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Abstract

Exact results for the probability density function (PDF) and cumulative distribution function (CDF)

of the sum of ratios of products (SRP) and the sum of products (SP) of independent α - µ random

variables (RVs) are derived. They are in the form of one-dimensional integral. They are based on existing

works on the products and ratios of α - µ RVs. Generalized Gamma ratio approximation (GGRA) is

proposed to approximate SRP. Gamma ratio approximation (GRA) is proposed to approximate SRP

and the ratio of sums of products (RSP). Generalized Gamma approximation (GGA) and Gamma

approximation (GA) are presented to approximate SP. The proposed results of the SRP can be used to

calculate the outage probability (OP) for wireless multihop relaying or multiple scattering systems with

interferences. Also, the proposed results of the SP can be used to calculate the OP for these systems

without interferences. Moreover, the proposed approximate result of the RSP can be used to calculate

the OP of signal-to-interference ratio (SIR) in multiple scattering system with interference.
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I. INTRODUCTION

Amplify-and-forward (AF) is widely used for cooperative/collaborative wireless system. Mul-

tihop communication has been extensively used in vehicular ad hoc networks (VANETs) to

provide support for road management, traffic information, safety or other applications by enabling

vehicle-to-vehicle communications [1]. AF can be divided into disintegrated channel (DC) and

cascaded channel (CC). Instantaneous channel state information (ICSI) is often required in DC

resulting in a variable-gain (or variable amplification factor). However, ICSI is not necessarily

needed in CC leading to a fixed-gain (or fixed amplification factor). Several researchers have

studied the performance of wireless multihop relaying with AF in CC using fixed amplification

gain due to its lower complexity and high usage efficiency. Reference [2] has studied the

lower bounds for the performance of multihop transmissions in CC over Nakagami-m fading

channels, while [3] has derived the closed-form expression of the outage probability (OP) over

N*Nakagami fading in terms of the Meijer’s G-function. In [4], the closed-form expression

of the cumulative distribution function (CDF) of CC with multihop relaying over generalized

Gamma (GG) fading channels has been obtained and the closed-form expressions for bounds

of equal gain combining (EGC) over GG has also been derived. But these works either use

infinite series or special functions that are computationally complicated. Reference [5] has

presented the approximations to the statistics of products of independent random variables but

without considering relay combining. Reference [6] has proposed the approximations to EGC and

maximal ratio combining (MRC) of GG variables but without considering multihop transmission.

Also, none of these works has considered the multihop interferences from other transmitting

sources in the network. In a multiple-access system or a frequency-reused cell, interferences

from other transmitting sources may cause performance degradation and therefore cannot be

ignored. Similar research has been done in multiple scattering (keyhole) channel [7], in which

the electromagnetic wave propagates through several keyholes. Then the overall channel gain

can be modeled as the linear combination of product of the random variables (RVs) but without
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considering interference.

To fill in this gap, we derive the exact CDF in terms of one-dimensional integral for the sum

of ratios of products (SRP) and the sum of products (SP) of independent α - µ RVs. To reduce

the computational complexity, the approximate CDF of SRP in closed-form expression using the

generalized Gamma ratio approximation (GGRA) and Gamma ratio approximation (GRA) are

proposed as well. Also, generalized Gamma approximation (GGA) and Gamma approximation

(GA) are presented to approximate the SP. SRP can be used to calculate the OP of EGC or

MRC receivers for wireless relaying system. In this case, statistically independent multiple hops

are used with AF protocol and fixed amplification gain. SP can be used to calculate the OP of

EGC or MRC receivers of the same channel without interferences. Also, SRP can be applied

to model the channel gain in multiple scattering system with interferences, while SP can be

applied to model the channel gain in multiple scattering system without interferences. Moreover,

GRA is used to approximate the ratio of sums of products (RSP) of α-µ RVs that models the

signal-to-interference ratio (SIR) and the corresponding OP in scattering channels.

II. SYSTEM MODEL

Consider independent α - µ RVs {Xjl}k,Lj=1,l=1, each having probability density function (PDF)

of fXjl
(x) =

αjlµ
µjl
jl

Γ(µjl)γ̂jl
αjlµjl x

αjlµjl−1e
−

µjlx
αjl

γ̂jl
αjl

, x > 0, where Γ(·) is the Gamma function, αjl > 0

is related to the non-linearity of the environment, γ̂jl = E1/αjl(X
αjl

jl ) is a αjl-root mean value,

µjl =
E2[X

αjl
jl ]

V [X
αjl
jl ]

is the inverse of the normalized variance of X
αjl

jl , and E(·) and V (·) are the

expectation and variance operators, respectively [8]. One significant character of the α - µ

distribution is that it includes the Nakagami-m fading (αjl = 1), Weibull fading (µjl = 1), and

Rayleigh fading (αjl = µjl = 1), as special cases.

Define a random variable R as the SRP of independent α-µ RVs {Xjl}k,Lj=1,l=1, giving R =∑L
l=1Rl, where Rl = ωl

∏m
j=1 Xjl∏k

j=m+1 Xjl
and ωl is constant. This SRP can be used to calculate the

OP of EGC or MRC receivers for wireless multihop relaying system [2] considering multihop

interferences. Also, in multiple scattering channels [7], if each scattering is affected by interfer-
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ences, the overall channel gain can be described as a linear combination of the ratios of signal

to interference and following that, OP in multiple scattering channels can also be obtained.

Define a random variable P as the SP of independent α-µ RVs {Xjl}m,L
j=1,l=1, giving P =∑L

l=1 Pl, where Pl = ωl

∏m
j=1Xjl and ωl is constant. This SP can be used to calculate the OP

of the EGC or MRC receivers for wireless multihop relaying system without interferences [2].

Also, it can be used to model the overall channel gain in multiple scattering system [7] and

based on that, OP in multiple scattering channels can be obtained.

Finally, define a random variable Z as the RSP of independent α-µ RVs {Xjl}k,Lj=1,l=1, giving

Z = P (1)

P (2) , where P (1) =
∑L(1)

l=1 ωl

∏m
j=1Xjl, P (2) =

∑L(2)

l=1 ωl

∏k
j=m+1Xjl. If we consider P (1)

as a linear combination of signal components and P (2) as a linear combination of interferer

components, then the square of this RSP can be considered as the SIR in a multiple scattering

system [7] with multiple scattering interferences. Thus, the OP for SIR in multiple scattering

channels can be obtained. These simple expressions give the relationships between OP and

important system parameters, such as number of hops, number of links, weighting factors and

signal powers. They could be optimized for different applications.

III. STATISTICS ANALYSIS AND APPLICATIONS

In the first subsection, we derive the exact PDF and CDF of R and P in terms of one-

dimensional integral, while in the second subsection, we derive the approximate PDF and CDF

of R, P and Z in closed-form. Applications are then given in the third subsection.

A. Exact result

If the α-µ RVs are independent, the MGF of Rl can be derived as

MRl
(s) =

Clα
1
2
l

2π
αl−1

2

×

Gm′,n′+αl

n′+αl,m′

(
αl

ωl

)αl tl
sαl

|
∆(αl, 1), 1− µjl

mjl
− rl

mjl
, rl = 0, 1, · · · ,mjl − 1, j = m+ 1, · · · , k

µjl

mjl
+ rl

mjl
, rl = 0, 1, · · · ,mjl − 1, j = 1, · · · ,m


(1)
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where Gc,d
a,b(·) is the Meijer’s G-function [9], αl and mjl are positive integers with αjl =

αl

mjl
, j =

1, 2, · · · , k, Cl = 1/
(∏k

j=1

∏mjl−1
rl=0 Γ(

µjl

mjl
+ rl

mjl
)
)

, tl =
∏m

j=1

(
µjl

γ̂
αjl
jl

)mjl

/
∏k

j=m+1

(
µjl

γ̂
αjl
jl

)mjl

,

m′ =
∑m

j=1mjl, n′ =
∑k

j=m+1mjl and ∆(a; b)
∆
= b/a, · · · , (b + a− 1)/a. See Appendix A for

proof.

If the α-µ RVs are independent and identically distributed (i.i.d), αjl, µjl and γ̂jl become α,

µ and γ̂, respectively. Therefore, the MGF of Rl in (1) is specialized to

MRl
(s) =

αe(m+n)(µ− 1
2
)+1

Γk(µ)f
1
22π(e−1)(n+m

2
)+ f−1

2

×

Gem,en+f
en+f,em

 f f

ωαe
l sl

(
µ

γ̂αe

)(m−n)e

|
∆(f, 1),∆(e, 1− µ), · · · ,∆(e, 1− µ)

∆(e, µ), · · · ,∆(e, µ)

 (2)

where n = k −m, f and e are relatively prime integers satisfying α = f/e.

Also, when the α-µ RVs are independent, the MGF of Pl can be derived as

MPl
(s) =

Clα
1
2
l

2π
αl−1

2

×

Gm′,αl

αl,m′

(
αl

ωl

)αl tl
sαl

|
∆(αl, 1)

µjl

mjl
+ rl

mjl
, rl = 0, 1, · · · ,mjl − 1, j = 1, · · · ,m

 (3)

by setting k = m in (1), where Cl = 1/
∏m

j=1 Γ(µjl) and tl =
∏m

j=1

(
µjl

γ̂
αjl
jl

)mjl

.

If the α-µ RVs in Pl are i.i.d, the MGF of Pl is specialized to

MPl
(s) =

αem(µ− 1
2
)+1

Γm(µ)f
1
22π(e−1)m

2
+ f−1

2

Gem,f
f,em

 f f

ωαe
l sl

(
µ

γ̂αe

)me

|
∆(f, 1)

∆(e, µ), · · · ,∆(e, µ)

 . (4)

Therefore, the PDF and CDF of R in terms of one-dimensional integral can be expressed

as fR(x) = 1
2πi

∮
C

∏L
l=1MRl

(s)esxds and FR(y) = 1
2πi

∮
C

∏L
l=1 MRl

(s)esy

s
ds, respectively. Note

that fR(x) and FR(y) can be calculated numerically by using popular mathematical software

packages, such as MATLAB, MATHEMATICA and MAPLE. Also, fR(x) and FR(y) can be

evaluated using a finite series in closed-form as [10, eq. (9) and eq. (11)]. The PDF fP (x)

and CDF FP (y) of P can be obtained by simply replacing MRl
(s) with MPl

(s) in fR(x) and

FR(y), respectively. No exact results for Z are available due to the difficulty in obtaining them.
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Note also that [11] provides the PDF of products, quotients and powers of H-function variates.

Although H-function variates include α - µ variates, the result in this reference is only a special

case of ours when summation is not considered.

B. Approximate result

The exact PDF and CDF expressions in integral or series in the previous subsection are

complicated. Thus, in the following, we present new approximation methods GGRA and GRA

to approximate R and GRA to approximate Z. Also, we propose to use the conventional

approximation methods GGA and GA to approximate P .

1) GGRA: The PDF and CDF of GGRA are given by

fXGGRA
(x) =

pk− d1
p xd1−1(1 + k−1 xp)−

d1+d2
p

B(d1
p
, d2

p
)

, x > 0, (5)

FXGGRA
(y) =

k− d1
p yd1 2F1

(
d1
p
, d1

p
+ d2

p
; 1 + d1

p
;−k−1yp

)
d1
p
B(d1

p
, d2

p
)

(6)

respectively, where k, d1, d2, p, > 0 are the parameters to be determined. See Appendix B for

proof. One can calculate d1, d2 and p in (5) and (6) by solving the following equations

E{R2}
E2{R} =

Γ(
d1
p
)Γ(

d2
p
)Γ( d1

p
+ 2

p)Γ(
d2
p
− 2

p)
Γ( d1

p
+ 1

p)
2
Γ( d2

p
− 1

p)
2

E{R3}
E3{R} =

Γ(
d1
p
)2Γ(

d2
p
)2Γ( d1

p
+ 3

p)Γ(
d2
p
− 3

p)
Γ( d1

p
+ 1

p)
3
Γ( d2

p
− 1

p)
3

E{R4}
E4{R} =

Γ(
d1
p
)3Γ(

d2
p
)3Γ( d1

p
+ 4

p)Γ(
d2
p
− 4

p)
Γ( d1

p
+ 1

p)
4
Γ( d2

p
− 1

p)
4

(7)

using popular mathematical software packages, where the n-th order moment E{Rn} of R is

given in (13). Then, the value of k can be obtained by inserting the solutions of d1, d2 and p

into one of the equations in (14). See Appendix C for proof.

2) GRA: To simplify the parameter calculation, GRA is proposed by setting p = 1 in GGRA.

Therefore, the PDF and CDF of GRA are given by

fXGRA
(x) =

k−d1xd1−1(1 + xk−1)−d1−d2

B(d1, d2)
, x > 0, (8)
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FXGRA
(y) =

yd1k−d1
2F1 (d1, d1 + d2; 1 + d1;−yk−1)

d1B(d1, d2)
(9)

respectively. GRA can also be used to approximate R for a simplified form. Fortunately, unlike

numerical solutions in (7), one can get the closed-form expressions of d1, d2 and k by setting

p = 1 and ignoring the fourth equations in (14), as


d1 =

2E{R}(E2{R2}−E{R}E{R3})
2E2{R}E{R3}−E{R}E2{R2}−E{R2}E{R3}

d2 =
E2{R}E{R2}+3E{R}E{R3}−4E2{R2}
E2{R}E{R2}+E{R}E{R3}−2E2{R2}

k = −2E{R}2E{R3}+E{R}E{R2}2+E{R2}E{R3}
E{R}2E{R2}+E{R}E{R3}−2E{R2}2

(10)

Moreover, GRA is proposed to approximate Z. It is not easy to get the closed form of n-th

order moment for Z. However, it is shown in Appendix B that GRA can be considered as the

ratio of two GAs. Therefore the values of d1 and d2 can be decided by d1 =
E2(P (1))

E(P (1))−E2(P (1))
and

d2 = E2(P (2))

E(P (2))−E2(P (2))
, respectively, and k can be solved by k = a1

a2
, where a1 = E(P (1))−E2(P (1))

E(P (1))

and a2 = E(P (2))−E2(P (2))

E(P (2))
. Numerical results in Section IV will show that GRA has a slightly

worse performance than GGRA when approximating R but has a very good match for Z.

3) GGA and GA: One can have the PDF and CDF of the conventional approximation method

GGA as fXGGA
(x) = p a−dxd−1e−(xa )

p

Γ( d
p)

, x > 0, and FXGGA
(y) = γ(d/p,(y/a)p)

Γ(d/p)
, respectively, and

one can also have the PDF and CDF of GA as fXGA
(x) = xd−1e−

x
a

adΓ(d)
, x > 0, and FXGA

(y) =

γ(d,y/a)
Γ(d)

, respectively. The unknown values of a, d and p in GGA and GA can be decided by

moment-matching method which is available in [12]. Although GGA and GA are well-known

approximation methods, to the best of the authors’ knowledge, none of the works in the literature

has considered using GGA and GA to approximate the SP of independent α-µ RVs before.

Therefore, in this paper, we propose to use GGA and GA to approximate P . Also, the results

in Section IV show that GGA has a very good match with P while GA has a slightly worse

performance than GGA but with a simplified form. More importantly, both of them have much

simpler form than the exact results in Section II, which shows their usefulness.
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C. Applications

For L-branch EGC receivers of AF relaying system through statistically independent multihop

with fixed amplification gain and interferences, the instantaneous end-to-end SNR is given by

[4] γR = 1
L

(∑L
l=1

√
γl

)2

, where γl =
Es

N0
R2

l , Rl = ωl

∏m
j=1 Xjl∏k

j=m+1 Xjl
, ωl = 1, Es is the transmitted

energy, N0 is the single sided AWGN power spectral density,
∏m

j=1Xjl represents the product

of fading coefficients of signals through m hop in the lth path [2] ,
∏k

j=m+1 Xjl represents

the product of fading coefficients of the interferers through k −m hop in the lth path. On the

other hand, one can rewrite γR as γ′
R = 1

L
Es

N0
R2, which can be seen as the instantaneous SNR

in multiple scattering radio channel. In this case, R can be seen as the overall channel gain

considering interferences in each scattering, R2 can be seen as the fading power, ωl can be seen

as the weight which is a nonnegative real-valued constant that determine the mixture weight of the

multiple scattering component [7]. Define the corresponding average SNR in wireless multihop

relaying system or multiple scattering channel as γ̄R = 1
L

Es

N0
E

((∑L
l=1Rl

)2
)

. By normalizing

γR or γ′
R with respect to the average end-to-end SNR γ̄R, one has γ̂R = R2

E(R2)
. The OP is

defined as the probability that the SNR is below a certain threshold as Po = Pr{γR < γ0}. By

normalizing both sides of the inequality with the positive value of γ̄R and letting γth = (γ0/γ̄R),

one has Po = Pr{γ̂R < γth}. Then, using the exact CDF of R in Section III.A, one has Po =

FR

(√
γthE

1
2 (R2)

)
. Also, using the approximate CDF of GGRA in (6) and the approximate

CDF of GRA in (9), one can get approximate OP of γ̂R as Po = FGGRA

(√
γthE

1
2 (R2)

)
and

Po = FGRA

(√
γthE

1
2 (R2)

)
, respectively.

Similarly, for L-branch EGC receivers of wireless multihop relaying system without inter-

ferences [2] or for transmitting signal in multiple scattering radio channel without interference

[7], the exact results of OP are given by Po = FP

(√
γth · E

1
2{P 2}

)
. Also, using the ap-

proximate CDF of GGA and the approximate CDF of GA, one can get the approximate OP

as Po = FGGA

(√
γth · E

1
2{P 2}

)
and Po = FGA

(√
γth · E

1
2{P 2}

)
, respectively. Note that the

exact and approximate results of OP derived above can also be applied to L-branch MRC
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receivers of wireless multihop relaying system with proper modifications. For the exact results,

a variable substitution of x by x2 is needed in PDF expression of α - µ RVs and in the following

MGF expressions. For the approximate results, moment matching should be done by considering

E(R2), E(R4), E(R6), E(R8), E(P 2), E(P 4), E(P 6), E(P 8) with the corresponding moments

of GGRA, GRA, GGA, GA. However, EGC is simpler to implement and its performance is very

close to that of MRC although MRC is the optimal combining scheme [13]. Thus, we consider

EGC from here on.

Next, we consider the OP for SIR in multiple scattering radio channel. In this case, the SIR

IZ is given by IZ = Z2 = Z1

Z2
, where Z1 = (P (1))2 = (

∑L(1)

l=1 ωl

∏m
j=1 Xjl)

2 represents the signal

power in multiple scattering channel and Z2 = (P (2))2 = (
∑L(2)

l=1 ωl

∏k
j=m+1Xjl)

2 represents the

interference power in the same channel. Due to the complexity of the exact OP expression of

IZ and the high accuracy of the approximate OP expression GRA of IZ , we only provide the

approximate OP for IZ . Thus, the OP of SIR IZ can be Po = FGRA

(√
γth · E

1
2{Z2}

)
.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented to show the accuracy of the derived exact

expressions and the derived approximate expressions. In these examples, the exact results in

Section III.A are evaluated using the series form in [10, eq. (11)] with A = 23.026, N = 15

and Q = 10, whereas the approximate results are calculated using our proposed closed-form

approximations GGRA, GRA, GGA and GA. Let αjl = 2 be the same for any j, µjl = 4 be the

same for any j and γ̂jl = 5 be the same for any j. Note that our results are general enough to

include other cases but these settings are used here as examples.

Tables I and II compare the exact and approximate PDFs and CDFs of R = 2 X11

X21X31
+

3X12X22X32

X42X52
, respectively. One can see that the PDF and CDF of the approximate GGRA match

very well with the exact result while GRA match well with the exact result in most values

examined but with a simplified form. Fig. 1 and Fig. 2 show the OP vs. γth using EGC receivers

in wireless multihop relaying system over α - µ channels. Fig. 1 describes the signal model as
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R = X11

X21
+ X12X22

X32X42
which assumes L = 2 and considering interferences while Fig. 2 describes the

signal model as R = X11 +X12X22 +X13X23X33 which assumes L = 3 and does not consider

interferences. Fig. 3 and Fig. 4 show the OP vs. γth in multiple scattering channels, in which

Fig. 3 describes the signal model considering interferences as R = 2 X11

X21X31
+ 3X12X22X32

X42X52
while

Fig. 4 describes the signal model without interferences as R = X11 + 2X12X22 + 3X13X23X33.

Moreover, Fig. 5 shows the OP vs. γth in terms of SIR in multiple scattering channel. In this

case, the SIR can be described as Iz = Z2, where Z = X11+X21X31

X42+X52X62+X72X82X92
.

From Figs. 1 - 5, one can see that the OP increases when the SNR threshold increases, as

expected. In the extreme case when the SNR threshold goes to infinity, the OP will approach

one. Furthermore, the exact results of OP agree very well with the simulations in Figs. 1 - 4.

The approximate results based on GGRA match very well with simulations in Fig. 1 and Fig.

3 while GGA matches very well with simulations in Fig. 2 and Fig. 4, showing the usefulness

of our approximate expressions. The approximate result based on GRA matches well with the

simulations in Fig. 1 and Fig. 3 and GA matches well with the simulations in Fig. 2 and Fig.

4, both between 10−1 to 1 but with simple structures. Moreover, GRA has a very good match

with the simulation in Fig. 5.

V. CONCLUSIONS

The exact results of CDF of the sum of ratios of products and the sum of products of

independent α - µ RVs in the form of one-dimensional integral have been derived. Also, the

closed-form expressions for the CDF using GGRA, GRA, GGA and GA have been given.

Applications in obtaining the outage probability of EGC receivers for wireless multihop relaying

system considering interferences and without considering interferences have also been discussed.

Moreover, applications in obtaining the outage probability of signal transmitting in multiple

scattering channel considering interferences and without considering interferences are provided.

Numerical examples have shown the exact result derived agree very well with the simulations

and the approximate results GGRA and GGA have a good match with the simulations while
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GRA and GA have a considerable match in some cases but with a simple structure.

APPENDIX

A. Derivation of the PDF of Γ1,j

If α-µ RVs {Xjl}k,Lj=1,l=1 are independent, from [14] and using variable transformation, one

can get the PDF of Rl as

fRl
(x) = Clx

−1αl×

Gm′,n′

n′,m′

tl

(
x

ωl

)αl

|
1− µjl

mjl
− rl

mjl
, rl = 0, 1, · · · ,mjl − 1, j = m+ 1, · · · , k

µjl

mjl
+ rl

mjl
, rl = 0, 1, · · · ,mjl − 1, j = 1, · · · ,m

 .
(11)

The moment generating function (MGF) of Rl is defined as MRl
(s) =

∫∞
0

exsfRl
(x)dx. With

the help of the Meijer’s G-function identity [15], [16, 07.34.22.0003.01], [16, 07.34.02.0004.01]

and [16, 07.34.02.0005.01], one can get MGF of Rl as (1).

B. Derivation of GGRA and GRA

One can see that R is a sum of ratios of products. Therefore, we propose to use the ratio of GG

distribution to approximate R. Let x = r1
r2

, where r1 and r2 follow GG distribution with the PDFs

of fr1(r; a1, d1, p) =
p a

−d1
1 rd1−1e

−( r
a1 )

p

Γ( d1
p )

, r > 0, and fr2(r; a2, d2, p) =
p a

−d2
2 rd2−1e

−( r
a2 )

p

Γ( d2
p )

, r > 0,

respectively. Then, one has the PDF of x as fGGRA(x) =
∫∞
0

|r| f1 (rx) f2 (r) dr. After simplifica-

tion and using [17], one can get fGGRA(x) =
pa

−d1
1 a

d1
2 xd1−1(1+(

a2
a1

)p xp)
− d1+d2

p

B(
d1
p
,
d2
p
)

. Using k = (a1
a2
)p, one

can get the PDF of GGRA as (5). The CDF of GGRA is given by FGGRA(y) =
∫ y

0
fGGRA(x)dx.

Using (5), the CDF expression above and with the help of [9, (3.259)], one can get the CDF of

GGRA as (6).

GRA have a simplified form which can be seen as the ratio of Gamma distribution. When

p = 1 in fr1(r; a1, d1, p) and fr2(r; a2, d2, p), they become fr1(r; a1, d1) =
rd1−1e−r/a1

a
d1
1 Γ(d1)

, r > 0, and

fr2(r; a2, d2) =
rd2−1e−r/a2

a
d2
2 Γ(d2)

, r > 0, respectively. Similarly, using fGRA(x) =
∫∞
0

|r| f1 (rx) f2 (r) dr

and k = a1
a2

, one can get the PDF and CDF of GRA as (8) and (9), respectively.
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C. Moment-matching approximations

With the help of [17], one has the w-th order moment of GGRA as

E (Xw
GGRA) = kw/p

Γ(d1
p
+ w

p
)

Γ(d1
p
)

Γ(d2
p
− w

p
)

Γ(d2
p
)

. (12)

Also, with the help of the [18], n-th order moment of R can be given as

E{Rn} =
n∑

n1=0

n1∑
n2=0

· · ·
nL−2∑

nL−1=0

(
n
n1

) (
n1
n2

)
· · ·

(
nL−2
nL−1

)
ωn−n1
1 ωn1−n2

2 · · ·ωnL−1

L

m∏
j=1

E{Xn−n1
j1 }

m∏
j=1

E{Xn1−n2
j2 } · · ·

m∏
j=1

E{XnL−1

jL }
k∏

j=m+1

E{ 1

Xn−n1
j1

}
k∏

j=m+1

E{ 1

Xn1−n2
j2

} · · ·
k∏

j=m+1

E{ 1

X
nL−1

jL

}

(13)

where the n-th order moment for Xjl is E{Xn
jl} =

γ̂jl
nΓ(µjl+n/αjl)

µ
n/γjl
jl Γ(µjl)

[8] and the n-th order moment

for 1
Xjl

is E{ 1
Xn

jl
} =

γ̂jl
−nΓ(µjl−n/αjl)

µ
−n/γjl
jl Γ(µjl)

. Similarly, one can get the n-th order moment of P by

setting k = m and ignoring E{ 1
Xn

jl
} in (13) but they are omitted here to save space. Then d1,

d2, p and k in (5) and (6) can be determined by matching the 1-st, 2-nd, 3-rd and 4-th order

moment of R with the 1-st, 2-nd, 3-rd and 4-th order moment of GGRA, respectively as

E{R} = k1/p Γ(
d1
p
+ 1

p
)

Γ(
d1
p
)

Γ(
d2
p
− 1

p
)

Γ(
d2
p
)

E{R2} = k2/p Γ(
d1
p
+ 2

p
)

Γ(
d1
p
)

Γ(
d2
p
− 2

p
)

Γ(
d2
p
)

E{R3} = k3/p Γ(
d1
p
+ 3

p
)

Γ(
d1
p
)

Γ(
d2
p
− 3

p
)

Γ(
d2
p
)

E{R4} = k4/p Γ(
d1
p
+ 4

p
)

Γ(
d1
p
)

Γ(
d2
p
− 4

p
)

Γ(
d2
p
)

. (14)

Further, one can simplify (14) by getting rid of k as (7).
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TABLE I

COMPARISON OF THE EXACT AND APPROXIMATE PDFS OF R = 2 X11
X21X31

+ 3X12X22X32
X42X52

x Exact GGRA GRA

3 0.005123366578 0.00553831 0.00657853

6 0.03437761985 0.0340766 0.0339683

9 0.05414392525 0.0538482 0.0528716

12 0.055066531 0.0550564 0.0544886

15 0.04670142108 0.0468074 0.0467473

18 0.03634886 0.0364498 0.0366334

21 0.027117528 0.0271797 0.0274094

24 0.019823972 0.0198519 0.0200418

27 0.014372777 0.014379 0.0145091

30 0.01040560788 0.0104009 0.0104784

33 0.007553075 0.00754393 0.0075832

36 0.00550956 0.00549977 0.00551409

39 0.0040442581 0.00403557 0.00403502

42 0.002989825 0.00298263 0.00297411

45 0.00222678 0.00222117 0.00220904

48 0.001670996 0.00166687 0.00165373

51 0.00126327 0.00126047 0.00124778

54 0.0009624243 0.00096032 0.000948797

57 0.0007384826 0.00073699 0.000726922

60 0.00057033 0.000569594 0.000561023
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TABLE II

COMPARISON OF THE EXACT AND APPROXIMATE CDFS OF R = 2 X11
X21X31

+ 3X12X22X32
X42X52

y Exact GGRA GRA

3 0.002918777902 0.00343157 0.00456575

6 0.05963044177 0.0603741 0.0635416

9 0.1977381439 0.197387 0.198466

12 0.3651634794 0.36438 0.363

15 0.5189965633 0.518401 0.516134

18 0.6435316511 0.643263 0.641246

21 0.7382844348 0.738262 0.736898

24 0.8082033983 0.808312 0.807589

27 0.8590801037 0.859235 0.858993

30 0.8959262807 0.89608 0.896146

33 0.9226282412 0.922759 0.922997

36 0.9420521725 0.942154 0.942469

39 0.9562621779 0.956336 0.956669

42 0.9667270005 0.966777 0.967096

45 0.9744897491 0.974522 0.974809

48 0.9802920019 0.980311 0.980559

51 0.9846609351 0.984671 0.98488

54 0.9879744607 0.987979 0.988152

57 0.9905062535 0.990509 0.990649

60 0.9924555580 0.992457 0.992569
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Fig. 1. Outage probability vs. γth using EGC receivers in wireless multihop relaying system

considering interferences.

July 8, 2014 DRAFT



16

−15 −10 −5 0 5 10
10

−3

10
−2

10
−1

10
0

γth (dB)

O
ut

ag
e 

pr
ob

ab
ili

ty

 

 

Simulation
Exact
GGA
GA

Fig. 2. Outage probability vs. γth using EGC receivers in wireless multihop relaying system

without interferences.
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Fig. 3. Outage probability vs. γth in multiple scattering channel considering interferences.
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Fig. 4. Outage probability vs. γth in multiple scattering channel without interferences.
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Fig. 5. Outage probability vs. γth in terms of SIR in multiple scattering channel considering

interferences.
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