
http://wrap.warwick.ac.uk

Original citation:
Gao, Bo, He, Ligang and Jarvis, Stephen A.. (2016) Offload decision models and the
price of anarchy in mobile cloud application ecosystems. IEEE Access, 3 . pp. 3125-
3137.

Permanent WRAP url:
http://wrap.warwick.ac.uk/76119

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/76119
mailto:publications@warwick.ac.uk

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 1

Offload Decision Models and the Price of Anarchy
in Mobile Cloud Application Ecosystems

Bo Gao, Ligang He and Stephen A. Jarvis
Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK,

{bogao, liganghe†, saj}@dcs.warwick.ac.uk

Abstract—With the maturity of technologies such as HTML5
and JavaScript, and with the increasing popularity of cross-
platform frameworks such as Apache Cordova, mobile cloud
computing as a new design paradigm of mobile application
developments is becoming increasingly more accessible to devel-
opers. Following this trend, future on-device mobile application
ecosystems will not only comprise a mixture of native and
remote applications, but also include multiple hybrid mobile
cloud applications. The resource competition in such ecosystems
and its impact over the performance of mobile cloud applica-
tions has not yet been studied. In this paper, we study this
competition from a game theoretical perspective and examine
how it affects the behaviour of mobile cloud applications. Three
offload decision models of cooperative and non-cooperative na-
ture are constructed and their efficiency compared. We present
an extension to the classic load balancing game to model the
offload behaviours within a non-cooperative environment. Mixed-
strategy Nash equilibria are derived for the non-cooperative
offload game with complete information which further quantifies
the price of anarchy in such ecosystems. We present simulation
results which demonstrate the differences between each decision
model’s efficiency. Our modelling approach facilitates further
research in the design of the offload decision engines of mobile
cloud applications. Our extension to the classic load balancing
game broadens its applicability to real-life applications.

Index Terms—Mobile computing, mobile cloud computing,
energy-aware

I. INTRODUCTION

Mobile cloud computing is an emerging field of research
that aims to provide a platform on which intelligent and
feature-rich applications are delivered to the user’s fingertips
efficiently. This efficiency comes from the adaptive offload
ability of mobile cloud applications which is key to the seam-
less integration of mobile devices and cloud servers. Pioneered
by the likes of MAUI [1], CloneCloud [2] and ThinkAir
[3], adaptive computation offload as a core technology in
mobile cloud computing has gathered momentum in recent
years and has grown from a futuristic concept to a practical
means to improve and augment the user’s experience of mobile
applications.

A mobile cloud application as we discuss in this paper
is an application whose main functionality may be executed
independently on either a mobile device or a cloud server. This
means that the application is able to offload or migrate itself
seamlessly between the two platforms. This offload decision
is often taken at runtime according to the current network

† Dr. Ligang He is the corresponding author.

condition and the anticipated workload size [1], [4]. We also
refer to this class of applications as Hybrids as opposed
to Native and Remote to distinguish applications by their
designated execution platform.

It is important to note that our use of these three terms, hy-
brid, native and remote, refers to the place of execution of the
application’s main functionality and its ability to seamlessly
migrate between device and cloud, rather than the traditional
use of these terms where they refer to the environment it is
developed in. Traditionally when an application is written in
a native language like Objective-C for iOS devices or Java for
Android devices, it is referred to as a native application; an
application that’s run on a web server and delivered to the user
via a browser is referred to as a remote mobile web application.
A hybrid application in this sense is a crossover between these
two approaches. The majority of a hybrid application’s code
is usually written in HTML5 and JavaScript and rendered
by the device’s web engine, so the code is portable between
platforms. A hybrid application also include native codes to
refine user experience and get access to a wider range of device
functionalities. This code portability is an attractive option
for the development of mobile cloud applications. However,
a hybrid application as in mobile cloud computing is more
intelligent in utilising different platforms at runtime.

In order to qualify as a hybrid application as we discuss
in this paper, the application need not only be deployable to
different platforms, but also make offload decisions at runtime
to improve user experience. The code portability of a hybrid
mobile cloud application also need not be limited to the use
of HTML5, MAUI [1] is written in C# for Microsoft’s .NET
Common Language Runtime, CloneCloud [2] modified the
Dalvik VM for code migration on Android OS, ThinkAir [3]
builds its offload platform with a modified version of Android
x86. A more recent work [5] utilises a modified version of
WebKit to support the offload of HTML5 workers.

Besides existing research level implementations of mobile
cloud applications (we recommend two excellent surveys,
[6] and [7], to the interested readers for a comprehensive
list of existing research in mobile cloud computing), we
argue that the increasing popularity of HTML5 as a mobile
application development framework also greatly shortens the
time required to develop applications that are deployable both
natively on the mobile device and remotely as cloud services.
The use of HTML5 and platforms like Apache Cordova help
significantly lower the level of technical challenges involved
in the development of mobile cloud applications. We expect

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 2

N H R

N H R

CPU Transceiver
VMH

Mobile Cloud

Offload decision

Fig. 1. A mobile cloud application ecosystem

to see an increasing number of mobile applications to adopt
the adaptive execution approach proposed by the research of
mobile cloud computing in the near future.

A. Problem Statement

With the increasing popularity of mobile cloud applications
come one problem currently missing from the research of
mobile cloud computing which is the recognition of the
competition for resources between applications on mobile
devices. Applications are selfish entities. Notwithstanding the
cooperative interactions that may exist within certain appli-
cation workflows, given a host device, each application’s
performance is proportional to the exclusivity it has over
its host’s resources. Therefore the competition for resources
underlies each community of applications that lives on the
same computing device. Recognising the existence of this
competition is especially important for the applications that
are hosted by resource constrained mobile devices.1

We illustrate the resource competition in a mobile cloud
application ecosystem with Fig. 1. Three classes of applica-
tions share the same mobile device. A wireless connection is
established to a remote cloud service supporting computation
offload2. The main functionality of a native application is
carried out on the local CPU, whereas a remote application
carry out the majority of its computation via cloud services.
To access a cloud service, data is sent via the transceiver
of equipped on the mobile device. A hybrid application has

1Note that the application of our approach is not limited to communities
of hybrid applications in future developments. With the popularity of mobile
applications (or apps in short), the real estate of a mobile device has already
been heavily competed on by the many apps that are currently installed on
each device. According to the data published by Google’s Our Mobile Planet
report [8] for 2013, on average 28.5 apps are installed on each smartphone in
the UK which is just above the overall average (26) among the 47 countries
included in the survey. In South Korea and Switzerland this number is higher
at 40 apps per smartphone. A similar figure is reported by Nielsen in their
early 2014 report [9] which includes both Android and iOS users. [10] report
an average number of 177 apps installed on their participant’s android devices.

2A remote application does not have to run on the same cloud server as
the hybrid applications. A proprietary application (e.g. Facebook or Twitter)
is usually supported by its own servers. Furthermore, a proprietary server is
also unlikely to accept offload requests from a personal device. For these type
of remote applications, we set wb

i to be zero in our model since they don’t
consume the computation resources on our cloud.

TABLE I
EFFECT OF DIFFERENT OFFLOAD DECISIONS.

Scenario A Scenario B Scenario C

i ∈ [s]H N R N R N R

i = 1 15 10 15 10 15 10

i = 2 18 15 18 15 18 15

Cost/Platform 0 25 15 15 18 15

Social Cost 25 15 18

the ability to choose between the two platforms. Its offload
decision precedes the execution of its main functionality.

Competition of resources comes with either options for a
hybrid application. The path of native execution is shared
with other native applications at the CPU, whereas the path
of remote execution is firstly bottlenecked at the transceiver,
and consequently congested at the supporting cloud server.
This competition is apparent between hybrids and other two
classes of applications, but more importantly it exists within
the hybrid class itself.

Existing research in mobile cloud computing focuses on the
application’s ability to offload computation between mobile
and cloud. Offload decisions in existing work are based on
the device’s parameters without taking into account that it may
not be the only application that’s using these resources (i.e.
the processing unit and the wireless data connection). This
uninformed decision making process means that the offload
decision made may not be as beneficial as predicated.

B. A Simple Example

We demonstrate the effect of an uninformed offload decision
with a simple example as shown in Table I. We assume three
scenarios where two hybrid applications share a device. Each
number in the table represents the amount of time it takes
the application to run on a platform assuming exclusive usage
of the device’s resources, in seconds. A circle represents the
decision made by the application. Scenario A is a typical
example of applications making uninformed decisions. Both
applications assume that it is the only application running on
the device and the cost comparison between the two platforms
means both applications prefer to execute on the cloud. This
makes R congested while leaving the N vacant. The total cost
on R is 25 seconds compared to the cost of 0 on N.

From the user’s point of view, the makespan (i.e. social cost
as we discuss in detail in III-C4 and III-D) of the system as a
whole is 25 seconds. This social cost is higher than either of
the other scenarios where the applications’ choice of platform
are split between N and R.

From each application’s point of view, in A, if each appli-
cation’s sub tasks are scheduled in a round-robin way on R,
the expected time costs for both applications are 25 seconds;
if the scheduling order is randomly chosen between the two
applications as a whole, the expected cost is 17.5 seconds for

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 3

i = 1, and 20 seconds for i = 2, all higher than the cost if it
were run on N.

C. Objective and Contribution

In this paper, we model each of the three offload decision
models that applies to a mobile cloud computing scenario in
Sec. III. We especially focus on the game theoretical modelling
of the offload game with complete information. We derive the
mixed-strategy Nash equilibrium of the game and its social
cost at equilibrium in Sec. III-C. The derivation of the Nash
equilibrium is significant that it provides a basis for measuring
the distance (referred to as the “price of anarchy” of the
game which we introduce in Sec. III-C4) between a non-
cooperative and a cooperative application ecosystem. With the
model we present in Sec. III-C, we also extend the classic
load balancing game [11] which has been highly cited since
its publication. Comprehensive simulation experiments has
been conducted and presented in Sec. IV. Results from the
comparisons between the three models provide us with a rare
insight into the behaviours of applications within a community
(ecosystem).

The impact and future direction of this paper is in two
folds. First, from the user’s perspective, we provide a suite of
modelling tools to quantify the costs and benefits of different
offload decision making processes so that an informed decision
can be made on a global level. Our results pave the way for
future development of manager services of hybrid applications
on the device to provide a cooperative environment. Second,
from a hybrid application’s point of view, in absence of a
cooperative mechanism, it is able to derive an offload strategy
that’s most beneficial to itself.

II. RELATED WORK

Our work furthers existing research of mobile cloud comput-
ing by modelling the resource competitions in such application
ecosystems and analysing its effects over the efficiency of
the offload actions of mobile cloud application. We study
this competition from a game theoretical perspective. In this
section, we discuss related work in the area of mobile cloud
computing.

The idea of transferring computation to a nearby processing
unit in order to improve mobile application’s performance and
reduce local energy cost has been researched along with the
maturity of mobile technologies. Many ideas and techniques
we use in this paper are inspired by this work.

Early research focuses on the partitioning schemes of an
application. Aimed at energy management, a compile-time
framework supporting remote task execution was first intro-
duced in [12]. Based on the same approach, a more detailed
cost graph was used in [13] with a parametric analysis on its
effect at runtime presented in [14]. Another compiler-assisted
approach was introduced in [15], which turns the focus to
reducing the application’s overall execution time. Spectra [16]
adds application fidelity (a run-time QoS measurement) into
the decision making process and uses it to leverage execution
time and energy usage in its utility function. Spectra monitors
the hardware environment at run-time and choose between

programmer pre-defined execution plans. Chroma [17] builds
on Spectra but constructs the utility function externally in
a more automated fashion. MAUI [1] also reduces the pro-
grammer’s workload by automating some of the partitioning
process models. The offload decision engine applies an inte-
ger programming techniques to produce allocation schemes.
Aimed at reducing the communication costs, [18] proposes
the concept of cloudlets, which brings the distant Cloud to
the more commonly accessible WiFi hotspots. A dynamic VM
synthesis approach is proposed in [18]. The offload decision
models (section III-B) in these studies estimate the benefit of
an offload action based on the device’s current bandwidth to
the network.

Besides existing research level implementations of mobile
cloud applications (we recommend three excellent surveys, [6],
[7] and [19], to the interested readers for a comprehensive
list of existing research in mobile cloud computing), we
argue that the increasing popularity of HTML5 as a mobile
application development framework also greatly shortens the
time required to develop applications that are deployable both
natively on the mobile device and remotely as cloud services.
The use of HTML5 and platforms like Apache Cordova help
significantly lower the level of technical challenges involved
in the development of mobile cloud applications. We expect
to see an increasing number of mobile applications to adopt
the adaptive execution approach proposed by the research of
mobile cloud computing in the near future.

Our work is distinguishable from existing studies in that
we considers the efficiency of the application ecosystem on
each device rather than that of a single application. The
cooperative offload decision model we propose take into
account the resource competition between applications within
each ecosystem which is missing from existing research. The
ability to offload or migrate computation from mobile devices
to clouds is integral to the research of mobile cloud computing.
Before an offload decision is made, the application must
estimate the potential cost and benefit of such an action. When
an application is assumed to have exclusivity or strict top
priority over its host device’s wireless data connection, the
application may estimate its offload cost based on the device’s
entire bandwidth rather than the actual share of bandwidth
available on the host device. This causes the application to
over-estimate the benefit of an offload action.

III. DECISION MODELS OF COMPUTATION OFFLOAD

In a mobile cloud computing scenario, applications have the
option to either execute locally on its host device or offload
and execute remotely on a supporting cloud platform. The
application must estimate the cost and benefit of an offload
action prior to making a decision. Depending on how much
information this application has of other applications running
on the same device, this decision making process may yield
different results. In this section, we formulate the different
decision models of a mobile cloud application ecosystem.

We begin with an introduction of the notations used to
describe a mobile cloud application ecosystem.

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 4

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

[n]

[n]N
Native

[n]H
Hybrid

[n]R
Remote

Fig. 2. Composition of the Mobile Application Ecosystem

A. System Notations of Mobile Cloud Application Offload

To describe a mobile cloud application ecosystem, we
assume a set of n independent applications sharing the same
mobile device, denoted as [n] = {1, . . . , n}. Each application
i ∈ [n] is to choose between two parallel execution platforms,
which we refer to as the remote cloud R and the native
processing unit N in our model, in order to minimise its
execution time cost.

Let aji be a binary variable indicating i’s decision to execute
on platform j. All aji together constitute an assignment A ∶
[n]→ {R,N} with A(i) denotes the chosen platform for i.

The weight of each application i has two components:

wd
i which denotes the size of the data that is to be

transmitted over the wireless network if application
i is offloaded to R,

wb
i which denotes the amount of computation binary that

is associated with i.

In correspondence, the speed in which each platform j ∈
{R,N} can process an application also consists of two com-
ponents:

sdj which denotes the data transmission speed3 to j, with
sdN = inf and sdR = bandwidth between N and R,

sbj which denotes the computation speed of j’s process-
ing unit, we assume sbN < sbR.

Not all mobile applications in [n] has the ability to migrate
between N and R. Some are fixed to run natively (locally),
whereas some may rely on an active data connection to run
remotely. To represent this distinction within [n], we divide
[n] into three distinct subsets:

[n]N for native applications fixed to run on N,
[n]R for remote applications fixed to run on R,
[n]H for hybrid (mobile cloud) applications that may run

on either N or R.

This composition of applications is illustrated by Fig. 2.
Note that we use subscripts for applications and superscripts

for platforms when a variable is associated with both sets. With
these notations, we first derive the classic offload decision
model.

3When an application is run on the local device, we assume that the speed
at which its binary reaches the processor is infinite. This way we keep the
equations generic, and we don’t have to add an indicator variable inside the
subsequent equations (e.g. (2)).

B. Offload with Symmetrically Incomplete Information

In this scenario, each application i knows the properties of
both platforms (sdj , s

d
j , j ∈ N,R) and of its own task (wd

i , w
b
i),

but is unaware of the other applications who also share the
resources provided by the same device. Due to this limitation,
exclusive usage of the device’s data connection and processor
is assumed by all applications. Hence the offload decision of
i is given by

aRi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, If
wd

i

sdR
+ w

b
i

sbR
< w

d
i

sdN
+ w

b
i

sbN
0, Otherwise.

(1)

with aNi = 1 − aRi .
Depending on the capacity of the device’s wireless data

connection (sdR), the benefit of remote execution (i.e. reduced
execution time, given by wb

i /sbN − wb
i /sbR) may be offset by

the additional communication cost (between the device and
the cloud, given by wd

i /sdR) when applications are run on or
offloaded to the cloud. Therefore mobile cloud applications
often require that the data connection speed between N and R
to be greater than a certain threshold before an offload action
is considered [4], [20]. The capacity of the device’s wireless
data connection greatly influence the decision making process
of offload-able applications.

There are two potential flaws in this offload decision model.
First, the wireless connection may be occupied by other
applications, which means that the actual data transmission
cost is greater than wd

i /sdR. Second, the local processing unit
is also shared with other applications, hence the cost of local
execution wb

i /sbN and therefore the benefit of remote execution
as given by wb

i /sbN−wb
i /sbR are also under-estimated. Both flaws

are direct results of the incomplete information given to each
application.

To complete the notation of this subsection, we denote
ΘB to represent the social cost of the system under the
symmetrically incomplete information decision model. We
further discuss the definition of social costs in III-C4 and
III-D. The “B” in this notation comes from the fact that the
wireless data bandwidth plays a crucial role in this decision
model. Next, we derive the decision model when applications
are given complete information of other applications.

C. Offload with Complete Information

We now consider the scenario in which all applications
are given complete information of the weights4 of all other
applications (wb

i , w
d
i , i ∈ [n]). Given an assignment A ∶ [n]→

{R,N}, the cost (time delay) for application i is given by

ci = ∑
k∈[n]

A(k)=A(i)

⎛
⎝
wd

k

sd
A(k)

+ wb
k

sb
A(k)

⎞
⎠

(2)

which assumes that no priority is assigned to any application.
That is to say that both data packets over the data connection
and instructions in the processor stack are scheduled in a

4In practical terms, the weights of an application can be predicted based
on its historic profiles as done in [10].

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 5

round-robin way. Following this, the cost of platform j is given
by

Cj = ∑
i∈[n]

A(i)=j

⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠

(3)

(2) and (3) together correct the inaccuracy caused by incom-
plete information.

1) The Offload Game: It is easy to see that the decision of
each application is directly influenced by the decisions made
by others. Since each application’s goal is to minimise its own
cost, the offload decision model with complete information can
be described by a non-cooperative game theoretic framework.

In this game, which we refer to as the offload game,
each application is an agent (player) whose objective is to
minimise ci. Each application has a strategy profile of {N,R}.
A collection of pure strategies of all applications i ∈ [n]
constitutes an assignment A. A mixed strategy 5 is a probability
distribution over the set of pure strategies {N,R}.

2) Mixed Strategies and Expected Costs: We first denote
the probability that agent i choose to run on platform j with
pji = P[A(i) = j]. Then the expected cost of platform j under
the strategy profile P = {pji , i ∈ [n], j ∈ {N,R}} is

E[Cj] =∑
i∈[n]

pji
⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠
. (4)

For application i, its expected cost when selecting j is

E[cji] =
wd

i

sdj
+ w

b
i

sbj
+∑

k∈[n]

k≠i

pjk
⎛
⎝
wd

k

sdj
+ w

b
k

sbj

⎞
⎠
. (5)

This together with (4), we have

E[cji] = E[Cj] + (1 − pji)
⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠

(6)

which derives

pji
⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠
= E[Cj] −E[cji] +

⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠

(7)

and further derives

pji =
⎛
⎝
E[Cj] −E[cji] + (w

d
i

sdj
+ w

b
i

sbj
)
⎞
⎠
/

⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠

(8)

which gives all applications’ mixed strategies as a function of
E[Cj] and E[cji] and constitutes P .

5We consider mixed strategies rather than pure strategies because it is a
better match to the mobile cloud computing scenario. First, in a game, there
may be multiple (or none as in the rock-paper-scissors game) pure strategy
equilibria, including the optimal assignment which we derive in subsection
III-D. To reach a pure strategy equilibrium, the order in which each agent
is given the right to make a strategy decision affects which pure strategy
equilibrium the system would reach. In our mobile cloud scenario, the mobile
OS does not explicitly define this order, and it also wouldn’t be fair for the OS
to do so without user consent. Second, beside the saving in execution time,
hybrid applications can also provide the user with higher quality service when
it is run on a remote cloud as seen in [21]. Therefore, the user may opt for a
remote execution regardless. Therefore, only a probability of an application’s
pure strategy can be observed. Because of these reasons a pure strategy profile
is not a stable representation of our offload game.
On the contrary, a mixed strategy profile only requires that each application
is aware of the probability of others’ offload decisions. The mobile OS has
this information readily available from its network access log, and is able to
share this with all applications.

3) Nash Equilibrium: We now describe the Nash equilib-
rium of this game. A game is said to be in Nash equilibrium
when no agent (application i) of the game, with complete
knowledge of all other agents’ strategies (P), is able to make
gains or reduce its cost by unilateral actions. Not all strategy
profiles define a Nash equilibrium. In order to find the P which
defines a Nash equilibrium, further constraints is to be added
to (8).

First, in a Nash equilibrium, each application agent only
assign non-zero probabilities to platform j if

E[ci] = E[cji] = min
j∈{N,R}E[cji], i ∈ [n]. (9)

We define a support indicator

αj
i =

⎧⎪⎪⎨⎪⎪⎩

1, if pji > 0

0, otherwise.
(10)

Take (7) into (4) with the introduction of αj
i and (9), we get

E[Cj] =∑
i∈[n]

αj
i

⎛
⎝
E[Cj] −E[ci] + (w

d
i

sdj
+ w

b
i

sbj
)
⎞
⎠

(11)

for j ∈ {N,R}.
Second, each application i should distribute all of its weight

completely, that is

∑
j∈{N,R}p

j
i = 1, i ∈ [n]. (12)

Take (8) into (12) with the introduction of αj
i and we get

∑
j∈{N,R}α

j
i

⎛
⎝
E[Cj] −E[ci] + (w

d
i

sdj
+ w

b
i

sbj
)
⎞
⎠
=
⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠

(13)

for i ∈ [n].
Observe that (11) and (13) together have n + 2 variables

(E[Cj] and E[ci]) and n+2 equations, meaning that a unique
solution is defined. Therefore, the strategy profile of the Nash
equilibrium of our offload game is completely defined by (8),
(11) and (13). We further give the solution of pRi in (14) with
Cf

R and Cf
N denote the cost from [n]R and [n]N respectively.

The corresponding derivation is attached in Appendix A.
4) Social Cost, Expected Makespan at P and Price of

Anarchy: So far we have been looking at the costs from
each application’s perspective. Indeed, because of the non-
cooperative nature of the offload game, the derivation of P
is driven by each application’s expected ci. However, from
user’s perspective, the overall cost of the system is of greater
importance. In game theory terms, this system cost is referred
to as the social cost of the game system. In our offload game,
we define the social cost to be the makespan of the system. We
discuss the optimal social cost in the next subsection (III-D)
with the cooperative decision model. But first, following our
results of the Nash equilibrium strategy profile P , we derive
the social cost of the system at Nash equilibrium.

Given a strategy profile P we derive the social cost (ex-
pected makespan) of the system at P , which we denote with
ΘP as

ΘP = ∑
A(1)∈{N,R}⋯ ∑

A(n)∈{N,R}
n

∏
i=1 p

A(i)
i max

j∈{N,R}E[Cj] (15)

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 6

pRi =
⎛
⎝
wd

i

sdR
+ w

b
i

sbR

⎞
⎠
/

⎛
⎝
wd

i

sdN
+ w

b
i

sbN
+ w

d
i

sdR
+ w

b
i

sbR

⎞
⎠

+
⎛
⎝
Cf

R −C
f
N + ∑

k∈[n]H
⎛
⎝
wd

k

sdR
+ w

b
k

sbR

⎞
⎠
−
⎛
⎝
wd

k

sdN
+ w

b
k

sbN

⎞
⎠
⎞
⎠
/

⎛
⎝
⎛
⎝

1 − ∣[n]H∣
⎞
⎠
⎛
⎝
wd

i

sdN
+ w

b
i

sbN
+ w

d
i

sdR
+ w

b
i

sbR

⎞
⎠
⎞
⎠

(14)

This quantity gives an indication of the system’s performance
at P . When strategy profile P defines an equilibrium, it is
important to compare ΘP (Nash social cost) with the system’s
optimal performance (optimal social cost), denoted as Θopt

which we discuss in the next subsection (III-D). The ratio
ΘP ∶ Θopt is referred to as the price of anarchy (also referred
to as “coordination ratio” in [11]) of the game.

We study the price of anarchy of a system which is an
indication of how much worse a system would perform if no
control is applied on a system level. First introduced in [11],
price of anarchy is a key concept often associated with the
study of Nash equilibrium in game theory. A Nash equilibrium
as we have shown is driven by the selfish behaviours of the
agents of a system. Because each agent is only concerned
with its own cost when making strategy decisions, without
system level control, the overall performance of the system in
anarchy becomes a by-product of the competition between the
agents. The distance between this by-product and the optimal
performance is represented by the price of anarchy of the
game.

We show in the following subsection that the system cost
can be minimised when system level control is applied.
Then in IV-B and IV-C we further demonstrate how system
performance is described by price of anarchy.

D. Cooperative Offload and the Makespan Scheduling Prob-
lem

The offload decision models we discussed in the previ-
ous two subsections both assume non-cooperative behaviours
within the system. In this third offload decision model, we
assume the contrary where a global authority is in place to
manage the offload / migration behaviour of the mobile cloud
application ecosystem.

From a global perspective, recall that the cost of the system
(also referred to as social cost in game theory terms) is defined
to be the makespan, that is, the maximum schedule length
between the two platforms. This naturally leads to a variation
of the classic makespan scheduling problem. Recall that aji
indicates if i chooses to run on j, and that [n]N and [n]R
denote the subsets of applications that are fixed to run on N
and R respectively. With these we formulate the problem as

an integer program:

minimise Θopt = max
j∈{R,N}

n

∑
i=1a

j
i

⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠

(16)

subject to aRi + aNi = 1, i ∈ [n] (17)

aji ∈ {0,1}, i ∈ [n], j ∈ {R,N} (18)

aNi = 1, i ∈ [n]N (19)

aRi = 1, i ∈ [n]R. (20)

Note that our problem is different from the classic makespan
scheduling problem in that the speed of each machine (plat-
form) consists of two sub-speeds (sj = {sdj , sbj}). Therefore
the machines in our problem can not be ordered by their
speeds as in the classic makespan scheduling problem [22].
The complexity of this problem is at least NP-hard since it
contains a special case, when ∀j ∈ {R,N} ∶ sdj = sbj , which can
be reduced to a classic makespan scheduling problem which
is NP-hard even for two identical machines.

The solution of this integer program gives us the optimal
assignment in terms of minimising the social cost of the
system. However, besides the complexity, the solution also
assumes that there is a global authority that enforces the
assignment which is not the case in the current mobile cloud
computing framework. Operating systems who manage the
wireless data protocol on mobile devices does not schedule
where applications are run. Techniques exist to exploit delay-
tolerant property of some applications to reduce the tail
energy overhead [23]. Pre-fetching is another technique used
to improve the efficiency of the data link [24], [23]. Though
in all cases, the operating system attempts to complete all
requests from applications and does not proactively seek to
offload any particular application.

Existing offload techniques in mobile cloud computing
assumes exclusivity over the host device’s data link. Offload
decisions are made selfishly by the application. Therefore we
next introduce a game theoretic framework to study the effect
of the selfish behaviours in the ecosystem of mobile cloud
applications.

IV. EXPERIMENTS

In this section we demonstrate and visualise the behaviours
of mobile cloud applications under different offload decision
models, and the influence of such over the social cost of mobile
cloud application ecosystems.

Each group of simulation tests is referred to in this pa-
per by a group ID which is given in the first column of
Table II. Detailed parameters of these test groups are also
given in this table. We define each application’s data and

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 7

TABLE II
SIMULATION PARAMETERS

Test Application Parameters Platform Parameters

Group Cycles [∣[n]N∣, ∣[n]R∣, ∣[n]H∣] Support [wd
i ,w

b
i] Observed [wd

k,w
b
k] [sdN, s

b
N, s

d
R, s

b
R]

S1 40 [0,0,10] i ∈ {2, . . . ,10} [50,500] k ∈ {1} [50, (+10)500†
] [inf,200,50,800]

S1F 40 [0,0,10] i ∈ {2, . . . ,10} [50,500] k ∈ {1} [50, (+10)500] [inf,200,50,1600]

S2 40 [0,0,10] i ∈ {2, . . . ,10} [50,500] k ∈ {1} [50,500(+10)] [inf,200,20,800]

S3 40 [0,0,10] i ∈ {2, . . . ,10} [50, (+10)500] k ∈ {1} [50,500] [inf,200,50,800]

S4 40 [0,0,10] i ∈ {2, . . . ,10} [50,500(+10)] k ∈ {1} [50,500] [inf,200,20,800]

Y1 200 [1,1,15] i ∈ [n] [50,Expo(500)] - - [inf,200,50,800]

Y2 200 [1,1,15] i ∈ [n] [50, Pois(500)] - - [inf,200,50,800]

Y3 200 [1,1,15] i ∈ [n] [50, Unif(0 ∶ 1000)] - - [inf,200,50,800]

V1 100 [1,1,15] i ∈ [n] [100,700] - - [inf,100,50, (400 ∶ 3600)]

V2 100 [1,1,15] i ∈ [n] [100,500] - - [inf,100,50, (400 ∶ 3600)]

V3 100 [1,1,15] i ∈ [n] [50,700] - - [inf,100,50, (400 ∶ 3600)]

V4 100 [1,1,15] i ∈ [n] [100,700] - - [inf,200, (10 ∶ 500),800]

V5 100 [1,1,15] i ∈ [n] [100,500] - - [inf,200, (10 ∶ 500),800]

V6 100 [1,1,15] i ∈ [n] [50,700] - - [inf,200, (10 ∶ 500),800]

† - Increase by specified amount in every cycle. “(+10)500” means increase by 10 until 500 is reached, “500(+10)” means increase by 10 starting with 500.

computation weights to be the multiples of a unit weight, and
each platform’s processing data and computation speeds to
be the number of unit weights it may process in one second.
Therefore the social costs are also measured in seconds.

A. Strategy Behaviour of Non-Cooperative Applications

In this group of experiments, we observe the behaviour
of individual applications under different offload decision
models.

1) Application with increasing weight: In this group of
tests, we assume a system of 10 hybrid applications. We
increase the weight of one of the applications (observed) while
keeping all other (support) applications’ weights unchanged.
In S1 and S1F, as shown in Fig. 3 (a) and (b), we increase the
computation weight of the observed application by 10 units
until it reaches 500 at which point it has identical weights to
the support applications. In S2, as shown in Fig. 3 (c) and
(d), we begin with a group of 10 identical applications and
gradually increase the computation weight of the observed ap-
plication. The applications’ non-cooperative offload strategies
towards remote execution are as shown in Fig. 3 (a) and (c).
The social costs are as shown in Fig. 3 (b) and (d).

Recall that when offload decisions are made according
to incomplete information, all applications assume exclusive
usage of the device’s data connection. Because the wireless
bandwidth in S1 and S1F are sufficiently large (50 units
per second), the delay caused by this communication task
is small enough to not deter the support applications ()
from remote execution. For the observed application (),
because its initial computation size is relatively small, unlike
the applications in the support group, its benefit of remote
execution is not sufficiently large enough to overcome the

extra cost of data communication at early stages of S1 and
S1F and prefers native execution.

On the contrary, when applications are given complete
information of others’ strategies, we see from Fig. 3 (a) that the
observed application’s preference on remote execution ()
is reduced as its computation weight increases.

This behaviour seems counterintuitive and counter-
productive since it follows a completely opposite direction to
that of the incomplete information scenario. Further reduction
to (14) helps understand this strategy choice. We apply S1’s
application composition to (14) and derive

pR1 =
8(w

d
1

sdR
+ w

b
1

sbR
) + w

b
1

sbN
+ 9(w

b
i

sbN
− (w

d
i

sdR
+ w

b
i

sbR
))

9(w
d
1

sdR
+ w

b
1

sbR
+ w

b
1

sbN
)

(21)

In (21) we see that pR1 is dependent on both internal and
external terms. When the platform parameters are fixed,

the internal terms are influenced only by the weights of
the observed application itself. The external term in (21)
represents the collective gain that would have been obtained
by other applications if they were to execute remotely.

In S1, S1F and S2, the external term is a constant since the
weights of the support applications are constants. When wb

1

increases, the second internal term always increase faster than
the first, the reduction in pR1 () as shown in Fig. 3 (a) and
(c) follows.

Note that at the first few test cycles, in S1, the external term
dominates (21) and the observed application become a pure
strategy agent with pR1 = 1.

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 8

200 300 400 500
0

0.2

0.4

0.6

0.8

1

(a) Strategies (S1&S1F)

200 300 400 500
0

5

10

15

20
(b) Social Costs (S1)

500 600 700 800
0

0.2

0.4

0.6

0.8

1

(c) Strategies (S2)

500 600 700 800
0

10

20

30
(d) Social Costs (S2)

200 300 400 500
0

0.2

0.4

0.6

0.8

1

x = wb
1

(e) Strategies (S3)

200 300 400 500
0

5

10

15

20

x = wb
1

(f) Social Costs (S3)

500 600 700 800
0

0.2

0.4

0.6

0.8

1

x = wb
1

(g) Strategies (S4)

500 600 700 800
0

10

20

30

40

x = wb
1

(h) Social Costs (S4)

Fig. 3. Offload Strategy Behaviour. Non-Cooperative incomplete information: aR1 , aRi , ΘB ,ΘN
B ,ΘR

B ; Non-Cooperative complete
information (Nash): pR1 , pRi , ΘP and Cooperative Offload: ΘOpt

2) Application within increasing weights: In S3 and S4,
we fix the weight of the observed application and increase the
support group’s computation weight instead. In such cases,
the external term in (21) become the variable. Because the
increase in computation weight, the collective gain of the
support group, i.e. the external term increases, and the increase
in pR1 () in Fig. 3 (e) and (g) follows.

Also note that because of the switch of behaviour between
the observed application and the support group, their strategies
(and) under incomplete information are swapped as
shown in Fig. 3 (a) and (e) and Fig. 3 (c) and (g).

3) Change in Platform Parameters: In S1F, we double
the computation speed of the remote platform, therefore the
remote platform become more attractive to all applications as
compared to S1. The results shown in Fig. 3 (a) matches
our expectation. In the incomplete information scenario, the
observed application () adopts remote execution earlier
than in S1 (). In the complete information offload game,
all players shifted (from and to and) their
strategy towards R.

Also note that the external term dominated pR1 for more
number of cycles at the beginning of S1F than S1.

B. Social Costs of Decision Models
We now look at the social costs of different decision models

of mobile cloud application ecosystems. As shown in Fig. 3 (b)
(d) (f) and (h), in the incomplete information scenario, a step
change is often observed because of the change of strategy by
applications at certain thresholds. We plot the social cost ()
alongside the cost of N () and R () to illustrate the
relations between the makespan and the costs of each platform.

Compared with the other two decision models, the incom-
plete information model produces systems with highest social
costs. Systems that are in Nash equilibrium as defined by the
complete information game have higher social costs ()
than the optimal solution (). We further observe that the
gap (price of anarchy) between the optimal social costs and
Nash social costs in Fig. 3 (d) and (h) increases while the gap
between application computation weights increases. Therefore
in the next group of tests, we investigate the relation between
price of anarchy and the weight deviation in [n].

C. Price of Anarchy
Recall that the price of anarchy of the complete information

game is defined by the ratio between the Nash social cost (ΘP)
and the optimal social cost (ΘOpt) of the system, which we
denote with PoAP . For comparison, we further define the price
of anarchy in the symmetrically incomplete information game
to be PoAB = ΘB ∶ ΘOpt. From S4 and S2, we observe slight
increases in the price of anarchy when the difference in weight
increases in [n]. This leads us to the hypothesis that the price
of anarchy is more significant when the weights in [n] have
a high value of deviation.

1) Price of Anarchy and Application Weight Deviation in
[n]: Following on the hypothesis, we conducted tests Y1,
Y2 and Y3 (each occupies a column in Fig. 4). In these
three groups of experiments, we run each cycle of our sim-
ulation with the same parameters with only the computation
weights6 of applications randomly drawn from three different

6We also conducted experiments that randomised both data and computation
weights. The results are similar to that of Y1, Y2 and Y3 and so are omitted
for brevity.

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 9

200 400 600 800 1,000
0

5

10

15

20

Θ
P
−Θ

O
p
t

(s
ec

on
ds

)
(a1) Y1, ΘP −ΘOpt

20 30
0

5

10

15

20

(b1) Y2, ΘP −ΘOpt

250 300 350
0

2

4

6

8

10

(c1) Y3, ΘP −ΘOpt

200 400 600 800 1,000
1

1.5

2

2.5

Po
A

(a2) Y1, ΘP ∶ ΘOpt

20 30
1

1.5

2

2.5

(b2) Y2, ΘP ∶ ΘOpt

250 300 350
1

1.2

1.4

1.6

1.8

2

(c2) Y3, ΘP ∶ ΘOpt

200 400 600 800 1,000
0

5

10

15

20

Θ
B
−Θ

O
p
t

(s
ec

on
ds

)

(a3) Y1, ΘB −ΘOpt

20 30
0

5

10

15

20

(b3) Y2, ΘB −ΘOpt

250 300 350
0

5

10

15

20

(c3) Y3, ΘB −ΘOpt

200 400 600 800 1,000
1

1.5

2

2.5

Θ
B
∶Θ O

p
t

(a4) Y1, ΘB ∶ ΘOpt

20 30
1

1.5

2

2.5

(b4) Y2, ΘB ∶ ΘOpt

250 300 350
1

1.5

2

2.5

(c4) Y3, ΘB ∶ ΘOpt

200 400 600 800 1,000
0

10

20

30

x = δ({wb
i}, i ∈ [n])

Θ
(s

ec
on

ds
)

(a5) Y1, Social Costs

20 30
0

10

20

30

x = δ({wb
i}, i ∈ [n])

(b5) Y2, Social Costs

250 300 350
0

10

20

30

x = δ({wb
i}, i ∈ [n])

(c5) Y3, Social Costs

Fig. 4. Y1, Y2 and Y3. Gap between ΘP , ΘB and ΘOpt, Price of Anarchy, Social Costs.

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 10

500 1,000 1,500 2,000 2,500 3,000 3,500
1

1.2

1.4

1.6

1.8

x = sbR

Po
A

(a) Increase in remote processing speed

100 200 300 400 500
1

1.2

1.4

1.6

1.8

x = sdR

Po
A

(b) Increase in wireless bandwidth

PoAP (V4) PoAP (V5) PoAP (V6)
PoAB (V4) PoAB (V5) PoAB (V6)

Fig. 5. Price of anarchy (ΘP ∶ ΘOpt) following changes in platform parameters.

distributions (exponential, Poisson and uniform) at each test
cycle. We choose these three distributions not only because of
their difference in range and variance, but also because each
distribution may be suitable to simulate the workload pattern
of particular mobile application ecosystems. For instance, a set
of applications whose workload depends on the arrival time of
different user requests may be more suited to the exponential
distribution. Applications whose workload is pre-defined to be
within a range with equal probability to pick within this range
is more suited to the uniform distribution model.

We label each test cycle with the standard deviation of the
computation weights of all applications (i.e. δ({wb

i}, i ∈ [n])),
and apply all three decision models to the system simulated
in that cycle. With each of the two non-cooperative decision
models, we record its social cost and compare it with the
optimal social cost produced by the cooperative model. We
plot five properties of the system against its deviation label in
each of the five rows of Fig. 4. These properties includes ΘP

- ΘOpt, price of anarchy = ΘP ∶ ΘOpt, ΘB - ΘOpt, ΘB :ΘOpt

and the social costs of the system in each test cycle.
From (a1) and (c1) of Fig. 4, we observe that the increase in

application weight deviation (along the x-axis) indeed increase
the probability of bigger gaps between ΘP and ΘOpt. The
same trend is also observed in (a2) and (c2) for the price of
anarchy albeit with a smaller gradient. In contrast, as shown in
(b1) and (b2), all simulations in Y2 have a similar and stable
price of anarchy. this is because Poisson distribution generates
application weights with small deviations (c.f. range of x-axis
in (b1)-(b5)). Furthermore, because applications simulated in
Y2 are very similar to each other, the social costs of all three
decision models are bounded within three small region as
shown in (b5).

Row 3 and 4 of Fig. 4 illustrate the difference between
ΘB and ΘOpt. While (b3) and (b4) follow a similar pattern
as in (b1) and (b2), results from Y1 and Y3 are rather
chaotic. This is due to the behaviour of the offload model
based on incomplete information. Recall that the model predict

an application’s cost on both platforms based on incomplete
information. This split is largely influenced by the device’s
bandwidth. When the bandwidth is given, this split is de-
termined by the weights of the applications. When these
weights are randomly chosen within a big range as in Y1,
and Y3, this split of applications is likely to produce randomly
unbalanced groups. Compared to the optimal split produced by
the cooperative model, it is predictable that the ΘB produced
by this rather random behaviour has such random distance to
ΘOpt. We observe from (a3), (a4), (c3) and (c4) of Fig. 4 that
as well as having a big distance from ΘOpt (far from the x-
axis), it is also possible for the incomplete information model
to produce near optimal results (near to the x-axis).

The actual system costs of Y1-Y3 are shown in row 5 of
Fig. 4. The increase in price of anarchy is most observable in
(a5) for it has the greatest x range.

2) Price of Anarchy and Change in Platform Parameters:
To further observe the price of anarchy in the system, we also
conducted V1-V3 in which sbR is gradually increased in each
test cycle, and V4-V6 in which sdR is gradually increased in
each test cycle. As shown in Fig. 5, the price of anarchy in
these tests are significantly lower than that from Y1 and Y3
because all applications have similar weights.

The increase in either processing speed and wireless band-
width reduces and then stabilises the price of anarchy. This
is because once a speed term is greater than a certain value,
the cost term it is related to tends to zero and no longer have
any effect over the system cost. Note that the turning points
in Fig. 5 are caused when the optimal cooperative strategy
switches one of the application’s allocation from N to R
as R becomes more and more attractive with its increasing
computation speed (or wireless bandwidth).

V. CONCLUSION

The integration of mobile and cloud computing promises
the user with convenient access to powerful applications at

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 11

any time and at any where. The research of computation
offload and migration plays an essential part in this vision
and ensures that this integration process is both seamless
and efficient. In this paper, we investigate the efficiency of
application offload in mobile cloud computing. We especially
focus on the competition between mobile cloud applications
residing on the same device which is overlooked by existing
research under the topic.

Our main contribution is the game theoretic modelling of the
non-cooperative offload game with complete information. This
model is an extension to the classic load balancing game. We
present detailed derivation of the mixed-strategy Nash equi-
librium of this game. To compare the system’s performance
at equilibrium with existing computation offload mechanisms,
we also model existing offload decision processes as a non-
cooperative offload game with symmetrically incomplete in-
formation. Furthermore, we propose a cooperative scenario
and solve the offload decision problem as a min-max integer
program to obtain optimal offload schedules.

We compare the performance of all three offload decision
models with a series of simulation experiments. On an appli-
cation level, we observe the counterintuitive strategy decisions
made by applications in the complete information game which
help understand application behaviours when no global control
is applied. On a system level, we discuss the price of anarchy
in non-cooperative scenarios. We show that significant reduc-
tion in social cost can be obtained in a cooperative setting. The
dependencies between price of anarchy and various system
parameters are also investigated. We show that high deviation
in application weights encourages high price of anarchy in
non-cooperative scenarios.

Our study demonstrates the importance of recognising the
potential competition between mobile cloud computing appli-
cations, and provide a suite of modelling tools to simulate and
solve the offload decision problem in ecosystems of mobile
cloud computing applications.

ACKNOWLEDGEMENT

This work is sponsored by the Research Project Grant of the
Leverhulme Trust (Grant No. RPG-101) and the Key Program
of National Natural Science Foundation of China Grant (No.
61133005, 61432005).

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in MobiSys’10 The 8th International Conference
on Mobile Systems, Applications, and Services, Jun. 2010.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems - EuroSys ’11, 2011, p. 301.

[3] S. Kosta, A. Aucinas, and R. Mortier, “ThinkAir: Dynamic resource al-
location and parallel execution in the cloud for mobile code offloading,”
in 2012 Proceedings IEEE INFOCOM, 2012, pp. 945–953.

[4] K. Kumar, “Cloud Computing for Mobile Users: Can Offloading Com-
putation Save Energy?” Computer, vol. 43, no. 4, pp. 51–56, Apr. 2010.

[5] M. Zbierski and P. Makosiej, “Bring the Cloud to Your Mobile:
Transparent Offloading of HTML5 Web Workers,” in 2014 IEEE 6th
International Conference on Cloud Computing Technology and Science.
IEEE, Dec. 2014, pp. 198–203.

[6] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of Computation
Offloading for Mobile Systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2012.

[7] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, 2013.

[8] Google, “Our Mobile Planet,” 2013.
[9] Nielsen, “Smartphones: So many apps, so much time,” 2014.

[10] C. Shin, J.-H. Hong, and A. K. Dey, “Understanding and prediction
of mobile application usage for smart phones,” in Proceedings of ACM
Conference on Ubiquitous Computing, UbiComp’12, 2012, pp. 173–182.

[11] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” in Pro-
ceedings of the 16th annual conference on Theoretical aspects of
computer science, STACS’09, 1999, pp. 404–413.

[12] U. Kremer, J. Hicks, and J. M. Rehg, “Compiler-directed remote
task execution for power management,” Workshop on Compilers and
Operating Systems for Low Power (COLP’00), 2000.

[13] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy
on handheld devices,” in Proceedings of the international conference on
Compilers, architecture, and synthesis for embedded systems - CASES
’01, 2001, p. 238.

[14] C. Wang and Z. Li, “Parametric analysis for adaptive computation
offloading,” in Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation - PLDI ’04, vol. 39,
no. 6, New York, New York, USA, Jun. 2004, p. 119.

[15] S. Kim, H. Rim, and H. Han, “Distributed execution for resource-
constrained mobile consumer devices,” IEEE Transactions on Consumer
Electronics, vol. 55, no. 2, pp. 376–384, May 2009.

[16] J. Flinn and M. Satyanarayanan, “Balancing performance, energy, and
quality in pervasive computing,” in Proceedings 22nd International
Conference on Distributed Computing Systems, 2002, pp. 217–226.

[17] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi, “Tactics-
based remote execution for mobile computing,” in Proceedings of the 1st
international conference on Mobile systems, applications and services -
MobiSys ’03, New York, New York, USA, 2003, pp. 273–286.

[18] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput-
ing, vol. 8, no. 4, pp. 14–23, 2009.

[19] M. A. Khan, “A survey of computation offloading strategies for perfor-
mance improvement of applications running on mobile devices,” Journal
of Network and Computer Applications, vol. 56, pp. 28–40, 2015.

[20] B. Gao, L. He, L. Liu, K. Li, and S. Jarvis, “From Mobiles to Clouds:
Developing Energy-Aware Offloading Strategies for Workflows,” in
Proceedings of the 13th ACM/IEEE International Conference on Grid
Computing (GRID’12), 2012, pp. 139 –146.

[21] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo : a Computation
Offloading Framework for Smartphones,” in MOBICASE 2010 IEEE
Computer Society, 2010.

[22] C. Chekuri and M. Bender, “An Efficient Approximation Algorithm for
Minimizing Makespan on Uniformly Related Machines,” in Proceedings
of the 6th Conference on Integer Programming and Combinatorial
Oprimization, 1998.

[23] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference - IMC ’09,
2009, p. 280.

[24] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache alloca-
tion for Content-Centric Networking,” in 2013 21st IEEE International
Conference on Network Protocols (ICNP), Oct. 2013, pp. 1–10.

IEEE ACCESS, SPECIAL ISSUE ON EMERGING CLOUD-BASED WIRELESS COMMUNICATIONS AND NETWORKS 12

APPENDIX A
DERIVATION OF pRi

When a game is in a state of mixed-strategy equilibrium, we have E[cRi] = E[cNi]. This with (6) we get

E[CR] + (1 − pRi)
⎛
⎝
wd

i

sdR
+ w

b
i

sbR

⎞
⎠
= E[CN] + (1 − pNi)

⎛
⎝
wd

i

sdN
+ w

b
i

sbN

⎞
⎠
= E[CN] + pRi

⎛
⎝
wd

i

sdN
+ w

b
i

sbN

⎞
⎠

pRi
⎛
⎝
wd

i

sdN
+ w

b
i

sbN
+ w

d
i

sdR
+ w

b
i

sbR

⎞
⎠
−
⎛
⎝
wd

i

sdR
+ w

b
i

sbR

⎞
⎠
= E[CR] −E[CN] (22)

For applications that are fixed to run on either N or R, i.e. i ∈ [n]N ∪ [n]R we define

Cf
j = ∑

i∈[n]j
⎛
⎝
wd

i

sdj
+ w

b
i

sbj

⎞
⎠
, j ∈ {N,R} (23)

Take this into (4) we have

E[CN] = Cf
N + ∑

i∈[n]−[n]N p
N
i

⎛
⎝
wd

i

sdN
+ w

b
i

sbN

⎞
⎠

and E[CR] = Cf
R + ∑

i∈[n]−[n]R p
R
i

⎛
⎝
wd

i

sdR
+ w

b
i

sbR

⎞
⎠

(24)

Take these into (11) we have

E[CN] = Cf
N + ∑

i∈[n]−[n]
N
aNi

⎛
⎝
E[CN] −E[cNi] +

⎛
⎝
wd

i

sdN
+ w

b
i

sbN

⎞
⎠
⎞
⎠

(25)

E[CR] = Cf
R + ∑

i∈[n]−[n]
R
aRi

⎛
⎝
E[CR] −E[cRi] +

⎛
⎝
wd

i

sdR
+ w

b
i

sbR

⎞
⎠
⎞
⎠

(26)

Take a difference between these two equations we have

E[CR] −E[CN] = Cf
R −C

f
N + ∣[n]H∣(E[CR] −E[CN]) + ∑

k∈[n]H
⎛
⎝
wd

k

sdR
+ w

b
k

sbR

⎞
⎠
−
⎛
⎝
wd

k

sdN
+ w

b
k

sbN
) (27)

E[CR] −E[CN] =
⎛
⎝
Cf

R −C
f
N + ∑

k∈[n]H
⎛
⎝
wd

k

sdR
+ w

b
k

sbR

⎞
⎠
−
⎛
⎝
wd

k

sdN
+ w

b
k

sbN

⎞
⎠
⎞
⎠
/

⎛
⎝

1 − ∣[n]H∣
⎞
⎠

(28)

Finally, compare this with (22) we get

pRi
⎛
⎝
wd

k

sdN
+ w

b
k

sbN
+ w

d
k

sdR
+ w

b
k

sbR

⎞
⎠
−
⎛
⎝
wd

k

sdR
+ w

b
k

sbR

⎞
⎠
=
⎛
⎝
Cf

R −C
f
N + ∑

k∈[n]H
⎛
⎝
wd

k

sdR
+ w

b
k

sbR

⎞
⎠
−
⎛
⎝
wd

k

sdN
+ w

b
k

sbN

⎞
⎠
⎞
⎠
/

⎛
⎝

1 − ∣[n]H∣
⎞
⎠

(29)

pRi =
⎛
⎝
wd

i

sdR
+ w

b
i

sbR

⎞
⎠
/

⎛
⎝
wd

i

sdN
+ w

b
i

sbN
+ w

d
i

sdR
+ w

b
i

sbR

⎞
⎠

+
⎛
⎝
Cf

R −C
f
N + ∑

k∈[n]H
⎛
⎝
wd

k

sdR
+ w

b
k

sbR

⎞
⎠
−
⎛
⎝
wd

k

sdN
+ w

b
k

sbN

⎞
⎠
⎞
⎠
/

⎛
⎝
⎛
⎝

1 − ∣[n]H∣
⎞
⎠
⎛
⎝
wd

i

sdN
+ w

b
i

sbN
+ w

d
i

sdR
+ w

b
i

sbR

⎞
⎠
⎞
⎠

(30)

