition 2. Suppose there exist a risk-free asset, r1s = 1, for all s, and
asset 2 separates all uncertainty; that is, for all possible beliefs,

r2s 6= r2s′ for all s 6= s′.

The demand function for consumption and assets identifies the unobservable
characteristics (u, β, S, (π, e, R)) if one of the two following assumption holds:

1. There is some function f : R → R+, such that, for any possible indi-
vidual characteristics (S, β, π, e, R),

es = f(r2s), s = 1, ..., S.

2. The cardinal utility cannot be written as

u′(x) = s(x) exp(−αx), (1)

for some periodic function s(·) and some α > 0.

Proof. As in the proof of the the Theorem, suppose that characteristics ξ and
ξ̃ rationalize observed asset demand, take K ≥ S to be number of distinct

3The case of zero individual endowments is obviously a special case.
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(es, Rs) and (ẽs, R̃s), and collect them in a vector (e1, R1, . . . eK , RK). Sup-
pose the K functions u′(es + y1 + y2r2s), s = 1, ..., K are linearly dependent;
that is, there are α ∈ RK , α 6= 0, such that

K∑
s=1

αsu
′(es + y1 + y2r2s) = 0, for all y1, y2.

Repeated differentiation of this identity, n times with respect to y1 and k −
1− n times with respect to y2 gives the following system of k equations

K∑
s=1

rK−12s αsu
(K)(es + y1 + y2r2s) = 0,

K∑
s=1

rK−22s αsu
(K)(es + y1 + y2r2s) = 0,

...
K∑
s=1

αsu
(K)(es + y1 + y2r2s) = 0.

Since the Vandermonde matrix 1 r21 . . . rK−121
...

...
...

...
1 r2k . . . rK−12k


has full rank if r2s 6= r2s′ for all s, s′ there exist a solution for non-zero α if and
only if there are s, s′ with r2s = r2s′ . Therefore, condition 1 of Proposition2
ensures identification by construction.

Since under both beliefs the payoff of asset 2 separates uncertainty, r2s
can be identical across at most two states. But if for all s and s′ with
r2s = r2s′ we have that αsu

′(es + y1 + y2r2s) + αs′u
′(es′ + y1 + y2r2s′) 6= 0

then we again obtain a Vandermonde matrix and there cannot be an α 6= 0
with

∑K
s=1 αsu

′(es + y1 + y2r2s) = 0. Therefore there must be s and s′ with
r2 = r2s = r2s′ , and an α ∈ R2 such that α1u

′(es + y1 + y2r2) +α2u
′(es′ + y1 +

y2r2) = 0. But then, Theorem 1 in Laczkovich (1986) implies that u′ must
be of the form (1).

The result in Polemarchakis (1983) was Part 1 of this proposition, with
no future endowments, was
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3.2 Unrestricted beliefs

In the spirit of the previous result, one could ask if, in a framework with a
risky and a risk-free asset, we could make stronger assumptions on utility
that would allow us to drop the assumption that the risky asset separates all
uncertainty altogether.

We say that cardinal utility is finitely mean-periodic if there exist an S
and distinct ek > 0, k = 1, ..., K and non-zero α ∈ RS such that

K∑
k=1

αku
′(y + ek) = 0 for all y.

A classic result in Schwartz (1947) characterises all complex-valued, mean-
periodic functions; that is, functions that are continuous complex valued
solutions to the integral equation∫

f(y + e)dµ(e) = 0

for some non-zero measure with compact support, µ. Clearly ruling out all
mean-periodic functions is sufficient for our result but more than we need.
Moreover, the characterisation of all mean-periodic functions is not too in-
sightful.

With our definition, the following result follows immediately from the
identificationTheorem.

Proposition 3. If the cardinal utility index, u(·), is not finitely mean-periodic,
then, asset beliefs can be identified if there is a risk-free asset .

Note that, in addition to the risk-free asset, there could be risky assets
available for trade. Just considering the first order condition for the risk-free
asset identifies (e(s) + y2r2(s)), for all s, and, then, variations in y2 identify
r2(s) independently of e(s).

As Laczkovich (1986) (remark iii) points out, there is no simple character-
isation known for finitely mean-periodic functions. The negative exponential
function is one example, but not the only one. In fact, it is easy to see that
any real solution of a linear homogeneous differential equation with fixed
coefficients

α1u
′(x) + α2u

(2)(x) + ....+ αku
(k)(x) = 0

is finitely mean-periodic. However, this does not provide a full characterisa-
tion.

12



Remark 1. A simple sufficient condition for an analytic function not to be
mean-periodic is that the function satisfy an Inada condition: u′(c) → ∞,
as c → 0. If it was, then, there would exist e1 < e2 < . . . < eK and
α1, α2, . . . , αK , all different from 0, such that

∑
k αku

′(ek + y) = 0 for all y.
But, as y → −e1, u′(e1 + y) → ∞, while all other u(·) remain finite. There
cannot be a linear combination that stays equal to 0 and puts positive weight
on u′(e1 + y).

Remark 2. As we show in the appendix, if the cardinal utility index is a
polynomial, of degree n, there cannot exist distinct e1, . . . , ek, . . . , eK , with
K < n, such that

∑K
k=1 αku

′(y + ek) = 0, for all y. As a consequence,
identification is possible if 2S < n.

Remark 3. Similarly, let A be a finite dimensional family of cardinal utility
functions sufficiently rich in perturbations: if u′ =

∑∞
0 akx

k ∈ A, then
u′(x) =

∑n
0 a
′
kx

k +
∑∞

k+1 akx
k ∈ A, for a′n ∈ (an − ε, an + ε), and any finite

k. Then, for any e1, . . . , ek, . . . , eK , with K < n, for a generic u′ ∈ A, there
is no α ∈ RK , α 6= 0 such that

∑K
k=1 αku

′(y + ek) = 0, for all y.

For simplicity of exposition, let S = 2 and consider the function4 F :
SS−1 ×A defined by

F (θ1, θ2, . . . , ak, . . .) = (θ1, θ2)W = (θ1, θ2)AB,

where

A =

 a1 2a2 3a3 4a4 . . .

2a2 6a3 12a4 . . . . . .

 ,

and

B =



1 1

(e1 + x) (e2 + x)

(e1 + x)2 (e2 + x)2

...
...


;

evidently, W = AB is the Wronskian matrix.
By a direct computation,

Da1,a2,a3F =

 θ1 2θ2 + 2θ1e1 θ26e1 + 3θ11e
2
1

θ1 2θ2 + 2θ1e2 θ26e1 + 3θ11e
2
2

 .

4Sk denotes the sphere of dimension k.
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Since (θ1, θ2) ∈ S1, while e1 6= e2, the matrix Da1,a2,a3F has full row
rank, which extends to the matrix DF. It follows that F t 0, and, by the
transversal density Theorem, Fu : S1 t 0, for u in an subset of A of full
Lebesgue measure. Then, since dimS1 < 2, there is no (θ1, θ2) such that
F (θ1, θ2, . . . , ak, . . .) = (θ1, θ2)AB = 0.

4 Extensions

In conclusion, we indicate extensions of the results to the case in which only
aggregate demand is observable or, even more generally, only the equilibrium
correspondence as the distribution of endowments varies; and, lastly, to a
dynamic setting.

4.1 Aggregation and equilibrium

For a finite collection of individuals, i, with distribution of initial wealth ~e0 =
(. . . , ei0, . . . ) and characteristics ~ξ i = (ui, βi, ei, πi, ri), aggregate demand for
consumption an assets is (xa0, y

a)(q,~e0) =
∑

i(x
i
0, y

i)(q, ei0)
5.

The argument in Chiappori, Ekeland, Kubler, and Polemarchakis (2004),
in an abstract context that applies here, is that the aggregate demand iden-
tifies individual demand as long as the latter satisfies a rank condition on
wealth effects following in Lewbel (1991):

∂2zij
∂(ei0)

2 6= 0,

j, k, l,∈ {0, . . . , a, . . .}.
∂
∂ei0

(ln
∂2zik
∂(ei0)

2 ) 6= ∂
∂ei0

(ln
∂2zil
∂(ei0)

2 ),

Indeed, the argument proceeds by observing, first, that aggregate demand
identifies the wealth effects of individuals: (∂zij/∂e

i
0) = (∂zaj /∂(ei0)); and,

subsequently, by demonstrating that the rank condition allows the demands
of individuals to be identified from higher order derivatives with respect to
wealth of the identity ∂zik/∂qj − ∂zij/∂qk = zk(∂z

i
j/∂e

i
0) − zj(∂z

i
j/∂e

i
0 that

follows from the Slutzky decomposition of the derivatives of demand into
income and substitution effects and the symmetry of the latter.

An alternative formulation allows for equilibrium. Assets are productive
(trees), and the, ra,s are output, wealth or consumption; and, individuals are
endowed with assets, f i0. Equilibrium prices, then, satisfy

∑
i y

i(q, ei0, f
i
0) =

5To facilitate exposition, alternatively, we write zi = (z0, . . . , za, . . .) = (xi
0, . . . , y

i
a, . . .),

and similarly, for za.
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∑
i f

i
0, and the set equilibria of equilibria as endowments vary is W =

{(q,
−−−−→
(ei0, f

i
0) :

∑
i y

i(q, ei0, f
i
0) =

∑
i f

i
0}. Under smoothness assumptions, the

equilibrium set has a differentiable manifold structure, and it identifies aggre-
gate demand locally; the previous argument identifies beliefs and preferences
of individuals.

4.2 Multiple periods

We assume that an agent chooses consumption and assets over T +1 periods,
t = 0, 1, . . . , T . To simplify the setup we assume throughout that every period
the agent’s beliefs over endowments, prices and asset-payoffs has at most S
points in its support. With this we can describe uncertainty by a finite event
tree Σ; the root node is 0, and Σ̃ is the tree excluding the root node. Each
node, st ∈ Σ̃ can be identified by a history of shocks st = (s1, ..., st), with
st ∈ S = {1, ..., S} for all t; we write st

′ � st if st
′

is a successor of st . For
what follows the S nodes at t = 1 will be of particular interest – in a slight
abuse of notation we denote them by the realisation of the shock, 1, ..., S.

An individual has beliefs over nodes, π(st), for st ∈ Σ̃, that are consistent

in the sense that for all st ∈ Σ̃∑
st�st−1

π(st) = π(st−1), with π(0) = 1. (2)

The individual maximises a time-separable subjective expected utility

U(x) = u(x(0)) +
T∑
t=1

βt
∑
st∈Σ

π(st)u(x(st)), x ≥ 0,

where as before β is the discount factor, and u : (0,∞)→ R satisfies standard
assumptions.

One-period assets, a = 1, . . . , A, are traded in periods t = 0, . . . (T −
1). Payoffs of an asset traded at st−1 are ra(s

t) and payoffs across assets
are R(st) = (r1(s

t), . . . , ra(s
t), . . . , rA(st)). Holdings of assets are y(st) =

(. . . , ya(s
t), . . .)>.

To use our insights from the two period problem, it is useful to write the
agent’s problem recursively. Define

vsT (y) = u(e(sT ) +R(St)y) and dsT = e(sT ),

and recursively for up to t = 1,
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vst(y) = maxy′ u(e(st) +R(st)y − q(st)y′) + β
∑

st+1�st
π(st+1)
π(st)

vst+1(y′)

s.t. R(st+1)y′ + dst+1 ≥ 0 st+1 � st,

and

dst = max
y′

e(st) + q(st)y′ s.t. R(st+1)y′ + dst+1 ≥ 0 st+1 � st.

While in a two period setting it is natural to assume that only asset de-
mand in the first period is observable, in this multiple period setting one
can consider various different cases. In the simplest case, one observes how
demand at all nodes varies as asset prices vary at all nodes. We focus on the
in a sense most demanding case and assume that one only observes how the
demand for asset changes in the first period as prices and incomes change in
the first period. We assume that all other prices are held fixed. We denote
by y0(q0, e0) the demand for assets in period 0 as only prices in period 0 vary.
We assume that this demand function is observed in an open neighbourhood
of prices and endowments for which the resulting consumption is strictly
positive at all nodes, that is, none of the inequality constraints on consump-
tion are binding. Consistent with our earlier notation we define vs(y), for
s = 1, ..., S, to be the possible value functions at t = 1. Since we assume
that we observe asset demand in a neighbourhood where consumption at
all nodes is strictly positive, by the analytic version of the implicit function
theorem, Fritzsche and Grauert (2002), Theorem 7.6., the value functions vs
must be analytic on this neighbourhood whenever u(·) is analytic. Therefore,
Proposition 1 above directly implies that the cardinal utility index can be
identified whenever u(·) is analytic.

In order to find necessary conditions for identification one therefore needs
to make additional assumption on fundamentals or on admissible beliefs (sim-
ilar to the assumptions we made for Proposition 4 above). It is easy to see
that without further assumptions identification is never possible: if along two
paths prices, asset-payoffs and non-marketable endowments are identical it
is impossible to identify their probabilities even if the agent believes that his
marketable endowments are distributed differently over time.

It is useful to write fundamentals as ξ = (ξ1, ..., ξS) ∈ Ξ where each
ξs = (π(σ), e(σ), R(σ))σ∈Σ̃,σ�s. With this we can write vs(y) = v(y|ξs) for
some state invariant function v(.). We denote Ξ to be the set of possible
fundamentals along a path, that is, each ξs ∈ Ξ Restrictions on beliefs mean
that we impose that each ξs ∈ Ξ̂ ⊂ Ξ.

The Theorem, then, translates to the following result:

16



Proposition 4. The demand function for consumption and assets identifies
the unobservable characteristics within a set Ξ̂ if for any 2S distinct ξs ∈ Ξ̂
the functions fs(y) = v(y|ξs)), along with the constant function f0(y) = 1,
are linearly independent for all s = 1, . . . , 2S.

Without strong assumptions on Ξ̂, it is difficult to find assumptions on
fundamentals that ensure that the sufficient condition in Proposition 4 hold.
However, given our analysis in Section 3 above, there are two simple cases
for which this is the case. They are summarised in the following result.

Proposition 5. Suppose cardinal utility is analytic and has non-vanishing
derivatives of any order. Under either of the following to assumptions on
admissible beliefs identification is possible.

1. The payoff of risky assets separates all uncertainty in the following
strong sense: For any ξ, ξ′ ∈ Ξ̂ if ξ 6= ξ′ then R(ξ) 6= R(ξ′)

2. The cardinal utility index, u(·) satisfies an Inada condition and different

beliefs imply different implicit borrowing limits: For any ξ, ξ′ ∈ Ξ̂ we
have d(ξ) 6= d(ξ′).

The proof follows directly from our discussion above.
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Appendix: Polynomials and power series

If the utility function is polynomial,

u(x) = a0 + a1x+ . . . , alx
l + . . . anxn,

then 6

u(l)(x) = all! + . . . ak
k!

(k − l)!
xk−l + . . . an

n!

(n− l)!
xn−l, l = 0, . . . n,

and, in particular,
un(x) = ann!.

6Here, we use u(k) for uk.
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Consider the matrix

An =



a1 . . . (1 + k)ak . . . . . . . . . . . . nan

...
...

...
...

...
...

...
...

all! . . . al+k
(l+k)!
k!

. . . an
n!

(n−l)!x
n−l 0 . . . 0

...
...

...
...

...
...

...
...

ann! . . . 0 . . . 0 0 . . . 0


,

the submatrix

AS,n =


an−S+1(n− S + 1)! . . . an

n!
(S−1)!x

(S−1) 0 . . .

...
...

...
...

...

ann! . . . 0 0 . . .

 ,

and the matrix

BS
n =



. . . 1 . . .

...
...

...

. . . (es + x)k . . .

...
...

...

. . . (es + x)(S−1) . . .

...
...

...

. . . (es + x)n−1 . . .



.

The Wronskian of the family of functions {u(n−S+1)(es + x)}, that is, of
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the derivatives of order (n− S + 1) of the functions {u(es + x)}, is

W(n−S+1) = AS,nB
S
n =


an−S+1(n− S + 1)! . . . an

n!
(S−1)!x

(S−1)

...
...

...

ann! . . . 0





. . . 1 . . .

...
...

...

. . . (es + x)k . . .

...
...

...

. . . (es + x)(S−1) . . .


,

a square matrix of dimension S × S, that is invertible: it is the product of
two square matrices, of which the first term is upper-diagonal, with non-
vanishing terms on the diagonal, ann! = u(n)(x) 6= 0, while the second is the
Vandermonde matrix of the random variables {(es + x)}.

Since linear dependence of the functions {u(1)(es+x)} would imply linear
dependence of the functions {u(n−S+1)(es + x)}.

For power series, it is instructive to consider the case of CARA cardinal
utility,

u(x) = −e−x = −1 + x+ . . .+ (−1)(k+1) 1

k!
xk + . . . (−1)(n+1) 1

n!
xn, . . . ;

In order to simplify the exposition, we restrict attention to the case S = 2.
The polynomial approximation of u(x) of order n is

un(x) = −1 + x+ . . .+ (−1)(k+1) 1

k!
xk + . . . (−1)(n+1) 1

n!
xn;

evidently,

u(1)n (x) = 1− x+ . . .+ (−1)(k+1) 1

(k − 1)!
x(k−1) + . . . (−1)(n+1) 1

(n− 1)!
x(n−1),

and

u(2)n (x) = −1+x+ . . .+(−1)(k+1) 1

(k − 2)!
x(k−2) + . . . (−1)(n+1) 1

(n− 2)!
x(n−2).

It follows that, if
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A2,n =

 1 −1 . . . (−1)k+1 1
(k−1)! . . . . . . (−1)(n+1) 1

(n−1)!

−1 1 . . . (−1)k+2 1
(k−1)! . . . (−1)n+1 1

(n−2)! 0

 ,

and

B2
n =



1 1

(e1 + x) (e2 + x)

...
...

(e1 + x)k (e2 + x)k

...
...

(e1 + x)(n−1) (e2 + x)(n−1)



,

the Wronskian of the family of functions {u(n−S+1)(es + x)}, that is, of the
derivatives of order (n− S + 1) of the functions {u(es + x)}, is

W2,n = A2
nB

2
n =

 1 −1 . . . . . . (−1)(n+1) 1
(n−1)!

−1 1 . . . (−1)n+1 1
(n−2)! 0





1 1

(e1 + x) (e2 + x)

...
...

(e1 + x)k (e2 + x)k

...
...

(e1 + x)(n−1) (e2 + x)(n−1)



.

For finite n, the rank ofW2,n = A2
nB

2
n is not clear – evidently, the functions

are independent as can be ascertained by considering the Wronskian of the
derivatives of order n − 1. But, as n → ∞, the matrix A2

n converges to a
matrix of row rank 1, which implies that the Wronskian is singular; this
accounts for the failure of identification of CARA cardinal utility.
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Alternatively, for CRRA cardinal utility, and, in particular,

u(x) = ln x,

the power series expansion at x̄ = 1 is

u(x) = ln x = 0+(x−1)+. . .+(−1)(k−1)
1

k
(x−1)k+. . . (−1)(n−1)

1

n
(x−1)n, . . . ;

In order to simplify the exposition, we restrict attention to the case S = 2.
The polynomial approximation of u(x) of order n is

un(x) = 0 + (x− 1) + . . .+ (−1)(k−1)
1

k
(x− 1)k + . . . (−1)(n−1)

1

n
(x− 1)n;

evidently,

u(1)n (x) = 1− x+ . . .+ (−1)k(x− 1)k + . . .+ (−1)(n−1)x(n−1),

and

u(2)n (x) = −1+x+ . . .+(−1)(k+1)(k+1)(x−1)k+ . . .+(−1)(n−1)(n−1)x(n−2).

It follows that

A2
n =

 1 −1 . . . (−1)k . . . . . . (−1)(n−1)

−1 2 . . . (−1)k+1(k + 1) . . . (−1)n−1 0

 ,

B2
n =



1 1

(e1 + x− 1) (e2 + x− 1)

...
...

(e1 + x− 1)k (e2 + x− 1)k

...
...

(e1 + x− 1)(n−1) (e2 + x− 1)(n−1)



,
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and the Wronskian of the family of functions {u(n−S+1)(es + x)} is

W2,n = A2
nB

2
n =

 1 −1 . . . . . . (−1)(n+1) 1
(n−1)!

−1 2 . . . (−1)n+1 1
(n−2)! 0





1 1

(e1 + x− 1) (e2 + x− 1)

...
...

(e1 + x− 1)k (e2 + x− 1)k

...
...

(e1 + x− 1)(n−1) (e2 + x− 1)(n−1)



.

For all n, and as n → ∞, the matrix A2
n remains of rank 2; this is in

contrast to the CARA case.

24


	creta01-Herakles Polemarchakis.pdf
	Introduction
	Identification
	Assumptions on fundamentals
	A risky asset separates all uncertainty
	Unrestricted beliefs

	Extensions
	Aggregation and equilibrium
	Multiple periods



