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Abstract

The acquisition of 3D point clouds representing the surface structure of real-world

scenes has become common practice in many areas including architecture, cul-

tural heritage and urban planning. Improvements in sample acquisition rates and

precision are contributing to an increase in size and quality of point cloud data.

The management of these large volumes of data is quickly becoming a challenge,

leading to the design of algorithms intended to analyse and decrease the com-

plexity of this data. Point cloud segmentation algorithms partition point clouds

for better management, and scene understanding algorithms identify the compo-

nents of a scene in the presence of considerable clutter and noise. In many cases,

segmentation algorithms operate within the remit of a specific context, wherein

their effectiveness is measured. Similarly, scene understanding algorithms depend

on specific scene properties and fail to identify objects in a number of situations.

This work addresses this lack of generality in current segmentation and scene

understanding processes, and proposes methods for point clouds acquired using

diverse scanning technologies in a wide spectrum of contexts. The approach to

segmentation proposed by this work partitions a point cloud with minimal infor-

mation, abstracting the data into a set of connected segment primitives to support

efficient manipulation. A graph-based query mechanism is used to express further

relations between segments and provide the building blocks for scene understand-

ing. The presented method for scene understanding is agnostic of scene-specific

context and supports both supervised and unsupervised approaches. In the for-

mer, a graph-based object descriptor is derived from a training process and used

in object identification. The latter approach applies pattern matching to identify

regular structures. A novel external memory algorithm based on a hybrid spatial

subdivision technique is introduced to handle very large point clouds and acceler-

ate the computation of the k-nearest neighbour function. Segmentation has been

xiv



successfully applied to extract segments representing geographic landmarks and

architectural features from a variety of point clouds, whereas scene understand-

ing has been successfully applied to indoor scenes on which other methods fail.

The overall results demonstrate that the context-agnostic methods presented in

this work can be successfully employed to manage the complexity of ever growing

repositories.

Keywords: computer graphics, point cloud processing, segmentation, scene un-

derstanding, object tagging
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CHAPTER 1

Introduction

Over the past decade, digital photography has been adopted by a large segment

of the population with digital cameras becoming less expensive, more advanced

and ubiquitous. This has led to the creation of massive repositories of digital

content in the form of images and videos. To address this continuous increase

in content, research has looked into ways of automatically organising this data

by using information contained within these images. In particular, computer

vision and image processing techniques have been designed to reason about the

content in this data. For instance, face recognition algorithms have experienced

rapid advances and are now employed on social networks and digital cameras to

associate people to photos in which they are visible. The application of these

algorithms adds semantic layers to digital content, which otherwise would simply

consist of a set of coloured pixels when processed by a computer system.

More recently, another digital representation is growing in popularity, one

that describes the geometric surface structure of real-world objects. Instead of

using colour sensors to capture the appearance, 3D cameras or scanners use

depth sensors to measure the distance to the objects in view and produce a set

of points in space, a point cloud. Both images and point clouds are necessary

to capture different aspects of a scene. In a similar fashion to digital cameras,

continuous improvements in 3D scanning technologies resulting in improved pre-

cision and higher acquisition rates, have been contributing towards an increase in

the creation and size of point cloud content. This growth is accentuated by the

widespread popularity of commodity hardware which is primarily intended for

the acquisition of small indoor environments. As a result, applications making

use of point clouds have increased, with the acquisition of 3D point information

becoming common practice in many areas including architecture, cultural her-

1
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Sunflower

Image 

Processing

Acquisition using 

Depth Sensing Hardware

Acquisition using 

Photogrammetry

Post Processing

(Segmentation)

3D Object 

Recognition

Box

Figure 1.1: Acquisition of a scene into a digital representation, either as a 2D image
or 3D point cloud. In the latter case, different methods can be used to scan the scene
resulting in different results. The identification of objects in the scene depends on the
digital representation and algorithms used. Segmentation plays an important part in
the recognition process.

itage (CH), manufacturing and urban planning. A common underlying problem

faced within these different domains is the increased complexity in handling these

large data sets, typically ranging from a few thousand to several million points,

which has resulted in the need for automated mechanisms to organise and hence

facilitate the manipulation of point clouds.

While it may be a trivial task for a person to recognise objects and structures

in an image or a point cloud, this is not a straightforward task for a computer sys-

tem. This is particularly challenging in scenes comprised of an unknown number

of different objects, where the complexity of the identification task is augmented

with the added challenge of determining object boundaries, with objects which

may only be partially visible to the sensor due to inter-object occlusions. Typi-

cally, using both appearance and shape information increases the potential for a

correct interpretation of a scene. Figure 1.1 illustrates an example, where image

processing techniques may correctly identify a sunflower and 3D object recogni-

tion techniques may determine the presence of a box. The combination of these

results may contribute to a better interpretation of the scene, such that the com-

puter system can now deduce that the scene contains a box with a sunflower

picture on one of its sides. In many cases, however, information related to the

appearance of a scene is not available with point clouds. For instance, in many

point clouds used as case studies in this thesis the acquisition process is carried

out by third parties, and only position information per point is made available.

Points from different scanning views can be combined in a common coordi-



1. Introduction 3

Image Processing

Techniques

Object Recognition

Techniques

+

Scene Understanding

Techniques
Digital Scene Representation

{ Circle, Diamond, Triangle, Star }

{Blue, Yellow, Red }

{Blue Diamond, Blue Star, Yellow Triangle, Red Circle}

Figure 1.2: Given a digital representation of a scene, image processing, object recogni-
tion and scene understanding techniques have been used to identify the entities/objects
contained in the scene. The output is an association between elements of the digital
representation and a semantic interpretation, in this case for coloured shapes.

nate space to create a higher quality point cloud, with each depth sensor view

contributing surface points which may not be visible from the other views. In

particular, Iterative Closest Point (ICP) algorithms are used to combine individ-

ual scanner views into one consistent point cloud, and Simultaneous Localization

and Mapping (SLAM) techniques are used to construct a point cloud of a scene by

continuously keeping track of the scanner’s location within the scene. Figure 1.1

illustrates the application of these techniques to produce a point cloud which

closely matches the shape of the box in the image using depth sensing hardware.

Following acquisition, a segmentation process can optionally be applied to parti-

tion the point cloud into groups of related points, where in this case, the groups,

rendered using different colours, represent the four sampled sides of the box.

This additional information may be used by a 3D object recognition algorithm

to deduce that the point cloud represents a box. Analogous to a programming

language compiler front-end, segmentation may be viewed as the tokenizer (or

lexer) of the input stream, whereas 3D object recognition may be viewed as the

parser, which groups together tokens representing specific constructs in the lan-

guage. In the case of point clouds, these groups of points, referred to as segments,

may be subsequently used to carry out a variety of tasks, for instance removing

objects from a scene to improve visualisation, or measuring distances between

the boundaries of a room.

Figure 1.2 illustrates the high-level approaches used for object identification
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from point clouds, which include 3D object recognition and scene understanding

techniques. In both cases, the result consists of a mapping between point subsets

of the scene point cloud and semantic labels. Scene understanding algorithms

have traditionally been employed to classify images of scenes into semantic cate-

gories; for instance, an input data set classified as an office space. The many dif-

ferent techniques can be divided into two main categories, namely scene-centred

approaches and object-centred approaches. In the former, characteristics of the

scene such as clutter and symmetry are used for classification, whereas in the lat-

ter, classification depends on the identification of objects such as plants, chairs

and tables. These algorithms find application in numerous fields by contributing

additional semantic information, particularly when the input is a set of images,

but also when the input is a point cloud. Figure 1.3 illustrates a point cloud

of a typical scene acquired using triangulation-based (§2.3.2) depth sensors. An

autonomous navigation unit moving around such an environment would certainly

benefit from the understanding of surrounding structures, for instance, if given

the task of locating an object on a shelve or a table. In these scenarios, the

majority of samples are initially taken from the surfaces of the larger objects

in the scene, such as the table, chairs and shelving. Since fewer samples cover

small objects that lie on the table or the floor, identification of these elements

becomes more challenging. Proper identification of these smaller objects requires

a separate acquisition step which only considers a small portion of the room such

as the table top, or shelve. If an autonomous navigation system can properly

interpret the room, then it can focus its scanners on the smaller section of the

room to locate the required object. 3D object recognition techniques (§4.1) have

predominantly been used to identify these small objects using a myriad of point-

based object descriptors. On the other hand, scene understanding techniques

(§4.2) have been employed to identify the more prominent components of a scene

by making use of segment-based scene descriptors, which encode via a training

process the objects making up a scene. This approach has been shown to be very

sensitive to changes in the object’s poses between trained and unseen scenes. For

instance, toppled or inclined chairs similar to those in the office point cloud of

Figure 1.3 are not correctly classified by any of the state of the art indoor scene

understanding techniques. The chair on a table example highlights another short-

coming of these techniques, in that many work on the assumption that objects

are always located at pre-established distances from a user-defined ground. The

work presented in this thesis seeks to address these limitations.
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Toppled chair on the floor

Shelving units

Table
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Chair on a table

Room floor
Something on the floor

Figure 1.3: Scene understanding of indoor scenes from point clouds acquired using com-
modity triangulation-based hardware are typically noisy and cluttered. Moreover these
may contain static objects in different poses (chairs) and varying structures (shelving).
In order to cover the entire room, the point cloud resolution is not sufficient to identify
small objects (object on the floor and shelving units).

1.1 Structure and Object Identification from Point Clouds

Figure 1.4 illustrates point clouds scanned using a variety of scanning technolo-

gies. These include long-range time-of-flight laser scanners to acquire the Mna-

jdra and Tarxien pre-historic sites over a number of hours (second row), and

commodity hardware such as the triangulation-based Asus Xtion scanner, to ac-

quire the office scene in under 1 minute (first row). Segmentation algorithms

(Chapter 3) are necessary when working on very large point clouds, for tasks

such as visualisation, editing and storage. In some cases, segmentation can be as

straightforward as partitioning the points into equally sized regions, as shown in

Figure 1.4 (bottom row). Other more complex tasks, such as object recognition or

distance measurements, require the use of a more elaborate segmentation process,

where the output segments correspond to some meaningful concept. For instance,

in the case of object recognition, segments could represent tables and chairs, and

in the case of distance measurements, segments could represent structures such

as floors, walls and ceilings. General purpose segmentation adopts two principal

approaches, namely using processes that fit primitive geometric shapes, such as

spheres and cylinders, to the input point cloud, and region-growing processes

which expand segments from seed points by following some surface property cri-

teria such as curvature. Both approaches make a number of assumptions about

the input data; in the first case, that the points can actually fit the set of primi-
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Figure 1.4: Point clouds acquired using different scanners and used in a variety of
domains. Top row shows office scene scanned using a triangulation-based scanner
(Asus Xtion); second row illustrates two point clouds scanned using time-of-flight laser
scanners; third row illustrates a point cloud acquired using airborne LiDaR over the
Maltese archipelago.
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tive shapes used, and in the second, that the points are sampled from a relatively

smooth surface with minimal sensor noise. Within these two approaches, pro-

cesses have been tailored to suit specific scenarios, for instance segmentation of

point clouds representing buildings, trees or industrial objects. The identifica-

tion of objects and scene structures such as the floor, stairs or shelving, heavily

depends on the segments produced. Whereas segmentation algorithms group

points into related clusters, they do not provide a semantic interpretation for the

segments. Instead, the grouping and labelling of these segments is the remit of

scene understanding and object recognition algorithms. For instance, a number

of segments corresponding to the steps of a flight of stairs, are grouped together

and labelled appropriately as stairs. In addition to correct segmentation results,

many indoor scene understanding methods also rely on scene-specific parameters;

for example, the upward direction of the scene and distances between an object

and the ground. This leads to scenarios where slightly changing the size, pose,

or vertical position of an object (e.g. Figure 1.3) renders the method ineffective.

1.1.1 Applications

Many tasks carried out in a variety of fields can benefit from segmentation, 3D

object recognition and scene understanding methods from point clouds.

Cultural Heritage

Many institutions are engaged in the acquisition of point clouds repre-

senting sites and objects of significant CH importance. Segmentation is

necessary for documentation and preservation of a site or object, and en-

ables realistic virtual reconstructions and dissemination to the general pub-

lic (Yastikli, 2007; Rinaudo et al., 2010).

Architecture

Semantically rich digital facility models are usually produced from com-

puter aided design (CAD) models of a building. Given the variance be-

tween CAD models and what is actually built, indoor scene understand-

ing techniques have recently emerged which use point clouds acquired us-

ing laser scanners to automatically synthesise building information models

(BIM) (Tang et al., 2010).

Planning

3D building data is an integral part of many large-scale urban models,
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with data acquired using a variety of sensors and acquisition techniques.

In particular, airborne LiDaR scanners producing accurate terrain 3D in-

formation greatly simplifies large-scale urban modelling (Hu et al., 2003).

Segmentation and object recognition techniques have been used to acceler-

ate the post-processing effort by automatically partitioning the data into

urban entities.

Robotics

Autonomous robot localisation and navigation greatly benefits from the

availability of sensors capable of capturing depth information, for instance

to prevent collisions and to locate specific objects (Biswas & Veloso, 2012).

Indoor scene understanding techniques allow these autonomous robots the

possibility of reasoning about their surroundings.

Manufacturing

Advances in 3D printing technologies have brought about a paradigm shift

in the manufacturing process of small objects. Scanning technologies are

used in order to manufacture replicas of real-world objects, which can then

be accordingly modified using appropriate segmentation algorithms and 3D

printed (Lipson & Kurman, 2013).

1.2 Research Aim

The research aim of this thesis is the advancement of techniques intended to

facilitate the reasoning about and management of point clouds. Both segmen-

tation and scene understanding methods contribute towards this goal. Previous

indoor scene understanding methods, using both supervised and unsupervised

approaches, have shown merit in reasoning about indoor scenes, but have so far

depended on scene-specific context in their interpretation process. This thesis

looks into filling this gap by designing a context-free scene understanding frame-

work which is able to, without using scene-specific parameters, provide a valid

interpretation for scenes such as the office in Figure 1.3. Segmentation is a critical

component of this pipeline. Therefore, this work also looks at the development of

a general purpose segmentation algorithm, which is able to reliably partition low

quality point clouds acquired using commodity depth sensors for indoor scene

understanding purposes, but which is also suited to partition point clouds ac-

quired using a variety of other scanners for application in different fields (Figure
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Figure 1.5: Rather than producing multiple point cloud processing pipelines where
segmentation and task related processing methods are purposely designed to fit specific
tasks, a context-free point cloud processing pipeline tries to minimise the set up required
to address tasks from a variety of domains.

1.5). For this purpose, this thesis looks into the design of a general-purpose point

cloud segmentation process which combines the advantages of both shape fitting

and region-growing approaches.

1.2.1 PaRSe - Graph-based point cloud segmentation

For most tasks, manipulation of a point cloud usually requires extensive expertise

in the use of CAD and modelling software. In this work, automated mechanisms

which alleviate some of these tasks are presented in the form of a graph-based

point cloud segmentation process, referred to as PaRSe, which combines the

benefits of region-growing and primitive fitting approaches. Rather than just

partitioning the input into a list of segments, a structure graph is built during the

segmentation process which describes connectivity information between segment

primitives. A variety of point clouds are used to evaluate the generality of the

approach in supporting different tasks.

Objectives

• to design a general purpose segmentation algorithm

• to demonstrate its applicability on a variety of inputs, in particular point

clouds representing CH sites
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1.2.2 Processing of very large point clouds

In some cases, the size of the point cloud acquired is so large that it does not

entirely fit in main memory. The majority of post-processing algorithms, such

as segmentation, work under the assumption that the data sets operated on can

fit in main memory, while others take into account the size of the data sets and

are thus designed to keep data on disk. For many post-processing algorithms, a

considerable amount of time is spent searching for the k-nearest neighbour (k-NN)

of each point. Optimal performance results are achieved when k-NN computation

is carried out in-core, i.e. when both points and acceleration structure are stored

in main memory. On the other hand out-of-core techniques take into account the

size of the points but are much slower due to overheads related to disk I/O. A

novel out-of-core algorithm is presented in this thesis, which maximizes processor

utilization while keeping I/O overheads to a minimum.

Objectives

• to enable the execution of point cloud segmentation on devices with limited

memory

• to design an out-of-core k-NN process with similar running times to an

in-memory approach

1.2.3 CoFFrS - Context-free scene understanding framework

The method to scene understanding presented in this thesis adopts a supervised

approach. However, rather than using a training set of scenes to synthesise a

scene descriptor and thus limiting its applicability to very similar unseen scenes,

individual descriptors representing generic objects in the scene are synthesised us-

ing PaRSe and the inclusion of additional shape-related information. Searches for

specific segment patterns in the input point cloud are used to recognise structures

such as room boundaries and shelving. A novel scene understanding framework

is introduced, referred to as CoFFrS, which first identifies scene structures by

searching for specific segment patterns and then associates the remaining seg-

ments to previously trained objects.
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Objectives

• to design a scene understanding method that is not sensitive to changes in

object pose and scene parameters

• to determine, using a qualitative approach, its effectiveness against scenes

from previous literature and new ones

1.3 Thesis Outline

This thesis is organised as follows:

Chapter 2: Preliminaries provides a comprehensive overview of concepts, def-

initions and notation used throughout the rest of the thesis.

Chapter 3: Segmentation of Point Clouds provides a detailed literature re-

view of the various segmentation methods used on point clouds.

Chapter 4: Object Recognition and Indoor Scene Understanding

provides a detailed literature review on the methods used for 3D object

recognition and indoor scene understanding from point clouds.

Chapter 5: Point Cloud Structure Graphs presents a general purpose graph-

based segmentation algorithm and outlines its utility in a variety of tasks.

Chapter 6: Fast Scalable k-NN Searches for Very Large Point Clouds

presents a novel out-of-core algorithm which enables devices with limited

memory to carry out point cloud segmentation processes.

Chapter 7: Structure Graphs for Indoor Scene Understanding presents

a novel pipeline for scene understanding tasks which does not rely on a spe-

cific scene context.

Chapter 8: Conclusions concludes the dissertation, discussing contributions

and limitations of this work and presenting potential avenues for future

work.



CHAPTER 2

Preliminaries

This chapter provides a comprehensive overview of concepts, definitions and no-

tation used throughout the rest of the thesis. The notation used for sets and

operations on them is first defined, followed by a description of point clouds

in terms of this notation, together with a number of properties and operations

generally associated with them. The acceleration structures used to speed-up

computations on point clouds are then briefly outlined, followed by a description

of a number of operations on points which take advantage of these acceleration

structures.

2.1 Collections

An important concept in mathematics and computer science is that of a col-

lection of objects with similar type. Within these collections, both order and

repetition may or may not be important. In this section sets are defined, which

are collections in which neither order nor repetition is important.

2.1.1 Set Comprehensions

The simplest way to define a set is by listing all elements in the collection. For

example, the set of days in the week D = {Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday}. One important set is the one which

contains no elements, the empty set: ∅. In general, it is useful to define sets in

terms of properties that their elements are expected to satisfy, with properties

expressed as predicates. Consider for example, the set of nationalities of football

players who scored at least once in a world cup competition. The notation used

12
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to define sets in terms of properties is called set comprehension and is used to

construct sets without having to list all elements:

{p : Person|p ∈ WorldCupFootballers ∧ score(p) ≥ 1 • nationalityOf(p)}

The symbols | and • separate the three parts of the set comprehension. The

first part, declaration, declares the variables used in the definition, the second

part is a predicate and the third part, the term, gives an expression representing

the objects inserted in the new set. If instead of the nationalities of the players,

age of each player which satisfies the predicate needs to be constructed, then the

term can be changed to ageOf(p). Both predicate and term can sometimes be

omitted. For example, the term in the previous comprehension can be dropped

to return persons. Moreover, if there are no constraints in the predicate part, i.e.

this always evaluates to true, the predicate part can be omitted.

More complex properties on sets can be described using predicate quantifi-

cation. These include universal quantification (∀) and existential quantification

(∃) which are used to state that all or at least one objects in a set satisfy a

particular property. Set operators such as subset (S ⊆ T ), equality (S == T ),

union (S ∪ T ), intersection (S ∩ T ), and difference (S \ T ) provide a mechanism

for comparing sets and for creating new ones using sets which are already de-

fined. Union and intersection operators can be generalised in order for them to

be applied on a number of sets rather than just two.

2.1.2 Set Partitions

Generalised union enables the introduction of the notion of a partition of a set.

For instance, given the set of all players participating in the world cup, one

possible set partition is the one which creates 32 sets, with each set representing

a specific team. Team membership is said to partition the set of players since (i)

all players must be in at least one team, and (ii) players may not be in more than

one of the teams. Each partition is a subset of the original set and is defined as

follows:

Definition Given an index set I and sets Pi for every i ∈ I, we say that the

indexed sets partition a set S if (i) they include all elements of S, i. e.
⋃

i∈I Pi =

S; and (ii) any two different partitions Pi and Pj have no common elements:

∀i, j : I· if i 6= j then Pi ∩ Pj = ∅.
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Figure 2.1: Four valid set partitions of the set {1,2,3,4,5,6,7,8,9}

Given the set {1,2,3,4,5,6,7,8,9}, Figure 2.1 shows a sample of valid set par-

titions. Set partitions provide a mechanism to cluster objects within a set, with

the elements of the partition themselves sets, which can be modified using the

set operators described above.

2.1.3 Power Set and Cartesian Product

The elements of a set partition of S are all subsets of S. The power set of

S, written P(S), gives an enumeration of all these possible subsets. Using set

comprehension, the power set is constructed as follows:

Definition Given a set S containing objects of type X, the power set of S,

written as P(S), is defined to be the set of all subsets of S:

P(S)
def
= {T |T ⊆ S}

Given a set S containing n objects, P(S) contains 2n objects. The Cartesian

Product between sets provides a mechanism to combine objects from distinct sets.

Using set comprehension, the Cartesian Product between two sets is defined as

follows:

Definition Given a set S of type X, and another T of type Y , the Cartesian

Product of S and T , written as S × T , is defines to be the set of all pairs with

the first object an element of S, and second object an element of T :

S × T def
= {x : X, y : Y |x ∈ S ∧ y ∈ T • (x, y)}

2.1.4 Relations

The notation and operations defined so far are used to construct and manipulate

collections of related objects. Relations are then used to define correspondences
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Figure 2.2: Arrows describe a relation between objects. In this case between objects
in a set partition and colours in another set.

between these objects. Given sets S and T , a relation between these sets can be

created to map in some specific way objects from one set to the other. Whereas

the Cartesian Product denotes the upper bound on the number of mappings pos-

sible between objects in sets, a relation is used to define specific correspondences

between these objects. Figure 2.2 illustrates two sets storing objects of different

type. The set on the left shows a specific set partition, whereas the one on the

right contains three objects, namely colours red, green and blue. A relation,

for instance hasColour represented as arrows, maps objects from one set to the

other. Note that not all objects need to form part of this mapping. For instance,

in the case of object {10, 11}, the relation hasColour is undefined. Relations

can naturally be expressed as sets of pairs. The use of sets to express relations

enables the use of set comprehension to construct relations and the set operators

previously defined can be used to combine relations of the same type.

2.2 Graphs

Figure 2.3 illustrates two graphs representing two different problems. In the first

(left) nodes represent towns, whereas in the second (right) nodes represent process

state. Despite representing different problems, they exhibit common features, in

that both consist of a number of nodes (vertices or states) connected via arcs

(edges or transitions) and both nodes and arcs carry some relevant information.

The transition relation defines how nodes are connected in the graph. This

relation, can either be directed as is the case with the CPU process life-cycle
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Figure 2.3: Graphs representing two different problems. In the first distances between
towns is shown, whereas the second describes transitions between the different states
of a running process.

which describes the different running process state transitions, or else undirected

as in the distances between towns example. For the towns distance graph, this

relation can be used to answer queries such as give me three towns whose total

distance between them is less than 6 miles. The labelled arcs provide sufficient

information such that the set {Zurrieq, Sliema,Hamrun} can be computed. In

the case of the running process graph, the relation can answer queries such as is

create, run and termination a valid sequence of events? which is clearly valid and

returns the set {new, ready, running, done} enumerating the nodes visited whilst

moving through the sequence. Arcs in the graph can be represented as triples

(v, l, v′), where v and v′ denote nodes in the graph connected via the labelled arc

l. A graph is defined as follows:

Definition The graph G = (V, L,E), consists of a set of nodes V , a set of labels

L, and a set of labelled arcs between vertices E ⊆ V × L× V .

Labels can be used as predicates and thus enable a more generic method of

attaching semantics to arcs and nodes. Consider for example augmenting the

labels of the towns distances graph with elevation information in addition to

distance. Arcs of the form (v, l, v′) are extended to (v,< l,m >, v′), such that

(Marsa, 6M,Safi) becomes (Marsa,< 6M, 200m >,Safi) by extending labels

to vectors of information. A similar approach is taken with node labels, for

instance instead of including elevation information in E, elevation values can be

included within nodes in addition of town names. In general, graph labels for

both nodes and arcs take the form of a sequence of key, value pairs. Keys are

unique whereas values depend on what property is being modelled. In the case of

town names, values can simply be a string of characters; in the case of elevation,

a floating point number. Moreover, there are instances where the value is chosen
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from a pre-established set of possibilities. For instance, if the exact population

size is not important in terms of numbers, size values can be selected from the set

{small,medium, large}. Rather than placing queries on a graph G={V, L,E}, of

the type What is the distance between Zurrieq and Safi?, it is sometimes useful

to query the graph with Are there two towns whose distance between them is less

that 4 miles?. The answer to this query is the set of pairs of nodes which satisfy

the predicate, in this case {(Zurrieq, Sliema),(Zurrieq,Hamrun)}. Using set

comprehension notation, and assuming a distance function is available, this query

is expressed as follows:

{(v, l, v′) : E|distance(l) < 4 • (nameOf(v), nameOf(v′))}

2.2.1 Scene Graph

Graphs may be used to represent many different concepts. One which is closely

related to computer graphics, is the scene graph, which in its basic form models

the spatial relationships between objects in a virtual scene. Figure 2.4 illustrates

a 2D scene of a room and a scene graph describing it. In its basic form, the

scene graph is used to group together similar objects. For instance, furniture

objects including tables and chairs are all located under the node Furniture and

these are further subdivided under Chairs and Tables nodes. The on relation

is defined over the objects in the scene in order to describe objects which are

directly placed on other objects. In this specific example, the relation is defined

by the set {(PurpleChair, BlackTable), (TV,BlackTable)}. It clearly does not

apply to all objects, however other relations (e.g. proximity, contains) can be

added to the graph and set comprehensions can be used to construct these sets

over objects in the scene.

If the objects in Figure 2.4 left are de-constructed, i.e. rather than viewing

the scene as three chairs, one table, one TV, one lamp, two pictures, walls, floor

and ceiling, these are viewed as a set of geometric line primitives making up the

scene, then a very useful operation on this set is one which re-constructs the scene

into its constituent objects. This operation takes a set of lines and produces a

set partition whose elements represent individual objects. This specific problem

is addressed by object recognition and scene understanding techniques, which

make use of relations between these different parts to infer an interpretation of

the scene, i.e. three chairs, one table, one TV, one lamp, two pictures, walls,

floor and ceiling.
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Figure 2.4: A simple 2D scene and a corresponding scene graph describing the elements
in the scene. The on relation provides additional information on which objects are
located on the table.

2.2.2 Transition Trees

A graph G = (V, L,E) is said to be a tree, if it satisfies a number of constraints,

namely, that every node may have no more than one predecessor (called the

parent), except for one node which has zero parents and is labelled as the root

node. Every node is reachable from the root node. A predecessor relation,

explicitly defines an order over the nodes in the tree. The leftmost directed

graph of Figure 2.5, illustrates a tree GT with eight vertices and the predecessor

relation:

E = {(root, A),(A,B),(A,C),(B,D),(C,E),(D,F ),(D,G)}

A traversal of the tree, in either depth or breadth first order, produces a set of

labels which describe the possible connectivity paths starting from the root node.

For instance, a depth first traversal of the left-most tree in Figure 2.5 results in:

a→ b→ d→ f

a→ b→ d→ g

a→ c→ e

A transition tree can be created for each node in GT , whereby each node is

set as the root node. The middle and right most trees in Figure 2.5 illustrate the

transition trees for nodes C and D respectively. The depth of a transition tree

defines the maximum length of connectivity paths. For instance, if the depth for

the C transition tree is set to 3, the resulting set of connectivity paths would be

equal to {c→ a, c→ b→ d, e}. If the depth of the D transition tree is set to 2,

the set of connectivity paths would be equal to {f , g, d→ b}.
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Figure 2.5: Three transition trees, with root nodes set from left to right to Root, C
and D.

2.2.3 Graph Compatibility

Two graphs can be compared together in order to establish their compatibility.

For instance, graphs encoding 3D objects can be directly compared to establish

object similarity (Maple & Wang, 2004). Graphs G and H are equal only when

their respective sets of vertices, labels and edges are equal as follows:

Definition A graph G = (VG, LG, EG) is equal to a graph H = (VH , LH , EH),

written G = H, if an only if VG = VH , LG = LH and EG = EH .

This definition of graph equality is usually relaxed in order to measure the

distance between graphs using a variety of metrics. Figure 2.6 illustrates four 2D

shapes with corresponding graphs modelling side connectivity. Nodes represent

sides, whereas arcs define a relation specifying which of the sides are connected,

with labels stating the smallest angle subtended between each pair of connected

sides. In this case, a perfectly reasonable distance metric, compares the cardinal-

ity of the elements of the set partition of E when grouped by angles x ∈ X. The

resulting set partitions are shown in Table 2.1. Using this distance metric, the

first two shapes of Figure 2.6 would appear to be identical, whereas the square

and octagon shapes would appear to be completely different. The house shape
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Figure 2.6: 2D shapes with their respective graphs, where nodes represent shape sides
and edges are labeled with the smallest angle subtended between each pair of adjacent
sides.

square {{(A, 90, B), (B, 90, C), (C, 90, D), (D, 90, A)}}
rectangle {{(E, 90, F ), (F, 90, G), (G, 90, H), (H, 90, E)}}
octagon {{(I, 135, J), (J, 135, K), (K, 135, L), (L, 135,M), (M, 135, N),

(N, 135, O), (O, 135, P ), (P, 135, I)}}
house {{(Q, 135, R), (R, 135, S), (U, 135, V ), (V, 135, Q)},

{(S, 90, T ), (T, 90, U)}}

Table 2.1: Set partitions computed according to arc angle values for shapes in Figure 2.6

set partition contains a partition with four arcs at 135 degrees and another with

two arcs at 90 degrees and therefore has elements (in this case angles between

sides) in common with all the three other shapes. The shape distance metric

used here is a heuristic, and therefore not guaranteed to give an optimal solu-

tion on all inputs (in this case 2D shapes) as illustrated in Figure 2.7. Using

this same metric, the first and second shapes are identical, since the respective

set partitions both have one partition (90 degrees) of cardinality 4. In order

to further discriminate between these shapes, additional information has to be

stored within the arcs. For instance, direction of rotation as either clockwise or

anti-clockwise can be added and the set partitions originally computed to distin-

guish between relations of various angles can be further refined to now include

orientation information.
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Figure 2.7: 2D shapes with their respective graphs, where nodes represent shape sides
and edges are labelled with the smallest angle subtended between each pair of adjacent
sides.

2.3 Point Clouds

A point cloud is a collection of geometric data points within a coordinate sys-

tem. This collection can be viewed as a set, in that order is not important and

no two elements are the same even if these points happen to have exactly the

same properties. In the context of this work, a point cloud is used to describe

a discrete point-based external surface representation. Minimally, it consists of

a collection of geometric points storing per-point position information with no

connectivity relation between points. A set embellished only of position informa-

tion is referred to as a raw point cloud. If required, connectivity between points

may be computed by applying some surface reconstruction algorithm to produce

a continuous surface representation. Rapid advancements in acquisition methods

and hardware have resulted in point clouds which can be very large and able to

capture high frequency surface detail, with sizes ranging between 106 and 109

becoming commonplace.
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Figure 2.8: A cylinder with an etched band along its centre with (from left to right)
increasing number of surface samples. Only the third set of samples provide some
information about the etched band.

2.3.1 Point Sampling

At its very basic, a point sample consists of three real numbers defined within

some 3D coordinate space which specify position. A direction vector represent-

ing the surface normal from where the point is sampled is also usually computed.

Figure 2.8 illustrates a cylinder being represented with, from left to right, an

increasing number of points with position and normal information. Additional

properties are usually attached to the point depending on how the point is used.

For instance, when used for visualisation purposes, the sample point tries to cap-

ture a very small area on the surface of the object and is therefore augmented with

visualisation properties such as colour, alpha blending and pixel size properties.

Sampling refers to the process of acquiring a discrete set of points represen-

tative of a signal. In this context, the signal can either be a virtual or real scene.

A virtual scene consists of a collection of geometric primitives (e.g. triangles,

spheres), whereas a real scene can be anything physical around us. Whether vir-

tual or real, a scene SC can be characterised as a set of parametrised 3D surface

patches SP and defined as follows:

Definition A smooth parametrised surface patch SP in R3 is a function x : U ⊂
R2 ⇒ R3. As (u,v) varies over U , x(u,v)s traces out a surface patch in R3.

The function x, may represent any function that defines a surface. Figure 2.9

visually illustrates the definition of a surface patch above. For very simple sur-

faces, for instance a plane (continuous and without boundaries), three samples

are enough in order to establish the function describing the surface patch whereas
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Figure 2.9: The function x traces a surface patch in R3.

for more complex free-form surfaces, many more samples are required to establish

x. In the case of a generic scene, there may exist many sets of surface patches

which can describe the scene, all of which might be valid. Given a particular set,

any complex surface patch contained within may be further split into simpler

surface patches. Establishing an optimal set of surface patches is in itself a very

active research topic (Cohen-Steiner et al., 2004) and is not discussed here.

When sampling, aliasing may occur depending on the sampling frequency

used, where in order to correctly reconstruct an input signal, this needs to be

sampled at least two times the original signal frequency (Oppenheim et al., 1989).

The higher the number of samples acquired from a scene, the closer the discrete

point cloud representation is to the surface patch and in the general case the easier

it is to reconstruct (e.g. for visualisation purposes). In the case of Figure 2.8, a

geometric definition of a cylinder with an etched band around it is increasingly

sampled from left to right. The additional samples on the right can be used

to improve the reconstruction of the original signal. Whereas in all three cases

there are enough points to parametrically fit the large cylinder and thus the same

cylinder can be reconstructed, given no knowledge of the scene, the more samples

acquired from a surface the higher the confidence that the object in the scene

is a cylinder. Moreover, surface detail such as the band around the cylinder, is

only captured in the third set of samples. In the second set of samples only one

sample is acquired from the band and this can easily be disregarded as noise.

Scene sampling can be generalised as a ray casting process. Figure 2.10 il-

lustrates how this process is carried out. An observer is positioned in the scene,
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Figure 2.10: Sampling can be done using a ray casting process.

which casts rays towards the objects in the scene. Samples are taken by intersect-

ing rays with visible object surfaces in the scene. In this example the diamond

shape is not sampled since it is occluded by the oval shape. The set of samples

produced from one observer viewpoint is referred to as a scan and is defined using

set comprehension as follows:

{r : Ray, sp : SP |Intersect(r, sp) • (Sample(FirstIntersect(r, sp)))}

This set comprehension describes the samples produced by one scan of a

scene. The properties of a point are inserted in the set only if an intersection

exists between one of the rays and the objects (represented as a set of surface

patches, SP) in the scene. The set comprehension returns a set with the position

of first ray surface intersections and depending on the scanner used, possibly other

properties (e.g. colour and normal). The distribution of points depends on the set

of rays r. By changing scanner viewpoint (position and/or direction) a new set of

rays results in different intersection points within the scene producing additional

samples. In general, in order to acquire samples from all surface patches in

a scene, multiple scans are required, followed by a registration process which

combines these scans into a single coherent point cloud. Given a set I of scans

S whose points have been registered within the same coordinate space, a point

cloud is defined as their union
⋃

i∈I Si.
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2.3.2 Acquisition Methods

Many 3D acquisition methods generate point clouds as output. Alternatively,

they may generate range images, analogous to a regular image, which store depth

values along each of regularly spaced rays in space. Range images can easily

be transformed to a point cloud, whereas the inverse is not always possible,

especially in the case when the point cloud corresponds to more than one scan.

Point clouds are used throughout this work, rather than range images, since

these are appropriate for all types of scanners and can be used in all stages of

the 3D acquisition pipeline. Bernardini & Rushmeier (2002) provide an in depth

discussion of the 3D acquisition pipeline. All the algorithms presented in this

work take point clouds as their input, hence this section briefly discusses the

different classes of 3D scanners which produce them and a number of properties

associated with them.

Point clouds acquired using a variety of 3D scanners have been used as case

studies in this work. These scanners can be grouped into two main categories,

namely triangulation-based scanners and time-of-flight scanners (Kolb et al.,

2009). In order to determine the 3D position of a point, triangulation-based

scanners must observe a specific surface point from at least two separate view-

points. Given this constraint is satisfied, the position is determined by computing

corresponding pixels from the two (or more) calibrated viewpoints. This corre-

spondence defines a pair of rays in space, with the intersection of these two

rays determining the 3D position on the surface of the object as illustrated in

Figure 2.11. Triangulation-based scanners are further subdivided by how the

viewpoint is represented. In passive stereo systems (Gross & Pfister, 2011), the

viewpoints contain cameras and no controlled light is introduced in the scene. In

this case, determining correspondence between pixels on the two image planes

equates to searching for pixels with similar features. In many cases this proves

to be a difficult task, hence the introduction of active stereo systems which aug-

ment the setup with a spatially temporarily varying projected pattern designed

to introduce features into the scene that make the correspondence problem easier

to solve. Many variants have been developed using this setup including single-

light-stripe systems (Petrov et al., 1998) and structured-light systems (Ribo &

Brandner, 2005). For indoor scene acquisition, different scanners have been used

in this thesis, namely Asus Xtion (Asus, 2015), Microsoft Kinect v1 (Zhang,

2012) and Structure Sensor (Occipital, 2015), which are all based on structured
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Figure 2.11: Triangulation scanners determine surface samples on a scene by computing
corresponding pixels from two viewpoints, which in turn define a pair of rays in space.
The intersection point between these two rays results in the surface sample position.

light active stereo. In all cases one of the viewpoints is equipped with a projector

which projects a unique infrared pattern of dots, usually a grid, which an infrared

camera (the second viewpoint) then uses to determine distance from objects.

Figure 2.12 illustrates the point cloud resulting from scanning a keyboard

using the aforementioned scanners. In all three cases the keyboard is represented

by around 20K samples. The top row shows the points sampled but doesn’t

clearly show the quality of the point cloud. In order to illustrate the difference

between the point clouds, the second row shows a triangular mesh computed

over these points. The samples acquired by the Microsoft Kinect (V1) sensor

are clearly inferior to the other two sensors. The second and third point clouds

are very similar, with the point cloud acquired via the Structure Sensor being

slightly more accurate, for instance when sampling the large zero key on the

keypad. Figure 2.13 illustrates the point cloud representing the same keyboard

using less samples, resulting from an increase in the distance between the sensor

and the keyboard. The surface details, in this case all the keys, which were visible

before are now lost due to aliasing. Even though sample positions are computed

correctly, not enough samples are available to reconstruct the high frequency

surface details of the original signal. The number of samples representing the

keyboard goes down from 20K to 1K when the distance between the scanner and

keyboard is increased five-fold.

Time-of-flight (TOF) scanners using light detection and ranging (LiDaR)
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Figure 2.12: Point clouds acquired using the Microsoft Kinect, Asus Xtion and Struc-
ture Sensor triangulation-based scanners respectively. The Skanect software (Tisserand
& Burrus, 2015) is used to extract depth information and carry out tessellation. Mesh-
Lab (Cignoni et al., 2008) is used to render both top row point clouds and bottom row
triangular meshes.

Figure 2.13: Point cloud of same keyboard scanned from a distance X5 larger than the
point clouds in Figure 2.12 using the Structure Sensor. Part of the table is included in
order to place the keyboard in context and make it easier to visualise. The point cloud
consists of 1K samples.
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principles are predominantly used to acquire very large scenes, although some

can also be used for indoor scenes. As opposed to triangulation based scanners

only one viewpoint is necessary to determine ray-object intersections. Funda-

mentally, TOF scanners measure the time it takes for a laser, either pulsed or

modulated, to travel to the nearest object in a scene and back along the same

path to a detector built into the scanner. The accuracy of TOF scanners depends

on how accurately the round-trip time can be measured. Recent advances, for

instance scanners using phase-shifting technology, have increased measurement

accuracy (Zhang & Yau, 2006). A popular application of the LiDaR principle

is that of making high-resolution terrestrial maps. Scanners are mounted on

airborne systems in order to generate precise, 3D information of the Earth sur-

face. Each point in the cloud has 3D spatial coordinates representing latitude,

longitude and altitude. Figure 2.14 illustrates different scans produced by TOF

scanners. The top row left-hand side point cloud illustrates a 360◦ scan of a green

area at the University of Warwick. The right-hand side point cloud illustrates

part of a scan representing a pre-historic temple in Malta. The bottom row il-

lustrates a 20M samples point cloud of an urban area in Malta acquired via an

airborne LiDaR scanner.

2.3.3 Quality

The quality of a point cloud P can be measured in a number of different ways. For

instance, Pauly et al. (2004) present a framework for analysing shape uncertainty

and variability in point-sampled scenes using a statistical representation that

quantifies for each point, the likelihood that a surface fitting the data passes

through that point. The resulting likelihood and confidence maps are then used

to describe the quality of P . A less elaborate approach to measure the quality

of a point cloud is given here, which takes in consideration object clutter and

sample noise. Given a scene SC, decomposed into a set of surface patches SP ,

the quality of the point cloud representing it is a combination of:

1. the number of observed and acquired patches s ∈ SP

2. for each s ∈ SP , the signal to noise ratio in s

3. for each s ∈ SP , the contribution of each sample s towards reconstructing

the input signal SC
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Figure 2.14: Point clouds acquired using time-of-flight scanners. Top left-hand side
shows part a pre-historic temple, whereas top right-hand side shows an open space
within the University of Warwick (scanned 2014, using FARO Focus3D scanner). Bot-
tom image illustrates part of a LIDAR scan of the Maltese islands at an average density
of 4 samples/m2
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These values are determined by the methodology used to acquire the point

cloud, which usually takes into consideration properties of the scene (e.g. shiny

or translucent materials, surface geometric detail), the hardware used for acqui-

sition and the registration process which combines the different scans together.

In general, the lower the quality of a point cloud with respect to the three points

listed above, the harder reconstructing the scene is. Whereas a densely sampled

point cloud might indicate high quality, this on its own does not guarantee that

all patches in SP have been sampled but that at least, if high frequency surface

changes are present in the signal represented by any of these surface patches, then

there’s a higher probability that the sampling rate used was adequate. Moreover,

some patches s ∈ SP might be more densely sampled than others notwithstand-

ing the possibility that these particular patches are not geometrically complex

(third criteria). For instance in Figure 2.13, there’s no way to determine that

samples are taken off from the surface of a keyboard rather than, for instance, the

surface of a book. The point sampling rate is sufficient to represent the face of

the table surface patch given that it’s geometrically less complex. For every scan,

sample density depends on the distance between the scanner and the surface hit

by the ray. When multiple scans are registered together and combined, sample

density increases in areas where scans overlap. The second criteria above caters

for the fact that some noise is bound to occur in all scans and essentially results

from the precision of acquired samples. With many scanners, sample precision

is measured as a ratio of the sample spacing. Precision in computing ray-object

intersections also depends on the material properties of the objects in the scene

and whether sampling occurs at depth discontinuities between object surfaces.

2.4 Acceleration Structures for Storing Point Clouds

This section briefly describes data structures used to store point clouds. Given the

size of point clouds produced by scanners, it is important to use data structures

which scale efficiently with the size of the data. Naively, a set of points can be

stored as a array, however this does not facilitate operations such as locating

nearby points. In this work, both grid-based and tree-based data structures are

used, which are briefly outlined next.
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Figure 2.15: A set of points is partitioned using a uniform grid (12 cells) and a kd-tree
with k=2 using median split to decide the parameters of the partitioning plane (8 cells).

2.4.1 Uniform Grid

Grid-based structures employ spatial hashing to organise points in a 3D grid.

Figure 2.15 illustrates a set of points (left-hand side) partitioned using spatial

information in a uniform grid (middle). Although very efficient to compute, a

uniform grid does not adapt to the distribution of points. In this case, some

cells have 1 point in them whereas others have four. If taken to the extreme, a

uniform grid might degenerate to a simple list if all the points end up in a single

cell. Cell size plays an important factor in the efficiency of the data structure.

2.4.2 Kd-tree

The kd-tree (Friedman et al., 1977) is an acceleration structure that recursively

subdivides space in two using an axis-aligned plane. There are various heuristics

to determine both the splitting axis and the position of the partitioning plane.

The initial axis can be chosen randomly or according to the most variance among

the points. A median-split operation can be used to determine the position of the

partitioning plane. The resultant spaces are then recursively partitioned. During

each split, the points are added to the half-space in which they are contained.

The recursion is terminated when the number of points in a leaf does not exceed a

minimum amount specified or the depth of the tree has reached a predetermined

value. The asymptotic time complexity for searching nearest points in a kd-tree

is O(n log n) (see Algorithm 1). Figure 2.15 (right), gives an example of a 2D

kd-tree, showing a set of points partitioned using the acceleration structure.
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2.5 Local operations on points

This section details a number of operation of points which are generally used

when processing point clouds.

2.5.1 Neighbourhood

The neighbourhood of a point p is defined using set comprehension as follows:

Definition The neighbourhood of point p ∈ P , within a distance r is the set

Nr(p) = {q : P |distance(p, q) < r • q}.

Given this subset of points from P , it is usually useful to limit the number of

points and thus produce the k-neighbourhood (k-NN) of p. This is usually done

by sorting points in Nr(p) from closest to furtherest to p. If the size of Nr(p) is

less than k, this is increased by iteratively incrementing the distance r from p

until |Nr(p)| ≥ k. Acceleration structures, such as the kd-tree described above,

are used to speed up the computation of the k-NN. Various implementations,

based on Algorithm 1, exist which provide this functionality.

2.5.2 Principal Component Analysis

Principal component analysis (PCA) is used to measure data in terms of its prin-

cipal components, representing the directions along which there is most variance,

the directions where the data is most spread out. In the case of point clouds,

PCA is normally applied to a subset of points, generally obtained using a k-NN

process, to determine local properties at a specific point. The process computes

three orthonormal eigenvectors and corresponding eigenvalues. The eigenvec-

tor with the highest eigenvalue represents the principal component, whereas the

second and third successively represent lower variance.

2.5.3 Volumes

A number of convex polyhedra can be used to bound the space occupied by a

set of points. These bounding volumes are then used to group together points,

accelerate general operations by discarding the whole set of points when the

operation does not interest the volume, and point decimation and interpolation,

amongst others.
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Algorithm 1 High-level description of k-NN computation using kd-tree

1: Input Point cloud {P}, p ∈ P , k, distance d.
2: Output Ordered List Q with maximum size k.
3: o = ∅
4: r = d/2
5: nodeStack = ∅
6: nodeStack.push(root)
7: while nodeStack 6= ∅ do
8: node = nodeStack.pop()
9: if node.isLeaf then

10: for each q ∈ node.points do
11: if distance(p, q) ≤ r then
12: o = o ∪ q
13: end if
14: end for
15: else
16: if overlap(node.axis, p.Position[node.axis],−r, node.left) then
17: nodeStack.push(node.left)
18: end if
19: if overlap(node.axis, p.Position[node.axis], r, node.right) then
20: nodeStack.push(node.right)
21: end if
22: end if
23: end while
24: sort(o)
25: Q = {o1...ok}



2. Preliminaries 34

AABB

Axis-aligned bounding boxes (AABB) are quadrilaterally-faced hexahedra with

the edges parallel to the major coordinate axes. AABBs have a very compact

representation in that only two points are required to define the extents of the

box. During construction, the extents are determined from the extrema for each

coordinate axis, such that:

[minx,miny,minz] = [min(P x
1 , . . . , P

x
n ),min(P y

1 , . . . , P
y
n ),min(P z

1 , . . . , P
z
n)]

[maxx,maxy,maxz] = [max(P x
1 , . . . , P

x
n ),max(P y

1 , . . . , P
y
n ),max(P z

1 , . . . , P
z
n)],

where n is the number of points in the set.

OBB

Oriented bounding boxes (OBB) are similar to AABBs but in general provide a

tighter fit to the bounded data set due to relaxed constraints on axial-alignment.

OBBs are constructed by finding the principal components of a point set using

PCA. OBBs can still be represented using the extents, however, an orthonormal

basis is also required to describe the orientation of the volume.

2.6 Decimation and Interpolation

One aspect of particular relevance to point clouds is sampling for decimation

and interpolation purposes. Decimation strategies use sampling methods to se-

lectively determine a subset of points from a larger set describing a surface.

Sampling can either be random across the input, or guided for instance using

importance sampling techniques in order to provide some guarantees on the dis-

tribution of samples chosen. Decimation can be seen as a down-sampling process,

where the resulting samples are somehow representative of the set from where

these points are sampled. Interpolation on the other hand, adds new points to

the original data set. Random sampling strategies are also used to determine

whether the points in a given set can be described as a collection of basic shape

primitives (e.g. spheres and planes).
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2.6.1 Point Set Decimation

Given a point cloud P , a sub-sampling process is used to select a number of

representative points Q ⊆ P . This is usually done in order to minimise variability

in the point density of a point cloud or to minimise the computational cost of

applying an operation over a larger set of points. The cardinality of Q, unless

specified a priori, is determined by spatial properties constraining points in P .

Sub-sampling of P is carried out using Poisson disc sampling in conjunction with

an accept-reject strategy. Algorithm 2 illustrates the sampling process. For an

input set P , an initial point p is chosen at random and added to output set Q.

The point is marked as invalid, and the next random point is chosen. p is tested

against a minimum distance dmin from any point in Q. If no point is found in the

neighbourhood then p is accepted; otherwise p is rejected. The process repeats

until all points in P have been exhausted.

Algorithm 2 Point cloud decimation

1: Input Point cloud P , dmin.
2: Output Point cloud Q.
3: Q = ∅
4: R = P
5: χ = floor(ξ ∗ |R|)
6: while R 6= ∅ do
7: p = R[χ]
8: R[χ] = R[χ]/p
9: reject = false

10: for each q ∈ Q do
11: if distance(p, q) < dmin then
12: reject = true
13: end if
14: end for
15: if reject = false then
16: Q = Q ∪ p
17: end if
18: χ = floor(ξ ∗ |R|)
19: end while

2.6.2 Point Set Up-Sampling

In order to increase the point density of a point cloud, up-sampling is often used.

In this work, up-sampling is used in order to increase the size of a point cloud
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for the evaluation of out-of-core methods. Whereas a variety of point cloud up-

sampling algorithms exist (Weyrich et al., 2004), since this work does not concern

itself with the quality of the up-sampled point cloud a straight forward approach

is adopted. Algorithm 3 describes the method used, which doubles the size of a

point cloud per application. For each point p ∈ P , a k-NN query is used to return

the two closest points pm and pn, and a new point is interpolated between the

three. Note that the interpolation function used puts more weight on p in order

to reduce the probability of generating new points with the same coordinates.

Algorithm 3 Point cloud up-sampling

1: Input Point cloud P , set Q.
2: Output Point cloud P ∪Q.
3: Q = ∅
4: for each p ∈ P do
5: (pm, pn) = k-NN(p, 2)
6: Q ∪ InterpolatePoint(p, pm, pn)
7: end for

2.7 Random Sample Consensus (RanSaC)

The RanSaC paradigm (Fischler & Bolles, 1981) has been proposed as a method

for fitting geometric models to data, and for outlier rejection in noisy data. In

the case of point clouds, it is used to determine whether points can be fitted

to a number of parametric shapes. Shape parameters are extracted via random

sampling of minimal sets from the input data, where a minimal set contains the

smallest number of points required to uniquely define a given type of geometric

shape. For instance, in the case of a plane primitive, the minimal set consists

of three points. Figure 2.16 shows a set of points on a 2D surface fitted to two

types of geometric shapes, namely line and circle. Points which do not fit within

the set of extracted shapes are usually discarded as outliers on the assumption

that these represent noise within the data set. An error threshold, represented

by dotted lines on the right-hand side of Figure 2.16 represents the maximum

distance from the specified shape surface.

Algorithm 4 outlines the basic RanSaC process. When applied to point

clouds, the input consists of a point cloud P , a set of shape types to fit (e.g.

S={circle, line} for Figure 2.16), an error threshold ε representing the maxi-

mum distance of a compatible point to the shape being checked, a trials count c
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Figure 2.16: Unstructured points partitioned into two lines and one circle. Note that on
the intersection between line and circle points can go to either of the shapes depending
on the shape fitting order. Outliers (white dots in central figure) are removed.

Algorithm 4 High-level description of General RanSaC

1: Input Point cloud P , set of Shape Types S, Tolerance ε, Trials c, Acceptance
r.

2: Output Set partition {Q} of {P}.
3: while fitmoreshapes do
4: bestscore = 0
5: bestshape = < ∅, null >
6: for each s ∈ S do
7: trialscount = c
8: while (trialscount > 0) do
9: crtshapeminset = {p1..n : P |p1 6= p2 6= . . . 6= pn}

10: for each p ∈ P do
11: if compatibles(p, crtshapeminset, ε) then
12: inc(crtscore)
13: end if
14: end for
15: if (crtscore > bestscore) then
16: bestscore = crtscore
17: bestshape = < crtshapeminset, s >
18: end if
19: trialscount-=1;
20: end while
21: end for
22: pointsbestshape = {p : P |compatibles(p, bestshape, ε)}
23: if |pointsbestshape| > (|P | ∗ r) then
24: P = P \ pointsbestshape
25: Q = Q

⋃
{pointsbestshape}

26: end if
27: Determine whether fitmoreshapes should be set to false
28: end while
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Figure 2.17: Randomness in the choice of support samples may lead to set partitions
which are different from each other and still valid. In general, shape primitive fitting
in the RanSaC paradigm is non-deterministic.

representing the number of a trials carried out per shape type and a minimum

number of points ratio r with respect to the size of P , required to accept the

shape. The algorithm iteratively extracts shape primitives by randomly choosing

minimal sets from P (line 9) for the number of trials c specified. Within each

iteration (lines 8-20) all points in P are checked for compatibility with the shape

primitive described by crtshapeminset (line 11). This process is carried out for all

shape types (lines 6-21) and the best shape parameters which fit the data (points

in P ) are selected (line 17). The metric which is traditionally used, is the total

number of points which fit within the shape parameters. The points compati-

ble with the shape chosen are removed from P (line 23) and the set with the

compatible points included in the set partition Q (line 24). The function which

computes shape compatibility of points can vary, but usually takes in consider-

ation the position and surface normal of points. The predicate fitmoreshapes

is used to establish whether to keep on fitting shapes. This predicate takes in

consideration a number of parameters, such as the updated cardinality of P . If

this is sufficiently low than fitmoreshapes is set to false. Alternatively, this

predicate can be set to false if during the previous iteration no shape is fitted to

P . In all cases, the outcome of the algorithm is a set partition Q which describes

a mapping between points in P and |Q| shapes.

The set partition output by RanSaC is in general non-deterministic given than

minimal sets are chosen randomly from the input data. Figure 2.17 illustrates

a typical scenario where the same input is partitioned into three different and

valid set partitions by fitting line primitives to the data. This might pose a

limitation in terms of stability in that results obtained might not be replicable.

Notwithstanding, RanSaC also has many desirable properties. It is conceptually

easy to understand, is very general thus allowing its application in many domains
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and most important can deal with data containing more than 50% outliers (Roth

& Levine, 1993). Without optimisations, as outlined in Algorithm 4, its major

drawback is the high computational demand. The complexity of RanSaC stems

from two factors; the number of minimal sets that are randomly drawn (trials)

and the cost of evaluating the score for every candidate shape. In both cases,

execution time depends on the size of P . A number of improvements over the

standard RanSaC algorithm exist which addresses efficiency. These are further

discussed in Chapter 3, which discusses how RanSac has been used in the context

of point cloud segmentation.

2.8 Summary

This chapter has provided a background to concepts related to point cloud pro-

cessing. First, a brief introduction to sets as collections of typed objects is given,

in addition to operators which generate and manipulate these sets. Graphs are

then discussed, together with transition trees which are used to measure compat-

ibility between graphs. Point clouds are then defined in terms of sets, in addition

to a brief overview of different sample acquisition methods and point cloud qual-

ities. Next, data structures used to accelerate point based computations are

presented, followed by neighbourhood, component analysis and volume gener-

ation processes. Point cloud decimation and interpolation are then described.

Finally, the Random Sample Consensus paradigm is presented, highlighting its

advantages and limitations. This background is provided as a basis for the seg-

mentation, object recognition and scene understanding techniques described in

the next chapters.



CHAPTER 3

Segmentation of Point Clouds

A segmentation process computes a set partition (§2.1.2) over some input data.

Various segmentation algorithms exist, tailored for a variety of input data in-

cluding images, 3D meshes and point clouds. Image segmentation has largely

been investigated within the computer vision and image processing community,

with the purpose of identifying specific objects. For instance, a common appli-

cation is the recognition of faces in photographs or the movement of people in a

sequence of images. For a detailed survey of algorithms in this area, the reader

is referred to Pal & Pal (1993) and Zhang et al. (2008). Segmentation of 3D

meshes (Gumhold et al., 2001; Lavoué et al., 2012) has also received consider-

able attention, mainly due to its importance in 3D object recognition and 3D

object retrieval methods (Daras & Axenopoulos, 2010; Li et al., 2012), which use

the computed partitions to improve matching results. The methods employed in

these segmentation algorithms generally assume that the input consists of a con-

tinuous surface definition, for instance, a set of triangle primitives over vertices.

The reader is referred to Shamir (2008) and Chen et al. (2009) for a compre-

hensive survey of techniques and applications. This chapter specifically focuses

on the segmentation of raw point cloud data. In a number of cases, this prob-

lem may be more straightforward than when using images, as the input might

circumvent some of the ambiguities induced by the 3D to 2D projection of im-

ages, but in other cases is harder due to the lack of colour cues. Additionally,

since a point cloud consists of a discrete surface definition, multiple plausible

continuous surface definitions may exist as in Figure 3.1. Depending on the ac-

quisition methodology used (§2.3.2), the resultant point clouds are often noisy

and irregular in terms of point densities across the scene. For a point cloud P ,

consisting of a set of geometric points p, segmentation computes a set partition

40
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Scanning Direction Scanning Direction

Figure 3.1: Ambiguity in point cloud (and image) segmentation algorithms as opposed
to 3D object (mesh) segmentation. Two alternative solutions.

with each element containing a subset of P . Whereas set comprehensions as the

one listed below, which partitions P into two sets may sometimes be sufficient

to produce the required segments, a more elaborate general-purpose process is

usually required.

aboveground = {p : P |coordy(p) ≥ estimateground}

The simple partition induced by the set comprehension above may be suffi-

cient to discriminate between points that are on the ground and those that aren’t,

but this will only work in very specific situations. For instance, Zhou et al.

(2014) produce an initial set partition consisting of ground and above-ground

points given continuous ground level information acquired using a vehicle LiDaR

scanner. In general, the segmentation of a raw point cloud is used to determine

primitive patches which are later used as building blocks for the identification of

objects and structures. Figure 3.2 illustrates a typical bottom-up object recog-

nition hierarchy. Each layer can be considered as a different set partition, with

the bottom layer consisting of primitives resulting from the segmentation pro-

cess. Object partitions are constructed from the union of primitive elements,

given these satisfy a number of discriminative conditions. These groups are then

further composed into objects to finally produce a set partition of P representing

a scene consisting of a hierarchy of groups. Clearly, the segment primitives pro-

duced at the base (leaves) of this hierarchy are critical to a successful application

of the recognition process. This chapter, reviews a variety of methods which are

used to produce these primitives.

In a number of cases, for instance Anguelov et al. (2005), segmentation pro-

cesses have been presented which label subsets of points as specific objects, which

is more akin to 3D object recognition methods. In this dissertation, these meth-

ods are categorised as either 3D object recognition or scene understanding solu-
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Figure 3.2: Segmentation may be used to determine the primitives which are later used
to identify objects present in a point cloud. Segmentation is responsible for the lower
layers of the hierarchy above. Upper layers are the responsibility of object recognition
and scene understanding algorithms. Diagram based on Zhao et al. (2010)

tions, and are discussed in Chapter 4. Since a point cloud can be constructed from

a set of range images, some segmentation algorithms (e.g. Gotardo et al. (2003)

and Bab-Hadiashar & Gheissari (2006)) take range images as input. Hoover

et al. (1996) propose an experimental setup for comparison of range image seg-

mentation algorithms. The reader is referred to Zhang et al. (2008) and Sonka

et al. (2014) for a survey of segmentation techniques specifically used for range

images. In the case of raw point cloud data, segmentation methods are based

on either a parametric shape fitting or a region-growing process. In both cases,

the aim is to produce a set partition of primitive segments, where each element

represents a component in the construction of some object or structure during a

recognition/identification phase.

3.1 Segmentation using Region-Growing Algorithms

This section provides an overview of segmentation algorithms which produce a set

partition whose elements represent surface patches adhering to some particular

characteristics, for instance points with similar surface normals, or a spatially

isolated cluster of points. The region growing approach to segmentation has been
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studied for several decades in computer vision, where it is often formulated as a

graph clustering problem. Instances of such approaches are graph cuts (Boykov

& Funka-Lea, 2006), including min-cuts (Wu & Leahy, 1993) and normalised

cuts (Shi & Malik, 2000). The graph-cuts algorithm has been extended to point

clouds by Golovinskiy & Funkhouser (2009) using the k-NN (§2.5.1) function to

build a graph and assign weights to edges according to an exponential decay

in length between points. The method proposed requires prior knowledge of an

object’s location, and is used to distinguish between points making up the object

and surrounding clutter.

Algorithm 5 describes the basic process carried out by a region growing seg-

mentation algorithm. A similarity function (line 14) is used to compare two

neighbouring points together and establish whether they should form part of the

same region. Common similarity functions take in consideration local surface

normals and curvature. A tolerance value is used to determine the maximum

distance between point properties. Increasing this distance, generally results in

larger regions (under-segmentation), whereas decreasing this distance generally

results in smaller regions (over-segmentation). The similarity function may either

check distances between the two neighbouring points, the one that is already in

the region and the one that is being tested for membership, or the new point

against the region seed point. For instance, when growing regions with simi-

lar surface normals, in order to avoid incremental variations in surface normals

resulting from the region growing process, new points are checked against the

original seed point. A number of variations to the standard region growing pro-

cess have been described, mainly adopting different seeding and region-growing

criteria depending on the information which is available with the data. Vosselman

et al. (2004), Pu et al. (2006) and Mattausch et al. (2014) utilise a region-growing

algorithm which results in a set partition of P containing elements which are lo-

cally planar. Points with the lowest local curvatures are used as seed points, and

candidate points are only accepted if the orthogonal distance of the candidate

point to the plane associated with the region is below some threshold. Clearly,

this segmentation process favours points clouds which can easily fit within a set

of plane primitives and results in a considerable number of planes if the point

cloud contains many curved surfaces.

Pauling et al. (2009) propose the use of ellipsoidal region growing in order

to segment the point cloud into clusters of points contained in ellipsoids. Their

method merges initially computed ellipsoids into larger ellipsoidal segments using
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Algorithm 5 Generic Region Growing Process

1: Input Point cloud P , distance dmin, k neighbours, tolerance δ, queue seeds,
queue region.

2: Output Set Partition Q of P .
3: Q = ∅
4: seeds ←enqueue SelectSeed(P )
5: while seeds 6= empty do
6: Qregion = ∅
7: seed ←dequeue seeds
8: Qregion ←add seed
9: region ←enqueue seed

10: while region 6= empty do
11: n = ←dequeue region
12: neighbours = k-NN(n, k, dmin) . see Algorithm 1
13: for each p ∈ neighbours do
14: if NotVisited(p) ∧ Similar(p, n, δ) then
15: Qregion ←add n
16: region ←enqueue n
17: else
18: seeds ←enqueue n
19: end if
20: end for
21: end while
22: Q ←add Qregion

23: end while
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a minimum spanning tree algorithm (Graham & Hell, 1985). Merging of ellipsoids

is based on two criteria, namely shape and density distances. The former metric

considers orientation and position of the ellipsoids whereas the latter takes into

account a minimum sampling density. The process produces a set partition on

the input, with the resulting ellipsoids somehow representative of the underlying

data. In general the method is very subjective and tends to group together

patches across different objects which are not related.

Moosmann et al. (2009) describe an algorithm tailored for the segmentation of

objects from the ground in non-flat environments. The method uses the physical

setup of the scanner to turn the data into a 2D graph with edges connecting all

scanned points to their respective four neighbours. A local convexity value is

computed for each edge in the graph and a region-growing process then grows

seeds nodes into segments. The method heavily depends on the availability of

scanner position data in order to produce the graph and therefore cannot be

applied to generic point clouds.

A fast and accurate plane segmentation algorithm is presented by Deschaud

& Goulette (2010) with the purpose of reducing the number of points in a point

cloud via a decimation process over the detected planar segments. The process is

based on an improved point normal estimation method followed by robust voxel

region growing. Points are sorted in ascending order of local planarity, using a

score which takes in consideration noise in the normal estimation of points. The

algorithm is evaluated on a small number of points clouds, and results in slightly

improved plane parameters in the presence of noise.

Douillard et al. (2011) present a set of segmentation methods intended to cover

various types of point clouds ranging from the very dense to sparse, which neither

assume the ground to be flat nor require a priori knowledge of the location of

the objects to be segmented. Different models based on grids, Gaussian process

and meshes are considered for representing and segmenting the ground. All

segmentation processes are a combination of ground modelling and extraction,

followed by region-growing voxel-based clustering methods on the remaining data.

The different segmentation methods are evaluated on a number of points clouds,

all consisting of a sufficiently large ground segment, since all methods depend

on its correct identification. Results provide empirical evidence of the benefit of

ground extraction prior to object segmentation.
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3.2 Segmentation using Primitive Shape Fitting

Primitive shape fitting within a point cloud has been applied to a variety of tasks,

for instance in the work by Lafarge & Alliez (2013) which uses plane fitting

to produce an optimal surface reconstruction from a point set. This section

provides an overview of segmentation algorithms, which produce a set partition

whose elements contain points consistent with primitive parametric shapes. An

additional element, containing points which are not assigned to any primitive, is

usually added to the set partition for completeness. The plane is the most popular

geometric primitive used in a shape fitting process, as many scenes naturally

consist of a considerable number of planar surfaces.

Chaperon et al. (2001) propose the use of RanSaC and the Guassian image

of a cylinder to extract cylinder primitives from point clouds. The process of

mapping a point on a surface, to the unit normal of the surface at this point,

is called the Guass map (Do Carmo & Do Carmo, 1976). The Guassian image

is obtained by applying this process to a set of points, which in the case of a

cylinder is represented by a circle. The extraction process is split in two parts

following the computation of the Guassian image for the whole scene. RanSaC is

first used to extract constrained planes in the Guassian image, and then for each

set of points, cylinders are extracted. Their method is shown to work on point

clouds of pipes in an industrial setting where the cylinder primitive is sufficient

to describe the scene. In a more general context, the algorithm would struggle

to produce a meaningful set partition.

Nistér (2005) carries out segmentation on a point cloud generated by a cal-

ibrated perspective camera in the context of a structure from motion system.

Their system is capable of performing robust live ego-motion estimation by using

RanSaC to estimate a pre-determined fixed number of candidates given the time

constraints. In the general case however, where the number of shape primitives

is unknown, this method cannot be applied.

Schnabel et al. (2007) describe a novel sampling strategy for RanSaC resulting

in an efficient shape detection process which outputs a set partition consisting

of planes, spheres, cylinders, cones and tori in addition to a set of remaining

points. Their approach addresses the ever increasing size and complexity of point

cloud data by improving both shape detection quality and performance of the

basic RanSaC process (§2.7). These improvements are achieved by adopting a

hierarchical structured sampling strategy for candidate shape generation as well
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as a novel, lazy cost function evaluation scheme which significantly reduces the

computational costs associated with RanSaC. The sampling strategy is built on

the observation that shapes are local phenomena, i.e. the a priori probability that

two points belong to the same shape is higher the smaller the distance between the

points. This fact is exploited in the sampling strategy used in order to increase

the probability of drawing minimal sets belonging to the same shape. A kd-tree

acceleration structure is used to organise the points and minimal sets are only

drawn from adjacent cells in the tree. This approach favours the detection of

small shapes in a point cloud, and may miss global shapes in the input. Schnabel

et al. (2008) adopts this RanSaC method and creates a topology graph which

connects adjacent extracted shapes. A user-specific value is used to determine the

maximum distance between primitives. The same method is used by Schnabel

et al. (2009) to address the problem of completing and reconstructing models

using primitive segments.

For the purpose of reconstructing 3D building models of a city, Tarsha-Kurdi

et al. (2007) present a method specifically designed for the automatic detection

of building roofs from LiDaR data. Both Hough transform and RanSaC methods

are proposed for the detection of planes in the point cloud, with considerable

performance and sensitivity advantages obtained bt RanSaC. Their main contri-

bution is twofold; an extension to the RanSaC process, which in addition to point

count also consider standard deviation to the optimal plane parameters. More-

over, they adapt the mathematical aspect of the algorithm with the geometry of

a roof. These enhancements result in improved detection rates of roofs, however

the geometry of the detected roofs is similar throughout the data.

Oehler et al. (2011) describe a multi-resolution method to partition a point

cloud into planar segments using a combination of the 3D Hough transform and

RanSaC for robust fitting. In order to improve efficiency, a coarse-to-fine reso-

lution strategy is utilised. Local surface normals are first extracted at multiple

resolution, over which the 3D Hough transform is applied to determine co-planar

points. At each iteration, those points which are not explained by current plane

primitives, are further processed using the Hough transform. At each iteration,

RanSaC with the extracted planar parameters is used in order to improve ac-

curacy and robustness. At the finest resolution, co-planar plane segments are

merged and the remaining points distributed. The method is evaluated on a

number of Kinect range images and point clouds from mounted laser scanners.

The approach is shown to find the major plane segments of a scene and produced
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good results in cluttered regions where sampling density is sufficient. Borrmann

et al. (2011) also use the 3D Hough transform for detecting planes in a point

cloud. They propose a new accumulator design intended to improve detection

accuracy by making use of a randomised selection of points. It is shown to

compare favourably with a region-growing method (Poppinga et al., 2008). In a

similar fashion to Oehler et al. (2011), the Hough transform method favours the

detection of the principal structures in an indoor environment.

Algorithms for sphere detection in point clouds are proposed by Abuzaina

et al. (2013) and Camurri et al. (2014) using the 3D Hough transform. In the

first case, a fast and accurate sphere detection process is designed and evaluated

on Microsoft Kinect generated point clouds. Performance is gained by uniformly

down-sampling the original point cloud therefore resulting in less points under-

going the expensive computation of voting for parameters Cx, Cy, Cz and r,

representing the centre and radius of the sphere. A trade-off between down-

sampling levels and robustness of the detection process is determined. Camurri

et al. (2014) propose a hybrid approach, referred to as the combined multi-point

Hough transform (CMHT), which first identifies a region of interest using a sin-

gle point accumulator, followed by a multi-point algorithm which refines the final

detection. In practice, this improves the sphere recognition rates significantly.

Both sphere detection methods make a number of assumptions on the input

point clouds, in particular, that the data contains at least one spherical object

(e.g. ball, apple) and therefore cannot be applied on generic point clouds.

3.3 Discussion

Segmentation algorithms play a critical role in point cloud processing pipelines,

with the automatic set partitions produced directly contributing towards facil-

itating a variety of tasks across different domains. In a robotics scenario, the

resulting segments may be used to identify obstacles and safely navigate an en-

vironment. Airborne LiDaR acquired point clouds have been used for tasks such

as urban and transport planning to flood modelling. All these cases require some

form of partitioning of the input data. The methods presented in this chapter

broadly fall under two approaches: region-growing or shape fitting. In the for-

mer case, several criteria have been used to establish the boundaries of regions,

and in the latter, RanSaC and Hough transform processes are parametrised with
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the shape primitives to search for. Region-growing traditionally is sensitive to

noise in point clouds, whereas shape fitting is more robust to data outliers but

is usually biased towards determining the global principal segments of a point

cloud. This is particularly highlighted in methods which adopt the 3D Hough

transform (Oehler et al., 2011; Borrmann et al., 2011) which favour large pla-

nar segments across the scene. In relatively common scenarios where parts of

multiple objects share the same plane parameters, for instance, an indoor scene

with multiple desk tops or chair seats at the same height from the ground, this

approach does not produce ideal segment primitives from which to distinguish be-

tween the different objects. Conversely, the RanSaC approach is expensive when

applied globally and does not guarantee consistent segmentation results. This

problem is addressed in the work by Schnabel et al. (2007) which takes advan-

tage of the spatial locality of small shape primitives in a point cloud, and only

draws support points from neighbouring nodes of a kd-tree acceleration struc-

ture. This provides for a very precise fitting of small primitive shapes, but may

lose on larger global shapes. Additionally, parts of the point cloud which do not

fit within any of the primitives used are grouped together as one segment. In

an ideal scenario, these remaining points are still partitioned into a number of

regions. Some segmentation algorithms are intended and optimised for specific

inputs, for instance Abuzaina et al. (2013) and Camurri et al. (2014) which focus

on the use of the 3D Hough transform for the identification of spheres in a point

cloud. Similarly, Chaperon et al. (2001) focuses on the identification of cylinder

primitives. A number of segmentation techniques make the assumption that a

ground segment exists in the point cloud and depend on its identification before

clustering the rest of the points (Douillard et al., 2011; Moosmann et al., 2009).

Whereas region-growing approaches tend to assign all the points in an input

point cloud to segments, methods based on RanSaC (or the 3D Hough transform)

may miss patches which do not fit any specific primitive. In scenes where there are

no obvious mappings between points and shape primitives, for instance in some

CH sites, a segmentation process should consider producing segments of different

types, namely ones which describe shape primitives (e.g. planes, spheres) and

others made up of free-form continuous patches. Chapter 5 proposes a novel seg-

mentation algorithm, PaRSe, which seeks to address these limitations and takes

advantages of both region growing and RanSaC shape fitting. PaRSe, which only

assumes position information in the data set, partitions an input point cloud into

segment primitives embellished with a graph representation describing connectiv-
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ity between different types of segments. The resulting structure graph can then

be used to cluster segments into more complex user-defined structures. PaRSe is

designed to be generic and has been applied for the segmentation of point clouds

from different fields, acquired using a variety of acquisition methodologies.

3.4 Summary

This chapter has provided a literature review for point cloud segmentation meth-

ods. Table 3.1 lists these methods, which fall within two main categories, namely

those based on a region-growing process and those which employ a shape fit-

ting process. For each method, a short description including category, is given.

The following chapter presents a literature review on 3D object recognition and

scene understanding methods from point clouds, many of which depend on a

segmentation process prior to the recognition of objects in the scene.
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Reference R/S Comments

Vosselman et al. (2004) R Boundary criteria - consistency with plane parameters of seeds
Pu et al. (2006) R Boundary criteria - consistency with plane parameters of seeds
Golovinskiy & Funkhouser (2009) R Min-cut approach using prior knowledge of the object location
Pauling et al. (2009) R Ellipsoidal region growing
Moosmann et al. (2009) R Object clustering above ground, requires physical setup of the scanner
Deschaud & Goulette (2010) R Robust voxel region growing using improved point normal estimation
Douillard et al. (2011) R Ground identification followed by region-growing voxel-based clustering methods
Mattausch et al. (2014) R Boundary criteria - consistency with plane parameters of curvature sorted seeds
Chaperon et al. (2001) S Extract cylinder primitives using RanSaC and Gaussian image of cylinder
Nistér (2005) S Identification of a fixed number of primitive shapes
Schnabel et al. (2007) S RanSaC shape fitting using locally sampled supports
Tarsha-Kurdi et al. (2007) S RanSaC for the automatic detection of building roofs from LiDaR data
Oehler et al. (2011) S Plane fitting using a coarse-to-fine resolution strategy, interspersing

Hough transform and RanSaC methods
Borrmann et al. (2011) S Improve Hough transform accumulator for detecting planes
Abuzaina et al. (2013) S Sphere detection using Hough transform on down-sampled input
Camurri et al. (2014) S Sphere detection using Hough transform on identified regions of interest

Table 3.1: Summary of segmentation techniques; Reference, Region Growing/Shape Fitting, Comments



CHAPTER 4

Object Recognition and Indoor Scene

Understanding

The exponential growth of the web has played a critical role in the advancement

of traditional text search engines, which have nowadays become standard tools

used by many for both work and entertainment. Shape retrieval methods address

a problem similar to traditional text-based searching, where instead of retrieving

web pages based on some syntactic and/or semantic similarity metric, shape re-

trieval methods are used to search for objects in 3D model repositories. These

repositories are increasing in size and popularity as more 3D acquisition methods

are created and made available to the general public in the form of smartphones

and tablets (Google, 2014). Several techniques adopt a mechanism whereby ob-

jects similar to a query model are searched for. The similarity metric may be

based on a number of factors, which measure the distance between a query model

and object descriptions in the repository. Since a function based solely on the

explicit representation of objects, e.g. their respective surface meshes, would be

computationally impractical in most cases, a mechanism is usually employed to

capture and efficiently synthesise a descriptor which encodes the salient charac-

teristics of an object. These descriptors augment the explicit representation of an

object with an implicit representation which indirectly encodes the shape of an

object using an intermediate form, for instance, a histogram of surface normals.

A variety of object descriptors have been proposed for this purpose, which are

then used to measure the similarity between objects. These descriptors are key

to the efficient indexing and searching of ever growing 3D repositories (Bustos

et al., 2007). For a comprehensive survey of shape retrieval algorithms, the reader

is referred to Lew et al. (2006); Tangelder & Veltkamp (2008); Li et al. (2012).

52
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Figure 4.1: Scene understanding takes as input a point cloud P (left hand side) and
a set of objects O, partitions P and creates a relation between p ∈ P and o ∈ O. In
this example, scene understanding should compute the set partition {chair0, chair1,
chair2, table, floor, wall} of P .

Object descriptors also play a critical role in object recognition and scene

understanding methods. These descriptors are usually based on either visual ap-

pearance or shape features of an object, or both. Computer vision algorithms

based solely on an object’s visual appearance, assuming clear distinguishing fea-

tures are present, have been used to search for objects in an RGB image. A

number of techniques augment appearance with shape features by using RGBD

images, with D representing the distance between pixel and sensor. Lai et al.

(2011) demonstrate that the inclusion of shape information is mostly beneficial

in the case of class (or category) recognition. Since the focus of this thesis is

in the application of these techniques to raw point clouds which do not include

appearance information, these methods are not reviewed here and the reader is

referred to Juan & Gwun (2009) and Rublee et al. (2011) for a comparison of

appearance-based techniques. The object recognition techniques discussed in this

chapter address the problem of determining which objects are present in a point

cloud P , given a trained set of object O using only shape features. Similarly,

scene understanding addresses the problem of identifying the elements of a scene

represented as a point cloud P , given sets of trained objects O and/or scenes

S. Both object recognition and scene understanding can be viewed as a corre-

spondence problem between the elements of a set partition of a point cloud P

and objects O. Whereas object recognition techniques mainly rely on descriptors

based on local surface properties of an object in order to determine whether these

are present in P , scene understanding techniques usually also take in consider-

ation properties of the scene and synthesise context-sensitive scene descriptors.

Object recognition techniques have mostly been used to identify free-form objects

lying on some flat surface such as a tabletop whereas scene understanding tech-

niques, spearheaded by the widespread availability of commodity 3D scanners,
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have recently been applied extensively to the identification of objects (e.g. fur-

niture in Nan et al. (2012)) and structures (e.g. walls in Adan & Huber (2011))

in indoor scenes. Methods addressing this specific problem fall within the indoor

scene understanding category. Figure 4.1 illustrates an example of the typical

problem tackled in indoor scene understanding.

Techniques for indoor scene understanding and shape recognition can be cate-

gorised in a number of different ways, for instance, those which require a training

process versus those that don’t. Figure 4.2 shows a flowchart illustrating the

main components of these algorithms, with the two main blocks representing the

training and the searching phases. All object recognition techniques require a

training process to produce object descriptors which characterise and describe

objects potentially present in P , prior to recognition. This is not always the

case for indoor scene understanding. If a training process is carried out, specific

scene information extracted from S (e.g. location of floor in scene, upward direc-

tion, object scale, spatial relations between objects) is usually embedded within

the object descriptors during training. Alternatively, some scene understanding

techniques rely on the presence of repetitions and symmetry in P in order to iden-

tify similar segment clusters which could represent objects. Within the training

block, a distinction exists between those algorithms that embed specific scene

parameters in the trained model representations and those that don’t. Within

the searching block, user input might be required to initiate the search process

or may be optional in order to improve on the results obtained. In what follows,

algorithms designed for object recognition from point clouds using trained object

descriptors are reviewed first (§4.1), followed by techniques designed for indoor

scene understanding (§4.2). A feature comparison of the methods used for indoor

scene understanding is then carried out (§4.3), in order to highlight current re-

search gaps and propose an alternative approach which addresses some of these

limitations.

4.1 Object Recognition from Point Clouds

The recognition of objects from point clouds representing real scenes is generally

more difficult, than for 3D models, due to increased clutter and occlusion. The

quality of P (§2.3.3) may vary depending on the acquisition pipeline used, the

material properties of the objects present in the scene and the scanner used for
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Figure 4.2: Two main blocks in shape recognition and scene understanding techniques
include (optionally) a training phase followed by a searching phase.
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s(p0)

s(p1)

s(p2)
s(p3)

s(p4)
s(p0..13)

s(p14..21)

s(p22..27)

s(p28..32)

Figure 4.3: The surface of a shape o is described on the left hand side via a set
of point-based local surface features Dl(o)={s(p0) . . . s(p4)}, whereas on the right-
hand side the segments produced via a RanSaC plane fitting process are all used to
compute Dg(o)={s(p0 . . . p13) ,s(p14 . . . p21),s(p22 . . . p27),s(p28 . . . p32)}. Both may be
used to produce D(o)=Dl(o) ⊕ Dg(o)

sampling. Some techniques replace P with a set of RGBD images. Clearly, these

images can be transformed into P , but the inverse is usually not possible without

knowing the camera parameters of these images.

All object recognition techniques described in this section try to establish a

correspondence between trained objects in O and partitions of P . The training

process results in the creation of object descriptors associated with each object.

These descriptors may require a segmentation process on the object, a decision

which will influence the design of the similarity function between objects. When

segmentation is not carried out, an object is described as a set of local surface

properties based on individual points and their surrounding geometry. For in-

stance, given an object o ∈ O consisting of n sampled surface points, a very basic

object descriptor consists of the set containing n points each storing information

about its surrounding (local) surface characteristics (e.g. curvature and surface

normal inferred from k-NN queries). If a segmentation process is carried out on

o, then the descriptor would consist of properties associated with the resulting

elements of the set partition. In many of the techniques discussed below, which

represent an object as a set of local surface properties, no prior segmentation

process of P is required. Correspondence relies on identifying point descriptors

in P which are similar to those of the trained objects in O followed by some ver-

ification procedure, e.g. iterative closest point (ICP) (Chetverikov et al., 2002),

to confirm the match. This is usually the case when P represents a collection

of cluttered objects on a flat surface. In a number of cases, especially when P

represents a more complex scene, segmentation is an important pre-processing

step and object descriptors would be based on segment properties. Vosselman

et al. (2004) highlight the importance of segmentation for recognising structures
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and shapes in laser scanned point clouds and how this is applied to urban plan-

ning, industry and forestry documentation. In general, object descriptors may

be defined as follows:

D(o) = {sl(p0), sl(p1), . . . , sl(pn)} ⊕ {sg(p0 . . . pd), sg(pe . . . pk), . . . , sg(pv . . . pz)},

whereD(o) is a function that computes a descriptor for object o as a set of features

each representing either point-based sl(pi) or patch-based sg(pi..k) surface prop-

erties. Note that usually either one of the two sets is empty depending on what

information is required to synthesise a particular object descriptor. Figure 4.3

illustrates this difference with a simple example. Given these sets of features,

different data structures have been proposed to store them including bin-based

histogram approaches and others based on graphs. Depending on the technique,

the ⊕ operator takes these two sets and creates a descriptor which encapsulates

and merges relevant surface information. Object recognition techniques using de-

scriptors which do not rely on a segmentation process are described first (§4.1.1),

followed by those which are built on top of segmentation (§4.1.2).

4.1.1 Point-Based Object Recognition

Besl & Jain (1985) and Faugeras & Hebert (1986) are amongst the first to discuss

object recognition from range images and make use of local surface descriptors

based on the geometric properties measured in a neighbourhood of a point. In

the former, points are characterised according to the signs of their mean and

Guassian curvatures and then classified as either peaks, pits, ridges and valleys.

In the latter, local curvature is used for detecting primitive features such as lines,

planes and quadratic patches in range data scenes. These properties are then

used to detect similarities between trained objects and range images.

Point signatures used to describe 3D free-form surfaces were proposed by Chua

& Jarvis (1997). The representation describes the structural neighbourhood of a

point and is invariant to both rotation and translation. Recognition is achieved

by matching the signatures of data points representing the scene to the signatures

of data points representing trained models and has been used in scenes containing

some partially overlapping models. Point signatures are created for all points in

a model, where for each point p, a sphere of radius r is first positioned centred

at p. The intersection of the sphere with the object surface produces a 3D

space curve, whose orientation can be defined by an orthonormal basis formed
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Figure 4.4: Point signatures: (a) contour of points at a fixed radius, (b) reference
direction and two angles from this direction, (c) point signature as distance profile
from translated fitted plane. Diagram based on example given in Chua & Jarvis
(1997).

by the surface normal N at p, a reference vector, and their cross-product as

shown in Figure 4.4(b). A new plane E ′ is defined by translating the fitted

plane E at p in a direction parallel to the surface normal N , which is then

used to define a planar curve using the projection distance of points from E ′ to

E. Figure 4.4(c) illustrates the point signature of p, resulting from the signed

distance between these two planes at different angles. During recognition, for a

given scene, point signatures are computed at arbitrarily spaced seed points and

each of these signatures is used to vote for models that contain points having

similar signatures. Models are ordered according to the votes they receive and

the most voted model is then verified. Due to the simple representation of the

one-dimensional point signature, matching of point signatures is efficient and fast.

In order to cater for noisy range data, a tolerance band is introduced along the

signed distance direction. The system is evaluated both for single object matching

and retrieval in a cluttered scene. In the latter case, the scene consisted of four

different face masks piled on a terrain. The system is shown to perform well in

this case-study.

Whereas both Stein & Medioni (1992) and Chua & Jarvis (1997) adopt a 1D

representation that accumulates surface information along a 3D curve, a more

descriptive 2D representation that accumulates information about a surface patch

is proposed by Johnson & Hebert (1999). Specifically, they introduce spin images

(SI) as object descriptors for 3D object recognition in point clouds. The spin

image (Johnson, 1997) is a shape representation which describes local surface

properties of an object and is constructed around oriented points on the object.

When not available, each point’s surface normal is computed by fitting a plane
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Figure 4.5: Spin-images are created for points on the surface of an object. Left hand
side show a cross-section of a surface (for clarity) together with a cylinder oriented
along the β and α directions. Right-hand side shows the spin image resulting from this
cross-section of the surface. Additional pixels are added to the spin-image depending
on the remaining points within the cylinder. More detailed examples showing models
used for object recognition are illustrated in Johnson & Hebert (1999)

to a neighbourhood of points. For each oriented point, a SI consisting of a 2D

accumulator buffer indexed by parameters α and β is created. The coordinates

(α,β) are computed for each point within the support distance (user defined)

and the bin indexed by (α,β) is incremented. Dark areas in the SI correspond

to many projected points, effectively resulting in an image describing the point

density distribution around each point. Figure 4.5 illustrates a simple example.

Bin size is used to vary the geometric width of the bins and thus the resolution

of the SI, with the ideal value providing a good balance between encoding global

shape and averaging of point positions. Johnson & Hebert (1999) suggest that the

best bin size is the one which exactly matches the mesh resolution computed over

the point samples, under the assumption that the model is uniformly sampled.

Whereas clutter and noise is not an issue when creating SI for training models,

this becomes relevant in the context of object recognition from scenes containing

clutter and occlusion. Since SI are created for all the points in the scene for

comparison with those created for single objects, a scene SI may contain points

from several objects. In the worst case, all the points in a scene may contribute

to the SI of the scene resulting in poor recognition performance. In order to limit

the effect of self occlusion and clutter during SI matching, another parameter is

used namely the support angle which specifies the maximum angle between the
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direction of the oriented point basis of a SI and the surface normal of points that

are allowed to contribute to the SI. Moreover the support distance is limited in

order to cover only a small distance from the oriented point basis and increase

the probability that the points contributing to the SI are from the same object.

Given a point cloud P , with parameters Ds and As representing the support

distance and angle respectively, the subset Ps resulting from the following set

comprehension contributes towards the SI of each oriented point ps,

Ps = {p : P |dst(p, ps) < Ds ∧ acos(ps, p) < As • pos(p)}.

A surface matching engine is used to establish correspondences between SI

from trained models and SI from the scene using a loss function of the linear cor-

relation coefficient as a measure of similarity. A modified ICP algorithm is then

used to determine geometric consistency of the proposed mappings. The input

point cloud is processed to remove isolated points and small patches. Moreover,

a mesh computed over the point cloud is smoothed and re-sampled to change the

scene data resolution to that of the trained models. Given these assumptions,

recognition rates are measured and shown to produce good results in the presence

of both occlusion and clutter.

Ruiz-Correa et al. (2001) extend SI to spherical spin images (SSI). Like SI,

SSI are signatures associated with the vertices of a polygonal mesh of a given

resolution that approximates the surface of an object and are represented as

points onto a unit sphere. The set of SSI for an object is constructed using

the linear correlation coefficient to define an equivalence relation on the set of

SI. A comparative study between SI and SSI is carried out on 138 scenes using

a library of 5 models. Each scene consisted of either 4 or 5 of these models

piled up on a surface and in a similar fashion to Johnson & Hebert (1999), a

uniform distribution at a resolution of 1mm is enforced on the acquired scenes.

Results presented show that the SSI descriptors improve on SI both in terms of

performance and accuracy.

Hetzel et al. (2001) explores the use of view-based histograms for 3D object

recognition from range images. The descriptor makes use of three shape specific

local features namely, pixel depth, surface normal and curvature. Curvature is

computed as a shape index value (Koenderink & van Doorn, 1992). The three

histograms are combined into a multi-dimensional histogram to model the prob-

ability distribution of different feature combinations and thus of certain shape
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Figure 4.6: Left hand side shows samples from a 1D portion of a surface, whereas the
right hand side illustrates a partial surface signature for the point p, which is only
taking in consideration point pi. θi represents the tuple consisting of the distance di
between p and pi and the angle αi between the surface normals at p and pi.

patches. Object recognition is performed using either a histogram matching χ2-

divergence test or a probabilistic recognition process which calculates the poste-

rior probability of an object given the data using the Bayesian theorem (Shafer

et al., 1976). The system is evaluated using 30 synthetic free-form objects as

training models from which 66 depth buffer images are produced by moving the

virtual camera around the object at intervals of between 23◦ and 26◦. The train-

ing set thus consisted of 1980 images. Testing is then carried on the same set

of objects, this time scanned from 192 different viewpoints each for a total of

5760 images. Occlusion is simulated by randomly blocking some regions of the

images (20% to 80%) and only collect feature vectors from the remaining regions.

Different combinations of features are tested for recognition rates, showing that

using normals and curvatures independently perform much better (around 80%

recognition rate for both) than just using depth data (around 40% recognition

rate). When all three features are combined a recognition rate of 93% is re-

ported. At 20% occlusion, recognition rates fall to 89% and 87% when matching

using probabilistic and χ2 test respectively. The authors show that recognition

rates only start deteriorating to less than 60% recognition rates when occlusion

increases beyond 60%.

Another surface representation scheme, the 3D point’s fingerprint, is proposed

by Sun & Abidi (2001). The descriptor encodes the normal angle variations and

the contour radius variations along different geodesic circles projected on the

tangent plane of a point. A point selection process is carried out in order to retain

only those fingerprint descriptors which have high radius contour variations. A
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Figure 4.7: 3D shape descriptor histogram bins subdivided along the latitude, longitude
and radial directions. To avoid clutter the bin is not shown subdivided logarithmically
along the radial direction. p ∈ P is positioned at the centre of the sphere and np
indicates the surface normal of p.

cross correlation method is used to measure the similarity of two points and is

shown to work for point cloud registration tasks.

Yamany & Farag (2002) describe another surface descriptor used initially for

object registration and later for recognition. As opposed to SI (Johnson, 1997),

which are based on point density around a point, the proposed representation

scheme makes use of surface curvature information at certain points to produce

images referred to as surface signatures. The signature computed at selected

points encodes the surface curvature seen from each of these points using all the

other points. The simplex angle (Delingette, 1999) is used to estimate the curva-

ture value at points on a free-form surface. This curvature value is computed on

all points and used to create the surface signature at positions (d,α) as illustrated

in Figure 4.6. Object descriptors consist of a set of surface signatures computed at

landmarks where curvature is above a user-specified threshold. Signature match-

ing is carried out using a template matching scheme in which a measure defines

how well a portion of an image matches a template. The technique is shown

to perform well on a number of scenes consisting of a small number of models

on a flat surface with some clutter and occlusion. When compared with SI, the

authors show how more feature points from the scene are required to match SI

rather than signature images, making the latter a more viable representation for

object recognition in complex scenes.

Another technique for the recognition of objects in noisy and cluttered point



4. Object Recognition and Indoor Scene Understanding 63

clouds (case study focuses on vehicles) is proposed by Frome et al. (2004). Image

based regional point descriptors (Lowe, 1999; Belongie et al., 2002; Mikolajczyk

& Schmid, 2005) are extended by another dimension and used for 3D recognition

and surface matching. The new descriptors, the 3D shape context and the har-

monic shape context are used to capture the regional shape of the scene at a point

p using the distribution of points in a support region surrounding p. The support

region is discretised into bins, equally spaced along the latitude and longitude

dimensions, as seen in Figure 4.7. The radial dimension is divided logarithmically

such that bins closer to p are smaller thus making the descriptor more robust to

distortions in shape as the distance from p increases. Bin b(j, k, l) accumulates a

weighted count w(pi) for each pi ∈ P whose spherical coordinates fall within the

sphere region of p. The north pole of the sphere is set to the surface normal ns,

thus leaving one degree of freedom in the longitude dimension. For this reason

the descriptor is synthesised as a set of histograms each rotated about the north

pole whilst computing bin values. A second descriptor, the harmonic shape con-

text, is synthesised from a 3D shape context descriptor. Bin values are used as

samples to calculate a spherical harmonic transformation (Kazhdan et al., 2003)

for the shells at each interval along the radial dimension, resulting in a vector of

coefficients which are rotationally invariant in the longitude direction and thus

removing the remaining degree of freedom. Both descriptors, in addition to an-

other based on SI (Johnson & Hebert, 1999) are evaluated using a training set

consisting of several point clouds S representing vehicles from which m reference

object descriptors (3 variants) per point cloud are computed. Object recognition

is carried out by determining which of the reference objects is closest to the k

representative descriptors computed on the input point cloud. Experiments show

that all three methods perform roughly the same on point clouds with artificially

added Guassian noise with a standard deviation of 5cm along the viewing direc-

tion. When the noise standard deviation is increased to 10cm 3D shape context

descriptors perform better.

Anguelov et al. (2005) utilises a Markov random field (MRF) (Kindermann

et al., 1980) over points to label each point from a set of class labels, including

the background. The MRF uses a set of pre-specified features of scan points, for

instance SI (Johnson & Hebert, 1999) and height of the point, to provide evidence

on their likely labels. The method assumes connectivity (links) exist between

adjacent points in the point cloud which are either provided by the scanner or

introduced by connecting neighbouring points in the scan. These links are used
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to relate the labels of nearby points, thereby imposing a preference for spatial

contiguity of the labels, with the strength of these links depending on distance.

A graph-cut algorithm then uses the weights provided by the training phase, to

label points of unseen scenes. Their method is validated on three case studies;

terrain classification, segmentation of an articulated object, and point labelling

of synthesised scenes consisting of combinations of vehicles, trees, houses and

background. In the case of terrain classification, points are labelled as either

ground, building, tree and shrubbery. Specific distances from the ground are

used as features during the training phase, for instance ground points are easily

identified with a z-coordinate value close to 0. Similarly, shrubbery, includes

points at around 2m from the ground. Their approach correctly labels 93% of

the points. In the case of articulated objects, three different wooden puppets

are used. SI are included as local point descriptors to augment the feature set

used at the training stage and achieve good results in labelling the different

components (head, limbs, torso and background) of the puppet. Good results

are also obtained with synthesised scenes. Whereas, achieving reliable labelling

in the case studies presented, their method relies heavily on the existence of

distinguishing local surface features on objects.

Chen & Bhanu (2007) propose the local surface patch (LSP), a descriptor

based on the computation of shape indices from maximum and minimum princi-

pal curvatures at a number of feature points. The effectiveness of this represen-

tation is measured against SI (Johnson & Hebert, 1999) and SSI (Ruiz-Correa

et al., 2003). The proposed approach first carries out a feature point extraction

process from range images in order to determine points situated in areas of large

shape variation. Surface normals at each point on the surface are established

by fitting a quadratic surface over a local window centred at a point. Given all

surface normals, Gaussian and mean curvatures are determined in addition to

the minimum and maximum principal curvatures. From these values a shape in-

dex quantitative measure, initially proposed by Koenderink & van Doorn (1992),

of the shape at a point p is defined. The system is evaluated on range data

containing single object scenes as well as four two-object scenes. Recognition

performance is similar to both SI and SSI representations and show how using

LSP improves on the time required to establish and verify correspondences by a

factor of 3.79 over SSI and 4.31 over SI.

Novatnack & Nishino (2008) investigate the effect of size variations in cap-

tured range images on local geometric structures. This scale variability is used
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Figure 4.8: PFH descriptor histogram bins are computed for each point by computing
an idx value from the summation of features f0 to f4.

as a source of discriminative information for surface matching. The exponential

map descriptor is presented which encodes the components of the normals within

a sphere centred at the surface point by deploying a 2D parametrisation of the

local surface. It is used for aligning range images with the same global scale and

also to fully automatically register multiple sets of range images with varying

global scales corresponding to multiple objects.

Tombari et al. (2010) look into the problems arising when inaccurately choos-

ing a local reference frame (LRF) when computing the signature or histogram

at a surface point and show how this impacts the performance of 3D surface de-

scriptors. Specifically they compare a novel descriptor, SHOT, with SI (Johnson,

1997), point signatures (Chua & Jarvis, 1997) and exponential maps (Novatnack

& Nishino, 2008). The SHOT surface descriptor is intended to improve the gen-

eration of the LRF in terms of uniqueness and non-ambiguity. To this effect,

instead of using standard Eigenvalue decomposition of the covariance matrix M

resulting from the k nearest neighbours of a point p, a weighted linear combi-

nation is used in order to give distant points smaller weights. Moreover, in a

similar fashion to the work of Bro et al. (2008), the signs of resulting eigenvec-

tors of the LRF are oriented so that they are coherent with the majority of the

vectors represented. SHOT encodes histograms with first-order differentials of

the normals of the points within the neighbourhood. The descriptor is evaluated

both on synthetic data and scenes captured using a triangulation-based scanner.

In the latter case, eight models and 15 scenes are used with each scene consisting

of two models. The authors show that SHOT outperforms all other descriptors

in recognising the objects in the scene.

Rusu et al. (2010) present the viewport feature histogram (VFH) descriptor

for recognition in point clouds that encodes both geometry and scanner view-

point information. The technique presented is an extension of the fast point
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feature histograms (FPFH) by Rusu et al. (2009), with the addition of viewpoint

information. FPFH is an optimisation on the Point Feature Histogram (PFH)

surface descriptor (Rusu, Blodow, Marton & Beetz, 2008; Rusu, Marton, Blodow

& Beetz, 2008) which was initially applied for the alignment and registration of

point clouds. The PFH describes the local geometry around a point p and is

based on the combination of geometrical relations between the k-NN of p. PFH

describes a feature space which associates points to specific surfaces types, for

instance cylinder or plane. For each point p with surface normal np a set of k-NN

within a sphere of radius r is first extracted. For each pair of points p, q in this

subset, a point is first chosen as the source ps (the other is set as the target pt)

such that the source is the point having the smaller angle between its associated

normal and the line connecting the points. ps and pt with their respective surface

normals ns and nt are then used to define an orthonormal basis where u = ns,

v =
(pt − ps)× u
‖pt − ps‖

and w = u× v. Finally, a bin index value is computed as the

summation of four feature calculations. Figure 4.8 illustrates a simple histogram

example. A learning mechanism is used to associated points with surface classes

including plane, sphere, cylinder cone, torus, edge and corner. The trained PFH

descriptors are later used to differentiate between points lying on different sur-

faces and are able to recognise instances of primitive shapes in a scene consisting

of mugs, glasses, bottles and books on a tabletop. Object recognition, in a table-

top object manipulation task carried out by a PR2 mobile robot, uses the FPFH

descriptor and augments it to describe, using one VFH descriptor per viewpoint,

the object. The viewpoint component is computed by collecting a histogram of

the angles that the viewpoint direction makes with each normal on the object and

factored into the FPFH components. The descriptor is validated on a number of

scenes consisting of various kitchenware items including wine glasses, tumblers,

drinking glasses, mugs, bowls and boxes. Prior to recognition, a segmentation

process is carried out on the scene in order to remove the flat tabletop and cluster

points together, effectively producing a set partition with object candidates. Ob-

jects are only slightly cluttered, with each separated by a minimum distance from

each other. VFH is compared to SI (Johnson, 1997) with VFH achieving a better

recognition rate of 98.1% compared to the 73.2% of SI. VFH also outperforms SI

in a pose identification task.
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4.1.2 Segment-Based Object Recognition

Fan et al. (1989) present a system which takes as input dense range data and

automatically produces a symbolic description, an attributed graph, of the ob-

jects in the scene in terms of their visible surface patches. The segmentation and

description of the surface is based on measured curvature and depth discontinuity

properties. Object descriptors are synthesised as a set of such attributed graphs,

typically between 4 and 6, each computed automatically from a range image of

the object at a different viewpoint. A graph matcher is used to decompose the

graph of the scene into sub-graphs corresponding to different objects matching

the trained descriptors. The system was evaluated on three simple scenes each

containing between 2 and 4 models.

A structural indexing technique, based on line segments, has been proposed

by Stein & Medioni (1992) for matching points with surfaces using a 3D curve

representation. The system is shown to be able to represent, match and recognise

general objects. The object descriptor is based on a 3D curve which is extracted

from objects using depth and orientation discontinuities and approximated by a

set of consecutive line segments using curvature (between consecutive segments)

and torsion (between consecutive bi-normals) information. The system is eval-

uated on 4 scenes, one borrowed from Fan et al. (1989), two consisting of three

busts and a LiDAR terrain scene. For the latter, a tile is first copied from the

data and then, during the recognition phase, is correctly aligned back with the

original data.

Unnikrishnan & Hebert (2003) propose a method to robustly distinguish be-

tween planar structures and clutter in non-uniformly sampled point clouds of

urban scenes. Points are first inserted into a uniform grid and each voxel given a

score proportional to the local point density. Samples are then drawn by proba-

bilistic region growing to cover the space, and M-estimation (Van De Geer & Van

De Geer, 2000) is performed on each region to obtain a robust estimate of plane

parameters best fitting the points in the region. Region plane parameters are

then fused together using a generalisation of mean-shift based clustering. The

detected planes are assumed to be walls, whereas the remaining points are as-

sociated with scene clutter such as trees, bushes and cars. As opposed to other

techniques (e.g. Stamos & Allen (2000)), this approach specifically targets point

clouds having low point density regions.

Lalonde et al. (2006) present a technique, aimed at improving safety in out-
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door autonomous navigation systems, which classifies point clouds of terrain con-

taining vegetation into either scatter, linear or surface. The scatter class is used

to represent porous volumes such as grass and tree canopies, the linear class

captures thin objects like wires and tree branches and the surface class repre-

sents solid objects like ground surfaces and rocks. Similarly, Wang et al. (2008)

outline a procedure for the recognition and structure analysis of tree canopies

from LiDaR generated point clouds. First, the area of interest is chosen and

the heights of each point are normalised with respect to a fixed planar ground.

This is then segmented into small study cells using a 2D uniform grid over the

ground plane. The main tree canopy layers and the height ranges of the layers

are established according to a statistical analysis of the height distribution of

the normalised raw points. In order to recognise individual trees, the 2D grid

is extended for individual cells to sub canopy layers to include the tree crown

region. Tree crowns are detected by projecting the normalised points into the

sides of the local voxel space. Individual trees are then extracted by analysing the

resulting 2D projections and performing a tree traversal process which groups the

vertical neighbouring crown contours from layers at different height levels. Other

techniques have focused on the recognition (and reconstruction) of tree features

in point clouds. Specifically, Xu et al. (2007) device a more detailed approach,

based on allometric theory (Niklas & Spatz, 2006), focusing on the recognition of

the various elements of a tree in a dense point cloud representing the tree. Their

technique is used to identify the crown, branches and leaves of trees in order to

reconstruct quasi-identical meshes.

Road surface modelling from point clouds acquired using airborne LiDaR and

laser-based mobile mapping system has also received considerable attention. The

automatic recognition of traffic signs, curbstones and pavements, contributes to

accurate and up-to-date road side information which can then be used for road

planning and various location-based services. Jaakkola et al. (2008) describe

a system intended to recognise a number of components of a road from point

clouds acquired using vehicle-based laser scanning. The system is shown to iden-

tify parking lines, zebra crossings and curbstones. In order to detect parking lines

and zebra crossings (painted markings), the acquisition process attaches intensity

level values to points in the point cloud. A segmentation process first partitions

the point cloud into two partitions, points belonging to painted markings ac-

cording to their intensity levels and the rest. Points falling in regions with less

than a specific density value are automatically removed on the assumption that
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the acquisition process has sampled the road surface regularly and thus points

falling in lower density areas consist mainly of buildings which are not used here.

Several image processing filters are then applied on intensity and height raster

images resulting from projecting the points on a plane parallel to the ground

in order to extract the required structures. Beyond the accurate detection of

road surface details, realistic 3D city modelling also necessitates the acquisition

of building features. A number of purposely designed recognition algorithms

address this problem by automatically extracting building features from point

clouds acquired using ground-based laser scanners. Pu et al. (2006) present a

pipeline for automatically extracting building facade features such as walls, win-

dows and doors. The point cloud is first segmented (Vosselman et al., 2004) and

then segment properties are used to extract potential building features based on

prior building facade knowledge. This knowledge includes constraints such as

roofs are on top of walls, windows and doors are always on the walls, walls are

vertical, etc. These constraints are encoded during recognition and each segment

is checked to determine which kind of feature it is. Recognition of facade features

is carried out in a specific order namely ground, wall, roof, window, door depend-

ing on the encoding of the constraints. For instance, extrusions and intrusions on

the walls are labelled as windows or doors. The convex hulls of each segment is

computed to determine the area of the segment, and used as another constraint.

Recently, Nguatem et al. (2014) have described a system which specifically fo-

cuses on the identification of different types of windows (e.g. Gothic) and doors

in a facade.

Schnabel et al. (2008) propose a system intended to detect architectural fea-

tures, e.g. windows and columns, in an unstructured point cloud. They first

decompose point data into primitive shapes from which a topology graph is cre-

ated capturing neighbourhood relations between primitives. In a second stage,

this topology graph is searched for characteristic sub-graphs corresponding to the

sought user-defined elements. Segmentation is carried out using the algorithm

presented by Schnabel et al. (2007) to recognise planes, spheres, cylinders, cones

and tori. The output of the segmentation algorithm is a set partition, where each

partition is associated with a shape primitive φi except for one, R, which groups

together those points which do not fit any primitive. Following segmentation, all

points are inserted in a regular grid with cell width t to accelerate the compu-

tation of the distance function. Modifying the value of t, results in the creation

of different neighbourhood relations and in general increasing it will increase the
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number of edges in the graph. Shape recognition is achieved via constrained

sub-graph matching between a user-defined graph augmented with additional

constraints representing the characteristics of the shape being searched, itself a

topology graph, and the topology graph representing the point cloud. If search-

ing for saddle-back roofs three additional constraints are added, namely i) the

planes should exceed a certain size, ii) are similar, and iii) their intersection line

is parallel to the ground. The method is applied on a number of case-studies

including the detection of Gothic windows in a medieval chapel and columns in

a choir scene sculpture.

Golovinskiy et al. (2009) investigates the design of a system for recognising

objects such as cars, lamp posts and traffic lights, in point clouds of urban en-

vironments. The algorithm proposed takes a point cloud P representing a city

and a set of training objects with their location labelled on the 2D plane of the

city, and creates as output a set partition of P and labelling with every p ∈ P
associated to a partition and every partition mapped to a label representing the

recognised object (possibly background). Their process first generates a list of

locations for potential objects of interest in P , then predicts for each of these

locations which of the nearby points are part of the object and which are back-

ground clutter. For each of these potential objects, a set of features describing

the shape and spatial context of the object are determined and used to clas-

sify the object according to the previously labelled examples in the training set.

The descriptor consists of a classifier built over the feature vectors extracted

from the training set, which during recognition labels potential objects. Sev-

eral classifiers are evaluated including k-NN, random forests (Liaw & Wiener,

2002), and support vector machines (Hearst et al., 1998) available within the

Weka toolkit (Witten et al., 1999). An accurate segmentation of the point cloud

is critical to the success of the method in that potential objects need to be void

of clutter and background noise and ideally only consist of points sampled from

one object. For this purpose, a min-cut algorithm (Stoer & Wagner, 1997) is

used to extract the objects from the background. For each of the objects, sev-

eral shape features are computed including number of points, estimated volume,

average height, standard deviation in height and the standard deviation in the

two principal horizontal directions. Moreover, a SI object descriptor centred at

the predicted object location with a radius of 2m and central axis perpendicular

to the ground is computed. Contextual spatial features are extracted such as

distance to nearest street by incorporating digital imagery of the city used. The
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system is able to recognise 65% of the 6698 objects in the city.

Zhao et al. (2010) utilise a robot vehicle system to generate point clouds from

range images of urban environments with the intent of producing a semantic

map of the objects present in an area. Their method first computes segmen-

tation primitives from range images, using scan-line segments and edge points,

then merges these segments considering both modelling costs and classification

probabilities. The process tries to identify buildings, roads, trees, car, humans

and bushes by attaching likelihood values to segments, for instance a person can

be restricted within a cylinder, a car has a maximum width, length and depth.

The method is generally able to recognise these objects with the assumption that

all the objects are acquired from the same height along the path of a moving

vehicle.

Mura et al. (2013) present a pipeline for the automatic recognition of rooms

in an interior building under clutter and occlusions given a set of range images.

For each image, an occlusion aware process is first used to extract vertical planar

patches. These patches are then projected on the horizontal plane to get line

segments from which cells are built at the intersections of the representative

lines. Clustering of the cells is used to extract the separate rooms. The system

is evaluated on real and synthetic data sets and is able to accurately recognise

the rooms present in the scenes.

Gao & Yang (2013) propose a segmentation and identification pipeline in-

tended to recognise buildings from ground-based LiDaR data in urban scenes. In

addition to a point cloud with rich street-level details, the method requires the

scanning/driving trajectory. Depth maps are extracted from a virtual camera

which is placed looking in the direction of the scanner and perpendicular to the

ground following the trajectory in the point cloud. From these depth maps a

histogram is created with the horizontal axis corresponding to positions sampled

at every 0.5m along the driving route and the vertical axis representing corre-

sponding number of visible foreground pixels in the depth map along that scan

line. On the assumption that there are significant gaps between buildings, the

system is able to recognise individual buildings in the point cloud by segmenting

the histogram along sustained peaks on the horizontal axis. The system is shown

to work on point clouds representing both mass produced single-family houses

and a typical down-town area of buildings varying in size and style. The overall

recognition rate is stated at 86% of the buildings present in the datasets. Another

building recognition algorithm was presented by Frueh et al. (2005) which how-
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ever focuses more on the alignment of camera images with the extracted building

facades.

Karpathy et al. (2013) describe an object discovery method in 3D scenes

acquired using a triangulation-based sensor based on segment shape analysis.

Rather than synthesising a descriptor for a point, this method looks into the cre-

ation of a descriptor for segments. A segmentation process, which uses the mesh

produced during the acquisition step (Newcombe et al., 2011), partitions the data

using a region-growing approach using a local curvature-aware metric. The re-

sulting segments are post-processed in order to accept for further processing those

having at least 500 points and rejecting those that are more than one metre in size

or less than 2cm thin. These value are chosen to fit the dataset acquired which

consists to several counters with objects on them. The properties associated

with the resulting segments include compactness, symmetry, smoothness, local

convexity and recurrence across different scenes. Several options are considered

to combine these properties into one score, with the RBF kernel support vector

machine (Scholkopf et al., 1997) capable of reliably distinguishing objects. Given

a uniformly sampled scene, with specific parameters, the technique is able to cor-

rectly identify small objects on a counter. The main limitation is the requirement

for a consistent segmentation process, which is generally difficult when the size of

the scene acquired goes beyond a small area, for instance when scanning a room.

4.1.3 Summary

Both point-based and segment-based object descriptors have been used to address

the recognition task from point cloud data. Some of the techniques presented re-

quire a range image of the scene, whereas others work directly on point clouds.

Methods using point-based descriptors, tackle the problem of identification of

objects within a collection located on a common surface, and take into account

possible object occlusions and to a certain extent noise in the acquired samples.

These methods search for similarities between points in the trained objects and

points in the target point cloud, and any matches need to be verified using an

ICP algorithm in order to corroborate the match. In general, these methods are

more sensitive to sample noise, since descriptors are based on the neighbourhood

of points. Uniform point density is in many cases necessary in order to tally the

point descriptors computed on the training set to those computed on the point

cloud. Table 4.1 lists the point-based methods presented. A number of seg-
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mentation based 3D object identification methods have also been described. In

particular, the topology graph matching technique presented by Schnabel et al.

(2008), which builds a graph of segment primitives using a spatial neighbour-

hood function, can be used for general-purpose identification tasks. Sub-graph

matching is used to identify regular structures in the graph, such as saddle-back

roofs and stairs. A variety of methods have been designed to suit a specific

identification task and preclude them from being used to address more general

identification tasks. These are listed in Table 4.3.

Reference Comments

Curvature Signs (Besl & Jain, 1985) Point-based Classifier
Local Primitive (Faugeras & Hebert, 1986) Point-based Classifier
Attributed Graph (Fan et al., 1989) Graph of segments
Structural Indexing (Stein & Medioni, 1992) 3D Curve from segments
Point Signatures (Chua & Jarvis, 1997) 3D Curve from points
Spin Images (Johnson, 1997) Point-based 2D Histogram
Surface Signatures (Yamany & Farag, 2002) Point-based 2D Histogram
Shape Context (Frome et al., 2004) Point-based 3D Histogram
Harmonic Shape Context (Frome et al., 2004) Point-based 3D Histogram
Local Surface Patch (Chen & Bhanu, 2007) Point-based 2D Histogram
Exponential Maps (Novatnack & Nishino, 2008) Point-based 2D Histogram
SHOT (Tombari et al., 2010) Point-based 2D Histogram
Point Feature Histograms (Rusu et al., 2009) Point-based 2D Histogram
Viewpoint Feature Histogram (Rusu et al., 2010) Point-based 2D Histogram

Table 4.1: Summary of object/structure recognition techniques using point-based de-
scriptors.

Reference Comments

Topology Graph (Schnabel et al., 2008) Graph-based Classifier
Segment Shape Analysis (Karpathy et al., 2013) Shape-based Classifier

Table 4.2: Summary of object/structure recognition techniques based on segmentation.

4.2 Indoor Scene Understanding

The virtual reconstruction of indoor environments has recently witnessed a surge

in popularity within the computer graphics community, mainly triggered by sub-

stantial improvements in relatively cheap portable 3D scanners. These scanners
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Reference Comments

(Unnikrishnan & Hebert, 2003) Clutter/Planes classifier
(Anguelov et al., 2005) Ground/Building/Tree/Shrubbery classifier
(Lalonde et al., 2006) Grass/Tree/Rock/Wires classifier
(Wang et al., 2008) Structure Analysis of tree canopies
(Xu et al., 2007) Detailed tree reconstruction
(Jaakkola et al., 2008) Road surface modelling
(Pu et al., 2006) Facade wall, windows and doors

Table 4.3: Summary of techniques used for specific object recognition tasks.

enable easy and quick acquisition of small rooms with a typical volume of 5m3.

Both triangulation based scanners (e.g. in Nan et al. (2012)) and time-of-flight

laser scanners (e.g. in Mura et al. (2013)) have been used to acquire indoor en-

vironments. Triangulation based scanners are cheaper and are therefore more

widely available. Scene understanding of indoor scenes usually tends to be more

problematic due to increased clutter, resulting in low quality point clouds (§2.3.3).

Indoor scenes acquired using triangular based depth scanners usually suffer from

increased sample noise.

Scene understanding techniques are usually designed to work within a specific

context represented by a training set of scenes, for instance point clouds repre-

senting similar office rooms or auditoriums. Given this scene-specific information,

correspondence can be viewed as evolving from a purely geometric similarity

function between objects to one which may include some form of semantic or

knowledge-driven function. For many indoor scene understanding methods (Nan

et al., 2012; Kim et al., 2012), the utilisation of prior knowledge is used (e.g. geo-

metric - this is an example of a chair or, spatial - a monitor is found on a desk and

a chair is found on the floor, scene upward direction), where the main difficulty

is in the modelling of this knowledge as a scene descriptor and in making use of

it efficiently. The use of this information during the training process, however,

greatly limits the scope of these techniques to scenes which are very similar to

the ones used for training and precludes them from correctly identifying any of

the trained objects if these are positioned, scaled or oriented differently.

Methods for indoor scene understanding are categorised in two, namely super-

vised and unsupervised. Supervised methods entail a training process resulting

in a scene descriptor, which encodes objects in O and a variety of properties from

the scene. This scene descriptor is then used to establish correspondence between
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the elements of the set partition of point cloud P and objects in O. Unsuper-

vised methods, do not utilise a training phase and instead rely on the presence

of patterns, such as repetition and symmetry between segments, in order to clus-

ters together similar segments. Due to considerable sensor noise, resulting in low

quality point clouds, point-based object descriptors are not generally used. For

all methods, a segmentation process is required to first produce a set partition of

P . In the next sections, supervised methods are presented first (§4.2.1), followed

by unsupervised methods (§4.2.2).

4.2.1 Supervised Methods

Rušu et al. (2008) describe an object identification method for household kitchen

environments, where cupboards and drawers are represented as a cuboid with

doors and handles, whereas tables and shelves are represented as horizontal

planes. The input consists of a set of range images with camera parameters

of a scene. A geometrical mapping module first uniformly re-samples the in-

put point cloud, removing noise, and embellishes points with surface curvature,

normals (oriented using camera parameters from range images) and a geometric

description of the local point neighbourhood using feature histograms. A func-

tional mapping model then extracts semantic information based on 3D geometry

and a set of assumptions about the world, in this case a kitchen environment.

The assumptions include: tables are planar horizontal surfaces located at hip

height, cupboards and drawers are vertical surfaces with a certain area and hav-

ing a handle, kitchen appliance with knobs. Other elements such as chairs are

not identified. Region growing using smoothness constraints is used to generate

the segments. In order to identify the interesting segments further assumptions

are carried out, namely that there exists only one floor and one ceiling planes

and walls have specific properties. Knobs and handles are identified by looking

at small clusters of points at specified distance from the vertical planar segments.

The cuboid structures are then classified into different classes based on a set of

high-level features, for example hasHandle and hasKnobs.

Several methods have been proposed for recognising interior walls in a point

cloud (Hähnel et al., 2003; Thrun et al., 2004; Budroni & Böhm, 2009). More

recently, Adan & Huber (2011) present a method to recognise and reconstruct

interior wall surfaces in indoor scenes under occlusion and clutter. Their approach

is different from previous methods in that they explicitly reason about occlusions
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and are thus able to handle scenes with high levels of occlusion. A point cloud

P , with the up direction defined, is first down-sampled (0.04 of the original size)

using a voxel-based scheme, where each p ∈ P is quantised into a voxel. A

number of assumptions are taken, namely that walls are aligned with an axis

of the voxel space, and that the surfaces to be modelled are planar. Given

these assumptions and a new set of points representing the occupied voxels,

the approximate planes of the walls, ceiling and floor are then detected using

projections into 2D followed by the application of the Hough transform to produce

a set of surface candidates. Occlusion labelling is then carried out on each voxel

of each surface candidate and a 2D image is then computed. A scene descriptor

is trained using a support vector machine (SVM) classifier (Hearst et al., 1998) to

distinguish between proper openings in a wall and those resulting from occlusion

using a 14-component feature vector based mainly on the area, width and heights

of an opening. The descriptor, is trained on a set of 370 examples containing both

valid and invalid openings, and is evaluated on a point cloud representing a two

storey building consisting of forty similar rooms with consistently good results.

Koppula et al. (2011) and Anand et al. (2012) present a supervised method

that exploits relational information derived from the full-scene 3D point cloud

for object labelling. Point clouds, acquired using triangulation based scanners,

are over-segmented using a region-growing process with takes in consideration

local surface normals and distance between points. Each of these segments is

then labelled with a specific category following a training process which builds a

model encoding properties of these segments including visual appearance (colour

and intensity), depth and contextual information. The model also assumes that

if nearby segments are similar in visual appearance, then they are more likely to

belong to the same object. In addition to appearance, the model also encodes

local shape, for example, a table is horizontal and a sofa is usually smoothly

curved. The model also caters for geometrical context, whereby it exploits the

repeated occurrence of specific geometric configurations, for instance, a monitor

is always on top of a table, and chairs are near tables. The model, a MRF, is

trained from a set of labelled training examples (2495 labels) and used to classify

a set of office and home scenes. Labels include wall, floor, tabletop, table leg,

laptop and book. In many cases individual objects are divided into multiple

segments because of over-segmentation. The majority of the classes are correctly

identified, with problems in cases such as the tabletop being confused with a

shelf-rack. All point clouds used for training and evaluation, are acquired from
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the same height which favours a consistent segmentation process for objects, and

is of critical importance to the method. Scanning from a slightly more elevated

position may considerably change the outcome of the segmentation algorithm

which would reduce the effectiveness of the method.

A search-classify approach for scene understanding of cluttered indoor scenes

is presented by Nan et al. (2012). A randomised decision forest (RDF) classi-

fier (Breiman, 2001) is trained with various indoor objects (e.g. cabinets, chairs,

tables) using a set of discriminative features. The features are tightly coupled

with the upward orientation of the objects, with each object segmented into three

horizontal slabs by analysing point distribution along the scene upward direction.

Features include aspect ratios of the top, middle and bottom slabs, OBB height-

size ratio, bottom-top and mid-top size ratios, and changes in centre of masses

between the three slabs. The trained RDF is then used during a segment grow-

ing classification process to identify subsets of segments in the scene making up

a trained object. A segmentation process is first carried out on the points to

produce a set of segments via a region growing process based on normal smooth-

ness (> 0.8) and distance threshold (< 1cm). An adjacency graph is computed

over these segments, connecting those which are less that 15cm from each other.

The search-classify procedure starts by selecting m random segment triplets and

test them for classification likelihood using the RDF. Those with a high value

are further processed by traversing the adjacency graph and iteratively adding

nearby segments and recalculating classification likelihood. The region growing

process stops if accumulation of any neighbouring patch results in a decrease of

the current likelihood. Since it is possible to include a segment in two separate

objects, a template fitting via deformation process is carried out at the end to re-

move these ambiguities. The method has been applied on a data set consisting of

scanned indoor scenes, with very good identification results. The main problem

with the approach is the limitation to upward orientation embedded in the object

descriptors of the trained RDF, with classification and fitting assuming a global

scene upward orientation. Objects which do not obey this assumption yield in-

correct results. Moreover, objects such as shelving-racks, which do not fit within

the three horizontal slabs classification scheme cannot be reliably identified.

Shao et al. (2012) present an interactive approach to semantic modelling of

an indoor scene from a set of RGBD images. Segmentation of these images is

first carried out automatically using a Conditional Random Field (CRF) classi-

fier (Lafferty et al., 2001), and if not satisfactory, the user interactively draws
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strokes on the images to achieve better segmentation results. Segments are clas-

sified as either sofa, table, monitor, wall, chair, floor, bed, cabinet, ceiling or

background. After segmentation, the depth data of each segment is used to

retrieve a matching 3D model from a database. For this purpose a Random Re-

gression Forest (RRF) classifier (Liaw & Wiener, 2002) is used, which is trained

using rendered depth images of 3D models in the database annotated with model

class labels, orientation angle and distance from the virtual camera. Results

show that this is a good approach towards scene modelling, which however re-

quires user interaction, and is a viable method for semi-automated indoor scene

understanding.

Kim et al. (2012) describe a method which exploits object repetitions and

variability in a typical indoor scene. The learning phase uses frequently occur-

ring 3D models to capture different configurations per model (e.g. hinge angles)

from a number of scans. The descriptor used represents these models as a graph

of box, cylinder and radial structure primitives. For each object, the common

primitives are used as the proxy representation with the rest representing variable

parts. In the recognition phase, the method first extracts the dominant plane

in the scene which is assumed to represent the ground. Planes parallel to the

ground are tagged as tabletops if they are at specific heights from the ground,

and assume that working surfaces have similar heights across rooms. Scene prior

information, for instance chairs are located on the ground, monitors on the desk

and desks repeat horizontally, is used to match scene segments with the trained

models. A 10cm distance threshold is used during the region-growing segmenta-

tion process. The method is evaluated on a number of synthetic and real-world

scenes, obtaining good results in both cases. The main strength of this method

is that it captures typical objects variability modes, however is dependent on

specific information about the scene.

A sliding windows approach to object detection from RGBD images is pre-

sented by Song & Xiao (2014). The method first trains an ensemble of linear

Exemplar-SVM (Malisiewicz et al., 2011) using feature vectors extracted from

depth images of CAD models. An axis-aligned 3D sliding window is then shifted

across the scene to determine which of the objects trained is present. The fea-

ture vector for each depth image is composed of information relating to point

density, local 3D shape, normals and truncated signed distance function (TSDF)

(Newcombe et al., 2011) which encodes self-occlusion within the depth image. In

order to reduce sample space, an assumption is taken on the upward direction of
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the models and only rotations along the upward direction are considered when

training the SVM. During testing, the method exhaustively classifies each pos-

sible bounding box in the 3D space of the scene using all Exemplar-SVMs, and

outputs a detection score which is then followed by a non-maximum suppression

process on all boxes. The method is evaluated on a dataset of RGBD images

containing five common indoor objects: chair, toilet, bed, sofa, and table. The

experiments carried out show that the method is able to correctly identify these

objects in many cases. Some false positives occur when objects have similar

shapes, since the sliding window approach may consider only parts of an object

in an input image. Moreover, since the 3D sliding window is axis aligned, the

method fails to detect objects which are inclined, or are not directly placed on

the floor.

4.2.2 Unsupervised Methods

Mattausch et al. (2014) present a method to automatically segment indoor scenes

by detecting repeating objects. An input point cloud is first partitioned into a

collection of nearly-planar segments, which are then grouped together using a seg-

ment similarity measure based on shape descriptors and spatial configurations of

neighbouring segments. Region growing starts by first ordering points in ascend-

ing measure of curvature c=e1/(e1 + e2 + e3), where e1, e2 and e3 are the three

Eigenvalues obtained from PCA over a set of nearest neighbour points. Seeds for

region growing are selected from this ordered list, and continue expanding until

either the normal of the neighbouring point varies or the neighbouring point is

outside the definition of the current segment plane. This set of segments is then

partitioned into two categories, namely horizontal and vertical, by taking an as-

sumption that the floor of the rooms is always the XY-plane. A feature descriptor

is used to discriminate between the segments, and encodes segment area, ratio of

segment width to length, ratios of areas (convex hull/segment area), height from

the ground of centroid of segment, segment normal and a non-planarity value

d/(w + l + d). In addition to segment similarity, a spatial consistency model is

also used which measures the similarity of spatial configurations (e.g. chair back

and seat segments). In order to avoid some ambiguities, segments with areas

greater than 1.2m2 (typically a tabletop), do not consider relations to nearby

segments. Moreover, only those segments which are within a 20cm limit are

considered as segments that could potentially be part of the same object. The
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method is evaluated on data acquired using a laser range scanner which pro-

vided high quality point clouds of office scenes and is not tested on lower quality

triangulation-based hand-held scanners. Results show that the method is able

to consistently detect repetitive patterns such as shelves, tables and chairs. The

method assumes that all objects of the same class have a consistent up-direction.

Moreover, the segment representation used is not expressive enough to represent

small objects with many planar regions like desk lamps.

4.3 Indoor Scene Understanding Feature Comparison

Table 4.4 shows a feature comparison for the indoor scene understanding al-

gorithms described in this chapter. The comparison is based on a number of

common properties associated with scene understanding methods.

Approach This property denotes whether the method is based on a supervised

(which requires a training phase) or unsupervised (which does not use a

training phase) process. Additionally, a method might require user input,

for instance to guide the segmentation process.

Labelling The ability of the method to label the objects present in the scene,

as opposed to just grouping together related segments.

Input Quality The quality (§2.3.3) of the point cloud required by the proposed

method. Methods evaluated on point clouds acquired using commodity

hand-held scanners are listed as low, whereas others evaluated on point

clouds acquired using TOF laser scanners which produce less noise are

listed as high.

Input Format The required input format for the scene understanding algo-

rithm: range images or point cloud. Some methods rely on the availability

of a range map to establish scene-specific parameters from camera informa-

tion.

Context The reliance of the method on scene specific parameters, for instance

user specified and consistent up direction amongst objects and specific dis-

tances or configurations between objects. If this scene information is essen-

tial, the method is referred to as sensitive, and free if not.
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Object Pose Inv. Can an object be identified in a scene, if this is not consistent

with the pose used during the training phase. Set to true if tilted or non-

uniform scaled objects are identified, otherwise false.

Size Range What range of object sizes can be identified with respect to the area

scanned: coarse (e.g. walls), large (e.g. chairs), medium (e.g. desk lamps)

and small objects (e.g. computer mouse).

4.4 Discussion

Indoor scene understanding from point clouds has seen a surge in techniques,

mostly using a segment-based supervised approach, which address the problem

of identifying the main components of a scene. In order to do without the gener-

ally expensive training process, Mattausch et al. (2014) propose an unsupervised

approach which searches for segment patterns in scenes using a variety of seg-

ment properties without the need of a training phase. However, whereas certain

objects can be represented via a regular pattern, and therefore amenable to an

unsupervised approach, others are more complex to describe. Amongst the many

research gaps in the field, two are highlighted in the limitations of the methods

described above. These are the absence of a method which takes advantage and

combines supervised and unsupervised approaches and the inability of techniques,

when using a supervised approach, to identify objects which are not necessarily

in an upright pose or a specific distance from a user-specified floor. For instance,

a scene consisting of a flight of stairs with objects placed on some of them cannot

be interpreted correctly. Similarly, shelving units in a room, which usually vary

in number of shelves and size, cannot be robustly identified using a supervised

method. In these cases, unsupervised methods have been used to search for these

regular patterns which cluster together segments with similar properties. An al-

ternative approach which searches for specific segment patterns in the scene, and

also for previously trained object descriptors in a context-free setting is missing.

Local point-based object descriptors(§4.1.1), for example SI, in an indoor

scene understanding context have been shown to lead to poor performance with

the size of the descriptor playing a critical role. In general, a relatively small

sized descriptor makes the algorithm more robust under clutter and occlusion,

but at the same time makes it harder to discriminate between locally similar

shapes. Segment-based approaches have shown promise in many of the methods
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Method Approach Labelling Inp. Quality Inp. Format Context Obj. Pose Inv. Size Range

Rušu et al. (2008) Supervised X High Range Maps Sensitive × Coarse
Koppula et al. (2011) Supervised X Low Range Maps Sensitive × Medium
Adan & Huber (2011) Supervised X Low Range Maps Sensitive × Medium
Nan et al. (2012) Supervised X Low Point Cloud Sensitive × Medium
Shao et al. (2012) Supervised/Interactive X Low Range Maps Free X Medium
Anand et al. (2012) Supervised X Low Range Maps Sensitive × Medium
Karpathy et al. (2013) Supervised X High Point Cloud Sensitive × High
Song & Xiao (2014) Supervised X High Range Maps Sensitive × Large
Kim et al. (2012) Supervised X Low Point cloud Sensitive × Medium
Mattausch et al. (2014) Unsupervised × High Point cloud Sensitive X Large

Table 4.4: Feature comparison of indoor scene understanding methods.
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proposed, since these tend to mitigate the problems associated with noise and

clutter prevalent in indoor scenes acquired using low quality hand-held scanners

by grouping together spatially close points with similar properties. Nan et al.

(2012) and Kim et al. (2012) both propose supervised methods which learn seg-

mentation based object descriptors. During the training phase, both methods

use prior information about object locations in the scene and upright direction

and are therefore sensitive to object post changes in the target scenes. Simi-

lar restrictions are found in the method presented by Song & Xiao (2014), which

trains Exemplar-SVMs using objects of a specific size and orientation. Shao et al.

(2012) proposes a context-free setting, however, their method requires the user

to provide hints to the segmentation process in order to extract object segments

which are later matched against a repository of models.

Some of the techniques presented, only work when the input is in the form

of a set of range images (Zhao et al., 2010; Shao et al., 2012) since these rely on

camera parameters during the identification process. For point clouds acquired

using simultaneous localisation and mapping (SLAM) (Newcombe et al., 2011)

techniques, which are common for indoor environments, range images are usually

not available. Appearance (colour) information may be available and exploited

(Koppula et al., 2011; Anand et al., 2012) in range images to improve identifica-

tion results, but this information is not available in raw point cloud data.

A novel scene understanding framework is presented in Chapter 7, CoFFrS,

which seeks to address these limitations, namely, dependence of scene specific

context during training, restrictions on the pose of trained objects in a target

scene, and the inability to interpret a scene by searching both for regular patterns

and previously trained objects. Additionally, the framework should allow for easy

integration of future extensions, for instance, an extension which exploits scene

specific parameters when these are available during the interpretation of a scene,

but not in the training phase. Arguably, the integration of prior information

about a scene into a trained descriptor can lead to improved classification results

from low quality point clouds. For instance, if there’s a priori knowledge that

chair seats are always at a fixed distance from the floor and at a particular

orientation, then if a method can establish that a segment exists satisfying these

properties, it can immediately infer the presence of a chair. However, in scenes

where this is not the case, dependence on prior information can lead to inaccurate

results. CoFFrS, which is based on PaRSe, the segmentation process presented

in Chapter 5, is an attempt at designing a scene understanding framework which
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does not depend on specific scene parameters, but only on the set of object classes

that can be found in the scene.

4.5 Summary

This chapter has provided a literature review for 3D object recognition and in-

door scene understanding methods from point clouds. Tables 4.1 and 4.2 list

3D object recognition methods using point-based and segment-based descriptors

respectively. A variety of segment-based indoor scene understanding methods are

also described in this chapter, with Table 4.4 providing a feature comparison of

these methods. In all cases, scene specific parameters are utilised in the training

and recognition phases, which diminish their effectiveness on scenes which include

objects and structures in different poses to the trained descriptors. The following

chapter introduces a novel raw point cloud segmentation method, PaRSe, which

produces segment primitives used by CoFFrS, the scene understanding framework

presented in Chapter 7.



CHAPTER 5

Point Cloud Structure Graphs

Segmentation plays a critical role in point cloud processing pipelines by contribut-

ing various levels of abstractions over raw data. These levels of abstraction, for

instance a set partition of point cloud P mapping sets of points to geometric prim-

itives, provide structural and shape information about the sampled scene. The

segmentation techniques discussed in Chapter 3 have either employed a shape

fitting or a region-growing approach. In the former, either the 3D Hough trans-

form (Borrmann et al., 2011) or RanSaC (§2.7) are used, whereas region-growing

algorithms expand seed points over neighbours that comply with specified prop-

erties. This chapter introduces a novel general-purpose segmentation method for

raw point clouds which combines a region-growing process with shape fitting us-

ing RanSaC. In order to increase the applicability of the segmentation process,

and given the lack of context in which it is applied, only the plane primitive is

used for fitting the data. When required, more complex shapes, e.g. cylinders

and boxes are composed from the extracted planar segment primitives. Whereas

it is possible to partition a point cloud into a collection of planar segments by

directly applying shape fitting or by expanding seed points into regions of points

with similar surface normals, the set partitions produced still do not exploit the

benefits of both approaches. Moreover, in both cases, segmentation randomness

Figure 5.1: Automatic point cloud segmentation pipeline - Raw data is first segmented
into smaller patches using a region growing process, then geometric planes (coloured
patches) are mapped onto these segments using the RanSaC paradigm.

85
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resulting from both selection of seeds and shape supports is still considerably

high. Plane fitting using RanSaC is preferred over the 3D Hough transform

method in this work as it has been shown to provide results in shorter time and

of higher quality (Tarsha-Kurdi et al., 2007). Figure 5.1 illustrates an example

where a region growing process is first used to visualise the contour of stones

making up an apse of a pre-historic temple and a RanSaC plane fitting process

is then used to identify individual stones. The direct application of a RanSaC

plane fitting process over all points in P , even if this is constrained using locality

information as in Schnabel et al. (2007), does not produce a set partition enumer-

ating the individual stones. Similarly, traditional region-growing using surface

curvature properties cannot produce a segment representing the contour of the

stones in the wall. The novel segmentation method presented in this chapter,

PaRSe, addresses the following design goals:

• Can be applied to generic point clouds acquired from a variety of environ-

ments.

• functions with minimal information, namely position. Range images and

camera parameters are not required.

• Efficient both in terms of memory and time complexities with data access

patterns favouring parallelization.

• When applied to the same point cloud, using similar parameters, the seg-

mentation algorithm should produce highly repeatable set partitions, both

in terms of the number of segments and the assignment of points to seg-

ments.

• The elements of the set partitions are mapped to an abstract data type

which can be used to easily carry out post-processing tasks.

• Segmentation should be robust to noise and occlusion.

Many point cloud processing tasks, for instance the removal of outliers, work

on the assumption that a segmentation process is able to provide a meaningful

level of abstraction. Similarly, many object recognition and scene understanding

algorithms build upon the computed set partitions (§4.1.2 and §4.2). Segmen-

tation processes have generally been tailored to suit specific scenarios and have

therefore only been evaluated within one context, for instance, segmentation
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of point clouds representing trees (Ning et al., 2009), buildings (Dorninger &

Nothegger, 2007) and industrial objects (Robbani & Vosselman, 2006). All these

make a number of assumptions on the input point cloud.

Figure 5.2: Point cloud of a section of the Mnajdra pre-historic temple (600K points).

As shall be shown, PaRSe, has been used to tackle tasks in a variety of con-

texts, ranging from point clouds representing simple geometric shapes to large

airborne LiDaR data sets. While applicable to any point cloud, this work uses as

a primary example a cultural heritage (CH) scene. Segmentation is particularly

challenging in the CH context due to the generally more complex geometrical

and surface properties (e.g. weathered and eroded stone) for certain CH sites.

Segmentation of point clouds acquired from CH sites has not been given much

attention in previous literature, notwithstanding the fact that in recent years

many CH institutions have been engaged in the exercise of creating 3D virtual

reproductions of sites for which they are responsible. Large architectural her-

itage sites are continuously being scanned and documented (for example in the

work described by Ruther (2010a)) for the purpose of academic study, hypoth-

esis evaluation, better preservation and CH dissemination to the general public.

This scenario has contributed to an increase in importance for algorithms which

are capable of analysing and processing point clouds efficiently. As pointed out
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by Cignoni & Scopigno (2008), a major challenge is now how to manage the

complexity of scanned data. In many of these cases, a segmentation process is

required in order to partition the point cloud into a number of meaningful parts,

which can be more easily managed. This partitioning of the point cloud effec-

tively provides for a level of abstraction over raw position data which allows for

easier and more efficient point cloud manipulation. Figure 5.2 illustrates the

rendering of a point cloud acquired from the smallest of three temples in the

Mnajdra pre-historic site. As pointed out by Cignoni & Scopigno (2008), the ac-

quisition process is followed by substantial data processing, usually requiring user

intervention, long processing times and above all tedious work. Ruther (2010a)

describes how post-processing tasks usually take much more time than the actual

acquisition process on site. This time can be decreased if the point cloud gen-

erated from the scanning process is partitioned into smaller meaningful subsets

of points representing distinct geometries (e.g. Figure 5.1). This ability to auto-

matically distinguish between different elements in the scene would benefit the

CH professional working with the acquired point cloud. For example, tessella-

tion problems common with complex sites such as pre-historic temples consisting

mostly of weathered and eroded stone which usually require decimation, can be

approached compositionally by tessellating segments individually according to

requirements. In order to facilitate the dissemination of a virtual reconstruction

of a CH site over the internet, a CH institution might want to down-sample the

floor of the site but not the walls. The selection of parts of a scanned site, for

example a specific wall or the floor, would usually require users to learn how a

specific 3D modelling software is used. This work proposes an efficient and se-

mantically meaningful point cloud segmentation pipeline which facilitates these

tasks, and which only assumes the availability of position information within the

data. The segmentation pipeline presented, enables the use of simple point cloud

queries, where a processed point cloud can be used to efficiently query for and

extract specific parts.

5.1 PaRSe - Method Overview

Algorithm 6 illustrates the high-level steps making up PaRSe. Key to the seg-

mentation method presented here is the observation that objects, or collections

of objects in a scene, typically consist of a number of surfaces connected via zero
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Figure 5.3: Levels of abstraction over a point cloud P . At the lowest level (top row)
is the raw unstructured point cloud. All points are first labelled according to their
local point neighbourhood properties. A region growing algorithm then produces a set
partition as the second layer of abstraction. The elements of this set are then segmented
again using a RanSaC based plane fitting process, with each resulting segment further
subdivided if it consists of spatially disjoint point clusters (e.g. fourth column).

or more edges. For instance, when sampling a box object, each sample point

on the box surface is a member of either one of two sets, namely one contain-

ing points that are sampled from an edge or a corner of the box, and the other

containing those points which are not. This binary categorisation (Algorithm 6,

line 2) is carried out via a local surface curvature computation for each point

as described in §5.1.1. Certain objects, for instance a smooth spherical object,

on the assumption that enough samples are acquired and noise is minimal, can

result in an empty set of edge and corner points since every sample would belong

to one set. A region growing process (Algorithm 6, line 3) then uses this labelling

of points in order to partition the input point cloud into regions of the same type

as described in §5.2. An additional level of abstraction is computed over the

resulting regions, by computing for each region segment, another set partition

which maps points in these segments to zero or more planar geometric primitives

(Algorithm 6, line 4). Finally, these planar segments are further partitioned into

disjoint point islands. Figure 5.3 illustrates the bottom-up pipeline described

above on a simple example. Points in P are first labelled as either surface (green

points) or edge (black points). Using this information, a region growing algo-

rithm partitions P into a set of segments which are then further partitioned into
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planar segments. Rather than trying to fit different geometric primitives to the

segments, as in the work by Schnabel et al. (2008), a more generic strategy is

adopted by only fitting plane primitives and subsequently constructing higher-

order primitives from compositions of planes. Clearly, if a scene consists of a

number of spheres, then first trying to fit planes and then searching for spheres

is more expensive than directly using RanSaC to fit spheres. On the other hand,

if a scene does not have any points which could fit a sphere, then trying to fit

a sphere (and possibly other primitives) within the data is more expensive than

just fitting plane primitives. To facilitate further processing which may be carried

out on P , the elements of the final set partition are organised as a graph, referred

to as the structure graph, which encodes connectivity information between the

segments making up P . Figure 5.4 illustrates an example where the shape of a

stairs and a chair are encoded as graphs. Given a structure graph for the scenes

(chairs on stairs) shown, this is used to first identify the stairs and then the chairs

by using transition trees (see §2.2.2) and measuring the compatibility between

the graphs (see §2.2.3).

Algorithm 6 PaRSe three phase segmentation pipeline

1: Input: Point cloud P , segmentation parameters α.
2: PointLabelling(P ,α) . Input is split between edge and surface types
3: Regions = RegionGrowing(P ,α) . Grow regions using point type
4: Segments = PlaneF itting(Regions,α) . Apply plane fitting to regions
5: SegmentsD = RegionGrowing(Segments,α) . Cluster disjoint point groups

5.1.1 Point Types

Both normal and curvature of a point on a surface can be estimated by considering

a local neighbourhood of points. For this purpose, a k-NN query (§2.5.1) is used

to determine the kmax nearest points for each p ∈ P . A maximum distance value,

r, is used to bound the query to the local surface neighbourhood, just in case the

point sample density within a particular area is very low. In addition to kmax,

a value kmin is also set, which determines the minimum number of neighbours

required to proceed with the computation. For a given point p, if the number

of neighbours at a distance less than r is between kmin and kmax, PCA (§2.5.2)

is used to determine whether p is most likely to be located on a surface or an

edge by computing the maximum curvature of p. In a similar fashion to Hoppe

et al. (1992), an OBB (§2.5.3) of the kmax neighbouring points of p is computed.
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Figure 5.4: The point cloud above, representing 2D scenes of stairs and chairs, can
be transformed into a graph describing connectivity between line segments. The two
graphs, describing connectivity patterns for stairs and chairs can be used to map the
line segments to object instances. The states of the graphs represent line segments,
whereas the relation describes the approximate angle between line segments.
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The ratio of the eigenvalues of this orthogonal basis is used to determine the

type of each point. The number of eigenvalues returned by PCA depends on the

dimensionality of the input data, which in this case is three and each represents

the variance along the three eigenvectors describing the orthonormal basis of the

computed OBB. The first eigenvalue e1 represents the largest variance, whereas

the second e2, and third e3 represent the second and third smallest. Eigenvalues

are further discussed in §2.5.3 and in more depth by Pauly et al. (2002). If

the third eigenvalue is much smaller than the second eigenvalue, i.e. there is

minimal variance along the third eigenvector, then the point is labelled as surface.

The point is otherwise labelled as edge. A parameter, α, is used to determine

the extent of the difference between these two eigenvalues. For example, if set

to 12, then if the smallest eigenvalue multiplied by 12 is still smaller than the

second eigenvalue, the point is tagged as surface. The neighbourhood function

φ(p, r, kmax) takes as parameters the point, radius and the number of neighbours

required and returns a set of points closest to p and within distance r. For the

case-studies in this chapter kmax was set to values ranging from 18 to 48 (Table

5.1). The following set comprehensions are used to partition P in three sets:

Pu = {p : P | |Np| < kmin • unspecified(p)},

Ps = {p : P | |Np| ≥ kmin ∧ (e3 ∗ α) < e2 • surface(p)},

Pe = {p : P | |Np| ≥ kmin ∧ (e3 ∗ α) ≥ e2 • edge(p)},

where Np is the set of neighbour points returned by φ(p, r, kmax). Following

this labelling, the input point cloud is thus partitioned in three sub-sets P =

Pu∪Ps∪Pe. The resultant set partition depends on the different parameters used.

Decreasing the value of r, would typically increase the size of Pu as this would

generally decrease the size of Np. The same effect can be had by increasing kmin

which is set to three in all examples. Clearly, r should be set to a value which

takes in consideration the coordinate space in which point clouds are defined.

Alternatively, point clouds can be scaled such that a fixed r value can be used.

These values are currently set manually by the user. Variations in α effect the

distribution of points between Ps and Pe. At the extremes, this could lead to

either Ps or Pe being empty on the assumption that e3 is not 0, i.e. all neighbours

are perfectly sampled from a perfect plane. In general, decreasing α results

in more points satisfying the set comprehension for Ps, whereas increasing it

results in an increase in the number of points satisfying the set comprehension
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for Pe. The following section describes how this parameter is used to straddle

between over and under-segmentation. Figure 5.5 illustrates an example showing

the process of how eigenvalues are used to determine whether a point lies on

an edge or not. In order to improve clarity, the computation is carried out

on a 2D surface and PCA is carried out on an oriented rectangle bounding p

and its two neighbours, rather than an OBB volume as in the case of 3D. The

second and third columns illustrate the effect of reducing sampling density on

the computation of the set partition. Figure 5.6 illustrates the same example

surface, with different columns representing increasing values of kmax. Whereas

with kmax set to 3, small variations in the shape of the surface are captured, as

kmax increases these small variations are lost, which might be a good thing in the

context of a much larger point cloud.

The distinction between points in Pe and Ps is important. In general, points

in Ps are surrounded along the surface of an object by points in Pe. For instance,

Figure 5.7 shows edge points extracted from a simple scene where the different

box faces are surrounded by points in Pe. Figure 5.8 illustrates the edge points

computed on a more complex example. Figure 5.9 illustrates a number of point

clouds, after points are labelled as either edge (black), surface (green) or unspeci-

fied (grey). In the first row, edge point fall mostly on plant leaves and boundaries

of chairs. The second row shows how this type assignment of points contributes

towards outlining the contour of the individual stones making up the apse wall

of a pre-historic temple. The third row shows how edge points delineate the

buildings and agricultural field boundaries in the LiDaR acquired point cloud.

Acceleration structures are used to speed up k-NN queries. Both a sparse

grid and a kd-tree data structures have been used for this purpose, with the kd-

tree approach generally providing better overall performance both for computing

nearest neighbours and rendering purposes. This work uses the FLANN (Fast

Library for Approximate Nearest Neighbour) libraries developed by Muja & Lowe

(2009b) to carry out k-NN computations.

5.1.2 Segment Types

The obelisk point cloud shown in Figure 5.10, consists of a number of surface seg-

ments (green) connected together through one continuous edge segment (black).

An edge segment is made up of a collection of points p ∈ Pe, whereas a surface

segment consists of a collection of points p ∈ Ps. At this stage the set Pu of
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Figure 5.5: A 2D illustration of how points are tagged given kmax=3 and α=2 and
assuming a large value for r. In practice, in order to extract a perfectly smooth surface,
α is set to a very high value since the third eigenvalue will be very close to zero. This
will also result in a higher number of points with type edge. The second and third rows,
illustrate the same surface sampled using fewer points, whilst retaining the position of
the samples from the first row. This change in density results in different labels for
some of the points. Grey, green and black indicate unspecified, surface and edge point
types respectively.
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Figure 5.6: A 2D illustration of how points are tagged given kmax=5(left), 7(middle),
9(right) and α=2 and assuming a large value for r. The first, second and third row,
illustrate the computation of the oriented rectangle over increasing values of kmax. For
this particular case, as this value increases more points are labelled as surface. With
kmax set to 9, the set of edge points Pe is empty. Grey, green and black indicate
unspecified, surface and edge point types respectively.
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Figure 5.7: Edge points extracted from a point cloud of a synthesised scene with
4 primitive objects (three boxes and a cylinder). A number of important cues, for
instance that the second box is aligned with the bottom box at the back is evident.

Figure 5.8: Points sampled from the surface of a turtle mesh are located either on a
locally smooth or a rough area. Our segmentation pipeline builds on the distinction
between these two categories of points. The ones located on rough areas are said to
be of type edge. As shown on the right, for the tortoise example these points make up
the outline of the 3D surface. All the other points are of type surface.



5. Point Cloud Structure Graphs 97

Figure 5.9: Edge points (coloured black) on a point cloud representing an indoor
environment. Edge points on the temple apse point cloud are less obvious but clearly
contribute to outline the contour of the individual stones making up the wall. Similarly,
edge points delineate the buildings and field boundaries in the LiDaR point cloud.
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Figure 5.10: Segmentation of obelisk into edge and surface segments - starting from
position only information all points are progressively assigned to segments, with all
surface segments finally rendered using different colours.

unspecified points is discarded, since in practice, this set would usually be very

small (with respect to Pe and Ps) and contain mostly outlier points. Point type

information is used to determine the individual surface segments making up an

object using a region growing process. Figure 5.10 shows the five region growing

iterations required in order to partition Ps and Pe into {P 0
s , P

1
s , P

2
s , P

3
s , P

4
s } and

{P 0
e } respectively. Each segment P n

s ⊆ Ps is surrounded by points from edge seg-

ment P 0
e . Note how P 0

e is not divided into a number of different edge segments,

for instance the four sides at the base, since no corner detection is carried out.

This results from the design of the region growing algorithm, which only takes in

consideration the type of the point and not other properties like surface normal.

The generation of surface segments, i.e. the partitioning of Pe and Ps is described

in the following section.

P = {p0, p1, . . . , pn}

= Pe ∪ Ps ∪ Pu

= {P 0
e , P

1
e , . . . , P

n
e } ∪ {P 0

s , P
1
s , . . . , P

n
s } \ Pu

= {{P 0.0
e , P 0.1

e . . . , P 0.m
e }, {P 1.0

e , P 1.1
e . . . , P 1.m

e }, . . . , {P n.0
e , P n.1

e . . . , P n.m
e }}

∪ {{P 0.0
s , P 0.1

s . . . , P 0.m
s }, {P 1.0

s , P 1.1
s . . . , P 1.m

s }, . . . , {P n.0
s , P n.1

s . . . , P n.m
s }} \ Pu

5.2 Generation of Edge and Surface Segments

In addition to a set partition of segments, PaRSe generates a structure graph G,

representing relations between the segments extracted. In order to produce G,

a region growing algorithm is used to partition Ps and Pe and determine spatial

connectivity across elements of these two set partitions. Let G = (N , E) be an
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undirected graph with nodes ni ∈ N represent the set of segments (Ss ∪ Se)

where Ss and Se represent the set partitions induced by region-growing over Ps

and Pe respectively, and transitions (ni, nj) ∈ E corresponds to pairs of spatially

adjacent segments. The union of points from all segment nodes ni ∈ N is equal

to the set of points P \Pu. A pairwise predicate adjacent is defined on segments

ni and nj implementing the following set comprehension.

{ni, nj : N |∃pi : ni,∃pj : nj·(pi ∈ φ(pj, r, kmax) ∨ pj ∈ φ(pi, r, kmax))

∧ (ω(pi) 6= ω(pj)) • adjacent(ni, nj)},

where ω(pi) returns the type of a point, and φ(pi, r, kmax) returns the set of kmax

neighbour points of pi within a distance r. A transition e ∈ E , is created between

all ni and nj nodes satisfying this set comprehension. Note that transitions

are only created between segments of different type and therefore relation E ⊆
Se×Ss. Given the possibility of an uneven distribution of points on a surface, both

φ(pi, r, kmax) and φ(pj, r, kmax) are checked and a transition is created between

ni and nj if either is satisfied. Figure 5.11 illustrates this scenario.

The pseudo code of the region-growing segmentation process implementing

the set comprehension above returning a set of adjacent segments is listed in

Algorithm 7. In order to improve the readability of the algorithm, the input is

taken to be a point cloud P with point type information already established and

assigned to Pe and Ps. In the pseudo code, type Segment refers to both a surface

or edge segment, and the boolean array V is used to store the visited status of

each point in P \ Pu. A point becomes visited as soon as it is associated with

a segment. Two queues are maintained throughout the segmentation process.

The first, QA, stores the currently active points, i.e. those points, retrieved by

the neighbourhood query, to be considered next. The second queue, QR, stores

potential new transitions to segments other than the currently active. QR is

initialised with the pair (pi, s : Segment), where pi, is randomly chosen from Ps.

s is therefore a new surface segment seeded with the point pi. QA is initialised

by popping this first element from QR and pushing pi onto the queue. The

activeType property is set to the type of pi, i.e. surface in this case. Function ω,

depending on the input, returns the type of either point pi or segment s.

The status of the two queues QR and QA determines the control flow of the

algorithm. The outer while loop (line 3) uses QR to determine whether there are
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Figure 5.11: Neighbourhood membership is not a symmetric function, i.e. pj ∈
φ(pi, r, kmax) does not imply pi ∈ φ(pj , r, kmax).
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Figure 5.12: State merging takes two states ni and nj in G(N , E) and joins them
together by assigning points in ni to nj . Any transitions connected to ni are transferred
to nj if not already present and ni is then deleted.

any more potential segments that can be created, whereas the inner loop checks

QA to determine whether there are any more points that can be added to the

current segment. During the inner loop (line 6) the current point pi is first added

to the current segment s, then the points returned by the neighbourhood query

φ(pi, r, kmax) are pushed onto QA if they are of the current active type. If not,

the point together with a new instance of a segment s′, as a pair, are pushed onto

QR and the transition relation E is updated with the inclusion of the pair (s, s′).

The algorithm implements the pairwise predicate adjacent between segments. In

practice, when a point is assigned to a segment, rather than adding the point

to the set of points making up s, point p is assigned a unique identifier for s.

The inner loop (lines 6-25) has been implemented using a bag of tasks approach

on multi-core hardware. This leads to the possibility of having two adjacent

segments of the same type. In order to avoid this condition, a separate list M is

maintained storing pairs of segments with these conditions (lines 20-22). At the

end of the process, all pairs of segments in this list are merged together as shown

in Figure 5.12.

5.2.1 Problems with Surface Generation

In a general context, it is very difficult to determine the performance of a segmen-

tation algorithm as this usually depends on the specific task being performed.

One method to assess the quality of segmentation is to have people manually seg-

menting a point cloud and then use a metric such as mean square error to quantify

the difference between the manually crafted segments and those produced auto-

matically. Chen et al. (2009) have done precisely this on 3D meshes of single

objects. In our case, this is many times impractical given the size and variety of

point clouds used. Nonetheless, a number of criteria can still be identified which
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Algorithm 7 Region Growing Segmentation of Point Cloud P into G = (N , E)

1: Input: Sets Pe, Ps, N , E , k-NN function parameters for φ(pi, r, kmax), pairs
of segments list M , boolean array V of size |P \ Pu| and queues QA and QR.

2: Initialise: Assign all elements in V to false, create new s : Segment,
enqueue QR with the pair (pi ∈ Ps, s), activeType set to Surface.

3: while QR is not empty do
4: (pi, s)⇐deq QR

5: QA ⇐enq pi
6: while QA is not empty do
7: pi ⇐deq QA

8: V [idx(pi)] = true
9: s⇐add pi

10: nbr = φ(pi, r, kmax)
11: for k = 1 to |nbr| do
12: if V [idx(nbrk)] == false then
13: if ω(nbrk) == activeType then
14: QA ⇐enq nbrk
15: else
16: QR ⇐enq (nbrk, new s′ : Segment)
17: E ⇐add (s, s′)
18: end if
19: else
20: if (β(nbrk) 6= s) ∧ (ω(nbrk) == ω(s)) then
21: M ⇐add (β(nbri), s)
22: end if
23: end if
24: end for
25: end while
26: N ⇐add s
27: end while
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result in either over or under-segmentation of an input point cloud P . Given an

idealised set partition of P , over-segmentation will produce a set partition with

a higher number of elements, whereas under-segmentation produces one with a

lower number of elements. At the extremes, an over-segmented P results in a set

partition where each element contains just one point, and under-segmentation

produces a set partition with just one element containing all points.

An important factor determining the outcome of PaRSe is the density distri-

bution of the points in the cloud as this directly affects the point set returned by

the neighbourhood function. This function is first used to determine the type of

each point then used when constructing the structure graph. For instance, due

to the surface roughness present at the Mnajdra temple (Figures 5.2 and 5.14),

sample density contributes when determining point type. Figure 5.13 shows a

cross-section of a hypothetical surface with samples taken from it. When a higher

sampling rate is used, many more points will be tagged as edge points as opposed

to the lower sampled points. An important consideration, in order to minimise

over-segmentation, is that the number of points kmax returned by the neighbour-

hood function to determine point type information is greater than or equal to the

number of points returned by the neighbourhood function during region-growing.

For the Mnajdra case study shown in Figure 5.14, kmax is set to 24 during point

labelling, then to 6 during region-growing.

Higher Surface Sampling Rate

Lower Surface Sampling Rate p1

p2
p3

Figure 5.13: Variable sampling rates may result in different sets of surface segments
over a specific region (left). Under-segmentation usually results from points labelled as
surface, when ideally they should have been set to edge to contain the region growing
process, for instance p2 above (right).

In the context of sites with complex surfaces, especially those where old and

weathered stones are present, over-segmentation can easily occur. Figure 5.13
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Figure 5.14: Panorama photograph of temple apse consisting of a number of stones.
The bottom image illustrates the largest edge (black) and surface (green) segments
members of Pe and Ps respectively, resulting from the region-growing phase of PaRSe.
In many instances the density of the point cloud is good enough to delineate the
individual stones.
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(right) shows a simple boundary example where, if p2 had to be added to the

current active queue, the current segment would end up with many more surface

points, p3 and neighbours, which should really be a separate segment. Differ-

ent heuristic measures can be adopted to minimise this occurrence, for instance

using a minimum threshold on the number of neighbours with the same type be-

fore adding to the inner queue QA. This could minimise the possibility of under

segmentation by measuring the evidence that a boundary between two regions

exists. This measure can easily be incorporated in the region-growing process,

which however cannot guarantee improvements. For instance, Figure 5.15 shows

instances in the Mnajdra temple where over-segmentation occurs. Instances sim-

ilar to the first case (top row) of over-segmentation are addressed in the next

section, where a plane fitting process over the surface segments is carried out. In

the second instance (middle and bottom rows) there isn’t much that can be done,

since the additional mortar is effectively filling the gap and thus joining the two

stones together. For the case-studies presented in this chapter, this heuristic is

not used.

Figure 5.16 illustrates another example of our segmentation process, this time

applied on a synthesised point cloud (via the sampling of mesh triangles) of a

conference room. The resulting set partition groups together points falling on

individual objects (chairs, table, etc.) in the room. Another synthesised point

cloud is shown in Figure 5.17 representing the Cornell box. Given the regular

density of the point cloud, the region growing algorithm easily partitions the

points into the different cube faces. The figure also shows the graph representing

the different surface segments with edge states removed to improve clarity. The

surface segment representing the floor is clearly visible in the graph, connecting

the two inside boxes with the Cornell box. Note that in this case, the box face

directly on the floor is separate to the floor and would not have been created if

the scene was scanned and not synthesised by sampling the triangle primitives of

the model.

5.3 RanSaC Plane Fitting

Following the region-growing process, plane primitives (parametrised with a tol-

erance value to include points close to the plane) are fitted to the segments from

Ss and certain segments from Se. The main intuition behind the use of planes
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Figure 5.15: Over-segmentation during region-growing can easily occur on complex
surfaces. In the top row, some surface points from the smaller stone are assigned
to the large megalith. Over segmentation between the two circled megaliths in the
photograph occurs because there is mortar placed between them.
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Figure 5.16: Segmentation of the conference room point cloud synthesised by sampling
the triangle primitives making up the mesh. Different colours represent different nodes
in the graph. In particular all the chairs in the room emerge as separate segments
effectively resulting in a valid scene graph (§2.2.1) of the room from a raw point cloud.

is that these provide for an efficient representation of more diverse geometric

objects as collections of planes connected together in a specific pattern. For

example, the three apses of the Mnajdra temple might each fit a cylinder prim-

itive, however, finer grain segmentation can be achieved when using a number

of smaller planes each representing the individual stones composing the surface.

Higher order shapes can in many cases be described using connectivity patterns

of plane primitives, for instance roofs of houses or stairs in a house. In prac-

tice, this process seeks to transform a generic input point cloud P into a graph

G describing connectivity information between segments which is amenable to a

variety of domain-specific tasks.

In addition to the segments from Ss, a subset (possibly empty) of segments

from Se is also selected to undergo the RanSaC plane fitting process. This is

mainly due to situations where either P is very noisy or where parts of the scene

consist of very rough surfaces. In these cases, points may be labelled as edge

points, resulting in an edge segment being created instead of a surface segment.

A number of tests are carried out on all edge segments se ∈ Se in order to

determine this subset S ′e, defined using the following set comprehension.
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Cornell Box
Walls

Internal Box Internal Box

State representing floor of Cornell box

Figure 5.17: Segmentation of the conference room point cloud synthesised by sampling
the triangle primitives making up the mesh. Different colours represent different nodes
in the graph. In particular all the chairs in the room emerge as separate segments.
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{se : Se| |se| > n ∧ connCount(se, G) < c • se},

where n represents the minimum number of points in the segment and c the

maximum number of adjacent surface segments. Edge segments which satisfy

these conditions are passed over for plane fitting. By default n is set to the average

number of points in elements of Ss, and c is set to 3 in all examples. For instance,

in the case of the Cornell box (Figure 5.17), none of the three edge segments is

considered for plane fitting as they violate the size condition, whereas for the

Mnajdra temple point cloud, the edge segment shown in Figure 5.15 violates the

number of connected surface segments condition and is thus not considered.

Segment type is further refined during the plane fitting process and associated

with the resulting elements of the set partitions produced for each processed

segment. The following lists the segment types used.

• surface·planar : Segment is a collection of surface points which fit the pa-

rameters of a plane.

• surface·complex : Segment is a collection of surface points over which no

plane could be fitted.

• edge·planar : Segment is a collection of edge points which fit the parameters

of a plane.

• edge·complex : Segment is a collection of edge points over which no plane

could be fitted.

The RanSaC plane fitting process (§ 2.7), takes surface segments in Ss and

edge segments in S ′e, and determines whether there exists plane primitives which

fit the data. Since the points (within a single segment) will nearly never perfectly

fit a plane, a tolerance parameter, ε, is attached to each plane, i.e. points are

allowed to fit the plane whenever the perpendicular distance d from a point to a

plane is within the range −ε ≤ d ≤ ε. Figure 5.18 illustrates these parameters.

For each segment, three points are randomly chosen to define the plane param-

eters. In order to decrease the time required to establish the best fitting plane,

the three randomly chosen points are immediately discarded if any two of them

have orthogonal surface normals or the three are collinear. If the three points are
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Algorithm 8 RanSaC Plane Fitting and Creation of New Nodes in G.

1: Input: G(N , E), Ps, P
′
e, Tolerance ε, Trials c, Threshold t, Stability s.

2: for all P i ∈ Ps ∪ P ′e do
3: planesfitted = 0
4: fitmoreplanes = true
5: while fitmoreplanes do
6: fitmoreplaces = false
7: bestscore = 0
8: bestplane = null
9: stablecount = 0

10: while stablecount < s do
11: while trialscount > 0 do
12: crtplaneminset = {p1..3 : P i|p1 6= p2 6= p3}
13: for each p ∈ P i do
14: if (compatibleplane(p, crtplaneminset, ε)) then
15: inc(crtscore)
16: end if
17: end for
18: dec(trialscount)
19: end while
20: if (crtscore > bestscore) then
21: bestplane = crtplaneminset

22: else
23: inc(stablecount)
24: end if
25: end while
26: pointsbestplane = {p : P i|compatibleplane(p, bestplane, ε)}
27: if (|pointsbestplane| > |P i| ∗ t) then
28: new s : Segment
29: P i = P i \ pointsbestplane
30: s⇐add pointsbestplane
31: inc(planesfitted)
32: fitmoreplanes = true
33: if P i ∈ Ps then
34: s⇐type surface · planar
35: else
36: s⇐type edge · planar
37: end if
38: end if
39: end while
40: if (planesfitted == 0 ∧ P i ∈ Ps) then
41: P i ⇐type surface · complex
42: else
43: P i ⇐type edge · complex
44: end if
45: end for
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d ε

3 points defining plane parameters

Figure 5.18: Plane parameters d representing perpendicular distance of plane from
origin, and tolerance parameter ε

valid, the plane parameters resulting from them are used to calculate the per-

centage of points from the segment which fit this model. Given that any three

points will fit a plane, a minimum percentage threshold t is set before accepting

the model. Different triples of points are repeatedly chosen until this percentage

gets stable, i.e. does not improve over a number of iterations. If the percentage

of points fitting the plane is below a certain threshold, further plane fitting is

carried out on the remaining points in the segment. Algorithm 8 illustrates this

process which results in the creation of new nodes whose type is set to an ele-

ment from the ones listed above. No connectivity information is set at this stage

between the newly created segments. Note that when splitting a surface node

into for instance two surface·planar nodes no information is lost. Figure 5.19

shows how the previously segmented obelisk (five surface segments in Ss and one

edge segment in Se) is now fitted with nine planes each of type surface·planar.

The four vertical segments in Ss have been fitted to two planes each, whereas the

bottom horizontal segment also in Ss easily fits within one plane. Plane fitting

is not applied on the element in Se as the number of points in the segment is

less than the average. The topmost graph G representing the region growing

segmentation process initially consists of five nodes and five transitions. During

the RanSaC plane fitting process eight additional nodes are created. In order to

improve clarity, only 4 nodes are shown in Figure 5.19.

Nodes have an associated type and each should be reachable from a suitably

selected root node. Each transition e ∈ E is also assigned a type depending on

the way the connection between source and sink nodes is established. Initially,
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Figure 5.19: Plane primitives fitted to obelisk segments.
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Algorithm 9 Finalise transitions for G(N , E).

1: Input: G(N , E), list psegs initially empty to store planar segments.
2: . Compute OBBs for all planar nodes in G
3: for each (s ∈ N ) do
4: if ω(s) == (surface · planar ∨ edge · planar) then
5: Compute OBB and surface normal for s
6: psegs⇐add s
7: end if
8: end for

. Establish connections between planar nodes in G
9: for k=1 to |psegs| do

10: sparent = ParentSegment(psegsk)
11: nbr ⇐add ChildrenOf(sparent)
12: for each (s′ ∈ N ) do
13: if (s′, sparent) ∈ E then
14: nbr ⇐add ChildrenOf(s′)
15: for j=1 to |nbr| do
16: if OBBIntersect(psegsk, nbrj) then
17: if (psegsk, nbrj) /∈ E then
18: E ⇐add (psegsk, nbrj)
19: Assign properties to transition
20: end if
21: end if
22: end for
23: end if
24: end for
25: end for

. Connect disjoint segments to G
26: r = selectRootNode(G)
27: disjointNodes⇐add notReachableFrom(r)
28: Sort(disjointNodes)
29: for j=1 to |disjointNodes| do
30: if NotConnected(r, disjointNodesj) then
31: s = ClosestNode(disjointNodesj)
32: E ⇐add (disjointNodesj, s)
33: Assign properties to transition
34: end if
35: end for

the region growing process creates transitions between edge and surface nodes.

During RanSaC plane fitting, additional nodes are created each with a link to

its parent surface or edge node. Algorithm 9 completes the creation of G by

establishing connections for the newly created planar nodes. An oriented bounded
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box (OBB) is first computed over nodes of type surface·planar or edge·planar,

and then used to check the following segment connectivity information.

• Establish whether surface segments connected to the same edge segment

are really adjacent to each other

• Determine connectivity between the newly created planar segments

In the first instance, consider for example a point cloud of a box. Since region

growing segmentation does not determine corners, it therefore does not create

eight edge segments but just one. This results in a structure graph where all

faces of the box are connected to each other irrespective of distance. OBB inter-

section tests provide the information necessary to discriminate between surface

segments that are really close to each other and others which are not, e.g. the

parallel faces of a box. OBB volumes are incremented by a small percentage of

their original total volume in order to make sure adjacent segments actually over-

lap. Figure 5.20 illustrates this simple example. Surface segments S2 and S4 are

connected through edge segment E1, however they are not spatially adjacent to

each other and therefore no transition is created between the two surface·planar

segments. Note that in practice a new surface·planar segment is created for each

of the six segments in this example but these are not shown here in order to

maintain visual clarity. The new nodes, for instance S1.1, are connected to the

other newly created planar nodes and a parent-child link is established between

S1.1 and S1. This information is used to gather the neighbouring segments for

OBB intersection tests (lines 11,12 and 14 of Algorithm 9) and avoid having to

carry out the test against all planar segments (line 16).
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Figure 5.20: Initial connectivity information does not take in consideration distance
between segments but connectivity between edge and surface segments. OBB transi-
tions take in consideration distance following the computation of OBB volumes around
planar segments and transition relation E is updated accordingly.
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In cases where a point cloud consists of spatially distant clusters of points,

possibly resulting from occlusion, the transition relation E might not be enough

to reach every node from the root which is established using a heuristic based

on number of points and volume covered from amongst planar segments. In

cases where no planar segments exist, the root node is chosen using the same

heuristic from all segments. Given a node designated as root, PaRSe enforces

the existence of a path between all pairs of nodes by enforcing the existence of

a path between all nodes and the root node. The type of these connections is

different from that created by the region growing process and OBB intersection

tests and are mainly used to determine distances between clusters of points which

could be useful when analysing the point cloud. Consider for instance, a point

cloud representing a flight of stairs acquired from a birds eye view position as

illustrated in Figure 5.21. In this case the transition relation E would be empty

and G would consist of four disjoint segments. The last steps of Algorithm 9

ensures that a relation is created between the four segments.
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Figure 5.21: Initial connectivity information does not take in consideration distance
between segments but connectivity between edge and surface segments. OBB transi-
tions take in consideration distance, following the computation of OBB volumes around
planar segments and transition relation E is updated accordingly.

Besides types, both nodes and transitions in G have associated properties.

In the case of nodes, properties include surface normal and number of points.

In addition to types, properties are used to discriminate between nodes and

sequences of nodes. For instance, the sequence of adjacent nodes whose surface

normals differ by a maximum of 20◦. In the case of transitions, properties include

Euclidean and surface normal distances between the two connected nodes. In

order to allow for extensibility for user defined properties, these are described in

the form of 〈key, value〉 pairs, e.g. 〈dot, 0.02〉 to indicate that the nodes connected

by this transition are nearly orthogonal.
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5.4 Point Cloud Queries

In a traditional relational database, a structured query language (SQL) is used

to manipulate and select relevant subsets of data. A similar approach can be ap-

plied on the structure graph G produced by the segmentation process described

above. In particular, the extracted planar and complex segments, provide the

required structure necessary to enable reasoning about and querying of point

clouds. Specifically, a query is encoded as a graph whose nodes and transition

relation specify the constraints and predicates to be satisfied within the structure

graph of P . A query can be applied in two ways as follows:

• by choosing a specific seed segment in G and recursively returning all nodes

(segments) which satisfy the query graph as one transition tree (§2.2.2) with

the seed segment as root,

• by searching for patterns matching the query graph in all G and returning

a set of transition trees.

In the first case, the result consists of one set of segments starting from the

chosen seed segment and including all nodes in the expanded transition tree. In

the second instance, a set of transition trees each representing a set of segments

matching the constrains imposed by the query graph are returned. Figure 5.22

illustrates the query graph used to extract cylinders from a point cloud. Node s0

is the root of the query graph. Actions and predicates are attached to both nodes

and transitions and are shown in Figure 5.22 in boxes, where actions are listed in

the text above the horizontal line in the box, whereas predicates are listed below

the line. For instance, transition (s0, s1) is followed, only if the angle between the

two planar segment surface normals N0 and N1 is found to be greater than 100◦.

If the transition is followed, meaning that there exists a transition (n0, n1) in G
which satisfies this condition, a transition tree starts to form with n0 as root and

n1 as its only child. Since the orientation of a cylindrical object can be described

using a plane, this is computed from the two surface normals N0 and N1. For

any other planar segment, node in G, to be added to the transition tree, it now

has to satisfy two conditions, namely that the angle between adjacent segments

is more than 100◦ and that the normal of the new segment Ndst is within the

plane parameters of the cylinder. In a scenario where more than one transition
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in G satisfies the condition attached to transition (s0, s1) in the query graph, for

instance (n0, n1) and (n0, n2), then both n1 and n2 are attached to the root node

of the transition tree and s1 is mapped to the set {n1, n2}. Finally, if the next

adjacent node being added is the root of the transition tree, the current branch

in the transition tree is terminated and the result returned indicating that a full

cylinder was detected.
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Figure 5.22: A query graph describing a cylinder using geometric constrains across
connected planar segments. S0 represents the initial state of the graph and root of the
transition tree in G of the input point cloud P .

Queries such as the one just described are best suited to scenarios where a

number of instances exist in the point cloud compatible with a particular shape,

for instance when detecting columns or roof structures in large points clouds. In

other cases, the selection of a portion of the point cloud given a specific starting

point is useful, for instance in order to determine all objects placed directly on

the ground or on a table. In these cases, a specific segment is chosen in G,

referred to as the seed, from which a transition tree is built by moving across

adjacent segments which satisfy node and transition constraints similar to the

ones discussed above.

Figure 5.23 illustrates two query graphs used to transitively select segments

connected to a seed segment. In left-most query graph, surface normals and size

in number of points in the segment are used as constraints between adjacent

segments. On the other hand, the right-most query graph, the angle comparison

is carried out between the normals of each segment and the seed. In both cases,

the result of the query (or search) would consist of a transition tree with all the

planes connected to the seed which satisfy the transition constraints.



5. Point Cloud Structure Graphs 118

S
n

N
n 

= S
n

 Surface Normal

N
n+1 

= S
n+1

 Surface Normal

Angle(N
n 

, N
n+1

) > 150
º
 & |S

n+1
| < 4K

S
0

S
n

N
 
= S

0
 Surface Normal

N
n 

= S
n

 Surface Normal

Angle(N, N
n

) > 170
º

Figure 5.23: Two query graphs using seed segments. The first transitively returns
nodes with more than 4K points which are connected at 150◦. The second returns
connected nodes which are at an angle more than 170◦ from the seed plane normal.
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Reference kt kf α r |P | |Ps| |Pe| Sp Sc Tl Tr Ts

Mnajdra 24 6 12 1.2 593 320 226 823 211 2.18 2.13 11
Tarxien 18 6 20 1.2 2,515 2,119 387 977 142 18 5.2 152
Villard 36 6 8 1.2 7,222 5,459 1,762 1495 2391 47 291 99
Office Room 1 48 24 20 1.2 10,655 8,319 2,336 243 3293 82 64 42
Office Room 2 48 24 20 1.2 10,211 7,837 2,374 316 2853 79 64 16
Warwick Area 24 12 20 1.2 17,291 9,669 7,620 3787 9842 95 196 111
Airborne LiDaR 18 6 20 1.2 5,099 3,681 1,320 5822 149 23 111 289

Table 5.1: Point cloud segmentation parameters used in results section and resulting number of point and segment types. From left to
right columns show; Reference: name of point cloud; kt: the number of k nearest neighbours used in the labelling phase; kf : the number
of k nearest neighbours used in the region-growing phase; α: the eigenvalues ratio; r: the plane tolerance value used for RanSaC plane
fitting; |P |: total number of point cloud samples (in thousands); |Ps|: total number of points labelled as surface points (in thousands);
|Pe|: total number of points labelled as edge points (in thousands); Sp: total number of ∗ · planar segments; Sc: total number of
∗ · complex segments; Tl: time taken for labelling of points (in seconds); Tr: time taken for region-growing process (in seconds); Ts:
time taken for RanSaC plane fitting (in seconds).
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5.5 Results

PaRSe is evaluated on point clouds acquired using a variety of scanners. In the

next section, segmentation is used for the extraction of cylinder primitives de-

scribing columns in a synthesised point cloud. Section 5.5.2 then looks into the

application of PaRSe to point clouds representing three CH sites. The Mnajdra

and Hal-Tarxien point clouds were made available by Heritage Malta, the na-

tional agency for museums, conservation practice and cultural heritage in Malta.

Two indoor scenes from Mattausch et al. (2014) are then used to demonstrate

the applicability of PaRSe to indoor environments. PaRSe is then used for the

extraction of trees on a point cloud representing an outdoor area at the university

of Warwick. Finally, PaRSe is applied on an airborne LiDaR acquired point cloud

representing a section of the Maltese archipelago. Table 5.1 lists the segmentation

parameters used and some statistics related to the number of points, segments

and execution times of each example. In all cases the number of RanSaC trials c

is set to 3000 and the fit ratio r to 10% of the size of the segment currently being

processed (§2.7). An Intel Core-i7 960 machine (3.2GHz) with 8Gb of RAM is

used for all examples.

5.5.1 Synthesised point cloud - Kalabsha Temple

In this section, PaRSe is applied on a synthesised point cloud representing the

Kalabsha temple, mainly to demonstrate the cylinder extraction query graph.

The point cloud was generated by sampling the triangle surfaces making up the

Kalabsha 3D model (Sundstedt et al., 2004) and consists of 1.9 million points.

Each point is translated by a very small amount in a random direction to simulate

sensor noise. Query graphs for cylinder and box fitting are used to extract the

columns in the temple. Figure 5.24 illustrates the raw point cloud (top-left), the

assignment of point types (top-right) and the generation of segments (bottom).

Figure 5.25 top row shows the central part of the temple where the columns

are located. A considerable amount of clutter is visible, with many segments

generated by the region-growing and RanSaC plane-fitting algorithms. Figure

5.25 shows how planes are fitted along the columns present in the temple. Two

different query graphs are used to extract columns, one for detecting cylinders

and a similar query graph for detecting boxes. Results from these two queries are

combined in order to filter the set of boxes returned by the set of cylinders using
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a constraint where a box is accepted only if a cylinder is present beneath it. The

middle row shows the segments (from region growing) and their partitioning into

surface·planar segments. The bottom row shows another set of columns detected

using the cylinder query graph. Note that in this case each column is actually

made up of two cylinders, since the central portion of each column consists of an

edge·complex segment. Additional work can be carried out in order to include

points in these segments, by checking whether they are connected to cylinders,

but this is currently not implemented.

Figure 5.24: Kalabsha point cloud synthesised from 3D Model. The point cloud is
shown rendered as raw (top-left), following point type assignment (top-right) and then
region growing algorithm (bottom).
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Figure 5.25: Individual columns extracted via the segmentation process are fitted with
planes.
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Figure 5.26: Point labelling (top) and surface·planar segments (bottom) extracted from
the Mnajdra pre-historic temple.
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5.5.2 Cultural Heritage Sites

Point clouds Mnajdra (Figure 5.26) and Tarxien (Figure 5.29) acquired from

two Maltese CH sites are used in this section of the evaluation, in addition to a

point clouds acquired from a stone church in the town of Lans le Villard, France.

Mnajdra represents a section of the Mnajdra pre-historic temples site that was

acquired in 2005 by Heritage Malta. The modelled surface precision was stated

as +/- 2mm. Due to considerable stone erosion there are hardly any smooth

surfaces present. In this case study, segmentation is used to discriminate between

the various stones composing the temple apses. Figure 5.26 shows the point

cloud rendered after point type labelling (top) and following RanSaC plane fitting

(bottom). The image shows all the planar surfaces (rendered using different

colours) fitted over all the different surface segments of the Mnajdra temple.

The partitioning induced by RanSaC is efficient and reliable due to the fact that

planes are fitted on subsets of related points (produced by the region-growing

process) rather than the whole data set. The 98% of the surface points are fitted

to 930 plane primitives. Without prior segmentation, RanSac does not converge

properly and only two planes (see Figure 5.28 top right corner) are fitted to

the floor of the temple in approximately 4 minutes. Moreover, each of the two

plane primitives cover points which are found on different, unrelated parts of the

temple. PaRSe outputs a set partition with geometric planes fitting the data in

a very accurate way with the general structure of the temple clearly visible.

Two queries are carried out on the resulting structure graph to extract the

walls and the floor of the temple. Figure 5.27 illustrates the results returned

by these two queries. In the first instance, three seed segments are used in

order to return the three components of the temple. Note how the query search

follows the rubble wall until megalith stones positioned perpendicular to the

wall are encountered. Figure 5.28 shows the largest surface and edge segments

resulting from the region growing process. As would be expected the largest

surface segment consists of points sampled from the floor of the main part of the

temple, whereas the largest edge segment is made up of points connecting the

entire rubble wall structure. The middle row provides a closer view (of part) of

the rubble wall present in the site. Around 35 stones are automatically identified

in this part alone. The edge segment contributes towards the partitioning of the

rubble wall into a number of surface segments representing the individual stones

making the apse.
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Seed Segment

Seed Segment

Figure 5.27: A query graph (using seeds) is used on segments from each apse wall to
return the internal walls of the temple is shown on the left. Another query is used to
return the points making up the main floor (within the apses) of the temple.

Figure 5.29 shows the segmentation results obtained for the Hal-Tarxien tem-

ples. As in the case of Mnajdra, the Hal-Tarxien data set was made available by

Heritage Malta. 728 surface segments are directly planar segments and an addi-

tional 109 segments are split into *·planar segments, resulting in a total of 977

*·planar segments. Figure 5.30 shows the main structures within the Hal-Tarxien

pre-historic site, with the apses and floors of both temples easily identified on

the left-hand side as surface segments. The right-hand side image shows the

edge segments, which effectively provide an outline of the temple structure. Fig-

ure 5.31 zooms into two particular features of the site, a cylindrical bowl and

stairs. In the first case, the bowl’s points falling on the irregular top structure

are represented by a unique surface segment resulting from the region-growing

process. In the second case, 20 surface·planar segments represent a series of steps

inside the site. Each step is represented by approximately 100 points, totalling

around 0.07% from a total of 2.7 million points covering the site.

The region-growing phase of PaRSe is essential to the successful extraction of

meaningful elements in the site. Figure 5.32 demonstrates the results obtained

(using the same parameters) when RanSaC plane fitting is directly applied to

the point cloud. The largest segments consists of 281K points and consisting of

several points sampled from unrelated parts of the site. The resulting set partition

(only the largest 6 segments of 148 are shown) is not useful in distinguishing

between the different components of the site and would certainly require a CH

professional a considerable amount of time to work with.

Figure 5.33 illustrates the point cloud of a patrimonial stone church in the

town of Lans le Villard, France. The raw point cloud is available on the Aim@shape
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Figure 5.28: Top left images illustrates the largest surface (green) and edge (black)
segments resulting from the region growing process. Top right image illustrates the
results obtained when RanSac plane fitting is carried out without prior region-growing
segmentation.
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Hal-Tarxien Temples Point Cloud 

Position Data

837 Surface Segments 

after Region Growing

977 *.planar segments 
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Figure 5.29: Hal-Tarxien point cloud; top illustrates raw data, middle illustrates seg-
ments produced after region-growing process, and bottom illustrates segments pro-
duced after RanSaC fitting process.
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Figure 5.30: The main structures within the Tarxien pre-historic site. Left-hand side
image illustrates the surface segments, whereas the right-hand side image shows the
edge segments. Edge segments effectively provide an outline of the temples.

Figure 5.31: Top left illustrates a view of the Tarxien point cloud. This same view
is shown on the top right hand side, this time showing the various surface segments
produced. The bottom row zooms on two structures in the site. The bowl like structure
is shown in the left hand side, with different segments highlighting its shape, whereas
the right hand side illustrates segments representing a flight of steps.
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281K 164K 127K

102K 100K 93K

Figure 5.32: Top image illustrates the 148 segments extracted, whereas the second
and third rows illustrate, individually, the largest six segments produced using the
traditional RanSaC plane fitting process, segments which are clearly not very useful in
term of describing the elements making up the site. Numbers within each box indicate
the number of points in that specific segment.
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website (Falcidieno, 2004) and was scanned with a Leica Cyrax scanner in 2006.

The bottom row shows the raw point cloud (left), edge·* (middle) and surface·*
segments (right). The top row shows a photograph of the church and three

surface·planar segments extracted from one surface segment produced at the

region growing phase. A considerable number of points are labelled as edge, es-

pecially on the roof on the church. This is evident in Figure 5.34 with the edge

segment outlining the stone slabs making up the roof. This edge segment is useful

in extracting individual stone roof slabs as shown in the bottom row. The site

contains a number of tombstones directly adjacent to one of the walls. Figure

5.35 shows the extracted segments representing these tombstones. PaRSe creates

two segments representing the face and side of one, whereas the other, due to

considerable noise is over-segmented, and consists of 9 surface and edge segments.

As shown in the same figure, edge segments representing window rails are also

automatically extracted. Additional site details are shown in Figure 5.36 includ-

ing the cross at the top of the church as an edge segment. Over-segmentation is

clearly visible on some sides of the church tower resulting from a large number

of points which are labelled as edge.

5.5.3 University Green Area

A point cloud representing a green area situated within the University of Warwick

campus was scanned using a Faro Focus 3D time of flight scanner. Figure 5.38

top left, illustrates this point cloud consisting of a pond, several buildings and a

number of trees. In this particular case, the query graph shown in Figure 5.37 is

used to extract the trees from the 18 million point data set. Initially, segments of

type edge·complex are searched for in G. Those matching the constrains between

S0 and S1 of the query graph are labelled as the canopy of the tree. The segment

in G mapping to S1, represents a portion of the trunk of the tree. Note that the

query graph for cylinders can be composed with this query graph at S1, in order

to check whether the trunk consists of a full cylinder. In this particular case all

tree trunks consist of one surface·planar segment. If another orthogonal planar

segment is connected to the trunk, this is labelled as the ground. This example

is used to demonstrate how a variety of post-processing tasks can be encoded as

small query graphs using segment types and properties, which are then used on

the structure graph produced by the PaRSe. Note that, the tree query graph

has only been used on a point cloud which has similar trees and might therefore
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Figure 5.33: Top left illustrates a photograph of the Lans le Villard church. Bottom
row shows from left to right, the raw point cloud, edge · ∗ segments and surface · ∗
segments. Top right illustrates three surface · planar segments extracted from one of
the surface segments.



5. Point Cloud Structure Graphs 132

Figure 5.34: Top row illustrates a top-down view of the edge segment outlining the
stone slabs making up the roof. This edge segment is useful in extracting individual
stone roof slabs, as shown in the bottom row.
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Good segmentation

Over segmentation with a

mix of edge and surface segments

Raw point cloud

Extracted side of church segment

Edge segments

Planar surface segments

Figure 5.35: Surface and edge segments extracted from one side of the Lans le Villard
church, showing tombstones and windows rails.

Edge Segments Local over segmentation

Figure 5.36: Over segmentation resulting from an excess of edge segments. One edge
segment represents the cross at the top, whereas two surface and one edge segment
represent the bell inside the tower.
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Figure 5.37: A trees query starts off from edge·complex segments checking for similar
OBB Eigenvalues (effectively discarding flat segments found on buildings) and proceeds
if a *·planar segment representing the trunk is connected to it.

not be sufficient in cases where trees are more varied and complex, especially if a

considerable amount of the tree samples including leaf details are available. The

second row of Figure 5.38 illustrates the execution of the query, showing first

the edge·complex segments (tree canopies), following by surface·planar segments

(tree trunks), and the segments directly under these trunks.

5.5.4 Indoor Office Scenes

Point clouds of two office scenes from Mattausch et al. (2014) (approx. 10 million

points each) are used in this section. Figure 5.43 illustrates the first of these point

clouds highlighting segmentation results, with PaRSe automatically extracting a

bin on the ground, heating elements from the walls and a variety of desktop

items including webcam, monitors, keyboard and speakers from a desk. The

application of RanSaC plane fitting, without prior region growing (bottom row)

produces segments spanning parts of multiple objects. The second office point

cloud, Figure 5.39, illustrates some limitations of PaRSe. The bottom row shows

the raw, edge and surface segments point clouds of the shelving unit. Whereas

edge points correctly delineate most of the unit, a number of problems occur
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Figure 5.38: Top row from left to right illustrates raw point cloud of green area, segments produced after region growing, surface
segments and finally edge segments which include tree canopies. The second row illustrates from left to right, the edge segments with
similar Eigen values representing individual tree canopies, planar segment connected to each and the large surface segments connected
to the trunks representing terrain. The third row focuses on the extraction of a cylinder primitive which represents part of the building.
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on the box on the ground (marked with a dotted box) in that some points are

incorrectly labelled as edge points. This happens because part (black triangle)

of one side of the box is sampled from both sides (two scans), with the thickness

of the box sufficiently small to include points from both sampled sides when

applying k-NN searches during point labelling. The second row shows how the

lamp and wiring on the desk are extracted as one edge·complex segment, whereas

the top right image shows over-segmentation occurring between two desks.

5.5.5 Airborne LiDaR of Maltese Archipelago

A point cloud representing a section of the Maltese archipelago acquired using

airborne LiDaR scanners with around 4 samples per m2 is used in this section.

The data was made available by the institute for climate change and sustainable

development at the University of Malta. Figure 5.44 illustrates segmentation

results, with the top left representing the raw position only data and the top

left representing all generated segments. The bottom row illustrates the edge·*
and surface·* segments on the left and right hand side respectively. The point

cloud contains a variety of geographic features, including urban areas, trees and

fields. Edge segments are more concentrated in the urban area, whereas the ma-

jority of large surface segments are located in the fields to the north of the point

cloud. The rubble walls which are used to divide these fields are labelled as edge

points and effectively contribute towards delineating a considerable number of

fields. Figure 5.44 shows a section of the point cloud showing the segmentation

of agricultural fields. Edge points in the urban section of the point cloud are

useful to distinguish between the different non-regular housing units. Note that

in the majority of cases, only a few points (around 30) are sampled from each

house roof as shown in Figure 5.40 second row. The first row of the same fig-

ure illustrates a surface·planar segment representing a football ground, and two

edge segments representing the goal posts (circled). The small segments on the

third row, represent trees which are all connected to the same surface·complex

(rendered in green in Figure 5.44, bottom right). Another important surface

segment is the one representing the road network, which extends from the urban

to the agricultural sections and is shown in Figure 5.41.
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Figure 5.39: PaRSe applied on first office scene, extracts bin on the ground, heating
elements from the walls and a variety of desktop items including webcam, monitors,
keyboard and speakers from a desk. RanSaC without region growing (bottom row)
produces segments spanning parts of multiple objects.
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Figure 5.40: Top row illustrates from left to right, football ground structure raw points,
the segment representing the pitch, and the boundary of the pitch. Note how some sam-
ples are acquired from the goal posts (circled) which are visible as two edge segments.
The middle row illustrates a close-up view of the urban area, showing the extracted
individual housing structures. On average each house is represented by around 100
points. The third row, illustrates the edge segments representing trees in the bottom
part of the point cloud shown in Figure 5.44
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Figure 5.41: The biggest surface segment represent the main road network in the point
cloud. Note how this segment spans different terrain elevations. A simple RanSaC
plane fitting approach would not have been able to discriminate between points on the
road and others within house complexes.

Figure 5.42: Small presence of rubble walls between fields are sufficient for the seg-
mentation algorithm to distinguish between fields which are rendered using different
colours.
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Lamp and wiring

1 edge segment

Deer model on shelve 

3 segments

3 desk tops, 

two planar segments

(over-segmentation)

Figure 5.43: PaRSe applied on second office scene, extracts desk lamp and wiring from a desktop, and multiple books and files from
a shelving unit. Over-segmentation occurs when producing segments for desktops due to points falling between the desks (top left).
Note that two additional surface segments are produced on the desk near the lamp wiring. A deer model located on one of the shelves
is extracted as one surface segment and 2 edge segments.
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Figure 5.44: Segmentation results for a LiDaR data set representing a portion of the Maltese Archipelago, consisting of both urban and
agricultural terrain. Top left-hand side illustrates raw point cloud. The overlap (increased sample density) between successive aerial
scans is clearly visible. Top right-hand side shows all segments produces by our segmentation process, whereas the bottom row left
illustrates the edge segments and right illustrates the surface segments.
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5.6 Discussion

The generation of 3D point clouds has become increasingly common in many

areas of research. Given this huge amount of data, algorithms are required which

are able to process, organise, cluster and extract important information about it

in order to help in the post-processing effort. Our results have shown that the

proposed segmentation method, PaRSe, is a feasible approach towards achieving

this goal. For each of the point clouds used, the segmentation primitives proposed

in this chapter have been able to represent some meaningful structure. In the

case of the Mnajdra temple (§5.5.2), segmentation produces segments containing

surface points from individual stones on the apse. An edge·complex segment

is extracted which represents the contour of these stones. Given the complex

nature of the point cloud, standard region-growing and shape fitting algorithms

are not able to produce these segments. The Hal-Tarxien case study shows how

small details in the site are identified in the segmentation process and represented

using the segment primitives used (Figure 5.31). A graph query is used to identify

segment patterns representing trees in the point cloud acquired at a University of

Warwick green area. In this case, edge·complex segments are used to determine

the location of trees. Segments resulting from the segmentation of a LiDaR

point cloud include meaningful objects such as trees, houses, fields and streets.

Similarly, on a smaller scale of two office environments, PaRSe computes a set

partition whose elements represent a variety of objects which are typically found

in an office including computer desktop, monitors, shelving, chairs, tables and

other small objects. The automatic partitioning of the input point cloud into

meaningful smaller segments helps in reducing the post-processing effort required

to process the raw data.

With segmentation algorithms using RanSaC shape fitting, as the number

of iterations/trials computed is limited, the solution (fitted planes in our case)

obtained may not be optimal (Figure 5.28) and it may not even be one that fits

the data in a good way. This is shown for a number of examples. In our case,

since RanSaC fitting is done over segments which are previously established from

a region-growing process and not the entire point cloud, this whole process is

much more efficient (lines 13 and 14 of Algorithm 8) and the solution obtained

for a complex site such as the Mnajdra temple is repeatable, i.e. given a number

of runs of PaRSe and that the same input parameters are used, the same (or

very similar) set partitions are produced fitting the raw data. Moreover, the
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structure afforded by this repeatability, results in a higher level of abstraction

over the data, which allows for the creation of query graphs which can be used to

efficiently select different parts of a point cloud. For instance, all the trees in the

point cloud of the Warwick university green area are segmented in a very similar

way, which enables the query graph to identify all the trees.

The segmentation pipeline presented is efficient both in terms of memory and

time complexities with data access patterns favouring parallelization. Region-

growing may proceed concurrently (depending on the number of CPU cores) to

produce a set partition of surface and edge segments. These segments are then

analysed concurrently with the purpose of fitting plane primitives within them.

An alternative task subdivision approach, since region-growing is generally less

time consuming, is to adopt a consumer-producer scenario where region grown

segments from a single thread are inserted in a pool for the rest of the threads

to apply RanSaC plane fitting concurrently.

5.6.1 Further Applications

In this section further applications of PaRSe are proposed.

Texture mapping Aligning textures with geometry is an important post pro-

cessing task especially if no colour information is available within the data.

In this case, the ability of partitioning the point cloud into small meaning-

ful segments can be used to find correspondences between photographs of

the site and the specific parts of the point cloud.

Adding semantics CH experts would usually require that specific parts of the

point cloud are tagged with some specific information. For example, one

might label a particular segment of the point cloud as representing the

ground, which is then linked to photographs from the site. A GUI would

be required to allow a used to browse the point cloud structure graph and

attach additional data to nodes.

Tessellation Segmentation results have the potential of being used to improve

tessellation algorithms and rendering quality. For instance, automatically

creating a reasonably accurate mesh of the Mnajdra temple is not a straight-

forward task. Segmentation results can be used to project the *·planar

segments extracted onto a flat surface, tessellate using traditional Delaunay
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triangulation (Lee & Schachter, 1980), then use the topological information

acquired to render the quasi-flat surface as a triangular mesh. Clearly, a

mechanism to connect the various meshes would then be required.

Primitive shape fitting using *·planar segments When additional shape

fitting is required, rather than applying RanSaC on the entire point cloud,

it would be interesting to investigate the outcome of choosing shape support

points from the different ∗.planar segments.

Reconstructing Symmetry The graphs produced by segmentation can be used

to identify regions of symmetry, which could then be used for reconstruction

purposes in areas which are not sampled.

GUI for structure graph navigation and visualisation A user-friendly GUI

to enable interactive editing of the structure graph would give users with

a variety of technical backgrounds the necessary tool to improve the ma-

nipulation/editing of point cloud data. Since the number of states in these

graphs can be substantial, the visual presentation of the graph requires

further work to be done.

GUI for query graph creation and composition Further work is being car-

ried out on formalising a point cloud query language to automatically syn-

thesise query graphs. In this regard, a user friendly GUI which can be used

to create, execute and view results of these queries is required.

5.7 Summary

This chapter presented PaRSe, a novel general-purpose segmentation method for

raw point clouds which enables easier manipulation of these data in a variety

of tasks. The results show that the approach, which combines region-growing

and RanSaC plane fitting, results in the generation of segments which describe

meaningful parts of a point cloud. The structure graph produced during the

generation of these primitive segments is then used to further facilitate the man-

agement of related segments by providing a mechanism for composing them into

larger entities. Whereas segmentation is context-free, the grouping of segments

is user-driven and depends on the specific context. An important direction in

the further development of PaRSe is the provision of a user-friendly and efficient
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GUI by which professionals in various fields can select interesting parts within

a point cloud. This includes the design of a graph query composer, which auto-

matically parses a visual description of the query graph and produces code which

implements the required functionality.

The acquisition of larger areas at higher densities results in gigabytes of point

cloud data. These data sets may not fit entirely in main memory, making their

processing impractical. In particular, the essential k-NN operation which is car-

ried out multiple times during segmentation, requires that all points and the

associated kd-tree acceleration structure are loaded in main memory. The next

chapter presents a novel extension to PaRSe, that allows processing of massive

data sets on devices with minimal primary memory.



CHAPTER 6

Fast Scalable k-NN Searches for Very

Large Point Clouds

The process of reconstructing virtual representations of large real-world sites is

traditionally carried out through the use of time-of-flight laser scanning tech-

nology (§2.3.2). Recent advances in these technologies has led to improvements

in both sample quality and speed of acquisition resulting in scanners capable of

considerably higher sampling rates. The raw data resulting from the acquisition

process usually needs to be processed in order for important topological informa-

tion to be extracted. For instance, in the case of robot navigation, this processing

might be required in order to determine the location of a particular object in the

environment and guide the robot around it. In many cases, these large point

clouds require cleaning through the application of numerous post-processing al-

gorithms, for instance normal determination, clustering and noise removal. A

common factor in these algorithms is the recurring need for the computation of

point neighbourhoods, usually by applying algorithms to compute the k-nearest

neighbours (k-NN) of each point (§2.5.1). PaRSe, the segmentation method pre-

sented in Chapter 5, carries out k-NN to first determine the type of each point

and then the segments during the region growing process.

In some cases, the size of the data set acquired is so large that it does not

entirely fit in main memory. This is particularly true of outdoor cultural her-

itage sites (e.g in Ruther (2010b)) acquired using professional grade 3D scanners

capable of generating highly accurate data at sampling rates of close to a million

points per second (Elseberg et al., 2011). The majority of post-processing algo-

rithms work under the assumption that the data sets operated on can fit in main

memory, while others take into account the size of the data sets and are thus

146
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designed to keep data on disk. When the size of the point cloud is very large, a

considerable amount of time is spent searching for the neighbours of each point.

Moreover, many of these post-processing operations (e.g. noise removal) may be

applied on the same data set more than once using different input parameters.

This is especially true in the case of a number of segmentation algorithms where

differing input parameters may produce widely varying results. Even if these op-

erations are usually carried out offline, execution time is still an important factor

to take in consideration. Optimal performance results are achieved when the

k-NN computation is carried out in-core, i.e. when both points and acceleration

structure are stored in main memory. On the other hand out-of-core techniques

take into account the size of the points but are much slower due to overheads

related to disk I/O. PaRSe as presented in Chapter 5, loads all points in main

memory and assumes that k-NN computations can be done in-core. The method

presented in this chapter addresses this limitation.

The development of algorithms for the efficient determination of the k-NN of

points in a point cloud has been an active area of research for many years (Clark-

son, 1983; Vaidya, 1989; Sankaranarayanan et al., 2007). In most cases memory-

based space subdivision data structures are used to help quickly determine neigh-

bouring points. One such acceleration structure is the kd-tree (§2.4) which is used

in many prominent libraries such as Muja & Lowe (2009a) and Rusu & Cousins

(2011), to provide a spatial subdivision over the input point cloud. Search algo-

rithms, mostly based on either depth-first (DFS) or best-first (BFS) traversals

are then used to efficiently determine neighbours (Algorithm 1). These search

algorithms can either compute the exact nearest neighbours or else the approxi-

mate nearest neighbours (ANN). In the case of ANN, an error threshold ε is used

to speed up the computation of neighbours at the expense of correctness. Signif-

icant speed-up can be achieved when the data set consists of higher dimensional

data points Arya et al. (1998). In the case of 3D scanned point cloud data, the

difference in performance between ANN and k-NN is minimal. In our approach

both approximate and exact nearest neighbours can be determined, but since

there is only a minimal difference, in the results presented here only the exact

k-NN are computed.

An important consideration which is addressed by Sankaranarayanan et al.

(2007), is the size of these point clouds. As size increases, search algorithms based

on in-core data structures, such as kd-trees, are limited by the amount of memory

present in the computer on which they are deployed. Sankaranarayanan et al.
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Figure 6.1: Top row image shows the entire Songo Mnara point cloud (Ruther, 2010a)
consisting of 45 million points. Middle row illustrates one of the walls with point types
assigned and the bottom row image illustrates the same wall rendered using higher
contrast colours to enhance the details on the wall.
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(2007) describe an all nearest neighbour algorithm for applications involving large

point clouds. Their method makes use of disk-based out-of-core data structures

and is thus not limited by the amount of system memory available. They first

determine localities, for blocks of points, which are then used to decrease the

range of candidate neighbour points to search. Even though their algorithm is

designed to work with multi-dimensional data sets, evaluation is carried out only

on 3D point clouds and report significant improvements over previous methods

with respect to the time it takes to compute k-NN. For example, when using a

data set of 50 million points, 7999 neighbourhood/s are computed on a machine

with 1GB of system memory.

In this chapter, PaRSe is extended with a novel external memory algorithm

using a hybrid of spatial subdivision techniques for out-of-core fast k-NN searches

on point cloud data. This hybrid approach exploits the spatial locality of point

clusters in the point cloud and loads them in system memory on demand by

taking advantage of paged virtual memory in modern operating systems. In

this way, processor utilization is maximised while keeping I/O overheads to a

minimum. This approach is evaluated on point cloud sizes ranging from 50K

to 333M points on machines with 1GB, 2GB, 4GB and 8GB of system mem-

ory, taking advantage of all system memory available but never exceeds it. On

a 1GB machine with similar specifications to the tests carried out by Sankara-

narayanan et al. (2007), PaRSe extended with out-of-core capabilities achieves

approximately 100,000 neighbourhoods/s using a data set of 166 million points.

6.1 Data structures for out-of-core processing

In order to design a fast k-NN computation procedure, the extension to PaRSe

takes advantage of two important concepts, namely, spatial subdivision and mem-

ory mapped files. The first is used to reduce the time complexity of the nearest

neighbour algorithm, whilst the second is used to maximise the use of available

memory.

6.1.1 Spatial Subdivision

Regular grids subdivide 3-space into regions of equal volume where each region

can be uniquely addressed by an index (i, j, k). If the regions operated on are

known, one doesn’t need to be concerned with the whole grid, but can concen-
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trate instead on the said regions. The straightforward subdivision afforded by

regular grids allows us to maximize memory utilization by loading in core only

the affected regions. The point clouds used are not uniformly distributed in 3-

space and partitioning these data sets into regular grids yields a large number

of empty regions. Thus, the regular grid is implemented as a sparse map storing

only the regions which contain interesting information. The time complexity for

lookup and insertion of a region, or cell, is in both cases O(log n), since the

sparse grid is implemented using red-black trees (Bayer, 1972). A lookup for the

nearest-neighbour of a point within a region runs in linear time; kd-trees are then

used to store points within a cell, reducing the lookup complexity to logarithmic

time in the number of elements (Friedman et al., 1977).

6.1.2 Memory Mapped Files

Virtual memory (Denning, 1970) is a memory management technique which al-

lows the execution of processes not entirely held in memory by separating the

user view of memory from the actual physical memory and provides a mapping

function from one to the other. Implementations for virtual memory require

hardware support, typically provided by a memory management unit built into

the CPU. Paged virtual memory is an implementation of a virtual memory sys-

tem which divides the logical address space into equal sized memory blocks called

pages, permitting the use of memory mapped files (MMF), wherein a file can be

manipulated as part of the process address space. This is accomplished by map-

ping disk blocks to pages in memory using the virtual memory system. Access to

memory mapped files uses a demand paging scheme, whereby a block is loaded

in memory only if it is needed. The first time a block is accessed, a page fault

is generated, and the respective block brought to memory. Subsequent accesses

to the specific block occur as memory reads or writes, avoiding the overhead of

read and write system calls. Moreover, files which do not fit in memory can still

be manipulated with relative ease, as the paged virtual memory system, swaps

blocks in and out as required.

6.2 Concurrent k-NN searches using MMF

The method presented addresses the problem of efficiently searching for the k-

NN of all points in a point cloud P , when the size of P does not fit entirely
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in main memory. In order to decrease the memory requirements of the process

computing k-NN, all point information is stored on disk and iteratively load only

those regions in the file which are required in the k-NN computation for a subset

of points in P . Points are loaded in memory through the use of MMFs. In

general, all memory available on a machine is used to achieve the best possible

performance, however in order to mitigate I/O problems which could result from

having a process using all system memory, a parameter M is used to indicate

an approximate upper bound on the number of points which can simultaneously

be present in system main memory. Decreasing the value of M will decrease the

memory footprint of the entire process. Whenever PaRSe wants to use all system

memory available, M is set to a value larger than the number of points in P . In

order to speed up the time it takes to compute k-NN for each point, all processing

elements (PE) available on multi-core computers are utilised.

Algorithm 10 describes the high level structure of our approach. The process

starts by first creating and populating a uniform sparse grid G with a count

representing the number of points in P which fall within each axis aligned cell in

G. This is done by iterating once over all the points in P . Using this information,

separate files are created each storing a cell ordered subset of points. Once these

clusters of points (stored on disk) are created, they are iteratively loaded in main

memory and k-NN is performed for points in these clusters.

Algorithm 10 High-level description of process which searches for the k-NN of
all points pi ∈ P

1: Input Point-cloud P , M , k.
2: Load Create sparse grid G storing counts for each cell.
3: Sort Partition P . Persist to disk ordered clusters OCn.
4: for each cluster OCj do
5: Memory map points cluster OCj to main memory
6: for each non-ghost grid cell Ck present in OCj do
7: Create local kd-tree
8: for each point pi in Ck do
9: Compute k-NN

10: Perform operation on pi using neighbours
11: end for
12: end for
13: end for

The following sections describe in more detail the stages load, sort and com-

pute. The first stage reads a point cloud binary file and determines spatial lo-
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cality for all points. This information is then used to sort and divide in clusters

of points, depending on M , the input point cloud P . This spatially sorted point

cloud is then used in the third stage to search for the k-nearest neighbours of

each point.

6.2.1 Loading

The input to this stage are raw point clouds acquired from a scanning device

and stored in binary format, with each point represented as a triple (X,Y and Z

coordinates) of type float. Since one of the objectives is to decrease the memory

footprint of the application used to process a point cloud, whenever the number

of points in the cloud is larger than the value of M , which is specified in number

of points, a point cloud iterator is used which does not load the entire point cloud

in memory. Instead, M points are loaded iteratively from file using MMFs. Since

not all points are loaded in memory at any one point in time, each point cloud is

represented as a collection of segments. The maximum size (in number of points)

of a segment is M . The index of each point is thus represented using a local

offset within the segment and its global index (within the whole point cloud P )

is computed from the segment number and local offset. Figure 6.2 shows the

straightforward abstraction adopted.

Figure 6.2: Input point cloud is loaded in segments.

A point cloud iterator GetNext() first checks whether the next point to be

returned is in the current segment, i.e. whether it is currently addressable in

memory. If this is the case then values associated with the next point are re-

turned, otherwise, if the end of segment is reached, the mapped region of the

MMF is first deallocated then memory-mapped with the next segment. When

the last point in the last segment is reached, GetNext() returns false, indicating

that all points have been read.
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A uniform sparse grid is used to store the number of points contained within

each axis-aligned cell in the sparse grid G. This information is used to persist the

point cloud to disk ordered by cell index. For each point a key is computed which

indicates the cell into which the point should be placed. The key is composed

of three values representing cell indices along the X, Y and Z directions. The

number of cells along each direction is computed from a user-defined value which

specifies the size of each cell. Since points are fitted in a uniform grid, all cells

have the same size. As outlined later on, this is an important consideration when

searching for k-NN concurrently, and also to quickly determine if the correct

k-neighbours have been chosen. In the experiments carried out, this value was

set to 0.2 for all point clouds. The maximum number of cells in the sparse grid

depends on the bounding volume of the input point cloud. For example if the

bounding volume is (1,2,3) then the sparse grid would have a maximum of 5

cells along the X direction, 10 cells along the Y direction and 15 along the Z

direction. Given that a sparse grid is used, only those cells where points are

spatially located are created and stored in system main memory. In the largest

point cloud (333M points) used to evaluate this approach, the number of cells in

the grid is of 97,253.

6.2.2 Sorting

The output from the previous stage is a sparse grid G holding a count of the

number of points contained within each cell. Given this information, together

with a value for the approximate number of points in memory M and a specific

ordering over grid cells, an optimal set partition of points in P is determined. This

set partition groups together clusters of cells, over which k-NN can be computed

in-core while adhering as closely as possible to the value of M . The cell ordering

employed in the implementation follows in ascending order the X, Y then Z axis

as illustrated in Figure 6.3.

This ordering implies that the bounding volume of the entire point cloud

can be seen as being composed of a number of slices along the x-axis (X-slices),

where each slice would consist of a number of cells varying along the Y and Z

axes. Hence, one valid set partition of P would consist of cells grouped by X-slice.

However, since points are usually not distributed uniformly across the bounding

volume of the point cloud, there will be X-slices with many more points than oth-

ers. Thus, the partitioning process groups together as many X-slices as possible.
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Figure 6.3: Sparse grid decomposition and cell ordering
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M is used to determine the size of these clusters of X-slices, with each cluster

having approximately M points. For example, if the axis-aligned bounding vol-

ume of the point cloud is divided into twelve X-slices, a possible set partition OC

could consist of the four clusters {{1,2,3,g},{g,4,g},{g,5,6,g},{g,7,8,9,10,11,12}}.
The partitioning process guarantees that the number of points present per cluster

over which k-NN can be computed is approximately equal to M . In this case the

number of points in the 4th X-slice (alone in the second cluster) is higher than

the number of points in the rest of the slices. Hence, it is loaded in main mem-

ory on its own. An important aspect that needs to be taken into account when

constructing this set partition, is the inclusion of ghost cells/points (represented

using the letter g in the example) within each cluster, i.e. those points for which

k-NN is not computed (within this cluster) but which may actually be one of

the k-nearest neighbours for some of the points in the cluster. Figure 6.4 shows

the ghost cells and respective ghost points for point pi located in the central cell

of the 3x3 grid. In the case of a 3D sparse grid, for every cell there can be a

maximum of 26 ghost cells. For each cluster OCi, the last X-slice from OCi−1

and the first X-slice from OCi+1 are added. Clearly, for OC0 only the first X-slice

from OC1 is added, whereas for the last cluster OCn only the last X-slice from

OCn−1 is added. These additional cells representing the boundary points of the

cluster are required to compute k-NN correctly. Since clusters are created over

X-slices, the value of M must be reasonably chosen, i.e. it should not be very

small. In the results section, the effect of changing this parameter is evaluated

with respect to memory usage and performance.

The output from this stage is a file for each cluster of X-slices. Each file

stores points following the cell ordering described in Figure 6.3. Point ordering

within the cell is not important. Taking the example above, this stage would

produce four files storing the points from clusters {1,2,3,4}, {3,4,5}, {4,5,6,7},
{6,7,8,9,10,11,12} respectively. In the next stage these files will be efficiently

loaded in memory using MMFs.

Algorithm 11 describes the procedure used to sort the input point cloud P .

For each cluster of X-slices in OC, a file is created. In order to write points at

the correct offsets in each file, the information within each cell in G is augmented

with file position offsets indicating at which location of the current file the next

point contained in that cell should be written. Sorting is currently not very

efficient since for each file written, the function GetNext() has to iterate over all

points in G. When the size of P is very large (e.g. 333 million points on a 1GB
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Figure 6.4: Ghost cells and points

machine) this actually becomes a bottleneck and ends up taking as much time

as computing k-NN.

6.2.3 Concurrent search for k-NN

When computing the k-NN for a given point, our approach ensures that the cor-

rect k-nearest neighbours are actually returned. In general, given two sets of

points Pg and Pn, with Pn ⊂ Pg, the method ensures that the set Pg contains

the k-nearest neighbours of all points in Pn. As opposed to the work of Sankara-

narayanan et al. (2007), i.e. pre-compute the set Pg before searching for the k-NN

of points in Pn, the method verifies that this is the case for each point in Pn once

the k-NN are determined. Since each point is located in an axis-aligned cell, the

shortest distance d between the position of the point and any one of the boundary

planes of the cell can be determined very efficiently. Figure 6.4 describes how

this is done in 2D. After determining k-NN, the algorithm checks whether the

distance between the kth neighbour and the current point is smaller than d. If

it is, then the currently chosen neighbours are correct and can be returned oth-

erwise the point is flagged for re-computation of k-NN taking in consideration a

larger set of adjacent ghost cells. Algorithm 12 describes in detail how the search
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Algorithm 11 Sort points in P and persist to files

1: Input P , G with counts for each cell, Clusters OC.
2: for each cluster OCi do
3: Create MMF to store points in OCi

4: Update G with file position offsets of cells in OCi

5: cnttotal = number of points in OCi

6: cntwritten = 0
7: for each point pj ∈ P do
8: if pj falls within this cluster then
9: Retrieve cell Ck where pj is located

10: Write pj to file at position offset indicated at Ck

11: cntwritten = cntwritten+1
12: Increment offset at Ck

13: end if
14: if cntwritten == cnttotal then
15: Flush MMF of OCi.
16: Continue.
17: end if
18: end for
19: end for

for k-NN works.

Each processing element (PE) in the system atomically retrieves the next

available cell in the currently active OC cluster and computes k-NN searches

over all points in the cell. k-NN searches are carried out by creating a temporary

kd-tree over points in the currently active grid cell. When all searches are done,

the kd-tree is deleted from memory. Temporary kd-trees are created and deleted

for all cells in G.

6.3 Results

The out-of-core extension to PaRSe is evaluated on a number of point clouds

ranging in size from 53K to 333M points. All experiments are carried out on an

Intel Core2Quad machine running Windows7 and SATA2 hard disks. In order to

evaluate performance against different memory configurations, the same machine

is installed with 1GB, 2GB, 4GB and 8GB of system RAM. Experiments are

conducted in order to evaluate the scalability of the approach as the size of the

point cloud is increased across these different memory configurations. In addi-

tion to an implementation of the concurrent grid based multi kd-tree (GridXKd)
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Algorithm 12 Compute k-NN for all points pi ∈ P
1: Input G, Cluster Set OC.
2: for each cluster OCi do
3: Memory map file with points in OCi

4: Update file position offsets of cells in OCi

5: Generate array CellArr storing keys of cells in OCi

6: cellCount = size(CellArr) - no. of ghost cells in OCi

7: crtCellIdx = index of first non ghost cell
8: while crtCellIdx < cellCount do
9: Atomically assign to PE crtCellIdx

10: PE generates kd-tree on points in CellArrcrtCellIdx

11: for each point pj in CellArrcrtCellIdx do
12: Search for k-NN of pj
13: d = shortest dist(pj,CellArrcrtCellIdx planes)
14: if dist(pj, NNk) > d then
15: Add pj to k-NN re-computation list RL
16: end if
17: end for
18: while sizeof(RL) > 0 do
19: Update kd-tree with points from adjacent cells
20: Compute k-NN for pj
21: d += extent of CellArrcrtCellIdx

22: if dist(pj, NNk) < d then
23: Remove from re-computation list RL
24: end if
25: end while
26: Delete kd-tree
27: Atomically increment crtCellIdx
28: end while
29: end for
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approach described above, two further implementations are evaluated for com-

parison. The first implementation takes the traditional in-core approach where

a kd-tree is constructed over all points in the data set and is referred as in-core

kd-tree (ICKd). This implementation should provide the best possible perfor-

mance whenever enough memory is available to hold the kd-tree. The PCL

library Rusu & Cousins (2011) is used for this implementation which also uses

memory mapped binary files to store points. The second implementation works

exactly like GridXKd, but does not use memory-mapped files and instead loads

all points in the sparse grid data structure (rather than just the required number

of points) before starting to compute k-NN and is referred to in-core concurrent

grid based multi kd-tree (ICGridXKd). In all cases the FLANN library Muja &

Lowe (2009a) is used to implement kd-tree based k-NN searches. The error-bound

parameter ε is set in all cases to zero. Moreover in all implementations all four

processing elements available on the computer used are utilised to concurrently

compute k-NN.

Table 6.1 lists the point clouds used in the experiments. In all cases (except

for Mnajdra and Songo) the data has been generated from polygonal models. In

the case of SongoX2, SongoX4 and SongoX8, the original point cloud was up-

sampled (using Algorithm 3) in order to increase the number of points. For each

point in the original point cloud, an additional point is created as the spatial

average of the two nearest neighbours. Figure 6.5 illustrates three of the point

clouds used.

Model Name Size(M) Cell count in Grid

obelisk 0.053 1097
mnajdra 0.579 6087
conference 2.3 6338
sibenik 6 201,756
songo 41 95,999
songoX2 83 96,940
songoX4 166 96,853
songoX8 333 97,253

Table 6.1: Point clouds, corresponding number of points and number of cells created
during loading phase in sparse grid
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6.3.1 Execution Time

Execution times are first compared for all three implementations on a machine

installed with 8GB of system memory and is done in order to first establish the

best possible results for the three implementations. In the case of the GridXKd,

parameter M is set to a value greater than the number of points in the cloud in

order to maximise the use of system memory. GridXKd is later evaluated with

different values of M in order to establish how this constraint effects execution

time. Table 6.2 shows the time it takes for each implementation to calculate

k-NN with k set to 16 for the different models.

Model Name ICKd ICGridXKd GridXKd

obelisk 0.127 0.193 0.241
mnajdra 1.164 2.068 1.748
conference 4.864 7.726 5.891
sibenik 12.032 20.039 15.911
songo 101 198 167
songoX2 207 420 353
songoX4 916 - 707
songoX8 - - 1426

Table 6.2: Execution times (in seconds) using 8GB RAM

Note that the readings for GridXKd, also include the time taken to populate

the sparse grid G and persist to file (or files depending on the number of clusters

created at the sorting phase) a sorted version of the original point cloud. As

the size of the point cloud increases so does the time taken to sort it. This is

evident when working with the largest points clouds. As was to be expected

ICKd performs better in those cases were the acceleration structure can easily

fit in main memory. However, as the size of the input data set increases, the

performance of the proposed approach (GridXKd) is better than that of ICKD

and ICGridKd. Due to the in-core nature of both ICKD and ICGridKd, both

are not able to process the 333 million point data set songoX8. In the case of

GridXKd the execution time is linearly proportional to the size of the input. In

the case of the point cloud songoX4, the proposed approach performs better than

the in-core ICKd.

Execution times of all three implementations are also evaluated whilst de-

creasing the amount of system memory available. Tables 6.3, 6.4 and 6.5 show



6. Fast Scalable k-NN Searches for Very Large Point Clouds 161

execution times for all data sets with 4GB, 2GB and 1GB system memory in-

stalled. Table 6.3 shows the results obtained with 4GB system memory installed.

When processing the largest point cloud (songoX8), in order to limit the amount

of memory required by GridXKd, parameter M is set to 100 million. When M

is not set to a value smaller than the size of the dataset, too many points would

have been present in system memory resulting in our approach not being able

to process songoX8. In order to be able to process this point cloud, M is set

to a value smaller than the number of points in the cloud. With M set to 100

million points, GridXKd computes all k-NN in 1909 seconds. Given the size

of the point cloud, a considerable amount of time, 358 seconds, is spent on the

sorting phase which partitions the dataset into 5 clusters. Table 6.6 shows the

effect of varying M on both load and sorting times of GridXKd. The number of

segments created at load time and the number of clusters created at the sorting

stage are also listed. Once the point cloud is loaded, sorted and persisted to file/s

the time taken to compute k-NN is the same across all variations of M with 1GB

of system memory installed. These results show that with 1GB of RAM installed,

the best results are obtained when setting M to 20 million with the sorting stage

partitioning the input point cloud into seven clusters.

Tables 6.4 and 6.5 show execution times for all data sets with 2GB and 1GB

RAM installed. In all cases GridXKd is able to compute k-NN for all points.

When using 1GB, with point clouds of more than 20 million points, M (values

shown in table) is used to reduce the number of points which are simultaneously

loaded in memory. In all cases the value is set to 30 million or less. As shown in

Figure 6.6, as the number of points increases, a considerable amount of time is

spent sorting the point cloud. In the current implementation loading and sorting

is always performed, however this is not required. Once a sorted point cloud is

persisted to file it can be reloaded without incurring the cost of re-sorting. In

this case, the sparse grid G would need to be persisted with the rest of the data

and reloaded each time. When processing large data sets this operation is much

less expensive than sorting.

Results show that the GridXKd implementation within PaRSe, is able to

efficiently compute k-NN searches on very large point clouds with minimal system

memory. In the case of small point clouds, GridXKd results are comparable to

the results achieved by an optimal in-core implementation of k-NN search. This

demonstrates the scalable nature of the proposed approach. For a neighbourhood

of size k=16, using either 8GB, 4GB or 2GB of system memory, GridXKd is able
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Model Name ICKd ICGridXKd GridXKd (M)

obelisk 0.109 0.234 0.172
mnajdra 1.469 2.047 1.921
conference 5.046 8.203 6.031
sibenik 13.875 17.726 16.281
songo 114 205 169
songoX2 443 - 356
songoX4 - - 786
songoX8 - - 1909 (100M)

Table 6.3: Execution times (in seconds) using 4GB RAM

Model Name ICKd ICGridXKd GridXKd (M)

obelisk 0.156 0.213 0.157
mnajdra 1.547 2.031 1.673
conference 5.219 7.609 5.957
sibenik 14.641 21.953 16.221
songo 238 - 170
songoX2 - - 379
songoX4 - - 1160
songoX8 - - 1577 (60M)

Table 6.4: Execution times (in seconds) using 2GB RAM

to compute approximately 235,000 neighbourhoods/s on an 83 million point data

set.

6.4 Discussion

The processing of very large point clouds is generally hindered by the amount of

device system memory, with functions such as k-NN assuming that all points are

loaded in memory. An extension to PaRSe is presented in this chapter, which

addresses the problem of working with point clouds that do not entirely fit in

main memory. In particular, the computation of a point’s k-NN is essential for

PaRSe in establishing point types which are then used by the region-growing

process. An out-of-core algorithm which takes in consideration both the size

of the input point cloud and available system memory is described, which gives

PaRSe the capability of processing very large point clouds on systems with at least
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Model Name ICKd ICGridXKd GridXKd (M)

obelisk 0.147 0.243 0.171
mnajdra 1.648 2.323 1.673
conference 5.132 8.102 6.345
sibenik 17.231 24.252 16.454
songo - - 300 (20M)
songoX2 - - 522 (20M)
songoX4 - - 1541 (30M)
songoX8 - - 5995 (30M)

Table 6.5: Execution times (in seconds) using 1GB RAM

M(million) Segments Load(s) Clusters Sort(s)

10 9 11.39 20 235
20 5 10.86 7 103
40 3 7.297 3 136
60 2 9.336 2 150
85 1 14.156 1 251

Table 6.6: Varying values of M on the songoX2 data set (with 1GB RAM installed)

1 Gigabyte of system memory. Results have shown that the method proposed

compares favourably to an in-core kd-tree based implementation.

A number of future developments are required to improve on the current

implementation. The initial sorting phase requires additional research aimed at

reducing the time required for this to be carried out. Once the initial point cloud

sorting is done, sub-sampling techniques can be used to appropriately reduce the

size of the input to match the size of available system memory. In addition, an

in-depth analysis of trade-offs between number of cells in the sparse grid and

the average number of points in each cell would help in establishing optimal

parameters. Another interesting future direction is that of extending the concept

of the error-bound ε used for ANN in kd-trees, and include in the sparse grid

subdivision of space.

In the current implementation, kd-trees computed on points in a cell are

not persisted to file with the points and therefore, when a cell is mapped to

system memory, a new kd-tree structure needs to be computed. Whereas, results

have shown that this overhead is minimal, further research should look into the

possibility of lazy loading pre-computed kd-tree structures from file and thus
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avoiding re-computations of kd-trees.

Variations of PaRSe may be used on mobile autonomous systems in order to

acquire elaborate environments. In these cases, the typically limited amount of

physical memory on these devices poses a limit on the size of point clouds in

working memory which can be processed. The method presented in this chapter

can be used as an initial platform to deliver such a system. Further research would

look into the support offered by operating systems deployed on these devices.

6.5 Summary

This chapter has presented an extension to PaRSe, consisting of a novel out-of-

core algorithm which efficiently searches for the k-nearest neighbours of points

over very large point clouds. Results have shown that with the proposed method,

PaRSe can scale up from a few thousand points to several millions on devices

with limited memory resources. This capability further widens the applicability

of PaRSe in addressing challenges and tasks involving very large point clouds on

devices with limited amounts of system memory. In the next chapter, PaRSe

is used in the design of CoFFrS, a context-free scene understanding framework

which is applied to points clouds of indoor scenes.
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(a) Mnajdra 579K points

(b) Conference 2.3M points

(c) Sibenik 6M points

Figure 6.5: The three point clouds used in the results
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(a) Using 4Gb RAM

(b) Using 1Gb RAM

Figure 6.6: Execution times for load, sort and compute k-NN



CHAPTER 7

Structure Graphs for Indoor Scene

Understanding

The growth in popularity of commodity hardware capable of capturing depth

information is further widening the range of application of 3D data sets. In

particular, scanners based on triangulation principles (§2.3.2) such as the Mi-

crosoft Kinect, Asus Xtion and Structure Sensor, are being extensively used to

acquire indoor scenes. Recently, rapid advances in ubiquitous computing have

also brought to the masses the possibility of capturing the world around us in 3D

using smartphones and tablets (Google, 2014; Jared, 2014). As a consequence of

these advances, there has recently been a surge in the development of scene un-

derstanding methods of indoor environments from point cloud data. This chapter

contributes a novel approach, CoFFrS (Context-Free Framework for Scene un-

derstanding), which builds on the segmentation process PaRSe and generates

successful results on indoor scenarios which were previously unsolved.

Point cloud segmentation methods, which partition point cloud data into

smaller meaningful components, generally contribute towards improving the han-

dling and further processing of this data. As described in Chapter 3, point cloud

segmentation algorithms have traditionally used either a region-growing or para-

metric shape fitting approaches in order to partition the input. In the case of

region-growing algorithms the resulting partitions are usually not very meaning-

ful and therefore less amenable to further processing. Parametric shape fitting

on the other hand returns a set partition with each element containing a set of

points within the parameters of a specific shape. Given this information, the

elements of the set partition can be used to describe higher-order concepts such

as roofs or columns of buildings.

167
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Figure 7.1: Photographs of environments typically used to evaluate scene understand-
ing algorithms.

Segmentation, object recognition and indoor scene understanding techniques

share many common aspects. Whereas traditional indoor scene understanding

methods deal with the identification of structures and objects in an indoor envi-

ronment, 3D object recognition techniques have traditionally been used to iden-

tify small objects on a surface given a set of trained object descriptors. In many

cases, the segmentation of the input point cloud P is not considered, since the

identification process proceeds by matching previously trained point-based de-

scriptors of objects to point-based descriptors computed in P (§4.1.1). Alterna-

tively, simple point clustering algorithms are used to first delineate the individ-

ual objects, with the main goal in these cases being the identification of objects

in P from different views and under a variety of occlusion and noise parame-

ters. These point based descriptors generally assume that objects are uniformly

scanned in sufficient detail. However, in an indoor scene understanding con-

text using commodity hardware, this is generally not the case with small objects

sampled coarsely (§2.3.2). To address this situation, the scene understanding

methods described in 4.2 have resorted to using a segmentation process over P ,

in conjunction with a scene descriptor trained from the resultant segments.

Figure 7.1 illustrates three indoor environments which can easily be scanned

using commodity hardware. Given point clouds representing these scenes, the

task of a scene understanding method is that of identifying the different com-

ponents and objects making up the scene (§4.2). For many scene understanding

techniques, using either supervised (§4.2.1)) or unsupervised (§4.2.2) methods,

segmentation is critical in order to establish an initial clustering of points in the

scene. Supervised methods use a training process which results in a scene de-

scriptor encoding information about the objects and scene (e.g. decision forests

in Nan et al. (2012)). As such, these algorithms only work on point clouds rep-

resenting environments which are very similar in terms of object positions and
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Figure 7.2: In CoFFrS, the scene understanding process uses query and object graphs
to produce an interpretation of a scene. Query graphs first extract specific patterns,
then object graphs determine the presence of objects. Point based object descriptors
(§4.1) may be used on some of the extracted partitions.

pose to the ones used for training. Unsupervised methods do not utilise a labelled

training set, and instead rely on the identification of symmetry and repetition in

a scene (or multiple scenes) in order to produce a set partition matching these

patterns (Mattausch et al., 2014). However, establishing partitions based of the

identification of hidden structures in a scene is not sufficient to properly associate

object labels.

A considerable amount of work has recently been carried out in the area of

indoor scene understanding from point cloud data. Segmentation is in some cases

used for shape recognition (Schnabel et al., 2008; Golovinskiy et al., 2009; Lin

et al., 2013) and always required for indoor scene understanding (Nan et al., 2012;

Kim et al., 2012; Mattausch et al., 2014). A number of methods first apply the

RanSaC paradigm to fit parametric shape primitives to unstructured raw point

clouds (Dorninger & Nothegger, 2007; Schnabel et al., 2007). Graph-based 3D

object descriptors have been used to encode geometric and topological properties

from the shapes extracted (Schnabel et al., 2008; Golovinskiy et al., 2009). Both

supervised and unsupervised methods have been applied to search for object

descriptors within point clouds. Whereas supervised methods utilise a train-

ing phase in order to synthesise descriptors of individual objects, unsupervised

methods rely on the presence of patterns to automatically infer similar objects in

a scene. Golovinskiy & Funkhouser (2009) presents a segmentation and scene

understanding algorithm for outdoor scenes based on foreground/background

identification. Indoor scenes however, usually present a harder segmentation

challenge due to noise induced by added clutter, sensors and partial object occlu-

sions and are not ideal for such an approach. Mattausch et al. (2014) addresses
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the scene understanding task by exploiting similarities within indoor scenes and

describes an unsupervised segmentation process for point clouds resulting in clus-

ters of similar objects. When these similarities are absent, for instance due to

low quality acquisition sensors, or simply because the scene lacks similarities and

symmetries, the effectiveness of these techniques diminishes. With supervised

methods, scene-specific knowledge is embedded in trained scene descriptors. Nan

et al. (2012) propose a search-classify approach for interleaving segmentation and

classification. Although managing to successfully classify complex scenes, their

method fails when object placement in the scene differs in pose or scale to that

used when training the scene-specific classifier. Kim et al. (2012) propose a sys-

tem which also handles model variability modes. As opposed to our method

however, they assume that the vertical direction of the models and the scene

are fixed. This makes it difficult to detect overturned objects as opposed to our

method which orients models in a scene according to the identification of domi-

nant planar segments of the trained object descriptor. Shao et al. (2012) propose

an interactive approach to indoor scene understanding, where users manually

improve segmentation results prior to identification.

In this chapter, PaRSe structure graphs are extended and utilised in the

design of CoFFrS, a framework for context-free scene understanding. The many

operations that can be carried out on structure graphs can predominantly be

formulated as search tasks. Therefore, given a point cloud P and structure graph

G resulting from applying PaRSe on P , a method is required which traverses

output G in order to identify as sub-graphs any objects and structures it may

contain. The successful execution of CoFFrS, heavily relies upon PaRSe which

minimises the grouping of unrelated points and consistently outputs similar set

partitions and structure graphs given multiple runs of the process on a given

input. Figure 7.2 illustrates the building blocks of the method presented in this

chapter, which has been evaluated using examples of indoor scenes, with the

input consisting of raw point clouds acquired using commodity sensors.

One of the main aims of this work is the design of a generic, context-free

scene segmentation and understanding pipeline. In this respect, the technique

presented in this chapter does not rely on a specific scene context, thus making it

applicable to a wide spectrum of domains. In this chapter, the focus is primarily

on indoor scenes which are either acquired specifically to evaluate CoFFrS or are

available from literature. The contributions of this chapter are summarised as

follows:
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• address indoor scene understanding tasks using a generic point cloud seg-

mentation pipeline which partitions raw point data into connected seg-

ments.

• extend query graphs into object graphs in order to describe the salient

geometric features of a point cloud representing an object and how these

are connected.

• an incremental scene understanding process which enumerates the space of

solutions mapping objects to surface segments in the target scene.

7.1 Method Overview

The distinguishing features of an object may be perceived in a variety of ways in-

cluding, for instance, variations in shape or colour. One such feature is described

in the work of David Marr (Marr & Poggio, 1979), which links the perception of

3D objects to the saliency of flat surfaces. It builds upon the observation that

many objects (especially man-made) present in a target scene can be segmented

into a number of planar segments which exhibit specific connectivity patterns be-

tween them and that these patterns can be used to discriminate between different

objects. The object representation scheme adopted by CoFFrS takes inspiration

from this work and uses information about the extracted planar segments of

an object to concisely describe it. In the descriptor proposed, if at least one

planar surface segment can be identified in an object, its relationship with the

other points and segments can be used to describe it. These object descriptors

are synthesised from point clouds representing individual objects that may be

present within a scene, and are encoded by first partitioning them into connected

surface·planar segments using PaRSe and then extending the resulting structure

graph to an object graph. Theses object graphs are subsequently used during

the searching phase, for the automatic extraction of trained objects from target

point clouds.

In PaRSe (Chapter 5), a number of segment types are defined resulting from

region growing and fitting of plane primitive shapes. A structure graph G =

(N , E) is defined over these segments encoding different connectivity aspects

between them. Both nodes and transitions store properties describing geometric

details such as the volume spanned by the points in the node and the surface
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normal of the plane. Given G, representing the input point cloud, query graphs

encoding higher-order concepts are used to group together segments in G by

matching the connectivity patterns of a query graph (§5.5). Query graphs allow

for a variety of tasks to be carried out on the input point cloud. This is important

in cases where a specific task can be accomplished by searching for relatively

simple patterns in a point cloud. However, in a indoor scene understanding

context, query graphs can be difficult and time consuming to create. Therefore,

whereas there is scope for manually crafted query graphs, there is also scope for

automatically producing these query graphs for more complex scenarios as those

associated with a typical scene understanding context.

The scene understanding framework presented in this chapter addresses the

following design goals:

• Identification of objects does not depend on specific global scene parame-

ters which are encoded in the scene descriptor, and therefore enables pose

invariance for objects.

• No user input is required during the segmentation process.

• Provides mechanisms allowing user input to guide the searching process and

prune the search space.

• Provides a framework with the possibility of returning multiple ordered

solutions to the scene understanding problem.

• Object matching robust to both noise and occlusion.

Figure 7.3 illustrates an overview of CoFFrS starting from the acquisition of

a point cloud P and resulting in a labelled set partition of P . The rest of this

section describes the input to this pipeline and outlines the different levels of

quality obtained when using triangulation-based commodity hardware to acquire

indoor scenes. Section 7.2 then briefly describes the transformations carried out

on a point cloud of an indoor scene until this results in a structure graph (details

in Chapter 5) and provides examples showing how this segmentation process is

adequate for indoor environments. The training phase used to encode object

descriptors is then described in §7.3, whereas the scene understanding phase

using these descriptors is described in §7.4.
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7.1.1 Scanning of Indoor Scenes

The results obtained by a scene understanding method are impacted by the qual-

ity (§2.3.3) of the input point cloud. Figure 7.4 illustrates examples spanning a

range of quality values. The conference room (bottom row) has been synthesised

from a dense triangular mesh, and thus all surface information is present and

accurate. On the other hand, the office room (Nan et al., 2012) in the top right

corner, table top point cloud and office room in the middle row are acquired us-

ing commodity depth sensors resulting in relatively noisy and incomplete scenes.

This is particularly visible in the larger office room which contains a table, a

desk, shelving on one side of the room, a variety of small objects and a number

of chairs. Figure 7.5 shows close-ups of the table and chairs in this point cloud,

highlighting how the same scene can be represented at different levels of quality.

For instance, additional important surface samples are acquired if the scanner

position, in this case the Asus Xtion, is moved closer to the table and chairs

during acquisition. This is evident in the middle row of Figure 7.5 which illus-

trates exactly the same office scene with additional detail captured closer to the

table and chairs. This difference in point cloud quality is a consequence of the

sensor location from where the acquisition process is carried out. The bottom left

hand corner image shows a top-down view of the office with red and blue octagon

shapes showing the positions of the sensor in both cases. In terms of the three

quality criteria described in §2.3.3, and if only the table and chairs are considered

as the original signal to be re-constructed, then the top-row point cloud is clearly

inferior in the first two criteria. Namely, less patches are acquired (e.g. no legs)

and the signal to noise ratio for each patch is lower.

7.2 Segmentation of Indoor Scenes

CoFFrS builds upon and depends on the results of the segmentation pipeline

described in the previous chapter. This section provides a number of examples

showing the behaviour of the segmentation process on a number of indoor scenes

which are either taken from previous work by Nan et al. (2012) or are newly

acquired. The first three columns in Figure 7.6 illustrate the segmentation process

carried out on point clouds representing two separate chairs and an indoor office

scene (Nan et al., 2012). The third column illustrates the *·planar segments

resulting from this process visualised using different colours.
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Figure 7.4: Top left corner shows office room from previous literature (Nan et al.,
2012), top right corner shows table top scanned using the Asus Xtion sensor with the
Skanect software, middle row illustrates the point cloud of an office acquired using
the Structure sensor and Skanect software and, bottom row illustrates the point cloud
(synthesized from a triangle mesh) of the conference room
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Figure 7.5: Close up on table and three chairs of office room in figure 7.4
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Figure 7.6: Segmentation process on two chairs (single objects) and office (multiple
objects in enclosed space) scenes with columns from left to right (a) all points, (b)
edge type points, (c) segmentation result - shown as coloured surfaces, (d) close-up
view

PaRSe first labels points, then partitions P using a region growing algorithm

and applies a RanSaC plane fitting process over resulting regions. This is partic-

ularly useful in the case of indoor scenes where noise in the acquired point cloud

and variability in point density can lead to scenarios where points which should

be tagged as edge are actually tagged as surface and vice-versa. In the former

case, this leads to situations where a surface segment spans over multiple object

surfaces. Figure 7.7 on the left, illustrates an example where only one surface

segment is created for the right-most blue couch following the region growing

process. This segment effectively contains all the points on the couch and could

be useful on its own. However, in order to be able to describe a couch in terms

of segments and connectivity between them, all couches in the scene need to be

composed of a similar set of segments. Figure 7.7 on the right, illustrates the

segments resulting from the RanSaC process. Note how on both couches, the

seat is further split in two surface·planar segments to match the slight curvature.

PaRSe produces a set partition S = {s1, s2, s3, . . . , sn} of P consisting of

elements with type surface·planar, edge·planar, surface·complex or edge (§5.1.2).

A structure graph G is built over these segments using adjacency information

obtained during the region growing process and OBB (§2.5.3) intersection tests

during RanSaC plane fitting. Segments of type *·planar play a critical role in

our scene understanding approach. Transitions in G between these segments are

augmented with properties in the form of 〈key, value〉 pairs, e.g. 〈dot, 0.02〉 to

indicate that the nodes connected by this arc are nearly orthogonal. 〈key, value〉
pair properties are also attached to nodes and include number of points, plane

orientation, area spanned by OBB, points coverage on surface and spatial context
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Figure 7.7: Scene from Nan et al. (2012) - a) over segmentation of right sofa and b)
new segments created after RanSaC plane fitting

{ seat } { seat , 

hand rests }

{ seat , hand 

rests , back }

{ seat , hand rests , 

back , front legs }

region growing 

segment
*.planar segments

Figure 7.8: Region growing segment includes the whole armchair, whereas RanSaC
plane fitting subdivides this region into four *· planar segments.

information. Spatial context is used to determine the approximate location of the

*·planar segment along its normal direction within the object or scene, and is set

to either boundary, central or boundary central. Figure 7.9 illustrates an example

showing how spatial context is computed. In the case of object segmentation,

which is described in the next section, spatial context is computed with respect

to the entire point cloud. In the case of scene segmentation, spatial context for

*·planar segments is also computed with respect to the region in which they

belong. Points coverage is used to measure how points are distributed over the

*·planar segments. This is done to further discriminate between segments which

might have similar OBB areas but with points clustered in specific parts of the

OBB. Figure 7.10 illustrates a number of examples showing how point coverage is

computed. The upper part of the figure shows four OBBs enclosing the side of a

chair, a triangle, a circle and a rectangle. The areas of the OBBs of the rectangle
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Figure 7.9: Spatial context indicates the approximate location of each segment within
the point cloud being scanned which could either represent a scene of an individual
object. In the case of a scene, if the planar segment forms part of a region induced
by the region-growing algorithm, spatial context is also computed with respect to the
points in the region.

and chair are very similar, however the point coverage for the latter is lower.

Similarly, for the triangle and circle shapes, where the circle has a slightly higher

point coverage value. Point coverage is a normalised value and is computed by

tracing orthogonal rays from a moving virtual camera above the area spanned by

the OBB. A low discrepancy sequence, generating a number of camera positions

above the OBB, is used to make sure that sampling is distributed over the OBB.

Point coverage is calculated as the ratio of rays traced from the moving camera

over the number of point intersections. If no intersections occur, points coverage

for the segment is assigned a value of 0, whereas if all rays intersect a point in

the OBB, point coverage for the segment is assigned a value of 1.

The bottom left hand side image of Figure 7.5 shows an up-sampled version

(§2.6.2), from ∼200K to ∼600K points, of the middle row point cloud. Clearly,

simply increasing the number of points by interpolation does not contribute ad-

ditional information. Note however, that there might be situations where up-
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High Coverage

Low Coverage

Figure 7.10: An OBB does not provide information about the distribution of enclosed
points. Coverage is used to provide an indication.

sampling can affect the outcome of PaRSe. If interpolated points are added over

a planar surface, for instance the top of a table, then these will not make any

difference in terms of segments produced but only increase the number of points

in specific segments. However, when interpolating points on a curved surface,

additional planar segments may be introduced thus affecting the resultant set

partition and the mappings carried out by CoFFrS. In the results section, no up-

sampling is carried out and CoFFrS is directly applied on the raw point clouds

produced by the scanner.
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Figure 7.11: Example point cloud from Nan et al. (2012) representing five chairs with
different poses. Point in raw data are first assigned to either Ps or Pe. Second im-
age from top is showing points in Pe. Region growing process generates the regions
shown using different colours in the third image and finally RanSaC produces ∗.planar
segments.

7.3 Object Graphs

Structure graphs form the basis of the object descriptor used in CoFFrS. Their

topology remains unchanged irrespective of pose changes for a specific object,
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i.e the computation of the structure graph is unaffected by scale, rotation and

translation of an object. The structure graph for a chair on a table is identical to

the structure graph for the same chair toppled on the floor. Moreover, a single

structure graph can represent multiple similar objects (e.g. chairs with different

non-uniform scaling factors) and can easily tolerate noise in a point cloud as

long as the resulting segments are similar. Manually crafted query graphs (§5.4)

have been used to search for specific patterns in structure graphs. For instance,

a typical flight of stairs in a room can be described as a sequence of connected

orthogonal planar segments. In this section an object descriptor is introduced,

namely the object graph, which is an extension to query graphs and enables

the identification of previously trained objects in a point cloud. In addition to

properties of query graphs, object graphs include:

• the automatic determination of anchor segments as the most salient/visible

segments in an object point cloud.

• the computation of a voxel grid around each of these anchor segments,

describing the shape of the object with respect to each anchor.

In order to apply object graphs to the structure graph of a target point cloud,

in a similar fashion to query graphs, a root node needs to be identified in the

object graph. In the case of query graphs this is done manually, however in

the case of object graphs the selection of the root node is automated. The

set of ∗ · planar segments resulting from PaRSe, are not all equally important

when trying to identify an object. For instance, if one of the four legs of a

chair is occluded and therefore not sampled, one can typically still recognise a

chair. On the other hand, if the back of the seat is occluded then it is much

harder to recognise. Moreover, the larger the segment, typically, the lower the

potential for total occlusion of the segment. For these reasons, segment saliency

is established by taking in consideration both number of points and OBB point

coverage. Specifically, the saliency of a segment s is computed as:

s.saliency = s.point count * s.OBB point coverage

Since OBB point coverage ranges between 0 and 1, this metric favours seg-

ments which have higher point coverage given the same point count. Intuitively,

the higher the saliency score, the higher the probability of the surface segment

being visible in the target scene. Currently, three anchor segments are selected,
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with additional transitions added to the object graph transition function connect-

ing these anchor segments which together define the support of the object. The

object support represents local (to the object trained) planar segment connectiv-

ity which is used to quickly give an indication of whether an object is present in

the target scene.

*.planar segments 3 anchor segments

grid aligned 

with anchor 1

grid aligned 

with anchor 2

grid aligned 

with anchor 3

OBB of anchor 3

Different Views 

Figure 7.12: A chair 3D model is scanned and segmented. Three anchor segments
are then chosen, depending on the saliency score and grids computed around these
segments. The images at the bottom shows the OBB of the 3rd anchor segments from
two different views, highlighting how the grid is aligned with the OBB.

In addition to connectivity information, a voxel grid is computed around each

anchor segment. Each grid approximates the shape of the object around the

anchor segment and is used whilst searching to determine whether the segments

identified using an object graph actually correspond to that object. The grid is
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Planar Segments

Learning a Generic Chair in Training Phase

Matching a different Chair in Searching Phase

Grid Matching over 

connected segments

Generic Chair 

Scaled to Grid

Figure 7.13: Connectivity between anchor segments in an objects’ structure graph is
used to locate similar objects in a target scene.

oriented in world-space by the orthonormal basis formed by the anchor segment

OBB. Figure 7.12 illustrates a chair point cloud together with the three segments

having the highest saliency score and therefore selected as anchors. Grids are

rendered around each of the anchor segments. The bottom two images illustrate

the OBB of the third segment, which includes the back of the chair and the two

back facing surfaces of the legs. Note how the computed OBB (using PCA as
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described in §2.5.3) does not always result in an ideal bounding volume. Clearly,

rotating the OBB of the anchor segment by a few degrees around the surface

normal of the anchor segment, would result in different cells of the voxel grid being

active. This problem is addressed in the design of the search and matching process

(§7.4), which ensures that the OBBs computed for the segments in the target

scene can be matched with those in the training process. Whereas increasing the

grid resolution improves the grid approximation to the shape of the object, in

order to improve search performance and make it more generic, a low resolution

grid is used to only capture the salient shape features without capturing too much

detail. Each grid cell stores information about which segments are present in it.

In our case-studies, the number of cells along the three axes of the grid are fixed

across all objects and are manually chosen to best fit the models used.

Figure 7.13 illustrates the two extensions carried out on the query graph. The

top left image, shows the point cloud of a chair with two segments (back and seat)

selected as anchor segments. The third anchor segment, the other side of the back

of the seat, is not visible. Clearly, many different chairs exist which are similar in

shape. As illustrated in the bottom row of Figure 7.13, in cases where different

chairs are present in a target scene for which that specific chair descriptor was

not previously trained, as shown in this example, CoFFrS is designed to fit a

trained generic chair which has similar anchor segments and voxel grids.

A training process is carried out to automatically synthesise object graphs.

Algorithm 13 illustrates the steps involved. The algorithm takes as input the 3D

model of the object, virtual camera, segmentation and training parameters and a

random sampler, and returns an object graph describing the input 3D model. A

point cloud of the object is acquired by casting rays from a virtual camera posi-

tioned around the 3D model and storing depth information. A cosine hemisphere

sampler is used to position the camera in different positions. Figure 7.14 shows

the depth images produced by the virtual scanning process. Different structure

graphs are computed for each partial point cloud and for the point cloud resulting

from merging the points in the different views. Instead of using a 3D object, from

which a point cloud is produced, the training process can be directly applied on

a scanner acquired point cloud of a real object. After applying PaRSe on the

object point cloud, three anchor segments are chosen according to their saliency

values and voxel grids are computed for each. The OBB of the entire point cloud

of the object is used to determine the size of the voxel cells, given as input the

number of cells along the three orthonormal vectors of the OBB. This training
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Algorithm 13 Training of object graph.

1: Input: 3D mesh of object o, virtual camera c at distance d from o, point
cloud segmentation parameters σ, number of scans nscans, empty list of point
clouds l of size n, empty list of structure graphs s of size n, random sampler
rs, object graph og = {N , E}, segment saliency heuristics h, empty list of
anchor segments anchors of size nanchors.

2: . Generate point clouds of object from n different views
3: for k = 1 to nscans do
4: sample = rs.Get2DSample()
5: cpos = d * CosineSampleHemisphere(sample.X, sample.Y )
6: clook = V ector3(0, 0, 0)
7: lk ⇐add c.RenderDepth
8: end for
9: . Generate structure graphs for all elements in l and create p for object.

10: for k = 1 to nscans do
11: sk ⇐add GenerateStructureGraph(lk, σ)
12: p⇐add lk
13: end for
14: . Initialise og as a structure graph, establish anchors, update transition

function of og and compute grids.
15: og = GenerateStructureGraph(p, σ)
16: anchors⇐add og.EstablishAnchorSegments(h, nanchors)
17: for k = 1 to nanchors do
18: anchorsk.ComputeGrid()
19: for j = 1 to nanchors do
20: if (j 6= k) then
21: E ⇐ add(anchorsk, anchorsj)
22: end if
23: end for
24: end for
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process is carried out once for each object and the resulting object graphs are

loaded whenever these are required during the searching phase.

Figure 7.14: Three depth images from virtual camera positioned around the object.
The partial point clouds from each view are merged together to form the point cloud
of the office chair.

7.4 Scene Understanding

This section presents the object and pattern searching phase of CoFFrS. The of-

fice room point cloud in Figure 7.4 middle row represents a typical indoor scene

containing both objects (e.g. chairs, table, monitors, glasses, desk, etc.) and

structures (e.g. floors, walls and shelving). Structures such as shelving, which are

relatively simple to describe in terms of planar surfaces will most probably vary

between rooms, for instance in the number of shelves and the vertical distance

between them, and are therefore are not suitable candidates for representation

using object graphs. In these cases, query graphs are used to infer their presence

in a scene. On the other hand, chairs and tables cannot be easily described in

terms of seat, back, and legs. In these cases, the object graph descriptors of

these objects are used. By using both query and object graphs, CoFFrS seeks

to produce a rotation and scale invariant scene understanding process. Previous

work (e.g. Nan et al. (2012) and Lin et al. (2013)) has produced solutions which

target very specific environments, which on one hand make them very efficient

within that specific environment, but on the other limit their adaptability to

other scenarios. In the approach proposed, CoFFrS is designed as a generic scene

understanding solution which uses common segmentation and training processes
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but can be adapted, at the understanding (searching) phase to unseen environ-

ments by simply changing the search mechanism to best suit the environment.

Search 

Space

Root Node

Leaf Node_0

C={2,6}

Inner Node_1

C={2}

Leaf Node_1

T={3,7}

Leaf Node_2

T={6,7,8}

Boundary Nodes

Inner Node_0

B={1,4,5},{9}

{ (B,{1,4,5}), (B,{9}), (C,{2,6}) }

{ (B,{1,4,5}) , (B,{9}) , (C,{2}) , (T,{3,7}) }
{ (B,{1,4,5}) , (B,{9}) , (C,{2}) , (T,{6,7,8}) }

Figure 7.15: A simple Markov decision process tree illustrating a number of solutions
(each a depth first traversal) to the scene understanding task.

The approach adopted by CoFFrS, reformulates the supervised scene un-

derstanding problem as one which seeks to maximise matches between anchor

*·planar segments in object descriptors and *·planar segments in the target

scene. In general, this is bound to be an unconstrained problem, especially in the

presence of noise and partial object occlusions, where multiple seemingly valid

mappings may exist. A solution consists of a subset of possible mappings between

the set of objects used and the set of surface and edge segments in the structure

graph of the target scene. Query and object graphs are used to constrain this

space, whilst a Markov decision process (Puterman, 2009) is used to enumerate

this search space using a number of heuristics intended to quickly provide a list of

valid solutions. CoFFrS creates a solution tree L, where each solution associates

labels from object and query graphs to sets of scene segments and is obtained via
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a depth first traversal of L. Figure 7.15 shows a simple example of L, where pla-

nar segments with ids 1. . .9 in the target scene are mapped to objects C (chair),

T (table), and boundary structures (e.g. wall, floor, ceiling) B. Each of the three

leaf nodes describe a solution, whose score is an aggregate of the scores obtained

at all inner nodes (individual object mappings) along each depth first traversal

path. In order to decrease the number of solutions, a constraint on the number

of inner node children can be imposed. If this parameter is set to one, as is the

case with the examples presented in the results section, then only one solution is

produced. The Markov decision process model is set up as follows:

• A set of possible world states S = P(Ps ∪ Pe)× L,

• A set of possible actions A,

• A real valued reward function R(s, a) which gives a score for the transition

from s to the state returned by the function when following action a,

• A total function T , such that for each s ∈ S and action a ∈ A, a new s′ ∈ S
is defined,

where Ps, Pe represent all the surface and edge segments respectively produced

by the segmentation process, L = labels(Gobj) ∪ labels(Gquery) ∪ {unidentified}
is the set of labels, Gobj and Gquery represent the sets of object and query graphs

respectively. Each gobj ∈ Gobj and gquery ∈ Gquery is assigned a unique label and

labels(Gobj), labels(Gquery) return the labels of the sets Gobj of object graphs

and Gquery of query graphs used during the searching phase. Consider the sets

L = {chair, f loor, unidentified}, Ps = {P 0
s , P

1
s , P

2
s } and Pe = {P 0

e }. The set S

of possible world states is as follows:

P(Ps ∪ Pe) ={∅, {P 0
s }, {P 1

s }, {P 2
s }, {P 0

e }, {P 0
s , P

1
s }, {P 0

s , P
2
s }, {P 0

s , P
0
e },

{P 1
s , P

2
s }, {P 1

s , P
0
e }, {P 2

s , P
1
e }, . . . , {P 0

s , P
1
s , P

2
s , P

1
e }}.

S ={(chair, ∅), (chair, {P 0
s }), . . . , (chair, {P 0

s , P
0
e }), . . . ,

(chair, {P 0
s , P

1
s , P

2
s }), . . . , (floor, ∅), (floor, {P 0

s }), . . . ,

(floor, {P 0
s , P

1
s , P

2
s , P

0
e }), . . . , (unidentified, {P 0

s , P
1
s , P

2
s , P

0
e })}.

The solution space consists of a tree enumerating subsets of S such that a path

is traced from the root of the search space, where all segments are without a label,
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to a leaf node where all segments are now given a label. Clearly, there can exist

only one optimal solution which correctly labels each point, and this may not even

be included in the solution space, unless each segment is actually made up of only

one point. If a particular segment includes points located on two distinct objects

with different labels, then the optimal solution is not contained in the space,

since some of the points will always be labelled incorrectly. In this sense, over-

segmentation of the input point cloud is preferred over under-segmentation. On

the other hand, the run-time of the matching process depends on the time taken

to compute function R(s, a), and therefore increasing the number of segments,

results in an increase in the time required to compute solutions.

Two elements are included in the set of actions A, namely the application

of either a query or an object graph on the structure graph of the input point

cloud. Paths are traced in this solution space, via label assignment of segments

and is decided via the application of these actions and the reward function. This

effectively implements the function T between states in S as follows:

Definition Given the set Pse = {pse : Ps ∪ Pe|noLabel(pse) · pse}, s ∈ P(Pse),

actions a ∈ A, a reward function R(s, a), the next state snxt ∈ S satisfies the

following set comprehension:

snxt = {a : A, s : P(Pse)|max(R(s, a)) · (label(a), s)}

The transition to the next state snxt labels the chosen segments in s with the

label a and effectively removes them from being considered in the next applica-

tion of the reward function at snxt. In practice, function max() may be replaced

by a function which returns the set of the best n scores. Branching in the solution

tree is introduced by making use of this set of n (greater than 1) of best scores.

Algorithm 14 outlines the steps carried out in building the solution tree. The

design of function R is obviously key to the success of the understanding process

and is described in more detail in Algorithm 16. The scene understanding pro-

cess, starts building the solution tree by initialising a root node which includes all

segments in Pse. The output of the process, consists of at least one set partition

associating labels of objects in Gobj and structures in Gquery with subsets of these

segments. The search algorithm is composed of two main consecutive phases,

first applying an unsupervised process to determine general structures such as

boundaries, and then applying a supervised process to match the rest of the seg-

ments with previously trained object graphs. The unsupervised phase consists
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Algorithm 15 Construction of Solution Tree using Markov Decision Process

1: Input: Set of edge and surface segments Pse, structure graph G of input point
cloud, empty solution tree L, set Gquery of query graphs, set Gobj of object
graphs, empty lists segsquery and segsobj of segments, empty list nodesleaf of
leaf nodes in L, list scores of triples (scr, gobj, segs) where gobj ∈ Gobj and
segs ⊆ Pse, minimum score value scrmin.

. Initialise solution tree with root node.
2: lroot = CreateTreeNode(Pse)
3: L.SetRootNode(lroot)

. Apply query graphs in sequence.
4: nodesleaf ← L.GetLeafNodes
5: for all lleaf ∈ nodesleaf do
6: nodecrt = lleaf
7: for all gquery ∈ Gquery do
8: segsquery = ApplyQuery(gquery,G,Pse)
9: while |segsquery| > 0 do

10: AssignLabel(segsquery, label(gquery))
11: Pse = Pse \ segsquery
12: nodenew = CreateTreeNode(Pse)
13: Connect nodenew to parent node newcrt

14: segsquery = ApplyQuery(gquery,G,Pse)
15: end while
16: end for
17: end for

. Match remaining unlabelled segments Pse to object graphs.
18: sortedSegments = Sort(Pse)
19: for all s ∈ sortedSegments do
20: chosenGraphs = PatternMatch(Gobj, s)
21: for all gobj ∈ chosenGraphs do
22: scores ←add R(gobj, s) . see Algorithm 16
23: end for
24: for all (scr, gobj, segs) ∈ scores do
25: if (scr > scrmin) then
26: nodesleaf = L.GetLeafNodes
27: for all lleaf ∈ nodesleaf do
28: AssignLabel(segs, label(gobj))
29: nodenew = CreateTreeNode(Pse \ segs)
30: if Compatible(nodenew, Path(lroot, lleaf )) then
31: Connect nodenew to parent node lleaf
32: end if
33: end for
34: end if
35: end for
36: end for

. Label remaining unlabelled segments Pse to unidentified.
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of the application of query graphs in a specific order. Order is important, since

segments are removed from further processing when labelled. Query graph appli-

cation order is one of the parameters which is set by the user. In general, and if

not otherwise specified in the evaluation section, three query graphs are used for

indoor scenes. These include queries to identify shelving, stairs and boundaries.

In all examples, the boundaries query graph is used just before the application

of object graphs and tries to match the floor, ceiling or walls of a scene. Prior to

determining boundaries, the shelving and stairs query graphs try to determine if

there are any shelving units or stairs in the scene. Note that the application of

these query graphs is carried out more than once (line 9 in Algorithm 14) until

the query returns an empty list of segments. This is especially important for the

shelving query graph, where multiple instances of shelving units may be present.

Note that as opposed to query graphs, for instance the cylinder query graph

(Figure 5.22), only one instance of the query is returned and attached to a new

node in the solution tree. The main intuition behind the application of the query

graphs before object graphs, is that in general, structures such as walls, floors,

shelving units, stairs, etc. consist of a high percentage of points in the point

cloud. Removing these points from consideration by the second phase, decreases

the run-time required to produce the solution tree.

The second phase of CoFFrS searching process, first enumerates the remain-

ing unlabelled segments and then tries matching them with anchor segments of

objects graphs in Gobj. Segments in the scene are ordered by their saliency score,

which is computed using the same criteria used when choosing anchor segments

for object graphs. The order in which *·planar segments are matched with anchor

segments plays a critical part in the correctness of the scene understanding pro-

cess, since currently, segment labelling cannot be reverted. Therefore, if domain-

specific knowledge of the target environment such as the distance from the floor

of the chair seats and table tops is known, then a segment sorting function, in

addition to saliency scores, can order horizontal planar segments according to

their distance from the floor and try to match these with tables and chairs first.

In order to provide for a generic scene understanding solution, CoFFrS allows for

different sorting function implementations to determine the sequence by which

*·planar segments from the target scene are visited. If no domain-specific in-

formation is available, *·planar segments are sorted according to their saliency

scores. At the end of the process all segments are either labelled as part of spe-

cific objects, or identified as groups of segments which require further processing
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using other point-based object recognition techniques (§4.1.1).

In theory, each *·planar segment may be matched against each anchor seg-

ments of all object graphs in Gobj. In practice however, in order to improve

matching/searching efficiency, only a subset of objects graphs in Gobj are con-

sidered. This subset is determined by function PatternMatch(Gobj, s) which

establishes which anchor segments in each of the object graphs is closest to the

connectivity pattern around s. A variety of segment properties may be used

to determine which object graphs to include in chosenGraphs (line 20 of Algo-

rithm 14). For the example using in the work, the angle between s and connected

segments together with the presence of other segments matching in orientation

the anchor segments of a specific object graph are used.

Whereas anchor connectivity information is used to determine which object

graphs to consider for labelling segment s, coarse resolution voxel grids created

around segment a are used to determine which other scene segments make up

the object and further discriminate between similar objects (e.g. two different

chairs). Whilst the matching of voxel grids is relatively expensive, this additional

data contributes important discriminatory information to the description of each

object. The reward function R (line 22 of Algorithm 14) is implemented as

an incremental grid matching process. It is used to determine which segments

surrounding segment s in the scene best fit within the trained objects’ voxel grid.

Algorithm 16 describes the steps involved in computing the reward score given a

set of segments in Pse and an object graph in chosenGraphs. At each step, a grid

is computed around the segment matching the anchor and enclosing a number of

connected segments. Grid compatibility measures point distribution similarities

around the two matching segments and can be defined in a variety of ways. A

compatibility score between scene and object grids can be as straightforward as

calculating the set intersection between the two grids or else make use of some

additional heuristics. Non-uniform scaling and rotations around the normal of

s are performed until all points in the segments being tested are included. If

the score decreases when adding a new connected segment, this is removed and

other segments are added according to the structure graph of the target scene.

Finally, when the best scene voxel grid is chosen, additional *·complex segments

from the connectivity graph connected to those in Pse are selected and any which

fall within the OBB of the scene voxel grid are tested to check whether they

consolidate the match. If the distance between two mappings is small (user-set

parameter), a tie-breaker function is used to select the object mapping which
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Figure 7.16: Top row shows 2D grid computed around the anchor segment of an object
graph consisting of five segments. This object representation is compared to segments
in a structure graph, in this case matching s is with the object anchor by iteratively
computing grids around s and computing the distance between the two grids. Even
a very small difference (two grids of last row), makes a considerable difference when
computing the distance between the grids as a set intersection of occupied cells.

according to some heuristic has the highest probability of occurring, e.g. always

prefer upright pose. The tie-breaker may not be used if multiple solutions are

allowed, in which case the different mappings are attached as separate leaf nodes

to L. CoFFrS allows for and can take advantage of any additional constraints
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available, for instance scene specific knowledge, to improve results.

Figure 7.16 demonstrates an example of a grid matching sequence. For illus-

tration purposes a simpler 2D grid is used in order to better highlight a number

of characteristics of this process. In the case of 3D grids, additional work is car-

ried out to compute grids at small angle increments around the surface normal

of segment s. The reward function R generates all these grids, centred as s in

the target scene graph matching the coordinates in the trained voxel grid of the

object graph. For each set of segments currently being tested Ptest and angle θ,

distances u and o are increased until all the points from segments in Ptest are

included and cell sizes computed accordingly (in this case (u+o) / 10). A grid

scoring function is then used to determine the similarity between grids. In order

to decrease computation time, when computing the grids around s, each segment

in Pse is sub-sampled using a Poisson-Disc sampling approach (§2.6.1). Each of

these points is then used to populate the sparse voxel grid constructed around

segment s. The scoring function used in this example, and in the evaluation,

makes use of the grid cell intersection set defined as follows:

cellscmn = {cs : gs|cs ∈ ganch · cs},

where grids ganch and gs represent the object graph and structure graphs grids

respectively, and cs represents the spatial index along the three dimensions of

a cell. Segments in Ptest may or may not be contained within a subset of cells

in cellscmn. Using matching subsets, corresponding segments in the trained ob-

ject graph are extracted in order to compare the OBB point coverage scores for

matching segments. These values are factored into the grid intersection score in

order to discriminate between pairwise matches as illustrated in Figure 7.17. If no

pairwise segment match is determined for a particular segment in Ptest, the point

coverage for that specific segment in the point cloud is not used. In addition to

point coverage, segment spatial context is also factored in the computation of the

score between grids. Segment spatial context (Figure 7.9) is re-computed for each

segment in Ptest each time this set changes and provides additional confidence in

the grid matching process. The scoring function, given grids ganch, gs, cellscmn

and a list of pairs m of matching segments (sobj, spc) with the first component

chosen from the trained object graph and second from the point cloud structure

graph is as follows:

score(ganch, gs) = |cellscmn| ×
|m|∑
i=1

(
sipc.pointCoverage

siobj.pointCoverage
× spatialContextSc

)
,
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where spatialContextSc is set to 1 if segments sipc and siobj are the same and set

to 0.8 if either of the two segments is central and the other boundary. If any

one of the segments is set to boundarycentral, this value is set to 0.9. When all

grid comparisons are done, the reward function R returns the segments Ptest and

matching object graph label with the highest grid matching score. This score

is used as the reward score and assigned to the new state node attached to the

solution lattice (line 31 Algorithm 14). The new node is only attached to leave

nodes which are compatible with the path leading to that node. A leaf node is

compatible if the segments used in Ptest are not already labelled anywhere else in

the path from the leaf node to the root of the solution tree. In cases where only

one leaf node is allowed, compatibility can be guaranteed during the computation

of the reward function R by only including segments in the transition tree of s

which have not already been labelled (line 3 in Algorithm 16).
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Figure 7.17: Top row shows two anchor segments possibly from the same object graph
which are matched with segment s in the point cloud structure graph. Saliency values
favour the anchor most similar to s on the assumption that both anchor segments are
enclosed by similar OBB.

The reward function R (Algorithm 16), returns a list of 6-tuple elements

containing information about the best grid matching scores for segment s and

object graph gobj. The assignment of Ptest is carried out using the transition

tree computed at s by iteratively adding segments from the tree which maximise

the score of the grid matching function. Figure 7.18 illustrates an example of
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Algorithm 16 Computation of reward score for function R(s, gobj)

1: Input: Object graph gobj, structure graph G of input point cloud, segment
s to match with object graphs in a, list scoresobj of values (scr, gobj, segs, θ,
scale) where gobj ∈ Gobj and segs ⊆ Pse, θ and scale store the rotation and
scale parameters for the score, rotation increments rot, empty list of segments
Pse, maximum depth l for transition tree tts at s.

2: θ = 360 / rot
3: tts = CreateTransitionTreeAt(s,l)
4: for all gobj ∈ a do
5: chosenAnchors = PatternMatch(gobj, s)
6: for all anchor ∈ chosenAnchors do
7: for i=0 to rot do
8: Pse ←add s
9: scorebest = 0;

10: rotbest = 0;
11: segsbest = ∅
12: while MoreSegsToConsider do
13: gs = CreateGrid(s, anchor, θ*i, Pse)
14: scorecrt = Score(gobj, gs)
15: if scorecrt ≥ scorebest then
16: scorebest = scorecrt
17: rotbest = rot
18: segsbest = Pse

19: anchorbest = anchor
20: else
21: Pse ←remove n
22: end if
23: n = tts.ChooseNextSegment
24: Pse ←add n
25: end while
26: end for
27: scoresobj ←add (scorebest, gobj, anchorbest, Pse, rotbest, scale)
28: end for
29: end for
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Figure 7.18: Segments in Pse are determined by traversing the transition tree computed
at s. All child nodes are ordered by segment saliency.

a transition tree with sample scores included in each node. At level 0, the grid

containing only segment s has a score of 20. The function ChooseNextSegment

(line 23 in Algorithm 16) implements a breadth first traversal search for the

next segment to consider. If the score obtained is less then the current best

score that path is abandoned and the segment removed from Ptest. Since not all

combinations of segments in the tree are tested, child node order is important.

Segment saliency is used for ordering child nodes with the intention of including

the more important segments earlier. In this example, the next segment at level

1 is n1, followed by n2. In both cases the score improves and therefore both

segments are retained. At level 2, when Ptest is {s, n1, n2, n3}, the score is lower

and therefore segment n3 is removed from the set. Note that segment n6 is also

not considered since this is only reachable from n3. The final composition of Ptest
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is {s, n1, n2, n4, n7, n8, n9, n10}.
Exhaustively comparing every segment in the structure graph of the input

point cloud with all anchors of all object graphs is impractical and would clearly

impact the scalability of CoFFrS when increasing the number of objects graphs.

For this purpose only a subset of object graphs is tested as outlined in line 20

of Algorithm 14. Moreover, the solution tree generation process does not simul-

taneously check multiple segments from the point cloud structure graph against

different object graphs, but rather first sorts them (line 18 of Algorithm 14), and

then chooses the best matching pair (s,gobj) for the next s in the sorted list. An

alternative solution could consider all segments s simultaneously and choose the

best matching pairs, but this clearly would have an impact of the running time

of the process. In general, the segment sorting mechanism used, which is based

on the saliency of segments, gives very good results.

Some objects, for instance a box-like cabinet with closed drawers, may result

in a good labelling of the segments making up the object, but result in a wrong

pose (in this case 90◦ rotations), given that different poses are possible for the

same set of segments. Similarly, the back and seat of a chair where only the

back and the seat surface patches are sampled may be swapped. In the case of

tables, if only the surface is sampled, with no leg segments present, CoFFrS takes

the assumption that the legs are oriented towards the closest boundary segment,

which is always the floor of the room in the examples used.
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7.5 Results

In this section, a prototype implementation of CoFFrS is evaluated on a number

of different scenarios consisting of raw point clouds from previous literature and

a number of newly captured indoor environments. The evaluation of CoFFrS

is qualitative in design and illustrates how the system performs when no scene

specific information is available. In all the examples, the set of object graphs

Gobj contains two chairs, an armchair, two tables, a couch, a cabinet and a plant

pot with a cylindrical base (see Figure 7.19).

A   N   C   H   O   R ROHCNA ROHCNA ROHCNA

ROHCNA

A

N

C

H

O

R

Figure 7.19: Top row shows sub-set of objects trained; middle column shows voxel grid
approximating object shapes around one anchor segment and third row illustrates a
density map of the grid parallel to the anchor.

Three query graphs are defined and used to search for room boundaries, shelv-

ing units and stairs in a scene. The boundaries query graph, shown in Figure 7.20,

is applied to extract boundary segments in all examples. Since, no upward direc-

tion is assumed for scenes, the query graph searches through the entire structure

graph and extracts those segments which have the rest of the segments contained

within one of its two half-planes. Since segments are already labelled as boundary,

central, or centralboundary, this check is only carried out on boundary segments.

Given a segment which is identified as boundary (state s0 in the query graph),

the rest of the structure graph is visited in order to locate other segments which

fit within the same plane parameters. These segments are grouped together as

one of the boundaries (e.g. floor) of the room. The same query graph is applied
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until no more segments in the structure graph are found which satisfy the initial

properties (at node S0) of the query. Note that following the first iteration of the

query, re-application of the query still considers the previously labelled segments

when checking for segments falling on either of the two half-planes.

S0
N0 = S0.surfaceNormal

Root = S0 

Add S0 to Boundary Set

S0.spatialContext == boundary &

Segments only on one half-plane

N = Sn.surfaceNormal

Angle(N0 , N) < 10
º 

&  Sn.spatialContext == boundary & InPlane(Root, Sn)

S

{Sn}

N = Sn.surfaceNormal

Sn.spatialContext != boundary | Angle(N0 , N) > 10
º
 | NotInPlane(Root, Sn)

Add S to Boundary Set

*
*

*

Figure 7.20: The boundary query graph is used to establish the boundary surfaces of a
room, which could consists of multiple planar disconnected patches. Node S above is
used to add to the list those segments which are compliant with the properties of the
root node S0.

The second query graph is used to determine whether shelving units are lo-

cated in a scene. The shelving query graph, shown in Figure 7.21, is applied

to each ∗·planar segment in the structure graph and determines whether for a

particular segment, the root at S0, there exist other parallel segments which are

located within an extended OBB computed around it. The extended OBB, takes

the OBB of the root and extends it marginally along the first and second eigen-

vectors, and considerably to include the whole scene, along the third (smallest

variance) eigenvector. Some additional notation to query graphs is introduced in

these definitions, namely the ∗ symbol on transitions, to denote that all transi-

tions in the structure graph connected to the source node are followed, resulting

in query graph nodes containing a set of segments rather than just one. This

is denoted by the symbols { and } in the node. An iterator on these nodes

then evaluates outgoing transitions on each of these segments. A shelving unit

is established when a minimum number of parallel segments is found (transition

between S and SF ). In this case all the segments contained in the extended OBB
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of the root are included in the shelving set and labelled as one unit. Note that

the sides and anything located on the shelves is included.

S0

N0 = S0.surfaceNormal

Root = S0 

Add S0 to Shelving Set

Generate ExtendedOBB for Root S0

ShelveCount = 1

N = S1.surfaceNormal

Angle(N0 , N) < 10
º 

&  Intersection(ExtendedOBB, Sn)

S

{Sn}

N = Sn.surfaceNormal

 Angle(N0 , N) > 10
º
 | NoIntersection(ExtendedOBB, Sn)

Add S to Shelving Set

ShelveCount+=1

*
*

*

SF

ShelveCount > MinRequired

Shelving Established 

Add to Shelving Set all 

segments in 

ExtendedOBB

Figure 7.21: This shelving query graph is used to establish shelving units in a room,
which could consists of multiple planar disconnected patches over each other.

A third query graph is used to establish whether a stairs structure is present in

a scene. This query is more complex than the shelving query in that the pattern

required is harder to search for. The stairs query graph, shown in Figure 7.22,

is applied to each *·planar segment of the scene structure graph and determines

whether for that particular segments there exist other parallel segments adjacent

and slightly above or below to its OBB. The direction for the above and below

values is set to the third eigenvector (lowest variance) of the segment and the

distance is set to 20% of the total scene OBB along the same direction. If at

least one adjacent segment is found (transition between S and SF ), this is used

to update the extended OBB which is used to determine adjacent segments. If

no additional adjacent segments are found (transition between S and SE), the

query checks if the total number of stair steps is greater than a minimum required

which is user specified and accordingly labels the segments as a stairs structure.

The minimum number of steps is set to 3 segments.

The three query graphs are always applied in the same order; namely stairs,

shelving and finally boundaries. Whereas the first two queries might not label

any of the segments, the boundaries query graph always returns a set of segments

representing boundaries, even if these are not present in the scene (e.g. 7.33)
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S0

N0 = S0.surfaceNormal

Root = S0 

Add S0 Stairs Set

Generate ExtendedOBB for Root S0

StairsCount = 1

StairsTotal = 1

N = S1.surfaceNormal

Angle(N0 , N) < 10
º 

&  Adjacent(ExtendedOBB, Sn)

S

{Sn}

N = Sn.surfaceNormal

 Angle(N0 , N) > 10
º
 | NotAdjacent(ExtendedOBB, Sn)

Add S to Stairs Set

StairsCount += 1

StairsTotal += 1

*
*

*

SE

StairsCount > 1 & 

AllSegmentsVisited

Stairs Established 

Add to Stairs Set all 

segments in individual 

strairs OBB

StairsTotal > MinRequiredSF

StairsCount == 0 & 

AllSegmentsVisited

Update ExtendedOBB

StairsCount = 0

Figure 7.22: This stairs query graph is used to determine the presence of a stairs
pattern in the point cloud.

Figure 7.23: Point clouds of indoor scenes used by Nan et al. (2012)

7.5.1 Indoor Scenes from Nan et al. (2012)

In what follows, Algorithm 14 is applied on point clouds from Nan et al. (2012)

and the resulting solutions are discussed. Figure 7.23 illustrates the variety in

quality of these points clouds, with many of the objects partially occluded. Shelv-

ing and stairs structures are not detected in any of these examples. On the

contrary boundaries are always extracted and are generally correct.
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The first scene represents 5 chairs in different poses and as opposed to the

method presented by Nan et al. (2012), CoFFrS can easily detect similar objects

in a different pose to the one used for training. Figure 7.24 shows the models

matched with the raw point cloud with additional details about the segmentation

process illustrated in Figure 7.11.

Figure 7.24: All chairs are correctly matched to the chair object graph. The floor
segment is first extracted using the boundaries query graph.

The second scene consists of a number of couches, next to each other, a table

and surrounding floor and walls. Figure 7.25 illustrates the matching order for

this scene following the extraction of the boundary segments. Couches are all

correctly matched expect for one, segment three, since the segmentation process

groups together the back of two couches into one as illustrated in Figure 7.27

(bottom left). In this case, the grid matching process elongates the couch. Seg-

ment 8 shows an instance where the planar segment perfectly matches the second

anchor segment of a table in both spatial context and point coverage and is thus

correctly detected when matching the grids. Note however, that the size of the

table is not correctly determined since there are only a few small segments from

the top of the table.

The third scene consists of a desk, office chair and a number of cabinets.

Figure 7.26 illustrates matches between the office chair, a table and three filing

cabinets. In the case of the cabinets, a third cabinet (the largest) is erroneously

matched to part of the wall which, due to their position, are not picked up by
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Figure 7.25: Planar segments after applying boundary query graph, numbers indi-
cate segment order used for fitting seven couches, one box (segment 1) and one table
(segment 8).

the boundary query graph. The office chair is correctly identified and obtains a

higher score when grid matching because of the segments representing the arm

rests as can be seen in Figure 7.27 (top left).

1

2

Figure 7.26: A segment forming part of the monitor is incorrectly labelled as boundary,
and two segments (1 and 2) are incorrectly labelled as a cabinet. Chair, two cabinets
and table are labelled correctly. Table is automatically oriented towards the floor.

The fourth scene consists of 5 couches, a table and room boundaries. The

table is easily matched with the table object graph. Note that in this case, the

visualised table model is automatically scaled to reflect the height of the table

in the point cloud. Segments are matched in the order shown, even though in

this example a different order would have resulted in the same solution. The

computed voxel grid surrounding segment 2, is visualised from the side of the
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Figure 7.27: Left: Model mesh and point cloud segments super imposed showing arm
rests in point cloud matching to arm rests in trained office chair improving grid match
score. Middle: Over segmentation groups together the backs of two couches. Right:
Segments representing the handles on the drawers of the cabinet could be used to orient
model correctly.

couch to highlight the intersection between the voxel grids of the trained model

and segments in the point cloud.
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3

4

5

6

Figure 7.28: After extracting boundary segments, remaining segments are ordered and
matched against object graphs. On the right hand side, the matching grid is seen
overlaid on the model and segments.
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1627 edge segments87 surface segments1714 segments

Figure 7.29: Scene 5 is partitioned into 1714 segments, 87 of which are surface segments and 1627 are edge segments. Close-ups on the
floor show how many pockets of edge segments are found on the floor which probably consists of a carpet given the amount of noise.
Part of the wall also contains considerable noise which is grouped together in one edge·planar segment.
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The fifth scene consists of a table with rounded table-top and central stand,

an armchair and two highly occluded chairs. The point cloud is partitioned into

1714 segments, 87 of which are surface segments and 1627 are edge segments.

Figure 7.29 illustrates close-ups on the floor which show how many pockets of

edge segments are located on the floor, which probably consists of a carpet given

the amount of noise. Part of the wall also contains considerable noise which is

grouped together in one edge·planar segment. Since both tables in Gobj have four

legs at the corners of a rectangular table, an new object graph representing this

particular table is synthesised and added to the set. Figure 7.30 illustrates the

point cloud used to train the object graph representing a round table-top table

together with the three anchor segments and the voxel grid computed around the

first anchor segment.

1

2

3

Figure 7.30: Point cloud of trained round table-top table; left hand side showing seg-
ments, middle showing the three automatically chosen anchor segments, and right hand
side showing the grid computed around the first anchor segment.

1

2

3

4

Figure 7.31: Round table object descriptor is included in the search and correctly
matched to the scene. Note correct matching of armchair and incorrect matching of
table to chair which lacks samples from the back.

Figure 7.31 shows the segment object mappings produced by the scene un-

derstanding process. The chair (segment 4) on the right hand side of the scene in

incorrectly labelled as a small table, similar to a stool, since the point cloud does

not include samples from the back of the chair. In this case the table obtained

the highest grid matching score amongst the object graphs. The armchair object



7. Structure Graphs for Indoor Scene Understanding 209

graph scores slightly higher than the chair object graph for segment 3 and is

matched to surrounding segments including the arms of the chair.

The sixth scene consists of a number of couches around a coffee table. This

scene highlights a problem resulting from the heuristic used for the boundaries

query graph, which in this case labels the backs of two couches as boundaries,

given that there is nothing behind them (segments 6 and 7 in Figure 7.32). This

leads to the incorrect labelling of segments surrounding them which make up the

rest of the couches. Moreover, the seats of these two couches are not densely

sampled and therefore cannot match anchors in the relevant object graphs. The

best scoring match for these segments ended up being the cabinet. In the future

work section, a solution to minimise these situations and in this specific case

avoid it is described. The remaining couches and coffee table, rendered with

matching voxel grids in Figure 7.32, are easily matched.

Figure 7.32: After extracting boundary segments, remaining segments are ordered
and matched against object graphs. On the right hand side, the matching grid is seen
overlaid on the model and segments. Note problem resulting from incorrectly including
back seats to boundary.

Figure 7.33 illustrates a scene with two chairs and two tables. The low table

includes two drawers whereas the larger table is not sufficiently sampled, probably

because of its material. Since Gobj only contains generic objects, the low table

is erroneously matched with the cabinet, with a higher score obtained during

the matching process. Note that the table segment (2) which is matched against

anchor segments in Gobj consists of the side, including the two drawers, on the

table. After the cabinet, the second best option is a table tilted on one side.

Both chairs are correctly matched to the generic chair.



7. Structure Graphs for Indoor Scene Understanding 210

1

2

3

Surface Segments

Edge Segments

Boundary Segments

Saliency-Ordered Segments

Figure 7.33: Scene consisting of two chairs and a low table with drawers in the central
part. Whereas for both chairs sufficient segments are present to establish a correct
match, the table is fitted to a cabinet which is appropriately scaled to fit the size of
the table.

7.5.2 Additional Indoor Scenes

A number of additional scenes of indoor environments, scanned using both the

Asus Xtion and Structure Sensor scanners, are used to evaluate CoFFrS on

more complex scenarios which include stairs and shelving. Moreover, the newly

scanned point clouds include couches which are longer along the horizontal axis

to the one which is trained, include plants in pots and chairs not in an upright

pose. As opposed to Nan et al. (2012) the point density of the data sets is much

lower.

Figure 7.34: A low density point cloud scanned using the Asus Xtion sensor. The
couch object graph is scaled to fit the two couches. Table and chair are easily fitted
as enough samples are available for both, as well as the pot which has one of its sides
closely sampled.

The first scene consists of two couches, a coffee table, a chair and a plant pot

in a room. Figure 7.34 illustrates the low density raw point cloud and mappings
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produced. The one-seat coach in Gobj is scaled during the grid fitting process

to fit the segments making up the two two-seat couches in the scene. The plant

pot model fits well with the segments in the structure graph representing the

cylindrical sides of the pot. The segments resulting from the execution of the

boundaries query graph are shown with the fitted models in Figure 7.34.

Region Growing

RanSaC Plane Fitting

1

2

3

4

5

Boundaries + Anchors

Raw Point Cloud

Models + Boundary Segments

Figure 7.35: The region growing process generates a segment representing the coach,
which RanSaC plane fitting breaks into planar segments adequate for CoFFrS to match
with anchors in Gobj .

Figure 7.35 illustrates a scene consisting of a couch, three chairs and a plant.

The region growing process of PaRSe produces the segments shown in the top-

right image. One of these surface segments represents the entire couch, which is

then partitioned into planar segments during the RanSaC plane fitting process.

One of these surface·planar segments (1) is the seat of the couch which is used

to match the couch object graph.

The third example consists of an office scene including shelving cabinets and

chairs in a variety of poses and locations. Figure 7.36 illustrates the various steps

carried out by CoFFrS with the top-right image showing the raw point cloud,

and arrows pointing to two images showing edge (under) and surface (right)

segments. Query graphs to determine boundaries and identify shelving units

correctly determine the segments making up the boundaries and the shelving
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cabinet. The middle row right image illustrates five segments along a specific

direction (shelves surface normal) which are established by the shelving query

graph. The rest of the segments are ordered according to their saliency values

staring from the table top (1), and finishing with the seat of the toppled chair (6).

Figure 7.37 shown a photograph of the shelving cabinet which is cluttered with

objects and files, but which still has parts of the shelves visible. Points acquired

from these parts are sufficient for PaRSe to generate multiple surface·planar

segments, and subsequently for CoFFrS to consider this set of segments as a

shelving unit.

A fourth example, consisting of a very noisy point cloud with tilted chairs is

shown in Figure 7.38. It illustrates the steps carried out by CoFFrS, in determin-

ing the objects in the room and also highlights some ambiguity problems which

can result in the process. Whereas two of the chairs are correctly fitted, the one

at the corner is mapped to the couch object graph. This happens because the

two segments representing the legs of the chair (bottom right corner) are not well

aligned with the legs of the chair used in Gobj and therefore do not contribute

to improve the chair fitting score. A fourth chair (segment 5) is also fitted to

a table model since no scale information is used. The table is correctly fitted,

however the orientation is not exactly the same as in reality, since only parts of

the table-top are sampled.

Figure 7.39 illustrates a scene consisting of multiple shelving units in addition

to some chairs and a table. As shown in the figure (top right), four separate sets

of segments are returned by the query. The minimum number of shelves required

to describe a unit is set to four. All segments within the extended OBBs of these

segment groups are included in each shelving unit group resulting in one large

unit due to their adjacent positions. After extracting the segments related to

shelving, boundary segments are removed and the rest of the planar segments

are ordered with respect to saliency.

Figure 7.40 illustrates a scene consisting of a flight of stairs. 127 planar seg-

ments are extracted from the 31K point cloud, 11 of which represent steps which

are identified by the stairs query graph. The middle row illustrates a segment

extracted by the region growing process, which is then further partitioned into

12 planar segments. Three of these in addition to another 4 (bottom row) form

up a pattern which is identified by the stairs query graph. Another set of steps

is extracted separately, since the query only checks for adjacent planar segments

along one direction. Moreover, in this case the two sets are separated by a region
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on the stairs which is not sampled. Whereas the chair standing on the stairs

is correctly identified, the rails and additional segments along the stairs are ex-

cluded from the matching process with object graphs. This is done by the stairs

query graph with generates a bounding volume along the boundaries of the steps

which excludes any segments which fall within. This heuristic is used to identify

walls and rails which are typically found close to stairs.
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Figure 7.36: An office with chairs in a variety of poses and distances from the floor,
a table, a cabinet and a cluttered shelving unit. Boundary and shelving query graphs
first extract boundary and shelving unit segments. The rest of the segments are sorted
(as indicated by numbers) by saliency and models fitted using anchor segments and
grid matching.
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Figure 7.37: Shelving cabinet cluttered with files, boxes and books. A shelving query
graph first identified parallel segments with overlapping OBBs, then adds segments
falling within the OBB of these segments.
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planar segments
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Figure 7.38: Chairs and tables in an office; two chairs are correctly recognised whereas
a third tilted chair in the corner is recognised as a couch and a fourth as a table. In
the latter case there is only one leg and no back info. In the former there is insufficient
leg information and the back and seat of the chair are at a wider angle, which is closer
to the trained couch.
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Figure 7.39: The shelving query graph returns four sets of segments each representing a
shelving cabinet. In addition, a table and three chairs are correctly identified together
with boundary segments.

31K Points 18K Surface and 14K edge points 127 planar segments

1 region-grown segment 12 RanSac Fitted Planes 3 of these are stair steps 

7 segments in 

stairs query graph

4 segments in 

stairs query graph

OBBs of stairs returned by 

stairs query graph

Figure 7.40: CoFFrS is applied on a low quality point cloud represetning a scene with
a flight of stairs in order to evaluate the stairs query graph. Two sets of steps are
returned by the query, with directions orthogonal to each other. Note how (middle
row) given the quality of the point cloud, region growing produces segments which
included multiple steps, which RanSaC plane fitting further segments to produce the
required planar segment primitives. The third row shows the two sets of segments and
the OBB of each step.
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7.6 Discussion

CoFFrS proposes a scene understanding approach which does not depend on prior

scene-specific information. Clearly, in order to populate the set Gobj of object

graphs, the system needs to know, generically, which objects can be found in

the scene and then use adequate 3D models to synthesize generic graph-based

descriptors building on the set partitions output by PaRSe. In the case studies

used, typical office furniture including chairs, tables and couches is used (Fig-

ure 7.19). Contrary to other indoor scene understanding approaches (Nan et al.,

2012; Kim et al., 2012; Mattausch et al., 2014), CoFFrS does not require scene

parameters such as scale, upward direction and floor location. This is possible

via a search mechanism which matches anchor segments in previously trained ob-

ject graphs to saliency-ordered planar segments in the structure graph of a scene.

Whereas in many cases CoFFrS demonstrates that it is possible to interpret a

scene without prior scene parameters, severe occlusion and noise may pose a limi-

tation. In general, at least one matching anchor segment is required to be mostly

visible, even if with holes, in addition to some supporting segments around it

to correctly establish a mapping between segments in the scene structure graph

and anchors in Gobj. For instance, Figure 7.41 shows a scene where two chairs

have only their back visible. Whereas PaRSe does a good job at clustering these

points as separate segments, currently, these segments are not properly matched

since there are no other connected segments which match to the chair object

graph. The PatternMatch function (Algorithm 14, line 20), which selects the

subset of Gobj to be checked, can be modified to include information about the

segment pose of backs of chairs, then just one planar segment in the scene could

be enough for correct identification.

CoFFrS includes the possibility of searching for specific patterns in a scene

prior to object matching, akin to using an unsupervised approach. These pat-

terns are encoded as query graphs, introduced in PaRSe and further extended

in CoFFrS, which are applied to extract boundaries, shelves and stairs. In all

cases, instances of these structures will vary across scenes and are therefore dif-

ficult to encode in a scene descriptor such as the one used by Nan et al. (2012).

Once more, the lack of prior scene parameters, limits the robustness of these

methods. For instance, if four chairs are perfectly aligned one after the other,

the backs of the chairs would form the pattern required to establish a shelving

unit. Similarly, chairs can be arranged in such a manner to resemble a flight of
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2

1

Figure 7.41: Segments 1 and 2 lack the support of other chair components which are
required to identify both chairs, given that no prior pose assumptions about the objects
in Gobj are made. Could easily be interpreted as one or two tables. A third chair in
the scene is shown with mesh and grid superimposed on the segment points. Similarly,
the segments in the scene on the right do not have sufficient supporting structure to
correctly map segments to objects.

stairs. If prior information about the possible world scenarios is utilised during

the application of these queries, then these exceptions can quickly be discounted.

Nevertheless, since heuristics are used to describe these structures, certain am-

biguities, although minimal, can always occur. If scene parameters are available

or can be established during the acquisition or searching process, CoFFrS can

take advantage of these constraints to prune the search space and improve the

interpretation of the scene. For instance, a future implementation may look into

using location-based RFID tags to guide the selection of object graphs returned

by the PatternMatch function. For this to be possible, the acquisition phase

needs to gather this information and include it with the input to CoFFrS. Ad-

ditionally, if at any point of the scene understanding process, a specific object

is identified (e.g. a table), the segments close to that object could be searched

for within that context by using techniques similar to those proposed by Fisher

et al. (2011). Moreover, previously established relationships between objects can

be used in cases of extensive occlusion and noise.

Whereas the boundaries query graph used in the examples is generally suf-

ficient to determine the walls and floor, it makes the assumption that these are

represented by segments lying near the boundaries of the scene. Evidently, this

is not always the case, for instance with multiple-room environments and scenes

with no walls such the one shown in Figure 7.26. Since, there can be no guar-

anteed as to how much of the scene including the walls is sampled or occluded,

further research in the use of more advanced heuristics is necessary in order to

develop query graphs which more robustly identify these important structures.
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Similarly, both the shelving and stairs query graphs use a user-set parameter

which determines the minimum number of repetitions (shelves or steps) required

to determine the presence of the structure. The value of four is used in the exam-

ples presented, however with shelving units or flights of stairs having less shelves

and steps, the query graph would not have been able to detect the structures.

The current implementation of structure graph searches is very inefficient in

that each query is iteratively applied (Algorithm14, lines 7-16) to each segment

in the scene structure graph. Further work is required in order to provide a

mechanism which merges the query graphs into one, which is then used to map

segments to structures in a single iteration. A histogram based on segment

properties such as size and orientation, similar to Mattausch et al. (2014), may

also be helpful in accelerating the application of these query graphs by avoiding

full traversals of the scene structure graph.

Voxel grids in object graph descriptors are used to coarsely describe the shape

of an object around three automatically established anchor segments. Whereas

this representation has achieved good results, object graphs can be further en-

hanced to improve both descriptive power and matching performance. In the

examples used, Gobj consists of a small number of objects given that the generic

descriptor is designed to fit similar objects (e.g. different chairs in Figure 7.41).

However, if the number of object graphs increases substantially matching perfor-

mance would become a primary concern. Whereas, run-time context may play

an important role, object graphs may also contribute towards improving match-

ing performance by embellishing them with the capability of describing a class

of objects rather than a single object. Splitting the current uniform voxel grid

in two, each representing the half-plane above and below the anchor segment,

would probably be required in order to increase the compatibility of an object

graph with a larger number of objects.

Not all objects can be reasonably encoded using one type of object descrip-

tor. In particular, object graphs used by CoFFrS are not appropriate for complex

objects which do not exhibit dominant planar patches. Similarly, other scene un-

derstanding techniques have not considered the inclusion of multiple descriptors

during the searching process. The segmentation results returned by PaRSe, po-

sition CoFFrS as a good basis for the inclusion and testing of this possibility.
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7.7 Summary

This chapter has presented CoFFrS, which extends PaRSe to provide a frame-

work for context-free scene understanding. Context is not used in the training

of object and structure descriptors, despite its importance in pruning solution

search spaces. This novel approach has been demonstrated on point clouds,

some taken from literature, some newly acquired. It is acknowledged that the

lack of scene-specific parameters may limit the recognition efficiency of CoFFrS

in the case of low quality point clouds. Nevertheless, CoFFrS pushes forward

the boundaries of current solutions in its successful application to previously un-

solved scenes. Specifically, given enough samples, objects in different poses are

correctly matched and structures such as shelving, boundaries and stairs, which

vary between scenes, are naturally included in the interpretation pipeline. This

chapter has utilised PaRSe in establishing a novel scene understanding framework

on which further research can be based.



CHAPTER 8

Conclusions and Future Work

The processing of point cloud data has become an increasingly important field of

computer graphics. In part, this is due to the development of novel acquisition

methods, which in recent years improved both in sampling rates and precision.

Nevertheless, segmentation methods which help to manage the ever increasing

complexity of acquired data sets has advanced at a slower pace, with the focus

being mostly on producing ad hoc solutions using context-specific information.

This is the case in many areas where a segmentation process is required, including

indoor scene understanding. This work presents a different approach to the status

quo: a general-purpose segmentation method and a context-free indoor scene

understanding framework are proposed, which take as input raw point clouds

and make no prior assumptions on the input data sets. This approach widens

the applicability of point cloud data and benefits the fields and applications

wherein they are employed.

8.1 Contributions

The overall contribution of this thesis is a step forward in widening the applica-

bility of point cloud data via the design of context-free point cloud processing

algorithms. PaRSe contributes a segmentation pipeline to facilitate the process-

ing of raw point clouds. As was demonstrated, the general purpose segmentation

process proposed in this work can be successfully applied to a wide variety of

tasks to produce segments which are meaningful within their field of applica-

tion. This is especially true in the field of scene understanding from point clouds,

where PaRSe has contributed towards the creation of an alternative approach to

indoor scene understanding, which had predominantly depended on context and

221
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prior scene information. In this regard, CoFFrS contributes a context-free scene

understanding framework for point clouds representing indoor scenes. PaRSe is

also extended to cope with massive point clouds which do not entirely fit in main

memory via a novel out-of-core method which accelerates k-NN computations

utilised by a variety of point cloud post-processing algorithms. Chapters 3 and

4 contribute literature reviews on segmentation and indoor scene understand-

ing techniques from point clouds. This work is intended to open the door to

further investigation into alternative general purpose segmentation and context-

free scene understanding algorithms, as well as improvements on those presented

herein.

8.1.1 Plane-fitting and region-growing Segmentation (PaRSe)

In Chapter 5, a general purpose point cloud segmentation method has been in-

troduced which outputs a structure graph with nodes representing segment prim-

itives. The transition relation of the output structure graph describes adjacency

between these segments and is incrementally built during the segmentation pro-

cess. In order to increase its applicability, rather than choosing between a region-

growing or a shape fitting process, PaRSe, proposes a segmentation pipeline com-

bining point labelling, region-growing and shape fitting. When applied to raw

point clouds, especially if considerable sample noise is present, region-growing

processes tend to suffer from over-segmentation problems since neither local cur-

vature nor surface normals can be computed reliably. PaRSe uses an initial

binary labelling of points, based on local surface smoothness, to drive the region-

growing process and is, therefore, less susceptible to noise. Plane fitting using

the RanSaC paradigm is then applied on the resulting regions. In order to pro-

vide for a context-free segmentation process, only plane fitting is carried out. To

bolster automated reasoning about the input point cloud, a query mechanism is

proposed which searches for sub-graphs by matching patterns defined as a query

graph. Results were demonstrated on a variety of point clouds showing how the

resulting segments correspond to meaningful parts in the input. Query graphs

were used to extract columns, temple apses and trees in different case studies. A

LiDaR acquired point cloud of the Maltese archipelago is partitioned into seg-

ments representing streets, house roofs and agricultural fields. In all cases, no

prior context specific information about the input point clouds is used.
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List of Contributions

• The design of a general purpose segmentation pipeline applicable to a wide

variety of tasks in different fields.

• A proof of concept implementation of a point cloud query mechanism which

can be tailored to automate different post-processing tasks.

• PaRSe was demonstrated on a variety of raw point clouds, showing how the

resulting segment primitives correspond to meaningful parts of the input.

8.1.2 Fast Scalable Out-of-Core k-NN Searches

In Chapter 6, a novel out-of-core k-NN search method is presented. Many point

cloud post-processing algorithms rely on the computation of point neighbour-

hoods which can take a considerable amount of time depending on the size of

the point clouds and value of k. In order to avoid overheads related to disk

I/O, out-of-core techniques are required when the point cloud does not entirely

fit in device memory. To counter these situations, the implementation of PaRSe

incorporates a novel external memory algorithm which uses a hybrid of spatial

subdivision techniques for out-of-core fast k-NN searches. The hybrid approach

exploits the spatial locality of point clusters in the data and loads them in sys-

tem memory on demand by taking advantage of paged virtual memory in modern

operating systems. Results demonstrate that processor utilisation is maximised

while keeping I/O overheads to a minimum. The method is evaluated on point

cloud sizes ranging from 50 thousand to 333 million points on machines with

1Gb, 2Gb, 4Gb and 8Gb of system memory. On a 1Gb machine, 100 thousand

neighbourhoods/s are computed on a point cloud consisting of 166 million points.

List of Contributions

• An fast scalable out-of-core k-NN method suitable for devices with limited

amounts of system memory.

• A comparison with standard CPU based in-memory k-NN methods.
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8.1.3 Context-Free Framework for Scene Understanding (CoFFrS)

CoFFrS, introduced in Chapter 7, is a novel scene understanding framework

suited for indoor scenes which does not require prior scene-specific information

during the identification process. CoFFrS uses structure and query graphs intro-

duced in PaRSe to search for patterns in an input point cloud and adds object

graphs to encode segment compositions of specific objects. These object descrip-

tors are independent of object pose and do not assume a fixed upright position

as is the case with many indoor scene understanding methods. Following a train-

ing process which encodes object graphs for a small set of generic indoor office

objects, a search process first applies query graphs to identify varying structures

such as room boundaries, shelving and stairs. This is then followed by a search

for scene segments matching anchor segments in the object graphs. Connectiv-

ity patterns between segments are used to prune the matching process, with the

planar segments produced by PaRSe critical to the success of CoFFrS. Results

show that CoFFrS is a viable alternative to indoor scene understanding methods

which are based on prior scene information and provides a firm foundation for

context-free methods in this field. CoFFrS has been evaluated on scenes used in

previous literature, and on new ones to demonstrate the benefits of combining

a process which searches for specific segment patterns and a supervised process

which searches for previously trained objects in low quality point clouds. CoFFrS

addresses indoor scene understanding scenarios which were previously unsolved.

List of Contributions

• A novel pose invariant object descriptor, the object graph, based on the

segmentation results of PaRSe.

• A context-free scene understanding framework based on a supervised pro-

cess in order to correctly interpret scenes consisting of varying structures

(e.g. shelves) and previously trained objects (e.g. chairs).

• An implementation of CoFFrS which is used to evaluate the validity of the

approach on a variety of point clouds.
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8.2 Synopsis

An ideal segmentation process partitions a raw point cloud into subsets of points

each representing meaningful entities for a particular task. In many instances, for

example Tarsha-Kurdi et al. (2007), Moosmann et al. (2009) and Golovinskiy &

Funkhouser (2009) prior knowledge of a scene is utilised in order for the segmenta-

tion process to obtain good results. These requirements considerably decrease the

adaptability of these algorithms to address problems in different settings other

than the ones for which they are designed. PaRSe takes a different approach

by only assuming the availability of position information. More general purpose

region-growing methods make use of local point properties including surface nor-

mal and curvature, to expand regions from seeds which conform with user-set

boundary criteria. The set partitions produced with these methods, however, are

not amenable to further processing in cases where more complex objects are built

from the composition of these segments. Vosselman et al. (2004) and Pu et al.

(2006) address this problem by growing segments which adhere to plane prim-

itives extracted from seed points, resulting in point cloud set partitions whose

elements represent points falling on (or near) each plane. The application of this

method on generic point clouds, which might not include large smooth planar

surfaces is not ideal. PaRSe addresses this problem by including a plane fitting

process over regions with the same point type. Point type, surface or edge, is

determined via a local surface smoothness metric computed using the k-NN of

each point, and is primarily used to distinguish between points falling on the

edges of an object, from the rest. This allows for the creation of a hierarchy of

segments which can either represent complex surfaces or else regions which are

decomposed into a set of planar segments. In the former case these segments

typically represent important entities within the input, and in the latter, planar

segments can be used to reason about or search for specific patterns in a scene.

Methods targeting specific scenarios have been proposed which assume the

data can fit a particular shape. For example, Chaperon et al. (2001) extracts

cylinder primitives from point clouds acquired from industrial scenes, and Abuzaina

et al. (2013) and Camurri et al. (2014) fit sphere primitives to point clouds repre-

senting spherical objects like balls and apples using the 3D Hough transform. In

these cases, the applicability of these methods to generic point clouds is limited.

Schnabel et al. (2007) uses RanSaC shape fitting to produce a set partition of

the input point cloud whose elements map to a variety of shape primitives. Seg-
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mentation proceeds by extracting locally close support points and determining

which shape best fits nearby points. Whereas the method does a very good job

of approximating the point cloud by a collection of shapes, it is only evaluated on

high-quality dense point clouds. On the contrary PaRSe is applied on a wide vari-

ety of point clouds from different fields and in many cases produces set partitions

whose planar segments closely match the input point cloud. As opposed to Schn-

abel et al. (2007) rather than applying RanSaC shape fitting over points within

a user-set distance, PaRSe applies plane fitting within the regions produced by

the region-growing process. This creates a two-level hierarchy of segments which

can be tailored to address a wide variety of tasks. PaRSe is an intuitive and ro-

bust general purpose segmentation method which can easily be integrated within

existing point cloud post-processing pipelines. In particular, PaRSe has been ex-

tended to offer out-of-core processing capabilities, thus extending its applicability

to point clouds which do not entirely fit in main memory.

Table 8.1 provides a feature comparison of CoFFrS to related work. The

methods presented by Anguelov et al. (2005), Rušu et al. (2008), Zhao et al.

(2010), Koppula et al. (2011), Adan & Huber (2011), Shao et al. (2012), Anand

et al. (2012) and Song & Xiao (2014) all require range images as their input.

In particular Zhao et al. (2010); Shao et al. (2012) use camera parameters to

determine distances to specific objects and Koppula et al. (2011); Anand et al.

(2012) require colour information from these images to carry out segmentation.

In contrast, CoFFrS does away with these constraints and can be applied on raw

point clouds acquired using SLAM methods (Bailey & Durrant-Whyte, 2006)

and which only contain position information. In a similar fashion to Nan et al.

(2012), a process searches for meaningful objects in a scene by accumulating

surface segments (patches) with a high classification likelihood referred to as

anchors. Identification of scene objects relies on the correct extraction and as-

sociation of these segments with anchor segments in trained object descriptors.

This allows for a pose-invariant matching of objects, since these are now aligned

with the basis of the anchors rather than with a global scene upright position

as required by Nan et al. (2012) and Kim et al. (2012). All indoor scene under-

standing techniques are context-sensitive with the exception of Shao et al. (2012)

which however requires user input in order to properly generate range image

segments representing individual objects. The unsupervised method proposed

by Mattausch et al. (2014) extracts segment patterns in a raw point cloud but

still makes assumptions on distances between the ground and table surfaces. So
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even though unsupervised, their method still depends on important scene specific

information in order to extract interesting patterns. Moreover, their method is

only evaluated on high-quality dense point clouds which contribute towards the

correct extraction of planar segments and do not associate a label to the clusters

of planar segments extracted. CoFFrS integrates a similar approach to the inter-

pretation process of a scene by augmenting the supervised approach using object

graphs with searches for specific patterns in a scene using PaRSe query graphs

in order to determine the presence of structures like shelving which vary between

different scene but still adhere to a specific pattern. As opposed to Mattausch

et al. (2014), PaRSe has been evaluated on low-quality point clouds acquired

using commodity hardware and demonstrably manages to identify patterns in

scenes such as shelving units and stairs. In particular, CoFFrS is a first attempt

at reasoning about multi-level indoor scenes through the application of query

graphs introduced in PaRSe.

Prior contextual information about a scene can be taken advantage of when

providing a solution for a specific task. This however also restricts the adapt-

ability of a solution to different tasks. In removing context from the design of

segmentation and scene understanding methods from raw point clouds, PaRSe

and CoFFrS propose an approach which widens their applicability to a variety

of fields. In the overall, rather than engineering a solution given a specific set of

input point clouds, both methods have shown how a general purpose approach

can be successfully applied, and compare favourably with other methods which

are limited to a specific context.

8.3 Impact

The work presented in this thesis impacts a number of areas that employ point

cloud processing. PaRSe enhances current point cloud processing pipelines in

fields such as urban planning, architecture and manufacturing by automating the

extraction of specific parts of a scene. A variety of user-friendly GUI tools may

be built, based on PaRSe structure graphs, to facilitate the management of point

clouds representing complex sites. Such tools could include graph operations to

further refine the initial automatic approximation provided by PaRSe and also

allow for the embedding of additional semantics into segment nodes, for instance,

including photographs from parts of the site. CoFFrS would benefit architects and
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Method Approach Labelling Quality Inp. Format Context Obj. Pose Inv. Exp. Range

Rušu et al. (2008) Unsupervised X High Range Maps Sensitive × Coarse
Koppula et al. (2011) Supervised X Low Range Maps Sensitive × Medium
Adan & Huber (2011) Supervised X Low Range Maps Sensitive × Medium
Nan et al. (2012) Supervised X Low Point Cloud Sensitive × Medium
Shao et al. (2012) Supervised/Interactive X Low Range Maps Free X Medium
Anand et al. (2012) Supervised X Low Range Maps Sensitive × Medium
Karpathy et al. (2013) Supervised X High Point Cloud Sensitive × High
Song & Xiao (2014) Supervised X High Range Maps Sensitive × Large
Kim et al. (2012) Supervised X Low Point cloud Sensitive × Medium
Mattausch et al. (2014) Unsupervised × High Point cloud Sensitive X Large
Spina et al. (2014) Supervised/Pattern Search X Low Point Cloud Free X Medium

Table 8.1: Feature comparison of indoor scene understanding systems.
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interior designers by automatically producing CAD models from point clouds of

existing places. Point cloud visualisation is an important activity in many fields,

where PaRSe could be used in rendering algorithms to guide segment specific

tessellation and level-of-detail.

PaRSe and CoFFrS also benefit point cloud acquisition methods by providing

real-time feedback while scanning and directing the acquisition device towards

areas which are not sufficiently sampled. The entertainment industry, amongst

others, has recently started looking at the use of point cloud data in augmented

reality (AR) applications. Immersion into these systems is only possible if the

application is able to determine the objects surrounding the person. CoFFrS

positions itself as a viable solution to accomplish this task. With the advances

seen in both 3D scanners and drones, future site acquisition systems will be look-

ing into methods for integrating these two technologies together. Both PaRSe

and CoFFrS would impact the development of such systems by providing a first

step into context-free mechanisms which would enable reasoning about the ac-

quired data while mapping the environment. Moreover, the out-of-core methods

implemented in PaRSe would be suitable for devices mounted on drones, which

typically have limited amounts of working memory.

8.4 Limitations and Future Work

This section outlines some limitations of the work presented in this thesis together

with possible avenues for future work, which could address these limitations.

A general purpose segmentation algorithm tries to maintain a balance be-

tween over and under-segmentation. Since over-segmentation is generally pre-

ferred to under-segmentation, joining segments is easier than splitting them,

PaRSe currently favours over-segmentation. PaRSe generally suffers from over-

segmentation when the surfaces sampled are very rough, with the creation of

many small surface segments interspersed with edge segments, or vice-versa. This

could be avoided by looking into a mechanism which dynamically adapts the num-

ber of neighbours used during the region-growing phase, and also by factoring

in surface normal in the growing criteria. Alternatively, mechanisms to switch

the type of individual points based on the types of neighbouring points can be

considered. The straddling between over and under-segmentation is governed

by a number of parameters in PaRSe which are currently user specified. Future
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work would investigate the possibility of automatically setting these values, for

instance, by formulating segmentation as an optimisation problem.

Given the context-free nature of CoFFrS, the mechanism for detecting bound-

ary segments (walls, floor and ceiling) of an indoor environment is currently not

very robust. For instance, if a wall does not clearly exist, then segments belong-

ing to other objects might be labelled as boundaries. Further work is required

for the development of a query graph which can encapsulate richer semantics and

therefore can be used to more robustly determine the presence or absence of a

boundary, whilst maintaining the system context-free.

A limitation of CoFFrS is the reliance on the saliency score of planar segments.

If these segments are heavily occluded and cluttered, then the system can easily

fail in selecting them as anchors. Future work would investigate alternatives to

the planar segment sorting mechanism which is currently based on number of

points and coverage, and determine the extent to which this affects the scene

interpretation performance of CoFFrS.

The field of indoor scene understanding from point clouds currently lacks a

proper evaluation framework. Future work would look into establishing such a

framework, which could include algorithms for procedurally generating and sam-

pling, in a physically correct manner, virtual scenes. Such a framework would

create a common base on which different techniques for indoor scene understand-

ing can be compared.

For very large point clouds, structure graphs could easily grow into the thou-

sands of segments. With the visualisation of segments currently adopting a simple

colour per segment approach, this leads to situations where points from adjacent

segments are rendered using the same colour, giving the impression these are

from the same segment. Further research is required to address this visualisa-

tion challenge. Similarly, more work is necessary in order to establish adequate

structure graph presentation layouts which can be easily manipulated by a user.

Point cloud segmentation methods, including PaRSe, are viewed as a post-

processing task carried out after acquisition. However, a variety of benefits may

be obtained if the segmentation and scene understanding processes are interleaved

with scene acquisition. For instance, including the possibility of positioning and

focusing the scanner on areas which, based on some quality criteria, have not

been properly sampled. In future work, the structure graph produced by PaRSe

could be used to determine optimal scanning positions and trajectories. For in-

stance, during an site acquisition session, a user might decide that newly acquired
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points falling within the OBB of specified segments are not added to the point

cloud (e.g. to discard point samples from trees). In the case of CoFFrS, real-time

feedback to the acquisition module, can be used to direct the scanner to surfaces

which could help disambiguate between similar objects. Future work will look

at a GPU based object graph and grid matching implementations, which would

considerably contribute towards the goal of achieving an online scene understand-

ing process. In many cases, scene understanding ambiguity is a result of a poor

quality point cloud, which can be improved if real-time feedback is used to guide

the acquisition stage. Improvements to PaRSe and CoFFrS along this direction

would pave the way to the creation of an automated mobile acquisition system.

8.5 Final Remarks

The many advances in acquisition hardware meant to capture the world around

us in 3D have resulted in the popularisation and wider utility of point cloud

data. The work in this thesis contributes to the body of knowledge pertaining to

point cloud processing by presenting generic and context-free segmentation and

scene understanding methods. PaRSe provides a segmentation method to accel-

erate post-processing tasks which can be applied to a variety of tasks in different

fields. A novel out-of-core method for the computation of the k-NN of a point is

included in PaRSe to cater for very large point clouds when these are processed

on machines with limited main memory. CoFFrS extends the data structures

proposed in PaRSe to coarsely describe indoor scene objects and presents a scene

understanding framework which incorporates searching for patterns representing

varying structures and trained objects descriptors. This thesis has addressed

a number of important research challenges faced in point cloud segmentation

and indoor scene understanding, providing a firm foundation from which future

research can build.
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