

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/77123

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/72094

Recognising Mapping Classes

by

Mark Christopher Bell

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Warwick Mathematics Institute

June 2015

Contents

List of Tables vii

List of Figures viii

Acknowledgments x

Declarations xii

Abstract xiii

Abbreviations xiv

Chapter 1 Introduction 1
1.1 Overview and main results . 4
1.2 Preliminaries . 5
1.3 Decision problems . 7

Chapter 2 Triangulations 10
2.1 Triangulation coordinates . 10
2.2 Nearby triangulations . 11
2.3 Existing algorithms . 12
2.4 Twist paths . 13

2.4.1 Twisting a small curve . 14
2.4.2 Shortening a curve . 14
2.4.3 Half twisting a small curve . 17
2.4.4 Isolating curves . 18

Chapter 3 Reducible mapping classes 19
3.1 Reducing curves . 19
3.2 Small vectors in polytopes . 20

iv

3.3 Bounds on reducing curves . 21
3.4 Subsurfaces . 23

3.4.1 Bounds on maximal curves . 25
3.4.2 The canonical curve system . 27

Chapter 4 Pseudo-Anosov mapping classes 28
4.1 Measured laminations . 28
4.2 Train tracks . 31

4.2.1 Maximal splittings and the axis 33
4.2.2 Getting to the axis . 34

4.3 The main algorithm . 36
4.4 Algebraic numbers . 39
4.5 Correctness . 39

4.5.1 Acceptance implies pseudo-Anosov 40
4.5.2 Pseudo-Anosovs have acceptable certificates 43

4.6 Analysis . 46

Chapter 5 The conjugacy problem 48
5.1 Periodic mapping classes . 49
5.2 Periodic irreducible mapping classes . 54
5.3 Periodic reducible mapping classes . 55
5.4 Aperiodic irreducible mapping classes . 57
5.5 Aperiodic reducible mapping classes . 58

5.5.1 Twist invariants . 59
5.5.2 Equivalence of partition graphs 60

Chapter 6 Other applications and implementation 62
6.1 Applications . 62

6.1.1 Nielsen–Thurston types . 62
6.1.2 Dilatation . 63
6.1.3 Stratum . 63
6.1.4 Orientability . 64
6.1.5 Commuting . 65
6.1.6 Roots . 65
6.1.7 Special subgroups . 66

6.2 Implementation . 67
6.3 Examples . 70

6.3.1 On the once-marked torus . 70

v

6.3.2 On the twice-marked torus . 71
6.3.3 On a higher genus surface . 72
6.3.4 Penner like examples . 74

6.4 Further extensions . 76
6.4.1 The extended mapping class group 76
6.4.2 Other surfaces . 76
6.4.3 Independence of surface . 77

Appendix A flipper timings 80
A.1 On the once-marked torus . 80
A.2 On the twice-marked torus . 81
A.3 A comparison with Bestvina–Handel implementations 81

Appendix B flipper source code 83
B.1 Invariant laminations . 83
B.2 Splitting sequence . 86

Appendix C Censuses 88
C.1 Monodromies of fibred knots . 90
C.2 Monodromies of fibred census manifolds 117

vi

List of Tables

5.1 Exceptional orbifolds which are almost triangle orbifolds. 52

6.1 A first Penner like family. 75
6.2 A second Penner like family. 76

C.1 Fibred knot complements with fibre S1,1. 90
C.2 Fibred knot complements with fibre S2,1. 90
C.3 Fibred knot complements with fibre S3,1. 91
C.4 Fibred knot complements with fibre S4,1. 104
C.5 Fibred knot complements with fibre S5,1. 116
C.6 Fibred census manifolds with fibre S1,1. 117
C.7 Fibred census manifolds with fibre S2,1. 118
C.8 Fibred census manifolds with fibre S3,1. 122
C.9 Fibred census manifolds with fibre S4,1. 124
C.10 Fibred census manifolds with fibre S5,1. 125

vii

List of Figures

1.1 The figure 8 knot. 3
1.2 A left Dehn twist about γ. 7
1.3 A left half twist about γ. 7
1.4 The Labruère–Paris generating set [55, Figure 13]. 7
1.5 Relationships between complexity classes. 9

2.1 Flipping an edge of a triangulation. 12
2.2 A non-flippable edge e. 14
2.3 A Dehn twist along a small curve. 14
2.4 The nearby points of z. 15
2.5 A curve meeting each edge at most once. 16
2.6 A half twist along a small curve. 17
2.7 A chain on S4,1. 18

3.1 Crushing along a multicurve. 24
3.2 Building the dual graph of Tγ inside S − γ. 25

4.1 The possibilities for splitting a branch. 32
4.2 Getting to the axis A. 36
4.3 A train track coming from a triangulation. 37

5.1 Lifting an arc from a triangle orbifold. 54
5.2 A partition graph. 58

6.1 A singularity of order 4. 64
6.2 The flipper GUI. 68
6.3 Curves on S1,1. 70
6.4 Curves on S1,2. 72
6.5 The Whitehead link. 72
6.6 Curves on S2,1. 73

viii

6.7 Curves on S4,2. 75
6.8 An invariant lamination. 77

A.1 flipper and Bestvina–Handel timings. 82

C.1 Generators of Mod+(S). 89

ix

Acknowledgments

I would not have been able to complete this work without the support of many people.

Firstly I would like to thank my supervisor Saul Schleimer, who has continu-

ously provided good advice and guidance throughout my Ph.D. I also wish to convey

my thanks to the members of the Warwick geometry and topology group for many

stimulating discussions. In particular the current and past postgraduate students;

Tom, Nick, Francesca, Damiano, Sara, Rupert, Rob, Katie, Richard and Alex, whom

I have shared this experience with.

Secondly I thank all of my friends, both at Warwick and further afield. I

would especially like to thank Florian, Jenny, Heline, Céline, Dave, Vandita, Ben,

Dan, Alex, Ian and Chris who have endured far too many questions of mine.

Thirdly I am grateful to the Engineering and Physical Sciences Research

Council for funding my studies and for the computational resources made available

to me both from the University of Warwick IT Services and from John Cremona and

the Warwick number theory group. Without which, much of this work would not

have been possible. I also wish to extend my thanks to the entire administrative

team at the Warwick Mathematics Institute and particularly Carole Fisher.

Finally, I wish to thank my family for all of their ongoing support. Most of all

my darling wife Elizabeth who has been an inspiration throughout all of my studies.

This thesis was typeset with LATEX2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark
of the American Mathematical Society. The style package warwickthesis was used.

x

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one – and preferably only one – obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

The Zen of Python by Tim Peters

xi

Declarations

I declare that the material in this thesis is, to the best of my knowledge, my own

except where otherwise indicated or cited in the text, or else where the material is

widely known. This material has not been submitted for any other degree.

Some of the material of Chapters 2 and 3 appears in an earlier preprint [8].

Additionally some of the material of Chapters 4 and 5 appears in a preprint [9]

currently under submission.

All tables and figures were created by the author using Inkscape, Python,

Sage and TikZ.

xii

Abstract

This thesis focuses on three decision problems in the mapping class groups of

surfaces, namely the reducibility, pseudo-Anosov and conjugacy problems. For a fixed

surface, we use ideal triangulations to model both its mapping class group and space

of measured laminations. This allows us to state these problems combinatorially. We

give new solutions to each of these problems that, unlike the existing solutions which

are based on the Bestvina–Handel algorithm, run in polynomial time when given a

suitable certificate. This allows us to show that in fact each of these problems lies in

the complexity class NP ∩ co-NP instead of just EXPTIME.

At the heart of each of our solutions is the maximal splitting sequence of a

projectively invariant measured lamination, as described by Agol. The complexity of

this sequence bounds the difficulty of determining many of the properties of such a

lamination, including whether it is filling. In Chapter 4 we give explicit polynomial

upper bounds on the periodic and preperiodic lengths of such a sequence. This allows

us to construct the running time bounds needed to show that these problems lie in

NP ∩ co-NP.

We finish with a discussion of an implementation of these algorithms as part of

the Python package flipper. We include several examples of properties of mapping

classes that can be computed using it.

xiii

Abbreviations

Throughout we use:

• Sg,n to denote the closed, connected, orientable surface of genus g with n

marked points.

• ord(g) to denote the order of a group element g.

• N to denote the set of natural numbers, including zero.

• R≥0 to denote the set of non-negative real numbers.

• N(x) to denote a closed regular neighbourhood of x.

• Id to denote the identity matrix, the dimension of which will always be evident

from the context.

•
⎛
⎜
⎝

A

B

⎞
⎟
⎠
to denote the join of matrices A and B obtained by stacking their rows.

Furthermore, for a marked surface S we use:

• g(S) to denote the genus of S,

• n(S) to denote the number of marked points of S, and

• ∣S∣ to denote the number of connected components of S

and for a vector v we use:

• v ≥ 0 to denote that v is non-negative, that is, each entry of v is non-negative,

• v ≥2 0 to denote that v ≥ 0 and that each entry of v is an even integer, and

xiv

• ∣∣v∣∣ to denote the 1–norm of v.

xv

Chapter 1

Introduction

Mapping class groups of surfaces have been studied for almost a century [33]. First
introduced by Dehn, their natural actions on spaces including the curve complex,
PML and Teichmüller space were studied extensively by Nielsen, Teichmüller, Bers,
Harvey and Thurston. Many of these spaces are combinatorial in nature and this has
allowed problem regarding mapping classes to be tackled algorithmically.

A key result in the theory of mapping classes, started by Nielsen and completed
by Thurston, is their classification:

Theorem 1.0.1 (Nielsen–Thurston classification [37, Theorem 13.2]). For any con-
nected marked surface S, each mapping class is either:

• periodic, that is, finite order;

• reducible, that is, fixes a multicurve; or

• pseudo-Anosov, that is, projectively fixes a filling measured lamination.

Moreover, a mapping class is pseudo-Anosov if and only if it is neither periodic nor
reducible.

This is perhaps easiest to see in the case of the once-marked torus. As a
motivating example, consider the linear transformation of R2 given by the matrix

M ∶=
⎛
⎝

2 1

1 1

⎞
⎠
∈ SL(2,Z).

This homeomorphism of the plane preserves the integer lattice Z2 and so descends to
a homeomorphism φ of the once-marked torus

S1,1 ∶= R2 / Z2 ,

1

where the marked point lifts to the lattice. There are several different ways to see
that h = [φ], the mapping class represented by φ, does not fix any simple closed
curve. A straightforward way to see this is to note that if there were such a curve
then it would lift back to an invariant line in R2. This line would have rational slope
and M would have 1 as an eigenvalue, which it does not.

An alternative, and much more closely related to the techniques we will
develop in Chapter 4, way to see this is to note that M has

⎛
⎝
v1

v2

⎞
⎠
=
⎛
⎝
ϕ

1

⎞
⎠

as an eigenvector, where ϕ = 1+
√
5

2 is the golden ratio. This gives rise to a lamination
L on S1,1 which is projectively invariant under h. Now any curve which meets L
cannot be invariant under h as the measure assigned to it by L changes by a factor
of ϕ > 1 when h is applied. Thus we need only to discount the possibility of a loop
disjoint from L, running parallel to its leaves. To do this, we note that ϕ ∶= 1 + 1

ϕ

and so the continued fraction expansion of v1/v2 is

1 + 1

1 + 1
1+ 1

⋯

Therefore the line which is disjoint from L has slope v1/v2 which is irrational and so
does not correspond to a simple closed curve. Hence h is irreducible.

Furthermore, as M, . . . ,M6 ≠ Id, by Landau’s estimate [57, Page 631] h is
aperiodic and so we deduce that h is pseudo-Anosov.

In fact, every mapping class on the once-marked torus descends from such a
linear transformation [37, Section 2.2.4]. The previous argument can be applied to any
aperiodic mapping class. Its corresponding matrix in SL(2,Z) has a real eigenvector
(v1 v2)T giving a projectively invariant lamination L on S1,1. Assuming that v2 ≠ 0,
the ratio v1/v2 is an algebraic number and lies in a real quadratic extension. Thus
its continued fraction expansion

v1/v2 = a0 +
1

a1 + 1
a2+ 1

⋯

= [a0, a1, a2, . . .]

is either finite or eventually periodic [51, Theorem 28]. Again, these two cases
differentiate between when the line with slope v1/v2 corresponds to an invariant
simple closed curve or not respectively. The eventual periodicity of this sequence

2

gives us a termination criteria and so a finite algorithm to decide which of these two
cases we are in.

Although a similar result also holds for S0,4 and matrices in PSL(2,Z) [37,
Proposition 2.6], the mapping class group of a general surface is not even known to
be linear [36, Page 16]. Despite this, we will show that a version of this construction
can still be done.

Mapping classes also appear in low-dimensional topology in the form of fibred
3–manifolds. The mapping torus with monodromy φ ∈ Homeo+(S) is the 3–manifold:

Mφ ∶= (S − P) × [0,1] / (x,0) ∼ (φ(x),1)

where P is the set of marked points of S. As the homeomorphism class of Mφ is
invariant under isotopy of φ, we also denote this by Mh where h = [φ]. For such
manifolds their geometry is determined entirely by the Nielsen–Thurston type of
their monodromy.

Theorem 1.0.2 ([37, Theorem 13.4]). The mapping torus Mh is hyperbolic if and
only if h ∈ Mod+(S) is pseudo-Anosov.

This allows us to construct many examples of hyperbolic 3–manifolds using the
previous procedure. The mapping class h ∈ Mod+(S1,1), defined above by the matrix
M , is perhaps the most famous of these. Its mapping torus Mh is homeomorphic
to the complement of the figure 8 knot shown in Figure 1.1 [22, Section 5.14] [41,
Chapter 8]. Thus, as h is pseudo-Anosov this is a hyperbolic knot [87, Page 4].

Figure 1.1: The figure 8 knot.

Mapping tori are also of considerable interest thanks to resolution of the
virtual fibering conjecture:

3

Theorem 1.0.3 (The virtual fibering conjecture [4, Theorem 9.2]). Every hyperbolic
3–manifold has a finite index cover which is a mapping torus.

The surfaces S0,n (n ≥ 4) have also been of particular interest and where
significantly more progress has been made. Here determining reducibility for an
element of Mod+(S0,n) is closely related to determining the reducibility of a braid in
Bn−1, the braid group on n − 1 strands. This appears as Problem 6 of [16, Page 216].
Los first showed that this was decidable [58]. Using Garside normal form, Benardete,
Gutierrez and Nitecki improved this to give an exponential time solution [12]. For B4,
Calvez and Wiest gave a solution which is quadratic in braid length [26]. However,
their results are specific to B4 and do not generalise. Most recently Calvez showed
that for each n there is an algorithm for determining reducibility for Bn whose
runtime is cubic in braid length [25, Theorem 1]. However, this result uses the
Linearly Bounded Conjugator Property of the mapping class group [84, Theorem B]
[59, Theorem 7.2]. As this linear bound is not explicitly known, this is an existence
result and is not constructive.

For the conjugacy problem, again the Garside structure of the braid group
gives rise to an exponential time solution [43] [15].

1.1 Overview and main results

We fix a marked surface S and a finite generating set X of its mapping class group.
In Chapter 2 we introduce our main tool: ideal triangulations of S. We use

these to combinatorially model both multicurves on S and the mapping class group
of S. Furthermore we give an explicit description of how to construct a sequence
of triangulations representing a Dehn twist and a half twist about a curve. This
is based on a sequence of lemmas (Lemma 2.4.3 – Lemma 2.4.5) that allow us to
simplify a triangulation with respect to a curve.

In Chapter 3 we introduce the weight space of a triangulation which we use
to encode multicurves. We use the action of the mapping class group on this space
to bound the complexity of reducing curves (Theorem 3.3.3). We use this to tackle
the reducibility problem and show that it lies in NP (Corollary 3.3.5). We also
introduce the canonical curve system of a mapping class, which was shown to be
bounded exponentially by Koberda and Mangahas [54, Theorem 1.1]. By showing
how to induct on subsurfaces and control the complexity of the transition, we give
an alternate proof of their result (Corollary 3.4.11).

In Chapter 4 we generalise the weight space of a triangulation, along with
our model of computation, to allow us to combinatorially represent and manipulate

4

measured laminations on S. Here we describe the main algorithm of this thesis
(Section 4.3); an algorithm to determine whether a mapping class is pseudo-Anosov.
Our approach relies on the maximal splitting move of a measured train track, originally
described by Agol. By constructing an explicit upper bound on the number of these
moves needed (Theorem 4.2.9 and Theorem 4.2.12) we show that deciding whether
a mapping class is pseudo-Anosov is also a problem in NP (Corollary 4.6.1). The
upper bound of Theorem 4.2.12 relies on the Linearly Bounded Conjugator Property
of the mapping class group [84, Theorem B] [59, Theorem 7.2]. This means that the
main algorithm suffers from the same problems as Calvez’s algorithm for deciding
reducibility in Bn [25, Theorem 1]. We describe a minor change that can be made to
the main algorithm so that knowledge of the linear bounding constant is not needed
in order to run it (Remark 4.3.2).

In Chapter 5 we use these tools to tackle the conjugacy problem for mapping
class groups. We do this by breaking into four cases: depending on whether the
mapping class is periodic or aperiodic and is reducible or irreducible. For each we
describe a total conjugacy invariant:

• In the periodic case we use the quotient orbifold.

• In the aperiodic, irreducible case we use the periodic part of the maximal
splitting sequence.

• In the aperiodic, reducible case we use its partition graph.

Again we construct a bound on the complexity of the construction of each of these
invariants. This extends a result of Tao [84, Theorem B] to show that the conjugacy
problem lies in NP ∩ co-NP (Corollary 5.5.6).

In Chapter 6 we describe several additional properties of mapping classes and
show that for each the problem of computing them lies in NP (or its equivalent
functional class FNP). We give details of an implementation of the main algorithm,
as part of the Python package flipper, along with several examples of the kinds of
calculations that can be done using it. Further information about flipper can also
be found in Appendix A and Appendix B. We finish with some further extensions
and conjectures, in particular the difficulties that arise when S is allowed to vary.

1.2 Preliminaries

We now set some additional notation and terminology.
Let S be a marked surface and P its set of marked points. We allow S to have

finitely many connected components, each of finite type. However, due to a technical

5

restriction which appears in Chapter 2, we require that none of these components
are Sg,0, S0,1 or S0,2. The mapping class group of S is

Mod+(S) ∶= Homeo+(S) / isotopy

where Homeo+(S) is the group of orientation-preserving homeomorphisms of S and
the isotopies are performed relative to P [37, Chapter 2]. For a detailed discussion of
mapping class groups we refer the reader to [37] and [39].

The mapping class group of S is finitely generated [37, Theorem 5.7] and we
fix X to be one such finite generating set. We consider the word h = h1⋯hk ∈ X∗

as representing the mapping class h1 ○ ⋯ ○ hk and write `(h) ∶= k for the length of h.
Additionally, we write g ≡ h if two words g, h ∈X∗ represent the same mapping class.

A multicurve γ on S is the isotopy class of the image of a smooth embedding
of a finite number of copies of S1 into S, disjoint from P , such that no component
of S − γ is a disk or once-marked disk. We denote the set of all multicurves on S
by C(S). This is a strictly larger set than the set of simplices of the curve complex
of S [59]; it includes multicurves in which some of the components are parallel. A
multicurve is a curve if it has exactly one component. To avoid a recurring edge
case we will disallow the empty multicurve, the multicurve with zero components,
throughout.

We use curves on S to describe two types of elementary mapping classes.

Dehn twists

Suppose that γ ∈ C(S) is a curve. The left Dehn twist about γ, denoted Tγ , is the
mapping class that acts on a neighbourhood of γ as shown in Figure 1.2 and by the
identity elsewhere [37, Section 3.1.1]. Its inverse, T−1γ , is also referred to as a right
Dehn twist. If γ is a multicurve then we use Tγ to denote the composition of Dehn
twists about each of its components. These commute and so the order of composition
is not important.

Half twists

A curve γ ∈ C(S) is half-twistable if a component of S − γ is a twice-marked disk. For
such a curve there is a topological square root of Tγ , the half twist about γ, denoted
T
1/2
γ . This acts on a neighbourhood of the twice-marked disk as shown in Figure 1.3

and by the identity elsewhere [37, Section 9.1.3].
When S is connected, Dehn twists and half twists generate Mod+(S). In

fact PMod+(S), the subgroup consisting of the elements of Mod+(S) that fix each

6

γ

Tγ

Figure 1.2: A left Dehn twist about γ.

A

B

γ

B

A

T
1/2
γ

Figure 1.3: A left half twist about γ.

marked point, is generated by Dehn twists along the 2g + n + 1 non-separating curves
shown in Figure 1.4. These twists along with n − 1 half twists that exchange each
pair of marked points generate Mod+(S) [55, Proposition 2.10].

⋯⋮

Figure 1.4: The Labruère–Paris generating set [55, Figure 13].

1.3 Decision problems

We also recall some standard definitions from computational complexity theory. We
will be concerned with decision problems, a parametrised family of questions each
with a yes / no answer. A decision problem Q is decidable if there is a Turing machine
M such that for each instance ω ∈ Q: M accepts ω if Q(ω) is true and rejects it

7

otherwise [82, Chapter 3]. Additionally, for an instance ω ∈ Q we denote the size of
the input to M by ∣ω∣.

The following complexity classes will appear throughout this thesis.

Definition 1.3.1 ([48, Appendix A.1]). A decision problem Q is in P if there is a
polynomial q ∈ Z[x] and Turing machine M such that for each instance ω ∈ Q: M
accepts ω in time q(∣ω∣) if and only if Q(ω) is true.

These are the problems that can be efficiently solved by a computer.

Definition 1.3.2 ([48, Appendix A.2]). A decision problem Q is in NP if there is a
polynomial q ∈ Z[x] and Turing machine M such that for each instance ω ∈ Q: there
is a certificate c such that M accepts (ω, c) in time q(∣ω∣) if and only if Q(ω) is true.

These are the problems for which if an instance is true then there is a small
proof of this which can be efficiently verified by a computer.

Definition 1.3.3 ([48, Appendix A.4]). A decision problem Q is in co-NP if there
is a polynomial q ∈ Z[x] and Turing machine M such that for each instance ω ∈ Q:
there is a certificate c such that M accepts (ω, c) in time q(∣ω∣) if and only if Q(ω)
is false.

These are the problems for which if an instance is false then there is a small
counterexample which can be verified efficiently.

It is well known that NP ⊆ EXPTIME, the class of problems solvable in
exponential time [48, Appendix A.5]. Moreover, given a polynomial-time algorithm
for validating certificates of a problem Q ∈ NP there is a method for building
an exponential time algorithm for solving Q. There is an analogous construction
for co-NP ⊆ EXPTIME. Other relations, such as P = NP, NP = co-NP and
P =NP ∩ co-NP, remain major open problems in computational complexity theory.

We will begin by working only with integers and, to simplify our analysis, we
will assume that in our model of computation there is no cost associated to accessing
variables. For a function f ∶Nk → N we use the standard computational complexity
notation of:

O(f) ∶= {g∶Nk → N ∶ ∃C such that g(x) ≤ Cf(x) for all but finitely many x}.

As expected if f ′ ∈ O(f) and g′ ∈ O(g) then

f ′ + g′ ∈ O(f + g) and f ′g′ ∈ O(fg).

8

P

EXPTIME

NP co-NP

Figure 1.5: Relationships between complexity classes. Note that many of these
containments are not known to be strict.

Definition 1.3.4. An integer x is k–bounded if it has at most k digits, that is, if it
can be represented by O(k) bits.

As part of our model of computation, we will assume that if x and y are
k–bounded then:

• sign(x) can be computed in O(1) operations,

• x ± y is (k + 1)–bounded and can be computed in O(k) operations, and

• xy is 2k–bounded and can be computed in O(k2) operations.

More generally, we will say that a vector (or matrix) is k–bounded if each of
its entries is k–bounded. Thus a k–bounded, m × n matrix can be represented by
O(mnk) bits.

9

Chapter 2

Triangulations

The purpose of this chapter is to build a combinatorial model of Mod+(S) using ideal
triangulations. These triangulations will also allow us to describe curves on S. We
go on to give a method for constructing explicit representations of a Dehn twist and
half twist about certain curves, which includes a generating set of Mod+(S).

2.1 Triangulation coordinates

Definition 2.1.1. An (ideal) triangulation T of S is the isotopy class of the image
of an embedding of a finite number of copies of [0,1] into S such that:

• the endpoints of each interval are sent to marked points,

• no component is isotopic to a marked point, and

• the metric completion of each component of S − T is an unmarked triangle

together with an ordering of the components.

As S cannot be triangulated when it has an Sg,0, S0,1 or S0,2 component [79],
we disallow these surfaces throughout.

To follow standard conventions, we refer to the marked points as vertices, the
images of the intervals as edges and the metric completion of the components of S−T
as faces. We denote the sets of these by V (T), E(T) and F (T) respectively. We let

ζ = ζ(S) ∶= 6 g(S) + 3 n(S) − 6∣S∣ ≥ 3∣S∣

denote the complexity of S. This is equal to the number of edges of any triangulation
of S.

10

We think of the triangulation T , with edges e1, . . . , eζ , as providing a coordi-
nate system on C(S) [62, Theorem 3.2.4]. The multicurve γ ∈ C(S) corresponds to
its normal coordinate, the point:

T (γ) ∶=
⎛
⎜⎜⎜
⎝

ι(γ, e1)
⋮

ι(γ, eζ)

⎞
⎟⎟⎟
⎠
∈ Nζ

where ι(α,β) denotes the (geometric) intersection number between α and β. Although
a multicurve is uniquely determined by T (γ), and so distinct multicurves have distinct
coordinates, not all coordinates correspond to multicurves. In fact (v1 ⋯ vζ)T

corresponds to a multicurve if and only if:

• ∑ vi > 0,

• for each triangle a, b, c we have that va + vb − vc ≥2 0, and

• for each vertex v there is a face with sides a, b, c such that v ⊆ a ∩ b and
va + vb = vc.

Lemma 2.1.2. If v ∈ Nζ is a k–bounded vector then we can determine whether v
corresponds to a multicurve in O(k) operations.

2.2 Nearby triangulations

We use two elementary methods of altering a triangulation:

1. We may reorder the edges of T using a permutation.

2. If an edge e ∈ E(T) meets two distinct faces then we may flip it. This is done
by replacing e with the opposite diagonal of the square it is contained in, as
shown in Figure 2.1.

Following this second move, we say that an edge e of T is flippable if it meets
two distinct faces. This move is also known as a 2–2 Pachner move [71, Definition 2.1].

We call a sequence of edge flips and reorderings, starting with the triangulation
T and finishing with T ′, as a path from T to T ′. For such a path p we write `(p)
for the number of edge flips that occur. Hatcher showed that any two triangulations
are connected by such a path [47, Page 190]. This gives a pseudo-metric on the
set of triangulations and relative to this the mapping class group acts on this
space geometrically, that is, properly discontinuously, cocompactly and by isometries.

11

e e′

a

b

c

d
Flip

Figure 2.1: Flipping an edge of a triangulation.

Therefore there is an integer Q such that this space is Q–quasi-isometric to Mod+(S)
(with respect to X) [19, Proposition 8.19].

To ease the notation in the following chapters, we fix a triangulation T∗ of S.
Additionally, for each generator h ∈ X we fix a path from T∗ to h(T∗) of length at
most Q. Then for any word h ∈X∗ we obtain a path from T∗ to h(T∗) of length at
most Q`(h) ∈ O(`(h)) by concatenating translations of these paths. We refer to this
as the standard path of h. Finally, we will simply say that a multicurve γ ∈ C(S) is
k–bounded if the vector T∗(γ) is.

While it is obvious how the edge intersection numbers of a multicurve change
under a reordering, the following propositions controls how they change under a flip.

Proposition 2.2.1. Suppose that γ is a multicurve and e is a flippable edge of a
triangulation T as shown in Figure 2.1 then

ι(γ, e′) = max(ι(γ, a) + ι(γ, c), ι(γ, b) + ι(γ, d)) − ι(γ, e).

By tracking how the intersection numbers between a multicurve and the edges
of a triangulation change under a sequence of flips and reorderings we obtain:

Lemma 2.2.2. Suppose that h ∈ Mod+(S) is a mapping class and p is a path from
T to h(T). If γ ∈ C(S) is a multicurve and T (γ) is k–bounded then T (h(γ)) is
(k + 3`(p))–bounded and can be computed in O(k`(p) + `(p)2) operations.

2.3 Existing algorithms

This type of coordinate system on C(S) has already been studied by various groups
including Erickson and Nayyeri [35]; Agol, Hass and Thurston [5]; and Schaefer,
Sedgwick and Štefankovič [80]. They have given several algorithms of which we
highlight three that will be particularly useful over the coming chapters.

12

Suppose that T is a triangulation and that γ and γ′ are multicurves. The
following algorithms take T (γ) and T (γ′) as input, which we assume to be k–
bounded. Firstly, we may extract the coordinate vectors and multiplicities of each of
the components of γ:

Proposition 2.3.1 ([35, Section 6] [5] [80, Theorem 1]). There is an algorithm to
compute T (γ0), for each curve γ0 ⊆ γ, along with the number of components in that
class in O(poly(k)) operations.

Using this one can also determine the total number of components of γ in
O(poly(k)) operations. Secondly, we can compute the image of one multicurve under
the Dehn twist about another:

Proposition 2.3.2 ([81, Theorem 4.1]). Let γ′′ ∶= Tγ(γ′) then T (γ′′) is 2k–bounded
and there is an algorithm to compute it in O(poly(k)) operations.

From this one obtains an algorithm to compute the intersection number of
two multicurves:

Theorem 2.3.3 ([81, Lemma 5.4]). The intersection number ι(γ, γ′) is 2k–bounded
and there is an algorithm to compute it in O(poly(k)) operations.

2.4 Twist paths

We now describe a procedure for finding a path from T to Tγ(T) whenever γ is
a sufficiently nice curve. To algorithmically construct these we first require two
technical lemmas.

Lemma 2.4.1. Suppose that T is a triangulation with edges e1, . . . , eζ then

ι(α,T) =∑ ι(α, ei).

Proof. This result follows immediately from the bigon criterion: if a ∈ α and b ∈ β
are representatives then ∣a ∩ b∣ = ι(α,β) if and only if a and b intersect transversely
and do not form any bigons. [37, Proposition 1.7]

Lemma 2.4.2. If e maximises ι(γ, ⋅) over all edges of T then e is flippable.

Proof. If e is not flippable then there is a face with sides a, e and e as shown in
Figure 2.2. Therefore ι(γ, a) = 2 ι(γ, e) and so, as e maximises ι(γ, ⋅) over all edges
of T , we have that ι(γ, e) = 0. This contradicts the fact that γ is a curve.

13

e

a

Figure 2.2: A non-flippable edge e.

2.4.1 Twisting a small curve

We start with a particularly simple case. Suppose that γ is a curve which meets T
as shown in Figure 2.3. This situation is characterised by the fact that ι(γ,T) = 2.

e

γ

T Tγ(T)

Tγ

Figure 2.3: A Dehn twist along a small curve.

In this case we can give an explicit path from T to Tγ(T) as they differ only
by a flip of edge e and a reordering of edges.

2.4.2 Shortening a curve

For a more general curve γ, we aim to produce a sequence of flips to reduce γ to the
case in Section 2.4.1. We say that an edge e of a triangulation T is shortening (with
respect to γ) if e is flippable and ι(γ,T ′) < ι(γ,T), where T ′ is the triangulation
obtained by flipping e.

Lemma 2.4.3. Let T be a triangulation and γ a curve. If ι(γ, e) > 2 for some edge
e of T then there is a shortening edge.

14

Proof. We will show the contrapositive, so suppose that every edge of T is non-
shortening. Now, abusing notation slightly, isotope γ so that it realises ι(γ,T). Let
Z ∶= γ ∩ T and for z ∈ Z define

∣∣z∣∣ ∶= min(∣γ ∩ e1∣, ∣γ ∩ e2∣)

where e1 and e2 are the two components of e − {z} and e is the edge of T containing
z. Additionally let k ∶= maxe∈E(T)(ι(γ, e)) and k′ ∶= maxz∈Z(∣∣z∣∣).

There is a point z ∈ Z such that ∣∣z∣∣ = k′ and if e is the edge containing z then
ι(γ, e) = k. By Lemma 2.4.2, e must be flippable. Therefore, following the notation
of Figure 2.1, as this is not a shortening edge we have that

max(ι(γ, a) + ι(γ, c), ι(γ, b) + ι(γ, d)) − ι(γ, e) ≥ ι(γ, e).

Hence it follows that either ι(γ, a) = ι(γ, c) = k or ι(γ, b) = ι(γ, d) = k. Without loss
of generality we will assume the latter.

Now z is connected via γ to a point z′ ∈ Z∩b and z′′ ∈ Z∩d. From the previous
calculation we deduce that ∣∣z′∣∣ = ∣∣z′′∣∣ = k′. Thus by repeating this argument we see
that, as γ is connected, ∣∣ ⋅ ∣∣ is constant and so must in fact be the zero function. This
shows that ι(γ, e) ≤ 2 for each edge e and so the result holds.

eγ z
z′ z′′

a

b

c

d

Figure 2.4: The nearby points of z. Here ∣∣z∣∣ = 1.

Lemma 2.4.4. Let T be a triangulation and γ a curve. If ι(γ,T) > 2 and ι(γ, e) ≤ 1

for every edge e then either:

• there is a shortening edge, or

• flipping any edge meeting γ preserves ι(γ,T) and afterwards there is a shorten-
ing edge.

15

Proof. Suppose that there are no shortening edges. Let e be an edge meeting γ then e
must be flippable and, following the notation of Figure 2.1, without loss of generality
we have that

ι(γ, b) = ι(γ, d) = 1 and ι(γ, a) = ι(γ, c) = 0.

Additionally, d must be flippable and γ must extend through the other triangle
meeting d as shown in Figure 2.5 as otherwise d would be a shortening edge. In this
case flipping e preserves ι(γ,T) and afterwards d is a shortening edge.

e

x

y

γ

a

b

c

d

Figure 2.5: A curve meeting each edge at most once.

Unfortunately, we cannot bridge the conclusion of Lemma 2.4.3 to the hy-
pothesis of Lemma 2.4.4 as this would imply that each component of S − γ contains
at least one marked point. However, this is the only obstruction. Following this we
say a curve γ is isolating if a component of S − γ contains no marked points. In
particular, all non-separating curves are non-isolating.

Lemma 2.4.5. Let T be a triangulation and γ a non-isolating curve. If ι(γ, e) > 1

for some edge e then there is a shortening edge.

Proof. Following Lemma 2.4.3, we may assume that ι(γ, e) ≤ 2 for every edge e.
As γ is non-isolating, a parity argument shows that there is an edge which

meets γ once. Hence there is a flippable edge e such that ι(γ, e) = 2 and, again
following the notation of Figure 2.1, that

ι(γ, a) = ι(γ, b) = 1.

In this case by Proposition 2.2.1

ι(γ, e′) = max(ι(γ, c), ι(γ, d)) − 1 < 2 = ι(γ, e)

and so e is a shortening edge of T .

16

Theorem 2.4.6. If T is a triangulation and γ is a non-isolating curve then we can
compute a path from T to Tγ(T) of length at most 4 ι(γ,T) in O(ι(γ,T)) operations.

Proof. By repeatedly applying Lemma 2.4.3, Lemma 2.4.5 and then Lemma 2.4.4 we
obtain a path p1 from T to a triangulation T ′ such that ι(γ,T ′) = 2. Then, following
Section 2.4.1, we can construct a path p2 from T ′ to Tγ(T ′). Finally, the sequence
of flips corresponding to the reverse of p1 applied to Tγ(T ′) gives a path p3 from
Tγ(T ′) to Tγ(T). Concatenating p1, p2 and p3 gives the required path.

Remark 2.4.7. In the proof of each of Lemma 2.4.3, Lemma 2.4.4 and Lemma 2.4.5,
the shortening edge found maximises ι(γ, ⋅) over all edges of T . Thus when performing
this procedure one may keep the edges of T in a priority queue [30, Section 6.5],
ordered by intersection number with γ. Typically this significantly reduces the
overhead of repeatedly finding a shortening edge.

2.4.3 Half twisting a small curve

Analogous to Section 2.4.1, suppose that γ is a curve which meets T as shown in
Figure 2.6. In this case one of the components of S − γ is a twice-marked disk and so
we may perform a half twist about γ.

e

a

b

c

b

γ

T T
1/2
γ (T)

T
1/2
γ

Figure 2.6: A half twist along a small curve.

Again, in this case we can give an explicit path from T to T 1/2
γ (T): flip edge c,

then e, then b and reorder the edges. Again, the techniques described in Section 2.4.2
allow us to shorten any non-isolating curve bounding a twice-marked disk until it is
as shown in Figure 2.6 and so we obtain:

17

Theorem 2.4.8. If T is a triangulation and γ is a non-isolating, half-twistable
curve then we can compute a path from T to T 1/2

γ (T) of length at most 4 ι(γ,T) in
O(ι(γ,T)) operations.

2.4.4 Isolating curves

Finally, in the case when γ is an isolating curve, we note that we can still apply the
arguments of Section 2.4.2 to reduce to the case that ι(γ, e) ∈ {0, 2} for every edge e.
Let S′ be the component of S − γ which does not contain any marked points. We
find non-separating curves γ1, . . . , γ2g′ (where g′ ∶= g(S′)) such that

ι(γi, γj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i = j ± 1

0 otherwise

and N(γ1 ∪ ⋯ ∪ γ2g′) = S′. An example of such a chain when g(S′) = 4 is given in
Figure 2.7. Then by the chain relation [37, Proposition 4.12]:

Tγ = (Tγ1 ○ ⋯ ○ Tγ2g′)
4g′+2.

Hence we can still compute a path from T to Tγ(T).

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8 8γ2 γ4 γ6
γ8

γ6 γ4 γ2
γ3 γ5 γ5 γ3γ7γ1

γ1

Figure 2.7: A chain on S4,1. Sides with the same label are identified via a translation.

To perform a half-twist about an isolating curve γ, we first note that S must
have exactly two marked points. As before we build a chain of length 2g′ in S′ and
combine

(Tγ1 ○ ⋯ ○ Tγ2g′)
2g′+1

with an involution of T which interchanges the two marked points to obtain a path
from T to T 1/2

γ (T).

18

Chapter 3

Reducible mapping classes

In this chapter we use the action of the mapping class group on the weight space of a
triangulation to bound the number of bits needed to describe a reducing curve. We
use this to tackle the reducibility problem and show that it lies in NP. Furthermore,
by showing how to induct on subsurfaces and control the complexity of the transition
we also give an alternate proof of a result of Koberda and Mangahas on the complexity
of the canonical curve system of a mapping class [54, Theorem 1.1].

Much of the material of this chapter appears as part of [8].

3.1 Reducing curves

If h ∈ Mod+(S) is a mapping class then we say that a multicurve γ ∈ C(S) is
h–invariant if h(γ) = γ.

Definition 3.1.1 ([37, Section 13.2.2]). A mapping class h ∈ Mod+(S) is reducible
if there is an h–invariant multicurve. A word in X∗ is reducible if its corresponding
mapping class is.

Problem 3.1.2 (The reducibility problem). Fix S, a marked surface, and X, a finite
generating set of Mod+(S). Given a word h ∈X∗ decide whether h is reducible.

There are several algorithms to determine whether a mapping class is reducible.
For example, this can be done using an adaptation of the Bestvina–Handel algorithm
[13], which was originally used for the analogous problem for outer automorphisms of
a free group using the theory of train-tracks [14]. However, the complexity of this
algorithm is still unknown.

We use the piecewise-linear structure given to C(S) by T to show that if
h ∈X∗ is reducible then it fixes a small multicurve. Such an invariant multicurve acts

19

as a certificate of reducibility and, as it is sufficiently small, that it can be verified in
quadratic time. As usual, this gives another exponential time algorithm to determine
whether a word is reducible.

3.2 Small vectors in polytopes

We will express the reducibility problem as a linear programming (LP) problem.
Small invariant curves will then correspond to small solutions to this LP problem.
This is closely related to the vertex enumeration problem for unbounded polytopes
[18]. We start with a technical lemma for bounding determinants of matrices.

Lemma 3.2.1. If M is a k–bounded, n×n matrix then det(M) is (kn+n log(n)/2)–
bounded.

Proof. This bound follows immediately from Hadamard’s inequality [42, Theo-
rem 14.1.1].

Proposition 3.2.2. Suppose that M is a k–bounded, m × n matrix. If the polytope

P ∶= {v ∈ Nn ∶M ⋅ v ≥ 0}

is non-trivial then it contains a non-trivial (nk + n log(n)/2)–bounded integral vector.

Proof. Without loss of generality we may assume that the basis vectors (0 ⋯ 0 1 0 ⋯ 0)
are rows of M . Let v0 be an extremal vector of P, that is, v0 ∈ P and there are n − 1

linearly independent rows r1, . . . , rn−1 ofM such that ri ⋅v0 = 0. We claim that we can
rescale v0 to obtain v1, a vector in which each entry is a (nk + n log(n)/2)–bounded
integer.

To see this, define r0 ∶= (1 ⋯ 1) and letA be the matrix with rows r0, r1, . . . , rn−1.
Then v0 is the unique solution to

A ⋅ v = ∣∣v0∣∣ ⋅

⎛
⎜⎜⎜⎜⎜
⎝

1

0

⋮
0

⎞
⎟⎟⎟⎟⎟
⎠

By Cramer’s rule, if Ai is the matrix obtained by replacing the ith column of A by
(1 0 ⋯ 0)T then the ith entry of v0 is given by

∣∣v0∣∣ ⋅
det(Ai)
det(A) .

20

Hence, by rescaling v0 by ∣det(A)∣/∣∣v0∣∣ we obtain a vector v1 ∈ P whose ith entry
is ∣det(Ai)∣. Moreover v1 is (nk + n log(n)/2)–bounded as each ∣det(Ai)∣ is by
Lemma 3.2.1.

3.3 Bounds on reducing curves

We start by rephrasing Lemma 2.1.2 as a linear programming problem.

Lemma 3.3.1. There are O(1)–bounded ζ×3ζ matrices F1, . . . , Fk such that a vector
v ∈ Nζ corresponds to a multicurve γ ∈ C(S) if and only if v ≠ 0 and

Fi ⋅ v ≥2 0

for some i.

Similarly, we express Lemma 2.2.2 using matrices. A mapping class induces a
piecewise-linear transformation on the weight space of a triangulation. We record this
transformation via two collections of matrices {Ai} and {Bi}. Here the matrix Ai
describes the linear transformation inside of the ith cell and the matrix Bi describes
the system of linear inequalities which define the ith cell.

For a path consisting of a single reordering of the edges of a triangulation we
define its matrices to be:

A1 ∶= the permutation matrix of the reordering

B1 ∶= (0 ⋯ 0)

For a path consisting of a single flip of an edge e of a triangulation, as shown
in Figure 2.1, we define its matrices to be:

A1 ∶= Id+Eea +Eec − 2Eee

A2 ∶= Id+Eeb +Eed − 2Eee

B1 ∶= Ea +Ec −Eb −Ed
B2 ∶= Eb +Ed −Ec −Ea

where Ei is the ζ × 1 matrix with a 1 at position (i, 1) and 0 everywhere else and Eij
is the ζ × ζ matrix with a 1 at position (i, j) and 0 everywhere else.

21

For a longer path p ⋅ p′ we inductively define its matrices as:

A′′
k ∶= A′

j ⋅Ai and B′′
k ∶=

⎛
⎝

Bi

B′
j ⋅Ai

⎞
⎠

where {Ai} and {Bi} are the matrices of p and {A′
j} and {B′

j} are the matrices of
p′. For further details of this construction see [8, Section 3].

Lemma 3.3.2. Suppose that h ∈ Mod+(S) is a mapping class and that p is a path
from T to h(T). Let {Ai} and {Bi} be the matrices defined above.

1. Each Ai and Bi is `(p)–bounded.

2. Each Bi has O(`(p)) rows.

3. For each multicurve γ ∈ C(S) we have that Bi ⋅ T (γ) ≥ 0 for some i.

4. For each multicurve γ ∈ C(S) we have that

T (h(γ)) = Ai ⋅ T (γ) if and only if Bi ⋅ T (γ) ≥ 0.

Theorem 3.3.3 ([8, Theorem 4.1]). Suppose that h ∈ Mod+(S) is a mapping class
and that p is a path from T to h(T). If h is reducible then there is an h–invariant
multicurve such that T (γ) is O(`(p))–bounded.

Proof. Let {Ai} and {Bi} be the matrices of Lemma 3.3.2. Additionally, let {Fj} be
the matrices of Lemma 3.3.1. Then for each i and j, let

M(i, j) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ai − Id

−(Ai − Id)
Bi

Fj

Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We begin by claiming that h is reducible if and only if there is a non-trivial solution
to M(i, j) ⋅ v ≥ 0 for some i and j.

To prove this claim, firstly suppose that h(γ) = γ and let v ∶= T (γ) ≠ 0. Let i
be such that Bi ⋅ v ≥ 0 and so Ai ⋅ v = T (h(γ)) = v. Hence

(Ai − Id) ⋅ v ≥ 0 and − (Ai − Id) ⋅ v ≥ 0.

As γ is a multicurve there is a j such that Fj ⋅ v ≥ 0. Thus v is a non-trivial vector
and M(i, j) ⋅ v ≥ 0.

22

Conversely, suppose that v is a non-trivial solution to M(i, j) ⋅ v ≥ 0. Without
loss of generality we may assume that the entries of v are non-negative and rational
as M(i, j) defines a rational polytope. Furthermore, by scaling v by a sufficiently
large natural number we may assume that

Fj ⋅ v ≥2 0.

Hence, there is a multicurve γ ∈ C(S) such that T (γ) = v. As Bi ⋅ v ≥ 0 and v lies in
the kernel of Ai − Id, we have that h(γ) = γ. This proves the claim.

Now each Ai and Bi is O(`(p))–bounded and so eachM(i, j) is too. Therefore
by Proposition 3.2.2, there is a O(`(p))–bounded vector v0 such that M(i, j) ⋅ v0 ≥ 0.
Then

Fj ⋅ 2v0 ≥2 0.

Thus there is a multicurve γ ∈ C(S) such that T (γ) = 2v0. Hence, γ is an h–invariant
multicurve such that T (γ) is O(`(p))–bounded.

By applying this theorem to the standard path of a word we immediately
obtain that:

Corollary 3.3.4. Fix S, a marked surface, and X, a finite generating set of Mod+(S).
If h ∈ X∗ is reducible then there is an h–invariant multicurve which is O(`(p))–
bounded.

We may use such a multicurve as a certificate that h ∈X∗ is reducible. Given
its vector, by Lemma 2.1.2 we can first check that it corresponds to a multicurve
γ in O(`(h)) operations. Secondly, by Lemma 2.2.2 we can compute T∗(h(γ)) in
O(`(h)2) time. Finally we can verify that T∗(h(γ)) = T∗(γ) and so check that h is
reducible in O(`(h)) time.

Corollary 3.3.5. Fix S, a marked surface, and X, a finite generating set of Mod+(S).
Deciding whether a word in X∗ is reducible is a problem in NP.

3.4 Subsurfaces

When h ∈ Mod+(S) is a reducible mapping class, as well as fixing a multicurve it also
fixes a proper subsurface. In order to study the induced mapping class on such an
invariant subsurface without talking about surfaces with boundary, we introduce the
notion of crushing S along a multicurve γ ∈ C(S).

23

Definition 3.4.1. We crush S along γ to obtain the (possibly disconnected) surface
Sγ by:

1. removing an open regular neighbourhood of γ,

2. collapsing the new boundary components to additional marked points, and then

3. removing any components that are twice marked spheres.

See Figure 3.1 for example.

Crush

Figure 3.1: Crushing along a multicurve.

Now if T is a triangulation of S then we may track it as we crush S along a
multicurve γ ∈ C(S). After collapsing any bigons that are created, this results in a
triangulation Tγ of Sγ . There is a canonical bijection between the edges of T and
Tγ and so ζ(Sγ) = ζ. To see this consider the following construction of T ∗γ , the dual
graph of Tγ :

1. For each face f ∈ F (T), place a vertex v in the core of f , that is, the component
of f − γ which meets all three sides of f .

2. Extend three half-edges from v to ∂f whilst avoiding γ.

3. Extend these half edges along the corridors created by parallel strands of γ
until they connect with another half edge.

See Figure 3.2.
Most importantly for us, Erickson and Nayyeri showed how to find the ends

of each of the corridors of γ in polynomial time.

24

γ

Figure 3.2: Building the dual graph of Tγ inside S − γ.

Theorem 3.4.2 ([35]). Suppose that T (γ) is k–bounded. There is an algorithm to
compute Tγ in O(poly(k)) operations.

Proposition 3.4.3. If p is a path from T to T ′ then crushing each triangulation of
p along γ, and possibly discarding any repeated triangulations, gives a path pγ from
Tγ to T ′γ .

Proof. The result clearly holds when p consists of a single reordering of the edges of
T . If p consists of a single flip then the combinatorics of Tγ and T ′γ agree away from
the faces coming from the faces incident to the flipped edge. Thus Tγ and T ′γ share
at least ζ − 1 edges and so they are either equal or differ by a single flip. The result
then follows for all paths by induction on `(p).

In fact when T ′ is obtained by flipping the edge e of T , we have that Tγ and
T ′γ are equal if and only if there is an arc of γ passing from one side of the square
containing e to the opposite side. This occurs if and only if, following the notation of
Figure 2.1, ι(γ, a) + ι(γ, c) ≠ ι(γ, b) + ι(γ, d).

We note that by construction `(pγ) ≤ `(p).

Corollary 3.4.4. Suppose that p is a path from T to T ′ and γ ∈ C(S) is a k–
bounded multicurve. If T (γ) is k–bounded then we can compute pγ in O(`(p)poly(k))
operations.

3.4.1 Bounds on maximal curves

We write hγ ∈ Mod+(Sγ) for the mapping class induced on Sγ by h. Using this
notation, if p is a path from T to h(T) then pγ is a path from Tγ to hγ(Tγ).

Definition 3.4.5. A multicurve γ ∈ C(S) is h–maximal if it is h–invariant and hγ is
irreducible.

Now the bijection between edges of T and the edges of Tγ gives a map
ιγ ∶C(Sγ) → C(S), lifting multicurves on Sγ back into S. Furthermore, if T (γ) is

25

k–bounded then there is a k–bounded integer matrix M such that

T (ιγ(γ′)) =M ⋅ Tγ(γ′).

However, it will be easier to work with the map:

ιγ ∶C(Sγ)→ C(S) given by ιγ(γ′) ∶= ιγ(γ′) ∪ γ.

Lemma 3.4.6. Suppose that T (γ) is k–bounded. If γ′ ∈ C(Sγ) is multicurve and
Tγ(γ′) is k′–bounded then T (ιγ(γ′)) is (k + k′ + ζ)–bounded.

We may repeat the construction of an invariant multicurve on Sγ and use
this bound to control the complexity of the result we obtain back on S. To help us
do this rigorously we introduce a second notion of complexity, closely related to the
dimension of the curve complex of Sγ [59].

Definition 3.4.7. The complexity of a multicurve γ ∈ C(S) is

ξ(γ) ∶= 3 g(Sγ) + n(Sγ) − 3∣Sγ ∣.

Now note that if γ ∈ C(S) and γ′ ∈ C(Sγ) then

ξ(ιγ(γ′)) < ξ(γ).

Additionally, ξ(γ) ≤ ζ and if ξ(γ) = 0 then C(Sγ) = ∅ and so γ must be h–maximal.

Theorem 3.4.8. Suppose that h ∈ Mod+(S) is a reducible mapping class and that
p is a path from T to h(T). Then there is an h–maximal multicurve γ ∈ C(S) such
that T (γ) is O(`(p))–bounded.

Proof. As h is reducible there is an h–invariant multicurve γ ∈ C(S) such that T (γ)
is O(`(p))–bounded by Theorem 3.3.3.

Now suppose that γ is not h–maximal. As hγ is reducible, we can reapply
Theorem 3.3.3 to the crushed path pγ from Tγ to hγ(Tγ). As `(pγ) ≤ `(p), we
deduce that there is an hγ–invariant multicurve γ′ ∈ C(Sγ) such that Tγ(γ′) is
O(`(p))–bounded.

Following this we redefine γ to be ιγ(γ′). This is again an h–invariant
multicurve and, by Lemma 3.4.6, is still O(`(p))–bounded. However, doing this
decreases ξ(γ) and so after repeating this process at most ζ times γ must become
h–maximal.

26

Again, by applying this theorem to the standard path of a word we obtain
that:

Corollary 3.4.9. If h ∈X∗ is reducible then there is an h–maximal multicurve which
is O(`(h))–bounded.

3.4.2 The canonical curve system

The canonical curve system σ(h) ∈ C(S) of a mapping class h ∈ Mod+(S) is the
intersection of all h–maximal multicurves [38, Page 373]. It is non-empty if and only
if the mapping class is reducible and of infinite order [52, Theorem 4.44].

Koberda and Mangahas showed there is an exponential upper bound on the
entries of T (σ(h)) [54, Theorem 1.1]. Corollary 3.4.9 also provides an alternate proof
of their theorem.

Proposition 3.4.10 ([8, Corollary 5.6]). Suppose that h ∈ Mod+(S) is a mapping
class and that p is a path from T to h(T). Then T (σ(h)) is O(`(p))–bounded.

Proof. If σ(h) is empty then the result holds trivially. Otherwise, h is reducible and
so by Corollary 3.4.9 there is an h–maximal multicurve γ which is O(`(h))–bounded.
Therefore, as σ(h) ⊆ γ it must be O(`(h))–bounded too.

Applying this to the standard path of a word gives:

Corollary 3.4.11. Fix S, a marked surface, and X, a finite generating set of
Mod+(S). For each word h ∈ X∗, the canonical curve system σ(h) is O(`(h))–
bounded.

27

Chapter 4

Pseudo-Anosov mapping classes

In this chapter we generalise the notion of the weight space of a triangulation from
Nζ to Rζ≥0. This allows us to combinatorially represent and manipulate measured
laminations on the surface; after first extending our model of computation to allow
us to manipulate numbers with finitely many decimal places. We recall the notion of
a measured train track and the maximal splitting move, originally described by Agol.
We construct an explicit upper bound on the number of these moves needed to reach
a particularly nice train track, allowing us to show that deciding whether a mapping
class is pseudo-Anosov is a problem in NP.

Much of the material of this chapter is based on an earlier preprint [9]. However
many of the bounds have been significantly improved. For example, the periodic
length bound of Section 4.2.9 is now independent of the quasi-geodesic constant of
[60, Theorem 6.2] and the quantity h0 of the main algorithm has been strengthened
to also be a polynomial function of ζ.

4.1 Measured laminations

For a more detailed discussion of measured laminations and the topology ofML(S)
we refer the reader to [87, Chapter 8] and [72, Chapter 2].

Definition 4.1.1 ([75, Section 1.7] [27, Section 3] [63] [87, Definition 8.5.2]). Choose
a hyperbolic metric on S − P . A measured lamination L is:

• a closed subset A ⊆ S foliated by simple geodesics called leaves, together with

• a transverse (σ–additive) measure that:

– has full support, that is, any arc meeting the leaves of A transversely is
assigned a non-zero measure, and

28

– is translation invariant.

Up to isotopy, this construction is independent of the choice of metric [72,
Page 150]. Thus we may think of measured laminations as objects that are only
defined up to isotopy. Therefore, for a measured lamination L we define the measure
it assigns to an isotopy class α to be

L(α) ∶= inf
a∈α
L(a).

We denote the space of measured laminations on S by ML(S). Again, to
avoid a recurring edge case we will disallow the empty measured lamination, the
measured lamination that assigns zero measure to every curve, throughout.

Multicurves may be thought of as measured laminations where the foliated
subset is the multicurve and the measure is given by the geometric intersection
number. Many of the results about multicurves from the previous chapter generalise
to laminations. For example, just as a multicurve is determined by its intersection
numbers with the edges e1, . . . , eζ of a triangulation, a measured lamination is
determined by the measure it assigns to e1, . . . , eζ . Again, the triangulation T
provides a coordinate system onML(S) where the measured lamination L ∈ML(S)
corresponds to the point:

T (L) ∶=
⎛
⎜⎜⎜
⎝

L(e1)
⋮

L(eζ)

⎞
⎟⎟⎟
⎠
∈ Rζ≥0

Once more, although distinct laminations have distinct coordinates, not all coordinates
correspond to measured laminations. In fact (v1 ⋯ vζ)T corresponds to a measured
lamination if and only if:

• ∑ vi > 0,

• for each triangle a, b, c it satisfies the triangle inequality va + vb ≥ vc, and

• for each vertex v there is a face with sides a, b, c such that v ⊆ a ∩ b and
va + vb = vc.

Many of the results of Chapter 2 have variants that hold for laminations. For
example, the following proposition generalises Proposition 2.2.1 to laminations.

29

Proposition 4.1.2 ([67, Page 30]). Suppose that L is a measured lamination and e
is a flippable edge of a triangulation T as shown in Figure 2.1 then

L(e′) = max(L(a) +L(c),L(b) +L(d)) −L(e).

Again the mapping class group Mod+(S) has a natural action on ML(S).
Following Proposition 4.1.2, this action is again piecewise linear with respect to the
coordinate system induced on ML(S) by a triangulation. From this we obtain a
generalisation of Lemma 3.3.2.

Lemma 4.1.3. Suppose that h ∈ Mod+(S) is a mapping class and that p is a path
from T to h(T). Let {Ai} and {Bi} be the matrices of Lemma 3.3.2.

1. for each lamination L ∈ML(S) we have that Bi ⋅ T (L) ≥ 0 for some i.

2. For each lamination L ∈ML(S) we have that

T (h(L)) = Ai ⋅ T (L) if and only if Bi ⋅ T (L) ≥ 0.

Definition 4.1.4 ([39, Exposè 12] [27, Page 95]). A mapping class h ∈ Mod+(S) is
pseudo-Anosov if there is a measured lamination L ∈ML(S) which is:

• projectively invariant, that is, h(L) = λ ⋅L for some λ ∈ R≥0, and

• filling, that is, it assigns positive measure to every multicurve.

A word h ∈X∗ is pseudo-Anosov if its corresponding mapping class is.

Furthermore, if h is pseudo-Anosov then, up to rescaling the measure by a
positive constant, there is a unique projectively invariant, filling measured lamination
which is stable, that is, λ > 1. To minimise the number of adjectives we will refer to
this simply as the stable laminations of h, denoted by L+(h).

Problem 4.1.5 (The pseudo-Anosov problem). Fix S, a marked surface, and X,
a finite generating set of Mod+(S). Given a word h ∈ X∗ decide whether h is
pseudo-Anosov.

The techniques given in Chapter 1 show that when the marked surface is
S1,1 or S0,4 the pseudo-Anosov problem lies in P. Furthermore Menzel and Parker
showed that for S1,2 the pseudo-Anosov problem lies in NP [65]. Before discussing
this problem for an arbitrary marked surface, we remark that filling laminations act
similarly to the non-isolating curves of Section 2.4.2. For example, directly following
the proof of Lemma 2.4.3 gives:

30

Proposition 4.1.6. Suppose that T is a triangulation. If L is a filling lamination
then there is a flippable edge e of T such that

L(T ′) < L(T)

where T ′ is the triangulation obtained by flipping e.

4.2 Train tracks

The hardest part of the pseudo-Anosov problem is validating that a projectively
invariant lamination is filling. To tackle this we introduce the notion of a train track.
For a detailed discussion of train tracks see [75] and [77].

Definition 4.2.1 ([75, Section 1.1]). A measured train track (representing L) is a
pair T = (τ, µ) consisting of:

• a train track τ , that is, a trivalent graph on S (whose vertices we refer to as
switches and edges we refer to as branches) with a well defined tangency at
each switch such that there is no switch with all branches emanating from it in
the same direction and no complementary region of τ is a nullogon, monogon,
bigon, once-marked nullogon or annulus, and

• a transverse measure µ such that there is a smooth map φ∶S → S, isotopic to
the identity, such that:

– φ(L) = τ ,

– φ∣L∶L→ τ is a submersion, and

– µ = L ○ φ−1

Definition 4.2.2 ([75, Page 119]). If T = (τ, µ) is a measured train track then we
may split along one of its branches e to obtain a new measured train track T ′ = (τ ′, µ′)
as shown in Figure 4.1.

The graph of measured train tracks (representing L) is a graph whose vertices
are measured train tracks (representing L) and there is an (unoriented) edge from
T to T ′ if and only if T ′ can be obtained by splitting some non-empty subset of
the branches of T each of which has the same transverse measure. This graph is
connected [75, Theorem 2.8.5] and we write d(T,T ′) for the distance between two
measured train tracks when each edge of this graph is assigned length one.

31

e

a b

d c

e′ e′

When µ(a) > µ(b). When µ(a) = µ(b). When µ(a) < µ(b).

Split

Figure 4.1: The possibilities for splitting a branch e. In both cases
µ(e′) = ∣µ(a) − µ(b)∣ = ∣µ(c) − µ(d)∣ [75, Figure 2.1.2].

Definition 4.2.3 ([3, Section 2]). The maximal splitting of a measured train track
T is the measured train track s(T) obtained by simultaneously splitting all branches
of maximal transverse measure.

Lemma 4.2.4. If T and T ′ are measured train tracks (representing L) then

d(s(T), s(T ′)) ≤ d(T,T ′),

that is, s is a non-expansive map.

Proof. Begin by considering the case in which d(T,T ′) = 1. Without loss of generality,
there is a subset B of the branches of T such that by splitting the branches in B
we obtain T ′ and each branch in B has the same transverse measure. Let M be
the subset of the branches of T with maximal transverse measure. There are three
possible cases to consider:

1. If B =M then s(T) = T ′ and so d(s(T), s(T ′)) = d(T ′, s(T ′)) ≤ 1.

2. If B ⊂M then the branches in M −B also appear in T ′. It is these branches
that are split when maximally splitting T ′ and so s(T) = s(T ′). Hence
d(s(T), s(T ′)) = 0.

3. If B ⊈ M then the branches in B also appear in s(T). Splitting these
branches results in s(T ′) as M and B lie in disjoint open sets on S. Hence
d(s(T), s(T ′)) = 1.

32

In any case d(s(T), s(T ′)) ≤ 1 and so the result holds by induction on d(T,T ′).

4.2.1 Maximal splittings and the axis

Now suppose that there is a mapping class h ∈ Mod+(S) such that

h(L) = λ ⋅L

for some λ > 1. In this case, Agol showed that the sequence of train tracks obtained
by repeatedly performing maximal splittings is eventually periodic.

Theorem 4.2.5 ([3, Theorem 3.5]). If T is a measured train track representing L
such that

h(L) = λ ⋅L

then there exists m,n ∈ N such that sm+n(T) = ĥ(sn(T)) where

ĥ(τ, µ) ∶= (h(τ), µ/λ).

We refer to the smallest such m and n as the periodic and preperiodic lengths
of T respectively. We note that m depends only on L and is independent of T .

Definition 4.2.6. The axis of L is the bi-infinite sequence of measured train tracks
A = A(L) ∶= {Ti}∞i=−∞ such that

s(Ti) = Ti+1 and ĥ(Ti) = Ti+m.

The measured train tracks on the axis are useful as you can determine whether
L is filling purely from the combinatorics of their underlying train tracks.

Definition 4.2.7. A measured train track T = (τ, µ) is filling if every complementary
region of τ is either a disk or a once-marked disk.

Lemma 4.2.8. The measured lamination L is filling if and only if Ti is.

Proof. If Ti = (τ, µ) is not filling then there is a curve γ ∈ C(S) such that γ ∩ τ = ∅.
Therefore L(γ) = 0 and so L is not filling.

Conversely, if L is not filling then there is a curve γ such that L(γ) = 0. There
is a measured train track T = (τ, µ), representing L, such that τ and γ are disjoint.
By Theorem 4.2.5 there are j and k such that ĥk(sj(T)) = Ti. As T is not filling
and this is preserved by both maximal splittings and homeomorphisms, Ti is not
filling either.

33

4.2.2 Getting to the axis

We decide whether L is filling by constructing a measured train track on the axis A.
To do this we give upper bounds for the periodic and preperiodic lengths of T .

Theorem 4.2.9. The periodic length of T is at most d(T, ĥ(T)).

Proof. Suppose that
p ∶= T0, T1, . . . , Tk

is an (unparameterised) path from T to ĥ(T) of length d(T, ĥ(T)), that is, a sequence
of measured train tracks such that d(Ti, Ti+1) ≤ 1. Let T ji ∶= sj(Ti) and note that for
each j:

• ĥ(T j0) = T
j
k , and

• pj ∶= T j0 , . . . , T
j
k is also an (unparameterised) path as s is non-expansive

(Lemma 4.2.4).

When j is sufficiently large, by Theorem 4.2.5 each T ji lies on the axis A and therefore
so does pj . The endpoints of pj must be Tk′ and Tk′+m and so we conclude that
m ≤ k = d(T, ĥ(T)).

To bound the preperiodic length, the following theorem of Tao is key. In
particular, note that the constant depends only on the underlying surface and is
independent of the chosen mapping class h and measured lamination L.

Theorem 4.2.10 ([84, Theorem B], [59, Theorem 7.2]). There is a constant K =
K(S) such that if T and T ′ are measured train tracks (representing L) then there is
a measured train track T ′′ in the orbit of T ′ under h such that

d(T,T ′′) ≤K(d(T, ĥ(T)) + d(T ′, ĥ(T ′))).

Agol showed that for any measured train track T (representing L), if we
repeated perform maximal splittings then eventually every branch of T split [3,
Lemma 2.1]. For train tracks on the axis of L we can give an explicit upper bound
on the number of maximal splittings needed.

Lemma 4.2.11. If Ti is a train track on the axis of L then every branch of Ti must
be split within 3ζm maximal splittings.

Proof. Let Bk be the set of branches of Ti that are split within km maximal splittings.
Note that Bk+1 = Bk ∪ ĥ(Bk). Therefore if Bk does not contain of all branches of

34

Ti and ∣Bk+1∣ = ∣Bk∣ then there would be a branch that is never split, which cannot
happen [3, Lemma 2.1]. Hence either Bk consists of all branches of Ti or ∣Bk+1∣ > ∣Bk∣.
As Ti has at most 3ζ branches, the latter case cannot occur when k ≥ 3ζ. Thus every
branch of Ti must be split within 3ζm maximal splittings.

We note that by this result every branch of Ti must become a branch of
maximal transverse measure within 3ζm maximal splittings.

Theorem 4.2.12. The preperiodic length of T is at most 6ζKd(T, ĥ(T))2.

Proof. We claim that if Ti is a measured train track on A then the preperiodic length
of a measured train track T is at most 3ζmd(T,Ti). We prove this by induction on
the distance. There is nothing to show in the base case when d(T,Ti) = 0 so suppose
that the claim is true whenever d(T,Ti) < k. Now if d(T,Ti) = k then let T ′ be such
that

d(T ′, T) = 1 and d(T ′,Ti) = k − 1

as shown in Figure 4.2. Then by induction the preperiodic length of T ′ is at most
3ζm(k − 1) and so Tj ∶= s3ζm(k−1)(T ′) is on the axis A. For ease of notation let
T ′′ ∶= s3ζm(k−1)(T), then as s is non-expansive (Lemma 4.2.4)

d(Tj , T
′′) ≤ 1.

There are now three possibilities that can occur.
The first possibility is that d(Tj , T

′′) = 0 and so T ′′ = Tj .
The second possibility is that d(Tj , T

′′) = 1 and there is a subset B of
the branches of Tj such that every branch in B has the same transverse measure
and splitting along these yields T ′′. Now consider sp(T ′′) and sp(Tj) where, by
Lemma 4.2.11, we choose p < 3ζm such that the branches in B appear in sp(Tj)
with maximal measure. If there are no other branches of maximal measure then
maximally splitting sp(Tj) results in sp(T ′′). Hence sp(T ′′) = Tj+p+1. Otherwise
maximally splitting sp(Tj) factors through sp(T ′′) and so sp+1(T ′′) = Tj+p+1.

The third possibility is that d(Tj , T
′′) = 1 and there is a subset B of the

branches of T ′′ such that splitting along these yields Tj . In this case let B′ be new
the branches that are added when the branches in B are split. Again consider sp(T ′′)
and sp(Tj) where, by Lemma 4.2.11, we choose p < 3ζm such that the branches in B′

appear in sp(Tj) with maximal measure. Now in order for d(sp+1(Tj), sp+1(T ′′)) ≤ 1

we must have already split the branches in B. Hence sp+1(T ′′) is must be either
Tj+p+1 or Tj+p.

35

In any case, it follows that s3ζmk(T) = s3ζm(T ′′) is either:

Tj+3ζm−1, Tj+3ζm or Tj+3ζm+1

and so is on the axis A. Hence the claim is true.
Now by Theorem 4.2.10 there is a Ti on the axis A such that

d(T,Ti) ≤K(d(T, ĥ(T)) + d(Ti, ĥ(Ti))) =K(d(T, ĥ(T)) +m).

Therefore by the previous claim and Theorem 4.2.9 the preperiodic length of T is at
most

3ζmK(d(T, ĥ(T)) +m) ≤ 6ζKd(T, ĥ(T))2.

T

T ′

T ′′

Ti Tj Tj+3ζm+1

≤ 3ζm

A

Figure 4.2: Getting to the axis A.

Combining this with Lemma 4.2.8 we obtain:

Corollary 4.2.13. The measured lamination L is filling if and only if st(T) is filling,
where t ∶= 6ζKd(T, ĥ(T))2.

Finally, we note that a triangulation T gives rise to a measured train track T
as shown in Figure 4.3. Furthermore if p is a path from T to h(T) then this descends
to a quasi-path in the graph of measured train tracks and so d(T, ĥ(T)) ≤ 2`(p).

4.3 The main algorithm

We can now state the main algorithm for validating that a certificate proves that
a mapping class is pseudo-Anosov. Again, we use a path p from T to h(T) to
represent h. We use a certificate consisting of decimals x1, . . . , xζ and polynomials
f1, . . . , fζ ∈ Z[x]. These decimals represent approximations of the measure assigned
to each edge of T by the stable lamination of h while these polynomials are their
minimal polynomials.

36

c

ba

(a) When L(a) = L(b) = L(c) = 0.

c

ba

(b) When L(a) = L(b) and L(c) = 0.

c

ba

(c) When L(a) +L(b) = L(c).
c

ba

(d) Otherwise.

Figure 4.3: A train track coming from a triangulation.

Given a path p from T to h(T) and a certificate x1, . . . , xζ , f1, . . . , fζ , let:

• {Ai} and {Bi} be the matrices of Lemma 3.3.2,

• t ∶= 24ζK ⋅ `(p)2,

• h0 ∶= ζ4(`(p) + 6),

• h1 ∶= h0 + 2ζ,

• p1 ∶= 2ζ2(2h1 + t + 3), and

• d1 ∶= p1 + t + ζh1 + 2.

In each of the following stages, all calculations are done to d1 decimal places and
all comparisons are done by only comparing the first p1 decimal places.

1. Check that each fi has degree at most ζ and the log of the absolute value
of each coefficient is at most h0.

2. Check that each 0 ≤ xi ≤ 1.

3. Check that each pair fi(xi ± 10−d1) have different signs.

4. For each face of T with edges a, b, c check that xa + xb ≥ xc.

5. For each vertex v ∈ V (T) check that there is an incident face of T with
edges a, b, c such that v ⊆ a ∩ b and xa + xb = xc.

6. Check that ∑xi = 1.

37

7. Find Bi such that Bi ⋅ (x1 ⋯ xζ)T ≥ 0 and compute

(y1 ⋯ yζ)T ∶= Ai ⋅ (x1 ⋯ xζ)T and y ∶=∑ yi.

8. Check that each yi = yxiy.

9. Check that y > 1.

10. Check that st(T ′) is filling where T ′ is the measured train track correspond-
ing to x1, . . . , xζ (see Section 4.2).

We say that a certificate is accepted by the main algorithm if every check
passes and is rejected otherwise.

Remark 4.3.1. It may be possible to drop the polynomials f1, . . . , fζ from the
certificate of h. It appears that one may modify the main algorithm to first use the
Lenstra–Lenstra–Lovász algorithm [56] to recover these polynomials from x1, . . . , xζ

[29, Section 2.7.2]. However this application of the LLL algorithm relies on certain
parameters whose choice “... is subtle, and depends in part on what one knows about
the problem” [29, Page 100].

Remark 4.3.2. It should be highlighted that the main algorithms relies on the
constant K(S) of Theorem 4.2.10, which is not explicitly known. Hence the main
algorithm is not strictly well-defined and cannot be implemented. However only a
slight variation is needed to overcome this problem.

Instead of computing the measured train track T ′ after t maximal splittings
have been performed, one may compute the maximal splitting sequence T0, T1, . . .
until a projectively equal pair are found. Then the lamination is filling if and only
if the each of these measured train tracks are. Such a projectively equal pair will
occur after t +m maximal splittings which, although unknown, is still a polynomial
function of `(h). Hence the asymptotic running time of this variant is the same as
that of the main algorithm.

The added complication of this technique is that the total number of maximal
splittings that must be performed is initially unknown. Thus it is possible that after
several have been performed the decimal approximations of the edge weights are no
longer sufficient to uniquely determine the underlying algebraic numbers. However, if
this occurs then one may restart the algorithm with better approximations of these
numbers, obtained by using a root-finding algorithm on fi.

38

4.4 Algebraic numbers

In order to prove the correctness of the main algorithm, we first recall some results
about algebraic numbers.

Definition 4.4.1 ([88, Section 3.4]). The height of a polynomial f(x) = ∑aixi ∈ Z[x]
is

hgt(f) ∶= log(max(∣ai∣)).

The height of an algebraic number α ∈ Q is hgt(α) ∶= hgt(µα) where µα ∈ Z[x] is its
minimal integral polynomial.

Fact 4.4.2. If α,β ∈ Q are algebraic numbers then:

• dg(α ± β) ≤ dg(α) + dg(β), where dg(α) ∶= log(deg(α)),

• hgt(α ± β) ≤ hgt(α) + hgt(β) + 1 [88, Property 3.3],

• hgt(αβ) ≤ hgt(α) + hgt(β) [88, Property 3.3],

• hgt(α−1) = hgt(α), and

• if α is a root of f ∈ Z[x] then hgt(α) ≤ hgt(f) + 2 deg(f) [7, Corollary 10.12].

Perhaps most crucially, an algebraic number of bounded degree and height is
uniquely determined by a sufficiently good approximation.

Lemma 4.4.3 ([7, Lemma 10.2, Lemma 10.3]). If α ≠ 0 then

∣ log(∣α∣)∣ ≤ hgt(α) + dg(α).

Alternatively, α = 0 if and only if the integer part of α is 0 and at least the first
hgt(α) + dg(α) decimal places of α are 0.

Remark 4.4.4. In certain circumstances the inequalities of Fact 4.4.2 may be
strengthened. For example, if α1, . . . , αk are integers then

hgt(
k

∑
i=1
αi) ≤ max(hgt(αi)) + log(k) ≪∑hgt(αi) + (k − 1) log(2).

4.5 Correctness

We now prove the correctness of the main algorithm, namely that h is pseudo-Anosov
if and only if there is a certificate that the main algorithm accepts.

39

4.5.1 Acceptance implies pseudo-Anosov

The outline of the first half of the correctness proof is that:

• Stages 1–3 show that each xi is close to an algebraic number (Proposition 4.5.1).

• Stages 4–5 show that these algebraic numbers correspond to a measured lami-
nation (Proposition 4.5.2).

• Stage 6 shows that this lamination is unitary (with respect to T), that is,
∣∣T (L)∣∣ = 1, (Proposition 4.5.3).

• Stage 8 shows that this lamination is projectively invariant under h (Proposi-
tion 4.5.4).

• Stage 9 shows that this lamination is stable (Proposition 4.5.5).

• Stage 10 shows that this lamination is filling (Proposition 4.5.6).

Proposition 4.5.1. If Stages 1–3 of the main algorithm complete then each xi lies
within 10−d1 of a unique algebraic number vi of degree at most ζ and height at most
h1.

Proof. By the intermediate value theorem, Stage 3 shows that fi must have a root vi
in [xi − 10−d1 , xi + 10−d1]. It follows from Fact 4.4.2 that vi is an algebraic number of
degree at most deg(fi) ≤ ζ and height at most hgt(fi) + 2ζ ≤ h0 + 2ζ = h1. Finally,
any two distinct algebraic number of degree at most ζ and height at most h1 must
be separated by at least 10−(2h1−ζ) > 10−(d1−1) and so vi is unique.

From now on fix v1, . . . , vζ to be these algebraic numbers.

Proposition 4.5.2. Stages 4–5 of the main algorithm complete if and only if
v1, . . . , vζ corresponds to a measured lamination L ∈ML(S), that is,

T (L) = (v1, . . . , vζ).

Proof. If xa + xb > xc to p1 decimal places then

va + vb − vc > 10−p1 − 10−d1 − 10−d1 ≥ 10−(p1−1).

However
hgt(va + vb − vc) + dg(va + vb − vc) ≤ 3h1 + 3ζ ≤ p1 − 1

40

and so by Lemma 4.4.3 we have that va+vb > vc. By the same argument if xa+xb = xc
to p1 decimal places then va + vb = vc. Hence v1, . . . , vζ corresponds to a measured
lamination.

Conversely, suppose that v1, . . . , vζ corresponds to a measured lamination. If
va + vb > vc then va + vb − vc > 10−(3h1+3ζ) and so

xa + xb − xc > 10−(3h1+3ζ) − 10−(d1−1) > 10−p1 .

Hence xa + xb > xc to at least p1 decimal places. Similarly if va + vb = vc then
xa + xb = xc to at least p1 decimal places and so Stages 4–5 of the main algorithm
will complete.

From now on fix L to be this measured lamination.

Proposition 4.5.3. Stage 6 of the main algorithm completes if and only if L is
unitary (with respect to T).

Proof. If ∑xi = 1 to p1 decimal places then ∑ vi − 1 = 0 to at least p1 − 1 decimal
places. However

hgt (∑ vi − 1) + dg (∑ vi − 1) ≤ ζh1 + ζ2 ≤ p1 − 1

and so again by Lemma 4.4.3 we have that ∑ vi = 1. Hence L is unitary.
Conversely, if L is unitary then ∑ vi − 1 = 0 and so ∣∑xi − 1∣ ≤ ζ10−d1 . Hence

∑xi = 1 to at least p1 decimal places and so Stage 6 of the main algorithm will
complete.

Now following Stage 7, let Bi be such that Bi ⋅ (x1 ⋯ xζ)T ≥ 0 and fix

(y1 ⋯ yζ)T ∶= Ai ⋅ (x1 ⋯ xζ)T and y ∶=∑ yi.

As vi and xi are so close and comparisons are only done to p1 decimal places we also
have that Bi ⋅ (v1 ⋯ vζ)T ≥ 0. Hence we fix

(w1 ⋯ wζ)T ∶= Ai ⋅ (v1 ⋯ vζ)T and λ ∶=∑wi.

Each Ai is `(p)–bounded and `(p) ≤ h1. Therefore each wi has height at most
h2 ∶= ζ(2h1 + 1) and agrees with yi to at least d2 ∶= d1 − ζh1 decimal places. Similarly,
λ has height at most h3 ∶= ζ(h2 + 1) and agrees with y to at least d3 ∶= d2 − ζ decimal
places.

41

Proposition 4.5.4. Stage 8 of the main algorithm completes if and only if L is
projectively invariant under h, that is, h(L) = λ ⋅L.

Proof. Firstly note that λ, y < 10h3+ζ and so yxi and λvi agree to at least d3 − ζ − h3
decimal places. Therefore, if yi − yxi = 0 to p1 decimal places then wi − λvi = 0 to at
least p1 − 1 places. However

hgt(wi − λvi) + dg(wi − λvi) ≤ h1 + h2 + h3 + 2ζ2 ≤ p1 − 1

and so again by Lemma 4.4.3 we have that wi = λvi. Hence L is projectively invariant
under h.

Conversely, if L is projectively invariant under h then wi − λvi = 0 and so

∣yi − yxi∣ ≤ 10−d2 ≤ 10−p1 + 10−(d3−ζ−h3).

Hence yi = yxi to at least p1 decimal places and so Stage 8 of the main algorithm
will complete.

Note that completing this stage shows that (v1 ⋯ vζ)T is an eigenvector of Ai.
Hence each vi lies in Q(λ) and so any linear combination of them is also an algebraic
number of degree at most ζ.

Proposition 4.5.5. Stage 9 of the main algorithm completes if and only if L is
stable, that is, λ > 1.

Proof. If y − 1 > 0 to p1 decimal places then λ− 1 > 0 to at least p1 − 1 decimal places.
However

hgt(λ − 1) + dg(λ − 1) ≤ h3 + ζ ≤ p1 − 1.

and so again by Lemma 4.4.3 we have that λ > 1. Hence L is stable.
Conversely if L is stable then λ > 1 + 10−(h3+ζ). As λ and y agree to at least

d3 decimal places we have that

y > 1 + 10−(h3+ζ) − 10−d3 > 1 + 10−p1 .

Hence y > 1 to at least p1 decimal places and so Stage 9 completes.

Following Section 4.2, let T be the measured train track obtained from T
using v1, . . . , vζ and let Ti ∶= si(T) = (τi, µi). Similarly, let T ′ be the measured train
track obtained from T using x1, . . . , xζ instead and let T ′i ∶= si(T ′) = (τ ′i , µ′i). We
let vki denote the weights on the branches of Tk and xki denote the weights on the
branches of T ′k.

42

Proposition 4.5.6. Stage 10 of the main algorithm completes if and only if L is
filling.

Proof. We show that T ′t is filling if and only if Tt is. The result then follows directly
from Corollary 4.2.13.

We begin by claiming that for 1 ≤ k ≤ t:

τk = τ ′k and ∣vki − xki ∣ ≤ 10−(d1−k−1).

To see this first note that vki is an algebraic number of degree at most ζ and
hgt(vki) ≤ 3ζ(k + 2h1 + 2) and that ∣v0i − x0i ∣ ≤ 10−(d1−1). Now suppose that τk = τ ′k
and ∣vki − xki ∣ ≤ 10−(d1−k−1) for some 1 ≤ k < t. Then by Lemma 4.4.3, vki ≥ vkj if and
only if xki ≥ xkj to p1 decimal places. Therefore the xki –maximal branches are the
vki –maximal branches and so τk+1 = τ ′k+1. Furthermore

∣vk+1i − xk+1i ∣ ≤ ∣vki − xki ∣ + ∣vkj − xkj ∣ ≤ 10−(d1−k−2)

and so the claim holds by induction on k.
Finally, again by Lemma 4.4.3, we have that vti > 0 if and only if xti > 0 to p1

decimal places. Hence Tt is filling if and only if T ′t is and so Stage 10 completes if
and only if L is filling.

Combining these propositions we obtain:

Corollary 4.5.7. Suppose that h ∈ Mod+(S) is a mapping class and p is a path
from T to h(T). If there is a certificate that the main algorithm accepts then h is
pseudo-Anosov.

4.5.2 Pseudo-Anosovs have acceptable certificates

Finally, we show the converse to Corollary 4.5.7. To do this we first require some
additional bounds on the heights of certain algebraic numbers.

Definition 4.5.8. Suppose that α ∈ Q is an algebraic number. A matrix M is
α–shifted if its entries are of the form aij = bij + cijα, where bij and cij are integers.
We say that such a matrix is k–bounded if each bij and cij is.

Proposition 4.5.9. If M is a k–bounded, m ×m, α–shifted matrix then

hgt(det(M)) ≤m2(k + log(m) + hgt(α)).

43

Proof. First note that we may expand (b1 + c1α) ⋯ (bm + cmα) as a polynomial in α
to obtain d0 +⋯+ dmαm. It then follows from Fact 4.4.2 that hgt(di) ≤mk as bi and
ci are k–bounded integers .

Now consider the following expansion of det(M):

det(M) = ∑
σ∈Sym(m)

sign(σ)
m

∏
i=1

(biσ(i) + ciσ(i)α) = e0 +⋯ + enαm.

By applying the previous bound to the coefficients of ∏mi=1 (biσ(i) + ciσ(i)α) we have
that

hgt(ei) ≤mk +m log(m).

Therefore:

hgt(det(M)) ≤ hgt (∑ eiα
i)

≤ ∑hgt(eiαi) +m log(2)

≤ ∑hgt(ei) +
1

2
m2 hgt(α) +m log(2)

≤ m2k +m2 log(m) + 1

2
m2 hgt(α) +m log(2)

≤ m2(k + log(m) + hgt(α))

Thus showing the required bound.

Lemma 4.5.10. Suppose that M is a k–bounded, m ×m, α–shifted matrix and that
det(M) ≠ 0. If v = (α1 ⋯ αm)T is a vector of algebraic numbers such that M ⋅ v is a
k–bounded vector of integers then

hgt(αi) ≤ 2m2(k + log(m) + hgt(α))

Proof. This bound follows from using Cramer’s rule to determine αi and Proposi-
tion 4.5.9.

Lemma 4.5.11. Suppose that M is a k–bounded m ×m integer matrix. If α is an
eigenvalue of M then hgt(α) ≤mk +m log(m) + 2m.

Proof. Again, following the proof of Proposition 4.5.9, we have that if χM(x) =
e0 +⋯ + enxm is the characteristic polynomial of M then hgt(ei) ≤ mk +m log(m).
As α is a root of this it follows from Fact 4.4.2 that

hgt(α) ≤mk +m log(m) + 2m.

44

We now have the tools to prove existence of a certificate that the main
algorithm will accept for pseudo-Anosovs.

Theorem 4.5.12. Suppose that h ∈ Mod+(S) is a mapping class and p is a path from
T to h(T). If h is pseudo-Anosov then there is a certificate that the main algorithm
will accept.

Proof. Let L = L+(h) be the stable lamination of h scaled such that ∣∣T (L)∣∣ = 1. Let
vi ∶= L(ei), where ei are the edges of T , and v ∶= (v1 ⋯ vζ)T . Let {Ai} and {Bi}
be the matrices of Lemma 3.3.2. There is Bi such that Bi ⋅ v ≥ 0 and so v is an
eigenvector of Ai. Therefore, as Ai is `(p)–bounded, each vi is an algebraic number
of degree at most ζ and by Lemma 4.5.10 and Lemma 4.5.11 we have that

hgt(vi) ≤ 2ζ2(`(p) + log(ζ) + ζ`(p) + ζ log(ζ) + 2ζ)
≤ 2ζ2((ζ + 1)`(p) + (ζ + 1) log(ζ) + 2ζ)
≤ ζ4(`(p) + 6)
= h0.

Now let xi be a decimal approximation of vi, correct to d1 decimal places,
and let fi be the minimal integral polynomial of vi. We claim that the certificate

x1, . . . , xζ , f1, . . . , fζ

is accepted by the main algorithm and proceed by considering each stage in turn:

Stage 1. By definition each fi has degree at most ζ and height at most h0. Hence this
stage will pass.

Stage 2. As 0 ≤ vi ≤ 1 and ∣xi − vi∣ ≤ 10−d1 , we have that 0 ≤ xi ≤ 1 to at least p1 decimal
places. Hence this stage will pass.

Stage 3. By Fact 4.4.2, two distinct roots of fi must be separated by at least 10−(2h1+ζ)

and as fi is minimal it has no repeated roots. Hence, vi is the unique root of fi
in [xi − 10−d1 , xi + 10−d1] and so fi(xi ± 10−d1) must have different signs. Hence
this stage will pass and the algebraic numbers found will be v1, . . . , vζ .

Finally, note that as v1, . . . , vζ represents L which is unitary (with respect to T), pro-
jectively invariant, stable and filling Stages 6–10 must complete by Proposition 4.5.3,
Proposition 4.5.4, Proposition 4.5.5 and Proposition 4.5.6. Proving the claim that
the main algorithm will accept this certificate.

45

Together with Corollary 4.5.7 this shows:

Theorem 4.5.13. Suppose that h ∈ Mod+(S) is a mapping class and p is a path
from T to h(T). There is a certificate that the main algorithm will accept if and only
if h is pseudo-Anosov.

Remark 4.5.14. By Proposition 4.5.6 and Lemma 4.2.8, there is also a certificate
such that Stages 1 – 9 of the main algorithm will complete and Stage 10 will fail if
and only if h is reducible.

4.6 Analysis

We analyse each of the stages of the main algorithm in turn. Here we use the natural
extension of our initial model of computation to decimals with finitely many places.
However this makes little difference as we only ever manipulate decimals with at
most d1 ∈ O(`(p)2) places.

Recall that

h0, h1 ∈ O(`(p)) and t, d1, p1 ∈ O(`(p)2).

Stage 1. This can be done in O(h0) = O(`(p)) operations.

Stage 2. This can be done in O(p1) = O(`(p)2) operations.

Stage 3. By expanding fi(x) = ∑ajxj as a0+x(⋯(aζ−2+x(aζ−1+aζx))⋯) using Horner’s
rule [53, Section 4.6.4] it can be seen that each fi(xi ± 10−d1) can be computed
in O(d1(d1 + ζh0)) = O(`(p)4). Hence this stage can be done in O(`(p)4)
operations.

Stage 4. There areO(1) inequalities to check each of which requiresO(d1+p1) = O(`(p)2)
operations. Hence this can be done in O(`(p)2) operations.

Stage 5. By the same argument this also requires O(`(p)2) operations.

Stage 6. This can be done in O(d1 + p1) = O(`(p)2) operations.

Stage 7. Following the ideas of Lemma 2.2.2, as each xi has d1 digits, we can find Ai
and Bi and compute y1, . . . , yζ in d1`(p)+ `(p)2 ∈ O(`(p)3) operations. Each yi
has at most d1 + `(p) = O(`(p)2) digits. Hence, y can be computed in O(`(p)2)
further operations and has O(`(p)2) digits. Therefore this entire stage can be
done in O(`(p)3) operations.

46

Stage 8. As xi, yi and y each have O(`(p)2) digits this stage can be done in O(`(p)4 +
d1 + p1) = O(`(p)4) operations.

Stage 9. As y has O(`(p)2) digits, this can be done in O(`(p)2 + p1) = O(`(p)2) opera-
tions.

Stage 10. Constructing T ′ takes at most O(d1) = O(`(p)2) operations. For each maximal
splitting it takes O(p1) operations to find the maximal weight branches and
then O(d1) further operations to perform the splitting. Therefore we can
construct T ′t ∶= st(T ′) in O(t(p1 +d1)) = O(`(p)4) operations. Finally, checking
whether T ′t is filling can be done in O(p1) = O(`(p)2) operations. Hence this
whole stage can be done in O(`(p)4) time.

Therefore the main algorithm will terminate in O(`(p)4) time.
Applying this result to the standard path of a word gives that:

Corollary 4.6.1. Fix S, a marked surface, and X, a finite generating set of Mod+(S).
Deciding whether a word in X∗ is pseudo-Anosov is a problem in NP.

47

Chapter 5

The conjugacy problem

In this chapter we look at the conjugacy problem for mapping class groups. For ease
of notation we will assume that S is connected, although it is straightforward to
extend these results to the disconnected case. The pseudo-Anosov case covered in
this chapter is also mentioned in [9, Section 6.3].

The conjugacy problem was studied by Dehn and described as one of the
fundamental decision problems in group theory [32, Problem 2] [34]. For arbitrary
groups this problem is undecidable [2] [78].

Problem 5.0.1 (The conjugacy problem). Given words g, h ∈X∗ decide whether g
and h represent conjugate mapping classes, that is, decide whether there is there a
word f ∈X∗ such that fgf−1 ≡ h.

The conjugacy problem for mapping class groups is also closely related to the
homeomorphism problem for fibred 3–manifolds. The mapping tori Mg and Mh are
fibrewise homeomorphic if and only if g is conjugate to h or h−1 [22, Proposition 5.11].
It was through this that Hemion first showed that the conjugacy problem is decidable
[49]. However his solution is still not even known to be exponentially bounded [36,
Page 24]. A partial solution in the pseudo-Anosov case was given by Mosher [66].

Most recently, Tao showed that mapping class groups have the Linearly
Bounded Conjugator Property [84, Theorem B]. That is, there is a constant K =
K(S,X) such that if two words g, h ∈X∗ represent conjugate mapping classes then
there is a word f ∈X∗ such that

fgf−1 ≡ h and `(f) ≤K ⋅ (`(g) + `(h)).

48

This establishes an exponential time solution but moreover as such a word f is
sufficiently small it acts as a polynomial-time verifiable certificate that g and h are
conjugate. This shows that:

Theorem 5.0.2. Deciding whether two words g, h ∈ X∗ correspond to conjugate
mapping classes is a problem in NP.

In this chapter we strengthen this theorem to include the complementary
result:

Corollary 5.5.6. Fix S, a marked surface, and X, a finite generating set of Mod+(S).
Deciding whether two words g, h ∈X∗ correspond to conjugate mapping classes is a
problem in NP ∩ co-NP.

To do this we work with a path p from T to h(T) and deal with four cases;
depending on whether h is periodic or aperiodic and is reducible or irreducible. For
each we describe a total conjugacy invariant and show that this can be constructed
in O(poly(`(p))) time when given a suitable certificate.

Thus, if q is a second path from T ′ to g(T ′) then these invariants are small
enough they can be compared in O(poly(`(p) + `(q))) operations. Hence we can
determine whether g and h are conjugate in polynomial time. Applying this to the
standard paths of g and h shows that there are certificates that allow us to determine
whether g and h are conjugate in O(poly(`(g) + `(h))) operations.

In order to deal with the aperiodic, reducible case we will actually need to
prove a stronger result. Namely, a solution to the permutation conjugation problem:

Problem 5.0.3 (The permutation conjugacy problem). Suppose that g, h ∈ Mod+(S)
are mapping classes. Given paths p from T to h(T) and q from T to g(T ′) and a
map π∶V ⊆ V (T)→ V (T ′), decide whether g and h are π–conjugate. That is, decide
whether there is there is a mapping class f ∈ Mod+(S) such that fgf−1 ≡ h and
f ∣V = π.

5.1 Periodic mapping classes

We begin with the case in which h is periodic. Here we use properties of its quotient
orbifold as a total conjugacy invariant.

As h is periodic, by the Nielsen realization theorem [37, Theorem 7.2] there
is a homeomorphism φ ∈ h such that ord(φ) = ord(h). We may use this to define
the quotient orbifold O ∶= S / φ which, up to homeomorphism, is independent of the
particular choice of φ.

49

There are two key properties of points of O that we will need. Firstly, we say
that the order of a point x ∈ O is

ord(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞ if x comes from the orbit of a marked point

ord(φ) / ∣φ−1(x)∣ otherwise.

We note that all but finitely many of the points of O are regular, that is, have order
one, and in fact the number of irregular points is bounded in terms of the topology
of S. Secondly, we note that even though φ∣φ

−1(x)∣(x) = x this map may not act like
the identity near x as it may rotate the tangent plane at x if x is irregular. Thus
we define the rotation number r(x) of a point x ∈ O to be the rational number in
[0,1) such that φ∣φ

−1(x)∣ rotates the tangent plane at x through 2πr(x). We note
that the denominator of r(x) is bounded above by ord(φ) ≤ 8 g(S) + 4 n(S) − 2 [37,
Theorem 7.5].

Nielsen showed that this information at the irregular points

N ∶= {(ord(x), r(x)) ∶ x ∈ O and ord(x) > 1},

together with ord(h), is a total conjugacy invariant of h [70, Theorem 9]. As periodic
mapping classes have order at most 8 g(S) + 4 n(S) − 2 [37, Theorem 7.5] and there
is a polynomial time solution to the word problem for mapping class groups [68], it
only remains to show how to compute N . To do this computation we will divide
into two subcases; depending on whether h is periodic and irreducible or periodic
and reducible. Mosher showed that there is an algorithm that decides whether h is
periodic in O(poly(`(h))) time [68]. We start by giving an algorithm to determine
whether such an h is also irreducible.

We write H1(O) for the integral first homology group of O and, following
our earlier notation, we write n(O) for the number marked points of O, this is the
number of orbits of marked points of S under h. It will also be convenient to define

p ∶= ∣Tor(H1(O))∣ = ∏
x∈O

1<ord(x)<∞

ord(x),

χ(O) = χ(S) / ord(h) ,and

g(O) = 1

2
(rank(H1(O)) − n(O) + 1).

Lemma 5.1.1. The periodic mapping class h is irreducible if and only if:

1. g(O) = 0,

50

2. χ = χ(O) ≥ −1 and either:

3. (a) n(O) = 1 and p2(χ + 1)2 − 4p is a square,

(b) n(O) = 2 and p2(χ + 1)2 − 4p ≠ −16, or

(c) n(O) = 3.

Proof. Start by noting that h is periodic and irreducible if and only if O is a triangle
orbifold, that is, O has exactly three irregular points and its genus is 0. Moreover, as
S is a marked surface, at least one of these points must be of infinite order.

In the forwards direction, suppose that O is a triangle orbifold and so has
signature (0;a, b,∞) where a, b ∈ {∞,2,3, . . .}. Properties 1 and 2 clearly hold as

χ = −1 + 1

a
+ 1

b
≥ −1.

Now for Property 3, if n(O) = 1 then p = ab and so

a2 − (χ + 1)pa + p = 0.

Hence
p2(χ + 1)2 − 4p = (2a − (χ + 1)p)2,

however this is the square of an integer as χp is integral. If n(O) = 2 then without
loss of generality assume that a ≠∞ and b =∞. Then

χ = −1 + 1

a
and p = a.

and so p2(χ + 1)2 − 4p = 1 − 4a ≠ −16. Finally, if n(O) = 3 then there is nothing to
check.

Conversely, if Properties 1 and 2 hold but O is not a triangle orbifold then
linear algebra shows that it must be one of the ones shown in Table 5.1. In any case,
Property 3 cannot hold.

We now give a polynomial time algorithm for computing H1(O). To ease this
argument we set:

• k ∶= ord(φ),

• π1(S) = ⟨x1, . . . , xn⟩,

• φ♯ to be the induced action of φ on π1(S), and

• φ∗ to be the induced action of φ on H1(S).

51

Signature χ p p2(χ + 1)2 − 4p

(0; 2,2, a,∞) where 2 ≤ a <∞ −1 + 1
a 4a −16(a − 1)

(0; 2,3,3,∞) −5
6 18 −63

(0; 2,3,4,∞) −11
12 24 −92

(0; 2,3,5,∞) −29
30 30 −119

(0; 2,3,6,∞) −1 36 −144
(0; 2,4,4,∞) −1 32 −128
(0; 3,3,3,∞) −1 27 −108

(0; 2,2,2,2,∞) −1 16 −64
(0; 2,2,∞,∞) −1 4 −16

Table 5.1: Exceptional orbifolds which are almost triangle orbifolds.

Now note that the sequence

1→ π1(S)→ π1(O)→ ⟨φ⟩→ 1

is exact [1, Page 44]. Hence there is a t ∈ π1(O) such that t ↦ φ and so there is a
w ∈ π1(S) such that w ↦ tk. Therefore

π1(O) = ⟨x1, . . . , xn, t ∣ txit−1 = φ♯(xi), tk = w⟩,

[17, Section 1] and so, as H1(O) is the Abelianisation of π1(O), we have that

H1(O) = ⟨x1, . . . , xn, t ∣ xi = φ∗(xi), tk = [w], xixj = xjxi, xit = txi⟩

where [w] is the homology class of the loop w chosen above. This group is equivalent
to

coker(h∗ − Id) × ⟨t⟩ / ⟨tk = [w]⟩

and so, as the action of h∗ with respect to some basis can be computed in polynomial
time, computing H1(O) reduces to computing [w].

To compute the homology class [w], we consider a multiarc, that is, is the
isotopy class of the image of a smooth proper embedding of a finite number of copies of
S1 and [0, 1] (whose endpoints are sent to marked points) into S. This non-standard
definition of multiarc, in which components are also allowed to be closed loops, greatly
simplifies the following argument. Again we represent a multiarc via its intersection
numbers with the edges of a triangulation however, as a non-trivial multiarc can
have zero intersection with all edges, we must first make a slight modification to our
definition of intersection number.

52

Definition 5.1.2. If α is a multiarc and the edge e of T appears as a component of
α then their intersection number ι(α, e) is defined to be minus the number of copies
of e that appear in α.

Having made this change we can now identify a multiarc with its normal
coordinate, its vector of intersection numbers with the edges of T . These coordinates,
allow us to restate many of the results of Chapter 2 and Chapter 3 for multiarcs.

Firstly, as in Lemma 3.3.1, there are O(1)–bounded ζ × 3ζ matrices F i such
that a vector v corresponds to a multiarc if and only if v ≠ 0 and

F i ⋅ v ≥2 0

for some i. Secondly, analysis of the 30 cases that can occur within a pair of triangles
shows how these coordinates change under an edge flip.

Lemma 5.1.3. Suppose that α is a multiarc and e is a flippable edge of a triangulation
T as shown in Figure 2.1 then

ι(α, e′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

â + b̂ − ē if ē ≥ â + b̂ and â ≥ d̂ and b̂ ≥ ĉ,
ĉ + d̂ − ē if ē ≥ ĉ + d̂ and d̂ ≥ â and ĉ ≥ b̂,
â + d̂ − ē if ē ≤ 0 and â ≥ b̂ and d̂ ≥ ĉ,
b̂ + ĉ − ē if ē ≤ 0 and b̂ ≥ â and ĉ ≥ d̂,
â + d̂ − 2ē if ē ≥ 0 and â ≥ b̂ + ē and d̂ ≥ ĉ + ē,
b̂ + ĉ − 2ē if ē ≥ 0 and b̂ ≥ â + ē and ĉ ≥ d̂ + ē,
1
2(â + b̂ − ē) if â + b̂ ≥ ē and b̂ + ē ≥ 2ĉ + â and â + ē ≥ 2d̂ + b̂,
1
2(ĉ + d̂ − ē) if ĉ + d̂ ≥ ē and d̂ + ē ≥ 2â + ĉ and ĉ + ē ≥ 2̂b + d̂,
max(â + ĉ, b̂ + d̂) − ē otherwise.

where x̂ ∶= max(ι(α,x),0) and ē ∶= ι(α, e).

Now let v be a marked point of S and α be an O(1)–bounded arc connecting
from v to h(v). By consistently pushing α ∪⋯∪ hk−1(α) off of the marked points we
obtain a loop γ which corresponds to w and is O(`(h))–bounded. From this we can
determine [w] and so H1(O) in polynomial time by again using the techniques of
Erickson–Nayyeri [35, Section 6.6].

This, together with Lemma 5.1.1, gives an algorithm that determines whether
h is periodic and irreducible in O(poly(`(p))) operations.

53

5.2 Periodic irreducible mapping classes

To compute N in the case in which h is periodic and irreducible we note that, even
though O does not contain a multicurve, it does contain a multiarc, as shown in
Figure 5.1a. By lifting this back to S we see that there is an h–invariant multiarc α on
S. As h is irreducible, α cannot contain any closed components and so α decomposes
S into polygonal pieces, each of which contains at most one preimage of an irregular
point, as shown in Figure 5.1b. These polygons are permuted by the action of h
and it is from this permutation that we can immediately determine the orders and
rotation numbers of the irregular points of O (including the points of infinite order)
and so compute N .

α

aa

b

∞

(a) A non-trivial arc α on a triangle
orbifold.

18

90

162

234 306

h

(b) A lift of the region containing a to S
when a = 5.

Figure 5.1: Lifting an arc from a triangle orbifold.

Thus given a path p from T to h(T) and vector v, we use the following
procedure to verify N :

Stage 1. Check that the given vector corresponds to a multiarc α by checking that
F i ⋅ v ≥2 0 for some i.

Stage 2. Check that α is h–invariant by computing and checking that T (h(α)) = v.

Stage 3. Compute the normal coordinate and multiplicity of each component αi of α.

Stage 4. Compute the components αi that are adjacent to each region of S −α, together
with their cyclic ordering.

Stage 5. Compute the permutation of αi induced by h and so compute N .

To analyse the number of operations required by this procedure, suppose
that the given vector v is k–bounded. Then checking that F i ⋅ v ≥2 0 for some i

54

can be done in O(poly(k)) operations as the F i matrices are O(1)–bounded. By
repeating the idea of Lemma 2.2.2, we can compute T (h(α)) and so complete
Stage 2 in O(poly(k)poly(`(p))) operations. We can then use the algorithm of Agol,
Hass and Thurston [5] to complete Stage 3 and Stage 4 in O(poly(k)) operations.
Finally by computing h(αi) using the idea of Lemma 2.2.2, this permutation can be
computed in O(poly(k)poly(`(p))) operations and from this N can be computed in
O(poly(k)poly(`(p))) operations.

Now note that if we are given a path p from T to h(T) we can once again
compute matrices Ai and Bi which describe the piecewise linear transformation
between coordinates with respect to T and h(T). Again, these matrices can be
chosen such that:

• each Ai and Bi is `(p)–bounded,

• each Bi has O(`(p)) rows,

• for each multiarc α we have that Bi ⋅ T (α) ≥ 0 for some i, and

• for each multicurve α we have that

T (h(α)) = Ai ⋅ T (α) if and only if Bi ⋅ T (α) ≥ 0.

Thus, by repeating the argument of Theorem 3.3.3 using Ai, Bi and F i we deduce
that there is a multiarc α on S such that h(α) = α and T (α) is O(`(p))–bounded.
Hence there is a v such that we can compute N in O(poly(`(p))) operations.

Corollary 5.2.1. Deciding whether two periodic, irreducible words g, h ∈X∗ corre-
spond to conjugate mapping classes is a problem in NP ∩ co-NP.

5.3 Periodic reducible mapping classes

In the case in which h is periodic and reducible we can still compute g(O), n(O),
χ(O) and p in polynomial time as before. To find N we use an h–maximal multicurve
γ, which we may assume to be O(`(p))–bounded by Theorem 3.4.8. We crush S
along γ and examine each piece of the induced mapping class hγ ∈ Mod+(Sγ) in turn.
Suppose that S′ ⊆ Sγ is obtained by taking the orbit of one component of Sγ under
hγ . Let h′ ∈ Mod+(S′) be the mapping class induced by hγ and T ′ the triangulation
of S′ induced by Tγ . Using the results of Section 3.4, we can construct a path p′ from
T ′ to h′(T ′) such that `(p′) ≤ `(p). The previous section allows us to compute the
signature of the orbifold S′/h′ by using p′. Now if x ∈ S′/h′ and ord(x) <∞ then x

55

lifts to a point y ∈ S/h and ord(y) = ord(x). Repeating this for all possible S′ allows
us to compute the orders of many of the irregular points of O.

To deal with any omitted points, we note that there is also a representative
c ∈ γ such that φ(c) = c. We may perform the previous procedure using c; crushing S
along c to obtain Sc with induced homeomorphism φc. Now if y is an irregular point
of O which is omitted by the previous construction then y must either:

• lie on one of the components of c, or

• be contained in an annular region, bounded by two of the components of c.

Regardless, the order of y must be 2. Therefore by comparing the product of the list
of orbifold point orders found and p we can determine exactly how many of points of
order two we are missing. Finally, as r(x) ≠ 0, the rotation numbers of these points
must be 1

2 and so we can compute N .
To bound the complexity of this construction we use the results of Section 3.4.

We can compute Tγ and pγ in O(poly(`(p))) operations by Theorem 3.4.2. From
this for each choice of S′ ⊆ Sγ we can construct p′ in O(poly(`(p))) operations. Now
as each such path has length at most `(p) we can compute the quotient orbifold
S′/hγ in O(poly(`(p))) operations by the previous section. Finally determining how
many orbifold points of order two we are missing by comparing p and the product of
the list of orbifold point orders found can also be done in O(poly(`(p))) operations.
All together this shows that we can compute N in O(poly(`(p))) operations.

Therefore, using the standard path for h ∈X∗ and given a O(`(h))–bounded
h–maximal multicurve γ we see that this procedure takes polynomial time. From
which we determine that:

Lemma 5.3.1. Deciding whether two periodic, reducible words g, h ∈ X∗ correspond
to conjugate mapping classes is a problem in NP ∩ co-NP.

Together with Corollary 5.2.1 this shows that:

Corollary 5.3.2. Deciding whether two periodic words g, h ∈ X∗ correspond to
conjugate mapping classes is a problem in NP ∩ co-NP.

For a point x ∈ S we define its rotation number (with respect to h) to be the
rotation number of its image in the S/h quotient orbifold.

Lemma 5.3.3. Periodic mapping classes h and g are π–conjugate if and only if:

• h and g are conjugate, and

56

• for each marked point v we have that:

– v and π(v) have the same rotation number (with respect to h and g

respectively), and

– π(hk(v)) = gk(π(v)) for every k ∈ Z

whenever these maps are defined.

Proof. The forward direction of this lemma holds trivially. For the reverse direction,
we first note that without loss of generality we may assume that π is actually a
permutation of the vertices of S. If it is not then we consider each of the possible
extensions of π in turn.

As g and h are conjugate there is a mapping class f such that h = f−1gf .
If f ∣V ≠ π then consider ϕ∶S/h → S/g, the homeomorphism induced by f . This
homeomorphism respects the orders and rotation numbers of points and satisfies the
lifting criterion: it maps the subgroup π1(S) ≤ π1(S/h) to the subgroup π1(S) ≤
π1(S/g). We can modify ϕ by precomposing it with another homeomorphism ψ∶S/h→
S/h. If we take ψ to be a homeomorphism that swaps two of the marked points with
the same rotation number then ψ preserves the subgroup π1(S) ≤ π1(S/h). Hence
ϕ ○ ψ also satisfies the lifting criterion and so lifts to an alternate mapping class f ′

which, like f , conjugates g to h but whose action on V is permuted by ψ.
Therefore, as π sends marked points to marked points with the same rotation

number and π(hk(v)) = gk(π(v)) for every k ∈ Z, modifications of this form are
sufficient to adjust f such that f ∣V = π. Hence h and g are π–conjugate.

The rotation numbers of the marked points can be determined in polynomial
time from the polygonal decomposition of S given by the multiarc w. Thus this
additional criterion can also be tested in polynomial time.

5.4 Aperiodic irreducible mapping classes

By the Nielsen–Thurston classification, a mapping class is aperiodic and irreducible
if and only if it is pseudo-Anosov [37, Theorem 13.2]. Agol showed that for these
mapping classes the combinatorics of the periodic part of their maximal splitting
sequence is a total conjugacy invariant [3, Section 7]. Thus, as we can construct these
in polynomial time when given an acceptable certificate for p, we immediately obtain
that:

Corollary 5.4.1. Deciding whether two aperiodic irreducible words g, h ∈X∗ corre-
spond to conjugate mapping classes is a problem in NP ∩ co-NP.

57

We also note that in this case g and h are π–conjugate if and only if they
are conjugate and there is a map between the combinatorics of the periodic part of
their maximal splitting sequence which induces π on V . Again, given acceptable
certificates for p and q, this can be done in O(poly(`(p) + `(q))) operations.

5.5 Aperiodic reducible mapping classes

To deal with the remaining case when h is aperiodic and reducible we use its partition
graph as a total conjugacy invariant.

As in Section 3.4.2, let σ(h) ≠ ∅ be the canonical curve system of h with
components {γj}. Let Sσ(h) be the surface obtained by crushing S along σ(h) and
for ease of notation let {Si} be its connected components. Additionally, let hi be the
mapping class induced on Si by the first return map of h, these mapping classes are
the canonical components of h.

Definition 5.5.1 ([61, Theorem 2], [70]). The partition graph of h is the pair (H,φ)
where:

• H is the finite graph with:

– a vertex corresponding to each hi, and

– an edge corresponding to each γi, connecting between hj and hk when γi
meets Sj and Sk.

• φ is the automorphism of H induced by h.

For example, consider the collection of curves on S2,2 shown in Figure 5.2. The
mapping class h = Tα ○ T −1β ○ Tγ ○ Tδ is aperiodic and reducible. Its partition graph is
also shown in Figure 5.2 and has two edges corresponding to two components of σ(h),
the blue curves. The mapping class h1 ∈ Mod+(S1,2) is pseudo-Anosov while the
mapping class h2 ∈ Mod+(S0,4) is the identity map. Furthermore, the automorphism
of the partition graph induced by h is the identity map.

α

β

γ

δ
e1

e2
h1 h2

Figure 5.2: Curves on S2,2 and the partition graph for Tα ○ T−1β ○ Tγ ○ Tδ.

58

Most importantly, we can provide a polynomial-time verifiable certificate that
a given graph is the partition graph of h. This certificate consists of two pieces
of information. Firstly T (σ(h)) which is O(`(p))–bounded by Proposition 3.4.10
and so from which we can compute paths representing each hi in O(poly(`(p)))
operations by using the algorithm of Theorem 3.4.2. Secondly a certificate accepted
by the main algorithm for each pseudo-Anosov hi, this allows us to deduce that the
given multicurve is h–maximal. To see that this multicurve is actually the canonical
curve system, we note that it is sufficient to check that for any γi, removing its orbit
under h from σ(h) does not result in a new periodic component. As there are at
most ζ ∈ O(1) such orbits to check and we can compute each T (γi) in O(poly(`(p)))
operations by the algorithm of Proposition 2.3.1, this can also be done in polynomial
time.

5.5.1 Twist invariants

Associated to each component γi of the canonical curve system is its twist invariant
di. This is a rational number describing the number of (fractional) Dehn twists
performed about it [70]. We now explicitly describe how to compute these numbers
given some additional multicurves.

Definition 5.5.2. A curve γ is dual to a component γi of σ(h) if

ι(γ, γi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 if γi is separating

1 otherwise.

Now suppose that γ is dual to γi and let δ ∶= ∂N(γi∪γ). Let k ∶= lcm(1, 2, . . . , 4ζ)
then

∣di∣ =
ι(hk(γ), γ) − 1

2 ι(h
k(γ), δ)

k ι(γ, γi)
.

This particular value of k was chosen such that hk fixes all components of σ(h) and
all prongs of singularities of any measured lamination that is projectively invariant
under h.

To compute the sign of di we check whether the number of intersections grows
when an additional Dehn twist along γi is performed. That is, di ≥ 0 if and only if

ι(hk(Tγi(γ)), γ) ≥ ι(hk(γ), γ).

To analyse the complexity of computing these quantities we first require a
technical lemma:

59

Lemma 5.5.3. Suppose that γ, γ′ ∈ C(S) are multicurves and let δ ∶= ∂N(γ ∪ γ′) ∈
C(S), after possibly removing any null-homotopic components. If T (γ) and T (γ′)
are k–bounded then T (δ) is (k + 1)–bounded.

Following this as T (γi) is O(`(p))–bounded there is a dual curve γ such that
T (γ) is also O(`(p))–bounded and moreover by Lemma 5.5.3 T (δ) is also O(`(p))–
bounded. Therefore, by Proposition 2.3.3, given T (γ) for such a γ we can verify
that γ is dual to γi. Furthermore given T (δ) we can crush S along δ and check that
the component of Sδ containing γi and γ is either a four times marked sphere or a
once-marked torus, depending on whether γi is separating or not. This verifies that
δ = ∂N(γi ∪ γ). Having established that γ and δ are the relevant curves, we can use
γ and δ to compute di in O(poly(`(p))) operations by the previous formulae and
Proposition 2.3.3.

In the case of the example shown in Figure 5.2, we compute that the twist
invariant of e1 is 0 while the twist invariant of e2 is +1.

5.5.2 Equivalence of partition graphs

Now suppose that (G,φ) and (H,ψ) are the partition graphs of g and h respectively.
A graph isomorphism Φ∶G→H induces a bijection between the marked points of gi
coming from σ(g) and those of Φ(gi) coming from σ(h). We denote this by DgiΦ.

Theorem 5.5.4 ([70, Theorem 8.3] [69, Section 1.14]). Suppose that (G,φ) and
(H,ψ) are the partition graphs of g and h respectively. Then g and h are conjugate
if and only if there is a graph isomorphism Φ∶G→H such that:

1. Φ conjugates φ to ψ,

2. gi and Φ(gi) are DgiΦ–conjugate, and

3. γj and Φ(γj) have the same twist invariant.

Thus when g and h are not conjugate, for each graph isomorphism Φ∶G→H

either:

1. Φ ○ φ ≠ ψ ○Φ, which we can check in ζ ∈ O(1) operations,

2. there is a vertex gi ∈ G such that gi and Φ(gi) are not DgiΦ–conjugate and
so by the earlier sections of this chapter we can provide a polynomial-time
checkable proof of this fact, or

60

3. there is an edge γj ∈ G such that γj and Φ(γj) have different twist invariants
and so by Lemma 5.5.1 we can provide a polynomial-time checkable proof of
this fact.

By doing this for each of the at most ζ! ∈ O(1) such isomorphisms, we can provide a
proof that g and h are not conjugate which can be verified in O(poly(`(p) + `(q)))
operations.

Again, applying this result to the standard path of a word we obtain that:

Corollary 5.5.5. Deciding whether two aperiodic, reducible words g, h ∈X∗ corre-
spond to conjugate mapping classes is a problem in NP ∩ co-NP.

Together with Corollary 5.4.1 and Corollary 5.3.2 this shows that:

Corollary 5.5.6. Fix S, a marked surface, and X, a finite generating set of Mod+(S).
Deciding whether two words g, h ∈X∗ correspond to conjugate mapping classes is a
problem in NP ∩ co-NP.

Once more, this gives an exponential time algorithm to determine whether
two words represent conjugate mapping classes.

Remark 5.5.7. This approach of constructing and comparing a total conjugacy
invariant of h can be extended to partition a set of mapping classes {h1, . . . , hk}
into conjugacy classes. In this case, by first computing all of the total conjugacy
invariants and then comparing these in pairs we can do this in

k exp(O(max{`(hi)})) + k2O(poly (max{`(hi)}))

operations. When k is large, this is a significant improvement over performing the
naïve pairwise comparisons, which takes k2 exp(O(max{`(hi)})) operations.

61

Chapter 6

Other applications and
implementation

In this chapter we discuss some additional consequences of Corollary 4.6.1 and
Corollary 5.5.6. In particular further properties of h ∈ Mod+(S) that can be efficiently
determined from a train track on the axis of h, many of which follow from results
mirroring Lemma 4.2.8. We go on to discuss some details of an implementation of the
main algorithm, as part of the Python package flipper, and give several examples
of the kinds of calculations that can be done using it. Finally we finish with some
further extensions and conjectures.

6.1 Applications

Several of the problems that follow are not decision problems but are function
problems, a closely related class in which more than a yes / no output is allowed.

Definition 6.1.1 ([48, Appendix A.13]). A function f ∶A→ B is in FNP if there is
a polynomial q ∈ Z[x] and Turing machine M such that for each a ∈ A: there is a
certificate c such that M accepts (a, b, c) in time q(∣a∣) if and only if f(a) = b.

This is the functional equivalent of NP.

6.1.1 Nielsen–Thurston types

We have already seen several results regarding Nielsen–Thurston types. In summary,
deciding whether a word is:

• periodic is a problem in P ⊆NP ∩ co-NP [68].

62

• periodic and irreducible is a problem in P ⊆NP ∩ co-NP (Section 5.1).

• reducible is a problem in NP (Corollary 3.3.5).

• pseudo-Anosov is a problem in NP (Corollary 4.6.1).

Combining these with the Nielsen–Thurston classification theorem (Theorem 1.0.1)
we obtain that:

Proposition 6.1.2. When S is connected, deciding whether h ∈X∗ is reducible is a
problem in NP ∩ co-NP.

Proposition 6.1.3. When S is connected, deciding whether h ∈X∗ is pseudo-Anosov
is a problem in NP ∩ co-NP.

6.1.2 Dilatation

If h ∈X∗ is pseudo-Anosov then its dilatation λ+(h) is the rescaling constant of its
stable lamination. For completeness we define λ+(h) ∶= 1 when h is not pseudo-Anosov
[37, Section 13.2.3]. As we have seen in Section 4.5.1, the dilatation is an algebraic
number and so we may represent it by a triple (d, h, x) where d and h are integers
and x is a decimal such that:

d ≥ dg(α), h ≥ hgt(α) and ∣x − α∣ ≤ 10−(d+h).

One algebraic number can be represented in several different ways under this scheme
although it is straightforward to determine whether two such representations are of
the same number.

Now when h ∈X∗ is pseudo-Anosov its dilatation is well approximated by the
value y, obtained in Stage 7 of the main algorithm. This shows that:

Theorem 6.1.4. The function λ+∶X∗ → Q taking a word to the dilatation of its
corresponding mapping class is in FNP.

6.1.3 Stratum

When h ∈ Mod+(S) is a pseudo-Anosov mapping class, its stable lamination L = L+(h)
can be extended to a singular foliation F on S without any saddle connections. This
foliation has a product structure at all but finitely many points, where it has a
singularity of order k. See Figure 6.1. The multiset of orders of the singularities of F
determines the stratum of h.

63

Figure 6.1: A singularity of order 4.

If Ti = (τ, µ) is on the axis of L then F has one singularity for each component
of S − τ . Moreover the order of such a singularity is equal to the number of cusps
of the corresponding component of S − τ . Given an acceptable certificate for h we
can construct Ti = (τ, µ) in polynomial time and so compute the stratum of h in
O(poly(`(h))) operations.

Lemma 6.1.5. The function strat(h) taking a word to the multiset of singularity
orders when h is pseudo-Anosov and the empty set otherwise is in FNP.

6.1.4 Orientability

A pseudo-Anosov mapping class h ∈ Mod+(S) defines a quadratic differential on S via
its stable lamination L = L+(h). This quadratic differential is an Abelian differential
if and only if L is orientable, that is, the leaves of its underlying lamination can be
assigned a locally consistent orientation.

Definition 6.1.6. A measured train track T = (τ, µ) is orientable if each branch of
τ can be assigned an orientation which agrees at the switches.

Lemma 6.1.7. Suppose that Ti is a train track on the axis of h. Then L is orientable
if and only if Ti is.

The proof follows that of Lemma 4.2.8.

Proof. If L is orientable then there is a measured train track T = (τ, µ), representing L,
which is orientable. By Theorem 4.2.5 there are j and k such that ĥk(sj(T)) = Ti. As
T is orientable and this is preserved by both maximal splittings and homeomorphisms,
Ti is orientable too.

In the reverse direction, if Ti = (τ, µ) is orientable then its orientation can be
pulled back to L and so L is orientable too.

64

As we can construct a train track on the axis of h in O(poly(`(h))) operations,
given an acceptable certificate for h, we obtain:

Corollary 6.1.8. Deciding whether a pseudo-Anosov word in X∗ corresponds to an
Abelian differential on S is a problem in NP ∩ co-NP.

6.1.5 Commuting

Suppose that h ∈ Mod+(S) is a pseudo-Anosov mapping class and that L = L+(h)
is its stable lamination. A periodic mapping class g ∈ Mod+(S) commutes with h if
and only if g(L) = L.

Lemma 6.1.9. Suppose that h ∈ Mod+(S) is a pseudo-Anosov mapping class and
Ti is a train track on its axis. Any finite order mapping class g ∈ Mod+(S) that
commutes with h arises as an automorphism of Ti.

One immediate consequence of this lemma is that there are at most 3ζ

periodic mapping classes that commute with h. More importantly, given an acceptable
certificate for h, we can compute Ti and so all periodic mapping classes that commute
with h in O(poly(`(h))) operations.

Corollary 6.1.10. The function taking a word h ∈X∗ to:

• the set of periodic mapping class that commute with h if h is pseudo-Anosov,
and

• the empty set otherwise

is in FNP.

Hence there is an exponential time algorithm that, given a path p from T
to h(T), computes the set of periodic mapping classes which fix L = L+(h). This
answers Question 3.28 of [45].

6.1.6 Roots

Definition 6.1.11. Suppose that h ∈ Mod+(S) is a mapping class. A mapping class
g ∈ Mod+(S) is an nth root of h if gn = h.

Again, we focus on the case when h ∈ Mod+(S) is pseudo-Anosov. Here we
note that if g ∈ Mod+(S) is an nth root of h then it is also pseudo-Anosov and
moreover

λ+(g) = n
√
λ+(h).

65

Therefore, h has only finitely many roots as

{λ+(g) ∶ g ∈ Mod+(S)} ⊆ R

is discrete [37, Lemma 12.4] and any two nth roots of h differ by a periodic mapping
class which fixes L+(h).

Lemma 6.1.12. Suppose that h ∈ Mod+(S) is a pseudo-Anosov mapping class,
{Ti}∞i=−∞ is its axis and m is its periodic length. Any nth root g ∈ Mod+(S) of h
arises as a map taking Ti to Ti+m/n.

Given an acceptable certificate for h, we can compute a periodic partTi, . . .Ti+m

in O(poly(`(h))) operations. From these we can compute all mapping classes induced
by a map taking Ti to Ti+m/n, and so all nth roots of h, in O(poly(`(h))) operations.

Corollary 6.1.13. The function taking a word h ∈X∗ to:

• {(g, n) ∶ g is an nth root of h} if h is pseudo-Anosov, and

• the empty set otherwise

is in FNP.

Hence there is an exponential time algorithm that, given a path p from T
to h(T), computes the set of roots of h when h is pseudo-Anosov. This answers
Question 3.27 of [45]. Of course from this we also get that deciding whether a
pseudo-Anosov mapping class is primitive, that is, if it only has nth roots when n = 1,
is also a problem in NP ∩ co-NP.

6.1.7 Special subgroups

One special class of subgroups of Mod+(S) was first introduced by Hamidi-Tehrani
[45]. To describe these using the terminology we have set up so far, for measured
laminations L1,L2 ∈ML(S) we first define:

I(L1,L2) ∶= inf{ε ∶ ∃γ ∈ C(S) such that Li(γ) ≤ ε ∣∣T (Li)∣∣ ⋅ ∣∣T (γ)∣∣}.

This represents the measure assigned to L1 by L2 and vice versa and is independent
of the chosen triangulation T .

Definition 6.1.14 ([45, Section 3.3]). A subgroup H ⊆ Mod+(S) is special if there
are pseudo-Anosov mapping classes g, h ∈ Mod+(S) such that:

66

• H ≅ ⟨g, h⟩, and

• When L ∈ {L+(g),L+(g−1)} and L′ ∈ {L+(h),L+(h−1)},

I(L,L′) > max(λ−(g), λ−(h)).

The original interest in these subgroups came from the fact that if H is
special then a Ping-Pong argument shows that H ≅ F2 and every element of H,
except for the identity element, is pseudo-Anosov [45, Proposition 3.21]. Furthermore,
Hamidi-Tehrani showed that one can combine algorithms to:

1. find all of the roots of a pseudo-Anosov, and

2. find all of the periodic mapping classes fixing the stable lamination of a pseudo-
Anosov

to give a solution to the conjugacy problem for special subgroups [45, Proposition 3.29].
That is, given special subgroups G,H ⊆ Mod+(S), decide whether there is a mapping
class f ∈ Mod+(S) such that fGf−1 =H. In our case, the exponential time algorithms
to solve the root and commuting problems from Section 6.1.6 and Section 6.1.5
combine to give an exponential time algorithm to solve the conjugacy problem for
special subgroups.

6.2 Implementation

The main algorithm has been implemented as part of the Python package flipper

[11]. It includes an extensive array of tools for efficiently storing, manipulating and
studying measured laminations via triangulations. flipper also includes a graphical
user interface, as shown in Figure 6.2. Building such software appears as Problem 20
in Thurston’s list of open questions [86, Section 6]. Although flipper is still under
active development it is being used by researchers around the world including Vincent
Delecroix (LaBRI), Nathan Dunfield (UIUC), Vaibhav Gadre (Warwick), Ingrid Irmer
(NUS), Jacob Rasmussen (Cambridge) and Dylan Thurston (Indiana).

By using the results of Section 6.1, flipper is also able to:

• determine the Nielsen–Thurston type of a mapping class,

• compute the dilatation of a mapping class,

• compute the stratum of a pseudo-Anosov,

67

Figure 6.2: Checking a mapping class is pseudo-Anosov in flipper.

• decide whether the quadratic differential coming from a pseudo-Anosov mapping
class is an Abelian differential,

• decide whether two mapping classes are conjugate whenever at least one of
them is pseudo-Anosov,

• construct a triangulation of the mapping torus Mh, and

• construct Agol’s veering triangulation [3, Section 4] of the mapping torus Mh○ ,
whenever h is a pseudo-Anosov mapping class and h○ is the mapping class on
the surface with a marked point at each singularity of the stable foliation of h.

The calculations performed by flipper are exact and are not subject to
floating point error. For example, for a k–bounded, m×m integer matrixM , flipper
uses Bareiss’ algorithm [6] to compute det(M) in

16m5k2

operations using only integer arithmetic. That is, any divisions that are performed
are exact and without remainder.

Despite being entirely written in a high-level, dynamically typed, interpreted
language, flipper is extremely high performance. It has been used to decide the
Nielsen–Thurston type of mapping classes consisting of thousands of Dehn twists and

68

on surfaces of genus as high as 35. For additional performance, flipper includes an
interface into the Sage Mathematics Software1 [83].

For comparison, there are several implementations of the Bestvina–Handel
algorithm. These include:

• Trains by Toby Hall [44],

• BH by Menasco and Ringland [64], and

• XTrain by Brinkmann [20] [21].

However, experimentally these implementations appear to be exponential in `(h) and
so are significantly slower than flipper for any mapping classes of reasonable word
length. See Appendix A for detailed timings of some examples.

As the constant K(S) of Theorem 4.2.10 is unknown, flipper implements the
variant of the main algorithm described in Remark 4.3.2. Additionally, to avoid having
to restart the entire process if the accuracy of an approximation is no longer sufficient
to determine an algebraic number, flipper records the weights of Ti algebraically as
integer linear combinations of the weights of T0. This still only requires O(poly(`(h)))
storage space but allows the weights of Ti to be immediately recalculated after T0 is
approximated to a higher precision, without needing to recalculate all of T1, . . . , Ti−1.

flipper includes several heuristics to help it find invariant laminations, each
based on the idea of iteration. This allows it to avoid having to examine all of the
exponentially many cells of the piecewise linear function corresponding to h. To do
this flipper chooses a multicurve γ ∈ C(S) such that T (γ) is 1–bounded and looks
for a projectively invariant lamination in the cells containing:

1. T (hi(γ)), and

2. T (h5i(γ)) − T (h4i(γ)),

for various values of i.
When at least one of the canonical components of h is pseudo-Anosov the first

heuristic is extremely effective as, after renormalising, hi(γ)→ L+(h) exponentially.
Otherwise, when all of the canonical components of h are periodic, there is a constant
0 < k ≤ lcm(1, . . . ,4ζ), depending only on S, such that hk is a Dehn twist along a
multicurve. By a result of Schaefer, Sedgwick and Štefankovič this second heuristic will
exactly produce an invariant lamination when i = k [81, Lemma 7]. The modularity of
flipper allows users to easily add additional functionality, including other heuristics
for finding invariant laminations.

1Sage performs these calculations using PARI [85], FLINT [46], MPFI, the GNU MPFR Library
[40] and the GNU Multiple Precision Arithmetic Library.

69

6.3 Examples

We give some examples of the types of calculations that can be performed using
flipper. Each was performed on a single core of an Intel Celeron CPU 1007U running
at 1.50 GHz from within Sage 6.5. For running times of even harder examples see
Appendix A. For each of these examples we use SnapPy [31] and Regina [23] to verify
that the mapping classes are the monodromies of the 3–manifolds that we claim
them to be and Theorem 1.0.2 to ensure that we only ever manipulate hyperbolic
manifolds with SnapPy.

6.3.1 On the once-marked torus

1 1

2

2

α
β

Figure 6.3: Curves on S1,1.

When S = S1,1, as ζ = 3, the action of h is described by 3 × 3 matrices. Hence
λ+(h) is an eigenvalue of a 3 × 3 integer matrix, the other eigenvalues of which are
λ−(h) and 1. Therefore Q(λ+(h)), which contains L+(h)(α) for any arc α, is a
quadratic extension and so calculations are significantly faster. Now any train track
on S has at most one splittable branch we may strengthen Theorem 4.2.12 to:

Proposition 6.3.1. The preperiodic length of T , a train track representing L+(h),
is at most 2Kd(T, ĥ(T)).

By the same argument, this bound also holds for S0,4.

Conjecture 6.3.2. For any marked surface S, the preperiodic length of T , a train
track representing L+(h), is at most O(d(T, ĥ(T))).

Consider the curves on S shown in Figure 6.3. The following script uses
flipper to repeat the calculations of Chapter 1. It verifies that h ∶= Tα ○ T−1β , the
mapping class corresponding to the matrix

⎛
⎝

2 1

1 1

⎞
⎠
,

70

is pseudo-Anosov and the monodromy of the figure 8 knot complement. It goes
on to check that the dilatation of h is (1 +

√
5)/2 ≈ 2.618034 and that h is primi-

tive. It finishes by using a result of Burde, Zieschang and Heusener that a fibred
knot is amphichiral if and only if the monodromy is conjugate to its inverse [22,
Proposition 5.12] to verify that the figure 8 knot is amphichiral.

1 import flipper
2 from snappy import Manifold
3

4 S = flipper.load(’S_1_1’)
5 h = S.mapping_class(’aB’)
6

7 # Check that M_h is hyperbolic...
8 assert(h.is_pseudo_anosov())
9 print(’h is pseudo-Anosov.’)

10

11 # ...and actually the figure 8 knot.
12 M_h = Manifold(h.bundle().snappy_string())
13 assert(M_h.is_isometric_to(Manifold(’4_1’)))
14 print(’M_h is the figure 8 knot.’)
15

16 print(’h has dilatation %f’ % h.dilatation())
17 print(’this is an algebraic number with minimal polynomial %s’ %

Ç h.dilatation().minimal_polynomial())
18 assert(h.is_primitive())
19 print(’h is primitive.’)
20 assert(h.is_conjugate_to(h.inverse()))
21 print(’h is amphichiral.’)

6.3.2 On the twice-marked torus

Parker and Series used a similar coordinate system coming from π1–train tracks
to study the mapping class group of S = S1,2 [73]. They explicitly constructed the
piecewise linear maps for a generating set of PMod+(S). Menzel and Parker went on
to use this coordinate system to give an algorithm to decide whether a mapping class
is pseudo-Anosov [65].

Consider the curves on S shown in Figure 6.4. The mapping class h ∶=
Tα ○ Tβ ○ T −1γ is the monodromy of the Whitehead link, shown in Figure 6.5. As
an example, Menzel and Parker computed several properties of h [65, Page 14]. In
particular they showed that h is pseudo-Anosov and that

λ+(h) = 1 +
√

3 + 4
√

12

2
≈ 2.29663026289

71

1 1

2

2

3

3

α γ

β

Figure 6.4: Curves on S1,2. Figure 6.5: The Whitehead link.

We can repeat their calculations using flipper and the following Python
script:

1 import flipper
2 from snappy import Manifold
3

4 S = flipper.load(’S_1_2’)
5 h = S.mapping_class(’abC’)
6

7 # Check that M_h is hyperbolic...
8 assert(h.is_pseudo_anosov())
9 print(’h is pseudo-Anosov.’)

10

11 # ...and actually the Whitehead link.
12 M_h = Manifold(h.bundle().snappy_string())
13 assert(M_h.is_isometric_to(Manifold(’5^2_1’)))
14 print(’M_h is the Whitehead link.’)
15

16 print(’h has dilatation %f’ % h.dilatation())
17 print(’this is an algebraic number with minimal polynomial %s’ %

Ç h.dilatation().minimal_polynomial())

6.3.3 On a higher genus surface

Consider the chain of curves on S2,1 shown in Figure 6.6 and let h ∶= Tα ○ Tβ ○ Tγ ○
T−1δ ○ T−1ε . The following Python script uses flipper to verify that the mapping
torus Mh is the 820 knot complement and moreover that the singularity of L+(h)
at the marked point has order one. Therefore the mapping class h● ∈ Mod+(S2,0),
obtained by removing the marked point of S, is not automatically pseudo-Anosov.
The script goes on to use Regina [23] to check h● is reducible by checking that the
mapping torus Mh● contains an incompressible torus. This can also be seen in the

72

1 2 3

3 2 1

4 4

α

α

β β
γ

δ

ε

εε

Figure 6.6: Curves on S2,1.

fundamental group of a six-fold cover of Mh● :

π1 (M(h●)6) = ⟨a, b, c, d, e
RRRRRRRRRRR

[a, e], [c, e], ac−1ac−1e−3ba2eb−1

a2d−1c2ede, ba−1d−1c3e2db−1ca−1e2
⟩ .

That is, the fibre slope of the 820 knot complement is an exceptional slope.

73

1 import flipper
2 from snappy import Manifold
3

4 S = flipper.load(’S_2_1’)
5 # Note that the curves have different names in the standard flipper example.
6 h = S.mapping_class(’abCDf’)
7

8 # Check that M_h is hyperbolic.
9 assert(h.is_pseudo_anosov())

10 print(’h is pseudo-Anosov.’)
11

12 B = h.bundle()
13 M_h = Manifold(B.snappy_string())
14 # and actually 8_20.
15 assert(M_h.is_isometric_to(Manifold(’8_20’)))
16 print(’M_h is the 8_20 knot.’)
17

18 # Get the order of the marked point.
19 stratum = h.stratum()
20 marked_point_order = [stratum[sing] for sing in stratum if not sing.filled][0]
21 print(’Marked point has order %d’ % marked_point_order)
22

23 # Check that there is an incompressible torus
24 # after filling the fibre slope.
25 # This requires Regina-Python.
26 M_h.dehn_fill(B.fibre_slopes())
27 T = NTriangulation(M_h.filled_triangulation()._to_string())
28 surfaces = NNormalSurfaceList.enumerate(T, NormalCoords.NS_QUAD)
29 for i in range(surfaces.getNumberOfSurfaces()):
30 surface = surfaces.getSurface(i)
31 if surface.isCompact() and surface.isOrientable() and surface.isTwoSided():
32 if surface.getEulerCharacteristic() == 0:
33 if not surface.cutAlong().hasCompressingDisc():
34 print(’After filling, M_h contains an incompressible torus.’)
35 break
36 else:
37 assert(False)

6.3.4 Penner like examples

Consider the curves on S4,2 shown in Figure 6.7 and let ρ ∈ Mod+(S) be the order 16

rotation about the centre, taking α to β. The Dehn twists about α and β generate
the mapping class group of the subsurface that they fill. Penner used mapping classes

74

2

3

4
5

6

7

8

1

2

3

4
5

6

7

8

1
α

β

Figure 6.7: Curves on S4,2.

of the form ρ ○ h, where h ∈ ⟨Tα, Tβ⟩ to give upper bounds on the least dilatation
pseudo-Anosovs [74].

Again we can use flipper to determine the Nielsen–Thurston type of various
mapping classes from various families, for example see Table 6.1 and Table 6.2. The
stable lamination of one of these examples is shown in Figure 6.8.

j
-4 -3 -2 -1 0 1 2 3 4

i

-4 pA pA pA pA pA pA pA R P
-3 pA pA pA pA pA pA R P R
-2 pA pA pA pA pA R P R pA
-1 pA pA pA pA R P R pA pA
0 pA pA pA R P R pA pA pA
1 pA pA R P R pA pA pA pA
2 pA R P R pA pA pA pA pA
3 R P R pA pA pA pA pA pA
4 P R pA pA pA pA pA pA pA

Table 6.1: The Nielsen–Thurston type of ρ ○ T jβ ○ T
i
α.

In every pseudo-Anosov case L+ is orientable.

This type of experimental evidence leads to conjectures like:

Conjecture 6.3.3. Whenever ∣i+j∣ > 1, the mapping class ρ○T jβ○T
i
α is pseudo-Anosov

and its stable lamination is orientable.

75

j
-4 -3 -2 -1 0 1 2 3 4

i

-4 pA pA pA pA pA* pA* pA* pA* pA*
-3 pA pA pA pA pA* pA* pA* pA* pA*
-2 pA pA pA pA R pA* pA* pA* pA*
-1 pA pA pA R P pA* pA* pA* pA*
0 pA* pA* R P R pA* pA* pA* pA*
1 pA* pA* pA* pA* pA* R pA pA pA
2 pA* pA* pA* pA* pA* pA pA pA pA
3 pA* pA* pA* pA* pA* pA pA pA pA
4 pA* pA* pA* pA* pA* pA pA pA pA

Table 6.2: The Nielsen–Thurston type of ρ ○ T jβ ○ T
i
α ○ Tβ .

Only in the pseudo-Anosov cases marked with a * is L+ orientable.

6.4 Further extensions

We finish with some further remarks about generalisations of the results of the
previous chapters.

6.4.1 The extended mapping class group

All of the techniques that we have described can also be applied to the extended
mapping class group Mod±(S), which includes orientation-reversing mapping classes
[38, Page 219]. We note however that Dehn twists and half-twists are insufficient to
generate Mod±(S) and an additional orientation reversing mapping class is needed.

6.4.2 Other surfaces

There are several generalisations of the surfaces we have been working with. Firstly,
when S is an unmarked surface we can still produce the results of Chapters 3 and
4 by switching to a different coordinate system. For example, the Dehn–Thurston
coordinates on C(S) andML(S) coming from a pants decomposition [39, Section 6.4].
As Mod+(S) also acts piecewise linearly onML(S) with respect to these coordinates
[76] the results and algorithms of Chapters 3 and 4 can be directly reconstructed.

However, in its current form, the periodic case of the conjugacy problem
requires at least one puncture in order to determine the quotient orbifold. This is an
obstruction to constructing the total conjugacy invariant in this case.

Question 6.4.1. Suppose that S is a closed surface. Is deciding whether two periodic
words g, h ∈X∗ are conjugate a problem in co-NP?

76

Figure 6.8: The stable lamination for the pseudo-Anosov mapping class ρ ○ T 2
α ○ T −3β ,

as found by flipper.

A second alternative is to allow S to be a surface with boundary. For these we
require that mapping classes fix the boundary components pointwise. In this case, by
adding a single marked point to each boundary component we can again triangulate
S and reproduce the algorithms of Chapters 3 and 4. In this case a slight modification
to the matrices Fi of Lemma 3.3.1 is needed to disallow peripheral curves.

A third possibility is to allow the surface to be non-orientable. We highlight
the fact that, as well as additional generators, extra care is needed. For example, if
γ ∈ C(S) is a curve then ι(γ,T) = 2 is no longer sufficient to deduce that γ meets T
as shown in Figure 2.3.

6.4.3 Independence of surface

It is also interesting to consider how the difficulty of these problems changes when the
surface is also allowed to vary. As before, we specify the surface via a triangulation
and so the complexity of the specification is O(ζ).

Problem 6.4.2 (The generalised reducibility problem). Given a triangulation T
(of an arbitrary marked surface) and a path p from T to h(T), decide whether h is
reducible.

For this problem, the bounds constructed in Chapter 3 still hold in this more
general setting.

77

Proposition 6.4.3. If h is reducible then there is a h–invariant multicurve γ such
that T (γ) is O(`(h) + ζ)–bounded.

Again such a multicurve acts as a certificate that h is reducible and is
sufficiently small that we obtain that:

Corollary 6.4.4. The generalised reducibility problem is in NP.

Problem 6.4.5 (The generalised pseudo-Anosov problem). Given a path p from T
to h(T) where T is a triangulation of an arbitrary marked surface, decide whether h
is pseudo-Anosov.

We note that the quantities h0, h1, t, d1 and p1 of the main algorithm
are all also polynomial functions of ζ and K(S), where K(S) is the constant of
Theorem 4.2.10. Therefore, in this more general setting, the main algorithm will run
in O(poly(`(p) + ζ +K(S))) operations.

Corollary 6.4.6. If K(S) ∈ O(poly(ζ(S)) then the generalised pseudo-Anosov prob-
lem is in NP.

Problem 6.4.7 (The generalised conjugacy problem). Given paths p from T to
g(T) and q from T ′ to h(T ′) where T and T ′ are triangulations of an arbitrary
marked surface, decide whether g and h are conjugate mapping classes.

This generalisation appears to be significantly harder.

Proposition 6.4.8. The generalised conjugacy problem is at least as hard as the
graph isomorphism problem, that is, the problem of deciding whether two graphs are
isomorphic [82, Page 355].

Proof. Consider two finite graphs G and H. We will assume that each has v vertices
(each of degree at least three) and e edges. Choose embeddings of G and H into R3.
Let S ∶= ∂N(G) and S′ ∶= ∂N(H), with a marked point added to S (respectively
S′) corresponding to each vertex of G (reps. H). Let γ (respectively γ′) be the
multicurve on S obtained by lifting the midpoint of each edge of G (resp. H) to a
curve. Let g ∶= Tγ ∈ Mod+(S) and h ∶= Tγ′ ∈ Mod+(S′), then g is conjugate to h if
and only if G is isomorphic to H. Moreover

ζ = ζ(S) = ζ(S′) = 18e + 15v − 6

and we may choose triangulations T and T ′ of S and S′ respectively such that
ι(γ,T), ι(γ′,T ′) ∈ O(ζ2). Hence there are paths p and p′ representing g and h such
that `(p), `(p′) ∈ O(ζ3) and so the generalised conjugacy problem is at least as hard
as the graph isomorphism problem.

78

Although the graph isomorphism problem is known to be in NP, it is not
known to be in P, NP-complete or even co-NP [82, Page 355]. It remains a problem
of considerable interest.

79

Appendix A

flipper timings

A.1 On the once-marked torus

The following flipper script decides the Nielsen–Thurston type of a sequence of
mapping classes on S1,1. The running times of these calculations are also shown
below.

1 import flipper
2 from time import time
3

4 S = flipper.load(’S_1_1’)
5

6 for i in [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]:
7 start_time = time()
8 h = S.mapping_class(’a’ * i + ’B’ * i)
9 assert(h.is_pseudo_anosov())

10 print(i, time() - start_time)

i Time (s)

100 3.43

200 7.29

300 11.82

400 16.72

500 22.53

600 29.07

700 36.18

800 44.35

900 52.04

1000 61.20 200 400 600 800 1000
0

20

40

60

i

T
im

e
(s
)

80

A.2 On the twice-marked torus

The following flipper script decides the Nielsen–Thurston type of a sequence of
mapping classes on S1,2. The running times of these calculations are also shown
below.

1 import flipper
2 from time import time
3

4 S = flipper.load(’S_1_2’)
5

6 for i in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]:
7 start_time = time()
8 h = S.mapping_class(’a’ * i + ’B’ * i + ’C’ * i)
9 assert(h.is_pseudo_anosov())

10 print(i, time() - start_time)

i Time (s)

10 2.66

20 5.24

30 7.89

40 10.21

50 12.81

60 15.46

70 18.13

80 20.86

90 23.69

100 26.96 20 40 60 80 100

10

20

i

T
im

e
(s
)

A.3 A comparison with Bestvina–Handel implementations

We give some comparisons between flipper and the available implementations of
the Bestvina–Handel algorithm [44] [64] [21]. To help ensure a fair comparison, we
compare functionality that is common to every implementation. Thus we look at the
time taken to decide the Nielsen–Thurston type of various braids β ∈ Bn. The results
of which are shown in Figure A.1. Note that these plots are all done on a semi-log
scale due to the drastic difference in running times.

These examples emphasise the exponential nature of the Bestvina–Handel
algorithm. Hence, for braids consisting of more that ∼30 twists, flipper appears to
be significantly faster than any of these implementations.

81

0 10 20 30 40 50 60

10−2

10−1

100

101

102

103

Braid length

T
im

e
(s
)

Braids in B3.

flipper
BH

Trains
XTrain

0 20 40 60 80

10−2

10−1

100

101

102

Braid length

T
im

e
(s
)

Braids in B4.

flipper
BH

Trains
XTrain

0 20 40 60 80

10−2

10−1

100

101

102

Braid length

T
im

e
(s
)

Braids in B5.

flipper
BH

Trains
XTrain

0 20 40 60 80

10−2

10−1

100

101

102

Braid length

T
im

e
(s
)

Braids in B6.

flipper
BH

Trains
XTrain

Figure A.1: A comparison of running times of flipper and implementations of the
Bestvina–Handel algorithm on random braids.

82

Appendix B

flipper source code

In this appendix we highlight two key sections of code from the flipper kernel.

B.1 Invariant laminations

The method of a mapping class for finding a projectively invariant lamination. Taken
from flipper.kernel.encoding.

1 def invariant_lamination(self):
2 ’’’ Return a rescaling constant and projectively invariant lamination.
3

4 Assumes that the mapping class is pseudo-Anosov.
5

6 To find this we start with a curve on the surface and repeatedly apply
7 the map until it appear to be projectively similar to a previous iteration.
8 Finally it uses:
9 flipper.kernel.symboliccomputation.perron_frobenius_eigen()

10 to find the nearby projective fixed point. If it cannot find one then it
11 raises a ComputationError.
12

13 Note: In most pseudo-Anosov cases < 15 iterations are needed, if it fails
14 to converge after many iterations and a ComputationError is thrown then it
15 is extremely likely that the mapping class was not pseudo-Anosov.
16

17 This encoding must be a mapping class. ’’’
18

19 # Suppose that f_1, ..., f_m, g_1, ..., g_n, t_1, ..., t_k, p is the Thurston
Ç decomposition of self.

20 # That is: f_i are pA on subsurfaces, g_i are periodic on subsurfaces, t_i are
Ç Dehn twist along the curve of

21 # the canonical curve system and p is a permutation of the subsurfaces.
22 # Additionally, let S_i be the subsurface corresponding to f_i, P_i correspond to

Ç g_i and A_i correspond to t_i.
23 # Finally, let x_0 be a curve on the surface and define x_i := self(x_{i-1}).
24 #

83

25 # The algorithm covers 3 cases: (Note we reorder the subsurfaces for ease of
Ç notation.)

26 # 1) x_0 meets at S_1, ..., S_m’,
27 # 2) x_0 meets no S_i but meets A_1, ..., A_k’, and
28 # 3) x_0 meets no S_i or A_i, that is, x_0 is contained in a P_1.
29 #
30 # In the first case, x_i will converge exponentially to the stable laminations of

Ç f_1, ..., f_m’.
31 # Here the convergence is so fast we need only a few iterations.
32 #
33 # In the second case x_i will converge linearly to c, the cores of A_1, ...,

Ç A_k’. To speed this up
34 # we note that x_i = i*c + O(1), so rescale x_i by 1/i, round and check if this

Ç is c.
35 #
36 # Finally, the third case happens if and only if x_i is periodic. In this case

Ç self must be
37 # periodic or reducible. We test for periodicity at the beginning hence if we

Ç ever find a curve
38 # fixed by a power of self then we must reducible.
39

40 assert(self.is_mapping_class())
41

42 # We start with a fast test for periodicity.
43 # This isn’t needed but it means that if we ever discover that
44 # self is not pA then it must be reducible.
45 if self.is_periodic():
46 raise flipper.AssumptionError(’Mapping class is periodic.’)
47

48 triangulation = self.source_triangulation
49 max_order = triangulation.max_order
50 curves = [triangulation.key_curves()[0]]
51

52 # A little helper function to determine how much two vectors differ by.
53 def projective_difference(A, B, error_reciprocal):
54 ’’’ Return if the projective difference between A and B is less than 1 /

Ç error_reciprocal. ’’’
55

56 A_sum, B_sum = sum(A), sum(B)
57 return max(abs((p * B_sum) - (q * A_sum)) for p, q in zip(A, B)) *

Ç error_reciprocal < A_sum * B_sum
58

59 # We will remember the cells we’ve tested to avoid recalculating their
Ç eigenvectors again.

60 for i in range(100):
61 new_curve = self(curves[-1])
62 # print(new_curve)
63

64 # Check if we have seen this curve before.
65 if new_curve in curves: # self**(i-j)(curve) == curve, so self is reducible.
66 raise flipper.AssumptionError(’Mapping class is reducible.’)
67

68 curves.append(new_curve)
69 for j in range(1, min(max_order, len(curves))):
70 old_curve = curves[-j-1]

84

71 if projective_difference(new_curve, old_curve, 100):
72 average_curve = sum(curves[-j:])
73 action_matrix, condition_matrix = (self**j).applied_geometric(average_curve)
74 try:
75 eigenvalue, eigenvector =

Ç flipper.kernel.symboliccomputation.directed_eigenvector(
76 action_matrix, condition_matrix, average_curve)
77 except flipper.ComputationError:
78 pass # Could not find an eigenvector in the cone.
79 except flipper.AssumptionError:
80 raise flipper.AssumptionError(’Mapping class is reducible.’)
81 else:
82 # Test if the vector we found lies in the cone given by the condition

Ç matrix.
83 # We could also use:

Ç invariant_lamination.projectively_equal(self(invariant_lamination))
84 # but this is much faster.
85 if flipper.kernel.matrix.nonnegative(eigenvector) and

Ç condition_matrix.nonnegative_image(eigenvector):
86 # If it does then we have a projectively invariant lamination.
87 invariant_lamination = triangulation.lamination(eigenvector)
88 if not invariant_lamination.is_empty(): # But it might have been

Ç entirely peripheral.
89 if j == 1:
90 # We could raise an AssumptionError as this actually shows that self

Ç is reducible.
91 return eigenvalue, invariant_lamination
92 else:
93 if not

Ç invariant_lamination.projectively_equal(self(invariant_lamination)):
94 raise flipper.AssumptionError(’Mapping class is reducible.’)
95 else:
96 # We possibly could reconstruct something here but all the numbers

Ç are
97 # in the wrong number field. It’s easier to just keep going.
98 pass
99 break

100

101 # See if we are close to an invariant curve.
102 # Build some different vectors which are good candidates for reducing curves.
103 vectors = [[x - y for x, y in zip(new_curve, old_curve)] for old_curve in

Ç curves[max(len(curves) - max_order, 0):]]
104

105 for vector in vectors:
106 new_small_curve = small_curve = triangulation.lamination(vector,

Ç algebraic=[0] * self.zeta)
107 if not small_curve.is_empty():
108 for j in range(1, max_order+1):
109 new_small_curve = self(new_small_curve)
110 if new_small_curve == small_curve:
111 if j == 1:
112 # We could raise an AssumptionError in this case too as this also

Ç shows that self is reducible.
113 return 1, small_curve
114 else:

85

115 raise flipper.AssumptionError(’Mapping class is reducible.’)
116

117 raise flipper.ComputationError(’Could not estimate invariant lamination.’)

B.2 Splitting sequence

The method of a measured lamination for computing its maximal splitting sequence.
Taken from flipper.kernel.lamination.

1 def splitting_sequences(self, dilatation=None):
2 ’’’ Return a list of splitting sequence associated to this lamination.
3

4 This is the encoding obtained by flipping edges to repeatedly split
5 the branches of the corresponding train track with maximal weight
6 until you reach a projectively periodic sequence (with the required
7 dilatation if given).
8

9 Assumes that this lamination is projectively invariant under some mapping class.
10 Assumes (and checks) that this lamination is filling.
11

12 Each entry of self.geometric must be an Integer or a NumberFieldElement (over
13 the same NumberField). ’’’
14

15 # In this method we use Lamination.projective_hash to store the laminations
16 # we encounter efficiently and so avoid a quadratic algorithm. This currently
17 # only ever uses the default precision HASH_DENOMINATOR. At some point this
18 # should change dynamically depending on the algebraic numbers involved in
19 # this lamination.
20

21 assert(all(isinstance(entry, flipper.IntegerType) or isinstance(entry,
Ç flipper.kernel.NumberFieldElement) for entry in self))

22 assert(len(set([entry.number_field for entry in self if isinstance(entry,
Ç flipper.kernel.NumberFieldElement)])) <= 1)

23

24 # Check if the lamination is obviously non-filling.
25 if any(v == 0 for v in self):
26 raise flipper.AssumptionError(’Lamination is not filling.’)
27

28 if all(isinstance(v, flipper.IntegerType) for v in self):
29 raise flipper.AssumptionError(’Lamination is not filling.’)
30

31 # Puncture all the triangles where the lamination is a tripod.
32 E = self.puncture_tripods() if len(self.tripod_regions()) > 0 else

Ç self.triangulation.id_encoding()
33 lamination = E(self)
34

35 encodings = [E]
36 laminations = [self, lamination]
37 num_isometries = [len(lamination.self_isometries())]
38 seen = {lamination.projective_hash(): [1]}
39 # We start indexing at 1 to help keep the indices aligned.

86

40 # We don’t want to include self as the first lamination just incase
41 # it is already on the axis and the puncture_tripods does nothing,
42 # misaligning the indices.
43 while True:
44 # Find the index of the largest entry.
45 edge_index = max(range(lamination.zeta), key=lambda i: lamination[i])
46 E = lamination.triangulation.encode_flip(edge_index)
47 encodings.append(E)
48 lamination = E(lamination)
49 laminations.append(lamination)
50 num_isometries.append(len(lamination.self_isometries()))
51

52 # Check if we have created any edges of weight 0.
53 # It is enough to just check edge_index.
54 if lamination[edge_index] == 0:
55 try:
56 # If this fails it’s because the lamination isn’t filling.
57 lamination, E2 = lamination.collapse_trivial_weight(edge_index)
58 encodings.append(E2)
59 laminations.append(lamination)
60 num_isometries.append(len(lamination.self_isometries()))
61 except flipper.AssumptionError:
62 raise flipper.AssumptionError(’Lamination is not filling.’)
63

64 # In the next block we have a lot of tests to do. We’ll do these in
65 # order of difficulty of computation. For example, computing
66 # projective_isometries is slow; so we’ll leave that to last to give
67 # us the best chance that a faster test failing will allow us to
68 # skip it.
69

70 # Check if it (projectively) matches a lamination we’ve already seen.
71 target = lamination.projective_hash()
72 if target in seen:
73 for index in seen[target]:
74 # We need to stop at a point with maximal symmetry.
75 if num_isometries[-1] == max(num_isometries[index:]):
76 old_lamination = laminations[index]
77 if dilatation is None or old_lamination.weight() >= dilatation *

Ç lamination.weight():
78 isometries = lamination.all_projective_isometries(old_lamination)
79 if len(isometries) > 0:
80 assert(old_lamination.weight() == dilatation * lamination.weight())
81 return [flipper.kernel.SplittingSequence(encodings + [isom.encode()],

Ç index, dilatation, laminations[index]) for isom in isometries]
82 else:
83 # dilatation is not None and:
84 # old_lamination.weight() < dilatation * lamination.weight():
85 # Note that the weight of laminations is strictly deacresing and the
86 # indices of seen[target] are increasing. Thus if we are in this case
87 # then the same inequality holds for every later index in seen[target].
88 # Hence we may break out.
89 break
90 seen[target].append(len(laminations)-1)
91 else:
92 seen[target] = [len(laminations)-1]

87

Appendix C

Censuses

For each surface in Figure C.1, we use the shown collection of curves as a generating
set of Mod+(S). Many fibre bundles over these surfaces appear in censuses of 3–
manifolds [50] [28] [24]. We list examples of monodromies of such manifolds, along
with several of their key properties. Additional data can be found in [10].

To save space, we use the following conventions:

• We abbreviate Tx to x and T−1x to X and denote a composition of Dehn twists
by the corresponding word. For example, Ta ○ T−1b ○ Tc is denoted aBc.

• We truncate polynomials when they are symmetric.

• We group singularity orders together, denoting their multiplicity with a power.

• We mark singularity orders with a ∗ if they occur at a marked point.

88

a

b

(a) Curve collection for S1,1.

c a
bd

e f

(b) Curve collection for S2,1.

e c a
d bf

g h

(c) Curve collection for S3,1.

g e c a
f d bh

i j

(d) Curve collection for S4,1.

i g e c a
h f d b

j

k l

(e) Curve collection for S5,1.

Figure C.1: Generators of Mod+(S).

89

C.1 Monodromies of fibred knots

The manifolds in the following tables appear in the Hoste–Thistlethwaite–Weeks knot tables [50] [28].

Table C.1: Fibred knot complements with fibre S1,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

41 aB 2.618033 . . . x2 − 3x +⋯ {2∗} Orientable

Table C.2: Fibred knot complements with fibre S2,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

62 abcD 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {2∗,42} Orientable
63 abCD 2.015357 . . . x6 − x5 − 4x3 +⋯ {2∗,34} Non-orientable
76 abCd 3.506068 . . . x4 − 3x3 − x2 +⋯ {4∗,32} Non-orientable
77 abCF 2.965572 . . . x4 − 3x3 + x2 +⋯ {4∗,32} Non-orientable
812 aBcD 4.390256 . . . x4 − 7x3 + 13x2 +⋯ {6∗} Orientable

820 abCDf 1.684910 . . . x8 − x7 − x6 +⋯ {1∗,35} Non-orientable
821 abcDF 2.618033 . . . x2 − 3x +⋯ {2∗,42} Orientable
942 abcdF 1.963553 . . . x6 − 2x5 − x4 + 3x3 +⋯ {1∗,35} Non-orientable
944 abCDF 2.794972 . . . x6 − 2x5 − 6x3 +⋯ {2∗,34} Non-orientable
945 aBcdF 4.254228 . . . x6 − 6x5 + 8x4 − 4x3 +⋯ {3∗,33} Non-orientable

948 aaBAcf 5.106964 . . . x4 − 7x3 + 11x2 +⋯ {6∗} Orientable
10132 abaCDf 1.722083 . . . x4 − x3 − x2 +⋯ {1∗,3,42} Non-orientable
10133 abcDDF 3.316512 . . . x4 − 5x3 + 7x2 +⋯ {2∗,42} Orientable
10136 aBcdf 3.254263 . . . x4 − 3x3 +⋯ {2∗,34} Non-orientable
10137 abCdF 3.732050 . . . x2 − 4x +⋯ {3∗,33} Non-orientable

10140 abbCDf 1.883203 . . . x4 − 2x3 + x2 +⋯ {1∗,35} Non-orientable
10145 aabAcf 2.369205 . . . x4 − x3 − 3x2 +⋯ {6∗} Orientable
11n1 aBcdFF 5.143081 . . . x6 − 7x5 + 10x4 − 4x3 +⋯ {3∗,33} Non-orientable

90

Table C.2 – continued from previous page
11n12 abCDCF 2.965572 . . . x4 − 3x3 + x2 +⋯ {2∗,32,4} Non-orientable
11n28 abCDFF 3.624685 . . . x6 − 3x5 − 8x3 +⋯ {2∗,34} Non-orientable

11n38 abacdF 1.916498 . . . x8 − x7 − x6 − x5 +⋯ {1∗,35} Non-orientable
11n49 abbcdF 2.369205 . . . x4 − x3 − 3x2 +⋯ {1∗,35} Non-orientable
11n74 aaBACBaadf 4.130159 . . . x4 − 3x3 − 4x2 +⋯ {2∗,34} Non-orientable
11n91 aBBcdF 6.165847 . . . x6 − 8x5 + 12x4 − 6x3 +⋯ {3∗,33} Non-orientable
11n102 aabACf 2.751464 . . . x6 − 3x5 + 2x4 − 4x3 +⋯ {2∗,34} Non-orientable

11n113 aBcBdF 7.167894 . . . x6 − 9x5 + 14x4 − 8x3 +⋯ {3∗,33} Non-orientable
11n116 abAbcdF 2.618033 . . . x2 − 3x +⋯ {1∗,35} Non-orientable
11n142 aaBAcDf 5.551933 . . . x4 − 8x3 + 15x2 +⋯ {4∗,4} Orientable
12n0013 abCddF 4.713255 . . . x6 − 7x5 + 12x4 − 8x3 +⋯ {3∗,33} Non-orientable
12n0025 aBacdf 3.506068 . . . x4 − 3x3 − x2 +⋯ {2∗,32,4} Non-orientable

12n0079 abcDDDF 4.174673 . . . x4 − 6x3 + 9x2 +⋯ {2∗,42} Orientable
12n0121 aabaCDf 1.883203 . . . x4 − 2x3 + x2 +⋯ {1∗,7} Non-orientable
12n0145 abbCdF 4.525603 . . . x6 − 6x5 + 6x4 + 2x3 +⋯ {3∗,33} Non-orientable
12n0282 abaCdF 4.390256 . . . x4 − 7x3 + 13x2 +⋯ {3∗,3,4} Non-orientable
12n0462 aaBAcBdF 4.502476 . . . x6 − 4x5 − 10x3 +⋯ {2∗,34} Non-orientable

12n0582 abbbCDf 2.018790 . . . x6 − x5 − 2x4 + x3 +⋯ {1∗,35} Non-orientable
12n0642 aabbcBAf 8.794621 . . . x4 − 7x3 − 15x2 +⋯ {6∗} Orientable
12n0838 aabacBAdCF 4.330640 . . . x4 − 5x3 + 4x2 +⋯ {2∗,34} Non-orientable

Table C.3: Fibred knot complements with fibre S3,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

82 abcdeF 2.042490 . . . x6 − 3x5 + 3x4 − 3x3 +⋯ {2∗,62} Orientable
85 abcdeH 2.296630 . . . x4 − 2x3 +⋯ {2∗,38} Non-orientable
87 abcdEF 1.809789 . . . x8 − x7 − 2x5 +⋯ {2∗,32,52} Non-orientable
89 abcDEF 1.754877 . . . x3 − 2x2 + x − 1 {2∗,44} Orientable
810 abcDEh 2.113831 . . . x10 − 3x9 + 3x8 − 4x7 + 5x6 − 5x5 +⋯ {2∗,38} Non-orientable

91

Table C.3 – continued from previous page

816 abcBdCeH 2.463632 . . . x12 − 3x11 + x10 + 2x9 − 4x8 + 2x7 + x6 +⋯ {3∗,37} Non-orientable
817 abcbDCEH 2.348693 . . . x12 − 3x11 + x10 + 2x9 − 2x8 − 2x7 + 7x6 +⋯ {3∗,37} Non-orientable
818 abAcBdEDCHcd 2.618033 . . . x2 − 3x +⋯ {4∗,43} Orientable
911 abcdEf 3.422275 . . . x6 − 3x5 − x4 − x3 +⋯ {4∗,52} Non-orientable
917 aBcEgHCDeF 2.421229 . . . x6 − 3x5 + x4 + x3 +⋯ {4∗,52} Non-orientable

920 abcDef 3.176002 . . . x6 − 3x5 + x4 − 5x3 +⋯ {4∗,32,42} Non-orientable
922 abcdEH 2.848930 . . . x8 − 2x7 − 4x6 + 2x5 + 7x4 +⋯ {4∗,36} Non-orientable
924 abcDEH 2.865318 . . . x6 − 3x5 + 2x4 − 5x3 +⋯ {4∗,32,42} Non-orientable
926 abcDEf 2.738661 . . . x6 − 3x5 + 3x4 − 7x3 +⋯ {4∗,32,42} Non-orientable
927 abCDEf 2.475412 . . . x6 − 3x5 + 3x4 − 5x3 +⋯ {4∗,32,42} Non-orientable

928 abCdeH 2.794972 . . . x6 − 2x5 − 6x3 +⋯ {4∗,36} Non-orientable
929 abAbCDEH 3.510048 . . . x10 − 3x9 − 3x8 + 4x7 + x6 − x5 +⋯ {4∗,36} Non-orientable
930 abCDeH 2.738923 . . . x10 − 3x9 + x7 + x6 + 4x5 +⋯ {4∗,36} Non-orientable
931 abCDef 2.595133 . . . x8 − x7 − 8x5 − 4x4 +⋯ {4∗,36} Non-orientable
932 abcbDCeH 3.289320 . . . x10 − 5x9 + 7x8 − 4x7 − 4x6 + 9x5 +⋯ {5∗,35} Non-orientable

933 abcBdCEH 3.209989 . . . x10 − 5x9 + 7x8 − 4x7 − 2x6 + 7x5 +⋯ {5∗,35} Non-orientable
934 aabAcBeHCD 3.376441 . . . x10 − 5x9 + 7x8 − 6x7 + 2x6 + 3x5 +⋯ {5∗,35} Non-orientable
936 abcDeh 3.664173 . . . x10 − 3x9 − 3x8 + 2x7 + x6 − 3x5 +⋯ {4∗,36} Non-orientable
940 abacbHCBDCed 3.732050 . . . x2 − 4x +⋯ {6∗,34} Non-orientable
943 abcdEh 2.225867 . . . x6 − 3x5 + 2x4 − x3 +⋯ {2∗,44} Orientable

947 aabAcBEHCD 2.296630 . . . x4 − 2x3 +⋯ {3∗,37} Non-orientable
1029 abcDeF 4.223748 . . . x6 − 7x5 + 15x4 − 17x3 +⋯ {6∗,42} Orientable
1041 aBcdeF 3.517657 . . . x6 − 7x5 + 17x4 − 21x3 +⋯ {6∗,42} Orientable
1042 abCDeF 3.673707 . . . x8 − 5x7 + 6x6 − 8x5 + 16x4 +⋯ {6∗,34} Non-orientable
1043 abCdEF 4.099915 . . . x8 − 5x7 + 4x6 − 4x5 + 12x4 +⋯ {6∗,34} Non-orientable

1044 abCdeF 3.545348 . . . x8 − 5x7 + 6x6 − 6x5 + 12x4 +⋯ {6∗,34} Non-orientable
1045 aBCdeF 3.108681 . . . x8 − 5x7 + 8x6 − 12x5 + 20x4 +⋯ {6∗,34} Non-orientable
1059 aBcdEh 3.860908 . . . x8 − 5x7 + 3x6 + 6x5 − 4x4 +⋯ {6∗,34} Non-orientable
1060 aBCDeh 3.294168 . . . x6 − 4x5 + 8x3 +⋯ {6∗,34} Non-orientable
1069 abAbCDef 3.583704 . . . x8 − 5x7 + 8x6 − 14x5 + 16x4 +⋯ {6∗,34} Non-orientable

92

Table C.3 – continued from previous page

1070 abcDeH 3.914634 . . . x6 − 7x5 + 16x4 − 19x3 +⋯ {6∗,42} Orientable
1071 abCdEH 3.897414 . . . x8 − 5x7 + 5x6 − 6x5 + 14x4 +⋯ {6∗,34} Non-orientable
1073 abCDeh 3.566972 . . . x6 − 3x5 − 7x3 +⋯ {6∗,34} Non-orientable
1075 abAbCDEf 3.147899 . . . x3 − 4x2 + 3x − 1 {6∗,42} Orientable
1078 abCdeh 4.419480 . . . x4 − 4x3 − x2 +⋯ {6∗,34} Non-orientable

1081 abcBDcEH 5.207318 . . . x6 − 4x5 − 4x4 − 11x3 +⋯ {6∗,34} Non-orientable
1088 abCBdcEH 4.025599 . . . x8 − 7x7 + 17x6 − 27x5 + 33x4 +⋯ {7∗,33} Non-orientable
1089 abCBehcD 4.085277 . . . x6 − 6x5 + 10x4 − 11x3 +⋯ {7∗,33} Non-orientable
1096 abAbCDeH 4.062489 . . . x8 − 5x7 + 3x6 + 4x5 − 4x4 +⋯ {6∗,34} Non-orientable
10105 abcBeHCd 4.825711 . . . x6 − 4x5 − 2x4 − 9x3 +⋯ {6∗,34} Non-orientable

10107 abcBDCEh 4.892142 . . . x6 − 4x5 − 2x4 − 11x3 +⋯ {6∗,34} Non-orientable
10110 abcDehCD 5.178144 . . . x8 − 6x7 + 3x6 + 7x5 − 4x4 +⋯ {6∗,34} Non-orientable
10115 abAcbdEDcHCD 5.453134 . . . x8 − 8x7 + 18x6 − 28x5 + 35x4 +⋯ {7∗,33} Non-orientable
10125 abcdEGh 1.532925 . . . x10 − x9 − x8 + x5 +⋯ {1∗,35,42} Non-orientable
10126 abcDEGh 1.696851 . . . x10 − x9 − 2x8 + 2x7 − 2x5 +⋯ {1∗,39} Non-orientable

10127 abcdeGH 2.575954 . . . x8 − 2x7 − x6 − x5 +⋯ {2∗,38} Non-orientable
10138 aBCDeH 2.618033 . . . x2 − 3x +⋯ {4∗,43} Orientable
10141 abcBdehCDEG 1.883203 . . . x4 − 2x3 + x2 +⋯ {2∗,62} Orientable
10143 abcbdcEDCGH 2.121008 . . . x12 − x11 − 3x10 + 3x8 + x7 − 4x6 +⋯ {2∗,38} Non-orientable
10148 abcBEGhcD 2.369205 . . . x4 − x3 − 3x2 +⋯ {2∗,38} Non-orientable

10149 abcBdceGH 3.343594 . . . x12 − 4x11 + x10 + 4x9 + x8 − 4x7 + 3x6 +⋯ {3∗,37} Non-orientable
10150 abcbdCeH 3.064264 . . . x12 − 3x11 − x10 + 2x9 + 2x8 − 2x7 + x6 +⋯ {3∗,37} Non-orientable
10151 abcBDCEH 2.806933 . . . x10 − x9 − 3x8 − 4x7 − 4x6 − x5 +⋯ {3∗,37} Non-orientable
10153 abcBEGhcd 1.752377 . . . x14 − 2x13 + x12 − x11 + x10 − x9 − 2x7 +⋯ {1∗,39} Non-orientable
10154 abcBehcd 2.675099 . . . x6 − 4x4 − 7x3 +⋯ {10∗} Orientable

10155 abcbDCEGh 1.963553 . . . x6 − 2x5 − x4 + 3x3 +⋯ {2∗,38} Non-orientable
10156 abcbDCEh 2.445733 . . . x10 − x9 − x8 − 4x7 − 4x6 − x5 +⋯ {3∗,37} Non-orientable
10157 abCDCeGhcBdce 3.855540 . . . x6 − 6x5 + 11x4 − 13x3 +⋯ {4∗,43} Orientable
10158 aabAcbDCEH 2.641923 . . . x10 − x9 − 4x8 − 6x5 +⋯ {3∗,37} Non-orientable
10159 abacBDCEGHcdE 2.571700 . . . x12 − 3x11 + 3x9 − 3x6 +⋯ {3∗,37} Non-orientable

93

Table C.3 – continued from previous page

10160 abcBdCeh 2.867469 . . . x10 − 2x9 − 2x8 − 3x7 + 3x6 + 4x5 +⋯ {3∗,37} Non-orientable
10161 abcbdCeh 1.987793 . . . x6 − 2x4 − 3x3 +⋯ {10∗} Orientable
11a5 aBcdEH 4.280520 . . . x6 − 7x5 + 14x4 − 13x3 +⋯ {8∗,32} Non-orientable
11a17 abcBDceH 6.128475 . . . x6 − 8x5 + 12x4 − 5x3 +⋯ {8∗,32} Non-orientable
11a42 abCdEh 5.082706 . . . x6 − 7x5 + 10x4 − 3x3 +⋯ {8∗,32} Non-orientable

11a51 aBcDeh 4.419480 . . . x4 − 4x3 − x2 +⋯ {8∗,32} Non-orientable
11a96 aBcDEf 4.345658 . . . x6 − 7x5 + 13x4 − 9x3 +⋯ {8∗,32} Non-orientable
11a121 aBcdEf 4.037462 . . . x6 − 7x5 + 13x4 − 7x3 +⋯ {8∗,32} Non-orientable
11a128 abAbCDeF 4.223748 . . . x6 − 7x5 + 15x4 − 17x3 +⋯ {8∗,32} Non-orientable
11a159 abCdEf 4.706622 . . . x6 − 7x5 + 11x4 − 3x3 +⋯ {8∗,32} Non-orientable

11a209 aBcBdCEh 5.498599 . . . x6 − 8x5 + 16x4 − 15x3 +⋯ {8∗,32} Non-orientable
11a218 abcBDCeh 5.782742 . . . x6 − 8x5 + 14x4 − 9x3 +⋯ {8∗,32} Non-orientable
11a228 abcBEHCd 5.872394 . . . x6 − 8x5 + 14x4 − 11x3 +⋯ {8∗,32} Non-orientable
11n4 abCBdCegH 3.096858 . . . x10 − 3x9 − 2x8 + 6x7 + x6 − 11x5 +⋯ {4∗,36} Non-orientable
11n5 abCBEghCD 3.720776 . . . x10 − 6x9 + 9x8 − 9x6 + 9x5 +⋯ {5∗,35} Non-orientable

11n6 abCBDCegH 2.899489 . . . x12 − 4x11 + 4x10 − 4x9 + 6x8 − 7x7 + 12x6 +⋯ {3∗,37} Non-orientable
11n7 abcBdcEH 3.916099 . . . x10 − 5x9 + 3x8 + 6x7 − 4x6 − x5 +⋯ {5∗,35} Non-orientable
11n8 abcBehcD 4.513209 . . . x10 − 5x9 + x8 + 6x7 − 2x6 − 3x5 +⋯ {5∗,35} Non-orientable
11n10 abcBeGhcD 5.017079 . . . x10 − 6x9 + 3x8 + 10x7 − x6 − 3x5 +⋯ {4∗,36} Non-orientable
11n11 abcBdcEGH 3.783227 . . . x12 − 4x11 + 2x9 + 4x8 + 3x7 − 10x6 +⋯ {3∗,37} Non-orientable

11n14 abcDeGh 4.355987 . . . x12 − 6x11 + 6x10 + 7x9 − 8x8 − 4x7 + 10x6 +⋯ {3∗,37} Non-orientable
11n15 abcdEGH 2.727069 . . . x6 − 2x5 − 2x4 + x3 +⋯ {2∗,38} Non-orientable
11n19 abcdeGh 1.839253 . . . x14 − x13 − x12 − 2x10 + x8 − x7 +⋯ {1∗,39} Non-orientable
11n21 abcbDCEgH 2.853787 . . . x12 − 4x11 + 3x10 + 2x9 − 3x8 − 4x7 + 9x6 +⋯ {3∗,37} Non-orientable
11n22 abcBDCegH 3.159689 . . . x8 − 3x7 − 2x5 + 2x4 +⋯ {3∗,37} Non-orientable

11n24 abcBdCegH 2.276705 . . . x8 − 3x7 + 2x6 − 2x4 +⋯ {2∗,38} Non-orientable
11n25 abcBdCeGH 2.861684 . . . x12 − 4x11 + 3x10 + 2x9 − 5x8 + 4x7 − x6 +⋯ {3∗,37} Non-orientable
11n26 abcbdCEGH 3.333734 . . . x12 − 4x11 + 2x10 + 2x8 + 3x7 − 6x6 +⋯ {3∗,37} Non-orientable
11n31 abcBEhcd 2.687180 . . . x12 − 2x11 − x10 − x9 − x8 − 5x7 − 2x6 +⋯ {2∗,38} Non-orientable
11n32 abcBDCeH 3.322457 . . . x8 − 3x7 − x6 − x5 + 3x4 +⋯ {5∗,35} Non-orientable

94

Table C.3 – continued from previous page

11n33 abcbdCEH 3.477581 . . . x10 − 5x9 + 5x8 + 2x7 − 4x6 + 3x5 +⋯ {5∗,35} Non-orientable
11n37 abcbDCEGH 2.118091 . . . x10 − 3x9 + 3x8 − 3x7 + 2x6 − 2x5 +⋯ {2∗,38} Non-orientable
11n48 abcBdeHCDEG 2.124860 . . . x8 − x7 − x6 − 6x4 +⋯ {2∗,38} Non-orientable
11n51 aBCDegH 2.444771 . . . x8 − 3x7 + x6 − x5 + 5x4 +⋯ {3∗,33,42} Non-orientable
11n52 aBCDEgh 3.013560 . . . x10 − 4x9 + x8 + 7x7 − x6 − 7x5 +⋯ {4∗,36} Non-orientable

11n53 aBCdegH 2.591940 . . . x12 − 3x11 − x10 + 7x9 − 4x8 − 4x7 + 10x6 +⋯ {3∗,37} Non-orientable
11n54 abCDegH 2.575954 . . . x8 − 2x7 − x6 − x5 +⋯ {3∗,37} Non-orientable
11n55 abCDEgh 3.142262 . . . x6 − 4x5 + 4x4 − 5x3 +⋯ {4∗,32,42} Non-orientable
11n56 abCdegH 2.637916 . . . x10 − x9 − 2x8 − 4x7 − 4x6 − 2x5 +⋯ {3∗,37} Non-orientable
11n58 abcDEgh 2.894397 . . . x10 − 4x9 + 5x8 − 7x7 + 7x6 − 7x5 +⋯ {2∗,38} Non-orientable

11n59 abcDegH 3.732050 . . . x2 − 4x +⋯ {3∗,33,42} Non-orientable
11n66 abAbCdeH 4.142532 . . . x8 − 5x7 + 5x6 − 8x5 + 10x4 +⋯ {6∗,34} Non-orientable
11n70 abcdegH 2.192319 . . . x14 − x13 − 3x12 + 2x10 − x8 + x7 +⋯ {1∗,39} Non-orientable
11n80 abcBeGhcd 2.644612 . . . x14 − 2x13 − 4x12 + 4x11 + 6x10 − 4x8 + 2x7 +⋯ {1∗,39} Non-orientable
11n82 abcbdcEDCGh 2.081018 . . . x4 − x3 − 2x2 +⋯ {2∗,34,42} Non-orientable

11n85 abcDCBedCgH 2.919248 . . . x6 − 3x5 + x3 +⋯ {4∗,52} Non-orientable
11n86 abAcBdEDCGHcd 2.402072 . . . x12 − 3x11 + 2x10 − 2x9 + 2x8 − x7 +⋯ {3∗,37} Non-orientable
11n87 abCBdcEDgeH 3.130001 . . . x4 − 2x3 − 3x2 +⋯ {4∗,52} Non-orientable
11n89 abcBdceDgEH 4.846774 . . . x10 − 5x9 − x8 + 8x7 + 3x6 − 5x5 +⋯ {4∗,36} Non-orientable
11n92 abcdGhCdE 2.056064 . . . x12 − x11 − 2x9 − x8 − 5x7 − 4x6 +⋯ {2∗,38} Non-orientable

11n94 abAcBdEDCgHcd 3.316512 . . . x4 − 5x3 + 7x2 +⋯ {4∗,43} Orientable
11n95 abAcbdCeDGh 3.413942 . . . x8 − x7 − 4x6 − 10x5 − 12x4 +⋯ {3∗,37} Non-orientable
11n96 abacEHCBDCEdG 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {2∗,32,43} Non-orientable
11n98 abAbCDEh 4.174673 . . . x4 − 6x3 + 9x2 +⋯ {6∗,42} Orientable
11n103 abcBcDef 4.685441 . . . x8 − 5x7 + 2x6 − 4x5 + 8x4 +⋯ {6∗,34} Non-orientable

11n105 abcBdcEDgeH 4.419480 . . . x4 − 4x3 − x2 +⋯ {4∗,32,42} Non-orientable
11n106 abcBdCeDcgH 2.286042 . . . x10 − 3x9 + 3x8 − 4x7 + 3x6 − 3x5 +⋯ {2∗,38} Non-orientable
11n108 abAcbdceHCDeG 5.556559 . . . x10 − 7x9 + 8x8 + x7 − 6x6 + 7x5 +⋯ {5∗,35} Non-orientable
11n109 abAcbdCeDgH 5.066265 . . . x8 − 4x7 − 7x6 + 5x5 + 15x4 +⋯ {4∗,36} Non-orientable
11n110 abacBdEDCGHcd 2.638448 . . . x12 − 3x11 + 4x9 − 4x8 − x7 + 4x6 +⋯ {3∗,37} Non-orientable

95

Table C.3 – continued from previous page

11n111 abcBdceGh 2.072341 . . . x12 − 3x11 + x10 + 2x9 − x6 +⋯ {1∗,39} Non-orientable
11n112 abAcbdCeDCCGh 3.512824 . . . x12 − 4x11 + x10 + 4x9 − 7x8 + 6x7 − x6 +⋯ {3∗,37} Non-orientable
11n115 abcBeHCD 3.486572 . . . x6 − 4x5 + 2x4 − x3 +⋯ {5∗,35} Non-orientable
11n118 abcdCCeGh 2.847506 . . . x6 − 4x5 + 4x4 − 3x3 +⋯ {2∗,44} Orientable
11n119 abccDCEgH 3.359623 . . . x10 − 4x9 + 2x8 + x7 − x6 − 2x5 +⋯ {4∗,36} Non-orientable

11n121 abcbDCeh 4.196472 . . . x10 − 5x9 + 3x8 + 2x7 − 2x6 + x5 +⋯ {5∗,35} Non-orientable
11n124 abcBdCEh 3.519329 . . . x10 − 5x9 + 5x8 + 2x7 − 6x6 + 7x5 +⋯ {5∗,35} Non-orientable
11n125 abaCBdcEgHCDE 3.642607 . . . x10 − 4x9 + 2x8 − x7 − 7x6 + 7x5 +⋯ {4∗,36} Non-orientable
11n127 aBcDegHCd 3.282174 . . . x10 − 3x9 − 2x8 + 4x7 + x6 − 9x5 +⋯ {4∗,36} Non-orientable
11n128 abcbdcEDCgH 3.285605 . . . x12 − 4x11 + 2x10 + 3x9 − 7x8 + 2x7 + 3x6 +⋯ {3∗,37} Non-orientable

11n129 abcdCCEGh 3.276285 . . . x12 − 2x11 − 4x10 − x9 + 4x7 +⋯ {2∗,38} Non-orientable
11n130 abcBDehCDEG 3.332807 . . . x12 − 4x11 + 2x10 + x9 − x8 − 2x7 + 9x6 +⋯ {3∗,37} Non-orientable
11n131 aabAcbDCeH 3.595580 . . . x6 − 2x5 − 4x4 − 5x3 +⋯ {5∗,35} Non-orientable
11n135 abcbdCEh 2.478892 . . . x8 − 2x7 − x6 − x5 + 2x4 +⋯ {2∗,34,42} Non-orientable
11n137 abAbCdef 4.858614 . . . x6 − 7x5 + 13x4 − 15x3 +⋯ {6∗,42} Orientable

11n143 abbcbdccdEGh 2.039781 . . . x12 − 2x11 + x10 − 3x9 + 3x8 − 4x7 + 4x6 +⋯ {2∗,38} Non-orientable
11n144 abcDegHCd 4.659064 . . . x6 − 5x5 + 3x4 − 7x3 +⋯ {4∗,32,42} Non-orientable
11n145 abcBdcEGh 2.156605 . . . x12 − x11 − 3x10 − x9 + 3x8 + x7 + 4x6 +⋯ {1∗,39} Non-orientable
11n146 abcBegHCD 3.303317 . . . x10 − 2x9 − 2x8 − 7x7 − 6x5 +⋯ {3∗,37} Non-orientable
11n154 abAcBcDCEgH 3.984750 . . . x10 − 6x9 + 9x8 − 2x7 − 11x6 + 17x5 +⋯ {5∗,35} Non-orientable

11n156 abbcHCBDCedH 3.700932 . . . x10 − 6x9 + 10x8 − 5x7 − 3x6 + 5x5 +⋯ {5∗,35} Non-orientable
11n157 abAcBdCegHCdE 4.049012 . . . x10 − 4x9 − x7 + x6 − x5 +⋯ {4∗,36} Non-orientable
11n159 abAcbdCBGhCDE 4.219345 . . . x10 − 4x9 − 2x8 + 5x7 + x6 − 13x5 +⋯ {4∗,36} Non-orientable
11n160 abAcBeGhCCd 3.812002 . . . x10 − 4x9 − x8 + 7x7 − x6 − 3x5 +⋯ {4∗,36} Non-orientable
11n163 abAbcbDCeH 4.589511 . . . x8 − 7x7 + 15x6 − 23x5 + 27x4 +⋯ {7∗,33} Non-orientable

11n164 abacbhCBDCed 4.102191 . . . x6 − 3x5 − 4x4 − x3 +⋯ {4∗,36} Non-orientable
11n165 abacbHCBDCeD 4.061725 . . . x8 − 5x7 + 5x6 − 6x5 + 6x4 +⋯ {6∗,34} Non-orientable
11n167 abAcbdCEDGh 4.213271 . . . x12 − 4x11 − 2x10 + 4x9 + 2x8 + 5x7 − 10x6 +⋯ {3∗,37} Non-orientable
11n168 abAbcBDCEH 4.413117 . . . x10 − 5x9 + x8 + 8x7 − 4x6 − x5 +⋯ {5∗,35} Non-orientable
11n172 abcBdCEGh 3.370595 . . . x12 − 4x11 + 2x10 + 7x7 − 10x6 +⋯ {3∗,37} Non-orientable

96

Table C.3 – continued from previous page

11n176 abAcbdCegHCDE 3.921325 . . . x8 − 5x7 + 4x6 + 2x5 − 5x4 +⋯ {4∗,36} Non-orientable
11n179 abAcBEhCCd 4.102191 . . . x6 − 3x5 − 4x4 − x3 +⋯ {6∗,34} Non-orientable
11n183 abacbhCBdCed 3.546455 . . . x4 − 2x3 − 5x2 +⋯ {10∗} Orientable
12a0125 abCBEhCd 6.904075 . . . x6 − 12x5 + 44x4 − 67x3 +⋯ {10∗} Orientable
12a0181 aBcDeH 5.551933 . . . x4 − 8x3 + 15x2 +⋯ {10∗} Orientable

12a0477 aBcDeF 5.048917 . . . x3 − 6x2 + 5x − 1 {10∗} Orientable
12a1124 abAcBdEDcHCd 7.698532 . . . x4 − 10x3 + 19x2 +⋯ {10∗} Orientable
12n0001 abcBDCEgH 3.074645 . . . x10 − 2x9 − 3x8 − 2x7 + x6 + 7x5 +⋯ {3∗,37} Non-orientable
12n0003 abcBdCEgH 3.950993 . . . x10 − 6x9 + 9x8 − 4x7 − x6 + 11x5 +⋯ {4∗,36} Non-orientable
12n0004 abCBEghcD 3.510756 . . . x10 − 6x9 + 11x8 − 8x7 − x6 + 5x5 +⋯ {5∗,35} Non-orientable

12n0005 abCBDcegH 4.240901 . . . x10 − 6x9 + 8x8 − 3x7 + 6x6 − 14x5 +⋯ {5∗,35} Non-orientable
12n0007 abcbdCeGH 3.268189 . . . x12 − 4x11 + x10 + 4x9 + 3x8 − 4x7 + x6 +⋯ {3∗,37} Non-orientable
12n0009 abcbDCeGH 3.999162 . . . x10 − 6x9 + 9x8 − 4x7 − 3x6 + 13x5 +⋯ {4∗,36} Non-orientable
12n0010 abCBdcegH 3.163925 . . . x8 − 2x7 − 3x6 − x5 − 3x4 +⋯ {4∗,36} Non-orientable
12n0014 abCBeghCD 4.215521 . . . x10 − 6x9 + 8x8 − 3x7 + 8x6 − 18x5 +⋯ {5∗,35} Non-orientable

12n0015 abCBdCEgH 5.159059 . . . x8 − 8x7 + 15x6 + x5 − 15x4 +⋯ {6∗,34} Non-orientable
12n0017 abCBdCEH 4.725684 . . . x8 − 7x7 + 11x6 + x5 − 11x4 +⋯ {7∗,33} Non-orientable
12n0018 abCBDceH 4.335594 . . . x8 − 7x7 + 13x6 − 5x5 − 5x4 +⋯ {7∗,33} Non-orientable
12n0019 abCBDCEgH 2.848767 . . . x12 − 4x11 + 2x10 + 6x9 − 8x8 + x7 + 8x6 +⋯ {3∗,37} Non-orientable
12n0020 abcbDCegH 3.096806 . . . x12 − 4x11 + 4x10 − 4x9 + 3x7 − 2x6 +⋯ {3∗,37} Non-orientable

12n0024 abcBdCEGH 3.019641 . . . x12 − 4x11 + 4x10 − 4x9 + 2x8 + x7 + 2x6 +⋯ {3∗,37} Non-orientable
12n0035 aBCDegh 3.206833 . . . x10 − 4x9 + 2x8 + x7 + x6 + 4x5 +⋯ {4∗,36} Non-orientable
12n0036 aBCdEgH 4.451288 . . . x10 − 8x9 + 18x8 − 7x7 − 17x6 + 24x5 +⋯ {5∗,35} Non-orientable
12n0038 abCDegh 3.445037 . . . x8 − 2x7 − x6 − 11x5 − 6x4 +⋯ {4∗,36} Non-orientable
12n0039 abCdEgH 4.469420 . . . x8 − 6x7 + 7x6 − 5x5 + 20x4 +⋯ {5∗,35} Non-orientable

12n0041 aBCDEgH 2.363568 . . . x12 − 3x11 + x10 − x9 + 6x8 − 2x7 +⋯ {3∗,37} Non-orientable
12n0042 abcDEgH 3.221693 . . . x6 − 6x5 + 12x4 − 13x3 +⋯ {3∗,33,42} Non-orientable
12n0044 abcdEgH 3.610609 . . . x12 − 6x11 + 8x10 + 5x9 − 10x8 − 2x7 + 10x6 +⋯ {3∗,37} Non-orientable
12n0045 abCDEgH 2.440094 . . . x10 − x9 − 3x8 − 2x7 + 5x5 +⋯ {3∗,37} Non-orientable
12n0052 abAbCDeh 4.791287 . . . x2 − 5x +⋯ {8∗,32} Non-orientable

97

Table C.3 – continued from previous page

12n0054 abcDegh 3.424229 . . . x12 − 2x11 − 4x10 − 3x9 +⋯ {2∗,38} Non-orientable
12n0069 abCBEGhcd 4.657500 . . . x10 − 6x9 + 6x8 + x7 + 2x6 − 6x5 +⋯ {5∗,35} Non-orientable
12n0070 abCBdceGH 3.533088 . . . x10 − 6x9 + 11x8 − 8x7 − 3x6 + 11x5 +⋯ {5∗,35} Non-orientable
12n0072 abcBDcegH 6.036370 . . . x8 − 7x7 + 6x6 − 4x5 + 18x4 +⋯ {5∗,35} Non-orientable
12n0073 abcBEghcD 3.442134 . . . x10 − 4x9 + x8 + 4x7 − 3x6 + x5 +⋯ {3∗,37} Non-orientable

12n0076 abcBdceGGH 3.832079 . . . x12 − 5x11 + 3x10 + 6x9 − 6x7 + 5x6 +⋯ {3∗,37} Non-orientable
12n0097 abCBEGhcD 3.059240 . . . x10 − 3x9 − 3x6 + 5x5 +⋯ {4∗,36} Non-orientable
12n0101 abAbcDcEHC 8.756911 . . . x6 − 10x5 + 12x4 − 11x3 +⋯ {8∗,32} Non-orientable
12n0102 abAbcdceHC 4.339892 . . . x10 − 4x9 − x8 − 3x7 + 5x6 − 5x5 +⋯ {4∗,36} Non-orientable
12n0119 abcBdcegH 2.912293 . . . x12 − x11 − 4x10 − 4x9 − x8 − x7 − 2x6 +⋯ {2∗,38} Non-orientable

12n0120 abcBEGEhcD 2.332180 . . . x10 − 3x9 + 3x8 − 4x7 + 4x6 − 7x5 +⋯ {2∗,38} Non-orientable
12n0140 abAbcDCegHC 6.516491 . . . x10 − 8x9 + 10x8 − 3x7 + 8x6 − 18x5 +⋯ {5∗,35} Non-orientable
12n0141 abAbcdgHCDE 4.086223 . . . x10 − 5x9 + 4x8 − 2x7 + 7x6 − 15x5 +⋯ {4∗,36} Non-orientable
12n0142 abcDCBedcgH 3.207862 . . . x10 − 3x9 − x7 − 5x6 + 6x5 +⋯ {4∗,36} Non-orientable
12n0143 abcBdceDgeH 3.090657 . . . x4 − 4x3 + 4x2 +⋯ {2∗,38} Non-orientable

12n0144 abcBdCEDgEh 4.566915 . . . x10 − 5x9 + 2x8 − x7 + x6 + 14x5 +⋯ {4∗,36} Non-orientable
12n0148 abcBcdef 3.301490 . . . x6 − x5 − 5x4 − 7x3 +⋯ {10∗} Orientable
12n0151 aBCdEGh 4.157109 . . . x6 − 6x5 + 8x4 − 3x3 +⋯ {5∗,35} Non-orientable
12n0152 aBCdeGH 3.144141 . . . x10 − 4x9 + 2x8 + x7 + x6 + 8x5 +⋯ {4∗,36} Non-orientable
12n0157 abAbCDegH 3.986687 . . . x10 − 5x9 + 4x8 + 2x6 − 6x5 +⋯ {5∗,35} Non-orientable

12n0158 abAbCDEgh 4.315072 . . . x6 − 8x5 + 22x4 − 31x3 +⋯ {6∗,42} Orientable
12n0160 aBcDEGh 3.855267 . . . x10 − 5x9 + 4x8 + 2x7 − 2x6 + 2x5 +⋯ {5∗,35} Non-orientable
12n0161 aBcdeGH 3.996778 . . . x6 − 8x5 + 22x4 − 29x3 +⋯ {6∗,42} Orientable
12n0162 aBcdEGh 3.826541 . . . x10 − 5x9 + 4x8 + 2x7 − 2x5 +⋯ {5∗,35} Non-orientable
12n0164 abCdEGh 4.994274 . . . x8 − 6x7 + 5x6 − 3x5 + 16x4 +⋯ {5∗,35} Non-orientable

12n0165 abCdeGH 3.188184 . . . x10 − 4x9 + 4x8 − 9x7 + 15x6 − 6x5 +⋯ {4∗,36} Non-orientable
12n0168 abcdeGGH 3.216783 . . . x10 − 5x9 + 6x8 − x7 + x6 − 2x5 +⋯ {2∗,38} Non-orientable
12n0178 abcBcDEH 6.040307 . . . x6 − 5x5 − 4x4 − 13x3 +⋯ {6∗,34} Non-orientable
12n0179 abcBcdeH 3.863929 . . . x12 − 4x11 + x9 + 5x8 − 4x7 + x6 +⋯ {3∗,37} Non-orientable
12n0183 abcBcDegH 7.052660 . . . x8 − 8x7 + 7x6 − 5x5 + 20x4 +⋯ {5∗,35} Non-orientable

98

Table C.3 – continued from previous page

12n0184 abcBcDEgh 4.110207 . . . x12 − 5x11 + 4x10 − x9 − 3x8 + 7x7 − 8x6 +⋯ {3∗,37} Non-orientable
12n0198 aBCDEGh 2.777651 . . . x12 − 3x11 − x10 + 4x9 + 2x8 − 2x7 + x6 +⋯ {3∗,37} Non-orientable
12n0199 abcDEDGh 1.744363 . . . x14 − x13 − x12 − 2x9 + 2x7 +⋯ {1∗,39} Non-orientable
12n0204 abAbCdeh 6.133502 . . . x6 − 7x5 + 6x4 − 5x3 +⋯ {8∗,32} Non-orientable
12n0211 abAbCdegH 4.054814 . . . x8 − 4x7 − x6 + 3x5 +⋯ {5∗,35} Non-orientable

12n0218 abCDEGh 2.736024 . . . x10 − x9 − 3x8 − 4x7 − 2x6 + x5 +⋯ {3∗,37} Non-orientable
12n0230 abCBDCeH 3.161717 . . . x10 − 4x9 + 2x8 + x7 + 3x6 +⋯ {4∗,36} Non-orientable
12n0269 abAbCdEH 4.929789 . . . x6 − 7x5 + 12x4 − 11x3 +⋯ {8∗,32} Non-orientable
12n0271 abcDCBGHcdE 3.018779 . . . x10 − 3x9 + x7 − 5x6 + 6x5 +⋯ {4∗,36} Non-orientable
12n0272 abcBdCEDgeH 4.173411 . . . x8 − 3x7 − x6 − 14x5 − 6x4 +⋯ {4∗,36} Non-orientable

12n0273 abcBdceDgEh 2.695439 . . . x8 − 2x7 − x6 − 2x5 +⋯ {2∗,38} Non-orientable
12n0276 abAcbdCdef 3.767506 . . . x6 − x5 − 7x4 − 11x3 +⋯ {10∗} Orientable
12n0280 aBccDCEgH 3.221693 . . . x6 − 6x5 + 12x4 − 13x3 +⋯ {4∗,43} Orientable
12n0281 aBccDCegH 3.858863 . . . x10 − 4x9 + x7 + 3x6 + 4x5 +⋯ {4∗,36} Non-orientable
12n0284 aabAcBegHCD 3.168457 . . . x12 − 4x11 + 4x10 − 6x9 + 6x8 − 5x7 + 10x6 +⋯ {3∗,37} Non-orientable

12n0285 aabAcBEgHCD 2.828384 . . . x6 − x5 − 3x4 − 5x3 +⋯ {3∗,37} Non-orientable
12n0290 abcBdeGHcH 5.247002 . . . x12 − 6x11 + 2x10 + 11x9 − 3x8 − 6x7 + 5x6 +⋯ {3∗,37} Non-orientable
12n0295 abcDCBGhCdE 5.014914 . . . x6 − 9x5 + 26x4 − 35x3 +⋯ {6∗,42} Orientable
12n0298 abAbcbDCEgH 3.829767 . . . x10 − 6x9 + 11x8 − 12x7 + 7x6 − 3x5 +⋯ {5∗,35} Non-orientable
12n0300 abcBdeHCDeG 4.464765 . . . x10 − 5x9 + 2x8 + x7 + x6 + 10x5 +⋯ {4∗,36} Non-orientable

12n0302 abAbCdeF 5.004584 . . . x6 − 7x5 + 11x4 − 7x3 +⋯ {8∗,32} Non-orientable
12n0303 abcdeGHH 3.544599 . . . x10 − 5x9 + 5x8 + x7 − 2x6 + 2x5 +⋯ {2∗,38} Non-orientable
12n0309 abcdEGhh 1.661047 . . . x8 − 2x7 + x6 − x5 + x4 +⋯ {1∗,53} Non-orientable
12n0312 aBcDegHCD 3.128116 . . . x10 − 3x9 − 5x6 + 5x5 +⋯ {4∗,36} Non-orientable
12n0314 abacbgHCBDCed 3.631988 . . . x10 − 4x9 + 2x8 − x7 − 5x6 + x5 +⋯ {4∗,36} Non-orientable

12n0315 abAcBEGhCCd 3.898696 . . . x10 − 4x9 + x7 + x6 + 4x5 +⋯ {4∗,36} Non-orientable
12n0316 abcBdceGHH 5.201545 . . . x12 − 6x11 + 3x10 + 6x9 + x8 − 6x7 + 5x6 +⋯ {3∗,37} Non-orientable
12n0318 abcBBEGhcd 1.815698 . . . x12 − 3x11 + 3x10 − x9 − x8 + x7 − 2x6 +⋯ {1∗,39} Non-orientable
12n0329 abAbcdeh 3.546455 . . . x4 − 2x3 − 5x2 +⋯ {10∗} Orientable
12n0336 abcBcdegH 3.728549 . . . x12 − 2x11 − 5x10 − 5x9 − x8 − x7 − 2x6 +⋯ {2∗,38} Non-orientable

99

Table C.3 – continued from previous page

12n0337 abcBcDeF 5.381600 . . . x6 − 7x5 + 9x4 − 3x3 +⋯ {8∗,32} Non-orientable
12n0340 abcBdeehCDEG 2.042490 . . . x6 − 3x5 + 3x4 − 3x3 +⋯ {2∗,44} Orientable
12n0347 abcbdcEDCGHH 2.456674 . . . x12 − x11 − 4x10 + 3x8 + x7 − 6x6 +⋯ {2∗,38} Non-orientable
12n0348 abcdGHCdE 4.789269 . . . x10 − 5x9 + x8 − x7 + 2x6 + 14x5 +⋯ {4∗,36} Non-orientable
12n0349 abcdhCdE 3.288438 . . . x12 − 3x11 − x10 − x9 + 4x8 − 2x6 +⋯ {3∗,37} Non-orientable

12n0350 abAcbdcBGHCdE 5.562917 . . . x10 − 7x9 + 9x8 − 7x7 + 9x6 − 8x5 +⋯ {5∗,35} Non-orientable
12n0351 abcBdCeGh 3.127830 . . . x12 − 4x11 + 3x10 − 3x9 + 8x8 − 5x7 + 4x6 +⋯ {3∗,37} Non-orientable
12n0352 abCBEgHCD 2.618033 . . . x2 − 3x +⋯ {3∗,33,42} Non-orientable
12n0353 abAcBcDCEGh 5.302264 . . . x6 − 9x5 + 25x4 − 33x3 +⋯ {6∗,42} Orientable
12n0354 abAcbdCBGHCDE 2.856201 . . . x12 − 3x11 + 3x9 − 6x8 + 7x6 +⋯ {3∗,37} Non-orientable

12n0355 abacbHCBDCED 2.667096 . . . x10 − 3x9 + x8 − x7 + 3x6 − 4x5 +⋯ {3∗,37} Non-orientable
12n0356 abacbHCBdCED 3.169660 . . . x10 − 3x9 − x8 + 2x7 + x6 − 9x5 +⋯ {4∗,36} Non-orientable
12n0357 abacbhCBDCeD 6.002530 . . . x8 − 8x7 + 12x6 + 2x5 − 13x4 +⋯ {7∗,33} Non-orientable
12n0362 abAcbdcegHCDE 2.650603 . . . x10 − 4x9 + 5x8 − 4x7 − x6 + 5x5 +⋯ {3∗,37} Non-orientable
12n0363 abAcBdceHCDeG 4.938346 . . . x10 − 7x9 + 12x8 − 9x7 − 2x6 + 11x5 +⋯ {5∗,35} Non-orientable

12n0366 abcdhCde 4.449156 . . . x6 − 2x5 − 8x4 − 11x3 +⋯ {10∗} Orientable
12n0367 abAbcBDCEh 6.338286 . . . x6 − 8x5 + 12x4 − 11x3 +⋯ {8∗,32} Non-orientable
12n0370 abbcbdccEGh 1.974818 . . . x6 − 2x5 + x4 − 2x3 +⋯ {2∗,38} Non-orientable
12n0371 aabAcBdCBhcbDE 2.256455 . . . x6 − 2x5 − x3 +⋯ {2∗,32,43} Non-orientable
12n0372 aabacEHCBDcEdG 2.905984 . . . x12 − 3x11 − x10 + 4x9 − 2x7 − x6 +⋯ {3∗,37} Non-orientable

12n0373 abCCDCeGhcBdce 5.319013 . . . x6 − 8x5 + 18x4 − 23x3 +⋯ {4∗,43} Orientable
12n0375 abAcbdcbGHCDe 4.456859 . . . x12 − 6x11 + 5x10 + 11x9 − 11x8 − 6x7 + 14x6 +⋯ {3∗,37} Non-orientable
12n0377 abAcBdCegHcdE 3.157106 . . . x12 − 2x11 − 2x10 − 3x9 − 5x8 − 5x7 − 2x6 +⋯ {2∗,38} Non-orientable
12n0385 abacbDCBegHCD 4.194187 . . . x10 − 6x9 + 9x8 − 6x7 − x6 + 5x5 +⋯ {5∗,35} Non-orientable
12n0388 abcDCBeDCgH 2.934377 . . . x10 − 3x9 + x7 − 3x6 + 6x5 +⋯ {4∗,36} Non-orientable

12n0389 abCBdehCDEG 5.551933 . . . x4 − 8x3 + 15x2 +⋯ {6∗,42} Orientable
12n0390 abccDCegH 3.942573 . . . x10 − 4x9 + 2x8 − 9x7 + 9x6 − 6x5 +⋯ {4∗,36} Non-orientable
12n0392 abCBdcEh 4.822688 . . . x8 − 7x7 + 11x6 − x5 − 7x4 +⋯ {7∗,33} Non-orientable
12n0395 abAbcbDCeh 5.731419 . . . x6 − 6x5 + 9x3 +⋯ {7∗,33} Non-orientable
12n0396 abCBdcEdgeH 4.500427 . . . x10 − 6x9 + 8x8 − 5x7 − 5x6 + 11x5 +⋯ {5∗,35} Non-orientable

100

Table C.3 – continued from previous page

12n0397 abcBEgHCD 2.915008 . . . x10 − 2x9 − x8 − 4x7 − 3x6 + 3x5 +⋯ {3∗,37} Non-orientable
12n0398 aabAcbdCeH 3.496158 . . . x12 − 3x11 − 3x10 + 4x9 + 2x8 − 2x7 + x6 +⋯ {3∗,37} Non-orientable
12n0399 abAcBdCdEGh 4.701374 . . . x10 − 5x9 + x8 + x7 + 2x6 + 10x5 +⋯ {4∗,36} Non-orientable
12n0400 abAcBDCeGHcde 4.954350 . . . x10 − 7x9 + 12x8 − 9x7 − 4x6 + 15x5 +⋯ {5∗,35} Non-orientable
12n0401 abcDegHCD 4.412135 . . . x8 − 3x7 − 2x6 − 16x5 − 8x4 +⋯ {4∗,36} Non-orientable

12n0402 abAbcdef 2.693117 . . . x6 − x5 − 3x4 − 3x3 +⋯ {10∗} Orientable
12n0403 abAcbdCeDgh 2.503822 . . . x6 − 2x5 − x4 +⋯ {2∗,38} Non-orientable
12n0407 abcbdceDCGH 3.541541 . . . x12 − 4x11 + 5x9 + 3x8 − 2x7 + 3x6 +⋯ {2∗,38} Non-orientable
12n0408 abcBdcEDcGH 5.890961 . . . x8 − 7x7 + 7x6 − 6x5 + 20x4 +⋯ {5∗,35} Non-orientable
12n0409 abcBDGhcDE 2.894537 . . . x12 − x11 − 6x10 + x9 + 4x8 − 4x7 − 9x6 +⋯ {2∗,38} Non-orientable

12n0420 aabAcBeGHCD 4.085832 . . . x10 − 6x9 + 9x8 − 6x7 + 3x6 + 7x5 +⋯ {4∗,36} Non-orientable
12n0423 abAbcdCegHC 3.515350 . . . x12 − 4x11 + x10 + 4x9 − 5x8 − 4x7 + 11x6 +⋯ {3∗,37} Non-orientable
12n0431 abAccbDCEgH 4.374742 . . . x8 − 6x7 + 7x6 + 3x5 − 12x4 +⋯ {6∗,34} Non-orientable
12n0433 abcBdcEh 2.564312 . . . x12 − 2x11 − 4x10 + 3x9 + 8x8 + 2x7 +⋯ {2∗,38} Non-orientable
12n0434 abAcBdEDCGhcd 3.742915 . . . x10 − 4x9 + x8 + x7 − 6x6 + 8x5 +⋯ {4∗,36} Non-orientable

12n0435 abaceHCBDCEdG 3.642607 . . . x10 − 4x9 + 2x8 − x7 − 7x6 + 7x5 +⋯ {4∗,36} Non-orientable
12n0436 abacbHCBdceD 3.890386 . . . x6 − 3x5 − 2x4 − 5x3 +⋯ {4∗,36} Non-orientable
12n0437 abcBcEGhcd 3.971378 . . . x14 − 4x13 − x11 + 5x10 + 2x9 + 5x8 − 5x7 +⋯ {1∗,39} Non-orientable
12n0438 abcbdceDCgH 3.242769 . . . x14 − 2x13 − 4x12 − x11 + 3x10 − x8 + x7 +⋯ {1∗,39} Non-orientable
12n0439 abcBDEGhcd 2.038389 . . . x12 − 3x11 + 2x10 + x9 − 2x8 − x7 + 2x6 +⋯ {1∗,39} Non-orientable

12n0441 abAcdeGHCbCh 6.753766 . . . x10 − 7x9 + x8 + 4x7 + 3x6 + x5 +⋯ {4∗,36} Non-orientable
12n0446 abAcbdcehCDeG 2.513835 . . . x12 − 2x11 − 3x10 + 5x9 − 3x8 + 8x6 +⋯ {2∗,38} Non-orientable
12n0449 abAcBeghCCd 3.319246 . . . x12 − 3x11 − 3x10 + 6x9 + 2x8 − 2x7 + x6 +⋯ {3∗,37} Non-orientable
12n0450 abacbGHCBDCed 4.186752 . . . x8 − 7x7 + 15x6 − 17x5 + 18x4 +⋯ {5∗,35} Non-orientable
12n0451 abacbbbeGhcd 2.649074 . . . x12 − x11 − 5x10 + x9 + 4x8 − 3x7 − 7x6 +⋯ {2∗,38} Non-orientable

12n0454 abcBEGhcDD 3.487791 . . . x12 − 2x11 − 6x10 + 2x9 + 5x8 − 4x7 − 11x6 +⋯ {2∗,38} Non-orientable
12n0456 abcBEGhcdd 2.958226 . . . x14 − 3x13 − x11 + 4x10 + 3x8 − 9x7 +⋯ {1∗,39} Non-orientable
12n0460 abAcbdcbgHCDE 3.785885 . . . x10 − 4x9 + 2x8 − 3x7 − 7x6 + 7x5 +⋯ {4∗,36} Non-orientable
12n0461 abcBDehCDEg 3.803329 . . . x10 − 6x9 + 10x8 − 7x7 + x6 + 7x5 +⋯ {4∗,36} Non-orientable
12n0463 abcDCBedCGH 3.891499 . . . x10 − 6x9 + 10x8 − 7x7 − 3x6 + 13x5 +⋯ {5∗,35} Non-orientable

101

Table C.3 – continued from previous page

12n0475 abcddEGh 1.686481 . . . x12 − 2x11 + x10 − 2x8 + 2x7 − 2x6 +⋯ {1∗,39} Non-orientable
12n0480 abCDCEGhcBdcE 4.222722 . . . x10 − 4x9 − 2x8 + 5x7 + 3x6 − 23x5 +⋯ {4∗,36} Non-orientable
12n0481 abAcBdCeDCCGh 3.721802 . . . x12 − 4x11 − x10 + 9x9 − 4x8 − 9x7 + 18x6 +⋯ {3∗,37} Non-orientable
12n0482 abacDCBeDcgHC 3.402490 . . . x6 − 2x5 − 3x4 − 5x3 +⋯ {4∗,36} Non-orientable
12n0484 abbcHCBDCEdH 3.657501 . . . x12 − 4x11 + x10 + x9 − x8 + 4x7 − 6x6 +⋯ {3∗,37} Non-orientable

12n0487 abcBBdceGh 2.344142 . . . x14 − 2x13 − 2x12 + x11 + 3x10 + 4x9 − 3x8 + x7 +⋯ {1∗,39} Non-orientable
12n0488 abcdcEGh 1.842806 . . . x12 − x11 − 2x10 − x9 + 2x8 + x7 + 2x6 +⋯ {1∗,39} Non-orientable
12n0491 aBcBdCeDCgh 4.906479 . . . x10 − 6x9 + 5x8 + 2x7 − x6 +⋯ {5∗,35} Non-orientable
12n0495 abAbcdcegHCDE 3.284773 . . . x12 − 4x11 + 3x10 − 3x9 + 3x8 − 2x6 +⋯ {3∗,37} Non-orientable
12n0496 abAbcdcEDgeHC 8.037866 . . . x4 − 10x3 + 17x2 +⋯ {6∗,42} Orientable

12n0497 abAbCdEF 5.475970 . . . x6 − 7x5 + 9x4 − 5x3 +⋯ {8∗,32} Non-orientable
12n0499 aBCBBBEgHCBD 3.071432 . . . x10 − 3x9 − x8 + 2x7 − x6 + 7x5 +⋯ {4∗,36} Non-orientable
12n0505 aBcdCCeGh 4.184847 . . . x8 − 6x7 + 7x6 + 5x5 − 12x4 +⋯ {6∗,34} Non-orientable
12n0506 abcdCCEgh 4.235756 . . . x12 − 6x11 + 6x10 + 9x9 − 12x8 + 6x6 +⋯ {3∗,37} Non-orientable
12n0507 abcbdCEDCgH 3.602650 . . . x10 − 6x9 + 10x8 − 5x7 − 3x6 + 13x5 +⋯ {4∗,36} Non-orientable

12n0510 abcbdceHCBdCdEG 8.051962 . . . x8 − 10x7 + 15x6 + 7x5 − 13x4 +⋯ {6∗,34} Non-orientable
12n0514 abcBDEGhcD 2.686374 . . . x12 − x11 − 5x10 + x9 + 4x8 − 5x7 − 9x6 +⋯ {2∗,38} Non-orientable
12n0522 abcDDEGh 2.006682 . . . x10 − x9 − 3x8 + 3x7 − x6 − 2x5 +⋯ {1∗,39} Non-orientable
12n0525 abCBeHcD 4.569495 . . . x8 − 7x7 + 13x6 − 9x5 + 3x4 +⋯ {7∗,33} Non-orientable
12n0528 abAbcbdCeh 4.815994 . . . x6 − 2x5 − 10x4 − 15x3 +⋯ {10∗} Orientable

12n0529 abcBeHcD 6.560775 . . . x6 − 8x5 + 10x4 − 5x3 +⋯ {8∗,32} Non-orientable
12n0536 abAcBcDCegH 4.750268 . . . x10 − 6x9 + 6x8 − x7 + 6x6 − 14x5 +⋯ {5∗,35} Non-orientable
12n0542 abAccbDCeH 5.160059 . . . x6 − 7x5 + 12x4 − 15x3 +⋯ {8∗,32} Non-orientable
12n0543 abAcDGhCbCdE 4.204731 . . . x12 − 4x11 − 3x10 + 9x9 + 2x8 − 9x7 + 4x6 +⋯ {3∗,37} Non-orientable
12n0548 abAcBGhCDDCed 4.874444 . . . x6 − 8x5 + 20x4 − 27x3 +⋯ {6∗,42} Orientable

12n0549 abAcbdcbGGHCDE 2.618033 . . . x2 − 3x +⋯ {3∗,3,43} Non-orientable
12n0552 abCBegHCD 2.837597 . . . x8 − 4x7 + 3x6 + x5 − x4 +⋯ {3∗,33,42} Non-orientable
12n0555 abAbccDCEf 4.613470 . . . x3 − 5x2 + 2x − 1 {8∗,32} Non-orientable
12n0558 abcBcDEh 3.612971 . . . x10 − 2x9 − 4x8 − 5x7 − 5x6 − x5 +⋯ {3∗,37} Non-orientable
12n0577 abcBdCeDCCgH 2.274681 . . . x12 − x11 − 2x10 − x9 − 3x7 − 4x6 +⋯ {2∗,38} Non-orientable

102

Table C.3 – continued from previous page

12n0579 abAcbdcBGhCdE 2.297762 . . . x12 − 2x11 − 3x10 + 7x9 − 5x8 − 2x7 + 12x6 +⋯ {2∗,38} Non-orientable
12n0584 abcdHCdE 5.178144 . . . x8 − 6x7 + 3x6 + 7x5 − 4x4 +⋯ {6∗,34} Non-orientable
12n0586 abcDeHCD 4.892142 . . . x6 − 4x5 − 2x4 − 11x3 +⋯ {6∗,34} Non-orientable
12n0587 abcDEHCd 6.618478 . . . x6 − 8x5 + 10x4 − 7x3 +⋯ {8∗,32} Non-orientable
12n0598 aabAcBeHCd 4.825711 . . . x6 − 4x5 − 2x4 − 9x3 +⋯ {6∗,34} Non-orientable

12n0601 abccEhCD 3.194009 . . . x10 − 2x9 − 2x8 − 5x7 − 3x6 + 3x5 +⋯ {3∗,37} Non-orientable
12n0602 abceHCCd 5.995485 . . . x4 − 6x3 + x2 +⋯ {6∗,34} Non-orientable
12n0612 aBcdGhCDE 5.775688 . . . x6 − 9x5 + 23x4 − 29x3 +⋯ {6∗,42} Orientable
12n0614 abAcbdCBGhCdE 4.095491 . . . x10 − 4x9 − x7 − 3x6 + 3x5 +⋯ {4∗,36} Non-orientable
12n0616 aBBCBDCCDEgH 3.514937 . . . x10 − 4x9 + 2x8 − x7 − 3x6 + 11x5 +⋯ {4∗,36} Non-orientable

12n0617 abacbhCBdCeD 3.266437 . . . x8 − 4x7 + 2x6 + 2x5 − 3x4 +⋯ {3∗,33,42} Non-orientable
12n0621 abCBegHcD 4.443697 . . . x10 − 6x9 + 8x8 − 7x7 + 14x6 − 22x5 +⋯ {5∗,35} Non-orientable
12n0628 abCdCEDGhcBcH 5.444015 . . . x10 − 7x9 + 10x8 − 9x7 + 2x6 + 9x5 +⋯ {5∗,35} Non-orientable
12n0629 aabAcbDCEh 2.806933 . . . x10 − x9 − 3x8 − 4x7 − 4x6 − x5 +⋯ {3∗,37} Non-orientable
12n0630 abacGHCBDCEdC 3.057769 . . . x12 − 3x11 − 2x9 + 6x8 − 5x7 + 2x6 +⋯ {3∗,37} Non-orientable

12n0631 abAcbgHCBDCeD 4.276772 . . . x10 − 4x9 − x8 − x7 + 4x5 +⋯ {4∗,36} Non-orientable
12n0634 abAcbdceDCCGh 3.956144 . . . x12 − 4x11 − x10 + 4x9 + 3x8 − 2x7 + x6 +⋯ {3∗,37} Non-orientable
12n0636 abCBdcEGh 4.739517 . . . x10 − 6x9 + 6x8 − x7 + 6x6 − 10x5 +⋯ {5∗,35} Non-orientable
12n0660 abacbdCehCdE 5.697466 . . . x4 − 4x3 − 9x2 +⋯ {10∗} Orientable
12n0672 abAbcDEhCh 4.071338 . . . x10 − 4x9 − x7 − 3x6 + 10x5 +⋯ {4∗,36} Non-orientable

12n0690 abcBGhcdEd 5.145185 . . . x12 − 4x11 − 6x10 − x9 + 6x8 + 8x7 + 10x6 +⋯ {1∗,39} Non-orientable
12n0705 abcBdcEDCGh 5.578686 . . . x8 − 7x7 + 9x6 − 10x5 + 24x4 +⋯ {5∗,35} Non-orientable
12n0717 abacDcBEDCGHcd 3.358120 . . . x12 − 3x11 − 3x10 + 7x9 − 2x8 − 6x7 + 8x6 +⋯ {3∗,37} Non-orientable
12n0719 abaccBDCEGHcdE 3.449368 . . . x12 − 4x11 + x10 + 4x9 − 3x8 − x6 +⋯ {3∗,37} Non-orientable
12n0730 abbcbdccdeGh 3.203980 . . . x12 − 2x11 − 4x10 + 3x8 − 2x7 − 9x6 +⋯ {2∗,38} Non-orientable

12n0732 abcBDeHCdEg 5.200038 . . . x6 − 7x5 + 10x4 − 5x3 +⋯ {5∗,35} Non-orientable
12n0745 abCdCBhcDE 6.379067 . . . x8 − 9x7 + 21x6 − 33x5 + 41x4 +⋯ {7∗,33} Non-orientable
12n0749 abcbdccceGh 1.864060 . . . x8 − x7 − 2x6 + 2x4 +⋯ {1∗,35,42} Non-orientable
12n0755 abAcbdcBGHCDe 6.579397 . . . x8 − 9x7 + 16x6 + 2x5 − 17x4 +⋯ {6∗,34} Non-orientable
12n0757 abacBDeDCHcd 6.112371 . . . x8 − 8x7 + 12x6 − 2x5 − 5x4 +⋯ {7∗,33} Non-orientable

103

Table C.3 – continued from previous page

12n0763 abaCBAdCBehC 8.546721 . . . x6 − 10x5 + 14x4 − 15x3 +⋯ {8∗,32} Non-orientable
12n0768 abbcbDCEGh 2.242002 . . . x10 − 3x8 − 4x7 − x6 + x5 +⋯ {2∗,38} Non-orientable
12n0780 abacbGhCBDCEd 5.750704 . . . x10 − 7x9 + 7x8 + x7 + x6 − 4x5 +⋯ {5∗,35} Non-orientable
12n0798 abAcbdEDCHCD 4.628918 . . . x8 − 5x7 + x6 + 4x5 − 4x4 +⋯ {6∗,34} Non-orientable
12n0818 abAcbdCCeH 6.338089 . . . x8 − 7x7 + 3x6 + 8x5 − 4x4 +⋯ {6∗,34} Non-orientable

12n0826 abcBdeHCdEG 5.871633 . . . x10 − 9x9 + 20x8 − 7x7 − 19x6 + 26x5 +⋯ {5∗,35} Non-orientable
12n0835 aabCBADCBeDCgH 2.715718 . . . x12 − 2x11 − 2x10 − x9 + 2x8 + 2x7 + 2x6 +⋯ {1∗,39} Non-orientable
12n0847 abAcBdEDChcd 4.050167 . . . x6 − 4x5 − 2x4 + 8x3 +⋯ {6∗,34} Non-orientable
12n0870 abAbCBDCegH 3.367996 . . . x12 − 4x11 + 2x10 + 2x8 − 5x7 + 12x6 +⋯ {3∗,37} Non-orientable
12n0871 abaCBAdcBEGhC 6.560288 . . . x10 − 8x9 + 10x8 − 5x7 + 12x6 − 22x5 +⋯ {5∗,35} Non-orientable

12n0878 abacBdcBHCDe 7.584168 . . . x6 − 9x5 + 12x4 − 11x3 +⋯ {8∗,32} Non-orientable

Table C.4: Fibred knot complements with fibre S4,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

102 abcdefgH 2.011287 . . . x8 − 3x7 + 3x6 − 3x5 + 3x4 +⋯ {2∗,82} Orientable
105 abcdefGH 1.738874 . . . x10 − x9 − 2x7 +⋯ {2∗,32,72} Non-orientable
109 abcdeFGH 1.635573 . . . x6 − 2x5 + 2x4 − 3x3 +⋯ {2∗,42,62} Orientable
1017 abcdEFGH 1.607506 . . . x10 − x9 − 4x5 +⋯ {2∗,54} Non-orientable
1046 abcdefgJ 2.257161 . . . x16 − 3x15 + 3x14 − 4x13 + 4x12 − 5x11 + 4x10 − 4x9 + 3x8 +⋯ {2∗,312} Non-orientable

1047 abcdeFGj 2.077144 . . . x16 − 3x15 + 4x14 − 7x13 + 9x12 − 11x11 + 12x10 − 13x9 + 14x8 +⋯ {2∗,312} Non-orientable
1048 abcdEFGJ 1.860254 . . . x10 − 2x9 + 2x6 − 3x5 +⋯ {2∗,36,52} Non-orientable
1062 abcdCedfEGHj 1.953754 . . . x14 − 2x13 + x12 − 3x11 + 3x10 − 2x9 + 3x8 − 4x7 +⋯ {2∗,312} Non-orientable
1064 abcdCeDFEGHJ 1.781643 . . . x6 − x5 − x4 +⋯ {2∗,38,42} Non-orientable
1082 abcdedFEGJ 2.172303 . . . x18 − 3x17 + 2x16 − x14 − x13 + 2x12 + 3x10 − 4x9 +⋯ {3∗,311} Non-orientable

1085 abcdeDfEgJ 2.338008 . . . x18 − 3x17 + 2x16 − 3x14 + x13 + 2x11 − 3x10 + 4x9 +⋯ {3∗,311} Non-orientable
1091 abcbdCeDFEGJ 2.170965 . . . x18 − 3x17 + 6x15 − 3x14 − 5x13 + 10x11 + x10 − 15x9 +⋯ {3∗,311} Non-orientable
1094 abcBdCeDfEgJ 2.183459 . . . x18 − 3x17 + 6x15 − 3x14 − 7x13 + 6x12 + 6x11 − 3x10 − 5x9 +⋯ {3∗,311} Non-orientable
10100 abcBdceDfGjeFG 2.515824 . . . x18 − 3x17 + 5x15 − 4x14 − 5x13 + 8x12 − x11 − 5x10 + 6x9 +⋯ {3∗,311} Non-orientable

104

Table C.4 – continued from previous page
10112 abcdCeDfGFEJef 2.413138 . . . x16 − 3x15 + 2x14 − x13 − x11 − 4x10 + 2x9 − x8 +⋯ {4∗,310} Non-orientable

10139 abcdCedfEghj 1.401268 . . . x6 − x4 − x3 +⋯ {14∗} Orientable
11a7 abcdEFgJ 2.629562 . . . x12 − 3x11 + 3x9 − 2x8 + 6x6 +⋯ {4∗,34,52} Non-orientable
11a9 abcdefGJ 2.808151 . . . x16 − 3x15 + x13 + x12 + x11 + x9 + 2x8 +⋯ {4∗,310} Non-orientable
11a28 abcBdCeDfEGJ 2.894665 . . . x16 − 5x15 + 6x14 + 4x13 − 13x12 + 3x11 + 12x10 − 2x9 − 13x8 +⋯ {5∗,39} Non-orientable
11a33 aBCDEfgJ 2.341758 . . . x16 − 3x15 + x14 + 3x12 − 2x10 + 3x9 + 2x8 +⋯ {4∗,310} Non-orientable

11a34 abcDEfgJ 2.550965 . . . x12 − 3x11 + 2x10 − 3x9 + 4x7 + 2x6 +⋯ {4∗,36,42} Non-orientable
11a35 abCDEfgJ 2.338366 . . . x8 − x7 − 2x6 − x5 − 3x4 +⋯ {4∗,310} Non-orientable
11a40 abcdEfgJ 2.678723 . . . x10 − x9 − x8 − 6x7 − 5x6 − 8x5 +⋯ {4∗,34,52} Non-orientable
11a53 abcdedFEgJ 3.194357 . . . x16 − 5x15 + 8x14 − 8x13 + 3x12 − x11 + 5x9 − 8x8 +⋯ {5∗,39} Non-orientable
11a55 abcdeFGJ 2.772695 . . . x8 − 3x7 + 2x6 − 5x5 + 5x4 +⋯ {4∗,32,62} Non-orientable

11a62 abcdeFgj 3.652080 . . . x16 − 3x15 − 2x14 − x13 − x12 − x11 − 2x10 − x9 + 2x8 +⋯ {4∗,310} Non-orientable
11a66 abcbdCeDFEgJ 2.916417 . . . x16 − 5x15 + 6x14 + 4x13 − 13x12 + x11 + 16x10 − 19x8 +⋯ {5∗,39} Non-orientable
11a68 abcdeDfEGJ 3.086440 . . . x16 − 5x15 + 8x14 − 8x13 + 5x12 − x11 + 3x9 − 4x8 +⋯ {5∗,39} Non-orientable
11a71 abCdEDfegJ 2.713765 . . . x12 − 2x11 − 2x10 − x9 + 3x8 + x6 +⋯ {5∗,39} Non-orientable
11a72 abCdEDGjeF 2.740266 . . . x12 − 2x11 − 2x10 − x9 + x8 + 4x7 − x6 +⋯ {5∗,39} Non-orientable

11a73 aBcdEDCfEdgFeJ 2.899087 . . . x14 − 5x13 + 8x12 − 7x11 + 6x10 − 6x9 + x8 + 5x7 +⋯ {6∗,38} Non-orientable
11a74 aBCDEFGj 2.451540 . . . x16 − 3x15 + 3x13 + x12 − x11 + x9 + 2x8 +⋯ {4∗,310} Non-orientable
11a76 abCBdcEDGjeF 2.775964 . . . x16 − 5x15 + 6x14 + 4x13 − 11x12 − x11 + 14x10 + 2x9 − 21x8 +⋯ {5∗,39} Non-orientable
11a79 abCBdcEDfegJ 2.825872 . . . x16 − 5x15 + 6x14 + 4x13 − 11x12 − 3x11 + 16x10 + 6x9 − 27x8 +⋯ {5∗,39} Non-orientable
11a80 aBCdEDfegJ 2.578276 . . . x16 − 5x15 + 7x14 + x13 − 10x12 + 6x11 + 4x9 − 9x8 +⋯ {5∗,39} Non-orientable

11a81 aBCdEDGjeF 2.609795 . . . x16 − 5x15 + 7x14 + x13 − 12x12 + 12x11 − 12x9 + 17x8 +⋯ {5∗,39} Non-orientable
11a82 abCDEFGj 2.474592 . . . x12 − 3x11 + 2x10 − 3x9 + 4x8 − 2x7 +⋯ {4∗,310} Non-orientable
11a83 abCDefgj 2.704111 . . . x12 − 3x11 + 3x10 − 8x9 + 8x8 − 9x7 + 9x6 +⋯ {4∗,310} Non-orientable
11a86 abcdCeDfEgHJ 2.589978 . . . x16 − 3x15 + x14 − x13 + 3x12 − 2x10 + 4x9 + 2x8 +⋯ {4∗,310} Non-orientable
11a88 abcdCedFEGHJ 2.538143 . . . x10 − 2x9 − 2x8 + x7 + x6 + x5 +⋯ {4∗,36,42} Non-orientable

11a92 aBCDefgj 2.545022 . . . x10 − 2x9 − 2x8 + 2x7 − 3x5 +⋯ {4∗,36,42} Non-orientable
11a99 abCBdCeFEDgfEJ 2.889341 . . . x14 − 4x13 + x12 + 8x11 − 3x10 − 6x9 + 2x8 + 4x7 +⋯ {5∗,39} Non-orientable
11a106 abcdCeDfEGHJ 2.542048 . . . x6 − x5 − 2x4 − 4x3 +⋯ {4∗,34,52} Non-orientable
11a108 aBcDCedFEGHj 2.376274 . . . x12 − 3x11 + 2x10 − 2x9 + 2x8 + x7 − 4x6 +⋯ {4∗,310} Non-orientable

105

Table C.4 – continued from previous page
11a109 abcDCedFEGHj 2.457196 . . . x12 − 3x11 + 3x10 − 7x9 + 10x8 − 11x7 + 13x6 +⋯ {4∗,310} Non-orientable

11a125 abAcbdCdedFEGJ 3.113194 . . . x14 − 3x13 − 2x11 + 3x10 − 3x9 + 6x8 + 3x7 +⋯ {5∗,39} Non-orientable
11a126 abAcbdCdEFGJ 3.011164 . . . x12 − 2x11 − 3x10 − 2x8 + 5x7 − 2x6 +⋯ {4∗,310} Non-orientable
11a127 abcBdcEDfegJ 3.092588 . . . x14 − 3x13 − 3x10 + x9 − 2x8 + 5x7 +⋯ {5∗,39} Non-orientable
11a129 abcBdceDfEgJ 3.255868 . . . x12 − 4x11 + x10 + 8x9 − 11x8 − 5x7 + 19x6 +⋯ {5∗,39} Non-orientable
11a139 abcdCedFEGHj 2.527324 . . . x8 − 3x7 + 4x6 − 8x5 + 5x4 +⋯ {4∗,32,44} Non-orientable

11a142 abcdCedfEghJ 3.593676 . . . x12 − 3x11 − 3x10 + 3x9 + x8 − 2x7 +⋯ {4∗,310} Non-orientable
11a147 abcBdcEDGjeF 2.938946 . . . x14 − 3x13 + x10 − x9 + 6x8 + 3x7 +⋯ {5∗,39} Non-orientable
11a151 abcBdceDGjEF 3.111500 . . . x16 − 5x15 + 6x14 + 2x13 − 9x12 + 3x11 + 6x10 + 4x9 − 15x8 +⋯ {5∗,39} Non-orientable
11a158 abAcBdCeDgjEEf 3.087326 . . . x16 − 3x15 − 2x14 + 5x13 + x12 + x11 − 2x10 − 5x9 + 12x8 +⋯ {4∗,310} Non-orientable
11a160 abcBdCeFEDgfEJ 2.913193 . . . x14 − 3x13 + x10 + 3x9 − 2x8 + 9x7 +⋯ {5∗,39} Non-orientable

11a163 abcBdCeDfGjeFG 3.038847 . . . x16 − 5x15 + 6x14 + 2x13 − 9x12 + 9x11 − 2x10 − 10x9 + 17x8 +⋯ {5∗,39} Non-orientable
11a170 abcBcdceFEDGJE 3.279923 . . . x14 − 3x13 − x12 + x11 − 4x10 + 6x9 − 6x8 + 13x7 +⋯ {5∗,39} Non-orientable
11a171 abcdEDCfEdgFeJ 3.142262 . . . x6 − 4x5 + 4x4 − 5x3 +⋯ {6∗,32,43} Non-orientable
11a174 abCDEFGh 2.186019 . . . x8 − 3x7 + 3x6 − 5x5 + 7x4 +⋯ {4∗,32,62} Non-orientable
11a175 abCDEFgh 2.125727 . . . x8 − 2x7 + x6 − 3x5 + 2x4 +⋯ {4∗,34,52} Non-orientable

11a176 abcDEFgh 2.230352 . . . x8 − 3x7 + 5x6 − 9x5 + 7x4 +⋯ {4∗,32,44} Non-orientable
11a177 abcdEFgh 2.494798 . . . x10 − x9 − 6x7 − 4x6 − 8x5 +⋯ {4∗,34,52} Non-orientable
11a179 aBCDEFGh 2.212584 . . . x8 − 3x7 + x6 + x5 + x4 +⋯ {4∗,72} Non-orientable
11a180 abcDEFGh 2.256455 . . . x6 − 2x5 − x3 +⋯ {4∗,42,52} Non-orientable
11a182 abcdeFGh 2.710685 . . . x6 − 2x5 − 5x3 +⋯ {4∗,32,62} Non-orientable

11a184 abcdEFGh 2.408525 . . . x8 − 3x7 + 3x6 − 3x5 − x4 +⋯ {4∗,42,52} Non-orientable
11a194 aBcDCedfEghj 2.832720 . . . x10 − 2x9 − x8 − 3x7 − 2x6 +⋯ {4∗,310} Non-orientable
11a203 abcdeFgh 3.142262 . . . x6 − 4x5 + 4x4 − 5x3 +⋯ {4∗,32,62} Non-orientable
11a206 aBcBDCEJeeFGIJ 3.414909 . . . x8 − 3x7 − x6 − x5 − x4 +⋯ {4∗,72} Non-orientable
11a221 abcdEFGj 2.761693 . . . x8 − 3x7 + 2x6 − 3x5 − x4 +⋯ {4∗,42,52} Non-orientable

11a223 abcDCedfEghj 3.346973 . . . x4 − 2x3 − 4x2 +⋯ {4∗,310} Non-orientable
11a232 abcBcdeDFEDGHJ 3.011970 . . . x10 − 2x9 − 3x8 − x7 + 8x5 +⋯ {4∗,310} Non-orientable
11a248 abcdCdedFEGJ 3.104624 . . . x12 − 5x11 + 9x10 − 13x9 + 12x8 − 7x7 + 7x6 +⋯ {5∗,35,42} Non-orientable
11a255 abcdCedfJEFG 3.285871 . . . x16 − 5x15 + 6x14 − 5x12 + 3x11 + 8x9 − 15x8 +⋯ {5∗,39} Non-orientable

106

Table C.4 – continued from previous page
11a257 abcDEFGj 2.689915 . . . x12 − 3x11 + x10 − 2x8 + x7 + 3x6 +⋯ {4∗,36,42} Non-orientable

11a259 abcDefgj 3.353251 . . . x12 − 3x11 − x10 − 2x8 − x7 + 3x6 +⋯ {4∗,36,42} Non-orientable
11a261 abcdEDfegJ 3.037400 . . . x12 − 5x11 + 9x10 − 11x9 + 4x8 + 7x7 − 11x6 +⋯ {5∗,35,42} Non-orientable
11a264 abcdEDGjeF 2.960851 . . . x12 − 5x11 + 9x10 − 11x9 + 6x8 + 3x7 − 5x6 +⋯ {5∗,35,42} Non-orientable
11a269 abcdCeDfgJeJEF 3.354796 . . . x16 − 5x15 + 5x14 + 5x13 − 14x12 + 10x11 + 4x10 − 14x9 + 17x8 +⋯ {5∗,39} Non-orientable
11a277 abcbdCeDgJEF 3.111321 . . . x16 − 5x15 + 6x14 + 2x13 − 9x12 + x11 + 14x10 − 19x8 +⋯ {5∗,39} Non-orientable

11a282 abcdCCeDfEGj 3.108211 . . . x14 − 4x13 + 3x12 − x11 + x10 − x9 + 2x8 +⋯ {5∗,39} Non-orientable
11a289 aabAcbDCeDFEgJ 2.927123 . . . x16 − 5x15 + 6x14 + 4x13 − 15x12 + 9x11 + 10x10 − 6x9 − 9x8 +⋯ {5∗,39} Non-orientable
11a293 abcdefEEGj 3.464771 . . . x16 − 3x15 − 2x14 + x13 + x12 + x11 − 2x10 + 3x9 + 2x8 +⋯ {4∗,310} Non-orientable
11a305 abcBBdCedfEDGj 2.992408 . . . x14 − 4x13 + 2x12 + 5x11 − 7x10 + 2x9 + 7x8 − 11x7 +⋯ {5∗,39} Non-orientable
11a306 abcDEfgh 2.442774 . . . x8 − 3x7 + 5x6 − 11x5 + 9x4 +⋯ {4∗,32,44} Non-orientable

11a308 abcdEfgh 3.061894 . . . x6 − 2x5 − 2x4 − 3x3 +⋯ {4∗,42,52} Non-orientable
11a316 abcdCdEFGJ 3.205645 . . . x12 − 3x11 − x10 + 2x9 − 4x8 + 3x7 + x6 +⋯ {4∗,36,42} Non-orientable
11a326 abcBdcEDfJEdFG 3.411170 . . . x16 − 5x15 + 4x14 + 8x13 − 11x12 − 3x11 + 14x10 + 2x9 − 21x8 +⋯ {5∗,39} Non-orientable
11a330 abcdCedfEEGj 3.313281 . . . x16 − 3x15 − 2x14 + 3x13 + x12 − x11 − 2x10 + 3x9 + 2x8 +⋯ {4∗,310} Non-orientable
11a346 abcdCedfEgHGGj 3.226641 . . . x16 − 3x15 − 2x14 + 4x13 + x12 − 2x11 − 2x10 + 3x9 + 2x8 +⋯ {4∗,310} Non-orientable

11a348 abcdcedJEDFEgf 3.581722 . . . x12 − 5x11 + 5x10 + 3x9 − 10x8 − 2x7 + 12x6 +⋯ {6∗,38} Non-orientable
11n13 abcdefGj 2.242750 . . . x8 − 3x7 + 2x6 − x5 + x4 +⋯ {2∗,46} Orientable
11n57 aBCDEFGJ 2.060178 . . . x8 − 3x7 + 2x6 + x5 − 3x4 +⋯ {2∗,63} Orientable
11n60 abcDEFGJ 1.800171 . . . x8 − 3x7 + 4x6 − 5x5 + 5x4 +⋯ {2∗,46} Orientable
11n61 abCDEFGJ 1.826325 . . . x10 − x9 − x8 − 2x7 + x6 + 2x5 +⋯ {2∗,36,43} Non-orientable

11n88 abcdCedfEgHj 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {2∗,46} Orientable
11n104 aBcDCeDFEGHJ 2.081018 . . . x4 − x3 − 2x2 +⋯ {2∗,54} Non-orientable
11n107 abcDCeDFEGHJ 1.828870 . . . x12 − x11 − 2x9 − x7 − 2x6 +⋯ {2∗,312} Non-orientable
11n120 aabAcbDCeDFEGJ 2.084904 . . . x18 − 3x17 + 2x16 − x14 + x13 + 3x10 − 3x9 +⋯ {3∗,311} Non-orientable
11n133 abcBBdCedfEDgj 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {3∗,35,43} Non-orientable

11n149 abcdCCeDfEgj 2.203299 . . . x14 − x13 − 2x12 − 2x11 + x10 + x8 +⋯ {3∗,311} Non-orientable
11n153 abcbdCeDGJEF 2.032685 . . . x18 − 3x17 + 2x16 − x15 + 2x14 + x13 − 2x12 − x11 + x10 − 2x9 +⋯ {3∗,311} Non-orientable
12a0016 aBCDefGj 2.853035 . . . x10 − 5x9 + 7x8 − 2x7 − 5x6 + 12x5 +⋯ {6∗,34,42} Non-orientable
12a0017 abCDefGj 3.026085 . . . x12 − 3x11 − 3x9 + 4x8 + 10x7 + 6x6 +⋯ {6∗,38} Non-orientable

107

Table C.4 – continued from previous page
12a0018 aBCDEFgj 2.896985 . . . x12 − 3x11 − x10 + 2x9 + 4x8 + 3x7 − x6 +⋯ {6∗,38} Non-orientable

12a0019 abcDEFgj 3.183205 . . . x10 − 5x9 + 7x8 − 4x7 − 3x6 + 12x5 +⋯ {6∗,34,42} Non-orientable
12a0020 abCDEFgj 2.960717 . . . x10 − 4x9 + 2x8 + 4x7 − 2x6 − x5 +⋯ {6∗,38} Non-orientable
12a0024 abcDefGj 3.614185 . . . x10 − 5x9 + 5x8 − 3x6 + 12x5 +⋯ {6∗,34,42} Non-orientable
12a0026 abcdEFgj 3.509705 . . . x8 − 3x7 − 5x5 − 3x4 +⋯ {6∗,32,52} Non-orientable
12a0050 abcdeDFeGJ 5.132791 . . . x8 − 4x7 − 4x6 − 8x5 − 5x4 +⋯ {6∗,32,52} Non-orientable

12a0069 abCBdcEDgjeF 3.384469 . . . x14 − 7x13 + 16x12 − 10x11 − 17x10 + 25x9 + 16x8 − 47x7 +⋯ {7∗,37} Non-orientable
12a0070 abcBdcEDgjeF 3.862539 . . . x8 − 4x7 + x6 − 7x4 +⋯ {7∗,37} Non-orientable
12a0071 abcBdceDfEGJ 3.849547 . . . x14 − 7x13 + 16x12 − 16x11 + x10 + 15x9 − 10x8 + x7 +⋯ {7∗,37} Non-orientable
12a0074 abAcbdCdEFgJ 3.640154 . . . x12 − 3x11 − 2x10 − 3x9 + 4x8 + 6x7 + 10x6 +⋯ {6∗,38} Non-orientable
12a0077 aBCdeFGj 2.947358 . . . x12 − 3x11 − 3x9 + 4x8 + 12x7 + 14x6 +⋯ {6∗,38} Non-orientable

12a0079 abAbCDEfgJ 2.923171 . . . x14 − 5x13 + 6x12 + 3x11 − 7x10 − 3x9 − 7x8 + 20x7 +⋯ {6∗,38} Non-orientable
12a0084 abCdeFGj 3.373735 . . . x12 − 3x11 − 2x10 − x9 + 6x8 + 14x7 + 14x6 +⋯ {6∗,38} Non-orientable
12a0087 aBcdeFGj 3.467982 . . . x14 − 5x13 + 4x12 + 5x11 − x10 − x9 − 5x8 + 8x7 +⋯ {6∗,38} Non-orientable
12a0090 abcBcDEfgJ 3.223035 . . . x12 − 3x11 − 3x9 + 2x8 + 2x6 +⋯ {6∗,38} Non-orientable
12a0092 abcBdceDFeGJ 4.784290 . . . x8 − 4x7 − x6 − 12x5 − 3x4 +⋯ {6∗,34,42} Non-orientable

12a0098 aBCDeFGj 2.899617 . . . x10 − 5x9 + 9x8 − 14x7 + 21x6 − 20x5 +⋯ {6∗,34,42} Non-orientable
12a0099 abCDeFGj 3.076441 . . . x12 − 3x11 + 2x10 − 11x9 + 12x8 − 6x7 + 26x6 +⋯ {6∗,38} Non-orientable
12a0112 abcDeFGj 3.660409 . . . x10 − 5x9 + 7x8 − 12x7 + 19x6 − 16x5 +⋯ {6∗,34,42} Non-orientable
12a0137 aBCdEDfeGJ 3.311975 . . . x14 − 7x13 + 17x12 − 17x11 + 16x9 − 12x8 + 5x7 +⋯ {7∗,37} Non-orientable
12a0138 abcdEDfeGJ 3.868879 . . . x10 − 7x9 + 19x8 − 38x7 + 57x6 − 63x5 +⋯ {7∗,33,42} Non-orientable

12a0139 abCdEDfeGJ 3.469146 . . . x12 − 5x11 + 7x10 − 7x9 + 4x8 − x7 + 3x6 +⋯ {7∗,37} Non-orientable
12a0141 aBCDEfgj 2.936062 . . . x8 − 3x7 − x5 + 5x4 +⋯ {6∗,32,52} Non-orientable
12a0142 abcDEfgj 3.412060 . . . x8 − 3x7 + 2x6 − 11x5 + x4 +⋯ {6∗,34,42} Non-orientable
12a0149 abCDEfgj 3.063872 . . . x8 − 3x7 + 2x6 − 7x5 + 3x4 +⋯ {6∗,34,42} Non-orientable
12a0158 abcdEfgj 4.365763 . . . x8 − 3x7 − 4x6 − 7x5 − 5x4 +⋯ {6∗,32,52} Non-orientable

12a0172 aBCDEfGJ 3.668840 . . . x14 − 5x13 + 4x12 + 3x11 + x10 − x9 − x8 + 12x7 +⋯ {6∗,38} Non-orientable
12a0173 abcDEfGJ 3.820344 . . . x10 − 5x9 + 5x8 − 2x7 − 3x6 + 14x5 +⋯ {6∗,34,42} Non-orientable
12a0174 abCDEfGJ 3.693392 . . . x14 − 5x13 + 4x12 + 3x11 + x10 − 3x9 − x8 + 4x7 +⋯ {6∗,38} Non-orientable
12a0179 abcdEfGJ 3.863029 . . . x10 − 5x9 + 5x8 − 4x7 + 7x6 − 4x5 +⋯ {6∗,32,52} Non-orientable

108

Table C.4 – continued from previous page
12a0184 abCBdcEDfeGJ 3.340556 . . . x14 − 7x13 + 16x12 − 10x11 − 17x10 + 27x9 + 16x8 − 53x7 +⋯ {7∗,37} Non-orientable

12a0185 abcBdcEDfeGJ 3.745332 . . . x12 − 5x11 + 6x10 − 6x9 + 3x8 + 4x7 + x6 +⋯ {7∗,37} Non-orientable
12a0186 abcBdceDgjEF 3.971725 . . . x14 − 7x13 + 16x12 − 16x11 − 3x10 + 17x9 − 4x8 − 9x7 +⋯ {7∗,37} Non-orientable
12a0189 aBCdEDgjeF 3.250713 . . . x14 − 7x13 + 17x12 − 17x11 + 2x10 + 12x9 − 18x8 + 19x7 +⋯ {7∗,37} Non-orientable
12a0190 abcdEDgjeF 3.922068 . . . x10 − 7x9 + 19x8 − 38x7 + 55x6 − 61x5 +⋯ {7∗,33,42} Non-orientable
12a0191 abCdEDgjeF 3.435140 . . . x12 − 5x11 + 7x10 − 7x9 + 6x8 − 5x7 + 5x6 +⋯ {7∗,37} Non-orientable

12a0193 abcdeFgJ 3.881772 . . . x8 − 7x7 + 16x6 − 19x5 + 19x4 +⋯ {6∗,62} Orientable
12a0200 abcdCdEFgJ 3.805930 . . . x10 − 5x9 + 5x8 − 2x7 − x6 + 8x5 +⋯ {6∗,34,42} Non-orientable
12a0202 aBccDCedFEgJ 3.385413 . . . x14 − 7x13 + 17x12 − 17x11 − 2x10 + 26x9 − 42x8 + 47x7 +⋯ {7∗,37} Non-orientable
12a0203 aBCdefgJ 3.003487 . . . x14 − 5x13 + 6x12 − x11 + 3x10 + x9 − 3x8 +⋯ {6∗,38} Non-orientable
12a0207 abAbCDEFGj 2.996510 . . . x12 − 7x11 + 18x10 − 21x9 + 10x8 − 4x7 + 4x6 +⋯ {6∗,38} Non-orientable

12a0209 aBcDCedFGjEf 3.436096 . . . x14 − 7x13 + 16x12 − 12x11 − 9x10 + 19x9 + 18x8 − 53x7 +⋯ {7∗,37} Non-orientable
12a0213 aBCdedFEGJ 3.361573 . . . x12 − 5x11 + 7x10 − 7x9 + 4x8 + 9x7 − 3x6 +⋯ {7∗,37} Non-orientable
12a0214 aBCdeDfEgJ 3.299793 . . . x12 − 5x11 + 7x10 − 7x9 + 6x8 + 5x7 + 3x6 +⋯ {7∗,37} Non-orientable
12a0215 abcdCedFEGhJ 3.057688 . . . x8 − 4x7 + 2x6 + 3x5 − 2x4 +⋯ {6∗,34,42} Non-orientable
12a0216 abcdCedfEgHJ 3.780912 . . . x14 − 5x13 + 4x12 + 2x11 + x10 − x8 + 12x7 +⋯ {6∗,38} Non-orientable

12a0217 aBcDCedFEghJ 2.831405 . . . x12 − 3x11 − x10 + 3x9 + 4x8 + x7 − 9x6 +⋯ {6∗,38} Non-orientable
12a0219 abcdCedFEghJ 3.345797 . . . x8 − 3x7 + 2x6 − 10x5 + x4 +⋯ {6∗,34,42} Non-orientable
12a0220 aBcDCedfEgHj 3.065132 . . . x6 − 4x5 + 3x4 − x3 +⋯ {6∗,38} Non-orientable
12a0222 aBcDCeDFgjEf 3.486971 . . . x14 − 7x13 + 16x12 − 14x11 + 3x10 − 3x9 + 22x8 − 37x7 +⋯ {7∗,37} Non-orientable
12a0224 abCBdCEDGjeF 3.390248 . . . x14 − 7x13 + 16x12 − 12x11 − 9x10 + 27x9 − 18x8 + 5x7 +⋯ {7∗,37} Non-orientable

12a0225 abcDCedFEghJ 3.007511 . . . x10 − 4x9 + 3x8 − x7 + 2x6 + 2x5 +⋯ {6∗,38} Non-orientable
12a0228 aBcDCeDfgj 3.546734 . . . x14 − 5x13 + 4x12 + 5x11 − 5x10 + 9x9 − 11x8 + 8x7 +⋯ {6∗,38} Non-orientable
12a0233 abCBdCEDfegJ 3.289176 . . . x14 − 7x13 + 16x12 − 12x11 − 5x10 + 9x9 + 18x8 − 41x7 +⋯ {7∗,37} Non-orientable
12a0242 abCDefgJ 3.118827 . . . x10 − 5x9 + 9x8 − 16x7 + 25x6 − 24x5 +⋯ {6∗,34,42} Non-orientable
12a0245 abCDeeFEgJ 3.614286 . . . x12 − 4x11 − x10 + 8x9 + 4x8 − x7 − 18x6 +⋯ {6∗,38} Non-orientable

12a0246 aBCdEFGJ 3.674658 . . . x14 − 5x13 + 4x12 + 3x11 + x10 − x9 + x8 − 4x7 +⋯ {6∗,38} Non-orientable
12a0250 abcDCedfEgHj 3.583349 . . . x12 − 4x11 − x10 + 7x9 + 9x8 − 4x7 − 12x6 +⋯ {6∗,38} Non-orientable
12a0258 aBCDefgJ 2.949787 . . . x4 − 4x3 + 4x2 − 3x + 1 {6∗,44} Orientable
12a0260 aBCDeeFEgJ 3.532957 . . . x12 − 3x11 − 3x10 + 2x9 + 6x8 + 3x7 − x6 +⋯ {6∗,38} Non-orientable

109

Table C.4 – continued from previous page
12a0261 abCBdceFEDgfEJ 3.324478 . . . x14 − 7x13 + 16x12 − 12x11 − 5x10 + 15x9 − 22x8 + 27x7 +⋯ {7∗,37} Non-orientable

12a0262 aBcDCeedGJEF 3.466330 . . . x14 − 5x13 + 3x12 + 12x11 − 12x10 − 9x9 + 10x8 − 2x7 +⋯ {6∗,38} Non-orientable
12a0264 aBcdEDCjeDfEGF 3.787264 . . . x12 − 7x11 + 16x10 − 16x9 + 3x8 + 13x7 − 15x6 +⋯ {8∗,36} Non-orientable
12a0265 aBcDCeDfEDgj 3.434469 . . . x12 − 5x11 + 7x10 − 9x9 + 12x8 − 5x7 + 15x6 +⋯ {7∗,37} Non-orientable
12a0271 abcBcDEFGj 3.308005 . . . x14 − 5x13 + 6x12 − x11 + x10 − 7x9 − 3x8 + 12x7 +⋯ {6∗,38} Non-orientable
12a0278 abcdCedfEGHJ 3.777951 . . . x8 − 4x7 + x5 + 8x4 +⋯ {6∗,32,52} Non-orientable

12a0280 aBcDCedFEghj 2.965572 . . . x4 − 3x3 + x2 +⋯ {6∗,34,42} Non-orientable
12a0281 abcDCedFEghj 3.254263 . . . x4 − 3x3 +⋯ {6∗,38} Non-orientable
12a0282 aBcdedFEGJ 3.625293 . . . x12 − 6x11 + 8x10 + 5x9 − 9x8 − 8x7 + 17x6 +⋯ {7∗,37} Non-orientable
12a0283 aBcdeDfEgJ 3.614341 . . . x12 − 6x11 + 8x10 + 5x9 − 11x8 + 4x7 − x6 +⋯ {7∗,37} Non-orientable
12a0288 abAbCdEDfegJ 3.474468 . . . x14 − 7x13 + 17x12 − 17x11 + 2x9 + 22x8 − 35x7 +⋯ {7∗,37} Non-orientable

12a0298 aBcdCedfEGHj 3.553375 . . . x12 − 7x11 + 17x10 − 23x9 + 30x8 − 39x7 + 43x6 +⋯ {6∗,38} Non-orientable
12a0299 abCdefgJ 3.407140 . . . x14 − 5x13 + 4x12 + 5x11 + x10 − 5x9 − x8 + 4x7 +⋯ {6∗,38} Non-orientable
12a0304 aBcdefgJ 3.475722 . . . x12 − 7x11 + 16x10 − 15x9 + 8x8 − 6x7 + 8x6 +⋯ {6∗,38} Non-orientable
12a0305 aBcdEFGJ 3.713544 . . . x12 − 7x11 + 17x10 − 24x9 + 30x8 − 33x7 + 33x6 +⋯ {6∗,38} Non-orientable
12a0316 abAcBdCdedFEGJ 3.678038 . . . x12 − 5x11 + 6x10 − 6x9 + 7x8 − 4x7 + 11x6 +⋯ {7∗,37} Non-orientable

12a0318 abAcBdCdEFGJ 4.108992 . . . x14 − 5x13 + 2x12 + 7x11 − x10 + 3x9 − 9x8 + 8x7 +⋯ {6∗,38} Non-orientable
12a0328 abcBdCEDfegJ 3.494453 . . . x12 − 5x11 + 6x10 − 4x9 + 3x8 + 6x7 + x6 +⋯ {7∗,37} Non-orientable
12a0331 abAbCDefgj 3.687363 . . . x10 − 6x9 + 12x8 − 16x7 + 14x6 − 11x5 +⋯ {6∗,38} Non-orientable
12a0333 abcBdCEDGjeF 3.512400 . . . x12 − 5x11 + 6x10 − 4x9 + 3x8 + 4x7 + 3x6 +⋯ {7∗,37} Non-orientable
12a0334 abAbCdEDGjeF 3.447022 . . . x14 − 7x13 + 17x12 − 17x11 − 2x10 + 20x9 − 26x8 + 27x7 +⋯ {7∗,37} Non-orientable

12a0351 abcBcdedFEDGHJ 3.684544 . . . x12 − 4x11 − x10 + 7x9 + 5x8 − 20x6 +⋯ {6∗,38} Non-orientable
12a0358 abcDCeDfEDgj 3.929029 . . . x12 − 5x11 + 5x10 − 5x9 + 6x8 + 3x7 + 9x6 +⋯ {7∗,37} Non-orientable
12a0359 abcdEDCjeDfEGF 4.086436 . . . x10 − 6x9 + 10x8 − 13x7 + 21x6 − 22x5 +⋯ {8∗,36} Non-orientable
12a0373 abcdCedFEghj 4.162434 . . . x6 − 4x5 + x4 − 7x3 +⋯ {6∗,34,42} Non-orientable
12a0374 aBcDCedfEGHj 3.078856 . . . x10 − 5x9 + 9x8 − 15x7 + 21x6 − 18x5 +⋯ {6∗,34,42} Non-orientable

12a0377 abCdedFEGJ 3.836860 . . . x12 − 5x11 + 5x10 − 3x9 + 2x8 + 5x7 + 3x6 +⋯ {7∗,37} Non-orientable
12a0382 aBcDCeDFEgHJ 3.640630 . . . x8 − 6x7 + 9x6 − 6x4 +⋯ {6∗,38} Non-orientable
12a0383 abcDCeDFEgHJ 3.757352 . . . x14 − 5x13 + 4x12 + 2x11 + 3x10 − 4x9 − x8 + 4x7 +⋯ {6∗,38} Non-orientable
12a0396 abAbcDCedFEGHj 3.233701 . . . x12 − 7x11 + 19x10 − 31x9 + 42x8 − 59x7 + 69x6 +⋯ {6∗,38} Non-orientable

110

Table C.4 – continued from previous page
12a0398 abcDCeDfgj 4.082983 . . . x14 − 5x13 + 2x12 + 7x11 + x10 − x9 − 5x8 + 4x7 +⋯ {6∗,38} Non-orientable

12a0402 abcDCeDFgjEf 3.698403 . . . x12 − 5x11 + 6x10 − 6x9 + 5x8 + 2x7 + 5x6 +⋯ {7∗,37} Non-orientable
12a0413 abcDCedFGjEf 3.846807 . . . x12 − 5x11 + 6x10 − 8x9 + 7x8 + 9x6 +⋯ {7∗,37} Non-orientable
12a0415 abAcBdCedfJEFG 4.069438 . . . x14 − 7x13 + 14x12 − 8x11 − 3x10 + 3x9 + 14x8 − 29x7 +⋯ {7∗,37} Non-orientable
12a0416 abCBdCeDGjEF 3.997660 . . . x14 − 7x13 + 14x12 − 6x11 − 13x10 + 23x9 − 10x8 − 3x7 +⋯ {7∗,37} Non-orientable
12a0418 abAcbdCeDfEDGj 3.866874 . . . x14 − 7x13 + 16x12 − 16x11 − x10 + 25x9 − 30x8 + 25x7 +⋯ {7∗,37} Non-orientable

12a0436 abCdEFGJ 4.214086 . . . x14 − 5x13 + 2x12 + 5x11 + 3x10 − 3x9 − x8 +⋯ {6∗,38} Non-orientable
12a0445 abcDCedfEGHj 3.599298 . . . x10 − 5x9 + 7x8 − 11x7 + 17x6 − 14x5 +⋯ {6∗,34,42} Non-orientable
12a0446 abCdeDfEgJ 3.780226 . . . x12 − 5x11 + 5x10 − 3x9 + 4x8 + 5x7 + 5x6 +⋯ {7∗,37} Non-orientable
12a0453 abcdCeDFEgHJ 3.776723 . . . x8 − 7x7 + 18x6 − 30x5 + 37x4 +⋯ {6∗,44} Orientable
12a0456 abCBdCeDfEgJ 3.928950 . . . x14 − 7x13 + 14x12 − 6x11 − 9x10 + 9x9 + 14x8 − 33x7 +⋯ {7∗,37} Non-orientable

12a0457 abCBdCEFgjeDfe 3.882349 . . . x14 − 7x13 + 14x12 − 4x11 − 21x10 + 37x9 − 26x8 + 13x7 +⋯ {7∗,37} Non-orientable
12a0464 abAcbdCeeDFEGJ 3.611123 . . . x10 − 4x9 + 6x7 − 4x6 + 3x5 +⋯ {6∗,38} Non-orientable
12a0468 abcBdCeDfjEFgF 4.797492 . . . x12 − 4x11 − 4x10 + 3x8 + 4x7 + 3x6 +⋯ {6∗,38} Non-orientable
12a0469 abcDCeedGJEF 3.740393 . . . x12 − 3x11 − 3x10 + 2x8 + 5x7 − 3x6 +⋯ {6∗,38} Non-orientable
12a0470 abcBdceFEDgfEJ 3.582809 . . . x12 − 5x11 + 6x10 − 4x9 + 3x8 − 2x7 + x6 +⋯ {7∗,37} Non-orientable

12a0473 aBcdEDCGjEdjeF 3.833187 . . . x14 − 7x13 + 15x12 − 9x11 − 14x10 + 32x9 − 34x8 + 31x7 +⋯ {7∗,37} Non-orientable
12a0476 abAcbdCeDgjEEf 4.129362 . . . x14 − 5x13 + x12 + 12x11 − 4x10 − 7x9 + 6x8 + 2x7 +⋯ {6∗,38} Non-orientable
12a0478 abCBdceDfGjeFG 3.890211 . . . x10 − 4x9 − x8 + 6x7 − x6 − 3x5 +⋯ {7∗,37} Non-orientable
12a0479 abbcDCBeDcFEgJ 3.566571 . . . x14 − 7x13 + 17x12 − 19x11 + 4x10 + 20x9 − 40x8 + 47x7 +⋯ {7∗,37} Non-orientable
12a0480 abccDCedFEgJ 3.730283 . . . x12 − 5x11 + 7x10 − 11x9 + 12x8 − 13x7 + 17x6 +⋯ {7∗,37} Non-orientable

12a0485 abCBdCedfEDCgj 4.236774 . . . x14 − 7x13 + 13x12 − 3x11 − 16x10 + 28x9 − 22x8 + 13x7 +⋯ {7∗,37} Non-orientable
12a0486 aBcdCeDfGFEJef 3.996778 . . . x6 − 8x5 + 22x4 − 29x3 +⋯ {8∗,43} Orientable
12a0487 abAbcbDCedFEgJ 3.702743 . . . x14 − 7x13 + 16x12 − 14x11 − 5x10 + 17x9 + 14x8 − 43x7 +⋯ {7∗,37} Non-orientable
12a0488 abcdCeDfEEGj 3.770112 . . . x12 − 3x11 − 3x10 + 2x8 − x7 − 5x6 +⋯ {6∗,38} Non-orientable
12a0493 abcdCeDfEgHGGj 3.865506 . . . x12 − 3x11 − 3x10 − x9 − 3x7 − 7x6 +⋯ {6∗,38} Non-orientable

12a0497 abCDEfgH 2.823507 . . . x10 − 5x9 + 10x8 − 18x7 + 26x6 − 24x5 +⋯ {6∗,34,42} Non-orientable
12a0498 abCDefgH 2.733999 . . . x10 − 5x9 + 10x8 − 18x7 + 28x6 − 28x5 +⋯ {6∗,34,42} Non-orientable
12a0499 abCDefGH 2.882619 . . . x12 − 3x11 + 3x10 − 13x9 + 16x8 − 12x7 + 32x6 +⋯ {6∗,38} Non-orientable
12a0500 aBCdefgH 2.774031 . . . x8 − 4x7 + 3x6 − x5 + 6x4 +⋯ {6∗,32,52} Non-orientable

111

Table C.4 – continued from previous page
12a0501 abcDEfgH 2.982557 . . . x10 − 5x9 + 10x8 − 20x7 + 32x6 − 32x5 +⋯ {6∗,34,42} Non-orientable

12a0503 abAbCDEFGh 2.618033 . . . x2 − 3x +⋯ {6∗,62} Orientable
12a0505 abAbCDEfgh 2.990303 . . . x6 − 6x5 + 14x4 − 19x3 +⋯ {6∗,44} Orientable
12a0506 aBCDefgH 2.618033 . . . x2 − 3x +⋯ {6∗,44} Orientable
12a0512 abCDEFgH 3.438994 . . . x10 − 5x9 + 6x8 − 4x7 + 8x6 − 8x5 +⋯ {6∗,32,52} Non-orientable
12a0515 abAbCDEFgh 2.719868 . . . x10 − 5x9 + 8x8 − 6x7 + 8x6 − 16x5 +⋯ {6∗,32,52} Non-orientable

12a0516 abcBcDEFgh 2.896817 . . . x10 − 5x9 + 10x8 − 16x7 + 20x6 − 24x5 +⋯ {6∗,34,42} Non-orientable
12a0517 abCdefgH 3.191095 . . . x10 − 5x9 + 6x8 − 2x7 + 6x6 − 8x5 +⋯ {6∗,32,52} Non-orientable
12a0521 aBcdefgH 3.423869 . . . x8 − 7x7 + 17x6 − 21x5 + 21x4 +⋯ {6∗,62} Orientable
12a0528 abCdefGH 3.254263 . . . x4 − 3x3 +⋯ {6∗,34,42} Non-orientable
12a0535 abcDefGH 3.411514 . . . x10 − 5x9 + 8x8 − 14x7 + 22x6 − 20x5 +⋯ {6∗,34,42} Non-orientable

12a0536 abcdEfgH 3.481370 . . . x8 − 4x7 + x6 + x5 + 6x4 +⋯ {6∗,32,52} Non-orientable
12a0541 abcDefgH 3.221693 . . . x6 − 6x5 + 12x4 − 13x3 +⋯ {6∗,44} Orientable
12a0561 abAcbdCdEFgh 3.254263 . . . x4 − 3x3 +⋯ {6∗,38} Non-orientable
12a0565 abcBcDEfgh 3.380550 . . . x10 − 5x9 + 10x8 − 22x7 + 30x6 − 32x5 +⋯ {6∗,34,42} Non-orientable
12a0569 abAbCDefgh 3.531622 . . . x10 − 5x9 + 8x8 − 12x7 + 8x6 − 4x5 +⋯ {6∗,32,52} Non-orientable

12a0579 abcDEfGH 3.449276 . . . x10 − 5x9 + 8x8 − 14x7 + 20x6 − 16x5 +⋯ {6∗,34,42} Non-orientable
12a0583 abcDEFgH 3.490423 . . . x8 − 7x7 + 19x6 − 33x5 + 41x4 +⋯ {6∗,44} Orientable
12a0584 abcdEFgH 3.656233 . . . x10 − 5x9 + 6x8 − 6x7 + 8x6 − 4x5 +⋯ {6∗,32,52} Non-orientable
12a0621 abcdeDFEGj 4.716597 . . . x8 − 4x7 − 2x6 − 6x5 − x4 +⋯ {6∗,32,52} Non-orientable
12a0629 aabAcBDCeDgJEf 3.624685 . . . x6 − 3x5 − 8x3 +⋯ {6∗,38} Non-orientable

12a0630 abcbDCeDfEgJ 3.971716 . . . x8 − 4x7 + 3x6 − 12x5 + 5x4 +⋯ {6∗,34,42} Non-orientable
12a0637 abcdCCedFEGj 4.201074 . . . x8 − 4x7 + 2x6 − 12x5 + 3x4 +⋯ {6∗,34,42} Non-orientable
12a0649 abcdEfGH 4.054767 . . . x10 − 5x9 + 4x8 − 2x7 + 6x6 − 4x5 +⋯ {6∗,32,52} Non-orientable
12a0651 abcdeFgH 4.214851 . . . x8 − 7x7 + 15x6 − 17x5 + 17x4 +⋯ {6∗,62} Orientable
12a0662 abcBdCeDFEGj 3.998317 . . . x8 − 4x7 + 3x6 − 12x5 + 3x4 +⋯ {6∗,34,42} Non-orientable

12a0664 abcdeDgJEf 4.620239 . . . x8 − 4x7 − 2x6 − 4x5 + x4 +⋯ {6∗,32,52} Non-orientable
12a0681 abcDefgJ 3.684918 . . . x8 − 7x7 + 18x6 − 29x5 + 35x4 +⋯ {6∗,44} Orientable
12a0683 aBcdCeDFEGHJ 4.324188 . . . x10 − 6x9 + 7x8 + x7 + 2x6 − 8x5 +⋯ {6∗,38} Non-orientable
12a0702 abCBdCefegFhjE 4.072445 . . . x10 − 6x9 + 7x8 + 5x7 − 6x6 +⋯ {6∗,38} Non-orientable

112

Table C.4 – continued from previous page
12a0706 abcDCeDffGFEhJ 3.804388 . . . x14 − 5x13 + 4x12 + 2x11 + x10 − 13x8 + 16x7 +⋯ {6∗,38} Non-orientable

12a0708 aBcDCeDffGFEhJ 3.444353 . . . x12 − 7x11 + 16x10 − 12x9 − 8x8 + 23x7 − 28x6 +⋯ {6∗,38} Non-orientable
12a0768 abcdCeDFgjEF 4.870988 . . . x12 − 4x11 − 4x10 − 2x9 + 3x8 + 4x7 + 3x6 +⋯ {6∗,38} Non-orientable
12a0776 abcBdceDGJeF 4.493926 . . . x8 − 4x7 + x6 − 14x5 + x4 +⋯ {6∗,34,42} Non-orientable
12a0777 abAcbdCedfEgFJ 4.781542 . . . x12 − 4x11 − 4x10 + 5x8 + 4x7 + 3x6 +⋯ {6∗,38} Non-orientable
12a0886 abcDeeFEgJ 3.972374 . . . x10 − 5x9 + 5x8 − 4x7 − x6 + 10x5 +⋯ {6∗,34,42} Non-orientable

12a0901 abcdCedfGFEJeF 5.363170 . . . x14 − 8x13 + 17x12 − 16x11 + x10 + 16x9 − 11x8 + x7 +⋯ {7∗,37} Non-orientable
12a0918 abcdCedfGFeJEF 5.070550 . . . x10 − 8x9 + 21x8 − 41x7 + 61x6 − 67x5 +⋯ {7∗,33,42} Non-orientable
12a0968 abAcBdCeDfEfGJ 4.857213 . . . x10 − 6x9 + 6x8 − 2x7 − 4x6 + 16x5 +⋯ {6∗,34,42} Non-orientable
12a1039 abcDeFGH 4.025599 . . . x8 − 7x7 + 17x6 − 27x5 + 33x4 +⋯ {6∗,44} Orientable
12a1045 abcdeFgJEf 4.732056 . . . x6 − 3x5 − 6x4 − 9x3 +⋯ {6∗,32,52} Non-orientable

12a1049 abcdCedjEDFEgF 5.272225 . . . x12 − 7x11 + 9x10 + 2x9 − 8x8 + 2x7 + 3x6 +⋯ {7∗,37} Non-orientable
12a1070 abcBDCeDfEgj 4.000331 . . . x12 − 4x11 + x10 − 6x9 + 4x8 + 14x7 + 4x6 +⋯ {6∗,38} Non-orientable
12a1074 abcDCCedfEgj 4.490493 . . . x12 − 4x11 − 3x10 + 2x9 + 6x8 + 4x7 + 3x6 +⋯ {6∗,38} Non-orientable
12a1076 abcBDCedFEGj 3.927254 . . . x12 − 4x11 + x10 − 4x9 + 2x8 + 8x7 + 8x6 +⋯ {6∗,38} Non-orientable
12a1080 abcDeDfEgj 4.451075 . . . x10 − 6x9 + 7x8 − 5x6 + 14x5 +⋯ {6∗,34,42} Non-orientable

12a1081 abcbDCeDFEGj 4.421450 . . . x10 − 6x9 + 8x8 − 4x7 − 6x6 + 18x5 +⋯ {6∗,34,42} Non-orientable
12a1082 abcdCedFgJEf 4.747595 . . . x10 − 6x9 + 6x8 − 4x6 + 14x5 +⋯ {6∗,34,42} Non-orientable
12a1084 abcdCCedfEgJ 5.044678 . . . x14 − 6x13 + 4x12 + 4x11 + x10 − 2x9 − x8 + 14x7 +⋯ {6∗,38} Non-orientable
12a1087 abcBdCedFEGJ 4.278545 . . . x10 − 6x9 + 8x8 − 2x7 − 6x6 + 14x5 +⋯ {6∗,34,42} Non-orientable
12a1093 aabAcBDCedGJEF 4.426385 . . . x12 − 4x11 − 2x10 + x8 + 4x7 + 5x6 +⋯ {6∗,38} Non-orientable

12a1096 abcBDCedgJEf 3.878162 . . . x12 − 4x11 + x10 − 4x9 + 4x8 + 12x7 + 4x6 +⋯ {6∗,38} Non-orientable
12a1104 aBcBdCeDgjEf 4.330206 . . . x10 − 3x9 − 6x8 − x7 + 6x6 + 11x5 +⋯ {6∗,38} Non-orientable
12a1141 abcdeDGJeF 4.819864 . . . x8 − 4x7 − 2x6 − 8x5 − 5x4 +⋯ {6∗,32,52} Non-orientable
12a1153 abcdeFgjEF 5.137855 . . . x14 − 6x13 + 4x12 + 2x11 + x10 − x8 + 14x7 +⋯ {6∗,38} Non-orientable
12a1190 abcdCedJEDfEgF 4.672119 . . . x10 − 8x9 + 23x8 − 47x7 + 71x6 − 79x5 +⋯ {7∗,33,42} Non-orientable

12a1195 abcdCeDFgFEJef 4.807012 . . . x12 − 7x11 + 11x10 − 12x8 + 6x7 + 3x6 +⋯ {7∗,37} Non-orientable
12n0037 aBCDEFgJ 2.345957 . . . x8 − 5x7 + 8x6 − 5x5 + 3x4 +⋯ {4∗,45} Orientable
12n0040 abCDEFgJ 2.326729 . . . x14 − 3x13 + x12 + 2x10 + 3x9 − 2x8 + 2x7 +⋯ {4∗,310} Non-orientable
12n0043 abcDEFgJ 2.448678 . . . x4 − 3x3 + 2x2 − 2x + 1 {4∗,45} Orientable

113

Table C.4 – continued from previous page
12n0103 abcdeDfegJ 2.973793 . . . x18 − 3x17 + x14 − x13 + 3x10 − 4x9 +⋯ {3∗,311} Non-orientable

12n0104 abcdeDGjeF 2.701269 . . . x14 − x13 − 3x12 − 3x11 − 2x10 − 2x9 − 4x8 − 3x7 +⋯ {3∗,311} Non-orientable
12n0105 abcdeDgjef 2.874905 . . . x8 − 4x6 − 8x5 − 9x4 +⋯ {14∗} Orientable
12n0106 abcdeDFEGJ 2.511711 . . . x10 − 2x9 − 2x8 + 3x7 − x6 − 5x5 +⋯ {3∗,35,52} Non-orientable
12n0107 abcdedfEgJ 2.973793 . . . x18 − 3x17 + x14 − x13 + 3x10 − 4x9 +⋯ {3∗,311} Non-orientable
12n0113 abcdeDGIjeF 2.212547 . . . x18 − x17 − 3x16 + x15 + 2x14 − 3x13 − 5x12 − x11 − 2x10 − 4x9 +⋯ {2∗,312} Non-orientable

12n0114 abcdeDfegIJ 3.272511 . . . x18 − 4x17 + 2x16 + x15 + x14 − x13 + x12 + 4x10 − 8x9 +⋯ {3∗,311} Non-orientable
12n0115 abcdeDGIjef 1.928408 . . . x20 − 2x19 + x18 − 3x17 + 2x16 + 3x14 − 2x13 + 3x12 − 5x11 + 3x10 +⋯ {1∗,313} Non-orientable
12n0150 aBCdefgj 2.772695 . . . x8 − 3x7 + 2x6 − 5x5 + 5x4 +⋯ {4∗,32,44} Non-orientable
12n0156 abAbCDEFGJ 2.534503 . . . x8 − x7 − 2x6 − 3x5 − 3x4 +⋯ {4∗,34,43} Non-orientable
12n0163 abCdefgj 3.228639 . . . x8 − 3x7 − 3x5 + 3x4 +⋯ {4∗,32,44} Non-orientable

12n0172 aBcdefgj 3.435339 . . . x10 − 3x9 − x8 − 2x7 + x6 +⋯ {4∗,34,43} Non-orientable
12n0182 abcBcDEFGJ 2.675622 . . . x8 − 3x7 + 2x6 − 5x5 + 7x4 +⋯ {4∗,32,44} Non-orientable
12n0185 abcBdceDfegJ 3.177563 . . . x18 − 3x17 − 2x16 + 4x15 + 3x14 − 3x13 − 4x12 + 4x11 + x10 − 3x9 +⋯ {3∗,311} Non-orientable
12n0186 abcBdceDGjeF 2.950318 . . . x16 − x15 − 4x14 − 4x13 − 3x12 − x11 − 2x9 − 3x8 +⋯ {3∗,311} Non-orientable
12n0187 abcBdceDgjef 3.243637 . . . x8 − 5x6 − 12x5 − 15x4 +⋯ {14∗} Orientable

12n0188 abcbdCeDfEgJ 2.463436 . . . x16 − x15 − x14 − 3x13 − 5x12 − 5x11 − 5x10 − 4x9 − 8x8 +⋯ {3∗,311} Non-orientable
12n0189 abcBdCeDFEGJ 2.301805 . . . x14 − 3x13 + 2x12 − 3x10 + x9 + 4x8 − 5x7 +⋯ {3∗,37,42} Non-orientable
12n0190 abcBdceDGIjeF 2.517167 . . . x18 − x17 − 5x16 + x15 + 7x14 − 2x13 − 8x12 + 2x10 − 3x9 +⋯ {2∗,312} Non-orientable
12n0191 abcBdceDfegIJ 3.402739 . . . x18 − 4x17 + 7x15 + 2x14 − 7x13 − 5x12 + 8x11 + x10 − 5x9 +⋯ {3∗,311} Non-orientable
12n0192 abcBdceDGIjef 2.299629 . . . x20 − 2x19 − 3x17 + 2x16 + x15 + 5x14 − 2x13 + 3x12 − 5x11 + 3x10 +⋯ {1∗,313} Non-orientable

12n0233 abcdeFGIj 1.645338 . . . x20 − x19 − 2x18 + 2x17 + x16 − 2x15 − 2x14 + 2x12 + x11 − 4x10 +⋯ {1∗,313} Non-orientable
12n0234 abcdefgIJ 2.539213 . . . x16 − 4x15 + 5x14 − 5x13 + 6x12 − 6x11 + 6x10 − 4x9 + 3x8 +⋯ {2∗,312} Non-orientable
12n0235 abcdefGIj 1.490735 . . . x16 − x15 − x13 − x10 + x9 +⋯ {1∗,37,52} Non-orientable
12n0283 aBccDCedFEGJ 2.567376 . . . x12 − 5x11 + 8x10 − 4x9 − 3x8 + 5x7 − 3x6 +⋯ {5∗,39} Non-orientable
12n0287 aBcDCedFgjEf 2.746005 . . . x14 − 5x13 + 7x12 − 2x11 + x10 − 5x9 − 2x8 + 11x7 +⋯ {5∗,39} Non-orientable

12n0294 abcdCeDfEgHj 2.618033 . . . x2 − 3x +⋯ {4∗,45} Orientable
12n0296 aBcDCedFEGHJ 2.405579 . . . x16 − 3x15 + x14 + x13 − x12 + 2x11 + 2x10 − 2x9 + 2x8 +⋯ {4∗,310} Non-orientable
12n0301 abcDCedFEGHJ 2.480716 . . . x8 − 3x7 + 2x6 − 4x5 + 7x4 +⋯ {4∗,32,44} Non-orientable
12n0387 aBcdCedfEghj 3.464802 . . . x10 − 3x9 − x8 − x7 − 3x6 − 2x5 +⋯ {4∗,310} Non-orientable

114

Table C.4 – continued from previous page
12n0405 abAcbdCeDfEDgj 3.137324 . . . x14 − 6x13 + 13x12 − 15x11 + 7x10 + 5x9 − 16x8 + 21x7 +⋯ {5∗,39} Non-orientable

12n0425 aabAcBDCeDGJEF 2.292919 . . . x10 − x9 − 3x7 − 6x6 − 3x5 +⋯ {3∗,32,53} Non-orientable
12n0426 abAcbdCedfeDgj 2.369205 . . . x4 − x3 − 3x2 +⋯ {14∗} Orientable
12n0428 abAcbdCedfEgFj 3.018654 . . . x18 − 3x17 − x14 + x13 + 2x12 − 2x11 + x10 − x9 +⋯ {3∗,311} Non-orientable
12n0458 abccDCedFEGJ 2.675671 . . . x12 − 2x11 − 6x9 + 2x8 + 8x6 +⋯ {5∗,39} Non-orientable
12n0459 abcDCedFgjEf 2.965572 . . . x4 − 3x3 + x2 +⋯ {5∗,39} Non-orientable

12n0494 abAbcDCeDFEGHJ 2.669076 . . . x8 − x7 − 2x6 − 4x5 − 5x4 +⋯ {4∗,310} Non-orientable
12n0504 abAbcbDCedFEGJ 2.776002 . . . x16 − 5x15 + 8x14 − 7x13 + 6x12 − x11 − 3x10 + 6x9 − 12x8 +⋯ {5∗,39} Non-orientable
12n0509 abcdCeDfEEgj 2.783559 . . . x8 − 5x7 + 8x6 − 7x5 + 7x4 +⋯ {4∗,45} Orientable
12n0521 abbcDCBeDcFEGJ 2.846014 . . . x16 − 5x15 + 9x14 − 11x13 + 10x12 − 6x11 − 2x10 + 14x9 − 17x8 +⋯ {5∗,39} Non-orientable
12n0531 abcBdCeDfGjEFG 2.536784 . . . x16 − x15 − 5x14 + x13 + 6x12 − x11 − 8x10 + 9x8 +⋯ {3∗,311} Non-orientable

12n0570 abcdedfeGFEIJ 1.972106 . . . x18 − x17 − 2x16 + x14 − 2x12 − x11 − x10 + 2x9 +⋯ {2∗,312} Non-orientable
12n0571 abcdeDfgjEFGI 1.722083 . . . x4 − x3 − x2 +⋯ {2∗,82} Orientable
12n0590 abcdeDfEgj 2.799320 . . . x18 − 3x17 + x16 − x15 − 3x13 + 4x12 − 2x11 + x10 +⋯ {3∗,311} Non-orientable
12n0591 abcdedfEgj 1.926788 . . . x8 − 2x6 − 2x5 − x4 +⋯ {14∗} Orientable
12n0592 abcdedFEGj 2.316226 . . . x8 − 2x7 − x6 + x5 − x4 +⋯ {3∗,311} Non-orientable

12n0599 abcbDCeDFEGJ 2.188056 . . . x14 − 3x13 + 4x12 − 7x11 + 7x10 − 8x9 + 8x8 − 6x7 +⋯ {3∗,37,42} Non-orientable
12n0603 abcdCCedfEgj 2.692054 . . . x10 − 2x9 − 2x8 − x7 + 3x6 + x5 +⋯ {3∗,35,43} Non-orientable
12n0609 abcBdCeDfEgj 2.312226 . . . x10 − x9 − x8 − 2x7 − 4x6 − 3x5 +⋯ {3∗,311} Non-orientable
12n0610 abcdeDGJEF 2.141844 . . . x10 − 2x8 − 3x7 − 3x6 − 3x5 +⋯ {3∗,35,52} Non-orientable
12n0647 abcBdceDfegj 2.598234 . . . x8 − 3x6 − 6x5 − 7x4 +⋯ {14∗} Orientable

12n0653 abcdCedFgjEf 3.011524 . . . x18 − 3x17 − x15 + 2x14 + 3x13 − 2x12 − 3x11 + 3x10 − 2x9 +⋯ {3∗,311} Non-orientable
12n0657 aabAcbdCeDFEGJ 2.207625 . . . x14 − 2x13 − 2x12 + 5x11 − x10 − 7x9 + 2x8 + 3x7 +⋯ {3∗,311} Non-orientable
12n0668 abcdCedfedJEFG 3.093323 . . . x16 − 3x15 − 3x12 + x11 − 2x9 − x8 +⋯ {4∗,310} Non-orientable
12n0686 abcdCedfGFEJef 2.972819 . . . x14 − 4x13 + 3x12 + 3x11 − 11x10 + 7x9 + 6x8 − 15x7 +⋯ {4∗,310} Non-orientable
12n0703 abcdcedJEDfEgF 2.709747 . . . x16 − 3x15 + 3x14 − 5x13 − x12 − 3x11 − 5x10 + 5x9 − 10x8 +⋯ {4∗,310} Non-orientable

12n0708 abcbdCedFEGIJ 2.004707 . . . x18 − x17 − 2x16 + x15 − x14 − x13 − 2x12 − x11 + x10 +⋯ {2∗,312} Non-orientable
12n0711 abcdCeDFEGJefG 2.637992 . . . x16 − 3x15 + 4x13 − 3x12 − x11 − 4x10 − 2x9 + 9x8 +⋯ {4∗,310} Non-orientable
12n0754 abcdCeDfGFEJeF 2.680021 . . . x16 − 3x15 + 4x13 − 5x12 + x11 + 2x10 − 4x9 + x8 +⋯ {4∗,310} Non-orientable
12n0787 abcbdCedFEGJ 2.303336 . . . x16 − x15 − 2x14 − 4x12 − 3x11 + x10 − 2x9 +⋯ {3∗,311} Non-orientable

115

Table C.4 – continued from previous page
12n0792 abcdCCeDfEgJ 2.450034 . . . x14 − 2x13 − 2x12 + 4x11 − x10 − 8x9 − x8 + 2x7 +⋯ {3∗,311} Non-orientable

12n0804 abcBdCeDfEgFeJ 2.615554 . . . x14 − x13 − 6x12 + 2x11 + 9x10 − 5x9 − 4x8 + 9x7 +⋯ {3∗,311} Non-orientable
12n0821 abcdedFEGIj 1.803910 . . . x18 − x17 − x16 + x15 − 3x13 − 3x12 − x11 − 2x10 − 4x9 +⋯ {2∗,312} Non-orientable
12n0850 abcdeDfegj 2.268444 . . . x6 − x5 − 2x4 − x3 +⋯ {14∗} Orientable

Table C.5: Fibred knot complements with fibre S5,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

12a0146 abcdefgHIl 2.068622 . . . x14−2x13−x11+2x10−2x9+2x8−x7+⋯ {2∗,312,42} Non-orientable
12a0576 abcdefEgfhGIJl 1.904709 . . . x14 − 2x13 + x10 − x9 + x8 − x7 +⋯ {2∗,312,42} Non-orientable
12a0716 abcdefghIJ 1.711689 . . . x12 − x11 − 2x9 +⋯ {2∗,32,92} Non-orientable
12a0722 abcdefghiJ 2.002893 . . . x10 − 3x9 + 3x8 − 3x7 + 3x6 − 3x5 +⋯ {2∗,102} Orientable
12a0835 abcdefGHIL 1.770568 . . . x10 − 3x9 + 4x8 − 5x7 + 5x6 − 5x5 +⋯ {2∗,36,72} Non-orientable

12a0838 abcdefghiL 2.249025 . . . x18 − 3x17 + 2x16 − x15 + 2x14 − 4x13 +
3x12 − 2x11 + 2x10 − 3x9 +⋯

{2∗,312,42} Non-orientable

12a0850 abcdefgfHGIL 2.126176 . . . x20 − 3x19 + x18 + 3x17 − 2x16 − 3x15 +
4x14 + 2x13 − 4x12 − 2x11 + 7x10 +⋯

{3∗,311,42} Non-orientable

12a0859 abcdefgFhGiL 2.312829 . . . x20 − 3x19 + x18 + 3x17 − 4x16 − x15 +
4x14 − 4x12 + 2x11 + x10 +⋯

{3∗,311,42} Non-orientable

12a0909 abcdeDfEgFhGiL 2.125964 . . . x22 − 2x21 − 2x20 + 3x19 + 3x18 − 3x17 −
3x16+4x15+4x14−3x13−2x12+2x11+⋯

{3∗,315} Non-orientable

12a1120 abcdedfEgFHGIL 2.086644 . . . x22 − 2x21 − 2x20 + 3x19 + 3x18 − x17 −
5x16 + 2x15 + 2x14 − x13 − 2x11 +⋯

{3∗,315} Non-orientable

12a1128 abcdefGHIJ 1.528388 . . . x12 − x11 − 2x7 +⋯ {2∗,52,72} Non-orientable
12a1134 abcdefgHIJ 1.585236 . . . x10 − 3x9 + 5x8 − 7x7 + 7x6 − 7x5 +⋯ {2∗,42,82} Orientable
12a1273 abcdeFGHIJ 1.511851 . . . x10 − 3x9 + 5x8 − 7x7 + 9x6 − 11x5 +⋯ {2∗,64} Orientable
12a1283 abcdefEgFHGIJL 1.623501 . . . x12−2x11+x10−x9+2x8−x7−2x6+⋯ {2∗,38,62} Non-orientable
12n0242 abcdefghil 1.176280 . . . x10 + x9 − x7 − x6 − x5 +⋯ {18∗} Orientable

12n0574 abcdefEgfhGijl 1.556030 . . . x6 − x5 − x4 + x3 +⋯ {18∗} Orientable

116

C.2 Monodromies of fibred census manifolds

The manifolds in the following tables appear in the Callahan–Hildebrand–Weeks census [24].

Table C.6: Fibred census manifolds with fibre S1,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

m003 aaaaab 2.618033 . . . x2 − 3x +⋯ {2∗} Orientable
m004 aB 2.618033 . . . x2 − 3x +⋯ {2∗} Orientable
m009 aaB 3.732050 . . . x2 − 4x +⋯ {2∗} Orientable
m010 aaabb 3.732050 . . . x2 − 4x +⋯ {2∗} Orientable
m022 aaabAb 4.791287 . . . x2 − 5x +⋯ {2∗} Orientable

m023 aaaB 4.791287 . . . x2 − 5x +⋯ {2∗} Orientable
m039 aaaaB 5.828427 . . . x2 − 6x +⋯ {2∗} Orientable
m040 aaabAAb 5.828427 . . . x2 − 6x +⋯ {2∗} Orientable
m135 aaaabb 5.828427 . . . x2 − 6x +⋯ {2∗} Orientable
m136 aaBB 5.828427 . . . x2 − 6x +⋯ {2∗} Orientable

m206 aBaB 6.854101 . . . x2 − 7x +⋯ {2∗} Orientable
m207 aaabbb 6.854101 . . . x2 − 7x +⋯ {2∗} Orientable
m234 aaaaabb 7.872983 . . . x2 − 8x +⋯ {2∗} Orientable
m235 aaaBB 7.872983 . . . x2 − 8x +⋯ {2∗} Orientable
m369 aaaabbb 9.898979 . . . x2 − 10x +⋯ {2∗} Orientable

m370 aaBaB 9.898979 . . . x2 − 10x +⋯ {2∗} Orientable
s000 aaaaaB 6.854101 . . . x2 − 7x +⋯ {2∗} Orientable
s001 aaabAAAb 6.854101 . . . x2 − 7x +⋯ {2∗} Orientable
s298 aaaaBB 9.898979 . . . x2 − 10x +⋯ {2∗} Orientable
s299 aaaaaabb 9.898979 . . . x2 − 10x +⋯ {2∗} Orientable

s463 aaaaabAb 10.908326 . . . x2 − 11x +⋯ {2∗} Orientable
s464 aaaBBB 10.908326 . . . x2 − 11x +⋯ {2∗} Orientable
s639 aaaaabbb 12.922616 . . . x2 − 13x +⋯ {2∗} Orientable
s640 aaaBaB 12.922616 . . . x2 − 13x +⋯ {2∗} Orientable

117

Table C.6 – continued from previous page
s786 aaaabbbb 13.928203 . . . x2 − 14x +⋯ {2∗} Orientable

s787 aaBaaB 13.928203 . . . x2 − 14x +⋯ {2∗} Orientable
s891 aaaabAbb 14.933034 . . . x2 − 15x +⋯ {2∗} Orientable
s892 aaBaBB 14.933034 . . . x2 − 15x +⋯ {2∗} Orientable
s960 aaabbAbb 17.944271 . . . x2 − 18x +⋯ {2∗} Orientable
s961 aBaBaB 17.944271 . . . x2 − 18x +⋯ {2∗} Orientable

v0000 aaaaaaB 7.872983 . . . x2 − 8x +⋯ {2∗} Orientable
v0001 aaaaBAAAB 7.872983 . . . x2 − 8x +⋯ {2∗} Orientable
v0650 aaaaaBB 11.916079 . . . x2 − 12x +⋯ {2∗} Orientable
v0651 aaaaaaabb 11.916079 . . . x2 − 12x +⋯ {2∗} Orientable
v1276 aaaaBBB 13.928203 . . . x2 − 14x +⋯ {2∗} Orientable

v1277 aaaaaabAb 13.928203 . . . x2 − 14x +⋯ {2∗} Orientable
v1577 aaaaBaB 15.937253 . . . x2 − 16x +⋯ {2∗} Orientable
v1578 aaaaaabbb 15.937253 . . . x2 − 16x +⋯ {2∗} Orientable
v2230 aaaaabbbb 17.944271 . . . x2 − 18x +⋯ {2∗} Orientable
v2231 aaaBaaB 17.944271 . . . x2 − 18x +⋯ {2∗} Orientable

v2898 aaaaabAbb 19.949874 . . . x2 − 20x +⋯ {2∗} Orientable
v2899 aaaBaBB 19.949874 . . . x2 − 20x +⋯ {2∗} Orientable
v3246 aaBaaBB 21.954451 . . . x2 − 22x +⋯ {2∗} Orientable
v3247 aaaabAbAb 21.954451 . . . x2 − 22x +⋯ {2∗} Orientable
v3510 aaaabbAbb 25.961481 . . . x2 − 26x +⋯ {2∗} Orientable

v3511 aaBaBaB 25.961481 . . . x2 − 26x +⋯ {2∗} Orientable

Table C.7: Fibred census manifolds with fibre S2,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

m036 aaabcd 1.722083 . . . x4 − x3 − x2 +⋯ {6∗} Orientable
m038 abcdeF 1.722083 . . . x4 − x3 − x2 +⋯ {6∗} Orientable
m122 aabacdf 1.883203 . . . x4 − 2x3 + x2 +⋯ {4∗,4} Orientable

118

Table C.7 – continued from previous page
m159 aabACDEf 1.722083 . . . x4 − x3 − x2 +⋯ {4∗,32} Non-orientable
m160 abCDEf 1.722083 . . . x4 − x3 − x2 +⋯ {4∗,32} Non-orientable

m184 abaCDCEf 1.722083 . . . x4 − x3 − x2 +⋯ {3∗,3,4} Non-orientable
m199 abcdF 1.963553 . . . x6 − 2x5 − x4 + 3x3 +⋯ {1∗,35} Non-orientable
m201 abaCDf 1.722083 . . . x4 − x3 − x2 +⋯ {1∗,3,42} Non-orientable
m222 abCDf 1.684910 . . . x8 − x7 − x6 +⋯ {1∗,35} Non-orientable
m224 abacdF 1.916498 . . . x8 − x7 − x6 − x5 +⋯ {1∗,35} Non-orientable

m280 aabacdcf 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {4∗,4} Orientable
m289 abcD 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {2∗,42} Orientable
m304 aabcf 2.081018 . . . x4 − x3 − 2x2 +⋯ {6∗} Orientable
m305 aabcdeF 2.081018 . . . x4 − x3 − 2x2 +⋯ {6∗} Orientable
m336 aabCDCEf 1.839286 . . . x3 − x2 − x − 1 {3∗,33} Non-orientable

m368 aabAACDEf 2.081018 . . . x4 − x3 − 2x2 +⋯ {4∗,32} Non-orientable
m371 abbCDEf 2.081018 . . . x4 − x3 − 2x2 +⋯ {4∗,32} Non-orientable
m401 aaabaacdcf 2.015357 . . . x6 − x5 − 4x3 +⋯ {3∗,33} Non-orientable
s080 abcdce 1.722083 . . . x4 − x3 − x2 +⋯ {2∗,6} Orientable
s206 abcdcef 1.883203 . . . x4 − 2x3 + x2 +⋯ {2∗,42} Orientable

s238 aabacdef 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {2∗,42} Orientable
s239 aabaCDf 1.883203 . . . x4 − 2x3 + x2 +⋯ {1∗,7} Non-orientable
s296 aBCDE 2.296630 . . . x4 − 2x3 +⋯ {6∗} Orientable
s297 aaabcbd 2.296630 . . . x4 − 2x3 +⋯ {6∗} Orientable
s479 aaaabcd 2.890053 . . . x4 − 2x3 − 2x2 +⋯ {6∗} Orientable

s519 aabcD 2.296630 . . . x4 − 2x3 +⋯ {2∗,6} Orientable
s521 aabCDf 1.974818 . . . x6 − 2x5 + x4 − 2x3 +⋯ {1∗,32,5} Non-orientable
s580 aabAcf 2.369205 . . . x4 − x3 − 3x2 +⋯ {6∗} Orientable
s581 aaabcdeF 2.369205 . . . x4 − x3 − 3x2 +⋯ {6∗} Orientable
s676 aaaBAAcdeF 2.369205 . . . x4 − x3 − 3x2 +⋯ {4∗,32} Non-orientable

s677 abbbCDEf 2.369205 . . . x4 − x3 − 3x2 +⋯ {4∗,32} Non-orientable
s703 abCDCf 1.963553 . . . x6 − 2x5 − x4 + 3x3 +⋯ {1∗,33,4} Non-orientable
s719 aaBCD 3.090657 . . . x4 − 4x3 + 4x2 +⋯ {2∗,42} Orientable

119

Table C.7 – continued from previous page
s745 aBCDCE 2.453170 . . . x6 − 3x5 + 2x4 − 2x3 +⋯ {2∗,34} Non-orientable
s860 aabACDf 2.081018 . . . x4 − x3 − 2x2 +⋯ {1∗,32,5} Non-orientable

s861 abCDCEf 2.081018 . . . x4 − x3 − 2x2 +⋯ {3∗,33} Non-orientable
s869 aBBCDCEf 2.081018 . . . x4 − x3 − 2x2 +⋯ {2∗,34} Non-orientable
s911 aaabaacdef 2.015357 . . . x6 − x5 − 4x3 +⋯ {2∗,34} Non-orientable
s912 abCD 2.015357 . . . x6 − x5 − 4x3 +⋯ {2∗,34} Non-orientable
s923 aaBCBDf 2.081018 . . . x4 − x3 − 2x2 +⋯ {1∗,3,42} Non-orientable

s924 aabcdF 2.369205 . . . x4 − x3 − 3x2 +⋯ {1∗,35} Non-orientable
s942 aaBCDf 2.081018 . . . x4 − x3 − 2x2 +⋯ {1∗,35} Non-orientable
s943 aabcbdF 2.296630 . . . x4 − 2x3 +⋯ {1∗,35} Non-orientable
v0953 abcdeFF 2.890053 . . . x4 − 2x3 − 2x2 +⋯ {6∗} Orientable
v1045 aaabcde 2.296630 . . . x4 − 2x3 +⋯ {2∗,6} Orientable

v1055 aabaabcdf 2.081018 . . . x4 − x3 − 2x2 +⋯ {3∗,3,4} Non-orientable
v1076 aaabacdf 2.965572 . . . x4 − 3x3 + x2 +⋯ {4∗,4} Orientable
v1191 abcdFF 2.983067 . . . x8 − 2x7 − 3x6 + x4 +⋯ {1∗,35} Non-orientable
v1249 abaCDCf 1.974818 . . . x6 − 2x5 + x4 − 2x3 +⋯ {1∗,33,4} Non-orientable
v1373 aaabacdef 3.090657 . . . x4 − 4x3 + 4x2 +⋯ {2∗,42} Orientable

v1408 aabcdf 2.296630 . . . x4 − 2x3 +⋯ {4∗,4} Orientable
v1517 abacdFF 2.946994 . . . x8 − 2x7 − 2x6 − 2x5 +⋯ {1∗,35} Non-orientable
v1540 aaaabcdeF 2.618033 . . . x2 − 3x +⋯ {6∗} Orientable
v1614 abacdcef 2.153721 . . . x4 − 3x3 + 3x2 +⋯ {2∗,42} Orientable
v1663 aaabacdcf 3.090657 . . . x4 − 4x3 + 4x2 +⋯ {4∗,4} Orientable

v1669 aaaaBAAcdeF 2.618033 . . . x2 − 3x +⋯ {4∗,32} Non-orientable
v1670 abbbbCDEf 2.618033 . . . x2 − 3x +⋯ {4∗,32} Non-orientable
v1682 aaaaabcd 3.938690 . . . x4 − 3x3 − 3x2 +⋯ {6∗} Orientable
v1882 aabcdce 2.296630 . . . x4 − 2x3 +⋯ {2∗,6} Orientable
v2054 aaaBCD 4.056242 . . . x4 − 5x3 + 5x2 +⋯ {2∗,42} Orientable

v2099 abCDE 2.296630 . . . x4 − 2x3 +⋯ {4∗,32} Non-orientable
v2101 aaabaaccf 2.296630 . . . x4 − 2x3 +⋯ {4∗,32} Non-orientable
v2272 aabacdF 2.018790 . . . x6 − x5 − 2x4 + x3 +⋯ {1∗,33,4} Non-orientable

120

Table C.7 – continued from previous page
v2345 aaaabcbd 3.254263 . . . x4 − 3x3 +⋯ {6∗} Orientable
v2420 aabACDCEf 2.243329 . . . x6 − 2x4 − 6x3 +⋯ {3∗,33} Non-orientable

v2543 abbbCDf 2.018790 . . . x6 − x5 − 2x4 + x3 +⋯ {1∗,35} Non-orientable
v2563 aabcDD 3.254263 . . . x4 − 3x3 +⋯ {2∗,6} Orientable
v2587 aaabacbdf 2.243329 . . . x6 − 2x4 − 6x3 +⋯ {3∗,33} Non-orientable
v2678 aaabAcbd 3.506068 . . . x4 − 3x3 − x2 +⋯ {6∗} Orientable
v2738 aabbcbdce 2.296630 . . . x4 − 2x3 +⋯ {3∗,3,4} Non-orientable

v2913 aaaaBaCDCEf 2.794972 . . . x6 − 2x5 − 6x3 +⋯ {3∗,33} Non-orientable
v2959 aabcbdf 2.618033 . . . x2 − 3x +⋯ {4∗,4} Orientable
v2974 abacdceF 2.453170 . . . x6 − 3x5 + 2x4 − 2x3 +⋯ {2∗,34} Non-orientable
v3007 aabacdeF 2.453170 . . . x6 − 3x5 + 2x4 − 2x3 +⋯ {2∗,34} Non-orientable
v3008 aaabcD 2.453170 . . . x6 − 3x5 + 2x4 − 2x3 +⋯ {2∗,34} Non-orientable

v3009 aabAACDf 2.201130 . . . x6 − 2x5 − x4 + 2x3 +⋯ {1∗,32,5} Non-orientable
v3077 aabcF 2.618033 . . . x2 − 3x +⋯ {2∗,42} Orientable
v3078 aabaCCDf 2.296630 . . . x4 − 2x3 +⋯ {1∗,7} Non-orientable
v3214 aaBACDEf 2.965572 . . . x4 − 3x3 + x2 +⋯ {6∗} Orientable
v3215 aaabbcbd 2.965572 . . . x4 − 3x3 + x2 +⋯ {6∗} Orientable

v3216 aabcbf 2.890053 . . . x4 − 2x3 − 2x2 +⋯ {6∗} Orientable
v3217 aBBCDE 2.890053 . . . x4 − 2x3 − 2x2 +⋯ {6∗} Orientable
v3261 abbcdf 2.618033 . . . x2 − 3x +⋯ {4∗,4} Orientable
v3262 aaabCDCEf 2.618033 . . . x2 − 3x +⋯ {4∗,4} Orientable
v3328 abbCDCf 2.332907 . . . x6 − 2x5 − 2x4 + 4x3 +⋯ {1∗,33,4} Non-orientable

v3390 aabCCDCEf 2.470324 . . . x6 − x5 − x4 − 6x3 +⋯ {3∗,33} Non-orientable
v3411 aaabacbde 2.296630 . . . x4 − 2x3 +⋯ {2∗,32,4} Non-orientable
v3412 aabCD 2.296630 . . . x4 − 2x3 +⋯ {2∗,32,4} Non-orientable
v3423 aabacbdF 2.326828 . . . x8 − 3x7 + 2x6 − 2x5 + 3x4 +⋯ {1∗,35} Non-orientable
v3485 aaaBCBDf 2.369205 . . . x4 − x3 − 3x2 +⋯ {1∗,3,42} Non-orientable

v3486 aaabcdF 2.682660 . . . x8 − x7 − 4x6 − 2x5 + 3x4 +⋯ {1∗,35} Non-orientable
v3505 abcDF 2.618033 . . . x2 − 3x +⋯ {2∗,42} Orientable
v3514 aaaBCDf 2.405439 . . . x8 − x7 − 3x6 − 2x5 + 4x4 +⋯ {1∗,35} Non-orientable

121

Table C.7 – continued from previous page
v3515 aaabcbdF 2.588749 . . . x8 − x7 − 3x6 − x5 − 4x4 +⋯ {1∗,35} Non-orientable
v3536 abbcdF 2.369205 . . . x4 − x3 − 3x2 +⋯ {1∗,35} Non-orientable

Table C.8: Fibred census manifolds with fibre S3,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

m098 abcdcegh 1.506135 . . . x6 − x5 − x3 +⋯ {8∗,4} Orientable
m120 abcBBdCefhcdeg 1.506135 . . . x6 − x5 − x3 +⋯ {10∗} Orientable
m146 aabcdeh 1.582347 . . . x6 − x4 − 2x3 +⋯ {10∗} Orientable
m192 abcbdeDfEGedch 1.506135 . . . x6 − x5 − x3 +⋯ {4∗,36} Non-orientable
m216 aabacbdceh 1.457987 . . . x8 − x6 − x5 +⋯ {7∗,33} Non-orientable

m267 aabacbdcEFGh 1.457987 . . . x8 − x6 − x5 +⋯ {5∗,32,5} Non-orientable
m376 abacbbghcbdced 1.582347 . . . x6 − x4 − 2x3 +⋯ {4∗,43} Orientable
s148 aaabacbdef 1.465571 . . . x3 − x2 − 1 {8∗,32} Non-orientable
s160 abcbdcbedcfh 1.457987 . . . x8 − x6 − x5 +⋯ {5∗,32,5} Non-orientable
s188 abacbdcEGh 1.506135 . . . x6 − x5 − x3 +⋯ {1∗,43,5} Non-orientable

s194 abacbdceGh 1.613400 . . . x12 − x11 − x9 − x7 +⋯ {1∗,36,5} Non-orientable
s309 aaaaabacbdcbef 1.465571 . . . x3 − x2 − 1 {6∗,42} Orientable
s313 aaabcdef 1.946856 . . . x6 − x5 − x4 − x3 +⋯ {10∗} Orientable
s363 abcbdcegeh 1.635573 . . . x6 − 2x5 + 2x4 − 3x3 +⋯ {6∗,3,5} Non-orientable
s371 aabacbdcedcgh 1.506135 . . . x6 − x5 − x3 +⋯ {5∗,4,5} Non-orientable

s385 abcdEGh 1.532925 . . . x10 − x9 − x8 + x5 +⋯ {1∗,35,42} Non-orientable
s408 aabcdegh 1.722083 . . . x4 − x3 − x2 +⋯ {8∗,4} Orientable
s451 abcdeGh 1.839253 . . . x14 − x13 − x12 − 2x10 + x8 − x7 +⋯ {1∗,39} Non-orientable
s498 abcbdccegh 1.527686 . . . x8 − x7 + x6 − 3x5 + 2x4 +⋯ {6∗,34} Non-orientable
s526 abcdeF 2.042490 . . . x6 − 3x5 + 3x4 − 3x3 +⋯ {2∗,62} Orientable

s710 aabacbdcegh 1.610941 . . . x8 − x7 − 2x5 + 2x4 +⋯ {6∗,34} Non-orientable
s812 abacbdcegeh 1.765909 . . . x8 − 2x7 + 2x6 − 4x5 + 4x4 +⋯ {6∗,34} Non-orientable
v0521 abcbdceGh 1.661047 . . . x8 − 2x7 + x6 − x5 + x4 +⋯ {1∗,53} Non-orientable
v0543 abcdCeDfEGedch 1.781643 . . . x6 − x5 − x4 +⋯ {10∗} Orientable

122

Table C.8 – continued from previous page
v0592 aabacbdcedcfh 1.506135 . . . x6 − x5 − x3 +⋯ {5∗,4,5} Non-orientable

v0595 aabacbdcEGh 1.556030 . . . x6 − x5 − x4 + x3 +⋯ {1∗,11} Non-orientable
v0734 abacbdcbedcfh 1.582347 . . . x6 − x4 − 2x3 +⋯ {7∗,5} Non-orientable
v0789 abacbdcedgefh 1.506135 . . . x6 − x5 − x3 +⋯ {4∗,52} Non-orientable
v0957 abacbdcEFGh 1.582347 . . . x6 − x4 − 2x3 +⋯ {5∗,7} Non-orientable
v1148 abcDEGGhChcdEF 1.722083 . . . x4 − x3 − x2 +⋯ {4∗,32,42} Non-orientable

v1154 aaabcbdef 2.081018 . . . x4 − x3 − 2x2 +⋯ {10∗} Orientable
v1171 aaabacbdcbeh 1.635573 . . . x6 − 2x5 + 2x4 − 3x3 +⋯ {6∗,32,4} Non-orientable
v1207 aabcdEGh 1.582347 . . . x6 − x4 − 2x3 +⋯ {1∗,34,7} Non-orientable
v1302 aabcdeF 2.081018 . . . x4 − x3 − 2x2 +⋯ {2∗,10} Orientable
v1638 abbcbdcef 1.671135 . . . x6 − x5 + x4 − 4x3 +⋯ {8∗,32} Non-orientable

v1743 abcbdcBedcgefh 1.831075 . . . x6 − 2x5 + x3 +⋯ {7∗,5} Non-orientable
v2063 abcbdcedcggh 1.831075 . . . x6 − 2x5 + x3 +⋯ {5∗,7} Non-orientable
v2093 aabcbdceh 1.781643 . . . x6 − x5 − x4 +⋯ {7∗,5} Non-orientable
v2100 aabaabcbdceh 1.722083 . . . x4 − x3 − x2 +⋯ {6∗,42} Non-orientable
v2166 abcbdCeh 1.987793 . . . x6 − 2x4 − 3x3 +⋯ {10∗} Orientable

v2211 abcbdceefgedch 1.635573 . . . x6 − 2x5 + 2x4 − 3x3 +⋯ {5∗,3,42} Non-orientable
v2263 abcbdceeggedch 1.635573 . . . x6 − 2x5 + 2x4 − 3x3 +⋯ {4∗,3,4,5} Non-orientable
v2296 aaaabcdef 2.988824 . . . x6 − 2x5 − 2x4 − 2x3 +⋯ {10∗} Orientable
v2334 aaabaabbcbdcef 1.610941 . . . x8 − x7 − 2x5 + 2x4 +⋯ {6∗,34} Non-orientable
v2406 abcBdcegh 1.946856 . . . x6 − x5 − x4 − x3 +⋯ {8∗,4} Orientable

v2460 aaabacbdceh 1.873670 . . . x8 − 2x6 − 2x5 +⋯ {7∗,33} Non-orientable
v2463 abcbdeefgedcfh 1.635573 . . . x6 − 2x5 + 2x4 − 3x3 +⋯ {4∗,3,4,5} Non-orientable
v2474 abAcbdcbghcde 1.722083 . . . x4 − x3 − x2 +⋯ {5∗,32,5} Non-orientable
v2508 abcbdcEGh 1.556030 . . . x6 − x5 − x4 + x3 +⋯ {1∗,33,43} Non-orientable
v2547 aaBCDEF 3.010783 . . . x6 − 4x5 + 4x4 − 4x3 +⋯ {2∗,62} Orientable

v2623 abcdEh 2.225867 . . . x6 − 3x5 + 2x4 − x3 +⋯ {2∗,44} Orientable
v2771 abacbbGhcbdced 1.680261 . . . x14 − x13 − 2x11 + x9 − x8 +⋯ {1∗,39} Non-orientable
v2815 abacbbfhcbdced 1.582347 . . . x6 − x4 − 2x3 +⋯ {2∗,44} Orientable
v2834 aabcbdcbeh 1.916498 . . . x8 − x7 − x6 − x5 +⋯ {7∗,33} Non-orientable

123

Table C.8 – continued from previous page
v3024 abacbdcEEGh 1.722083 . . . x4 − x3 − x2 +⋯ {1∗,43,5} Non-orientable

v3044 abacbdceeGh 1.828870 . . . x12 − x11 − 2x9 − x7 − 2x6 +⋯ {1∗,36,5} Non-orientable
v3195 abcdEGhh 1.661047 . . . x8 − 2x7 + x6 − x5 + x4 +⋯ {1∗,53} Non-orientable
v3208 aabcdceh 2.081018 . . . x4 − x3 − 2x2 +⋯ {10∗} Orientable
v3304 abcBdceDgeh 1.883203 . . . x4 − 2x3 + x2 +⋯ {8∗,32} Non-orientable
v3320 abcddEGh 1.686481 . . . x12 − 2x11 + x10 − 2x8 + 2x7 − 2x6 +⋯ {1∗,39} Non-orientable

v3327 aaabcdeh 2.459633 . . . x6 − x5 − 2x4 − 3x3 +⋯ {10∗} Orientable
v3409 abcbdcEDFEGGhh 2.042490 . . . x6 − 3x5 + 3x4 − 3x3 +⋯ {8∗,32} Non-orientable
v3418 abbcbdceh 1.781643 . . . x6 − x5 − x4 +⋯ {7∗,33} Non-orientable

Table C.9: Fibred census manifolds with fibre S4,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

m147 aabcdefgj 1.457987 . . . x8 − x6 − x5 +⋯ {14∗} Orientable
m150 abcdefgij 1.280638 . . . x8 − x5 − x4 +⋯ {12∗,4} Orientable
m231 abcdcedfegj 1.331136 . . . x10 − x7 − x6 +⋯ {11∗,33} Non-orientable
m389 abcdCedfEghj 1.401268 . . . x6 − x4 − x3 +⋯ {14∗} Orientable
s021 abcdcedfegijefg 1.280638 . . . x8 − x5 − x4 +⋯ {7∗,9} Non-orientable

s235 abcbdcedfedjefg 1.324717 . . . x3 − x − 1 {8∗,43} Orientable
s247 abcdedfegij 1.359999 . . . x8 − x7 + x6 − 2x5 + x4 +⋯ {10∗,3,5} Non-orientable
s483 aabcdedfegj 1.556030 . . . x6 − x5 − x4 + x3 +⋯ {11∗,5} Non-orientable
s692 aabacbdcedfegj 1.401268 . . . x6 − x4 − x3 +⋯ {9∗,33,4} Non-orientable
v0011 abcdcedfeghjefg 1.280638 . . . x8 − x5 − x4 +⋯ {9∗,7} Non-orientable

v0321 abacbdcedfeGIj 1.401268 . . . x6 − x4 − x3 +⋯ {1∗,44,7} Non-orientable
v0329 abacbdcedfegIj 1.472353 . . . x10 − x9 − x6 +⋯ {1∗,38,7} Non-orientable
v0802 abcbdcedfegij 1.425005 . . . x8 − x7 − x5 + x4 +⋯ {8∗,3,7} Non-orientable
v0810 abcbdcedfegfeij 1.523060 . . . x8 − x7 − x6 + x4 +⋯ {7∗,9} Non-orientable
v0960 abcdefGIj 1.490735 . . . x16 − x15 − x13 − x10 + x9 +⋯ {1∗,37,52} Non-orientable

v0984 aaabcdefgh 1.987793 . . . x6 − 2x4 − 3x3 +⋯ {14∗} Orientable

124

Table C.9 – continued from previous page
v1217 abcdefgH 2.011287 . . . x8 − 3x7 + 3x6 − 3x5 + 3x4 +⋯ {2∗,82} Orientable
v1811 abcdedfegIj 1.677784 . . . x12 − 2x11 + x10 − x9 + x7 − x6 +⋯ {1∗,35,44} Non-orientable
v1845 abcdCedfegij 1.506135 . . . x6 − x5 − x3 +⋯ {10∗,34} Non-orientable
v1935 abcdefgIj 1.812464 . . . x20 − x19 − x18 − x16 − 2x14 + x12 − x11 + x10 +⋯ {1∗,313} Non-orientable

v1962 abacbdcedfegij 1.506135 . . . x6 − x5 − x3 +⋯ {8∗,34,4} Non-orientable
v2092 aabcdefgij 1.582347 . . . x6 − x4 − 2x3 +⋯ {12∗,4} Orientable
v2381 abcbdccedfegj 1.556030 . . . x6 − x5 − x4 + x3 +⋯ {9∗,35} Non-orientable
v2552 aBCDEFGJ 2.060178 . . . x8 − 3x7 + 2x6 + x5 − 3x4 +⋯ {2∗,63} Orientable
v2585 abcdefegj 1.781643 . . . x6 − x5 − x4 +⋯ {14∗} Orientable

v3101 abcBdcedfegj 1.590980 . . . x10 − 2x7 − 2x6 +⋯ {11∗,33} Non-orientable
v3248 aaabcdefgj 2.145106 . . . x8 − x7 − 2x6 − x5 + x4 +⋯ {14∗} Orientable

Table C.10: Fibred census manifolds with fibre S5,1.

Name Monodromy λ(h) µλ(h)(x) Stratum Stable lamination

m016 abcdefghil 1.176280 . . . x10 + x9 − x7 − x6 − x5 +⋯ {18∗} Orientable
m169 abcdefgfhgil 1.216391 . . . x10 − x6 − x5 +⋯ {15∗,5} Non-orientable
m303 aabcdefghil 1.401268 . . . x6 − x4 − x3 +⋯ {18∗} Orientable
s063 abcdedfegfhgil 1.261230 . . . x10 − x8 − x5 +⋯ {13∗,7} Non-orientable
v0730 abcdCedfegfhgil 1.352049 . . . x14 − x12 − x11 +⋯ {13∗,35} Non-orientable

v1812 abcdefghikl 1.401268 . . . x6 − x4 − x3 +⋯ {16∗,4} Orientable
v2407 aabcdefgfhgil 1.472353 . . . x10 − x9 − x6 +⋯ {15∗,5} Non-orientable
v2704 abcdCedfEgfhgil 1.431000 . . . x10 − x9 − x8 + x7 − x5 +⋯ {15∗,33} Non-orientable

125

Bibliography

[1] Alejandro Adem, Johann Leida, and Yongbin Ruan. Orbifolds and Stringy
Topology. Cambridge University Press, 2007. Cambridge Books Online. [52]

[2] S. I. Adyan. Algorithmic unsolvability of problems of recognition of certain
properties of groups. Dokl. Akad. Nauk SSSR (N.S.), 103:533–535, 1955. [48]

[3] Ian Agol. Ideal triangulations of pseudo-Anosov mapping tori. In Topology and
geometry in dimension three, volume 560 of Contemp. Math., pages 1–17. Amer.
Math. Soc., Providence, RI, 2011. [32, 33, 34, 35, 57, 68]

[4] Ian Agol. The virtual Haken conjecture. Doc. Math., 18:1045–1087, 2013. With
an appendix by Agol, Daniel Groves, and Jason Manning. [4]

[5] Ian Agol, Joel Hass, and William Thurston. The computational complexity of
knot genus and spanning area. Trans. Amer. Math. Soc., 358(9):3821–3850, 2006.
[12, 13, 55]

[6] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Math. Comp., 22:565–578, 1968. [68]

[7] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real
algebraic geometry, volume 10 of Algorithms and Computation in Mathematics.
Springer-Verlag, Berlin, second edition, 2006. [39]

[8] M. C. Bell. An algorithm for deciding reducibility. ArXiv e-prints, March 2014.
[xii, 19, 22, 27]

[9] M. C. Bell. Recognising mapping classes. ArXiv e-prints, October 2014. [xii,
28, 48]

[10] Mark Bell. Table of Bundles. Available at https://bitbucket.org/Mark_Bell/
bundle-censuses. [88]

126

https://bitbucket.org/Mark_Bell/bundle-censuses
https://bitbucket.org/Mark_Bell/bundle-censuses

[11] Mark Bell. flipper (computer software). https://bitbucket.org/Mark_Bell/
flipper/, 2013–2015. Version 0.9.7. [67]

[12] Diego Benardete, Mauricio Gutiérrez, and Zbigniew Nitecki. A combinatorial
approach to reducibility of mapping classes. In Mapping class groups and moduli
spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), volume 150 of
Contemp. Math., pages 1–31. Amer. Math. Soc., Providence, RI, 1993. [4]

[13] M. Bestvina and M. Handel. Train-tracks for surface homeomorphisms. Topology,
34(1):109–140, 1995. [19]

[14] Mladen Bestvina and Michael Handel. Train tracks and automorphisms of free
groups. Ann. of Math. (2), 135(1):1–51, 1992. [19]

[15] Joan Birman, Ki Hyoung Ko, and Sang Jin Lee. A new approach to the word
and conjugacy problems in the braid groups. Adv. Math., 139(2):322–353, 1998.
[4]

[16] Joan S. Birman. Braids, links, and mapping class groups. Princeton University
Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of
Mathematics Studies, No. 82. [4]

[17] O. Bogopolski, A. Martino, O. Maslakova, and E. Ventura. The conjugacy
problem is solvable in free-by-cyclic groups. Bull. London Math. Soc., 38(5):787–
794, 2006. [52]

[18] Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Makino.
Generating vertices of polyhedra and related problems of monotone generation.
In Polyhedral computation, volume 48 of CRM Proc. Lecture Notes, pages 15–43.
Amer. Math. Soc., Providence, RI, 2009. [20]

[19] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature,
volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. [12]

[20] Peter Brinkmann. An implementation of the Bestvina-Handel algorithm for
surface homeomorphisms. Experiment. Math., 9(2):235–240, 2000. [69]

[21] Peter Brinkmann. Xtrain (computer software). https://gitorious.org/

xtrain, 2009. [69, 81]

127

https://bitbucket.org/Mark_Bell/flipper/
https://bitbucket.org/Mark_Bell/flipper/
https://gitorious.org/xtrain
https://gitorious.org/xtrain

[22] Gerhard Burde, Heiner Zieschang, and Michael Heusener. Knots, volume 5 of
De Gruyter Studies in Mathematics. De Gruyter, Berlin, extended edition, 2014.
[3, 48, 71]

[23] Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Soft-
ware for 3-manifold topology and normal surface theory. http://regina.

sourceforge.net/, 1999–2014. [70, 72]

[24] Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks. A census
of cusped hyperbolic 3-manifolds. Math. Comp., 68(225):321–332, 1999. With
microfiche supplement. [88, 117]

[25] Matthieu Calvez. Fast Nielsen-Thurston classification of braids. Algebr. Geom.
Topol., 14(3):1745–1758, 2014. [4, 5]

[26] Matthieu Calvez and Bert Wiest. Fast algorithmic Nielsen-Thurston classification
of four-strand braids. J. Knot Theory Ramifications, 21(5):1250043, 25, 2012.
[4]

[27] Andrew J. Casson and Steven A. Bleiler. Automorphisms of surfaces after
Nielsen and Thurston, volume 9 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1988. [28, 30]

[28] J. C. Cha and C. Livingston. KnotInfo: Table of Knot Invariants. Available at
http://www.indiana.edu/~knotinfo. [88, 90]

[29] Henri Cohen. A course in computational algebraic number theory, volume 138 of
Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993. [38]

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, MA; McGraw-Hill Book Co.,
Boston, MA, second edition, 2001. [17]

[31] Marc Culler, Nathan M. Dunfield, and Jeffrey R. Weeks. SnapPy, a computer
program for studying the topology of 3-manifolds. Available at http://snappy.
computop.org (20/09/2014). [70]

[32] M. Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71(1):116–
144, 1911. [48]

[33] M. Dehn. Die Gruppe der Abbildungsklassen. Acta Math., 69(1):135–206, 1938.
Das arithmetische Feld auf Flächen. [1]

128

http://www.indiana.edu/~knotinfo
http://snappy.computop.org
http://snappy.computop.org

[34] Max Dehn. Papers on group theory and topology. Springer-Verlag, New York,
1987. Translated from the German and with introductions and an appendix by
John Stillwell, With an appendix by Otto Schreier. [48]

[35] Jeff Erickson and Amir Nayyeri. Tracing compressed curves in triangulated
surfaces. Discrete Comput. Geom., 49(4):823–863, 2013. [12, 13, 25, 53]

[36] Benson Farb, editor. Problems on mapping class groups and related topics, vol-
ume 74 of Proceedings of Symposia in Pure Mathematics. American Mathematical
Society, Providence, RI, 2006. [3, 48]

[37] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49
of Princeton Mathematical Series. Princeton University Press, Princeton, NJ,
2012. [1, 2, 3, 6, 13, 18, 19, 49, 50, 57, 63, 66]

[38] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49
of Princeton Mathematical Series. Princeton University Press, Princeton, NJ,
2012. [27, 76]

[39] Albert Fathi, François Laudenbach, and Valentin Poénaru. Thurston’s work
on surfaces, volume 48 of Mathematical Notes. Princeton University Press,
Princeton, NJ, 2012. Translated from the 1979 French original by Djun M. Kim
and Dan Margalit. [6, 30, 76]

[40] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Transactions on Mathematical Software, 33(2):13:1–13:15,
June 2007. [69]

[41] George K. Francis. A topological picturebook. Springer-Verlag, New York, 1987.
[3]

[42] D. J. H. Garling. Inequalities: a journey into linear analysis. Cambridge
University Press, Cambridge, 2007. [20]

[43] F. A. Garside. The braid group and other groups. Quart. J. Math. Oxford Ser.
(2), 20:235–254, 1969. [4]

[44] Toby Hall. Trains (computer software). http://www.liv.ac.uk/~tobyhall/T_
Hall.html. [69, 81]

129

http://www.liv.ac.uk/~tobyhall/T_Hall.html
http://www.liv.ac.uk/~tobyhall/T_Hall.html

[45] Hessam Hamidi-Tehrani. Algorithms in the surface mapping class groups. Pro-
Quest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–Columbia University. [65,
66, 67]

[46] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number
Theory, 2013. Version 2.4.0, http://flintlib.org. [69]

[47] Allen Hatcher. On triangulations of surfaces. Topology Appl., 40(2):189–194,
1991. [11]

[48] Lane A. Hemaspaandra and Mitsunori Ogihara. The complexity theory companion.
Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
Berlin, 2002. [8, 62]

[49] Geoffrey Hemion. On the classification of homeomorphisms of 2-manifolds and
the classification of 3-manifolds. Acta Math., 142(1-2):123–155, 1979. [48]

[50] Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks. The first 1,701,936 knots.
Math. Intelligencer, 20(4):33–48, 1998. [88, 90]

[51] A. Ya. Khinchin. Continued fractions. The University of Chicago Press, Chicago,
Ill.-London, 1964. [2]

[52] Yoshikata Kida. The mapping class group from the viewpoint of measure
equivalence theory. Mem. Amer. Math. Soc., 196(916):viii+190, 2008. [27]

[53] Donald E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley,
Reading, MA, 1998. Seminumerical algorithms, Third edition [of MR0286318].
[46]

[54] Thomas Koberda and Johanna Mangahas. An effective algebraic detection of the
Nielsen-Thurston classification of mapping classes. J. Topol. Anal., 7(1):1–21,
2015. [4, 19, 27]

[55] Catherine Labruère and Luis Paris. Presentations for the punctured mapping
class groups in terms of Artin groups. Algebr. Geom. Topol., 1:73–114 (electronic),
2001. [viii, 7]

[56] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261(4):515–534, 1982. [38]

[57] Gilbert Levitt and Jean-Louis Nicolas. On the maximum order of torsion elements
in GL(n,Z) and Aut(Fn). J. Algebra, 208(2):630–642, 1998. [2]

130

http://flintlib.org

[58] Jérôme E. Los. Pseudo-Anosov maps and invariant train tracks in the disc: a
finite algorithm. Proc. London Math. Soc. (3), 66(2):400–430, 1993. [4]

[59] H. A. Masur and Y. N. Minsky. Geometry of the complex of curves. II. Hi-
erarchical structure. Geom. Funct. Anal., 10(4):902–974, 2000. [4, 5, 6, 26,
34]

[60] Howard Masur, Lee Mosher, and Saul Schleimer. On train-track splitting
sequences. Duke Math. J., 161(9):1613–1656, 2012. [28]

[61] Yukio Matsumoto and José María Montesinos-Amilibia. Pseudo-periodic home-
omorphisms and degeneration of Riemann surfaces. Bull. Amer. Math. Soc.
(N.S.), 30(1):70–75, 1994. [58]

[62] Sergei Matveev. Algorithmic topology and classification of 3-manifolds, volume 9
of Algorithms and Computation in Mathematics. Springer, Berlin, second edition,
2007. [11]

[63] Curtis T. McMullen. Teichmüller Theory Notes, 2005. [28]

[64] W. Menasco and J. Ringland. Bh (computer software). http://copper.math.
buffalo.edu/BH/index.html, 1999–2011. [69, 81]

[65] Christof Menzel and John R. Parker. Pseudo-Anosov diffeomorphisms of the twice
punctured torus. In Recent advances in group theory and low-dimensional topology
(Pusan, 2000), volume 27 of Res. Exp. Math., pages 141–154. Heldermann, Lemgo,
2003. [30, 71]

[66] Lee Mosher. The classification of pseudo-Anosovs. In Low-dimensional topology
and Kleinian groups (Coventry/Durham, 1984), volume 112 of London Math.
Soc. Lecture Note Ser., pages 13–75. Cambridge Univ. Press, Cambridge, 1986.
[48]

[67] Lee Mosher. Tiling the projective foliation space of a punctured surface. Trans.
Amer. Math. Soc., 306(1):1–70, 1988. [30]

[68] Lee Mosher. Mapping class groups are automatic. Ann. of Math. (2), 142(2):303–
384, 1995. [50, 62]

[69] Lee Mosher. Train track expansions of measured foliations. Available at http:
//andromeda.rutgers.edu/~mosher/, 2003. Preprint. [60]

131

http://copper.math.buffalo.edu/BH/index.html
http://copper.math.buffalo.edu/BH/index.html
http://andromeda.rutgers.edu/~mosher/
http://andromeda.rutgers.edu/~mosher/

[70] Lee Mosher. Mapping class groups. Available at http://andromeda.rutgers.
edu/~mosher/, 2007. Lecture notes. [50, 58, 59, 60]

[71] Udo Pachner. P.L. homeomorphic manifolds are equivalent by elementary
shellings. European J. Combin., 12(2):129–145, 1991. [11]

[72] Athanase Papadopoulos. Introduction to Teichmüller theory, old and new. In
Handbook of Teichmüller theory. Vol. I, volume 11 of IRMA Lect. Math. Theor.
Phys., pages 1–30. Eur. Math. Soc., Zürich, 2007. [28, 29]

[73] J. R. Parker and C. Series. The mapping class group of the twice punctured
torus. In Groups: topological, combinatorial and arithmetic aspects, volume 311
of London Math. Soc. Lecture Note Ser., pages 405–486. Cambridge Univ. Press,
Cambridge, 2004. [71]

[74] R. C. Penner. Bounds on least dilatations. Proc. Amer. Math. Soc., 113(2):443–
450, 1991. [75]

[75] R. C. Penner and J. L. Harer. Combinatorics of train tracks, volume 125 of
Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992.
[28, 31, 32]

[76] Robert C. Penner. The action of the mapping class group on curves in surfaces.
Enseign. Math. (2), 30(1-2):39–55, 1984. [76]

[77] Robert C. Penner. An introduction to train tracks. In Low-dimensional topology
and Kleinian groups (Coventry/Durham, 1984), volume 112 of London Math.
Soc. Lecture Note Ser., pages 77–90. Cambridge Univ. Press, Cambridge, 1986.
[31]

[78] Michael O. Rabin. Recursive unsolvability of group theoretic problems. Ann. of
Math. (2), 67:172–194, 1958. [48]

[79] Tibor Radó. Über den begriff der riemannschen fläche. Acta Litt. Sci. Szeged,
2:101–121, 1925. [10]

[80] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Algorithms for normal
curves and surfaces. In Computing and combinatorics, volume 2387 of Lecture
Notes in Comput. Sci., pages 370–380. Springer, Berlin, 2002. [12, 13]

[81] Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Computing Dehn twists
and geometric intersection numbers in polynomial time, 2007. [13, 69]

132

http://andromeda.rutgers.edu/~mosher/
http://andromeda.rutgers.edu/~mosher/

[82] Michael Sipser. Introduction to the Theory of Computation. International
Thomson Publishing, 1st edition, 1996. [8, 78, 79]

[83] W.A. Stein et al. Sage Mathematics Software (Version 6.5). The Sage Develop-
ment Team, 2014. http://www.sagemath.org. [69]

[84] Jing Tao. Linearly bounded conjugator property for mapping class groups. Geom.
Funct. Anal., 23(1):415–466, 2013. [4, 5, 34, 48]

[85] The PARI Group, Bordeaux. PARI/GP version 2.7.0, 2014. available from
http://pari.math.u-bordeaux.fr/. [69]

[86] William P. Thurston. Three-dimensional manifolds, Kleinian groups and hyper-
bolic geometry. Bull. Amer. Math. Soc. (N.S.), 6(3):357–381, 1982. [67]

[87] William P Thurston and John Willard Milnor. The geometry and topology of
three-manifolds. Princeton University Princeton, 1979. [3, 28]

[88] Michel Waldschmidt. Diophantine approximation on linear algebraic groups,
volume 326 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2000. Transcen-
dence properties of the exponential function in several variables. [39]

133

http://www.sagemath.org
http://pari.math.u-bordeaux.fr/

	151022_031954_warwickthesis.pdf
	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	Chapter Introduction
	Overview and main results
	Preliminaries
	Decision problems

	Chapter Triangulations
	Triangulation coordinates
	Nearby triangulations
	Existing algorithms
	Twist paths
	Twisting a small curve
	Shortening a curve
	Half twisting a small curve
	Isolating curves

	Chapter Reducible mapping classes
	Reducing curves
	Small vectors in polytopes
	Bounds on reducing curves
	Subsurfaces
	Bounds on maximal curves
	The canonical curve system

	Chapter Pseudo-Anosov mapping classes
	Measured laminations
	Train tracks
	Maximal splittings and the axis
	Getting to the axis

	The main algorithm
	Algebraic numbers
	Correctness
	Acceptance implies pseudo-Anosov
	Pseudo-Anosovs have acceptable certificates

	Analysis

	Chapter The conjugacy problem
	Periodic mapping classes
	Periodic irreducible mapping classes
	Periodic reducible mapping classes
	Aperiodic irreducible mapping classes
	Aperiodic reducible mapping classes
	Twist invariants
	Equivalence of partition graphs

	Chapter Other applications and implementation
	Applications
	Nielsen–Thurston types
	Dilatation
	Stratum
	Orientability
	Commuting
	Roots
	Special subgroups

	Implementation
	Examples
	On the once-marked torus
	On the twice-marked torus
	On a higher genus surface
	Penner like examples

	Further extensions
	The extended mapping class group
	Other surfaces
	Independence of surface

	Appendix flipper timings
	On the once-marked torus
	On the twice-marked torus
	A comparison with Bestvina–Handel implementations

	Appendix flipper source code
	Invariant laminations
	Splitting sequence

	Appendix Censuses
	Monodromies of fibred knots
	Monodromies of fibred census manifolds

