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Abstract

In this thesis we study two of the exceptional projetive planes P2(C⊗O) and

P2(H⊗O). These are the homogenous spaces E6/S
1 ×C4 Spin(10) and E7/S

3 ×C2

Spin(12). These spaces both have natural actions by the compact Lie groups F4

and S1 ×E6 respectively. The method that we will use to study these spaces is via

the decompositions associated to these actions. In particular we will describe the

homotopy type of P2(C⊗O) in terms of the octonionic projective plane P2(O) and

spaces associated to P2(O). We use this to compute the cohomology of P2(C⊗O).

Finally, we give a description of certain orbits of the action on P2(H⊗O).
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Chapter 1

Introduction

In this thesis we study two of the exceptional projetive planes P2(C⊗O) and P2(H⊗
O). These are the homogenous spaces E6/S

1×C4 Spin(10) and E7/S
3×C2 Spin(12).

These spaces both have natural actions by the compact Lie groups F4 and S1 ×E6

respectively. The method that we will use to study these spaces is via the decompo-

sitions associated to these actions. In particular we will describe the homotopy type

of P2(C⊗O) in terms of the octonionic projective plane P2(O) and spaces associated

to P2(O). We use this to compute the cohomology of P2(C ⊗ O). Finally, we give

an description of certain orbits of the action on P2(H⊗O).

Chapter 2 covers the preliminaries which we will use later in this thesis. It

is principly based on the work of Adams [1996] and Baez [2002] and covers the

basics of division algebras and triality. These provide a basis for a definition of the

Fruedenthal magic square coming from Rosenfeld [1997].

This allows us to define the exceptional projective spaces, the study of which,

will be the focus of this thesis. We then give concrete definitions and some basic

facts for the exceptional Lie groups G2, F4, E6, E7 and E8.

In Chapters 3 and 4 we turn our attention to oriented Grassmannian spaces.

In Chapter 3 we give the statement of Mostert’s theorem and then apply this theo-

rem to obtain 2 different decompositions of oriented Grassmannian manifolds. We

then use these decompositons in Chapter 4 to compute the cohomology of the Grass-

mannian mainfold of oriented 2 planes.

These two chapters serve as the simplest non-trivial example and give an

illustration of the basic techniques which we will use later in this thesis.

Chapter 5 gives concrete descriptions of the Lie group E6 and its Lie algebra

along with certain subalgebras. This alows us to compute various decompositions

for homogenous spaces with fundamental group E6. In this chapter we focus on 2
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particular examples.

We will use one of the decompositions which has been obtained in Chapter

5 to compute the cohomology of the space E6/S
1 ×C4 Spin(10) in Chapter 6.

In Chapter 7 we study the orthogonal action of a compact Lie group on a

sphere via a representation. In particular we are interested in conditions for it to act

transitively or with codimension one. Also in this chapter we give some results on

the particular decompositions associated to some codimension one actions. These

will primarily be used in Chapter 9 to help reduce the possible Cartan types of

stabilizers of orbits.

We study, in Chapter 8, the Weyl group of E8 with reference to the Weyl

subgroup associated to Spin(16) ⊂ E8. This is performed to obtain some reults on

the double quotient of Weyl groups which we will use in the next chapter to index

certain orbits of a decomposition.

In Chapter 9 we apply the results of Chapter 8 to study the orbit structure

of an action of S1×E6 on the space E7/S
3×C2 Spin(12). We study particular orbits,

the generic orbit and make some notes on other features of the decomposition.
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Chapter 2

Preliminaries

2.1 Algebras

We first establish some basic definitions. A (real) algebra is a real vector space A,

along with a bilinear multiplication operation ◦ : A⊗A→ A.

An algebra morphism between algebras A, ◦A and B, ◦B is a linear map

T : A→ B such that the following diagram commutes:

A⊗A B ⊗B

A B

T⊗T

◦A ◦B

T

If the algebra bilinear multiplication operation ◦A is obvious from the context we

will denote a ◦A b just by ab. An algebra is unital if it has a multiplicative unit and

it is a division algebra, if every non-zero element has a multiplicative inverse.

A normed division algebra is a real division algebra A along with a norm on

the underlying vector space | · | : A→ R, such that |ab| = |a||b| for all a, b ∈ A.

It was been shown by Hurwitz [1898] that, up to isomorphism, the only

normed division algebras are the real numbers R, the complex numbers C, the

quaternions H, and the octonions (or Cayley numbers) O. For a more modern proof

see [Conway and Smith, 2003, Theorem 1, pg. 72]. In particular given a normed

division algebra A there exists a unique involution a 7→ ā such that |a| = aā.

An algebra A is:

Associative If for all a, b, c ∈ A we have a(bc) = (ab)c

Alternative If for any a, b ∈ A the algebra generated by a and b is associative.
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Power Associative If for any a ∈ A the algebra generated by a is associative.

Thus for any a ∈ A the expression an is well defined.

While the algebras R, C and H are all associative O is not. As is shown

in [Conway and Smith, 2003, Theorem 2, pg. 76] the algebra generated by any 2

octonions is one of R, C or H, thus O is alternative.

The classical Cayley-Dickson construction originally described in Dickson

[1919] is described in detail in [Conway and Smith, 2003, Chapter 6]). Applied to

H this construction produces the algebra O. Applied to O it produces an algebra

known as the sedonion algebra S. This algebra has zero divisors and so it is not a

division algebra. It is not alternative but it is power associative. In general if the

Cayley-Dickinson construction is repeatedly applied to the octonions the resulting

algebra is not a division algebra, it is not alternative but it is power associative.

The tensor product C ⊗ O also has zero divisors and so it is not division

algebra. It is of course associative. In contrast the algebras H ⊗ O and O ⊗ O are

not division algebras, and they are not alternative or even power associative.

A linear map ∂ : A → A is a derivation for an algebra A if it satisfies the

Leibnitz identity: for all a, b ∈ A

∂(ab) = ∂(a)b+ a∂(b)

The space of deriviations of A forms a Lie algebra der(A) with bracket given by

[∂a, ∂b] = ∂a ◦ ∂b − ∂b ◦ ∂a

Here ∂a, ∂b ∈ der(A) and ◦ is the composition of linear maps.

Let Aut(A) be the group of algebra automorphisms of a real n-dimensional

algebra A then the natural embedding Aut(A) ⊂ GL(Rn) gives A the structure of

a topological group. The following classical theorem is proved in [Rosenfeld, 1997,

Chapter 1]

Theorem 2.1. Let A be an algebra then Aut(A) is a Lie group with Lie algebra

der(A)

2.2 Division algebras and triality

Here we give an account of the notion of a triality which was first described in

[Adams, 1996, pg. 111]. A triality is given by three real vector spaces V1, V2, V3 and
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a linear map

t : V1 ⊗ V2 ⊗ V3 → R

such that given any (v1, v2) ∈ V1 × V2 with both v1 and v2 nonzero, there exists

v3 ∈ V3 such that t(v1, v2, v3) 6= 0, and of course the symmetric condition with

(v1, v2) replaced by (v1, v3) and also by (v2, v3).

If each Vi has an inner product then t is a normed triality if

|t(v1, v2, v3)) ≤ ‖v1‖‖v2‖‖v3‖

and for all v1, v2 6= 0 there is a v3 such that this bound is attained, and of course

the symmetric condition with v1, v2 replaced by v1, v3 and also replaced by v2, v3.

Examples of normed trialities are given by V1 = V2 = V3 = R,C or O and

t(x, y, z) = Re(xy)z.

Normed trialities are the same as normed division algebras. Given a normed

triality we set A = V1 and choose unit vectors in V2 and V3. Then using the triality

we can identify V ∗2 , and V ∗3 with A and using the inner products on V2, V3 we can

now identify V2 and V3 with A. Transposing the triality appropriately we get a

product

A⊗A→ A.

It can be checked that this makes A into a normed division algebra.

Associated to a normed triality t is a Lie group Tri(t). This is the subgroup

of O(V1)×O(V2)×O(V3) consisting of those triples (f1, f2, f3) such that

t(v1, v2, v3) = t(f1(v1), f2(v2), f3(v3))

This is a closed subgroup of O(V1)×O(V2)×O(V3). It turns out that

1 = Aut(R) ⊆ Tri(R) = {(g1, g2, g3) ∈ O(1)3 : g1g2g3 = 1}

C2 = Aut(C) ⊆ Tri(C) = {(g1, g2, g3) ∈ U(1)3 : g1g2g3 = 1} × C2

SO(3) = Aut(H) ⊆ Tri(H) = Sp(1)3/±(1, 1, 1)

G2 = Aut(O) ⊆ Tri(O) = Spin(8)
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The Lie algebras of the three triality groups are given by:

tri(R) = 0

tri(C) = u(1)2

tri(H) = sp(1)3

tri(O) = spin(8).

2.3 Triality and Freudenthal’s magic square

In Tits [1966] a method of associating to a pair of division algebras A,B a Lie algebra

LA,B is developed. This construction has been refined by Barton and Sudbery [2003]

and it is this formulation we use here.

As a vector space LA,B is given by

tri(A)⊕ tri(B)⊕ (A⊗B)3.

The formula for the bracket is given in Barton and Sudbury’s paper. We will not

repeat it here as we do not really need it. We will however make some comments

on the shape of these formulas.

• If x, y ∈ tri(A) ⊂ LA,B then [x, y] is just their Lie backet in tri(A). The

analogous statement applies if x, y ∈ tri(B) ⊂ LA,B.

• The Lie algebra tri(A) is sub-Lie algebra of HomR(A,A)3. Therefore if x ∈
tri(A) then x gives three linear maps x1, x2, x3 : A→ A and three linear maps

x1 ⊗ 1, x2 ⊗ 1, x3 ⊗ 1 : A ⊗ B → A ⊗ B. This defines a linear map which we

shall denote by x ⊗ 1 : (A ⊗ B)3 → (A ⊗ B)3. Now if y ∈ (A ⊗ B)3) then

[x, y] = x⊗ 1(y). There is a completely analogous description for the bracket

of elements in tri(B) and elements of (A⊗B)3.

• If x ∈ A and y ∈ B write u1(x ⊗ y) = [x ⊗ y, 0, 0] ∈ (A ⊗ B)3, u2(x ⊗ y) =

[0, x⊗ y, 0] ∈ (A⊗B)3, u3(x⊗ y) = [0, 0, x⊗ y] ∈ (A⊗B)3. Then

[u1(x⊗ y), u2(x′ ⊗ y′)] = u3(x′x⊗ y′y)

There are of course the obvious analogues of these formulas with (1, 2) replaced

by (1, 3) and (2, 3).
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Finally it remains to give the formula for [u1(x ⊗ y), u1(x′ ⊗ y′)], [u2(x ⊗
y), u2(x′ ⊗ y′)], and [u3(x ⊗ y), u3(x′ ⊗ y′)]. These formulas are given explicitly in

[Barton and Sudbery, 2003, Theorem 4.4]

This gives rise to the following table of LA,B:

R C H O
R so(3) su(3) sp(3) f(4)

C su(3) su(3)⊕ su(3) su(6) e(6)

H sp(3) su(6) so(12) e(7)

O f(4) e(6) e(7) e(8)

This is Freudenthal’s magic square of Lie algebras as it appears in the works

of [Freudenthal, 1964, 6.14,pg. 172] although he derives the table via a different

construction.

The construction above define real forms for LA,B. These Lie algebras are

all non-compact under this construction as they are non-compact they have a well

defined maximal compact subalgebra these are given by the folloing table:

R C H O
R so(1)⊕ so(2) su(1)⊕ su(2) sp(1)⊕ sp(2) spin(9)

C su(1)su(2) su(1)⊕ su(2)⊕ su(1)⊕ su(2) su(2)⊕ su(4) R⊕ spin(10)

H sp(1)⊕ sp(2) su(2)⊕ su(4) so(4)⊕ so(8) su(2)⊕ spin(12)

O spin(9) R⊕ spin(10) su(2)⊕ spin(12) spin(16)

Taking the simple lie groups assosicated to the compact forms of these pairs

of groups and sub groups we get the following table of symmetric space:

R C H O
R SO(3)

S(O(1)×O(2))
SU(3)

S(U(1)×U(2))
Sp3

Sp1×Sp2
F4

Spin9

C SU(3)
S(U(1)×U(2))

SU(3)
S(U(1)×U(2)) ×

SU(3)
S(U(1)×U(2))

SU(6)
S(U(2)×U(4))

E6
S1×C2

Spin10

H Sp3
Sp1×Sp2

SU(6)
S(U(2)×U(4))

SO(12)
S(O(4)×O(8))

E7
S3×C4

Spin12

O F4
Spin9

E6
S1×C2

Spin10
E7

S3×C4
Spin12

E8
Spin16

The top row is the four projective planes P2(R), P2(C), and P2(O). The last

column is often denoted by P2(O), P2(C⊗O), P2(H⊗O) and P2(O⊗O).

Leung in his PhD thesis Huang and Leung [2011] derived another table of

spaces via a similar construction these hae the same total lie algebras but different

maximal compact subspaces in particular we will use the notation X2(A ⊗ B) for
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his spaces formed this way. In this thesis we will only use 2 of them X(O) ∼=
F4/S

3×SU(4) and X(O⊗C) ∼= E6/S
3×C2 SU(6). We unfortunatly lacked the time

to give a more detailed account of the decomposition of these spaces in methods

simliar to those used on the spaces P2(A⊗ B).

2.4 Lie algebras and Lie groups

Cartan in his thesis Cartan [1894] classified the simple Lie algebras. They fall into

four infinite families the classical Lie algebras and five so-called exceptional Lie

algebras.

The four infinite classes su(n), spin(2n + 1), sp(n) and spin(2n) are the Lie

algebras of SU(n), Spin(2n+ 1), Sp(n) and Spin(2n) respectively.

The five exceptional Lie algebras are denoted by g(2), f(4), e(6), e(7) and

e(8) which are the Lie to simply connected compact Lie groups G2 , F4 , E6 , E7

and E8.

2.5 General notation

We briefly state a few general points of notation for representations of compact Lie

groups. Given a real representation ρ its complexification will be denoted by ρC.

The underlying representation of a complex representation ν will be the denoted by

νR.

Given i : G → H and a representation ρ of H the restriction of this repre-

sentation to G will be denoted by i∗ρ if the map i is obvious from the context we

may also refer to this representation as ρ|G.

A reasonable familiarity with the classical groups is assumed. We will largely

follow the notation in Adams [1996] for the representations of the classical groups

in particular we define:

n The trivial representation of dimension n.

ξ The fundamental complex representation of S1.

ξk The complex representation
⊗k

C ξ of S1.

λi The vector representation of Spin(i) .

∆i The real spin representation of Spin(i) if i is not divisible by 4.

∆±4j The two real spin representations of Spin(4j) .
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µi The complex vector representation of SU(i).

Hi The complex vector representation of Sp(i).

g The real adjoint representation of G for any Lie group. G.

2.6 The exceptional Lie groups

Adams gives constructions of the exceptional Lie groups in [Adams, 1996, Chapter

8]. We summarise Adams’s approach to these constructions and the key facts we

will need. First Adams constructs the smallest and the biggest of these exceptional

Lie groups, G2 and E8. He then constructs F4, E6 and E7 as subgroups of E8.

2.6.1 G2

The spin representation of Spin(7) is an 8-dimensional real representation. This

gives a transitive action of Spin(7) on S7 and the stabilizer of a point in S7 is a

closed 14-dimensional subgroup of Spin(7). Adams shows that this is indeed G2 in

[Adams, 1996, Theorem 5.5,pg. 32].

2.6.2 E8

Adams gives an explicit construction, in terms of spinors, of the exceptional Lie

algebra e(8) of dimension 248. He then defines G to be the subgroup of GL(R248)

consisting of the automorphism of this Lie algebra preserving the Killing form, that

is the invariant inner product on the Lie algebra E8. He goes on to show that this

Lie group G is compact and simply connected. It follows that G must be isomorphic

to the simply connected compact Lie group E8 occurring in the classification of Lie

groups.

Adams also shows that spin(16) is a Lie subalgebra of e(8). He then goes on

to deduce that there is a homomorphism of Lie groups

π : Spin(16)→ E8

with the following properties.

• The derivative of π at the identity is the inclusion of the Lie algebra spin(16)

in e(8).

• The kernel of π is the cyclic group of order 2 generated by the central element

of Spin(16) which acts by +1 in ∆+ and −1 in ∆−. This element does of

9



course depend on the choice of ∆+ and ∆− as does the embedding of spin(16)

in e(8).

Furthermore we have the following isomorphism of representations:

π∗(e(8)) = spin(16)⊕∆+
16.

2.6.3 E7

Starting from the homomorphism π : Spin(16) → E8 described in the previous

section we can form the diagram

Spin(12)× Spin(4) Spin(16) E8

(Spin(12)× S3)× SU(2)

π

Where S3 and SU(2) are embedded into Spin(4) as ker(∆+
4 ) and ker(∆−4 )

respectively.

Theorem 2.2. E7 is the stabilizer in E8 of the image of SU(2) in E8.

From this description of E7 it is easy to deduce the following facts.

• There is a homomorphism

h : S3 × Spin(12)→ E7

with kernel C4. In the above diagram we see that the copy of S3 × Spin(12)

centralises the copy of S3 in S3×S3×Spin(12). This defines a homomorphism

h : S3 × Spin(12) → E7. A routine argument using the diagram shows that

the kernel of this homomorphism is the subgroup of S3 × Spin(12) generated

by (i, ω12) and evidently this is a cyclic group of order 4. Here ω12 is the

central element of Spin(12) which acts as +1 in ∆+ and −1 in ∆−.

• The representation h∗e(7) is uniquely determined by:

h∗(e(7)C) = spin(3)C ⊕ spin(12)C ⊕ (∆3)C ⊗C (∆+
12)C.

• E7 also has an irreducible complex representation of complex dimension 56,

which we will denote by S+
56, such that:

h∗(S+
56) = (∆3)C ⊗ (λ12)C ⊕ (∆+

12)C

10



2.6.4 E6

This time we write down the natural analogue of the previous diagram we get this

by replacing Spin(4)×Spin(12) by Spin(6)×Spin(10). This is the following diagram.

Spin(10)× Spin(6) Spin(16) E8

Spin(10)× S1 × SU(3)

π

Where the map from S1 × SU(3) into Spin(6) is given by following the diagram:

(z, g) S1 × SU(3) Spin(6)

(z2, g) S1 × SU(3) U(3) SO(6)

Where the maps here are the natural ones.

Theorem 2.3. E6 is the stabilizer in E8 of the image of SU(3) in E8.

Once more we can easily deduce the following facts from this description of

E6.

• There is a homomorphism h : S1 × Spin(10) → E6 with kernel C2. This

follows because S1 × Spin(10) centralises SU(3) in S1 × SU(3) × Spin(10).

The kernel of this homomorphism is the cyclic group of order 2 generated by

(−1, ω10) ∈ S1×Spin(10) where ω10 is the generator of the centre of Spin(10)

which acts as (+1) on ∆+
10 and (-1) on ∆−10.

• The representation h∗(e6) is determined by:

h∗(e(6)C) = 1 + spin10C + ξ3 ⊗C ∆+
10 + ξ−3 ⊗C ∆−10

• E6 also has two 27 dimensional complex irreducible representations which we

denote by S±27, such that:

h∗(S+
27) = ξ−1 ⊗C ∆+

10 + ξ2 ⊗C λ10 + ξ−4

h∗(S−27) = ξ ⊗C ∆−10 + ξ−2 ⊗C λ10 + ξ4.
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2.6.5 F4

Now we replace Spin(4) × Spin(12) in the diagram of E7 by Spin(7) × Spin(9).

This gives the following diagram.

G2 Spin(7) Spin(7)× Spin(9) Spin(16) E8

Spin(9)

π

All the homomorphisms in this diagram are the natural ones.

Theorem 2.4. F4 is the stabilizer in E8 of the image of G2 in E8.

Once more we get a list of elementary deductions from this definition of F4.

• There is an injective homomorphism

h : Spin(9)→ F4.

• f(4) pulls back under h as:

h∗(f(4)) = spin(9) + ∆9.

• F4 has a 26 dimensional irreducible real representation which we will denote

by S26 such that

h∗(S26) = ∆9 + λ9 + 1.

2.6.6 Rosenfeld’s projective planes

Definition 2.5. A projective element in an algebra A is an element p ∈ A such that

p ◦ p = p

Given p ∈ A, right multiplication by p defines a linear map Rp : A→ A. If p

is projective then Rp is a linear map representing a projection onto a subspace. We

define the rank of an element p to be the rank of Rp so a rank n projective element

has Rp the projection onto an n-dimensional subspace.

Given an associative algebra A the algebra Jn(A) is a Jordan algebra given

by 3 × 3-matrices over A with the commutator as a product. Taking the subspace
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of rank 1 projective elements in Jn(A) defines a space which is shown in [Rosenfeld,

1997, pg. 346] is equal to the classical projective spaces Pn(A) where

Pn(A) =
Nn(A)

A∗

where A∗ are the units of A and Nn is the subset for non-singular elements of An+1

Nn(A) = {(x1, . . . , xn+1) | qx1 = . . . = qxn+1 = 0 ⇐⇒ q = 0}

and the group A∗ acts on Nn(A) from the natural action of A on An+1.

In particular for associative normed division algebras A and B we have that

P2(A⊗ B) is the symmetric space in the A, B position of Freudenthal’s table.

Further it is shown in [Rosenfeld, 1997, 7.2, pg 332] that the space of rank

1 projective elements in the exceptional Jordan algebras J3(O) and J3(C ⊗ O) are

the symmetric spaces in positions O and C⊗O of the table. Alas as J3(H⊗O) and

J3(O⊗O) are not Jordon algebras we cannot continue in this manner to define all

the symmetric spaces in Fredenthal’s table.

In [Rosenfeld, 1997, Chapter 7] Rosenfeld attempts to relate the geometry of

elements of Freudenthal’s table P2(A⊗ B) to the algebras A⊗ B.

Throughout the rest of this thesis we will use the definition of these spaces as

homogeneous spaces P2(A ⊗ O) when we refer to the exceptional projective spaces

(sometimes referred to as the Rosenfeld projective spaces).
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Chapter 3

Mostert’s theorem and

decompositions of oriented

Grassmannians

Much of this thesis is based on decomposing a compact smooth manifold M by

using the orbit structure of an action of a compact Lie group G on M . The simplest

example is given by a theorem of Mostert in [Mostert, 1957a, Theorem 4]. The pur-

pose of this section is to describe Mostert’s theorem and work out in detail how this

can be used to give a decomposition of the manifold Gr+
2 (Rm), the Grassmannian of

oriented two planes in Rm. There are two main reasons for doing this in some detail.

The first is that it provides very nice illustrative examples of the decompositions of

homogeneous spaces we can obtain by using Mostert’s theorem and its generalisa-

tions. The second is that we need some of these ideas in subsequent sections. We

note that an Errata, Mostert [1957b], was published for this paper but it has no

effect on the result we use.

3.1 Mostert’s theorem

Let G be a compact Lie group and let M be a closed compact manifold equipped

with a smooth action of G. Then the the action of G has cohomogeneity 1 if the

generic orbit has codimension 1. Then a general theorem in Mostert [1957a] tells us

that one of the following two possibilities must hold.

1. The orbit space is a circle and there is a subgroup H ⊂ G such that M =

G/H × S1 as a G space.
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2. The orbit space is a closed interval. In this case there are three closed sub-

groups A,B,C of G which fit into the following diagram of inclusions:

C −−−−→ Ay y
B −−−−→ G

with the following properties.

(a) The generic orbits, corresponding to the points in the interior of the orbit

space, are diffeomorphic as G spaces to G/C.

(b) There are two exceptional orbits, corresponding to the end points of the

orbit space, and as G spaces these are G/A and G/B.

(c) The projections

πA : G/A→ G/C, πB : G/B → G/C

are both sphere bundles.

(d) The manifold M is homeomorphic to the double mapping cylinder of the

maps

G/A
πA←−−−− G/C

πB−−−−→ G/B

Recall that the double mapping cylinder of the maps

Y
f←−−−− X

g−−−−→ Z

is the space

Y ∪f X × I ∪g Z

where (x, 0) ∈ X × I is identified with f(x) ∈ Y and (x, 1) ∈ X × I is identified

with g(x) ∈ Z. Another way to describe the mapping cylinder is as the homotopy

colimit of the diagram

Y
f←−−−− X

g−−−−→ Z.

There is an alternative way to describe this decomposition: there is a Morse–Bott

function on M with two critical values.
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3.2 Preliminaries on Grassmannians

The oriented Grassmannian Gr+
k (Rn) is the homogenous space SO(n)/(SO(k) ×

SO(n − k)). In terms of spin groups this is the same as Spin(n)/(Spin(k) ×C2

Spin(n−k) where C2 is generated by (−1,−1). It is the universal 2-fold cover of the

unoriented Grassmannian Grk(Rn) = O(n)/(O(k)×O(n−k) and many of the results

concerning the unoriented Grassmannians carry over to the oriented Grassmannians

with slight modifications.

Associated to Gr+
k (Rn) are 2 canonical oriented bundles which in this section

will be referred to as Ek,n and Fk,n which are to the bundles associated to the usual

vector representations Vk and Vn−k of SO(k) and SO(n− k). As the representation

Vk ⊕ Vn−k is the pullback of the vector representation Vn of SO(n) the bundle

Ek,n ⊕ Fk,n is trival.

The manifold Gr+
k (Rn) is k(n−k) dimensional and tangent bundle of Gr+

k (Rn)

is isomorphic to the oriented bundle Hom(Ek,n, Fk,n) ∼= Ek,n ⊗ Fk,n by the same

argument as in the unoriented case.

Let gn ∈ SO(n) be the element defined by

gn · (x1, x2, · · · , xn) = (−1)n(xn, · · · , x2, x1)

Conjugation by gn interchanges the subgroups SO(k)× SO(n− k) and SO(n− k)×
SO(k) and it defines isomorphism of the spaces Gr+

k (Rn) and Gr+
n−k(R

n) under

which Ek,n (resp Fk,n) pulls back to Fn−k,n (resp En−k,n).

Finally in the case where k = 1 we have Gr+
1 (Rn) = SO(n)/SO(n−1) = Sn−1.

For m < n, the inclusion of SO(m)× SO(n−m) into SO(n) gives a natural

action of SO(m) × SO(n −m) on the space Gr+
k (Rn). In particular if m = 1 this

gives an action of SO(n− 1) on Gr+
k (Rn) and in the case where k = 2 we obtain an

action of SO(2)× SO(n− 2) = S1 × SO(n− 2) on Gr+
k (Rn).

Let J be the matrix in SO(2n) such that J2i,2j = 1, J2i−1,2j−1 = −1 and

J2i−1,2j = J2i,2j−1 = 0 for all i, j ∈ {1, · · ·n} The unitary group can be embedded

as a subspace of SO(2n) by the subset:

{A ∈ SO(2n) | AJ = JA}

This induces the inclusion of the U(n) in SO(2n) as the subspace

{(αi,j) ∈ SO(2n) | α2i,2j = α2i+1,2j+1 and α2i,2j+1 = −α2i+1,2j}.

This gives an action of U(n) of the space Gr+
k (R2n). In the next sections we will
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look at the decompositions associated to these actions.

3.3 The decomposition of Gr+
k (Rn) given by the action

of SO(n− 1)

Consider the action of SO(n − 1) on Gr+
k (Rn) assuming n > k ≥ 2. There are two

special cases.

The first special case to consider is the orbit of a point in Gr+
k (Rn−1). In

other words this is the orbit of an oriented k plane in Rn−1 × 0 ⊂ Rn. Since

SO(n − 1) acts transitively on Gr+
k (Rn−1) this orbit is the same no matter which

point we choose so we may as well choose the orbit of the k plane Rk × 0 ⊂ Rn. As

a point in SO(n)/(SO(k) × SO(n − k)) this is given by the point [1] where, in the

standard notation for x ∈ SO(n), [x] is the coset

[x] = x · (SO(k)× SO(n− k)) ∈ SO(n)/(SO(k)× SO(n− k))

for the coset of x ∈ SO(n). Under the action of SO(n− 1) the stabiliser of [1] is

SO(n− 1) ∩ SO(k)× SO(n− k) = SO(k − 1)× SO(n− k)

So this orbit is isomorphic to SO(n− 1)/SO(k − 1)× SO(n− k) ∼= Gr+
k−1(Rn−1).

The second special case is orbit of a point in Gr+
n−k−1(Rn−1). This corre-

sponds to a k plane in Rn whose orthogonal complement is an n−k plane in Rn−1×0.

Once more the orbit is independent of the choice of the point so we choose the k

plane corresponding to the coset [gn]. This time the stabiliser of [gn] point under

the SO(n− 1) action is

SO(n− k − 1)× SO(k) ∩ SO(n− 1).

Finally we are left with the generic case where neither the k-plane nor its

complement are contained in Rn−1 × 0. In this case the stabiliser of the action of

SO(n− 1) on such a point is

SO(k − 1)× SO(n− k − 1).

This orbit is

SO(n− 1)/(SO(k − 1)× SO(n− k − 1))
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which is diffeomorphic to both

S(Fk−1,n−1), S(Fn−k−1,n−1)

The fact that these sphere bundles are diffeomorphic comes from the diffeomor-

phism of Grk−1(Rn−1) to Grn−k−1(Rn−1) induced by conjugation by the element

gn−1 ∈ SO(n − 1) and the isomorphism of Fk−1,n−1 with Fn−k−1,n−1 covering this

diffeomorphism.

As this orbit is codimension 1 we can use Mostert’s theorem to conclude that:

Theorem 3.1. For n > k ≥ 2 the space Gr+
k (Rn) is homeomorphic to the double

mapping cylinder of the following diagram:

Gr+
k−1(Rn−1)←− S(Fn−1,k−1) ∼=

gn−1

S(Fn−k−1,n−1) −→ Gr+
n−k−1(Rn−1).

The special case of this theorem where k = 2 gives the following corollary.

To state the result let V2(Rn) be the Stiefel manifold of orthonormal 2 frames in

Rn. This Stiefel manifold is the homogeneous space

V2(Rn) = SO(n)/SO(n− 2).

The circle SO(2) = S1 acts on freely on the Stiefel manifold with quotient Gr+
2 (Rn).

Let p : V2(Rn) → Gr+
2 (Rn) be the projection in this principal S1 bundle. Another

description of this Stiefel manifold is as the sphere bundle in the tangent bundle of

Sn−1. Let q : V2(Rn)→ Sn−1 be the projection in this sphere bundle.

Corollary 3.2. The space Gr+
2 (Rn+1) is homeomorphic to the double mapping

cylinder of the following diagram:

Gr+
2 (Rn)

p←−−−− SO(n)
SO(n−2)

q−−−−→ Sn−1.

3.4 The decomposition of Gr+
2 (R2n) given by the action

of U(n)

Choose a complex structure on R2n, that is an element J ∈ SO(2n) such that

J2 = −1. Then we identify U(n) with the subgroup of SO(n) consisting of those

matrices which commute with J .

We first make some notes in the unoriented case consider an unoriented 2

plane P such that JP = P . Such a P is a complex line in R2n with complex

18



structure determined by J . Furthermore U(n) acts transitively on the set of such

P and so the orbit of P does not depend on the choice of P . Furthermore this orbit

is just a copy of CPn−1 the space of complex lines in R2n with complex structure

determined by J .

Now consider the preimage of CPn−1 in Gr+
2 (R2n) under the map which

forgets orientation. Then this preimage must be a 2-fold cover of CPn−1 and it

follows, as CPn−1 is simply connected, that the preimage is isomorphic to 2 disjoint

copies of CPn−1. Further as this map is equivarient with respect to the action of

U(n) we must have 2 disjoint orbits each isomorphic to CPn−1. We will refer to

these as CPn−1 and (CPn−1)∗ where the orbit CPn−1 contains 1 ∈ SO(2n).

Restricting to CPn−1 the tangent bundle of Gr+
2 (R2n) splits as L⊗C (Un−1 +

Un−1). Where L is the canonical complex line bundle on CPn−1 and Un−1 is it’s

complement (so L+Un−1 = nC). Then as the tangent bundle to CPn−1 is isomorpic

to L⊗CUn−1 the normal bundle to the embedding must be isomorphic to L⊗CUn−1.

We will ref to this bundle as νn−1 := L⊗C Un−1.

Finally we come to the generic orbit where neither the oriented 2 plane nor

its orthogonal complement is complex. In this case the orbit is isomorphic to

U(n)/(U(1)× U(n− 2))

This generic orbit has codimension 1 so once more we can apply Mostert’s theorem

to arrive at the following conclusion. To state it carefully we need to be clear

about the difference between CPn and (CPn)∗. These manifolds are diffeomorphic

– complex conjugation defines a diffeomorphism

c : CPn−1 → (CPn−1)∗.

It follows that c∗(ν((CPn−1)∗) is isomorphic to ν(CPn−1) as real vector bundles.

Both bundles have complex structures but they are not isomorphic as complex

bundles – one is the conjugate of the other. So there is a diffeomorphism S(TCPn)→
S((TCPn)∗) which we continue to denote by c and refer to as the diffeomorphism

defined by complex conjugation.

Theorem 3.3. For n > 2, Gr+
2 (R2n) is isomorphic to the double mapping cylinder

of the following diagram.

CPn−1 ←− S(ν(CPn−1)) ∼=
c
S(ν(CPn−1)∗) −→ CPn−1
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Chapter 4

Cohomology of Oriented

Grassmannians

We now use the decompositions in the previous section to compute the cohomology

rings of some oriented Grassmannians. There are two reasons for doing this firstly

we need these results as essential input for later calculations so it is worth giving

a detailed account of them. The second reason is that they provide a very good

example of how it is possible to use the decompositions of the previous sections to

do cohomological calculations. Some of the results in this section can be found in

part in [Zhou and Shi, 2008, Theorem 5.5] and [Lai, 1974, Theorem 2] in the case of

[Lai, 1974, Theorem 2] the results in this section were derived independently. These

results can also be derived from the integral K-theorey calculations given in Bott

[1958] again our calculations were derived independently of this.

4.1 Cohomology of Gr+
2 (R2n)

For the rest of this section we will write Gr2n for the Grassmannian Gr+
2 (R2n). Then

theorem 3.3 shows that Gr2n is homeomorphic to the double mapping cylinder of

the diagram

CPn−1 p←−−−− S(E)
q−−−−→ CPn−1.

Here E is a complex bundle over CPn−1 whose underlying real bundle is the normal

bundle of the embedding i : CPn−1 → Gr2n and p is the projection of the sphere

bundle of E. The map q is the composite

S(E)→ S(Ē)→ CPn−1
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where the first map is the diffeomorphism induced by complex conjugation and the

second is the projection of the sphere bundle of Ē.

It follows that there are two embeddings i, j : CPn−1 → Gr2n. The normal

bundle to i is the bundle E and the normal bundle to j is the complex conjugate

bundle Ē. So we get cofibrations

CPn−1 i−−−−→ Gr2n
φ−−−−→ Th(Ē)

CPn−1 −−−−→
j

Gr2n −−−−→
θ

Th(E)

These two cofibrations fit into the following commutative diagram

S(E) −−−−→
p

CPn−1 −−−−→ Th(E)

q

y i

y y
CPn−1 −−−−→

j
Gr2n −−−−→

φ
Th(E)y θ

y y
Th(Ē) −−−−→ Th(Ē) −−−−→ ∗

The maps p, q in this diagram are projections of sphere bundles and so their cofibres

are homotopy equivalent to the corresponding Thom spaces.

Now let P be the tautological oriented two plane bundle over Gr2n. Define

x = e(P ) ∈ H2(Gr2n)

to be the Euler class of P . Now define

y = θ∗(µE) ∈ H2n−2(Gr2n)

where θ : CPn−1 → Th(E) is the map occurring in the above diagram and µE is the

Thom class of E.

Theorem 4.1. If n is odd then integral cohomology ring of Gr2n is given by:

H∗(Gr2n) = Z[x, y]/〈xn = 2xy, y2 = 0〉.

Otherwise if n is even then integral cohomology ring of Gr2n is given by:

H∗(Gr2n) = Z[x, y]/〈xn = 2xy, y2 = xn−1y〉.
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We will use the cofibration

CPn−1 i−−−−→ Gr2n
φ−−−−→ Th(Ē).

First note that both H∗(CPn−1) and H∗(Th(Ē)) are concentrated in even dimen-

sions. So it follows that the connecting homomorphism in the exact sequence of

this cofibration is zero and we can read off the cohomology groups of Gr2n and give

canonical generators for them. To state the answer write µĒ ∈ H2n−2(Th(Ē)) for

the Thom class. Let u ∈ H2(CPn−1) be the generator i∗(x) and let µ̄uk be the

elements of H2(n−1+k)(Th(T̄CPn−1)) defined by the Thom isomorphism.

Lemma 4.2. The integral cohomology groups of Gr are given by

H2j(Gr2n) =


Z if 0 ≤ 2j ≤ 2n− 4 or 2n ≤ 2j ≤ 4n− 4

Z⊕ Z 2j = 2n− 2

0 otherwise

The following elements give a basis for H∗(Gr2n)

{xj , θ∗(µ̄uj) : 0 ≤ j ≤ n− 1}.

The proof of this proposition is a straightforward argument with the exact

sequence of the above cofibration and the structure of the ring H∗(CPn−1).

Now we compute products. First we deal with the easiest products the

first lemma which follows from the standard multiplicative properties of the Thom

isomorphism.

Lemma 4.3.

θ∗(ujµ̄) = xjy

Lemma 4.4. If n is even then y2 = xn−1y otherwise y2 = 0.

Proof. As y is the image of the Thom class th(ν) we have that:

y2 = th(ν)2 = e(ν)th(ν) = e(ν)y

So it will suffice to show that e(ν) = 0 if n is odd and e(ν) = xn−1 if n is even. By

elementary algebra this is the same as showing that 2e(ν)− xn−1 = (−1)n−1xn−1.

From the definition of ν we have that:

L⊗C L+ ν = nL
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Where L is the canonical complex line bundle on CPn−1 Thus we have that:

c(ν) = c(L)nc(L⊗C CL)−1

= (1 + x)n(1 + 2x)−1

=
n−1∑
i=0

n−i−1∑
j=0

(
n

i

)
(−2)jxi+j

And so e(ν) = cn−1(ν) = (
∑n−1

i=0

(
n
i

)
(−2)n−1−i)xn−1 let the coefficient here be α we

have that:

2α− 1 = 2(

n−1∑
i=0

(
n

i

)
(−2)n−1−i)− 1

= −
n−1∑
i=0

(
n

i

)
(−2)n−i −

(
n

n

)
(−2)0

= −
n∑
i=0

(
n

i

)
(−2)n−i

= −(1− 2)n = (−1)n−1.

And so 2e(ν)− xn−1 = (2α− 1)xn−1 = (−1)n−1xn−1 and the result follows.

Now we come to the final lemma required for the proof of Theorem 4.1.

Lemma 4.5.

nx2n−2 = 2nxn−1y

To do this we need the following formula for the Euler class of Gr2n coming

from the general theory of characteristic classes.

Lemma 4.6.

e(TGr2n) = nxn−2

Assuming Lemma 4.6 for the moment we prove the formula in Lemma 4.5

and complete the proof of Theorem 4.1.

Proof. By Lemma 4.2 the Euler characteristic of Gr2n is 2n and we know that xn−1y

is a generator of H4n−4(Gr2n) it follows that

e(TGr2n) = ±2nxn−1y ∈ H4n−4(Gr2n)
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Using the above lemma it follows that

nx2n−2 = ±2nxn−1y.

Now we can replace y by −y if necessary to ensure the sign is + in the previous

equation, and then use the fact that H4n−4(Gr2n) is torsion free to conclude that

x2n−2 = 2xn−1y.

Combining this formula with Lemmas 4.2 - 4.4 completes the proof of Theorem

4.1.

We now complete this subsection by giving the proof of Lemma 4.6.

Proof. Let P be the canonical oriented 2 plane bundle over Gr2n and let Q be the

complementary oriented 2n− 2 plane bundle. Then

P ⊕Q = R2n

and

T (Gr2n) = Hom(P,Q) = P ∗ ⊗R Q ∼= P ⊗R Q.

Now P has a complex structure and so we choose a complex line bundle E such that

ER = P . Then P ⊗R Q has a complex structure, indeed

(E ⊗C (Q⊗R C))R = P ⊗R Q.

To ease the notation write

F = (Q⊗R C)

and then we see that

c2n−2(E ⊗C F ) = e(P ⊗R Q).

In addition by complexifying the equation P ⊕ Q = R2n and using the fact that

P ⊗R C = E ⊕ Ē we see that

E ⊕ Ē ⊕ F = C2n

So we look for the universal formula for c2n−2(E ⊗C F ) where E is a complex line

bundle and F is a complex bundle satisfying the above equation.
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The first step is to tensor the relation of bundles with E to get

E ⊗C E ⊕ 1C ⊕ E ⊗C F = E2n.

Now write

u = c1(E)

and then we get the equation

(1 + 2u)c(E ⊗C F ) = (1 + u)2n, c(E ⊗C F ) = (1 + u)2n(1 + 2u)−1

It follows that

c2n−2(E ⊗C F ) =
2n−2∑
j=0

(
2n

j

)
uj(−2u)2n−2−j

=

2n−2∑
j=0

(
2n

j

)
(−2)2n−2−j

u2n−2.

By the binomial theorem we have

1 = (1 + (−2))2n =

2n∑
j=0

(
2n

j

)
(−2)2n−j .

Dividing by through by 4 this gives

2n∑
j=0

(
2n

j

)
(−2)2n−2−j =

1

4
.

From this it easily follows that

2n−2∑
j=0

(
2n

j

)
(−2)2n−2−j =

2n∑
j=0

(
2n

j

)
(−2)2n−2−j −

(
2n

2n− 1

)
(−2)−1 −

(
2n

2n

)
(−2)−2

=
1

4
− (2n)

1

−2
− 1

(−2)2

= n

It follows that

c2n−2(E ⊗C F ) = nun−1.
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However

u = c1(E) = e(P ) = x, c2n−2(E ⊗C F ) = e(TGr2n)

and this completes the proof of Lemma 4.6

4.2 Cohomology of Gr2n+1 = Gr+
2 (R2n+1)

We will use the decomposition of Gr2n+1 given by the action of by SO(2n) to compute

the cohomology ring of Gr2n+1. This time the decomposition 3.1 expresses Gr2n+1

as the double mapping cylinder

Gr2n
p←−−−− SO(2n)

SO(2n−2)

q−−−−→ S2n−1.

The middle space in this diagram is the Stiefel manifold, V2n = V2(R2n), of or-

thonormal two frames in R2n. The circle SO(2) acts on freely on the Stiefel manifold

with quotient Gr2n . The map p is the projection in this SO(2) bundle. Another

description of this Stiefel manifold is as the sphere bundle in the tangent bundle of

S2n−1 and the map q is the projection in this bundle.

As in the case of Gr2n this leads to the following diagram of cofibrations.

V2n −−−−→
p

Gr2n −−−−→ Th(P )

q

y i

y y
S2n−1 j−−−−→ Gr2n+1 −−−−→

φ
Th(P )y θ

y y
Th(T (S2n−1)) −−−−→ Th(T (S2n−1)) −−−−→ ∗

The maps p, q in this diagram are the projections described in the previous para-

graph. The maps i and j are the embeddings of the “ends” of the mapping cylinder;

θ and φ are the Pontryagin-Thom maps defined by these embeddings; and P is the

tautological oriented 2 plane bundle over Gr2n, which is naturally isomorphic to the

normal bundle of the embedding j.

As in the previous case we set

x = e(P ) ∈ H2(Gr2n+1).

Let µP be the Thom class in H2(Th(P )). Define

z = φ∗(y · µP ) ∈ H2n(Gr2n+1)
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where y ∈ H2n−2(Gr2n) is the class defined in the previous section and y · µP is the

class defined using the Thom isomorphism.

Theorem 4.7. The integral cohomology ring of Gr2n+1 is given by

H∗(Gr) = Z[x, z]/〈xn = 2z, z2 = 0〉.

Following the pattern of proof in the previous section we first establish the

following lemma.

Lemma 4.8. The integral cohomology groups of Gr2n+1 are given by

H2j(Gr2n+1) =

 Z if 0 ≤ 2j ≤ 4n− 2

0 otherwise.

The following elements give a basis for H∗(Gr2n)

{xj , θ∗(xjz) : 0 ≤ j ≤ n− 1}.

Proof. The integral cohomology of the Stiefel manifold V2n+1 is given by

H0(V2n+1) = Z H2n(V2n+1) = Z/2 H4n−1(V2n+1) = Z

and all other cohomology groups are zero. Since Hr(V2n+1) = 0 for r ≤ 2n− 1 the

Gysin sequence of the circle bundle V2n+1 → G2n+1 shows that

Hr−2(G2n+1) = Hr(G2n+1) if r ≤ 2n− 1

Using the fact that H0(G2n+1) = Z and H1(G2n+1) = 0 we see that if r ≤ 2n − 1

then the cohomology group Hr(G2n+1) is Z if r is even and 0 if r is odd. Now G2n+1

is a 4n−2 dimensional closed oriented manifold and so, using Poincare if follows that

the integral cohomology groups are as stated in the lemma. The Gysin sequence

also shows that the generators of the groups H2j(Gr2n+1) for 2j ≤ 2n − 2 are xj

where x is the Euler class of P . Poincare duality then tells us that the generators

of the groups H2j(Gr2n+1) for 2j ≥ 2n are x2j−2nz.

To complete the proof of Theorem 4.7 we simply need to prove the following

lemma.

Lemma 4.9. In H2n(Gr2n+1)

xn = 2z.
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Proof. Let µP ∈ H2(Th(P )) be the Thom class. Then in H2n(Th(P )) we have from

the previous section xn−1µP = 2yµP where x ∈ H2(Gr2n) and y ∈ H2n−2(Gr2n) are

the generators of H∗(Gr2n). Now φ : Gr2n+1 → Th(P ) is the Pontryagin Thom map

associated to the embedding i : Gr2n → Gr2n+1 with normal bundle P . Therefore

it follows that

φ∗(i∗(a)µP ) = aφ∗(µP ), a ∈ H∗(Gr2n+1).

From this formula it follows that φ∗(xn−1µP ) = xn. We cannot use this formula

to compute φ∗(yµP ) because y is not on the image of i∗. However, by definition

z = φ∗(yµP ) and we get the relation xn = 2z in H2n(Gr2n+1) by applying φ∗ to the

relation xn−1µP = 2yµP in H2n(Th(P )).
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Chapter 5

Decomposition of E6 spaces

In this section we give details for the decomposition of the spaces P2(C ⊗ O) and

X2(C⊗O) as double mapping cylinders. These spaces were described in Chapter 2

as:

P2(C⊗O) =
E6

S1 ×C4 Spin(10)

X2(C⊗O) =
E6

S3 ×C2 SU(6)

In the case of the decomposition of P2(C⊗O) this is principally an elaboration

of the results of Berndt and Atiyah [2003] in particular Chapter 6 where we give

further details as to the maps and spaces used and fill out details of the proofs.

5.1 Lie Groups

We first give explicit forms for some of the Lie groups we will use and maps on them.

Following [Adams, 1996, pg. 57] we define the complex Lie algebra e6 to be

the rank 6 complex Lie algebra with simple root vectors given by:

1. 1
2(x1 − x2 − x3 − x4 + x5 −

√
3x6)

2. x4 − x5

3. x3 − x4

4. x2 − x3

5. x4 + x5

6. 1
2(x1 − x2 − x3 − x4 − x5 +

√
3x6)
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With Dynkin diagram:

1 2 3

4

5 6

On e6 we define 2 algebra involutions. The first we denote by φ is defined to

to be the outer automorphism which acts on the simple root vectors by fixing roots

3 and 4 and exchanging root 1 with 6 and 2 with 5 respectively. This involution

generates the group of outer automorphisms of e6. The fixed point set of this

involution is isomorphic to f4 and thus gives an inclusion f4 ↪→ e6 known as the

folding inclusion.

4

3

1
2(2 + 5)

1
2(1 + 6)

f4

4

3

2

1

5

6

e6

A second involution ψ is given by taking the inner isomorphism with an

element in the Weyl group of e6 whose action on the Cartan subalgebra is given by:

1
2 −1 −1 −1 −1

√
3

2

0 1
2

1
2

1
2

1
2 0

0 1
2

1
2 −1

2 −1
2 0

0 1
2 −1

2
1
2 −1

2 0

0 1
2 −1

2
1
2 −1

2 0
1

2
√

3
1√
3

1√
3

1√
3

1√
3
−3

2


To show how this acts on e6 we consider the extended Dynkin diagram of e6

which is the Dynkin diagram with the highest weight root, x1 +x2, appended. Then

ψ permutes the roots in this diagram as follows:
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α

4

3

2

1

5

6

e6

Where we label the highest weight root by α. This determines the action of ψ.

Further as φ fixed the highest weight root, the pair ψ, φ generate the full symmetry

group S3 of the extended Dynkin diagram of e6. Further on restriction to the sub-

algebra spin8 generated by roots 2,3,4,5 these generate the outer automorphism

group S3 of this space.

We can take the sub-root system generated by the simple roots (2,5) and the

highest weight root α to get a subalgebra of e6 which is isomorphic to C ⊕ so(10).

Finally we can take the sub-root system generated by the simple roots 1,2,3,5,6 and

the highest weight root α to get a subalgebra isomorphic to su(2)⊕ su(6).

α

4

3

2

1

5

6

e6

α

4

3

2 5

R⊕ spin(10)

α

3

2

1

5

6

su(2)⊕ su(6)

Let E6 be the compact Lie group defined in Adams [1996] then its complex-

ified Lie algebra is isomorphic to e6. The involutions φ and ψ induce involutions φ∗

and ψ∗ on E6 whose derivatives are φ and ψ. The fixed point set of the involution φ∗

is a Lie subgroup with Lie algebra isomorphic to f4 this induces a mapping F4 → E6

covering the inclusion f4 ↪→ e6 in [Adams, 1996, Chapter 9] Adams shows this map

to be an inclusion.

Taking the Lie subgroups of E6 associated to the Lie subalgebras R⊕spin(10)

and su(2) ⊕ su(6) in e6 induces maps S1 × Spin(10) → E6 and S3 × SU(6) → E6.

In [Adams, 1996, pg. 51] it is shown that the map S1 × Spin(10) → E6 has kernel
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isomorphic to C4 generated by the element (i, ω10) and thus we have an inclusion

S1×C4 Spin(10) ⊂ E6. In Ishitoya [1977] it is shown that the map S3×SU(6)→ E6

has kernel Z2 giving an inclusion S3×C2 SU(6)→ E6. This will be the inclusions of

these groups for the remainder of this chapter unless specified otherwise, the space

P2(C⊗O) will be defined as E6
S1×C4

Spin(10)
and the space X2(C⊗O) will be defined

as E6
S3×C2

SU(6)
with these groups and inclusions.

5.2 Decomposition of P2(C⊗O) by F4

We will decompose P2(C⊗O) using the action F4 as follows. First we will use the

default embedding to determine an orbit of F4. Then we use this to compute the

generic orbit and show that the action of F4 is cohomogeneity one. As P2(C⊗O) is

simply connected by the corollary to Mostert’s theorem, it suffices to then find the

other exceptional orbit and its normal bundle.

Consider the orbit of F4 through the point 1·(S1×C4Spin(10)) ∈ E6
S1×C4

Spin(10)
.

This orbit is stabilised by the group F4∩S1×C4 Spin(10) ⊂ E6 which is determined

by the Lie algebra f4 ∩R⊕ so(10) ⊂ e6. This algebra is the subalgebra of R⊕ so(10)

fixed by the restriction of the involution ψ. The restriction of ψ to so(10) is the stan-

dard outer involution on so(2n) which fixes so(2n−1). So f4∩R⊕so(10) ∼= so(9) ⊂ f4

as follows:

e6R⊕ spin(10)f4spin(9)

⊆⊆

This so(9) ⊂ f4 induces a map Spin(9)→ F4 which is isomorphic to the Lie

algebra map induced from inclusion of Spin(9) in F4 used in Chapter 2. We therefore

conclude that the orbit at 1 · (S1×C4 Spin(10)) ∈ E6
S1×C4

Spin(10)
is isomorphic to the

octonionic projective plane F4
Spin(9) .

The complex representation e6 splits over S1 ×C4 Spin(10) as R + so(10) +

ξ−1 ⊗ ∆+
10 + ξ ⊗ ∆−10 thus the tangent bundle of P2(C ⊗ O) is generated by the

real representation which complexifies to ξ−1 ⊗∆+
10 + ξ ⊗∆−10. This restricts to the
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orbit F4
Spin(9)

∼= OP 2 as the bundle generated by ∆9 + ∆9. As the tangent bundle

of this orbit is generated by ∆9 the normal bundle must also be generated by the

representation ∆9.

Spin(9) acts transitively on S15 via the representation ∆9 stabilized by

Spin(7) ↪→ Spin(9). We denote this embedding by j+, it is not isomorphic to the em-

bedding of Spin(7) in Spin(9) which overlays the natural embedding SO(7) ↪→ SO(9)

we denote this embedding by jv.

As Spin(9) acts transitively on a sphere in the normal bundle, F4 acts tran-

sitively on the sphere bundle in the normal bundle. This gives rise to a codimension

one generic orbit isomorphic to F4
j+(Spin(7))

In particular this shows the action has cohomogeneity one and we can use

the corollary to Mostert’s theorem.

It remains to find the other exceptional orbit. Consider the involution φ, it

is an inner automorphism and so there exists some gφ ∈ E6 which generates it. In

fact as φ preserves the maximal torus gφ represents some element in the Weyl group

of E6. We consider the orbit through gφ · (S1 ×C4 Spin(10)), the stabilizer of the

action at this point has a Lie algebra isomorphic to

f4 ∩ adgφ(R⊕ so(10)) ∼= f4 ∩ φ(R⊕ so(10))

As R ⊕ so(10) is given by a sub root system φ(R ⊕ so(10)) is the sub root

system generated by the action of φ on the generating roots of R⊕ so(10). Diagra-

matically this can be shown as follows

e6 φ(R⊕ spin(10))R⊕ spin(10)

⊆ ⊇

The intersection f4 ∩ φ(R⊕ so(10)) is then the fixed points of φ(R⊕ so(10))

under the involution ψ This is isomorphic to R⊕ so(7) where so(7) ↪→ f4 factors as

so(7) ↪→
jv

so(7) ↪→ f4
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e6R⊕ spin(10)f4spin(9)spin(7)

⊆⊆
jv

The map S1 × Spin(7)→ Spin(9) corresponding to jv overlays the inclusion

SO(2)×SO(7)→ SO(9) and thus has kernel isomorphic to Z2 generated by (−1,−1)

where −1 ∈ Spin(7) generates the kernel of the map Spin(7)→ SO(7).

Thus passing to a quotient we obtain an embedding S1 ×C2 Spin(7) ↪→ F4

as the stabilizer is not isomorphic to the orbit at 1 · (S1 ×C4 Spin(10)) and is

not isomorphic to the generic orbit, by Mostert’s theorem, this must be the other

exceptional orbit.

The normal bundle to the inclusion is isomorphic to the 2 plane real bundle

generated from the representation ε of S1 ×C2 j
v(Spin(7)) where ε pulls back to

non-trivial 2-plane bundle on S1 ⊂ S1×C2 j
v(Spin(7)). The stabilizer of this action

is jv(Spin(7)).

Taken together with previous results this implies the following

Theorem 5.1. The space P2(C⊗O) can be decomposed as the homotopy colimit of

the following diagram

F4

Spin(9)
←− F4

j+(Spin(7))

σ∼=
F4

jv(Spin(7))
−→ F4

S1 ×C2 j
v(Spin(7))

5.3 Decomposition of X2(C⊗O) by F4

We will decompose X2(C ⊗ O) using the action F4 using the same procedure as in

the case of P2(C⊗O)

Consider the orbit of F4 through the point 1·S3×C2SU(6) ∈ E6
S3×C2

SU(6)
. This

orbit is stabilised by the group F4∩S3×C2SU(6) ⊂ E6 which is determined by the Lie

algebra f4∩ su(2)⊕ su(6) ⊂ e6. This algebra is the subalgebra of su(2)⊕ su(6) which

is fixed by the restriction of the involution ψ. The restriction of ψ to su(2)⊕su(6) is

the identity on su2 and is the standard outer involution on su(6) which fixes sp(3).
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So f4 ∩ su(2) ⊕ su(6) ∼= su(2) ⊕ sp(3) ⊂ f4 as follows where this is the space X2(O)

discussed in Chapter 2.

e6su(2)⊕ su(6)f4su(2)⊕ sp(3)

⊆⊆

We now proceed to calculate the normal bundle to the embedding. The roots

of e6 are as follows:

±(xi ± xj) for 1 ≤ i < j ≤ 5

±1

2
(x1 ± x2 ± x3 ± x4 ± x5 ±

√
3x6)

Where in the number of negative signs inside the parentheses in the second form is

even. The roots of e6 which restrict to the subroot system su(2)⊕ su(6) are:

±(x1 ± x2)

±(xi ± xj) for 3 ≤ i < j ≤ 5

±1

2
(x1 − x2 ± x3 ± x4 ± x5 ±

√
3x6)

Where in the number of negative signs inside the parentheses in the third form is

even. The simple roots of this set are thus just the generating roots:

1. x1 + x2

2. 1
2(x1 − x2 − x3 − x4 − x5 +

√
3x6)

3. x4 − x5

4. x3 − x4

5. x4 + x5

6. 1
2(x1 − x2 − x3 − x4 − x5 +

√
3x6)
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The remaining roots of e6 which do not restrict to su(2)⊕ su(6) are:

±(x1 ± xi) for 3 ≤ i ≤ 5

±1

2
(x1 + x2 ± x3 ± x4 ± x5 ±

√
3x6) where the number of negative signs is even.

Of which the highest weight root is x1 + x3. The remaining roots form a

representation of su(2)⊕su(6) with dominant weight given by x1+x3. Let w1, · · · , w6

be the fundamental weights of su(2)⊕ su(6) corresponding to the simple roots (1-6)

above then we have the following

〈w1, x1 + x3〉 = 〈x1 + x2, x1 + x3〉 = 1

〈w2, x1 + x3〉 = 〈1
2

(x1 − x2 − x3 − x4 − x5 +
√

3x6), x1 + x3〉 = 0

〈w3, x1 + x3〉 = 〈x4 − x5, x1 + x3〉 = 0

〈w4, x1 + x3〉 = 〈x3 − x4, x1 + x3〉 = 1

〈w5, x1 + x3〉 = 〈x4 + x5, x1 + x3〉 = 0

〈w6, x1 + x3〉 = 〈1
2

(x1 − x2 − x3 − x4 + x5 −
√

3x6), x1 + x3〉 = 0

The representation formed by the remaining roots thus has an irreducible

component isomorphic to the representation with weight vector (1, 0, 0, 1, 0, 0) from

[Bröcker and Dieck, 1985, 5.1, pg. 265] we conclude that this is the representation

U2 ⊗
∧3 U6 where

∧3 U6 is the standard representation of 3rd exterior power of the

representation U6. As both these representations are of complex dimension 40 they

are thus isomorphic.

1 0 0 1 0 0

Thus pulling back the representation e6 from E6 to S3×SU(6) the represen-

tation splits as su(2)+su(6)+U2⊗
∧3 U6. And thus the tangent bundle of X2(C⊗O)

is generated by the representation U2 ⊗
∧3 U6.

From [Bröcker and Dieck, 1985, 5.3, pg. 269] we know that under the map

Sp(n) → SU(2n) the representation U2n pulls back to Hn thus the representation

U2 ⊗
∧3 U6 pulls back to S3 × Sp(3) as H1 ⊗H

∧3H3. By restriction of roots we

know that the tangent bundle to F4/S
3 × Sp(3) is generated by the irreducible

representation H1 ⊗H ∆ where ∆ is such that ∆ + H3
∼=
∧3H3. Thus the normal

bundle is generated by the representation H1 ⊗H H3 of S3 × Sp(3).
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S3×Sp(3) acts transitively of the sphere S11 via the representation H1⊗HH3

and is stablized by S3 × Sp(2). Thus F4 acts transitively on the sphere bundle in

the normal bundle stabalized by S3 × Sp(2) ⊂ S3 × Sp(3) ⊂ F4. Hence the generic

orbit is F4
S3×Sp(2)

as this is codimension 1 and we can apply the corollary to Mostert’s

theorem and it remains to find the other exceptional orbit.

We consider the orbit through gφ · (S3 ×C2 SU(6)) where gφ is as defined in

the previous subsection. The stabilizer of the action at this point has a Lie algebra

isomorphic to

f4 ∩ adgφ(su(2)⊕ su(6)) ∼= f4 ∩ φ(su(2)⊕ su(6))

As su(2) ⊕ su(6) is given by a sub root system φ(su(2) ⊕ su(6)) is the sub

root system generated by the action of φ on the generating roots of su(2) ⊕ su(6).

Diagramatically this can be shown as follows:

e6 φ(su(2)⊕ su(6))su(2)⊕ su(6)

⊆ ⊇

The intersection f4∩φ(su(2)⊕su(6)) is then the fixed points of φ(su(2)⊕su(6))

under the involution ψ, this is isomorphic to su(2)⊕ su(4) where:

su(2)⊕ su(4) ↪→ su(2)⊕ su(2)⊕ su(4) ↪→ su(2)⊕ su(6)

Where the first map is the diagonal embedding of su(2) ↪→ su(2) ⊕ su(2),

x 7→ (x, x) and the second is the natural map from su(n)⊕ su(m) ↪→ su(n+m).
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e6su(2)⊕ su(4)f4su(2)⊕ su(4)

⊆⊆

Let SU(2)×SU(4)→ F4 be the map of Lie groups associated to the inclusion

su(2)⊕su(4) ⊆ f4 as the centre of S3×SU(4) is trivial this map is an inclusion and ths

the orbit at gφ · (S3×C2 SU(6)) is isomorphic to F4
S3×SU(4)

. As this is not isomorphic

to either the orbit at 1 · (S3×C2 SU(6)) or the generic orbit for dimensional reasons

this must be the other exceptional orbit. Finally we compute the normal bundle

to the embedding. As the orbit F4
S3×SU(4)

is of codimension 6 the representation

generating the normal bundle must be of dimension 6 and S3 × SU(4) by Theorem

7.15 this must be a representation such that either S3 or SU(4) act transitively on

the restriction. By Theorem 7.15 there is only 1 such representation, which is the

representation V6 of Spin(6) ∼= SU(4), and thus the normal bundle is generated by

this representation.

Taken together with previous results this implies the following

Theorem 5.2. The space X2(C⊗O) can be decomposied as the homotopy colimit

of the following diagram

F4

S3 × Sp(3)
←− F4

S3 × Sp(2)

σ∼=
F4

S3 × Spin(5)
−→ F4

S3 × Spin(6)

Where we note that, like in the case of P2(C ⊗ O), one exceptional orbit of

the decomposition of X2(C⊗O) is X2(O).
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Chapter 6

Cohomology of E6/S
1 ×C4

Spin(10)

We will compute the cohomology of the space E6/S
1×C2 Spin(10) using the decom-

position in Chapter 5.

This will recover the following result due in [Toda and Watanabe, 1974,

Corollary C]

Theorem 6.1.

H∗(E6/S
1 ×C4 Spin(10)) ∼=

Z[s, w]

〈3w2s = s9, w3 = 9ws8 − 15w2s4〉

For 2 generators s and w with |s|=2 and |w| = 8

We first obtain the cohomology of the 2 exceptional orbits of OP 2 and

F4/S
1 ×C2 Spin(7) and then use the diagram in 5.1 to compute the cohomology

of the total space E6/S1 ×C4 Spin(10).

6.1 Cohomology of OP 2

We first recall the following result due to Borel in [Borel and Hirzebruch, 1958,

Theorem 19.4 ,pg. 535].

Theorem 6.2. The cohomology of OP 2 is isomorphic to Z[x8]/ < x3
8 > for a

generator x8 in degree 8. The Pontryagin class of the tangent bundle is given by

1 + 6x8 + 39x2
8

As by [Adams, 1996, pg. 51] the representation f4 restricts to Spin(9) as

spin(9) + δ9 the tangent bundle to OP 2 is generated by the representation ∆9. Let

V9 be the vector bundle on OP 2 generated by the representation V9 then by [Adams,

1996, Corollary 8.1, pg. 52] the 26-dimensional representation ∆26 of F4 restricts to
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Spin(9) as 1 + δ9 + ∆9. This implies that the sum of a trivial bundle, V9 and the

tangent bundle is trivial.

Lemma 6.3. p(V9) = 1− 6x8 − 3x2
8

Proof. As the cohomology of OP 2 is only non zero in the degrees 0, 8, 16 we have

that p(V9) = 1 +λx8 +µx2
8 for some λ, µ ∈ Z. As 1 +V9 +T (OP 2) is trivial we have

that

p(1)p(V9)p(TOP 2) = p(27)

and thus

(1 + λx8 + µx2
8)(1 + 6x8 + 39x2

8) = 1

and therefore λx8 + 6x8 = 0 which implies that λ = −6 and 39x2
8 − 36x2

8 +

µx2
8 = 0 this gives that µ = −3.

6.2 Cohomology of F4/S
1 ×C2

Spin(7)

We compute the cohomology of the other exceptional orbit F4/S
1 ×C2 Spin(7). By

composing with the map ρ from Theorem 5.1 we have an inclusion of F4/S
1 ×C2

Spin(7) ↪→ F4/Spin(9) and this gives a fibration:

Gr+
2 (R9) ↪→

i
F4/S

1 ×C2 Spin(7)→
π

OP 2

We have the cohomology of OP 2 in the previous subsection and the coho-

mology of Gr+
2 (R9) is given by Theorem 4.7 as Z[e, f ]/ < f2, 2e4 − f > where e is

the euler class of the oriental 2-plane bundle E2,9 and f is of degree 8.

Lemma 6.4. Let t := e(V2), where V2 is the oriented 2-plane bundle generated by the

representation ξ of S1 ⊂ S1×C2Spin(7) and y8 is the image of x8 ∈ H∗(OP 2). Then

there exists b ∈ H8(F4/S
1×C2 Spin(7)) such that t, b and y8 generate H∗(F4/S

1×C2

Spin(7)) with the following relations:

1. 2b− t4 = λy8 for some λ ∈ {0, 1}.

2. b2 = αy8b+ βy2
8 for some α, β ∈ Z.

3. y3
8 = 0.
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Proof. As both H∗(OP 2) and H∗(Gr+
2 (R9)) are concentrated in an even dimension

the Lerry-Serre spectral sequence collapses at the first page see McCleary [2001].

Under the map Gr2(R9) ∼= Spin(9)/S1×C2 Spin(7) ↪→ F4/S
1×C2 Spin(7) the

bundle V2 pulls back to the bundle E2,9 in particular this implies that t = e(V2)

pulls back to e = e(E2,9) in H∗(Gr+
2 (R9)).

Choose b′ ∈ H8(F4/S
1×C2Spin(7)) such that b′ pulls back to f inH8(Gr+

2 (R9))

such a b exists as by Leray-Hirsch this map is a surjection, as the spectral sequence

collapses at the first page.

By the Leray-Hirsch Theorem H∗(F4/S
1 ×C2 Spin(7)) is a free H∗(OP 2) -

module generated by 1, t, t2, t3, b′, b′t ,b′t3. The element 2b′ − t4 pulls back to

2f − e4 = 0 in H∗(Gr+
2 (R9)) and thus 2b′ − t4 = ay8 for some a ∈ Z.

Now there exists µ ∈ Z, λ ∈ {0, 1} such that a = 2µ+ λ. Define b = b′ − µy8

then we have that 2b− t4 = 2b′ − t4 − 2µy8 = λy8.

Also as the image of y8 is 0 in H8(G+
2 (R9)) we have that H∗(F4/S

1 ×C2

Spin(7)) is a free module over H∗(OP 2) generated by 1, t, t2, t3, b, bt, bt2, bt3. In par-

ticular as y8 generates H∗(OP 2), the classes t, b, y8 generate H∗(F4/S
1×C2Spin(7)).

We know 2b − t4 = λy8 for λ ∈ {0, 1} and that y3
8 = 0 as y8 is the image

of x8, it only remains to compute b2 as this maps to 0 in Gr+
2 (R9) it must equal

αy8b+ βy2
8 for some α, β ∈ Z.

Thus it remains to compute the values of λ, α and β

Lemma 6.5.

H8(F4/Spin(7)) = Z

Proof. As F4/j
v(Spin(7)) ∼=ρ F4/j

+(Spin(7)) we have that H8(F4/j
+(Spin(7))) ∼= Z

if and only if H8(F4/j
v(Spin(7))) = Z but we have a 15-sphere bundle S15 →

F 4/j∗(Spin(7))→ F 4/Spin(9) ∼= OP 2 and thus H8(F4/j
+(Spin(7))) ∼= H8(OP 2) ∼=

Z.

Lemma 6.6. There does not exist z ∈ H8(F4/S
1 ×C2 Spin(7)) such that 2z = t4.

Proof. Consider the circle bundle

S1 ↪→ F4/Spin(7)→ F4/S
1 ×C2 Spin(7)

Then by the Wang exact sequence we have the following:
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H6

(
F4

S1 ×C2 Spin(7)

)
−→
×e(V2)

H8

(
F4

S1 ×C2 Spin(7)

)
→ H8

(
F4

Spin(7)

)
→ H7

(
F4

S1 ×C2 Spin(7)

)
AsH7(F4/S

1×C2Spin(7)) = 0 we have thatH8(F4/Spin(7)) ∼= H8(F4/S
1×C2

Spin(7))/ImH6(F4/S
1×C2 Spin(7)). But H6 ∼= Z and is generated by t3 as the eu-

lar class of the bundle V2 is t the image of H6(F4/S
1×C2 Spin(7)) in H8(F4/S

1×C2

Spin(7)) is generated by t4 if there was a z ∈ H8(F4/S
1 ×C2 Spin(7)) with 2z = t4

as H8(F4/S
1 ×C2 Spin(7)) is torsion free z ∈ ImH6(F4/S

1 ×C2 Spin(7)) and thus

H8(F4/Spin(7)) would have a torsion component but H8(F4/Spin(7)) is torsion free

by Lemma 6.4

Corollary 6.7. In Lemma 6.4 λ = 1.

Proof. Suppose instead λ = 0 then 2b = t4 which contradicts Lemma 6.6.

Lemma 6.8.

t8 − 6t4y8 = 3y2
8

Proof. Under the map S1 ×C2 Spin(7) → Spin(9) the representation δ9 pulls back

to δ2 + δ7. Let V2, V7 also represent the bundles on F4/S
1×C2 Spin(7) generated by

these representations and recall that V9 also represents the 9-dimensional bundle on

OP 2 generated by the representation δ9 of Spin(9).

As V2 is 2-dimensional it only has a 4-dimensional Pontryagin class which

is the square of its euler class thus p(V2) = 1 − t2. As V7 is 7-dimensional it has

3-Pointragin classes in dimension 4,8 and 12.

Finally as p(V9) = 1− 6x8 − 3x2
8 we have that

1− 6y8 − 3y2
8 = π∗(1− 6x8 − 3x2

8)

= π∗(p(V9))

= p(π∗(V9))

= p(V2 + V9)

= p(V2)p(V7)

= (1− t2)(1 + p1(V7) + p2(V7) + p3(V7))
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This gives the following set of equations

p1(V7)− t2 = 0

p2(V7)− p1(V7)t2 = −6y8

p3(V7)− p2(V7)t2 = 0

−t2p3(V7) = −3y2
8

We conclude that following relations

p1(V7) = t2

p2(V7) = −6y8 + t4

p3(V7) = t6 − 6y8t
2

and thus we get that t8 − 6y8t
4 = 3y2

8.

Lemma 6.9. 3b2 = t8

Proof. Substituting 2b− t4 = y8 into t8 − 6t4y8 = 3y2
8 we obtain t8 + 12t4b− bt8 =

12b2 − 12t4b = 3t8 which simplifies to 4t8 = 12b2 as H∗(F4/S
1 ×C2 Spin(7)) is

torsion-free this implies that 3b2 = t8.

Lemma 6.10. b2 = y2
8 + 2t4y8

Proof. As y8 = 2b − t4 we have y2
8 = 4b2 − 4bt4 + t8 thus we have that 4b2 =

y2
8 + 4bt4 − t8 combining with the equation 3b2 = t8 we obtain

b2 = y2
8 + 4bt4 − 2t8

= y2
8 + 2t4(2b− t4)

= y2
8 + 2t4y8

This gives us the following theorem:

Theorem 6.11.

H∗(F4/S
1 ×C2 Spin(7)) =

Z[t, b]

< 3b2 = t8, b3 + 15b2t4 − 9bt8 >
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Where t = e(V2) and |b| = 8.

Proof. We have from the Lemmas 6.4, 6.7 and 6.10 that

H∗(F4/S
1 ×C2 Spin(7)) ∼=

Z[t, b, y8]

< y3
8, 2b− t4 = y8, b2 = y2

8 − 2t4y8 >

As y8 = 2b− t4 we can eliminate it from the ring giving the result as

Z[t, b]

< 3b2 = t8, 8b3 − 12b2t4 + 6bt8 − t12 >

We can substitute the relation b3 + 15b2t4− 9bt8 for 8b3− 12b2t4 + 6bt8− t12 in this

ring as we have that:

b3 + 15b2t4 − 9bt8 = (3b− t4)[3b2 − t8]− [8b3 − 12b2t4 + 6bt8 − t12]

.

We now move on to the computation of the cohomology of E6/S
1 ×C4

Spin(10).

6.3 Cohomology of E6/S
1 ×C4

Spin(10)

As in the case of oriented Grassmanians in Chapter 4 and the decomposition in the

previous chapter we have the following diagram of spaces:

F4
Spin(7) −−−−→ OP 2 −−−−→ Th(T (OP 2))y i1

y y
F4

S1×C2
Spin(7)

−−−−→
i2

E6
S1×C4

Spin(10)
−−−−→

j2
Th(T (OP 2))y j1

y y
Th(V2) −−−−→ Th(V2) −−−−→ ∗

Which induces the following commuting diagram in cohomology
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H∗
(

F4
Spin(7)

)
←−−−− H∗(OP 2) ←−−−− H∗(Th(T (OP 2)))x i∗1

x x
H∗
(

F4
S1×C2

Spin(7)

)
←−−−−

i∗2
H∗
(

E6
S1×C4

Spin(10)

)
←−−−−
j∗2

H∗(Th(T (OP 2)))x j∗1

x x
H∗(Th(V2)) ←−−−− H∗(Th(V2)) ←−−−− 0

Lemma 6.12. The map

i∗2 : Hn(E6/S
1 ×C4 Spin(10))→ Hn(F4/S

1 ×C2 Spin(7))

is an isomorphism for 0 < n < 15

Proof. The pair of maps

F4/S
1 ×C2 Spin(7) −→

i2
E6/S1 ×C4 Spin(10) −→

j2
Th(T (OP 2))

forms a cofibration sequence. Thus the long exact cofibration sequence can

be formed, but if 0 < n ≤ 15 we have that Hn(Th(OP 2)) = 0 as it is the Thom

space of a 16-dimensional vector bundle and hence in these dimensions i∗2 is an

isomorphism.

Definition 6.13. Let s = i∗−1
2 (t) and w = i∗−1

2 (b) as |t| = 2 and |b| = 8 we note

that by lemma 6.12 both of these inverses exist.

Lemma 6.14. Up to dimension 15 we have that H∗(E6/S
1 ×C4 Spin(10)) is iso-

morphic to Z[s, w].

Proof. As i∗2 is an isomorphism up to dimension 15 H∗(E6/S
1 ×C4 Spin(10)) is

isomorphic to H∗(F 4/S1 ×C2 Spin(7)) up to this dimension but H∗(F 4/S1 ×C2

Spin(7)) has no relations of dimension less than 15 thus up to dimension 15 we have

that H∗(E6/S
1 ×C4 Spin(10)) = (i∗2)−1Z[t, b] = Z[s, w].

Definition 6.15. Let U1 and U2 be the Thom classes of the bundles V2 and T (OP 2)

in H2(Th(V2)) and H16(Th(OP 2)).
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Lemma 6.16. The relations j∗1(U1) = s and j∗1(bU1) = sw both hold.

Proof. The composition j1 ◦ i2 is equal to the inclusion in the Thom exact sequence

thus (i∗2 ◦ j∗1)(U1) = e(V2) = t. But (i∗2)−1(t) = s and thus j∗1(U1) must also equal s.

Next (i∗2 ◦ j∗1)(bU1) = bt but i∗2 is an isomorphism in this degree and so

i∗2(sw) = bt giving sw = j∗1(bU1).

Lemma 6.17. Given k ≥ 0 the following equations hold:

j∗1(tkU1) = sk+1

j∗1(tkbU1) = sk+1w

j∗1(tk+1b2U1) = sk+2w2

j∗1(tk+2b3U1) = sk+3w3

Proof. These follow by applying j∗1 to the following relations:

tkU1 = Uk+1
1

tkbU1 = Uk1 (bU1)

tk+1b2U1 = Uk1 (bU1)2

tk+2b3U1 = Uk1 (bU1)3

Lemma 6.18. The relation i∗1(w) = ±x8 holds.

Proof. From the cofibration sequence

F4/Spin(9) −→
i1

E6/S
1 ×C4 Spin(10) −→

j1
Th(V2)

We obtain the following exact sequence

0 = H7(OP 2) −−−−→ H8(Th(V2)) −−−−→ H8( E6
S1×C4

Spin(10)
)y

H8(OP 2) −−−−→ H9(Th(V2)) = 0

From Lemma 6.14 we have that H8(E6/S
1 ×C4 Spin(10)) is generated by

s4, w. From the Thom isomorphism H8(Th(V2)) is generated by a class t3U1 such
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that (i∗2◦j∗2)(t3U1) = t4 ∈ H8(F4/S
1×C2 Spin(7)) but by lemma 6.14 (i∗2)−1(t4) = s4

and thus by exactness i∗1(s4) = 0 and so i∗1(w) = ±x8 as i∗1 surjects.

Lemma 6.19. H16(E6/S
1 ×C4 Spin(10)) ∼= Z ⊕ Z ⊕ Z and is generated by s8, s4w

and w2

Proof. Again we can use the i1 cofibration sequence to obtain:

0→ H16(Th(V2))→
j∗1
H16(E6/S1 ×C4 Spin(10))→

i∗1
H16(OP 2)→ 0

Thus as H16(Th(V2)) ∼= Z ⊕ Z and H16(F 4/Spin(9)) ∼= Z we have that

H16(E6/S1×C4 Spin(10)) ∼= Z⊕Z⊕Z. As H16(Th(V2)) is generated by the 2 classes

t7U1 and t3bU1 we have that H16(E6/S
1 ×C4 Spin(10)) is generated by j∗1(t7U1),

j∗1(t3bU1) and a class z such that i∗1(z) generates H16(OP 2).

By Lemma 6.17 we have that j∗1(t7U1) = s8 and j∗1(t3bU1) = s4w. Finally

as by Lemma 6.18 i∗1(w) = ±x8 it follows that i∗1(w2) = x2
8 and thus we can take

z = w2.

Lemma 6.20. H32( E6
S1×c4Spin(10)

) ∼= Z generated by some orientation class τ =

4s4w3 − 4s8w2 + s12w.

Proof. From the spectral sequence of the Gr+
2 (R9) fibration over OP 2 we have that

H30( F4
S1×C2

Spin(7)
) ∼= Z and is generated by y2

8bt
3. Eliminating y8 this gives the top

class of F4
S1×c2Spin(7)

as 4t3b3− 4t7b2 + c11b. Thus H32(Th(V2)) ∼= Z and is generated

by the class 4t3B3U1 − 4t7b2U1 + t11bU1.

AsH∗(OP 2) = 0 in dimension greater than 16 we have that j∗1 : H32(Th(V2))→
H32(E6/S

1×C4 Spin(10)) is an isomorphism and by Lemma 6.17 the result follows.

Theorem 6.21. H32(E6/S
1 ×C4 Spin(10)) is generated by s and w.

Proof. We have shown that this holds in dimensions less than or equal to the middle

dimension. Further as H∗(OP 2) = 0 in dimension greater than 16 we have that

j∗1 : Hk(Th(V2)) → Hk(E6/S
1 ×C4 Spin(10)) is an isomorphism for k > 16. As

Hk(Th(V2)) is additivly generated by classes of the form tpbqU1 the result follows

by Lemma 6.17.
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It now remains to find relations between these classes.

Lemma 6.22. s9 = 3sw2

Proof. As t8 = 3b2 in Lemma 6.9 we have that t8U1 = 3b2U1 and hence by Lemma

6.17 s9 = 3w2s.

We next attempt to find a relation in dimension 24 to do this we first make

some notes about the 24-dimensional cohomology groups of some related spaces.

Lemma 6.23. H24(F4/S
1 ×C2 Spin(7)) is spanned by the classes t12, bt8, b2t4 and

b3 with relations:

• 3b3 − bt8

• 3b2t4 − t12

• b3 + 15b2t4 − 9bt8

It is isomorphic to Z with a generator given by the element 19b2t4 − 11bt8.

H24(Th(V2)) is spanned by the classes t11U1, bt
7U1 and b2t3U1 with the single

relation 3b2t3U1− t11U1. It is isomorphic to Z⊕Z with a basis given by the elements

bt7U1 and b2t3U1.

Proof. This follows directly from the definition of the cohomology ring in terms of

generators and relations given in Theorem 6.11 specialised to dimension 22 and 24

along with the Thom isomorphism.

Lemma 6.24. Under the map i∗2 ◦ j∗1 : H24(Th(V2))→ H24(F4/S
1×C2 Spin(7)) we

have that:

• i∗2 ◦ j∗1(bt7U1) = −45[19b2t4 − 11bt8]

• i∗2 ◦ j∗1(b2t3U1) = −26[19b2t4 − 11bt8]

Thus 26bt7U1 − 45b2t3U1 generates the kernel of this map.

Proof.

i∗2 ◦ j∗1(bt7U1) = bt8

= −19[3b3 − b2t4]

+ 57[b3 + 15b2t4 − 9bt8]

− 45[19b2t4 − 11bt8]

= −45[19b2t4 − 11bt8]
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i∗2 ◦ j∗1(b2t3U1) = b2t4

= −11[3b3 − b2t4]

+ 33[b3 + 15b2t4 − 9bt8]

− 26[19b2t4 − 11bt8]

= −26[19b2t4 − 11bt8]

As both 3b3 − b2t4 and b3 + 15b2t4 − 9bt8 are 0 in H24(F4/S
1 ×C2 Spin(7))

by Lemma 6.23

Lemma 6.25. H24(Th(TOP2)) is isomorphic to Z generated by x8U2 and j∗2(x8U2) =

3w3 − ws8.

Proof. The structure of H24(Th(TOP2)) follows directly from the cohomology of

OP2 given in Theorem 6.2 and the Thom isomorphism. We next show that j∗2(U2) =

3w2 − s8 the result will then follow from the Thom isomorphism.

First we note that by exactness j∗2(U2) is in the kernel of i∗2. In dimension 16

this kernel in isomorphic to Z and generated by 3w2 − s8 which is the pull back of

the 16-dimensional relation in the presentation of H∗(F4/S
1 ×C2 Spin(7)) given in

Theorem 6.11. We thus conclude that j∗2(U2) = n[3w2− s8] for some n ∈ Z. Finally

from the Thom isomorphism we have that

3nx8 = i∗1(n[3w2 − s8]) = i∗1 ◦ j∗2(U2) = e(TOP2) = 3x8

And hence n = 1.

Lemma 6.26. w3 = 9ws8 − 15w2s4.

Proof. First as i∗2(w3 + 15w2s4 − 9ws8) = b3 + 15bt4 − 9bt8 which is a relation in

H24(F4/S
1×C2 Spin(7)) by Lemma 6.23 we have that w3 + 15w2s4− 9ws8 ∈ Keri∗2

hence by exactness w3 + 15w2s4 − 9ws8 ∈ Imj∗2 . From Lemma 6.25 this image

is generated by 3w3 − ws8 and so we have that for some n ∈ Z we have that

w3 + 15w2s4 − 9ws8 = n[3w3 − ws8].

It remains to show that n = 0 which will complete the proof. As j∗1 is an

isomorphism in dimension 24, as H24(OP2) = 0, the kernel of i∗2 is the image of the
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kernel of i∗2 ◦ j∗1 . Thus the we have by Lemma 6.24 that:

j∗1(26bt7U1 − 45b2t3U1) = 26ws8 − 45w2s4

generates the kernel of i∗2 and hence the image of j∗2 . As the image of j∗2 is also

generated by 3w3 − ws8 this implies that:

26ws8 − 45w2s4 = ±3w3 − ws8

But we have the following:

3n[3w3 − ws8] = 3[w3 + 15w2s4 − 9ws8]

= 3w3 + 45w2s4 − 27ws8

= [3w3 − ws8] + [26ws8 − 45w2s4]

= [3w3 − ws8]± [3w3 − ws8]

As 3w3 − ws8 generates the image of j∗1 which is non-zero and torsion-free we thus

have that 3n ∈ {0, 2} and hence that n = 0.

We can now compete the proof of the main theorem of this section:

Proof. We have shown s, w generate the cohomology and both 3w2s = s9, w3 =

9ws8 − 15w2s4 hold. It only remains to show that there are no further relations

needed. We define r1 := 3w2 − s9 and r2 := w3 − 9ws8 + 15w2s4 for notational

convienience.

We show that for any i ∈ N the group H i(E6/S
1 ×C4 Spin(10)) and the i-

dimensional part of Z[s, w]/ < r1, r2 > are the same which will show that no further

relations are needed. We note that asH(E6/S
1×C4Spin(10)) and Z[s, w]/ < r1, r2 >

have only even dimensional generators we can restrict to the case where i is even. We

note that as H i(E6/S
1×C4Spin(10)) ∼= H i(F4/S

1×C2Spin(7)) which is torision free

in dimension less than the middle dimension andH16(E6/S
1×C4Spin(10)) is torision

free by Lemma 6.19 Poincarre duality shows that the whole ring H∗(E6/S
1 ×C4

Spin(10)) is torision free.

We proceed by case analysis on i to show the equality holds in all cases:

i < 16 In dimension less than 16 we have that, by Lemma 6.14, H i(E6/S
1 ×C4

Spin(10)) is isomorphic to the i-dimensional part of Z[s, w] which is isomor-

phic to the i-dimensional part of Z[s, w]/ < r1, r2 > as both r1 and r2 have
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dimension greater than 16.

i = 16 By Lemma 6.19 H16(E6/S
1×C4 Spin(10)) is isomorphic to Z⊕Z⊕Z which

is isomorphic to the 16-dimensional part of Z[s, w]/ < r1, r2 > as both r1 and

r2 have dimension greater than 16.

i ∈ {18, 20, 22} By Poincarre duality we have thatH i(E6/S
1×C4Spin(10)) ∼= H32−i(E6/S

1×C4

Spin(10)) which is isomorphic to the 32 − i-dimensional part of Z[s, w] as

32 − i < 16. In dimensions 10, 12 and 14 Z[s, w] is isomorphic to Z ⊕ Z and

hence so is H i(E6/S
1 ×C4 Spin(10)).

Let i = 18 + k with k ∈ {0, 2, 4} then the i-dimensional part of Z[s, w]/ <

r1, r2 > is additivly spanned by the elements s9+k, s5+kw and s1+kw2 with a

relation given by skr1. As skr1 is can be extended to a basis with the elements

s5+kw and s1+kw2 the quotient group is isomorphic to Z⊕Z and thus equality

holds.

i = 24 By Poincarre duality we have thatH24(E6/S
1×C4Spin(10)) ∼= H8(E6/S

1×C4

Spin(10)) which is isomorphic to the 8-dimensional part of Z[s, w] as 8 < 16

this is isomorphic to Z⊕ Z and therefore so is H24(E6/S
1 ×C4 Spin(10)).

The 24-dimensional part of Z[s, w]/ < r1, r2 > is additivly spanned by the

elements s12, s8w, s4w2 and w3 with relations given by s3r1 and r2. As s3r1

and r2 are can be extended to a basis with s8w and s4w2 we have that the

quotient is isomorphic to Z⊕ Z and thus equality holds.

i ∈ {26, 28, 30} By Poincarre duality we have thatH i(E6/S
1×C4Spin(10)) ∼= H32−i(E6/S

1×C4

Spin(10)) which is isomorphic to the 32 − i-dimensional part of Z[s, w] as

32− i < 16. In dimensions 2, 4 and 6 Z[s, w] is isomorphic to Z and hence so

is H i(E6/S
1 ×C4 Spin(10)).

Let i = 26 + k with k ∈ {0, 2, 4} then the i-dimensional part of Z[s, w]/ <

r1, r2 > is additivly spanned by the elements s13+k, s9+kw, s5+kw2 and s1+kw3

with relations given by sk+4r1, s
kwr1 and s1+kr2. As the relations can be

extended to a basis with the element 19w2s5+k − 11ws9+k the quotient group

is isomorphic to Z and thus equality holds.

i = 32 As E6/S
1×C4Spin(10) is a 32-dimensional manifold we have thatH32(E6/S

1×C4

Spin(10)) = Z.

The 32-dimensional part of Z[s, w]/ < r1, r2 > is additivly spanned by the

elements s16, s12w, s8w2, s4w3 and w4 with relations given by s7r1, s
3wr1, s

4r2
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and wr2. As the relations are can be extended to a basis with the element

19s8w2−11s12w the quotient group is isomorphic to Z and thus equality holds.

i = 34 As E6/S
1×C4Spin(10) is a 32-dimensional manifold we have thatH34(E6/S

1×C4

Spin(10)) = 0.

The 34-dimensional part of Z[s, w]/ < r1, r2 > is additivly spanned by the ele-

ments s17, s13w, s9w2, s5w3 and sw4 with relations given by s8r1, s
4wr1, w

2r1, s
5r2

and swr2. As the relations are form a basis the quotient group is isomorphic

to 0 and thus equality holds.

i > 34 As E6/S
1×C4Spin(10) is a 32-dimensional manifold we have thatH i(E6/S

1×C4

Spin(10)) = 0.

Take the sum of all the i-dimensional parts of Z[s, w] where i > 32 then this

is additivly spanned by the elements snwm for n,m ∈ N with 2n + 8m > 32.

Let b = snwm for some n,m ∈ N with 2n + 4m > 32 we will show that

b ∈< r1, r2 > which completes the proof.

We proceed by case analysis on m, first suppose that m ≤ 4 then as 2n +

8m > 32 we have that 2n ≥ 34 − 8m and so n ≥ 16 − 4m in particular

b = sn−16+4m(s16−4mwm) but s16−4mwm is 34 dimensional and previously we

have shown that this group has rank 0 and so s16−4mwm ∈< r1, r2 > hence

b ∈< r1, r2 >.

Next suppose that m > 4 then b = (snw5−m)w5 but we have that:

w5 = w2r2 + 9s8w3 − 15s4w4 = w2r2 + s3(9s5w3 − 15sw4)

but 9s5w3 − 15sw4 is 34 dimensional and hence 9s5w3 − 15sw4 ∈< r1, r2 >

thus w5 ∈< r1, r2 > and finally b ∈< r1, r2 >.

These all match proving the theorem.
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Chapter 7

The decomposition of some

spheres associated to

representations

In this section we will study some decompositions of spheres associated to represen-

tations. Given a realm-dimensional representation of some Lie groupG, say φ : G→
SO(m) then the group φ(G) ⊆ SO(m) acts on the sphere Sm−1 ∼= SO(m)/SO(m−1).

It is these decompositions that we will study in this section. In particular we will

investigate the conditions for such a respresentation to be transitive or codimension

one.

This has a relation to more general decompositions as if G acts on a manifold

M given as an orbit G/H then G acts with codimension k if and only if H acts

with codimension k − 1 on the sphere by the representation of H which induces

the normal bundle. In particular for codimension one actions such as in Chapter

5 we have a transitive action on the sphere in the normal representation and for

codimension two actions such as in Chapter 9 we have a codimension one action on

the sphere in the normal representation.

7.1 Irreducibility

We first recall some standard lemmas of irreducible real real representations and note

some corollaries for representations to be either transitive or codimension 1. Let G

be a semi simple Lie group then by definition there is a map π :
∏
i=0Gi → G whose

kernel is a finite group and such that each Gi is simple. Then any representation of

G can be decomposed into the sum of irreducible representations and we have the
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following standard Lemmas see for example [Bröcker and Dieck, 1985, Chapter II,1]

Lemma 7.1. Let ∆ : G→ SO(m) be a real irreducible representation then either:

1. ∆ is a complex irreducible representation

2. There exists a complex irreducible representation Γ such that ∆ = ΓR.

Lemma 7.2. If ∆ : G → SU(m) is a complex irreducible representation then

there are complex irreducible respresentations ∆i : Gi → SU(mi) such that we have

π∗(∆) = ⊗ki=0∆i

The following theorem allows us to related the reducibility of a representation

to codimension of the associated action:

Theorem 7.3. For a Lie group G with 2 representations ∆ : G → SO(n) and

Γ : G → SO(m) and suppose, G acts with codimension k on Sn−1 via ∆ and with

codimension l on Sm−1 via Γ. Then G acts on Sn+m−1 via the representation ∆⊕Γ

and the codemension of this action is greater than or equal to 1 + k + l.

Proof. Embed Sn−1 × Sm−1 into Sn+m−1 as (v, w) → ( 1√
2
v, 1√

2
w) then the repre-

sentation ∆ + Γ fixes this subspace. The action of G on Sn−1 × Sm−1 factors as

G→ G×G→ SO(n)× SO(m) where the first map is the diagonal.

Consider the action of G × G on Sn−1 × Sm−1 then the orbits are just the

products of the orbits of the G actions on Sn−1 and Sm−1. Therefore the generic

orbit is just the product of the generic orbits of G on Sn−1 and Sm−1. Hence the

G×G action on Sn−1×Sm−1 is codimension k+ l. As the G action factors through

this G×G action the codimension of the G action on Sn−1×Sm−1 must be at least

k + l.

As Sn−1 × Sm−1 is codimension 1 in Sn+m−1 it follows that the action of G

on Sn+m−1 is at least k + l + 1.

This immediately gives the following corrolaries

Corollary 7.4. For a Lie group G and a representation ∆ : G → SO(n) if G acts

transitively on Sn−1 via ∆ then ∆ is irreducible.

Corollary 7.5. For a Lie group G and a representation ∆ : G → SO(n) if G act

on Sn−1 with codimension 1 via ∆ then either:

1. ∆ is irreducible

2. ∆ = ∆1 ⊕∆2 for 2 irreducible representations ∆1,∆2 such that G acts tran-

sitively on the spheres S(∆1) and S(∆2).
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7.2 Tensor products

We now note a few results of actions on spheres coming from the tensor product of

2 representations.

Suppose we have 2 real representations ∆1 : G → SO(n) and ∆2 : G →
SO(m) then the tensor representation ∆1 ⊗∆2 : G → SO(n ×m) factors through

the representation δn ⊗ δm : SO(n) × SO(m) → SO(n ×m). Likewise any complex

tensor of complex representation factors through the representation µn ⊗C µm :

U(n)× U(m)→ U(n×m). We thus study the tensors δn ⊗ δm and µn ⊗C µm first.

Lemma 7.6. Let 1 ≤ n ≤ m then the action of SO(n) × SO(m) on Sn×m−1 is

transitive if and only if n is 1 and is codimension 1 if and only if n is 2.

Proof. We proceed by induction on n. First suppose that n = 1 then SO(1) = 1

and the representation δ1 ⊗ δm is isomorphic to δm which is known to be transitive

and hence codimension 0.

In general assume the result holds for n− 1 we show it holds for n. Consider

the orbit at v ∈ S(Rn ⊗ Rm)

v =


1 0 . . . 0

0
... 0

0


Then this is stabilized by SO(n−1)×SO(m−1) with normal bundle generated

by δn−1 ⊗ δm−1. By induction SO(n − 1) × SO(m − 1) acts via the representation

δn−1⊗δm−1 with codimension n−2 hence SO(n)×SO(m) acts on the sphere bundle

in the normal bundle of the orbit at v with codimension n− 2.

As this subspace is codimension 1 and SO(n)×SO(m) acts with codimension

(n− 1).

Lemma 7.7. Let 1 ≤ n ≤ m then the action of U(n) × U(m) on the S4nm−1 via

µn ⊗C µm is transitive if and only if n is 1 and is codimension 1 if and only if n is

2.

Proof. We proceed by induction on n. First suppose that n = 1 then U(1) = S1

and the representation ξ ⊗C µm is transitive as µm is and hence the result holds.

In general assume the result holds for n− 1 we show it holds for n. Consider

the orbit at w ∈ S(Cn ⊗ Cm)
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w =


1 0 . . . 0

0
... 0

0


Then this is stabilized by U(n−1)×U(m−1) with normal bundle generated

by µn−1 ⊗C µm−1. By induction U(n − 1) × U(m − 1) acts via the representation

µn−1⊗Cµm−1 with codimension n−2 hence U(n)×U(m) acts on the sphere bundle

in the normal bundle of the orbit at w with codimension n− 2.

As this subspace is codimension 1 the group U(n) × U(m) acts with codi-

mension (n− 1).

We next focus more closely on the two codimension 1 decompositors δ2⊗ δm
and µ2 ⊗C µm

Lemma 7.8. For m > 1 the sphere S2m−1 decomposes under the δ2 ⊗ δm action of

SO(2)× SO(m) as

SO(2)× SO(m)

O(1)× SO(m− 1))
←− SO(2)× SO(m)

O(1)× SO(m− 2)
−→ SO(2)× SO(m)

SO(2)× SO(m− 2)

Where these groups are embedded as:

1. SO(2)× SO(m− 2) →
(Diag,id)

SO(2)× SO(2)× SO(m− 2)→ SO(2)× SO(m)

2. O(1)× SO(m− 1) →
(Diag,id)

O(1)×O(1)× SO(m− 1)→ SO(2)× SO(m)

Proof. We first consider the orbit containing the element V ∈ S(R2 ⊗ Rm) where

V =

(
1 0 . . . 0

0 0 . . . 0

)
then the orbit at V is stabilized by O(1)× SO(m− 1) as in the embedding 2. The

normal bundle to this orbit is generated by normal bundle to δ1 ⊗ δm−1 O(1) ×
SO(m − 1) acts transitively via the representation δ1 ⊗ δm−1 stabilized by O(1) ×
SO(m− 2).

In particular this implies the generic orbit is codimension one and stabilized

by O(1) × SO(m − 2). As S2m−1 is simply connected for (m > 1) we can apply

Mostart’s theorem and it suffices to find the other exceptional orbit.

Consider the orbit at the element W ∈ S(R2 ⊗ Rm) where
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W =

(
1/
√

2 0 . . . 0

0 1/
√

2 . . . 0

)
Then this orbit is stabilized by SO(2) × SO(m − 2) embedded in SO(2) ×

SO(m) as in map (1). From counting the dimension of the stabilizer this is distinct

from the orbit of W and the generic orbit this by Mostart this must be the other

exceptional orbit completing the proof.

Lemma 7.9. For m > 1 the sphere S4m−1 decomposes under the µ2 ⊗C µm action

of U(2)× U(m) as:

U(2)× U(m)

U(1)× U(1)× U(m− 1)
←− U(2)× U(m)

U(1)× U(m− 2)
−→ U(2)× U(m)

U(2)× U(m− 2)

Where we have that

1. U(2)× U(m− 2) →
(Diag,id)

U(2)× U(2)× U(m− 2)→ U(2)× U(m)

2. U(1)×U(1)×U(m−1) →
(Diag,id,id)

U(1)×U(1)×U(1)×U(m−1)→ U(2)×U(m)

Proof. We first consider the orbit containing the element V ∈ S(C2 ⊗ Cm) where

V =

(
1 0 . . . 0

0 0 . . . 0

)
then the orbit at V is stabilized by U(1) × U(1) × U(m − 1) as in the embedding

2. The normal bundle to this orbit is generated by ξ ⊗ 1 ⊗ µm−1 and U(1) ×
U(1)×U(m− 1) acts transitively via the representation ξ ⊗ 1⊗ µm−1 stabilized by

U(1)×U(1)×U(m− 2). In particular this implies the generic orbit is codimension

one and stabilized by U(1) × U(1) × U(m − 2). As S4m−1 is simply connected we

can apply Mostart’s theorem and it suffices to find the other exceptional orbit.

Consider the orbit at the element W ∈ S(C2 ⊗ Cm) where

W =

(
1/
√

2 0 . . . 0

0 1/
√

2 . . . 0

)
then this orbit is stabilized by U(2)×U(m−2) embedded in U(2)×U(m) as in map

(1). From the fundamental group of the stabilizer this is distinct from the orbit of

W and the generic orbit thus by Mostart this must be the other exceptional orbit

completing the proof.
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We now move to the more general case. We first generalise the results on

transitive actions.

Lemma 7.10. Given a compact, connected Lie group G and 2 real representations

∆1 and ∆2 then ∆1⊗∆2 acts transitively only if at least one of ∆1 or ∆2 is trivial.

Proof. As ∆1⊗∆2 factors as (δdim ∆1 ⊗ δdim ∆2) ◦ (∆1,∆2) we have that ∆1⊗∆2 is

only transitive if δdim ∆1 ⊗ δdim ∆2 is by 7.6 this implies that dim ∆1 or dim ∆2 is 1

but then ∆1 or ∆2 is trivial by connectedness.

The converse is obvious.

Lemma 7.11. Given a compact Lie group G and 2 complex representations ∆1 and

∆2 with dim∆1 ≤ dim∆2 then G acts transitively via ∆1⊗C∆2 if and only if either:

1. ∆1 is trivial and G acts transitively via ∆2

2. G ∼= S1×Ck H for some H such that ∆1
∼= ξ and H acts transitively via ∆2|H

Proof. As ∆1⊗C ∆2 factors as (µdim∆1⊗µdim∆2)◦ (∆1,∆2) we have that µdim∆1⊗C

µdim∆2 must be transitive and hence by 7.7 that dim∆1 = 1. Either ∆1 is trivial or

G has a non-trivial 1 dimensional complex representation.

Suppose ∆1 is trivial then ∆1⊗C ∆2 is isomorphic to ∆2 and hence ∆1⊗∆2

is transitive if and only if ∆2 is.

Suppose ∆1 is a non-trivial representation then as S1 is the only simple

group with a non-trivial 1 dimensional complex representation and G is semi simple

it must split as S1 ×K H with ∆1
∼= ξm and K a finite group.

As S1 is cyclic we must have that K ∼= Ck for some k ∈ N
Finally as ξ commutes with any complex representation we have that the

action of ∆2 is isomorphic to the action of ξm ⊗ ∆2 for some m ∈ Z hence as

∆2|H ∼= ξn ⊗∆2 we have that ∆1 ⊗C ∆2 is transitive if and only if ∆2|H is.

We next generalise when tensor products have codimension one actions.

Lemma 7.12. Given a connected Lie groups G and 2 real representations ∆1 and

∆2 with dim∆1 ≤ dim∆2 then G acts with codimension one on S(∆1 ⊗∆2) if and

only if one of the following hold:

1. ∆1 is trivial and G acts with codimension 1 on the sphere S(∆2)
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2. There exists a Lie group H and k ∈ N such that G ∼= SO(2)×Ck H, ∆1 = δ2

on SO(2) and H acts transitively on the sphere S(∆2|H) stabilized by some

K ⊆ H such that ∆2|k = 1 + ∆K where K acts transitively on the sphere

S(∆K)

Proof. As ∆1 ⊗ ∆2 factors through δdim ∆1 ⊗ δdim ∆2 we must have that δdim ∆1 ⊗
δdim ∆2 must give an action of SO(dim ∆1) × SO(dim ∆2) whose codimension is at

most 1. By 7.6 we must therefore have that dim ∆1 ∈ {1, 2}.
First suppose dim ∆1 = 1 thus ∆1 must be trivial and ∆1 ⊗ ∆2

∼= ∆2 and

∆1 ⊗∆2 acts with codimension 1 if and only if ∆2 does.

Next suppose that dim ∆1 = 2 as ∆1 is irreducible it must be non-trivial.

As the only simple group with a 2 dimensional irreducible real representation is

SO(2) and δ2 we must have that the Cartan type of G contains an SO(2) and ∆1 is

generated by δ2. Let G = SO(2)×Ck H be such a decomposition.

We next show that ∆2|H is transitive on S(∆2|H).

First suppose that ∆2 is not transitive on S(∆2) then G cannot act transi-

tively on the orbit passing through the element V where

V =

(
1 0 . . . 0

0 0 . . . 0

)
As SO(2)×SO(dim ∆2) acts transitively on this orbit and with codimension

one on the whole space G must act transively on this orbit. This orbit is isomorphic

to S1×Sdim ∆2−1 as the SO(2) acts freely on the S1 part of this G acting transitively

imples that the restriction of the action to H is transitive on Sdim∆2−1 as required.

Let K be the stabilizer of the transitive H action on Sdim ∆2−1. The stabilizer

of the G action at this orbit is K as the SO(2) action is free. As this action is

codimension one the normal bundle must be generated by some representation ∆K

of K such that K acts transitively on S(∆K) it remains to show that ∆2|K = 1+∆K .

This follows as by transitivity ∆2 and ∆K are the pull backs of δdim ∆2 and δdim ∆2−1

to H and K respectively.

Lemma 7.13. Given a Lie group G and 2 complex representations ∆1 and ∆2 with

dim∆1 ⊆ dim∆2 then G acts with codimension one on S(∆1 ⊗C ∆2) if and only if

one of the following hold.

1. ∆1 is trivial and G acts with codimension 1 on S(∆2)
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2. There exists a Lie group H and kEN such that G ∼= S1 ×C2 H, ∆1 = µ1 and

H acts transitively on S(∆2|H).

3. There exists a Lie group H and k ∈ N such that G ∼= SU(2) ×Ck H, ∆1 =

µ2 and H acts transitively on S(∆2|H) stabilized by someK ∈ H such that

∆2|K = 1 + ∆K for some representation ∆K such that K acts transitively on

S(∆K).

Proof. Same as previous with minor changes for complex numbers

7.3 Semisimple Groups

We now extend the previous results to the case of representations of semisimple

groups in terms of the irreducible representations of simple groups. The irreducible

representations of compact simple Lie groups with transitive actions has been shown

by Simons [1962] to be the same as the Berger classification f Holonomy groups

[Berger, 1955, Theorem 3]. A more direct reference to the classification can be

found in [Besse, 1987, 10.94, pg 301]

Theorem 7.14. If G is a simple Lie group and ∆ an irreducible representation

such that G acts transitively then one of the following cases hold.

1. G is of Cartan type A(n) and ∆ is the complex representation µn

2. G is of Cartan type B(n) for some n and ∆ is the real representation δ2n+1

3. G is of Cartan type C(n) for some n and ∆ is the quatmionic hn

4. G is of Cartan type D(n) for some n and ∆ is the real representation δ2n

5. G is of Cartan type G(2) and ∆ if the 8-dimensional real irreducible represen-

tation

6. G is of Cartan type B(n) for n ≤ 4 and ∆ is the spin representation ∆2n+1

7. G is of Cartan type D(n) for n ≤ 4 and ∆ is the spin representation ∆2n

Theorem 7.15. Let G be a semi simple group and ∆ a representation then G acts

transitively on S(∆) if and only if one of the following holds

1. There exists a map π : H ×K → G with finite kernel such that H is simple

and ∆ pulls back under π to a real irreducible representation ∆H of H such

that H acts transitively on S(∆H).
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2. There exists a map π : (S1)k×K → G with finite kernel such that H is simple

and ∆ pulls back under π to a complex representation ξl1 ⊗ · · · ⊗ ξlr ⊗∆H for

an irreducible complex representation ∆H of H such that H acts transitively

on S(∆H)

Proof. By Corollary 7.4 the representation must be irreducible using Lemma 7.1 on

form of the irreducible representations as tensors and the Lemma 7.10 and Lemma

7.11 on the real and complex tensors that can induce transitive actions.

We proceed to the following partial result about semi simple groups which

act via representations with cohomogenaity one.

Theorem 7.16. Let G be a semi-simple group and ∆ a representation of G such

that G acts with codimension 1 on S(∆) then one of the following holds

1. There exist ∆1 and ∆2 real irreducible representations of G such that G acts

transitively on S(∆1) and S(∆2) and that ∆ ∼= ∆1 + ∆2.

2. There exists a map π : S1×H×K → G with finite kernel such that H is simple

and ∆ pulls back under π to δ2⊗R ∆K for some real irreducible representation

of ∆K of K such that K acts transitively on S(∆K)

3. There exists a map π : (S1)k × SU(2) × H × K → G with finite kernel such

that H is simple and ∆ pulls back under π to ξl1 ⊗ · · ·⊗ ξlk ⊗∆H where ∆k is

a complex irreducible representation of K and K acts transitively on S(∆K)

4. There exists a map π : H ×K → G with finite kernel such that H is simple

and ∆ pulls back under π to ∆K such that ∆ is a irreducible representation

of K and K acts with codimension 1 on S(∆K)

5. There exists a map π : (S1)k × K → G with finite kernel such that H is

simple and ∆ pulls back under π to ξl1⊗· · · ξlr ⊗∆K for a complex irreducible

representation ∆K of K where K acts with codimension 1 on S(∆K).

Proof. By the corrollary 7.4 the representation must be irreducible or the sum of 2

irreducible representations For case 1 assume it is the sum of 2 irreducible repre-

sentations. Otherwise use Lemma 7.1 on form of the irreducible representations as

tensors and the Lemma 7.12 and Lemma 7.13 on the tensors that can be codimension

1.
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Chapter 8

Weyl Group computations

In this section we give a description of the Weyl group of E8 in terms of the

Weyl group of the maximal subgroup Spin(16). This will allow us to compute

the double quotients W (E6 × S1) \W (E7)/W (S3 × Spin(12)) and W (E7 × S3) \
W (E8)/W (Spin(16)) which we will need in Chapter 9 these eunmerate various orbit

types of the double quotient E6×S1\E7/S
3×Spin(12). We show that in both cases

the double quotients have 2 distinct classes and we give representative elements of

these.

We perform these computations by giving the structure of W (E8) with re-

spect to the subgroupW (Spin(16)) to give a description of the cosetsW (E8)/W (Spin(16)).

While theoretically these can be computed by computer as |W (E8)| = 696729600

both the computational packages GAP and van Leeuwen et al. [1992] fail to compute

them within reasonable levels of resources.

8.1 Weyl group of E8

Definition 8.1. Let Πi(n) be the subset of the group {1,−1}n whose elements

contain (−1) exactly i times, and let Π(n) be the sub group of {1,−1}n where

Π(n) =
∐i=n/2
i=0 Π2i(n)

Then S(n) acts on Π(n) by permutation of coordinates and with this action

we have the following theorem from [Bröcker and Dieck, 1985, Theorem 3.6,pg. 171]

Theorem 8.2.

W (Spin(2n)) ∼= Π(n) o S(n)

Where the element (ψ, ρ) ∈ Π(n) o S(n) acts on the maximal torus Tn ⊂
Spin(2n) by the composition of the natural actions of the ψ and ρ on the standard

basis.
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For this section we use the root system for the e8 in [Adams, 1996, pg. 56]

generated by the following simple roots:

1. x2 − x3

2. x3 − x4

3. x4 − x5

4. x5 − x6

5. x6 − x7

6. x7 − x8

7. x7 + x8

8. 1
2(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)

E8

If we take the subroot system generated by the roots (1 − 7) and the root

(x1−x2) we obtain a root system of type D(8) giving an embedding of Spin(16) ↪→
E8 and W (Spin(16)) ⊂W (E8) it is this subgroup of W (Spin(16)) in W (E8) we will

use in the rest of this section. It gives the standard representation of W (Spin(16))

on the maximal torus in Spin(16)

Further for the rest of this section we will refer to the Weyl element generated

by the reflection in the root 8 by s. Then s will act on the coroot space by the matrix

Sm =
1

4



3 −1 −1 −1 −1 −1 −1 −1

−1 3 −1 −1 −1 −1 −1 −1

−1 −1 3 −1 −1 −1 −1 −1

−1 −1 −1 3 −1 −1 −1 −1

−1 −1 −1 −1 3 −1 −1 −1

−1 −1 −1 −1 −1 3 −1 −1

−1 −1 −1 −1 −1 −1 3 −1

−1 −1 −1 −1 −1 −1 −1 3


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Lemma 8.3. Let ρ ∈ S(8) ⊂W (Spin(16)) ⊂W (E8) then

s ◦ ρ = ρ ◦ s

Proof. Let 18 be the 8× 8 matrix consisting of only 1’s and ψ the representation of

ρ then

ψSm = ψ(Id− 1

4
18)

= ψ − 1

4
18

= Idψ − 1

4
18ψ

= Smψ

From linearity and the fact that 18 is invariant under symmetry action.

Lemma 8.4. Let x = (x1, · · · , x8) ∈ Π2(8) ⊂W (Spin(16)) ⊂W (E8). As x ∈ Π2(8)

there exists unique i < j with xi = xj = −1 let ρx be the 2-cycle in S(8) ⊂
W (Spin(16)) which exchanges i and j then:

sxs = xsxρx

Proof. First assume i = 1, j = 2 so x = (−1,−1, 1, 1, 1, 1, 1, 1) if D(x) is the mtirx

corresponding to x then direct computation shows that:

SmD(x)SmD(x)SmD(x)

is the matrix corresponding to ρ which proves in this lemma in this case. In

general let p be a permutation exchanging 1 with i and 2 with j then pxp−1 =

(−1,−1, 1, 1, 1, 1, 1, 1)T and the result above shows that

spxp−1s = pxp−1spxp−1spxp−1pρxp
−1

as both p and p−1 commute with s by Lemma 8.3 the result follows.

Lemma 8.5. For x ∈ Π8(8) we have sx = xs.

Proof. As x ∈ Π8(8) we have that x = (−1,−1 · · · ,−1) so it acts on R8 as multi-

plication by (−1), as Sm acts linearly the result follows.
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Finally we will need the following result found in [Adams, 1996, Theorem

10.1]

Lemma 8.6.

|W (E8)| = 696729600

Definition 8.7. There is an embedding of Πi(n) ↪→ Πi(n+1) by taking (x1, · · · , xn) 7→
(x1, · · · , xn, 1) denote this by Πi

+(n) ⊂ Πi(n).

This gives rise to a subgroup Π+(n) =
∐n/2
i=0 Π2i

+(n) ⊂ Π(n)

Definition 8.8. Given x ∈ Πi
+(n) where i > 0 and n > 1. Let j be max{j ∈

{2, · · · , n} | xj = −1}.
Then we define twx ∈ Π2(n) to be such that (twx)n = −1, (twx)j = −1

This allows us to state the main theorem of this section:

Theorem 8.9. For any ω ∈W (E8) exactly one of the following hold:

1. ω ∈W (Spin(16)),

2. ω = xsa for some x ∈ Π+(8) and a ∈W (Spin(16)),

3. ω = (twx)isxsa for x ∈ Π4
+(8) and a ∈W (Spin(16)) with i ∈ {0, 1}.

And this data uniquely defines ω.

Proof. We will first show that at most one of (1)− (3) can hold. We will then show

uniqueness and finally we will use a counting argument to show that all w ∈W (E8)

have such a form. To do this we will use the following proposition:

Proposition 8.10. Let w ∈W (Spin(16)) with matrix Wm and M an 8× 8-matrix

with coefficients in a subset S ⊂ R which is closed under negation then:

1. WmM and MWm are matrices with coefficients in S ⊂ R,

2. det(M) = det(WmM) = det(MWm).

Proof. Let M = {αi,j}8i,j=1 and w = (x, ρ) ∈ W (Spin(16)) then for 1 ≤ i, j ≤ 8 we

have that:

(WmM)i,j = xρ(j)αi,ρ(j)
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(MWm)i,j = xiαρ(i),j

But xρ(j)αi,ρ(j) = ±αi,ρ(j) ⊂ S and xiαρ(i),j = ±αρ(i),j ⊂ S due to the fact

that S is closed under negation.

Finally we have that det(Wm) = det(ρWmρ
−1) = det(Diag(x, · · · , xn)) and

so det(Wm) =
∐n
i=1 xi = 1 as x ∈ Π(8).

Continuing the proof of Theorem 8.9, let Wm be the action of w on the coroot

space with standard basis. First suppose that case 1 holds and w ∈ W (Spin(16))

then, by the proposition as Wm = Wm ·Id8 and Id8 has coefficient in S1 := {−1, 0, 1}
and thus Wm has coefficients in S1

Next suppose that case 2 holds and thus w = xsa for some x ∈ Π+(8) and

a ∈W (Spin(16)).

As Sm, the matrix associated to s, has coefficients in S2 := {−3
4 ,−

1
4 ,

1
4 ,

3
4}

and a, x ∈W (Spin(16)) by the proposition Wm has coefficients in S2.

Now suppose that case 3 holds and w = (twx)isxsa for some x ∈ Π4
+(8),

a ∈W (Spin(16)) and i ∈ {0, 1}.
Further let i < j < k < l be such that xi = xj = xk = xl = 1 which

exist by definition as x ∈ Π4
+(8) and let ρ be the permutation given by cycles

(1, i)(2, j)(3, k)(4, l) then ρxρ−1 = (1, 1, 1, 1,−1,−1,−1,−1) =: α ∈ Π4
+(8).

Now sαs acts on the coroot space via the matrix:

Sm ·Diag(1, 1, 1, 1,−1,−1,−1,−1) · Sm

Which direct computation show to be equal to the matrix:

1

2



1 −1 −1 −1 0 0 0 0

−1 1 −1 −1 0 0 0 0

−1 −1 1 −1 0 0 0 0

−1 −1 −1 1 0 0 0 0

0 0 0 0 −1 1 1 1

0 0 0 0 1 −1 1 1

0 0 0 0 1 1 −1 1

0 0 0 0 1 1 1 −1


So SαS has a matrix form with all the coefficients in the set S3 := {−1

2 , 0,
1
2} As we
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have

w = (twx)isxsa

= (twxi)sρxρ−1sa

= ((twx)iρ)sαs(ρ−1a)

and both ρ−1a and (twx)iρ are in W (Spin(16)), we have from the proposition that

Wm has coefficients in S3.

As w is invertible we must have that Wm 6= 08 and thus it can have coef-

ficients in at most one of the sets S1, S2 or S3 and thus at most one of the cases

(1), (2) or (3) may hold.

We next show that in each case the data uniquely classifies w. In case (1) this

is trivial. Then we show uniqueness in case 2, suppose case 2 holds let x, y ∈ Π+(8)

and a, b ∈W (Spin(16)) such that

xsa = ysb

We want to show that x = y and a = b. As s−1 = s, we have that sy−1xs =

a−1b. Further as y−1x ∈ Π+(8) there exists i ∈ {0, 1, 2, 3} such that y−1x ∈ Π2i
+(8)

we proceed by case analysis on i.

First, suppose that i = 0 and y−1x ∈ Π0
+(8) then as Π0

+(8) = {Id} we have

that x = y and thus sa = sb therefore a = b.

Next, suppose that i = 1 and y−1x ∈ Π2
+(8) then by lemma 8.4 there exists

ρx ∈ S(8) such that a−1b = sy−1xs = (y−1x)s(y−1xρx) so a−1b is of type 2 but as

ab−1 ∈W (Spin(16)) we obtain a contradiction.

Next suppose that i = 2 and y−1x ∈ Π4
+(8) then ab−1 = sy−1xs is of type 3

but as ab−1 ∈W (Spin(16)) we obtain a contradiction

Finally suppose that y−1x ∈ Π6
+(8) and let (−1) be the unique element of

Π8(8) then (−1)y−1x ∈ Π2(8) and so

(−1)a−1b = (−1)sy−1xs

= s(−1)y−1xs

= (−1)y−1xs(−1)y−1x

Thus a−1b = (−1)y−1xs(−1)y−1x is of type 2 but ab−1 ∈ W (Spin(16)) and

we again obtain a contradiction. This proves uniqueness in case 2.

Finally we show uniqueness in case 3, suppose that case 3 holds and we have
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i, j,∈ {0, 1}, x, y,∈ Π4
+(8) and a, b,∈W (Spin(16)) such that:

(twx)isxsa = (twy)jsysb

We want to show that i = j, x = y and a = b. We proceed in this by case

analysis on i and j. First take i = j = 0 then sxsa = sysb and so xsa = ysb but

both these elements are of type 2 thus by uniqueness in case 2 we have that x = y

and a = b.

Next suppose i 6= j without loss of generality we can assume i = 0 and j = 1,

so that sxsa = (twy)sysb and thus we have that:

xsa = s(twy)sysb

= (twy)s(twy)ρtwyysb

= (twy)sysb

But (twy)sysb is of type 3 as opposed to xsa which is of type 2 which gives a

contradiction.

Finally in the case where i = 1 and j = 1 we have (twx)sxsa = (twy)sysb.

If twx = twy then sxsa = sysb and by the case where i = 0, j = 0 we have x = y

and a = b. On the other hand if twx 6= twy then ν = (twx)(twy) ∈ Π2
+(8).

By assumption (twx)sxsa = (twy)sysb thus as (twx)−1 = twx

xsa = ((twx)s)−1(twy)sysb

= s(twx)(twy)sysb

= sνsysb

= νsνρνysb

= νsysρνb

= (twx)(twy)sys(ρνb)

And so (twx)xsa = (twy)sys(ρνb) but (twx)xsa of type 2 and (twy)sys(ρνb)

is of type 3 which is a contradiction.

This shows that if w is of type (1) − (3) then it is uniquely determined by

the data.

We finally show that the elements of type (1)−(3) constitute all the elements
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of W (Spin(16)) by simple counting.

First there are 27 × 8! = 5160960 elements of W (Spin(16)) and so 5160960

there are elements of type 1. Next, we have that

|Π+(8)| = 1 +

(
7

2

)
+

(
7

4

)
+

(
7

6

)
= 64

and so there are 64×5160960 = 330301440 elements of type 2. Finally as |Π4
+(8)| =(

7
4

)
= 35 there are 2× 35× 5160960 = 361267200 elements of type 3.

Thus in total there are 5160960+330301440+361267200 = 696729600 unique

elements of types 1-3 as the total number of elements is 696729600 from Theorem

8.6 we see that all of the elements must be of some type.

8.2 Weyl group of E7 × S3

We now consider the subgroup E7 × S3 ⊂ E8

This embedding is induced from the sub-root system consisting of the roots

(2)− (8) and the root (x1 − x2)

The intersection of E7 × S3 and Spin(16) within E8 is given by the sub root

system consisting of the roots (2)−(7) along with the roots (x1−x2) and (x1+x2) this

is of typeD(2)D(6) and corresponds to the natural subgroup Spin(4)×C2Spin(12) ↪→
Spin(16) as in the following diagram:

1 2 3 4 5 7 8

6 E8

x1 − x2 2 3 4 5 7 8

6S3 × E7

x1 − x2 2 3 4 5 7

x1 + x2

6Spin(4)× Spin(12)

x1 − x2 1 2 3 4 5 7

6 Spin(16)

We wish to describe W (S3 × E7) in terms of W (Spin(4) × Spin(12)) in the

same way as our description of W (E8) in terms of W (Spin(16)). To do this we first

investigate the map W (Spin(4)× Spin(12)) ↪→W (Spin(16))
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Definition 8.11. The map π : {−1, 1}n×{−1, 1}m ↪→ {−1, 1}n+m descends to give

an embedding

π : Π(n)×Π(m) ↪→ Π(n+m)

We will use Π(n,m),Π+(n,m) and Πi
+(n,m) respectively to denote the in-

tersection of the image of π with Π(n+m),Π+(n+m) and Πi
+(n+m) respectively.

As in the case in theorem 8.2 by following the map of tori we have the

following theorem.

Theorem 8.12.

W (Spin(2n)× Spin(2m)) ∼= Π(n,m) o S(n)× S(m)

⊂ Π(n+m) o S(n+m)

∼= W (Spin(2n+ 2m)).

This allows us to state the following theorem:

Theorem 8.13. For any w ∈W (S3 × E7) exactly one of the following hold:

1. w ∈W (Spin(4)× Spin(12)).

2. w = xsa for x ∈ Π+(2, 6) and a ∈W (Spin(4)× Spin(12)).

3. w = (twx)isxsa for x ∈ Π4
+(2, 6) and a ∈ W (Spin(4) × Spin(12)) with i ∈

{0, 1}.

And this data uniquely defines w.

Proof. As W (Spin(4)× Spin(12)) and hence Π+(2, 6) along with s are contained in

W (E7 × S3) any element of type (1)− (2) must also be an element of W (S3 ×E7).

Now as any element x ∈ Π4
+(2, 6) ⊂ {1,−1}8 has exactly 4 coefficients with value

−1 we must have that the maximum index of such a coefficient must be greater than

2.

This implies that twx ∈ Π2
+(2, 6) ⊂ Π2

+ + (8) and so any element of type (3)

must also be an element of W (S3 × E7).

From the proof of Theorem 8.9 we see that any such w is uniquely defined by

the data and it remains to show that all w ∈W (S3 × E7) have such an expression.

We use a simple counting argument as we have shown all such elements of

type (1)− (3) must be elements of W (S3 × E7). Firstly as:
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|W (Spin(4)× Spin(12))| = |W (Spin(4))| × |W (Spin(12)|

= 4× 23040

= 92160

So those are 92160 elements of type 1. Next we have that:

|Π4(2, 6)| = |Π(2)| × |Π+(6)|

= 2×
((

5

0

)
+

(
5

2

)
+

(
5

4

))
= 2× 16 = 32

and thus there are 32 ∗ 92160 = 2949120 elements of type 2. Finally as:

|Π4
+(2, 6)| = |Π0(2)| × |Π4

+(6)|+ |Π2(2)| × |Π2
+(6)| (8.1)

= 1×
(

5

4

)
+ 1×

(
5

2

)
(8.2)

= 15 (8.3)

Thus there are 2× 15× 92160 = 2764800 elements of type 3.

This implies there are 92160 + 2949120 + 2764800 = 5806080 elements of

types (1) − (3) but as |W (S3 × E7)| = 5806080 Adams [1996] and each of these

elements is distinct, all the elements of W (S3 × E7) must be of types (1)− (3).

8.3 Computation of W (E7 × S3) \W (E8)/W (Spin(16))

We now use these results to compute the required double quotients. First we note

an additional lemma on the structure of Π(n+m).

Lemma 8.14. For m > 1 let x ∈ Π2
+(n+m) be such that x1 = −1 and xn+1 = −1

then

1. Π(n+m) = Π(n,m)
∐
xΠ(n,m)

2. Π+(n,m) = Π+(n,m)
∐
xΠ+(n,m)

Proof. Let a ∈ Π(n + m), if a has an even number of (−1)’s for indexes between

1 and n then it also has an even number of (−1)’s between n + 1 and m hence
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a ∈ Π(n,m). Otherwise the number of (−1)’s between 1 and n and n+ 1 and m are

odd and hence xa ∈ Π(n,m) thus a ∈ xΠ(n,m).

For (2) we have that Π+(n+m) = Π(n+(m−1)) and Π+(n,m) = Π(n,m−1)

and the result follows from (1).

We can now prove the main theorem of this section.

Theorem 8.15. Let x be the element of Π2
+(8) such that x1 = −1, x3 = −1 then the

double quotient then W (E7×S3) \W (E8)/W (Spin(16)) has two equivalence classes

with representative elements 1 ∈W (E8) and xs ∈W (E8).

Proof. We show that for every element w ∈ W (E8) there exist a ∈ W (S3 × E7)

and b ∈ W (Spin(16)) such that either w = ab or w = axsb so w ∼ 1 or w ∼ xs

respectively.

Suppose w ∈ W (Spin(16)) is of type 1 then w = 1w thus w ∼ 1. Next

suppose w = λsµ is of type 2 with µ ∈ W (Spin(16)) and λ ∈ Π+(8). By Lemma

8.14 either λ ∈ Π+(2, 6) or λx ∈ Π+(2, 6) first suppose λ ∈ Π+(2, 6) then as both λ

and s are in W (S3 × E7) so is λs and hence w = (λs)µ, which implies w ∼ 1.

Otherwise assume λx ∈ Π+(2, 6) then we have that w = (λx)(xs)µ and as

λx ∈W (S3 × E7) we have that w ∼ xs.
Finally suppose that w = (twλ)sλsµ for some µinW (Spin(16)) and λ ∈

Π4
+(8) then by Lemma 8.14 either λ ∈ Π4

+(2, 6) or xλ ∈ Π+(2, 6). Suppose λ ∈
Π4

+(2, 6) as wλ, λ, s ∈W (S3 × E7) we have that w = ((twλ)sλs)µ and so w ∼ 1.

Otherwise xλ ∈ Π+(2, 6) then as twλ, λx,∈ W (S3 × E7) we have that w =

(twλsλx)xsµ and so w ∼ xs.
It remains to show 1 6∼ xs. Suppose that this were the case, then there would

exist a ∈W (S3×E7), b ∈W (Spin(16)) such that a = xsb which implies by Theorem

8.9 that a is a type 2 element of W (E8) and thus a type 2 element of W (S3 × E7)

but this is a contradiction as x 6∈ Π2
+(2, 6) and Theorem 8.13 has uniqueness of the

representations.

8.4 Computation of W (E6×S1) \W (E7)/W (S3× Spin(16))

Given the maximal torus of E7 and the sub root system generated by roots (3)− (8)

gives an embedding of S1 × E6 ↪→ E7 found in [Adams, 1996, Chapter 8].

Thus the roots (3) − (8) and (x1 − x2) with the maximum torus give an

embedding of S3×S1×E6 ↪→ S3×E7 ⊂ E8. The intersection of Spin(4)×C2 Spin(12)
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with S3 × S1 × E6 is S3 × S1 × S1 × Spin(10) where S3 × S1 × S1 × Spin(10) ↪→
Spin(4)×Spin(12) is the map such that S1×Spin(10) ↪→ Spin(12) is the natural map

of Spin(2) × Spin(10) ↪→ Spin(12 and the map S3 × S1 ↪→ Spin(4) is the inclusion

of S3 × S1 ↪→ S3 × S3 ∼= Spin(4).

This gives a map S3 × S1 × S1 × Spin(10) ↪→ S3 × E7, where S1 × S1 ×
Spin(10) ↪→ S1 ×E6 ↪→ E7 and S1 × Spin(10) ↪→ E6 is the embedding in Chapter 5

For Chapter 9 we want to compute W (S1 ×E6) \W (E7)/W (S3 × Spin(12))

which is isomorphic to the set W (S3×S1×E6)\W (S3×E7)/W (Spin(4)×Spin(12)).

We can describe W (S3×S1×E6) in terms of W (S3×S1×S1×Spin(10)) analogously

to theorem 8.9.

We note that Πk
+(2, n) = {x ∈ Πk

+(2 + n)|x1 = x2} in this direction we get

the following definition.

Definition 8.16. Πk
+(a;n) = {x ∈ Πk

+(a + n) | x1 = · · · = xa} and Π+(a;n) =

{x ∈ Πk
+(a+ n) | x1 = · · · = xa}

Then the embedding of S3 × S1 × S1 × Spin(10) ↪→ Spin(6) × Spin(10) ↪→
Spin(16) gives an embedding of Z2 × Π+(5) ⊂ W (S3 × S1 × S1 × Spin(10)) into

Π+(8) ⊂W (Spin(16)).

This allows us to state our theorem for this section.

Theorem 8.17. Let w ∈W (S3 × S1 × E6) then exactly one of the following hold:

1. w ∈W (S3 × S1 × S1 × Spin(10)).

2. w = xsa for x ∈ Π+(3; 5) and a ∈W (S3 × S1 × S1 × Spin(10)).

3. w = (twx)isxsa for a ∈W (S3 × S1 × S1 × Spin(10)) and i ∈ {0, 1}.

And this data uniquely determines w.

Proof. As shown Π+(3; 5) ⊂ W (S3 × S1 × E6) we also note that for any x ∈
Π4

+(3; 5)twx ∈ Π2
+(3; 5) as there must be both 1 in x with indices in the range

4 − 8. As S ∈ W (S3 × S1 × E6) this implies all elements of type (1) − (3) are

elements of W (S3×S1×E6). Further as all these elements are distinct as elements

of W (E8), they are distinct elements of W (S3 × S1 × E6).

We show that all w ∈W (S3×S1×E6) have such a form again via a counting

argument.

There are |W (S3 × S1 × S1 × Spin(10))| = |W (S3)| × |W (Spin(10))| = 2 ×
24 × 5! = 3840 elements of type 1.
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As |Π+(3; 5)| = 2×|Π+(5)| = 2×(1+6+1) = 16 there are 16×3840 = 61440

elements of type 2.

Finally as |Π4
+(3; 5)| = |Π4

+(5)| + |Π1
+(5)| = 1 + 4 = 5 thus there are 2 ×

5 × 3840 = 38400 elements of types (1) − (3) as from Adams [1996] we have that

|W (E6)| = 51840 we thus have |W (S3 × S1 × E6)| = 103680 so all elements are of

types (1)− (3).

We give a lemma analogous to Lemma 8.14.

Lemma 8.18. Let x ∈ Π2
+(2, 6) be such that x3 = −1, x4 = −1 then Π2

+(2, 6) is the

disjoint union Π+(3, 5)
∐
xΠ(3; 5)

Proof. Take a = (a1, · · · , a8) ∈ Π2
+(2, 6) then a1 = a2 as (a1, a2) ∈ Π(2)

Suppose a1 = a3 then a ∈ Π+(3; 5) otherwise if a1 6= a3 then (xa)1 = (xa)3

and xa ∈ Π+(3; 5).

We are now in a position to compute the double quotient W (S3×S1×E6) \
W (S3 × E7)/W (Spin(4)× Spin(12)

Theorem 8.19. The set W (S3 × S1 × E6) \W (S3 × E7)/W (Spin(4) × Spin(12))

has 2 elements with representative elements 1 and xs where x ∈ Π2
+(2, 6) has x4 =

−1, x5 = −1.

Proof. We show that for any w ∈ W (S3 × E6) either w ∼ 1 or w ∼ xs. Firstly

suppose w is of type 1 then w ∈W (Spin(4)× Spin(12)) thus w ∼ 1.

Next, suppose w is of type 2 so that w = λsµλ ∈ Π4
+(2, 6) and µ ∈

W (Spin(4) × Spin(12) then by Lemma 8.18, either λ or xλ are in Π+(3; 5) ⊂
w(S3×S1×E6). If λ ∈ Π+(3; 5) then as s ∈W (S3×S1×E6)w = (λs)µ thus w ∼ 1

otherwise if we have that λx ∈ Π+(3; 5) then w = λsµ = (λx)xsµ and so w ∼ xs.
Finally, if w is of type 3 then there exists a λ such that (twλ)sλsµλ ∈ Π4

+(2, 6)

with µ ∈W (Spin(4)×Spin(12) by then Lemma 8.18, either λ or xλ are in Π+(3; 5).

Suppose λ ∈ Π+(3; 5) then as twλ ∈ Π2
+(3; 5) we have that w = ((twλ)sλs)µ

and w ∼ 1. Otherwise if xλ ∈ Π+(3; 5) then we have that w = (twλ)sλsµ =

((twλ)s(λx))xs(µ) and we conclude that w ∼ xs.
It remains to show that 1 6∼ xs, suppose the contrary, then from the counting

argument there exists a ∈W (Spin(4)×Spin(12)) such that xsa ∈W (S3×S1×E6).

We have xsa is of type 2 in W (S3 × E7) and so must also be of type 2 in W (S3 ×
S1 × E6) but x 6∈ Π+(3; 5), a contradiction.
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Chapter 9

The decomposition of

E7/S
3 × Spin(12)

In this section we give partial results on the decomposition of the space P2(H⊗O)

with respect to an action of S1 × E6. We will show that one of the orbits of this

action is isomorphic to P2(C ⊗ O) and another is isomorphic to X2(C ⊗ O) which

we have discussed in Chapter 5. We describe particular orbits of this action and

sketch at the end a method to compute the complete form of the decomposition if

time would allow.

We note that unlike the decomposition in Chapter 5 the action is of codi-

mension 2.

9.1 Lie Groups

We first give explicit forms for some of the Lie groups that we will use in this section.

We first define e7 and 2 Lie subalgebras isomorphic to R⊕e6 and su(2)⊕so(12). These

correspond to the natural subalgebras of the algebras su(2) ⊕ e7, su2 ⊕ so(12) ⊕ e6

and so(4)⊕ so(12) used in Chapter 8. For clarity we give explicit definitions here.

Definition 9.1. Following Adams [1996][pg. 56] we define e7 to be the Lie-algebra

with simple root vectors given by:

1. x2 − x3

2. x3 − x4

3. x4 − x5

4. x5 + x6
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5. x5 − x6

6. 1
2(x1 − x2 − x3 − x4 − x5 + x6 −

√
2x7)

7.
√

2x7

The highest root of e7 is x1− x2, with this root we get the extended Dynkin

diagram:

1 2 3 5 6 7µ

4

E7

Where we label the highest root as µ. We can form 2 Lie subalgebras of e7 by

taking sub root systems. First we can take the sub root system associated to the

roots (1, 2, 3, 4, 5, 7) and the highest root x1 − x2. This gives an embedding of

su(2)⊕ so(12) as follows:

e7su(2)⊕ so(12)

Where the roots of su(2)⊕ so(12) are given by:

• ±(xi ± xj) for 1 ≤ i < j ≤ 6

• ±
√

2x7

Secondly we can take the subroot system associated to the roots (1−6) along

with the maximal torus. This gives an embedding of R⊕ e6 as follows:
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e7R⊕ e6

Where the roots of R⊕ e6 are given by

• ±(xi ± xj) for 1 ≤ i < j ≤ 5

• 1
2(±x1 ± x2 ± x3 ± x4 ± x5 ± (x6 +

√
2x7))

Where there are an even number of − signs in the second type of roots. The

embedding of R⊕e6 and su(2)⊕so(12) in e7 induce maps of S1×E6 and S3×Spin(12)

into E7. The map of S1 × E6 is isomorphic to an embedding in Mimura and Toda

[1991] and thus is an embedding. The maps of S3 × Spin(12) into E7 is isomorphic

to the embedding in [Adams, 1996, Chapter 8] and thus has a kernel isomorphic to

C2 generated by (−1,−1) ∈ S3 × Spin(12).

This embedding of S3 ×C2 Spin(12) into E7 gives us the space E7/S
3 ×C2

Spin(12) which is P2(H⊗O) discussed in Chapter 2. The embedding of S1 ×E6 in

E7 thus gives us an action of S1 ×E6 on P2(H⊗O), we will study the orbits of the

decomposition of P2(H⊗O) under this action for the remainder of this section.

We will build up the decomposition of E7/S
3 × Spin(12) by classifiying the

orbits with stabilizers of different ranks. In doing this we will use the notion of

co-ranks defined below:

Definition 9.2. Let H and K be Lie subgroups of a Lie Group G and let HgK be

an orbit in the double quotient H \ G/K then we define its rank to be the rank of

the stabilizer gKg−1 ∩H.

As gKg−1 ∩H ⊆ G the rank of an orbit is at most the rank of G, define the

corank of an orbit to be the difference between its rank and the rank of G. We say

an orbit is full rank if its corank is 0.

77



9.2 Full rank orbits

We first consider the full rank orbits of the decomposition we first prove the following

theorem to relate this to the computations in Chapter 8. We will relate the full rank

orbits of a double quotient of Lie groups to the double quotient of the associated

Weyl groups. We first prove a related lemma.

Lemma 9.3. Let H and K be full rank Lie subgroups of a Lie Group G and suppose

gKg−1 ∩ H ⊆ G is full rank then there exists a g′ ∈ N(G), the normalizer of the

maximal torus in G, such that HgK = Hg′K.

Proof. As gKg−1 ∩H is full rank it has some maximal torus T ′ ⊆ gKg−1 ∩H but

as gKg−1 ∩H ⊆ H we have that T ′ is a maximal torus of H as well and thus there

exists h ∈ H such that T = hT ′h−1.

Further we have the following:

g−1T ′g ⊆g−1(gKg−1 ∩H)g

⊆K ∩ g−1Hg

⊆K

and so g−1T ′g is a maximal torus of K and thus there exists k ∈ K with g−1T ′g =

kTk−1. Let g′ = hgk then Hg′K = HgK and we have that:

g′T (g′)−1 =(hgk)T (k−1g−1h−1)

=hg(kTk−1)g−1h−1

=hg(g−1T ′g)g−1h−1

=hT ′h−1

=T

And thus g′ ∈ N(G).

Theorem 9.4. Let H and K be a full rank Lie subgroups of a Lie group G and let

i : W (H) \W (G)/W (K) → H \G/K take W (H)gW (K) 7→ HgK. Then this map

is well defined and surjects onto the full rank orbits in H \G/K.

Proof. We first prove the map is well-defined. Take the map j : NT (G)→ H \G/K
induced from the inclusion NT (G) ⊆ G.

Then j descends to a map W (G) → H \ G/K as W (G) := NT (G)/T and

T ⊆ K, therefore j(w) = j(wt) for all t ∈ T . Next we show that j descends to a

map W (H) \W (G)/W (K)→ H \G/K we have that:
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W (H) = (NT (G) ∩H)/T = W (G) ∩H

W (K) = (NT (G) ∩K)/T = W (G) ∩K

Thus we have that j(W (H)) ⊆ H and j(W (K)) ⊆ K. This implies that

j(hgk) = j(g) for all h ∈ W (H), k ∈ W (K). This surffices to prove the map is

well-defined.

To prove surjectivity it surffices to note that by Lemma 9.3 j is surjective

and j factors through i.

From Theorem 8.19 we know that the set W (S1 × E6) \ W (E7)/W (S3 ×
Spin(12)) has 2 elements and thus the action of S1×E6 on E7/S

3×Spin(12) has at

most 2 full rank orbits. We will next describe these orbits and show that they are

distinct. From the second orbit we will deduce the codimension of the action and

the type of the generic orbit.

9.2.1 The orbit at one

We first deal with the orbit containing 1 ∈ E7, it is stabilized by the group S1 ×
E6∩S3×Spin(12) which has Lie algebra R⊕ e6∩su(2)⊕so(10). As both R⊕ e6 and

su(2) ⊕ so(10) are subroot systems of e7, the intersection consists of the maximal

torus and the common roots.

Comparing the roots of R⊕ e6 and su(2)⊕ so(10) we see the common roots

are the following:

±(xi ± xj) for 1 ≤ i < j ≤ 5

Thus the stabilizer has Lie algebra of type R⊕R⊕ so(10) as the inclusion of

the R ⊕ so(10) into e6 is the same as the one in Chapter 5, we see the stabilizer is

thus equal to S1 × S1 ×C4 Spin(10) and the orbit is thus isomorphic to P2(C⊗O).

It remains to compute the normal bundle to this orbit. The tangent bundle

to E7/S
3 × Spin(12) is generated by the representation bundle µ2 ⊗C ∆12 this has

weights given by:

1

2
(±x1 ± x2 ± x3 ± x4 ± x5 ± x6 ±

√
2x7)

Where there are an even number of − signs in the variables x1 to x6. On

restriction to R⊕ R⊕ so(10) these weights naturally spilt into 2 classes dependent

on the sign of x7. On restriction to the first 6 variables these representations are the
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same, thus in particular on their restriciton to S1 × Spin(10) ⊂ E6 ⊂ S1 ×E6 ⊂ E7

they are the same and are isomorphic to the representation ξ⊗C∆10 which generates

the tangent bundle of P2(C⊗O). This implies that the tangent and normal bundles

at this orbit are isomorphic as real vector bundles.

9.2.2 The other full rank orbit

We now move on the investigate the other possible full rank orbit this orbit exists as

all the elements of the Weyl group are contained in E7. From [Adams, 1996, Chapter

10] we know that W (E8) ⊂ E8 thus W (E7) ⊂ E7 and hence this orbit contains an

element. We will refer to this element as x ∈ E7. This element acts on the maximal

torus as the composition of a reflection in the root 1
2(x1+x2+x3+x4+x5+x6−

√
2x7)

and a change of signs in the 5th and 6th coordinate. This action is equivelent to a

reflection in the root 1
2(x1 + x2 + x3 + x4 − x5 − x6 −

√
2x7)

The orbit at x is stabilized by x(S3×Spin(12))x−1∩S1×E6 which has a Lie

algebra given by adx(su(2)⊕ so(12)) ∩R⊕ e6. As x is in the Weyl group of E7 and

su(2)⊕ so(12) is a subroot system, adx(su(2)⊕ so(12)) is determined by the action

of x on the roots. Direct computation gives that the roots of adx(su(2) ⊕ so(12))

are:

• ±(xi − xj) for 1 ≤ i < j ≤ 4 coming from ±(xi − xj),

• ±1
2(x1 + · · ·−xi+ · · ·+x5−x6−

√
2x7) for 1 ≤ i ≤ 4 coming from ±(xi−x5),

• ±1
2(x1 + · · ·−xi+ · · ·−x5 +x6−

√
2x7) for 1 ≤ i ≤ 4 coming from ±(xi−x6),

• ±(x5 − x6) coming from ±(x5 − x6),

• ±1
2(x1 + · · · − xi + · · · − xj + · · · − x5 − x6 −

√
2x7) for 1 ≤ i < j ≤ 4 coming

from ±(xi − xj),

• ±(xi + x5) for 1 ≤ i ≤ 4 coming from ±(xi + x5),

• ±(xi + x6) for 1 ≤ i ≤ 4 coming from ±(xi − x6),

• ±1
2(x1 + x2 + x3 + x4 + x5 + x6 −

√
2x7) coming from ±(x5 + x6),

• ±(1
2(x1 + x2 + x3 + x4 − x5 − x6 +

√
2x7)) coming from ±

√
2x7.

As both adx(su(2) ⊕ so(12)) and R ⊕ e6 are subroot systems, to find there

intersection it surffices to take the subroot system consisting of the common roots.

This gives that the Lie algebra of the stabilizer is the subroot system generated by

the roots:
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• ±(xi − xj) for 1 ≤ i < j ≤ 4 coming from ±(xi − xj),

• ±1
2(x1 + · · ·−xi+ · · ·+x5−x6−

√
2x7) for 1 ≤ i ≤ 4 coming from ±(xi−x5),

• ±1
2(x1 + · · · − xi + · · · − xj + · · · − x5 − x6 −

√
2x7) for 1 ≤ i < j ≤ 4 coming

from ±(xi − xj),

• ±(xi + x5) for 1 ≤ i ≤ 4 coming from ±(xi + x5).

The simple roots of this system can then be calculated to be the following:

1. x4 + x5,

2. x3 − x4,

3. x2 − x3,

4. 1
2(x1 − x2 + x3 + x4 − x5 + x6 +

√
2x7),

5. 1
2(x1 − x2 − x3 − x4 + x5 − x6 −

√
2x7),

6. 1
2(x1 − x2 − x3 − x4 + x5 − x6 −

√
2x7).

Giving the Dynkin diagram:

And hence the Lie algebra of the stabilizer is isomorphic to R⊕su(2)⊕su(6).

This embeds su(2)⊕su(6) into e6 as in X2(C⊗O) and hence this orbit is stabilized by

S1×S3×SU(6). Therefore this orbit is isomorphic to X2(C⊗O). As this stabilizer

is distinct from the stabilizer at the other full rank orbit, we see that these orbits

are distinct.

We next compute the normal bundle at this orbit. We first compute its

weights, as this orbit is full rank, these are the weights of the representation x∗(ξ⊗C

∆10) which do not restrict to roots of S1 × E6.

But as S3×Spin(12) is a subroot system the weights of x∗(ξ⊗C ∆10) are just

the roots of E7 which are not roots of x(S3 × Spin(12))x−1. So the weights of the

normal bundle are given as adx(su(2)⊕ so(12))⊥ ∩R⊕ e⊥6 where the perpendicular

is taken in e7.

The roots of E7 not in S1 × E6 are the elements

• ±xi ± x6 for 1 ≤ i ≤ 5,

• 1
2(±x1 ± x2 ± x3 ± x4 ± x5 ± (x6 −

√
2x7)).
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Where elements of the second type have an even number of negative signs in

the variables x1 to x6. The weights of the normal bundle are thus the elements of

the list which are not roots of adx(su(2)⊕ so(12)), these are:

• ±(xi − x6) for 1 ≤ i ≤ 4,

• ±(x5 + x6),

• ±1
2(x1 + · · · − xi + · · ·+ x4 − x5 + (x6 −

√
2x7)) for 1 ≤ i ≤ 4,

• ±1
2(x1 + x2 + x3 + x4 + x5 + (x6 −

√
2x7)).

The highest weight of this representation is 1
2(x1+x2+x3+x4+x5+x6−

√
2x7)

we denote this by ν. Let w1, · · · , w6 be the fundamental weights of R⊕su(2)⊕su(6)

corresponding to the simple roots (where w1 corresponds to the remaining principal

weight element of the maximal torus). Then we have the following:

〈w1, ν〉 = (x4 + x5, ν) = 1

〈w2, ν〉 = (x3 − x4, ν) = 0

〈w3, ν〉 = (x2 − x3, ν) = 0

〈w4, ν〉 =

(
1

2
(x1 − x2 + x3 + x4 − x5 + x6 +

√
2x7), ν

)
= 0

〈w5, ν〉 =

(
1

2
(x1 − x2 − x3 − x4 + x5 − x6 −

√
2x7), ν

)
= 0

〈w6, ν〉 =

(
1

2
(x1 − x2 − x3 − x4 + x5 − x6 −

√
2x7), ν

)
= 1

Where 〈.〉 is the weight inner product and (.) is the inner product in the root

space. Thus the representation associated to the complexified normal bundle has

an irreducible component isomorphic to µ2 ⊗C µ6. But the normal bundle is the

complexification of a bundle with a complex structure and the real dimension of the

representation µ2⊗Cµ6 is the same as the real dimension of the normal bundle. Thus

we must have that the normal bundle is generated by the representation µ2 ⊗C µ6.

9.2.3 The generic orbit

This allows us to compute the generic orbit for this action as the generic orbit of

the S1 × E6 action on the space is the same as the generic orbit of the action of

S1×E6 on the sphere bundle in the normal bundle at the other full rank orbit. But

the stabilizer of the generic orbit on the sphere bundle in the normal bundle is the

same as the stabilizer of the generic orbit of the S1 × SU(2)× SU(6) action on S23
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via the representation µ2 ⊗C µ6. But this is shown in Chapter 7 to be stabilized by

the group S1 × S1 × SU(4).

Thus the generic orbit is stabilized by the group S1×S1×SU(4). In particular

it is corank 2 and codimension 2. This also implies that the action is codimension

2 on the whole space. It also implies that the maximal corank for any orbit of this

action is 2.

9.3 Corank one orbits

We now consider what can be said about corank 1 orbits in H \G/K where H and

K are full rank in G.

Definition 9.5. Let G be a semisimple compact Lie group and α a positive root

then there is a natural inclusion of SU(2) into G taking the unique positive roots of

SU(2) to α. This induces a map Sα : S3 ∼= SU(2)→ G.

We first prove a lemma relating corank one orbits to full rank orbits.

Lemma 9.6. Let G be a semisimple compact Lie group and let H,K be 2 full rank

subgroups such that there is a common maximal torus T ⊆ H,K,G. Suppose HgK

is an orbit of H \G/K of corank 1.

Then there exists an element g′ ∈ G, a positive root α of G and an s in the

image of Sα such that:

• HgK = Hg′K.

• The orbit H(s.g′)K is of full rank with maximal torus T .

Proof. We will first show that there exists a g′ ∈ G with HgK = Hg′K with the

property that g′T (g′)−1 ∩T is corank 1 in T . As the orbit HgK is corank 1 there is

a maximal torus T ′ in gKg−1 ∩H with dimension one less than T . As T ′ is a non

maximal torus in H which has T as a maximal torus there exists some (non-unique)

h ∈ H such that hT ′h−1 ⊆ T . Also we have that

g−1T ′g ⊆g−1(gKg−1 ∩H)g

⊆K ∩ g−1Hg

⊆K

As g−1T ′g is a non-maximal torus in K it is contained inside some (non-unique)

maximal torus. As T is maximal in K this maximal torus containing g−1T ′g must

be kTk−1 for some k ∈ K. We thus have that g−1T ′g ⊆ kTk−1.
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Let g′ = hgk then we have that Hg′K = HgK and further that:

g′T (g′)−1 = hgkTk−1g−1h−1

= h(gkTk−1g−1)h−1

⊇ hT ′h−1

But hT ′h−1 is corank 1 in T thus g′Tg′−1 ∩ T is at most corank 1. It is not

full rank as g′Tg′−1 ∩ T ⊆ g′Hg′−1 ∩K and the orbit at HgK is corank one, thus

g′Tg′−1 ∩ T must be corank 1 in T .

Let t be the Lie algebra of T in g then as g′Tg′−1∩T is corank 1 we have that

adg′(t)∩t is codimension 1 in t. From the root space decomposition of g we have that

adg′(t)/(adg′(t) ∩ t) is one dimensional and generated by an element v =
∑

α∈Γ cαα

where Γ is the set of roots of G and cα ∈ R.

We next prove that cα must be zero if the coroot of α is not in the orthogonal

complement of (adg′(t) ∩ t) in t. Suppose then there exists t ∈ t and a root β such

that β(t) 6= 0 and cβ 6= 0. But adg′(t) is a Cartan subalgebra of g thus we must

have that [t, x] = 0 in particular < [t, x], β >= 0 but we have that:

< [t, x], β >=〈[t,
∑
α∈Γ

cαα], β〉

=
∑
t,α∈Γ

〈[t, cαα], β〉

=
∑
t,α∈Γ

〈cα < t, α > α, β〉

= < cβ < t, β > β, β >

=cβ < t, β > 6= 0

Thus we must have that cα is non zero only for those roots α whose coroot is

in the orthogonal complement of (adg′(t)∩t). But this is one dimensional, thus there

exists a unique positive root ξ whose coroot generates the orthogonal complement

of (adg′(t) ∩ t) and v ∈< ξ, ξ−1 > where ξ−1 is the negative root associated to ξ.

Take Sξ : S3 → G we want to show that there exists an element s, in the

image of Sξ such that H(s ·g′)K is full rank with maximal torus T . As g′Tg′−1∩T is

corank 1 in T it suffces to find an s such that sg′Tg′−1s−1 = T or equivalently that

ads(adg′(t)) = t). As the coroot of ξ is orthogonal to all the elements of (adg′(t)∩ t)
we must have that for all s in the image of Sξ the map ads restricts to (adg′(t) ∩ t)

as the identity.

Finally as S3 acts transitively on on its Lie algebra via the representation ad
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we must also have that the image of Sξ acts transively via ad on the restriction of g

to the image of su(2) under Sξ. Thus there exists an element s such that adstakes

v to the coroot of ξ. This s completes the proof.

This lemma simplifies finding corank 1 orbits to finding full rank orbits (see

Theorem 9.4) and acting via some element in the image Sα for a positive root α.

As both H and K are full rank we have that the map S3 → H \ G/K will

factor through S1 \ S3/S1, we will next give a brief description of this space.

Lemma 9.7. S1 \ S3/S1 ∼= I.

Proof. We will show that the S1 action on S3/S1 ∼= S2 is codimension one and

hence the lemma follows by Mostert’s theorem.

But the orbit at the identity is stabilized by S1 ∩ S1 = S1 and is thus

isomorphic to a point. The tangent bundle of S2 = Spin(3)/Spin(2) is generated

by the representation δ2, this restricts to give the normal bundle as the point has

trivial tangent bundle. As S1 acts transitively via the representation δ2 the space is

codimension 1 and the result follows.

Let ψ : [0, 1]→ S3 ∼= Sp(1) be the map such that:

ψ(t) = cos(πt) + sin(πt)j

Then ψ descends to an injective map ψ : [0, 1] → [0, 1] ∼= S1 \ S3/S1. We

show that this map is surjective. The orbit ψ(0) = 1 was shown to be one of the

exceptional orbits of the S1 action on S2, if we show that ψ(1) is the other then,

by connectedness the map ψ must be surjective. But the stabilizer of the orbit at

ψ(1) = j is a point by the anti-commutivity of j and C inside H. This shows that

ψ descends to give an isomorphism of S1 \ S3/S1 to [0, 1].

We restrict our attention to the Lie groups which have roots α 6= β such that

< α, β >∈ {−1, 0, 1} as these are the only cases relevant to this thesis. We note the

following general lemma from Lie theory.

Lemma 9.8. If G is a semisimple compact Lie group whose simple decomposition

only contains simple algebras of Cartan type of An or Dn for any positive n or E6,

E7 or E8 then for any positive roots α, β of G with α 6= β we have that < α, β >∈
{−1, 0, 1}.

Proof. Directly from the types of bonds in the Dynkin diagram of these groups.
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Definition 9.9. We denote groups as in Lemma 9.8 as groups of type 1.

To compute the orbit type of an orbit of the form x.g where x in the image

of some Sα it is necessary to compute (adx).

Lemma 9.10. Let G be a compact semisimple Lie group of type 1 and let α, β be 2

distinct positive roots of G and x be in the image of Sα then the following hold:

1. If < α, β >= 0 then adxβ = β.

2. If < α, β >= −1 then adxβ ∈< β, β ± α > where adxβ = ±β if and only if

ψ(x) = 0 and adxβ ∈< β + α > if and only if ψ(Sα−1x) = 1.

3. If < α, β >= 1 then adxβ ∈< β,α ± β > with adxβ = ±β if and only if

ψ(x) = 0 and adxβ ∈< β − α > if and only if ψ(Sα−1x) = 1.

Proof. In the first case consider the embedding then consider the embedding Sα×Sβ
then x is in the image of this and the pullback of the restriction of adx at β to Sα×Sβ
is the identity proving the result.

In the second case consider the embedding φ∗ of SU(3) into G induced by the

map φ : su(3)→ g in which the roots x1 − x2 and x2 − x3 of su(3) map to α and β

respectivly. Then the map Sα factors through the map Sx1−x2 : S3 → SU(3) and x is

in the image of SU(3). The action of adx can be restricted to the image of su(3) under

φ which contains β. So we have that adx(β) = φ(adφ∗(−1)x(x2 − x3)). The action of

the image of Sx1−x2 by ad on su(3) restricts to the action of the representation U2

on the complex subspace spanned by the roots x2 − x3 and x1 − x3 as under φ the

element x1 − x2 maps to α+ β the result follows from the description of ψ.

The third case follows the same line as the second but the map φ takes α

and β to x1 − x2 and x1 − x3 respectivly

In particular this shows the following:

Lemma 9.11. Let G be a compact semisimple Lie group of type 1 and let H,K be

full rank sub Lie groups generated by sub root systems. Further let g ∈ G, α is a

positive root of G and s, s′ ∈ S3 with ψ(s), ψ(s′) ∈ (0, 1) then the orbits H(Sα(s)·g)K

and H(Sα(s′) · g)K are of the same type.

Proof. We first suppose that α is also root of H then the image of Sα must also be

contained in H and so H(Sα(s) · g)K = HgK = H(Sα(s′) · g)K in particular the

orbits are of the same type.
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Now suppose that α is not a root of H. By passing to Lie algebras showing

H(Sα(s) ·g)K and H(Sα(s′) ·g)K are of the same orbit type is equivilent to showing

that adSα(s)·gh∩ k is equal to adSα(s′)·gh∩ k. Rearraging this is equivelent to showing

that:

adSα(s)h ∩ adg−1k = adSα(s′)h ∩ adg−1k

In particular it is sufficient to show that the action of adSα(s) and adSα(s′) on

h is the same. As H is generated by a sub root system it surfices to show that the

action of adSα(s) and adSα(s′) on the roots of G which are also roots of H are the

same. But as α is not a root of H and G is of type 1 for any root β of H we must

have that < α, β >∈ {−1, 0, 1} and the result follows from Lemma 9.10.

This allows us to prove the main theorem we will use on corank 1 orbits.

Here we restrict to the case where H,K are subroot systems.

Theorem 9.12. Let G be a compact semisimple Lie group of type 1 and let H,K

be full rank sub Lie groups generated by sub root systems. Then for any orbit HgK

of corank 1 there exists an embedding ψ : (−ε, ε) ↪→ H \G/K with ψ(0) = HgK and

such that the orbit type ψ is constant.

Proof. As H,K are full rank sub Lie groups generated by sub root systems of G

they have a common maximl torus T By Lemma 9.6 we have the existence of a root

α of G and s in the image of Sα such that HgK = Hg′K and Hs · g′K is a full rank

orbit with maximal torus T in the stabilizer.

To simplifiy notation we define r := s−1 and f := sg′ then we have that r is

in the image of Sα, HfK is a full rank orbit and HgK = Hr · fK.

Choose some x ∈ Sα−1(r) ∈ S3 we show that φ(x) ∈ (0, 1). First suppose

that φ(x) ∈ {0, 1} then x normalizes S1 ⊂ S3. We can view the maximal torus T as

the direct sum of a rank 1 torus in the image of Sα and a corank 1 torus. Then r

commutes with the corank 1 torus as it is in the image of Sα and as we have shown

normalizes the rank 1 torus hence r must normalize T. As T is in the stabilizer

of the orbit HfK and r stabilizes T we must also have that T is in the stabilizer

of the orbit Hr · fK but this is the same at the orbit HgK which is corank 1 a

contradiction. Hence we conclude that φ(x) ∈ (0, 1).

As φ : S3 → [0, 1] is the projection map of a double mapping cylinder by the

description given in Lemma 9.7 we have φ−1(0, 1) ∼= (0, 1)×S1×S1 where φ is just

the projection to the first coordinate. Thus as φ(x) ∈ (0, 1) there exists some ε > 0

and θ : (−ε, ε)→ S3 such that θ(0) = x and φ ◦ θ is an isomorphism from (−ε, ε) to

(−ε+ φ(x), ε+ φ(x)).

87



We now define ψ(t) = Sα(θ(t))f then by ψ(0) = Sα(x)f = rf and so the

orbit through ψ(0) is the same as the orbit through g as required. Finally for any

t ∈ (−ε, ε) as φ(θ(t)), φ(θ(0)) ∈ (0, 1) by Lemma 9.11 the orbits HgK = Hψ(0)K =

HSα(θ(0)) · fK and Hψ(t)K = HSα(θ(t)) · fK are of the same orbit type this

completes the proof.

Specifying down to the case we are studying in this section we have that:

Lemma 9.13. In the decomposition of E7/S
3 × Spin(12) by S1 × E6 then if g ·

(S3 × Spin(12)) is an orbit with corank 1 there exists an embedding ψ : (−ε, ε) ↪→
E7/S

3 × Spin(12) with ψ(0) = g · (S3 × Spin(12)) and such that the orbit type ψ is

constant.

In particular this shows that the normal bundle of any corank one orbit must

be generated by a representation which splits as 1 + ∆ for some representation ∆.

As the action of S1×E6 on E7/S
3×Spin(12) is codimension 2 we must have

that the action on the sphere bundle in the normal bundle must be codimension

one. This implies that the action of the stabilizer on a sphere via the representation

must also be codimension one. If the orbit is corank one and has a representation of

the form 1 + ∆ the results in Chapter 7 show that for this action to be codimension

one the action on S(∆) must be transitive.

In particular the stabilizer for the generic orbit will be the same as the

stabilizer of the transitive action on S(∆). As this stabilizer is known to be S1 ×
S1 × SU(4) the classification of transitive actions in Theorem 7.15 can be used to

show that the only possible stabilizers for corank one orbits must be isomorphic to:

S1 × S1 × SU(5)

up to quotient by some finite group.

9.4 Corank 2 orbits

We were unable to present the full theory of the corank 2 orbits in this thesis. But

a sketch of our approach is as follows:

1. To enumerate the possible groups which are corank 2 inside S1 × E6.

2. Using the list in (1) and Theorem 7.16 to find those groups with representations

on which they act with codimension one and such that the generic orbit of
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such an action is stabilized by the group S1×S1× SU(4). This is a neccesary

requirement for any such orbit.

3. The use of Theorem 8.6 in [Bredon, 1972, pg. 211] on the action of a compact

Lie group on a compact manifold with codimension 2 to prove that the orbit

space S1 × E6 \ E7/S
3 × Spin(12) admits a description as a polytope.

4. We identify 2 of the vertices of this polytope with the full rank orbits and

the interior with the generic orbit. Lemma 9.13 shows that corank one orbits

cannot be vertices and so any remaining vertices must be of corank 2.

5. We show using a cohomological argument on dimension that H2(E7/S
3 ×

Spin(12)) is isomorphic to the disjoint union of the second cohomology groups

of the orbits which are both vertices on the polytope and corank 2. We use

this to show there is exactly one corank 2 vertex orbit with stabilizer S1 ×
S3 × Spin(7).

6. We analyse the decomposition of these actions in the sphere bundle to the

normal bundle at the vertex bundle to obtain the orbit type of the edges of

the polytope

7. We conclude with a complete description of the decomposition as the homotopy

colimit of a diagram obtained as a barycentric subdivision of the 2-simplex.

Full details are not given of this method as while I have completed many of

the computations I have not been able to describe the argument in the time I had

to finish this thesis.
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