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Abstract

In this thesis we study two of the exceptional projetive planes P?(C® Q) and
P2(H ® Q). These are the homogenous spaces Fg/S' x¢, Spin(10) and E7/S® x¢,
Spin(12). These spaces both have natural actions by the compact Lie groups Fj
and S x Eg respectively. The method that we will use to study these spaces is via
the decompositions associated to these actions. In particular we will describe the
homotopy type of P?(C ® Q) in terms of the octonionic projective plane P?(Q) and
spaces associated to P?(0). We use this to compute the cohomology of P?(C ® Q).

Finally, we give a description of certain orbits of the action on P?(H ® Q).



Chapter 1

Introduction

In this thesis we study two of the exceptional projetive planes P?(C®Q) and P?(H®
0). These are the homogenous spaces Eg/S! x ¢, Spin(10) and E;/S? x ¢, Spin(12).
These spaces both have natural actions by the compact Lie groups Fy and S x Eg
respectively. The method that we will use to study these spaces is via the decompo-
sitions associated to these actions. In particular we will describe the homotopy type
of P2(C®Q) in terms of the octonionic projective plane P?(Q) and spaces associated
to P2(0). We use this to compute the cohomology of P?(C ® Q). Finally, we give
an description of certain orbits of the action on P?(H ® Q).

Chapter 2 covers the preliminaries which we will use later in this thesis. It
is principly based on the work of Adams [1996] and Baez [2002] and covers the
basics of division algebras and triality. These provide a basis for a definition of the
Fruedenthal magic square coming from Rosenfeld [1997].

This allows us to define the exceptional projective spaces, the study of which,
will be the focus of this thesis. We then give concrete definitions and some basic
facts for the exceptional Lie groups Gs, Fy, Eg, F7 and Eg.

In Chapters 3 and 4 we turn our attention to oriented Grassmannian spaces.
In Chapter 3 we give the statement of Mostert’s theorem and then apply this theo-
rem to obtain 2 different decompositions of oriented Grassmannian manifolds. We
then use these decompositons in Chapter 4 to compute the cohomology of the Grass-
mannian mainfold of oriented 2 planes.

These two chapters serve as the simplest non-trivial example and give an
illustration of the basic techniques which we will use later in this thesis.

Chapter 5 gives concrete descriptions of the Lie group Fg and its Lie algebra
along with certain subalgebras. This alows us to compute various decompositions

for homogenous spaces with fundamental group Fg. In this chapter we focus on 2



particular examples.

We will use one of the decompositions which has been obtained in Chapter
5 to compute the cohomology of the space Fg/S! x ¢, Spin(10) in Chapter 6.

In Chapter 7 we study the orthogonal action of a compact Lie group on a
sphere via a representation. In particular we are interested in conditions for it to act
transitively or with codimension one. Also in this chapter we give some results on
the particular decompositions associated to some codimension one actions. These
will primarily be used in Chapter 9 to help reduce the possible Cartan types of
stabilizers of orbits.

We study, in Chapter 8, the Weyl group of Fg with reference to the Weyl
subgroup associated to Spin(16) C Eg. This is performed to obtain some reults on
the double quotient of Weyl groups which we will use in the next chapter to index
certain orbits of a decomposition.

In Chapter 9 we apply the results of Chapter 8 to study the orbit structure
of an action of S! x Eg on the space E7/S® x ¢, Spin(12). We study particular orbits,

the generic orbit and make some notes on other features of the decomposition.



Chapter 2

Preliminaries

2.1 Algebras

We first establish some basic definitions. A (real) algebra is a real vector space A,
along with a bilinear multiplication operation o : A® A — A.
An algebra morphism between algebras A,o4 and B,op is a linear map

T : A — B such that the following diagram commutes:

TRT
A9 A—".BwoB

B

If the algebra bilinear multiplication operation o4 is obvious from the context we
will denote a 04 b just by ab. An algebra is unital if it has a multiplicative unit and
it is a division algebra, if every non-zero element has a multiplicative inverse.

A normed division algebra is a real division algebra A along with a norm on
the underlying vector space |- | : A — R, such that |ab| = |al||b] for all a,b € A.

It was been shown by Hurwitz [1898] that, up to isomorphism, the only
normed division algebras are the real numbers R, the complex numbers C, the
quaternions H, and the octonions (or Cayley numbers) Q. For a more modern proof
see [Conway and Smith, 2003, Theorem 1, pg. 72]. In particular given a normed
division algebra A there exists a unique involution a +— a such that |a| = aa.

An algebra A is:
Associative If for all a,b,c € A we have a(bc) = (ab)c

Alternative If for any a,b € A the algebra generated by a and b is associative.



Power Associative If for any a € A the algebra generated by a is associative.

Thus for any a € A the expression a” is well defined.

While the algebras R, C and H are all associative O is not. As is shown
in [Conway and Smith, 2003, Theorem 2, pg. 76] the algebra generated by any 2
octonions is one of R, C or H, thus O is alternative.

The classical Cayley-Dickson construction originally described in Dickson
[1919] is described in detail in [Conway and Smith, 2003, Chapter 6]). Applied to
H this construction produces the algebra @. Applied to O it produces an algebra
known as the sedonion algebra S. This algebra has zero divisors and so it is not a
division algebra. It is not alternative but it is power associative. In general if the
Cayley-Dickinson construction is repeatedly applied to the octonions the resulting
algebra is not a division algebra, it is not alternative but it is power associative.

The tensor product C ® O also has zero divisors and so it is not division
algebra. It is of course associative. In contrast the algebras H® O and O ® O are
not division algebras, and they are not alternative or even power associative.

A linear map 0 : A — A is a derivation for an algebra A if it satisfies the
Leibnitz identity: for all a,b € A

0(ab) = 9(a)b+ ad(b)
The space of deriviations of A forms a Lie algebra det(A) with bracket given by
[6a,8b] =0,00,— 0p00,

Here 0,, 0y € der(A) and o is the composition of linear maps.

Let Aut(A) be the group of algebra automorphisms of a real n-dimensional
algebra A then the natural embedding Aut(A) C GL(R™) gives A the structure of
a topological group. The following classical theorem is proved in [Rosenfeld, 1997,
Chapter 1]

Theorem 2.1. Let A be an algebra then Aut(A) is a Lie group with Lie algebra
der(A)
2.2 Division algebras and triality

Here we give an account of the notion of a triality which was first described in

[Adams, 1996, pg. 111]. A triality is given by three real vector spaces V1, Vs, V3 and



a linear map
t:VieVheV; >R

such that given any (v1,v2) € Vi x V, with both v; and vy nonzero, there exists
vy € V3 such that t(vy,v,v3) # 0, and of course the symmetric condition with
(v1,v2) replaced by (v1,v3) and also by (ve, v3).

If each V; has an inner product then ¢ is a normed triality if

[t(v1,v2,v3)) < lval[[oz]lf|vs]

and for all vi,ve # 0 there is a vs such that this bound is attained, and of course
the symmetric condition with vy, ve replaced by v1,v3 and also replaced by vo, vs.

Examples of normed trialities are given by Vi = V5 = V3 =R, C or O and
t(z,y,z) = Re(zy)z.

Normed trialities are the same as normed division algebras. Given a normed
triality we set A = V4 and choose unit vectors in Vo and V3. Then using the triality
we can identify V5, and V35" with A and using the inner products on V3, V3 we can
now identify V5 and V3 with A. Transposing the triality appropriately we get a
product

AR A— A

It can be checked that this makes A into a normed division algebra.
Associated to a normed triality ¢ is a Lie group Tri(¢). This is the subgroup
of O(V1) x O(Va2) x O(V3) consisting of those triples (f1, fa, f3) such that

t(v1,v2,v3) = t(f1(v1), f2(v2), f3(v3))
This is a closed subgroup of O(V1) x O(V2) x O(V3). It turns out that
1= Aut(R) C Tri(R) = {(g1, 92, g3) € O(1)° : g1gags = 1}

Cy = Aut(C) C Tri(C) = {(g1,92,93) € U(1)* : g1g2g3 = 1} x Co
SO(3) = Aut(H) C Tri(H) = Sp(1)3/4(1,1,1)

Gy = Aut(0) C Tri(O) = Spin(8)



2.3

The Lie algebras of the three triality groups are given by:
ti(R) =0

tei(C) = u(1)?
tei(H) = sp(1)®

tri(OQ) = spin(8).

Triality and Freudenthal’s magic square

In Tits [1966] a method of associating to a pair of division algebras A, B a Lie algebra

L 4 p is developed. This construction has been refined by Barton and Sudbery [2003]

and it is this formulation we use here.

As a vector space L4 g is given by

tei(A) @ ti(B) @ (A® B)3.

The formula for the bracket is given in Barton and Sudbury’s paper. We will not

repeat it here as we do not really need it. We will however make some comments

on the shape of these formulas.

o If ,y € ti(A) C L p then [z,y] is just their Lie backet in tvi(A). The

analogous statement applies if z,y € tvi(B) C Ly p.

The Lie algebra tri(A) is sub-Lie algebra of Homg (A, A)3. Therefore if x €
tri(A) then x gives three linear maps x1, x2,x3 : A — A and three linear maps
1101, xo0 1,301 : AR B — A® B. This defines a linear map which we
shall denote by 2 ® 1 : (A® B)? - (A® B)3. Now if y € (A® B)3) then
[z,y] = 2 ® 1(y). There is a completely analogous description for the bracket
of elements in tri(B) and elements of (4 ® B)3.

Ifz € Aandy € B write u1(z ®9y) = [t ®9,0,0] € (A® B)3, ug(z ®y) =
[0,2®y,0] € (A® B)3, us(z ®y) = [0,0,r ®y] € (A® B)3. Then

[u1(z @ y),ua(z' @ y')] = uz(2'z © y'y)

There are of course the obvious analogues of these formulas with (1, 2) replaced
by (1,3) and (2, 3).



Finally it remains to give the formula for [uj(z ® y),u1(z’ ® v/')], [uz(z @
y),uz(z’ @ y')], and [ug(z ® y),us(x’ ® y')]. These formulas are given explicitly in
[Barton and Sudbery, 2003, Theorem 4.4]

This gives rise to the following table of Ly p:

R C H o)
R | s0(3) su(3) sp(3) | f(4)
C | su(3) | su(3) ®su(3) | su(6) | ¢(6)
H | sp(3) s5u(6) 50(12) | e(7)
0| (4) ¢(6) e(7) | e(8)

This is Freudenthal’s magic square of Lie algebras as it appears in the works
of [Freudenthal, 1964, 6.14,pg. 172] although he derives the table via a different
construction.

The construction above define real forms for Ly . These Lie algebras are
all non-compact under this construction as they are non-compact they have a well

defined maximal compact subalgebra these are given by the folloing table:

R C H @)
R | so(1) ®s0(2) su(l) @ su(2) sp(1) @ sp(2) spin(9)
C | su(l)su(2) | su(l)®su(2) @su(l)dsu(2) | su(2)dsu(4) R & spin(10)
H | sp(1) ® sp(2) su(2) @ su(4) s50(4) ®so(8) | su(2) ® spin(12)
O spin(9) R ¢ spin(10) su(2) @ spin(12) spin(16)

Taking the simple lie groups assosicated to the compact forms of these pairs

of groups and sub groups we get the following table of symmetric space:

R C H @)
B somr —suE S 2
SO Xx0@) STMXUE) SpLxSp2 Spind
C SU(3) SU(3) ST SU(6) B
STM»U@) | STOxUE) * STMxUE) | SWRXU@) | §Txc, Spinio
o 553 SU(6) SO(12) o
SpIxSp2 SO <UA) S(O@X0(®)) | SFxc, Spini2
[0 Fy Ee Eq Eg
Spin9 St x g, Spinl0 S3x ¢, Spinl2 Spinl6

The top row is the four projective planes P2(R), P?(C), and P?(0). The last
column is often denoted by P?(0), P?(C ® Q), P?(H ® Q) and P?(0 ® O).

Leung in his PhD thesis Huang and Leung [2011] derived another table of
spaces via a similar construction these hae the same total lie algebras but different

maximal compact subspaces in particular we will use the notation X?(A ® B) for
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his spaces formed this way. In this thesis we will only use 2 of them X(O)
Fy/83 x SU(4) and X(0® C) = Eg/S? x¢, SU(6). We unfortunatly lacked the time
to give a more detailed account of the decomposition of these spaces in methods
simliar to those used on the spaces P?(A ®@ B).

2.4 Lie algebras and Lie groups

Cartan in his thesis Cartan [1894] classified the simple Lie algebras. They fall into
four infinite families the classical Lie algebras and five so-called exceptional Lie
algebras.

The four infinite classes su(n), spin(2n + 1), sp(n) and spin(2n) are the Lie
algebras of SU(n), Spin(2n + 1), Sp(n) and Spin(2n) respectively.

The five exceptional Lie algebras are denoted by g(2), f(4), ¢(6), ¢(7) and
¢(8) which are the Lie to simply connected compact Lie groups Go , Fy , Es , E7
and FEg.

2.5 General notation

We briefly state a few general points of notation for representations of compact Lie
groups. Given a real representation p its complexification will be denoted by pc.
The underlying representation of a complex representation v will be the denoted by
UR.

Given 7 : G — H and a representation p of H the restriction of this repre-
sentation to G will be denoted by i*p if the map ¢ is obvious from the context we
may also refer to this representation as p|g.

A reasonable familiarity with the classical groups is assumed. We will largely
follow the notation in Adams [1996] for the representations of the classical groups

in particular we define:

n The trivial representation of dimension n.

¢ The fundamental complex representation of S!.

€% The complex representation ®(]é£ of ST

Ai The vector representation of Spin(i) .

A; The real spin representation of Spin(i) if ¢ is not divisible by 4.

A?fj The two real spin representations of Spin(4j) .



w; The complex vector representation of SU(3).
H,; The complex vector representation of Sp(7).

g The real adjoint representation of GG for any Lie group. G.

2.6 The exceptional Lie groups

Adams gives constructions of the exceptional Lie groups in [Adams, 1996, Chapter
8]. We summarise Adams’s approach to these constructions and the key facts we
will need. First Adams constructs the smallest and the biggest of these exceptional

Lie groups, G2 and Eg. He then constructs Fy, Eg and E7 as subgroups of Fg.

2.6.1 Gs

The spin representation of Spin(7) is an 8-dimensional real representation. This
gives a transitive action of Spin(7) on S7 and the stabilizer of a point in S” is a
closed 14-dimensional subgroup of Spin(7). Adams shows that this is indeed G5 in
[Adams, 1996, Theorem 5.5,pg. 32].

2.6.2 Fj

Adams gives an explicit construction, in terms of spinors, of the exceptional Lie
algebra ¢(8) of dimension 248. He then defines G to be the subgroup of G'L(R?%®)
consisting of the automorphism of this Lie algebra preserving the Killing form, that
is the invariant inner product on the Lie algebra Fg. He goes on to show that this
Lie group G is compact and simply connected. It follows that G must be isomorphic
to the simply connected compact Lie group Eg occurring in the classification of Lie
groups.

Adams also shows that spin(16) is a Lie subalgebra of ¢(8). He then goes on

to deduce that there is a homomorphism of Lie groups
7 : Spin(16) — Ey

with the following properties.

e The derivative of 7 at the identity is the inclusion of the Lie algebra spin(16)
in ¢(8).

e The kernel of 7 is the cyclic group of order 2 generated by the central element
of Spin(16) which acts by +1 in A" and —1 in A~. This element does of



course depend on the choice of AT and A~ as does the embedding of spin(16)
in ¢(8).

Furthermore we have the following isomorphism of representations:
7 (e(8)) = spin(16) & Ay

2.6.3 E;

Starting from the homomorphism 7 : Spin(16) — Ejg described in the previous

section we can form the diagram

Spin(12) x Spin(4) —— Spin(16) . Eq

(Spin(12) x S3) x SU(2)

Where $3 and SU(2) are embedded into Spin(4) as ker(Af) and ker(A))

respectively.
Theorem 2.2. E7 is the stabilizer in Eg of the image of SU(2) in Eg.

From this description of E7 it is easy to deduce the following facts.

e There is a homomorphism
h:S3 x Spin(12) — Fy

with kernel Cy. In the above diagram we see that the copy of S® x Spin(12)
centralises the copy of S in S3 x 93 x Spin(12). This defines a homomorphism
h: S% x Spin(12) — E;. A routine argument using the diagram shows that
the kernel of this homomorphism is the subgroup of $% x Spin(12) generated
by (i,wi2) and evidently this is a cyclic group of order 4. Here wis is the
central element of Spin(12) which acts as +1 in AT and —1 in A~

e The representation h*e(7) is uniquely determined by:
h*(2(7)(c) = 5]311‘1(3)(@ 8P 5}31;1’1(12)((: SP) (Ag)@ K (AE)C.

e F; also has an irreducible complex representation of complex dimension 56,

which we will denote by 556, such that:
h*(S%) = (Az)c @ (Mi2)c @ (Af)c

10



2.6.4 F

This time we write down the natural analogue of the previous diagram we get this

by replacing Spin(4) x Spin(12) by Spin(6) x Spin(10). This is the following diagram.

Spin(10) x Spin(6) —— Spin(16) —— Fx

)

Spin(10) x St x SU(3)
Where the map from S! x SU(3) into Spin(6) is given by following the diagram:

(z,9) St x SU(3) Spin(6)

| | |

(z2,9)  S'xSU(3) — U(3) — SO(6)

Where the maps here are the natural ones.
Theorem 2.3. Eg is the stabilizer in Eg of the image of SU(3) in Eg.

Once more we can easily deduce the following facts from this description of
Es.

e There is a homomorphism h : S x Spin(10) — Eg with kernel Cy. This
follows because S' x Spin(10) centralises SU(3) in S' x SU(3) x Spin(10).
The kernel of this homomorphism is the cyclic group of order 2 generated by
(—1,w10) € S x Spin(10) where wyg is the generator of the centre of Spin(10)
which acts as (+1) on Afy and (-1) on AJ,.

e The representation h*(eg) is determined by:
h*(e(6)c) = 1+ spinl0€ + €3 @c Ay + 73 @c A

e Fj also has two 27 dimensional complex irreducible representations which we
denote by SSE?, such that:

h*(S3h) =&t ®@c Ay + €2 ®c Ao + €74

h*(Sy7) = € ®c Ay + €2 ®c Ao + &4

11



2.6.5 Fj

Now we replace Spin(4) x Spin(12) in the diagram of E; by Spin(7) x Spin(9).
This gives the following diagram.

Gy —— Spin(7) —— Spin(7) x Spin(9) —— Spin(16) —— Fx

J

Spin(9)

All the homomorphisms in this diagram are the natural ones.
Theorem 2.4. Fy is the stabilizer in Eg of the image of Go in Eg.

Once more we get a list of elementary deductions from this definition of Fj.
e There is an injective homomorphism

h : Spin(9) — Fy.

e f(4) pulls back under h as:

R*(§(4)) = spin(9) + Ao.

e Fj has a 26 dimensional irreducible real representation which we will denote
by Sog such that
h*(S26) = Ag + Ag + 1.

2.6.6 Rosenfeld’s projective planes

Definition 2.5. A projective element in an algebra A is an element p € A such that

pep=p

Given p € A, right multiplication by p defines a linear map R, : A — A. If p
is projective then I, is a linear map representing a projection onto a subspace. We
define the rank of an element p to be the rank of R, so a rank n projective element
has R, the projection onto an n-dimensional subspace.

Given an associative algebra A the algebra J,(A) is a Jordan algebra given

by 3 x 3-matrices over A with the commutator as a product. Taking the subspace

12



of rank 1 projective elements in J,(A) defines a space which is shown in [Rosenfeld,

1997, pg. 346] is equal to the classical projective spaces P"(A) where

Nn(A)
A*

where A* are the units of A and N, is the subset for non-singular elements of A™t!

P (A) =

No(A) ={(z1,...,xn41) | qx1=...=qaps1 =0 <= ¢=0}

and the group A* acts on N,,(A) from the natural action of A on A™+1.

In particular for associative normed division algebras A and B we have that
P2(A ® B) is the symmetric space in the A, B position of Freudenthal’s table.

Further it is shown in [Rosenfeld, 1997, 7.2, pg 332] that the space of rank
1 projective elements in the exceptional Jordan algebras J3(0) and J3(C ® Q) are
the symmetric spaces in positions @ and C ® O of the table. Alas as J3(H ® Q) and
J3(0 ® Q) are not Jordon algebras we cannot continue in this manner to define all
the symmetric spaces in Fredenthal’s table.

In [Rosenfeld, 1997, Chapter 7] Rosenfeld attempts to relate the geometry of
elements of Freudenthal’s table P?(A ® B) to the algebras A ®@ B.

Throughout the rest of this thesis we will use the definition of these spaces as
homogeneous spaces P?(A ® Q) when we refer to the exceptional projective spaces

(sometimes referred to as the Rosenfeld projective spaces).

13



Chapter 3

Mostert’s theorem and
decompositions of oriented

Grassmannians

Much of this thesis is based on decomposing a compact smooth manifold M by
using the orbit structure of an action of a compact Lie group G on M. The simplest
example is given by a theorem of Mostert in [Mostert, 1957a, Theorem 4]. The pur-
pose of this section is to describe Mostert’s theorem and work out in detail how this
can be used to give a decomposition of the manifold Gry (R™), the Grassmannian of
oriented two planes in R"”. There are two main reasons for doing this in some detail.
The first is that it provides very nice illustrative examples of the decompositions of
homogeneous spaces we can obtain by using Mostert’s theorem and its generalisa-
tions. The second is that we need some of these ideas in subsequent sections. We
note that an Errata, Mostert [1957b], was published for this paper but it has no

effect on the result we use.

3.1 Mostert’s theorem

Let G be a compact Lie group and let M be a closed compact manifold equipped
with a smooth action of G. Then the the action of G has cohomogeneity 1 if the
generic orbit has codimension 1. Then a general theorem in Mostert [1957a] tells us

that one of the following two possibilities must hold.

1. The orbit space is a circle and there is a subgroup H C G such that M =
G/H x S' as a G space.
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2. The orbit space is a closed interval. In this case there are three closed sub-

groups A, B, C of G which fit into the following diagram of inclusions:

Cc — A
B— G
with the following properties.
(a) The generic orbits, corresponding to the points in the interior of the orbit
space, are diffeomorphic as G spaces to G/C.

(b) There are two exceptional orbits, corresponding to the end points of the
orbit space, and as G spaces these are G/A and G/B.

(¢) The projections
ma:G/A— G/C, 7wp:G/B— G/C

are both sphere bundles.
(d) The manifold M is homeomorphic to the double mapping cylinder of the

maps
G/A & g/ =25 G/B

Recall that the double mapping cylinder of the maps

Y X 2.7

is the space
YU, XxIu,Z

where (z,0) € X x [ is identified with f(z) € Y and (z,1) € X x I is identified
with g(x) € Z. Another way to describe the mapping cylinder is as the homotopy

colimit of the diagram
/

Y x 2.7

There is an alternative way to describe this decomposition: there is a Morse-Bott

function on M with two critical values.
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3.2 Preliminaries on Grassmannians

The oriented Grassmannian Gr; (R™) is the homogenous space SO(n)/(SO(k) x
SO(n — k)). In terms of spin groups this is the same as Spin(n)/(Spin(k) xc,
Spin(n — k) where Cs is generated by (—1, —1). It is the universal 2-fold cover of the
unoriented Grassmannian Gri(R") = O(n)/(O(k) x O(n—k) and many of the results
concerning the unoriented Grassmannians carry over to the oriented Grassmannians
with slight modifications.

Associated to Grg (R™) are 2 canonical oriented bundles which in this section
will be referred to as Ej, ,, and Fj,,, which are to the bundles associated to the usual
vector representations Vi and V,,_j of SO(k) and SO(n — k). As the representation
Vi @ V,,_i is the pullback of the vector representation V,, of SO(n) the bundle
Ejp @ Fy p is trival.

The manifold Gr; (R") is k(n—k) dimensional and tangent bundle of Gr;’ (R")
is isomorphic to the oriented bundle Hom(Ej n, Fin) = Epn @ Fip, by the same
argument as in the unoriented case.

Let g, € SO(n) be the element defined by

gn (.’17]_,11327 e 75671) == (_1)n($n7 e ,$2,$1)

Conjugation by g, interchanges the subgroups SO(k) x SO(n — k) and SO(n — k) x
SO(k) and it defines isomorphism of the spaces Gr; (R") and Gr} , (R") under
which Ej, ,, (resp F}, ;) pulls back to Fj,_j,, (resp Ep_gp).

Finally in the case where k = 1 we have Gr{ (R") = SO(n)/SO(n—1) = S"~L.

For m < n, the inclusion of SO(m) x SO(n —m) into SO(n) gives a natural
action of SO(m) x SO(n — m) on the space Gr; (R"). In particular if m = 1 this
gives an action of SO(n — 1) on Gr} (R") and in the case where k = 2 we obtain an
action of SO(2) x SO(n —2) = S x SO(n — 2) on Gr} (R").

Let J be the matrix in SO(2n) such that Jo;2; = 1, Joj—12j-1 = —1 and
Jai—1,2j = Joinj—1 = 0 for all 4,5 € {1,---n} The unitary group can be embedded
as a subspace of SO(2n) by the subset:

{A€S0(2n) | AJ = JA}
This induces the inclusion of the U(n) in SO(2n) as the subspace
{(ai ;) € SO(2n) | a2 = 2i41,2j+1 and @i 2j+1 = —Q2i41,25}-
This gives an action of U(n) of the space Gr; (R?"). In the next sections we will
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look at the decompositions associated to these actions.

3.3 The decomposition of Gr} (R") given by the action
of SO(n —1)

Consider the action of SO(n — 1) on Gr} (R") assuming n > k > 2. There are two
special cases.

The first special case to consider is the orbit of a point in Grj (R"™!). In
other words this is the orbit of an oriented k plane in R"~! x 0 C R™. Since
SO(n — 1) acts transitively on Gr; (R"') this orbit is the same no matter which
point we choose so we may as well choose the orbit of the k plane R¥ x 0 C R™. As
a point in SO(n)/(SO(k) x SO(n — k)) this is given by the point [1] where, in the

standard notation for = € SO(n), [z] is the coset
[z] = 2 - (SO(k) x SO(n — k)) € SO(n)/(SO(k) x SO(n — k))
for the coset of = € SO(n). Under the action of SO(n — 1) the stabiliser of [1] is
SO(n — 1) N SO(k) x SO(n — k) = SO(k — 1) x SO(n — k)

So this orbit is isomorphic to SO(n — 1)/SO(k — 1) x SO(n — k) = Gr;_, (R*™1).

The second special case is orbit of a point in Gr} , | (R"7!). This corre-
sponds to a k plane in R” whose orthogonal complement is an n—k plane in R"~! x0.
Once more the orbit is independent of the choice of the point so we choose the k
plane corresponding to the coset [g,]. This time the stabiliser of [g,] point under
the SO(n — 1) action is

SO(n — k — 1) x SO(k) N SO(n — 1).

Finally we are left with the generic case where neither the k-plane nor its
complement are contained in R”~! x 0. In this case the stabiliser of the action of

SO(n — 1) on such a point is
SO(k—1) x SO(n —k —1).

This orbit is
SO(n—1)/(SO(k—1) x SO(n —k —1))
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which is diffeomorphic to both
S(Fr—1n-1), S(Fn—k—1,n-1)

The fact that these sphere bundles are diffeomorphic comes from the diffeomor-
phism of Grj_;(R"™!) to Gr,_x_1(R"!) induced by conjugation by the element
gn—1 € SO(n — 1) and the isomorphism of Fj_1,_; with F,_j_1,_1 covering this
diffeomorphism.

As this orbit is codimension 1 we can use Mostert’s theorem to conclude that:

Theorem 3.1. Forn > k > 2 the space Gri (R") is homeomorphic to the double
mapping cylinder of the following diagram:

GT’Z__I(Rnil) — S(anl’kfl) gg S(Fn,kfl’nfl) — GTI_k_l(Rnil).
n—1
The special case of this theorem where k = 2 gives the following corollary.
To state the result let Vo(R™) be the Stiefel manifold of orthonormal 2 frames in

R™. This Stiefel manifold is the homogeneous space
Vao(R™) = SO(n)/SO(n — 2).

The circle SO(2) = S! acts on freely on the Stiefel manifold with quotient Gry (R™).
Let p : V2(R") — Grj (R") be the projection in this principal S! bundle. Another
description of this Stiefel manifold is as the sphere bundle in the tangent bundle of
S~ Let q : Vo(R™) — S™~! be the projection in this sphere bundle.

Corollary 3.2. The space Gr;(R"H) 18 homeomorphic to the double mapping
cylinder of the following diagram:

Gri (R") 2 Sgggg) 4, gn-1,

3.4 The decomposition of Grj (R*") given by the action
of U(n)

Choose a complex structure on R?", that is an element J € SO(2n) such that
J? = —1. Then we identify U(n) with the subgroup of SO(n) consisting of those
matrices which commute with J.

We first make some notes in the unoriented case consider an unoriented 2

plane P such that JP = P. Such a P is a complex line in R*® with complex
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structure determined by J. Furthermore U(n) acts transitively on the set of such
P and so the orbit of P does not depend on the choice of P. Furthermore this orbit
is just a copy of CP"! the space of complex lines in R?” with complex structure
determined by J.

Now consider the preimage of CP"! in Grj (R?*") under the map which
forgets orientation. Then this preimage must be a 2-fold cover of CP"~! and it
follows, as CP"~! is simply connected, that the preimage is isomorphic to 2 disjoint
copies of CP"~!. Further as this map is equivarient with respect to the action of
U(n) we must have 2 disjoint orbits each isomorphic to CP"~!. We will refer to
these as CP"~! and (CP"~!)* where the orbit CP"~! contains 1 € SO(2n).

Restricting to CP"~! the tangent bundle of Gry (R*") splits as L ®¢ (Up—1 +
ﬁ) Where L is the canonical complex line bundle on CP*~! and U, _; is it’s
complement (so L+U,_1 = nC). Then as the tangent bundle to CP"~! is isomorpic
to L®&c U,,—1 the normal bundle to the embedding must be isomorphic to L&¢c Uy,_1.
We will ref to this bundle as v,,_1 := L ®¢ U,,_1.

Finally we come to the generic orbit where neither the oriented 2 plane nor

its orthogonal complement is complex. In this case the orbit is isomorphic to
Un)/(UQ1) x U(n —2))

This generic orbit has codimension 1 so once more we can apply Mostert’s theorem
to arrive at the following conclusion. To state it carefully we need to be clear
about the difference between CP™ and (CP™)*. These manifolds are diffeomorphic

— complex conjugation defines a diffeomorphism
c:CP" 1 — (CP"H)*.

It follows that c*(v((CP"~!)*) is isomorphic to ¥(CP""!) as real vector bundles.
Both bundles have complex structures but they are not isomorphic as complex
bundles — one is the conjugate of the other. So there is a diffecomorphism S(TCP"™) —
S((T'CP™)*) which we continue to denote by ¢ and refer to as the diffeomorphism

defined by complex conjugation.

Theorem 3.3. Forn > 2, GTJ(RQ”) is isomorphic to the double mapping cylinder
of the following diagram.

CP" ! «— S(v(CP" 1)) = S(v(CP" 1)*) — CP™!

C
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Chapter 4

Cohomology of Oriented

Grassmannians

We now use the decompositions in the previous section to compute the cohomology
rings of some oriented Grassmannians. There are two reasons for doing this firstly
we need these results as essential input for later calculations so it is worth giving
a detailed account of them. The second reason is that they provide a very good
example of how it is possible to use the decompositions of the previous sections to
do cohomological calculations. Some of the results in this section can be found in
part in [Zhou and Shi, 2008, Theorem 5.5] and [Lai, 1974, Theorem 2| in the case of
[Lai, 1974, Theorem 2] the results in this section were derived independently. These
results can also be derived from the integral K-theorey calculations given in Bott

[1958] again our calculations were derived independently of this.

4.1 Cohomology of Grj (R?")

For the rest of this section we will write Gra,, for the Grassmannian Grj (R?"). Then
theorem 3.3 shows that Gra, is homeomorphic to the double mapping cylinder of
the diagram

cp! 2 — S(E) 24— cprl

Here E is a complex bundle over CP"~! whose underlying real bundle is the normal
bundle of the embedding i : CP"~! — Gry, and p is the projection of the sphere
bundle of E. The map ¢ is the composite

S(E) — S(E) — Cp™!
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where the first map is the diffeomorphism induced by complex conjugation and the
second is the projection of the sphere bundle of FE.

It follows that there are two embeddings 4,j : CP"~! — Gra,. The normal
bundle to ¢ is the bundle F and the normal bundle to j is the complex conjugate

bundle E. So we get cofibrations

CP"! —' Grap —2— Th(E)
CP* ! —— Gry, — Th(E)
J
These two cofibrations fit into the following commutative diagram

S(E) —— CP"! — Th(E)
p

'] | |
(

(C]P)n_l EEmm— GI'Qn ——qs——> Th E)
J
| o] |
Th(E) —— Th(E) ——

The maps p, ¢ in this diagram are projections of sphere bundles and so their cofibres
are homotopy equivalent to the corresponding Thom spaces.

Now let P be the tautological oriented two plane bundle over Gra,. Define
z = e(P) € H*(Gra,)
to be the Euler class of P. Now define
y =0 (up) € H"7*(Gray)

where § : CP"~! — Th(E) is the map occurring in the above diagram and ug is the
Thom class of F.

Theorem 4.1. If n is odd then integral cohomology ring of Gray, is given by:
H*(Gryy,) = Z[z,y]/(z" = 2zy, y*>=0).

Otherwise if n is even then integral cohomology ring of Gray, is given by:

H*(Gran) = Zlz,y)/(a" = 2zy, o =2""y).

21



We will use the cofibration

CP"! —' Gray —2— Th(E).

First note that both H*(CP" 1) and H*(Th(E)) are concentrated in even dimen-
sions. So it follows that the connecting homomorphism in the exact sequence of
this cofibration is zero and we can read off the cohomology groups of Grsy, and give
canonical generators for them. To state the answer write up € H*"~2(Th(E)) for
the Thom class. Let u € H%(CP"!) be the generator i*(z) and let fiu* be the
elements of H2("~1%K)(Th(TCP"!)) defined by the Thom isomorphism.

Lemma 4.2. The integral cohomology groups of Gr are given by
Z if0<2j<2n—4 or2n<2j<4n—4

H%(Gryy,) = 77 2j=2n—2

0 otherwise

The following elements give a basis for H*(Gray,)
{7, 0" (pu’):0<j<n—1}.

The proof of this proposition is a straightforward argument with the exact
sequence of the above cofibration and the structure of the ring H*(CP"1).

Now we compute products. First we deal with the easiest products the
first lemma which follows from the standard multiplicative properties of the Thom

isomorphism.
Lemma 4.3.
0" (u' i) = aly
Lemma 4.4. If n is even then y> = 2"y otherwise y*> = 0.
Proof. As y is the image of the Thom class th(r) we have that:

y? = th(v)? = e()th(v) = e(v)y

So it will suffice to show that e(v) = 0 if n is odd and e(v) = 2"~ ! if n is even. By
elementary algebra this is the same as showing that 2e(v) — 2" 1 = (—1)" "1z~

From the definition of v we have that:

L®cL+v=nL
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Where L is the canonical complex line bundle on CP"~! Thus we have that:

c(v) = c¢(L)"e(L ®c CL)™*
1

+2)™(1 + 22)~*

C

(

n—1ln—i—1
(oo

=0 j5=0 L

And so e(v) = ¢,_1(v) = (Z?:_Ol () (=2)"~1=")2" "1 let the coefficient here be a we
have that:

1=0

ol . n
> ()= (2) o
RECYATI

1=0

And so 2e(v) — 2"t = (2a — 1)z 1 = (=1)""12"~! and the result follows.

Now we come to the final lemma required for the proof of Theorem 4.1.

Lemma 4.5.

nz?" 2% = Qnm”_ly

To do this we need the following formula for the Euler class of Gra, coming

from the general theory of characteristic classes.

Lemma 4.6.
e(TGray) = na" 2

Assuming Lemma 4.6 for the moment we prove the formula in Lemma 4.5

and complete the proof of Theorem 4.1.

Proof. By Lemma 4.2 the Euler characteristic of Gra, is 2n and we know that 2"~y
is a generator of H4"~4(Gry,) it follows that

e(TGry,) = +2nz" ty € H*"4(Gryy,)
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Using the above lemma it follows that
nz? % = £2na" 1y,

Now we can replace y by —y if necessary to ensure the sign is 4+ in the previous

equation, and then use the fact that H*"~4(Gra,) is torsion free to conclude that
xQn—2 _ 2xn—1y'

Combining this formula with Lemmas 4.2 - 4.4 completes the proof of Theorem
4.1. O

We now complete this subsection by giving the proof of Lemma 4.6.

Proof. Let P be the canonical oriented 2 plane bundle over Gra, and let () be the

complementary oriented 2n — 2 plane bundle. Then
P o Q _ RQn

and
T(Gra,) = Hom(P,Q) = P* ®r Q = P ®r Q.

Now P has a complex structure and so we choose a complex line bundle E such that
Er = P. Then P ®p @ has a complex structure, indeed

(F®c (QerC))r =P ®r Q.

To ease the notation write
F=(Q®gC)

and then we see that
62n72(E Qc F) = e(P XRr Q)

In addition by complexifying the equation P @ Q = R?" and using the fact that
P or C = E & FE we see that

E®E®F=C"

So we look for the universal formula for cg,—2(F ®c F') where E is a complex line

bundle and F' is a complex bundle satisfying the above equation.
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The first step is to tensor the relation of bundles with £ to get
E®cE®1lc®E®c F = E*™.

Now write
u=ci(F)

and then we get the equation
(1+2u)c(E@c F)=(14u)?", c¢(E®cF)=(14+u)>"(1+2u)""

It follows that

)

n—2
2n\ )
con—2(E®c F) = Z <j )uy(_2u)2n—2—]
7=0

2n—2 9
_ Z < ﬁ>(_2)2n2j w2,
J

Jj=0

By the binomial theorem we have

1= (14 (=2))2" = i (%) (—2)2,

Dividing by through by 4 this gives
2
— J 4
]_

From this it easily follows that

=0 =0
1 1 1
- _(2n)— — ——
7R s Sl
=n

It follows that
con—2(E®c F) = nu™ L.
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However
u=ci(FE)=e(P)==z, coap2FE®cF)=e(TGra,)

and this completes the proof of Lemma 4.6 O

4.2 Cohomology of Gry, 1 = Gry (R*"1)

We will use the decomposition of Gra, 11 given by the action of by SO(2n) to compute
the cohomology ring of Gra,41. This time the decomposition 3.1 expresses Gro,+1
as the double mapping cylinder

p SO(2n q n—
Gray, SO(2n—)2) st

The middle space in this diagram is the Stiefel manifold, Vo, = Va(R??), of or-
thonormal two frames in R?". The circle SO(2) acts on freely on the Stiefel manifold
with quotient Grg, . The map p is the projection in this SO(2) bundle. Another
description of this Stiefel manifold is as the sphere bundle in the tangent bundle of
527"=1 and the map ¢ is the projection in this bundle.

As in the case of Gry), this leads to the following diagram of cofibrations.

Van — Gray, —— Th(P)
1| dl |
§2n—1 AN Grant1 T Th(P)
| o| |
Th(T(5**71)) —— Th(T(S*7!)) ——

The maps p, q in this diagram are the projections described in the previous para-
graph. The maps ¢ and j are the embeddings of the “ends” of the mapping cylinder;
f and ¢ are the Pontryagin-Thom maps defined by these embeddings; and P is the
tautological oriented 2 plane bundle over Grg,,, which is naturally isomorphic to the
normal bundle of the embedding j.

As in the previous case we set
z = e(P) € H*(Grapy1).
Let up be the Thom class in H%(Th(P)). Define

z=¢*(y- pp) € H*(Grapy1)
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where y € H?"~2(Gry,) is the class defined in the previous section and y - jup is the

class defined using the Thom isomorphism.

Theorem 4.7. The integral cohomology ring of Gron11 is given by
H*(Gr) = Z[z, 2]/ (z" = 22, 2*=0).

Following the pattern of proof in the previous section we first establish the

following lemma.

Lemma 4.8. The integral cohomology groups of Grant1 are given by

. Z if0<2j<dn—2
H? (Gropy1) =

0 otherwise.

The following elements give a basis for H*(Gray,)
{27, 0*(272):0<j<n-—1}.
Proof. The integral cohomology of the Stiefel manifold V5,11 is given by
H'(Vani1) =Z  H?(Vant1) =2Z/2 H"™ ' (Vopy1) = Z

and all other cohomology groups are zero. Since H" (Va,41) = 0 for r < 2n — 1 the
Gysin sequence of the circle bundle V5,11 — Gon41 shows that

H % (Gopy1) = H (Gony1) ifr<2n-—1

Using the fact that H°(Goyy1) = Z and H'(Gapy1) = 0 we see that if r < 2n — 1
then the cohomology group H" (G2p41) is Z if r is even and 0 if r is odd. Now Gap41
is a 4n—2 dimensional closed oriented manifold and so, using Poincare if follows that
the integral cohomology groups are as stated in the lemma. The Gysin sequence
also shows that the generators of the groups H?/(Gra,y1) for 25 < 2n — 2 are 2/
where x is the Euler class of P. Poincare duality then tells us that the generators
of the groups H¥ (Gra,,11) for 2j > 2n are 2/ =272. O

To complete the proof of Theorem 4.7 we simply need to prove the following

lemma.

Lemma 4.9. In H**(Gray+1)

" = 2z.
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Proof. Let pp € H*(Th(P)) be the Thom class. Then in H*"*(Th(P)) we have from
the previous section 2" 'up = 2yup where x € H?(Gry,) and y € H?"?(CGry,) are
the generators of H*(Gray). Now ¢ : Grap41 — Th(P) is the Pontryagin Thom map
associated to the embedding ¢ : Gra, — Gropy1 with normal bundle P. Therefore

it follows that
6" (i* (@)pp) = ad*(up), a € H*(Gransy).

From this formula it follows that ¢*(z" !'up) = 2™. We cannot use this formula
to compute ¢*(yup) because y is not on the image of i*. However, by definition
z = ¢*(yup) and we get the relation 2™ = 2z in H?"(Gra, 1) by applying ¢* to the
relation 2" 'up = 2yup in H?"(Th(P)). O
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Chapter 5
Decomposition of Eg spaces

In this section we give details for the decomposition of the spaces P?(C ® Q) and
X?(C ® 0) as double mapping cylinders. These spaces were described in Chapter 2

as:

Eg
P2 =
(C20) S1 x ¢, Spin(10)
E
X3(C®0) = 6

= 5% xc, SU(6)

In the case of the decomposition of P?(C®Q) this is principally an elaboration
of the results of Berndt and Atiyah [2003] in particular Chapter 6 where we give

further details as to the maps and spaces used and fill out details of the proofs.

5.1 Lie Groups

We first give explicit forms for some of the Lie groups we will use and maps on them.
Following [Adams, 1996, pg. 57| we define the complex Lie algebra e to be

the rank 6 complex Lie algebra with simple root vectors given by:

1. %(331 — X2 — X3 — X4 + X5 — \/§$6)

2. T4 — T5
3 Tr3 — T4
4 Tro — I3
5. T4+ x5

6. %(xl 7$27x37x47x5+\/§x6)
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With Dynkin diagram:

TZL
O O O O O
1 2 3 5 6

On ¢g we define 2 algebra involutions. The first we denote by ¢ is defined to
to be the outer automorphism which acts on the simple root vectors by fixing roots
3 and 4 and exchanging root 1 with 6 and 2 with 5 respectively. This involution
generates the group of outer automorphisms of e¢g. The fixed point set of this

involution is isomorphic to f4 and thus gives an inclusion f4 — e¢g known as the

folding inclusion.

4 4
3 3
«— >
5(2+5) 2 J——b 5
$(1+6) 1 0¢——0 6
fa ¢6

A second involution v is given by taking the inner isomorphism with an

element in the Weyl group of eg whose action on the Cartan subalgebra is given by:

1 V3
B B T R
1 1 1 1
O 5 32 32 3 0

1 1 1 1
0 5 32 —3 —3 0
1 1 1 1
0 5 -2 2 —3 0
1 1 1 1
0 5 -3 3z —3 0
101 1 1 1 _3
2v3 V3 V3 V3 V3 2

To show how this acts on eg we consider the extended Dynkin diagram of eg
which is the Dynkin diagram with the highest weight root, x1 + x2, appended. Then

1) permutes the roots in this diagram as follows:
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6

Where we label the highest weight root by .. This determines the action of 1.
Further as ¢ fixed the highest weight root, the pair v, ¢ generate the full symmetry
group S3 of the extended Dynkin diagram of eg. Further on restriction to the sub-
algebra spin8 generated by roots 2,3,4,5 these generate the outer automorphism
group S3 of this space.

We can take the sub-root system generated by the simple roots (2,5) and the
highest weight root « to get a subalgebra of ¢g which is isomorphic to C @ so(10).
Finally we can take the sub-root system generated by the simple roots 1,2,3,5,6 and
the highest weight root « to get a subalgebra isomorphic to su(2) @ su(6).

o O « >‘K (6
4 | 4
3 —— 3 — 3
2 5 2 ) 2 5
1 6 1 6
su(2) @ su(6) ¢6 R @ spin(10)

Let Eg be the compact Lie group defined in Adams [1996] then its complex-
ified Lie algebra is isomorphic to eg. The involutions ¢ and 1) induce involutions ¢*
and ¥* on Fg whose derivatives are ¢ and v. The fixed point set of the involution ¢*
is a Lie subgroup with Lie algebra isomorphic to f4 this induces a mapping Fy — Eg
covering the inclusion f; < ¢g in [Adams, 1996, Chapter 9] Adams shows this map
to be an inclusion.

Taking the Lie subgroups of Eg associated to the Lie subalgebras R @spin(10)
and su(2) ® su(6) in ¢g induces maps S* x Spin(10) — Eg and S% x SU(6) — Fg.
In [Adams, 1996, pg. 51] it is shown that the map S x Spin(10) — Eg has kernel

31



isomorphic to C4 generated by the element (i,wig) and thus we have an inclusion
St x ¢, Spin(10) C Eg. In Ishitoya [1977] it is shown that the map S® x SU(6) — Eg
has kernel Zy giving an inclusion S® x ¢, SU(6) — Eg. This will be the inclusions of
these groups for the remainder of this chapter unless specified otherwise, the space

P2(C ® 0) will be defined as ﬁi}in(lo) and the space X?(C ® Q) will be defined
4

as with these groups and inclusions.

Ee
3%, SU(6)

5.2 Decomposition of P?(C @ Q) by F)

We will decompose P?(C ® Q) using the action Fy as follows. First we will use the
default embedding to determine an orbit of Fy. Then we use this to compute the
generic orbit and show that the action of Fj is cohomogeneity one. As P?(C® Q) is
simply connected by the corollary to Mostert’s theorem, it suffices to then find the
other exceptional orbit and its normal bundle.

Consider the orbit of Fy through the point 1-(S' x ¢, Spin(10)) € W.
This orbit is stabilised by the group FyNS! x¢, Spin(10) C Eg which is determined
by the Lie algebra f4 "R @ s0(10) C ¢¢. This algebra is the subalgebra of R @ s0(10)
fixed by the restriction of the involution 1. The restriction of 1 to s0(10) is the stan-
dard outer involution on s0(2n) which fixes so(2n—1). So f4NR®s0(10) = s0(9) C f4

as follows:

X X
- — -
spin(9) fa R @ spin(10) ¢6

This s0(9) C f4 induces a map Spin(9) — Fy which is isomorphic to the Lie
algebra map induced from inclusion of Spin(9) in Fy used in Chapter 2. We therefore

conclude that the orbit at 1-(S* x ¢, Spin(10)) is isomorphic to the

€ g

S1x g, Spin(10)
octonionic projective plane smFirf(g)'

The complex representation eg splits over S x ¢, Spin(10) as R + s50(10) +

&t @ Afy + € ® Al thus the tangent bundle of P?(C ® O) is generated by the

real representation which complexifies to €' ® Afo + & ® Ajp. This restricts to the
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orbit Sp%(g) =~ QP? as the bundle generated by Ag 4+ Ag. As the tangent bundle

of this orbit is generated by Ag the normal bundle must also be generated by the

representation Ag.

Spin(9) acts transitively on S via the representation Ag stabilized by
Spin(7) < Spin(9). We denote this embedding by j*, it is not isomorphic to the em-
bedding of Spin(7) in Spin(9) which overlays the natural embedding SO(7) < SO(9)
we denote this embedding by 7.

As Spin(9) acts transitively on a sphere in the normal bundle, Fy acts tran-
sitively on the sphere bundle in the normal bundle. This gives rise to a codimension
one generic orbit isomorphic to ﬁ(SI;W

In particular this shows the action has cohomogeneity one and we can use
the corollary to Mostert’s theorem.

It remains to find the other exceptional orbit. Consider the involution ¢, it
is an inner automorphism and so there exists some g4 € Eg which generates it. In
fact as ¢ preserves the maximal torus g4 represents some element in the Weyl group
of Eg. We consider the orbit through g, - (S* x¢, Spin(10)), the stabilizer of the

action at this point has a Lie algebra isomorphic to

F4. M adg, (R & 50(10)) = f4 N ¢(R @ 50(10))

As R @ 50(10) is given by a sub root system ¢(R @ s0(10)) is the sub root
system generated by the action of ¢ on the generating roots of R @ s0(10). Diagra-

matically this can be shown as follows

N
19

R @ spin(10) ¢ d(R & spin(10))

The intersection f4 N ¢(R @ s0(10)) is then the fixed points of ¢(R & s0(10))
under the involution ¢ This is isomorphic to R & so(7) where s0(7) — f4 factors as
50(7) = s0(7) = f4

jU
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J
spin(7) spin(9) f4 R @ spin(10) e6

The map S! x Spin(7) — Spin(9) corresponding to j¥ overlays the inclusion
SO(2) x SO(7) — SO(9) and thus has kernel isomorphic to Zg generated by (—1, —1)
where —1 € Spin(7) generates the kernel of the map Spin(7) — SO(7).

Thus passing to a quotient we obtain an embedding S x ¢, Spin(7) < Fy
as the stabilizer is not isomorphic to the orbit at 1 - (S x¢, Spin(10)) and is
not isomorphic to the generic orbit, by Mostert’s theorem, this must be the other
exceptional orbit.

The normal bundle to the inclusion is isomorphic to the 2 plane real bundle
generated from the representation e of S' x¢, j%(Spin(7)) where € pulls back to
non-trivial 2-plane bundle on S C S x¢, j(Spin(7)). The stabilizer of this action
is 7V (Spin(7)).

Taken together with previous results this implies the following

Theorem 5.1. The space P2(C ® Q) can be decomposed as the homotopy colimit of

the following diagram

Fy - Fy Fy R Fy
Spin(9) ~ j*(Spin(7))  j¥(Spin(7)) S x¢, j¥(Spin(7))

iR

5.3 Decomposition of X*(C @ Q) by F}

We will decompose X2(C ® Q) using the action Fj using the same procedure as in
the case of P2(C ® 0)

Consider the orbit of Fj through the point 193 x,SU(6) € W. This
orbit is stabilised by the group F;NS®x¢,SU(6) C Eg which is determined by the Lie
algebra f4 Nsu(2) @su(6) C eg. This algebra is the subalgebra of su(2) @ su(6) which
is fixed by the restriction of the involution 1. The restriction of ¥ to su(2) ®su(6) is

the identity on su2 and is the standard outer involution on su(6) which fixes sp(3).
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So f4 N su(2) @ su(6) = su(2) ® sp(3) C 4 as follows where this is the space X?(0)
discussed in Chapter 2.

0 X o X
- — C
su(2) @ sp(3) fa su(2) @ su(6) e6

We now proceed to calculate the normal bundle to the embedding. The roots
of ¢g are as follows:
+(x; ;) for 1 <i<j<5b
1
i§($1 +aytastastas+ \/§x6)
Where in the number of negative signs inside the parentheses in the second form is
even. The roots of ¢ which restrict to the subroot system su(2) @ su(6) are:
i(a;l + .%'2)
+(x; £xj) for 3<i<j<5h
1
:I:i(asl — a9 taytastast \/31’6)

Where in the number of negative signs inside the parentheses in the third form is

even. The simple roots of this set are thus just the generating roots:

1. 21+ 29

2. %(%1 —.7}2—%‘3—1’4—.%5—!-\/3.%6)

3. x4 — x5
4 Ir3 — T4
5. T4+ x5

6. %($1—$2—1‘3—$4—ZL’5+\/§£L’6)
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The remaining roots of eg which do not restrict to su(2) & su(6) are:

+(zy £ a;) for 3<i <5
1
i§($1 + a9t w3ty £ast \/§x6) where the number of negative signs is even.

Of which the highest weight root is 27 + x3. The remaining roots form a
representation of su(2)@su(6) with dominant weight given by z1+x3. Let wy, - -+, ws
be the fundamental weights of su(2) @ su(6) corresponding to the simple roots (1-6)

above then we have the following

(w1, 21 +23) = (T1 + 22,21 +23) = 1
(wo, x1 + x3) = (%(901 — 29 — 23 — 24 — T5 + V376), 71 + 73) = 0
(w3, 1 +x3) = (24 — 5,21 +23) =0
(wg,x1 + x3) = (X3 — 24,21 + x3) = 1
(ws,x1 +23) = (T4 + 5,21 +23) =0

(we, x1 + x3) = <%(x1 — 29 — @3 — x4 + x5 — V36), 21 + 23) =0
The representation formed by the remaining roots thus has an irreducible
component isomorphic to the representation with weight vector (1,0,0,1,0,0) from
[Brocker and Dieck, 1985, 5.1, pg. 265] we conclude that this is the representation
Uy ® /\3 Us where /\3 Us is the standard representation of 3rd exterior power of the
representation Ug. As both these representations are of complex dimension 40 they

are thus isomorphic.

0 0 1 0 0

O O O O O

O =

Thus pulling back the representation eg from Fg to S3 x SU(6) the represen-
tation splits as su(2)+su(6)+Us® A\® Us. And thus the tangent bundle of X2(C®0)
is generated by the representation Us ® /\3 Us.

From [Brocker and Dieck, 1985, 5.3, pg. 269] we know that under the map
Sp(n) — SU(2n) the representation Us, pulls back to H,, thus the representation
U ® /\3 Us pulls back to S® x Sp(3) as Hy ®p /\3 Hj. By restriction of roots we
know that the tangent bundle to Fj/S® x Sp(3) is generated by the irreducible
representation Hi @y A where A is such that A + Hy = /\3 Hs. Thus the normal
bundle is generated by the representation H; ®p Hs of S3 x Sp(3).
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S3 % Sp(3) acts transitively of the sphere S!! via the representation H; @y Hs
and is stablized by S3 x Sp(2). Thus Fj acts transitively on the sphere bundle in
the normal bundle stabalized by S3 x Sp(2) C S x Sp(3) C Fy. Hence the generic
orbit is 53%‘% as this is codimension 1 and we can apply the corollary to Mostert’s
theorem and it remains to find the other exceptional orbit.

We consider the orbit through g, - (S® x¢, SU(6)) where g, is as defined in
the previous subsection. The stabilizer of the action at this point has a Lie algebra

isomorphic to

b4 1 ady, (su(2) @ su(6)) = 4 N ¢(su(2) @ su(6))

As su(2) @ su(6) is given by a sub root system ¢(su(2) @ su(6)) is the sub
root system generated by the action of ¢ on the generating roots of su(2) @ su(6).

Diagramatically this can be shown as follows:

@ X
|
|

O

s5u(2) @ su(6) ¢6 P(s5u(2) @ su(6))

The intersection f4Np(su(2)®su(6)) is then the fixed points of p(su(2)Hsu(6))
under the involution ¢, this is isomorphic to su(2) @ su(4) where:

su(2) @ su(4) — su(2) ® su(2) @ su(4) — su(2) & su(6)

Where the first map is the diagonal embedding of su(2) < su(2) @ su(2),
x + (z,z) and the second is the natural map from su(n) @ su(m) — su(n + m).
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X
---X

- — C
O O+—— —
su(2) dsu(4) fq su(2) @ su(4) ¢6

Let SU(2) x SU(4) — F4 be the map of Lie groups associated to the inclusion
su(2)@su(4) C f4 as the centre of S x SU(4) is trivial this map is an inclusion and ths
the orbit at g4 - (S X, SU(6)) is isomorphic to ﬁ%(‘l)' As this is not isomorphic
to either the orbit at 1- (S x ¢, SU(6)) or the generic orbit for dimensional reasons
this must be the other exceptional orbit. Finally we compute the normal bundle
to the embedding. As the orbit ﬁ%(ﬁl) is of codimension 6 the representation
generating the normal bundle must be of dimension 6 and S x SU(4) by Theorem
7.15 this must be a representation such that either S or SU(4) act transitively on
the restriction. By Theorem 7.15 there is only 1 such representation, which is the
representation Vg of Spin(6) = SU(4), and thus the normal bundle is generated by
this representation.

Taken together with previous results this implies the following

Theorem 5.2. The space X2(C ® Q) can be decomposied as the homotopy colimit
of the following diagram

Fy Fy

- Fy Fy
S3 x Sp(3) S3 x Sp(2)

53 x Spin(5) T S x Spin(6)

[Ra

Where we note that, like in the case of P?(C ® Q), one exceptional orbit of
the decomposition of X?(C ® Q) is X?(0).
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Chapter 6

Cohomology of Fg/S! X ¢, Spin(10)

We will compute the cohomology of the space Eg/S! x ¢, Spin(10) using the decom-
position in Chapter 5.

This will recover the following result due in [Toda and Watanabe, 1974,
Corollary C]

Theorem 6.1.

Z[s, w]

* 1 . ~
H™(Es/S" >cy Spin(10)) = (Bw?s = s2, w3 = Jws® — 15w?s?)

For 2 generators s and w with |s|=2 and |w| = 8

We first obtain the cohomology of the 2 exceptional orbits of OP? and
Fy/S' x¢, Spin(7) and then use the diagram in 5.1 to compute the cohomology
of the total space Es/S1 X, Spin(10).

6.1 Cohomology of QP>

We first recall the following result due to Borel in [Borel and Hirzebruch, 1958,
Theorem 19.4 ,pg. 535].

Theorem 6.2. The cohomology of OP? is isomorphic to Z[zs]/ < z3 > for a
generator xg in degree 8. The Pontryagin class of the tangent bundle is given by
1+ 6xs + 3923

As by [Adams, 1996, pg. 51] the representation f4 restricts to Spin(9) as
spin(9) + dg the tangent bundle to QP? is generated by the representation Ag. Let
Vo be the vector bundle on QP? generated by the representation Vg then by [Adams,
1996, Corollary 8.1, pg. 52] the 26-dimensional representation Agg of Fy restricts to
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Spin(9) as 1 + dg + Ag. This implies that the sum of a trivial bundle, Vg and the

tangent bundle is trivial.
Lemma 6.3. p(Vy) = 1 — 625 — 322

Proof. As the cohomology of QP? is only non zero in the degrees 0, 8,16 we have
that p(Vo) = 1+ Awg + a3 for some \, u € Z. As 1+ Vy+T(OP?) is trivial we have
that

p(1)p(Vo)p(TOP?) = p(27)

and thus

(1 + \zg + pad) (1 + 628 + 3923) = 1

and therefore Azg + 6xg = 0 which implies that A = —6 and 3922 — 3622 +
ux% = 0 this gives that p = —3.
O

6.2 Cohomology of F}/S! x¢, Spin(7)

We compute the cohomology of the other exceptional orbit Fy/S! x ¢, Spin(7). By
composing with the map p from Theorem 5.1 we have an inclusion of Fy/St x¢,
Spin(7) — F4/Spin(9) and this gives a fibration:
Gry (R?) < Fy/S* x¢, Spin(7) — QOP?
(3 uy

We have the cohomology of QP2 in the previous subsection and the coho-
mology of Gry (R?) is given by Theorem 4.7 as Zle, f]/ < f?,2¢* — f > where e is
the euler class of the oriental 2-plane bundle E3 9 and f is of degree 8.

Lemma 6.4. Lett := e(Va), where Vs is the oriented 2-plane bundle generated by the
representation & of S* C S x ¢, Spin(7) and yg is the image of vs € H*(QP?). Then
there exists b € HS(Fy/S' x ¢, Spin(7)) such that t,b and ys generate H*(Fy/S' x ¢,
Spin(7)) with the following relations:

1. 2b —t* = \yg for some X € {0,1}.
2. b2 = aysb + By for some o, 3 € Z.

3. ySzO.

40



Proof. As both H*(OP?) and H*(Gry (R?)) are concentrated in an even dimension
the Lerry-Serre spectral sequence collapses at the first page see McCleary [2001].

Under the map Gra(R?) 2 Spin(9)/S* x ¢, Spin(7) < Fy/S! x ¢, Spin(7) the
bundle V5 pulls back to the bundle Epg in particular this implies that ¢ = e(V3)
pulls back to e = e(Eag) in H*(Grj (RY)).

Choose b’ € H8(Fy/S*x ¢, Spin(7)) such that &’ pulls back to f in H8(Gry (RY))
such a b exists as by Leray-Hirsch this map is a surjection, as the spectral sequence
collapses at the first page.

By the Leray-Hirsch Theorem H*(Fy/S! x¢, Spin(7)) is a free H*(QOP?) -
module generated by 1, t, t2, t3, ¥/, 't ,b't3. The element 20 — t* pulls back to
2f —et = 01in H*(Gry (R%)) and thus 26’ — t* = ays for some a € Z.

Now there exists u € Z, A € {0,1} such that a = 2u + A. Define b = b’ — uys
then we have that 2b — t* = 20’ — t* — 2uys = Ays.

Also as the image of ys is 0 in H3(G5 (R?)) we have that H*(Fy/S' x¢,
Spin(7)) is a free module over H*(QP?) generated by 1,¢,t2,¢3, b, bt, bt? bt>. In par-
ticular as yg generates H*(QP?), the classes ¢, b, ys generate H*(Fy/S' x ¢, Spin(7)).

We know 2b — t* = Ayg for A € {0,1} and that y3 = 0 as ys is the image
of g, it only remains to compute b? as this maps to 0 in Gry (RY) it must equal
aysb + Byz for some a, B € Z.

[

Thus it remains to compute the values of A, « and

Lemma 6.5.
H8(Fy/Spin(7)) = Z

Proof. As Fy/5°(Spin(7)) 22, F4/47(Spin(7)) we have that H®(Fy /5T (Spin(7))) & Z
if and only if H®(Fy/j°(Spin(7))) = Z but we have a 15-sphere bundle S'° —
F*/5*(Spin(7)) — F*/Spin(9) = OP? and thus H®(F;/j"(Spin(7))) = H3(OP?) =
Z.

0

Lemma 6.6. There does not exist 2 € H*(Fy/S* x¢, Spin(7)) such that 2z = t.

Proof. Consider the circle bundle

St s Fy/Spin(7) — F4/S* x ¢, Spin(7)

Then by the Wang exact sequence we have the following:
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Fy Fy 4
O - % g8 HS H|— -+
<51 X0, spm(7>) <e(Vh) (Sl X0, Spmm) 7 (spm<7>> 7 8Txe, Spin(7)

As H'(Fy/S'x ¢, Spin(7)) = 0 we have that H8(Fy/Spin(7)) = H3(Fy/S'xc,
Spin(7))/ImH®(Fy/S' x ¢, Spin(7)). But H = Z and is generated by > as the eu-
lar class of the bundle V5 is ¢ the image of HO(Fy/S* x ¢, Spin(7)) in H®(Fy/S! x ¢,
Spin(7)) is generated by t* if there was a 2 € H®(Fy/S* x¢, Spin(7)) with 2z = ¢4
as H®(Fy/St x ¢, Spin(7)) is torsion free 2 € ImH®(Fy/S* x¢, Spin(7)) and thus
H8(F,/Spin(7)) would have a torsion component but H®(Fy/Spin(7)) is torsion free

by Lemma 6.4
O

Corollary 6.7. In Lemma 6.4 A = 1.

Proof. Suppose instead A = 0 then 2b = t* which contradicts Lemma 6.6.

Lemma 6.8.
£ — 6t'ys = 3y}

Proof. Under the map S! x¢, Spin(7) — Spin(9) the representation dg pulls back
to do + d7. Let Va, V7 also represent the bundles on Fy/S! x ¢, Spin(7) generated by
these representations and recall that Vg also represents the 9-dimensional bundle on
OP? generated by the representation &g of Spin(9).

As V5 is 2-dimensional it only has a 4-dimensional Pontryagin class which
is the square of its euler class thus p(V2) = 1 — 2. As V7 is 7-dimensional it has
3-Pointragin classes in dimension 4,8 and 12.

Finally as p(Vg) = 1 — 623 — 323 we have that

1—6ys — 3y = 7*(1 — 62 — 323)
=" (p(V9))

= (1 =) (1 +p1(V7) + p2(V7) + p3(V7))

42
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This gives the following set of equations
p1(V7) —t?=0

p2(V7) — p1(Vi)t? = —6ys
p3(V7) — pa(Va)t2 =0
—t%p3(V7) = =343

We conclude that following relations
n(Vr) = ¢

pa(V7) = —6ys +t*
p3(V7) = t® — 6yst?

and thus we get that t8 — 6ygt* = 3y3.

Lemma 6.9. 3b2 = 8

Proof. Substituting 2b — t* = yg into t8 — 6ttyg = 3y§ we obtain t® + 12t%b — bt® =
120 — 12t*h = 3t® which simplifies to 4t® = 12b% as H*(Fy/S' x¢, Spin(7)) is
torsion-free this implies that 3b% = ¢&.

O
Lemma 6.10. b = yg + 2ttyg
Proof. As ys = 2b — t* we have y3 = 4b> — 4bt* + t® thus we have that 4b%> =
yg + 4bt* — 8 combining with the equation 3b* = 8 we obtain
b’ = y2 + 4bt* — 2t
= y? 4+ 2t1(2b — t*)
=y + 2tMys
O

This gives us the following theorem:

Theorem 6.11.

' Z]t,b]
* 1 ?
H(F1/S" xc, Spin(7)) = ——5— 18,03 + 1502t — 9bt8 >
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Where t = e(Va2) and |b] = 8.
Proof. We have from the Lemmas 6.4, 6.7 and 6.10 that

Z[ta bv yS]

H*(Fy/S" x¢, Spin(7)) =
(F4/S" x ¢, Spin(7)) < y3,2b— t4 = yg, b2 = yZ — 2thyg >

As yg = 2b — t* we can eliminate it from the ring giving the result as

Z[t,b]
< 302 = {5,805 — 12021 + 6bt5 — £12 >

We can substitute the relation b3 + 156%t* — 9bt® for 8b% — 120%t* + 6bt8 — t12 in this

ring as we have that:
b3 + 156%% — 96t = (3b — t4)[3b? — 18] — [8b% — 120%* + 6bt® — 1]
O

We now move on to the computation of the cohomology of Eg/S! x¢,
Spin(10).

6.3 Cohomology of Eg/St x¢, Spin(10)

As in the case of oriented Grassmanians in Chapter 4 and the decomposition in the

previous chapter we have the following diagram of spaces:

Spf;f(7) oP? — Th(T(OP?))
L . Th(T(0P?))

S1x ¢, Spin(7) i S1x ¢, Spin(10) ja

| 5] |
Th(V,) ——  Th(Vs) —— *

Which induces the following commuting diagram in cohomology
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H (spf;i‘m) A H*(0OP?) «——— H*(Th(T(OP?)))

I dl I

H* (srectiomm) 5 H* (sctemnny) 5 HY(TH(T(OP?))

S1x ¢, Spin(7) ST x ¢, Spin(10)
I i I
H*(Th(V2)) — H*(Th(V2)) — 0

Lemma 6.12. The map
iy H"(Eg/S" x¢, Spin(10)) — H™(Fy/S' x¢, Spin(7))

is an isomorphism for 0 <n < 15

Proof. The pair of maps

Fy/S" x ¢, Spin(7) — E6/S' x¢, Spin(10) — Th(T(OP?))
12 J2

forms a cofibration sequence. Thus the long exact cofibration sequence can
be formed, but if 0 < n < 15 we have that H*(Th(OP?)) = 0 as it is the Thom
space of a 16-dimensional vector bundle and hence in these dimensions 73 is an

isomorphism.

O]

Definition 6.13. Let s = i3 '(t) and w = i3 ' (b) as |t| = 2 and |b| = 8 we note
that by lemma 6.12 both of these inverses exist.

Lemma 6.14. Up to dimension 15 we have that H*(Eg/S* x ¢, Spin(10)) is iso-

morphic to Z[s,w).

Proof. As i3 is an isomorphism up to dimension 15 H*(Eg/S* x¢, Spin(10)) is
isomorphic to H*(F*/S' x¢, Spin(7)) up to this dimension but H*(F*/S! xc,
Spin(7)) has no relations of dimension less than 15 thus up to dimension 15 we have
that H*(Eg/S* x¢, Spin(10)) = (i3) "1 Z[t, b] = Z[s, w].

O

Definition 6.15. Let Uy and Us be the Thom classes of the bundles Vo and T(QP?)
in H?(Th(V3)) and H'$(Th(QP?)).
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Lemma 6.16. The relations ji(U1) = s and j7(bU1) = sw both hold.

Proof. The composition jj oy is equal to the inclusion in the Thom exact sequence
thus (i3 0 j1)(U1) = e(V2) = t. But (i3)~1(t) = s and thus j;(U;) must also equal s.
Next (i% o ji)(bU1) = bt but 3 is an isomorphism in this degree and so

i5(sw) = bt giving sw = ji(bUy).
O

Lemma 6.17. Given k > 0 the following equations hold:
jf(tkUl) — SkJrl
jrkouy) = sFw
]ik(tk—‘rleUl) — Sk+2w2
jik(tk+2bSU1) — Sk+3w3
Proof. These follow by applying ji to the following relations:
tkUl — U{’Hrl
t*oU, = UF(bUY)
12U, = UF (U, )?

230, = UF U, )?

Lemma 6.18. The relation ij(w) = £xg holds.
Proof. From the cofibration sequence
F,/Spin(9) — Eg/S* x ¢, Spin(10) — Th(Vz)
11 J1

We obtain the following exact sequence

0= H"(0P?) —— H8(Th(V3)) S Hg(slxcﬁim(loﬂ

|

H8(OP?) — H°(Th(W,)) =0

From Lemma 6.14 we have that H®(FEg/S! x¢, Spin(10)) is generated by
s* w. From the Thom isomorphism H®(Th(V3)) is generated by a class t3U; such
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that (i5043)(t3U) = t* € H8(Fy/S* x ¢, Spin(7)) but by lemma 6.14 (i%) 7 (t1) = s*
and thus by exactness i%(s*) = 0 and so i} (w) = +2% as i} surjects.
O

Lemma 6.19. H'%(Eg/S! x¢, Spin(10)) £ Z ® Z ®© Z and is generated by s, s*w

and w?

Proof. Again we can use the iy cofibration sequence to obtain:

0 — H'S(Th(V3)) 2 H'(E6/S" x¢, Spin(10)) — H'°(OP?) - 0
1 1

Thus as H'(Th(Vz)) = Z @ Z and H'®(F*/Spin(9)) = Z we have that
H%(E6/S' x ¢, Spin(10)) 2 ZHZDZ. As H'S(Th(V3)) is generated by the 2 classes
t"U; and #3bU; we have that H'6(Eg/S' x¢, Spin(10)) is generated by j;i(t"Uy),
43 (t3bU7) and a class z such that i}(z) generates H®(QP?).

By Lemma 6.17 we have that j7(t"U;) = s% and j;(t3bU;) = s*w. Finally
as by Lemma 6.18 i}(w) = +xg it follows that i}(w?) = 22 and thus we can take
z=w?

O]

Lemma 6.20. H32(ﬁgm(m)) = 7Z generated by some orientation class 7 =
4stw? — 4s8w? + s%w.

Proof. From the spectral sequence of the Gry (R?) fibration over OP? we have that
H 30(%) =~ 7 and is generated by y2bt3. Eliminating ys this gives the top
class of #ﬁpin(ﬂ as 41363 — 4t"b? + c'1b. Thus H32(Th(V)) = Z and is generated
by the class 43 B3U; — 42U, + t110U;.
As H*(OP?) = 0 in dimension greater than 16 we have that j} : H3?(Th(V2)) —
H3%(Eg/S* x ¢, Spin(10)) is an isomorphism and by Lemma 6.17 the result follows.
0

Theorem 6.21. H3%(Eg/S! x¢, Spin(10)) is generated by s and w.

Proof. We have shown that this holds in dimensions less than or equal to the middle
dimension. Further as H*(OP?) = 0 in dimension greater than 16 we have that
gt H¥(Th(Va)) — HF(Eg/S' x¢, Spin(10)) is an isomorphism for k& > 16. As
H*(Th(V3)) is additivly generated by classes of the form tPb9U; the result follows
by Lemma 6.17.

0
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It now remains to find relations between these classes.
Lemma 6.22. s° = 3sw?

Proof. As t® = 3b? in Lemma 6.9 we have that t3U; = 3b?U; and hence by Lemma
6.17 s = 3w?s. O

We next attempt to find a relation in dimension 24 to do this we first make

some notes about the 24-dimensional cohomology groups of some related spaces.

Lemma 6.23. H?'(F,/S' x¢, Spin(7)) is spanned by the classes t'2,bt8 b*t* and

b® with relations:
o 303 — bt8
o 3b244 _ 412
o b3+ 15b%t* — 9bt®

It is isomorphic to Z with a generator given by the element 19b%t* — 11bt8.

H?Y(Th(V4)) is spanned by the classes t'*Uy, bt"Uy and b*t3U; with the single
relation 3b*t3U, —t" U, . It is isomorphic to Z& 7 with a basis given by the elements
bt’U; and b2t3U;.

Proof. This follows directly from the definition of the cohomology ring in terms of
generators and relations given in Theorem 6.11 specialised to dimension 22 and 24

along with the Thom isomorphism.
O

Lemma 6.24. Under the map i50 55 : H**(Th(Va)) — H?**(Fy/S! x¢, Spin(7)) we
have that:
e i} 0 i (bt"Up) = —45[196%t* — 116t%]
o i} o i (V*3Uh) = —26[19b%t* — 116t%]
Thus 26bt"U; — 45b%t3U, generates the kernel of this map.
Proof.
i3 0 ji (bt"UY) = bt
= —19[3b® — b*t?
+ 57[b% + 156%t* — 9bt%)]
— 45[196%" — 110t%]
= —45[196%t* — 116t8]
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i 0 i (W*t°U) = b*t!
= —11[3b% — b*t?)
+ 33[b% + 156%* — 9bt%)]
— 26[196%" — 110t%]
= —26[196%t* — 116¢"]

As both 3b% — b%t* and b% + 156%t* — 9bt® are 0 in H**(Fy/S' x¢, Spin(7))
by Lemma 6.23
O

Lemma 6.25. H*(Th(TOP2)) is isomorphic to Z generated by xsUs and ji(zsUs) =

3w? — wss.

Proof. The structure of H?*(Th(TOP2)) follows directly from the cohomology of
OP2 given in Theorem 6.2 and the Thom isomorphism. We next show that j5(Usz) =
3w? — 5% the result will then follow from the Thom isomorphism.

First we note that by exactness j5(Us) is in the kernel of i5. In dimension 16
this kernel in isomorphic to Z and generated by 3w? — s® which is the pull back of
the 16-dimensional relation in the presentation of H*(Fy/S' x¢, Spin(7)) given in
Theorem 6.11. We thus conclude that j3(Uz) = n[3w? — s%] for some n € Z. Finally

from the Thom isomorphism we have that

3nag = i} (n[3w? — s%)) = i} 0 j3(Uy) = e(TOP2) = 3z

And hence n = 1.

Lemma 6.26. w® = 9ws® — 15w?s?.

Proof. First as i4(w3 + 15w?s* — 9ws®) = b3 + 15bt* — 9bt® which is a relation in
H?*(F,/S' x¢, Spin(7)) by Lemma 6.23 we have that w3 + 15w?s* — 9ws® € Keri

hence by exactness w® + 15w?s* — 9ws®

€ Imj;. From Lemma 6.25 this image
is generated by 3w® — ws® and so we have that for some n € Z we have that
w3 + 15w?s* — 9ws® = n[3w? — ws’).

It remains to show that n = 0 which will complete the proof. As jj is an

isomorphism in dimension 24, as H?*(QP2) = 0, the kernel of 73 is the image of the
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kernel of 75 o j7. Thus the we have by Lemma 6.24 that:
71 (260t"U; — 450%t3U;) = 26ws® — 45w?s?

generates the kernel of ¢5 and hence the image of j5. As the image of j5 is also

generated by 3w? — ws® this implies that:
26ws® — 45w?s* = £3w? — ws®
But we have the following:

3n[3w® — ws®] = 3[w? + 15w?s? — Jws®]
= 3w + 45w?st — 27ws®
= [3w? — ws®] + [26ws® — 45w2sY]

= [3w?® — ws®] & [3w? — ws®]

As 3w? — ws® generates the image of j; which is non-zero and torsion-free we thus
have that 3n € {0,2} and hence that n = 0.
O

We can now compete the proof of the main theorem of this section:

Proof. We have shown s,w generate the cohomology and both 3w?s = 5%, w? =

9ws® — 15w?s* hold. It only remains to show that there are no further relations
needed. We define r; := 3w? — s and ry := w3 — Qws® + 15w?s* for notational
convienience.

We show that for any i € N the group H*(Es/S* x¢, Spin(10)) and the i-
dimensional part of Z[s,w]/ < r1,r2 > are the same which will show that no further
relations are needed. We note that as H(Fg/S' x ¢, Spin(10)) and Z[s, w]/ < r1,72 >
have only even dimensional generators we can restrict to the case where 7 is even. We
note that as H'(Eg/S! x ¢, Spin(10)) = H'(Fy/S* x ¢, Spin(7)) which is torision free
in dimension less than the middle dimension and H'(Fg/S' x ¢, Spin(10)) is torision
free by Lemma 6.19 Poincarre duality shows that the whole ring H*(FEg/S! x¢,
Spin(10)) is torision free.

We proceed by case analysis on ¢ to show the equality holds in all cases:

i < 16 In dimension less than 16 we have that, by Lemma 6.14, H'(Es/S' x¢,
Spin(10)) is isomorphic to the i-dimensional part of Z[s, w] which is isomor-

phic to the i-dimensional part of Z[s,w]/ < ri,79 > as both 1 and ry have
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dimension greater than 16.

i =16 By Lemma 6.19 H*6(Es/S* x ¢, Spin(10)) is isomorphic to Z & Z & Z which
is isomorphic to the 16-dimensional part of Z[s, w|/ < r1,72 > as both r and

ro have dimension greater than 16.

i € {18,20,22} By Poincarre duality we have that H'(Eg/S! x ¢, Spin(10)) = H327¢(Es/S'x ¢,
Spin(10)) which is isomorphic to the 32 — i-dimensional part of Z[s,w] as
32 —i < 16. In dimensions 10, 12 and 14 Z[s, w] is isomorphic to Z & Z and
hence so is H'(Eg/S* x¢, Spin(10)).

Let i = 18 + k with k& € {0,2,4} then the i-dimensional part of Z[s, w]/ <

9+k, 5+k 1+kw2

r1,7r2 > is additivly spanned by the elements s s°TFw and s with a

relation given by s¥r1. As sFr; is can be extended to a basis with the elements

5+k 1+kw2

s> w and s the quotient group is isomorphic to Z ®Z and thus equality

holds.

i = 24 By Poincarre duality we have that H**(Eg/S'x ¢, Spin(10)) = H®(Es/S'x ¢,
Spin(10)) which is isomorphic to the 8-dimensional part of Z[s, w] as 8 < 16
this is isomorphic to Z @ Z and therefore so is H**(Eg/S* x ¢, Spin(10)).
The 24-dimensional part of Z[s,w|/ < r1,r2 > is additivly spanned by the
elements s'2, s3w, s*w? and w? with relations given by s and 5. As s3r
and 79 are can be extended to a basis with s8w and s*w? we have that the

quotient is isomorphic to Z & Z and thus equality holds.

i € {26,28,30} By Poincarre duality we have that H'(Eg/S*x ¢, Spin(10)) = H32~(Es/S' x ¢,
Spin(10)) which is isomorphic to the 32 — i-dimensional part of Z[s,w] as
32 —i < 16. In dimensions 2, 4 and 6 Z[s, w] is isomorphic to Z and hence so
is H (Eg/S! x¢, Spin(10)).

Let i = 26 + k with & € {0,2,4} then the i-dimensional part of Z[s, w]/ <

13+k’ 9+k 5+kw2 1+kw3

r1,r9 > is additivly spanned by the elements s and s

4

$TFw, s

rl,skwrl and s't*ry.  As the relations can be

5+k 9+k

with relations given by s*+t

extended to a basis with the element 19w?s — 1lws the quotient group

is isomorphic to Z and thus equality holds.

i =32 As Eg/S'x¢,Spin(10) is a 32-dimensional manifold we have that H32(Eg/S' x ¢,
Spin(10)) = Z.

The 32-dimensional part of Z[s,w]/ < ry1,re > is additivly spanned by the

elements 6, s12w, s%w?, s*w3 and w* with relations given by s7r1, s3wr1, s*ry
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and wre. As the relations are can be extended to a basis with the element

19s3w? —115'?w the quotient group is isomorphic to Z and thus equality holds.

i =34 As Fg/S'x¢,Spin(10) is a 32-dimensional manifold we have that H3*(FEg/S'x ¢,
Spin(10)) = 0.
The 34-dimensional part of Z[s, w]/ < r1,ry > is additivly spanned by the ele-
ments s'7, sBw, s%w?, s°w3 and sw?* with relations given by s8r1, s*wry, w?ry, s°ro
and swrs. As the relations are form a basis the quotient group is isomorphic

to 0 and thus equality holds.

i >34 As FEg/S'x ¢, Spin(10) is a 32-dimensional manifold we have that H(Es/S'x ¢,
Spin(10)) = 0.
Take the sum of all the i-dimensional parts of Z[s, w] where ¢ > 32 then this
is additivly spanned by the elements s"w" for n,m € N with 2n + 8mn > 32.
Let b = s"w™ for some n,m € N with 2n + 4m > 32 we will show that

b €< 71,19 > which completes the proof.

We proceed by case analysis on m, first suppose that m < 4 then as 2n +
8m > 32 we have that 2n > 34 — 8m and so n > 16 — 4m in particular

b = gn16HAm (G16—dmy,my) Byt g16—4mq,m i 34 dimensional and previously we

have shown that this group has rank 0 and so s'~4"w™ €< 71,79 > hence

be<ry,rg >.
Next suppose that m > 4 then b = (s"w’~™)w® but we have that:
w® = w?ry + 9s%w? — 1557wt = wrry + 5295w — 155uw?)

but 9s°w? — 15sw?* is 34 dimensional and hence 9s’w3 — 15sw* €< r1,ry >
thus w® €< ry,r9 > and finally b €< 71,79 >.

These all match proving the theorem. O
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Chapter 7

The decomposition of some
spheres associated to

representations

In this section we will study some decompositions of spheres associated to represen-
tations. Given a real m-dimensional representation of some Lie group G, say ¢ : G —
SO(m) then the group ¢(G) C SO(m) acts on the sphere S™~1 22 SO(m)/SO(m—1).
It is these decompositions that we will study in this section. In particular we will
investigate the conditions for such a respresentation to be transitive or codimension
one.

This has a relation to more general decompositions as if G acts on a manifold
M given as an orbit G/H then G acts with codimension k if and only if H acts
with codimension £ — 1 on the sphere by the representation of H which induces
the normal bundle. In particular for codimension one actions such as in Chapter
5 we have a transitive action on the sphere in the normal representation and for
codimension two actions such as in Chapter 9 we have a codimension one action on

the sphere in the normal representation.

7.1 Irreducibility

We first recall some standard lemmas of irreducible real real representations and note
some corollaries for representations to be either transitive or codimension 1. Let G
be a semi simple Lie group then by definition there is a map 7 : [[,_, Gi = G whose
kernel is a finite group and such that each G; is simple. Then any representation of

G can be decomposed into the sum of irreducible representations and we have the
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following standard Lemmas see for example [Brocker and Dieck, 1985, Chapter I1,1]

Lemma 7.1. Let A : G — SO(m) be a real irreducible representation then either:
1. A is a complex irreducible representation
2. There exists a complex irreducible representation I' such that A = I'r.

Lemma 7.2. If A : G — SU(m) is a complex irreducible representation then
there are complex irreducible respresentations A; : G; — SU(m;) such that we have

THA) = @F_\A;

The following theorem allows us to related the reducibility of a representation

to codimension of the associated action:

Theorem 7.3. For a Lie group G with 2 representations A : G — SO(n) and
I': G — SO(m) and suppose, G acts with codimension k on S™1 via A and with
codimension l on S™ ! via T'. Then G acts on S"T™ 1 via the representation A®T

and the codemension of this action is greater than or equal to 1 + k + 1.

Proof. Embed S"~! x S~ into S~ as (v,w) — (%U, %w) then the repre-
sentation A + I' fixes this subspace. The action of G on S"~! x §™~1 factors as
G — G x G — SO(n) x SO(m) where the first map is the diagonal.

Consider the action of G x G on S"~! x §™~1 then the orbits are just the
products of the orbits of the G actions on "' and S™~!. Therefore the generic
orbit is just the product of the generic orbits of G on S"~! and S™!. Hence the
G x G action on S"~! x S™~1 is codimension k +1. As the G action factors through
this G x G action the codimension of the G action on S”~! x S™~! must be at least
k+1.

As S"71 x §™~1 is codimension 1 in S"t™~1 it follows that the action of G
on S"tm=1 ig at least k + 1 + 1.

O]

This immediately gives the following corrolaries

Corollary 7.4. For a Lie group G and a representation A : G — SO(n) if G acts

transitively on S™~1 via A then A is irreducible.

Corollary 7.5. For a Lie group G and a representation A : G — SO(n) if G act

on S™ 1 with codimension 1 via A then either:

1. A s irreducible

2. A = A1 ® Ay for 2 irreducible representations A1, Ao such that G acts tran-
sitively on the spheres S(A1) and S(Az).
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7.2 'Tensor products

We now note a few results of actions on spheres coming from the tensor product of
2 representations.

Suppose we have 2 real representations Ay : G — SO(n) and Ay : G —
SO(m) then the tensor representation A; ® Ay : G — SO(n x m) factors through
the representation d, ® d,, : SO(n) x SO(m) — SO(n x m). Likewise any complex
tensor of complex representation factors through the representation u, ®c fm :
U(n) x U(m) — U(n x m). We thus study the tensors d,, ® d,, and i, @c i, first.

Lemma 7.6. Let 1 < n < m then the action of SO(n) x SO(m) on S™™~1 js

transitive if and only if n is 1 and is codimension 1 if and only if n is 2.

Proof. We proceed by induction on n. First suppose that n = 1 then SO(1) = 1
and the representation §; ® d,, is isomorphic to d,, which is known to be transitive
and hence codimension 0.

In general assume the result holds for n — 1 we show it holds for n. Consider
the orbit at v € S(R" ® R™)

()

Then this is stabilized by SO(n—1) xSO(m—1) with normal bundle generated
by d,-1 ® dpp—1. By induction SO(n — 1) x SO(m — 1) acts via the representation
On—1®6m—1 with codimension n —2 hence SO(n) x SO(m) acts on the sphere bundle
in the normal bundle of the orbit at v with codimension n — 2.

As this subspace is codimension 1 and SO(n) x SO(m) acts with codimension
(n—1).

O

Lemma 7.7. Let 1 < n < m then the action of U(n) x U(m) on the S*™™~1 via
L ®C fm 1S transitive if and only if n is 1 and is codimension 1 if and only if n is

2.

Proof. We proceed by induction on n. First suppose that n = 1 then U(1) = S*
and the representation & ®c pm, is transitive as p,, is and hence the result holds.

In general assume the result holds for n — 1 we show it holds for n. Consider
the orbit at w € S(C" ® C™)
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Then this is stabilized by U(n —1) x U(m — 1) with normal bundle generated
by pin—1 ®c pm—1- By induction U(n — 1) x U(m — 1) acts via the representation
tn—1 Q¢ fm—1 With codimension n —2 hence U(n) x U(m) acts on the sphere bundle
in the normal bundle of the orbit at w with codimension n — 2.

As this subspace is codimension 1 the group U(n) x U(m) acts with codi-
mension (n — 1).

O]

We next focus more closely on the two codimension 1 decompositors do & 9y,

and po ®c fm

Lemma 7.8. For m > 1 the sphere S*™~1 decomposes under the d3 @ d,, action of
SO(2) x SO(m) as

SO(2) x SO(m) SO(2) x SO(m) SO(2) x SO(m)
O x 80(m—1)) — O(1) x SO(m—2)  SO@2) x SO(m — 2)

Where these groups are embedded as:

1. 50(2) x S0(m=2) = SO(2)x S0(2) x SO(m —2) = 50(2) x SO(m)

2. 01) x SO(m—1) — O(1) x O(1) x SO(m — 1) = SO(2) x SO(m)
(Diag,id)

Proof. We first consider the orbit containing the element V' € S(R? @ R™) where

_ ( 10 ...0 )
00 ... 0
then the orbit at V' is stabilized by O(1) x SO(m — 1) as in the embedding 2. The
normal bundle to this orbit is generated by normal bundle to §; ® d,,—1 O(1) X
SO(m — 1) acts transitively via the representation d; ® J,,—1 stabilized by O(1) x
SO(m —2).

In particular this implies the generic orbit is codimension one and stabilized
by O(1) x SO(m — 2). As S?"! is simply connected for (m > 1) we can apply
Mostart’s theorem and it suffices to find the other exceptional orbit.

Consider the orbit at the element W € S(R? ® R™) where
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/vV2 ... 0
Then this orbit is stabilized by SO(2) x SO(m — 2) embedded in SO(2) x

SO(m) as in map (1). From counting the dimension of the stabilizer this is distinct
from the orbit of W and the generic orbit this by Mostart this must be the other

exceptional orbit completing the proof.

W:(%f 0 .”0>

O]

Lemma 7.9. For m > 1 the sphere S =1 decomposes under the jy @c pim action
of U(2) x U(m) as:

U(2) x U(m) U(2) x U(m) U(2) x U(m)
U xUMN) xUm—1)  UM) xUm-2)  UQ)xU(m—2)

Where we have that
1. U(2) xU(m —2) (D,—>‘d) U2)xU@2)xU(m—-2)—=U(2) xU(m)
iag,i

2 UMXUMxU(m=1) = UQ)xU0)xU0)xU(m=1) = U(2)<U(m)

Proof. We first consider the orbit containing the element V € S(C? ® C™) where

V:<10.“0>

00 ... 0

then the orbit at V is stabilized by U(1) x U(1) x U(m — 1) as in the embedding
2. The normal bundle to this orbit is generated by £ ® 1 ® ppy,—1 and U(1) X
U(1) x U(m — 1) acts transitively via the representation { ® 1 ® p,—1 stabilized by
U(1) x U(1) x U(m —2). In particular this implies the generic orbit is codimension
one and stabilized by U(1) x U(1) x U(m — 2). As S*™~! is simply connected we

can apply Mostart’s theorem and it suffices to find the other exceptional orbit.
Consider the orbit at the element W € S(C? ® C™) where

(V20 .0
W( 0 uﬂ.”0>

then this orbit is stabilized by U(2) x U(m —2) embedded in U(2) x U(m) as in map
(1). From the fundamental group of the stabilizer this is distinct from the orbit of
W and the generic orbit thus by Mostart this must be the other exceptional orbit
completing the proof.
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We now move to the more general case. We first generalise the results on

transitive actions.

Lemma 7.10. Given a compact, connected Lie group G and 2 real representations

Ay and As then A1 ® Ao acts transitively only if at least one of A1 or Ao is trivial.

Proof. As A1 ® Ag factors as (0dimA; @ 0dim A,) © (A1, Ag) we have that A} ® Ag is
only transitive if d4qim A; ® ddim A, is by 7.6 this implies that dim A; or dim Ag is 1
but then Aq or As is trivial by connectedness.

The converse is obvious. O

Lemma 7.11. Given a compact Lie group G and 2 complex representations A1 and
Ao with dimAq < dimAs then G acts transitively via A1 Q¢ As if and only if either:

1. Ay is trivial and G acts transitively via As

2. G2 S x¢, H for some H such that Ay = & and H acts transitively via Ao|y

Proof. As A1 ®c Ag factors as (fdgima, @ tdima,) © (A1, Ag) we have that pgima, @c
HdimA, must be transitive and hence by 7.7 that dimA; = 1. Either A; is trivial or
G has a non-trivial 1 dimensional complex representation.

Suppose A7 is trivial then A; ®c As is isomorphic to As and hence Ay ® A,
is transitive if and only if Ay is.

Suppose A; is a non-trivial representation then as S' is the only simple
group with a non-trivial 1 dimensional complex representation and G is semi simple
it must split as S* x g H with A; = ¢™ and K a finite group.

As S!is cyclic we must have that K = O} for some k € N

Finally as £ commutes with any complex representation we have that the
action of As is isomorphic to the action of £™ ® As for some m € Z hence as
Aol = €™ ® Ag we have that A; ®c Ag is transitive if and only if Ag|y is.

O

We next generalise when tensor products have codimension one actions.

Lemma 7.12. Given a connected Lie groups G and 2 real representations A1 and
Ay with dimAy < dimAy then G acts with codimension one on S(A1 ® Ag) if and
only if one of the following hold:

1. Ay is trivial and G acts with codimension 1 on the sphere S(As)
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2. There exists a Lie group H and k € N such that G =2 SO(2) x¢, H, A1 = 02
on SO(2) and H acts transitively on the sphere S(As|pg) stabilized by some
K C H such that Aol = 1 4+ Ag where K acts transitively on the sphere
S(Ak)

Proof. As A1 ® Ay factors through d4im A, ® ddim A, We must have that dgima, ®
ddim A, must give an action of SO(dim A;) x SO(dim Ag) whose codimension is at
most 1. By 7.6 we must therefore have that dim A; € {1, 2}.

First suppose dim A; = 1 thus Ay must be trivial and A; ® As = As and
A1 ® Ay acts with codimension 1 if and only if As does.

Next suppose that dim A; = 2 as A; is irreducible it must be non-trivial.
As the only simple group with a 2 dimensional irreducible real representation is
SO(2) and d2 we must have that the Cartan type of G contains an SO(2) and A; is
generated by d2. Let G = SO(2) x¢, H be such a decomposition.

We next show that Ag|y is transitive on S(Az|q).

First suppose that As is not transitive on S(A3) then G cannot act transi-

tively on the orbit passing through the element V' where

- ( 10 ...0 )
00 ... 0

As SO(2) x SO(dim Ay) acts transitively on this orbit and with codimension
one on the whole space G must act transively on this orbit. This orbit is isomorphic
to St x §dimA2—1 a5 the SO(2) acts freely on the S* part of this G acting transitively
imples that the restriction of the action to H is transitive on S#mA2=1 a5 required.
Let K be the stabilizer of the transitive H action on 4™ 42~1 The stabilizer
of the G action at this orbit is K as the SO(2) action is free. As this action is
codimension one the normal bundle must be generated by some representation Ag
of K such that K acts transitively on S(Ag) it remains to show that Ag|x = 1+Ak.
This follows as by transitivity Ag and A are the pull backs of dgim A, and ddqim A,—1

to H and K respectively.
O

Lemma 7.13. Given a Lie group G and 2 complex representations A1 and Ay with
dimA; C dimAqy then G acts with codimension one on S(A; ®c Ag) if and only if
one of the following hold.

1. Ay is trivial and G acts with codimension 1 on S(A2)

99



2. There exists a Lie group H and kEN such that G = S' x¢, H, A1 = 1 and
H acts transitively on S(As|g).

3. There exists a Lie group H and k € N such that G = SU(2) x¢, H, A1 =
wo and H acts transitively on S(Aso|y) stabilized by someK € H such that
Aol = 1+ Ag for some representation A such that K acts transitively on
S(Ak).

Proof. Same as previous with minor changes for complex numbers

7.3 Semisimple Groups

We now extend the previous results to the case of representations of semisimple
groups in terms of the irreducible representations of simple groups. The irreducible
representations of compact simple Lie groups with transitive actions has been shown
by Simons [1962] to be the same as the Berger classification f Holonomy groups
[Berger, 1955, Theorem 3]. A more direct reference to the classification can be
found in [Besse, 1987, 10.94, pg 301]

Theorem 7.14. If G is a simple Lie group and A an irreducible representation

such that G acts transitively then one of the following cases hold.
1. G is of Cartan type A(n) and A is the complex representation fiy,
2. G is of Cartan type B(n) for some n and A is the real representation don41
3. G is of Cartan type C(n) for some n and A is the quatmionic hy,
4. G is of Cartan type D(n) for some n and A is the real representation dapn

5. G is of Cartan type G(2) and A if the 8-dimensional real irreducible represen-

tation
6. G is of Cartan type B(n) for n < 4 and A is the spin representation Agy,y1
7. G is of Cartan type D(n) for n < 4 and A is the spin representation Agy,

Theorem 7.15. Let G be a semi simple group and A a representation then G acts

transitively on S(A) if and only if one of the following holds

1. There exists a map w : H x K — G with finite kernel such that H is simple
and A pulls back under w to a real irreducible representation A of H such
that H acts transitively on S(Ap).
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2. There exists a map 7 : (S1)* x K — G with finite kernel such that H is simple
and A pulls back under m to a complex representation &' ® -+ ® & @ Ay for

an irreducible complex representation Ap of H such that H acts transitively
on S(Ag)

Proof. By Corollary 7.4 the representation must be irreducible using Lemma 7.1 on
form of the irreducible representations as tensors and the Lemma 7.10 and Lemma

7.11 on the real and complex tensors that can induce transitive actions. O

We proceed to the following partial result about semi simple groups which

act via representations with cohomogenaity one.

Theorem 7.16. Let G be a semi-simple group and A a representation of G such
that G acts with codimension 1 on S(A) then one of the following holds

1. There exist Ay and As real irreducible representations of G such that G acts
transitively on S(A1) and S(Ag) and that A = Ay + As.

2. There exists a map 7 : ST x Hx K — G with finite kernel such that H is simple
and A pulls back under m to 6o Rr Ag for some real irreducible representation
of Ak of K such that K acts transitively on S(Af)

3. There exists a map 7 : (S)F x SU(2) x H x K — G with finite kernel such
that H is simple and A pulls back under © to €1 @ --- @ &% @ Ay where Ay, is

a complex irreducible representation of K and K acts transitively on S(Ag)

4. There exists a map 7 : H x K — G with finite kernel such that H is simple
and A pulls back under m to Ak such that A is a irreducible representation
of K and K acts with codimension 1 on S(Ak)

5. There exists a map m : (SY)* x K — G with finite kernel such that H is
simple and A pulls back under  to €' @ - - - &7 @ Ak for a complex irreducible
representation Ax of K where K acts with codimension 1 on S(Ak).

Proof. By the corrollary 7.4 the representation must be irreducible or the sum of 2
irreducible representations For case 1 assume it is the sum of 2 irreducible repre-
sentations. Otherwise use Lemma 7.1 on form of the irreducible representations as
tensors and the Lemma 7.12 and Lemma 7.13 on the tensors that can be codimension
1. O
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Chapter 8
Weyl Group computations

In this section we give a description of the Weyl group of Eg in terms of the
Weyl group of the maximal subgroup Spin(16). This will allow us to compute
the double quotients W (Eg x S) \ W(E7)/W (5% x Spin(12)) and W (E; x S3) \
W (Eg)/W (Spin(16)) which we will need in Chapter 9 these eunmerate various orbit
types of the double quotient Eg x S'\ E7/S5% x Spin(12). We show that in both cases
the double quotients have 2 distinct classes and we give representative elements of
these.

We perform these computations by giving the structure of W (Eg) with re-
spect to the subgroup W (Spin(16)) to give a description of the cosets W (Eg)/W (Spin(16)).
While theoretically these can be computed by computer as |W(FEg)| = 696729600
both the computational packages GAP and van Leeuwen et al. [1992] fail to compute

them within reasonable levels of resources.

8.1 Weyl group of Eg

Definition 8.1. Let IT'(n) be the subset of the group {1,—1}" whose elements
contain (—1) exactly i times, and let II(n) be the sub group of {1,—1}" where
Hn) = 1Tz 1% (n)

Then S(n) acts on II(n) by permutation of coordinates and with this action

we have the following theorem from [Brocker and Dieck, 1985, Theorem 3.6,pg. 171]
Theorem 8.2.
W (Spin(2n)) = TI(n) x S(n)

Where the element (¢, p) € II(n) x S(n) acts on the maximal torus T" C
Spin(2n) by the composition of the natural actions of the ¢ and p on the standard

basis.
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For this section we use the root system for the eg in [Adams, 1996, pg. 56]

generated by the following simple roots:

1. 29 — x3
2. x3— x4
3. T4 — x5
4. x5 — x¢
9. Tg — Ty
6. 7 — xg
7. x7+ x8
8. $(x1 + 2 + 23+ T4 + 35 + T6 + 27 + T5)

O O O O \Ii O O

Eg

If we take the subroot system generated by the roots (1 — 7) and the root
(x1 — m2) we obtain a root system of type D(8) giving an embedding of Spin(16) <
Eg and W (Spin(16)) C W (Es) it is this subgroup of W (Spin(16)) in W (Eg) we will
use in the rest of this section. It gives the standard representation of W (Spin(16))
on the maximal torus in Spin(16)

Further for the rest of this section we will refer to the Weyl element generated

by the reflection in the root 8 by s. Then s will act on the coroot space by the matrix

3 -1 -1 -1 -1 -1 -1 -1
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Lemma 8.3. Let p € S(8) C W(Spin(16)) C W(Eg) then
sop=pos

Proof. Let 1g be the 8 x 8 matrix consisting of only 1’s and 1 the representation of

p then

= Idp — 10
- mw

From linearity and the fact that 1g is invariant under symmetry action.
O

Lemma 8.4. Letx = (x1,--- ,x3) € I12(8) C W(Spin(16)) C W (Es). Asx € I1%(8)
there exists unique i < j with x; = x; = —1 let p, be the 2-cycle in S(8) C
W (Spin(16)) which exchanges i and j then:

STS = TSTPx

Proof. First assume i = 1,7 =2 so x = (—1,—1,1,1,1,1,1,1) if D(x) is the mtirx

corresponding to x then direct computation shows that:

SmD()Sy D(x) Sy D(x)

is the matrix corresponding to p which proves in this lemma in this case. In

general let p be a permutation exchanging 1 with ¢ and 2 with j then pzp~' =

(—1,-1,1,1,1,1,1,1)” and the result above shows that

sprp~ts = pxp~tsprptsprp pp.p

1

as both p and p~" commute with s by Lemma 8.3 the result follows.

Lemma 8.5. For z € I13(8) we have st = ws.

Proof. As z € TI%(8) we have that z = (—1,—1---,—1) so it acts on R® as multi-

plication by (—1), as Sy, acts linearly the result follows.
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O]

Finally we will need the following result found in [Adams, 1996, Theorem
10.1]

Lemma 8.6.
|W (Eg)| = 696729600

Definition 8.7. There is an embedding of I1'(n) < II*(n+1) by taking (z1,--- ,x,) >
(z1,-+ , @y, 1) denote this by I’ (n) C II'(n).
This gives rise to a subgroup I (n) = ]_[Zn:/(z) I1%'(n) C I(n)

Definition 8.8. Given z € I, (n) where i > 0 and n > 1. Let j be max{j €

{2,---,n} | 2 =—1}
Then we define twz € I1%(n) to be such that (twz), = —1, (twz); = —1

This allows us to state the main theorem of this section:
Theorem 8.9. For any w € W(Es) exactly one of the following hold:
1. w € W(Spin(16)),
2. w = xsa for some x € 111 (8) and a € W(Spin(16)),
8. w = (twz)'szsa for x € 114 (8) and a € W (Spin(16)) with i € {0, 1}.
And this data uniquely defines w.

Proof. We will first show that at most one of (1) — (3) can hold. We will then show
uniqueness and finally we will use a counting argument to show that all w € W (Es)

have such a form. To do this we will use the following proposition:
O

Proposition 8.10. Let w € W (Spin(16)) with matric Wy, and M an 8 x 8-matriz

with coefficients in a subset S C R which is closed under negation then:
1. WM and MW, are matrices with coefficients in S C R,
2. det(M) = det(W,, M) = det(MW,,).

Proof. Let M = {ai,j}§,j:1 and w = (z,p) € W(Spin(16)) then for 1 <i,5 < 8 we
have that:

(Wi M)ij = ()% o)
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(MWp)ij = micv() 4

But z,; 5(5) = £, C S and mia,;) ; = ta,i); C S due to the fact
that S is closed under negation.
Finally we have that det(W,,) = det(pW,p~!) = det(Diag(x,--- ,x,)) and
so det(Wy,) =[] z; = 1 as = € II(8).
O

Continuing the proof of Theorem 8.9, let W,;, be the action of w on the coroot
space with standard basis. First suppose that case 1 holds and w € W (Spin(16))
then, by the proposition as W,,, = W,,,-Idg and Idg has coefficient in S; := {—1,0,1}
and thus W, has coefficients in 57

Next suppose that case 2 holds and thus w = zsa for some x € 11, (8) and
a € W(Spin(16)).

As S,,, the matrix associated to s, has coefficients in Sy := {—%, —%, %, %}
and a,z € W (Spin(16)) by the proposition W,, has coefficients in Ss.

Now suppose that case 3 holds and w = (twz)’szsa for some = € Hi(8),
a € W(Spin(16)) and i € {0,1}.

Further let @ < j < k < [ be such that x; = z; = 2, = 2; = 1 which
exist by definition as x € Hi(8) and let p be the permutation given by cycles
(1,4)(2,)(3,k)(4,1) then pzp~t = (1,1,1,1,—1,—1,—1,—1) =: a € IT4(8).

Now sas acts on the coroot space via the matrix:

Sm - Diag(1,1,1,1,-1,—-1,-1,—1) - Sp,

Which direct computation show to be equal to the matrix:

1 -1 -1 -1 0 0 0 0
1 1 -1 -1 0 0 0 0
1 -1 1 -1 0 0 0 0
1 -1 -1 1 0 0 0 0

2 0o 0o 0o 0o -1 1 1 1
o 0 0 0 1 -1 1 1
o 0 0 0 1 1 -1 1
o 0o 0 0 1 1 1 -1

So SaS has a matrix form with all the coefficients in the set S5 := {—%, 0, %} As we
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have

w = (twz)'szsa

(twz")spzp sa

((twz)'p)sas(p™'a)

and both p~ta and (twz)ip are in W (Spin(16)), we have from the proposition that
Wy has coefficients in Sj3.

As w is invertible we must have that W), # 0g and thus it can have coef-
ficients in at most one of the sets Sy, S or S3 and thus at most one of the cases
(1),(2) or (3) may hold.

We next show that in each case the data uniquely classifies w. In case (1) this
is trivial. Then we show uniqueness in case 2, suppose case 2 holds let z,y € I1(8)
and a,b € W (Spin(16)) such that

rsa = ysb

We want to show that z =y and a = b. As s~! = s, we have that sy~ lzs =

a~'b. Further as y~ 'z € I1.(8) there exists i € {0,1,2,3} such that y~'z € I1%(8)
we proceed by case analysis on 1.

First, suppose that ¢ = 0 and y~'z € I19.(8) then as I1%(8) = {Id} we have
that x = y and thus sa = sb therefore a = b.

Next, suppose that i = 1 and y~ 'z € II2 (8) then by lemma 8.4 there exists
pz € S(8) such that a='b = sy~tws = (y'a)s(y 'zps) so a~ b is of type 2 but as
ab~! € W(Spin(16)) we obtain a contradiction.

Next suppose that i = 2 and y~'a € Hi(8) then ab~! = sy~ las is of type 3
but as ab~! € W (Spin(16)) we obtain a contradiction

Finally suppose that y 'z € II% (8) and let (—1) be the unique element of
18(8) then (—1)y~'x € I1%(8) and so

(—=1)a" b= (=1)sy s
=s(—1)y s
= (-Dy les(-1)y "'z
Thus a='b = (—=1)ylzs(—1)y 'z is of type 2 but ab~! € W(Spin(16)) and

we again obtain a contradiction. This proves uniqueness in case 2.

Finally we show uniqueness in case 3, suppose that case 3 holds and we have
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i,7,€ {0,1}, z,y, € 111 (8) and a,b, € W(Spin(16)) such that:
(twz)'szsa = (twy)’ sysb

We want to show that ¢ = j, = y and a = b. We proceed in this by case
analysis on ¢ and j. First take ¢ = j = 0 then sxsa = sysb and so xsa = ysb but
both these elements are of type 2 thus by uniqueness in case 2 we have that x =y
and a = b.

Next suppose i # j without loss of generality we can assume i =0and j = 1,

so that sxsa = (twy)sysb and thus we have that:

xsa = s(twy)sysb

= (twy)s(twy) prwyysb
= (twy)sysb

But (twy)sysb is of type 3 as opposed to zsa which is of type 2 which gives a
contradiction.

Finally in the case where i = 1 and j = 1 we have (twz)szsa = (twy)sysb.
If twz = twy then szsa = sysb and by the case where i = 0,5 = 0 we have z = y
and a = b. On the other hand if twz # twy then v = (twz)(twy) € II12(8).

By assumption (twz)swsa = (twy)sysb thus as (twr) ™! = twz

zsa = ((twz)s) " (twy)sysb
= s(twz)(twy)sysb
= svsysb
= vsvp,ysb
= vsysp,b
= (twz)(twy)sys(pub)

And so (twz)zsa = (twy)sys(p,b) but (twz)xsa of type 2 and (twy)sys(p,b)
is of type 3 which is a contradiction.

This shows that if w is of type (1) — (3) then it is uniquely determined by
the data.

We finally show that the elements of type (1) —(3) constitute all the elements
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of W(Spin(16)) by simple counting.
First there are 27 x 8! = 5160960 elements of W (Spin(16)) and so 5160960

there are elements of type 1. Next, we have that

msi=1+ () + (1) + (§) ot

and so there are 64 x 5160960 = 330301440 elements of type 2. Finally as |II4 (8)] =
(7) = 35 there are 2 x 35 x 5160960 = 361267200 elements of type 3.

Thus in total there are 51609604 3303014404 361267200 = 696729600 unique
elements of types 1-3 as the total number of elements is 696729600 from Theorem

8.6 we see that all of the elements must be of some type.

8.2 Weyl group of E; x S3

We now consider the subgroup E; x S3 C Ex

This embedding is induced from the sub-root system consisting of the roots
(2) — (8) and the root (z1 — x2)

The intersection of F; x S and Spin(16) within Fg is given by the sub root
system consisting of the roots (2)—(7) along with the roots (z1—x2) and (z1+x2) this
is of type D(2)D(6) and corresponds to the natural subgroup Spin(4) x ¢, Spin(12) —
Spin(16) as in the following diagram:

6
S3 x Fr 6 SN T Eg
O O—O—O—I—O—O O O
T1 — T2 2 3 4 5 7 8 1 2 3 4 5 7 8
Spin(4) x Spin(12) 6 ; 6 Spin(16)
O O—O—O—I—O O—O—O—O—O—I—O
T1 — T2 2 3 4 5 7 r1—x21 2 3 4 5 7
x1 ‘?‘ €2

We wish to describe W (S3 x E7) in terms of W (Spin(4) x Spin(12)) in the
same way as our description of W(Eg) in terms of W (Spin(16)). To do this we first
investigate the map W (Spin(4) x Spin(12)) < W (Spin(16))
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Definition 8.11. The map m: {—1,1}" x {=1,1}"" — {—1,1}"*"™ descends to give

an embedding

7 (n) x (m) < I(n+m)

We will use II(n,m), I (n,m) and I’ (n,m) respectively to denote the in-
tersection of the image of © with IL(n+m), 1L (n+m) and I (n+m) respectively.

As in the case in theorem 8.2 by following the map of tori we have the

following theorem.

Theorem 8.12.

W (Spin(2n) x Spin(2m)) = II(n,m) x S(n) x S(m)
C II(n+m) x S(n+m)
= W (Spin(2n + 2m)).

This allows us to state the following theorem:

Theorem 8.13. For any w € W(S® x E7) exactly one of the following hold:
1. w € W(Spin(4) x Spin(12)).
2. w=uzsa for x € I11(2,6) and a € W(Spin(4) x Spin(12)).

8. w = (twz)iszsa for v € 1I4(2,6) and a € W(Spin(4) x Spin(12)) with i €
{0,1}.

And this data uniquely defines w.

Proof. As W(Spin(4) x Spin(12)) and hence I, (2,6) along with s are contained in
W (E; x S3) any element of type (1) — (2) must also be an element of W (S® x E7).
Now as any element z € 114 (2,6) C {1, -1} has exactly 4 coefficients with value
—1 we must have that the maximum index of such a coefficient must be greater than
2.

This implies that twz € 112 (2,6) C I12 + (8) and so any element of type (3)
must also be an element of W(S® x Ex).

From the proof of Theorem 8.9 we see that any such w is uniquely defined by
the data and it remains to show that all w € W (S® x E7) have such an expression.

We use a simple counting argument as we have shown all such elements of
type (1) — (3) must be elements of W(S® x E7). Firstly as:
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[W (Spin(4) x Spin(12))| = [W(Spin(4))| x [W (Spin(12)|
= 4 x 23040
= 92160

So those are 92160 elements of type 1. Next we have that:

[T4(2,6)] = [TI(2)[ > [IL;.(6)]

() () -2

and thus there are 32 x 92160 = 2949120 elements of type 2. Finally as:

114 (2,6)] = [I°(2)] x [I(6)] + |T1*(2)[ x |13 (6))] (8.1)
e (3 () o2
~15 (8.3)

Thus there are 2 x 15 x 92160 = 2764800 elements of type 3.

This implies there are 92160 + 2949120 + 2764800 = 5806080 elements of
types (1) — (3) but as [W(S? x E;)| = 5806080 Adams [1996] and each of these
elements is distinct, all the elements of W (S3 x E7) must be of types (1) — (3).

O

8.3 Computation of W(E; x S3)\ W(Es)/W (Spin(16))

We now use these results to compute the required double quotients. First we note

an additional lemma on the structure of II(n + m).

Lemma 8.14. For m > 1 let x € II2 (n +m) be such that v1 = —1 and xp41 = —1
then

1. II(n +m) = II(n,m) [ «II(n, m)
2. Il (n,m) =4 (n,m) [[2Il+(n,m)

Proof. Let a € II(n + m), if a has an even number of (—1)’s for indexes between

1 and n then it also has an even number of (—1)’s between n + 1 and m hence

71



a € II(n,m). Otherwise the number of (—1)’s between 1 and n and n+ 1 and m are
odd and hence za € II(n,m) thus a € zII(n, m).
For (2) we have that IT (n+m) = II(n+(m—1)) and I1{ (n, m) = II(n, m—1)
and the result follows from (1).
O

We can now prove the main theorem of this section.

Theorem 8.15. Let x be the element of 112 (8) such that z1 = —1,x3 = —1 then the
double quotient then W (E; x S3)\ W (FEg)/W (Spin(16)) has two equivalence classes
with representative elements 1 € W(Eg) and xs € W(Eg).

Proof. We show that for every element w € W(Eg) there exist a € W(S® x Er)
and b € W (Spin(16)) such that either w = ab or w = axsb so w ~ 1 or w ~ xs
respectively.

Suppose w € W(Spin(16)) is of type 1 then w = lw thus w ~ 1. Next
suppose w = Asu is of type 2 with p € W (Spin(16)) and A € II,(8). By Lemma
8.14 either A € I1;(2,6) or Az € II;(2,6) first suppose A € II;(2,6) then as both A
and s are in W (S3 x E;) so is As and hence w = (As)u, which implies w ~ 1.

Otherwise assume Az € I11(2,6) then we have that w = (Az)(xs)u and as
A\r € W(S? x E7) we have that w ~ xs.

Finally suppose that w = (twA)sAsp for some pinW (Spin(16)) and A €
I14 (8) then by Lemma 8.14 either A € I14(2,6) or zA € I14(2,6). Suppose A €
14 (2,6) as wA, A, s € W(S3 x E7) we have that w = ((twA)sAs)u and so w ~ 1.

Otherwise zA € I11(2,6) then as twA, Az, € W (S35 x E7) we have that w =
(twAsAz)zsu and so w ~ xs.

It remains to show 1 4 xs. Suppose that this were the case, then there would
exist a € W(S3 x E;),b € W(Spin(16)) such that a = 2sb which implies by Theorem
8.9 that a is a type 2 element of W (FEg) and thus a type 2 element of W (S? x E7)
but this is a contradiction as z ¢ H%F(Q, 6) and Theorem 8.13 has uniqueness of the

representations.
O

8.4 Computation of W(Eg x S')\ W (E;)/W(S? x Spin(16))

Given the maximal torus of E7 and the sub root system generated by roots (3) — (8)
gives an embedding of S! x Eg < E7 found in [Adams, 1996, Chapter 8].

Thus the roots (3) — (8) and (z1 — z2) with the maximum torus give an
embedding of S% x S x Eg < S3x E7 C Eg. The intersection of Spin(4) x ¢, Spin(12)
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with §3 x St x Eg is S3 x St x S x Spin(10) where S x S! x S! x Spin(10) —
Spin(4) x Spin(12) is the map such that S x Spin(10) < Spin(12) is the natural map
of Spin(2) x Spin(10) < Spin(12 and the map S® x S! < Spin(4) is the inclusion
of §% x St < §3 x $3 = Spin(4).

This gives a map S3 x S x S x Spin(10) — 53 x E;, where S x St x
Spin(10) < S' x Eg < E; and S! x Spin(10) < Ej is the embedding in Chapter 5

For Chapter 9 we want to compute W (St x Eg) \ W(E7)/W (S3 x Spin(12))
which is isomorphic to the set W (S3 x S! x Eg)\ W (S? x E7)/W (Spin(4) x Spin(12)).
We can describe W (52 x S! x Eg) in terms of W (93 x S1 x S* x Spin(10)) analogously
to theorem 8.9.

We note that II¥ (2,n) = {z € I} (2 4+ n)|z1 = 22} in this direction we get
the following definition.

Definition 8.16. I1¥ (a;n) = {z € X (a +n) | =1 =+ = 2,} and U4 (a;n) =
{rel®(a+n)| x1="=uz4}

Then the embedding of S3 x S! x S x Spin(10) < Spin(6) x Spin(10) —
Spin(16) gives an embedding of Zy x I1,(5) C W(S3 x St x S! x Spin(10)) into
I, (8) C W (Spin(16)).

This allows us to state our theorem for this section.

Theorem 8.17. Let w € W(S3 x St x Eg) then exactly one of the following hold:
1. w e W(S3 x S x St x Spin(10)).
2. w=zsa for v € 14(3;5) and a € W(S® x S1 x S! x Spin(10)).

3. w = (twx)'szsa for a € W(S3 x St x St x Spin(10)) and i € {0,1}.
And this data uniquely determines w.

Proof. As shown T1;(3;5) C W(S® x S* x Eg) we also note that for any z €
IT4 (3;5)twz € I%(3;5) as there must be both 1 in x with indices in the range
4 -8 As S € W(S? x S! x FEg) this implies all elements of type (1) — (3) are
elements of W (S® x S x Eg). Further as all these elements are distinct as elements
of W(Eg), they are distinct elements of W (S3 x St x ES).

We show that all w € W (S® x S x Eg) have such a form again via a counting
argument.

There are |[W(S3 x St x St x Spin(10))| = [W(S?)| x |W(Spin(10))| = 2 x
24 x 5! = 3840 elements of type 1.
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As |14 (3;5)] = 2% [II(5)] =2x (1+6+41) = 16 there are 16 x 3840 = 61440
elements of type 2.
Finally as |II% (3;5)| = [II4.(5)| + [II}.(5)] = 1 + 4 = 5 thus there are 2 x
5 x 3840 = 38400 elements of types (1) — (3) as from Adams [1996] we have that
|W (Eg)| = 51840 we thus have |W(S3 x S x Eg)| = 103680 so all elements are of
types (1) — (3).
O

We give a lemma analogous to Lemma 8.14.

Lemma 8.18. Let x € I12(2,6) be such that x5 = —1,24 = —1 then I12.(2,6) is the
disjoint union 114 (3,5) [ #I1(3;5)

Proof. Take a = (a1,--- ,ag) € I12(2,6) then a; = ay as (a1, az2) € I1(2)
Suppose a; = a3 then a € I1;(3;5) otherwise if a; # az then (za); = (za)3
and za € 114(3;5). O

We are now in a position to compute the double quotient W (S3 x St x Eg) \
W(S3 x E7)/W (Spin(4) x Spin(12)

Theorem 8.19. The set W (S x S' x Eg) \ W(S3 x E7)/W (Spin(4) x Spin(12))
has 2 elements with representative elements 1 and xs where x € 112 (2,6) has x4 =

—1,:[‘5 =—1.

Proof. We show that for any w € W (S? x Eg) either w ~ 1 or w ~ wxs. Firstly
suppose w is of type 1 then w € W(Spin(4) x Spin(12)) thus w ~ 1.

Next, suppose w is of type 2 so that w = AsuA € Hi(2, 6) and p €
W (Spin(4) x Spin(12) then by Lemma 8.18, either A or zA are in II;(3;5) C
w(S® x S x Eg). If A € T1,(3;5) then as s € W (5% x S x Eg)w = (As)p thus w ~ 1
otherwise if we have that Az € I1;(3;5) then w = Asp = (Az)xsp and so w ~ xs.

Finally, if w is of type 3 then there exists a A such that (twA)sAsuA € II4 (2, 6)
with p € W (Spin(4) x Spin(12) by then Lemma 8.18, either A or z\ are in 111 (3;5).

Suppose A € I} (3;5) then as twA € I1% (3;5) we have that w = ((twA)sAs)u
and w ~ 1. Otherwise if 2\ € II;(3;5) then we have that w = (twA)sAsu =
((twA)s(Az))zs(pn) and we conclude that w ~ xs.

It remains to show that 1 4 xs, suppose the contrary, then from the counting
argument there exists a € W (Spin(4) x Spin(12)) such that xsa € W (S x S! x Ep).
We have xsa is of type 2 in W(S3 x E7) and so must also be of type 2 in W (53 x
St x Eg) but = ¢ 11,(3;5), a contradiction.

O
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Chapter 9

The decomposition of
E-/S3 x Spin(12)

In this section we give partial results on the decomposition of the space P?(H ® Q)
with respect to an action of S! x Fg. We will show that one of the orbits of this
action is isomorphic to P?(C ® Q) and another is isomorphic to X?(C ® Q) which
we have discussed in Chapter 5. We describe particular orbits of this action and
sketch at the end a method to compute the complete form of the decomposition if
time would allow.

We note that unlike the decomposition in Chapter 5 the action is of codi-

mension 2.

9.1 Lie Groups

We first give explicit forms for some of the Lie groups that we will use in this section.
We first define ¢7 and 2 Lie subalgebras isomorphic to R®eg and su(2)@®so0(12). These
correspond to the natural subalgebras of the algebras su(2) @ ez, su2 @ s0(12) @ eg
and s0(4) @ s0(12) used in Chapter 8. For clarity we give explicit definitions here.

Definition 9.1. Following Adams [1996][pg. 56] we define e7 to be the Lie-algebra

with simple root vectors given by:

1. Tr9 — I3
2. Tr3 — T4
3. x4 — x5
4. T+ Tg
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5. x5 — Tg
6. %(wl—xg—xg—m—wgﬂ-xa—ﬂm)

7. \/5%7

The highest root of e7 is 1 — x2, with this root we get the extended Dynkin
diagram:

Er

Where we label the highest root as . We can form 2 Lie subalgebras of e7 by
taking sub root systems. First we can take the sub root system associated to the
roots (1,2,3,4,5,7) and the highest root z1 — xs.

This gives an embedding of
su(2) @ so(12) as follows:

O
su(2) @ s0(12) e7
Where the roots of su(2) @ so(12) are given by:

o +(z;+ux;)for1<i<j<6

° :|:\/§ZL‘7

Secondly we can take the subroot system associated to the roots (1—6) along
with the maximal torus. This gives an embedding of R & ¢g as follows:
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R & eq e7

Where the roots of R & ¢g are given by
o +(z;+ux;)for1<i<j<5h

° %(:l:.%'l a3ty s+ (.%'6 + \@.ﬁlﬁ))

Where there are an even number of — signs in the second type of roots. The
embedding of R@eg and su(2)@s0(12) in e7 induce maps of S* x Eg and 53 x Spin(12)
into E7. The map of S! x Ej is isomorphic to an embedding in Mimura and Toda
[1991] and thus is an embedding. The maps of S® x Spin(12) into F7 is isomorphic
to the embedding in [Adams, 1996, Chapter 8] and thus has a kernel isomorphic to
Cy generated by (—1,—1) € S3 x Spin(12).

This embedding of S3 x¢, Spin(12) into E; gives us the space FE7/S% x¢,
Spin(12) which is P?(H ® Q) discussed in Chapter 2. The embedding of S* x Fg in
E7 thus gives us an action of S x Eg on P?(H ® 0), we will study the orbits of the
decomposition of P?(H ® Q) under this action for the remainder of this section.

We will build up the decomposition of F7/S% x Spin(12) by classifiying the
orbits with stabilizers of different ranks. In doing this we will use the notion of

co-ranks defined below:

Definition 9.2. Let H and K be Lie subgroups of a Lie Group G and let HgK be
an orbit in the double quotient H \ G/K then we define its rank to be the rank of
the stabilizer gKg~' N H.

As gKg~' N H C G the rank of an orbit is at most the rank of G, define the
corank of an orbit to be the difference between its rank and the rank of G. We say

an orbit is full rank if its corank is 0.
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9.2 Full rank orbits

We first consider the full rank orbits of the decomposition we first prove the following
theorem to relate this to the computations in Chapter 8. We will relate the full rank
orbits of a double quotient of Lie groups to the double quotient of the associated

Weyl groups. We first prove a related lemma.

Lemma 9.3. Let H and K be full rank Lie subgroups of a Lie Group G and suppose
gKg ' N H C G is full rank then there exists a ¢ € N(G), the normalizer of the
mazimal torus in G, such that HgK = Hg'K .

Proof. As gKg~' N H is full rank it has some maximal torus 77 C gKg~!' N H but
as gKg~' N H C H we have that 7" is a maximal torus of H as well and thus there
exists h € H such that T = hT'h~ 1.

Further we have the following:

g ' T'gCg (gKg ' nH)g
CKng 'Hg
CK

and so ¢g~'T"¢ is a maximal torus of K and thus there exists k € K with ¢~ 17"¢ =
kTk™!. Let ¢’ = hgk then H¢’K = HgK and we have that:

gT(g") " =(hgk)T (k™ g~ 'h™")
=hg(kTk™1)g~th™!
=hg(g~'T'g)g~'h ™"
=hT'h~ !
=T

And thus ¢’ € N(G). O

Theorem 9.4. Let H and K be a full rank Lie subgroups of a Lie group G and let
i:WH)\W(G)/W(K) — H\ G/K take W(H)gW (K) — HgK. Then this map
is well defined and surjects onto the full rank orbits in H \ G/K.

Proof. We first prove the map is well-defined. Take the map j : Np(G) - H\G/K
induced from the inclusion Np(G) C G.

Then j descends to a map W(G) — H \ G/K as W(G) := Np(G)/T and
T C K, therefore j(w) = j(wt) for all t € T. Next we show that j descends to a
map W(H)\ W(G)/W(K) — H \ G/K we have that:
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W(H) = (N¢o(G) N H)/T = W(G) N H
W (K) = (Np(Q) N K)/T = W(GQ)NK

Thus we have that j(W(H)) C H and j(W(K)) C K. This implies that
j(hgk) = j(g) for all h € W(H),k € W(K). This surffices to prove the map is
well-defined.

To prove surjectivity it surffices to note that by Lemma 9.3 j is surjective

and j factors through 1. O

From Theorem 8.19 we know that the set W(S! x Eg) \ W (E;)/W (53 x
Spin(12)) has 2 elements and thus the action of S! x Eg on E;/S3 x Spin(12) has at
most 2 full rank orbits. We will next describe these orbits and show that they are
distinct. From the second orbit we will deduce the codimension of the action and

the type of the generic orbit.

9.2.1 The orbit at one

We first deal with the orbit containing 1 € Er, it is stabilized by the group S! x
EgNS3 x Spin(12) which has Lie algebra R® eg Nsu(2) ©s0(10). As both R@ eg and
su(2) @ s0(10) are subroot systems of e, the intersection consists of the maximal
torus and the common roots.

Comparing the roots of R @ ¢ and su(2) @ s0(10) we see the common roots

are the following:

+(x; £xj) for 1 <i<j<5b

Thus the stabilizer has Lie algebra of type R@® R @ s0(10) as the inclusion of
the R @ s0(10) into eg is the same as the one in Chapter 5, we see the stabilizer is
thus equal to S! x S! x¢, Spin(10) and the orbit is thus isomorphic to P?(C @ Q).

It remains to compute the normal bundle to this orbit. The tangent bundle
to F7/S% x Spin(12) is generated by the representation bundle us ®c Ais this has
weights given by:

1
i(j:;vliinx3i$4ix5ix6i\@x7)

Where there are an even number of — signs in the variables z1 to xzg. On
restriction to R @ R @ s0(10) these weights naturally spilt into 2 classes dependent

on the sign of x7. On restriction to the first 6 variables these representations are the

79



same, thus in particular on their restriciton to ST x Spin(10) C Eg C Sl x Eg C E7
they are the same and are isomorphic to the representation ¢ ®c A1g which generates
the tangent bundle of P?(C ® Q). This implies that the tangent and normal bundles

at this orbit are isomorphic as real vector bundles.

9.2.2 The other full rank orbit

We now move on the investigate the other possible full rank orbit this orbit exists as
all the elements of the Weyl group are contained in F7. From [Adams, 1996, Chapter
10] we know that W (Es) C Eg thus W(E;) C E7 and hence this orbit contains an
element. We will refer to this element as x € E7. This element acts on the maximal
torus as the composition of a reflection in the root %(:cl +xo+x3+24+T5 +x6—\/§x7)
and a change of signs in the 5" and 6" coordinate. This action is equivelent to a
reflection in the root %(azl + 2o+ 23+ 24 —T5 — X6 — \/5:1;7)

The orbit at z is stabilized by z(S® x Spin(12))x~*NS! x Eg which has a Lie
algebra given by ad,(su(2) ® s0(12)) "R & ¢g. As z is in the Weyl group of E7 and
su(2) @ so(12) is a subroot system, ad(su(2) @ s0(12)) is determined by the action
of x on the roots. Direct computation gives that the roots of ad(su(2) @ so(12))

are:
o +(z; —x;) for 1 <i < j <4 coming from £(z; — ),

(w14 =+ + x5 — 26 — V227) for 1 <i < 4 coming from +(z; — x5),

N[

+
+ (e 4 =z — w5416 — V/227) for 1 < i < 4 coming from % (z; — x¢),

N[

o +(x5 — x6) coming from +(z5 — x¢),

° i%(:cl+--~—:c,-—i—-~-—xj+---—:1:5—x6—\/5957) for 1 <1i < j <4 coming

from £(x; — ),
o +(x; +x5) for 1 < i <4 coming from +(z; + z5),
o +(z; + x¢) for 1 <i <4 coming from +(x; — x¢),
° :t%(xl + o9 + 23 + 14 + 5 + 26 — V/227) coming from + (x5 + ),
o +(3(21+ 22+ 23+ 24 — 25 — 26 + V227)) coming from +v/2x7.

As both ad,(su(2) ® so(12)) and R @ e¢¢ are subroot systems, to find there
intersection it surffices to take the subroot system consisting of the common roots.
This gives that the Lie algebra of the stabilizer is the subroot system generated by

the roots:
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o +(x; —x;) for 1 <i< j <4 coming from *+(x; — x;),
° :t%(xl—k"-—xi—i-- -4 15 —x6 —\/227) for 1 < i < 4 coming from +(z; —x5),

° j:%(m%—-'-—xi+---—xj+-~~—x5—x6—ﬂ:m) for 1 <i< j <4 coming

from £(z; — ),
o t(z; +x5) for 1 <i <4 coming from +(x; + x5).

The simple roots of this system can then be calculated to be the following:

1. Tyq +$5>
2. xr3 — T4,
3. o9 — I3,

4. Y@y — 2o+ 23+ 14 — 35 + 76 + V227),

(z1 — 29 — 23 — T4 + T5 — T6 — V227),

el

6. %(xl — X9 — X3 — T4 + x5 — 6 — V/217).

Giving the Dynkin diagram:

O O O O O ©)

And hence the Lie algebra of the stabilizer is isomorphic to R @ su(2) @ su(6).
This embeds su(2)®su(6) into eg as in X2(C®0) and hence this orbit is stabilized by
St x §3 x SU(6). Therefore this orbit is isomorphic to X2(C® Q). As this stabilizer
is distinct from the stabilizer at the other full rank orbit, we see that these orbits
are distinct.

We next compute the normal bundle at this orbit. We first compute its
weights, as this orbit is full rank, these are the weights of the representation x* (£ ®¢
A1p) which do not restrict to roots of S x Eg.

But as S2 x Spin(12) is a subroot system the weights of z* (£ ®c A1g) are just
the roots of E; which are not roots of (S x Spin(12))x~!. So the weights of the
normal bundle are given as ad,(su(2) ® s0(12))- NR @ eg where the perpendicular
is taken in e7.

The roots of E7 not in S' x Fg are the elements
o +u;, x5 for 1 <i<5h,

° %(:I::z:l + 19 + 23 + 24 + 25 £ (26 — V217)).
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Where elements of the second type have an even number of negative signs in
the variables x1 to xg. The weights of the normal bundle are thus the elements of
the list which are not roots of ad,(su(2) @ s0(12)), these are:

o +(x; —xg) for 1 <i <4,

o +(x5+ x¢),

1 A .
° ii(xl—|—---—a:z+--~—|—x4—x5+(x6—\/§x7)) for 1 <¢<4,
° i%(x1+xg+x3+x4+x5+(x6—\/5337)).

The highest weight of this representation is %(:cl +xot+x3+ 24+ 25+26—V/217)
we denote this by v. Let wq, - -+, wg be the fundamental weights of R @ su(2) @ su(6)
corresponding to the simple roots (where wy corresponds to the remaining principal

weight element of the maximal torus). Then we have the following:

(wy,v) = (x4 + 5,V) -1

(wa,v) = (k3 — 24,V) =0

(w3, v) = (x2 — 3,V) =0
1

(wy,v) = (2(961—3724-1’34-334—9654-376-1-\/5967)7”) =0
1

(ws, V) = <2(x1—1:2—m3—x4+x5—x6—\/53:7),1/) =0
1

(we,v) = <2(1?1—952—$3—564+1?5—956—\@M)ﬂ/) =1

Where (.) is the weight inner product and (.) is the inner product in the root
space. Thus the representation associated to the complexified normal bundle has
an irreducible component isomorphic to 2 ®c pe. But the normal bundle is the
complexification of a bundle with a complex structure and the real dimension of the
representation pe ®c g is the same as the real dimension of the normal bundle. Thus

we must have that the normal bundle is generated by the representation po ®c ug.

9.2.3 The generic orbit

This allows us to compute the generic orbit for this action as the generic orbit of
the S' x Eg action on the space is the same as the generic orbit of the action of
S1 x Eg on the sphere bundle in the normal bundle at the other full rank orbit. But
the stabilizer of the generic orbit on the sphere bundle in the normal bundle is the
same as the stabilizer of the generic orbit of the S x SU(2) x SU(6) action on 523
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via the representation po ®c pg. But this is shown in Chapter 7 to be stabilized by
the group S x S x SU(4).

Thus the generic orbit is stabilized by the group S x S!xSU(4). In particular
it is corank 2 and codimension 2. This also implies that the action is codimension
2 on the whole space. It also implies that the maximal corank for any orbit of this

action is 2.

9.3 Corank one orbits

We now consider what can be said about corank 1 orbits in H \ G/K where H and
K are full rank in G.

Definition 9.5. Let G be a semisimple compact Lie group and o a positive root
then there is a natural inclusion of SU(2) into G taking the unique positive roots of
SU(2) to a.. This induces a map S, : S3 = SU(2) — G.

We first prove a lemma relating corank one orbits to full rank orbits.

Lemma 9.6. Let G be a semisimple compact Lie group and let H, K be 2 full rank
subgroups such that there is a common maximal torus T C H, K, G. Suppose HgK
is an orbit of H\ G/K of corank 1.

Then there exists an element ¢’ € G, a positive root a of G and an s in the

mmage of S, such that:
e HgK = HJ'K.
e The orbit H(s.g")K is of full rank with mazimal torus T .

Proof. We will first show that there exists a ¢’ € G with HgK = Hg'K with the
property that ¢’T(¢") "' NT is corank 1 in T. As the orbit HgK is corank 1 there is
a maximal torus 7" in gK ¢~ ' N H with dimension one less than 7. As 7" is a non

maximal torus in H which has T" as a maximal torus there exists some (non-unique)
h € H such that h”T'h~=1 C T. Also we have that

g 'T'g Cg ' (gKg ' NnH)g
CKng 'Hyg
CK

As g7'T"g is a non-maximal torus in K it is contained inside some (non-unique)
maximal torus. As T is maximal in K this maximal torus containing ¢—'7"¢ must
be kTk™! for some k € K. We thus have that ¢~ 'T"g C kTk™!.
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Let ¢’ = hgk then we have that Hg'K = HgK and further that:

g’T(g’)*1 = hgk:Tk*lg*lh*1
= h(gkTk g Ha?
DhT'h!

But hT"h~! is corank 1 in T thus ¢'T'¢'~' N T is at most corank 1. It is not
full rank as ¢'T¢g' "' NT C ¢’ Hg'™' N K and the orbit at HgK is corank one, thus
¢'Tg'~' N'T must be corank 1 in 7.

Let t be the Lie algebra of T in g then as ¢’T'¢'~' NT is corank 1 we have that
adg (t)Ntis codimension 1 in t. From the root space decomposition of g we have that
adg (t)/(ady (t) Nt) is one dimensional and generated by an element v = ) p cqa
where I is the set of roots of G and ¢, € R.

We next prove that c, must be zero if the coroot of « is not in the orthogonal
complement of (ady(t) Nt) in t. Suppose then there exists ¢ € t and a root 3 such
that 5(t) # 0 and cg # 0. But ady(t) is a Cartan subalgebra of g thus we must
have that [t,z] = 0 in particular < [t,z], 8 >= 0 but we have that:

<[t,2], 8 >=([t, ) cal], )

acl

= 3" ([t cacl, B)

t,ael
= Z(ca<t,a>a,6>

t,a€l
=<cg<t,B>pB,8>
=cg <t,8>#0

Thus we must have that ¢, is non zero only for those roots a whose coroot is
in the orthogonal complement of (ady (t)Nt). But this is one dimensional, thus there
exists a unique positive root £ whose coroot generates the orthogonal complement
of (ady () Nt) and v €< &, ¢! > where {71 is the negative root associated to &.

Take S¢ : S3 — G we want to show that there exists an element s, in the
image of S¢ such that H(s-¢')K is full rank with maximal torus 7. As ¢'T'¢'"'NT is
corank 1 in 7 it suffces to find an s such that s¢’T¢'~'s~! = T or equivalently that
ads(adgy (t)) = t). As the coroot of £ is orthogonal to all the elements of (ady (t) Nt)
we must have that for all s in the image of S¢ the map ad; restricts to (ady (t) Nt)
as the identity.

Finally as S? acts transitively on on its Lie algebra via the representation ad
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we must also have that the image of S¢ acts transively via ad on the restriction of g
to the image of su(2) under Sg. Thus there exists an element s such that adstakes
v to the coroot of £. This s completes the proof.

O

This lemma simplifies finding corank 1 orbits to finding full rank orbits (see
Theorem 9.4) and acting via some element in the image S, for a positive root «.

As both H and K are full rank we have that the map S® — H \ G/K will
factor through S\ S3/S', we will next give a brief description of this space.

Lemma 9.7. S\ $3/S1 ~ .

Proof. We will show that the S! action on $3/S' = §? is codimension one and
hence the lemma follows by Mostert’s theorem.

But the orbit at the identity is stabilized by S' N S! = S! and is thus
isomorphic to a point. The tangent bundle of S? = Spin(3)/Spin(2) is generated
by the representation s, this restricts to give the normal bundle as the point has
trivial tangent bundle. As S' acts transitively via the representation &y the space is
codimension 1 and the result follows.

O

Let 1 : [0,1] — S =2 Sp(1) be the map such that:

Yp(t) = cos(mt) + sin(nt)j

Then 1) descends to an injective map % : [0,1] — [0,1] = St \ S3/St. We
show that this map is surjective. The orbit ¢(0) = 1 was shown to be one of the
exceptional orbits of the S! action on S2, if we show that /(1) is the other then,
by connectedness the map 1 must be surjective. But the stabilizer of the orbit at
(1) = j is a point by the anti-commutivity of j and C inside H. This shows that
1) descends to give an isomorphism of S\ $2/S! to [0, 1].

We restrict our attention to the Lie groups which have roots o # § such that
< a,B >€{—1,0,1} as these are the only cases relevant to this thesis. We note the

following general lemma from Lie theory.

Lemma 9.8. If G is a semisimple compact Lie group whose simple decomposition
only contains simple algebras of Cartan type of A, or D, for any positive n or Eg,
E; or Eg then for any positive roots o, 8 of G with @ # 8 we have that < «a, f >€

{—1,0,1}.

Proof. Directly from the types of bonds in the Dynkin diagram of these groups. O

85



Definition 9.9. We denote groups as in Lemma 9.8 as groups of type 1.

To compute the orbit type of an orbit of the form z.g where x in the image

of some S, it is necessary to compute (ad,).

Lemma 9.10. Let G be a compact semisimple Lie group of type 1 and let o, B be 2
distinct positive roots of G and x be in the image of Sa then the following hold:

1. If < a,B8>=0 then ad, 8 = 3.

2. If < a,B >= —1 then adzf €< B, £ a > where adzf = x5 if and only if
Y(z) =0 and ad,S €< B+ a > if and only if Y(Sa~tx) = 1.

3. If < a,B >= 1 then ad,f €< B,a £ B > with ad,8 = £6 if and only if
Y(z) =0 and ad, €< B — a > if and only if (Sa~tx) = 1.

Proof. In the first case consider the embedding then consider the embedding S, x S
then z is in the image of this and the pullback of the restriction of ad, at 8 to S, x Sg
is the identity proving the result.

In the second case consider the embedding ¢* of SU(3) into G induced by the
map ¢ : su(3) — g in which the roots 1 — z2 and x2 — x3 of su(3) map to a and S
respectivly. Then the map S, factors through the map S, _,, : S* — SU(3) and z is
in the image of SU(3). The action of ad, can be restricted to the image of su(3) under
¢ which contains 3. So we have that ad;(8) = ¢(ady«-1),(z2 — x3)). The action of
the image of Sy, ., by ad on su(3) restricts to the action of the representation Us
on the complex subspace spanned by the roots xo — z3 and 1 — x3 as under ¢ the
element 1 — xo maps to a + S the result follows from the description of .

The third case follows the same line as the second but the map ¢ takes «
and 8 to x1 — x9 and x1 — x3 respectivly

O

In particular this shows the following:

Lemma 9.11. Let G be a compact semisimple Lie group of type 1 and let H, K be
full rank sub Lie groups gemerated by sub root systems. Further let g € G, « is a
positive root of G and s, s' € S3 with 1)(s),1(s") € (0,1) then the orbits H(S4(s)-9)K
and H(Sy(s") - g)K are of the same type.

Proof. We first suppose that « is also root of H then the image of S, must also be
contained in H and so H(S,(s) - g)K = HgK = H(S4(s') - g)K in particular the

orbits are of the same type.
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Now suppose that a is not a root of H. By passing to Lie algebras showing
H(S4(s)-g)K and H(S,(s")-g)K are of the same orbit type is equivilent to showing
that adg, 5).¢h Nt is equal to adg, (s).gh NE. Rearraging this is equivelent to showing
that:

adg, (s\h Nadyg—1t = adg, (sHh Nady-1t

In particular it is sufficient to show that the action of adg, () and adg, (s on
b is the same. As H is generated by a sub root system it surfices to show that the
action of adg,(s) and adg,(s) on the roots of G which are also roots of H are the
same. But as « is not a root of H and G is of type 1 for any root 8 of H we must
have that < a, 8 >€ {—1,0, 1} and the result follows from Lemma 9.10. [

This allows us to prove the main theorem we will use on corank 1 orbits.

Here we restrict to the case where H, K are subroot systems.

Theorem 9.12. Let G be a compact semisimple Lie group of type 1 and let H, K
be full rank sub Lie groups generated by sub root systems. Then for any orbit HgK
of corank 1 there exists an embedding ¢ : (—e€,€) — H\ G/K with )(0) = HgK and
such that the orbit type 1 is constant.

Proof. As H, K are full rank sub Lie groups generated by sub root systems of G
they have a common maximl torus 7' By Lemma 9.6 we have the existence of a root
a of G and s in the image of S, such that HgK = Hg'K and Hs-¢'K is a full rank
orbit with maximal torus 7" in the stabilizer.

To simplifiy notation we define 7 := s~! and f := sg’ then we have that 7 is
in the image of S,, HfK is a full rank orbit and HgK = Hr - fK.

Choose some x € Sa~!(r) € S% we show that ¢(x) € (0,1). First suppose
that ¢(z) € {0,1} then x normalizes S* C S3. We can view the maximal torus T as
the direct sum of a rank 1 torus in the image of Sa and a corank 1 torus. Then r
commutes with the corank 1 torus as it is in the image of S, and as we have shown
normalizes the rank 1 torus hence r must normalize T. As T is in the stabilizer
of the orbit H fK and r stabilizes T we must also have that T is in the stabilizer
of the orbit Hr - fK but this is the same at the orbit HgK which is corank 1 a
contradiction. Hence we conclude that ¢(x) € (0,1).

As ¢ : S3 — [0, 1] is the projection map of a double mapping cylinder by the
description given in Lemma 9.7 we have ¢~1(0,1) = (0,1) x S* x S where ¢ is just
the projection to the first coordinate. Thus as ¢(x) € (0,1) there exists some € > 0
and 6 : (—e, €) — S such that #(0) = z and ¢ o is an isomorphism from (—e¢, €) to

(—e+ o(2), € + o(x)).
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We now define 9(t) = S, (0(t))f then by (0) = Su(x)f = rf and so the
orbit through (0) is the same as the orbit through g as required. Finally for any
t € (—e,€e) as ¢(6(t)),»(0(0)) € (0,1) by Lemma 9.11 the orbits HgK = HY(0)K =
HS,(0(0)) - fK and Hy(t)K = HS,(6(t)) - fK are of the same orbit type this
completes the proof.

O

Specifying down to the case we are studying in this section we have that:

Lemma 9.13. In the decomposition of E;/S3 x Spin(12) by S x Eg then if g -
(S3 x Spin(12)) is an orbit with corank 1 there exists an embedding v : (—€,€) —
E7/S3 x Spin(12) with ¢(0) = g - (8% x Spin(12)) and such that the orbit type v is

constant.

In particular this shows that the normal bundle of any corank one orbit must
be generated by a representation which splits as 1 + A for some representation A.

As the action of S! x FEg on F7/S® x Spin(12) is codimension 2 we must have
that the action on the sphere bundle in the normal bundle must be codimension
one. This implies that the action of the stabilizer on a sphere via the representation
must also be codimension one. If the orbit is corank one and has a representation of
the form 1+ A the results in Chapter 7 show that for this action to be codimension
one the action on S(A) must be transitive.

In particular the stabilizer for the generic orbit will be the same as the
stabilizer of the transitive action on S(A). As this stabilizer is known to be S! x
St x SU(4) the classification of transitive actions in Theorem 7.15 can be used to

show that the only possible stabilizers for corank one orbits must be isomorphic to:

St x St x SU(5)

up to quotient by some finite group.

9.4 Corank 2 orbits

We were unable to present the full theory of the corank 2 orbits in this thesis. But

a sketch of our approach is as follows:
1. To enumerate the possible groups which are corank 2 inside S! x Fg.
2. Using the list in (1) and Theorem 7.16 to find those groups with representations

on which they act with codimension one and such that the generic orbit of
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such an action is stabilized by the group S x S x SU(4). This is a neccesary

requirement for any such orbit.

3. The use of Theorem 8.6 in [Bredon, 1972, pg. 211] on the action of a compact
Lie group on a compact manifold with codimension 2 to prove that the orbit

space S' x Fg \ F7/S% x Spin(12) admits a description as a polytope.

4. We identify 2 of the vertices of this polytope with the full rank orbits and
the interior with the generic orbit. Lemma 9.13 shows that corank one orbits

cannot be vertices and so any remaining vertices must be of corank 2.

5. We show using a cohomological argument on dimension that H?(E;/S3 x
Spin(12)) is isomorphic to the disjoint union of the second cohomology groups
of the orbits which are both vertices on the polytope and corank 2. We use

this to show there is exactly one corank 2 vertex orbit with stabilizer S' x

S3 x Spin(7).

6. We analyse the decomposition of these actions in the sphere bundle to the
normal bundle at the vertex bundle to obtain the orbit type of the edges of
the polytope

7. We conclude with a complete description of the decomposition as the homotopy

colimit of a diagram obtained as a barycentric subdivision of the 2-simplex.

Full details are not given of this method as while I have completed many of
the computations I have not been able to describe the argument in the time I had
to finish this thesis.
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