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Abstract

Wavelet packets are well-known for their ability to compactly represent tex-
tures consiting of oscillatory patterns such as fingerprints or striped cloth. In
this paper, we report recent work on representing both periodic and granular
types of texture using adaptive wavelet basis functions. The discrimination
power of a wavelet packet subband can be defined as its ability to differentiate
between any two texture classes in the transform domain, consequently leading
to better classification results. The problem of adaptive wavelet basis selection
for texture analysis can, therefore, be solved by using a dynamic programming
approach to find the best basis from a library of orthonormal basis functions
with respect to a discriminant measure. We present a basis selection algorithm
which extends the concept of ‘Local Discrminant Basis’ (Saito and Coifman,
1994) to two dimensions. The problem of feature selection is addressed by sort-
ing the features according to their relevance as described by the discriminant
measure, which has a significant advantage over other feature selection methods
that both basis selection and reduction of dimensionality of the feature space
can be done simultaneously. We show that wavelet packets are good at repre-
senting not only oscillatory patterns but also granular textures. Comparative
results are presented for four different distance metrics: Kullback-Leibler (KL)
divergence, Jensen-Shannon (JS) divergence, Euclidean distance, and Hellinger
distance. Initial experimental results show that Hellinger and Euclidean dis-
tance metrics may perform better as compared to other cost functions.



1 Introduction

Texture classification can be defined as a mapping from a set of input image pixels to
a set of class labels. Finding appropriate features from an image containing texture
regions is key to utilising textural properties which can differentiate between different
textures well. Recently, subband filtering methods have been shown [10] to be quite
effective in characterising different types of textures. Out of these methods, some
have employed wavelet bases, fixed dyadic wavelet basis [7] as well as adaptive wavelet
packet basis [1, 3], to represent the image in such a way that discriminant features
of underlying textures are highlighted. A major limitation of wavelet representation,
however, is that only a restricted subset of possible space-frequency tilings is used to
extract spatial frequency components present in the image. Wavelet packets provide
a solution to this problem so that adaptive frequency segmentation can be found for
a given image based on a specific criterion or a cost function.

In the context of texture classification, the cost function used to find the best
wavelet packet basis should be able to provide an estimate of the discrimination
power of a subband. Only then can it be ensured that the resulting basis will be an
optimal choice from a library of available bases. Chang and Kuo [3] suggested using
l1-norm as a cost function for tree prunning in a top-down manner. A subband is
further decomposed only if its l1-norm is larger than a factor of the maximum norm
value at the same resolution. This approach leads to an adaptive tree-structured
wavelet decomposition, a term the authors of [3] used for wavelet packet decomposi-
tion. Acharyya and Kundu [1] employ an energy based cost function and a top-down
search without any decimation to compute the basis wavelet packet basis for texture
segmentation. It is to be noted, however, that a top-down search method employed
in a best basis selection algorithm cannot guarantee an optimal solution. Laine and
Fan [6] used energies of subbands from the full wavelet packet tree as a signature for
images belonging to certain texture class.

The local discriminant basis (LDB) of Saito & Coifman [12] proposed to use a cost
function which can maximise the differences in time-frequency energy distributions
of each class. Symmetric Kullback-Leibler (KL) distance was used to measure the
dissimilarity between energy distributions of a particular subband for all classes. An-
other related work is the local clustering basis (LCB) of Meyer & Chinrungrueng [8],
wherein the authors select basis functions according to their ability to separate the
fMRI time-series into activated and non-activated clusters. Locally clustering basis
functions are chosen due to their discriminating power, and projections of the raw
fMRI data onto these basis functions are computed for efficient segmentation of the
data into activated and non-activated regions.

In this paper, we propose a local discriminant wavelet packet basis for texture
classification problem as defined above. A locally discriminant set of basis func-
tions orthogonal to eachother is chosen using a bottom-up dynamic programming
approach in such a way that the dissimilarities in space-frequency energy distribu-
tions are maximised. We investigate four different cost functions used for measuring
the discriminating power of a subband and consequently for prunning the full wavelet
packet tree to obtain an adaptive LDB for a given image. A subset of most discrimi-



nant features is chosen using the discriminating power of a subband (feature) to avoid
the so-called curse of dimensionality.

The paper is organised as follows. An overview of wavelets and wavelet packets
for texture analysis is provided in the next section. Algorithm for local discriminant
basis selection alongwith a description of four different cost functions is provided in
Section 3. Experimental settings and results are presented in Section 4 and the paper
concludes with remarks on the results and further directions for research.

2 Wavelet Packets

2.1 Introduction

As opposed to Fourier basis functions, the principle behind wavelets is that shifts
and dilations of a prototype function ψ(t) are chosen as basis functions, decomposing
the signal into its components belonging to different frequencies while providing good
localization in time (space) at the same time. The discrete wavelet transform can be
computed with the help of filter banks that decompose the signal (image) into low
and high frequency subbands. The low frequency subband is further decomposed in
order to go down the transform one more level. Wavelet based texture classification
methods use the wavelet subbands to extract textural features – see [7, 10] for a
review of these methods. Contributions of each subband to the image (ie, frequency
components of the image corresponding to that subband) are usually passed through
a nonlinearity followed by a smoothing function to compute a feature image.

2.2 Wavelet Packet Decomposition

A more general form of the wavelet basis, known as the wavelet packet basis [4] adap-
tively segments the frequency axis based on a certain cost function. The frequency
intervals of varying bandwidths are adaptively selected to extract specific frequency
contents present in the given signal. This frequency segmentation is useful, for exam-
ple, to analyze a local phenomenon occurring in the signal and belonging to a specific
frequency band. The discrete wavelet packet transform of a 1-d discrete signal x = xi,
i = 0, 1, . . . , N − 1 can be computed as follows. The wavelet packet coefficients are
defined as

w0
0(l) = xl l = 0, . . . , N − 1

w2p
j (l) =

∑

k

gk−2l w
n
j−1(k) l = 0, . . . , N2−j − 1

w2p+1

j (l) =
∑

k

hk−2l w
n
j−1(k) l = 0, . . . , N2−j − 1

(1)

where j = 1, 2, . . . , J ; J = log2N , wp
j (l) is the transform coefficient corresponding

to the wavelet packet function which has relative support size 2j, frequency p2j and
is located at l2j. In other words, j, p and l can be regarded as the scale, frequency
and position indices of the corresponding wavelet packet function respectively. The
coefficients {hn} and {gn} correspond to the lowpass and highpass filters respectively



for a two-channel filter bank and the transform is invertible if appropriate dual fil-
ters {h̃n}, {g̃n} are used on the synthesis side. When comparing to the wavelet
decomposition, it can be regarded as a decomposition which lifts the limit of only
decomposing the lowpass filtered signal so that all the highpass subbands can be fur-
ther decomposed as well. This results in a combinatorial explosion of possible bases
which to select a suitable basis from. Since this library of available bases provides
an overcomplete representation, a fast optimization algorithm such as [5] is required
to select a combination of bases from this library which is well suited to the signal
under consideration.

2.3 Wavelet Packet Texture Analysis

In the case of general wavelet packet decomposition, a basis needs to be selected
which has the maximum discriminating power among all possible bases in the library
of wavelet packets. Although this adds an extra computational cost, a fast dynamic
programming algorithm can be used to select an optimal basis. Apart from this,
texture classification using wavelet packet subbands may proceed in almost the same
way a system based on wavelet subbands works, as described in Section 2.1.

3 Local Discriminant Basis

Coifman & Wickerhauser [5] proposed to use a dynamic programming approach to
select the best wavelet packet basis functions that can compactly represent a given
signal. To achieve the goal of signal compression, they proposed entropy based cost
functions to estimate the information contents of a subband. A subband is preferred
on its child subbands if its entropy is less than sum of that of all its child subbands.
However, this has little relevance to texture classification as smaller entropy of a
subband does not necessarily mean that the subband will prove to be efficient for
separating pixels belonging to different classes of textures.

Considering a certain wavelet packet subband for two types of textures as two
space-frequency energy distributions, one way of computing the discriminating power
of that subband is to find how dissimilar these distributions are. Distance measures for
probability distributions can then be used on psuedo-distributions yielding a measure
of discrimination power. Let F and G denote the transform coefficients of a particular
subband for training images x1 and x2, belonging to two different texture classes,
respectively. We considered three ways of forming pseudo-distributions f from the
subband coefficients F :

f1(x, y) = F (x, y), f2(x, y) = |F (x, y)|2, f3(x, y) = |F (x, y)|2/‖x1‖
2 (2)

Similarly, the pseudo-distributions gi (i = 1, 2, 3) can be obtained by using the sub-
band coefficients G(x, y) and texture image x2. We tested four cost functions in
our experiments: symmetric Kullback-Leibler (KL) divergence, Jensen-Shannon (JS)



divergence, Euclidean distance (ED), and Hellinger distance (HD) – denoted respec-
tively by KLi, JSi, EDi, and HDi – defined as follows.

KLi(F,G) = D(fi||gi) +D(gi||fi), (3)

JSi(F,G) =
D(fi||figi) +D(gi||figi)

2
(4)

EDi(F,G) = ‖fi − gi‖2 (5)

HDi(F,G) =

√

∑

x

∑

y

[

√

fi(x, y)−
√

gi(x, y)
]2

(6)

where

D(f ||g) =
∑

x

∑

y

f(x, y) log
f(x, y)

g(x, y)

is the relative entropy between f and g,

figi(x, y) =
fi(x, y) + gi(x, y)

2

is the average distribution ∀x, y, ‖·‖2 denotes the l2-norm, and µ(f) and σ2(f) re-
spectively are the mean and variance of f .

Algorithm:

Let C(x1,x2,B) denote the cost function, one of the above four, representing the
discriminating power of a basis B in terms of its capability to separate x1 and x2.
Let Bp,q

j denote the wavelet packet basis for a node λp,q
j of the full wavelet packet

tree and let O2p,2q
j+1 , O2p,2q+1

j+1 , O2p+1,2q
j+1 , and O2p+1,2q+1

j+1 denote the wavelet packet bases
corresponding to four children of the node λp,q

j . The best wavelet packet basis up to
a depth J , where J = log2N and N is the number of pixels in each dimension, for
texture classification is selected as follows.

1. Compute the J-level full wavelet packet tree decomposition.

2. Initialize j←−J − 1.

3. For all 0≤p<2j, 0≤q<2j, do the following:

(a) If C(x1,x2,B
p,q
j ) > [C(x1,x2,O

2p,2q
j+1

) + C(x1,x2,O
2p,2q+1

j+1
)+

C(x1,x2,O
2p+1,2q
j+1 ) + C(x1,x2,O

2p+1,2q+1

j+1 )].

keep the four child subbands at depth j + 1,

otherwise

merge them to get λp,q
j .

3. Decrement j by 1.

4. If j < 0, then stop, otherwise go to step 3.

The computational complexity of above algorithm is O(N logN).



4 Feature Selection

The issue of selection of features from subband decomposition demands more scrutiny
now due to a large number of possible bases that can be used to represent the image.
Let us define the feature selection problem in the context of subband decomposition
as follows. Given a test image x that has been decomposed into n subbands, each of
which can be regarded as a feature, the goal is to select m subbands such that the
resulting misclassification error is minimal. We have shown that it is still possible to
gauge the discrimination power of a subband independent of the classifier. Given the
nature of subband decompositions under consideration, a subband can be regarded
as being highly discriminant if it highlights the frequency characteristics of one class
but not the other. In other words, if the coefficients of a particular subband light up
(ie, are higher in magnitude) for one class but are relatively insignificant for another
one, the subband can prove to be helpful in terms of classification performance.

In our previous work [9], we have proposed to use a symmetric KL distance be-
tween the normalised energies of a subband of training images as a measure of rel-
evance of an estimate of the discrimination power of the subband. However, Saito
et al. [11] warn that the approach of sequentially measuring the efficacy of each di-
mension of the feature space independently may be “too greedy” as 2D and higher
dimensional structures in the feature space may be missed. The principal advantage,
however, is that we can make a feature selection solely on training data which re-
duces the complexity of the final classifier on test samples. When compared with
traditional multivariate feature projection methods like PCA or LDA, this advantage
is significant.

Once it has been ensured that the basis chosen to represent the image is optimal for
texture classification, selection of most discriminant subbands (features) can proceed
by using the cost function as a measure of relevance of a feature to classification.
Thus cost function values need to be computed only once to be used for basis selection
and subsequent feature selection follows by ranking the features according to these
values, an approach proposed in [2], saving computations if basis selection and feature
selection were done separately.

5 Experimental Results

The basis and feature selection algorithms outlined above were tested on four test im-
ages containing textures of granular and periodic nature taken from the Brodatz tex-
ture collection: D9D19f (grass/wool), F17D15f (straw/cloth), D65D65R (fence/fence)
and D103D103R (burlap/burlap) shown in Figure 1. Classification results for these
images using four cost functions and two-level wavelet, full wavelet packet (FWP),
and adaptive WP bases are shown in Figures 2–5. Most discriminant features were
used with a k-means classifier to assign class labels. From these experiments, it can
be seen that our basis selection algorithm tends to find a basis resembling wavelet or
FWP geometry whichever of them produces better results. Feature selection enables
us to find a relatively small subset of features thus speeding up the computations in



many applications. While these results may provide some indication as to which of
the four cost functions performs better for a certain type of texture, it is perhaps due
to the limited number of experiments that no firm conclusions may be drawn in this
regard.

D9D19f F17D15f D65D65r D103D103R
grass/wool straw/cloth fence/fence burlap/burlap

(a) (b) (c) (d)

Figure 1: Test images created from Brodatz collection

6 Conclusions

In this paper, we proposed a fast algorithm for local discriminant basis selection from a
library of wavelet packet functions for texture classification. The use of a cost function
suitable for measuring the discriminating power of a subband was advocated and four
such cost functions were studied. Once the basis is selected, corresponding features
can be ranked based on their cost function values. Experiments were restricted to a
two-class classification problem. Future research directions include extension of this
algorithm to a multi-class problem and incorporation of a sophisticated classifier.
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Figure 2: Classification results for D9D19f
Using (a) Wavelets, (b) FWP, and (c) Adaptive WP
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Figure 3: Classification results for F17D15f
Using (a) Wavelets, (b) FWP, and (c) Adaptive WP
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Figure 4: Classification results for D65D65R
Using (a) Wavelets, (b) FWP, and (c) Adaptive WP
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Figure 5: Classification results for D103D103R
Using (a) Wavelets, (b) FWP, and (c) Adaptive WP


