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Abstract. Inspired by Herbert Simon’s notion of nearly decomposable systems, researchers have 
examined modularity as a powerful approach to manage technological change in product innovation. 
We articulate this approach as the hierarchy-of-parts architecture and explain how it emphasizes 
decomposition of a design into loosely coupled parts and subsequent aggregation of these into an 
industrial product. To realize the scale benefits of modularity, firms successively freeze design 
specifications before production and therefore only allow limited windows of functionality design 
and redesign. This makes it difficult to take advantage of the increased speed by which digitized 
products can be developed and modified.  
 
To address this problem, we draw on Christopher Alexander’s notion of design patterns to introduce 
a complementary approach to manage technological change that is resilient to digital technology. 
We articulate this approach as the network-of-patterns architecture and explain how it emphasizes 
generalization of ideas into patterns and subsequent specialization of patterns for different design 
purposes. In response to the increased digitization of industrial products, we demonstrate the value 
of complementing hierarchy-of-parts thinking with network-of-patterns thinking through a case 
study of infotainment architecture at an automaker.  
 
As a result, we contribute to the literature on managing products in the digital age: we highlight the 
properties of digital technology that increase the speed by which digitized products can be 
redesigned; we offer the notion of architectural frames and propose hierarchy-of-parts and network-
of-patterns as frames to support innovation of digitized products; and, we outline an agenda for 
future research that reconsiders the work of Simon and Alexander as well as their followers to 
address key challenges in innovating digitized products. 
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1. INTRODUCTION 

There is hardly any watchmaker receiving more attention in the scholarly literature than Hora. 

Serving as key actor in Herbert Simon’s (1962) renowned parable, Hora, unlike his colleague Tempus, 

had designed subassemblies of the many parts of his watches. In turn, he aggregated these subassemblies 

into larger subassemblies, forming a hierarchical system. Organizing “his work such that there was a one-

to-one mapping between functions and sub-assemblies” (Garud et al. 2003, p.2), Hora radically decreased 

the design complexity, meaning that he, when interrupted by new customers, only lost a fraction of the 

assembly work compared to Tempus. This story and the idea of a product decomposed into a hierarchy of 

stable subassemblies have served as inspiration for a substantive literature in technology and innovation 

management (Baldwin and Clark 2000, Clark 1985, Garud and Kumaraswamy 1995, Garud et al. 2003, 

Henderson and Clark 1990). This literature argues that modularity offers a powerful architecture for 

achieving economies of scale by drawing on the wealth of external production capabilities available on a 

global market (Langlois 2007, Langlois and Robertson 1992, Sturgeon 2002).  

The parable of Hora is primarily about creating a smart design for production. As Hora created 

subassemblies consisting of ten elements each, he anticipated customers would want different watches 

based on similar components. Following Hora’s modular design practice, firms may split a product “into 

a set of components with low variety and high reusability, and another set with high variety and low 

reusability” (Baldwin and Woodard 2009, p. 25). In order to reap the scale benefits of modularity, the 

consequential architecture is then frozen for suitable periods of time (Baldwin and Clark 2000, Iansiti 

1995). In this way, modularity has served as a powerful way to address technological change in aircrafts, 

automobiles, consumer electronics, household appliances, personal computers, software, test instruments, 

and power tools (Clark 1985, Garud and Kumaraswamy 1995, Sanchez and Mahoney 1996).  

However, the increasing digitization of productsi affords extended windows of redesign that 

challenge the idea of stable sub-assemblies in managing technological change. First, products become 

programmable as they embed digital technology and design of new functionality can therefore be 
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integrated at any time, even after production (Kallinikos et al. 2013,Yoo et al. 2010, Zittrain 2006). 

Second, economics of scale in production is less relevant as anything that is encoded into a digital format 

can be reproduced instantly without virtually any marginal cost (Benkler 2006, Shapiro and Varian 1999). 

As products become increasingly digitized, firms therefore need to consider new software-based 

approaches to introduce, or improve, functionality in their products that parallel the traditional practice of 

replacing manufactured parts (Tiwana et al. 2010).  

As we will argue in this paper, Hora’s decomposition into hierarchies of physical components, 

which we refer to as the hierarchy-of-parts frame, represents only one form of architectural thinking. A 

complementary option devotes attention to designers’ problem-solving practices to exploit the speed of 

change made possible by digital technology. The dominant hierarchy-of-parts frame is inspired by 

Simon’s principle of near decomposability and invites designers to structure products into loosely coupled 

parts (Baldwin and Clark 2000, Murmann and Frenken 2006, Wilson 1969). The complementary frame, 

which we refer to as network-of-patterns, is inspired by the adoption of Christopher Alexander’s pattern 

theory in software engineering (Alexander 1979, Alexander 1999, Alexander et al. 1977) and invites 

firms to structure products into loosely coupled patterns. A pattern “describes a problem that occurs over 

and over again in our environment, and then describes the core of the solution to that problem, in such a 

way that you can use this solution a million times over, without doing it the same way twice” (Alexander 

et al. 1977, p. x). Because patterns are generic solutions to recurring problems that stay at an arm’s length 

distance to specific product implementations, their use in architectural thinking support reuse of ideas and 

functionality re-design. Hence, patterns resonate well with properties of digital technology, they make 

design relevant over the entire product lifecycle, and, they facilitate scale innovation rather than scale 

economics.  

Our paper makes a number of contributions. First, we highlight the properties that increase the 

speed by which digitized products can be redesigned. Second, we contribute two architectural frames for 

thinking about, representing and eventually producing an industrial product, and we argue that product-
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developing firms can leverage the complementarity between the frames to help effectively manage 

technological change in the digital age. We demonstrate the value of the two frames through an empirical 

analysis of an automaker’s attempts to introduce a new architecture for infotainment system design in 

response to technological change. Lastly, we outline a future research agenda that reconsiders the work of 

Simon and Alexander as well as their followers to address key challenges in innovating digitized 

products. 

2. MODULARITY AND TECHNOLOGICAL CHANGE 

Management cognition is challenged when product-developing firms face technological change 

(Kaplan and Tripsas 2008, Tripsas and Gavetti 2000). Based on experience, managers develop mental 

representations of markets, products, and technologies that are often imperfect (Kaplan and Tripsas 2008, 

March and Olson 1976, Weick 1979). Over time, these representations become taken-for-granted and 

expressed in a dominant design (Anderson and Tushman 1990), often embedded in technical 

architectures, standards, and day-to-day routines, that influence a product-developing firm’s ability to 

recognize the threats and opportunities created by new technology. 

As the digitization of products presents new opportunities for innovation in long-established 

industries such as automotive, telecom, media, consumer electronics, and publishing (Hanseth and 

Lyytinen 2010, Henfridsson and Bygstad 2013, Lee and Berente 2012, Lucas and Goh 2009, Selander et 

al. 2013, Tilson et al. 2010), it challenges us to rethink architectures (Yoo et al. 2010) and the extent to 

which established approaches represent barriers to unleash digital opportunities (cf. Tripsas and Gavetti 

2000). Product architecture cannot be separated from industrial dynamics and economic organization 

(Langlois 2007, Yoo et al. 2010), which suggests that examining its cognitive basis and assumptions can 

be valuable for understanding the challenges that product-developing firms face in the digital era.  

Modularity has almost a canonical status as a template for managing technological change in the 

product architecture literature. We therefore conceive of modularity as an important frame for thinking 
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about and representing a product’s architecture in product-developing firmsii. Modularity serves as a 

technological frame-of-reference (Davidson 2002, Kaplan and Tripsas 2008, Orlikowski and Gash 1994) 

that fosters a “built-up repertoire of tacit knowledge” (Gioia 1986, p. 56) for managing technological 

change when the key source of value creation is economics of scale. We refer to this dominating 

architectural frame as the hierarchy-of-parts frameiii and in the following we detail its benefits in 

responding to technological change as well as its limits in leveraging the opportunities afforded by digital 

technology. 

2.1 The Hierarchy-of-Parts Frame 

We define the hierarchy-of-parts frame as a schema that views design processes as acts of 

decomposition and aggregation to achieve architectures that preserve and enhance a hierarchy of loosely 

coupled parts. Table 1 summarizes the characteristics that distinguish this frame. 

<Table 1 about here> 

Simon (1962) observed that a complex system is “one made up of a large number of parts that 

interact in a non-simple way” (p. 468) and suggested that decomposing systems into parts reduces 

complexity and increases design flexibility (cf. Garud et al. 2003, Henderson and Clark 1990, Murmann 

and Frenken 2006, Schilling 2000; Simon 2002). Decomposition increases design flexibility and 

scalability by dividing a product into a hierarchy of parts which can serve as a blueprint for materializing 

its components. The parts can later be assembled into a ready-made product through aggregation. The 

goal of decomposition is to increase independence among parts. Such independence relies on interfaces 

intended to resolve potential conflicts among a complex product’s interacting parts (Sanchez 1995, Ulrich 

1995).  

Following Baldwin and Clark (2000), interfaces are predefined procedures for exchanging 

necessary information about the functional interactions between components. Interfaces encapsulate, 

through information hiding, a component’s implementation details from other components (Parnas 1972, 
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Schilling 2000). As a result, interfaces can be designed to reduce the implications of changes in individual 

components for the overall design and at the same time enable concurrent design of individual 

components (Baldwin and Clark 2000, Murmann and Frenken 2006). 

The hierarchy-of-parts frame assumes a part-whole view of a product, where each part is associated 

with the whole through many-to-one relationships in design hierarchies (Clark 1985). A component on 

one level is part of precisely one component on the level above and consists of several components on the 

level below. As an example, a navigation system might be decomposed into user interface, GPS receiver, 

data storage, and a computing platform. In turn, user interface might be further decomposed into display, 

speakers, and controls. Each component normally performs one primary function and a design therefore 

reflects a hierarchy of physical parts as well as a hierarchy of functions. 

2.2 Hierarchy-of-parts as Response to Technological Change 

As a template for managing technological change in product innovation (Garud et al. 2003), the 

benefits of the hierarchy-of-parts frame can be located to two distinct episodesiv in the product life cycle: 

design and production. In the design episode where “a complete description of the structural elements of a 

particular artifact” (Baldwin and Clark 2000, p.42) is created, modularity provides design flexibility. We 

refer to design flexibility as the degree to which a firm is unconstrained by previous design decisions in 

making new ones. Compared to an integral architecture that “includes a complex (no one-to-one) 

mapping from functional elements to physical components and/or coupled interfaces between 

components” (Ulrich 1995, p. 422), a modular architecture facilitates redesign of the product by 

implementing one-to-one mapping between functions and physical components (Brusoni et al. 2001, 

Ulrich 1995). Although just nearly decomposable in practice (Simon 2002), the product-developing firm 

can then substitute parts of the design to improve performance and increase fit with customer needs 

(Garud and Kumaraswamy 1995). Splitting the modular system into a set of components that remain a 

stable platform, and another set that allows variation, this adaptability can be reinforced (Baldwin and 
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Woodard 2009). Firms in capital-intensive industries such as commercial vehicles and white goods often 

develop clusters of components, so-called product platforms, from which derivate products are generated 

to achieve customer differentiation (Muffatto and Roveda 2000, Robertson and Ulrich 1998). 

In the production episode, modularity enables scale economics, i.e., it enables firms to decrease the 

unit costs as the volume of materials increases (Chandler 1990). Product decomposition presents 

significant opportunity to accomplish scale advantages on the component level by drawing on external 

manufacturing capabilities (Langlois 2007). Specialized suppliers are in a much better position than the 

product-developing firm to offer low unit prices as their fixed costs can be distributed across a higher 

volume (Sturgeon 2002). Even though market segmentation matters for integration decisions (Argyres 

and Bigelow 2010), decomposition of products provides the basis for vertical disintegration (Christensen 

2006) and allows firms to benefit “from the external capabilities of the entire economy” (Langlois 2003, 

p. 375). As a result, the 1990s witnessed the emergence of modular clusters (Baldwin and Clark 2000) 

and modular production networks (Sturgeon 2002) that Garud and Kumaraswamy (1995) succinctly refer 

to as an economics of substitution. Economics of substitution increases the speed by which the product 

can be changed, although design decisions will be constrained by the availability of new components 

among suppliers. 

As noted above, successful combination of design flexibility and scale economics requires that the 

design and production episodes be kept apart. Since mass production needs to be nearly algorithmic with 

well-synchronized stages for assembling the product and enabling high-speed throughput (Chandler 

1977), this puts high demands on the specificity of the design. It leaves little room for ambiguity about 

the structure of the product and underlines why the design needs to be successively frozen each time it is 

released for production (Baldwin and Clark 2000, Iansiti 1995). While this separation of the design and 

production episodes is essential for reaping the benefits from external economics of scale, it squarely 

brackets the time period during which the design is open to redesign in response to emergent customer 

needs. Applying platform thinking (Baldwin and Woodard 2009, Cusumano and Gawer 2002, Gawer 
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2009), as in the case of Apple’s iOS (Ghazawneh and Henfridsson 2013), the window can be kept open 

over an extended amount of time for particular parts of the product.  

3. New Opportunities in the Digital Age 

Some research recognize the unique opportunities afforded by digital technology by distinguishing 

between a hierarchy of control and a hierarchy of inclusion as two structures of complex products 

(Murmann and Frenken 2006, Wilson 1969). Since unforeseen interactions between components may not 

be accommodated through “simple” modularity, scholars of system integration (Brusoni et al. 2001, 

Hobday 1998, Prencipe 2000) consider complex forms of modularity with hierarchies of control to enable 

coordination of operations across multiple distributed components. The system integration perspective 

recognizes digital technology’s integration capabilities and provides a useful lens for understanding its 

capacity to process complex real-time information for control purposes. Working in this tradition, Lee and 

Berente (2012) recognize how the integration of digital controls in products such as automotive emission 

control systems involve a generative aspect, where their re-programmability tends to spawn new 

applications that were unforeseen. In what follows, we pick up on this observation by considering more 

closely how digital technology introduces new and powerful forms of design flexibility and scalability.  

Design Flexibility. Digital technology supports design flexibility across the product lifecycle. 

While the hierarchy-of-parts frame positions functionality attribution as an activity that precedes 

production of the physical product (Baldwin and Clark 2000, Ulrich 1995), digital technology radically 

relaxes the requirement of successive freezing of the product design. Tangible components get 

functionality instantiated at the time of production, but digital components may modify subsidiary 

functionality, add supplemental functionality, or introduce entirely new functionality over the product 

lifecycle. This form of unbounded design flexibility can be traced to the programmability of digitized 

artifacts and enables more timely responses to a changing environment. 
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As Yoo et al. (2010) point out, computers use a processing unit for executing digitally encoded 

instructions, and a storage unit for holding these instructions and the data manipulated by them. Traced to 

Von Neumann and Turing, the stored-program concept has worked as the basis for the modern computer 

since the late 40s (Langlois 2002). The power of the stored-program concept is that it separates functional 

logic from the physical hardware that executes it. This means that the same physical artifact can perform 

new functions if equipped with new instructions or programs. As tangible artifacts embed digital 

technology, they therefore become increasingly programmable, enabling artifacts to perform new 

functions after their production (Kallinikos et al. 2013, Yoo et al. 2010, Zittrain 2006). 

The degree of functionality change through reprogramming may vary, largely determined by the 

governance framework used by its proprietor. At one end of the continuum, in a control system with 

specific functions to monitor or regulate the behavior of another system (cf. Lee and Berente, 2012), 

reprogramming may amount to changing subsidiary functions. For instance, programmable power-train 

control units (PTCU) in a car allow modification of design parameters such as fuel mixture, ignition 

timing, and idle speed of a combustion engine. New parameter configurations give the engine new 

behaviors by attributing new subsidiary functions to the engine while its primary function remains 

untouched. At the other end of the continuum, an open-ended system such as a smart phone may allow 

entirely new software to be installed, making it a multi-functional artifact supporting calls, picture-taking, 

gaming, reading, movie-watching, and so on. Its users essentially determine what should be regarded as 

the artifact’s primary functions (Yoo 2010). 

Design Scalability: Digital technology also supports the scaling of new designs. While the 

hierarchy-of-parts frame seeks to achieve external scale economics (Sturgeon 2002), digital technology is 

characterized by swift reproducibility, making it inexpensive to scale a new design. We refer to design 

scalability as the degree to which a firm can efficiently translate new design ideas into volume products.  

As underlined by economists of information, an information good such as software or contents is 

associated with high fixed costs but negligible marginal costs (Shapiro and Varian 1999). This is because 
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anything that is digitized, i.e., encoded into a digital format, can be reproduced without virtually any 

marginal cost (Benkler 2006). In contrast, tangible artifacts are typically dependent on significant 

investment in production resources to avoid diminishing returns (Arthur 1996). Mass production plants 

secure that the cost per unit drops when increasing the volume of processed materials (Chandler 1990).  

Comparing software and tangible products from the perspective of the product lifecycle, the 

distinction between design and production is largely meaningless in the former case, while it is 

fundamental in the latter. In fact, the reproducibility feature of software implies the design becomes the 

product, that is, once a detailed design is in place, there is virtually no time lag before the product can be 

marketed, sold, and distributed to users. Instead of large investments in production technology, all that is 

required for realizing the software design are software tools such as compilers and operating systems 

(Yoo et al. 2010). This makes it comparably inexpensive to scale ideas and it enables democratization in 

innovation (von Hippel 2005, Baldwin and von Hippel 2011). 

In an idealized case, reproducibility is endless. In practice, however, the degree of reproducibility 

varies. At one end of the continuum, we find simple updates of software and contents, which can be 

distributed to all clients in a network of usage. For instance, the modern car increasingly relies on 

software updates, or exchanges, to deal with software errors and avoid expensive return calls. Today, this 

is typically done at authorized workshops, but the future promises such updates online (de Boer et al. 

2005). At the other end of the continuum, entirely new functionality can be added to digitized products by 

distributing new applications. For instance, many leading automakers, most notably GM and Ford, have 

announced making so-called “appstores” available, from which car owners can download new automaker 

and third-party developed functionality to their vehicle.  

In summary then, the hierarchy-of-parts frame supports design flexibility and scale economics as 

powerful responses to technological change. However, exploitation of these benefits requires the design 

of a product to be frozen before production and therefore only allows limited windows of functionality 

design and redesign. The consequential time lag in innovation makes it challenging for firms to take 
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advantage of two important properties of digital technology that increase the speed by which digitized 

products can be redesigned: digital technology affords (a) unbounded design flexibility across the product 

lifecycle, and (b) design scalability at virtually no marginal cost. As a result, the increased digitization 

challenges the dominant position of modularity and the hierarchy-of-parts frame in design and 

management of industrial products. 

4. PATTERNS AND TECHNOLOGICAL CHANGE 

Next, we draw on the adoption of Alexander’s pattern theory in software engineering research to 

suggest a complementary architectural frame for managing technological change. While a significant 

body of technology and innovation management research points to the similarities in Simonian and 

Alexandrian thinking (Baldwin 2008, Langlois 2006, Murmann and Frenken 2006, Schilling 2000, Ulrich 

and Eppinger 2003, von Hippel 1990), the increasing digitization of products (Kallinikos et al. 2013; Lee 

and Berente 2012, Lindgren et al. 2008, Yoo 2010) calls for consideration of their differences. To 

substantiate this claim, it is necessary to turn the attention to Alexander’s thinking on design patterns 

(Alexander 1979, 1999, Alexander et al. 1977), something that is rarely done within technology and 

innovation management research. Such focused attention can take heart from the fact that Alexander’s 

design pattern theory already has had profound impact on the software engineering communityv without 

devaluing Simon’s legacy (Alexander 1999, Gabriel 1996, Gamma et al. 1995).  

4.1 Alexander’s Patterns Theory 

At the heart of Alexander’s theory is the idea that “the actual substance of which the environment is 

made consists of patterns rather than things” (Grabow 1983, p. 11). A pattern describes the properties of a 

generic solution to a recurring problem (Alexander 1979, Gabriel 1996, Mehaffy 2007). It allows reuse of 

ideas without concern for implementation details. In this regard, a well-formulated pattern serves as a 

resource for a product-developing firm confronted with a problem. It affords a general solution yet offers 

the possibility of specializing the solution to the unique conditions of the current problem setting.  
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For instance, to position (i.e., determine the geographical location of) an object is a recurring 

problem in many settings. Different techniques exist (such as celestial navigation, dead reckoning, and 

satellite-positioning), each serving as a pattern that provides a high-level description of how to locate an 

object. Consider satellite positioning as an example. It can be viewed as a pattern offering a solution for 

how to determine the position of an object on earth by measuring its distance to at least four different 

satellites in orbit. This pattern can be reused in many different settings, where it is engaged together with 

other patterns to help design well-adapted location-based products and services.  

Pattern theory’s focus on recombination (cf. Arthur 2009, Schumpeter 1934) is shared with 

modularity and the hierarchy-of-parts frame. However, rather than recombining parts based on 

substitution (Garud and Kumaraswamy 1995), pattern theory assumes recombination of problem-solving 

procedures based on abstractions (Gamma et al. 1995). As Alexander (1979, p.84) observe, “it is very 

puzzling to realize that the ‘elements’, which seem like elementary building blocks, keep varying, and are 

different every time that they occur.” Patterns abstract from this variation and focuses on the general 

properties of a solution shared across many settings. Hence, the utility of patterns depends on the product-

developing firm’s ability to establish generic solution properties based on prior experience from different 

settings within a particular design domain. Generic solution properties can be traced to “the implicit, 

language-like system of rules that determines their structure” (Grabow 1983, p. 45) and a pattern 

languagevi explicates such rules within a particular design domain that a designer, or a group of designers, 

can follow (Alexander 1979). In designing new solutions to particular settings, product-developing firms 

may combine and adapt existing patterns into new sub-patterns that reflect the particulars of the 

considered problem. Pattern theory facilitates thinking about abstract and generic solutions to recurring 

problems and how such solutions can be specialized in indefinite ways to solve specific problems.  
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4.2 The Network-of-Patterns Frame 

The network-of-patterns frame views design processes as acts of generalization and specialization 

to achieve an architecture that preserves and enhances a network of loosely coupled solution patterns. The 

strengths of the network structure are that it increases reusability of patterns and affords multiple relations 

between patterns. Table 2 summarizes the characteristics that distinguish this frame. 

<Table 2 about here> 

The frame directs attention to generalization and subsequent specialization as a means for 

managing technological change (Mathiassen et al. 2000). We refer to generalization as a cognitive 

process that increases design flexibility and scalability by deriving generic concepts, or patterns, that 

abstract from irrelevant information related to its implementation. To accomplish functional fit with 

specific settings (Alexander 1964), patterns are contextualized through specialization, i.e., the process of 

creating a pattern by combining and adapting existing patterns to create a new solution for a recurring 

problem. When using patterns to support a new solution (i.e., specializing), the solution (i.e., specialized 

pattern) inherits important properties from generic patterns in addition to its own unique properties. 

Hence, inheritance is the process by which a specialized pattern receives some or all of the properties 

from another pattern (Shalloway and Trott 2005). For instance, a smartphone-enabled application for 

locating tourist attractions in a city inherits properties from the positioning pattern among other patterns, 

but adds specific properties valuable for navigating the city as a place. This approach allows the designer 

of the tourist attraction application to focus entirely on the particular features important for city tourists 

without having to worry about positioning.  

Rather than focusing on hierarchies of parts, the network-of-patterns frame focuses on networks of 

patterns. As epitomized in Alexander’s (1966) article “A City is not a Tree”, seemingly unrecognized in 

the technology and innovation literature, patterns on lower and higher levels in the Alexandrian frame are 

related in many-to-many relationships in network architectures (Alexander et al. 1977, Mehaffy 2007). 

Rather than deriving a hierarchic structure of parts defining how a hybrid engine can substitute a standard 
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combustion engine, the Alexandrian frame draws attention to how a general solution for hybridization of 

powertrains can be applied and reused to solve specific problems in different contexts. Sticking to this 

example, the network-of-patterns frame captures the shared functional roots of a sport utility vehicle 

(such as Lexus RS) and a luxury sedan (such as Lexus GS), applying the same concept for hybridization. 

In other words, the structural representation in the Alexandrian frame is a network in which patterns can 

inherit properties from multiple patterns on the level above, and patterns on higher levels support 

description of several patterns on the level below. 

Patterns and pattern languages work as generic resources that product-developing firms can enact 

to manage technological change. However, to benefit from these resources, they must translate patterns 

into actual products. Accordingly, designers can create (many) specific instances of any particular pattern 

as part of the digital and physical components that constitute a given product. Although instantiation, i.e., 

the process that generates specific digital and physical components from a pattern, of digital components 

(say software for positioning) requires the pattern to be expressed in executable code, such patterns may 

be instantiated again and again without virtually any marginal cost (Benkler 2006). In contrast, 

instantiation of physical components (say sensors for measuring car speed) requires investments in 

production resources and involves economics of scale consideration (Chandler 1990). 

4.3 Network-of-Patterns as Response to Technological Change 

Although modifications and supplements (such as adopting the notion of platform) to the hierarchy-

of-parts frame can increase its resilience to digitized products, we argue that complementing it with the 

network-of-patterns frame makes it considerably easier for managers to take advantage of the new forms 

of design flexibility and scalability induced by digital technology. Innovations in general-purpose 

programming languages have over the past decades allowed software designers to increasingly focus on 

details of the problem at hand rather than on the idiosyncrasies of the supporting computer technology 

(Bergin and Gibson 1996). Although this development has allowed software designers to become 
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increasingly productive, patterns represent complementary opportunities by offering domain specific, 

high-level language constructs that represent solutions within a particular problem setting.  

By having access to a positioning pattern, a designer of car navigation technology achieves two 

advantages. First, the pattern enables reuse of software code in the design of new specific applications, 

thereby curbing the cost of repetitive design. Second, since the positioning code is used across many 

different mobile services, investments can be made in ensuring that the code performs according to 

specification, thereby increasing the reliability of the application. Hence, taking a network-of-patterns 

frame perspective, product-developing firms can achieve flexibility by developing languages of patterns 

specified by many designers (inside and outside the firm) within a particular area, thereby propelling the 

space of possible digital solutions readily available at any point in time. The resulting pattern languages 

introduce new opportunities for each individual designer. Subsequent instantiations of specialized patterns 

serve as a critical way to quickly respond to emerging and varying customer needs in volatile 

environments. In this way, pattern languages leverage the unbounded flexibility of digital technology by 

offering a schema for maintaining functional fit between a product and its use environment and by 

encouraging product-developing firms to develop architectures that support “living structures” (Alexander 

1999, Zittrain 2006). 

Moreover, since the marginal cost of reproducing software is close to zero, there are fewer 

incentives for product-developing firms to treat digital components as standardized parts. Hence, taking a 

network-of-patterns frame perspective, product-developing firms can leverage design scalability by 

sharing pattern languages with many designers, even outside their organizational boundaries. Such a 

move affords the opportunity to specializing and instantiating new applications or services for particular 

groups of users (cf. von Hippel 2005). This, in turn, accommodates variations in needs amongst the 

product-developing firm’s customers. For instance, Apple’s flourishing developer program for the iPhone 

and iPad has stimulated many third-party application developers, leading in their customer segment, to 

port, or reproduce, their solution patterns for Apple’s devices (cf. Boudreau, 2012, Eaton et al. 2011). 
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While Apple maintains control over which instantiated patterns (applications) end up on its digitized 

product, the company wishes their customers to have access to a wide variety of functionality. 

Accordingly, they offer open access to their platform’s development environment (pattern language) 

(Ghazawneh and Henfridsson 2013). This approach leverages digital technology’s scalability of ideas by 

increasing the value proposition of Apple’s products for consumers as well as leading developers within 

the industry. As such, it provides a powerful approach to the management of technological change.  

5. METHODS 

5.1 Case Context and Selection 

To assess the proposition that the network-of-patterns frame adds value as a complement to the 

hierarchy-of-parts frame, we draw on a longitudinal study of an automaker’s management of 

technological change in the area of infotainmentvii systems (Svahn 2012). The single case study design 

can be motivated by the need of rich and detailed data about the architectural thinking of a firm that 

develops and manufactures digitized products, something that can difficult to obtain if focusing on 

multiple cases.  

The automaker is CarCorp, a small, international automaker with a devoted customer base in 

Europe and the US. In 2007, when this study started, CarCorp sold around 125,000 cars across five 

product lines and employed approximately 4,300 people. For the purpose of this paper, we zoomed in on 

a service-oriented architecture for infotainment system design called Media-Oriented Systems Transport 

(MOST). A key element of MOST is the function block framework, essentially serving as a language for 

conceptualizing and describing functionality independently from hardware. This language affords 

automakers the opportunity to develop harmonized infotainment solutions that share basic resources and 

functions. 

Infotainment is a suitable empirical context for this research as it represents a product area in the 

automotive industry that is (a) going through radical digital transformation (Henfridsson and Yoo 2013), 
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(b) challenged by non-automotive competitors operating at a higher clockspeed of change (Fine 1998), 

and (c) facing architectural challenges to integrate data from various, heterogeneous source systems (Yoo 

et al. 2010). The specific case of the MOST architecture is particularly interesting because it carries rich 

evidence of the transition to complement hierarchy-of-patterns as the traditional architectural frame 

within the automotive industry with pattern-oriented architectural thinking. 

5.2 Data Collection 

The presented data was collected between 2007 and 2009. As summarized in Table 3, it comprised 

multiple data sources, including interviews, participant observation, and archival data. We organized and 

recorded this data in a single research database using the Atlas.ti software for qualitative analysis. First, 

we conducted 31 semi-structured interviews (µ=70 minutes, σ= 27 minutes) with a total of 23 

respondents. All interviews were tape-recorded and transcribed, producing 36 hours of recorded material 

amounting to approximately 342,000 words. Our respondents came primarily from CarCorp (15/23), but 

also from consultancy organizations engaged in architecture-related projects at CarCorp (8/20). Using a 

snowball approach (Knoke and Yang 2008), we interviewed CarCorp employees of various rank, 

including engineers, departmental managers, and directors, and from a variety of functions, including 

advanced engineering, software and control, and infotainment. 

Participant observation was another valuable data source. Over the most intensive period 

(September 2007 to March 2008) we spent more than 30 days at CarCorp, acting as embedded researchers 

in CarCorp’s different infotainment projects. Over the entire data collection period, we also took part in 

various meetings, including project meetings, workshops, steering committee meetings, and supplier 

meetings. All in all, we participated in 47 meetings, summing up to 142 hours (µ = 181 minutes, σ=101 

minutes). It was generally problematic to record these meetings, so we took extensive field notes for 

inclusion in our research database. In addition, we conducted recurring debriefings after interviews and 

meetings. 
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Finally, we had largely unlimited access to CarCorp’s internal project documentation. In particular, 

we made use of different specifications of the automaker’s first MOST-based infotainment system. Apart 

from being boundary objects for informal discussion with CarCorp practitioners in situ, these 

specifications provided a solid foundation for reconstructing the details of how architectural framing 

evolved. We selected 29 specifications related to bus architecture, system architecture, MOST function 

catalog, function specifications, and function partitioning to be included in the case database.  

<Table 3 about here> 

5.3 Data Analysis  

Our data analysis was driven by the theoretical proposition that the network-of-patterns frame adds 

value as a complement to the prevailing hierarchy-of-parts frame in explaining technological change. We 

therefore approached the case findings with the ambition to sensitize the concepts deriving from our 

conceptual basis. As to avoid imposing our lens without sensitivity to the story that the data tell, however, 

we initiated our analysis by using open coding to discover concepts and their properties and dimensions 

in the data material (Charmaz 2006, Strauss and Corbin 1998). The first and third authors conducted the 

coding process together, which yielded an initial set of approximately two hundred descriptive concepts. 

To reduce overlap, we reviewed and compared all concepts by eliminating duplicates and merging closely 

related ones. In the comparison process, we formulated preliminary definitions to capture concept 

properties and dimensions. This eventually resulted in a list of 128 mutually exclusive concepts.  

We then applied key concepts of our conceptual basis for making sense of the coded material. This 

process was conducted in an iterative fashion where we frequently revisited Alexander’s work and the 

literature on product architecture and modularity. The MOST-specifications provided strong basis for 

identifying the use of patterns at CarCorp, but this step in the data analysis also involved constructing the 

dense texture of relationships between these patterns and the automaker’s challenges to respond to 

technological change.  
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6. ARCHITECTURAL FRAMES AT CARCORP 

At the turn of the century, CarCorp engineers could look back on a period of exceptional growth of 

infotainment functionality. Moving beyond a simple radio, rapid digitalization had opened up for in-car 

phones, navigation, telematics, TV, CD, and rear-seat entertainment. As a result, the complexity had 

increased dramatically. In particular, the couplings between components skyrocketed as speakers, 

displays, controls, and various sensors were shared over a range of infotainment functions to (a) support a 

coherent end-user experience (e.g., coordinated speaker output from navigation and the telephone) and (b) 

leverage economy of scale (e.g., single speaker system for several functions). Among CarCorp’s 

infotainment engineers, there was an increasing recognition that the encapsulation of software in 

hardware components was at the heart of their problems. While the use of software afforded suppliers the 

opportunity to quickly change functionality at the component level, this advantage did not play out at the 

system level as the specificity of interfaces effectively prevented flexible redeployment of functionality. 

In 2000, CarCorp decided to adopt MOST as a response to the experienced problems. CarCorp 

engineers needed an architecture in which software-enabled functionality was less coupled to particular 

components. Such decoupling between hardware and software was expected to facilitate change at the 

system-level and, at the same time, increase the degrees of freedom when decomposing the system. An 

architect reflected upon the early impressions of the MOST architecture: 

I think we all realized – at least the people involved in [architecting] infotainment – that this 
was the future. We needed to focus on the system, solving problems at the system level. We 
could not remain in the hands of suppliers, making stand-alone components. Instead, we had 
to make these suppliers part of a larger whole. […] I think, at the heart of MOST, there is a 
kind of system level thinking that is not component-oriented. Instead, it centers on the 
structure of logical elements or functionality. (Senior system architect)  

There was consensus among engineers that this new architectural thinking was a necessary 

complement to the existing hierarchy-of-parts thinking to cope with the increasing complexity and fast-

changing functional requirements of infotainment systems. Although the electronics division had 

undergone significant growth in the aftermath of the past years’ radical digitalization, CarCorp engineers 



   

22 

 

were concerned about the way the firm’s manufacturing heritage negatively affected the clockspeed by 

which they could introduce new functionality. The temporal differences in product design between the 

automotive industry on one hand, and the consumer electronics, information technology, and telecom 

industries on the other hand, came to dominate architectural thinking at CarCorp’s advanced engineering 

unit:  

The providers are pushing new functionality, updates, and so on, into the market space in a 
rapid pace. The car industry is a bit schizophrenic. We want all these new features in our 
cars, but our development cycle is so slow. Once we design and implement a new function, it 
is not attractive on the market anymore. (Infotainment product manager)  

The new competitive landscape made CarCorp engineers and managers reflect upon current 

innovation practices, especially in terms of what made automakers slow in introducing new functionality. 

They traced this difficulty to the timing of requirements determination:  

The problem is that the automotive industry designs and constructs their cars over three or 
four years. We nail down requirements early on, and then it is immensely difficult to make 
change requests along the way. On the consumer device side, time-to-market is totally 
different. If they miss a deadline with six months, then that model is commercially dead. 
(Senior consultant) 

We are struggling with a reality where we cannot update functionality because of our 
processes. Therefore, there is no other way than telling the customer that this is what we 
have, nothing more. We can schedule an update for the next generation of systems, but it is a 
very long process integrating a new component into a car. (Infotainment product manager)  

Early freezing of functionality was a natural ingredient of CarCorp’s hierarchy-of-parts thinking, 

allowing for division of labor and effective sourcing. However, the flip side was significant inflexibility. 

Once the functional purpose of a component was defined through its interface, it was virtually impossible 

to modify it. CarCorp engineers generally traced this inflexibility to the product architecture:  

If we could get away from a hardware solution, we might address the problem of long lead 
times for introducing new functionality in the car…. The hardware should remain the same 
over time, while the software modules should enable the adaptation needed. … We need 
architectures that can enable new functionality in a flexible way. (Infotainment R&D 
manager) 

6.1 A Wave of New Architectural Thinkingviii 
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MOST paved the way for a wave of new architectural thinking. In particular, it offered a new 

approach to conceptualizing functional patterns independently from hardware components. Traditionally, 

CarCorp engineers specified functions in relation to a component where an interface specification defined 

the relationship between components and a functional requirement. In contrast, the MOST architecture 

centered on description of available functional patterns without any a priori assumptions on how 

functions eventually would be deployed in a particular car infotainment system. Documented in the so-

called “MOST Function Catalog”, this description essentially served as a pattern language. First, the 

catalog described how patterns were to be instantiated in software, including all the details on how to 

instantiate a particular function. Second, function-partitioning specifications described how different 

patterns related to each other and how general functions could be combined to form more specific 

functionality. In 2004, after ten revisions over a two-year period, CarCorp’s function catalog consisted of 

280 general patterns (see Table 4 for an excerpt), frequently reused in more specific patterns. 

The most general patterns in the catalog served as templates for orchestration of shared system 

resources (e.g., see Table 4 pattern IDs 0x001-0x111). They made the ground rules for how to make use 

of speakers, displays, button, and many other critical assets, referred to as “sinks” and “sources”. Other 

patterns – resolving positioning (0xC54), phone book search (0xD42), voice recognition feedback 

(0xE87), or vehicle speed (0xC46) – had more specific functionality. They could, in turn, be inherited by 

other patterns to make up complete solutions for end-user functions within navigation, phone, or 

telematics. Since the MOST architecture did not enforce any particular deployment strategy, this network 

of patterns could be reconfigured without affecting the hardware setup. Accordingly, as new functional 

requirements emerged for a subsystem, MOST offered a common pattern language for developing 

functionality to specific physical infotainment components.  

<Table 4 about here> 

The MOST architecture offered generalized patterns that largely remained relevant across 

generations of infotainment products. In other words, MOST supported reuse of patterns as engineering 
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teams worked on different subsystems with similar problems. Reflecting a network-of-patterns frame, the 

MOST architecture afforded a seemingly unambiguous way to create, structure, and maintain the 

functional patterns that defined the infotainment system and its various components over time. In this 

way, system architects turned into platform designers and platform users.  

6.2 Tensions between Architectural Frames 

Despite initial optimism, CarCorp’s adoption of MOST turned out to be rather painful, as the new 

network-of-patterns frame was introduced into an organization that for decades had practiced architectural 

thinking shaped by the hierarchy-of-parts frame. Just like the product structures were hierarchical with 

horizontal independency between components, the organization design was hierarchical with clear 

division of labor. To control such design hierarchies, CarCorp followed a strictly linear innovation 

process, reflecting a waterfall model of product development. Accordingly, requirements were gradually 

broken down alongside the design hierarchy. Business objectives, general system topics, and overall 

functional properties were managed by CarCorp, while the design of components and detailed 

functionality was assigned to highly autonomous suppliers, operating on lower levels of the hierarchy. As 

witnessed by a consultant deeply involved as system engineer in developing CarCorp’s MOST 

architecture, this traditional hierarchy-of-parts thinking did not change easily:  

They thought the traditional model would work, where each [supplier] had responsibility for 
his own function, embedded in his own component. […] Down the road, they saw the flip 
side. It didn’t work since the whole system – end-to-end – was so incredibly distributed. 
(Senior consultant) 

CarCorp had invested considerable efforts in generalizing patterns, trying to build a powerful 

infotainment platform where functional patterns were consistently reused by more specific patterns. At 

the time of deployment, when patterns were allocated to physical components, tensions between the two 

architectural frames became clear: functions and components did not match anymore. General patterns, 

inherited by many specific patterns, were instantiated where it made best sense from an economic or 

complexity perspective. As a result, a given function, such as navigation, was distributed across several 



   

25 

 

different components. This had significant implications for suppliers, contracted to design and produce 

components, not software. Relying on the existing legal practices at CarCorp, these suppliers were 

formally made liable to functionality that was distributed across a range of other components, outside 

their immediate control. 

Neither suppliers nor manufacturers were comfortable with this situation. Without dedicated 

software suppliers, taking full responsibility for component-spanning functions, innovation would most 

likely slow down. CarCorp saw no other option than bridging the gap between suppliers and themselves 

by specifying not only interfaces between components but also the general patterns to be widely reused 

across the system. This transition of responsibility increased the automakers’ stakes in functional design 

dramatically:  

You are taking a [new] responsibility as a manufacturer, when specifying this stuff. It 
becomes… I mean, they [suppliers] cannot even do anything! When I think about it, it’s not 
them rejecting responsibility; it’s us taking it from them. Yes, that’s what it is. We are telling 
them that “the only thing you’re about to do is to support this [our solution]… Earlier, when 
things were more component-oriented, they had an opinion of their own on things, they had 
tested it – possibly with other manufacturers – and knew what was good and what was bad. 
With this approach [MOST] we more or less lost such feedback. (Project manager) 

Clearly, these problems were grounded in an emerging and fundamental mismatch between the 

existing organizational structures and the MOST’s approach to conceptualize software-enabled 

functionality. Taking the network-of-patterns frame seriously, CarCorp’s engineers and managers had to 

increasingly background the physical hardware. At the same time, they remained organized to match the 

hardware structure of the system. 

6.3 Leveraging Network-of-Patterns Thinking 

Knowing that this mismatch could not be easily resolved, the automaker initiated two different 

measures to smooth the implementation of a MOST-based infotainment solution. First, they found that 

leveraging network-of-patterns thinking required reorganizing the workforce at a local level. Realizing 
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that hardware components were no longer at the core of architectural thinking, managers started to 

structure the infotainment group to enable system level control and general pattern development: 

Originally, it was a component-oriented group. They were expected to work with functional 
specifications as well. Later on, this didn’t work out, so they invited some people working 
with functions only. They needed more and more such people and, eventually they were a 
group of their own. Probably 10-12 [persons], maybe even more. Most of them were 
consultants since it was running so fast, and we wanted it implemented. We underestimated 
the efforts significantly. (Project manager) 

Rather than obliterating the hierarchical structure, the manufacturer rebalanced the workforce, with 

old roles essentially remaining the same, but the center of design moved upwards in the waterfall model, 

from the component level to the system level. 

Second, as designers reinforced the network-of-patterns frame, they had to break with the strictly 

linear model of innovation associated with component-based modularity. The new architectural practices 

pushed new forms of collaboration and new relationships – some temporary and some more permanent – 

that were not supported by the traditional hierarchy. Moreover, as CarCorp’s design focus shifted, from 

specific solutions (guiding decomposition) to general solutions (guiding specialization), it was necessary 

to adopt an iterative approach to innovation. The traditional development processes stated few iterations, 

each resulting in the production of a pre-series car, but the new way of designing infotainment systems 

called for endless series of iterations. Although management formally approved the new emphasis on 

patterns thinking, solutions to these challenges emerged bottom-up from designers’ daily need to make 

progress. When proposed patterns were ambiguous to suppliers, CarCorp designers initiated workshops 

with relevant stakeholders. When suppliers failed to reuse patterns due to various misconceptions, 

designers built extensive system-level test environments to identify and solve problems in collaboration 

with suppliers. When progress was too slow, designers increased iterations dramatically to boost learning 

from constant interplay between generalizations and specializations. Sometimes, the clockspeed of 

iterations exceeded one software release per week, a stark contrast to the traditional development process 

with only a handful of releases for an entire 3-4 year car project. 
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Struggling to combine the hierarchy-of-parts and the network-of-patterns frames, engineers and 

managers gradually found a reasonably stable way forward. On one hand, the hierarchy-of-parts frame 

remained. Specific functional patterns were defined and used to guide decomposition of infotainment 

systems, eventually sourced to various suppliers following existing principles. On the other hand, 

designers engaged in generalization and specialization of infotainment systems with suppliers. These 

iterations were performed in a fluid structure of more or less temporary, cross-organizational design 

teams. Relations and arenas for collaboration were established and destroyed according to project needs. 

Together these informal teams and processes made up a network-based structure of innovation, 

augmented to the formal hierarchy.  

To help balance the two ways of organizing, CarCorp tried to locate specific patterns characterized 

by particularly high pace of change to just a few components. As demonstrated by CarCorp’s user 

interface guidelines, this strategy was expected to give a malleable infotainment system that could be 

effectively changed, without involving tensions between different suppliers:  

The infotainment system is a user interactive and user intensive (application) with 
continuous changes in the user interface, but with core functionality that in some degree is 
defined as stable. Therefore it is a good idea to split the core functionality from the user 
interface. (MOST system architecture specification) 

However, splitting the more durable core functionality from specific user interface patterns 

reinforced the need for a shared approach to generalization. A scenario where navigation, telematics, and 

media player had different user interface logics, would eventually confuse end-users. Therefore, as 

described in CarCorp’s architectural specification, all designers had to adopt the same strategy when 

applying generalization to their respective functionality: 

In many cases there exist design issues that do not map onto a single component, neither 
physical nor logical. These issues are more general in nature and must be addressed and 
expressed in form of strategies that must be followed by all designers involved in the design 
of the infotainment system family. (MOST system architecture specification) 

In retrospect, the MOST architecture helped develop powerful and flexible infotainment systems, 

but they were technically complex, expensive, and in 2008 they had not yet delivered expected novelty. 
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However, despite a massive range of teething problems, the MOST architecture survived and became a 

first-hand choice for many automakers. Over the coming years, standard practices emerged for how to 

deploy functionality to physical components. These standard practices allowed automakers and suppliers 

to identify and advance their respective roles in innovation. It also restored the basis for exercising scale 

production. While this can be viewed as a return to modularity, it can just as well be portrayed as a 

breakthrough for network-of-patterns thinking in the automotive industry. Today navigation, telematics, 

and media playback are described, modeled, and manifested as networks of interacting functional patterns 

rather than hierarchies of nearly decomposable parts. Since the first car was introduced based on the 

MOST architecture in 2001, the technology has been increasingly accepted as a reliable and profitable 

solution for in-car infotainment. In 2012, MOST was integrated in over 115 vehicle models, provided by 

16 automakers worldwide. This makes MOST a significant basis for the use of pattern languages in the 

ongoing digitalization of one the most profound industries in the world. 

7. DISCUSSION 

New technologies arise from the combination of existing technologies (Arthur 2009, Schumpeter 

1934). While such combination is powered by forward-looking visions and a desire to accomplish new 

goals, it is also characterized by its legacy – the genesis of a particular technology largely defines how it 

can be reused for new purposes. The legacy simply makes some directions of progression “much more 

compelling of attention than others” and often “advance seems to follow advance in a way that appears 

almost inevitable” (Nelson and Winter 1982). The legacy largely shapes our thinking about technology 

and its management (Kaplan and Tripsas 2008, Tripsas and Gavetti 2000). Hence, as product-developing 

organizations engage in architectural thinking, rigid templates may emerge for how to manage the 

complexity of innovation in the midst of technological change. In this regard, architectures constitute a 

link between historical achievements and future potentialities. An architecture is a strategic tool that, 

properly orchestrated, can be used to gradually reinforce sound ideas in a series of “structure-preserving 
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and structure-enhancing transformations” (Alexander 1999, p.79). In other words, architecture is an 

instrument for path creation, but, at the same time, a shackle of path dependency. Whether product-

developing firms will be able to transform innovation practices and leverage the opportunities of digital 

technology depend, to a significant extent, on their capability to fertilize new architectural perspectives 

that resonate with the opportunities afforded by digital technology.  

CarCorp adopted network-of-patterns thinking in the appropriation of MOST. The new architecture 

was founded on the idea of developing a language of functional patterns for how to solve different 

problems in the context of infotainment. These patterns opened up for functions to be designed 

independently from the physical realization of the system. Drawing on this capability, designers engaged 

in generalization of the system, resulting in a whole range of shared general patterns that could be 

inherited by specific applications. This investment paid off through specialization, when functions such as 

navigation, telematics, and media playback could be designed by reusing the same general solutions for 

volume control or positioning.  

At the same time, the organization as a whole viewed MOST from a hierarchy-of-parts perspective. 

Fiber optics offered an exceptionally simple interface. In fact, the same, standardized interface could be 

applied to all the different parts constituting the system. With such a clean and simple template for how to 

build the physical structure of an infotainment system, CarCorp saw a great opportunity to reinforce 

modularity. Therefore, the physical infotainment system continued to be decomposed into a wide range of 

components, each expected to enable a well-defined piece of functionality. This would not just preserve 

the existing hierarchy of engineers, managers and suppliers, but would also allow them to aggregate the 

system aggressively to differentiate the product portfolio and launch a range of new, attractive offers. 

Trying to exercise both perspectives, CarCorp uncovered a strong tension between the two 

architectural frames at the point when patterns were instantiated and deployed to physical parts. While 

hierarchy-of-parts thinking prescribed functional decomposition to provide nearly independent parts, 

network-of-patterns thinking had generated numerous shared patterns that, when instantiated, increased 
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coupling dramatically. The clash between architectural frames became obvious, when suppliers realized 

their components were not functionally independent, but deeply intertwined with other components, 

outside their control. In some sense, they lost their creative leeway as CarCorp strived for general 

functionality. As a result, this tension pushed them to adopt a defensive strategy, largely leaving for 

CarCorp to define how to improve navigation, telematics, and other infotainment functions over time. 

Validating its new infotainment solution, CarCorp could establish that it resulted in much needed and 

appreciated harmonization, but little new specific end-user functionality. Network-of-patterns thinking 

had offered the automaker new opportunities, but to the price of a crashed innovation model. Unless 

resolving this issue through appropriate mixtures of different approaches to work design and 

collaboration, CarCorp would not be able to release the potential in a continuous interplay between 

hierarchy-of-parts and network-of-pattern thinking. 
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Drawing on these insights, this research contributes to the literature on management of 

technological innovations. As a first contribution, we have highlighted how the properties of digital 

technology increase the clockspeed by which digitized products can be redesigned. Within the technology 

and innovation management literature, these properties have typically been masked by the separation 

between design and production implicated in the product lifecycle of tangible artifacts (cf. Baldwin and 

Clark 2000). While programmability allows for design flexibility through functionality change of the 

digitized product (Yoo et al. 2010, Zittrain 2006) and reproducibility enables design scalability through 

instant reproduction of software and content (Benkler 2006, Shapiro and Varian 1999), seminal works 

maintain that functionality is both attributed and fixed to physical components, and manifested in the 

design specification serving as the basis for production (Baldwin and Clark 2000, Brusoni et al. 2001, 

Ulrich 1995). There is little doubt that the emergence of digitized products motivates a modification of 

this view. Our research extends the technology and innovation management literature (Baldwin and Clark 

2000, Garud et al. 2003, Schilling 2000, Ulrich 1995) by focusing on the particular challenges and 

opportunities related to digitized products.  

As a second contribution, our research introduces the notion of architectural frames, and proposes 

two complementary frames for managing technological change in product innovation. Our view on 

architectural frames draws on traditional notions of modularity from the technology of innovation 

management literature inspired by Simon’s notion of nearly decomposable systems and on 

complementary approaches to complexity inspired by the adoption of Alexander’s patterns theory in the 

software engineering literature. The hierarchy-of-parts frame emphasizes decomposition of products into 

parts and the network-of-patterns frame focuses on generalization of solution patterns across contexts and 

implementations (Table 3). Moreover, we posit that both frames are needed since they represent 

complementary ways to think about and manage digitized product architectures: the hierarchy-of-parts 

frame supports the economics of scale (Chandler 1990, Langlois 2007, Sturgeon 2002) needed for the 
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physical elements of the product, while the network-of-patterns frame helps building architectures that 

leverage the design flexibility and scalability of its digital elements.  

The technology and innovation management literature offers modularity as an effective template to 

manage technological change when production follows design and consumption follows production. 

However, when these stages of the product lifecycle intermingle due to digitization, this frame is 

insufficient in its value creation legacy in economics of scale. For instance, when Baldwin and Clark 

(2000, p. 49) state that an artifact “only comes into existence when the design is converted into the real 

artifact,” they assume that a product is a bounded physical thing and the design is a blueprint for 

something to be produced in almost an algorithmic fashion to maximize throughput (Chandler 1977). 

Since production is so important, the window for functionality redesign therefore becomes narrow, 

usually limited to when a new product line is established rather than on a continuous basis. Thinking 

about product components as patterns instead of parts provides a cognitive frame for unleashing 

properties of digital technology, which is independent of production in its traditional sense. Patterns 

redirect attention from aggregation and interfaces (which connect mass-produced parts) to specialization 

and inheritance (which supports the creation of new functionality). Inheritance makes use of existing 

solution patterns and offers the possibility to specialize the solution (oftentimes together with other 

solutions) to the unique conditions of the product-developing firm’s current problem setting.  

The proposed architectural frames perspective also contributes to the system integration and 

complex products literature by providing a perspective that goes beyond viewing digital technology as 

controls (Brusoni et al. 2001, Hobday 1998, Lee and Berente 2012, Murmann and Frenken 2006, 

Prencipe 2000). The network-of-patterns frame may indeed be used to understand recurring problems of 

coordinating across multiple distributed components such as those found in emission control systems (Lee 

and Berente 2012). Such analyses would use generalization-specialization thinking to develop generic 

control capabilities that would be valuable across functional areas in a product-developing organization, 

especially as “digital controllers are being increasingly decoupled from the subassemblies that they 
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control” (Lee and Berente 2012, p. 3). Such generic control patterns may then be reused through 

specialization to local control contexts in a traditional hierarchical structure. However, as far as it is true 

that “digital controls have a generative aspect to them” and that “their inclusion in a complex system 

tends to stimulate additional, often unforeseen, digital applications” (Lee and Berente 2012, p. 3), the 

unbounded aspect of digital technology may lead to open-ended systems. In these cases, the digital 

technology is not necessarily destined to control an inclusionary hierarchy (Murmann and Frenken 2006, 

Wilson 1969), but offers the possibility of multiplicity where product boundaries are spanned and 

meanings are created (cf. Verganti 2009, Yoo et al. 2010). For such contexts, our conception of the 

relationships between design patterns as many-to-many provides a powerful avenue for analyzing product 

design and redesign efforts in product-developing firms. In other words, in situations where novel, 

digitally-enabled services are created on the basis of a product-developing firms’ combination of inbound 

and outbound generic capabilities, the network-of-patterns frame complements the dual hierarchy framing 

of digital technology found in the system integration and complex products literature (Lee and Berente 

2012, Murmann and Frenken 2006) by accommodating the multiple inheritances found in such settings. 

The findings of our study suggest possible directions for how managers of product-developing 

firms may organize product design and redesign in the digital era. Our research suggests that managers 

should view product architectures as representations that help responding to technological change over 

time. Such a view on architecture allows for maintaining multiple views on architecture to better cater for 

the increasing demands on continual innovation. Since the hierarchy-of-parts frame is reasonably well-

established in product-developing firms, efforts should primarily be geared towards developing patterns 

that capture the essence of solutions to recurring problems. Such patterns typically inhibit capabilities of 

the product-developing firm and its network of collaborators. Confronted with new types of customer 

demands, firms can then combine existing patterns through specialization thereby reusing well-tested 

ideas. This type of innovation is greatly facilitated when patterns are implemented as software affording 

design scalability through swift reproduction and unbounded design flexibility through reprogramming to 
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create the variation needed for particular situations. In short, the network-of-patterns frame provides a 

focus on product ideas and ways to establish and maintain a viable product offer over time.  

Future studies could address several limitations in our work. First, our study suggests how 

digitization of tangible products motivates a dual view on architecture. Yet, our study does not 

sufficiently address how architectural frames impact our understanding of the relationship between 

organization design and product design. As an area of considerable attention in the literature (Sanchez and 

Mahoney 1996), this relationship, referred to as the “fundamental isomorphism” (Baldwin and Clark 

2000) or the “mirroring hypothesis” (Baldwin 2008), has been examined with particular attention to 

alignments and misalignments (Sosa et al. 2004). As showed by Lee and Berente (2012), this relationship 

is challenged by digital technology. However, it remains unclear how recognizing complementary 

architectural frames would alter our understanding of this key relationship. The organization design 

cannot simply mirror the modular design of the product, since there are multiple frames to consider. It 

would therefore be useful to investigate how the adoption of Alexandrian thinking would influence 

organization design as it operates in parallel with the hierarchy-of-parts frame. 

Second, our case story does not fully reflect the organizational tensions and struggle involved in 

pursuing a path that breaks with existing practices and institutional arrangements. In view of recent 

literature (e.g., Benner 2007, 2010, Lucas and Goh 2009), one would think that firms in long-established 

industries respond to digital technology by slowly incorporating it within the dominant design. Through 

such a process, they may come to see programmability and reproducibility as new, but similar features of 

their products, rather than exploring the unique challenges and opportunities digital technology represents 

for design and production. In other words, a more comprehensive derivative from our model of 

architectural frames would usefully embrace the structurational and sociomaterial aspects of architecting 

digitized products in settings with a long tradition of manufacturing tangible artifacts.  

Third, recent studies suggest that digitization can provide the basis for collaboration among firms in 

previously unrelated industries (Yoo et al. 2010). Our analysis implies that such collaboration is greatly 
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facilitated when firms give the network-of-patterns frame a complementary role in deploying a digitized 

product. Such a balanced architectural take on managing technological change can be realized only 

through a cognitive shift, wherein the manufacturing heritage of incumbent firms is reoriented by 

embracing generalization-specialization thinking. Noting that similar mental shifts occur in the design of 

complex products ranging from consumer devices such as cameras to logistics technology such as ship 

cranes (Jonsson et al. 2008, Tripsas 2009, Yoo 2010), further research is needed to more closely trace the 

dynamics of this cognitive change. 

Finally, our detailing of the nature of the two architectural frames suffers from lack of detailed 

examination of evolutionary aspects. Further research is needed to more precisely elaborate the 

evolutionary aspects of the two frames and their interaction. Technology management researchers have 

successfully examined the evolutionary aspects of modularity (Baldwin and Clark 2000, Murmann and 

Frenken 2006, Schilling 2000), but more research is needed to sufficiently address such characteristics in 

the context of digitized products and the interplay between architectural frames.  

8. CONCLUSION 

Concurring with leading technology and innovation management research (Baldwin 2008; Langlois 

2006; Murmann and Frenken 2006; Schilling 2000; Ulrich and Eppinger 2003; von Hippel 1990), we 

have introduced the notion of architectural frames to address limitations to manage technological change 

in the digital age. Our research sets an agenda for future research that reconsiders the work of Simon and 

Alexander as well as their followers to address key challenges in innovating digitized products. The 

extant technology and innovation management literature (Baldwin 2008, Langlois 2006, Murmann and 

Frenken 2006, von Hippel 1990) typically argues that modularity theory is grounded in the works of 

Simon and Alexander, viewing the two approaches to technological change as essentially the same. For 

instance, Murmann and Frenken (2006, p. 931) state: “we are certainly not the first ones to argue that 

complex technological systems are hierarchically organized. The idea has its roots in design theory going 
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back to Simon (1962) and Alexander (1964)”. Similarly, Baldwin (2008) argues that “modularity theory 

is rooted in the design theories of Simon (1962, 1969) and Alexander (1964).” Although this line of 

argument makes sense when considering how both Simon and Alexander discuss decomposing systems 

with specified dependencies between units, our research challenges us to reconsider these interpretations. 

Drawing on insights from software engineering research, we introduce a different take on Alexander’s 

legacy by articulating how his later work on patterns (Alexander 1979, 1999, Alexander et al. 1977) paves 

the way for a different approach to manage technological change. It is also important to note, that the 

dominant notion of modularity relies on a specific and arguably quite narrow interpretation of Simon’s 

work that does not fully leverage his notion of design as a bounded rational problem-solving process.  

It is the particular characteristics of digitized products that challenge us to reconsider the work of 

Simon and Alexander, focusing not only on their similarities but also their differences. Digitized products 

are characterized by distinct trajectories of physical components and digital components, meaning that the 

components of such products cannot be understood as a unified entity that follows the same clockspeed 

regardless of their properties. Given that digital components are increasingly decoupled from the 

components that they support (Langlois 2002, Lee and Berente 2012, Yoo et al. 2010), architectural 

frames offer a lens with which to meaningfully study the temporal differences of these nearly decoupled 

systems and understand how product-developing firms should manage and take advantage of increasing 

clockspeed. The suggested complementarity of architectural frames enables simultaneous study of the 

specificity required to transition to production and the flexibility required to leverage the generative 

capability of digital technology throughout a product’s lifecycle. In this regard, we have drawn on 

insights from information systems and software engineering research to challenges the conventional 

wisdom in technology and innovation management research and to set a new agenda for studying 

digitized products as they embed technologies from fast-moving industries.  
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Table 1. The Hierarchy-of-Parts Frame 

Dimension Characteristic 

Approach to Complexity Decomposition-aggregation 

Notion of Component Part 

Components Relation  Interface 

Structural Representation Hierarchy 

 

Table 2. The Network-of-Patterns Frame 

Dimension Characteristic 

Approach to Complexity Generalization-specialization 

Notion of Component Pattern 

Components Relation  Inheritance 

Structural Representation Network 

 

Table 3. Data Collection 
Data Source Total Details 

Interviews 31 

Interview statistics:  
  -∑: 36:17:55 h 
  -µ : 1:10:15 h 
  -σ : 27:22 m 
- word count: 341,997 
- 23 respondents 

Participant 
observation 

 

31 full days 
& 

47 meetings 

Meeting statistics:  
 -∑: 142 h 
 -µ : 3:01:17 h 
 -σ : 1:41:03 h 

Archival data 29 specifications 

Specification topics: 
- bus architecture (1) 
- system architecture (1) 
- MOST function catalog (2) 
- function specification (2) 
- function partitioning (21) 
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Table 4. Examples of Patterns in the MOST Architecture 

ID Pattern Domain Description from CarCorp’s MOST Function Catalog 
0x001 NOTIFICATION System This property administrates the Notification Matrix of a function block 
0x116 SYNCDATAINFO System This property can be used to query the function block on how many connections 

it may serve as sink or source 
0x101 ALLOCATE System With this method, the source is caused to occupy synchronous channels. 
0x102 DEALLOCATE System The method DeAllocate causes the source to free occupied synchronous channels 
0x100 SOURCEINFO System This property gives particulars about the type of synchronous source data 
0xC60 SOURCEACTIVITY System This property signals whether a source is active or not (On/Off). 
0x112 DISCONNECT System By use of this method, synchronous channels for audio reception will be 

disconnected 
0x110 SINKINFO System The property SinkInfo can be used to query the sink about the type of data it can 

handle 
0x114 SINKNAME System By using property SinkName, a name for the synchronous data can be requested. 
0x111 CONNECT System By use of this method, synchronous channels for audio reception will be 

connected. 
0xC54 GPS_RAWDATA Positioning This property is used to transmit GPS Raw Data. All parameters will be 

transmitted at the same time as: Longitude, latitude, Fix, HDOP, VDOP, Speed, 
Heading, Height, Year, Month, Day, Hour, Minute, Second. 

0xC56 GPS_SATELLITEIDS Positioning Satellite IDs (according to NMEA protocol) used for the position calculation 
0xC55 GYRO Positioning Function returns the yaw rate as calculated from the vehicle's gyro. 
0xD40 PHONELISTS Phone book This method administrates the PhoneList.  
0xD41 ARRAYINSERT Phone book This method is used to insert an arbitrary number of PhoneBook entries into the 

PhoneBook.  
0xD42 ARRAYSEARCH Phone book This method is used to search the PhoneBook(s) with a search string.  
0xD43 ARRAYDELETE Phone book This method is used to delete entries in the PhoneBook(s).  
0xD44 ARRAYREAD Phone book This method is used to read "Quantity" number of entries with a certain 

"WindowType"and at a certain "PosX" in the PhoneBook. 
0xD45 SUBPHONEBOOKS Phone book This property is used to read important information about different 

SubPhoneBooks. 
0xD46 PHONEBOOKSTATUS Phone book Status of the phone book. 
0xE80 VRSTATUS Voice 

recognition 
This property is used to set and signal the status of the voice recognition engine.  

0xE84 PTTPRESSED Voice 
recognition 

This property is used to send button presses from the Speech Manager. 

0xE85 VOICEFEEDBACKSWITCH Voice 
recognition 

This property is used to toggle voice feedback On/Off. 

0xE86 VOICEDISABLED Voice 
recognition 

This property is used to signal if the voice recognizer has been disabled (On) by 
OnStar or enabled (Off) 

0xE87 FEEDBACKPROMPT Voice 
recognition 

This property is used to request voice feedback messages from the Voice 
Recognizer.  

0xC42 ALARMSTATUS Car status Shows the status of the alarm system. 
0xC45 SYSTEMPOWERMODE Car status Function is used for ignition key power modes. 
0xC46 VEHICLESPEED Car status Function returns the speed of the vehicle in km/h. 
0xC47 TILTSENSORSTATUS Car status This function shows the tilt sensor status 
0xC48 VIN_2_9 Car status This property is used for the Vehicle Identification Number (VIN). Eight ASCII 

Characters. 
0xC4A INTRUSIONSENSINGSTATUS Car status This function shows the intrusion sensing status. 
0xC4B EXTERIORLIGHTSON Car status This function shows the exterior lights status 
0xCA2 AIRBAGDEPLOYED Car status This function shows the status of the airbags. 
0xCB2 VIN_10_17 Car status This property is used for the Vehicle Identification Number (VIN). Eight ASCII 

Characters. 
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i We use the term “digitized products” as a short-name for digitized tangible products. We refer to digitized products 
as assemblages of digital and physical components that are commonly recognized as an end to a customer need. 
Examples of digitized products are everyday consumer products such as cars and cameras, but also an entire of 
range industrial equipment including ship cranes and underground mining vehicles (Jonsson 2010).  
 
ii It should be emphasized that Simon (1996, p.215) noted that ”how complex or simple a structure is depends 
critically upon the way in which we describe it”. In this regard, Simon underlined that complexity is not an invariant 
aspect of technology but is primarily a matter of identifying and enacting appropriate representations. 
 
iii We recognize that the hierarchy-of-parts frame presented here represents a general frame from which different 
variants emerge in the contingency of everyday practices. Our objective is to present an ideal type “formed by the 
one-sided accentuation of one or more points of view” (Weber 1949, p. 90). In this regard, the frame represents 
conceptual constructs that may not appear in reality in its purest form, but represent a manifestation of theorizing 
through idealization (Lopreato and Alston 1970, Ohlsson and Lethinen 1997). 
 
iv In addition to modularization in product architecture (design) and modularization in production, Takeishi and 
Fujimoto (2003) also highlight modularization in inter-firm systems as an additional ”facet” of modularization. 
 
v It is somewhat ironic that the network-of-patterns frame has had more impact in software engineering than in 
architecture (Alexander 1999, Gabriel 1999, Mehaffy 2007). The software engineering community’s interest in 
Alexander’s work has boomed since Gamma et al. (1995) outlined a language consisting of 23 patterns for recurring 
problems in object-oriented software design. 
 
vi Alexander et al. (1977) exemplifies a comprehensive pattern language consisting of 253 patterns for how to 
address city planning, building, and construction problems. The description of each pattern follows the same syntax, 
including the problem, core of the solution, archetypical example, context of the pattern, empirical background of 
the pattern, and evidence of its validity. 
 
vii The term infotainment refers to media providing a combination of information and entertainment. In the 
automotive industry it includes navigation, telematics, rear-seat entertainment, and similar systems. 
 
viii MOST also addressed the physical layer of infotainment architecture. It offered a fiber-optical bus network, 
providing bandwidth far beyond hitherto established solutions. This network interconnected the different 
components through a generic, non-functional interface in a ring topology. In such a ring topology, components are 
not nested to hide complexity. Instead, all components are found at the same level, regardless of potential 
functionality dependences. Seen as a layer in a higher-level hierarchy – e.g. a car – such a system is flat, having a 
wide span (Simon 1962) at that level. This allowed engineers to mount components just about anywhere in a car, as 
long as it was possible to connect a tiny fiber-optical wire.  


